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Abstract

A wide category of sold products including telecommunication and multimedia propose more
and more advanced features and functionalities. These functionalities come at a cost of increased
design complexity. For performance and power budget issues, these features can be accelerated us-
ing dedicated hardware accelerators. To meet the required time-to-market and development price,
traditional hardware design methodologies are not sufficient and the use of high-level synthesis
(HLS) tools is an appealing alternative. These tools are now getting more mature for generating
hardware accelerators with an optimized internal structure, thanks to efficient scheduling tech-
niques, resource sharing, and finite-state machines generation. However, interfacing them with the
outside world, i.e., integrating the automatically-generated hardware accelerators within the com-
plete design, with optimized communications, so that they achieve the best throughput, remains
a very hard task, reserved to expert designers. The leitmotiv of this thesis was to study and to
develop source-to-source strategies to improve the design of these interfaces, trying to consider the
HLS tool as a back-end for more advanced front-end transformations.

In the first part of the thesis, as a case study, we designed by hand, in VHDL, an intelligent glue
logic to interface an accelerator, for matrix-matrix multiplication, generated by the MMAlpha HLS
tool. Using data dependence information, we implemented double-buffering and blocking techniques
on a scratchpad-like local SRAM memory to exploit data reuse. This increased significantly the
performance of the system but required also a significant engineering effort. We then showed, on
several multi-media applications and with another HLS tool, Spark, that the same benefit could be
obtained with a preliminary semi-automatic source-to-source (here C-to-C) transformations step.
For that, we used an advanced state-of-the-art compiler front-end, based on the Open64 compiler
and the WRaP-IT framework for polyhedral transformations. Significant improvements were shown
in particular on the synthesis of part of the video color space conversion from MediaBench II
benchmarks, for which data was fed through a processor cache memory. This study demonstrated
the importance of loop transformations as a pre-processing step to HLS tools, but also the difficulty
to use them depending on the HLS tool features to express external communications.

In the second part of the thesis, using the C2H HLS tool from Altera, which can synthesize hard-
ware accelerators communicating to an external DDR-SDRAM memory, we showed that it is pos-
sible to automatically restructure the application code, to generate adequate communication pro-
cesses in C, and to compile them all with C2H, so that the resulting application is highly-optimized,
with full usage of the memory bandwidth. These transformations and optimizations, which combine
techniques such as double buffering, array contraction, loop tiling, software pipelining, among oth-
ers, were incorporated in an automatic source-to-source transformation tool, called Chuba, based
on the polyhedral model representation. Our study shows that high-level synthesis (HLS) tools can
indeed be used as back-end optimizers for front-end optimizations, as it is the case for standard
compilation with high-level transformations developed on top of assembly-code optimizers. We
believe this is the way to go for making HLS tools viable.

Keywords: High-level synthesis tools, hardware accelerators, DDR SDRAM, optimized commu-
nications, HPC, source-to-source program transformations, reconfigurable architectures, FPGA.
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Résumé

Une grande variété de produits vendus, notamment de télécommunication et multimédia, pro-
posent des fonctionnalités de plus en plus avancées. Celles-ci induisent une augmentation de la
complexité de conception. Pour satisfaire un budget de performance et de consommation d’énergie,
ces fonctionnalités peuvent tre accélérées par l’utilisation d’accélérateurs matériels dédiés. Pour
respecter les délais nécessaires de mise sur le marché et le prix de développement, les méthodes
traditionnelles de conception de matériel ne sont plus suffisantes et l’utilisation d’outils de synthèse
de haut niveau (HLS) est une alternative intéressante. Ces outils sont maintenant plus aboutis et
permettent de générer des accélérateurs matériels possédant une structure interne optimisée, grce à
des techniques d’ordonnancement efficaces, de partage des ressources et de génération de machines
d’états. Cependant, les interfacer avec le monde extérieur, c’est-à-dire intégrer des accélérateurs
matériels générés automatiquement dans une conception complète, avec des communications opti-
misées pour atteindre le meilleur débit, reste une tche très ardue, réservée aux concepteurs experts.
Le leitmotiv de cette thèse était d’étudier et d’élaborer des stratégies source-à-source pour améliorer
la conception de ces interfaces, en essayant d’envisager l’outil HLS comme back-end pour des trans-
formations front-end plus avancées.

Dans la première partie de la thèse, comme étude de cas, nous avons conu à la main, en
VHDL, une logique intelligente permettant l’interfaage d’un accélérateur, calculant la multiplica-
tion de deux matrices, généré par l’outil de synthèse MMAlpha. En utilisant des informations sur
les dépendances de données, nous avons implanté des techniques de double tampon et de calcul/-
transfert par bloc (pavage), pour des mémoires locales SRAM de type scratchpad, pour améliorer
la réutilisation des données. Ceci a permis d’augmenter de manière significative les performances
du système, mais a également exigé un effort important de développement. Nous avons ensuite
montré, sur plusieurs applications de type multimédia, avec un autre outil de HLS, Spark, que le
mme avantage pouvait tre obtenu avec une étape préliminaire semi-automatique de transforma-
tions source-à-source (ici de C vers C). Pour cela, nous avons utilisé le front-end d’un compilateur
avancé, basé sur le compilateur Open64 et l’outil WRaP-IT de transformations polyédriques. Des
améliorations significatives ont été présentées, en particulier pour la synthèse de la conversion de
l’espace couleur (extrait d’un benchmark de MediaBench II), dont les données étaient transmises via
une mémoire cache. Cette étude a démontré l’importance des transformations des boucles comme
étape de pré-traitement pour les outils HLS, mais aussi la difficulté de les utiliser en fonction des
caractéristiques de l’outil HLS pour exprimer les communications externes.

Dans la deuxième partie de la thèse, en utilisant l’outil C2H HLS d’Altera qui peut synthétiser
des accélérateurs matériels communiquant avec une mémoire externe DDR-SDRAM, nous avons
montré qu’il était possible de restructurer automatiquement le code de l’application, de générer
des processus de communication adéquats, écrits entièrement en C, et de les compiler avec C2H,
afin que l’application résultante soit hautement optimisée, avec utilisation maximale de la bande
passante mémoire. Ces transformations et optimisations, qui combinent des techniques telles que
l’utilisation de double tampon, la contraction de tableaux, le pavage, le pipeline logiciel, entre autres,
ont été intégrées dans un outil de transformation automatique source-à-source, appelé Chuba et basé
sur la représentation du modèle polyédrique. Notre étude montre que ainsi qu’il est possible d’utiliser
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certains outils HLS comme des optimiseurs de niveau back-end pour les optimisations effectuées au
niveau front-end, comme c’est le cas pour la compilation standard o des transformations de haut
niveau sont développées en amont des optimiseurs au niveau assembleur. Nous pensons que ceci est
la voie à suivre pour que les outils HLS deviennent viables.

Mots-clés : synthèse de haut niveau, accélérateurs matériels, DDR SDRAM, optimisations des
communications, HPC, transformations de programme source-à-source, architectures reconfigurables,
FPGA.
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Chapter 1

Introduction

Recent trends in embedded system design have brought new concepts such as platform-based
design, network on chip, and higher levels of specification formalisms. Using predefined hardware
blocks, also known as intellectual property (IP) re-use, is now widely considered as the main way
of improving design efficiency. Embedded software design, i.e., the design and optimization of
the software, takes now a major part of the time of a system on chip (SOC) design (for example
the complete design of a smartphone), which includes the design of the architecture and of the
applications that will be running on it. However, for widely-sold products such as telecommuni-
cation and multimedia devices, the design of dedicated hardware accelerators (IP design) is still
mandatory because it provides better trade-offs between performances (especially in terms of power
consumption) and cost (chip area).

The increasing complexities of accelerated algorithms and of demands of processing power have
led integrated circuit (IC) manufacturers to an ever increasing IC size and complexity. Using
traditional languages such Verilog or VHDL 1 to specify a complex IC design becomes a very
tedious and error-prone task. In order to minimize this design effort, the abstraction level of the
specification languages was increased. The tools developed to synthesize a circuit from such a
high-level abstraction have been called HLS tools.

For many years, HLS has been foreseen as the solution to accelerate dedicated hardware design.
Ideally, HLS should enable the automatic generation of efficient hardware designs from functional
specifications expressed in some high-level programming language. We think that HLS failed, up
to now, to integrate the industrial design flow because it was not mature enough to solve important
technical problems:

– A huge design space to explore: the potential parallelism and the variety of target architecture
technologies imply the use of multi-criteria optimizations. Some choices must be made by
the designer to reduce the design space.

– Interface design: in many HLS tools, the process of integration of the generated hardware
accelerator into the system is either manual or based on template-based interfaces that do
not take into account the data transfer pattern of the accelerator.

– The memory bottleneck: the memory size and the memory traffic have become major com-
ponents in the chip power consumption. Optimizing data accesses is even more difficult than
optimizing parallelism exploitation.

– Data reuse: while some high-performance compilers have very efficient code transformation

1. In VHSIC hardware description language (VHDL), VHSIC stands for very-high-speed IC.
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techniques to increase the data reuse in central processing unit (CPU) with caches, HLS tools
usually leave these transformations and optimization decisions to the user.

In recent years HLS has become a necessity, mainly because the exponential increase in the
number of gates per chip far outstrips the productivity of human designers. Besides, applications
that need hardware accelerators usually belong to domains, like telecommunications, multimedia
and game platforms, where fast turn-around and time-to-market minimization are paramount.

Today, synthesis tools for field programmable gate arrays (FPGAs) or application-specific inte-
grated circuits (ASICs) come in many shapes. At the lowest level, there are proprietary synthesis
and place and route tools, whose input is a VHDL or Verilog specification at the structural level or
register transfer level (RTL). The direct use of these tools will always be difficult and restricted to
expert hardware designers. Indeed, a structural description is completely different from an usual
algorithmic language description, as it is written in term of interconnected basic operators. Also,
synthesis tools have trouble handling loops. This is particularly true for logic synthesis systems,
where loops are systematically unrolled (or considered as sequential) before synthesis. More gen-
erally, a VHDL design is at a too low level to allow the designer to perform, easily, higher-level
code optimizations. This is especially true on multi-dimensional loops and arrays, which are of
paramount importance to exploit parallelism, pipelining, and perform memory optimizations.

In the last decade, important efforts have been made to make possible the generation of low-
level VHDL specification from higher-level specifications. Two main approaches can be identified.
The first one is the bottom-up approach. Different tools such as the “behavioral compiler” from
Synopsys [18] tried to synthesize from a common language such as VHDL with added behavioral
abstractions. However, this approach failed to establish itself as the solution since it did not
diminish sufficiently the design effort and it did not increase the synthesis quality enough for pushing
the designers to learn and use it. The other approach is a top-down approach. A lot of works
considered a very commonly used and known language like such as C programming language (C)
or C++ (C++). To increase the quality of the synthesis results, the languages support extensions
for low-level hardware constructs and compiler directives that are used by the user to guide the
synthesis process. At the beginning, these languages had very little success mostly due to poor
synthesis results. However, later on, more advanced languages such as Handel-C [16] and tools
appeared, both in academia, such as Spark [78], Gaut [90], Ugh [28], Nisc [9], and in industry such
as C2H [2], CatapultC [8], Impulse-C [7], Pico Express [11], to quote but a few. These tools are
now quite efficient for generating finite-state machines, for exploiting instruction-level parallelism,
operator selection, resource sharing, and even for performing some form of software pipelining, for
one given kernel. In other words, we believe that it now start to be acceptable to rely on them for
optimizing the heart of accelerators, i.e., the compute part of it. In other words, HLS tool may be
considered as the equivalent of back-end optimizers in standard (software) compilers.

However, this is only part of the complete design. In general, the designer seeks a pipelined so-
lution with optimal throughput, where the mediums for data accesses (either to local memory or for
outside communications) are saturated, in other words, a solution where bandwidth is the limiting
factor. The HLS tool should then instantiate the necessary hardware and schedule computations
inside the hardware accelerator so that data are consumed and produced at the highest possible
rate. But, for most tools, the designer has still the responsibility to decompose the application
into smaller communicating processes, to define the adequate memory organization or communi-
cating buffers, and to integrate all processes in one complete design with suitable synchronization
mechanisms. This task is extremely difficult, time-consuming, and error-prone. Some designers
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even believe that relying on today’s HLS tools to get the adequate design is just impossible and
they prefer to program directly in VHDL. Indeed, some HLS tools do not consider the interface
with the outside world at all: data are assumed to be given on input ports, available for each clock
cycle, possibly with a timing diagram to be respected [77, 63]. Then, the user has to design all
the necessary glue (explicit communications, scheduling of communications, synchronizations) in
VHDL or with ad-hoc libraries and structures [70][47, Chap. 9]. Some other tools, for example Ugh
and CatapultC [28, 8], can rely on First In, First Out (FIFO)-based communication. The designer
still needs to define the FIFO sizes, the number of data packed together in a FIFO slot (to provide
more parallelism), and to prefetch data to hide memory latencies. Finally, some tools, such as C2H,
also allow direct accesses to an external memory and is (sometimes) able to pipeline them. But,
again, the designer has to perform preliminary code transformations to change the computations
order and the memory organization to hide the latency and exploit the maximal bandwidth.

The leitmotiv of this thesis consists in optimizing the design of the interface that connects the
accelerator to the outside world. As we know, most of the time the performance of a hardware
accelerator is limited by the data availability. Thus, optimizing the data availability can increase
its performance. The first part of this work (Chapter 3) concerns a situation where the generated
hardware accelerator can take advantage of an existing cache in the architecture, directly or indi-
rectly. The second part (Chapter 4) explores the situation where the hardware accelerator can and
has to access directly an external double data rate SDRAM (DDR) memory.

In the first part of Chapter 3, instead of using a template interface (limited by nature) to the
outside world, we build a glue logic that contains the interface and a local memory architecture.
Data access information from the application is used to find the possible data reuse. We manually
generated a local memory architecture that conform to this data reuse information. The whole
logic is connected to the processor and we analyze specific aspects of this type of connection.
This study is done with the HLS tool MMAlpha for a particular application, the matrix-matrix
multiplication of complex numbers, and is exposed in the first part of Chapter 3. It demonstrates,
on one particular example, how difficult is the interfacing problem and what is the potential loss
of performance of such an interface in a complete system.

In general, and not only for the tool we used (MMAlpha), designing such a glue logic by hand
is a very time-consuming and error-prone process, and performances are not always as good as
expected. Another solution to improve the data availability is to transform the input code of the
HLS tool to increase the data reuse. But transforming the code by hand is not an easy task either.
Such transformation could be implemented in the HLS tool itself. However, this would require
an advanced knowledge of its intermediate representation (IR) and, anyway, most of the time,
these tools are provided in binary format, so such a transformation stage cannot be integrated.
Instead, in the second part of Chapter 3, we present a source-to-source automatic code transfor-
mation methodology based on the WRaP-IT loop transformation library and scripting language
Uruk. Being source-to-source, this methodology can be used in front of any tool whose input is a
specification in C, so as to perform, as a pre-processing step, some of the loop transformations that
are mandatory to get the code in a suitable form to go through the HLS tool and get acceptable
performances. Our study focuses on one particular HLS tool, Spark, and on optimizing the memory
communications and data reuse. This requires a local memory where the reused data can be stored.
As Spark is not able to generate local memories, we use the cache available on the platform to
control the data accesses. But our study goes beyond the two particular tools we use (Spark and
WRaP-IT, itself integrated in Open64): it demonstrates that HLS can be coupled with software
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compilation to achieve even better results than HLS tools alone can do. This does not eliminate the
need for loop transformations fully integrated in the HLS tool (some may be mandatory, depending
on its design flow), but it lets the user control and apply some of them in a semi-automatic way at
source level.

In Chapter 3, the performance improvements were obtained mostly thanks to data reuse, either
by exploiting an available cache or by designing a local memory architecture. Designing such a
memory architecture by hand is not only difficult but it is also not very flexible. Since, as mentioned
earlier, HLS tools are getting more mature to generate compute-parts of applications, one should
indeed be able to apply various code transformations at source level so as to optimize data transfers
and reuse, and to rely on the HLS tool itself to synthesize the result of these transformations,
including the required glue (if any). We believe that being able to automatically generate an
efficient interface for an automatically-generated accelerator is a sine qua non condition for making
HLS tools a usable thus viable solution to hardware design, in the same way a traditional front-end
compiler can perform high-level optimizations on top of any assembly-code optimizer. It is no
longer acceptable that the user spends so much time to interface the accelerator obtained by HLS
as if, today, when compiling C to assembly code, the user had to spend a lot of time connecting the
different pieces of automatically-generated assembly code. The challenge here is thus to be able
to perform code optimizations at C level that are directly beneficial when used in front of an HLS
tool, with no modification of the tool itself.

In Chapter 4, we show that such a memory architecture and interface can be generated auto-
matically, using the HLS tool itself, in a form of “meta-compilation”, at least with the HLS tool
we consider. Our study is done with the C2H Altera tool, for accelerators with external accesses
to a DDR memory, always keeping in mind that any code transformation we perform can be au-
tomated. We first analyze C2H and we identify the features that make DDR optimizations feasible
or hard to perform. We then communicating processes, and of software pipelining that can lead to
fully-optimized DDR accesses. The idea is to keep the bandwidth saturated as much as possible,
orchestrating communications and computations in a pipelined fashioned, using local memories to
store data before they are consumed.

In Chapter 5, we present a method to derive automatically from a naive kernel written in C,
a set a C functions implementing the pipelined communicating accelerators optimized for C2H, as
proposed in chapter 4. Original techniques are defined to minimize the communications with the
DDR, manage the local memory and generate the final code. The user must delimit the kernel to
be optimized and specify several other parameters with compiler directives. The method has been
fully implemented and the first experiments gives promising results. We believe that our technique
can also be used to optimize loop-based programs for GPUs (graphics processing units).

To summarize, this thesis manuscript is organized as follows. After this short introduction,
Chapter 2 presents the related works in HLS and code transformations, in particular those related
to HLS based on the C language. In Chapter 3, we present the manually-designed local memory
architecture and interface for the example of MMAlpha, then the source-to-source methodology we
experimented in front of the HLS tool Spark. In Chapter 4, we present our various attempts to
optimize the DDR accesses with the Altera C2H tool and the solution we found with the constraint
that it can be automated. In Chapter 5, we show that the process we designed can be make auto-
matic, with adequate program analysis, program transformations, and code generation. Chapter 6
raises some conclusions and perspectives.
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Chapter 2

Related works in high-level synthesis

The ever increasing complexity of the circuits imposed a transition from low-level hardware
languages, used in traditional hardware design, to languages with a higher level of abstraction such
as C used in high-level synthesis (HLS) tools. The use of a higher abstraction level eases the design
process, making it more flexible. However, as observed in the first generation of HLS tools, the
synthesis quality was far from manual-level designs [91]. As the circuit complexity increased, the
use of HLS became mandatory to get a better time to market. To raise the quality of synthesis
results, the synthesis tools were extended with some add-ons. One of them is the extension of the
input language with low-level hardware constructs. Unfortunately, such constructs could be only
understood by hardware designers eliminating the software developers from the potential users.
Another approach is to use configuration files to drive the synthesizer at a coarse-grain level. A
better approach is to use compiler directives that can guide the synthesizer at a very fine grain
so that the generated design approaches the desired one. There are many other approaches like
class libraries and template/draft architecture definition methods that can be used to guide the
HLS tool. In this chapter, we describe these different approaches together with their advantages
and disadvantages. The goal of this chapter is not to be exhaustive, this would be impossible, but
to give an idea of the evolution of HLS tools and of their underlying ideas, focusing mainly on
tools based on variants of the C language. We also describe, in the form of a catalog, some code
transformations (in particular loop transformations) that can be useful for HLS.

2.1 Hardware description languages and early HLS

2.1.1 Conventional low-level hardware description languages

One of the most used abstraction of hardware circuits is RTL (register transfer level) [14].
It has the lowest abstraction level for defining a synchronous digital circuit in terms of logical
operations. The circuit structure is defined by hardware registers and logical operators. They
are connected by signals that perform transfers of data. RTL description is very close to the
gate-level description (GLD) and is very well suited for the logic design phase of the integrated
circuit design (ICD). One of the advantages of using such an abstraction is that the user have
the full control of the system being implemented. However, as the designed systems became more
complex, the amount of designer work used to describe complex and large digital systems became
not economically viable.

To circumvent this problem, languages like structural VHDL [14, 17] were proposed. VHDL is
used as a design language for FPGAs and ASICs. It was originally developed at the US Department
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of Defense in order to document the behavior of the ASICs (described as RTL) that supplier
companies were included in equipment. It was revolutionary when it was introduced. VHDL has
a syntax mainly based on the ADA programming language, along with an added set of constructs
to handle hardware parallelism. While it can be used for basic RTL description, the language
incorporates higher-level constructs. One can describe multiple entities and their corresponding
architecture implementations. Each architecture can use multiple components described elsewhere
in entities. It is more flexible than RTL and provides IP. However, recent increase in hardware
complexity has shown that manual structural VHDL coding is very time-consuming and error-prone.
Behavioral VHDL has a higher level of abstraction than structural VHDL. The main difference is
that a design described in behavioral VHDL is not always synthesizable as opposed to structural
VHDL, i.e., it is not always possible to derive automatically a layout with a synthesis tool.

Another hardware description language (HDL) language used to model electronic systems is
Verilog [14, 15]. It was invented by Phil Moorby at Automated Integrated Design Systems (later
renamed to Gateway Design Automation) in 1985 as a hardware modeling language. Gateway
Design Automation was later purchased by Cadence Design Systems in 1990. Cadence now has full
proprietary rights to Gateway’s Verilog and the Verilog-XL simulator logic simulators. As opposed
to VHDL designers that opted for a RTL syntax (at least in the earlier versions of VHDL standard),
the designers of Verilog wanted a language with a syntax similar to the C programming language so
that it would be familiar to engineers and readily accepted. The language has a pre-processor like
C, and the major control keywords such as if, while, etc., are similar. The formatting mechanism
in the printing routines and the language operators (and their precedence) are also similar. Like
VHDL, the language differs from a conventional programming language in that the execution of
statements is not strictly linear. A Verilog design consists of a hierarchy of modules. Modules are
defined with a set of input, output, and bidirectional ports. Internally, a module contains a list of
wires and registers. Concurrent and sequential statements define the behavior of the module by
defining the relationships between the ports, wires, and registers. Sequential statements are placed
inside a begin/end block and executed in sequential order within the block. But all concurrent
statements and all begin/end blocks in the design are executed in parallel. A module can also
contain one or more instances of another module to define sub-behaviors.

Even though the VHDL language has higher level constructs and a higher behavioral level of
abstraction, Verilog is still used worldwide much more than VHDL. Assuming that the user has
zero knowledge in either languages, Verilog is the easiest to understand. VHDL is less intuitive for
multiple reasons. One of the reasons is that it is strongly typed. This feature makes it robust and
powerful for the advanced user. However, this is only after a longer learning phase. Another reason
is that there are many ways to model the same circuit (especially those with large hierarchical
structures). The VHDL roots are based on ADA. Verilog has more similarities with C because its
constructs are based half on C and half on ADA. For this reason, an existing C programmer may
prefer Verilog over VHDL.

Independently on the programming language (VHDL or Verilog), designing systems with an ever
increasing complexity using these languages becomes more expensive, tedious, and error-prone. We
must take into account the fact that the success of a language depends a lot on its understanding
simplicity and similarities with well-known and greatly-used programming languages.

6



2.1.2 Early attempts in high-level synthesis

The concept of high-level synthesis started in early 1974 when Mario Barbe from Carnegie Mel-
lon University noticed that one could compile (synthesize) an instruction set processor specification
(ISPS) into hardware [47, Page 15]. Later, HLS was defined as a process of automatic (or semi-
automatic) generation of hardware from an algorithmic description. Since then, there were many
attempts to synthesize circuits from different types of input specifications. In this section, we first
quickly recall different attempts and mention their advantages and disadvantages.

In order to increase the acceptance of the HLS tools, some industry electronic design automation
(EDA) such as Synopsys focused on increasing the abstraction level of existing languages instead
of trying to synthesize efficiently from higher-level specifications. As we mentioned earlier, the
specification written in behavioral VHDL or Verilog is not always synthesizable. The “behavioral
compiler” from Synopsys addressed this issue. This reduced the design effort of RTL synthesis
designers. However, on the other hand, software and algorithm designers were still unable to use
this tool because it still required a huge hardware design knowledge. Another disadvantage of
behavioral synthesis was the rather poor and unpredictable quality of results. The design was
very difficult to validate because its timing behavior was very dependent on the synthesis tool
optimizations. This had a major impact on the HLS tool acceptance.

One of the first attempts in HLS to synthesize from a high-level specification was the work of
Snow in late 80’s during his thesis [47, Page 17]. He was one of the first to propose the use of
control/data flow graph (CDFG) as an input specification to the synthesis system. In later year,
Emil Gircyz in his thesis proposed the use of the ADA language to model hardware [47, Page 17],
which is, as previously mentioned, the predecessor of the VHDL language.

In the domain-specific category, Cathedral and Cathedral-II [57] were the most well-known.
The tools were used for digital signal processing (DSP)-oriented specifications. The specification
language was called Silage and it was developed by IMEC. Silage is a pure behavioral language
without any structural biases. It was oriented to describe DSP algorithms. However, the domain
specialization was not appropriate for the majority of ASIC designers. Early ASIC designers
indeed concentrated on control logic rather than on dataflow and signal processing. The designs
were mostly written by hand in an rather poorly-structured random logic.

These high-level synthesis attempts failed to establish themselves in the hardware design cycle
of many engineers. Most of them were only starting to move from schematic system design to the
HDL methodology. Learning new and much different languages such as Silage, together with their
different design methodologies, was not an easy task and was not considered as a good investment.
Another important drawback of the first HLS tools were the very poor quality of the generated
results compared to the manual approach. This was mainly due to the simplicity of the optimizing
algorithms used.

2.2 Advances in high-level synthesis

In this section, we present some advances in high-level synthesis. We mostly focus on tools that
synthesize from a C-like language, since C is very popular among hardware and software designers.
We present different types of synthesis approaches used to increase the synthesis easiness and
quality. We also try to classify the tools according to these different approaches, following their
most important feature. But, of course, these tools usually incorporate multiple approaches and this
classification may therefore seem a bit artificial, on some aspects. For a more detailed information,
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one may consult the books of Diniz et al. [41] and of Coussy et al. [47], and the article “High-Level
Synthesis: Past, Present, and Future” [91].

The first work that addressed the designers language familiarity problem was the work of Stroud
et al [102]. They introduced a new C-like language called Cones. This was the very first time an
input to the high-level synthesis system was a C-like language. The input specification was synthe-
sized by the Cones HLS tool. It is an automated synthesis system that takes a behavioral circuit
description written in C and generates a gate-level implementation. Its name is based on the logic
cone that is formed by inputs and outputs connected by arrows representing data dependences.Each
function is synthesized independently. It has input and output variable definitions. Cones supports
a subset of C that includes if, switch, and for constructs. It also provides macros to handle array
of inputs, outputs, memory elements, and temporary variables. Memory elements are defined ex-
plicitly with no memory controller or scheduler to fetch them. Cones can be used with single-clock,
single-edge 1 synchronous designs, or purely combinatorial ones. Even though the language was
very familiar to designers, being only able to synthesize combinatorial designs limited its usability.

2.2.1 Low-level hardware constructs

One of the problems with the synthesis from a high-level language like C was the unexpected
synthesis results. To guide the HLS tool, hardware constructs were introduced in the language.

Ku and De Micheli from Stanford University addressed this issue of synthesizing sequential
circuits and developed HardwareC [58, 84, 64] as an input to the Olympus synthesis system. It has
a C-like syntax and it represents a behavioral HDL with support for declarative and procedural
semantics. It supports the notion of concurrent processes, message passing, timing constraints,
resource constraints, hardware structure, and hierarchy. It supports adjusting the degree of paral-
lelism by grouping specific operations using different types of parentheses defined in the language.
External interfacing is done thanks to port passing or message passing using channel mechanisms.

Another C-like language that has hardware constructs is SpecC [14, 64, 62]. It was developed
by Gajski et al.’s at University of California, Irvine. As HardwareC, it is based on C and it offers
special extensions (keywords) to cover the needs of embedded designs. In addition to low-level
hardware constructs, it also provides constructs for finite state machines (FSMs), concurrency,
pipelining, and structure. As such, the SpecC language provides a minimal set of orthogonal
constructs that covers the concepts identified in embedded systems. Systems written in the complete
language must be refined into the synthesizable subset. Channels are used for synchronization and
communication between modules. Unlike previously-presented synthesis tools, SpecC was designed
with system integration in mind. The obtained architecture contains a software processor and a
custom hardware. A part of the initial algorithm will run on the software processor and the rest
will run on custom hardware. The two parts communicate using a generated interface.

Another more advanced language with hardware constructs is Handel C [14, 16, 64]. Developed
at Oxford University Computing Laboratory, it was adopted by Agility [1] until Mentor Graph-
ics acquired its assets [14]. It is a programming language designed for compiling programs into
hardware images of FPGAs or ASICs. It uses much of the syntax from C standard published by
American National Standards Institute (ANSI-C) with addition of explicit parallelism. By default,
the written instructions will be executed in a sequential order. To execute a part of the code in
parallel, one must use the par keyword. In this case, the instructions that have to be executed

1. Digital designs can use the two edges of the clock, i.e., the rising and the falling one. When only one is used,
the design is called single-edge.
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in parallel will be executed at the same instant in time by separate pieces of hardware. The lan-
guage also provides channel communications in order to synchronize parallel branches of a program.
Handel-C semantics is inherited from the communicating sequential processes (CSP) formalism. It
also imposes a restriction that a single variable can be written by only one parallel branch and
may be read by several parallel branches. The variables can be mapped to memory elements such
as random access memory (RAM) and read only memory (ROM) by using type extensions and
cannot be accessed more than one element at a time, otherwise the compiler will generate an error.
Before the start of the main function, the clock at which the main function will run needs to be
defined. More than one main function can be defined if different parts of a program need to run
with different clocks. Handel-C comprises all common expressions necessary to describe complex
algorithms, but lacks processor-oriented features like pointers and floating-point arithmetic. The
programs are mapped into hardware at the netlist level, currently in Xilinx netlist format (XNF)
or Electronic Design Interchange Format (EDIF) format.

Another C-like language, designed at Sharp, Bach C [82] based on the C language had fewer low-
level constructs. It has extensions to support explicit parallelism, communication between parallel
processes, and a bit-width specification of data types and arithmetic. The semantics of the language
is untimed so that users specify the hardware behavior without worrying about when operations will
take place. It supports arrays but not pointers. The input specification was synthesized by Bach
which was developed at Sharp Corporation in 2001. Sharp has also developed a simulation and
debugging environment for Bach C, and a high-level synthesis tool for turning Bach C programs into
RTL-VHDL. The algorithm described in Bach C is partitioned into the hardware (HW) (hardwired
logic) and software (SW) parts. The SW part can be executed on an ARM7. The HW part
is compiled into RTL circuits using the Bach synthesizer, meeting the given constraints. The
compiler uses a logic-synthesis tool to estimate the delay and area of each functional unit in the
design. It has some issues. HW/SW partitioning has to be done by hand. Performance, area,
and power consumption cannot be evaluated at the level of Bach C. The HW/SW interface circuit
is generated automatically and represents a AMBA bus. IP reuse is done manually by manual
modifications in the VHDL code [82].

Finally, another language that restricted the number of low-level constructs was the language
Transmogrifier C [71, 14]. It was developed at the University of Toronto and is a restricted subset
of the ANSI-C programming language with a minimum number of extensions. The communication
is performed by using Input/Output (I/O) ports defined in the language as low-level constructs
and directives. It does not support multiply, divide, pointers, arrays, structure, and recursion. It
is used by the Transmogrifier C HLS system. Now Transmogrifier C is called FPGAC and is an
open-source project. Its usability is rather limited because of its very restricted subset of the C
language and because it targets only the platforms based on the Xilinx XC4000 series FPGAs.

The HLS systems presented above were able to synthesize synchronous and much more complex
circuits compared to systems like Cones. However, this does not come for free. To be able to
optimize the synthesis results, the designers were forced to guide the HLS tool using very low-
level constructs. Most of these constructs could be understood by only the hardware designers,
eliminating the software designers from the possible users. One of the main disadvantages of
low-level hardware constructs was that the designer was usually forced to completely rewrite its
specification written in C in order to get it synthesized by the HLS tool. Poor quality, variable and
unpredictable synthesis results, together with the difficulty to manage low-level hardware constructs
were some of the main factors that perished the success of these tools.
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2.2.2 Configuration files and compiler directives

The previous section mentioned some HLS tools that defined hardware constructs in the lan-
guage in order to inform the HLS tool of some hardware specific attributes. As explained earlier,
this however limited the code reuse between the hardware and software parts in a hardware/software
co-design. There are multiple solutions to this problem.

Configuration files The first solution is to use a configuration file that guides the HLS tool.
This solution is for example used by the HLS tool Spark [78]. It was designed as a continuation
of the MI-CRO project 00-037 (2001) and was developed at the University of California, San Diego,
funded by Semiconductor Research Corporation and Intel. It takes behavioral ANSI-C code as
input and generates synthesizable register-transfer level VHDL. Spark does not accept code that
contains pointers, function recursion, and irregular control-flow jumps. It uses hierarchical task
graphs and dataflow graphs as the internal representation of the program. In a pre-synthesis phase,
using parameters from the configuration file to tune heuristics, Spark applies several optimization
techniques and coarse-level code restructuring as function inlining, loop unrolling, loop fusion,
common sub-expression elimination (CSE), copy propagation, dead code elimination, loop-invariant
code motion, induction variable analysis (IVA), and operation strength reduction. After this pre-
synthesis phase follows a scheduler phase, which is organized in two parts. The first part contains
heuristics that perform scheduling and the second part contains a toolbox of synthesis and compiler
transformations such as percolation and trailblazing (code motions techniques), speculative code
motions, chaining across conditions, and other. The resource allocation has to be done by the
designer who has to specify in the configuration file the amount of available hardware elements and
their timing information. All these transformations have a very important impact on maximizing
the parallelism and performance of the final system. After the scheduling phase follows the control
generation phase that minimizes interconnects between units and generates a FSM that implements
the controller. Finally, a back-end code generation pass generates synthesizable a RTL VHDL
description that can be synthesized by commercial tools. We will use this tool in Chapter 3.

A similar methodology was used for the HLS tool C2Verilog. It was introduced in 1998 by
CompiLogic that was later bought by Synopsys in 2001 [101, 64]. The compiler accepts pointers,
structure, arrays, loops, and function calls. Each function is synthesized independently and each
function parameter is translated into an input and returned into an output port. The compiler can
be informed, by the graphical user interface (GUI), of different global settings such as bit widths,
multiplication and divider options, etc. In order to tune the performance of the system, the designer
has to iterate through different compiler options, logic synthesis preferences and, if a finer grain
change is required, using direct C code modifications.

Another example of tool that uses configuration files is CyberWorkBench (CWB), which was
designed internally at NEC. It includes synthesis, verification, and hardware software co-simulation.
The input language is an extension of ANSI-C and is called BDL or Cyber-C or SystemC. The basic
concept of the framework is the all-modules-in-C and all-processes-in-C. Everything is expressed by
means of the C language. The tool can perform such fusion, array expansion, loop pipelining (also
called loop folding). The tool automatically instantiates a CPU, its corresponding bus interface,
and the connection to the hardware modules.

Finally, it is worth mentioning AutoPilot, an electronic system level (ESL) synthesis system of
AutoESL [3, 47], which uses configuration files containing user constraints and directives to guide
the synthesis process. Based on the UCLA xPilot system [44], it can automatically synthesize
an input code written in an untimed or partially timed C, C++, or SystemC (SystemC) code.
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The tool is based on a commercial C/C++ compiler and can automatically perform optimizations
such as constant propagation, dead code elimination, common sub-expression elimination, strength
reduction, if-conversion, loop unrolling, loop flattening, loop fusion, intra and inter-procedural
analysis, bit-width analysis and optimization, and pipelining. The synthesis process takes into
account user constraints such as latency, throughput, and resources defined in the configuration
file. Dynamic pointers, dynamic memory allocations, and function recursions are not supported.

To summarize, configuration files can express very general requirements of the designer. Com-
pared to low-level hardware constructs, the use of configuration files does not change the code
allowing a much more flexible hardware/software partitioning. However, even though some HLS
tools have a very powerful internal optimization framework, the results are not always acceptable
by the designer. Communicating with the tool with a rather limited tuning of the internally pre-
defined heuristics is not always sufficient to obtain a design with the required performances and
characteristics. Using a configuration file, the designer cannot express fine-grain specifications such
as, for example, which loop to parallelize. The only solution is to change the code, in an iterative
manner and by hand, and to check the obtained results, which is very tedious and error prone.

Compiler directives Instead of configuration files, used for coarse-grain configuration of the
synthesis process, one can use compiler directives (pragmas). Compiler directives can describe
code optimizations at a much finer grain. Also, as for configuration files, code compatibility is
ensured with pragmas: a code written using pragmas can be synthesized to a dedicated hardware
or compiled as a software for a standard processor. The compiler will then ignore pragmas that it
does not understand without generating an error. At the same time, an advantage of using pragmas
over low-level hardware constructs is the flexibility of the code. To change the behavior of a specific
part of a code, one just has to write a pragma instead of changing the structure of the code, which
would be error prone. We present below some of the tools that use compiler directives.

One tool that uses, in the input language specifications, compiler directives to guide the synthe-
sizer is Impulse C [14]. It was developed by Impulse Accelerated Technologies for their Impulse C

compiler. It represents a subset of the ANSI-C. The programming model is a variant of CSP. The
synthesizer accepts multiple predefined pragmas such as NONRECURSIVE used to inform the optimizer
that a given array variable cannot be scalarized, PIPELINE used to inform the synthesizer that the
loop should be pipelined, and so on. From its subset of C, the Impulse C compiler generates an
FPGA hardware accelerator using HDL. The architecture is generated from the CSP description
described in the C language. It is more dataflow and streaming oriented, with processes accepting
data, performing computations on it, and sending them after. The inter-process communications
are performed using streams or shared memories.

Anther commercial tool that accepts pragmas to guide the synthesizer is Nios II C2H [22, 21].
It is a tool developed by Altera Corporation that synthesizes hardware accelerator co-processing
modules to the Nios II soft-core processor. The design starts with an algorithmic description
written in ANSI-C that is supposed to be executed on the processor. Some parts of the code (that
are separated in functions) can be selected to be implemented in hardware. The C2H compiler will
automatically redirect all calls to a hardware function to its hardware implementation. The calls
to the hardware accelerator can be blocking or non-blocking. In the blocking call implementation,
the processor waits in a while loop reading the state of the status register of the accelerator. In
the non-blocking call, the designer must register an interruption routine. The compiler supports
most C constructs such as pointers, arrays, structures, global and local variables, loops and sub-
function calls. Each syntax element is mapped in a straightforward way into a hardware element
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thus, in particular, with no resource sharing. Each loop or function is translated into a separate
state machine that is synchronized to the upper hierarchy one. As opposed to Impulse C, the
compiler will automatically pipeline the loops based on its data dependence analysis. There are
also multiple pragmas defined in the input language specification that can be used to define, for
the compiler, the connections of variables to memories, the blocking and non-blocking function
executions, etc. The compiled hardware accelerator is integrated into the system on a programmable
chip (SOPC) builder system and is connected to the rest of the system by means of the Altera’s
Avalon interconnect. The hardware accelerator supports parallel scheduling, which is performed
automatically based on the data dependences, instead of using pragmas as in Handel-C. In a state
machine, multiple constructs can be scheduled for parallel execution. The constructs can be simple
statements but also other state machines. The hardware accelerator can access the (external)
memory directly by using master port connections. The accesses are then pipelined in order to
reduce the memory latency penalty. We will use this tool in Chapter 4.

One of the tools that does not really accept directives written in the code but, nevertheless, can
specify code optimizations at a fine-grain level, using GUI or Tcl scripts, is Catapult C [14, 47].
Previously called PrecisionC, it is a ESL commercial HLS tool of Mentor Graphics. It takes as input
ANSI-C/C++ and SystemC and generates an RTL description. The interface generation is done
by parsing the C++ arguments and generating Catapult C supports multi-level clock gating, multi-
block systems, loop unrolling, loop fusion, and loop pipelining. The Catapult C language supports
pointers, classes, templates, and operator overloading. It uses some user memory directives to
specify, for example, to split the mapping of an array into multiple memories. The input code
should be statically determinable.

Instead of using compiler directives, one can also use code labels and a separate configuration
file to inform the compiler about the required code transformations. This is used in the academic
HLS tool CLooGVHDL (CLooGVHDL). It accepts a C description and generates a VHDL design.
The tool is built on the side of the WHIRL Represented as Polyhedra (WRaP-IT) tool. The input
C code is parsed by the Open64 (Open64) compiler. Its intermediate representation, whirl, is fed
into the WRaP-IT tool that performs polyhedral loop transformations. CLooGVHDL accepts the
so-called VIM-scripts and the CLooG outputs to generate a HW architecture, composed of functional
computational blocks, loop control, internal FIFOs and memories, and a pre-fetch request module
with synchronization points [61, 59]. However, CLooGVHDL is just a toy HLS tool, which does
not include any complex optimizations or parallel execution. As explained in Section 2.3, our work
in Chapter 3 uses WRaP-IT too, but in front of a more complete HLS tool, namely Spark.

As this brief survey shows, compiler directives are very useful in HLS. The designer does not
have to change the C code that was written for a software part to get it synthesized into hardware:
the user can just add, during the synthesis process, pragmas to the code. Unlike low-level hardware
constructs, the code can still be compiled in software. For example, when using C2H, if a function
is compiled into software, hardware pragmas are ignored by the software compiler. Actually, in
practice, to get efficient designs, the process is a bit more complicated. In addition to pragmas,
the C code may need to be rewritten in a particular way so that the hardware design generated by
the HLS tool delivers adequate performance. But it can still be compiled into software, which is,
in particular, very useful for verification and simulation. Also, compared to the configuration files,
pragmas can specify at a much smaller grain the designer’s requirements (when needed).
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2.2.3 Class libraries, template architectures, etc.

Class libraries Another approach used to guide the synthesis tool to a suitable synthesis result
is by using class libraries. These libraries allow the designer to use extension to an existing pro-
gramming language, such as specialized data-types with corresponding methods or functionalities.
We present below several HLS tools of this category.

Gaut [47] is an academic and open-source HLS tool dedicated to the synthesis of DSP appli-
cations. The synthesis starts with an algorithmic description written in C with Mentor Graphics
class libraries that allow designers to specify bit-accurate data types such as ac int and ac fixed

that represent bit-accurate integers and bit-accurate fixed-point data types. The compilation unit
is based on GCC 2. During the compilation phase, several code optimizations are performed such
as dead code elimination, value range propagation, redundancy elimination, loop-invariant code
motion, loop peeling, loop fusion, partial loop unrolling. The designer can specify the variable lo-
cation (memory, register or both (dynamic)) using the so-called locality-threshold parameter so as
to minimize the cost of storage elements. The user is guided by a lifetime variables histogram and
the frequency of utilization. Using design constraints specified by the user, Gaut generates a hard-
ware accelerator that is composed of a pipelined processing unit (PU), a memory unit (MEMU),
and a communication and interface unit (COMU) based on latency insensitive systems (LIS). The
synchronous components are encapsulated into combinational logic that drives them only when all
the inputs are valid and all outputs can be stored. Gaut generates scripts used to simulate the
result using cycle accurate and bit accurate (CABA) simulation and TLM with timing (TLM-T).

Ocapi [99, 64] is another tool that uses the class libraries mechanism. It supports simulation,
verification, and synthesis. The object-oriented features of the C++ language allow the mix between
high-level description of the components and a detailed cycle-accurate simulation. This approach
also reduces considerably the simulation time compared to a RTL-level simulation.

A very popular framework that uses the class libraries methodology is SystemC. It has as origin
the Scenic project from Synopsys [72] designed to create a language based on C++ that would allow
RTL synthesis and would be able to generate executable modules of hardware system. SystemC
is used mostly for hardware simulation. However, recent compilers such as Forte’s Cynthesizer

can perform hardware synthesis from SystemC. It provides C++ high-level constructs as classes
and macros, and also low-level ones such as structural hierarchy, delta cycles 3, 4-state logic, virtual
platform modeling. The designer can simulate concurrent processes using C++ syntax [14]. Forte’s
Cynthesizer, one of the HLS tools that use SystemC, is a high-level design product of Forte Design
Systems [6]. It accepts SystemC-transaction-level modeling (TLM) design description as input
and generates an RTL design. The user can use high-level C++ constructs like encapsulation,
construction of custom data types, templates, etc. The tool also supports a few directives used to
control the loop pipelining and unrolling.

One can also mention C-to-Silicon, the commercial HLS tool from Cadence, which uses input
specifications based on class libraries. It accepts C, C++, and SystemC as input specification. The
compiler synthesizes the design up to the physical level in order to generate accurate timings. The
tool also incorporates a verification module. The design is translated into a so-called fast hardware
model (FHM) that runs almost as fast as an untimed C-model [4].

Finally, the commercial tool Synphony C Compiler from Synopsys [12] is also based on class

2. GNU Compiler Collection (GCC)
3. Hardware simulation is performed using delta cycles. At a specific delta cycle are executed only hardware

instances for which some signals have changed their state at the previous delta cycle.
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libraries. It uses C/C++ constructs for synthesis. The tool has the key capability of automatically
inserting, in the hardware design, clock gating in order to save power.

All HLS tools we just mentioned use class libraries in their input specifications. These class
libraries are used to extend the original language specification. This has multiple advantages. One
of the major advantage is the very fast simulation time when the required level of simulation does
not need to be as accurate as VHDL simulation. Another advantage of these class libraries is the
very easy hardware/software partitioning as well as a very rapid and painless co-simulation and
co-verification. Unfortunately, all this comes at a cost. Because of the required use of these class
libraries, the majority of the code is not directly usable. The user has to pass through painful
transformation phases from its original specification into one that uses these class libraries.

Synthesis on a predefined template architecture Another methodology to guide the HLS
tool in order to obtain a desired result is by imposing the HLS tool to generate a hardware accel-
eratorq based on a template architecture.

One tool that uses this approach, as opposed to classical synthesis approaches where the synthe-
sizer decides the resource usage, placement, and schedule, is the User-Guided High-level synthesis
framework (UGH) [28, 47]. UGH synthesizes the input C description on the draft data-path (DDP)
specified by the user and it generates a co-processing unit. The DDP consists of a simplified
structural hardware description of the target architecture. It is represented as a directed graph.
The nodes of this graph represents operators and the arcs connecting them represent the allowed
data flow between them. This allows a fine control by the user on the generated hardware. Along
with this, the user should provide the timing constraints file, which specifies, among others, the
desired target frequency. UGH supports several synthesis directives, for example to ask the tool to
hardwire an if operator rather than adding it to the state machine, and the possibility to give
only a partially-connected DDP. When an operation cannot be mapped into this DDP, the tool
will automatically extend it. The tool does not accept pointers, recursive functions, and the use of
functions from the standard C library such as printf. All the variables must be static or global.
They should be mapped to memory elements (registers or RAMs). The I/Os are performed by
means of FIFOs that are viewed, in the C code, as input and output streams, read and written
using special functions.

Pico is a system that automatically synthesizes non-programmable accelerators (NPA)s to be
used as co-processors for functions expressed as loop nests in C [100]. The Pico project was a
research effort of the HP Labs aimed at automating the design of customized, optimized, general
and special-purpose processors. Pico performs a series of operations to obtain a NPA architecture
from a perfect loop nest written in C. The source language has some extensions, in the form of
pragmas (to declare nonstandard data widths, to indicate that certain global variables are not live
in or live-out). The generated architecture represents sequential processes in the form of very large
instruction word (VLIW) processors that communicate using FIFOs in the parallel execution model
of Kahn process networks [81]. Each VLIW processor executes a statically-parallelized block from
a loop that is software pipelined. The parallelization and software pipelining are quite powerful
thanks to the use of the Omega system that computes data dependences accurately and the use
of the Trimaran and Suif compiler infrastructures. After its first developments at HP Labs, Pico
was then developed as a commercial product (Pico-Express) by the company Synfora, recently
bought by Synopsis. Note: Pico could also be classified in the category of tools based on compiler
directives: we chose to mention it here because its generated accelerators, based on Kahn processes
and VLIW architecture, impose some rigid design constraints.
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One of the advantages of synthesizing using a template architecture is that the user can have an
image of the result before synthesis. However, synthesis using such tools requires a good hardware
knowledge from the designer. For UGH for example, the user has to define an adequate draft data-
path in order to obtain good synthesis results. For Pico, the code has to be transformed into a
form suitable for the HLS tool and its target architecture.

2.2.4 Other HLS tools for reconfigurable architectures

In this section, we present some other HLS tools that use a C-like language as a synthesis input
and that generate an IP for reconfigurable fabrics 4. They usually have some low-level constructs
or compiler directives that are special to these systems.

One such tools is Transmogrifier C mentioned earlier. It has special low-level hardware con-
structs in the language to access the pins of the specific Xilinx XC4000 series FPGAs. Another tool
that synthesizes for reconfigurable platforms is PRISM-II [106]. It is the successor of the PRISM-I

system. It consists of a configuration compiler and a reconfigurable hardware platform. The com-
piler transforms the C language description into a hardware module that is mapped into Xilinx
FPGAs. The software part is similar to the executable part produced by compilers but also includes
support for accessing the hardware module during program execution. The input specification is
a subset of the C language and includes for, while, and switch statements but does not include
structures, floating point data, or unions. GCC is used as a pre-processor that can apply multiple
code transformations such as dead-code elimination, sub-expression elimination, etc. The internal
representation of the GCC compiler, called RTL, together with the machine description file, is used
to generate hardware.

The CASH or Application-Specific Hardware (ASH) compiler [38] is an automated hardware
synthesis tool that generates hardware from programs written in C. It is based on the SUIF research
compiler [108]. Its approach consists of synthesizing at compile time a hardware accelerator and
executing it on a reconfigurable fabric. The compiler exploits dynamic scheduling, speculation, and
instruction level parallelism techniques. Each synthesized function gets computation structures,
interconnection links, and local memories. It is generated into a separate circuit and independently
optimized. Later on, these functions are synchronized together by asynchronous communication
protocols, in a coarse-grain manner. As Spark, and other tools of the same category, CASH does
not accept any user intervention by means of compiler directives or low-level hardware constructs.

Another HLS tool used in reconfigurable computing is the GARP compiler [40]. The compiler
accepts ANSI-C programs, it automatically extracts computation-intensive loops, and it compiles
them into a hardware architecture for dynamically-reconfigurable coprocessors inside a special re-
configurable chip called GARP.

There are many other HLS tools 5 used in reconfigurable computing that use a C-like language
as an input specification [41], which demonstrates that this type of specification is very common
and popular, mostly because of its similarities with the ANSI-C software programming language.
Another advantages of using a C language for synthesis is the very easy hardware/software parti-
tioning, co-simulation, and verification. This is why it is very often used in the HW/SW co-design

4. A reconfigurable fabric represents a digital circuit that can be reconfigured statically or dynamically with a
different hardware design. One example of a reconfigurable system but not limited to is the FPGA.

5. For example, SPC Compiler, A C to Fine-Grained Pipelining Compiler, DeepC, Stream-C, ROCCC, RaPiD-C,
XPP-VC, DRESC, Chimaera-C, GARPCC, NAPA-C, DEFACTO, Cameron, DWARV, CoDe-X, COBRA-ABS [41].
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domain. Tools like AKKA [103], PRISM-II, and others, use this to partition, estimate, profile, co-
simulate, and co-synthesize.

Other languages and tools We point out that there are other interesting languages used as
input specification to a synthesis system. Here, we mostly focused on C-like languages. For example,
languages such as Matlab have a higher level of abstraction than C. One could translate the
specification in this language into a C one. For a language such as Alpha [39], the process is
inverse. One can transform a C representation into Alpha by using array expansion techniques and
dynamic static single assignment form (SSA) as described in [67].

The Alpha language was proposed by Christophe Mauras during his thesis in 1989 [92]. Alpha
is a functional language (based on recurrence equations) for expressing regular algorithms, syn-
thesizing regular architectures, or compiling to sequential or parallel machines from a high-level
specification, thanks to its corresponding HLS tool MMAlpha 6. An algorithm is described by
equations involving variables defined on multi-dimensional domains. By successive transformations
(uniformization, parallelization for instance), the description is refined until it may be interpreted
as an architecture. Then, this description can be translated towards logic synthesis tools in or-
der to generate a very-large-scale integration (VLSI) architecture. Alternatively, different analysis
(scheduling, lifetime, etc.) may guide the transformations towards an imperative loop code for
general-purpose (sequential or parallel) processors [107].

2.2.5 Conclusions

In the previous sections, we presented different HLS methodologies and languages. We started
with a presentation of traditional hardware development methodologies and languages such as
Verilog and VHDL. We showed that using such languages to implement complex hardware designs
is not very efficient: such designs are difficult to write and maintain, and minor specification
changes require a major redesign and rewriting. Another disadvantage of these languages is that
they are not familiar to software developers hence limiting their use to only hardware designers.
However, software developers are required to forward the algorithmic specification to hardware
designers. Since the abstraction level of these hardware description languages is very low, the
hardware designers have to pass through the tedious process of transformation from an algorithmic
description into a hardware design.

In order to circumvent this effort, we showed how multiple HLS tools appeared that synthesize
hardware from a higher level of abstraction. There are multiple high-level languages used in syn-
thesis, but the most used is C and variants of it. Its advantages over other high-level languages is
that it is very popular and well-known in the world of both software and hardware designers (just
like, as previously described, Verilog has more users than VHDL). Designing hardware using C is
much less bug-prone. The debugging and testing process, which takes a major part of a hardware
design, is reduced considerably because one can find faster bugs in a higher abstraction level and
also because the simulation times are much shorter than for the low-level ones.

When using a high-level language such as C, one can easily apply various high-level code trans-
formations as opposed to low-level languages where it is difficult or even impossible to apply them.
One can adapt many powerful transformations from high-performance computing (HPC) into HLS.
However, inserting all these transformations into the HLS tool can be very difficult since one should

6. See also Chapter 3 where we define and design an interface for a hardware accelerator generated by MMAlpha.
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adapt the IR of the tool to this transformation or vice versa. Another way of doing it is by passing
the input code through a preprocessing tool before synthesis. This way, we separate the prepro-
cessing tool from the HLS tool, thereby facilitating the reuse of implemented knowledge using an
adaptation of the connection to other HLS tools. This way, the preprocessing tool is perpetuated
and will not disappear if the HLS tool disappears.

Also, as mentioned earlier, HLS tools usually require a more or less important adaptation of
the input specification so as to match the input specification restrictions of the tool. Performing
correctly this adaptation is not trivial as one should perform it with performance metrics in mind,
which are defined by the HLS tool documentation. Implementing them (semi-) automatically in
the preprocessing tool will ease the task of the designer which can now be a software developer,
with only a general idea of performance metrics of the code transformations, that wants to obtain
quickly good synthesis results. This is the approach we explore in this thesis: performing high-level
program transformations semi-automatically, in front of the HLS tool, trying to use the synthesis
tool as a black box as much as possible, or at least as a back-end compiler that should take care of
lower-level details that the designer does not want to take care of.

In the next section, we give a catalog of program transformations, in particular loop transfor-
mations, well-known in the HPC context, together with their interest in the context of HLS.

2.3 Code transformations for high level synthesis

Compiler technology is clearly penetrating deeper and deeper the HLS world in order to improve
the synthesis results. Compilers integrate many complex optimizations, usually tuned to get efficient
assembly code, but they can also be used for HLS. Examples of such optimizations are common sub-
expression elimination, dead code elimination, strength reduction, to quote but a few [45, 93]. In
this section, we are interested in higher-level optimizations, in particular loop transformations [29],
where parallelism extraction and memory optimizations can be better achieved. Some of these
transformations are already implemented in recent state-of-the-art HLS tools such as pico, C2H,
and others. However, the transformations are performed mostly at a lower-level of abstraction and
on the complex internal data structures of these tools. Our goal is to facilitate the design cycle by
adding a higher-level preprocessing step, which would be human readable and thus easily controlled
by the designer. The preprocessed specification would then be synthesized by most HLS tools that
take as input specification an C-like program.

General affine loop transformations were first implemented in parallelizing prototypes such as
tiny [109], LooPo [75], Suif [108], or Pips [80] to try to exploit loop parallelism. Recently, dedicated
loop optimization modules have been integrated into more popular open-source compilers [96], also
because cache performances can be greatly improved by such transformations. Our goal is to use
these tools or, at least, similar transformations, to provide a source-to-source (S2S) front-end to
HLS tools so as to widen the space of possible hardware implementations given a particular initial
sequential specification, thereby eliminating the need to reimplement all these transformations
internally in the HLS tools.

For applying loop transformations, we will use the standard polyhedral model, a modeling
technique for loop nests in programs. It abstracts a n-dimensional loop nest (i.e., n nested loops)
by a polyhedron on a n-dimensional space enclosing all the integer vectors spanned by the vector of
indices of the loop nest. It uses a classical internal representation for the instructions of the body
of the loop nest. Performing loop transformations amounts to perform algebraic transformations
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on these polyhedra. This polyhedral representation has also been successfully used to model other
objects such as the memory layout of a program [42, 55], the communication volume between IPs
of a SOC [104], cache misses [89], etc.

The polyhedral representation has the advantage that its size is independent of the number
of iterations of the loop, which is particularly useful to manipulate loops unlike some HLS tools
that need to unroll loops to exploit parallelism. It can also represent loops with a parameterized
number of iterations (i.e., where the number of iterations is not known at compile time). It has
been used in research prototypes such as MMAlpha, Compaan, or LooPo. However, its use implies
a shift towards an IR quite different from the IR commonly used in compilers (abstract syntax
trees or linear IR). Another restriction is that the polyhedral model is efficient to model static
control programs, i.e., programs where the control flow is not dependent of the input data. It is also
even often assumed that data dependences do not depend on input data either. As shown in [105],
a major part of programs is composed of static control parts, especially for compute-intensive
programs present in signal processing or multimedia applications. However, it is mandatory for a
HLS tool to also handle the parts of the program that do not have static control.

Independently of our work, in particular the one presented in Chapter 3 and in [95], a study
by Devos has been published [60] that uses, as we do, WRaP-IT as a loop transformation tool
too. The HLS was done with an elementary (i.e., no complex back-end optimizations) homemade
synthesis tool (CloogVHDL) and results compared to designs done with ImpulseC, starting from an
initial unoptimized specification. The goal of this work was to show that loop transformations can
indeed lead to performance improvements for HLS and how these transformations can be selected.
Actually, many HLS tools already adopted compiler technology, including loop transformations,
and they already proved the importance of them, even if most of them only implemented a small
subset of compiler transformations. Therefore, if our first goal was similar to the work of [60],
i.e., showing the importance of high-level loop transformations for HLS, we wanted to complete
this first study with a different methodology so as a) to better analyze the interactions between
high-level and low-level tools and optimizations, b) to show that such transformations can be made
fully at source level, in front of a HLS tool that cannot be modified. Implementing a new compiler
transformation indeed requires a very good knowledge of the internals of these tools. Even worse,
it is impossible to add one to a HLS tool that is provided only in binary format such as Spark,
Pico, and most of the proprietary HLS tools. One of the goals of our study is thus to show that
one can split the HLS process into front-end optimizations (as a pre-processing step) and low-level
optimizations (in the HLS tool).

The following two sections present, in the form of a catalog, classical loop transformations in
code optimization and parallelization, that were first developed for HPC and that are potentially
(or already proved) interesting for HLS. Our study in the next chapters will dive in more details,
and with more experimental evidence, into their interest in the context of HLS. Some more details
can be found in [41] too. These source-level transformations can be classified into two broad
categories: those affecting the control flow, i.e., the order of computations, and those changing
the organization in the memory and its accesses. The two types of transformations, one acting
on the structure of loops, the other on the structure of arrays, are not independent. Usually one
should apply a transformation of the first type for a transformation of the second type to have an
interesting effect. We can find this duality in data-parallel programming languages such as High
Performance Fortran (HPF) [83, 94], a language that focused research efforts for many years for
the semi-automatic optimization of applications for distributed-memory machines. This language
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has popularized the concepts of parallel loop, of scalar and array privatization, array alignment,
block or cyclic distribution, communication vectorization, data and computation duplication to
avoid transfers, etc. We find similar needs and solutions for the synthesis of hardware accelerators.

2.3.1 Transformations that change the computation order

Software pipelining Software pipelining consists in organizing the instructions of a loop by
taking into account its cyclic execution, the latency of operations, and the computational/transfer
resources available. To an iteration i of the loop and instruction S of the loop body corresponds a
particular operation S(i). These different operations are organized in a regular way, by the well-
known modulo scheduling method [98], where S(i) is initiated at time λi + ρ(i). In general, all
operations S(i) corresponding to the same instruction S are mapped to the same computational
resource (cyclic allocation). The coefficient λ is called the initiation interval (II): a new iteration
of the loop starts every λ cycles, and one occurrence of S is initiated every λ cycles. In the Altera
HLS tool C2H, the initiation interval is called CPLI, for cycles per loop iteration, see Chapter 4.

In compilation, λ can be arbitrarily large. It depends on the resource constraints and on the
dependences between operations. In synthesis, on the other hand, most designs target λ = 1, by
allocating all necessary resources and by applying preliminary program transformations.

The tool PicoExpress from Synfora has a very good software pipeliner. The software pipeliner
of Altera’s C2H is interesting, mainly to hide latencies during the transfer from external memory.
However, it is rather rudimentary and quickly becomes sub-optimal.

Loop unrolling Loop unrolling is a well-known transformation used to replace a set of operations,
described by loop iterations, to the explicit sequence of these operations. Thus:

for (i = 0; i < 4; i++) {

a [i] = ...

}

becomes:

a[0] = ...

a[1] = ...

a[2] = ...

a[3] = ...

This transformation is particularly useful for HLS tools that do not have a scheduler or optimizer
that can exploit loops. It is possible only if the number of iterations is known (i.e., not a parameter).
A partial unrolling by a factor r is also possible. Usually r is not a parameter. For example:

for (i = 0; i < N; i++) {

a[i] = ...

}

unrolled by r = 2 becomes:

for (i=0; i<N; i+=2) {

a[i] = ...

if (i<N-1)
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a[i+1] = ...

}

It is possible to write the code differently, in particular in to avoid a conditional statement inside
the loop. Some information on the value N can be also useful in order to simplify the code (here for
example that N is even for example). Partial unrolling can be useful to improve the performance
of software pipelining. In Chapter 4, we will use an unrolling by a factor of 2 to express a form of
double buffering and, this way, overlap communications and computations.

Loop fusion Fusing (or merging) two loops consist of merging the control structure of the two
loops to form only one. The inverse transformation of the loop fusion is called loop distribution.
Thus:

for (i=0; i<n; i++) {

a[i] = ...;

}

for (i=0; i<n; i++) {

b[i] = a[i];

}

is transformed by loop fusion into:

for (i=0; i<n; i++) {

a[i] = ...;

b[i] = a[i];

}

The order of computations after loop fusion is changed. The resulting code performs an alternate
execution of statements of the two initial loops rather than executing all statements of the first
before those of the second. Loop fusion has several advantages:

– increasing the granularity of the loop body in order to provide more parallelism to the in-
struction scheduler;

– moving the computations within a single hardware accelerator if each loop corresponds to a
unique hardware accelerator (some synthesis tools treats each loop separately);

– reducing the lifetimes of some variables allowing a better memory reuse (in the example
above, we may contract the array into one scalar variable).

We will use loop fusion for all these reasons in Chapter 3 for our study with Spark. The negative
effects of the fusion are the possible increased register pressure and the possible destruction of
loop-level parallelism (in particular, the fusion of two parallel loops can lead to a sequential one,
leading to NP-complete optimization problems [49]).

The legality of loop fusion is well known. The main difficulties of applying this transformation
are: a) when the code generation does not accept loops whose bounds are different (we need to apply
for example loop peeling before this transformation); b) the distance (in the program) between the
loops; c) the absence of a clear cost model; d) the difficult interaction with other transformations
(especially loop interchange and loop shifting to make the fusion legal).
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Loop peeling Loop peeling [27] consists of removing a loop iteration (usually the first or the last
one) and executing it out of the loop body without changing the order of computations. Thus, the
peeling of the first iteration of:

for (i=0; i<n; i++) {

a[i] = ...;

}

leads to:

a[0] = ...;

for (i=1; i<n; i++) {

a[i] = ...;

}

In general, this transformation is used to extract from a loop an iteration having a particular
behavior or to enable further transformations. It can be useful also to simplify the control of a
program by cutting the iterations into subsets for which the control is similar.

The reverse operation called sinking is used to insert a statement, by adding conditional guards,
in a loop defined at the same depth. This method is used to obtain perfectly-nested loops.

Loop shifting/retiming Sometimes, in order to change the distance and potentially the nature
(loop-carried, loop-independent) of certain data dependences in the loops, it may be useful to shift
(relative to the loop counter) some loop-body instructions. This technique is called loop shifting
(even if this transformation should be called instructions shifting in a loop). For example, the two
following loops cannot be fused as is:

for (i=0; i<N; i++) {

a[i] = ...

}

for (i=0, i<N, i++) {

b[i] = a[i+1]

}

but by shifting the second loop:

for (i=0; i<N; i++) {

a[i] = ...

}

for (i=1; i<N+1; i++) {

b[i-1] = a[i]

}

the two loops can be merged by peeling a few iterations:

a[0] = ...

for (i=1; i<N; i++) {

a[i] = ...

b[i-1] = a[i]

}

b[N-1] = a[N]
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Loop shifting is similar, from an algorithmic point of view, to the retiming concept [86] that is well
known in low-level hardware synthesis. It has also a strong link with software pipelining and loop
compaction [50]. It is also sometimes used in vector form when several loops are nested. It is then
called multi-dimensional shifting [51].

Loop interchange Loop interchange (not to mix up with loop inversion) is a classical code
transformation [27]. It consists of exchanging the levels of two perfectly-nested successive loops.
The two-nested loops:

for (i=0; i<N; i++) {

for (j=i; j<M; j++) {

a[i][j] = ...

}

}

become:

for (j=0; j<M; i++) {

for (i=0; i<min(j+1,N); j++) {

a[i][j] = ...

}

}

This transformation changes the order of computations. Therefore, it changes the data dependences
as well as array accesses. For example, here, the first code accesses the array a following the direction
of rows, and the second accesses it following the direction of columns. The main difficulty resides
in the computation of loop bounds after the transformation. Techniques manipulating polyhedra
allow to accomplish this computation by considering that a loop interchange represents an affine
transformation, here (i, j)→ (j, i), applied on a polyhedron (the iterations of both nested loops).

Loop skewing Loop skewing [27] is an intermediate transformation with little interest when
applied by itself because it does not change the computation order. It consists of performing
an affine transformation (i, j) → (i, j + i). Let us note however that, by definition, a skewing
can be only the addition of an outer loop iterator to an inner loop iterator. In other words,
skewing is always valid. The transformation (i, j) → (i + j, j) is not a skewing but a combination
(i, j)→ (j, i)→ (j, i+ j)→ (i+ j, j) of loop skewing with two loop interchange transformations.

Loop reversal The inversion of loops [27] (not to mix up with loop interchange) consists in
reversing the loop counter, i.e., decrementing it if it was incremented and reciprocally. For example:

for (i=0; i<N; i++) {

a[i] = ...

}

becomes:

for (i=N-1; i>-1; i--) {

a[i] = ...

}
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Strip-mining Strip-mining [27] is similar to partial unrolling, except the fact that the unrolled
part is itself expressed by a loop. So:

for (i=0; i<N; i++) {

a[i] = ...

}

becomes, after applying a strip-mining of s:

for (i=0; i<N; i+=s) {

for (ii=i, ii<min(i+s,N), ii++) {

a[ii] = ...

}

}

It can be written in different, semantically-equivalent, forms. The interest of strip-mining is to
identify a portion of iterations or a data block on which other transformations can be applied.
When combined with loop interchange, loop tiling is obtained.

The opposite of strip-mining transforms a code that have two loops to one having only one and
is called loop linearization. For example:

for (i=0; i<M; i++) {

for (j=0; j<N; j++) {

a[i][j] = ...

}

}

is transformed into:

for (t=0; t<MN; t++) {

a[t div N][t mod N] = ...

}

This transformation is sometimes useful when HLS tools synthesize better simple loops in com-
parison to nested loops. Of course, integer divisions and modulo can be avoided by re-computing
variables i and j using increments by a small FSM. This is similar to the juggling method [54] used
in the Pico project of HP Labs (and possibly in the tool PicoExpress from Synfora). An alternate
code generation is to use the method of Boulet and Feautrier [37] as we do in Chapter 5.

Unroll-and-jam The unroll-and-jam transformation [27] acts on two perfectly-nested loops and
consists in partially unrolling the outer loop and to merge the resulting loops. For example, the
code:

for (i=0; i<2*N; i++) {

for (j=0; j<M; i++) {

a[i][j] = ...

}

}

is transformed, by an unroll-and-jam of factor 2, into:
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for (i=0; i<2*N; i+=2) {

for (j=0; j<M; i++) {

a[i][j] = ...

a[i+1][j] = ...

}

}

The interest of the unroll-and-jam is to be able to unroll loops which do not appear at the deepest
level, while keeping the nesting order. This transformation changes the order of computations
and also the order of array accesses. This can enable classic optimizations on memory. This
transformation is in fact a particular form of “unrolled” tiling.

Tiling Tiling [110] is one of the most important transformations used to improve performances.
It consists in transforming n perfectly-nested loops into 2n loops. It consists in performing a strip-
mining on each of the n loops and to be move the n outer loops of strip-mining before the n inner
loops of strip-mining. In this example:

for (i=0; i <N; i ++) {

for (j=0; j <M; i++) {

a[i][j] = ...

}

}

Using tiles of size s× s, we obtain:

for (i=0; i<N; i+=s) {

for (j=0; j<N; j+=s) {

for (ii=i; ii<min(i+s,N); ii++) {

for (jj=j; jj<min(j+s,N); jj++) {

a[ii][jj] = ...

}

}

}

}

It is possible to write it in different forms than the one presented above. Tiling is particularly useful
to perform computations by block, with a coarser grain of computation than at the instruction level.
The transformed code usually has a better space and temporal data locality. It can also be used
to vectorize communications, i.e., to perform transfers by blocks (burst communications). The
legality conditions of the tiling transformation are well known but require dependence analysis and
the search for permutable loops [56]. Code rewriting methods are not simple, because tiling is not
an affine transformation, and many techniques have been proposed. But tiling has generated, above
all, many papers on cost models.

Unimodular transformations A unimodular transformation [31] operates on n perfectly-nested
loops. The counters of these n loops are represented as a vector (from the most external loop to-
wards the most internal one). This vector is transformed, by a linear transformation invertible
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in the integers, in a new vector that describes new counters and their corresponding loops (from
the most external loop towards the most internal one). Such a transformation is characterized
by a transformation matrix with integer coefficients and a determinant equal to ±1. Loop rever-
sal, loop interchange, and loop skewing are unimodular transformations. Also, any unimodular
transformation can be expressed as a combination of these elementary transformations.

In general, the user does not think in terms of unimodular transformations. These are more a
formalism allowing to think globally of elementary transformations and their composition, to prove
their legality, and to develop algorithms that generate the loop bounds of the transformed loops.

Affine transformations Affine transformations are an additional stage in the formalization of
elementary transformations compositions. By adding the possibility of having a different constant
for each statement, they include into the model the possibility of shifting. By adding the possibility
of different linear part for each statement, in the original space as in the transformed space, they
allow to deal with loops that are not necessarily perfectly nested and to generate loops that have
any type of nesting.

Algorithms manipulating such transformations exist, for example, the multidimensional affine
scheduling algorithm of Feautrier [68], the approach of Lim and Lam [88], or the method of the
group of Sadayappan and Ram [34], who developed the tool called Pluto. Code rewriting techniques
also exist, as implemented in the tool CLOOG.

Loop parallelization Loop parallelization consists of annotating loops as sequential or parallel.
A loop is parallel if the computation operations at iteration i do not depend on the computation
operations at iteration j, where i 6= j. There may be dependences in the code, but they are
between different instructions of the same iteration (loop-independent dependence) and not between
different iterations (loop-carried dependence). The iterations of a parallel loop can be performed,
not only in parallel, but in any order. For example, in HPF, such a loop is specified by the pragma
“independent”. It should not be mixed up with the HPF FORALL whose semantics is different.

Different algorithms used for loop parallelization exist. One of them is the algorithm of Allen
and Kennedy [26] based on loop distribution. The most powerful to date, for the maximal extraction
of parallel loops, is the algorithm of Feautrier [68], which builds general affine transformations. For
a more complete list of parallelization techniques based on scheduling, see [53].

Analysis and transformations of while loops The previous transformations concern the for
loops in C, when they can be proved to behave as DO loops in FORTRAN, i.e., with an obvious
counter modified only in the loop header, with loop bounds not modified in the loop body, etc.

Such “static” for loops are better optimized by HLS tools, one of the reason being that they
can anticipate their execution time. However, even in the HLS context, there are codes which
contain while-type loops. Some of the HLS tools accept them and generate a corresponding control
FSM. But, usually, this FSM represents a simple translation of this control structure without any
particular optimization, neither pipeline, nor parallelism. Some other HLS tools can transform
these loops into for-type loops with early exits and are able, in some cases, to pipeline them.
Finally, some other tools simply reject them. Besides that, for the front stages of HLS tools (those
that decide which transformations to apply or which scheduling to perform), even if the loop while

can be treated, it is sometimes necessary to know an upper bound for its number of iterations (i.e.,
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some kind of worst-case execution time (WCET)). For example, when several hardware accelerators
need to be pipelined at coarse-grain level, it is important to have an idea of their latencies.

The analysis of while loops, the computation of upper bounds of their “iteration domain”, and,
possibly, the re-generation of these loops in the form of DO loops with early exits is an interesting
add-on step for the HLS tools. Techniques such as those developed in [24] can be used.

2.3.2 Transformations that change the memory access order and its size

In the context of HLS, the interest of changing the memory accesses is triple:
– to change the data dependences of a program to extract more parallelism;
– to reuse memory so as to reduce its size;
– to reorganize the memory in order to change the total number of available parallel ports and
connections to computation resources.

Scalar privatization/expansion The scalar expansion [27] consists in transforming a scalar
variable, redefined in every loop iteration, into an array indexed by the loop counter. In this
case, anti-dependences (writing after reading) and output dependences (writing after writing) are
removed, increasing the potential for parallelism. For example:

for (i=0; i<N; i++) {

t = a[i];

a[i] = b[i];

b[i] = t;

}

is transformed into:

for (i=0; i<N; i++) {

t[i] = a[i];

a[i] = b[i];

b[i] = t[i];

}

t = t[N-1]; /* if t is used later */

Thanks to this memory expansion, the loop becomes parallel. Its iterations can be performed in
any order. It is possible to not expand the scalar variable but only point out that, if the iterations
are executed on p parallel processors, a separate scalar variable for each processor should be used.
In this case, only p memory locations are needed instead of N . In this case, it is called scalar
privatization. It is also possible to apply the same principle to an array by adding dimensions
explicitly (array expansion) or implicitly (array privatization).

Single assignment The translation into single assignment form is a more general form of scalar
and array expansion [65]. To eliminate all the dependences that are not due to the data flow (flow
dependences) but to the memory reuse (anti-dependences and output dependences), thanks to an
exact data flow analysis [67], the code is fully rewritten. Every computation operation now writes
in a dedicated memory cell.

This strategy “explodes” the memory explicitly to express a maximum of parallelism. Memory
folding techniques (i.e., memory reuse) are then necessary to avoid to obtain a code that uses too
much memory.

26



Array unrolling In some HLS tools, the user has to specify the memory organization. Usually,
it is based on the principle of equivalence between an array and an actual storage: two disjoint
arrays having different names will be mapped to different memories and hence to different ports.
Therefore, it will be possible to access them in parallel.

In order to increase the parallelism of some loops, it may be necessary to unroll, not only the
code, but also the arrays in memory. For example, the following code:

for (i=0; i<3*N; i++) {

a[i] = ...

}

cannot be efficiently pipelined if memory can sustain only one data per loop cycle, due to its limited
ports. Even if the code is partly unrolled as follows:

for (i=0; i<3*N; i+=3) {

a[i] = ...

a[i+1] = ...

a[i+2] = ...

}

the problem persists as the three statements access the same memory port. It is then necessary to
write it as follows:

for (i=0; i<3*N; i+=3) {

a_0[i] = ...

a_1[i] = ...

a_2[i] = ...

}

This requires to be able to analyze the constant terms 0, 1, and 2 of the array accesses in order
to avoid an expensive case type structure. This transformation is therefore naturally adapted to
loop unrolling as well as unroll-and-jam.

If the tool is able of treating in particular way rows or columns of an array when parallel memory
banks are available, it would be possible to write it this way:

for (i=0; i<3*N; i+=3) {

a[i][0] = ... /* or a[0][i] depending what tool does */

a[i][1] = ... /* or a[1][i] */

a[i][2] = ... /* or a[2][i] */

}

This would avoid a sometimes difficult array index analysis or the use of case statements.

Array padding Array padding consists in adding ”ghost” dimensions or to increase artificially
the sizes of arrays. Depending on the allocation strategy of the code generator, it is used to re-
position differently an array in the memory. For classical compilation, this transformation is used
to better exploit the cache and also to resolve the alignment problems in some instructions (single
instruction, multiple data (SIMD) notably). In HLS, depending on the tool, it can have an effect
on possible parallel accesses of some data.
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Array linearization and strip-mining The (canonical) linearization of an array consists in
accessing it explicitly in memory using successive addresses. In C, if a is a bi-dimensional array of
size N ×M , we can replace the access a[i][j] by b[Mi+j] where b is a one-dimensional array of
size N ×M . This does not change the access sequences. On the other hand, it is also possible to
re-organize the memory with any other linearization function, for example as (i, j)→ N ∗ j + i.

As well as for the geometric loop transformations presented earlier, it is possible to apply array
reallocation transformations in order to change the way they are accessed. On the other hand, unlike
the transformations of loops, space transformations are always valid as long as they do not assign
two memory locations of the initial array into one in the final array. The simplest and undoubtedly
the most useful transformations are the linearization, its inverse the strip-mining, and any form of
dimension exchange so as to define blocks (tiling). Alignment transformations (equivalent to loop
shifting) are also possible. These have similarities with the alignment and distribution directives
(block, cyclic, block-cyclic) of the HPF language.

Array contraction The last important transformation is the inverse transformation of scalar
and array expansion. The array contraction allows to transform an array into a scalar variable
(or to remove one dimension of the array) if each of the location to be transformed is read before
another one (which will be finally mapped at the same place) is written. It is often in association
with loop shifting and loop fusion that this contraction is possible [52]. For example, the following
code has one explicit temporary array:

for (i=0; i<N; i++) {

t[i] = a[i];

}

for (i=0; i<N; i++) {

a[i] = b[i];

}

for (i=0; i<N; i++) {

b[i] = t[i];

}

If the array t is not used later and the objective is to minimize the memory utilization, the code
can be optimized into:

for (i=0; i<N; i++) {

tmp = a[i];

a[i] = b[i];

b[i] = tmp;

}

Nevertheless, it is not always possible to fold the array into a scalar or to delete a dimension
entirely. Sometimes it is necessary to reuse memory, notably if the code was previously transformed
in the single assignment form [85]. One solution is to fold the memory not just with projections, but
also using the modulo operation, combined with linearization or unimodular transformations. This
corresponds to the memory reduction technique based on admissible lattices developed in [55]. For
HLS, interesting folding are those obtained by simple dimensions exchange and/or linearization,
with modulos restricted to powers of 2. This technique will be used in Chapter 5 to reduce the
memory size needed to store communicated data.

28



Note: many other transformations, not described here, are useful to clean up the code, either
before the previously-mentioned transformations so that they can now be applied, or after them to
generate code that optimizes hardware resource utilization.

2.4 Conclusions

In this chapter, we presented different languages, tools, and code transformations used in HLS.
We showed that traditional hardware development languages are not efficient in the world of big
and complex circuit designs. We therefore presented multiple HLS tools that ease the task of
hardware design by raising the abstraction level of the input languages. As can be deduced, most
of the tools use a C-like language with some extensions. The use of C reduces the bug-prone tasks
of the synthesis process, reduces the debugging and simulation time, and was intended to allow a
direct use of the tools by software developers.

Because of the increasing capacity of the FPGAs, the computer community is becoming inter-
ested in the possibility of FPGA-based computing machines to accelerate the execution time of
different algorithms. Using the C language as the input to the synthesis system greatly facilitates
the task of hardware/software partitioning, co-simulation, and verification that takes a significant
amount of time of the hardware design process, minimizing significantly the time to market. Also,
with a C-like input language, one can use directly the already available utilities for the C language
such as compilers and debuggers, and to implement easily simulators or emulators.

Unfortunately, the HLS tools still failed to attract the community of software developers or
are still too inefficient or not satisfactory for hardware developers. Most of the HLS tools accept
only a subset of the ANSI-C standard. Because of this, the user is still required to transform
its specification into one that the tool accepts. Also to obtain good synthesis results, the user
is required to insert different low-level constructs, compiler directives, or even to define different
hardware configurations.

We propose to automate this design flow by inserting a preprocessing step before synthesis,
which would be semi-automatic and at source level. Our study focuses mainly on interface and
communication optimizations. Working with the high level of abstraction offered by C, compared
to VHDL or Verilog (Verilog), allows us to adapt multiple standard but efficient compiler trans-
formations from HPC that were developed in the 90’s and to include powerful polyhedral-based
transformations. However, this adaptation also requires the development of new analysis and code
optimization, as shown in Chapter 5.
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Chapter 3

Tightly-coupled architectures with
cache: experiments with MMAlpha &
Spark

3.1 Introduction and motivation

Most of the HLS tools described in Chapter 2 synthesize hardware accelerator IPs with a
very primitive interface. This implies a difficult integration of the hardware accelerator in a system
requiring usually at least some glue logic. This glue logic implements the interface of the accelerator
to the rest of the system. It can be based on primitive templates with minor syntactic adjustments
to fit the synthesized hardware accelerator to a specific interface in the system. In general, designing
such an interface is difficult.

The first disadvantage of such a design flow, based on an additional primitive glue logic, is
that it does not take into account the specific communication requirements to the global system
in order to obtain a maximum of performance. For example, in a bus system, better performances
are obtained when data are transferred in a burst mode, i.e., by packets. Instead, most HLS
tools define the performance metrics of the circuit by using only the synthesis results such as
timings and resource utilization. However, in most cases, the synthesized hardware accelerator is
integrated into a system that includes multiple accelerators, general purpose processors (GPPs),
and their corresponding interconnections. Thus, the appropriate performance metric should take
into account all the system components and their interactions.

A second disadvantage is that the communication optimization (if any) does not take into
account the access pattern of the IP and thus it is not able to apply optimizations based for
example on data reuse locality. In other words, when compiling the function that describes the
hardware accelerator, it may already be too late to transform the code to optimize communications.
It may be necessary to optimize the application at a higher level, i.e., by analyzing and transforming
the code that describes both the function to be accelerated and the context in which it is called.

In this chapter, we explore these two issues through the analysis and the use of two academic
HLS tools, MMAlpha (Section 3.2) and Spark (Section 3.3). In Section 3.4, we conclude these two
studies with an analysis of the encountered problems and a summary of the possible solutions.
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Experiments with MMAlpha We first present (Section 3.2) a hand-made solution, for one
particular design: a hardware accelerator, generated by the MMAlpha HLS tool, performing a
complex matrix-matrix multiplication. The full design of this application, including the interface,
was the purpose of the Memocode’07 HW/SW co-design contest. This challenge was a good exercise
to explore the interface problems we were interested in. Our manually-designed solution uses double
buffering techniques, blocking, and temporal local storage to the MMAlpha IP. We show some
experimental results, which prove that designing an interface while understanding the hardware
accelerator communication information is very beneficial to the overall real performance of the
entire system. Finally, we discuss the problems we encountered, which are related to the “tightly-
coupled cache architecture” (see below) that we use.

Experiments with Spark Designing an interface by hand, as we did for MMAlpha and matrix-
matrix multiplication, can be error prone and very time consuming. Generating such an interface
automatically is difficult too, since the generating tool has to incorporate all the specific details of
the hardware accelerator, which requires mostly to work using reverse-engineering. In Section 3.3,
we try to avoid this. We propose to move all the “intelligence” part from the interface into the
actual hardware accelerator itself. We treat the HLS tool as a black box and hence we cannot
access any internals or perform modifications to them. One solution to this problem is to change
the HLS result by the only possible way: by changing the input specification, in particular the
order in which data arrives. But, of course, the final result of the synthesis must be a hardware
accelerator producing the same result for the same input data. We present a source-to-source loop
transformation solution used as a preprocessing step to the HLS tool Spark. This way, we can
change the access pattern of the data to the outside world by respecting the dependence-driven
execution of the code.

In order to obtain data reuse, some data has to be kept in a local storage memory. The usual
solution is to use a local memory managed as a scratchpad memory. However, we decided to use
a better alternative, considering that we design hardware accelerators that are located very close
to the processor. In order to save a high-priced static RAM (SRAM) memory and to use it as a
scratchpad, we propose to use the processor’s cache memory as a local storage. One advantage
of using such a memory as the local storage for a hardware accelerator versus a standard SRAM
memory is that the cache memory integrates into itself a transparent fetching and storing mechanism
of data from the local storage to the rest of the system. We do not consider its price on silicon
versus the price of a SRAM since it is already present in a system having a CPU. This advantage
can be also viewed as a minor disadvantage when we need very fine control of the data transfers
and storage, but usually it is not the case. The coarse-grain control is implemented using the data
access pattern. We analyze the impact of each transformation on the memory bandwidth and on
the low-level hardware aspects of the generated hardware accelerator.

Tightly-coupled architectures Most of the systems usually contain at least a basic GPP/CPU,
which is responsible for executing the parts of the program that are not adequate to be synthesized
in hardware. They correspond to standard library calls and to pieces of code that are not cost
and space efficient when synthesized. They can be selected using code profiling techniques. Both
studies in this chapter, with MMAlpha and Spark, consider an architecture where the hardware
accelerator is closely connected to such a CPU. We say such an architecture is “tightly coupled”.

Depending on how the hardware accelerator is connected to the rest of the system, different
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architectures are possible. The most common one is depicted in Figure 3.1. It is not tightly
coupled, but distributed. The hardware accelerator is connected to the rest of the system by a bus
or some other interconnect. The hardware accelerator usually has a dedicated local memory with
a fast access time. In this memory, intermediate data is stored. The second type of architecture,
depicted in Figure 3.2, is (strongly) tightly coupled: the processor has a dedicated connection link
to specialized hardware implementing special instructions that are not present in the processor
(found for example in Virtex II Pro PowerPC processors). Usually, the instructions are not very
complex and there is almost no dedicated memory except for some registers.

In some cases, when the code size is very small, these CPUs could be tightly connected to
local fast SRAMs. Most of the time however, this is not the case and the CPUs are connected
to an external dynamic RAM (DRAM). To mask the high latency access to this memory, it is
usually accessed through a dedicated cache memory, as in Figures 3.1 and 3.2. In a multiprocessing
system, the lowest level cache memory (L2 or L3) is shared between several GPPs. Here, since
this cache memory is already present in the design, it can also be reused as a local cache memory
for a hardware accelerator, as in the architecture of Figure 3.3. No additional SRAM memory is
then necessary. Also, as the CPU shares the cache with the hardware accelerator, data coherency
between the CPU and the hardware accelerator is easy to guarantee. On the contrary, in the
architecture of Figure 3.1, to preserve the data coherency, the CPU has to perform a cache flush if
it is working with the same data as the hardware accelerator.
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Figure 3.1: Distributed architecture

For the design with MMAlpha, We use the architecture type of Figure 3.2. The CPU is then
responsible for bringing data from external memory through the cache, then a memory architecture
interface is designed between the CPU and the hardware accelerator. For our study with Spark,
we use the architecture of Figure 3.3. The hardware accelerator can then managed the data
transfers directly, without occupying the CPU. The CPU is still closely connected to the hardware
accelerator, but only through the cache. We say that such an architecture is “weakly tightly
coupled”.

33



���������
���������
���������
���������

���������
���������
���������
���������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

Local BUS

CPU

CACHE

FPGA

External Memory

Special Purpose

Instructions/

Accelerator

Figure 3.2: Strongly tightly-coupled

���������
���������
���������
���������

���������
���������
���������
���������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

Local BUS

CPU

CACHE

FPGA

External Memory

Accelerator

Hardware

Figure 3.3: Weakly tightly-coupled

3.2 A case study for a matrix-matrix multiplication design gener-
ated by MMAlpha

In our general study and search for ways of interfacing automatically-generated hardware accel-
erators, we found interesting to consider the Memocode’07 HW/SW co-design contest. The chal-
lenge was to implement a hardware and software design on a FPGA platform for a matrix-matrix
multiplication algorithm. The reference design, implemented in software only, was provided for the
Xilinx university program (XUP) development board. The complete source code and copyright is
given in the appendix (see Section 7.1.1).

3.2.1 Algorithm description

The algorithm to be implemented, summarized in Figure 3.4, represents the multiplication of
two matrices with complex numbers. The elements represent complex numbers and the arithmetic
operations performed on them belong to the complex domain. A complex data is stored in a packed
format as shown in Figure 3.4(d). Each element consists of a 32 bit integer divided in two 16 bits
parts. The lower-most bits store the imaginary part and the uppermost bits the real part. The two
parts are represented as a fixed point format with 1 bit for the sign, 1 bit for the integer part, and
14 bits for the fractional part.

Each complex arithmetic operations on packed elements requires an unpacking, computation,
and packing (Figure 3.4(a)). The packing and unpacking (Figure 3.4(b)) require a significant
amount of CPU cycles because it is implemented using slow shift instructions available in the
instruction set architecture (ISA). Since most of the CPUs (except for the DSPs) do not have fused
increment and compare instructions, one complex arithmetic multiplication will take at least Nmultc

cycles. We evaluate this number by taking into account that a CPU, with a reduced instruction
set computing (RISC) architecture, does not have a barrel shifter 1 and a shift operation by k bits
will take:

Nk
shift = k ∗ (Nincrement +Ncontrol +Nshift) = 3 ∗ k cycles (3.1)

1. a digital circuit that can shift a data word by a specified number of bits in one clock cycle.
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static inline

Number complexMult(Number A, Number B) {

// A, B, and return use 2’s complement

// fixed-point format with 1-bit sign,

// 1-bit integer, 14-bit fraction

signed long Ar=UNPACKR(A);

signed long Ai=UNPACKI(A);

signed long Br=UNPACKR(B);

signed long Bi=UNPACKI(B);

Number Cr, Ci;

Cr=Ar*Br-Ai*Bi; Ci=Ar*Bi+Ai*Br;

Cr=Cr>>(WIDTH-2); Ci=Ci>>(WIDTH-2);

assert(!OVERFLOW(Cr));

assert(!OVERFLOW(Ci));

return PACK(Cr,Ci);

}

(a) Multiplication of two packed complex numbers

R16 R0 I16 I0

32 bit

Real Imaginary

(d) Complex data pack

typedef signed long Number;

#define WIDTH (16)

#define MASK (0xffff)

#define PACK(r,i) (((r)<<WIDTH)|((i)&MASK))

#define UNPACKR(r) ((r)>>WIDTH)

#define UNPACKI(i) (((i)<<WIDTH)>>WIDTH)

#define OVERFLOW(f) (!((((f)&0xffff8000)==0) \

||(((f)&0xffff8000)==0xffff8000)))

(b) Packing and unpacking

typedef signed long Number;

void mmm(Number* A, Number* B, Number* C, int N) {

int i, j, k;

for (j = 0; j < N; j++) {

for (i = 0; i < N; i++) {

for (k = 0; k < N; k++) {

C[i*N+j] = complexAdd(C[i*N+j],

complexMult(A[i*N+k],B[k*N+j]));

}

}

}

}

(c) Matrix-matrix complex multiplication, main C code

Figure 3.4: Matrix-matrix complex multiplication

where Nincrement is the number of cycles required to increment the counter in the shifting loop,
Ncontrol to verify the termination condition of the loop, and Nshift to shift by one.

From Figure 3.4(b) and Equation (3.1), we get the number of clock cycles required to unpack
the real part, see Equation (3.2), and the imaginary part, see Equation (3.3).

Nunpackr = NWIDTH
shift = 3 ∗ 16 = 48 cycles (3.2)

Nunpacki = NWIDTH
shift ∗ 2 = 96 cycles (3.3)

The total number of CPU cycles required for a complex multiplication is:

Nmultc = 2 ∗ (Nunpackr +Nunpacki) + 4 ∗Nmult + 2 ∗Nadd + 2 ∗Nreadjust +Npackri

= 2 ∗ (48 + 96) + 4 ∗ 1 + 2 ∗ 1 + 2 ∗ (3 ∗ (16− 2)) + 17 = 395 cycles

As can be observed from Equation (3.2), the complex multiplication of two packed numbers is
a very time-consuming operation on a processor. Mostly this is due to the shift operations. In
hardware, this constant shift operations are provided at zero cost since they can be implemented
using connection shifts.

In hardware, a straightforward implementation of the matrix-matrix multiplication has a very
bad data reuse locality. A classical loop transformation like blocking can be applied to improve the
locality, see Figure 3.5. For simplicity of the design we assume that N is an integer multiple of NB
and the elements of the array C were already initialized. After a blocking transformation, the code
is separated into two parts. The first part is written in the mmmBlocked function, which traverses
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// mmmBlocked - traversal of blocks

typedef signed long Number;

void mmmBlocked(Number* A, Number* B,

Number *C, int N, int NB) {

int j, i, k;

for (j = 0; j < N; j += NB)

for (i = 0; i < N; i += NB)

for (k = 0; k < N; k += NB)

mmmKernel(&A[i*N+k], &B[k*N+j],

&C[i*N+j], NB);

}

// mmmKernel - computation inside one block

void mmmKernel(Number* A, Number* B,

Number* C, int N) {

int i, j, k;

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)

C[i*N+j] = complexAdd(C[i*N+j],

complexMult(A[i*N+k],B[k*N+j]));

}

(a) C code

i

j

k

k

NB

NB

NB

CA

Ab11 Cb11

Bb11

(b) Graphical representation

Figure 3.5: Blocked matrix-matrix complex multiplication

the matrix blocks used for computation. It calls the second part, the mmmKernel function, which
implements the multiplication of one block of a matrix. The blocking computation does not change
the total number of computations, which remains N3. We assume that NB is sufficiently small so
that the blocks of A, B, and C fit together in the cache memory of the processor. As can be seen
from Figure 3.5(b), the block Cb11 can be fully stored in the cache while iterating over the loop
k in the mmmBlocked function. After this iteration, the values of the block Cb11 are computed
and it can be stored in the memory. This technique reduces considerably the memory bandwidth
requirements. For the original example mmm (Figure 3.4), if N is large enough, the accesses to A

and B always correspond to cache misses, while the accesses to C correspond to cache hits, so the
total number of memory accesses is:

Norigmmmaccesses = N3 ∗ (NAelem +NBelem) +N2 ∗NCelem =

= (1 + 1)N3 + 2 ∗N2 ≃ 2 ∗N3
(3.4)

where NAelem, NBelem, and NCelem represent the number of elements related to arrays A, B, and C,
respectively, in the inner loop body. For the blocked version, we get:

Nblockedmmmaccesses =
N3

NB3
∗ (NAblock +NBblock) +

N2

NB2
∗ 2 ∗NCblock =

=
N3

NB3
∗ (NB2 +NB2) +

N2

NB2
∗ 2 ∗NB2 =

= 2 ∗
N3

NB
+ 2 ∗N2

(3.5)
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where NAblock, NBblock, and NCblock represent the number of elements of the arrays A, B and C

accessed in a block of size NB × NB. This formula takes into account the fact that the block
elements of C will only be read and written once, from and to the external memory, and reused
from the local memory.

The total gain of the blocking version is the following:

Gainblocking =
Norigmmaccesses

Nblockedmmmaccesses
=

2 ∗N3 + 2 ∗N2

2 ∗ N3

NB + 2 ∗N2
≃ NB (3.6)

3.2.2 Implementation

In this section, we present the details of the implementation we made for the matrix-matrix
complex multiplication on an FPGA platform, including the design of an interface controller to
optimize data transfers.

Xilinx university program (XUP) development board The design was implemented using
the XUP FPGA development platform (Figure 3.6). This platform has a Xilinx Virtex II Pro
(Figure 3.7) FPGA connected to peripherals such as a DDR1 dual in-line memory module (DIMM)
memory module. The Virtex II Pro FPGA contains two PowerPC405 hard IP cores RISC processors
implemented in the silicon being capable of running at 300 MHz. Each of the processor has 32
32-bit general-purpose registers, a memory management unit (MMU), and two 16 kB two-way
set-associative caches for instruction and data. The processors are surrounded by configurable
logic blocks (CLBs), corresponding to a total of 13696 slices and dedicated lines of 136 18x18 bit
hardware multipliers and 2448 kb block select RAMs (BRAMs). Dedicated multipliers usually
are faster and consume much less power than multipliers implemented using CLBs. Their other
advantage is their placement with BRAMs, in lines that have a very fast access time.

The Xilinx embedded development kit (EDK) was used to build the system, using some IP
cores that are provided (Figure 3.8) such as the joint test action group (JTAG) controller, BRAM
controllers, DDR memory controllers, bridges such as the PLB2OPB bridge, and buses such as on-chip
memory (OCM), the on-chip peripheral bus (OPB), and the processor local bus (PLB).

Architecture selection One design choice in the implementation is to decide where the hardware
accelerator is located in the provided architecture. As discussed in Section 3.1, it could be located
very close to the processor or directly connected to the system bus. In the provided reference
design provided by the Memocode’07 contest, the accelerator was connected to the data-side OCM
(DSOCM) (Figure 3.9). This interface is normally used to connect to BRAM modules. In this
case, the accelerator has to be located in the HARD IP block. The data connection is bidirectional
with 32 bits in each direction. The maximum theoretical attainable speed is 400MB/s.

MMAlpha IP Writing the matrix-matrix multiplication by hand, in the VHDL language, is a
very tedious and error-prone task. The easier solution is to use one of the many available HLS tools.
As the code is fairly regular, we decided to use the MMAlpha tool, which generates a systolic-like
architecture.

To be able to use MMAlpha, the specification has first to be translated into the Alpha language
(Figure 3.10). The language is based on the polyhedral model. The system is represented as a set
of recurrence equations rather than loops. In this example, the first part of the system matmult
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Figure 3.6: XUP FPGA development platform
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Figure 3.7: Virtex II Pro internal architecture using EDK
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Figure 3.8: Virtex II Pro internal architecture using EDK
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Figure 3.9: MSOCM connection of the accelerator and PowerPC405 processor

describes the points of the polyhedron. The lines such as resRe1 = Mult(opARe, OpBIm); describe
the method of computation of, in this case, resRe1. The last part of Figure 3.10, containing case
equations, defines that the element CRe on the point

(

i j k
)

is computed using its value on the
point

(

i j k − 1
)

and the resRe value on the point
(

i j k
)

when 1 ≤ k ≤ N and 0 when k = 0.

The Alpha representation is translated successively into Alpha0, AlphaHard (see Appendix,
Section 7.1.2), and finally VHDL. After each translation, the code resembles more to the hardware
structure. For example, the AlphaHard system is divided into multiple modules: the control
module ControlmatmultModule, the modules cellmatmultModule1 till cellmatmultModule4 de-
scribing the computation cells (different cells for special, including boundary, conditions), and the
matmult module encapsulating all the others and providing the external interface.

The result of the synthesis is an IP that contains a systolic array (Figure 3.11) performing a
4x4 matrix-matrix multiplication. One complex multiplication requires 4 multipliers and therefore
a 4x4 cells systolic array uses 64 multipliers. An 8x8 version would require 256 multipliers and
would not fit in the selected FPGA that has 136 multipliers. 2 The inputs of the IP are the clock
signal (Clk), control signals such as clock enable (CE) and (Reset), and data-path signals. aIm and
aRe represent the buses used to transfer the imaginary and real values of the matrix A. Each of
them is composed of 4 buses, directly connected to the 4 A inputs of the systolic array. The same
is valid for the matrix B and C. The IP is supposed to get the required values on its inputs at a
specific time and in a specific sequence. For example, the input aIm0/aRe0 is supposed to read the
a11 element at time t = 0, a12 at time t = 1, and so on. After an interval of time T (T = 8 for this
example), at the output cIm0/cRe0, the first computed element c11 of the matrix appears. After
6 more cycles, the last element c44 is available at the output cIm3/cRe3.

Interface controller As previously explained, the IP generated by MMAlpha does have specific
timing and order requirements. In order to connect it to the system, a dedicated interface controller

2. Note that we did not try to exploit partitioning techniques in MMAlpha, for which the interface would be even
more complicated. Also, another possibility would have been to use hierarchical tiling so as to exploit the cache
memory. The goal was here to develop an interface with some data reuse in the interface itself.
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system matmult : {N,NB |N>NB>1}

(aRe,aIm: {i,j | 1<=i<=NB; 1<=j<=N} of integer[U,16];

bRe,bIm: {i,j | 1<=i<=N; 1<=j<=NB} of integer[U,16])

returns

(cRe,cIm : {i,j | 1<=i,j<=NB } of integer[U,16]);

var

CRe,CIm : {i,j,k | 1<=i,j<=NB; 0<=k<=N} of integer[U,16];

opARe,opAIm,opBRe,opBIm : {i,j,k | 1<=i,j<=NB; 1<=k<=N} of integer[U,16];

resRe1,resIm1,resRe2,resIm2,resRe,resIm : {i,j,k | 1<=i,j<=NB; 1<=k<=N} of integer[U,16];

let

cRe[i,j] = CRe[i,j,N];

cIm[i,j] = CIm[i,j,N];

opARe=aRe.(i,j,k->i,k);

opAIm=aIm.(i,j,k->i,k);

opBRe=bRe.(i,j,k->k,j);

opBIm=bIm.(i,j,k->k,j);

resRe1 = Mult(opARe,opBIm);

resRe2 = Mult(opAIm,opBRe);

resRe = resRe1+resRe2;

resIm1 = Mult(opARe,opBRe);

resIm2 = Mult(opAIm,opBIm);

resIm = resIm1-resIm2;

CRe[i,j,k] = case

{|k=0} : 0[];

{|1<=k<=N} : CRe[i,j,k-1] + resRe[i,j,k];

esac;

CIm[i,j,k] = case

{|k=0} : 0[];

{|1<=k<=N} : CIm[i,j,k-1] + resIm[i,j,k];

esac;

tel;

Figure 3.10: Matrix-matrix multiplication written in Alpha
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Figure 3.11: 4x4 cell hardware accelerator generated by MMAlpha

was designed (Figure 3.12). The controller connects to the DSOCM interface and acts as a slave
to the CPU. It has multiple configuration registers. The control register is used to control the
behavior of the interface controller. The master CPU can start or stop the controller, change the
working matrix width and height. The CPU program will use the status register to verify the state
of the accelerator. This register is accessed in polling mode.

As observed earlier, one of the major performance bottleneck of the matrix-matrix multiplication
algorithm is the data availability. In this case, the data is received from the processor. Even though
the maximum theoretical bandwidth of the DSOCM bus is 400MB/s, the experiments show that
the real data transfer rate from the processor to a feedback FIFO connected to the DSOCM bus
is about 40MB/s (in the best case, i.e., if the data is in a register of the CPU). This is mainly due
to the loop control and other instructions overhead of the processor, and also due to the hardware
communication protocol. The MMAlpha module requires 256 bits of data to be available at every
clock cycle (3200MB/s) and therefore 80 times more.

In order to address this problem, we tried to exploit data reuse by adding to the design three
memories composed of BRAM located on the FPGA. According to Equation (3.6), we can hope to
improve the design by a factor 4. Each memory has 5 ports that can be accessed simultaneously.
One port is used to receive the data from the CPU and the other 4 to feed the MMAlpha accelera-
tor. This type of memory can be obtained by replicating by 3 a dual-port memory available in the
FPGA. The downside of this type of memory is the replication of data, and thus inefficient use of
the storage resource. In order to optimize the data reuse we chose to store a whole 4∗Awidth of the
matrix A and 4 ∗ Bheight of the matrix B. After the multiplication of these two blocks of matrices,

42



a block of size 4x4 of the C matrix containing the final result is obtained. The memory size for
the arrays A and B is 8 kB. The address zone is divided in two and implements a double buffering
technique. Half of the space is used to receive data from the CPU and half is used to feed the
matrix-matrix multiplication accelerator. The first zone of the address space represents the regis-
ters used to store the intermediate matrix values. These values are accumulated as required using
the accumulating blocks located in the IP Dispatcher Accumulator for C block (Figure 3.12).
Normally, this accumulation could be performed inside the MMAlpha accelerator and thus elimi-
nating the accumulation of 4x4 matrices. However, in our case, this was not the option. The design
was required to be able to compute variable size matrices and MMAlpha IP cannot be parameter-
ized during execution. The size of the computed matrix is only 4x4 and, in order to be able to
obtain a better performance burst transfer, the result is stored in a 4 kB memory, and is sent to
the processor when filled.
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Figure 3.12: MMAlpha external communication interface and memory module controller

3.2.3 Final results and discussion

The accelerator and the interface were synthesized, obtaining a frequency of 103.4 MHz 3, which
was sufficient because the interface of the processor was running at 100 MHz. The processor acted
as a dispatcher of the matrices located in the DDR memory.

The theoretical maximum transfer connection of the processor to the DDR is limited by the
transfer rate of the PLB bus and is 800MB/s. However, the real measured transfer rate is only
about 80MB/s. This is mainly due to the instruction, cache memory, and bus overhead. The cache
is blocking the processor execution from the beginning of a cache miss until the end of the cache
miss is serviced and the required data is present in the cache. Therefore, each such cache miss is
paid with an important access penalty. Each PLB transfer requires an arbitration, thus increasing

3. mostly limited by the BRAM and dedicated multipliers-to-multipliers interconnections.
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the latency. The DDR controller itself has a very important access latency. Connecting accelerators
as close as possible to the source of the data can remove this communication overhead. The final
transfer rate we obtained was about 32MB/s 4, compared to the required 400MB/s! The design
was thus heavily limited by the bandwidth. The real minimum execution time was, according to
Equation (3.5):

t =
Nblockedmmmaccesses ∗ 4 (in Bytes)

Bandwidth (in Bytes/s)
=

(2 ∗ 10243

4 + 2 ∗ 10242) ∗ 4

32 ∗ 106
≃ 67s (3.7)

However, even with this data bandwidth limitation, the accelerator was 5 times faster compared to
the 338 seconds performed by the PowerPC on the blocking matrix-matrix multiplication, which
justifies the interest of using a dedicated hardware.

In these experiments, we used Xilinx EDK version 9.1i that provided the DDR interface con-
troller with only one port connected to the PLB bus. In a later version (version 10), the DDR
controller has multiple ports that can be connected to peripherals. Connecting the accelerators
to these ports would theoretically offer a bandwidth of 3200MB/s from all 4 ports, which could
be more than sufficient for the current design. In other words, instead of considering a strongly
tightly-coupled architecture with cache as in Figure 3.2, we could have used a distributed architec-
ture, as in Figure 3.1. Unfortunately, we were not able to test this as the new controller IP did not
support our platform. We explore this type of distributed architecture in the next chapter, with
the C2H Altera HLS tool.

3.3 Design flow with Spark and WRaP-IT

Today, existing commercial HLS tools require the original functional code (usually in a language
with a C-like syntax, as we previously explained) to be written in a very specific manner in order
to get good synthesis results. Hence, a source-to-source (S2S) preprocessing step is mandatory to
get the code from the designer specification to a specification suitable to a particular HLS tool.
Another important remark concerns the internal representation of loop nests. After many years
of research in automatic parallelization, a modeling technique was developed for loop nests: the
so-called polyhedral model [69, 87], also exploited in MMAlpha as mentioned in Section 3.2. This
model provides an intermediate representation suitable for loop transformations.

This section presents the experiments we conducted to demonstrate the interest of adding ad-
vanced preprocessing code transformations to HLS tools. Our approach is to use an advanced
state-of-the-art compiler front-end as an independent C-to-C preprocessing step before synthesis.
By using this approach, recent state-of-the-art compiler advances could be used directly in HLS.
We eliminate the re-engineering of them into modern HLS tools and the preprocessing effort can
be reused by multiple HLS tools. We focus on efficient synthesis of loop nests and we use the
WRaP-IT loop transformation framework integrated in the Open64 compiler (Figure 3.13). As
HLS back-end, we chose to rely on the Spark framework. Our study shows that important im-
provements are obtained in the resulting RTL design thanks to the fact that WRaP-IT uses a
polyhedral representation for nested loops and provides a flexible framework for loop transforma-
tions. Improvements are shown, in particular, on the synthesis of part of the H263 decoder from
MediaBench II benchmarks. Our study goes beyond these two particular tools (WRaP-IT and

4. 40MB/s processor to accelerator + processor to DDR overhead.
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Spark). It demonstrates that HLS can be coupled with software compilation to achieve even better
results than HLS tools alone can do (even those that have already integrated some loop transforma-
tions such as Spark, PICO-NPA, and others) and, even possibly, to eliminate the need for compiler
transformations integration internally in the HLS tool.

Section 3.3.1 gives a brief review of the software compiler and HLS frameworks we used. Sec-
tion 3.3.1 introduces our synthesis flow, which uses Spark and WRaP-IT. Section 3.3.2 summarizes
the interest of loop transformations in the context of Spark. In Sections 3.3.3 and 3.3.4, we present
two synthesis examples and analyze the performance improvements obtained using various loop
transformations before synthesis.

3.3.1 Choice of tools: Spark and WRaP-IT

As a code transformation framework for our flow, we selected the WRaP-IT tool [33]. This tool
explicitly implements a polyhedral internal representation and it is fully integrated in the Open64

compiler. This allows us to rely on Open64 for the non-static control parts of programs. We point
out that WRaP-IT is not a parallelization tool, it manipulates sequential code. But it can be used
to prepare the code for an HLS tool that does parallelization by itself or to prepare parallelization
to be exploited by an HLS tool, for example if the code is annotated with parallelization pragmas.
As we explained later, this was one of our initial motivation. Another nice property of WRaP-IT is
its user interface to manipulate loops. The user can very easily specify loop transformations and
can provide new ones thanks to the URUK script language.

As a back-end, we preferred to rely on a HLS tool such as Spark for the following reasons.
First, it is important to take into account the possible interactions of high-level transformations
with back-end optimizations. Possible performance loss cannot be clearly seen with a basic HLS
tool, so Spark was a better choice. Second, we selected Spark because its main strength is in control-
intensive programs and thus we can rely on the optimized FSM output since loop transformations
will alter the complexity of the generated FSM. Third, relying on independent tools for both parts
(front-end and back-end) shows the feasibility of our two-phases approach. Indeed, the fact that
we use Spark as a black box, with no possible source modification, shows that we could do the
same with a commercial tool. This is what we do in the next chapter with Altera C2H. Finally,
using sophisticated tools for the front-end and back-end brings the best of the two worlds. For
example, we can consider a full application, not just static-control programs, even if we perform

Open64 Frontend

WRaP−IT

Open64

Spark

Specification

C

VHDL

Figure 3.13: Our methodology and design flow
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loop transformations only on static-control parts.

We point out that, unlike [60], the loop transformations used in this chapter are selected man-
ually. However, we can analyze the impact of every single transformation (or a series of transfor-
mations) on the resulting hardware (size, latency, etc.).

Code representation in the polyhedral model To illustrate the functionality of WRaP-IT,
we first present a short example of polyhedral code representation.

Polyhedra are used to represent the set of elements that a system of affine recurrence equations
defines. Domains of nested loops with affine lower and upper bounds can be defined in terms of
polyhedra too. Figure 3.14 gives an illustrating code example with its corresponding representation
in the polyhedral model.

The polyhedral representation has a weakness: it is impossible to represent in this abstraction a
loop bound that cannot be expressed as an affine function of surrounding loop counters. However,
the analysis from [73] of various benchmark codes showed that most of the loops, with exceptions
for some special ones (e.g., FFT), have affine loop bounds. The parts of a program that are enclosed
in loops with affine functions on their iteration domains are called static control parts (SCOPs).
Most of the computational intensive parts of programs are SCOPs. The polyhedral model often
assumes also that the computations themselves are affine, i.e., it consists in array operations with
affine access functions. This is a much stronger restriction in practice.

In [73], several examples are given that prove that syntactic representation limits the detection
and the applicability of loop transformations. The polyhedral representation of the code has proved
to be better than syntactic ones. The advantage of this representation was observed by many
compiler designers. In particular, it allows to manipulate nested loops as a whole, with a multi-
dimensional view, without unrolling, and even in a parametric fashion. Loop transformations based
on the polyhedral model framework named Graphite were included in GCC [96]. This is another
advantage of the WRaP-IT framework that guided us to choose it for our study.

Figure 3.14: Code representation in polyhedral model

The loop transformer WRaP-IT The WRaP-IT framework was developed by the Alchemy
team. It is described in details in Sylvain Girbal’s PhD thesis [73]. Its flow diagram is presented
in Figure 3.15. It was designed as a complement to the Open64 compiler from Silicon Graphics. It
replaces its loop nests optimizer with a more powerful one, as proved by benchmarks implemented
in the Uruk tool.

The input C code passes through the first phase of the Open64 compiler, the pre-optimizer, where
various code transformations like constant propagation, dead code elimination, loop normalization
into do-loops, and other transformations are applied. The Open64 compiler was modified to stop
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its execution and to dump its internal intermediate representation, called whirl, into a file. This
file is read by the whirl to polyhedral module, which transforms all static control parts of the
code into a polyhedral representation.

URUK applies loop transformations on this polyhedral representation based on a specification
in the URUK script file. The final step is the re-insertion of the transformed code back into the
original whirl representation. First, the polyhedron of each statement is scanned using CLOOG [32]
by means of projections and separations. As a result, a set of iteration domains is obtained for
each statement. The statements with same iteration domain or intersecting iteration domains are
grouped and form the body of a loop. Finally, this loop information is reinserted back into the
whirl representation. The Open64 compiler starts again from this representation and generates an
executable.

for (i=2; i<=Min(M,N); i+=2)

S1

S2

for (k=2; k<=M; k++)

for (l=1; l<=N; l++)

S3

if (k==l) 

S4

Whirl2Polyhedra

WrapITOpen64

Loop nest Opt.

Front end Opt

Back end Opt

Whirl IR

Wrap IR

Wrap IR

Whirl IR
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UrGent

executable code

Whirl2C

Transformed C code

Stripmine(enclose(S1),16)

MotionBlock(S2,enclose(S1))

Fusion(enclose(S1))

......

DS3 = {k, l|M ≥ k ≥ 2,M ≥ l ≥ 1}

DS1 = {i|i ≥ 2,M ≥ i, i = 2 ∗ p}

Figure 3.15: WRaP-IT framework

The high-level synthesis tool Spark In Chapter 2, some of the most known HLS tools were
presented. An analysis of these tools was performed in order to identify the most appropriate
HLS tool for our goals. Most of the tools accept, as input, hardware specific languages. The loop
transformation framework we use (WRaP-IT) generates a transformed code that is still software-
like and more precisely written in C (i.e., more specific for a use on general-purpose processors).
Working with such HLS tools would mean writing a new module to transform a design from a
sequential software-like language to a hardware specific language. But our goal is to study the
impact of high-level loop transformations on the resulting hardware accelerator, not on the whole
software-to-hardware design methodology. Since the input language of the HLS framework was
chosen to be C, a framework that accepts as input a pure ANSI-C language was more suitable.
The most appropriate framework that was freely available at the moment was the Spark framework
(Altera C2H, used in the next chapter, was not yet available).

Spark is an academic HLS tool (see Chapter 2), provided in binary format, that takes as input
a code written in a subset of ANSI-C and that incorporates many code transformation techniques
to improve the quality of the synthesized circuit (see Figure 3.16). They are applied on its in-
ternal representation called hierarchical task graph (HTG). The user has to specify the resource
constraints using a configuration file. Spark generates a synthesizable VHDL state machine, pro-
duces performance statistics, and is able to generate C code that emulates the parallel execution
of the hardware generated. Spark’s scheduler computes execution cycles statistics of the scheduled
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Figure 3.16: Spark framework internal transformations and optimizations

design. These are the minimum, maximum, and the average number of cycles that the generated
hardware accelerator will run. This is very useful for comparison of the performance of the code,
without any simulation. The other important statistic is the number of states of the generated
FSM. The number of states will be used in order to estimate the area utilization. Spark can also
generate a C code that represents the actual finite state machine with, in each of the state, the
operations scheduled for parallel execution during the current clock cycle. This file will be used
later to perform cache access simulations: we will compare the actual run-time of the design based
on the cache miss delay and memory delay of different designs. The cache miss statistics file can
be used to compute the memory power consumption of different designs.

In addition, we used dineroIV, a trace-driven uni-processor cache simulator [5], developed at
the University of Wisconsin. It uses the cache access trace of an execution of a program and
simulates the cache behavior, reporting significant performance results.

Design flow We now have all the components in our design flow (Figure 3.17): the WRaP-IT
framework [33], the Open64 compiler, the Spark HLS framework [78], and the dineroIV cache
simulator [5].

We start from an initial sequential C specification. This code is fed to Open64. In the front-
end of Open64, multiple code transformations can be performed such as procedure inlining, dead
function/variable elimination, constant propagation, etc. The use of procedure inlining can be used
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Figure 3.17: Our VHDL design flow combining WRaP-IT and Spark.

to transform a code having multiple function calls into a form that can be synthesized by Spark

(i.e., without function calls). In the next step, loop transformations are performed by WRaP-IT,
guided by the user (the user indicates which transformation to perform thanks to the URUK script
language). The Whirl2C program, provided with Open64, is used to generate C code from the
whirl representation. At this step, because of some bugs found in Whirl2C at the generation, we
needed to modify this generated code. Then, this modified C program is fed to Spark, which is
configured with resource constraints provided in the configuration file mentioned in Section 3.3.1.
Spark outputs a VHDL file of the synthesized hardware accelerator and a C file. The C file contains
the equivalent of the hardware accelerator state machine written in C. The performances of the
resulting circuit are evaluated from these files. We instrumented the C file produced by Spark.
This C file, when compiled and executed, generates a trace of memory accesses, which is finally
used by the cache simulator to analyze memory access performances.

We point out that the VHDL designs generated by Spark cannot be synthesized directly. As
previously mentioned, Spark does not synthesize a memory controller for its inputs and outputs,
instead the circuit contains many I/O pins. The communication is done by means of bidirectional
ports, which does not have any flow control signals. Each I/O data bit generates a new I/O pin.
Since it was conceived for control-intensive programs, it does not generate a real memory controller
(we recall that we chose Spark because of its state-of-the-art internal optimizations). As opposed
to the MMAlpha design, it is impossible to generate an interface or memory controller for the
design generated by Spark, unless it uses only very few inputs. Indeed, when MMAlpha produces
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predictable I/O, specified by the user, Spark applies many non-controllable HTG transformations
before synthesis. Without knowing the exact timing of the I/O, we cannot feed the accelerator with
the required data when needed. A solution would be to connect its I/O ports to dedicated memory
cells in BRAM memories. However, these memories have a maximum of two ports and Spark

requires that all I/O ports can be accessed in parallel. Thus, one would need a memory location
for each I/O port. Since there is no way to know when these data are consumed and thus when the
memory can be reused, such a solution would require a huge local memory, one cell per value read,
which is not practical. Another solution would be to generate such a dedicated port memory using
the logical cells in the FPGA. However, this will reduce dramatically the running frequency of the
circuit and usually the circuit will exceed the routing capacity of the FPGA. Nevertheless, the
schedule of the I/O operations made by Spark and the hardware generated for the computational
kernel are correct, i.e., they respect dependence and resource constraints. Thus, we think that our
evaluation with the cache simulator is realistic and that the impact of loop transformations we
analyze is relevant.

As we just explained, we thus did not synthesize any memory controller but we simulated the
effect, on the cache, of the IP generated by Spark, thanks to dineroIV. This tool was configured
to simulate a cache with a size of 8 kB, block size of 32 B, and associativity 4 for the first example.
For the second example, it was configured to simulate a cache with the size of 32 kB, block size
of 64 B and associativity 8. For both examples the replacement policy is LRU, fetch policy as
demand, write allocation always, and write back always. The write allocation policy was chosen
because of the spatial locality of writes found in multimedia applications as well as in our example.
This improves dramatically the burst write modes to the external memory. Synthesis results are
obtained by providing to Spark the following timing constraints: 20 ns clock cycle, 10 ns for each
of the arithmetic operators available, 20 ns for multiplications, etc.

A note on pragmas for parallel execution One of our initial goals in this study was to
include, in the WRaP-IT framework, the possibility to generate a C code with OpenMP pragmas
that would allow the parallel execution of different statements. This way, we would obtain a code
with an explicit description of parallelism. The HLS tool would then have to exploit these pragmas.
Unfortunately, Spark does not recognize any of these pragmas and modifying it was not an option
(Spark is freely available as binary but not as source code). We were thus not able to analyze, with
Spark, the benefit of expressing parallelism, in particular loop parallelism, at source level.

Another problem we faced was in the limitation of the C code generator from the whirl IR.
When a C code containing a pragma is passed through the first stage of Open64, then transformed
into the whirl IR, then translated back to C using the whirl2C tool, the final code does not contain
any pragmas, labels, and other preprocessor constructs anymore. The implementation of a new
whirl2C tool, which would capture then regenerate the pragmas from whirl if present, was then
considered. But we decided to not put effort in such developments since designing an extended and
stable version of whirl within Open64 was not in the heart of our research objectives. However, the
framework flow we used showed that, at least for the hardware accelerators we wanted to generate
with Spark, i.e., with bounded parallelism in a single hardware accelerator, there is no need for such
constructs at all. It is enough to give to Spark the parallel version of the code (without marking
it) and, after data dependence analysis, it will find out the blocks that can run in parallel, possibly
helped with some loop unrolling. This is because data dependence analysis in Spark is powerful
enough. This is not be the case for some other tools, for example C2H, used in the next chapter.
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3.3.2 Loop transformations in HLS, in the context of Spark

In section 2.3, we gave a brief overview of the most known code transformations that could be
useful in HLS (including some that we identified). We now analyze more precisely, in the context
of the Spark HLS tool, these various transformations and their impact on the performance and
quality of the synthesis. The circuit architecture and platform model we use are those presented
earlier.

Loop fusion Loop fusion combines two loops with the same iteration domains into one containing
the bodies of the two fused loops. It has many advantages in HLS.

In Spark, each synthesized loop scans its own subspace of states. A part of the loop states
implements the actual loop body. The other part implements the loop control part that increments
the loop counter and verifies the termination condition. When two loops are merged (we suppose
that the loop iteration spaces are identical), the two loop bodies are managed by only one control
part instead of two. This decreases the number of states and the FSM complexity, which decreases
the utilized area of the circuit.

When the original loop bodies have dependences between them, the two loops cannot be sched-
uled to run in parallel, unless the dependences are only from the body of the first loop to the body
of the second one, for the same iteration i as in the code below on the left. After the merge, the
bodies of the loops will still be scheduled in a sequential order, but the overall runtime will be
reduced, since there is a single loop control for both bodies, see the code below on the right.

for (i=0; i<n; i++)

a[i] = ....

for (i=0; i<n; i++)

... = a[i]

for (i=0; i<n; i++){

a[i] = ....

... = a[i]

}

Another advantage of the loop fusion transformation is that it can promote array contraction,
thus replacing an entire array (here the array a) by a scalar. Spark synthesizes scalar variables
into internal registers and it keeps them in the chip itself. Thus, this leads not only to a reduced
memory utilization, but also to faster accesses to the data because the access time of the internal
registers of the architecture is roughly ten times faster than the access time to the external memory.
It also leads to a decreased power consumption of the entire system, since the power consumption
of a memory access is higher than the one of a register access.

Fusion can also be used to indirectly instruct the hardware scheduler of the HLS tool to reuse
the accessed data of one instruction for another one. For example, suppose two parallel loops access,
with the same pattern, the same set of data that is larger than the cache size. These two loops will
be scheduled by Spark in sequence and hence the accelerator will have to access twice the same set
of data, with the same cache misses. However, if we fuse the loops (and if the resulting loop is still
parallel), we indirectly warn the scheduler that we want the bodies of the two loops to be executed
in parallel in a synchronized manner improving the cache hit ratio and the data reuse. This will
decrease the power consumption of memory accesses, decrease the data access latency, and increase
the execution speed by removing this access latency.

Loop distribution (or fission) This is the inverse of loop fusion. The body of the original loop
is distributed between two new loops, with identical bounds.

This transformation can be used to improve the cache locality, in some cases. If the loop body
has multiple parts with different data access sets, loop distribution can be used to separate the
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original loop body into two bodies executed in separate sequential loops. This will reduce the local
data working set of the loop, thereby increasing the potential cache hit. Of course, unlike loop
fusion, loop distribution duplicates the control part of the loop and thus increases the resource
need.

Code motion Code motion is particularly useful when loop fusion or loop distribution are not
valid. The loop fusion is limited to loops with the same dimensions and iteration domains, and they
also need to be consecutive (i.e., no code between them). Code motion is more flexible since it can
move arbitrary pieces of codes. But, of course, it is more difficult to use, as more general. It can
be used to move a data producer closer to the consumer thus, as in case of fusion, for decreasing
the cost of memory accesses by increasing the cache hits. This reduces the memory access power
consumption and increases the speed of the circuit.

Loop interchange This transformation permutes two nested loops. To get an equivalent code,
this may require to redefine loop bounds.

As an example, consider two nested loops such that the outer loop (loop over i) is parallel
and the inner loop (loop over j) is sequential. To increase the performance and exploit potential
parallelism, one can unroll by 2 the loop over i:

for (i....) {

for (j...) {

S0

}

}

⇒

for (i....){

for (j...)

S0

for (j...)

S0

}
The two loops over j can be executed in parallel, which decreases the execution time. However,

this unrolled code has replicated not only the statements performing the computations but also
the FSM that control them. To avoid replicating the loop control overhead, one can apply loop
interchange and, only after, apply the unroll of the obtained inner parallel loop:

for (j....)

for (i...){

S0

S0

}

Loop reversal Loop reversal changes the direction of its traversal, i.e., the traversal will be
backward to the original one: if the loop counter is incremented, it is now decremented. This
transformation is mostly used to allow other loop parallelization transformations to be performed,
such as loop fusion. It is valid only for loops that have no loop-carried dependences.

Loop skewing Loop skewing is a transformation that is primarily used, when combined with loop
interchange, to make a loop parallel when it was sequential in the original form. It was invented
to handle the so-called wavefront computations, because the updates to the array propagate like
a wave across the iteration space. This type of computations is often found in image processing
algorithms. On these types of codes, Spark usually synthesizes a sequential hardware accelerator.
After applying this transformation, the code can run in parallel. However, in order for Spark
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to really make it run in parallel, one needs to instruct Spark to unroll the parallel loops by a
specified factor. This way, the successive parallel bodies will be detected as parallel and parallelism
will be exploited. Loop skewing adds significant computational overhead to the loop iterators
computations and bounds verifications. But Spark schedules and maps the iterators and loop
bounds computations to the same arithmetic elements used to perform the statements inside the
loop. Thus, synthesizing a skewed loop with Spark only increases the FSM size and the loop control
part compared to the original code. On the contrary, if syntax-driven HLS tools are used, the loop
control computations will be mapped to dedicated arithmetic elements, which will increase the
arithmetic elements need.

Loop peeling Loop peeling removes the first (or last) iteration of a loop. This transformation
can be used to make possible the application of other transformations. The first use can be the
removal of a few iterations (the first or last ones) when they have data dependences that prevent
the parallelization of the loop. Another use, more frequent, is to remove some iterations from the
iteration domain so as to enable loop fusion. For a code represented in the polyhedral model, it is
not necessary to adjust the loop bounds in order to fuse them because it is done transparently by the
CLOOG tool. After the fusion of two loops with different bounds, CLOOG will perform an intersection
of the domains and will generate the loop bounds for the three loops, i.e., the loop bounds for
the code corresponding to the intersection of the iteration domains, and two other bounds for the
remaining domains.

Loop unrolling Loop unrolling changes the structure of the loop, but leaves unchanged the
computations performed by an iteration of the loop body and their order. Loop unrolling by a
factor r replicates the body of the loop r. Unrolling can reduce the loop overhead and improve
data locality. The iteration space of the unrolled loop is r times smaller, hence the loop control
computations are executed r times less often. The basic block of the unrolled loop is r times larger,
which increases the possible data reuse and data distance minimization inside the loop body.

Another advantage of this transformation is that it increases the possible parallel execution
within the loop basic block. Spark already contains an implementation of loop unrolling. It is
used to increase the execution parallelism of the loops that are supposed to run in parallel. The
synthesis of an unrolled loop using Spark was tested for several examples. If the loop is parallel,
the execution speed increases by the exact unroll factor (when sufficient resources exist on which
the computations can be scheduled). All the array accesses and functions of the iterators are
pre-computed in parallel at the beginning of the loop iteration.

Strip-mining Strip-mining is a widely-used method for adjusting the granularity of a paralleliz-
able operation on vector and multicore architectures. The original loop is transformed into two
nested loops that cover the same iteration space of the original loop. The iteration space is divided
into strides of a specific length.

For synthesis using Spark, we can use strip-mining to obtain a better data reuse. It can also be
used to obtain a suitable granularity of loop parallelism, after performing strip-mining by a factor
(strip length) of the desired parallelism and asking Spark to then fully unroll the innermost loop.
The result is equivalent to a partial unroll of the same factor. However, we point out that, after
strip-mining, it is not always possible to unroll the innermost loop if it has unknown (parameterized)
bounds or bounds hard for Spark to evaluate, for example with min and max functions.
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Strip-mining has also one major disadvantage when used for HLS. The computation of the
indices of the inner loop contains a multiplication, unless the strip factor is a power of 2. After full
unrolling of the inner loop, the access function to arrays have the form strip factor*iterator outer +
constant. Since all the access functions will be scheduled to be computed in parallel by Spark, the
amount of area utilization will also increase because of the high area utilization of the multiplier
unit. However, Spark can detect the case of several identical multiplications scheduled at the same
state, and can reuse the result of one multiplication to avoid the others, thus decreasing the area
utilization to one multiplier and as many adders as expressions, i.e., as many as the strip factor.
The speed degradation can also be significant, since at each parallel iteration of the loop, there
is also a need for computing the next iterator and this implies a multiplication and an addition,
unless Spark avoids it thanks to strength reduction.

In the next sections, we first highlight the potential gains that loop transformations can bring
to HLS designs on a simple edge detection example. Then, we consider a H263/H264 decoder
application. For both cases, remember that the underlying architecture is weakly tightly coupled,
with a cache, as in Figure 3.3.

3.3.3 First example: edge detection

The first example we detail here consists of a C code (Figure 3.18) that performs edge detection
on a 100-by-100 pixels 16-bit-depth image. The code performs several function calls that first apply
the Laplacian filter on an image, then apply horizontal and vertical Sobel filters on the image. At
the end, the results are merged. This code contains many temporary arrays, it is typically written
by an application designer who does not take into account memory access optimizations and would
rather have a modular and readable code.

In order to be synthesized by Spark, this code has to be pre-processed. In the first phase, the
code is inlined using the Open64 inline stage (Figure 3.19). The Open64 is instructed to pass only
through the front-end and optimization phases and to dump the whirl representation into a file.
The Whirl2C tool is used to transform this representation back into a C code. The obtained code
is instrumented by hand with special URUK labels (Figure 3.19). In the whirl representation, these
labels are identified by WRaP-IT. They are used to apply a succession of loop transformations. The
loop transformations are specified by using the URUK script from Figure 3.20.

Loop transformations The loop transformations applied to the example, thanks to the WRaP-IT
tool, are classical ones. First of all, code motion is applied in order to move the initialization of
array C close to its use. This operation is described as motion block in the URUK script. Between the
parenthesis two arguments are specified: the first one represents the label of the block to be moved
and the second one the block before which to put the moved block. In this example, motion block
performs a motion of a block specified by the label LBL2 before the block specified by the label LBL6.
The iteration domains of the block to be moved remains the same, only the sequential ordering
in the scattering function changes. Because of the polyhedral representation, this transformation
implicitly fuses the iteration spaces of both blocks (Figure 3.21). If they were distinct, CLOOG would
perform an intersection of the domains and would generate a code with a prolog and an epilog.

The second transformation (fusion) specifies a loop fusion: the fusion of the current loop and
the one immediately after. The enclose is a modifier that removes the innermost loops from the
iteration domain. In this example, the enclose(LBL4,2) (Figure 3.20) specifies the i loop of the
block with the label LBL4 (Figure 3.19). Thus, the whole fusion(enclose(LBL4,2)) means the
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#define N 100

int A[N * N], A1[N * N], B[N * N], B1[N * N], B2[N * N], C[N * N];

// Init array C

init(C);

// Laplacian filter

laplacian_filter(A);

// Horizontal Sobel filter stores the result in array B1

horizontal_sobel_filter(B1, A);

// Vertical Sobel filter stores the result in array B2

vertical_sobel_filter(B2, A);

// Merge the results

merge_results(C, A1, B1, B2);

Figure 3.18: Initial source code of the edge detection example

fusion of the i loop of the statement LBL4 with the ı loop of the statement LBL5. After the fusion,
the j loop of the block LBL4 can be fused with the j loop of the block LBL5: it is performed using
fusion(enclose(LBL4)). The remaining transformations are similar and perform a sequence of
doubly-loop fusions and array scalarizations. The scalarization transformation was applied by hand.
The unroll transformations were performed using Spark. The final code slightly simplified by hand
for better readability is presented in Figure 3.22.

Experimental results Each cache miss implies an execution stall during which the cache is
fetching the required line from memory. We used in our examples a memory fetch latency of
40. We take this into consideration and the real number of execution clock cycles is computed
using the formula Cyclesreal = Cyclesideal + 40 ∗ Cachemiss. We point out that, at the end of
each experiment, we did not performed any cache flush, which means that the data are not really
written back to memory. If required, the real amount of data transfers can be obtained by adding
the cache size and the size of the write-back buffer. This however does not change much the general
conclusions. Figure 3.23 gives the improvements of the resulting hardware design, obtained after
these transformations, in terms of number of cache misses, total number of communications between
the accelerator and the memory, total number of execution clock cycles, and the number of states
in the FSM of the accelerator generated by Spark.

The first transformation (motion block) minimizes the reuse distance of the vector C. As a result,
the total number of memory accesses and cache misses is minimized. Due to this transformation, the
number of cycles also decreased by 39%. Each loop control has an overhead. For the doubly-nested
loop, this overhead is (N + outer loop control) ∗ (N + inner loop control). Since the statements
LBL6 and LBL2 share the same state machine, the loop overhead is minimized and so is the number of
clock cycles. A part of cycles are saved thanks to the sharing of array access address computations.
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#define N 100

int A[N * N], int A1[N * N], int B[N * N], int B1[N * N];

int B2[N * N], int C[N * N];

// Init temporal A1, B1, C1 with 0 (inlined)

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

{

__URUK_LBL1: A1[i * N + j] = 0;

B1[i * N + j] = 0;

B2[i * N + j] = 0;

}

// Init C with 0 (inlined)

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

__URUK__LBL2: C[i * N + j] = 0;

// Laplacian filter stores the results in array A1 (inlined)

for (i = 1; i < N - 1; i++)

for (j = 1; j < N - 1; j++)

__URUK__LBL3: A1[i * N + j] = (-1) * A[(i - 1) * N + j - 1] +

(-1) * A[(i - 1) * N + j] + (-1) * A[(i - 1) * N + j + 1] +

(-1) * A[i * N + j - 1] + (8) * A[i * N + j] +

(-1) * A[i * N + j + 1] + (-1) * A[(i + 1) * N + j - 1] +

(-1) * A[(i + 1) * N + j] + (-1) * A[(i + 1) * N + j + 1];

// Horizontal Sobel filter stores the result in array B1 (inlined)

for (i = 1; i < N - 1; i++)

for (j = 1; j < N - 1; j++)

__URUK__LBL4: B1[i * N + j] = (-1) * A[(i - 1) * N + j - 1] +

(-2) * A[(i - 1) * N + j] + (-1) * A[(i - 1) * N + j + 1] +

(1) * A[(i + 1) * N + j - 1] + (2) * A[(i + 1) * N + j] +

(1) * A[(i + 1) * N + j + 1];

// Vertical Sobel filter stores the result in array B2 (inlined)

for (i = 1; i < N - 1; i++)

for (j = 1; j < N - 1; j++)

__URUK__LBL5: B2[i * N + j] = (1) * A[(i - 1) * N + j - 1] +

(-1) * A[(i - 1) * N + j + 1] + (2) * A[i * N + j - 1] +

(-2) * A[i * N + j + 1] + (1) * A[(i + 1) * N + j - 1] +

(-1) * A[(i + 1) * N + j + 1];

// Merge the results into C (inlined)

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

__URUK__LBL6: C[i * N + j] = A1[i * N + j] + B1[i * N + j] + B2[i * N + j];

Figure 3.19: Source code of Figure 3.18 after Open64 inline and insertion of Uruk labels
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0: motion_block(LBL2,LBL6)

1: fusion(enclose(LBL4,2))

2: fusion(enclose(LBL4))

3: fusion(enclose(LBL3,2))

4: fusion(enclose(LBL3))

5: fusion(enclose(LBL5,2))

6: fusion(enclose(LBL5))

7: fusion(enclose(LBL1,2))

8: fusion(enclose(LBL1))

Figure 3.20: Uruk script specification of loop transformations

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

__URUK__LBL2: C[i * N + j] = 0;

__URUK__LBL6: C[i * N + j] = A1[i * N + j] +

B1[i * N + j] + B2[i * N + j];

Figure 3.21: LBL2 and LBL6 after motion block

#define N 100

int A[N * N], C[N * N];

int main(void)

{

int i,j;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

if (i == 0) || (j == 0) || (i == N-1) || (j == N-1)

C[i * N + j] = 0;

else

C[i * N + j] = - A[(i - 1) * N + j - 1] - 3 * A[(i - 1) * N + j]

- 3 * A[(i - 1) * N + j + 1] + A[i * N + j - 1]

+ 8 * A[i * N + j] - 3 * A[i * N + j + 1] + A[(i + 1) * N + j - 1]

+ A[(i + 1) * N + j] - A[(i + 1) * N + j + 1];

}

}

}

Figure 3.22: Resulting code after all transformations
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Another part of the cycles is saved due to the scheduling of the initialization assignment of C in
parallel with the computation of the sum of arrays A1, B1, and B2.

The remaining transformations (Figure 3.20, lines 1-8) are performing a double fusion of the
nested loops. The first fusion (Figure 3.20, lines 1 and 2) is performed on the horizontal and vertical
Sobel filters (Figure 3.19 for LBL4 and LBL5). The cache misses and total memory reads decreased
because we can reuse elements of A[u, v] where u ∈ [i− 1, i+1] and v ∈ [j− 1, j+1] from the LBL4
and LBL5 statements. The number of cycles decreased due to the elimination of one nested loop
control overhead and to the sharing of address calculations for the read addresses of A and write
address of B. Spark preserves the WAW (write after write) dependences. Hence, the writes of the
elements of B1 and B2 are scheduled sequentially. All the reads are scheduled in parallel. Similar
improvements are obtained with the remaining transformations (Figure 3.20, lines 3-8).

With unrolling, Spark can perform parallelization and loop pipelining more efficiently. This
explains the improvement in the number of clock cycles. However, the transformations performed
with WRaP-IT (which does not include any unroll) already leads to better performance on each
metrics. This experiment presents dramatic improvements: 5.57 times speedup in the number of
total cycles, 6.97 times better in the number of cache misses. An analysis of the final code, for
the reuse distances of the elements of the array A, can show that, after the optimizations, the
synthesized architecture has only a very small working set that fits in a few lines of cache.

The synthesis with Spark was performed with the following hardware constraints: 2000 arithmetic
logic unit (ALU), 1000 multipliers, 2000 comparators, 2000 shifters, 5000 logic gates. As can be
seen from the table in Figure 3.23, all the transformations decrease the number of clock cycles.
There is one exception after the LBL5 fusion. The number of states increased because the itera-
tion space of the symmetric difference of the iteration domain of the LBL5 and LBL6 is not empty
(Dlbl5

iter△Dlbl6
iter 6= ∅), and thus there are an epilog and an prolog that increase the number of states.

Since the state machine generated by Spark is monolithic, the bigger the number of states, the
lower the possible running frequencies. For this reason, the number of states could be used as a
measure of performance of the generated hardware accelerator. More precisely, the number of ideal
cycles must be divided by the frequency to get a good view of the performances of the system.
Then, to take into account memory transfers, one should again add the number of cache misses
multiplied by the memory latency (40).

Design WRaP-IT cache memory #cycles #cycles FSM
Flow transformation miss (#bytes) ideal real states
Spark alone - 4 364 219 200 273 077 447 637 53
Spark + WRaP-IT code motion 4 051 199 168 195 548 357 588 41
Spark + WRaP-IT + double fuse LBL4 3 738 189 152 147 233 296 753 32
Spark + WRaP-IT + double fuse LBL3 3 425 179 136 98 918 235 918 23
Spark + WRaP-IT + double fuse LBL5 2 504 149 664 79514 179 674 28
Spark + WRaP-IT + double fuse LBL1 1 565 90 144 59 213 120 813 22
Spark + WRaP-IT + scalarization 626 30 048 55 302 80 342 33
Spark + WRaP-IT + unroll j by 20 633 30272 15 302 40 622 115
Spark alone unroll j 20 4 364 219 200 74 969 249 256 173

Figure 3.23: Performance improvements on edge detection (cache size of 8 kB, line of 32 B)
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3.3.4 Second example: h264/h263 YUV to RGB

We now present the same performance improvements on an example taken from MediaBench
II Benchmark 5: a H263 decoder. Profiling of the decoder (see Appendix, Section 7.2.1) shows that
an important part of the execution time (62.33%) is taken by the YUV-to-RGB conversion. This
color space conversion is present on all the video codecs like mpeg4 and image ones as jpeg. On
a desktop computer, this conversion is performed by the video card when the frame is displayed.
However, when image processing filters have to be applied, the conversion is performed on the
processor. Most of the embedded systems do not have a video card and this conversion is done
either by the CPU, a VLIW processor, or a hardware accelerator. The code consists of multiple
function calls (Figure 3.24). Inlining was used as a preprocessing step to get all computations
in a single function, see the code in Appendix, Section 7.2.2. The first two function calls are
conv420to422 for the U space and V space. The function represents a vertical interpolation
using 6 adjacent vertical elements. An unrolled version of the function that converts the V color
space is presented in Figure 3.25. The code consists of two nested loops iterating over a square
domain. The computational loop body consists of a weighted vertical interpolation that uses a
small array clp for look-up. The loop body has also six if statements that are the boarder guards.

The conv420to422 calls are followed by two conv422to444 calls that use the V422 and
U422 just computed. The functions perform a horizontal interpolation and the code is similar to
the vertical interpolation one. The resulting V444 and U444 representations are used to generate
a RGB color space representation.

void yuvrgb(int advance)

{

/* ...........*/

/* Conversion from YUV420 to YUV422 color space */

conv420to422(srcU, u422);

conv420to422(srcV, v422);

/* Conversion from YUV422 to YUV444 color space */

conv422to444(u422, u444);

conv422to444(v422, v444);

/* Conversion from YUV444 to RGB color space */

convYUV444toRGB(u444, v444, rgb);

}

Figure 3.24: Conversion from YUV to RGB color space

The analysis of the data computation and flow is presented in Figure 3.26. As can be observed, a
7×7 block of U420 is used to generate a single cell of RGB (7 vertical elements of U420 are used to
compute 2 vertical elements in U422, and 7 horizontal elements of U422 then define U444). Between
the transformations, there are 4 temporary data storage arrays U422, U444, V422, V444.

The synthesis and simulation were done on a fixed 1000x1000 pixels image. The synthesis
results of Figure 3.27 are obtained by applying various loop transformations as summarized below:

– Spark Only: no use of WRaP-IT.
– WRaP-IT0: Passing through WRaP-IT without loop transformations.
– WRaP-IT1: loop interchange on vertical interpolation (U).
– WRaP-IT2: WRaP-IT1 plus loop interchange on vertical interpolation (V).

5. http://euler.slu.edu/~fritts/mediabench/mb2/
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/* conv420to422(srcV,v422); */

/* intra frame */

for (i=0; i < w/2; i++) {

__URUK_BEG2: for (j=0; j < h/2; j++) {

__URUK_IF11: j21 = j*2;

__URUK_IF12: if(j<3)

__URUK_IF121: jm31 = 0;

__URUK_IF122: else jm31 = j-3;

__URUK_IF13: if(j<2)

__URUK_IF131: jm21 = 0;

__URUK_IF132: else jm21 = j-2;

__URUK_IF14: if(j<1)

__URUK_IF141: jm11 = 0;

__URUK_IF142: else jm11 = j-1;

__URUK_IF15: if(j<h-1)

__URUK_IF151: jp11 = j+1;

__URUK_IF152: else jp11 = h-1;

__URUK_IF16: if(j<h-2)

__URUK_IF161: jp21 = j+2;

__URUK_IF162: else jp21 = h-1;

__URUK_IF17: if(j<h-3)

__URUK_IF171: jp31 = j+3;

__URUK_IF172: else jp31 = h-1;

__URUK_IF18: v422[dst_index01 + w*j21] =

clp[(int)(3*srcV[src_index01 + w*jm31]

-16*srcV[src_index01+ w*jm21]

+67*srcV[src_index01 + w*jm11]

+227*srcV[src_index01 + w*j]

-32*srcV[src_index01 + w*jp11]

+7*srcV[src_index01 + w*jp21]+128)/256];

__URUK_IF19: v422[dst_index01 + w*(j21+1)] =

clp[(int)(3*srcV[src_index01 + w*jp31]

-16*srcV[src_index01 + w*jp21]

+67*srcV[src_index01 + w*jp11]

+227*srcV[src_index01 + w*j]

-32*srcV[src_index01 + w*jm11]

+7*srcV[src_index01 + w*jm21]+128)/256];

}

src_index01 = src_index01 + 1;

dst_index01 = dst_index01 + 1;

}

Figure 3.25: Conversion of V space from 420 to 422
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Figure 3.26: Data reuse distance of YUV420toRGB conversion
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– WRaP-IT3: WRaP-IT2 plus loop transformations (fusion, strip-mining, and shifting) on hori-
zontal and vertical interpolations on U and V.

– All transf: WRaP-IT3 plus loop transformations (code motion, strip-mining, loop inter-
change) on U and V and RGB loops and multiple loop fusions.

Results and discussions We now give the performance results obtained from the Spark syn-
thesis report (number of clock cycles) and from the dineroIV cache simulator using the C code
generated by Spark. Figure 3.27 gives the results for cache behavior (cache misses and effective
read/write (R/W) from memory), total number of clock cycles, and the FSM size of the generated
hardware.
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Figure 3.27: Synthesis results after applying transformations on YUV-to-RGB conversion

There is an improvement in the number of cycles between Spark only and WRaP-IT0 transforma-
tions because, in the original code, a lot of if statements are used to check border conditions. Each
if statement is dividing the iteration space in two parts. CLooG, the loop generator of WRaP-IT,
will generate a code for each part. The resulting code does not have any if statements and their
computational control overhead disappeared.

The WRaP-IT 1 transformation performs a loop interchange of the two loops of the vertical
interpolation on U. Because the original interpolation is done vertically and the array elements are
stored horizontally, the interchange improves cache miss ratio thanks to spatial locality. The access
distance to the same line of cache is reduced from h

2 to 7 which does not depend on the height of
the frame and is smaller than the number of lines of the used cache. The WRaP-IT 2 transformation
brings similar improvements.

The WRaP-IT 3 transformation improves the temporal locality between the vertical interpolation
and the horizontal one thanks to loop fusion. Because of the data dependences between them, a
shift by 2 iterations was performed before, on the loop of the vertical interpolation, to enable this
fusion. An important improvement of the number of execution cycles can be observed after this
transformation because most of the loop control hardware is shared between the two fused loops.
There is also a sharing of the array access index calculations that are in the critical path. This
transformation is also used to increase the level of the parallelism inside the loops that Spark can
then easily explore. A loop fusion will not possibly increase the cache miss ratio if the two fused
loops have the same working set and there is a locality in their time-sliced accesses. In other
cases, loop fusion can perturb smooth cache operations by increasing the working set of data and
thus increasing the cache miss ratio. The best performance are obtained if a loop fusion enables
the scalarization transformation. The scalarization enables the storage of the data in the local
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registers, and thus reduces the number of data access ports. The strip-mining and interchange 6

(see Appendix, Section 7.2.3) were used to increase the locality and to align the accesses of the data
produced in the function conv420to422 and the data consumed in the function conv422to444.

The last transformations (All transf) improves the temporal locality of the writes for the
previously-obtained nested loops. The code motion is used to move a block of the code located
between the functions conv420to444 and conv444toRGB so as to enable the fusion of these two
functions. This block produces data used in the conv444toRGB function and it can be placed at
the very beginning of the process. Tiling (through strip-mine and interchange) is applied on the
two loops of the function conv444toRGB and all loops are then fused, in order to align the iteration
spaces of the data producer and data consumer.

With these last transformations (All transf), the cache misses are reduced even more. How-
ever, as it can be observed from Figure 3.27, the number of execution cycles increases as compared
to WRaP-IT 3. In this case, the performance degradation of the blocking transformation can be very
clearly observed. Each blocking transformation is generating a new loop nest inside the original
loop nest thus increasing the overhead. The cache locality improvement brought by the blocking
transformation has to be balanced with the degradation of the number of cycles.

As previously mentioned, the hardware generated by Spark cannot be synthesized directly,
however one can have a rough idea of its area complexity: the hardware consists of an execution
unit, the same for each design, and a finite state machine controlling the execution unit. Figure 3.27
gives the number of states of the FSM. It increases after each new transformation, especially for
WRaP-IT 3 and All transf. Here again, a trade-off must be done between cache performance and
hardware complexity.

The goal of these experiments was to show that important improvements can be obtained by
using loop transformations as a front-end to HLS, especially if these loop transformations are guided
by the user (automatic loop optimization is still not applicable to HLS). Similar improvements were
obtained in [60]. The main benefit of our approach is that it provides the flexibility of adding a
powerful loop transformation front-end to existing HLS frameworks. This is useful especially when
the HLS framework is provided in binary format, which is usually the case. Of course, this applies
only if the synthesis framework accepts ANSI-C as input. WRaP-IT being now integrated into the
GCC compiler, GCC could also be used instead of Open64.

The original code as well as the Uruk script is given in the appendix. The transformations were
found by hand and the results measured by experiments as explained previously. It is easy to be
convinced that loop transformations can be useful to improve HLS designs, as they affect the way
the memory is accessed. For example, some tools do incorporate such transformations. However,
to our knowledge, the belief that they can be useful at source level, before using an HLS tool,
was not really supported by experimental results in a complete setting. Our experiments provide
such an evidence. It also shows that trade-offs must be considered during the design: for example,
tiling can optimize memory transfers but it can also make the circuit more complex, which means
a larger surface but also a lower frequency. We believe that such trade-offs should be left to the
designer and not to heuristics within the HLS tool. However, it is not reasonable to expect the
designer to do such transformations by hand. Our approach, which uses a Uruk script, makes the
code generation automatic.

6. also known as blocking or tiling
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3.4 Conclusions

In this chapter, we presented two studies that improve the performance of automatically-
generated (by HLS tools) hardware accelerators, one for MMAlpha, one for Spark. Both tools
generate circuits without local memories, only registers. To store larger set of data, we exploited
the fact that the target FPGA platform has a processor, with a cache. In the next chapter, we
consider a more standard situation where the HLS tool can generate local memories, which are more
power-efficient than a cache and will directly access the external memory, i.e., with no intermediate
cache.

The first study is the memory architecture and interface generation for a matrix-matrix com-
plex multiplication IP, synthesized using the MMAlpha HLS tool. As we have seen, an efficient
synthesis is not enough to obtain good overall performances when integrating the hardware ac-
celerator into a complex system. The data availability problem causes a significant performance
bottleneck. The solution is to have a local memory architecture exploiting the knowledge of the IP
data access patterns and enabling data reuse, and a dedicated fast link to the location where data
is stored. Building and verifying the memory architecture and external interface by hand for the
generated MMAlpha IP is difficult. Most of the time, the design should be changed after each minor
modification of the IP proving a very inflexible design method. An automatic generation of this
memory architecture and interface is thus becoming mandatory for a HLS system.

The second study we performed shows the interest of source-to-source code transformations, in
front of a HLS tool. This step has an advantage over the previous solution for MMAlpha design,
which acts as a slave. Here, loop transformations push all the reuse “intelligence” from the interface
into the hardware accelerator itself, which acts as a master: the order of its accesses brings lines
to the cache, which then produces spatial and temporal reuse. The choice of transformations
depends slightly on the HLS tool but they do not have to be integrated into the complex IR
representation of the tool (if, in the best case, the sources of the HLS tool are available). We showed
that, with such transformations, it is possible to greatly improve the data reuse and optimize the
internal structure of the hardware accelerator. Data reuse minimizes the external data requirements
thus improving the performances when the IP performances are limited by an external data link.
(Such transformations can also optimize accesses to local memories, but Spark does not have such
memories.)

This method however relies greatly on the cache dedicated data management system. Unfortu-
nately, in most of today’s systems, the cache cannot be used for this purpose. When the processor
resides in a different chip, its cache is not accessible. It may also be inaccessible even when it
resides in the same chip. Indeed, usually, the soft-core and hard-core processors are provided as
IPs, which do not allow access to their caches from the outside world. Maybe in the future, a
multi-core processor or system will have a reconfigurable fabric having access to the cache, much
like the streaming SIMD extensions (SSE) instructions found in today processors.

The two previous studies show that to improve high-level synthesis, i.e., to improve the synthesis
results and to ease the synthesis process, we need a tool that can generate automatically both the
interface and the local memory architecture. Furthermore, at the same time, we would like this tool
to be a source-to-source tool. Customized memory architectures increase the possible optimization
space allowing transformations that are not possible to apply when using a typical static memory
architecture. We address all these concerns in the following chapter.
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Chapter 4

Local SRAM with external DDR:
Altera C2H flow

4.1 Introduction and motivation

As illustrated in the previous chapter, the data availability is one of the major performance
bottlenecks when synthesizing hardware accelerators. In general, one of the objectives of the
designer is to be able to generate a hardware accelerator with optimal throughput, i.e., a circuit
where the data transfer rate (either to local memory or to external storage) is at its maximum,
in other words, a solution where bandwidth is the limiting factor. The circuit itself should then
have all the necessary hardware to be able to consume and produce data in a fast-enough manner.
No need to have a super-parallel implementation or a very-high-frequency solution if the hardware
accelerator spends its time to stall, waiting for data to arrive 1.

When using HLS tool to get such designs, the problem is the same: this is still the responsibility
of the user to write the code in such a way the bandwidth is saturated. Indeed, in general, the
tool is not able to transform the code to reach such a solution. For example, if the interface of the
hardware accelerator with the external world is specified, in the C code, through FIFOs, it is too
late to do anything. The tool would need to know both the caller function and the callee function
to be able to re-organize the code and produce different access patterns. Thus, even if a HLS tool is
used, the designer has still to decompose the application into smaller communicating processes, to
define the adequate memory organization or communicating buffers, and to integrate all processes
in one complete design with suitable synchronization mechanisms. This task is extremely difficult,
time-consuming, and error-prone. As explained in the introductory chapter, this is one of the
reasons why designers give up using HLS tools. This is also what we illustrated in the previous
chapter. For MMAlpha, interfacing was feasible though difficult, but it was not as efficient as
we could expect. For Spark, this was in a way worse as we did not even succeed to interface it
completely: we needed to rely on simulation to evaluate the benefit that loop transformations could
have if Spark was designed so that I/O pins are more exploitable.

Completing the study we did in the previous chapter for high-level transformations with Spark

1. As shown in Section 3.2, this was one of the problems with MMAlpha. If a tile larger than 4×4×4 is mapped to
the FPGA, the circuit needs too many resources (multipliers) and, anyway, it is much too powerful compared to the
available bandwidth. Techniques to slow it down, while sharing resources, are required. This is what the research on
LSGP partitioning tries to address. It is a general situation: the circuit should be adapted to the available bandwidth.
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and WRaP-IT, the goal of this chapter is to demonstrate that program transformations, in par-
ticular loop transformations, are needed in front of HLS tools, if one wants to better exploit the
available bandwidth, and that these transformations can be automated. We believe that this is a
sine qua non condition for making HLS tools a usable thus viable solution to hardware design, in
the same way a traditional front-end compiler can perform high-level optimizations on top of any
assembly-code optimizer. We want to contribute to make this possible for hardware accelerator
generation too.

The challenge is thus to be able to perform code optimizations at C level that are directly
beneficial when used in front of an HLS tool, with no modification of the tool itself. For that
however, the HLS tool should behave in a predictable way, in particular with predictable behavior
and predictable performances. This may require to be able to pass higher-level information to the
(back-end) HLS tool, such as non-aliasing information, or to use the tool in a very specific and
controllable way. Furthermore, the tool should provide an integrated interface with more flexible
accesses to the outside world than just FIFOs. Our study is done with the C2H Altera tool, which
has such specificities. Our goal is to try to optimize accelerators with external accesses to a DDR
memory, always keeping in mind that we should be able to automate any code transformation that
we first apply by hand, until we identify the right way to do it.

Our contributions, summarized in [25], are the following:

1. We analyze C2H and we identify the features that make DDR optimizations feasible or hard
to perform, in general, and with C2H in particular.

2. We propose a technique based on tiling, the generation of communicating processes, and of
software pipelining that can lead to fully-optimized DDR accesses.

3. We show how our scheme can be automated. The complete automation will be detailed in
the next chapter, using analysis and transformation techniques, primarily developed in the
context of high-performance compilation.

Target architecture In Chapter 3, we used a tightly-coupled architecture, with a cache, for
the hardware accelerator placement. This architecture selection has multiple advantages, however
it cannot be used when the cache memory of the processor is not accessible. This can be either
because the processor is located in a separate chip or because the processor is provided as an IP
module. In this chapter, we use a distributed-type architecture as depicted in Figure 3.1, in the
previous chapter. This type of architecture is used by the Altera hardware design flow (Figure 4.1).

The system is composed of a processor, called Nios II. It is a soft-core processor that can be
mapped onto Altera’s FPGA configurable logic. The rest of the system is composed of IP cores.
They are connected by means of a switch fabric Avalon interconnect. Each of the IP cores can have
multiple ports that are used for data exchange. The ports can communicate using different types
of interfaces such as Avalon MM (Avalon-MM), Avalon ST (Avalon-ST), Avalon-MM tri-state
etc. Avalon-MM are address-based R/W interfaces based on master-slave connections. Avalon-ST
is an interface used for unidirectional stream of data. Avalon-MM tri-state interface is used for
communicating with off-chip peripherals.

In this chapter, we are interested in Avalon-MM only. This interface is used to connect periph-
erals like the Nios II, local FIFOs, local DRAM and DDR controllers, and hardware accelerator
generated using the C2H tool. The advantage of this interface over a bus interface is the point-
to-point connection. Multiple components can communicate in parallel without any usual bus
contention. The multiplexers are used to perform the required connection. If multiple master
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Figure 4.1: Altera’s Nios II architecture

ports require an access to a single slave port, an arbitration is performed. Each slave port has a
maximum number of arbitration shares. They specify the number of operations that a master can
perform without the need for re-arbitration. The user can assign different arbitration shares (with
the pragma arbitration share described hereafter) per master port that accesses the same share
thus prioritizing some master ports or allowing an atomic burst transfer of a specific length if the
corresponding requests are present in the pool of requests. These shares do not enforce a minimal
transfer length: the master can cease the transfer at any time.

Each port of the interface can have dedicated independent write and read connections. Read
connections can perform a pipelined read transfer: a master port can send multiple data requests
without waiting for the result to be sent by the slave. The slave peripheral should send the request
results in the same order it received them. The wait penalty is paid only once at the beginning of
the transfer sequence, and is called pipeline latency. Write transfers are not pipelined by nature,
data is sent together with the write request.

Finally, there are also multiple signals such as dataavailable, waitrequest, and readyfordata
to control the flow of data. Thanks to suitable pragmas, these signals are automatically generated
by C-to-Hardware Acceleration (C2H). This is very useful for example to implement a blocking
read from a Avalon-MM FIFO memory.

4.2 Altera C2H important features

Some HLS tools rely on a somehow straightforward mechanism to map the C syntax elements
to their corresponding hardware parts, for example a loop is encoded into a simple FSM and not
unrolled, a scalar variable is mapped to a register and an array to a local memory with no memory
reorganization, etc. This can be a disadvantage from the point of view of automatic code synthesis.
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Indeed, to get good performance results, the user should know very well the underlying synthesis
concepts and methods together with the hardware structures that the tool generates from the C-
level algorithmic description. It implies that the user is required to have a good expertise and
knowledge of the low-level hardware design. This is a major issue of a majority of the HLS tools.

However, a direct correspondence between software and hardware can also be an advantage as
it gives a mean to control what the HLS tool will produce. This is the approach of Ugh (user-
guided HLS) [13], where each scalar variable is register-allocated at C level by the user to guide
the hardware generation. This is also an advantage if the HLS tool is used with a source-to-source
preprocessing tool, as we do. The more information the preprocessing could give to the HLS tool,
the more precise version of the required hardware will be obtained. This is one of the reasons
why we chose C2H, the HLS tool designed by Altera Corporation, as a target for our source-level
optimizations.

We now summarize the main features of C2H that will impact our technique. Further details
are provided in the Nios II C-to-Hardware Acceleration Compiler (C2H) User Guide [22] and in the
Altera’s Embedded Design Handbook [21].

4.2.1 Input language and interface

C2H supports most of the C constructs such as pointers, structures, loops, and subfunction calls.
It is integrated in the development flow of the Altera FPGAs and works with Quartus II, SOPC
Builder, and Nios II integrated development environement (IDE). This makes the integration in
the complete software/hardware design much easier. Being connected with other modules of the
system thanks to the Avalon system interconnect fabric, the hardware accelerator can communicate,
not only by means of FIFOs, but also using the mapped address space connection. In fact, this is
the default communication method. 2 It eliminates the need for the hardware interface designer to
accommodate and integrate the accelerator to the complete system as required in many popular
HLS tools described in [47]. This communication interface also supports pipelined memory accesses,
which is mandatory to achieve good performance of the final system. Indeed, as we explained before,
the performances are most of the time limited by the external data transfer bandwidth and rate,
and not by the lack of parallelism within the function to be accelerated.

C2H is aimed to create a custom hardware accelerator that offloads the Nios II processor
(Figure 4.1). The description of the hardware accelerator is passed as a function written in the
ANSI-C language from which a specialized hardware accelerator implementing it will be generated.
Multiple hardware accelerators can be generated in the same system. The accelerators are controlled
by using a slave port. In order to start an accelerator, the function input parameters are sent
together with a start token. During the execution, the processor can be blocked in a polling read to
the slave, waiting for it to finish the execution. This is the default method of execution, ensuring
the correct sequential execution of the code run in the processor and in hardware. The call to the
accelerated function can be also implemented using interrupts, specified by a pragma. After a call
to such a function, the processor will continue its execution without blocking. Just like interrupt
servicing on systems without operating systems, the user just has to write an interrupt routine,
which will implement the synchronization if needed. This way, the processor can run multiple
accelerators in parallel.

The user should take care of the data cache coherency in the system generated by C2H. By

2. To communicate using a FIFO, there should be a FIFO instantiated in the system by means of the SOPC

Builder Builder and connected using a memory mapped interface to the specified port of the accelerator.
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default, the processor is forced to flush its full cache before starting a hardware accelerator. If the
working sets of the processor and the hardware accelerator are disjoint, then the user can choose
not to flush the cache.

4.2.2 Mapping to hardware

C2H uses a somehow direct syntactic translation to hardware. For example, it generates a
dedicated master port connected to the program memory (we use only an external DDR) each time
it encounters a pointer or array access to data located outside of the function. Local scalar variables
are synthesized as internal registers. Uninitialized local arrays are mapped to on-chip memories
and initialized arrays are mapped to the DDR.

As explained in C2H documentation, the arithmetic and logical operations are mapped to
dedicated modules without any resource sharing, in other words, there is a hardware resource
for each textual operator, even if the code is purely sequential. In particular, in C2H, unrolling
a code multiply the resource need. Unrolling a fully sequential loop uses more resources without
increasing the performances. The unrolled basic block instructions are executed sequentially on each
of the dedicated parallel hardware units. The arithmetic operations such as shifts by a constant,
multiplications and divisions by a power of two, bitwise operations by a constant, are implemented
as wires in hardware without consuming any resources. Multipliers and adders consume arithmetic
resources. Implementing a very long expression is performed by chaining these resources. This type
of expression should be avoided as long timing paths degrade the frequency of the resulted circuit.
Again, C2H does not cut such paths into smaller paths, with intermediate storage: such control is
left (on purpose) to the user. Finally, multiple assignments to the same variable also degrade the
circuit frequency. This is because each of the assigned values should be passed to an input of a
multiplexer that selects which value to pass.

There are several type of loops: for, do, and while loops. Each of these loops has a termination
condition. C2H will use a if structure statement to verify this condition. It will always try to
pipeline the loops in order to increase the throughput of the system. In most cases, the loop
control statement will not add an overhead to the loop pipeline, being executed in parallel to the
loop basic block. However, when the loop control expression has a data dependence from the loop
basic block, a performance penalty is of course paid due to the loop overhead. But more important
is the way loops are scheduled and, in particular nested loops, as we explain in Section 4.2.3.

Switch statements are mapped to an equivalent structure composed of if statements. However,
there is some subtle differences between a switch and an if because the compiler knows that the
then part and the else part cannot both occur while it seems to analyze different case statements
as if they can all occur, even when each one has an ending break, i.e., when only one case can
occur.

The function calls are mapped by the C2H compiler to separate accelerators. When a call is
encountered, the current state machine (the caller) passes the token to the called function (the
callee) and stalls its execution until the state machine of the callee returns. In some cases, when
the execution time of the callee can be determined at compilation time (no loops, no branches,
etc.), the call to the function is pipelined. The function calls can be used to implement resource
sharing techniques. Indeed, as explained earlier, C2H maps each operation to a dedicated hardware
instance. If operations are encapsulated in a function call, C2H creates only one hardware instance
of the function. The calls to this function are then sequentialized, thus providing an indirect way
of scheduling and resource sharing fully implemented and controlled by the user.
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4.2.3 Scheduling: inner control with state machines

In Figure 4.2, the generated architecture for an ad-hoc example, called accelerator, is depicted.
Each for loop has its own state machine. The i loop is controlled by the accelerator function
FSM and it controls the two j loops. In this example, there is no data dependence between the
statements of the loop computing a sum and the statements of the loop computing b sum, therefore
these loops are scheduled in parallel. The data is fetched from the outside of the accelerator using
dedicated ports. The data-path is connected to the ports via FIFOs that are used to store the
access requests for the pipelined access execution. These FIFOs are implicit for the user, i.e., they
are automatically generated by the compiler.

{

accelerator function FSM

for (i = 0; i < n; i++)

for (j = 0...

a_sum....

for (j = 0;...

b_sum...

Pipeline

Access

FIFO

Pipeline

Access

FIFO

Port cPort bPort a

int i, j, k;

int a_sum, b_sum;

   for (i = 0; i < n; i++)

   {

             a_sum += a[j];

             b_sum+= b[k];

     }

}
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         c[i] = a_sum + b_sum;

        for (j = 0; j < m0; j++)

        for (k = 0; k < m1; k++)

int accelerator  (int __restrict__ *a,

int __restrict__ *b, int __restrict__ *c)

c[i] = ...

Figure 4.2: Architecture of the generated hardware accelerator and code for the accelerator function

Figure 4.3 presents the decomposition and the schedule of the read of array element a[0] as
well as the corresponding accumulation from the j loop. The read is decomposed into several
sub-instructions, in particular a request and a receive instructions. Because of the time required
to fetch the data, they are separated by a waiting time, which is evaluated by the compiler. This
waiting time is encoded into the FSM using a state for each wait cycles. In this example, the state
machine has 38 states encoding the waiting time. If this latency is higher at run-time, the FSM
stalls, i.e., the state that contains the receive instruction stops until the data is received.

In order to hide the access latency, C2H will software-pipeline the loop as shown in Figure 4.4,
using a “modulo schedule”. Since the loop j does not have loop-carried dependences, the cycles
per loop iteration (CPLI) is equal to 1. The CPLI represents the number of states of the current
FSM after which it is possible to schedule a new iteration of the loop. In other words, for each
instruction, there is an occurrence every CPLI cycles. Here, a[i+1] req is scheduled at the next
state, immediately after a[i] req. When the memory access latency is smaller than m0 ∗ CPLI
(remember that m0 is the number of iterations in the loop, see Figure 4.3), after some initial
iterations, the state machine sends a read request and receives a data at the same state. Note that
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Figure 4.4: Pipelined execution with DDR latency

the notion of CPLI is similar to the notion of initiation interval used in compilers for programmable
processors. However, there is a small difference: as will be explained hereafter, software pipelining
is applied to all loops, when possible, and not only to innermost loops. The consequence is that
the “cycle” used in CPLI is not a real-time cycle, it is a virtual cycle, i.e., a stage of the FSM:
stages can indeed have different durations and even unpredictable durations. In other words, even
if Altera calls it CPLI, it would be more accurate to call it “stages per loop iteration”.

To reduce the CPLI, C2H often needs to perform variable replications, as illustrated by the small
example of Figure 4.5. The value of the loop iterator variable i is used in the i++ statement and
in the i<N statement. Because of this, the loop cannot be pipelined with CPLI equal to 1 since
i++ and i<N cannot be executed at the same time. Indeed, the former operates on the old value
and they access the same variable in R/W at the same time. Actually, there is a cycle of length
2, with the flow dependence from i++ to i<N and the anti-dependence from i<N to i++. The loop
is pipelined with an inefficient CPLI = 2, just because of the loop counter, not because of the
computations. In order to be able to pipeline the loop with CPLI equal to 1, the variable i that
does not allow a good pipelining is replicated. One way to do it is given in Figure 4.6.

If a loop contains another loop, the inner loop is considered as an atomic instruction for defining
the software pipelining of the outer one, leading to a hierarchical software-pipelined execution of
loops. Figure 4.7 presents the software pipeline of the outer loop (loop iterating over i). The loop
statements are scheduled using 6 states. At state S0, the initialization of the inner loop iterators
are scheduled, the first loop execution condition test is computed, and the increment of the outer
loop counter is performed. At the state S1, the increment of the replicated i is performed, together
with verification of the loop termination condition using the original i. At state S2, the loop
termination condition is verified using the replicated i and the loop FSMs of j and k are started.
The synchronization of the outer-loop FSM with the inner-loop FSM is performed using three states
scheduled one after each other (here S2, S3 and S4). In the first state, the outer-loop FSM starts
the execution of the inner-loop FSM and passes to the next state. During the second state, the
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outer-loop FSM waits for the inner-loop FSM to finish, after which the outer-loop FSM passes to
the next state. In our example, the state waiting for the loops j and k to finish is S3. Finally, at
the third state (here S4), the outer-loop FSM can use the data on which the inner-loop FSM was
performing computations. In our example, at the state S4, both of the loops j and k finished their
execution, the a sum and b sum values are valid. The sum of the accumulated values a sum and
b sum can then be performed. At the state S5, the sum of the accumulated values using replicated
values is performed.

As can be observed, the outer loop is pipelined with aCPLI equal to 1. The “latency” of the
loop, as provided by the Altera compiler, is equal to 6 cycles. As mentioned before, this latency
and this CPLI of the outer-loop do not depend on stalls and on latencies of the inner-loop FSMs.
These values can only be used as a performance metric for the outer-loop FSM: they define the
“virtual” cycles of the FSM and not the “real” hardware clock cycles of the accelerator.

In Figure 4.8, a detailed pipelined execution of the accelerator is presented. It includes the
pipeline of the two inner-loops j and k. The two loops are started in parallel. In the figure, we
assume m1 > m0 and the execution pipeline of the loop k is longer. Let the execution time of the
loops j and k be tj(i) and tk(i) respectively. The FSM of the outer loop i will pass to the state 4
only when both the i and j loops finish their execution, i.e., after max(tj(i), tk(i)). Although the
CPLI of the loop i is 1, its real execution time depends on the execution time of the inner loops
j and k. Both of the loops j and k have the DDR access latency incorporated in their pipeline.
However, when this statically computed latency is smaller than the actual run-time latency of the
access, the state machine will stall. The execution time of the loops j and k can thus vary. If a stall
is encountered in the j loop, and tj(i) < tk(i) still holds, then the stall will be (possibly partially)
hidden by the execution of the loop k. Otherwise, the stall of the loop j will increase the quantity
max(tj(i), tk(i)), and the execution of the state 4 of the outer-loop will be delayed.

This hierarchical FSM semantics is an important feature to consider for optimizing external
DDR accesses, as illustrated in Figure 4.9. Suppose the j loop reads data from an external DDR.
Even if its CPLI is 1, which means that one data item is scheduled to be consumed at each cycle, its
total latency can be quite long, due to a transfer latency, because the inner loop needs to empty its
pipeline before the outer loop can proceed to its next stage. This latency is thus paid as a penalty
for each iteration of the i loop.

Let us see this more precisely. A pipelined loop at depth p, with n iterations, with a loop
counter i from 0 to n− 1 (without loss of generality), is characterized by its CPLI and its latency
ℓ, which is the total number of states in the FSM: for i = 0, the first operation is started at state 0

for (i=0; i<N; i++)

c+=i;

Figure 4.5: Variable replication
in software pipelining example
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Figure 4.6: Schedule with variable replication
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and the last operation at state ℓ− 1. Each operation S at iteration i is scheduled with a standard
modulo schedule, i.e., at state σ(S, i) = CPLI× i+ ρS where 0 ≤ ρS < ℓ. In other words, the first
occurrence of instruction S starts at state ρS and one occurrence of S is run every CPLI states.
The last operation of the whole loop is thus scheduled at state CPLI× (n− 1)+ ℓ− 1 and the total
number of executed stages is:

Nstate(p) = CPLI× (n− 1) + ℓ (4.1)

Now, each state has a duration, which depends on arithmetic operations and macro-operations,
such as function calls and nested loops, at a deeper level. The duration of a state is the maximal
duration of all operations scheduled at this state. Even if each operation does not induce a stall,
giving a general formula is quite complicated. We do it below. Before, let us assume that the
duration of each state at depth p is determined by one macro-operation at depth p+1 and that all
these macro-operations have the same duration Nclk(p+ 1). Then, we have:

Nclk(p) = Nstate(p)×Nclk(p+ 1)

If the macro-operation at depth p+1 is a loop with np+1 iterations, with CPLI equal to 1, containing
only elementary operations of duration 1, then its execution time is (np+1 − 1) + ℓp+1 according to
Equation 4.1. Then:

Nclk(p) = Nstate(p)× np+1 +Nstate(p)× (ℓp+1 − 1) (4.2)

The first term is what would be expected with a latency of 1, the second term can be considered as
an overhead due to a long latency. Of course, in practice, even in the simplest case, the situation is
a bit more complicated. For example, if the outer loop has CPLI equal to 1 and contains a single
macro-operation, the overhead does not appear for each state, but only np times. Nevertheless,
Equation (4.2) gives the general idea. We will refine it when needed.

In the general case, it is more difficult to guess what will be the duration of a state. Nevertheless,
we can give a quite general formula with some reasonable assumptions. We start from the general
expression of Nclk(p):

Nclk(p) =
∑

c∈Nstate(p)

d(c) with d(c) = max{d(S, i) | σ(S, i) = c}

and d(S, i) is the duration of the operation S at iteration i. We then identify blocks of CPLI states
where all operations are running. The first such block is after state ℓp − 1 (included), where all

for (i=0;i<n;i++)

{

/*computation*/

}

............

for (j=0;j<n;j++)

j loop
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i loop
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Figure 4.9: Loop latency penalty for an outer loop
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operations of the first iteration at depth p have started. We round it to the next multiple of CPLI,
thus we start the first block at state sp = ⌈(ℓp−1)/CPLI⌉×CPLI. The last such block starts when
the first operation of the last iteration at depth p is initiated, i.e., at state (np − 1)× CPLI, thus
the first non-complete block starts at state ep = np × CPLI. We get:

Nclk(p) =

sp−1
∑

c=0

d(c) +

Nstate(p)
∑

c=ep

d(c) +

np−1
∑

j=⌈
ℓp−1

CPLI
⌉

CPLI−1
∑

c=0

d(c+ j × CPLI)

Now, let us assume that the duration of each inner macro-operation is constant, i.e., it does not
depend on the loop counter at depth p and no stall occurs. We write σ(S, i) = CPLI× (i+ qS)+ rS
with 0 ≤ rS < CPLI, as it is traditionally done in software pipelining based on modulo scheduling.
This leads to:

Nclk(p) =

sp−1
∑

c=0

d(c) +

Nstate(p)
∑

c=ep

d(c) +

np−1
∑

j=⌈
ℓp−1

CPLI
⌉

CPLI−1
∑

c=0

max{d(S) | rS = c}

The last equality is due to the fact that the set of operations scheduled at state c modulo CPLI is
always the same in a “complete” block. Simplifying the expression, we get:

Nclk(p) =

sp−1
∑

c=0

d(c) +

Nstate(p)
∑

c=ep

d(c) + (np − ⌈
ℓp − 1

CPLI
⌉)

CPLI−1
∑

c=0

max{d(S) | rS = c}

Here, we assumed that np ≥ ⌈
ℓp−1
CPLI⌉. When np is large, one can see immediately the overhead

due to inner macro-operations in the third term involving max{d(S) | rS = c}. This overhead is
not paid for each macro-operation, it is “shared” by macro-operations scheduled at the same state
modulo CPLI.

It may happen that the maximum (critical) path has multiple successive loops that cannot be
run in parallel either because of some data dependences to be respected or because of some resource
sharing. Figure 4.10 shows the pipeline of the same example but without the restrict keyword
(see explanations on this pragma in Section 4.2.4) on the array pointers a and b. Since C2H does
not know if the pointers alias or not, the two loops are scheduled sequentially. The critical path in
this example contains the two loops j and k. In other words, the execution time of nested loops
can be increased significantly by the latency of the inner loops. If the inner loops are scheduled in
parallel, only the latency of one loop will be paid at each iteration of the outer loop. If the loops
are scheduled sequentially, the sum of the latencies will be paid for each outer-loop iteration as
depicted in Figure 4.11.

4.2.4 Pragmas for aliasing and connections

As many tools, the dependence analysis of C2H is limited to an analysis of “names” instead
of memory locations. In particular, it has no dependence analysis of array elements, unlike Pico
Express, which relies on the Omega Library (see [47, Chap. 4]). For example, C2H is unable to
pipeline the following loop due to a false dependence:

for (i = 0; i < n; i++)

a[i] = a[i] + 1;
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Figure 4.11: Latency penalty when there are two sequentially-executed inner loops

The value of the element a[i] is read, incremented, and written back at the same loop iteration.
There is no loop-carried data dependence, and therefore the loop could be pipelined. The Altera
documentation proposes a manual solution to this problem. One could use a shadow memory as
done in the following example.

int *ptr;

for (i = 0; i < n; i++)

a_out[i] = a_in[i] + 1;

ptr = a_out;

a_out = a_in;

a_in = ptr;

The inputs and outputs in this case reside in different memories facilitating the pipelining. If this
code is in the body of an outer loop, the next iteration of the outer loop will use the computed
values as input and will store the results in the original input array. However, this cannot be
applied when not all the elements of a out[i] are written in the loop i: one should analyze the
written elements and copy them to the output array.

However, some potential memory aliasing can be removed by the user, thanks to the pragma
restrict, defined in the ANSI-C standard as a pointer type qualifier. The restrict keyword is
used to inform the compiler that *a, the value of the pointer, does not alias with any other pointer,
as follows: int* __restrict__ a; The analysis of pointer aliasing is usually too conservative and
it is not available in the Altera compiler. So the use of the restrict keyword is very important
since the user may know better the complex aspects of the system to be implemented. However,
as we will see, the fact that the pragma restrict is global, which means that a pointer does not
alias with any other one, is often too restrictive. A useful feature that should be added to C2H (and
possibly to other HLS tools as well) would be a pragma specifying that a subset of pointers do not
alias with each other (a subset of size 2 may be already good enough for many situations).

Specific pragmas can also be used to specify the connection of the generated communication
ports to other modules in the system. If there is no connection port specified, C2H connects each
port to every other port in the system, since it does not know what memory address space the
port associated with a pointer variable will address. In the example below, the pragma keyword
connect variable is used to inform the C2H compiler that the variable a from the accelerated
function accelerator is connected to the slave port of altmemddr 0. In this case, the slave has
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only one port, and when there are multiple ports, the connection should specify the port name
(altmemddr 0/s1, where s1 is the slave port).

#pragma altera_accelerate connect_variable accelerator/a to

altmemddr_0 arbitration_share 8

int accelerator(int* a)

{

....

}

This connection pragma reduces considerably the arbitration logic and thus maximizes the
operating frequency of the Avalon interconnect.

Finally, an arbitration share pragma, defined to each master/slave port pair, can be used
to specify how many transfers the master can perform with the slave, without requiring to re-
arbitrate. In the example above the arbitration share is set to 8. Altera Avalon allows a maximum
of 128 arbitration shares per slave port. This pragma is useful to force consecutive accesses to a
resource and obtain an improved throughput and latency. However, of course, it cannot re-order
computations that belong to different cycles of a FSM and works only if the accesses are scheduled
consecutively by the FSM.

4.3 Motivating examples with DDR accesses

Our goal in this chapter is to optimize a particular class of hardware accelerators: those working
on a large data set that cannot be completely stored in local memory, but need to be transferred
from a DDR memory at the highest possible rate, and possibly stored temporarily locally. This
section motivates, with multiple design examples, why a naive use of C2H does not achieve the
adequate performances.

4.3.1 DDR-SDRAM principles

We first recall the general principles of a double data rate SDRAM (DDR SDRAM) memory
(DDR for short). For more details, refer to the JEDEC (joint electron device engineering council)
specification of the DDR standard [19]. Figure 4.12 presents a simplified view of a typical DRAM
architecture. Each DRAM unit is organized in multiple banks, from 4 (DDR1 standard) to 8 (latest
DDR3 memories [20]) and the address is divided in two parts (row and column) and multiplexed
from the input address ports to save pins on the chip. Each bank has its own state machine as
depicted in Figure 4.13, which can work in parallel to hide latencies. The host DDR interface
cannot command multiple banks in parallel, the command is multiplexed on the control I/O pins.

Selecting a bank automatically activates a row: a read or write command can then be performed
to that row, after a specific amount of time. A transition of the controller state machine takes some
time, defined in the technical memory specification. For example, going from the PRECHARGE state
to the IDLE state takes a minimum amount of time tRP . Also, when, after performing a read, the
controller is in the BANK ACTIVE state and a read request to another row arrives, the controller has
to meet some timing constraints 3 before it can pass to the READ state on the other row. Consider

3. These timing constraints are implied by the physical design limitations of the memory circuit.
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Figure 4.12: Typical DRAM architecture

for simplicity the most significant timing constraints when the controller has to pass to another
row. As depicted in Figure 4.14, going from BANK ACTIVE, through PRECHARGE, IDLE, BANK ACTIVE,
to READ takes at least as many cycles as given as Equation (4.3). There is a maximum between
different timing constraints since the DDR controller requires all the timing constraints to be met.

tPASSr = max(tRAS , 2 ∗ tck + tRCD) + tRP + tRCD (4.3)

where
– tPASSr represents the minimum time required to pass from an active READ command to

another READ command on a different line of the DDR bank.
– tck represents the clock time.
– tRAS represents the minimum time between BANK ACTIVE and PRECHARGE.
– tRP represents the minimum time between PRECHARGE and BANK ACTIVE.
– tRCD represents the minimum time between BANK ACTIVE and READ.
When two sequences of reads performed on different lines are interlaced by the port arbitrator

of the DDR, the memory will receive the access requests in an interlaced manner, i.e., one access of
the first read sequence followed by one access of the second read sequence, and so on. In this case,
Equation (4.3) gives the latency between these reads. The write-to-read or read-to-write latencies
can be computed in the same manner and depend on numerous scenarios. We point out that these
latencies are of course not the total transfer latencies but the latencies between two accesses, i.e.,
they are more related to the throughput of the DDR.

In our experiments, we use a DDRmemory with the following specifications: DDR-400 128 Mb x8,
size of 16 MB, and CL = 3 at 200 MHz memory clock. 4 The memory parameters are tck = 5 ns,
tRAS = 40 ns, tRCD = 15 ns, and tRP = 15 ns. Using the memory parameters specification,

4. The CAS latency (CL) represents the minimum delay between the time when the memory receives a read
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tPASSr = min(40 ns, 10 ns) + 15 ns + 15 ns = 80 ns. A successive read to the same row takes
tNORM = 2∗ tCK = 10 ns. In other words, a read from the same row is tsamerow = tPASS

tNORM
= 8 times

faster. In practice, for a non-optimal implementation of the DDR controller JEDEC specification,
this ratio can be larger. On the Altera platform, we did measure this order of magnitude.

As can be deduced from above, the memory approaches its maximum throughput when the
state changes in the DDR controller are reduced. If the hardware accelerator is optimized, as it is
often the case, to have a CPLI equal to 1, its performance directly depends on the throughput of
the data accesses. If successive data items are accessed within the same row, the accelerator will
work at full speed, otherwise it will stall, waiting for data to arrive. Thus, we seek transfers with
as many successive reads or writes to the same row as possible, without changing the direction
(read/write). The expected gain can be important, an adequate code re-organization could speed
up the accelerator execution by a factor of 8!

4.3.2 Examples

We will illustrate the different problems we need to solve on some simple examples. Despite
their simplicity, we believe that these examples are representative of a general situation that can
occur in practice on more complex applications. In any case, being able to optimize them is a sine
qua non condition to be able to treat more applications.

command on a particular column on an already opened row and the time when the data is ready at the memory data
ports. CAS stands for column address strobe.
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DMA transfer

The first example is the synthesis of a direct memory access (DMA) transfer from and to the
external DDR memory (Figure 4.15(a)). Such a transfer occurs in software when invoking the
function call memcpy. The scheduling information of the C2H synthesis results are presented in
Figure 4.15(b). There are no inter-iteration data dependences and C2H succeeds to pipeline the
loop with CPLI equal to 1. The loop latency is 40 and is due to the (evaluation of the) access
latency to the DDR memory. The state machine has 40 states in order to implement the pipelined
accesses. In the FSM, 40 cycles are paid from the first data request until the first data is received
(Figure 4.15c). In the steady state, from the ideal point of view of the schedule in the FSM, the
accelerator will be able to receive one data and send one data at each clock cycle.

The presence of cache memory in modern processors imposes a data burst transfer of the cache
line size from the main memory. The data is not fetched one by one, even though data is accessed
one by one in the code. We used this cache memory feature in the previous chapter to increase
the data reuse. However, as explained earlier, most current IPs providing a processor with a cache
do not offer an access to this cache from the outside. In this case, adding a dedicated cache
memory is not practical because of its high price compared to SRAM memory. Also, because
usually accelerated algorithms are very regular, SRAM memory data transfer management is not
very complicated.

In this DMA transfer example, we are interested in the case where the size of the arrays a and b

are much larger than the size of a row in the memory (in our example, the system row size is 1 kB).
In this case, for the majority of accesses, the elements a[i] and b[i] are placed in different rows.
To pass from the read of a[i] to the write of b[i], the DDR state machine has to pass through
the states of PRECHARGE, BANK ACTIVE, and READ, with an important performance penalty. Passing
from the write of b[i] to the read of a[i] implies a state change through PRECHARGE, BANK ACTIVE

and WRITE. The resulting memory accesses (see Figure 4.15(d)) are very inefficient from the point of
view of the DDR memory architecture. The read access of one element of array a using the Altera
DDR controller takes 80 ns and a write access takes 70 ns. Although the hardware accelerator is
optimal from the point of view of resource usage and schedule, it operates 80/10+70/10

2 = 7.5 times
slower than the version when all the elements of the array a and b are fetched in an non-interleaved
way.

Convolution 1D
Another interesting example is the 1D convolution. It is often used in image processing to apply

a 1D mask on a image (e.g., edge detection, filtering, etc.). The code represents two nested loops
that apply a mask with coefficients c1, c2, and c3 on an image array a and store the result into an
image array b. The 2D image array is linearized before the function call since the ANSI-C restricts
the use of a bi-dimensional array with variable line width in a calling function. The synthesized
hardware accelerator contains two loop control FSMs. The first loop over i has CPLI 1. The loop
does not have any loop-carried dependences and can be fully pipelined. The latency of 5 cycles is
due to the 5 states of the pipeline. The loop over j has a CPLI 3. This is due to the resource access
contention of 3 accesses on array a on one DDR memory port.

For each loop iteration, the hardware accelerator accesses sequentially the elements a[i∗n+j−1],
a[i ∗ n+ j], and a[i ∗ n+ j + 1]. As in the previous example, the write of b[i] is not considered as
a contention, which means it can be scheduled at the same time as the reads. The memory access
latency is 46, hence there are at least 46 states in the FSM. The pipeline and synchronizations of
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#pragma altera_accelerate connect_variable /

dma_transfer/a to altmemddr_0

#pragma altera_accelerate connect_variable /

dma_transfer/c to altmemddr_0

int dma_transfer (int* __restrict__ a,

int* __restrict__ b, int n) {

int i;

for (i=0; i<n; i++) b[i] = a[i];

return 0;

}

(a) Source code

LOOP i (b[i] = a[i]):

CPLI = 1, Loop latency = 40

Schedule:

c[i] = a[i]; : State 1-->39

i++; : 0-->1

(b) State machine parameters
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Figure 4.15: DMA transfer example

the two nested loops are presented in Figure 4.16(c). The loop j has a start-up latency of 46 cycles,
which is paid for every iteration of the loop i, more precisely from state 3 (for iteration i = 1) to
state 3 + n− 3 = n (for iteration i = n− 2). With the same reasoning used for Equation (4.2), the
nesting overhead in this example is thus (n− 3 + 1)(46− 1) = 45(n− 2). For large values of n, the
overhead is small (compared to the execution time of order n2) but, for small values of n, it can
take a significant portion of the execution time.

An iteration of the convolution 1D (see Figure 4.16(b)) requires three reads of elements of the
array a and one write to the array b. The addresses of the reads are consecutive, therefore it
is very likely that the elements will be located in the same row of the memory (except for the
border cases). In this case, the three elements of the array a can be accessed without any latency
access penalty (see Figure 4.16(d) on the right). However, there is still a need for a write of the
element of the array b. As in the example of the DMA transfer, this will induce a significant
performance penalty after each burst of three elements of a. This example shows that part of the
memory accesses in some algorithms can benefit from the DDR burst data transfer performances.
Unfortunately, usually, there are multiple write transfers in between that can significantly minimize
the data transfer performances from the DDR. There are only a few exceptions, such as “cycle
redundancy check” algorithms. These types of algorithms are characterized by a very big data
read-to-write ratio, i.e., they consume a lot of input data for a single output data.

Sum of two vectors

This example computes the sum of two vectors a and b and writes it into the vector c (see
Figure 4.17(a)). The loop over i has a latency of 2 cycles (see Figure 4.17(b)) because a and b are
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#pragma altera_accelerate connect_variable /

conv/a to altmemddr_0

#pragma altera_accelerate connect_variable /

conv/c to altmemddr_0

int conv (int* __restrict__ a,

int* __restrict__ b, int n) {

int i;

for (i = 1; i < n-1; i++)

for (j = 1; j < n-1; j++)

b[i] = c1*a[i*n+j-1] + c2*a[i*n+j]

+ c3*a[i*n+j+1];

return 0;

}

(a) Source code

LOOP i (b[i] = c1 ... ):

CPLI = 1, Loop latency = 5

j = 0; i++; : State 0-->1

LOOP j: State 2-->4

LOOP j (b[i] = c1 ...):

CPLI = 3, Loop latency = 46

Schedule:

j++; 0-->1

b[i] = c1* ...; 0-->45

(b) State machine parameters
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Figure 4.16: Convolution 1D example

connected to the same shared resource altmemddr 0 which represents the DDR memory port while
the write is not considered as a contention (dedicated separate memory ports for writes and reads).
The loop latency is 42 cycles and, as in previous examples, it represents the latency of accessing
data from memory. The state machine has 42 states that implement the pipelined memory accesses
(see Figure 4.17(c)).

The DDR memory accesses are depicted in Figure 4.17(d). The hardware accelerator performs
a read of an element of a, followed by a read of an element of b, followed by a write of an element
of c. Each of these operations requires a change of line in the DDR since a, b, and c are located
in distinct lines. The resulting hardware accelerator is using the DDR in a very inefficient way.
Even worse, in the DDR, there is an automatic burst of the whole memory bitwidth even if the
required data is shorter than the words managed by the DDR. For example, DDR memories are
usually packed in DIMMs (dual in-line memory module) that are 72-bits wide. A single memory
transfer that is by default in burst mode by 4 will fetch from the memory 72 ∗ 4 = 288 bits. From
this 288 bits, only 32 bits of data will be used (an integer element has 32 bits). The rest of the
transferred data is immediately discarded when a new request to a different line arrives. In other
words, not only the transfer is slow but, in addition, useful data are transferred to be discarded,
before being requested again in the next iterations. In our case, the situation is not as bad because
we instantiated a 8-bits wide DDR, with burst of 4, so no data is discarded if 32-bits words are
requested.

83



#pragma altera_accelerate connect_variable /

hw_acc_orig_ddr_restrict/a to altmemddr_0

#pragma altera_accelerate connect_variable /

hw_acc_orig_ddr_restrict/b to altmemddr_0

#pragma altera_accelerate connect_variable /

hw_acc_orig_ddr_restrict/c to altmemddr_0

int vector_sum (int* __restrict__ a,

int* __restrict__ b,

int* __restrict__ c, int n) {

int i;

for (i=0; i<n; i++)

c[i] = a[i] + b[i];

return 0;

}

(a) Source code

LOOP i (c[i] = a[i] + b[i]):

CPLI = 2, Loop latency = 42

Schedule:

c[i] = a[i] + b[i]; : State 1-->41

i++; : 0-->1

(b) State machine parameters
latency

p
ip

el
in

e

first request

first data
received

i loop

time

DDR

(c) Pipeline

/RAS

/CAS

/WE

DQ

PRECHARGE READ

ACTIVATE

load a(i)

a(i)

PRECHARGE READ

ACTIVATE

load b(i)

b(i)

store c(i)

PRECHARGE

ACTIVATE

WRITE

c(i)

(d) DDR accesses

Figure 4.17: Vector sum example
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Matrix-matrix product

The inputs of the matrix-matrix product code (Figure 4.18) are two linearized matrices a and b.
The access to the matrix c was replaced by a local accumulator tmp and is copied to c at the end
of the iteration loop k. The accumulator is used to remove the unnecessary R/W to the DDR,
where the matrix c is stored, otherwise the design would not be pipelined. The restrict and
connect variable keywords are used to inform C2H about the connection and aliasing of variables
a, b, and c.

The source code is composed of three nested loops iterating over i, j, and k. The loop over
i has a CPLI of 1 and a latency of 5 (i.e., it has 5 states). Its critical path corresponds to the
loop over j. This loop has a CPLI of 1 and its critical path contains the loop over k. The latency
of the j loop is bigger than the latency of the i loop since, besides the tmp initialization, there is
a write instruction to the element c. However, unlike reads, the writes do not increase too much
the latency of a loop since a write operation does not have any waiting period to be encoded in
the FSM. The third loop, iterating over k, has a latency of 43 since it has to encode the latency
of the DDR reads of a and b. Its CPLI is 2 as parallel accesses to a and b arrays using a single
DDR memory port will possibly cause a congestion. It thus runs in (m0 − 1)× CPLI + 43 states,
according to Equation 4.1. Compared to its number of iterations m0, the difference is paid for each
iteration of the j loop, and then for each iteration of the i loop, (see Figure 4.20), thus n0 ∗m1
times, reducing considerably the execution time of the hardware accelerator.

The inner loop has two interleaved read requests to the DDR, with the same access penalty
seen for a and b in previous examples (Figure 4.21). Besides that, every m0 cycles, the accelerator
performs a write to store the value of c. As in previous examples, the interleaving of accesses
diminishes considerably the possible burst performances of the DDR to the same row in a bank.

#pragma altera_accelerate connect_variable /

matrix_multiply_hw_orig/a to altmemddr_0

#pragma altera_accelerate connect_variable /

matrix_multiply_hw_orig/b to altmemddr_0

#pragma altera_accelerate connect_variable /

matrix_multiply_hw_orig/c to altmemddr_0

int matrix_multiply (int* __restrict__ a,

int* __restrict__ b, int* __restrict__ c,

int n0, int m0, int m1) {

int i, j, k, tmp;

for (i=0; i<n0; i++)

for (j=0; j<m1; j++) {

tmp = 0;

for (k=0; k<m0; k++)

tmp += *(a+(i*m0+k))**(b+(k*m1+j));

*(c+(i*m1+j)) = tmp;

}

return 0;

}

Figure 4.18: Matrix-matrix multiplication

LOOP i

CPLI = 1, Loop latency = 5

Schedule:

j = 0; : State 0-->0

assignment control: State 0-->1

Loop j: State 2-->4

i++; : State 0-->1

LOOP j

CPLI = 1, Loop latency = 7

Schedule:

k = 0; : State 0-->0

tmp = 0; : State 3-->3

loop k : State 2-->4

*(c+(i*m1)+j) = tmp: State 2-->6

LOOP k

CPLI = 2, Loop latency = 43

Schedule:

tmp += *(a+....); : State 0-->42

assignment control: State 1-->2

k++; : State 0-->1

Figure 4.19: State machine parameters

85



k loop

latency

p
ip

el
in

e

first request

first data
received

time

DDR

i,j loops

Figure 4.20: Pipeline latencies of matrix-matrix multiply
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Figure 4.21: DDR accesses of matrix-matrix multiply

4.3.3 Optimizing DDR accesses

The examples detailed in the previous section illustrate two important reasons for performance
loss. The first one is due to the non-consecutive DDR accesses, we call it (row change penalty).
The second due is due to to nested loops containing DDR accesses, we call it (data fetch penalty).
To summarize, for our platform and designs:

– at best, the accelerator can receive 32 bits every 10 ns (8 bits per rate, double data rate, 200
MHz), thus 3.2 Gb/s.

– if successive accessed data are not in the same row, the accelerator is able to receive 32 bits
only every 80 ns, roughly.

– if, before sending a new request, the accelerator needs to wait the complete communication
delay from the request to the arrival of a data, it will have to wait an order of magnitude
longer. For simple C2H designs, this delay is roughly 400 ns (40 cycles at 100 MHz).

The row change penalty can occur in inner loops and thus directly impacts the throughput of the
accelerator. The data fetch penalty due to access latency occurs less often (not for inner loops,
unless they are not pipelined), but with a higher penalty. To get better performances, the code
must be restructured so that:

– arrays are accessed by blocks of elements belonging to the same row of the DDR.
– the re-organization of accesses should not increase the CPLI of the computations.
– nested loops containing data accesses should be avoided in order to not pay long data fetch
latencies.

– all necessary glue and house-keeping should be written at C-level and compiled into hardware
by the same HLS tool, i.e., C2H.
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To make all this possible, we will have to use the local memory to store some data that cannot
be consumed immediately. Section 4.5 will explain the generic solution we designed to achieve
these goals, based on multiple accelerators that orchestrate communications. Figure 4.22 gives the
type of communication patterns that we will obtained, here for the vector sum, with an optimal
DDR usage. The next chapter will then show how this process can be automated, in particular
how the required transformations and code generations, that we designed to be as systematic as
possible, can be performed. Before, in Section 4.4, we demonstrate why direct and maybe more
natural approaches do not work. The context of HLS and the use of an HLS tool as a black box
make things much more complicated than one can think.
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Figure 4.22: Accesses for optimized vector sum

4.4 First attempts toward a solution

In this section, we try to apply different compiler transformations in order to optimize the
performances of the communications. The attempts are illustrated with the vector sum code
(Figure 4.23), synthesized using C2H. The other examples studied in Section 4.3.2 can be treated
similarly.

for (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

Figure 4.23: Vector sum

4.4.1 Blocking

The vector sum code does not have any nested loops. Thus, the DDR access latency are paid
only once at the loop start-up. The rest of the access latencies is hidden by the loop pipeline.
However, as explained earlier, the vector sum code accesses the DDR memory in a very inefficient
way. The code performs successively two reads and a write to different rows in the DDR memory
(Figure 4.17). A direct technique to optimize the performance is to apply loop distribution and to
introduce a local storage to store the received data as depicted in Figure 4.24.

The resulting code represents 4 loops iterating over the original iteration domain. The first two
loops fetch arrays a and b from the DDR memory and store then into arrays a tmp and b tmp.
These two arrays are stored into local memory, which is usually implemented using an SRAM.
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for (i = 0; i < MAX; i++)

a_tmp[i] = a[i];

for (i = 0; i < MAX; i++)

b_tmp[i] = b[i];

for (i = 0; i < MAX; i++)

c_tmp[i] = a_tmp[i] + b_tmp[i];

for (i = 0; i < MAX; i++)

c[i] = c_tmp[i];

Figure 4.24: Vector sum array privatization

Such memories have much more faster access times and, as opposed to the DRAM, the access time
does not depend on the address that is accessed. The third loop performs the actual computation
and stores the result into a local array (stored into local memory) c tmp. The last loop stores the
computations into the result array c. With respect to the DDR, requests are done as successive
accesses (at least in the code), as desired. Unfortunately, such a code cannot be used in most
cases. Indeed, the size of the arrays can be very large (usually in MB or even GB) while the size of
the local memories implemented as SRAM are very small (usually in kB) because of the expensive
technologies they are implemented with. Therefore, in most cases, the temporary arrays a tmp,
b tmp, and c tmp will not fit into local memory.

To be able to fit arrays in local memory, their sizes can be reduced by using blocking on
each of the i loops and, after that, a fusion of the outer loops iterating over the obtained blocks
( Figure 4.25). This can also be obtained by a first strip-mining by a factor BLOCK, then a loop
distribution to put each statement in a different loop. Note that all this is of course legal since the
original loop is parallel.

for (i=0; i<MAX; i=i+BLOCK) {

for(j=0; j<BLOCK; j++) a_tmp[j] = a[i+j];//prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b[i+j];//prefetch

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];/compute

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j];//store

}

Figure 4.25: Vector sum with blocking: strip-mining + loop distribution

The code obtained this way is composed of an outer loop i iterating over blocks of size BLOCK.
The inner loops perform the prefetches into local arrays for a block, the computations, and store
the results. The BLOCK parameter can be used to increase the size of the local arrays with respect
to the available local memories. The larger is BLOCK, the smaller the row change penalty, but the
larger the local memory. The scheduling and the other FSM parameters of the blocked code are
given in Figure 4.26).

The loop over i has a CPLI of 2 because of the pointer overlap of a tmp in write and a tmp in
read. Since C2H cannot perform a fine grain dependence analysis, it cannot schedule at the same
time the loop fetching elements of a into a tmp and the loop performing the computations on them.
The loops that fetch elements of the array a and b do not have data dependences between them,
thus they are scheduled in parallel from state 2 to state 4. Then, they are followed, sequentially,

88



LOOP i

CPLI = 2, Loop latency = 7

Schedule:

j = 0; : State 0-->0

assignment control: State 0-->1

Loop j (a_tmp): State 2-->4

Loop j (b_tmp): State 2-->4

Loop j (c_tmp): State 3-->5

Loop j (c): State 4-->6

...

LOOP j (a_tmp)

CPLI = 1, Loop latency = 40

Schedule:

a_tmp[j] = a[i+j];: State 1-->39

...

LOOP j (b_tmp)

CPLI = 1, Loop latency = 40

Schedule:

b_tmp[j] = b[i+j];: State 1-->39

...

LOOP j (c_tmp)

CPLI = 1, Loop latency = 10

Schedule:

c_tmp[j] = a_tmp[j] + b_tmp[j];: State 1-->9

...

LOOP j (c)

CPLI = 1, Loop latency = 9

Schedule:

c[i+j] = c_tmp[i+j];: State 1-->8

...

Figure 4.26: Blocked vector sum: schedule
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by the computation and store loops. The pipelining of the code is presented in Figure 4.27. Since
the loops that fetch a and b from the DDR are scheduled in parallel, for each iteration of the i

loop, only one start-up latency penalty of a or b is paid. The initial source code (Figure 4.23) has
only one latency penalty, while the blocked code has this penalty MAX

BLOCK times.

first data
received

latency

first request

DDR

i loop

store

time

pipeline

computation

j loop j loopj loops

fetch a,b

CPLI = 2

Figure 4.27: Block vector sum: pipeline

Thus, from the point of view of the pipeline efficiency, the performed transformations decrease
the performance of the hardware accelerator compared to the original one. But the hope is to win
from the point of view of DDR accesses. Unfortunately, the transformation does not optimized
any memory accesses (Figure 4.28). The elements of the arrays a and b are still accessed in an
interleaved manner since the two loops that fetch them are scheduled in parallel. Also, due to
the pipelined execution of the outer loop, at its second iteration, the fetching of a and b of the
second iteration are also interleaved with the writes of c from the previous iteration. The use
of the arbitration share pragma could (partially) avoid this interleaving. However, its size is
limited to only 128 per slave port. The DDR has multiple connections including at least a data
and instruction cache of the CPU, each of them having 8 shares and arrays a, b, and c. Thus,
the arbitration share can only be used for a limited block size of 37, assuming that no other
accelerator is connected to the DDR. Also, besides the performance loss due to these non-optimal
accesses to the DDR, there is a performance loss due to the startup loop latency that can be seen
at the beginning of the DDR access diagram.
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/RAS
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.
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.
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.

.

.

startup latency

PRECHARGE READ

ACTIVATE

load a(i)

a(i)

PRECHARGE READ

ACTIVATE

load b(i)

b(i)

PRECHARGE

ACTIVATE

WRITE

c(i)

store c(i)

...

...

Figure 4.28: Blocked vector sum: DDR access

To eliminate the interleaved accesses of at least a and b, a simple solution is to introduce a false
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data dependence between the two fetching loops (see Figure 4.29) to impose a sequential execution
order. Here, the false dependence is done with the scalar tmp, used to pass the loop iteration count
from the loop prefetching a to the loop prefetching b.

for (i=0; i<MAX; i=i+BLOCK) {

for(j=0; j<BLOCK; j++) {tmp = BLOCK; a_tmp[j] = a[i+j];//prefetch

for(j=0; j<tmp; j++) b_tmp[j] = b[i+j];//prefetch

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];/compute

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j];//store

}

Figure 4.29: Blocked vector sum with sequential accesses obtained with false dependence

However, this transformation increases the “virtual schedule time” of the loops (Figure 4.30),
i.e., the CPLI increases to 3, as the two j loops that prefetch a and b are in the critical circuit of
the outer loop. Also, for each iteration of the loop, the latency access penalty is now paid twice
(see Figure 4.30). As in the previous example, the outer loop pipelining will cause an interleaved
access between the reads of the elements of a (or possibly b, depending on the schedule), and the
writes of elements of the array c.

latency

first request

pipeline

j loop

fetch a

DDR

store

time

computation

j loop j loop

fetch b

first data
received i loop

j loop

CPLI = 3

Figure 4.30: Blocked vector sum: pipeline with false dependence

To avoid these data fetch penalties, a possibility is to unroll the inner loops that prefetch a and
b and store each data read in a different scalar variable, as in Figure 4.31. For a BLOCK of size 8,
the i loop will have a CPLI of 16 (Figure 4.32) and performs 16 read accesses, which is optimal in
terms of CPLI. This strategy does not remove some interleaving with the write accesses of array c.
But with some luck, most of the time (this can be checked by simulation), data are fetched in the
textual order of the requests, thus reducing the row change penalty. In general however, there is
no guarantee that instructions are scheduled by C2H in the textual order. For example, as shown
in Figure 4.32, the stores of c are in the reverse order of the text, except the operation c[i+7] =

c tmp7, which is scheduled after c[i+6] = c tmp6. Nevertheless, in this particular example, from
the point of view of DDR memory accesses, the code read accesses are optimal since the arrays a
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and b are accessed by block. However, the store of an element of array c starts immediately after
its computation, thus polluting the memory accesses starting from the 38th execution cycle of the
accelerator.

The code obtained this way contains only one loop, thus the startup latency of 62 is paid only
once. By including all statements in a single basic block, we thus enabled the possibility of fine-
grain scheduling performed by C2H. The downside of this approach however is the code explosion
and hence the hardware resource explosion since C2H will map directly every sum operator to a
separate resource, using also many register storage for scalar variables. Also, this approach requires
a non-parametric unrolling factor BLOCK, which should be a divisor of MAX. For all these reasons,
this solution is again not suitable.

4.4.2 Juggling

Blocking is necessary to re-organize the data accesses. However, as we have seen, relying on
successive loops to prefetch blocks of data leads to a sub-optimal code due to the pipeline latency
of successive loops. A more involved solution is to linearize the 3 inner loops of the blocking code
obtained earlier into a single loop k. Conceptually, the iterations of the loops are emulated with an
automaton, written in C. This can be done with if statements or with case statements. We tried
both, obtaining different results that are detailed here. This technique is a particular form of the
juggling technique introduced for the HLS tool Pico [54]. As we will show, again, this will not be
enough to get the right performances.

Juggling using if statements The code for vector sum with linearized loops using if state-
ments is given in Figure 4.33. The desired loop scanning is emulated thanks to an automaton that
retrieves the original loop counters. In this example, bi is used to iterate on blocks, i to iterate
inside the block. The variable j is used to schedule the operations on a specific block. For j = 0,
the loop prefetches the values of a and stores them in a tmp. For j = 1, the loop prefetches the
values of b and stores them in b tmp. For j = 2, the loop computes the sum of the two blocks
of vectors. For j = 3, the loop stores the computed results to the DDR memory into the array
c. The loop over k has the number of iterations of the original loop multiplied by the number of
states (in this case 4) so that the linearized code behaves the same as the blocking code.

The scheduling information is presented in Figure 4.34 and its graphical representation in Fig-
ure 4.35. The fetch of elements of array a and b, the computations, and the store all belong to
different branches of the nested if statements. Here, the C2H scheduler finds a very inefficient
solution with CPLI equal to 21, which is not at all expected. This is because the software pipeliner
is not powerful enough. Considering the schedule it finds, we can guess how it proceeds. Since
all the statements of the same iteration can be scheduled in parallel, the maximum number of
required states for the FSM seems to be fixed to its minimum, given by the DDR access latency,
here 40, plus one state for initial counter computations, leading to a latency of 41. Now, within this
window of 41 states, let us follow one chain of dependent computations: the instruction c tmp[i]

= a tmp[i] + b tmp[i] can potentially depend on a DDR access from the previous iteration (see
Figure 4.35). This access ends at state 40 but, analyzing different schedules, it seems that the
computation c tmp[i] = a tmp[i] + b tmp[i] can be initiated a bit earlier, at state 39 (see later
examples also). As the situation is different if a tmp[i+1] was read, this is certainly because the
data is written in local memory only at state 40 but it can be forwarded one state earlier from a
local register storage: 18 + 1 = 19 and 19 + 21 = 40. Now, if the four branches of the if tree were
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for (i = 0; i < MAX; i=i+BLOCK) {

a_tmp0 = a[i+0];

a_tmp1 = a[i+1];

a_tmp2 = a[i+2];

a_tmp3 = a[i+3];

a_tmp4 = a[i+4];

a_tmp5 = a[i+5];

a_tmp6 = a[i+6];

a_tmp7 = a[i+7];

b_tmp0 = b[i+0];

b_tmp1 = b[i+1];

b_tmp2 = b[i+2];

b_tmp3 = b[i+3];

b_tmp4 = b[i+4];

b_tmp5 = b[i+5];

b_tmp6 = b[i+6];

b_tmp7 = b[i+7];

c_tmp0 = a_tmp0 + b_tmp0;

c_tmp1 = a_tmp1 + b_tmp1;

c_tmp2 = a_tmp2 + b_tmp2;

c_tmp3 = a_tmp3 + b_tmp3;

c_tmp4 = a_tmp4 + b_tmp4;

c_tmp5 = a_tmp5 + b_tmp5;

c_tmp6 = a_tmp6 + b_tmp6;

c_tmp7 = a_tmp7 + b_tmp7;

c[i+0] = c_tmp0;

c[i+1] = c_tmp1;

c[i+2] = c_tmp2;

c[i+3] = c_tmp3;

c[i+4] = c_tmp4;

c[i+5] = c_tmp5;

c[i+6] = c_tmp6;

c[i+7] = c_tmp7;

}

return 0;

Figure 4.31: Unrolled blocked vector sum

LOOP i

CPLI = 16, Loop latency = 62

Schedule:

i = i+80; : State 0-->1

a_tmp0 = a[i+0];:State 1-->37

a_tmp1 = a[i+1];:State 1-->38

a_tmp2 = a[i+2];:State 1-->39

a_tmp3 = a[i+3];:State 1-->40

a_tmp4 = a[i+4];:State 1-->41

a_tmp5 = a[i+5];:State 1-->42

a_tmp6 = a[i+6];:State 1-->43

a_tmp7 = a[i+7];:State 1-->44

b_tmp0 = a[i+0];:State 1-->45

c_tmp0 = (a_tmp0+b_tmp0);: State 45-->46

c[i+0] = c_tmp0;:State 38-->61

b_tmp1 = a[i+1];:State 1-->46

c_tmp1 = (a_tmp1+b_tmp1);: State 46-->47

c[i+1] = c_tmp1;:State 38-->60

b_tmp2 = a[i+2];:State 1-->47

c_tmp2 = (a_tmp2+b_tmp2);: State 47-->48

c[i+2] = c_tmp2;:State 38-->59

b_tmp3 = a[i+3];:State 1-->48

c_tmp3 = (a_tmp3+b_tmp3);: State 48-->49

c[i+3] = c_tmp3;:State 38-->58

b_tmp4 = a[i+4];:State 1-->49

c_tmp4 = (a_tmp4+b_tmp4);: State 49-->50

c[i+4] = c_tmp4;:State 38-->57

b_tmp5 = a[i+5];:State 1-->50

c_tmp5 = (a_tmp5+b_tmp5);: State 50-->51

c[i+5] = c_tmp5;:State 38-->56

b_tmp6 = a[i+6];:State 1-->51

c_tmp6 = (a_tmp6+b_tmp6);: State 51-->52

c[i+6] = c_tmp6;:State 38-->54

b_tmp7 = a[i+7];:State 1-->52

c_tmp7 = (a_tmp7+b_tmp7);: State 52-->53

c[i+7] = c_tmp7;:State 38-->55

Figure 4.32: Unrolled blocked version: scheduling
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i = 0;

j = 0;

bi = 0;

for (k = 0; k < 4*MAX; k++) {

if (j == 0)

a_tmp[i] = a[bi + i];

else if (j == 1)

b_tmp[i] = b[bi + i];

else if (j == 2)

c_tmp[i] = a_tmp[i] + b_tmp[i];

else

c[bi + i] = c_tmp[i];

/* loop iterators, control unit */

if (i < BLOCK-1) i++;

else {

i = 0;

if (j < 3) j++;

else {

j = 0;

bi = bi + BLOCK;

}

}

}

Figure 4.33: Linearized blocked vector sum

LOOP k

CPLI = 21, Loop latency = 41

Schedule:

k++; : State 0-->1

j++; : State 0-->1

i++; : State 0-->1

i=0; : State 1-->1

i=0; : State 1-->1

a_tmp[i] = a[bi+i];:State 1-->40

b_tmp[i] = b[bi+i];:State 1-->40

c_tmp[i] = a_tmp[i] + b_tmp[i]; State 18-->37

c[bi+i] = c_tmp[i]; State 28-->35

bi = bi + 80; : State 0-->1

if (i< BLOCK-1): State 0-->1

if (j < 3): State 0-->1

if (j == 2): State 35-->36

if (j == 1): State 34-->35

if (j == 0): State 33-->34

Figure 4.34: Linearized version: scheduling

scheduled at state 1 (which is possible as they never occur at the same iteration), then the CPLI
would be at least 38 (as 39 = 18 + 21 and also 39 = 1 + 38). To avoid such a high CPLI, it seems
that the software pipeliner tries to delay the computation c tmp[i] = a tmp[i] + b tmp[i] to
obtain the right distance (in time) between the reads and the write at the next iteration. But, it
proceeds in a very sub-optimal way as the following study shows: actually, a CPLI equal to 3 is
possible.

When the number of states are not restricted, it is possible to obtain a more efficient schedule
(see Figure 4.36). Many flow and anti data dependences need to be met by the scheduler. Taking
into account the flow dependence from the write of a tmp[i] to the read of a tmp[i], we get:

CPLI + d+ 1 > ℓ− 1 (4.4)

where ℓ represents the number of states fixed for a read access to the DDR (in the previous
discussion, ℓ = 40) and d the state at which the statement c tmp[i] = a tmp[i] + b tmp[i] is
scheduled (in the previous discussion, d = 18). Taking into account the anti-dependence from the
read of a tmp[i] to the next write of a tmp[i], we get:

CPLI + ℓ− 1 > d+ 1 (4.5)

By combining Equations (4.4) and (4.5), we get:

ℓ− 1− CPLI < d+ 1 < ℓ− 1 + CPLI (4.6)
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a_req[bi+i] b_req[bi+i]1 1

c_tmp[i]

35 c[bi+i]

scheduled

states

CPLI = 21

b_tmp[i] = a_tmp[i] = 4040

0

18 a_tmp[i]+b_tmp[i]

37

28 c_tmp[i]

Figure 4.35: Vector sum juggling: graphical representation of the schedule

To obtain a CPLI equal to 1, d+ 1 must be strictly between ℓ− 2 and ℓ, thus for d = ℓ− 2. In the
example, the computation c tmp[i] = a tmp[i] + b tmp[i] should be scheduled at state d = 38
and not at state d = 18 as the software pipeliner of Altera wrongly chooses. But this would imply
a latency ℓ larger than the DDR access latency.

i

CPLI

b_tmp[i] = 

b_req[bi+i]

a_tmp[i] = 

a_req[bi+i] c_tmp[i]

c[bi+i]

a_tmp[i]+b_tmp[i]

c_tmp[i]

d
b_tmp[i] = 

b_req[bi+i]

a_tmp[i] = 

a_req[bi+i] c_tmp[i]

c[bi+i]

a_tmp[i]+b_tmp[i]

c_tmp[i]

d

ℓ ℓ

ℓ ℓ

Figure 4.36: Vector sum juggling: graphical representation of possible optimal schedule

Juggling using case statements The juggling/linearization technique can also be implemented
using a case statement. The Altera documentation specifies that a case statement is implemented
using multiple if statements. However, as will be shown below, the C2H scheduler behaves differ-
ently if if statements are directly used and if case statements are used.

The source code of the juggling technique using a case statement is presented in Figure 4.37.
It is similar to the previous code, just with one difference: the nested if statements are substituted
by a case statement.
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i = 0;

j = 0;

bi = 0;

for (k = 0; k < 4*MAX; k++) {

switch(j) {

case 0: a_tmp[i] = a_in[bi + i];

break;

case 1: b_tmp[i] = b_in[bi + i];

break;

case 2: c_tmp[i] = a_tmp[i] + b_tmp[i];

break;

default: c_out[bi + i] = c_tmp[i];

}

/* loop iterators, control unit */

if (i < BLOCK-1) i++;

else {

i = 0;

if (j < 3) j++;

else {

j = 0;

bi = bi + BLOCK;

}

}

}

Figure 4.37: Linearized version with case

LOOP k

CPLI = 3, Loop latency = 41

Schedule:

k++; : State 0-->1

j++; : State 0-->1

i++; : State 0-->1

i=0; : State 1-->1

i=0; : State 1-->1

a_tmp[i] = a[bi+i];:State 1-->40

b_tmp[i] = b[bi+i];:State 1-->40

c_tmp[i] = a_tmp[i] + b_tmp[i]; State 39-->48

c[bi+i] = c_tmp[i]; State 47-->55

bi = bi + 80; : State 0-->1

if (i< BLOCK-1): State 0-->1

if (j < 3): State 0-->1

break; : State 0-->3

break; : State 0-->6

break; : State 0-->9

switch_expression0 = 1: State 3-->3

switch_expression0 = 1: State 6-->6

Figure 4.38: Corresponding schedule
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The scheduling information of the code is presented in Figure 4.38. As can be observed, the
obtained code has a CPLI of 3. The behavior of the case statement can be different from the
if statement as it depends on the presence of break statements. Here, the compiler does not
even try to detect if the cases can occur at the same iteration or not, they are assumed they can.
Therefore, it cannot detect the possible parallel execution of the different case statements. When
the scheduler is not able to detect the possible parallel execution of the statements, even though
they will never execute at the same iteration, the schedule looks as depicted in Figure 4.39. All
statements are scheduled sequentially one after another. In order for the scheduler to pipeline the
loop and to preserve the data dependences, the following constraints need to be respected:

d+ 1 > ℓ− 1 and d+ 1 < CPLI + ℓ− 1 (4.7)

In other words, the closer the reads of a tmp[i] and b tmp[i] are from their writes, the shorter
the CPLI. The minimal value is 2. because the hardware accelerator is not allowed to perform,
simultaneously, a write and a read of the same array (vector variables cannot be replicated [22]).
However, we are not quite sure to understand why C2H finds a CPLI equal to 3 and not to 2.
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i
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a_tmp[i]+b_tmp[i]

c_tmp[i]

ℓ ℓ

ℓ ℓ

d

d

Figure 4.39: Graphical representation of a schedule with dependences in the same loop iteration

Still an interleaving problem So far, we succeeded to remove the data fetch penalties due to
successive inner loops within an outer loop. For that, we enforced the order of requests to the
DDR by an automaton, encoded in C, in a single loop iterating over variables and blocks. The first
problem we faced was that the software pipeliner of C2H is quite weak, leading to hard-to-predict
CPLIs. Depending on how the code is written, we can get a very bad CPLI (21) or a quite good
CPLI (3).
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Nevertheless, this is not enough, we would like to get the highest possible communication rate,
i.e., a CPLI equal to 1. A possibility would be to unroll by a factor equal to CPLI and to try to avoid
false dependences by renaming. This may be possible, after some brainstorming. Unfortunately,
even if we succeed, this will not be sufficient. Indeed, as observed from simulations, a new problem
arises. To be able to pipeline DDR requests, C2H has to speculatively send read requests to the
memory when the access statements are inside a if statement. Only when the condition of the
if is determined, the data is read from the FIFO or not. This is also due to the fact that C2H

generates hardware: each statement corresponds to hardware, even if it is within a if and is not
activated for a given iteration. The consequence is even worse than before: not only DDR requests
are interleaved again, resulting in important row change penalties, but also dummy requests are
repeated multiple times, even if they are not used.

To eliminate these dummy DDR accesses, we can try to use pointer dereferencing, as depicted
in Figure 4.40, again with if statements. When j = 2, the sum of elements is computed and
stored directly into c in the DDR. When j = 0 (resp. j = 1), the pointer ptr ddr points to the
required location of a (resp. b). The data transfer is performed immediately after with a single
transfer instruction in the else part of the first if. Thus there are no dummy DDR accesses,
except for j = 2. Furthermore, the two read requests are scheduled at the same state (but at
different iterations), so there is no interleaving between them and accesses to a and b should be
nicely scheduled. However, for the write accesses to the DDR, two phenomena can occur. First, as
the write is scheduled at a much later state (state 39), the last write requests of a block actually
occur after the first read requests of the next block. Also, dummy write requests still pollute the
DDR access medium. The pointer address computations do not increase the CPLI since pointers
are treated as scalar variables thus C2H can replicate them. Here, the CPLI is again equal to 3, for
the same reason as for the previous code.

Let us try to avoid this undesired interleaving between reads and writes. For this, we can use
a code similar to the code of Figure 4.33, with local arrays a tmp, b tmp, and c tmp. Then, we
introduce two new pointers ptr read and ptr write and define a unique data transfer statement
*ptr_write = *ptr_read, outside the if statements. Depending on the branch j = 0, j = 1, or
j = 4, ptr read is initialized to an address of a, b, or c tmp, and ptr write to an address of a tmp,
b tmp, or c, respectively. Now, there will be no dummy transfers at all. Note that ptr write and
ptr read are both connected to the DDR. Thus, for the loop to be pipelined, they must be declared
as restrict. It remains to write the computation statement c tmp[i] = a tmp[i] + b tmp[i]

while preserving data dependences and loop pipelining. To access a tmp in this statement, the only
way to guarantee a correct schedule is to read it through the pointer that defines it, thus ptr write.
We can then write the computation for j = 3 as a sequence of operations. What we would like is
something like:

ptr_write = &(a_tmp[i]); tmp_a = *ptr_write;

ptr_write = &(b_tmp[i]); tmp_b = *ptr_write;

tmp_c = tmp_a + tmp_b;

ptr_read = &(c_tmp[i]); *ptr_read = tmp_c;

However, again, if these transfer statements are written in the branch j = 3, they will create
dummy speculative transfers. We thus need to perform these 3 transfers thanks to the unique
transfer statement *ptr write = *ptr read previously defined. For that, we can add three more
states for j, one for each access, to read or write the right data. However, we cannot use the unique
transfer statement since ptr write is on the left-hand side of the unique transfer statement and
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not on the right-hand side. Anyway, we cannot use ptr write both on the left and on the right of
an assignment, otherwise the loop would not be pipelined as ptr write is a pointer that accesses
the DDR. The only remaining solution seems thus to use ptr read to read in a tmp and b tmp

thanks to the statement *ptr write = *ptr read. Then, the loop is pipelined, with CPLI equal
to 1. But, in some cases, depending on the scheduler and of runtime latencies, the code is incorrect:
the computation should start after the last data of array b has arrived, not just after the request
itself. But because ptr read and ptr write are restrict and point to the same location, there is
no way to guarantee that the schedule is correct.

Actually, the problem we faced here several times is that the restrict pragma is too global, it
cannot express the restriction between only two pointers. In this example, we would need a pointer
ptr local a, connected only to the local memory a tmp and not to the DDR, and a pragma that
could specify that ptr local a can only alias with ptr write, which writes into the local array
a tmp. The accesses to c tmp and b tmp could be handled similarly. This way, the loop will be
pipelined and the data dependences will be preserved.

int* __restrict__ ptr_ddr;

bi = 0; j = 0;

for (k=0; k<3*MAX; k++) {

if (j==2)

c[i+bi] = a_tmp[i] + b_tmp[i];

else {

if (j==0) ptr_ddr = a+(i+bi);

else ptr_ddr = b+(i+bi);

tmp = *ptr_ddr; /* data transfer */

if (j==0) a_tmp[i] = tmp;

else b_tmp[i] = tmp;

}

if (i++==BLOCK) {

i=0;

if (j++==3) {

j=0;

bi += BLOCK

}

}

}

Figure 4.40: Vector sum source code using
juggling and pointer dereferencing

LOOP k

CPLI = 3, Loop latency = 48

Schedule:

if (j == 2): State 0-->1

if (j == 0): State 0-->1

ptr_ddr = (b + (i + bi));:State 0-->1

ptr_ddr = (a + (i + bi));:State 0-->1

tmp = *ptr_ddr;: State 1-->37

a_tmp[i] = tmp;: State 37-->39

b_tmp[i] = tmp;: State 37-->39

c[i+bi] = a_tmp[i] + b_tmp[i];: State 39-->47

k++; : State 0-->1

j++; : State 0-->1

i++; : State 0-->1

i=0; : State 1-->1

i=0; : State 1-->1

bi = bi + 80; : State 0-->1

if (i< BLOCK-1): State 0-->1

if (j < 3): State 0-->1

Figure 4.41: Scheduling of vector sum using jug-
gling and pointer dereferencing

4.4.3 Conclusions

In this section, we detailed our numerous attempts to try to express block communications at
source code without loosing performance. The transformed versions of code always failed to supply
the required performance.

One of the biggest concern is that, with C2H, data requests in if instructions are still initiated,
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speculatively, so as to enable their pipelining. This leads to correct non-interleaving read accesses
to a and b, but possibly a pollution with writes to the DDR. We tried many variants, some that
we explained here, with different pointers, different writing, trying to enforce dependences when
needed and to remove false dependences. We did not find any satisfactory solution. Either the
code is potentially incorrect, depending on the schedule and because we needed to use the pragma
restrict, or its CPLI increases, or it is not pipelined at all.

The best solutions we obtain led to small but sub-optimal CPLIs, for example CPLI equal to
3. Unrolling may be a possible solution to retrieve an execution equivalent to one with CPLI equal
to 1. But, because of false dependences and an uncontrollable software pipeliner, this strategy is
more likely to not work, especially for more complex applications. Indeed, the techniques tried
in this chapter already fail to optimize a very simple code such as the sum of two vectors. Also
loop unrolling is bad for resource usage, as C2H does not perform resource sharing. Finally, more
importantly, in all solutions we tried, we did not succeed to reach our initial goal, which was to
completely remove interleaved accesses to the DDR. Dummy accesses due to speculative requests
were an unexpected problem that could be discovered only through simulation. The only practical
solution we found is to separate the fetches and stores to the local memory locations from the
computations, defining communicating hardware accelerators. This solution is discussed in the
following section. It is extremely painful to write by hand a correct version of this strategy but we
show later how it can be automated.

4.5 A solution with multiple communicating accelerators

The previous section showed that it is inefficient, if not impossible, to write the code managing
the communication in the code managing the computation. If it is placed in a previous loop, the
accelerator has to wait for the data to arrive before starting the computation (data fetch penalty).
If it is embedded within the computation code, controlled by an automaton as for the juggling
technique, it is very difficult to ensure that this extra housekeeping code does not alter the optimal
data rate and does not create artificial interleaved DDR accesses. This is even more true when
trying to mix a communication code, whose CPLI should be 1, with computations at CPLI > 1
but, possibly, at higher frequency. A natural solution would be to implement the data transfers
in a single-loop accelerator, synchronized with the computation accelerator. However, since all
instructions from a loop are guaranteed to be executed only when the loop state machine finishes
its execution, it is again not possible to enforce data coherence with a simple correct synchronization
between the two accelerators. All these considerations pushed us toward a more involved solution
that we now expose.

4.5.1 Architecture description

The template architecture is presented in Figure 4.42. The generated accelerators are rep-
resented as bold rounded rectangles, local memories as normal bold rectangles, and the rest are
FIFOs. The data required for a given block of computations are transferred, in the order desired
for optimizing DDR accesses, using a “double buffering”-like approach implemented by two accel-
erators BUFF0 LD and BUFF1 LD. They prefetch data in local memories BUFF0 and BUFF1. Using
the same type of double buffering, two other hardware accelerators, STORE0 and STORE1, are used
to store the computation results from local buffers ST0 and ST1 to the DDR memory in a specific
optimized order.
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A dual buffering approach allows the use of single-port local memories, which consume fewer
resources and are preferred over dual port ones in ASIC design, even if they are now usually
available on FPGA chips. More importantly, with two accelerators, we will be able to use the data
transfer of one to hide the data fetch penalty of the other one.

In this design, FIFOs are used only for synchronization and control, which means that they
do not contain data used for computation. Multiple tokens are passed between the hardware
accelerators using these FIFOs. The FIFO BUFF0 BUFF1 is used to pass the DDR resource access
token from BUFF0 LD to BUFF1 LD. This resource token is passed through all the hardware accelerator
accessing the DDR resource in this order: BUFF0 LD, BUFF1 LD, STORE0, STORE1, then back to
BUFF0 LD, passing through the FIFOs BUFF0 BUFF1, BUFF1 ST0, ST0 ST1, ST1 BUFF0. 5 As can
be observed, the token is passed using a single path circular link thus enforcing an ordered and
deadlock-free execution. The FIFOs C01 ST0, C01 ST1, and BUFF01 C01 are used for passing a data
dependence token. The C01 ST0 is used to pass the token from computation hardware accelerator
COMP0/1 to the accelerator STORE0. This token is transmitted when the computations using the
BUFF0 memory elements are finished: STORE0 can then store the results from ST0 to the DDR. The
same is true for STORE1. The BUFF01 C01 FIFO has two input sources: BUFF0 LD and BUFF1 LD. To
distinguish which prefetch accelerator sends the token, we use a token equal to 0 for BUFF0 LD and
1 for BUFF1 LD. Note that there will be no non-determinism: because of the whole synchronization
diagram, the values are alternatively 0 and 1. We could also decompose the computation accelerator
into two parts, but it is not needed and it would waste hardware resource.

ST0_ST1

C01_ST1C01_ST0

BUFF1_ST0

ST1_BUFF0

BUFF0_BUFF1

BUFF01_C01

BUFF0

ST0

BUFF1

ST1

COMP 0/1

STORE0

BUFF0_LD BUFF1_LD

STORE1

Figure 4.42: Accelerators module architecture

As can be seen, the design is partitioned in multiple accelerators: for data transfer management
and for computation. As explained earlier, we are interested only in source-to-source transforma-
tions. Designing manually such hardware modules is not a convenient solution (even if we first

5. This is the order we chose for the solution presented here. As will be explained later, other orders are possible,
with different performances.
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had to do it!) since it requires hardware expertise, and a considerable verification and simulation
time. To avoid all these difficulties, every hardware accelerator should be generated using HLS
methodology. FIFOs and memories are not hardware accelerator, and they are instantiated in the
system using vendor’s IP cores.

4.5.2 Hardware accelerator implementations

We now explain how the hardware accelerators of Figure 4.42 can be generated and synchronized
with C2H and the Altera design environment.

Synchronization diagram In the following, each accelerator operates on a block of data iden-
tified by an iterator t, so we write for example BUFF0 LD(t) to represent the execution of this
accelerator at iteration t.

Figure 4.43 shows a possible synchronization of the whole system, with two kinds of synchroniza-
tion, due to data dependences (for example from BUFF0 LD(t) to COMP0(t)) and due to resource
utilization (for example from BUFF0 LD(t) to BUFF1 LD(t)). The communication accelerators are
represented as parallelipipeds to express the fact that the transfers are pipelined with a long la-
tency. The left diagonal edge represents the transfer of the first data read in a block: the lower-left
corner corresponds to the time when the request is sent, the upper-left corner represents the time
when the corresponding data arrives. Then, other successive requests are pipelined the same way,
until the last data transfer in a block which is represented by the right edge of the parallelipiped.
Computations are represented as rectangles as the latency of iterations is in general much smaller.
With this parallelipiped representation, it is easier to see when the synchronizations take place. A
dataflow synchronization (in blue normal line) starts after the last data is received. A synchro-
nization due to force a sequential access to the DDR (in red dotted line) starts after the last data
request has been sent.
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STORE0(t)

STORE1(t)

BUFF0_LD(t)

BUFF1_LD(t)
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time
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le
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COMP0(t) COMP1(t)

Figure 4.43: Synchronization diagram: first solution, possibly with a time gap

In Figure 4.43, the DDR transfers may still be not optimal: indeed, there may be a small gap
between the loads and the stores, if the computation in COMP0(t) takes longer than the time required
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to send all read requests of BUFF1 LD(t). This gap can be eliminated by reducing the computation
time with parallelization techniques. Another solution is to shift all stores to the right (i.e., delay
them by one iteration) as depicted in Figure 4.44. This time, we synchronize BUFF1 LD(t), at its
last data request, to STORE0(t-1) instead of STORE0(t). STORE0(t-1) stores the results obtained
at the previous iteration, hence it can start before COMP0(t). However, this requires duplicating
the local memory of the computed data, as COMP0(t) now overlaps with STORE0(t-1). Another
solution, with no duplication, is given in Section 4.5.4, once the problem is formulated as a software
pipelining problem (see Figure 4.66).

BUFF0_LD(t)

BUFF1_LD(t)

DDR

STORE0(t−1)

STORE1(t−1)

time

p
ip

el
in

e 
le

v
el

COMP0(t) COMP1(t)

Figure 4.44: Synchronization diagram: second solution with memory duplication

Template codes for communication and computation accelerators When compiling, with
C2H, a system of communicating accelerators written in C, there are only two mechanisms to
guarantee a given sequential order of operations: the use of FIFOs between accelerators which
offers a mechanism for blocking reads (if the FIFO is empty) and blocking writes (if the FIFO if
full), and the fact that data dependences inside a given accelerator are preserved by any schedule.
However, data dependences between different accelerators must be guaranteed by the designer. If
two accelerators access to a given shared memory, for example in a producer/consumer relation,
i.e., one writing a value that should be read by the other, how can we make sure that the read
occurs when the data is here? If the HLS tool does not provide a way to express that a data has
arrived, there is no way to define a consistent semantics of operations.

In C2H, when an access to a local memory is performed at a given state of a FSM, it is guaranteed
that, at the next state of the same FSM, the data has been written or read. In other words, it is
an atomic operation. However, this is no longer true for distant accesses such as DDR accesses,
otherwise transfers to the DDR could not be pipelined: after a data request is sent at a given
state of a FSM, other operations can be performed (if data dependences allow to do so) before
the data has arrived. Therefore, to warn another accelerator that a read from the DDR has been
accomplished, it is not enough to send a token in a FIFO just after the C instruction that initiates
the read. As C2H performs pipelining with a fixed pre-computed latency (and a stall mechanism if
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the transfer is longer), one could exploit this latency to wait sufficiently many states of the FSM
to be sure that the data arrived. However, this latency (40 in the previous examples) depends on
the platform and, moreover, making sure that this latency is respected after software pipelining,
although we cannot control how operations are precisely scheduled, would be quite hard, if not
impossible. Fortunately, C2H provides a way to do it, at source level, although it is very likely that
this feature was not designed for that. As we previously explained, each loop has its own FSM
and, for the schedule of the code surrounding it, it is considered as atomic. In other words, when
a loop is scheduled at a given state of an outer FSM then, at the next state, we are sure that all
its operations are finished, including reads and writes to the DDR. This hierarchical scheduling
principle, which was a problem before because of what we called the data fetch penalty, is now an
advantage. After a loop performing transfers from or to the DDR, we can send a token to specify
that the transfers are done.

for(i = 0; i < nb_iter; i+=block)

{

read_sync();

for(j = 0; j < block; j++)

{

}

write_sync_comp();

/* transfer from memory to local code */

if (j == block −1) write_sync_mem();

}

time

pipeline depth
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Figure 4.45: Synchronization and C semantics

These principles are illustrated in Figure 4.45. The code has two nested loops. The outer loop
iterates over the blocks (tiles). Before executing a tile, a blocking read from a FIFO is performed,
then the inner loop can start the transfers. At the last iteration of the inner loop, the last request
has been performed, a token can be written to give access to the DDR to another accelerator. After
the loop, a token can be written to specify that the transfers are done and some computation can
start.

Figure 4.46 shows the template code of the BUFF0 LD accelerator for a situation similar to the
vector sum example where two arrays a and b must be prefetched from the memory to local storage.
The general mechanism is as shown in Figure 4.45 except that, in addition, we need to make sure
that the inner loop is not scheduled before the blocking read (indeed, they are parallel). To impose
such a sequential execution, a dummy variable dummy read is used to translate the execution order
dependence into a false data dependence. Its value is read inside the inner loop to define another
dummy variable tmp. The inner loop iterates over a tile. In this example, the tile represents a
block of the iteration space of array a, followed by a block of the iteration space of array b. The
number of iterations of the inner loop is controlled by a parameter r sup. If it is too small, the
DDR accesses are not optimized enough and the data fetch penalty is paid too often. If it is too
large, the required local storage can become too large.

The inner loop uses the same mechanism as the juggling code of Section 4.4 to emulate the
traversal of the read requests, in the right order. After the desired local and external addresses
are computed, a data request is initiated to perform the transfer from external to local memory.

104



Here, as there are only reads, the code can be fully pipelined with CPLI equal to 1. The solution
developed in Section 4.4 is well adapted as the problem of interleaving writes and reads does not
occur (there are only reads).

In order to optimize the double buffering transfer, the token-passing statement to BUFF1 LD

is located at the end of the iteration space of the inner loop scanning a tile. This ensures that
the token is passed from BUFF0 LD to BUFF1 LD at the same time as the last pipelined request to
the memory is sent. Only the resource token is sent at this stage. To send a data dependence
token, we have to ensure that the data was prefetched and stored in the local memory. Thus the
data-dependence token is sent to the computation unit immediately after the inner loop. Again,
the dummy variable tmp is used to ensure that the inner loop is scheduled before the statement
*buff0 c01 write = tmp, which sends the data-dependence token.

The template code for BUFF1 LD is similar, see Figure 4.47. The difference with BUFF0 LD is its
initial guard (if statement) to handle correctly the cases when the number of tiles is not a multiple
of 2. When the guard is false, the inner loop is not executed but the resource token must still be
forwarded (last line of the code). The synchronization statements are similar but involve different
FIFOs, according to the synchronization diagram of Figure 4.42. Also, the initial tile is different
than for BUFF0 LD.

The template code for the accelerator STORE0 is presented in Figure 4.48. The accelerator has
to wait for two tokens before starting executing a tile. The first blocking read represents a read
of the resource token and the second one represents a data-dependence token. Dummy variables
dummy read and dummy read1 carrying false data dependences ensure again the execution of the
inner loop only after both tokens are read. The inner loop writes the computed results of a block
of array c to memory. The resource token is finally sent at the same time as the last write request
to the DDR to the next user, which is STORE1. There is no token to send to any computation
accelerator.

The template code of the hardware accelerator STORE1 is similar, it is presented in Figure 4.49.
As the BUFF1 LD accelerator, it contains an if statement for the cases where the number of tiles
is not a multiple of 2. The inner loop transfers data from the local memory to the DDR. At it
last iteration, it sends a resource token to the hardware accelerator BUFF0 LD. When the execution
guard is false, the inner-loop is not executed but the resource token is still sent to BUFF0 LD so that
the whole process can start again for the next iteration.

The template code for the COMP0/1 computation accelerator combines the computations that
correspond to data brought by the two accelerators BUFF0 LD and BUFF1 LD, see Figure 4.50. The
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pipeline depth for (t=0; t<iter_space; t+=db_iter) {
dummy_read += *st1_buff0_read;
for(r=0, tmp=dummy_read; r<r_sup; r++) {

if (s==0) {
compute local and global addresses for array a
and scan the iteration space of array a;
if end of iteration space: s++;

} else if (s==1) { same as s==0 for array b; }
transfer data from DDR to local memory;
if (r == r_sup −1) {*buff0_buff1_write = 0; tmp = 0; }

} 

}

*buff0_c01_write = tmp;
external linearized loop control; 

time

Figure 4.46: Simplified template C code of the BUFF0 LD using Altera’s C2H semantics
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for(r=0, tmp=dummy_read; r<r_sup; r++) {
if (s==0) {

compute local and global addresses for array a
and scan the iteration space of array a;
if end of iteration space: s++;

} else if (s==1) { same as s==0 for array b; }
transfer data from DDR to local memory;
if (r == r_sup −1) {*buff1_st0_write = 0; tmp = 0; }

} 

*buff1_c01_write = tmp;
external linearized loop control; 

time

for (t=0; t<iter_space; t+=db_iter) {

dummy_read += *buff0_buff1_read;
if statements execution guards

else *buff1_st0_write=0;
}

Figure 4.47: Simplified template C code of the BUFF1 LD using Altera’s C2H semantics

outer loop is iterating over the tiles. The iteration space is multiplied by 2 since at each loop iter-
ation only one tile is computed. When the data-dependence token is received over the BUFF01 C01

FIFO, the received value is analyzed. When 0 is received, the data stored in BUFF0 is used for
computation and when 1 is received, the data stored BUFF1 is used. At the end of each computa-
tion tile, the data-dependence token is forwarded to the corresponding store accelerator, STORE0 or
STORE1.

With this generic technique, it is possible to fetch, in an optimized blocked manner, many
blocks of different sizes, each with its individual access addresses, without increasing too much
the hardware resources (the only increase is the state machine size of the inner loop). Another
advantage is that we can dispatch one or multiple arrays to multiple memories. This should be
used jointly with optimizations of the computation accelerator so that parallel computations can be
performed on data from different local memories. Therefore, we reached our goal: communication
to the DDR is done in a burst manner, controllable by a parameter (the tile size), and the data
fetch penalty due to nested loops is paid at the end of each tile, but hidden thanks to the double
buffering mechanism.
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if (s==0) {

if end of iteration space: s++;

} 

time

for (t=0; t<iter_space; t+=db_iter) {

dummy_read += *buff1_st0_read;
dummy_read1 += *c01_st0_read;
for(r=0, tmp=dummy_read + dummy_read1; r<r_sup; r++) {

compute local and global addresses for array c
and scan the iteration space of array c;

}
transfer data from local memory to DDR;
if (r == r_sup −1) {*st0_st1_write = 0; }

external linearized loop control; 
}

Figure 4.48: Simplified template C code of the STORE0 LD using Altera’s C2H semantics
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if (s==0) {

if end of iteration space: s++;

} 

time

dummy_read1 += *c01_st1_read;
for(r=0, tmp=dummy_read + dummy_read1; r<r_sup; r++) {

compute local and global addresses for array c
and scan the iteration space of array c;

}
transfer data from local memory to DDR;

external linearized loop control; 

dummy_read += *st0_st1_read;

if (r == r_sup −1) {*st1_buff0_write = 0; }

for (t=0; t<iter_space; t+=db_iter) {

if execution guards

}
else *st1_buff0_write=0;

Figure 4.49: Simplified template C code of the STORE1 using Altera’s C2H semantics

for (t = 0; t < iter_space * 2; t+= db_iter)

{

dummy_read+ = *buff01_c01_read;

if(dummy_read == 0)

{

for (r = 0; r < r_sup; r++)

{ perform computations in a tile; tmp = ...}

*c01_st0_write = tmp;

}

if(dummy_read == 1)

{

for (r = 0; r < r_sup; r++)

{ perform computations in a tile; tmp = ...}

*c01_st1_write = tmp;

}

external linearized loop control

}

Figure 4.50: Simplified template C code of the COMP01 using Altera’s C2H semantics
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4.5.3 Experimental results

We described earlier the methods and templates that can be used to implement the double-
buffering approach using C2H. We now give implementation details and experimental results for
three of our previous examples: the DMA transfer, the sum of two vectors, and the matrix-matrix
multiplication with parametric sizes.

DMA In Section 4.3.2, we presented the performance bottleneck of the DMA transfer example.
To optimize memory accesses, we transformed the code to the double-buffering architecture using
the templates presented earlier. The code of the BUFF0 LD accelerator is given in Figure 4.51. The
complete code is available in the appendix, Section 7.3.1.

#define MAX 16384

for (i = 0; i < MAX; i = i + 2 * BLOCK)

{

dummy_read += *st1_buff0_read;

for(j=0,tmp=dummy_read;j<BLOCK;j++)

{

if (j == BLOCK-37) //35+1+1

{

tmp = 0;

*buff0_buff1_write=0xdeadbee0;

}

buff0[j] = mem_pointer[i + j];

}

/* buffer 0 is ready */

*buff01_c01_write = tmp;

}

Figure 4.51: DMA BUFF0 LD source code

LOOP i

CPLI = 8, Loop latency = 13

Schedule:

j=0; tmp=dummy_read;:State 0-->9

i=i+2*100;:State 0-->1

i< MAX; : State 1-->2

dummy_read+=*st1_buff0_read;:State 3-->9

Loop j: State 8-->10

*buff01_c01_write = tmp;:State 10-->12

j < BLOCK;: State 6-->7

LOOP j

CPLI = 1, Loop latency = 40

Schedule:

if (j == BLOCK - 37): State 0-->1

buff0[j]=mem_pointer[i+j];:State 1-->39

j++: State 0-->1

j< BLOCK: State 1-->2

*buff0_buff1_write=0xdeadbee0:State 35-->37

tmp = 0; State 1-->1

Figure 4.52: Scheduling of DMA BUFF0 LD

Since there is only one array to fetch, the code complexity is reduced. As can be observed from
the schedule in Figure 4.52, the resource token is scheduled only at state 35. However, the memory
transfer is scheduled at the state 1. In order to align the timings of the two operations, we can
shift the token-sending statement with the distance between the two states divided by the CPLI.
In this example, the difference is 35 and the CPLI is one. We take into consideration that reading
and writing to the FIFO takes one cycle each and therefore we add this to the shifting value.
The statement if(j == BLOCK - 37) implements the shift by 37. Note that this optimization is
just to avoid yet another small gap in the DDR accesses: for a block of size 1000, this additional
optimization gains 3.7% (37 cycles every 1000 cycles). Also, such a shift is always valid: the token
is never sent before the last read request occurs. Anyway, even if the shift was too important, we
would only create some interleaving accesses to the DDR (writes and reads), but this would not
affect the correctness of the code. For a flow dependence, it would not be safe to play this game
however.

The source code of the hardware accelerator BUFF1 LD is presented in Figure 4.53. It is very
similar to the BUFF0 LD except for the shifted start by BLOCK of the outer loop and the FIFOs.
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As can be observed from its schedule in Figure 4.54, the read from the *buff0 buff1 FIFO is
performed at state 3 of the outer-loop FSM. The read fetch from the memory statement (buff1[j]
= mem pointer[i+j]) however starts at state 1 of the inner loop. The inner loop being scheduled
at cycle 8 of the outer-loop FSM, the latency of the fetch statement from the FIFO is 8− 3+1 = 6
cycles. A simple solution to hide this latency is to send the resource token earlier by 6 cycles,
however this will imply that the BUFF1 LD state machine will start before the last DDR request was
sent from the BUFF0 LD. If some memory stall occurs during this time, the FSM of the BUFF0 LD will
stall, but not the FSM of the BUFF1 LD (only BUFF0 LD is waiting for DDR requests). In this case,
after the stall, BUFF0 LD will continue sending requests to the DDR at the same time as BUFF1 LD.
The accesses to the DDR will become interleaved and thus less efficient from the performance point
of view. The problem here is thus slightly different: playing this shifting game may lead to send
the token before the last read request.

#define MAX 16384

for (i = BLOCK; i < MAX; i=i+2*BLOCK)

{

dummy_read += *buff0_buff1_read;

for(j=0,tmp=dummy_read;j<BLOCK;j++)

{

if (j == BLOCK-37) //35+1+1

{

tmp = 1;

*buff1_st0_write=0xdeadbee2;

}

buff1[j] = mem_pointer[i + j];

}

/* buffer 1 is ready */

*buff01_c01_write = tmp;

}

Figure 4.53: DMA BUFF1 LD source code

LOOP i

CPLI = 8, Loop latency = 13

Schedule:

j=0;tmp=dummy_read;:State 0-->9

i = i + 2 * 100;: State 0-->1

i< MAX; : State 1-->2

dummy_read+=*buff0_buff1_read;:State 3-->9

Loop j: State 8-->10

*buff01_c01_write = tmp;:State 10-->12

j < BLOCK;: State 6-->7

LOOP j

CPLI = 1, Loop latency = 40

Schedule:

if (j == BLOCK - 37): State 0-->1

buff1[j]=mem_pointer[i+j];:State 1-->39

j++: State 0-->1

j< BLOCK: State 1-->2

*buff1_st0_write=0xdeadbee2:State 35-->37

tmp = 1; State 1-->1

Figure 4.54: Scheduling of DMA BUFF1 LD

The same latencies are encountered when sending tokens from any hardware accelerators. These
latencies are significant only for very small values of the block. As can be seen from Figures 4.55
and 4.56, our double buffering approach with a block size of 2 is actually slower than the original
non-blocked version because of these latencies. However, by increasing the block size, the speed-up
starts to rise fast, stabilizing at a speed-up of about 6×. The maximum ideal speed-up can be
computed as follows:

σtheoretical =
tinterleavedread + tinterleavedwrite

tburstread + tburstwrite

=
70ns+ 80ns

10ns+ 10ns
= 7.5 (4.8)

The theoretical maximum speed-up is thus close to the speed-up we obtained: the original version
takes 2.496 ms for 32768 transfers of 32 bits, thus 420 Mb/s, the optimized version provides 2,5 Gb/s.
This proves that our double-buffering approach is useful even for algorithms without any data reuse,
here a simple move of data, back and forth.
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Figure 4.55: Double buffering vs. original DMA experimental results figure

Block size 2 4 8 16 32 64 128

Blocked 5481760 2943940 1709070 1059120 738340 551320 480610
Speed-up 0.45 0.85 1.46 2.36 3.38 4.53 5.19

Block size 256 512 1024 2048 4096 8192

Blocked 444930 427740 419410 416730 415570 415110
Speed-up 5.61 5.84 5.95 5.99 6.00 6.01

Figure 4.56: Double buffering vs. original DMA experimental results table (in ns)
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Vector sum Another example we optimized by hand with the double-buffering approach is the
sum of two vectors. The performance bottleneck of the vector sum was presented in Section 4.3.2.
The optimized code for the BUFF0 LD accelerator is given in Figure 4.57. The complete code is
available in the appendix, Section 7.3.2.

This source code is more complex that the DMA one, since the inner loop has to fetch two arrays
a and b. As in previous example, the statement sending the resource token *buff0 buff1 write

= ... was shifted because it was scheduled quite late compared to the DDR request statement
*lmemp = *ememp. The j loop is pipelined with CPLI equal to 1. Increasing the number of arrays
to prefetch does not increase neither the CPLI, nor the latency. This points out that the template
code can scale without any overhead, even when many different arrays need to be prefetched.

The experimental results comparison between the original version and the double-buffering
one is presented in Figures 4.59 and 4.60 (the original version takes 3.828 ms). Again, the double-
buffering approach with the block size of 2 is slower because of the inter accelerators communication
latencies. However, by increasing the block size, the speed-up starts to rise fast, stabilizing at a
speed-up of about 6.5×. The maximum ideal speed-up can be computed as follows:

σtheoretical =
2 ∗ tinterleavedread + tinterleavedwrite

2 ∗ tburstread + tburstwrite

=
2 ∗ 80ns+ 70ns

2 ∗ 10ns+ 10ns
= 7.66 (4.9)

Again, the speed-ups we obtain are quite close to the theoretical speed-ups. The transfers are done
at 2.7 Gb/s, i.e., 28 M additions of 32-bits words per second.

Matrix-matrix multiplication Another example we implemented using the same double-buffering
approach is the matrix-matrix multiplication (Section 4.3.2, Figure 4.18). We now briefly describe
the series of code transformations that we performed by hand to get a code implementing the
double buffering and temporal storage.

For the sake of space, the code is presented only in the appendix, Section 7.3.3. We started
with the initial code (Appendix 7.3.3) and performed a series of classical loop transformations. The
first transformation was to apply loop tiling, which consists in two transformations: strip-mining
on i, j, and k loops – with strip sizes as parameters block ii, block jj, and block kk – then loop
interchange of the loops obtained after strip-mining. The resulting code iterates over tiles with the
loops ii, jj, and kk, and inside the tiles with the loops i, j, and k. To be able to reuse data,
we inserted local arrays of the size of the original ones. However, since the local storage is usually
smaller than the external DDR memory, the arrays are downsized using a (here straightforward)
packing technique to the size of a tile. Loop distribution is then applied to the code on i, j, and k

to separate the loads of the arrays a and b from the computation and from the stores of the array
c. An unroll by 2 is applied on the loop ii and code motion is applied to get a code that looks
like an execution using double buffering. To be able to fully separate the two parts of the double
buffering approach, we apply array privatization on local arrays tmp a, tmp b, and tmp c obtaining
arrays tmp a 0 and tmp a 1, same for b and c. From here, to obtain a code that corresponds to
the desired template code, we applied a loop linearization technique to transform the nested loops
iterating over the tiles and the ones iterating inside the tiles.

The obtained code was partitioned into multiple parts (functions). Each part was later syn-
thesized by C2H as one of the accelerators of Figure 4.42. To validate the correct behavior of the
code, we executed each part as a Linux process. Each process was instructed with read-from and
send-to FIFOs using Linux FIFO constructs. FIFOs and shared-memory elements emulating local
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/* n = 16384 */

for(ii = 0; ii < n; ii = ii + 2 * block)

{

dummy_read += *st1_buff0_read;

j = 0; i = 0; ij = 0;bool_nsent = 1;

//*2 for a and b

for(k=0,tmp=dummy_read;k<block*2;k++)

{

offset_bufflocal = i;

offset_ext_memp = ii + i;

if (i < block - 1) {i++; }

else i = 0;

if (ij == block) {j++; ij = 0;}

else ij++;

if (j == 0) {

lmemp=buff0_0+offset_bufflocal;

ememp = a + offset_ext_memp;

}else if (j == 1) {

lmemp=buff0_1+offset_bufflocal;

ememp = b + offset_ext_memp;

}

/* transfer code */

*lmemp = *ememp;

/* sync code */

if(((k==block*2-35)|(k==block*2-1))

& bool_nsent) //-34 -1

{

bool_nsent = 0;

tmp = 0;

*buff0_buff1_write = 0xdeadbee2;

}

}

/* buffer 0 is ready */

*buff01_c01_write = tmp;

}

/* void the fifo */

dummy_read += *st1_buff0_read;

Figure 4.57: Vector sum BUFF0 LD source code

LOOP i

CPLI = 8, Loop latency = 13

Schedule:

j = 0; tmp = dummy_read; : State 0-->9

i = i + 2 * block;: State 0-->1

ii< n; : State 1-->2

dummy_read+=*st1_buff0_read;:State 3-->9

Loop k: State 8-->10

*buff01_c01_write = tmp;:State 10-->12

k < block;: State 6-->7

bool_nsent = 1;: State 9-->9

ij = 0; State 9-->9

i = 0; State 9-->9

i = 0; State 9-->9

LOOP j

CPLI = 1, Loop latency = 41

Schedule:

offset_ext_memp=(ii+i);: State 0-->1

if (i < block -1) : State 0-->1

i++; State 0-->1

if (ij == block) : State 0-->1

ij++; State 0-->1

j++; State 0-->1

if (j == 0): State 1-->2

if (j == 1): State 1-->2

ememp=(b+offset_ext_memp);:State 1-->2

ememp=(a+offset_ext_memp);:State 1-->2

*lmemp = *ememp; : State 2-->40

if(((k==block*2-35)|... : State 0-->1

k++ : State 0-->1

k < block * 2; : State 0-->1

*buff0_buff1_write=0xdeadbee2:\

State 36-->38

tmp = 0; State 1-->1

bool_nsent = 0; State 1-->1

lmemp=(buff0_0+offset_bufflocal);:\

State 37-->38

ij = 0; State 1-->1

i = 0; state 1-->1

lmemp=(buff0_1+offset_bufflocal);:\

State 37-->38

offset_bufflocal=i; State 37-->37;

Figure 4.58: Scheduling of vector sum BUFF0 LD
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Figure 4.59: Double buffering vs. original vector sum experimental results figure

Block size 2 4 8 16 32 64 128

Blocked 5412340 3067580 1924200 1262690 829860 704490 645900
Speed-up 0.71 1.25 1.99 3.03 4.61 5.43 5.93

Block size 256 512 1024 2048 4096 8192

Blocked 612160 596620 588960 586580 585680 584990
Speed-up 6.25 6.48 6.50 6.53 6.54 6.54

Figure 4.60: Double buffering vs. original vector sum experimental results table (in ns)
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memories were instantiated using Linux constructs. After the verification, the code was translated
in a straightforward way to the final code (see the appendix, Section 7.3.3), transforming only local
memory address connections and FIFO connections.

To obtain a better data reuse, the tiles of array c were stored in the local memory (see Fig-
ure 4.61). The computations were performed by two parts double buffering0 and double buffering1.
The front plane of the cube representing the iteration space corresponds to the part where a tile of
elements are loaded from the memory. In our case, we inserted the initialization with zero in the
accelerators, so we did not prefetch elements of the array c from the memory (this would not have
been possible if the double buffering was not done along the axis k). After each tile, the elements
of the array c are not stored to the DDR but reused at the next tile. Only for the back plane, i.e.,
the last iterations of kk and k, the elements of c are stored to the DDR memory.

j

i

k

write back to the DDR plane

reuse plane

load from DDR plane

double_buffering1

double_buffering0

c[i,j]

Figure 4.61: Matrix-matrix multiplication blocking reuse

The experimental results for the matrix-matrix multiply example, using our double buffering
technique, are presented in Figures 4.62 and 4.63. In these experiments, the values of n0, m1, and m0

were fixed to 20. The values of block ii, block jj, and block kk were doubled for every bench-
mark iteration, obtaining the block sizes from Figure 4.63. As in previous examples, for a small
block size, the double-buffering code runs slower because of the inter-accelerator communication
latency overheads. The speed-up peaks at a block size of 216 is equal to about 7.37 (the original
version takes 1.412 ms). The speed-up for a block of size 1296 is smaller than the previous one
because the iteration space of outer loops is not an exact multiple of the tile sizes. As there are
only a few writes compared to read operations, the theoretical speed-up of the double-buffering
approach, for matrix-matrix multiply, is then roughly:

114



σtheoretical =
tinterleavedread

tburstread

=
80ns

10ns
= 8 (4.10)

The maximum theoretical speed-up (8) is very close to the speed-up (7.37) we obtained. But
this is without taking into account the fact that the data reuse increases with the block size.
According to Equation (3.5), 2× 203

b +202 data are accessed (here, the matrix c is initialized in the
hardware accelerator), where b is the block size. For the best version, for b = 64, the data transfer
rate we obtained is 109 Mb/s. The reason why the average transfer rate is so low is because now
the accelerator is limited by the computation rate: the computation kernel is not parallelized and
needs, for each tile, order b3 states for order b2 transfers. Since the hardware accelerator runs at
100 MHz and performs (at least) 203 sequentially-executed operations, the best execution time we
could expect is 80000 ns, and communications should not slow the accelerator down. However,
here, the implementation uses the synchronization diagram of Figure 4.43 where no computation is
performed during BUFF0 LD and STORE1. Therefore, communications are not completely hidden by
computations. We would need to use a more suitable coarse-grain software pipeline, for example
those of Figures 4.44 or 4.66.
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Figure 4.62: Double buffering vs. original matrix-matrix multiplication experimental results figure

Block size 1 4 16 64 256

Blocked 4578800 740430 270300 191580 199060
Speed-up 0.30857 1.90822 5.22719 7.37503 7.09791

Figure 4.63: Double buffering vs. original matrix-matrix multiplication experimental results table

Synthesis results Earlier, we presented the functional simulation time of three examples. How-
ever, in order to validate the complete hardware design flow, we have to analyze other hardware-
related parameters. In Figure 4.64, we present the synthesis results of the direct and the optimized
versions of the previously-explained examples.
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The designs were synthesized on the Altera Stratix II EP2S180F1508C3 FPGA. The FPGA
system is running at 100 MHz. It is connected to the outside DDR having the following speci-
fication parameters: JEDEC DDR-400 128 Mb x8, column address strobe (CAS) = 3.0. ALUT
represents the number of Altera look-up tables used. “Dedicated registers” represents the number
of the registers the design uses. “Total number of registers” includes dedicated registers and addi-
tional registers used by the synthesis tool to optimize some specific parameters such as the circuit
frequency. The “total block memory bits” represents the utilization of BRAM memories from the
FPGA. DSP block 9-bit elements represents the utilization of hard 9-bit multiplication IP cores
that are present on the FPGA. Finally, we present the maximum frequency at which the whole
system can run.

The comparisons of the original and optimized simulation time show that the optimized version
can run 6 times or more faster than the direct implementation (Figure 4.64). There is a small price
to pay from the point of view of hardware resources to achieve this. The optimized designs use
two twice more Altera look-up tables (ALUTs) and almost three times more registers and memory
blocks than the original design. However, we have to take into account that the optimized design
uses only about 6% of the FPGA resources while saturating the DDR memory bandwidth.

The optimized version also has a slightly smaller maximum running frequency than the original
design. This is mostly due to the Avalon interconnect routing. However, if the design already
saturates the memory bandwidth at 100 MHz, running the system at higher frequencies will not
speed up the design. Note that, as we mentioned previously, the situation is different for matrix-
matrix multiplication: either computations can be accelerated so that the algorithm is limited by
bandwidth or it is important to always overlap communication with computation.

Kernel Speed-up ALUT Dedicated Total
registers registers

System alone - 4406 3474 3606

DMA direct implementation 1 4598 3612 3744

DMA double buffering 6.01 9665 10244 10376

Vector sum direct implementation 1 5333 4607 4739

Vector sum double buffering 6.54 10345 10346 11478

Matrix-matrix multiplication direct impl. 1 6452 4557 4709

Matrix-matrix multiplication double buffering 7.37 15255 15630 15762

Kernel Total block DSP block Max Freq.
memory bits 9-bit elements (MHz)

System alone 66908 8 205.85

DMA direct implementation 66908 8 200.52

DMA double buffering 203100 8 167.25

Vector sum direct implementation 68956 8 189.04

Vector sum double buffering 269148 8 175.93

Matrix-matrix multiplication direct impl. 68956 40 191.09

Matrix-matrix multiplication double buffering 335196 188 162.02

Figure 4.64: Synthesis results of DMA, vector sum and matrix-matrix multiply examples using
direct and double buffering techniques
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4.5.4 Coarse-grain software pipelining

In Section 4.5, the optimization scheme we propose, with communicating accelerators, was
illustrated with one particular synchronization pattern. We now show how such a synchronization
structure can be found automatically.

Each (reading, computing, or writing) accelerator works at the block granularity, and iterates
thanks to an outer loop over blocks. As depicted in Figure 4.42, the different accelerators syn-
chronize each other, at the block boundary, using blocking FIFOs of size 1, each acting as a token.
Depending on the desired synchronization semantics, the token is sent either at the last iteration
of the inner loop that scans a block, or just after this loop (see Figure 4.45). In the first case, the
token is used to enforce a resource constraint, i.e., to sequentialize the accesses to a given resource
(here the communication medium on which DDR requests are sent). In the second case, the token
is used to enforce a dependence constraint, e.g., to make sure that a data read in the local mem-
ory has indeed arrived. These synchronizations, all together, finally enforce a particular pipelined
execution of the blocks computed by the accelerators, as depicted in Figure 4.43.
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Figure 4.65: Dependence graph

What we did here is nothing but a coarse-grain software pipelining at block level, considering
each individual accelerator has a macro-instruction that reads or writes (local and external) mem-
ories, in a common outer block loop to be pipelined. The standard approach is to define a directed
multi-graph, where each vertex is a macro-instruction and each edge describes a dependence, as
depicted in Figure 4.65 for a simple read/write case with double buffering as in Section 4.5. Each
vertex requires a particular resource, either a computing accelerator or the communication medium,
if possible with corresponding durations. Edges are labeled with dependence distances, usually 0
(loop independent) or 1 (loop carried) and, if possible, with corresponding latencies. Additional
dependencies can be added, to constrain the problem, as for example to ensure that the block orders
are preserved (dashed lines in Figure 4.65). Then, standard software pipelining techniques [98] can
be applied to define a periodic schedule for the particular instance to solve. This periodic schedule
defines a sequential order for each resource, in particular for the communication medium. When
this order is not already structurally ensured, a synchronization is added. For example, if the se-
lected schedule placed BUFF0 LD(t) just before BUFF1 LD(t), a synchronization is added, thanks to
a FIFO BUFF0 BUFF1, as in Figure 4.43. This model makes the search for a good schedule more sys-
tematic. For example, to avoid the gap mentioned in Section 4.5 when COMP0(t) delays STORE0(t),
it is possible to find a solution without an overlap between STORE0(t-1) and COMP0(t), thus with
no extra memory duplication, as shown by the (non intuitive) software pipeline of Figure 4.66.
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Figure 4.66: Software pipeline

4.5.5 Automation of code transformations

Sections 4.5 and 4.5.4 defined the synchronization mechanisms that enable to pipeline commu-
nications by blocks, avoiding both the row change penalty, due to the DDR specification, and the
data fetch penalty, due to the way C2H schedules nested loops. The latter can be considered as
a limitation of C2H but, actually, this is also what makes the synchronization at C level possible.
These synchronized accelerators can now be considered as a kind of run-time system, described at C
level and compiled by C2H itself, on top of which high-level transformations are made to re-organize
the code. They identify blocks of computations, prefetch the required data from the DDR, store
them locally in the accelerator, and transfer results to the DDR, in other words, i.e., they fill the
communication and computation templates defined in Section 4.5 with the adequate codes.

These tasks require both program analysis and code transformations, in particular optimizations
based on polyhedral techniques. We list here the main steps that are necessary, as well as related
references.

Loop tiling and partial unrolling First, loop tiling [110] (or, for a single loop, strip-mining)
divides the kernel into elementary blocks of computations to be executed with a double buffering
scheme. For the matrix-matrix product, this corresponds to a block-based version. The double
buffering scheme is then performed along the last loop describing tiles (loop unrolling by 2). A good
tiling should reduce the volume of necessary data transfers, as well as the sizes of the local memories
needed (memory footprint optimization), while trying to leave some data in local memory from one
tile to another (temporal reuse). Many approaches exists in the HPC community to compute such
a tiling (see references in [110]), even for non perfectly-nested loops [35].

Communication coalescing The second step is to identify, for a given tile, the data to read from
and to write to the DDR, excluding those already stored locally or that will be overwritten before
their final transfer to the DDR (as the array c in the matrix-matrix product of Section 4.3.2). This is
a particular form of communication coalescing as described in [43], for HPF, to host communications
outside loops (here the loops describing one tile). Then, the set of transferred data is scanned [97,
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37], preferably row by row. Even if an array is accessed by column in a tile, as for the matrix-matrix
product, the corresponding data can be transferred by row.

Contraction of local arrays Then, a mapping function must be defined that convert indexes
of the global array (in the DDR) to local indexes of a smaller array in which the transferred data
are stored. Standard lifetime analysis and array contraction techniques [74, 85, 23] can be used for
that.

Code specialization The final transformation is to replace nested loops that scan data sets or
that define the computations in a tile by a linearization, as in the juggling code of Section 4.4.
This, again, is to avoid any data fetch penalty. Also, once the different accelerators are defined,
a coarse-grain software pipeline is determined, as explained in Section 4.5.4, and synchronizations
(fifo read or fifo write) are placed as explained in Section 4.5.

All these steps will be detailed in the next chapter.
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Chapter 5

Automation of code transformations

5.1 Introduction

High-level synthesis tools provide a convenient level of abstraction to implement complex de-
signs. However, the program optimizations proposed by these tools are not as sophisticated as those
of high-performance compilers, and the input program must be written in the proper way to get
performances. This often leads the designers to give up the abstraction level and to guess how the
code must be written to get performances and even, sometimes, to make it correct. For HLS tools
to be viable, this issue needs to be addressed and HLS-specific optimizing program restructuring
must be designed to allow the user to fully take advantage of the input abstraction level. This is
particularly true for the C2H C-to-VHDL compiler from Altera, for which we showed in Chapter 4
how the input program needs to be restructured to get performances.

In this chapter, we show how to automate this restructuring. Given a naive input implemen-
tation in C, we present a method to automatically derive a C2H-compliant version following the
optimization scheme discussed in Chapter 4. We first recall some preliminary concepts and no-
tations, and outlines the three main steps of our method, which are detailed in Sections 5.2, 5.3,
and 5.4. Our method has been fully implemented and Section 5.5 provides experimental results
comparing the performances of the hardware accelerators generated from the program optimized
by hand and from the program optimized automatically, thanks to our method. Finally, Section
5.6 concludes this chapter, and gives future directions.

5.1.1 Preliminaries

The polyhedral model [69] is a general framework of program analysis and transformations
applied to static control programs. A static control program verifies the following properties:

– Data types. Only array and scalar variables are allowed. Pointers are forbidden.
– Control. The control is restricted to for loops with clearly-identified loop counters, condi-

tionals (if), and sequence. Irregular control structures as while loops are forbidden.
– Predictability. Loop bounds, conditions, and array access functions must be affine expres-

sions of the surrounding loop counters and structure parameters (e.g., array size). This way,
the execution of the program does not depend on the input values. It is always the same and
can be predicted at compile-time.
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Operations and iteration domains Given an assignment S, the vector built with surrounding
loop counters is called an iteration vector of S. The set of iteration vectors of S reached during
program execution is called the iteration domain of S. Because of static control restrictions, the
iteration domains are invariants. They are still the same whatever the input is. The execution
of S at the iteration ~i is exactly characterized by the couple (S,~i), called operation. The ability to
produce program analysis and transformations at the operation level (instance-wise) rather than
at assignment level is the key feature of the polyhedral model, and makes the polyhedral analysis
powerful and far beyond classical approaches. As loop bounds and conditions are affine, an iteration
domain is exactly the set of integral points lying in a polyhedron, a Z-polyhedron. This fundamen-
tal property of the polyhedral model allows to design program analysis in terms of Z-polyhedra
manipulation. Figure 5.1 shows the iteration domain for the example of the polynomial product.
The operation-level data-dependence are depicted with red arrows.

for (i=0; i<= 2*N; i++)

S1: c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + a[i]*b[j]

θ(S2, i, j) = i+ 1

0 N = 3

S2:

S1:

i

j

N

θ(S1, i) = 0

Figure 5.1: Polynomial product: iteration domains, data dependences, and possible schedule

Affine schedules Many program transformations change the execution order of the operations.
This can be specified thanks to a schedule, an application mapping each operation ω to an execution
date θ(ω). A schedule is valid if the data dependences are respected. If there is a data dependence
from an operation α to an operation β: α → β, then α must be executed before β: θ(α) < θ(β).
The number of different execution dates is called the latency of the schedule.

In the polyhedral model, we define a schedule with an affine function: θ(S,~i) = ~τ1 ·~i+ ~τ2 · ~p+ c
where ~τ1 and ~τ2 are integral vectors, ~p is a vector of parameters, and c is an integer constant. For
example, in Figure 5.1, the affine schedule given by θ(S1, i) = 0 and θ(S2, i, j) = i + 1 is valid for
the polynomial product (Figure 5.1). This means that the program will be executed in N +2 steps.
The step 1 (at date 0) executes in parallel all the instances of S1. Then, each following step (dates
from 1 to N + 1) executes in parallel the operations in a column of the iteration domain of S2.

This works only for schedules with a linear latency. When the latency is more than linear, we
specify a multi-dimensional affine schedule. The execution date θ(S,~i) is defined by a vector whose
components are also affine expressions of loop counters and parameters. The execution dates are
then totally ordered with the lexicographic order ≪. For example, the multi-dimensional affine
schedule given by θ(S1, i) = (0, i) and θ(S2, i, j) = (1, i, j) specifies the sequential order for the
product of polynomials.

In the remainder, we will deal with mono- and multi-dimensional affine schedules, that we will
refer as schedules for the sake of simplicity.
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Systems of clauses Affine schedules are a key notion of the polyhedral model, which subsumes
most of loop transformations and compositions thereof. Also, when thinking with polyhedra, the
design of a program optimization almost boils down to compute an affine schedule. Another point
is that a program can be specified completely with a system of clauses:

[

~i ∈ D1 : S1(~i)
]

∨ . . . ∨
[

~i ∈ Dn : Sn(~i)
]

together with a schedule θ, where Dk is a Z-polyhedron specifying the iteration domain of the
assignment Sk, Sk(~i) stands for the instance of the assignment Sk with the iteration vector ~i
(actually, the operation (Sk,~i)), and θ gives the execution date for each valid operation (Sk,~i). A
system of recurrence equations (SRE) and a system of affine recurrence equations (SARE) can be
viewed as specific systems of clauses representing a program in dynamic single assignment form.
There exist algorithms [97, 37] to generate a compilable C program from a system of clauses, thus
giving iteration domains, assignments, and schedules is sufficient to generate C code.

Loop tiling Loop tiling [79, 110] is a key loop transformation in program optimization, which has
proven to be effective for automatic parallelization and data locality improvement [110, 88, 35]. The
iteration domain of a loop nest is partitioned into rectangular tiles, which are executed atomically.
A first tile is executed, then another tile, and so on. Loop tiling is often defined as a composition
of several loop strip-mines and several loop interchanges. The loop strip-mine introduces two kinds
of loops: the tile loops, which iterate over the tiles, and the intra-tile loops which iterate into a tile.
Then, the loop interchange pushes the intra-tile loops in the inner dimensions of the loop nest. It
is not always possible to tile a loop nest. Sometimes, extra loop transformations are necessary to
make a loop nest tilable. In some cases, we need a skewing (torsion) of the iteration dimension,
meaning that a tile in the original iteration domain is a parallelogram rather than a rectangle.

Tile

Band

0 N = 3 i

N

j

θ(S2, i, j) =
(

i+j
i

)

i

i+ j

Figure 5.2: Polynomial product: loop tiling

In the polyhedral model, we can specify a loop tiling for a perfect loop nest of depth n with a
set of affine hyperplanes H = (H1, . . . , Hn), where Hk = {~i | ~τk ·~i = 0}. The vector ~τk is the normal
to the hyperplane Hk and the vectors ~τ1, . . . , ~τn are supposed to be linearly independent. Then, the
iteration domain of the loop nest can be tiled with regular translations of the hyperplanes of H,
keeping the same distance b between two hyperplanes. For H1, this gives H1, then H1+b~τ1/||τ1||

2 =
{~i | ~τk ·~i = b}, then H1+(2b)~τ1/||τ1||

2 = {~i | ~τk ·~i = 2b}, and so on. Similarly, for H2, this gives H2,
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then H2 + b~τ2/||τ2||
2, then H2 + (2b)~τ2/||τ2||

2, . . ., and so on, and the same for H3, . . . , Hn. (This
is if all tile sizes have the same size b.) A valid iteration vector ~i belongs to a tile if, for each
hyperplane Hk, there exists an integer Ik such that:

Ikb ≤ ~τk ·~i ≤ Ikb+ b− 1, for each 1 ≤ k ≤ n

The integers I1, . . . , In actually define a tile, and can be viewed as tile loop counters. Fixing an
integer value for b, and adding these constraints to those of the original iteration domain gives an
iteration domain D′ of dimension 2n, which is tiled according to the hyperplanes of H. If the body
of the original perfect loop nest has a n-dimensional schedule θ, compatible with loop tiling (i.e.,
the n dimensions of the schedule are permutable), then a valid sequential schedule of the tiled loop
nest, for statement S, is:

θtiled(S, I1 . . . In,
~i) = (I1, . . . , In, θ(S,~i))

Finally, giving S, D′, and θtiled to a polyhedral code generator [97, 37, 32] will generate the tiled
code. Figure 5.2 gives the tiled version for the product of polynomials discussed above. The tiling
hyperplanes are defined by the normal vectors ~τ1 = (1, 1) and ~τ2 = (1, 0), and b = 2. The tiling is
correct, as ~τ1 · (1,−1) = 0 ≥ 0 and ~τ2 · (1,−1) = 1 ≥ 0. The tiled iteration domain is defined by:

{(I, J, i, j) | 0 ≤ i, j ≤ N ∧ 2I ≤ i+ j ≤ 2I + 1 ∧ 2J ≤ i ≤ 2J + 1}

Also, the schedule for the tiled code for statement S2 is θtiled(S2, I, J, i, j) = (I, J, i+ j, i).
A tile band is the set of tiles described by the last tile loop, on a given iteration of the outer tile

loops (see the tile band for I = 1 in Figure 5.2). This notion will be widely used in our approach,
as most optimizations will be done within a tile band, parameterized by outer tile loops counters.

5.1.2 Overview of the method

Given a kernel written in C, we present a method to derive automatically the C2H-compliant
C functions for the pipelined accelerators load, store, and compute. For convenience, the kernel
is supposed to fit into the static control model, so polyhedral analysis can be applied. In this
program model, the blocks of computation to be executed with the double-buffering scheme 1 can
be specified with a loop tiling. Then, inside each tile band, the double buffering is applied on
the tiles two-by-two, following the sequential execution order. Figure 5.3 shows how the double
buffering is applied on the matrix multiply example. The loop nest is tiled along the canonical
directions, i.e., the tiling hyperplanes are defined by the normals ~τ1 = (1, 0, 0), ~τ2 = (0, 1, 0) and
~τ3 = (0, 0, 1). In the remainder, the tile loop counters will be written I, J , and K.

We leave the choice of tiling to the user, which must be specified by means of affine hyperplanes
for each statement, thanks to a schedule. Then, our method executes the following steps:

Step 1. Communication coalescing identifies for each tile the data to be loaded from and stored
to the DDR. This is a critical step, as the traffic with the DDR must be reduced and performed
by blocks. Also, this impacts the size of the local memory. The goal is also to exploit as much
as possible the data reuse between tiles. This step is described in Section 5.2.

1. Actually, “double-buffering scheme” is a language simplification: we do not really use two buffers, but one
larger buffer. However, two blocks of computation are indeed pipelined with two blocks of communications, so as to
overlap communications and computations.
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for(i=0; i<=N; i++)

for(j=0; j<=N; j++)

for(k=0; k<=N; k++)

c[i][j] += a[i][k]*b[k][j];

j

i

k
Last Write c(i,j)

double buffering

data reuse

First Read b(k,j)

First Read a(i,k)First Read c(i,j)

32I + 3132 I

32 J

32 J + 31

Write to the DDR plane

Figure 5.3: Applying the double-buffering scheme on matrix multiply

Step 2. Local memory management computes the size of the local buffers, together with an
adequate access function. Given a communication coalescing, the local memory size must be
reduced as much as possible. This step is described in Section 5.3.

Step 3. Code Generation generates the final C code for the accelerators, given the pieces of
information computed above. The code must meet several requirements to get effective per-
formances: a) the loops must be linearized and b) the execution order must respect the
schedule defined by the tiling. This step is described in Section 5.4.

5.2 Communication coalescing

This section presents a method to select the array regions to be loaded from and stored to the
DDR for each tile. This step will impact two important criteria: a) the amount of communications
with the DDR and b) the size of the local memory. At first glance, it may seem that these criteria
are antagonistic. Actually, we prove that, with our scheme, this is not the case. Both can be
minimized at the same time.

A naive solution. Given the loop tiling, a naive solution would be, for each tile, to load all the
data read in the tile and to store all the data written in the tile. This solution, although correct,
would maximize the communications with the DDR and would lead to poor performances. Also,
as the next load is executed before the current store, this would forbid dependences between two
consecutive tiles within a tile band.

Our solution. We send load and store requests to the DDR only when it is needed, with
communication coalescing. For each tile, we load from the DDR the data read for the first time in
the current tile band. And we store to the DDR the data written for the last time in the current
tile band. Meanwhile, the data is kept and used (read and written) in the local memory. This
means that the data reused between the tiles of a tile band are kept in local memory. This way,
the transfers with the DDR are minimized. On the matrix multiply example, the array c is loaded
from the DDR only by the first tile of the band, and finally stored to the DDR by the last tile.
With the naive approach, c would have been loaded and stored for every tile of the band.

As a bonus, the method no longer requires two consecutive tiles of a tile band to be dependence-
free. Indeed, the data concerned by the inter-tile data dependences are kept in local memory and
the compute accelerators are executed sequentially, guaranteeing the correctness of the program.
Consequently, any tiling would produce a correct result.

Nonetheless, the tiling hyperplanes need to be chosen carefully to reduce the communication.
With our approach, the loads from the DDR correspond to dependences (including input depen-
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dences) entering the tile band. Similarly, the stores to the DDR correspond to dependences getting
out of the tile band. These dependences are responsible for the communications with the DDR,
and must be reduced as much as possible. A way to proceed is to find tiling hyperplanes such that
the last hyperplane traverse as many dependences as possible. This is equivalent to push the de-
pendences in the innermost loop. Several approach exist to find such hyperplanes, for perfect loop
nests [110] as well as imperfect loop nests [35]. Figure 5.4 show what happens for the polynomial
product example, with a naive tiling and with the skewed tiling previously defined, focusing on
the communications related to array c. With the tiling defined from the schedule (−j, i) (which
corresponds to a loop interchange and a loop reversal of the j loop), many data dependences get
in and out of the tile band causing as many loads and stores for the array c as shown in Fig-
ure 5.4(a). With the skewed tiling depicted in Figure 5.4(b), the data dependences are kept in the
tile band. This way, the loads and stores for c only arise on the first tile and on the last tile of the
tile band. Notice that the loads and stores for the array a are the same in both cases. However,
communications for array b are reduced with the first tiling, with full reuse within a tile band.

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

(a)

i

j

phase 2
Double buffering

Last write (c)

First
Read (c)

phase 1
Double buffering

(b)

Figure 5.4: Impact of the loop tiling on the communication volume

5.2.1 Specification

For every tile t, we want to specify Load(t), the data to be loaded from the DDR just before
executing the tile, and Store(t), the data to be stored to the DDR just after executing the tile. Let
In(t) be the data read in the tile t (before being possibly rewritten) and Out(t) be the data written
in t. Here, we assume the sets In(t) and Out(t) to be exact. The approximations are studied later.

Definition 1 (Valid Load) The function t 7→ Load(t) is valid if and only if (iff) the following
conditions hold for any tile T .

(i) ∪t≤T {In(t) \Out(t′ < t)} ⊆ Load(t ≤ T ).

(ii) Out(t < T ) ∩ Load(T ) = ∅.
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TT−1T−2

In In InOut Out Out

LD

LD
LD

Figure 5.5: Valid load formalization for a two dimensional rectangular tiling example.

For a two dimensional rectangular tiling the formalization can be expressed as shown in Fig-
ure 5.5. The notation Load(t < T ) stands for ∪t<TLoad(t) (same for the other expressions).
Condition (i) means that all the data needed by the tile T , i.e., those input to the tile T but not
produced by a previous tile, are loaded just before this tile or earlier. Condition (ii) means that
there is no overwriting of a data already alive and modified in the buffer. This arises when a data
is written in a previous tile before being read in the current tile. Without this condition, some
data would possibly be loaded from the DDR and overwrite the existing value, which would be
incorrect.

Definition 2 (Valid Store) The function t 7→ Store(t) is valid iff the following conditions hold:

(i) Out(t ≤ Tmax) = Store(t ≤ Tmax) for Tmax the last tile of the tile band.

(ii) Store(T ) ∩Out(t > T ) = ∅ for any tile T .

For a two dimensional rectangular tiling the formalization can be expressed as shown in Fig-
ure 5.6. Conditions (i) and (ii) simply mean that we expect to store exactly the data locally
modified. Condition (ii) means that a data is stored after its last write. This is actually stronger
than what is really needed for defining a validity condition, as a value could be stored several
times. But this assumption will simplify the proofs, without hurting the correctness of the whole
construction. Similarly, we could also define more complex schemes, allowing for example to load
from the DDR a value modified in the tile band. But this would imply to be able to guarantee that
this value was already stored in the DDR and not modified again before the load. This would also
imply a combined definition of the functions Load and Store.

TT−1T−2

In In InOut Out Out

LD

LD
LD

Store

Store

Store

Figure 5.6: Valid store formalization for a two dimensional rectangular tiling example.

127



TT−1T−2

In In InOut Out Out

LD

LDLD

Figure 5.7: Exact load formalization for a two dimensional rectangular tiling example.

Definition 3 (Exact Load) Load(t) is exact iff the following conditions hold:

(i) ∪t≤T {In(t) \Out(t′ < t)} = Load(t ≤ T ) for any tile T .

(ii) Load(T ) ∩ Load(T ′) = ∅ for any tiles T 6= T ′.

For a two dimensional rectangular tiling the formalization can be expressed as shown in Fig-
ure 5.7. In Definition 1, Condition (i) was a simple inclusion in the validity definition, which allows
to define valid solutions that load more data than needed. Now, the equality means that we load
exactly the data needed and only them. The difference with Out(t′ < t) avoids to load the data al-
ready modified before executing the tile T . Condition (ii) means that all Load(T ) must be disjoint,
thus forbids redundant loads, i.e., data loaded several times. Note however that this may increase
the size of the local memory. But, again, this assumption simplifies our general scheme.

Definition 4 (Exact Store) Store(t) is exact iff the following condition hold.

(i) The function t 7→ Store(t) is valid.

(ii) Store(T ) ∩ Store(T ′) = ∅ for any tiles T 6= T ′.

For a two dimensional rectangular tiling the formalization can be expressed as shown in Fig-
ure 5.8. Similarly, the equality in Condition (i) means that we expect to store exactly the data
modified: here, it cannot be an over-approximation otherwise the execution of the tile band would
store an undefined value to the DDR, possibly leading to an incorrect code if one of the extra stores
overwrites a meaningful value. Condition (ii) means that all Store(T ) are disjoint, thus forbids
redundant stores, i.e., a value defined by the tile band is stored only once.

TT−1T−2

In In InOut Out Out

LD

LD
LD

Store

Store

Figure 5.8: Exact store formalization for a two dimensional rectangular tiling example.
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An exact solution

The previous definitions do not explicit the Load and Store operators for a given tile T . The
following theorem expresses a solution, which corresponds to the case where loads are performed
as late as possible and stores as soon as possible. Note that, unlike for the Store operator, an exact
Load operator is completely determined by Load(Tmin), the data loaded for the very first tile Tmin

of the tile band, as Load(T ) = Load(t ≤ T ) \ Load(t < T ), and these two terms are fully defined
by the functions In and Out.

Theorem 1 Let us define the following load and store operators.

Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} .

Store(T ) = Out(T ) \Out(t > T ).

Then, the functions T 7→ Load(T ) and T 7→ Store(T ) are valid and exact.

Intuitively, Load(T ) gets all the data read in the tile T and removes data already read (In(t < T ))
and data already alive (Out(t < T )). The latter contains the data read earlier, and data written
earlier without a previous read, that we actually want to remove. As for Store(T ), it is exactly the
data written for the last time in T . We select the data written in the current tile (Out(T )), which
are not written later (Out(t > T )).

Proof. First, let us show that Load is valid and exact. By definition, Load(t ≤ T ), which is equal
to ∪t≤T {(In(t) \ In(t

′ < t)) \Out(t′ < t)} is a subset of ∪t≤T {In(t) \Out(t′ < t)}. Conversely, let x
be in this latter union and let t0 be the smallest tile index such that x ∈ In(t0) \ Out(t < t0). By
construction, for all t < t0, x /∈ Out(t). This implies x /∈ In(t) for all t < t0, otherwise this would
contradict the minimality of t0. Thus x belongs to Load(t0) and, finally, to Load(t ≤ T ). This proves
Load(t ≤ T ) = ∪t≤T {In(t) \Out(t′ < t)}, which is Condition (i) of Definition 3 (exact Load). As
for Condition (ii) of Definition 3, it holds from the fact that, for T ′ < T , Load(T ) ∩ Load(T ′) is a
subset of (In(T ) \ In(t < T ))∩ Load(T ′), thus a subset of (In(T ) \ In(T ′))∩ Load(T ′) and finally of
(In(T ) \ Load(T ′)) ∩ Load(T ′), which is empty.

Note also that Out(t < T ) ∩ Load(T ) = Out(t < T ) ∩ ((In(T ) \ In(t < T )) \ Out(t < T )) = ∅,
thus Condition (ii) of Definition 1 (valid Load) is satisfied. As this condition is always satisfied for
the first tile Tmin and as the load operator is unique, given Load(Tmin), this proves that an exact
load operator is always valid. There is no need to add Condition (ii) of Definition 1 in Definition 3.

Now, let us prove that Store is valid and exact. It is clear that Store(t ≤ Tmax) = Out(t ≤ Tmax)
and that Store(T ) ∩ Store(T ′) = ∅ given T ′ < T , which proves Condition (ii) of Definition 4
(exact Store) and Condition (i) of Definition 2 (valid Store). It remains to verify Condition (ii) of
Definition 2. This is also clear, as, by definition, Out(t > T ) is subtracted from Store(T ). �

Provided the sets In(t) and Out(t), this gives a method to compute the exact sets of data to
load from and to store to the DDR for every tile. This nicely works whenever the sets In(t) and
Out(t) can be computed. This is not always possible and we usually have two options.

(i) Identify a subset of programs making possible an exact computation. This is the option we
chose in our current implementation. The detail of the algorithm and the implementation
considerations will be given later.

(ii) Deal with approximation. In this case, we need to express the validity conditions relating
the operators Load and Store to the approximated In and Out, and then to exhibit such
operators. We now discuss this second option.
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A conservative approximation

In general, it is not always possible to compute the sets In and Out. We now give a sufficient
condition for the validity of Load and Store dealing with the approximation. We also exhibit a
definition of the operators Load and Store, which we prove to be valid provided that some additional
conditions are met. The key simplifying idea is to keep a scheme in which any dataflow dependence
within the tile band corresponds, after load and store insertions, to a dataflow dependence in the
local memory, i.e., no data is stored to the DDR and then read from it in the same tile band.

In the following, we assume the set In(t) to be over-approximated by the set In(t), i.e., In(t) ⊆
In(t) for each valid tile t, and the set Out(t) to be under- and over-approximated by the sets
Out(t) and Out(t): Out(t) ⊆ Out(t) ⊆ Out(t), for each valid tile t. We want to adapt the validity
conditions given by Definitions 1 and 2. The two following theorems give a sufficient (but not
necessary) condition on the sets In, Out, Out for Load and Store to be valid.

Theorem 2 (Valid approximated Load) The function t 7→ Load(t) is valid if it verifies the
following conditions, for any tile T :

(i) ∪t≤T

{

In(t) \Out(t′ < t)
}

⊆ Load(t ≤ T ).
(ii) Out(t < T ) ∩ Load(T ) = ∅.

TT−1T−2
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Figure 5.9: Valid approximated load formalization for a two dimensional rectangular tiling example.

For a two dimensional rectangular tiling the formalization can be expressed as shown in Fig-
ure 5.9.

Proof. It is sufficient to prove that these conditions imply the correctness conditions given by
Definition 1. Let us first check that Condition (i) of Definition 1 holds. This is clear because
In(T ) \Out(t′ < t) is included in In(t) \Out(t′ < t), thus in Load(t ≤ T ). Similarly, since, for each
tile t, Out(t) ⊆ Out(t), Condition (ii) of Definition 1 is verified. �

As for Definition 1, Condition (i) means that Load contains all the data read by the current tile,
without those already written in previous tiles. The term In(t) can cause useless data to be read,
but the term Out(t′ < t) cannot cause already-written data to be loaded, because of Condition (ii).
This condition filters and removes from Load(t) the data previously written, and possibly more,
depending on the approximation, but the loads are guaranteed to contain the data read, thanks to
the term In(t) in Condition (i). In fine, the approximation can cause loads of useless data, as well
as redundant loads along the tile band, but any data modified in the tile band and read after is read
from the local memory. Of course, the exact conditions of Definition 3 are no longer guaranteed.

The conditions for Store are more tricky as, at first glance, Store does not accept any approx-
imation. Indeed, if Store is over-approximated, extra data may be stored to the DDR, causing
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useful data in the DDR to be crushed. Conversely, if Store is under-approximated, we may forget
to store useful outputs defined by the tile band. Both approximations may cause an incorrect ex-
ecution. Actually, an over-approximation of the Store operator can be correct if the extra data to
be stored are exactly those already present in the DDR. This would not crush any data and would
keep the program semantics. This condition holds when Store(T ) ⊆ Load(t ≤ T ) ∪ Out(t ≤ T )
for each tile T , i.e., any data stored from the local memory to the DDR and not defined by the
computations of the previous tiles (T included) has been previously loaded from the DDR. Then,
a sufficient condition for the Store operator to be an over-approximation can be given as follows.

Theorem 3 (Valid approximated Store) The function t 7→ Store(t) is valid if:

(i) Out(t ≤ Tmax) ⊆ Store(t ≤ Tmax) for the last tile Tmax of the tile band.
(ii) Store(T ) ∩Out(t > T ) = ∅ for any tile T .
(iii) Store(T ) ⊆ In(t ≤ T ) ∪ Out(t ≤ T ) for any tile T , when used with a valid approximated

Load.

TT−1T−2
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Figure 5.10: Valid approximated store formalization for a two dimensional rectangular tiling ex-
ample.

For a two dimensional rectangular tiling the formalization can be expressed as shown in Fig-
ure 5.10.

Proof. The two first conditions show that Store(T ) is an over-approximation that verifies Con-
ditions (i) and (ii) of Definition 2 (valid Store), because of the approximation Out(t) ⊆ Out(t) for
each tile t. Condition (iii) ensures the correctness of Store, as the previous discussion explained, if it
implies Store(T ) ⊆ Load(t ≤ T )∪Out(t ≤ T ) for each tile T . If the function t 7→ Load(t) is a valid
approximated Load, then ∪t≤T

{

In(t) \Out(t′ < t)
}

⊆ Load(t ≤ T ) (Condition (i) of Theorem 2).
Furthermore, ∪t≤T

{

In(t) \Out(t′ < t)
}

∪ Out(t ≤ T ) = ∪t≤T In(t) ∪ Out(t ≤ T ) = In(t ≤ T ) ∪
Out(t ≤ T ). Thus, if Store(T ) ⊆ In(t ≤ T )∪Out(t ≤ T ), then Store(T ) ⊆ In(t ≤ T )∪Out(t ≤ T ),
and finally Store(T ) ⊆ Load(t ≤ T ) ∪Out(t ≤ T ). The Store operator is valid too. �

We now exhibit Load and Store operators verifying these conditions. The worst-case solution
is to load, before the first tile, all data potentially read in the tile band and to store, after the last
tile, all data potentially written in the tile band, in other words: Load(Tmin) = In(t ≤ Tmax) and
Load(t) = ∅ if t 6= Tmin, Store(Tmax) = Out(t ≤ Tmax) and Store(t) = ∅ if t 6= Tmax. According to
Theorems 2 and 3, this scheme is valid if Out(t ≤ Tmax) ⊆ In(t ≤ Tmax)∪Out(t ≤ Tmax). To make
it always valid, we should thus also pre-load all data that cannot be proved to be defined in the
tile band, i.e., Load(Tmin) = In(t ≤ Tmax) ∪

{

Out(t ≤ Tmax) \Out(t ≤ Tmax)
}

.
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More generally, consider the operators Load and Store defined as follows.

Load(T ) = In(T ) \
{

In(t < T ) ∪Out(t < T )
}

Store(T ) = Out(T ) \Out(t > T )

First note that, if the sets Out(T ) are not approximated, i.e., if Out(T ) = Out(T ) = Out(T ) for
any tile T , then there is no problem: the operators Load and Store are both valid (and even exact
with respect to the sets In(T )) with the same proof as in Theorem 1. The difficulty arises only
when the sets Out(T ) are not exact, as we now show.

It is easy to see that Store(t ≤ Tmax) = Out(t ≤ Tmax) and that Store(T )∩Out(t > T ) = ∅ for
any tile T , hence Conditions (i) and (ii) of Theorem 3 are satisfied. The function t 7→ Store(t) is
valid if Condition (iii) is fulfilled, i.e., if Store(T ) ⊆ In(t ≤ T ) ∪ Out(t ≤ T ) holds for any tile T ,
which is equivalent to Out(T ) ⊆ In(t ≤ T ) ∪Out(t ≤ T ) ∪Out(t > T ). This condition can always
be fulfilled by increasing the over-approximation In of In, i.e., with extra pre-loads. Unfortunately,
this is not as simple with the Load operator. Indeed, the over-approximation on Out(t < T ) can
prevent effective input data to be loaded. As is, this definition does not directly comply with the
validity conditions of Theorem 2. We provide additional constraints on In, Out, and Out, which, if
respected, are sufficient to ensure the validity of the operators Load and Store. What is needed is
again to pre-load values that are needed but that cannot be proved to be defined in the tile band.

Theorem 4 The Load and Store operators defined by Load(T ) = In(T )\
{

In(t < T ) ∪Out(t < T )
}

and Store(T ) = Out(T ) \Out(t > T ) are valid if the following constraints hold for any tile T :

(i) Out(T ) ⊆ In(t ≤ T ) ∪Out(t > T ) ∪Out(t ≤ T ).

(ii) In(T ) ∩
{

Out(t < T ) \Out(t < T )
}

⊆ In(t < T ).

Proof. We already proved the validity of Store provided Constraint (i), which can be easily
interpreted: it means that if a data appears to be defined in a tile T , then either it can be proved to
be defined in T or earlier (set Out(t ≤ T )), or it will appear to be defined again later (and will be
stored later, set Out(t > T )), or it has been accessed in T or earlier (thus either loaded or defined
earlier, if Load is valid). So, let us prove now the validity of Load. Condition (ii) of Theorem 2 is
satisfied as Out(t < T ) is subtracted. It remains to consider Condition (i) of Theorem 2.

The proof is similar to the proof of Theorem 1. First, it is immediate to show that the set
Load(t ≤ T ) is a subset of ∪t≤T

{

In(t) \Out(t′ < t)
}

since Out(t′ < t) ⊆ Out(t′ < t). Now, let x
be in this latter union and let t0 be the smallest tile index such that x ∈ In(t0) \ Out(t < t0). By
construction, for all t < t0, x /∈ Out(t). This implies x /∈ In(t) for all t < t0, otherwise this would
contradict the minimality of t0. Thus x belongs to

{

In(t0) \Out(t < t0)
}

\ In(t < t0). Now, if
x /∈ Load(t0) then, by definition of Load(t0), x must belong to Out(t < t0) \ Out(t < t0). We can
now use the last condition of the theorem, which states that x ∈ In(t < t0), a contradiction. Thus
x ∈ Load(t0), which proves that Condition (i) of Theorem 2 is satisfied with an equality. �

This construction could be used to design a conservative analysis that would cope with every
kind of programs, providing that Constraints (i) and (ii) of Theorem 4 are met. How to compute
the sets In, Out, and Out verifying these constraints is beyond the scope of this thesis, and is
left for future work. But, still, one can already noticed that a direct approach consisting in over-

approximating the sets In(T ) into sets In(T ) will work. Indeed, the constraints on sets In(T ) always
give a “lower bound”, but no “upper bound”. For example, a simple solution to solve Constraint (i)
is to add Out(T ) \ Out(T ) to In(T ). Then, Constraint (ii), starting from these new sets In(T ),
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define new lower bounds, by induction, for decreasing values of T . The induction can be avoided

and approximated by defining directly In(T ) = ∪t>T

{

In(t) ∩ (Out(t′ < t) \Out(t′ < t))
}

∪ In(T ).

Note also that any over-approximation of Load(T ) is valid as long as Condition (ii) of Theorem 2
is satisfied. All these theoretical results give opportunities for handling cases where program analysis
cannot be performed exactly or when approximating Load and Store sets allows a better packing
of data to be transferred. Again, this optimization is left for future work. We believe also that
abstract interpretation techniques [46] could be used to compute the sets In, Out, and Out, as done
in [48]. Then, a post-processing is needed to meet Constraints (i) and (ii), as explained above with

the sets In(T ).

5.2.2 An exact solution for computing the Load and Store sets.

We now give an algorithm that implements the exact Load and Store operators specified in the
previous section. We want to compute the functions Load and Store, or equivalently, the expressions
of Load(T ) and Store(T ) for a parametric (symbolic) tile T . These expressions for Load and Store
will be used later to generate the C functions for the Load and Store accelerators.

Our algorithm to specify the function Load does not directly rely on the sets In and Out,
as defined in the previous section, but it is based on the computation of FirstRead, the set of
operations responsible for a first read within the parameterized tile band being considered, i.e., a
read from a memory (array) location that has never been read before in the tile band. We will
see later (in Theorem 5) the link with the exact Load as defined in Theorem 1. If values read in
the tile band are not written earlier in the tile, we can define Load(T ) to be the first reads that
belong to the tile T , i.e., FirstRead∩ T . Actually, FirstRead∩ T is a set of operations, not a set of
data as Load(T ), so we cannot rigorously write Load(T ) = FirstRead∩T . Rather, we should write
Load(T ) = Input(FirstRead ∩ T ) where Input gives the data read by a set of operations. Here, of
course, an operation is defined at the granularity of a memory access, i.e., we only pick the input
that is of interest. FirstRead ∩ T actually contains more information than Load(T ), and will be
helpful during the code generation phase.

Store(T ) is obtained the same way, from LastWrite, the set of operations responsible for a last
write within the tile band. The intersection of LastWrite with a tile T , LastWrite∩T , gives the last
writes on that tile and can be used to define Store(T ). We define Store(T ) = Output(LastWrite∩T ),
where Output gives the data written by a set of operations.

Matrix multiply example (continued). Let us consider the matrix multiply example again.
We write (I, J,K, i, j, k) the iteration vector of the final tiled loop nest. (I, J,K) iterates over the
tiles, while (i, j, k) iterates into the tile specified by (I, J,K). As we tile along the canonical
directions, the tile executed at the iteration (I, J,K) of the tile loops is defined by the set of
iteration vectors such that:

0 ≤ i, j, k ≤ N ∧ 32I ≤ i ≤ 32I + 31 ∧ 32J ≤ j ≤ 32J + 31 ∧ 32K ≤ k ≤ 32K + 31

Here, we used tiles equal to squares of size 32. The tile size can be specified as an input by the user,
but (so far) cannot be parameterized, as this would lead to non-affine constraints. Similarly, the
tile band defined by the tile iteration (I, J) is the set of iteration vectors (I, J,K, i, j, k) verifying:

0 ≤ i, j, k ≤ N ∧ 32I ≤ i ≤ 32I + 31 ∧ 32J ≤ j ≤ 32J + 31
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We actually just removed the last constraints, which will be added later to isolate a tile of the tile
band. We assume I and J to be parameters. Then, the solution will be given in terms of I and J ,
i.e., will be parameterized by the tile band. This feature is essential.

For (i, j, k) in the tile band (I, J) given above, we get the following expressions for FirstRead
and LastWrite. They are coherent with the sets FirstRead and LastWrite given in Figure 5.3.

Array FirstRead() LastWrite()

a(i, j) (S, i, 32J, j) ∅
b(i, j) (S, 32I, j, i) ∅
c(i, j) (S, i, j, 0) (S, i, j,N)

In a more general situation, defining the operator Load this way is not correct. Indeed, as
we explained in the previous section, the first reads of a(~i) that are preceded by a write of a(~i)
should not be loaded, otherwise, this will cause a load to overwrite the value of a(~i). To avoid
this situation, one can define the first read of a(~i) to be the first executed operation among all the
reads of a(~i) and the writes of a(~i). Then, to define Load(T ), it suffices to restrict to the reads, the
writes corresponding to the forbidden case. This way, the operators Load and Store are exact in
the meaning of Definitions 3 and 4 as shown by the following theorem.

Theorem 5 The operators Load and Store are valid and exact if they are defined as follows.

Load(T ) = Input(FirstRead ∩ T )

Store(T ) = Output(LastWrite ∩ T )

Proof. By construction, Load(T ) contains all the first reads (with the definition that takes into
account previous writes) in T , thus all data that are read in T , not read earlier, and not defined
earlier. Thus, Load(T ) is exactly defined as in Theorem 1 by {In(T ) \ In(t < T )} \ Out(t < T ).
Similarly, Store(T ) contains all the last writes in T , which means all the data written in T and not
written later again. In other words, Load(T ) = Out(T ) \Out(t > T ). Theorem 1 then shows that
the sets Load and Store are valid and exact. �

We now describe how to compute the sets FirstRead and LastWrite. For the sake of clarity,
the next subsection explains how to compute FirstRead among reads only, then we explain how to
modify the algorithm to get the first read among reads and writes, and how to filter the reads.

Computing the first reads

For each array c, FirstRead(c) is obtained by extracting the set of operations reading a given
c(~i0), where ~i0 is a parameter. Then, we compute the read whose schedule is minimum. As the kernel
fits into the polyhedral model, this basically boils down to compute the lexicographic minimum
for a union of polytopes. The final result, FirstRead(c), is given as a discussion on the parameters
value, including the array cell ~i0 being considered.

As the kernel is assumed to fit into the polyhedral model, all assignments reading c can be
written:

Sℓ :~i ∈ Dℓ : . . . = . . . c[uℓ(~i)] . . .

where Dℓ is the iteration domain of the statement Sℓ, ~i is an iteration vector, and uℓ is an affine
function. The reads of c(~i0) in Sℓ is the set of operations (Sℓ,~i) that read c(~i0), i.e., uℓ(~i) = ~i0, and
that are actually executed, i.e., (~i ∈ Dℓ). In other words:

Read(c, Sℓ) = {~i ∈ Dℓ | uℓ(~i) = ~i0}
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For convenience, we just put iteration vectors ~i in Read(c, Sℓ) instead of operations (Sℓ,~i). If only
one read of c occurs in Sℓ, as uℓ is affine, Read(c, Sℓ) is a polytope (actually the integer points in a
polytope). Otherwise, in general, the result of Read is (the integer points in) a union of polytopes.

Every statement S is given an affine schedule θS , assigning an execution date to every iteration
vector. This schedule is obtained from the tiling specified by the user, as discussed in Section 5.1.1.
We extend the definition of Read by providing the execution date of ~i, ~t = θSℓ

(~i) together with ~i:

Read(c, Sℓ) = {(~t,~i) | ~t = θSℓ
(~i) ∧ uℓ(~i) = ~i0 ∧~i ∈ Dℓ}

The first instance of Sℓ reading the cell c(~i0) is defined by the iteration vector of Read(c, Sℓ)
whose schedule is minimum. In other words, we need to get the couple (~t,~i) of Read(c, Sℓ)
which minimizes the execution date ~t. This is simply the lexicographic minimum of Read(c, Sℓ):
(~tFirstRead,~iFirstRead) = min≪Read(c, Sℓ). Then, the first instance of Sℓ reading c(~i0) is (Sℓ,~iFirstRead).
As a bonus, we get the execution date of the first read ~tFirstRead.

To compute FirstRead(c), it is sufficient to proceed in the same way for every assignment
reading c, getting as many local first instances, and to compute the global minimum, which is still
a lexicographic minimum. In other words, if S1, . . . , Sn denote the assignments reading c, the
global FirstRead(c) is:

FirstRead(c) = min
≪

(Read(c, S1) ∪ . . . ∪ Read(c, Sn))

When Read(c, S1) ∪ . . . ∪ Read(c, Sn) is a non-convex union of polytopes, the minimum cannot be
computed directly with integer linear programming. It is better to use the equivalent form:

FirstRead(c) = min
≪

(min
≪

Read(c, S1), . . . ,min
≪

Read(c, Sn))

Thus, to get FirstRead(c), we compute the local first reads min≪Read(c, Si), as described above.
Then, we get the lexicographic minimum of these first reads. The inner lexicographic minima apply
on polytopes that depend on parameters such as ~i0 (the array cell whose first read is searched).
As ~i0 is unknown, the result is a discussion on ~i0, giving for such or such domain the corresponding
pair (~tmin,~imin). We actually get a set of clauses:

[

~n ∈ D′
1 : (~tmin1 ,~imin1)

]

∨ . . . ∨
[

~n ∈ D′
p : (~tminp ,~iminp)

]

where ~n is the vector of parameters (including ~i0). The ~tmink and~imink are affine expressions of the
parameters. Standard integer linear programming techniques cannot handle such problems. We
use the technique of parametric integer programming [66], which give the result as a selection tree
on ~n, the QUAST (quasi-affine selection tree).

The outer lexicographic minimum is actually the lexicographic minimum for a set of clauses.
Standard combination techniques [67] are used there. We just need to tag each set of clauses with
the corresponding assignment (Sℓ), so it will be remembered during the combination. Finally, the
result is a set of tagged clauses:

FirstRead(c) =
[

~n ∈ D′
1 : (Sℓ1 ,~imin1)

]

∨ . . . ∨
[

~n ∈ D′
p : (Sℓp ,~iminp)

]

Again, ~n is the vector of parameters, which, in particular, includes ~i0, the array cell whose first
read is searched, and I, J , the parameters defining the current tile band in which the first read is
searched. Also, our method works with any affine schedule, which makes it very general.
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This explains how to compute FirstRead(t) among reads only. Now, a simple modification
allows to compute FirstRead(t) among reads and writes. Each time Sℓ writes the array cell c[vℓ(~i)],
it suffices to complete the set Read(c, Sℓ) with the write to c by means of the constraint vℓ(~i) = ~i0:

Read(c, Sℓ) = {(~t,~i) | ~t = θSℓ
(~i) ∧ uℓ(~i) = ~i0 ∧~i ∈ Dℓ} ∪ {(~t,~i) | ~t = θSℓ

(~i) ∧ vℓ(~i) = ~i0 ∧~i ∈ Dℓ}

This is a union of polyhedra, and the lexicographic minima min≪Read(c, Sℓ) must be computed
separately. Here, we will get two sets of clauses Rmin(k) and Wmin(k). We tag Wmin(k), then we
compute the global minimum with the method described above. Then, it suffices to remove from
the final system of clauses, the tagged clauses coming from a Wmin(k).

Computing the last writes

The method for computing the last writes is exactly the symmetric of the method to compute
the first reads. We use the same notations as in the previous section. We thus let the reader read
the previous section for more details. Let Sℓ be an assignment writing the array c:

Sℓ :~i ∈ Dℓ : c[vℓ(~i)] = ...

The writes of c(~i0) in Sℓ is the set of operations (Sℓ,~i) that write c(~i0), i.e., vℓ(~i) = ~i0, and that are
actually executed, i.e., (~i ∈ Dℓ). In other words:

Write(c, Sℓ) = {~i | vℓ(~i) = ~i0 ∧~i ∈ Dℓ}

This is a polytope for the reasons discussed above. Similarly, we extend the definition of Write(c, Sℓ)
by adding the execution of the iteration vector ~i:

Write(c, Sℓ) = {(~t,~i) | ~t = θSℓ
(~i) ∧ vℓ(~i) = ~i0 ∧~i ∈ Dℓ}

Similarly, the last instance of Sℓ writing the cell c(~i0) is the lexicographic maximummax≪Write(c, Sℓ).
If S1, . . . , Sn denote the assignments writing c, the global LastWrite(c) is:

LastWrite(c) = max
≪

(Write(c, S1) ∪ . . . ∪Write(c, Sn))

It is again better to use the equivalent form:

LastWrite(c) = max
≪

(max
≪

Write(c, S1), . . . ,max
≪

Write(c, Sn))

Thus, to get LastWrite(c), we compute the local last writes min≪Write(c, Si), then we compute
the lexicographic maximum of these last writes. Finally, applying the same techniques as for
FirstRead(c) (and substituting min≪ by max≪), we end up with a set of tagged clauses:

LastWrite(c) =
[

~n ∈ D′
1 : (Sℓ1 ,~imin1)

]

∨ . . . ∨
[

~n ∈ D′
p : (Sℓp ,~iminp)

]

Again, ~n is the vector of parameters, which, in particular, includes ~i0, the array cell whose last
write is searched, and I, J , the parameters defining the current tile band in which the last write is
searched. Also, our method works with any affine schedule, which makes it very general.
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5.3 Local memory management

With our method, the variables are loaded in the local memory just before needed and then
stored back to the DDR at the expiration of their lifetime in the tiled band. Meanwhile, the
computations are done in the local memory, using the temporary images of the variables. This
section presents a method to decide how to store the variables in the local memory. Each variable
must be mapped to the local memory in such a way that (i) two data live at the same time cannot
be mapped to the same local address, and (ii) the local memory size must be as small as possible.

One could organize the local memory by mapping every used memory cell @ to a local ad-
dress σ(@). Rather, we propose a weaker method where each variable is mapped to its own local
variable with a possibly reduced size. In other words, each scalar variable is mapped to a local scalar
variable with the same size and each array variable a is mapped to a local array variable a tmp.
Each original array cell a(~i) is mapped to the local array cell a tmp(σ(~i)), with a mapping σ
verifying the conditions (i) and (ii) mentioned above.

Matrix multiply example (continued). Let us see what happens with the array a in the
matrix multiply example. Communication coalescing informs us that every tile (I, J,K) must load
in a tmp the following region (with Fortran notations) for a complete tile:

a tmp←− Loada(I, J,K) = a[bI : bI + b− 1][bK : bK + b− 1]

where b denotes the tile size (here b = 32). Meanwhile, the double buffering process needs to load
in a tmp the data for the next tile in the band, (I, J,K + 1):

a tmp←− Loada(I, J,K + 1) = a[bI : bI + b− 1][bK + b : bK + 2b− 1]

This means that at the same time, a tmp needs at most b × 2b array cells: b cells in the first
dimension and 2b cells in the second dimension. Now, the issue is to map the array a to the local
array a tmp. This can be done thanks to the mapping:

σ : a[i][k] 7→ a tmp[i mod b][k mod 2b]

The mapping σ can be found thanks to array contraction techniques. Here, it corresponds ex-
actly to two blocks, used in a double-buffering manner. We now present the general principles of an
array contraction technique developed by Darte et al. [55] for the theoretical part, by Alias et al. [23]
for the program analysis part, and which produces such mappings σ.

5.3.1 Array contraction
In many cases, the array index functions are uniform (i.e., they are translations with respect

to the loop indices as in a[i][j-1]), and the program reads and writes consecutive array cells. The
set of live array cells is a window sliding during a tiled program execution, allowing some mem-
ory optimizations [36]. This also makes possible to fold the array thanks to a so-called modular
mapping σ(~i) = A~i mod ~b, where A is an integer matrix and ~b is an integral vector defining a
modulo operation component-wise. The framework presented in [55], called “lattice-based memory
allocation”, can find such a mapping, even for more general cases, given an analysis of live array
cells.

Theoretical framework: critical lattices

For any input program, a conflict relation ⊲⊳ is defined, relating array cells whose lifetime
conflict: a(~i) ⊲⊳ a(~j) if an only if the lifetime intervals of a(~i) and a(~j) are not disjoint. The method
assumes the conflict relation ⊲⊳ to be given, and proceeds into three steps:
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Step a. Conflict polyhedron From the conflict relation ⊲⊳, we derive a conflict polyhedron
DS = {~i−~j | a(~i) ⊲⊳ a(~j)} (DS stands for difference set). The vertices of the conflict polyhedron can
be viewed as vectors linking two extremal conflicting array cells. In a way, the conflict polyhedron
represents the sliding window mentioned above. To find the mapping, we need to bound this sliding
window. This is the purpose of the next step.
Matrix multiply example (continued). The region [bI : bI + b− 1][bK : bK+ b− 1] of array a is used
while the region [bI : bI + b− 1][bK + b : bK + 2b− 1] is loaded. Then, the conflict polyhedron for
array a is DS = [−b+ 1; b− 1]× [−2b+ 1; 2b− 1].

Step b. Critical lattice A mapping σ is valid if two conflicting array cells a(~i) and a(~j) cannot
be mapped to the same location, i.e., σ(~i) = σ(~j) ⇒ ~i = ~j. As σ is linear, it is valid iff ~d ∈ DS,
σ(~d) = 0 implies ~d = 0, i.e., DS ∩ kerσ = {0} where kerσ = {~i | σ(~i) = 0}. The set kerσ is
an integer lattice. Furthermore, for any integer lattice L, a modular mapping σ can be built such
that kerσ = L. Thus, to find a valid mapping σ, it suffices to find an integer lattice L such that
DS ∩ L = {0} (L is called an admissible lattice for DS). The mapping σ is then derived from L.

As mentioned above, DS can be viewed as a live window and L as a kind 2 of bounding box
for DS. Intuitively, the smaller the bounding box is, the smaller the final size of the contracted
array will be. More precisely, the determinant detL of the lattice L is exactly the size of the
contracted array. Thus, we additionally need to minimize detL. In number theory, a lattice L
admissible for DS and with smallest determinant is called a critical lattice for DS.

The authors of [55] present an exhaustive search to find a critical lattice. The method is
expensive ifDS is large, and not always applicable in our context ifDS is parameterized. Hopefully,
fast heuristics are proposed to solve a relaxed version of the problem, in which detL tends to be
reasonably small. Extensions to handle parameterized sets DS are possible.
Matrix multiply example (continued). The integer lattice L generated by the vectors (b, 0) and
(0, 2b): (b, 0)Z+(0, 2b)Z is clearly a critical lattice forDS. Indeed, it is admissible, with determinant
2b2 and, during program execution, 2b2 array cells are simultaneously live. We point out that this
situation is not a general one. It may happen that the best modular mapping leads to a memory
size larger than the maximal number of simultaneously-live array cells.

Step c. Mapping extraction Given a “good” lattice L, the mapping σ can be extracted thanks
to the Smith normal form. The reader is referred to the [55] for more details.
Matrix multiply example (continued). From the lattice L = (b, 0)Z + (0, 2b)Z, we can derive the
modular mapping σ defined by σ(i, j) = (i mod b, j mod 2b). It is such that L = kerσ.

The exhaustive search and the heuristics are implemented in a tool called Clak. Clak takes
as input a polyhedron (the set DS) and produces an admissible lattice for DS, according to the
construction method that is selected.

Practical framework: lifetime analysis for arrays

The theoretical framework formalizes the array contraction problem as finding a “good” integer
lattice for a polyhedron, where the polyhedron summarizes the lifetime information of the array
cells, and the integer lattice represents the array contraction mapping. This section presents a
method due to Alias et al [23] to compute this polyhedron from a static control program.

The method focuses on programs fitting into the polyhedral model, the so-called static control
programs, for which exact analysis can be computed. This lifetime analysis can be parameterized

2. A bounding box does define an admissible lattice, but the converse is not true.
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by the program schedule, which is sequential by default. This feature allows to contract arrays for
parallel programs as well as for programs with subtle fine-grain parallelism as software pipelining.
This is fundamental to be able to handle programs in the double-buffering context.

To make the discussion simpler, any array cell that is read is assumed to be previously written.
If it is not the case, this means that there is an implicit write at the start of the code region being
analyzed, i.e., it is an input data. With this assumption, if an array element a(~i) is read by an
operation Ri, it is live from the last (for the schedule θ) operation that previously wrote it, to Ri.
Then, two array cells a(~i) and a(~j) conflict iff there exist a read Ri of a(~i) and a read Rj of a(~j)
such that the time intervals [θ(ℓi), θ(Ri)] and [θ(ℓj), θ(Rj)] overlap, where ℓi is the last write to a(~i)
before Ri and ℓj is the last write to a(~j) before Rj . In other words,

a(~i) ⊲⊳ a(~j) if and only if ∃Ri, Rj , ℓi, ℓj such that θ(ℓi)≪ θ(Rj) ∧ θ(ℓj)≪ θ(Ri)

The computation of the last writes ℓi and ℓj before each read is possible, but would require an
exact array dataflow analysis, as presented in [67] to be settled. This would involve an heavy and
expensive machinery, which can be avoided with the following conservative approximation. Instead
of the last writes ℓi and ℓj of a(~i) and a(~j), the technique of [23] considers any write Wi of a(~i)
executed before Ri, and any write Wj of a(~j) executed before Rj (see Figure 5.11):

a(~i) ⊲⊳ a(~j)⇒ ∃Wi,Wj , Ri, Rj such that θ(Wi)≪ θ(Rj) ∧ θ(Wj)≪ θ(Ri)

t
t0

ℓi

ℓjWj

Ri

Rj

Wia(i)

a(j)

Figure 5.11: Necessary and sufficient condition for a(i) ⊲⊳ a(j)

This over-approximation has the effect of considering that an array cell is live from its very first
write to its very last read, even when it is written several times and live only on several smaller
“intervals”. For our specific usage, the optimization of the local memory used to store data from
the DDR within a tile band, this means that a local array cell is considered live from the time it is
loaded to its last use in the tile band, even if it is overwritten one or more times in the tile band.

Then, the analysis consists simply in enumerating (with four nested loops) all the candidate
writes Wi and Wj , and all the candidate reads Ri and Rj . For each such combination of reads and
writes, a set P with the following constraints is built, assuming that Wi writes to a(v1(~i1)), Wj

writes to a(v2(~i2)), Ri reads a(u1(~i3)), and Rj reads a(u2(~i4)).
– a(~i) and a(~j) are accessed: ~i = v1(~i1) = u1(~i3), ~j = v2(~i2) = u2(~i4), and ~i1, ~i2, ~i3, and ~i4 are
valid iterations.

– a(~i) and a(~j) conflict: θ(Wi,~i1)≪ θ(Rj ,~i4) and θ(Wj ,~i2)≪ θ(Ri,~i3).
3

– differences ~k (to compute DS): ~k =~i−~j.

3. Adding the constraints θ(Wi,~i1) ≪ θ(Ri,~i3) and θ(Wj ,~i2) ≪ θ(Rj ,~i4) are useless. Even if one of them is not
satisfied, the live ranges still overlap. And both cannot be wrong at the same time if the other two are satisfied.
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Each P built this way is in general a union of polyhedra when the schedule θ is multi-dimensional
and thus the order ≪ lexicographic. It gives rise to a set DS, which is its projection on ~k. After
the enumeration, we get a sequence of DS1, . . . , DSn of local results, included in DS. The convex
hull of their union finally provides an over-approximation for DS.

A tool called Bee has been developed by Christophe Alias based on these principles. It takes
as input a program annotated with pragmas specifying the schedule. Then, Bee analyzes the
program, computes a set DS, calls Clak to get an admissible lattice for DS, then computes the
mapping, and finally outputs the program with the contracted arrays.

5.3.2 Mapping global memory to local memory

As discussed in the introduction of Section 5.3, the mapping σ relating each array cell a(~i)
in the DDR to its image a tmp(σ(~i)) in local memory can be obtained by applying the previous
array contraction technique to a tmp. To do so, we need to derive from the original kernel a
double-bufferized version with the adequate schedules, then to apply the method mentioned above
to contract the local arrays. It is actually sufficient to specify the double-bufferized version as a
system of clauses expressing the loads and stores, together with a schedule. We now describe how
to get these clauses. How to specify the double-buffering execution order with a schedule will be
explained later.

Load For each array a, we compute FirstRead(a) as described in Section 5.2. We get a system
of clauses:

FirstRead(a) =
[

~i ∈ D1 : S1(~i)
]

∨ . . . ∨
[

~i ∈ Dn : Sn(~i)
]

To get the restriction on a tile T , we simply intersect each domain Di with T :

FirstRead(a, t) =
[

~i ∈ (D1 ∩ T ) : S1(~i)
]

∨ . . . ∨
[

~i ∈ (Dn ∩ T ) : Sn(~i)
]

Finally, for further clause manipulations, we rewrite properly each Sk(~i) as a load into a tmp. If
the access to a corresponding to the first read in Sk(~i) is a(uk(~i)), we redefine Sk(~i) as:

Sk(~i) : a tmp(uk(~i)) = a(uk(~i))

Then, we add these clauses to the set L of load clauses. Of course, it remains to specify the
double-buffering schedule for each clause. This will be addressed later.

Compute Again, we write the original kernel as a system of clauses. We specify that the execution
holds on the tile T by intersecting each clause domain with T . Also, as the computations operate
on local arrays, we substitute each array a by its local image a tmp. We add these clauses to the
set C of compute clauses.

Store As for the load clauses, we compute LastWrite(a). We get a system of clauses:

LastWrite(a) =
[

~i ∈ D1 : S1(~i)
]

∨ . . . ∨
[

~i ∈ Dn : Sn(~i)
]

This system is restricted to a tile T with a simple intersection:

LastWrite(a, t) =
[

~i ∈ (D1 ∩ T ) : S1(~i)
]

∨ . . . ∨
[

~i ∈ (Dn ∩ T ) : Sn(~i)
]
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Finally, we rewrite properly each Sk(~i) as a store into the array a. If the last write is referenced as
a(vk(~i)) in Sk(~i), we define Sk(~i) as:

Sk(~i) : a(vk(~i)) = a tmp(vk(~i))

Finally, we add these clauses to the set S of store clauses.
It remains to specify for each clause of L, C, and S the schedule specifying the double-buffering

execution order. As the double-buffering scheme operates on blocks of two tiles, the schedule cannot
be specified directly as an affine function. To overcome this issue, we partition each of the sets of
clauses L, C, and S in two parts:

– A restriction to even tiles of the tile band: L0, C0, and S0. If K is the innermost tile counter
(iterating on the tile band), it suffices to add the constraint K = 2p to each domain of L, C,q
and S, where p is a fresh integer variable.

– A restriction to odd tiles of the tile band: L1, C1, and S1. If K is the innermost tile counter,
it suffices to add the constraint K = 2p+ 1 to each domain of L, C and S, where p is a fresh
integer variable.

Now, it is easy to specify the double buffering with an affine schedule θdb. For example, the
schedule corresponding to the scheme described in Figure 4.43 is given in the following table.

Function Schedule Function Schedule

L0 (K, 0)
C0 (K, 1) L1 (K − 1, 1)
S0 (K, 2) C1 (K − 1, 2)

S1 (K − 1, 3)

It is easy to see that this schedule is affine and specifies the same double-buffering execution order.
This schedule is actually very rough, as each function is assumed to execute its operations in
parallel. Of course, this is not the case, but this is actually sufficient to specify the conflicts among
the local variables, the only important thing for array contraction. A more accurate schedule will
be specified by the code generation step, which is the purpose of the next section. Finally, we
get the mapping functions σ for each local array by applying the array contraction technique we
described before, to the program defined by the set of clauses L0, C0, S0, L1, C1, and S1, and the
schedule θdb. These clauses define the reads and writes to the local arrays.

5.4 Code generation

It remains to generate the final, C2H-compliant, C program implementing the double-bufferized
input kernel version. The technique is illustrated following the scheme of Figures 4.42 and 4.43.

5.4.1 General organization

The following listing shows the organization of the intermediate program that is generated.

1 void Load0() {
2 for(T1 = ...) {
3 . . .

4 for(Tn−1 = ...) {

5 for(Tn = L(T1, . . . , Tn−1);
6 Tn ≤ U(T1, . . . , Tn−1); Tn += 2) {
7 //Synchronize from Store1()
8 //Load(T1, . . . , Tn) + sync. to Load1()
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9 //Synchronize to Compute()
10 }
11 }
12 . . .

13 }
14 }
15
16 void Load1() {
17 for(T1 = ...) {
18 . . .

19 for(Tn−1 = ...) {
20 for(Tn = L(T1, . . . , Tn−1) + 1;
21 Tn ≤ U(T1, . . . , Tn−1) + 1; Tn += 2) {
22 //Synchronize from Load0()
23 if (Tn ≤ U(T1, . . . , Tn))
24 //Load(T1, . . . , Tn) + sync. to Store0()
25 else //Synchronize to Store0()
26 //Synchronize to Compute()
27 }
28 }
29 . . .

30 }
31 }
32
33 void Store0() {
34 for(T1 = ...) {
35 . . .

36 for(Tn−1 = ...) {
37 for(Tn = L(T1, . . . , Tn−1);
38 Tn ≤ U(T1, . . . , Tn−1); Tn += 2) {
39 //Synchronize from Compute()
40 //Synchronize from Load1()
41 //Store(T1, . . . Tn) + sync. to Store1()
42 }
43 }
44 . . .

45 }
46 }
47
48 void Store1() {

49 for(T1 = ...) {
50 . . .

51 for(Tn−1 = ...) {
52 for(Tn = L(T1, . . . , Tn−1) + 1;
53 Tn ≤ U(T1, . . . , Tn−1) + 1; Tn += 2) {
54 //Synchronize from Store0()
55 //Synchronize from Compute()
56 if (Tn ≤ U(T1, . . . , Tn))
57 //Store(T1, . . . Tn) + sync. to Load0()
58 else //Synchronize to Load0()
59 }
60 }
61 . . .

62 }
63 }
64
65 void Compute() {
66 for(T1 = ...) {
67 . . .

68 for(Tn−1 = ...) {
69 c = 0;
70 for(Tn = L(T1, . . . , Tn−1);
71 Tn ≤ U(T1, . . . , Tn−1); Tn++) {
72 if (c mod 2 == 0) //Synchronize from Load0()
73 else //Synchronize from Load1()
74 //Compute(T1, . . . , Tn)
75 if (c mod 2 == 0) //Synchronize to Store0()
76 else //Synchronize to Store1()
77 c++;
78 }
79
80 if (c mod 2 == 1) {
81 //Synchronize from Load1()
82 //Synchronize to Store1()
83 }
84 }
85 . . .

86 }
87 }

We generate an implementation of the double-buffering architecture discussed in Chapter 4. The
modules BUFF0 LD, BUFF1 LD, COMP 0/1, STORE0 and STORE1 (see Figure 4.42, Page 101)
are implemented as separated functions, and will be translated by C2H into separate hardware ac-
celerators. The function Load0 (Line 1) implements BUFF0 LD, the function Load1 (Line 16) im-
plements BUFF1 LD, the function Compute (Line 65) implements COMP0/1, the function Store0
(Line 33) implements STORE0, and the function Store1 (Line 48) implements STORE1.

These functions apply the double-buffering scheme for each tile band, which are processed
sequentially. For each tile band, the function Compute() processes all the tiles so as to save
hardware resources, whereas the functions Load0(), Load1(), Store0(), and Store1() process the
tiles two-by-two, starting from the first tile for Load0() and Store0(), and starting from the second
tile for Load1() and Store1(). Notice that Load0() and Store0() are not meant to process exclusively
even tiles, or exclusively odd tiles. This slightly differs from the assumptions made in Section 5.3,
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but does not change the correctness of the mappings. Each function contains a loop nest iterating
over the tiles. For each tile (T1, . . . , Tn), a piece of code is executed (shown as a blue comment in
the listing), performing the required loads, computations, or stores. We call these pieces of code
kernels, while we call drivers the functions Load0(), Load1(), Compute(), Store0(), and Store1().

The drivers are meant to be run in parallel, and will respect the double-buffering schedule thanks
to synchronization signals, as depicted in Figure 4.42, Page 101, and recalled here in Figure 5.12.
Dotted arrows represent kernel-level synchronizations used to sequentialize the accesses to the
DDR. These synchronizations should be sent as soon as the last request to the DDR within a tile
is done, to avoid the penalty due to the loop FSM structure with C2H, and thus embedded in the
corresponding kernel. Each one is mentioned in the listing in blue with the kernel that contains it
with the mention “+ sync. to . . . ”. The remaining synchronizations, represented with blue arrows
are not embedded in the kernels but outside, to make sure that DDR latencies are respected.

L1

S0

C S1

L0 C

Figure 5.12: Synchronization signals.

The conditions Lines 23 and 56 in Load1() and Store1() capture the case where, in a tile band,
the last tile is processed by Load0() and Store0(). In this case, the synchronization signals still need
to be propagated properly from Load0() to Load1(), then to Store1(), and finally to Load0() again,
which is ready to start the processing of the next tile band. However, the last synchronizations
from Store0() and Store1() should be extracted from the kernels so as to guarantee latencies and
avoid any overlap with the next tile band (this is not depicted in the code).

The driver program depicted in the previous page can be seen as a template, which will be the
same for every input program. Of course, the tricky part is to feed the template with the kernels for
loads, computations, and stores. How to generate these kernels is the purpose of the next section.

5.4.2 Generation of load, compute, and store kernels

Code generation in the polyhedral model has been addressed with success leading to powerful
methods and tools. Among them, ClooG (http//www.cloog.org) implements an improvement of
the code-generation method proposed by Fabien Quilleré et al. [97]. A direct approach would be
to feed ClooG with the system of clauses L, C, and S defined in the previous section, together with
a sequential schedule. This would give a correct, but very inefficient code. Among the causes of
inefficiency, here are the critical ones.

Loop nests. As explained in Chapter 4, C2H generates one FSM per loop. Each time a vari-
able is detected (or assumed) to be modified in the loop and referenced later, C2H adds a
synchronization state which stalls until the variable is written to the DDR or read from the
DDR. This results in what we called the data fetch penalty each time the execution flow goes
out of a loop. This is even worsen by the fact that the algorithms in C2H for dependence
analysis and scheduling do not seem very sophisticated: C2H sometimes generates poor and
unexpected software pipelines, which also causes an unexpected order of memory accesses
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thus an undesired spatial locality. A way to reduce these problems is to write the whole
kernel as a single “linearized” loop executing one instruction per iteration. This way, the
operations (in the polyhedral meaning) will be executed iteration after iteration.

Synchronization. As seen in previous section, synchronizations must be sent to the others
accelerators during the last iteration. This can be easily done with a single loop kernel. With
an imperfect loop nest with conditionals, deciding when (thus where in the code) to send the
signal can be very tricky and can cause a code blow-up.

Spatial data locality of loads and stores. When reading or writing to a different row in
the DDR, an additional cost is paid to change the current row, which we called the row
change penalty. Thus, it is very important to load and store elements as close as possible,
ideally consecutive in the DDR. Thus, one needs to be able to specify in which order the set
of loads and stores are scanned.

Scanning polyhedra without nested for loops: the Boulet-Feautrier method

The solution proposed in Chapter 4 is to write the whole kernel as a single loop executing one
instruction per iteration. We called this transformation loop juggling or loop linearization. It can be
done in the polyhedral model with the Boulet-Feautrier method [37]. The program to be generated
is specified as a system of clauses: ~i ∈ D1 : S1(~i) ∨ . . . ∨~i ∈ Dn : Sn(~i) and a schedule θ. Then, the
Boulet-Feautrier algorithm computes and generates two functions, First() and Next():

First() is the first operation to be executed, according to the specified schedule θ. For each
clause ~i ∈ Dk : Sk(i), an iteration ~i with a minimum schedule time θ(S,~i) is obtained by
computing the lexicographic minimum:

Firstk = min
≪
{(~t,~i) | ~t = θ(~i) ∧~i ∈ Dk}

Then, the first operation is obtained by taking the global minimum First = min≪(∪nk=1Firstk).
This computation is similar to those of the FirstRead and LastWrite functions described in
Section 5.2. The result is a selection tree giving the first operation depending on parameters.

Next() maps an operation (Sℓ,~j) to its immediate successor in the execution order specified
by θ. The computation is similar to First, with the additional constraint that the result must
be executed after (Sℓ,~j). For each clause ~i ∈ Dk : Sk(~i), the first instance of Sk executed
after (Sℓ,~j) is computed thanks to the lexicographic minimum:

Nextk = min
≪
{(~t,~i) | ~t = θ(Sk,~i) ∧~i ∈ Dk ∧ θ(Sℓ,~j)≪ θ(Sk,~i)}

As for First, it remains to compute the global minimum with Next = min≪(∪nk=1Nextk). The
result is a selection tree giving the next operation depending on parameters value. Notice
that the parameters include ~j. When the next operation does not exist, the tree leads to a
leaf with a special operation ⊥.

Finally, the code generated will be:

ω := First();
while(ω 6= ⊥) {

Execute(ω);
ω := Next(ω);

}

where Execute(ω) is a macro in charge of executing the operation ω, typically a single load request.
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Load kernel generation

The load kernel will execute the appropriate loads for a given tile t. Remember that the array
cells must be accessed in the DDR with a good spatial locality. We choose to schedule the loads so
that the arrays are loaded one after the other and, for each array, in the increasing lexicographic
order of the indices, thus as much as possible row by row. Section 5.3 gives the system of clauses L
for a load on a tile T . We show how to build the schedule θgen guaranteeing an optimal data
locality. For each array aℓ and each tile T , we have:

FirstRead(aℓ, T ) =
[

~i ∈ (D1 ∩ T ) : S1(~i)
]

∨ . . . ∨
[

~i ∈ (Dn ∩ T ) : Sn(~i)
]

Also, let us assume that the read of aℓ in Sk(~i) is done with the reference aℓ(uk(~i)). We attach, to
each clause ~i ∈ (Dk ∩ t) : Sk(~i), the schedule

θgen(Sk,~i) = (ℓ, uk(~i))

Since the schedule follows the lexicographic ordering, the first dimension, equal to ℓ, means that
the arrays will be read one after the other. This forbids any interleaving such as a1, then a2,
then a1 again. The second dimension, equal to uk(~i), means that the array cells will be loaded in
the increasing lexicographic order of the indices, guaranteeing an optimal spatial locality. Giving L
together with θgen to the Boulet-Feautrier method gives the desired load kernel. Finally, the
synchronization on the last iteration can be added with a simple post-processing:

ω := First();
while(ω 6= ⊥) {

Execute(ω);
ω := Next(ω);
if (ω == ⊥) {//Last iteration ?

//Send the synchronization signal
}

}

Store kernel generation

We proceed similarly for the stores. Section 5.3 gives the system of clauses S for the stores on
a tile T . For each array aℓ, we have:

LastWrite(aℓ, T ) =
[

~i ∈ (D1 ∩ T ) : S1(~i)
]

∨ . . . ∨
[

~i ∈ (Dn ∩ T ) : Sn(~i)
]

Also, let us assume that the write of aℓ in Sk(~i) is done with the reference aℓ(vk(~i)). We attach to
each clause ~i ∈ (Dk ∩ t) : Sk(~i) the schedule:

θgen(Sk,~i) = (ℓ, vk(~i))

Similarly, this schedule will force to store the arrays one after the other and, for each array, to
store the required cells in the increasing lexicographic order of indices, ensuring an optimal spatial
locality. As well, giving S together with θgen to the Boulet-Feautrier method gives the desired
store kernel. The synchronization required on the last iteration is added by a post-processing, in
the same way as for the load code.
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Compute kernel generation

Section 5.3 gives the system of clauses C for a local computation on a tile T . It suffices to feed
the Boulet-Feautrier method with the clauses of C together with a sequential schedule to get the
desired compute kernel.

5.5 Experimental results

Our method has been fully implemented by Christophe Alias in a tool called Chuba. Chuba

uses the state-of-the-art polyhedral libraries PIP [66] and Polylib [10] via the polyhedral compiler
infrastructure PoCo 4 developed by Christophe Alias. The array contraction is done thanks to the
toolsBee for the array lifetime analysis part andClak for the admissible lattices computations [23].
The tool Chuba itself represents more than 1800 lines of C++ code. The reduced size of Chuba

is mainly due to the high-level abstractions provided by PoCo.

Chuba takes as input the C source code of the kernel to optimize and generates a C source code,
which fully implements a C2H-compliant double-bufferized optimization. The input parameters, as
the loop tiling, are specified with pragmas in the source code. Figure 5.13 shows the input program
for the product of polynomials. The part of the code to be optimized is bounded with the pragmas
begin scop and end scop, at Lines 11 and 21. Then, the tiling is specified with the pragma
schedule, Line 18. The tiles are assumed to be square, and the tile size is specified with the
pragma tile size, Line 14. This specifies the tiling hyperplanes depicted in Figure 5.2, Page 123.
Finally, the pragma depth, at Line 13, gives the depth of the tile loop which will enumerate the
tiles inside a tile band. It is possible to specify a depth less or equal to the depth of the loop nest.

We have run Chuba on the kernels DMA and vector sum discussed in chapter 4. We give the
synthesis results obtained from the automatically-transformed version. For the sake of comparison,
we recall the synthesis results obtained from the manual-transformed version presented in chapter
4.

Figures 5.14 and 5.15 presents the speed-ups obtained for the DMA kernel. The speed-ups of
the manually-transformed kernel are depicted with a dotted line. The automatically-transformed
version is slightly less efficient than the manual one because of slightly larger synchronization-
to-transfer latencies present in the automatically-transformed version. These latencies could be
removed by code transformation techniques. However, starting at a tile size of 1K, the differences
become very small when compared to the execution time and could be neglected.

Figures 5.16 and 5.17 presents the speed-ups for the vector sum kernel. Again, the speed-up for
the automatically-transformed version is slightly smaller than for the manual implementation but,
from a block size of 1K, the difference is very small and can be neglected.

Figure 5.18 presents the synthesis results for the DMA and vector sum kernels. The table
recalls the synthesis results obtained in the previous chapter for the direct implementation and
manually-transformed versions with maximum tile size of 1K. Also, we present in the table the
manually-transformed code and the automatically-transformed version with a tile size of 8K. The
automatic version uses slightly more ALUTs and registers than the manually-transformed version
mostly due to the fact that the automatically-transformed version has two separate FIFOs used for
synchronization between BUFF0 LD and BUFF1 LD to COMP01. The automatically-generated version
uses also more multipliers to perform tile address calculations. These multipliers could be normally

4. A release and a research report will be available soon.
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1 int N;
2
3 int main(void)
4 {
5 //Declarations and Initializations
6 // [...]
7
8 for(i=0; i<=2∗N; i++)
9 c[ i ] = 0;

10
11 #pragma begin scop
12
13 #pragma depth[2]
14 #pragma tile size[32]
15
16 for(i=0; i<=N; i++)
17 for(j=0; j<=N; j++)
18 #pragma schedule[i+j][i]
19 c[ i+j] = c[i+j] + a[i ]∗b[j ];
20
21 #pragma end scop
22
23 return 0;
24 }

Figure 5.13: Product of polynomials: input program for Chuba

removed by standard strength reduction techniques. Also, the maximum frequency is slightly-slower
for the automatically-transformed code. This could be due to more complex code and fewer memory
modules due to the use of double-port memories available in the FPGA. The use of double-port
memories induces additional synthesis constraints.

5.6 Conclusion

In this chapter, we have proposed a fully-automatic method to optimize a kernel written in
C for C2H, the C-to-VHDL compiler of Altera. The result is set of C functions implementing the
double-buffering scheme, which will be translated to separate hardware accelerators by C2H. The
double buffering is driven thanks to a loop tiling specified by the user. Then, original techniques are
used to analyze, optimize, and generate the final code. The method has been fully implemented,
and the first experimental results show the method to be effective and give promising results.

There is room for many improvements. Our prototype is a direct implementation of our method,
with no attempt for optimization. For the analysis part (Step 1, communication coalescing, and
Step 2, local memory management), this only impacts the analysis time without causing any per-
formance degradation on the target program. However, this is more problematic for the code
generation part. The Boulet-Feautrier method involves selection trees and combination thereof.
A direct implementation of the combination leads rapidly to a code blow-up. Techniques exist to
combine properly selection trees and to avoid this situation. We plan to add them to our tool. It
may also be interesting to try to build the sets Load(T ) and Store(T ), not by computing first reads
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Figure 5.14: Manually- and automatically-transformed code vs. original DMA experimental results

Block size 2 4 8 16 32 64 128

Blocked manual 5481760 2943940 1709070 1059120 738340 551320 480610

Speed-up manual 0.45 0.85 1.46 2.36 3.38 4.53 5.19

Blocked automatic 5769350 3088260 1795440 1105950 756980 592930 505780

Speed-up automatic 0.43 0.80 1.39 2.25 3.29 4.20 4.93

Block size 256 512 1024 2048 4096 8192

Blocked manual 444930 427740 419410 416730 415570 415110

Speed-up manual 5.61 5.84 5.95 5.99 6.00 6.01

Blocked automatic 462770 438980 427770 421390 418730 416960

Speed-up automatic 5.39 5.68 5.83 5.92 5.96 5.98

Figure 5.15: Manually- and automatically-transformed code vs. original DMA (Table in ns)
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Figure 5.16: Manually- and automatically-transformed code vs. original vector sum results
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Block size 2 4 8 16 32 64 128

Blocked manual 5412340 3067580 1924200 1262690 829860 704490 645900

Speed-up manual 0.71 1.25 1.99 3.03 4.61 5.43 5.93

Blocked automatic 6005080 3639320 2217910 1402770 991750 790600 689590

Speed-up automatic 0.63 1.05 1.72 2.72 3.86 4.84 5.55

Block size 256 512 1024 2048 4096 8192

Blocked manual 612160 596620 588960 586580 585680 584990

Speed-up manual 6.25 6.48 6.50 6.53 6.54 6.54

Blocked automatic 639120 612440 599550 592910 589940 587830

Speed-up automatic 5.99 6.25 6.38 6.45 6.48 6.51

Figure 5.17: Manually- and automatically-transformed code vs. original vector sum (Table in ns)

Kernel Speed-up ALUT Dedicated Total
registers registers

System alone 4406 3474 3606

DMA direct implementation 1 4598 3612 3744

DMA transformed manually (1K tile) 6.01 9665 10244 10376

DMA transformed manually (8K tile) 6.01 9853 10517 10649

DMA automatic (8K tile) 5.99 11052 12133 12265

Vector sum direct implementation 1 5333 4607 4739

Vector sum transformed manually (1K tile) 6.54 10345 10346 11478

Vector sum transformed manually (8K tile) 6.54 10881 11361 11493

Vector sum automatic (8K tile) 6.51 11632 13127 13259

Kernel Total block DSP block Max Freq.
memory bits 9-bit elements (MHz)

System alone 66908 8 205.85

DMA direct implementation 66908 8 200.52

DMA transformed manually (1k tile) 203100 8 167.25

DMA transformed manually (8k tile) 1120604 8 162.55

DMA automatic (8k tile) 1120348 48 167.87

Vector sum direct implementation 68956 8 189.04

Vector sum transformed manually (1k tile) 269148 8 175.93

Vector sum transformed manually (8k tile) 1645404 8 164

Vector sum automatic (8k tile) 1644892 48 159.8

Figure 5.18: Synthesis results of DMA and vector sum examples using direct, manual, and auto-
matic transformation techniques for 1k and 8k maximum tile size
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and last writes, but through the computation of the sets In(T ) and Out(T ), or approximations,
as suggested in Section 5.2.1. This may lead to faster algorithms and also to sets which are less
complex to scan. This has still to be explored.

The parts to be optimized and the loop tiling must be specified by the user. It could be worth
to detect automatically the hot spots in the program with profiling techniques and to decide with
appropriate criteria which of them deserve to be optimized. Also, the loop tiling could possibly be
found automatically. As discussed in Section 5.2, a good solution is formed by tiling hyperplanes
that pushes the data flow and input dependences in the innermost loops. Existing approaches can
find such a loop tiling [35] and could be connected to our tool. So far, the choice of the tile size is
left to the user. Instead, it would be better to let the user specify the maximum size for the local
memory, and to let the tool find automatically the corresponding tile size. As well, the tiles are
assumed to have the same size along each dimension. This is not always the best solution and the
relevant sizes should be found automatically.

Finally, the algorithms we presented are fundamentally restricted to static control programs.
For example, how to write a loop tiling for a program with while loops is still an open question.
The same is true for programs with non-affine array references. Section 5.2 shows that Step 1
(communication coalescing) could work for general programs providing approximations for the sets
In and Out. We believe that such approximations could be found with abstract interpretation
techniques [46]. However, how to extend the array contraction techniques (Step 2) and how to
specify and to generate the final code (Step 3) are still open questions. All these questions can be
interesting to solve, not only for the particular context of optimizing DDR accesses for hardware
accelerators automatically generated by C2H, but also each time tiling needs to be used to deport
a kernel on an accelerator with a smaller local memory, as it is the case for GPGPUs [76, 30].
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Chapter 6

Conclusion

In the recent years, an exponential increase in performance demands was observed on the IC
market. IC manufacturers have to design very complex circuits in a very small amount of time
due to time-to-market constraints. Traditional low-level design methods cannot always guarantee
that these constraints can be reached. In order to meet these constraints, new HLS methods
were proposed. HLS increases the abstraction level of the design specification and thus decreases
the design effort. Unfortunately, higher abstraction level implies a huge design space that needs
to be explored. Operation scheduling including parallelism handling, interconnection generation,
interface design, data transfer and reuse etc., are supposed to be handled now by the tool rather than
the designer. Recent advanced developments in HLS focused mostly on the first two problematics
using automatic or semi-automatic methods. The interface design and data availability problem in
HLS are still in their infancy and, most of the time, left to the designer.

In this thesis, after a quick introduction (Chapter 1) and an overview of HLS (Chapter 2), we
presented, in the next three chapters, several attempts and approaches for integrating an HLS-
generated hardware accelerator into a system with performance metrics linked to data availability
and external optimal interface transfer in mind. The performance of most multimedia applications
is indeed limited by the data availability. By optimizing the data availability, one could increase
the performances of these applications.

In Chapter 3, we studied a system where the cache memory of a GPP can be reused by hardware
accelerators. The first part of the chapter presented a study done with the HLS tool MMAlpha on
the complex matrix-matrix multiplication application. Instead of connecting directly the generated
IP using a template interface, we manually built, using the application data access information, a
glue logic implementing the interface connection to a GPP and a local memory architecture that
promoted data reuse. The local memory architecture controller implemented techniques related to
blocking, double buffering, and temporal storage. We demonstrated, on this matrix-matrix multiply
example, the difficulty of manually generating such a glue logic and the performance loss due to
poor communication in a complete system.

In the second part of Chapter 3, to avoid tedious manual implementations of the glue logic
needed around a generated hardware accelerator, we transformed the input code of the HLS tool
so as to improve data transfer and availability. Transforming the code by hand is not an easy task.
Using languages such as C, modern HLS tools can synthesize from a higher level of abstraction
than with traditional hardware-design methodologies. When using such a language, one can easily
apply powerful high-level code transformations to improve performances as opposed to low-level
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descriptions where it is just impossible to apply them. A possibility is to implement all the required
transformations in the HLS tool itself, but because of the IR complexity, it can be very difficult.
Also, most of the time, it is even impossible to do so since the HLS tools are provided in binary
format. As we demonstrated, a solution is to use a code-preprocessing tool before synthesis. By
doing so, the tool can be adapted and reused for different HLS tools, eliminating the re-engineering
cost and perpetuating the preprocessing tool. The preprocessing tool will perform the not-so-trivial
adaptation together with high-performance code transformations on the algorithmic specification
to match the restrictions of the HLS tool with performance metrics in mind. In this context, we
presented a semi-automatic source-to-source transformation methodology based on the WRaP-IT
polyhedral loop transformation tool. Since it is a source-to-source tool, it can be used for any HLS
tool that accepts a specification written in C. In our study, we used the HLS tool Spark, and we
worked on optimizing the memory communication and data reuse. As Spark does not generate
local memories, we used the cache of a GPP for local storage. Our study demonstrates that HLS
tools can be coupled with a source-to-source preprocessing step to obtain better synthesis results.
We believe that a user-friendly tool for such transformations, which would be specialized to HLS
both in terms of functionalities and code generation, would be a must for the users of HLS tools.
The tool Gecos (developed, among others, by Steven Derrien) has such objectives.

The performance improvements in Chapter 3 were obtained mostly due to data reuse, either by
designing a local memory architecture or by reusing the processor cache memory system. Designing
such a memory architecture by hand (as for MMAlpha) is not easy and, most importantly, it is not
flexible, i.e., it requires a significant designer rethinking if the input specification changes during
advanced design stages. More generally, as our study with Spark also shows, it is mandatory that
the HLS tools provide mechanisms to interface, within the complete system and without degrading
performances, the hardware accelerators they generate. We believe that this is a sine qua non
condition for HLS tools to be usable in a hardware design. In the rest of the thesis, we proposed
to go one step further and to use the HLS tools themselves, in a form of “meta-compilation”, to
synthesize, together with the computational IP, a memory architecture attached to it. We used, in
our study, the C2H HLS tool from Altera. We analyzed the case where hardware accelerators are
connected directly to a DDR memory. Our study was divided into two parts: Chapter 4 was devoted
to the design, by hand, of an optimization scheme, while Chapter 5 presented its automation.

More precisely, in Chapter 4, we analyzed the use of various code transformation techniques for
HLS, in particular those that can be used to optimize data transfer between the accelerator and
the memory, and to promote data reuse. We showed that direct techniques do not suffice to obtain
acceptable results. We proposed a technique that consists of generating software-pipelined commu-
nicating accelerators using a globally asynchronous locally synchronous (GALS) methodology. One
accelerator is performing the actual computations and the other accelerators, using techniques such
as double buffering but not only, are responsible for data transfer and memory reuse in the gener-
ated memory architecture. The process synchronization of processes are performed at a block level,
thanks to loop tiling. In this type of design, the computations can be hidden by communications
when communications are longer. Also, if computations require more time than communications,
a stall in a communication is damped without stalling the computations, in a true LIS design.

The last chapter (Chapter 5) showed how this scheme can be automated. We proposed a
method which takes as input a naive version of the kernel to be optimized, written in C, and
which derives automatically a set of C functions corresponding to the pipelined communicating
hardware accelerators specified in Chapter 4. The double-buffering (more precisely the overlap
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of communications and computations) relies on a loop tiling specified by the user by means of
pragmas in the input C program, and on sophisticated code analysis and data reuse techniques.
New techniques have been defined to analyze, optimize, and generate the final C code optimized
for C2H. The method has been fully implemented in a tool called Chuba and the first experiments
give promising results, with communication patterns to the DDR and performances similar to the
solutions previously designed by hand in Chapter 4.

So far, Chuba is a prototype, which incorporates our method without any attempts for opti-
mization. There is still work to improve the back-end code generation part, such as simplifying code
expressions, removing redundancy, specializing the code to cheap hardware structures, etc. Also,
the algorithms we implemented are inherently limited to static control kernels with affine array
references. It could be worth to extend our technique to programs with while loops and non-affine
arrays references. A first step in this direction is already given in Chapter 5, which explains how
to deal with approximations. Techniques based on abstract interpretation such as [48] could also
be helpful. Finally, in our current implementation, the parts to be optimized must be specified by
the user with pragmas, together with the loop tiling schedule and the tile size. It may possible
to derive these pragmas from more hardware user-friendly high-level hardware directives such as
the maximum local memory available, the type and organization of the memory, etc. But, for the
moment, it is more reasonable to rely on the user expertise, in a semi-automatic design. Many
other high-level hardware directives can be imagined to specify a maximum number of resources
such as memory modules or logic elements that the accelerator performing the computation could
use. More generally, we believe that designing a language based on C and such compilation direc-
tives could be of interest in the context of HLS as it was done with HPF and distributed-memory
processors. Similarly, designing advanced data partitioning and parallelization techniques in order
to improve the computation and communication performances is important. Indeed, in this the-
sis, we only optimized one sequential process communicating to one DDR memory. An important
extension would be to be able to derive, from a C-level description with compilation directives,
a set of computing accelerators, communicating with external memory or with other accelerators
through buffers to be optimized, both in terms of size and structure.

We point out that the techniques presented in this thesis for DDR optimizations can be used
also for optimizing data transfers over burst-based buses such as PLB or packet-based ones such as
HyperTransport from AMD (XtremeData platform) or QuickPath Interconnect from Intel, and
even over fast high-performance optical inter-IC network communications. In such communication
systems, grouped and sometimes successive transfers are imperative for maximizing data through-
put. Further research is required to analyze the impact of these code transformations in a more
complex SOC design. As mentioned in the conclusion of Chapter 5, we also found recently some
similarities with analysis and optimizations required for GPGPUs.

We also think that all the methods we developed can be used in a context of a more general SOC
design. Usually, in a SOC system, multiple hardware accelerators are synthesized independently
using various HLS tools or just designed manually. In most cases, these hardware accelerators make
use of temporary storage memory elements. In such a system, the accelerators are not necessarily
active at the same time. Thus, memory resources of idle accelerators are wasted but could be
reused. We are currently considering how to share memory resources in such a system. We propose
to design and implement a hardware memory management unit (HMMU). This HMMU represents
a hardware module that will integrate the data transfer techniques presented in Chapters 4 and 5
and could serve multiple computation accelerators, instead of just one as presented in this thesis.
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Each accelerator will have a wrapper-encapsulating interface to the outside world that will manage
all the required memory connections. When an accelerator is launched, the wrapper sends a tem-
porary resource request token containing the required memory size and the number of requested
memory modules to the HMMU. The memory unit will allocate the request in its bitmap-based
data structure, if possible, and will send the response to the wrapper that will use it to make
a proper connection of the accelerator to the allocated memory modules. We also intend to use
this technique to perform dynamic memory allocation in hardware (dynamic allocation in local
memories). Usually, in a complex SOC system, there is a very limited number of external memory
modules such as a DDR. When an accelerator requires to access some data from the external DDR
memory, the wrapper will send this request to the HMMU and will remap the accesses to a local
storage where the HMMU will fetch or store the required data. Using the techniques presented
above, the SOC should use less local memory resources and should have better performances in
external memory accesses.

To summarize, we believe that our study contributes to push high-level transformations, in
particular loop transformations that were primarily developed in the context of high-performance
computing, to the context of HLS. We believe that, to make HLS tools usable, the designer should
not have to take care of low-level details linked to the interface of the hardware accelerator in
the complete system. The HLS tool should provide mechanisms to optimize this interface (and,
in particular, it should provide mechanisms to guarantee memory coherency), it should provide a
companion tool to perform source-to-source transformations, and it should be based on a language
with directives where the designer can drive the tool to the right communication, computation, and
memory optimizations. Our contributions go in these directions.
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[96] Sébastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-André Silber, and
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Chapter 7

Appendix

7.1 MMAlpha

7.1.1 Reference code XUP

The code presented below represents the code used for communication between the PowerPC
processor and the interface of the accelerator.
/∗

2 ∗ This source file contains C code of an example HW/SW interface for the
∗ Xilinx XUP board.

4 ∗
∗ Redistributions of any form whatsoever must retain and/or include the

6 ∗ following acknowledgment, notices and disclaimer:
∗

8 ∗ This product includes software developed by Carnegie Mellon University.
∗

10 ∗ Copyright (c) 2006 by J. C. Hoe, Carnegie Mellon University
∗

12 ∗ You may not use the name ”Carnegie Mellon University” or derivations
∗ thereof to endorse or promote products derived from this software.

14 ∗
∗ If you modify the software you must place a notice on or within any

16 ∗ modified version provided or made available to any third party stating
∗ that you have modified the software. The notice shall include at least

18 ∗ your name, address, phone number, email address and the date and purpose
∗ of the modification.

20 ∗
∗ THE SOFTWARE IS PROVIDED ”AS−IS” WITHOUT ANY WARRANTY OF ANY KIND, EITHER

22 ∗ EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
∗ THAT THE SOFTWARE WILL CONFORM TO SPECIFICATIONS OR BE ERROR−FREE AND ANY

24 ∗ IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
∗ TITLE, OR NON−INFRINGEMENT. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY

26 ∗ BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO DIRECT, INDIRECT,
∗ SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN

28 ∗ ANY WAY CONNECTED WITH THIS SOFTWARE (WHETHER OR NOT BASED UPON WARRANTY,
∗ CONTRACT, TORT OR OTHERWISE).

30 ∗/

32
#include <stdio.h>

34 #include <assert.h>
#include <xparameters.h>

36 #include <xio.h>

38 #define OCM0BASE ((int∗)XPAR DOCM CNTLR BASEADDR)
#define OCMMEMSIZE (4∗1024) // in bytes

40
volatile int ∗OcmInBase = OCM0BASE + (0∗OCMMEMSIZE/sizeof(int));

42 volatile int ∗OcmOutBase = OCM0BASE + (1∗OCMMEMSIZE/sizeof(int));
volatile int ∗OcmCntrlBase = OCM0BASE + (2∗OCMMEMSIZE/sizeof(int));

44 int ∗OcmMemBase = OCM0BASE + (3∗OCMMEMSIZE/sizeof(int));

46 #define IBUFHD (0)
#define IBUFTL (8)

48 #define OBUFHD (16)
#define OBUFTL (24)

50 #define SFTRST (56)

52 #define SYNC {asm volatile ("sync"::);}
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54 // cacheblock aligned buffer
int buff1[4∗OCMMEMSIZE/sizeof(int)] attribute ((aligned(32)));

56 int buff2[4∗OCMMEMSIZE/sizeof(int)] attribute ((aligned(32)));

58 int ibufhead=0;
int ibuftail =(−1%(OCMMEMSIZE/sizeof(int)));

60 int obufhead=0;
int obuftail =0;

62
void init() {

64 static int cache=0;
printf (" --- reset HW --- \n") ;

66
// enable caching, assume 512MByte

68 if (!cache) {
XCache EnableICache(0xcc000000);

70 XCache EnableDCache(0xa0000000);
cache=1;

72 }

74 SYNC;
OcmCntrlBase[SFTRST]=−1;

76 SYNC;
OcmCntrlBase[IBUFHD]=0;

78 OcmCntrlBase[OBUFTL]=0;

80 ibufhead=0;
ibuftail =(−1%(OCMMEMSIZE/sizeof(int)));

82 obufhead=0;
obuftail =0;

84
SYNC

86 OcmCntrlBase[SFTRST]=0;
SYNC;

88 }

90 void dumpState(char ∗str) {
unsigned int temp;

92 printf ("---%s---\n" , str) ;
// read hardware registers

94 printf ("ibufhd=%x --- " , OcmCntrlBase[IBUFHD]); // head pointer (next to pop) for SW−>HW
printf ("ibuftl=%x --- " , OcmCntrlBase[IBUFTL]); // tail pointer (next to push) for SW−>HW

96 printf ("obufhd=%x --- " , OcmCntrlBase[OBUFHD]); // head pointer (next to pop) for HW−>SW
printf ("obuftl=%x\n" , OcmCntrlBase[OBUFTL]); // tail pointer (next to push) for HW−>SW

98 printf ("sftrst=%x\n" , OcmCntrlBase[SFTRST]);

100 // read software ”cached” copies
printf ("softptr ibufhd=%x --- " , ibufhead);

102 printf ("softptr ibuftl=%x --- " , ibuftail ) ;
printf ("softptr obufhd=%x --- " , obufhead);

104 printf ("softptr obuftl=%x\n" , obuftail ) ;
}

106
/∗ Pushing from buffer ”num” integer words to the OCM HW.

108 ∗ This is a blocking call .
∗/

110 void push(int ∗buffer, int num) {
int index=0;

112 int released=0;
int numx=num;

114
while(num−−) {

116 while ( ibufhead== ibuftail) {
if (! released) {

118 SYNC;
OcmCntrlBase[IBUFHD]= ibufhead;

120 released=1;
}

122 SYNC;
ibuftail =OcmCntrlBase[IBUFTL];

124 ibuftail −−;
ibuftail %=(OCMMEMSIZE/sizeof(int));

126 }
released=0;

128
OcmInBase[ ibufhead]=buffer[index++];

130 ibufhead++;
ibufhead%=(OCMMEMSIZE/sizeof(int));

132 }
SYNC;

134 OcmCntrlBase[IBUFHD]= ibufhead;
}

136
/∗ Receiving into buffer ”num” integer words from the OCM HW.

138 ∗ This is a blocking call .
∗/

140 void pop(int ∗buffer, int num) {



int index=0;
142 int released=0;

144 while(num−−) {
while ( obufhead== obuftail) {

146 if (! released) {
SYNC;

148 OcmCntrlBase[OBUFTL]= obuftail;
released=1;

150 }
SYNC;

152 obufhead=OcmCntrlBase[OBUFHD];
}

154 released=0;

156 buffer [index++]=OcmOutBase[ obuftail];
obuftail ++;

158 obuftail %=(OCMMEMSIZE/sizeof(int));
}

160 SYNC;
OcmCntrlBase[OBUFTL]= obuftail;

162 }

164 /∗ example code to exercise and check the interface ∗/
void testefifo () {

166 int iter=0, size=0, dataseed=10;

168 printf (" --- test EFIFO --- \n") ;

170 for( iter=0;iter<10000;iter++) {
int idx;

172
// initialize buff1 with data

174 size=(size+1)%2000;
idx=size;

176
while(idx−−) {

178 buff1[idx]=dataseed++;
}

180
// push buff1 and pop buff2 , demo HW is just does a loopback

182 push(buff1,size ) ;
pop(buff2,size ) ;

184
// check returned buff2 against original buff1

186 idx=size;
while(idx−−) {

188 if (!( buff1[idx]==buff2[idx])) {
int k;

190 for(k=−2;k<2;k++) {
printf ("%d: buff1[%x]==buff2[%x]\n" ,idx−k, buff1[idx−k],buff2[idx−k]);

192 }
for(k=−2;k<2;k++) {

194 int where=( ibufhead−size+(idx−k))%(OCMMEMSIZE/sizeof(int));
assert( ibufhead== obuftail);

196 printf ("%d %d %d %d\n" , ibufhead,idx,k, size ) ;
printf ("ocmi[%d]=%x::ocmo[%d]=%x\n" ,

198 where,
OcmInBase[where],

200 where,
OcmOutBase[where]);

202 }
dumpState("Bailing out\n");

204 printf ("size=%d\n" , size ) ;
}

206 assert(buff1[idx]==buff2[idx]);
}

208
if (!( size%100)) printf(".") ;

210 }
putchar(’\n’);

212 }

214 extern int test mmm();

216 int main (void) {
int iter=0;

218
init () ;

220
test mmm(); // test the reference implementation of matrix multiplication

222
while(1) {

224 printf (" --- Iteration %d --- \n" , iter++);
testefifo () ;

226 }

228 return(0);



}

7.1.2 Alphahard code of the matrix-matrix multiplication

We present below the Alphahard representation of the matrix-matrix multiplication obtained
using MMAlpha synthesis.

1 system ControlmatmultModule :{N,NB | NB+1<=N; 2<=NB}
( )

3 returns (CImXctl1PPXInit : {t | t=2; NB+1<=N; 2<=NB} | {t | 3<=t<=N+2; NB+1<=N; 2<=NB} of boolean;
CReXctl1PPXInit : {t | t=2; NB+1<=N; 2<=NB} | {t | 3<=t<=N+2; NB+1<=N; 2<=NB} of boolean);

5 let
CImXctl1PPXInit[t] =

7 case

{ | t=2; NB+1<=N; 2<=NB} : True[];
9 { | 3<=t<=N+2; NB+1<=N; 2<=NB} : False[];

esac;
11 CReXctl1PPXInit[t] =

case

13 { | t=2; NB+1<=N; 2<=NB} : True[];
{ | 3<=t<=N+2; NB+1<=N; 2<=NB} : False[];

15 esac;
tel ;

17
system cellmatmultModule1 :{p1,p2,N,NB | p1=1; 2<=p2<=NB; NB+1<=N}

19 (bImXMirr1 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
bReXMirr1 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

21 AImReg1Xloc : {t | p2−1<=t<=p2+N−2; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
AReReg2Xloc : {t | p2−1<=t<=p2+N−2; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

23 CImXctl1PReg7Xloc : {t | p2<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;
CReXctl1PReg11Xloc : {t | p2<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of boolean)

25 returns (AIm : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
ARe : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

27 BIm : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
BRe : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

29 CImXctl1P : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;
CReXctl1P : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;

31 CRe : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
CIm : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16]);

33 var
CImloc8 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

35 CReloc7 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
CReXctl1Ploc6 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;

37 CImXctl1Ploc5 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;
BReloc4 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

39 BImloc3 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
AReloc2 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

41 AImloc1 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
AImReg1 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

43 AReReg2 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
CImReg5 : {t | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

45 CImXctl1 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;
CImXctl1PReg7 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;

47 CReReg9 : {t | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
CReXctl1 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;

49 CReXctl1PReg11 : {t | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;
opAIm : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

51 opARe : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
opBIm : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

53 opBRe : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
resIm : {t | p2+1<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

55 resIm1 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
resIm1Reg13 : {t | p2+1<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

57 resIm2 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
resIm2Reg14 : {t | p2+1<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

59 resImReg6 : {t | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
resRe : {t | p2+1<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

61 resRe1 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
resRe1Reg15 : {t | p2+1<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

63 resRe2 : {t | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
resRe2Reg16 : {t | p2+1<=t<=p2+N; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

65 resReReg10 : {t | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
TSep1 : {t | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

67 TSep2 : {t | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
let

69 CIm[t] = CImloc8[t];
CRe[t] = CReloc7[t];

71 CReXctl1P[t] = CReXctl1Ploc6[t];
CImXctl1P[t] = CImXctl1Ploc5[t];

73 BRe[t] = BReloc4[t];
BIm[t] = BImloc3[t];

75 ARe[t] = AReloc2[t];
AIm[t] = AImloc1[t];

77 AImReg1[t] = AImReg1Xloc[t−1];



AReReg2[t] = AReReg2Xloc[t−1];
79 CImXctl1PReg7[t] = CImXctl1PReg7Xloc[t−1];

CReXctl1PReg11[t] = CReXctl1PReg11Xloc[t−1];
81 resRe2Reg16[t] = resRe2[t−1];

resRe1Reg15[t] = resRe1[t−1];
83 resIm2Reg14[t] = resIm2[t−1];

resIm1Reg13[t] = resIm1[t−1];
85 resReReg10[t] = resRe[t−1];

CReReg9[t] = CReloc7[t−1];
87 resImReg6[t] = resIm[t−1];

CImReg5[t] = CImloc8[t−1];
89 BImloc3[t] = bImXMirr1[t];

BReloc4[t] = bReXMirr1[t];
91 AImloc1[t] = AImReg1[t];

AReloc2[t] = AReReg2[t];
93 opARe[t] = AReloc2[t];

opAIm[t] = AImloc1[t];
95 opBRe[t] = BReloc4[t];

opBIm[t] = BImloc3[t];
97 use Mult[] (opARe, opBIm) returns (resRe1) ;

use Mult[] (opAIm, opBRe) returns (resRe2) ;
99 resRe[t ] = resRe1Reg15[t] + resRe2Reg16[t];

use Mult[] (opARe, opBRe) returns (resIm1) ;
101 use Mult[] (opAIm, opBIm) returns (resIm2) ;

resIm[t] = resIm1Reg13[t] − resIm2Reg14[t];
103 CReXctl1Ploc6[t] = CReXctl1PReg11[t];

CReXctl1[t] = CReXctl1Ploc6[t];
105 TSep1[t] = CReReg9[t] + resReReg10[t];

CReloc7[t] =
107 case

{ | t=p2+1; p1=1; 2<=p2<=NB; NB+1<=N} : if (CReXctl1[t]) then 0[] else 0[];
109 { | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} : if (CReXctl1[t]) then 0[] else TSep1[t];

esac;
111 CImXctl1Ploc5[t] = CImXctl1PReg7[t];

CImXctl1[t] = CImXctl1Ploc5[t];
113 TSep2[t] = CImReg5[t] + resImReg6[t];

CImloc8[t] =
115 case

{ | t=p2+1; p1=1; 2<=p2<=NB; NB+1<=N} : if (CImXctl1[t]) then 0[] else 0[];
117 { | p2+2<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} : if (CImXctl1[t]) then 0[] else TSep2[t];

esac;
119 tel ;

121 system cellmatmultModule2 :{p1,p2,N,NB | p1=1; p2=1; NB+1<=N; 2<=NB}
(bImXMirr1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

123 bReXMirr1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
aImXMirr1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

125 aReXMirr1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
CImXctl1PPXInitXIn : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

127 CReXctl1PPXInitXIn : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean)
returns (AIm : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

129 ARe : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
BIm : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

131 BRe : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
CImXctl1PP : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

133 CImXctl1P : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CReXctl1PP : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

135 CReXctl1P : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CRe : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

137 CIm : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16]);
var

139 CImloc10 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
CReloc9 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

141 CReXctl1Ploc8 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CReXctl1PPloc7 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

143 CImXctl1Ploc6 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CImXctl1PPloc5 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

145 BReloc4 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
BImloc3 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

147 AReloc2 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
AImloc1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

149 CImReg5 : {t | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
CImXctl1 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

151 CReReg9 : {t | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
CReXctl1 : {t | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

153 opAIm : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
opARe : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

155 opBIm : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
opBRe : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

157 resIm : {t | 2<=t<=N+1; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
resIm1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

159 resIm1Reg13 : {t | 2<=t<=N+1; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
resIm2 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

161 resIm2Reg14 : {t | 2<=t<=N+1; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
resImReg6 : {t | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

163 resRe : {t | 2<=t<=N+1; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
resRe1 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

165 resRe1Reg15 : {t | 2<=t<=N+1; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];



resRe2 : {t | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
167 resRe2Reg16 : {t | 2<=t<=N+1; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

resReReg10 : {t | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
169 TSep1 : {t | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

TSep2 : {t | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
171 let

CIm[t] = CImloc10[t];
173 CRe[t] = CReloc9[t];

CReXctl1P[t] = CReXctl1Ploc8[t];
175 CReXctl1PP[t] = CReXctl1PPloc7[t];

CImXctl1P[t] = CImXctl1Ploc6[t];
177 CImXctl1PP[t] = CImXctl1PPloc5[t];

BRe[t] = BReloc4[t];
179 BIm[t] = BImloc3[t];

ARe[t] = AReloc2[t];
181 AIm[t] = AImloc1[t];

resRe2Reg16[t] = resRe2[t−1];
183 resRe1Reg15[t] = resRe1[t−1];

resIm2Reg14[t] = resIm2[t−1];
185 resIm1Reg13[t] = resIm1[t−1];

resReReg10[t] = resRe[t−1];
187 CReReg9[t] = CReloc9[t−1];

resImReg6[t] = resIm[t−1];
189 CImReg5[t] = CImloc10[t−1];

BImloc3[t] = bImXMirr1[t];
191 BReloc4[t] = bReXMirr1[t];

AImloc1[t] = aImXMirr1[t];
193 AReloc2[t] = aReXMirr1[t];

opARe[t] = AReloc2[t];
195 opAIm[t] = AImloc1[t];

opBRe[t] = BReloc4[t];
197 opBIm[t] = BImloc3[t];

use Mult[] (opARe, opBIm) returns (resRe1) ;
199 use Mult[] (opAIm, opBRe) returns (resRe2) ;

resRe[t ] = resRe1Reg15[t] + resRe2Reg16[t];
201 use Mult[] (opARe, opBRe) returns (resIm1) ;

use Mult[] (opAIm, opBIm) returns (resIm2) ;
203 resIm[t] = resIm1Reg13[t] − resIm2Reg14[t];

CReXctl1PPloc7[t] = CReXctl1PPXInitXIn[t];
205 CReXctl1Ploc8[t] = CReXctl1PPloc7[t];

CReXctl1[t] = CReXctl1Ploc8[t];
207 TSep1[t] = CReReg9[t] + resReReg10[t];

CReloc9[t] =
209 case

{ | t=2; p1=1; p2=1; NB+1<=N; 2<=NB} : if (CReXctl1[t]) then 0[] else 0[];
211 { | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} : if (CReXctl1[t]) then 0[] else TSep1[t];

esac;
213 CImXctl1PPloc5[t] = CImXctl1PPXInitXIn[t];

CImXctl1Ploc6[t] = CImXctl1PPloc5[t];
215 CImXctl1[t] = CImXctl1Ploc6[t];

TSep2[t] = CImReg5[t] + resImReg6[t];
217 CImloc10[t] =

case

219 { | t=2; p1=1; p2=1; NB+1<=N; 2<=NB} : if (CImXctl1[t]) then 0[] else 0[];
{ | 3<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} : if (CImXctl1[t]) then 0[] else TSep2[t];

221 esac;
tel ;

223
system cellmatmultModule3 :{p1,p2,N,NB | 2<=p1<=NB; p2=1; NB+1<=N}

225 (aImXMirr1 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
aReXMirr1 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

227 BImReg3Xloc : {t | p1−1<=t<=p1+N−2; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
BReReg4Xloc : {t | p1−1<=t<=p1+N−2; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

229 CImXctl1PPReg8Xloc : {t | p1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
CReXctl1PPReg12Xloc : {t | p1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of boolean)

231 returns (AIm : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
ARe : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

233 BIm : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
BRe : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

235 CImXctl1PP : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
CImXctl1P : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

237 CReXctl1PP : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
CReXctl1P : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

239 CRe : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
CIm : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16]);

241 var
CImloc10 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

243 CReloc9 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
CReXctl1Ploc8 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

245 CReXctl1PPloc7 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
CImXctl1Ploc6 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

247 CImXctl1PPloc5 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
BReloc4 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

249 BImloc3 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
AReloc2 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

251 AImloc1 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
BImReg3 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

253 BReReg4 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];



CImReg5 : {t | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
255 CImXctl1 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

CImXctl1PPReg8 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
257 CReReg9 : {t | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

CReXctl1 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
259 CReXctl1PPReg12 : {t | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

opAIm : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
261 opARe : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

opBIm : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
263 opBRe : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

resIm : {t | p1+1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
265 resIm1 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

resIm1Reg13 : {t | p1+1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
267 resIm2 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

resIm2Reg14 : {t | p1+1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
269 resImReg6 : {t | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

resRe : {t | p1+1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
271 resRe1 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

resRe1Reg15 : {t | p1+1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
273 resRe2 : {t | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

resRe2Reg16 : {t | p1+1<=t<=p1+N; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
275 resReReg10 : {t | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

TSep1 : {t | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
277 TSep2 : {t | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

let
279 CIm[t] = CImloc10[t];

CRe[t] = CReloc9[t];
281 CReXctl1P[t] = CReXctl1Ploc8[t];

CReXctl1PP[t] = CReXctl1PPloc7[t];
283 CImXctl1P[t] = CImXctl1Ploc6[t];

CImXctl1PP[t] = CImXctl1PPloc5[t];
285 BRe[t] = BReloc4[t];

BIm[t] = BImloc3[t];
287 ARe[t] = AReloc2[t];

AIm[t] = AImloc1[t];
289 BImReg3[t] = BImReg3Xloc[t−1];

BReReg4[t] = BReReg4Xloc[t−1];
291 CImXctl1PPReg8[t] = CImXctl1PPReg8Xloc[t−1];

CReXctl1PPReg12[t] = CReXctl1PPReg12Xloc[t−1];
293 resRe2Reg16[t] = resRe2[t−1];

resRe1Reg15[t] = resRe1[t−1];
295 resIm2Reg14[t] = resIm2[t−1];

resIm1Reg13[t] = resIm1[t−1];
297 resReReg10[t] = resRe[t−1];

CReReg9[t] = CReloc9[t−1];
299 resImReg6[t] = resIm[t−1];

CImReg5[t] = CImloc10[t−1];
301 BImloc3[t] = BImReg3[t];

BReloc4[t] = BReReg4[t];
303 AImloc1[t] = aImXMirr1[t];

AReloc2[t] = aReXMirr1[t];
305 opARe[t] = AReloc2[t];

opAIm[t] = AImloc1[t];
307 opBRe[t] = BReloc4[t];

opBIm[t] = BImloc3[t];
309 use Mult[] (opARe, opBIm) returns (resRe1) ;

use Mult[] (opAIm, opBRe) returns (resRe2) ;
311 resRe[t ] = resRe1Reg15[t] + resRe2Reg16[t];

use Mult[] (opARe, opBRe) returns (resIm1) ;
313 use Mult[] (opAIm, opBIm) returns (resIm2) ;

resIm[t] = resIm1Reg13[t] − resIm2Reg14[t];
315 CReXctl1PPloc7[t] = CReXctl1PPReg12[t];

CReXctl1Ploc8[t] = CReXctl1PPloc7[t];
317 CReXctl1[t] = CReXctl1Ploc8[t];

TSep1[t] = CReReg9[t] + resReReg10[t];
319 CReloc9[t] =

case

321 { | t=p1+1; 2<=p1<=NB; p2=1; NB+1<=N} : if (CReXctl1[t]) then 0[] else 0[];
{ | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} : if (CReXctl1[t]) then 0[] else TSep1[t];

323 esac;
CImXctl1PPloc5[t] = CImXctl1PPReg8[t];

325 CImXctl1Ploc6[t] = CImXctl1PPloc5[t];
CImXctl1[t] = CImXctl1Ploc6[t];

327 TSep2[t] = CImReg5[t] + resImReg6[t];
CImloc10[t] =

329 case

{ | t=p1+1; 2<=p1<=NB; p2=1; NB+1<=N} : if (CImXctl1[t]) then 0[] else 0[];
331 { | p1+2<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} : if (CImXctl1[t]) then 0[] else TSep2[t];

esac;
333 tel ;

335 system cellmatmultModule4 :{p1,p2,N,NB | 2<=p1<=NB; 2<=p2<=NB; NB+1<=N}
(AImReg1Xloc : {t | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

337 AReReg2Xloc : {t | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
BImReg3Xloc : {t | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

339 BReReg4Xloc : {t | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
CImXctl1PReg7Xloc : {t | p1+p2−1<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;

341 CReXctl1PReg11Xloc : {t | p1+p2−1<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean)



returns (AIm : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
343 ARe : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

BIm : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
345 BRe : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

CImXctl1P : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;
347 CReXctl1P : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;

CRe : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
349 CIm : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16]);

var
351 CImloc8 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

CReloc7 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
353 CReXctl1Ploc6 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;

CImXctl1Ploc5 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;
355 BReloc4 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

BImloc3 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
357 AReloc2 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

AImloc1 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
359 AImReg1 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

AReReg2 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
361 BImReg3 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

BReReg4 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
363 CImReg5 : {t | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

CImXctl1 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;
365 CImXctl1PReg7 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;

CReReg9 : {t | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
367 CReXctl1 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;

CReXctl1PReg11 : {t | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;
369 opAIm : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

opARe : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
371 opBIm : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

opBRe : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
373 resIm : {t | p1+p2<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

resIm1 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
375 resIm1Reg13 : {t | p1+p2<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

resIm2 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
377 resIm2Reg14 : {t | p1+p2<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

resImReg6 : {t | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
379 resRe : {t | p1+p2<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

resRe1 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
381 resRe1Reg15 : {t | p1+p2<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

resRe2 : {t | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
383 resRe2Reg16 : {t | p1+p2<=t<=p1+p2+N−1; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

resReReg10 : {t | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
385 TSep1 : {t | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

TSep2 : {t | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
387 let

CIm[t] = CImloc8[t];
389 CRe[t] = CReloc7[t];

CReXctl1P[t] = CReXctl1Ploc6[t];
391 CImXctl1P[t] = CImXctl1Ploc5[t];

BRe[t] = BReloc4[t];
393 BIm[t] = BImloc3[t];

ARe[t] = AReloc2[t];
395 AIm[t] = AImloc1[t];

AImReg1[t] = AImReg1Xloc[t−1];
397 AReReg2[t] = AReReg2Xloc[t−1];

BImReg3[t] = BImReg3Xloc[t−1];
399 BReReg4[t] = BReReg4Xloc[t−1];

CImXctl1PReg7[t] = CImXctl1PReg7Xloc[t−1];
401 CReXctl1PReg11[t] = CReXctl1PReg11Xloc[t−1];

resRe2Reg16[t] = resRe2[t−1];
403 resRe1Reg15[t] = resRe1[t−1];

resIm2Reg14[t] = resIm2[t−1];
405 resIm1Reg13[t] = resIm1[t−1];

resReReg10[t] = resRe[t−1];
407 CReReg9[t] = CReloc7[t−1];

resImReg6[t] = resIm[t−1];
409 CImReg5[t] = CImloc8[t−1];

BImloc3[t] = BImReg3[t];
411 BReloc4[t] = BReReg4[t];

AImloc1[t] = AImReg1[t];
413 AReloc2[t] = AReReg2[t];

opARe[t] = AReloc2[t];
415 opAIm[t] = AImloc1[t];

opBRe[t] = BReloc4[t];
417 opBIm[t] = BImloc3[t];

use Mult[] (opARe, opBIm) returns (resRe1) ;
419 use Mult[] (opAIm, opBRe) returns (resRe2) ;

resRe[t ] = resRe1Reg15[t] + resRe2Reg16[t];
421 use Mult[] (opARe, opBRe) returns (resIm1) ;

use Mult[] (opAIm, opBIm) returns (resIm2) ;
423 resIm[t] = resIm1Reg13[t] − resIm2Reg14[t];

CReXctl1Ploc6[t] = CReXctl1PReg11[t];
425 CReXctl1[t] = CReXctl1Ploc6[t];

TSep1[t] = CReReg9[t] + resReReg10[t];
427 CReloc7[t] =

case

429 { | t=p1+p2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} : if (CReXctl1[t]) then 0[] else 0[];



{ | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} : if (CReXctl1[t]) then 0[] else TSep1[t];
431 esac;

CImXctl1Ploc5[t] = CImXctl1PReg7[t];
433 CImXctl1[t] = CImXctl1Ploc5[t];

TSep2[t] = CImReg5[t] + resImReg6[t];
435 CImloc8[t] =

case

437 { | t=p1+p2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} : if (CImXctl1[t]) then 0[] else 0[];
{ | p1+p2+1<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} : if (CImXctl1[t]) then 0[] else TSep2[t];

439 esac;
tel ;

441
system matmultModule :{N,NB | NB+1<=N; 2<=NB}

443 (aImXMirr1In : {t,p1,p2 | p1<=t<=p1+N−1; 1<=p1<=NB; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
aReXMirr1In : {t,p1,p2 | p1<=t<=p1+N−1; 1<=p1<=NB; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

445 bImXMirr1In : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 1<=p2<=NB; NB+1<=N; 2<=NB} of integer[U,16];
bReXMirr1In : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 1<=p2<=NB; NB+1<=N; 2<=NB} of integer[U,16])

447 returns (CImOut : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 1<=p1<=NB; 1<=p2<=NB} of integer[U,16];
CReOut : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 1<=p1<=NB; 1<=p2<=NB} of integer[U,16]);

449 var
CImXctl1PPXInit : {t | 2<=t<=N+2; NB+1<=N; 2<=NB} of boolean;

451 CReXctl1PPXInit : {t | 2<=t<=N+2; NB+1<=N; 2<=NB} of boolean;
bImXMirr1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 1<=p2<=NB; NB+1<=N; 2<=NB} of integer[U,16];

453 bReXMirr1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 1<=p2<=NB; NB+1<=N; 2<=NB} of integer[U,16];
AIm1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

455 AImReg1Xloc : {t,p1,p2 | p1+p2−2<=t<=p1+p2+N−3; 1<=p1<=NB; 2<=p2<=NB+1} of integer[U,16];
ARe1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

457 AReReg2Xloc : {t,p1,p2 | p1+p2−2<=t<=p1+p2+N−3; 1<=p1<=NB; 2<=p2<=NB+1} of integer[U,16];
BIm1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

459 BImReg3Xloc : {t,p1,p2 | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB+1; 1<=p2<=NB} of integer[U,16];
BRe1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

461 BReReg4Xloc : {t,p1,p2 | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB+1; 1<=p2<=NB} of integer[U,16];
CImXctl1P1 : {t,p1,p2 | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;

463 CImXctl1PReg7Xloc : {t,p1,p2 | p1+p2−1<=t<=p1+p2+N−1; 1<=p1<=NB; 2<=p2<=NB+1; NB+1<=N; 2<=NB} of boolean;
CReXctl1P1 : {t,p1,p2 | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of boolean;

465 CReXctl1PReg11Xloc : {t,p1,p2 | p1+p2−1<=t<=p1+p2+N−1; 1<=p1<=NB; 2<=p2<=NB+1; NB+1<=N; 2<=NB} of boolean;
CRe1 : {t,p1,p2 | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];

467 CIm1 : {t,p1,p2 | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} of integer[U,16];
aImXMirr1 : {t,p1,p2 | p1<=t<=p1+N−1; 1<=p1<=NB; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

469 aReXMirr1 : {t,p1,p2 | p1<=t<=p1+N−1; 1<=p1<=NB; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
AIm2 : {t,p1,p2 | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

471 ARe2 : {t,p1,p2 | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
BIm2 : {t,p1,p2 | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

473 BRe2 : {t,p1,p2 | 1<=t<=N; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
CImXctl1PP2 : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

475 CImXctl1PPReg8Xloc : {t,p1,p2 | p1<=t<=p1+N; 2<=p1<=NB+1; p2=1; NB+1<=N; 2<=NB} of boolean;
CImXctl1P2 : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

477 CReXctl1PP2 : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CReXctl1PPReg12Xloc : {t,p1,p2 | p1<=t<=p1+N; 2<=p1<=NB+1; p2=1; NB+1<=N; 2<=NB} of boolean;

479 CReXctl1P2 : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CImXctl1PPXInitXIn : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;

481 CReXctl1PPXInitXIn : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of boolean;
CRe2 : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

483 CIm2 : {t,p1,p2 | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
AIm3 : {t,p1,p2 | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

485 ARe3 : {t,p1,p2 | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
BIm3 : {t,p1,p2 | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

487 BRe3 : {t,p1,p2 | p1<=t<=p1+N−1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
CImXctl1PP3 : {t,p1,p2 | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

489 CImXctl1P3 : {t,p1,p2 | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
CReXctl1PP3 : {t,p1,p2 | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;

491 CReXctl1P3 : {t,p1,p2 | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of boolean;
CRe3 : {t,p1,p2 | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];

493 CIm3 : {t,p1,p2 | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} of integer[U,16];
AIm4 : {t,p1,p2 | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

495 ARe4 : {t,p1,p2 | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
BIm4 : {t,p1,p2 | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

497 BRe4 : {t,p1,p2 | p1+p2−1<=t<=p1+p2+N−2; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
CImXctl1P4 : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;

499 CReXctl1P4 : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of boolean;
CRe4 : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];

501 CIm4 : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} of integer[U,16];
let

503 AImReg1Xloc[t,p1,p2] =
case

505 { | p2−1<=t<=p2+N−2; p1=1; 3<=p2<=NB+1; NB+1<=N} : AIm1[t,p1,p2−1];
{ | 1<=t<=N; p1=1; p2=2; NB+1<=N; 2<=NB} : AIm2[t,p1,p2−1];

507 { | p1<=t<=p1+N−1; 2<=p1<=NB; p2=2; NB+1<=N} : AIm3[t,p1,p2−1];
{ | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB; 3<=p2<=NB+1; NB+1<=N} : AIm4[t,p1,p2−1];

509 esac;
aImXMirr1[t,p1,p2] = aImXMirr1In[t,p1,p2];

511 AReReg2Xloc[t,p1,p2] =
case

513 { | p2−1<=t<=p2+N−2; p1=1; 3<=p2<=NB+1; NB+1<=N} : ARe1[t,p1,p2−1];
{ | 1<=t<=N; p1=1; p2=2; NB+1<=N; 2<=NB} : ARe2[t,p1,p2−1];

515 { | p1<=t<=p1+N−1; 2<=p1<=NB; p2=2; NB+1<=N} : ARe3[t,p1,p2−1];
{ | p1+p2−2<=t<=p1+p2+N−3; 2<=p1<=NB; 3<=p2<=NB+1; NB+1<=N} : ARe4[t,p1,p2−1];

517 esac;



aReXMirr1[t,p1,p2] = aReXMirr1In[t,p1,p2];
519 BImReg3Xloc[t,p1,p2] =

case

521 { | p2<=t<=p2+N−1; p1=2; 2<=p2<=NB; NB+1<=N} : BIm1[t,p1−1,p2];
{ | 1<=t<=N; p1=2; p2=1; NB+1<=N; 2<=NB} : BIm2[t,p1−1,p2];

523 { | p1−1<=t<=p1+N−2; 3<=p1<=NB+1; p2=1; NB+1<=N} : BIm3[t,p1−1,p2];
{ | p1+p2−2<=t<=p1+p2+N−3; 3<=p1<=NB+1; 2<=p2<=NB; NB+1<=N} : BIm4[t,p1−1,p2];

525 esac;
bImXMirr1[t,p1,p2] = bImXMirr1In[t,p1,p2];

527 BReReg4Xloc[t,p1,p2] =
case

529 { | p2<=t<=p2+N−1; p1=2; 2<=p2<=NB; NB+1<=N} : BRe1[t,p1−1,p2];
{ | 1<=t<=N; p1=2; p2=1; NB+1<=N; 2<=NB} : BRe2[t,p1−1,p2];

531 { | p1−1<=t<=p1+N−2; 3<=p1<=NB+1; p2=1; NB+1<=N} : BRe3[t,p1−1,p2];
{ | p1+p2−2<=t<=p1+p2+N−3; 3<=p1<=NB+1; 2<=p2<=NB; NB+1<=N} : BRe4[t,p1−1,p2];

533 esac;
bReXMirr1[t,p1,p2] = bReXMirr1In[t,p1,p2];

535 CImOut[t,p1,p2] =
case

537 { | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} : CIm1[t,p1,p2];
{ | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} : CIm2[t,p1,p2];

539 { | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} : CIm3[t,p1,p2];
{ | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} : CIm4[t,p1,p2];

541 esac;
CImXctl1PPReg8Xloc[t,p1,p2] =

543 case

{ | 2<=t<=N+2; p1=2; p2=1; NB+1<=N; 2<=NB} : CImXctl1PP2[t,p1−1,p2];
545 { | p1<=t<=p1+N; 3<=p1<=NB+1; p2=1; NB+1<=N} : CImXctl1PP3[t,p1−1,p2];

esac;
547 CImXctl1PPXInitXIn[t,p1,p2] = CImXctl1PPXInit[t];

CImXctl1PReg7Xloc[t,p1,p2] =
549 case

{ | p2<=t<=p2+N; p1=1; 3<=p2<=NB+1; NB+1<=N} : CImXctl1P1[t,p1,p2−1];
551 { | 2<=t<=N+2; p1=1; p2=2; NB+1<=N; 2<=NB} : CImXctl1P2[t,p1,p2−1];

{ | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=2; NB+1<=N} : CImXctl1P3[t,p1,p2−1];
553 { | p1+p2−1<=t<=p1+p2+N−1; 2<=p1<=NB; 3<=p2<=NB+1; NB+1<=N} : CImXctl1P4[t,p1,p2−1];

esac;
555 CReOut[t,p1,p2] =

case

557 { | p2+1<=t<=p2+N+1; p1=1; 2<=p2<=NB; NB+1<=N} : CRe1[t,p1,p2];
{ | 2<=t<=N+2; p1=1; p2=1; NB+1<=N; 2<=NB} : CRe2[t,p1,p2];

559 { | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=1; NB+1<=N} : CRe3[t,p1,p2];
{ | p1+p2<=t<=p1+p2+N; 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} : CRe4[t,p1,p2];

561 esac;
CReXctl1PPReg12Xloc[t,p1,p2] =

563 case

{ | 2<=t<=N+2; p1=2; p2=1; NB+1<=N; 2<=NB} : CReXctl1PP2[t,p1−1,p2];
565 { | p1<=t<=p1+N; 3<=p1<=NB+1; p2=1; NB+1<=N} : CReXctl1PP3[t,p1−1,p2];

esac;
567 CReXctl1PPXInitXIn[t,p1,p2] = CReXctl1PPXInit[t];

CReXctl1PReg11Xloc[t,p1,p2] =
569 case

{ | p2<=t<=p2+N; p1=1; 3<=p2<=NB+1; NB+1<=N} : CReXctl1P1[t,p1,p2−1];
571 { | 2<=t<=N+2; p1=1; p2=2; NB+1<=N; 2<=NB} : CReXctl1P2[t,p1,p2−1];

{ | p1+1<=t<=p1+N+1; 2<=p1<=NB; p2=2; NB+1<=N} : CReXctl1P3[t,p1,p2−1];
573 { | p1+p2−1<=t<=p1+p2+N−1; 2<=p1<=NB; 3<=p2<=NB+1; NB+1<=N} : CReXctl1P4[t,p1,p2−1];

esac;
575 use ControlmatmultModule[N,NB] () returns (CImXctl1PPXInit, CReXctl1PPXInit) ;

use {p1,p2 | p1=1; 2<=p2<=NB; NB+1<=N} cellmatmultModule1[p1,p2,N,NB] (bImXMirr1, bReXMirr1, AImReg1Xloc, AReReg2Xloc,
CImXctl1PReg7Xloc, CReXctl1PReg11Xloc) returns (AIm1, ARe1, BIm1, BRe1, CImXctl1P1, CReXctl1P1, CRe1, CIm1) ;

577 use {p1,p2 | p1=1; p2=1; NB+1<=N; 2<=NB} cellmatmultModule2[p1,p2,N,NB] (bImXMirr1, bReXMirr1, aImXMirr1, aReXMirr1,
CImXctl1PPXInitXIn, CReXctl1PPXInitXIn) returns (AIm2, ARe2, BIm2, BRe2, CImXctl1PP2, CImXctl1P2, CReXctl1PP2,
CReXctl1P2, CRe2, CIm2) ;

use {p1,p2 | 2<=p1<=NB; p2=1; NB+1<=N} cellmatmultModule3[p1,p2,N,NB] (aImXMirr1, aReXMirr1, BImReg3Xloc, BReReg4Xloc,
CImXctl1PPReg8Xloc, CReXctl1PPReg12Xloc)

579 returns (AIm3, ARe3, BIm3, BRe3, CImXctl1PP3, CImXctl1P3, CReXctl1PP3, CReXctl1P3, CRe3, CIm3) ;
use {p1,p2 | 2<=p1<=NB; 2<=p2<=NB; NB+1<=N} cellmatmultModule4[p1,p2,N,NB] (AImReg1Xloc, AReReg2Xloc, BImReg3Xloc,

BReReg4Xloc, CImXctl1PReg7Xloc, CReXctl1PReg11Xloc) returns (AIm4, ARe4, BIm4, BRe4, CImXctl1P4, CReXctl1P4, CRe4, CIm4
) ;

581 tel ;

583 system matmult :{N,NB | NB+1<=N; 2<=NB}
(aRe : {i , j | 1<=i<=NB; 1<=j<=N} of integer[U,16];

585 aIm : {i , j | 1<=i<=NB; 1<=j<=N} of integer[U,16];
bRe : {i , j | 1<=i<=N; 1<=j<=NB} of integer[U,16];

587 bIm : {i , j | 1<=i<=N; 1<=j<=NB} of integer[U,16])
returns (cRe : {i , j | 1<=i<=NB; 1<=j<=NB} of integer[U,16];

589 cIm : {i , j | 1<=i<=NB; 1<=j<=NB} of integer[U,16]);
var

591 aImXMirr1 : {t,p1,p2 | p1<=t<=p1+N−1; 1<=p1<=NB; p2=1; NB+1<=N; 2<=NB} of integer[U,16];
aReXMirr1 : {t,p1,p2 | p1<=t<=p1+N−1; 1<=p1<=NB; p2=1; NB+1<=N; 2<=NB} of integer[U,16];

593 bImXMirr1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 1<=p2<=NB; NB+1<=N; 2<=NB} of integer[U,16];
bReXMirr1 : {t,p1,p2 | p2<=t<=p2+N−1; p1=1; 1<=p2<=NB; NB+1<=N; 2<=NB} of integer[U,16];

595 CIm : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 1<=p1<=NB; 1<=p2<=NB} of integer[U,16];
CRe : {t,p1,p2 | p1+p2<=t<=p1+p2+N; 1<=p1<=NB; 1<=p2<=NB} of integer[U,16];

597 let
bImXMirr1[t,p1,p2] = bIm[t−p2+1,p1+p2−1];

599 bReXMirr1[t,p1,p2] = bRe[t−p2+1,p1+p2−1];



aImXMirr1[t,p1,p2] = aIm[p1,t−p1+1];
601 aReXMirr1[t,p1,p2] = aRe[p1,t−p1+1];

cRe[i , j ] = CRe[i+j+N,i,j];
603 cIm[i , j ] = CIm[i+j+N,i,j];

use matmultModule[N,NB] (aImXMirr1, aReXMirr1, bImXMirr1, bReXMirr1) returns (CIm, CRe) ;
605 tel ;

7.2 Spark + WRaP-IT

In this section, we present different sources used in our Spark + WRaP-IT experimentation, in
particular the sources that were used in the YUV to RGB format conversion acceleration from the
H263 CODEC.

7.2.1 Oprofile results

Here are the results obtained by running the Oprofile linux profiler. We used this information
to choose parts of the code that are interesting to accelerate in hardware.

Statistics per run (over 30 runs) of the number of times each procedure was sampled OProfile:

App/Library Procedure Average Std Dev 95% Confidence Interval

----------- --------- ------- ------- -----------------------

(no symbols) 0.00 0.000 [ 0.000, 0.000]

_dl_determine_tlsoffset 1 0.00 0.000 [ 0.000, 0.000]

_dl_fixup 1 0.00 0.000 [ 0.000, 0.000]

_dl_lookup_symbol_x 1 0.00 0.000 [ 0.000, 0.000]

_dl_relocate_object 1 0.00 0.000 [ 0.000, 0.000]

_dl_runtime_resolve 1 0.00 0.000 [ 0.000, 0.000]

_dl_sort_fini 1 0.00 0.000 [ 0.000, 0.000]

anon (tgid:17429 0.03 0.000 [ 0.033, 0.033]

anon (tgid:2417 0.03 0.000 [ 0.033, 0.033]

anon (tgid:26094 0.03 0.000 [ 0.033, 0.033]

anon (tgid:9107 0.03 0.000 [ 0.033, 0.033]

close 1 0.00 0.000 [ 0.000, 0.000]

do_lookup_x 1 0.00 0.000 [ 0.000, 0.000]

getCBPY 1 0.00 0.000 [ 0.000, 0.000]

getMCBPC 1 0.00 0.000 [ 0.000, 0.000]

getbits1 1 0.00 0.000 [ 0.000, 0.000]

getheader 1 0.00 0.000 [ 0.000, 0.000]

ld-2.4.so ___fxstat64 0.07 0.000 [ 0.067, 0.067]

ld-2.4.so __i686.get_pc_thunk.bx 0.07 0.000 [ 0.067, 0.067]

ld-2.4.so __i686.get_pc_thunk.cx 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so __libc_memalign 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so _dl_allocate_tls_init 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so _dl_cache_libcmp 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so _dl_check_map_versions 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so _dl_elf_hash 0.53 0.000 [ 0.533, 0.533]

ld-2.4.so _dl_fini 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so _dl_fixup 0.23 0.000 [ 0.233, 0.233]

ld-2.4.so _dl_important_hwcaps 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so _dl_load_cache_lookup 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so _dl_lookup_symbol_x 0.40 0.000 [ 0.400, 0.400]

ld-2.4.so _dl_map_object 0.13 0.000 [ 0.133, 0.133]

ld-2.4.so _dl_map_object_deps 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so _dl_map_object_from_fd 0.23 0.000 [ 0.233, 0.233]

ld-2.4.so _dl_name_match_p 0.13 0.000 [ 0.133, 0.133]

ld-2.4.so _dl_new_object 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so _dl_relocate_object 1.77 1.000 [ 1.409, 2.125]

ld-2.4.so _dl_start 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so do_lookup_x 4.27 1.414 [ 3.761, 4.773]

ld-2.4.so fillin_rpath 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so init_tls 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so match_symbol 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so memcpy 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so mempcpy 0.13 0.000 [ 0.133, 0.133]

ld-2.4.so memset 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so mmap 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so open 0.17 0.000 [ 0.167, 0.167]

ld-2.4.so open_path 0.17 0.000 [ 0.167, 0.167]

ld-2.4.so open_verify 0.10 0.000 [ 0.100, 0.100]

ld-2.4.so read 0.03 0.000 [ 0.033, 0.033]

ld-2.4.so strcmp 1.43 1.000 [ 1.075, 1.791]

ld-2.4.so strsep 0.03 0.000 [ 0.033, 0.033]

libX11.so.6.2.0 (no symbols) 0.10 0.000 [ 0.100, 0.100]

libc-2.4.so (no symbols) 12.73 3.742 [ 11.394, 14.072]

libm-2.4.so (no symbols) 0.03 0.000 [ 0.033, 0.033]

main 1 0.00 0.000 [ 0.000, 0.000]



mempcpy 1 0.00 0.000 [ 0.000, 0.000]

memset 1 0.00 0.000 [ 0.000, 0.000]

no-vmlinux (no symbols) 693.87 92.855 [ 660.639, 727.094]

open_path 1 0.00 0.000 [ 0.000, 0.000]

strcmp 1 0.00 0.000 [ 0.000, 0.000]

symbols) 1 0.00 0.000 [ 0.000, 0.000]

tmndec .plt 0.30 0.000 [ 0.300, 0.300]

tmndec addblock 86.63 12.845 [ 82.037, 91.230]

tmndec clearblock 27.90 5.831 [ 25.813, 29.987]

tmndec conv420to422 1102.90 132.514 [ 1055.480, 1150.320]

tmndec conv422to444 1795.37 243.173 [ 1708.348, 1882.385]

tmndec fillbfr 10.37 3.317 [ 9.180, 11.554]

tmndec find_pmv 15.03 4.359 [ 13.474, 16.593]

tmndec flushbits 34.90 8.246 [ 31.949, 37.851]

tmndec getCBPY 1.93 1.732 [ 1.314, 2.553]

tmndec getMCBPC 2.17 1.414 [ 1.661, 2.673]

tmndec getMCBPCintra 0.30 0.000 [ 0.300, 0.300]

tmndec getTMNMV 5.23 2.646 [ 4.287, 6.180]

tmndec getbits 14.63 4.472 [ 13.033, 16.234]

tmndec getbits1 1.20 1.000 [ 0.842, 1.558]

tmndec getblock 50.47 9.899 [ 46.924, 54.009]

tmndec getheader 0.10 0.000 [ 0.100, 0.100]

tmndec getpicture 62.50 12.166 [ 58.147, 66.853]

tmndec idct 284.33 40.596 [ 269.806, 298.860]

tmndec init_idct 0.13 0.000 [ 0.133, 0.133]

tmndec main 0.17 0.000 [ 0.167, 0.167]

tmndec motion_decode 2.83 1.414 [ 2.327, 3.339]

tmndec putbyte 623.50 83.540 [ 593.605, 653.395]

tmndec recon_comp 313.07 52.125 [ 294.414, 331.719]

tmndec reconstruct 8.33 3.464 [ 7.094, 9.573]

tmndec showbits 62.93 11.269 [ 58.901, 66.966]

tmndec store_ppm_tga 952.73 141.605 [ 902.061, 1003.406]

tmndec storeframe 0.13 0.000 [ 0.133, 0.133]

Statistics per run (over 30 runs) of the percentage of execution time spent in each procedure, as measured by OProfile:

App/Library Procedure Average Std Dev 95% Confidence Interval

----------- --------- ------- ------- -----------------------

(no symbols) 0.00% 0.000% [ 0.000%, 0.000%]

_dl_determine_tlsoffset 1 0.00% 0.000% [ 0.000%, 0.000%]

_dl_fixup 1 0.00% 0.000% [ 0.000%, 0.000%]

_dl_lookup_symbol_x 1 0.00% 0.000% [ 0.000%, 0.000%]

_dl_relocate_object 1 0.00% 0.000% [ 0.000%, 0.000%]

_dl_runtime_resolve 1 0.00% 0.000% [ 0.000%, 0.000%]

_dl_sort_fini 1 0.00% 0.000% [ 0.000%, 0.000%]

anon (tgid:17429 0.00% 0.000% [ 0.001%, 0.001%]

anon (tgid:2417 0.00% 0.000% [ 0.001%, 0.001%]

anon (tgid:26094 0.00% 0.000% [ 0.001%, 0.001%]

anon (tgid:9107 0.00% 0.000% [ 0.001%, 0.001%]

close 1 0.00% 0.000% [ 0.000%, 0.000%]

do_lookup_x 1 0.00% 0.000% [ 0.000%, 0.000%]

getCBPY 1 0.00% 0.000% [ 0.000%, 0.000%]

getMCBPC 1 0.00% 0.000% [ 0.000%, 0.000%]

getbits1 1 0.00% 0.000% [ 0.000%, 0.000%]

getheader 1 0.00% 0.000% [ 0.000%, 0.000%]

ld-2.4.so ___fxstat64 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so __i686.get_pc_thunk.bx 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so __i686.get_pc_thunk.cx 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so __libc_memalign 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so _dl_allocate_tls_init 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so _dl_cache_libcmp 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_check_map_versions 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_elf_hash 0.01% 0.000% [ 0.009%, 0.009%]

ld-2.4.so _dl_fini 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so _dl_fixup 0.00% 0.000% [ 0.004%, 0.004%]

ld-2.4.so _dl_important_hwcaps 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_load_cache_lookup 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_lookup_symbol_x 0.01% 0.000% [ 0.006%, 0.006%]

ld-2.4.so _dl_map_object 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_map_object_deps 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_map_object_from_fd 0.00% 0.000% [ 0.004%, 0.004%]

ld-2.4.so _dl_name_match_p 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so _dl_new_object 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so _dl_relocate_object 0.03% 0.016% [ 0.023%, 0.034%]

ld-2.4.so _dl_start 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so do_lookup_x 0.07% 0.023% [ 0.061%, 0.077%]

ld-2.4.so fillin_rpath 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so init_tls 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so match_symbol 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so memcpy 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so mempcpy 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so memset 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so mmap 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so open 0.00% 0.000% [ 0.003%, 0.003%]

ld-2.4.so open_path 0.00% 0.000% [ 0.003%, 0.003%]

ld-2.4.so open_verify 0.00% 0.000% [ 0.002%, 0.002%]

ld-2.4.so read 0.00% 0.000% [ 0.001%, 0.001%]

ld-2.4.so strcmp 0.02% 0.016% [ 0.017%, 0.029%]

ld-2.4.so strsep 0.00% 0.000% [ 0.001%, 0.001%]



libX11.so.6.2.0 (no symbols) 0.00% 0.000% [ 0.002%, 0.002%]

libc-2.4.so (no symbols) 0.21% 0.061% [ 0.184%, 0.228%]

libm-2.4.so (no symbols) 0.00% 0.000% [ 0.001%, 0.001%]

main 1 0.00% 0.000% [ 0.000%, 0.000%]

mempcpy 1 0.00% 0.000% [ 0.000%, 0.000%]

memset 1 0.00% 0.000% [ 0.000%, 0.000%]

no-vmlinux (no symbols) 11.23% 1.503% [ 10.694%, 11.769%]

open_path 1 0.00% 0.000% [ 0.000%, 0.000%]

strcmp 1 0.00% 0.000% [ 0.000%, 0.000%]

symbols) 1 0.00% 0.000% [ 0.000%, 0.000%]

tmndec .plt 0.00% 0.000% [ 0.005%, 0.005%]

tmndec addblock 1.40% 0.208% [ 1.328%, 1.477%]

tmndec clearblock 0.45% 0.094% [ 0.418%, 0.485%]

tmndec conv420to422 17.85% 2.145% [ 17.085%, 18.620%]

tmndec conv422to444 29.06% 3.936% [ 27.653%, 30.470%]

tmndec fillbfr 0.17% 0.054% [ 0.149%, 0.187%]

tmndec find_pmv 0.24% 0.071% [ 0.218%, 0.269%]

tmndec flushbits 0.56% 0.133% [ 0.517%, 0.613%]

tmndec getCBPY 0.03% 0.028% [ 0.021%, 0.041%]

tmndec getMCBPC 0.04% 0.023% [ 0.027%, 0.043%]

tmndec getMCBPCintra 0.00% 0.000% [ 0.005%, 0.005%]

tmndec getTMNMV 0.08% 0.043% [ 0.069%, 0.100%]

tmndec getbits 0.24% 0.072% [ 0.211%, 0.263%]

tmndec getbits1 0.02% 0.016% [ 0.014%, 0.025%]

tmndec getblock 0.82% 0.160% [ 0.760%, 0.874%]

tmndec getheader 0.00% 0.000% [ 0.002%, 0.002%]

tmndec getpicture 1.01% 0.197% [ 0.941%, 1.082%]

tmndec idct 4.60% 0.657% [ 4.367%, 4.838%]

tmndec init_idct 0.00% 0.000% [ 0.002%, 0.002%]

tmndec main 0.00% 0.000% [ 0.003%, 0.003%]

tmndec motion_decode 0.05% 0.023% [ 0.038%, 0.054%]

tmndec putbyte 10.09% 1.352% [ 9.609%, 10.576%]

tmndec recon_comp 5.07% 0.844% [ 4.766%, 5.370%]

tmndec reconstruct 0.13% 0.056% [ 0.115%, 0.155%]

tmndec showbits 1.02% 0.182% [ 0.953%, 1.084%]

tmndec store_ppm_tga 15.42% 2.292% [ 14.602%, 16.242%]

tmndec storeframe 0.00% 0.000% [ 0.002%, 0.002%]

Total Samples per run (over 30 runs):

Average Std Dev 95% Confidence Interval

------- ------- -----------------------

total_samples 6177.83 700.537 [ 5927.149, 6428.517]

7.2.2 Original source code

Here is the original inlined source code used as the input to the synthesis and code transforma-
tion framework.

1 #include <stdio.h>
#define MAXVAL 1000

3 unsigned char srcY[MAXVAL∗MAXVAL],srcU[MAXVAL∗MAXVAL/4],srcV[MAXVAL∗MAXVAL/4];
unsigned char u422[MAXVAL∗MAXVAL/2], v422[MAXVAL∗MAXVAL/2], u444[MAXVAL∗MAXVAL], v444[MAXVAL∗MAXVAL],rgb[

MAXVAL∗MAXVAL∗3];
5 unsigned char clp[1024];

int convmat[8 ∗ 4]=
7 {

117504, 138453, 13954, 34903, /∗ no sequence display extension ∗/
9 117504, 138453, 13954, 34903, /∗ ITU−R Rec. 709 (1990) ∗/

104597, 132201, 25675, 53279, /∗ unspecified ∗/
11 104597, 132201, 25675, 53279, /∗ reserved ∗/

104448, 132798, 24759, 53109, /∗ FCC ∗/
13 104597, 132201, 25675, 53279, /∗ ITU−R Rec. 624−4 System B, G ∗/

104597, 132201, 25675, 53279, /∗ SMPTE 170M ∗/
15 117579, 136230, 16907, 35559 /∗ SMPTE 240M (1987) ∗/

};
17

/∗
19 ∗ decompress from yuv420 to RGB in order to store in TGA file(not implemented)

∗/
21 void yuvrgb(int advance)

{
23 int y, u, v, r , g, b;

int crv, cbu, cgu, cgv;
25 int py, pu, pv;

int width,height;
27 int incr = width;

int w,h,w1,h1;
29 int matrix coefficients = 5;

int i = 0;
31 int j = 0;

int jm30, jm31, jm20, jm21, jm10, jm11, jp10, jp11, jp20, jp21, jp30, jp31;
33 int i20 , i21 , im30, im31, im20, im21, im10, im11, ip10, ip11,ip20, ip21,ip30, ip31;

int j20,j21;
35 int s ;



int src index00 = 0;
37 int dst index00 = 0;

int src index01 = 0;
39 int dst index01 = 0;

int src index10 = 0;
41 int dst index10 = 0;

int src index11 = 0;
43 int dst index11 = 0;

int src indexRGB = 0;
45 int dst indexRGB = 0;

int wRGB,hRGB;
47 width = 1000;

height = 1000;
49 w = width/2;

h = height/2;
51 w1 = width/2;

h1 = height;
53

55
/∗ intra frame ∗/

57 URUK BEG: for (i=0; i<w; i++) {
URUK BEG1: for (j=0; j<h; j++) {

59 URUK IF01:
j20 = j∗2;

61 URUK IF02:if (j<3)
URUK IF021: jm30 = 0; else

63 URUK IF022: jm30 = j−3;
URUK IF03:if(j<2)

65 URUK IF031: jm20 = 0; else

URUK IF032: jm20 = j−2;
67 URUK IF04:if(j<1)

URUK IF041: jm10 = 0; else

69 URUK IF042: jm10 = j−1;
URUK IF05:if(j<h−1)

71 URUK IF051: jp10 = j+1; else

URUK IF052: jp10 = h−1;
73 URUK IF06:if(j<h−2)

URUK IF061: jp20 = j+2; else

75 URUK IF062: jp20 = h−1;
URUK IF07:if(j<h−3)

77 URUK IF071:jp30 = j+3; else

URUK IF072:jp30 = h−1;
79

URUK IF08: u422[dst index00 + w∗j20] = clp [( int)( 3∗srcU[src index00 + w∗jm30]
81 −16∗srcU[src index00 + w∗jm20]

+67∗srcU[src index00 + w∗jm10]
83 +227∗srcU[src index00 + w∗j]

−32∗srcU[src index00 + w∗jp10]
85 +7∗srcU[src index00 + w∗jp20]+128)/256];

87 URUK IF09: u422[dst index00 + w∗(j20+1)] = clp[(int)( 3∗srcU[src index00 + w∗jp30]
−16∗srcU[src index00 + w∗jp20]

89 +67∗srcU[src index00 + w∗jp10]
+227∗srcU[src index00 + w∗j]

91 −32∗srcU[src index00 + w∗jm10]
+7∗srcU[src index00 + w∗jm20]+128)/256];

93 }
URUK LBL1: src index00 = src index00 + 1;

95 URUK LBL2: dst index00 = dst index00 + 1;
}

97
/∗ conv420to422(srcV,v422); ∗/

99
/∗ intra frame ∗/

101 for ( i=0; i<w; i++) {
URUK BEG2: for (j=0; j<h; j++) {

103 URUK IF11: j21 = j∗2;
URUK IF12: if (j<3)

105 URUK IF121: jm31 = 0; else

URUK IF122: jm31 = j−3;
107 URUK IF13: if (j<2)

URUK IF131: jm21 = 0;else
109 URUK IF132: jm21 = j−2;

URUK IF14: if (j<1)
111 URUK IF141: jm11 = 0; else

URUK IF142: jm11 = j−1;
113 URUK IF15: if (j<h−1)

URUK IF151:jp11 = j+1; else

115 URUK IF152:jp11 = h−1;
URUK IF16: if (j<h−2)

117 URUK IF161:jp21 = j+2; else

URUK IF162:jp21 = h−1;
119 URUK IF17: if (j<h−3)

URUK IF171:jp31 = j+3; else

121 URUK IF172:jp31 = h−1;

123 URUK IF18: v422[dst index01 + w∗j21] = clp [( int)( 3∗srcV[src index01 + w∗jm31]



−16∗srcV[src index01+ w∗jm21]
125 +67∗srcV[src index01 + w∗jm11]

+227∗srcV[src index01 + w∗j]
127 −32∗srcV[src index01 + w∗jp11]

+7∗srcV[src index01 + w∗jp21]+128)/256];
129

URUK IF19: v422[dst index01 + w∗(j21+1)] = clp[(int)( 3∗srcV[src index01 + w∗jp31]
131 −16∗srcV[src index01 + w∗jp21]

+67∗srcV[src index01 + w∗jp11]
133 +227∗srcV[src index01 + w∗j]

−32∗srcV[src index01 + w∗jm11]
135 +7∗srcV[src index01 + w∗jm21]+128)/256];

}
137 src index01 = src index01 + 1;

dst index01 = dst index01 + 1;
139 }

141

143 /∗ conv422to444(u422,u444); ∗/

145 for (j=0; j<h1; j++) {
for ( i=0; i<w1; i++) {

147
URUK IIF01: i20 = i∗2;

149 URUK IIF02: if ( i<3)
URUK IIF021: im30 = 0; else

151 URUK IIF022: im30 = i−3;
URUK IIF03: if ( i<2)

153 URUK IIF031: im20 = 0; else

URUK IIF032: im20 = i−2;
155 URUK IIF04: if ( i<1)

URUK IIF041: im10 = 0; else

157 URUK IIF042: im20 = i−1;
URUK IIF05: if ( i<w1−1)

159 URUK IIF051: ip10 = i+1; else

URUK IIF052: ip10 = w1−1;
161 URUK IIF06: if ( i<w1−2)

URUK IIF061: ip20 = i+2; else

163 URUK IIF062: ip20 = w1−1;
URUK IIF07: if ( i<w1−3)

165 URUK IIF071: ip30 = i+3; else

URUK IIF072: ip30 = w1−1;
167

URUK IIF08: u444[dst index10 + i20] = clp [( int)( 5∗u422[src index10 + im30]
169 −21∗u422[src index10 + im20]

+70∗u422[src index10 + im10]
171 +228∗u422[src index10 + i]

−37∗u422[src index10 + ip10]
173 +11∗u422[src index10 + ip20]+128)/256];

175 URUK IIF09: u444[dst index10 + i20+1] = clp[(int)( 5∗u422[src index10 + ip30]
−21∗u422[src index10 + ip20]

177 +70∗u422[src index10 + ip10]
+228∗u422[src index10 + i]

179 −37∗u422[src index10 + im10]
+11∗u422[src index10 + im20]+128)/256];

181 }
URUK END01: src index10 = src index10 + w1;

183 URUK END02: dst index10 = dst index10 + width;
}

185
/∗ conv422to444(v422,v444); ∗/

187 for (j=0; j<h1; j++) {
for ( i=0; i<w1; i++) {

189
URUK IIF11: i21 = i∗2;

191 URUK IIF12: if ( i<3)
URUK IIF121: im31 = 0; else

193 URUK IIF122: im31 = i−3;
URUK IIF13: if ( i<2)

195 URUK IIF131: im21 = 0; else

URUK IIF132: im21 = i−2;
197 URUK IIF14: if ( i<1)

URUK IIF141: im11 = 0; else

199 URUK IIF142: im21 = i−1;
URUK IIF15: if ( i<w1−1)

201 URUK IIF151: ip11 = i+1; else

URUK IIF152: ip11 = w1−1;
203 URUK IIF16: if ( i<w1−2)

URUK IIF161: ip21 = i+2; else

205 URUK IIF162: ip21 = w1−1;
URUK IIF17: if ( i<w1−3)

207 URUK IIF171: ip31 = i+3; else

URUK IIF172: ip31 = w1−1;
209

URUK IIF18: v444[dst index11 + i21] = clp [( int)( 5∗v422[src index11 + im31]
211 −21∗v422[src index11 + im21]



+70∗v422[src index11 + im11]
213 +228∗v422[src index11 + i]

−37∗v422[src index11 + ip11]
215 +11∗v422[src index11 + ip21]+128)/256];

217 URUK IIF19: v444[dst index11 + i21+1] = clp[(int)( 5∗v422[src index11 + ip31]
−21∗v422[src index11 + ip21]

219 +70∗v422[src index11 + ip11]
+228∗v422[src index11 + i]

221 −37∗v422[src index11 + im11]
+11∗v422[src index11 + im21]+128)/256];

223 }
URUK END11: src index11 = src index11 + w1;

225 URUK END12: dst index11 = dst index11 + width;
}

227 URUK CMAT1: crv = convmat[matrix coefficients ∗ 4 + 0];
URUK CMAT2: cbu = convmat[matrix coefficients ∗ 4 + 1];

229 URUK CMAT3: cgu = convmat[matrix coefficients ∗ 4 + 2];
URUK CMAT4: cgv = convmat[matrix coefficients ∗ 4 + 3];

231 /∗ matrix coefficients ∗/
for ( i=0; i<height; i++)

233 for (j=0; j< width; j++) {
URUK RGB6: u = u444[src indexRGB] − 128;

235 URUK RGB7: v = v444[src indexRGB] − 128;
URUK RGB8: y = 76309 ∗ (srcY[src indexRGB] − 16);

237 URUK RGB9: rgb[dst indexRGB] = clp[(y + crv∗v + 32768)>>16];
URUK RGB10: rgb[dst indexRGB+1] = clp[(y − cgu∗u − cgv∗v + 32768)>>16];

239 URUK RGB11: rgb[dst indexRGB+2] = clp[(y + cbu∗u + 32786)>>16];
URUK RGB12: if(advance>0){

241 URUK RGB13: dst indexRGB = dst indexRGB + 3;
URUK RGB14: src indexRGB = src indexRGB + 3;

243 }
}

245 }

7.2.3 WRaP-IT code transformations

Here is the source file that contains the list of transformations to apply on the YUV-to-RGB
code.

1 shift (BEG ,{[0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,−2]})
shift (BEG2 ,{[0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,−2]})

3 fusion(enclose(IF08,2))
fusion(enclose(IF08,1))

5 interchange(IF02,1)
interchange(IF022,1)

7 interchange(IF03,1)
interchange(IF032,1)

9 interchange(IF04,1)
interchange(IF042,1)

11 interchange(IF05,1)
interchange(IF052,1)

13 interchange(IF06,1)
interchange(IF062,1)

15 interchange(IF07,1)
interchange(IF072,1)

17 interchange(IF08,1)
interchange(IF09,1)

19 interchange(IF12,1)
interchange(IF122,1)

21 interchange(IF13,1)
interchange(IF132,1)

23 interchange(IF14,1)
interchange(IF142,1)

25 interchange(IF15,1)
interchange(IF152,1)

27 interchange(IF16,1)
interchange(IF162,1)

29 interchange(IF17,1)
interchange(IF172,1)

31 interchange(IF18,1)
interchange(IF19,1)

33 fusion(enclose(IIF09,2))
fusion(enclose(IIF09))

35 stripmine(enclose(IIF08,2),2)
interchange(IIF02,2)

37 interchange(IIF022,2)
interchange(IIF03,2)

39 interchange(IIF032,2)
interchange(IIF04,2)

41 interchange(IIF042,2)
interchange(IIF05,2)

43 interchange(IIF052,2)



interchange(IIF06,2)
45 interchange(IIF062,2)

interchange(IIF07,2)
47 interchange(IIF072,2)

interchange(IIF08,2)
49 interchange(IIF09,2)

interchange(IIF12,2)
51 interchange(IIF122,2)

interchange(IIF13,2)
53 interchange(IIF132,2)

interchange(IIF14,2)
55 interchange(IIF142,2)

interchange(IIF15,2)
57 interchange(IIF152,2)

interchange(IIF16,2)
59 interchange(IIF162,2)

interchange(IIF17,2)
61 interchange(IIF172,2)

interchange(IIF18,2)
63 interchange(IIF19,2)

fusion(enclose(IF19,2))
65 fusion(enclose(IF19,1))

addContext(RGB6,’advance>0’)
67 motion block(CMAT4,BEG)

motion block(CMAT3,CMAT4)
69 motion block(CMAT2,CMAT3)

motion block(CMAT1,CMAT2)
71 stripmine(enclose(RGB6,2),2)

stripmine(enclose(RGB6,1),2)
73 interchange(RGB6,2)

interchange(RGB7,2)
75 interchange(RGB8,2)

interchange(RGB9,2)
77 interchange(RGB10,2)

interchange(RGB11,2)
79 interchange(RGB12,2)

interchange(RGB14,2)
81 fusion(enclose(IIF19,3))

fusion(enclose(IIF19,2))
83 fusion(enclose(IIF19))

7.3 Altera C2H

7.3.1 Manually-transformed DMA double-buffering implementation

We give here the source code that implements the double-buffering block transfer of the DMA
source code. It can be directly synthesized using the Altera C2H tool. The code was obtained by
manual transformations of the original code.

1 #include "system.h"

3
#define BLOCK 100

5 #define MAX 1000

7 /∗ #pragma altera accelerate enable interrupt for function accelerator ∗/
#pragma altera accelerate enable interrupt for function buff0 acc

9 #pragma altera accelerate enable interrupt for function buff1 acc
#pragma altera accelerate enable interrupt for function st0 acc

11 //#pragma altera accelerate enable interrupt for function st1 acc
#pragma altera accelerate enable interrupt for function c01 acc

13
/∗ buff0 acc ∗/

15 /∗ fifo connection∗/
#pragma altera accelerate enable flow control for pointer buff0 acc/st1 buff0 read

17 #pragma altera accelerate enable flow control for pointer buff0 acc/buff0 buff1 write
#pragma altera accelerate enable flow control for pointer buff0 acc/buff01 c01 write

19 #pragma altera accelerate connect variable buff0 acc/st1 buff0 read to st1 buff0/out
#pragma altera accelerate connect variable buff0 acc/buff0 buff1 write to buff0 buff1/in

21 #pragma altera accelerate connect variable buff0 acc/buff01 c01 write to buff01 c01/in

23 /∗ data connection ∗/
#pragma altera accelerate connect variable buff0 acc/mem pointer to altmemddr 0

25 #pragma altera accelerate connect variable buff0 acc/buff0 to buff0

27 /∗ buff1 acc ∗/
/∗ fifo connection∗/

29 #pragma altera accelerate enable flow control for pointer buff1 acc/buff1 st0 write
#pragma altera accelerate enable flow control for pointer buff1 acc/buff0 buff1 read

31 #pragma altera accelerate enable flow control for pointer buff1 acc/buff01 c01 write



#pragma altera accelerate connect variable buff1 acc/buff1 st0 write to buff1 st0/in
33 #pragma altera accelerate connect variable buff1 acc/buff0 buff1 read to buff0 buff1/out

#pragma altera accelerate connect variable buff1 acc/buff01 c01 write to buff01 c01/in
35

/∗ data connection ∗/
37 #pragma altera accelerate connect variable buff1 acc/mem pointer to altmemddr 0

#pragma altera accelerate connect variable buff1 acc/buff1 to buff1
39

/∗ st0 acc ∗/
41 /∗ fifo connection∗/

#pragma altera accelerate enable flow control for pointer st0 acc/buff1 st0 read
43 #pragma altera accelerate enable flow control for pointer st0 acc/c01 st0 read

#pragma altera accelerate enable flow control for pointer st0 acc/st0 st1 write
45 #pragma altera accelerate connect variable st0 acc/buff1 st0 read to buff1 st0/out

#pragma altera accelerate connect variable st0 acc/c01 st0 read to c01 st0/out
47 #pragma altera accelerate connect variable st0 acc/st0 st1 write to st0 st1/in

49 /∗ data connection ∗/
#pragma altera accelerate connect variable st0 acc/mem pointer to altmemddr 0

51 #pragma altera accelerate connect variable st0 acc/st0 to st0

53 /∗ st1 acc ∗/
/∗ fifo connection∗/

55 #pragma altera accelerate enable flow control for pointer st1 acc/st0 st1 read
#pragma altera accelerate enable flow control for pointer st1 acc/c01 st1 read

57 #pragma altera accelerate enable flow control for pointer st1 acc/st1 buff0 write
#pragma altera accelerate connect variable st1 acc/st0 st1 read to st0 st1/out

59 #pragma altera accelerate connect variable st1 acc/c01 st1 read to c01 st1/out
#pragma altera accelerate connect variable st1 acc/st1 buff0 write to st1 buff0/in

61
/∗ data connection ∗/

63 #pragma altera accelerate connect variable st1 acc/mem pointer to altmemddr 0
#pragma altera accelerate connect variable st1 acc/st1 to st1

65
/∗ c01 acc ∗/

67 /∗ fifo connection∗/
#pragma altera accelerate enable flow control for pointer c01 acc/c01 st0 write

69 #pragma altera accelerate enable flow control for pointer c01 acc/c01 st1 write
#pragma altera accelerate enable flow control for pointer c01 acc/buff01 c01 read

71 #pragma altera accelerate connect variable c01 acc/c01 st0 write to c01 st0/in
#pragma altera accelerate connect variable c01 acc/c01 st1 write to c01 st1/in

73 #pragma altera accelerate connect variable c01 acc/buff01 c01 read to buff01 c01/out

75 /∗ data connection ∗/
#pragma altera accelerate connect variable c01 acc/buff0 to buff0

77 #pragma altera accelerate connect variable c01 acc/buff1 to buff1
#pragma altera accelerate connect variable c01 acc/st0 to st0

79 #pragma altera accelerate connect variable c01 acc/st1 to st1

81
int buff0 acc(int∗ restrict mem pointer)

83 {
int i , j ;

85 int dummy read = 0, tmp;
/∗ fifo communication declaration section ∗/

87 volatile int∗ restrict st1 buff0 read = (int ∗) ST1 BUFF0 OUT BASE;
volatile int∗ restrict buff0 buff1 write = (int ∗) BUFF0 BUFF1 IN BASE;

89 volatile int∗ restrict buff01 c01 write = (int ∗) BUFF01 C01 IN BASE;
/∗ local buffer declaration section ∗/

91 int∗ restrict buff0 = (int ∗) BUFF0 BASE;

93 for ( i = 0; i < MAX; i = i + 2 ∗ BLOCK)
{

95
dummy read += ∗st1 buff0 read;

97 for (j = 0, tmp = dummy read; j < BLOCK; j++)
{

99 if (j == BLOCK−37) //35+1+1
{

101 tmp = 0;
∗buff0 buff1 write = 0xdeadbee0;

103 }
buff0[ j ] = mem pointer[i + j];

105 }
∗buff01 c01 write = tmp; /∗ buffer 0 is ready ∗/

107 }
return dummy read;

109 }

111 int buff1 acc(int∗ restrict mem pointer)
{

113 int i , j ;
/∗ fifo communication declaration section ∗/

115 int dummy read = 0, tmp;
volatile int∗ restrict buff1 st0 write = (int ∗) BUFF1 ST0 IN BASE;

117 volatile int∗ restrict buff0 buff1 read = (int ∗) BUFF0 BUFF1 OUT BASE;
volatile int∗ restrict buff01 c01 write = (int ∗) BUFF01 C01 IN BASE;

119 /∗ local buffer declaration section ∗/



int∗ restrict buff1 = (int ∗) BUFF1 BASE;
121

for ( i = BLOCK; i < MAX; i = i + 2 ∗ BLOCK)
123 {

dummy read += ∗buff0 buff1 read;
125 for (j = 0, tmp = dummy read; j < BLOCK; j++)

{
127 if (j == BLOCK − 37)

{
129 tmp = 1;

∗buff1 st0 write = 0xdeadbee2;
131 }

buff1[ j ] = mem pointer[i + j];
133 }

∗buff01 c01 write = tmp; /∗ buffer 1 is ready ∗/
135 }

return dummy read;
137 }

139
int st0 acc(int∗ restrict mem pointer)

141 {
int i , j ;

143 /∗ fifo communication declaration section ∗/
int dummy read = 0, dummy read1 = 0, tmp;

145 volatile int∗ restrict buff1 st0 read = (int ∗) BUFF1 ST0 OUT BASE;
volatile int∗ restrict c01 st0 read = (int ∗) C01 ST0 OUT BASE;

147 volatile int∗ restrict st0 st1 write = (int ∗) ST0 ST1 IN BASE;
/∗ local buffer declaration section ∗/

149 int∗ restrict st0 = (int ∗) ST0 BASE;

151 for ( i = 0; i < MAX; i = i + 2 ∗ BLOCK)
{

153 dummy read += ∗buff1 st0 read;
dummy read1 += ∗c01 st0 read;

155 for (j = 0, tmp = dummy read + dummy read1; j < BLOCK+1; j++)
{

157 if (j == BLOCK) ∗st0 st1 write = 0xdeadbee4;
else mem pointer[i + j] = st0[j ];

159
}

161
}

163 return dummy read + dummy read1;
}

165
int st1 acc(int∗ restrict mem pointer)

167 {
int i , j ;

169 /∗ fifo communication declaration section ∗/
int dummy read = 0, dummy read1 = 0, tmp;

171 volatile int∗ restrict st0 st1 read = (int ∗) ST0 ST1 OUT BASE;
volatile int∗ restrict c01 st1 read = (int ∗) C01 ST1 OUT BASE;

173 volatile int∗ restrict st1 buff0 write = (int ∗) ST1 BUFF0 IN BASE;
/∗ local buffer declaration section ∗/

175 int∗ restrict st1 = (int ∗) ST1 BASE;

177 /∗ Send the token to buff0 in order to start the execution ∗/
∗st1 buff0 write = 0xdeadbee5;

179
for ( i = BLOCK; i < MAX; i = i + 2 ∗ BLOCK)

181 {
dummy read += ∗st0 st1 read;

183 dummy read1 += ∗c01 st1 read;
for (j = 0, tmp = dummy read + dummy read1; j < BLOCK + 1; j++)

185 {
if (j == BLOCK) ∗st1 buff0 write = 0xdeadbee6;

187 else mem pointer[i + j] = st1[j ];
}

189 }
return dummy read + dummy read1;

191 }

193 int c01 acc()
{

195 int i , j ;
/∗ fifo communication declaration section ∗/

197 int dummy read = 0, tmp;
volatile int∗ restrict c01 st0 write = (int ∗) C01 ST0 IN BASE;

199 volatile int∗ restrict c01 st1 write = (int ∗) C01 ST1 IN BASE;
volatile int∗ restrict buff01 c01 read = (int ∗) BUFF01 C01 OUT BASE;

201 /∗ local buffer declaration section ∗/
int∗ restrict buff0 = (int ∗) BUFF0 BASE;

203 int∗ restrict buff1 = (int ∗) BUFF1 BASE;
int∗ restrict st0 = (int ∗) ST0 BASE;

205 int∗ restrict st1 = (int ∗) ST1 BASE;

207



for ( i = 0; i < MAX; i = i + BLOCK)
209 {

dummy read = ∗buff01 c01 read;
211 if (dummy read == 0)

{
213 for (j = 0, tmp = dummy read +1; j < BLOCK; j++)

{
215 st0[ j ] = buff0[j ];

}
217

∗c01 st0 write = st0[j ];
219 }

if (dummy read == 1)
221 {

for (j = 0, tmp = dummy read + 2; j < BLOCK; j++)
223 {

st1[ j ] = buff1[j ];
225 }

227 ∗c01 st1 write = st1[j ];
}

229
}

231
return dummy read;

233 }

235 int accelerator (int∗ restrict mem pointer0, int∗ restrict mem pointer1)
{

237 buff0 acc(mem pointer0);
buff1 acc(mem pointer0);

239 c01 acc() ;
st0 acc(mem pointer1);

241 st1 acc(mem pointer1);
return 0;

243 }

7.3.2 Manually-transformed vector-sum double-buffering implementation

We give here the source code that implements the double-buffering block transfer of the vector
sum example. It can be directly synthesized using the Altera C2H tool. The code was obtained by
manual transformations of the original code.

1 #include "system.h"

#include "global.h"

3
#define BLOCK 100

5 #define MAX 1000

7 /∗ #pragma altera accelerate enable interrupt for function accelerator ∗/
#pragma altera accelerate enable interrupt for function buff0 acc

9 #pragma altera accelerate enable interrupt for function buff1 acc
#pragma altera accelerate enable interrupt for function st0 acc

11 //#pragma altera accelerate enable interrupt for function st1 acc
#pragma altera accelerate enable interrupt for function c01 acc

13
/∗ buff0 acc ∗/

15 /∗ fifo connection∗/
#pragma altera accelerate enable flow control for pointer buff0 acc/st1 buff0 read

17 #pragma altera accelerate enable flow control for pointer buff0 acc/buff0 buff1 write
#pragma altera accelerate enable flow control for pointer buff0 acc/buff01 c01 write

19 #pragma altera accelerate connect variable buff0 acc/st1 buff0 read to st1 buff0/out
#pragma altera accelerate connect variable buff0 acc/buff0 buff1 write to buff0 buff1/in

21 #pragma altera accelerate connect variable buff0 acc/buff01 c01 write to buff01 c01/in

23 /∗ data connection ∗/
//#pragma altera accelerate connect variable buff0 acc /ext memp to altmemddr 0

25 #pragma altera accelerate connect variable buff0 acc/mem pointers to altmemddr 0
#pragma altera accelerate connect variable buff0 acc/itrs arg to altmemddr 0

27 #pragma altera accelerate connect variable buff0 acc/ememp to altmemddr 0
#pragma altera accelerate connect variable buff0 acc/mem pointersp to altmemddr 0

29 #pragma altera accelerate connect variable buff0 acc/itrs argitr to altmemddr 0
#pragma altera accelerate connect variable buff0 acc/itrs argblks to altmemddr 0

31
/∗ local data connection ∗/

33 #pragma altera accelerate connect variable buff0 acc/buff0 0 to buff0 0
#pragma altera accelerate connect variable buff0 acc/buff0 1 to buff0 1

35 #pragma altera accelerate connect variable buff0 acc/lmemp to buff0 0
#pragma altera accelerate connect variable buff0 acc/lmemp to buff0 1

37
/∗ buff1 acc ∗/

39 /∗ fifo connection∗/



#pragma altera accelerate enable flow control for pointer buff1 acc/buff1 st0 write
41 #pragma altera accelerate enable flow control for pointer buff1 acc/buff0 buff1 read

#pragma altera accelerate enable flow control for pointer buff1 acc/buff01 c01 write
43 #pragma altera accelerate connect variable buff1 acc/buff1 st0 write to buff1 st0/in

#pragma altera accelerate connect variable buff1 acc/buff0 buff1 read to buff0 buff1/out
45 #pragma altera accelerate connect variable buff1 acc/buff01 c01 write to buff01 c01/in

47 /∗ data connection ∗/
#pragma altera accelerate connect variable buff1 acc/ext memp to altmemddr 0

49 #pragma altera accelerate connect variable buff1 acc/mem pointers to altmemddr 0
#pragma altera accelerate connect variable buff1 acc/itrs arg to altmemddr 0

51 #pragma altera accelerate connect variable buff1 acc/ememp to altmemddr 0
#pragma altera accelerate connect variable buff1 acc/mem pointersp to altmemddr 0

53 #pragma altera accelerate connect variable buff1 acc/itrs argitr to altmemddr 0
#pragma altera accelerate connect variable buff1 acc/itrs argblks to altmemddr 0

55
/∗ local data connection ∗/

57 #pragma altera accelerate connect variable buff1 acc/buff1 0 to buff1 0
#pragma altera accelerate connect variable buff1 acc/buff1 1 to buff1 1

59 #pragma altera accelerate connect variable buff1 acc/lmemp to buff1 0
#pragma altera accelerate connect variable buff1 acc/lmemp to buff1 1

61
/∗ st0 acc ∗/

63 /∗ fifo connection∗/
#pragma altera accelerate enable flow control for pointer st0 acc/buff1 st0 read

65 #pragma altera accelerate enable flow control for pointer st0 acc/c01 st0 read
#pragma altera accelerate enable flow control for pointer st0 acc/st0 st1 write

67 #pragma altera accelerate connect variable st0 acc/buff1 st0 read to buff1 st0/out
#pragma altera accelerate connect variable st0 acc/c01 st0 read to c01 st0/out

69 #pragma altera accelerate connect variable st0 acc/st0 st1 write to st0 st1/in

71 /∗ data connection ∗/
#pragma altera accelerate connect variable st0 acc/ext memp to altmemddr 0

73 #pragma altera accelerate connect variable st0 acc/mem pointers to altmemddr 0
#pragma altera accelerate connect variable st0 acc/itrs arg to altmemddr 0

75 #pragma altera accelerate connect variable st0 acc/st0 to st0

77 /∗ st1 acc ∗/
/∗ fifo connection∗/

79 #pragma altera accelerate enable flow control for pointer st1 acc/st0 st1 read
#pragma altera accelerate enable flow control for pointer st1 acc/c01 st1 read

81 #pragma altera accelerate enable flow control for pointer st1 acc/st1 buff0 write
#pragma altera accelerate connect variable st1 acc/st0 st1 read to st0 st1/out

83 #pragma altera accelerate connect variable st1 acc/c01 st1 read to c01 st1/out
#pragma altera accelerate connect variable st1 acc/st1 buff0 write to st1 buff0/in

85
/∗ data connection ∗/

87 #pragma altera accelerate connect variable st1 acc/ext memp to altmemddr 0
#pragma altera accelerate connect variable st1 acc/mem pointers to altmemddr 0

89 #pragma altera accelerate connect variable st1 acc/itrs arg to altmemddr 0
#pragma altera accelerate connect variable st1 acc/st1 to st1

91
/∗ c01 acc ∗/

93 /∗ fifo connection∗/
#pragma altera accelerate enable flow control for pointer c01 acc/c01 st0 write

95 #pragma altera accelerate enable flow control for pointer c01 acc/c01 st1 write
#pragma altera accelerate enable flow control for pointer c01 acc/buff01 c01 read

97 #pragma altera accelerate connect variable c01 acc/c01 st0 write to c01 st0/in
#pragma altera accelerate connect variable c01 acc/c01 st1 write to c01 st1/in

99 #pragma altera accelerate connect variable c01 acc/buff01 c01 read to buff01 c01/out

101 /∗ data connection ∗/
#pragma altera accelerate connect variable c01 acc/buff0 0 to buff0 0

103 #pragma altera accelerate connect variable c01 acc/buff0 1 to buff0 1
#pragma altera accelerate connect variable c01 acc/buff1 0 to buff1 0

105 #pragma altera accelerate connect variable c01 acc/buff1 1 to buff1 1
#pragma altera accelerate connect variable c01 acc/st0 to st0

107 #pragma altera accelerate connect variable c01 acc/st1 to st1
#pragma altera accelerate connect variable c01 acc/itrs arg to altmemddr 0

109

111 int buff0 acc(memory pointers∗ restrict mem pointers, iterators∗ restrict itrs arg )
{

113 int i , j , ii ,k;
int dummy read = 0, tmp;

115 /∗ fifo communication declaration section ∗/
volatile int∗ restrict st1 buff0 read = (int ∗) ST1 BUFF0 OUT BASE;

117 volatile int∗ restrict buff0 buff1 write = (int ∗) BUFF0 BUFF1 IN BASE;
volatile int∗ restrict buff01 c01 write = (int ∗) BUFF01 C01 IN BASE;

119 /∗ local buffer declaration section ∗/
int∗ restrict lbuffs [10];

121 int∗ restrict buff0 0 = (int ∗) BUFF0 0 BASE;
int∗ restrict buff0 1 = (int ∗) BUFF0 1 BASE;

123
int∗ restrict ememp;

125 int∗ restrict lmemp;
int offset ext memp, offset bufflocal ;

127 int∗ ext memp[10];



int∗ restrict ∗mem pointersp;
129 int∗ restrict itrs argitr ;

int∗ restrict itrs argblks ;
131 int nmp;

int itrs [10];
133 int blks [10];

int nb iterators , nb blocks;
135 int itr0 , blk0;

int∗ restrict lbuff ;
137 int∗ restrict extmemp;

int jn, ij ;
139 lbuffs [0] = buff0 0;

lbuffs [1] = buff0 1;
141

/∗ copy memory pointers to local memory ∗/
143 nmp = mem pointers−>nmp;

mem pointersp = mem pointers−>p;
145 itrs argitr = itrs arg−>itr;

itrs argblks = itrs arg−>blks;
147 for ( i = 0; i < nmp; i++) ext memp[i] = mem pointersp[i];

/∗ copy iterators to local memory ∗/
149 nb iterators = itrs arg−>nb iterators;

nb blocks = itrs arg−>nb blocks;
151 for ( i = 0; i < nb iterators; i++) itrs[i ] = itrs argitr [ i ];

for ( i = 0; i < nb blocks; i++) blks[i] = itrs argblks [ i ];
153 itr0 = itrs [0];

blk0 = blks [0];
155 lbuff = lbuffs [0];

extmemp = ext memp[0];
157 for ( ii = 0; ii < itr0; ii = ii + 2 ∗ blk0)

{
159 dummy read += ∗st1 buff0 read;

j = 0; i = 0; jn = 0; ij = 0;
161 for (k = 0, tmp = dummy read; k < blk0 ∗ 2; k++) //∗2 for a and b

{
163 offset bufflocal = i;

offset ext memp = ii + i;
165

if ( i < blk0 − 1) {i++; }
167 else i = 0;

169 if ( ij == blk0) {j++; ij = 0;}
else ij++;

171

173
/∗ sync code ∗/

175 if (k == blk0 ∗ 2 − 1) //35+1+1
{

177 tmp = 0;
∗buff0 buff1 write = 0xdeadbee2;

179 }
/∗ transfer code ∗/

181
lmemp = (int ∗) lbuffs[j ] + offset bufflocal ;

183
}

185 ∗buff01 c01 write = tmp; /∗ buffer 0 is ready ∗/
}

187 return dummy read;
}

189
int buff1 acc(memory pointers∗ restrict mem pointers, iterators∗ restrict itrs arg )

191 {
int i , j , ii ,k;

193 int dummy read = 0, tmp;
/∗ fifo communication declaration section ∗/

195 volatile int∗ restrict buff1 st0 write = (int ∗) BUFF1 ST0 IN BASE;
volatile int∗ restrict buff0 buff1 read = (int ∗) BUFF0 BUFF1 OUT BASE;

197 volatile int∗ restrict buff01 c01 write = (int ∗) BUFF01 C01 IN BASE;
/∗ local buffer declaration section ∗/

199 int∗ restrict lbuffs [10];
int∗ restrict buff1 0 = (int ∗) BUFF1 0 BASE;

201 int∗ restrict buff1 1 = (int ∗) BUFF1 1 BASE;

203 int∗ restrict ememp;
int∗ restrict lmemp;

205 int offset ext memp, offset bufflocal ;

207 int∗ restrict ext memp[10];
int∗∗ restrict mem pointersp;

209 int∗ restrict itrs argitr ;
int∗ restrict itrs argblks ;

211 int nmp;
int itrs [10];

213 int blks [10];
int nb iterators , nb blocks;

215 int∗ restrict base addr ext;



int∗ restrict base addr loc;
217 int jn, ij ;

lbuffs [0] = buff1 0;
219 lbuffs [1] = buff1 1;

221 /∗ copy memory pointers to local memory ∗/
nmp = mem pointers−>nmp;

223 mem pointersp = mem pointers−>p;
itrs argitr = itrs arg−>itr;

225 itrs argblks = itrs arg−>blks;
for ( i = 0; i < nmp; i++) ext memp[i] = mem pointersp[i];

227 /∗ copy iterators to local memory ∗/
nb iterators = itrs arg−>nb iterators;

229 nb blocks = itrs arg−>nb blocks;
for ( i = 0; i < nb iterators; i++) itrs[i ] = itrs argitr [ i ];

231 for ( i = 0; i < nb blocks; i++) blks[i] = itrs argblks [ i ];

233 for ( ii = blks [0]; ii < itrs [0] + blks [0]; ii = ii + 2 ∗ blks [0])
{

235 dummy read += ∗buff0 buff1 read;
j = 0; i = 0; ij = 0;

237 for (k = 0, tmp = dummy read; k < blks[0] ∗ 2; k++) //∗2 for a and b
{

239 offset bufflocal = i;
offset ext memp = ii + i;

241 if ( i < blks[0] − 1) {i++; }
else i = 0;

243 if ( ij == blks[0]) {j++; ij = 0;}
else ij++;

245 /∗ sync code ∗/
if (k == blks[0] − 1) //35+1+1

247 {
tmp = 1;

249 ∗buff1 st0 write = 0xdeadbee2;
}

251 /∗ transfer code ∗/
ememp = (int ∗) ext memp[j] + offset ext memp;

253 lmemp = (int ∗) lbuffs[j ] + offset bufflocal ;
∗lmemp = ∗ememp;

255 }
∗buff01 c01 write = tmp; /∗ buffer 1 is ready ∗/

257 }
return dummy read;

259 }

261 int st0 acc (memory pointers∗ restrict mem pointers, iterators∗ restrict itrs arg )
{

263 int i , j ;
/∗ fifo communication declaration section ∗/

265 int dummy read = 0, dummy read1 = 0, tmp;
volatile int∗ restrict buff1 st0 read = (int ∗) BUFF1 ST0 OUT BASE;

267 volatile int∗ restrict c01 st0 read = (int ∗) C01 ST0 OUT BASE;
volatile int∗ restrict st0 st1 write = (int ∗) ST0 ST1 IN BASE;

269 /∗ local buffer declaration section ∗/
int∗ restrict st0 = (int ∗) ST0 BASE;

271 int nmp;
int itrs [10];

273 int blks [10];
int∗ restrict ext memp;

275 ext memp = mem pointers−>p[2];
itrs [0] = itrs arg−>itr[0];

277 blks [0] = itrs arg−>blks[0];

279
for ( i = 0; i < itrs [0]; i = i + 2 ∗ blks [0])

281 {
dummy read += ∗buff1 st0 read;

283 dummy read1 += ∗c01 st0 read;
for (j = 0, tmp = dummy read + dummy read1; j < blks[0]; j++)

285 {
if (j == blks[0] − 1) ∗st0 st1 write = 0xdeadbee4;

287 ext memp[i + j] = st0[j ];

289 }

291 }
return dummy read + dummy read1;

293 }

295
int st1 acc (memory pointers∗ restrict mem pointers, iterators∗ restrict itrs arg )

297 {
int i , j ;

299 /∗ fifo communication declaration section ∗/
int dummy read = 0, dummy read1 = 0, tmp;

301 volatile int∗ restrict st0 st1 read = (int ∗) ST0 ST1 OUT BASE;
volatile int∗ restrict c01 st1 read = (int ∗) C01 ST1 OUT BASE;

303 volatile int∗ restrict st1 buff0 write = (int ∗) ST1 BUFF0 IN BASE;



/∗ local buffer declaration section ∗/
305 int∗ restrict st1 = (int ∗) ST1 BASE;

int nmp;
307 int itrs [10];

int blks [10];
309 int∗ ext memp;

ext memp = mem pointers−>p[2];
311 itrs [0] = itrs arg−>itr[0];

blks [0] = itrs arg−>blks[0];
313

/∗ Send the token to buff0 in order to start the execution ∗/
315 ∗st1 buff0 write = 0xdeadbee5;

317 for ( i = blks [0]; i < itrs [0] + blks [0]; i = i + 2 ∗ blks [0])
{

319 dummy read += ∗st0 st1 read;
dummy read1 += ∗c01 st1 read;

321 for (j = 0, tmp = dummy read + dummy read1; j < blks[0]; j++)
{

323 if (j == blks[0] − 1) ∗st1 buff0 write = 0xdeadbee6;
ext memp[i + j] = st1[j ];

325
}

327
}

329 return dummy read + dummy read1;
}

331

333 int c01 acc( iterators ∗ restrict itrs arg )
{

335 int i , j ;
/∗ fifo communication declaration section ∗/

337 int dummy read = 0, tmp;
volatile int∗ restrict c01 st0 write = (int ∗) C01 ST0 IN BASE;

339 volatile int∗ restrict c01 st1 write = (int ∗) C01 ST1 IN BASE;
volatile int∗ restrict buff01 c01 read = (int ∗) BUFF01 C01 OUT BASE;

341 /∗ local buffer declaration section ∗/
int∗ restrict buff0 0 = (int ∗) BUFF0 0 BASE;

343 int∗ restrict buff0 1 = (int ∗) BUFF0 1 BASE;
int∗ restrict buff1 0 = (int ∗) BUFF1 0 BASE;

345 int∗ restrict buff1 1 = (int ∗) BUFF1 1 BASE;
int∗ restrict st0 = (int ∗) ST0 BASE;

347 int∗ restrict st1 = (int ∗) ST1 BASE;

349 int itrs [10];
int blks [10];

351 int∗ ext memp;
itrs [0] = itrs arg−>itr[0];

353 blks [0] = itrs arg−>blks[0];

355 for ( i = 0; i < itrs [0]; i = i + blks[0])
{

357 dummy read = ∗buff01 c01 read;
if (dummy read == 0)

359 {
for (j = 0, tmp = dummy read +1; j < blks[0]; j++)

361 {
st0[ j ] = buff0 0[j ] + buff0 1[j ];

363 }

365 ∗c01 st0 write = st0[j ];
}

367 if (dummy read == 1)
{

369 for (j = 0, tmp = dummy read + 2; j < blks[0]; j++)
{

371 st1[ j ] = buff1 0[j ] + buff1 1[j ];
}

373
∗c01 st1 write = st1[j ];

375 }

377 }

379 return dummy read;
}



7.3.3 Manually-transformed matrix-multiply double-buffering implementation

Transformation steps

We give here the source code that implements the double-buffering block transfer for the matrix-
matrix multiplication. It can be directly synthesized using the Altera C2H tool. The code was
obtained by manual transformations of the original code. The array size and the block size are sent
by parameters to the code, i.e., are not hard-coded.

1
//================================================================================

3 for ( i = 0; i < n0; i++)
for (j = 0; j < m1; j++)

5 {
∗(c + (i ∗ m1 + j)) = 0;

7 for (k = 0; k < m0; k++)
{

9 ∗(c + (i ∗ m1 + j)) += ∗(a + (i ∗ m0 + k)) ∗ ∗(b + (k ∗ m1 + j));
}

11 }

13 //================================================================================
//strip−mine on i,j,k;

15 //================================================================================
for ( ii = 0; ii < n0; ii+=block ii)

17 for ( i = ii ; i < min(ii + block ii ,n0); i++)
for ( jj = 0; jj < m1; jj+=block jj)

19 for (j = jj ; j < min(jj + block jj,m1); j++)
{

21 ∗(c + (i ∗ m1 + j)) = 0;
for (kk = 0; kk < m0; kk+=block kk)

23 for (k = kk; k < min(kk + block kk,m0); k++)
{

25 ∗(c + (i ∗ m1 + j)) += ∗(a + (i ∗ m0 + k)) ∗ ∗(b + (k ∗ m1 + j));
}

27 }

29 //================================================================================
// interchange (i , jj ) (kk, j) (kk, jj )

31 //================================================================================
for ( ii = 0; ii < n0; ii+=block ii)

33 for ( jj = 0; jj < m1; jj+=block jj)
for (kk = 0; kk < m0; kk+=block kk)

35 for ( i = ii ; i < min(ii + block ii ,n0); i++)
for (j = jj ; j < min(jj + block jj,m1); j++)

37 {
if (kk == 0) ∗(c + (i ∗ m1 + j)) = 0;

39
for (k = kk; k < min(kk + block kk,m0); k++)

41 {
∗(c + (i ∗ m1 + j)) += ∗(a + (i ∗ m0 + k)) ∗ ∗(b + (k ∗ m1 + j));

43 }
}

45
//================================================================================

47 // insert temporary variables c tmp, a tmp, b tmp
//================================================================================

49 for ( ii = 0; ii < n0; ii+=block ii)
for ( jj = 0; jj < m1; jj+=block jj)

51 for (kk = 0; kk < m0; kk+=block kk)
for ( i = ii ; i < min(ii + block ii ,n0); i++)

53 for (j = jj ; j < min(jj + block jj,m1); j++)
{

55 ∗(c tmp + (i ∗ block jj + j)) = ∗(c + (i ∗ m1 + j));
if (kk == 0) ∗(c tmp + (i ∗ block jj + j)) = 0;

57
for (k = kk; k < min(kk + block kk,m0); k++)

59 {
∗(a tmp + (i ∗ block kk + k)) = ∗(a + (i ∗ m0 + k));

61 ∗(b tmp + (k ∗ block jj + j)) = ∗(b + (k ∗ m1 + j));
∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));

63 }
if ( kk >= m0) ∗(c + (i ∗ m1 + j)) = ∗(c tmp + (i ∗ block jj + j));

65 }

67 //================================================================================
// adjust domains to the c tmp sizes and addresses (rename variables i ’ = i − ii ,

69 // i = i’ + ii and shift tmp address space by ii , remove WW copy)
//================================================================================

71 for ( ii = 0; ii < n0; ii+=block ii)
for ( jj = 0; jj < m1; jj+=block jj)

73 for (kk = 0; kk < m0; kk+=block kk)
for ( i = 0; i < min(block ii,n0 − ii) ; i++)



75 for (j = 0; j < min(block jj,m1 − jj); j++)
{

77 if (kk == 0) ∗(c tmp + (i ∗ block jj + j)) = 0;
for (k = 0; k < min(kk + block kk, m0 − kk); k++)

79 {
∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

81 ∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));
∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));

83 }
if ( kk >= m0) ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));

85 }

87 //================================================================================
//loop distribution on tmp fetch and computation

89 //================================================================================

91 for ( ii = 0; ii < n0; ii+= block ii)
for ( jj = 0; jj < m1; jj+=block jj)

93 for (kk = 0; kk < m0; kk+=block kk)
{

95 if (kk == 0)
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

97 for (j = 0; j < min(block jj, m1 − jj); jj++)
∗(c tmp + (i ∗ block jj + j)) = 0;

99
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

101 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

103 for (j = 0; j < min(block jj, m1 − jj); jj++)
for (k = 0; k < min(block kk, m0 − kk); k++)

105 ∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

107 for (j = 0; j < min(block jj, m1 − jj); jj++)
for (k = 0; k < min(block kk, m0 − kk); k++)

109 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));
if (kk >= m0)

111 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

113 ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
}

115 }
//================================================================================

117 //unroll by 2 the parallel loop in this case ii , and fuse ii , jj , kk loops
//================================================================================

119
for ( ii = 0; ii < n0; ii+= 2 ∗ block ii)

121 for ( jj = 0; jj < m1; jj+=block jj)
for (kk = 0; kk < m0; kk+=block kk)

123 {
if (kk == 0)

125 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

127 ∗(c tmp + (i ∗ block jj + j)) = 0;
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

129 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

131 for (j = 0; j < min(block jj, m1 − jj); jj++)
for (k = 0; k < min(block kk, m0 − kk); k++)

133 ∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

135 for (j = 0; j < min(block jj, m1 − jj); jj++)
for (k = 0; k < min(block kk, m0 − kk); k++)

137 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));
if (kk >= m0)

139 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

141 ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));

143 if (kk == 0)
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

145 for (j = 0; j < min(block jj, m1 − jj); jj++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;

147 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (k = 0; k < min(block kk, m0 − kk); k++)

149 if ( ii + block ii < n0) ∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));
for (j = 0; j < min(block jj, m1 − jj); jj++)

151 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

153 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

155 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));

157 if (kk >= m0)
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

159 for (j = 0; j < min(block jj, m1 − jj); jj++)
if ( ii + block ii < n0) ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));

161 }
}



163 //================================================================================
// perform code motion to close up double−buffering transfers

165 //================================================================================
for ( ii = 0; ii < n0; ii+= 2 ∗ block ii)

167 for ( jj = 0; jj < m1; jj+=block jj)
for (kk = 0; kk < m0; kk+=block kk)

169 {
// buff0 load

171 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (k = 0; k < min(block kk, m0 − kk); k++)

173 ∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));
for (j = 0; j < min(block jj, m1 − jj); jj++)

175 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

177 // buff1 load
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

179 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

181 for (j = 0; j < min(block jj, m1 − jj); jj++)
for (k = 0; k < min(block kk, m0 − kk); k++)

183 if ( ii + block ii < n0) ∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));
//perform computation on buff0

185 if (kk == 0)
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

187 for (j = 0; j < min(block jj, m1 − jj); jj++)
∗(c tmp + (i ∗ block jj + j)) = 0;

189 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

191 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));

193 //store st0 buffer
if (kk >= m0)

195 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

197 ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
//perform computation on buff1

199 if (kk == 0)
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

201 for (j = 0; j < min(block jj, m1 − jj); jj++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;

203 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

205 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));

207 //store st1 buffer
if (kk >= m0)

209 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

211 if ( ii + block ii < n0) ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
}

213 }
//================================================================================

215 //perform array privatization on tmp a, tmp b, tmp c (no data dependence between buff0 and buff1
//================================================================================

217 for ( ii = 0; ii < n0; ii+= 2 ∗ block ii)
for ( jj = 0; jj < m1; jj+=block jj)

219 for (kk = 0; kk < m0; kk+=block kk)
{

221 printf ("ii = %d, jj = %d, kk = %d, i = %d, j = %d, k = %d\n" , ii , jj , kk,i , j , k);
// buff0 load

223 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (k = 0; k < min(block kk, m0 − kk); k++)

225 ∗(a tmp 0 + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));
for (j = 0; j < min(block jj, m1 − jj); j++)

227 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(b tmp 0 + (k ∗ m1 + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

229 // buff1 load
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

231 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(a tmp 1 + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

233 for (j = 0; j < min(block jj, m1 − jj); j++)
for (k = 0; k < min(block kk, m0 − kk); k++)

235 if ( ii + block ii < n0) ∗(b tmp 1 + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));
//perform computation on buff0

237 if (kk == 0)
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

239 for (j = 0; j < min(block jj, m1 − jj); j++)
∗(c tmp + (i ∗ block jj + j)) = 0;

241 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

243 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));

245 //store st0 buffer
if (kk + block kk >= m0)

247 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

249 ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
//perform computation on buff1



251 if (kk == 0)
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

253 for (j = 0; j < min(block jj, m1 − jj); j++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;

255 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

257 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 1 + (i ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));

259 //store st1 buffer
if (kk + block kk>= m0)

261 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

263 if ( ii + block ii < n0) ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
}

265
//================================================================================

267 //transform multiple nested loops into 2 loops format ( linearize the loops)
//================================================================================

269
ii = 0;

271 jj = 0;
kk = 0;

273 for (t = 0; t < n0 ∗ m1 ∗ m0; t+= 2 ∗ block ii + block jj + block kk)
{

275
if ( ii < n0) ii+= 2 ∗ block ii;

277 if ( jj < m1) jj+= block jj;
if (kk < m0) kk+= block kk;

279 min ii = min(block ii, n0 − ii) ;
min jj = min(block jj, m1 − jj);

281 min kk = min(block kk, m0 − kk);
i = 0;

283 j = 0;
k = 0;

285 s = 0;
for (r = 0; r < min ii ∗ min kk; r++)

287 {
if (s == 0){

289 offset bufflocal = i ∗ block kk + k;
offset ext memp = (ii + i) ∗ m0 + k + kk;

291 if (k < min kk) k++;
else{

293 k = 0;
if ( i < min ii − 1) i++;

295 else {i = 0; s++;}
}

297 lmemp = a tmp 0 + offset bufflocal;
ememp = a + offset ext memp;

299
}else if (s == 1){

301 offset bufflocal = k ∗ block jj + j;
offset ext memp = (k + kk) ∗ m1 + j + jj;

303 if (k < min kk) k++;
else{

305 k = 0;
if (j < min jj − 1) j++;

307 else {j = 0; s++;}
lmemp = b tmp 0 + offset bufflocal;

309 ememp = b + offset ext memp;
}

311 }
/∗transfer code ∗/

313 ∗lmemp = ∗ememp;
}

315
// buff1 load

317 if ( ii + block ii < n0) {
i = block ii ;

319 for (r = 0; r < min ii ∗ min kk; r++)
{

321 if (s == 0){
offset bufflocal = i ∗ block kk + k;

323 offset ext memp = (ii + i) ∗ m0 + k + kk;
if (k < min kk) k++;

325 else{
k = 0;

327 if ( i < min ii − 1) i++;
else {i = 0; s++;}

329 }
lmemp = a tmp 1 + offset bufflocal;

331 ememp = a + offset ext memp;

333 }else if (s == 1){
offset bufflocal = k ∗ block jj + j;

335 offset ext memp = (k + kk) ∗ m1 + j + jj;
if (k < min kk) k++;

337 else{
k = 0;



339 if (j < min jj − 1) j++;
else {j = 0; s++;}

341 lmemp = b tmp 1 + offset bufflocal;
ememp = b + offset ext memp;

343 }
}

345 /∗transfer code ∗/
∗lmemp = ∗ememp;

347 }
}

349
//perform computation on buff0

351 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

353 ∗(c tmp + (i ∗ block jj + j)) = 0;
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

355 for (j = 0; j < min(block jj, m1 − jj); jj++)
for (k = 0; k < min(block kk, m0 − kk); k++)

357 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));
//store st0 buffer

359 for (r = 0; r < min ii ∗ min jj ; r++)
{

361 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

363 if (k < min kk) k++;
else{

365 k = 0;
if ( i < min ii − 1) i++;

367 else {i = 0; s++;}
}

369 lmemp = c tmp + offset bufflocal;
ememp = c + offset ext memp;

371 /∗transfer code ∗/
∗ememp = ∗lmemp;

373 }

375 //perform computation on buff1
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

377 for (j = 0; j < min(block jj, m1 − jj); jj++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;

379 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); jj++)

381 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + block ii < n0) ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 1 + (i ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));

383 //store st1 buffer
if ( ii + block ii < n0){

385 i = block ii ;
for (r = 0; r < min ii ∗ min jj ; r++)

387 {
offset bufflocal = i ∗ block jj + j;

389 offset ext memp = (ii + i) ∗ m1 + j + jj;
if (k < min kk) k++;

391 else{
k = 0;

393 if ( i < min ii − 1) i++;
else {i = 0; s++;}

395 }
lmemp = c tmp + offset bufflocal;

397 ememp = c + offset ext memp;
/∗transfer code ∗/

399 ∗ememp = ∗lmemp;
}

401 }

403 }
}

Bug testing setup

This code represents an intermediate representation of the matrix-matrix multiplication code.
It was compiled and executed in order to eliminate all the possible bugs obtained when transforming
the code by hand.

1 #include <stdio.h>
#include <math.h>

3
#define MAXN0 20

5 #define MAXM0 20
#define MAXM1 20

7
#define BL II 1

9 #define BL JJ 1



#define BL KK 1
11

#define BL II MAX MAXN0
13 #define BL JJ MAX MAXM0

#define BL KK MAX MAXM1
15

//#define DEBUG
17

int a[MAXN0 ∗ MAXM0];
19 int b[MAXM0 ∗ MAXM1];

int c[MAXN0 ∗ MAXM1];
21 int c test [MAXN0 ∗ MAXM1];

23 int a tmp[BL II MAX ∗ BL KK MAX];
int b tmp[BL JJ MAX ∗ BL KK MAX];

25 int a tmp 0[BL II MAX ∗ BL KK MAX];
int b tmp 0[BL JJ MAX ∗ BL KK MAX];

27 int a tmp 1[BL II MAX ∗ BL KK MAX];
int b tmp 1[BL JJ MAX ∗ BL KK MAX];

29 int c tmp[BL II MAX ∗ BL JJ MAX ∗ 2];

31 int dbg0, dbg1, dbg2;

33 int min(int min0, int min1)
{

35 if (min0 < min1) return min0;
else return min1;

37 }

39 int matrix multiply hw inter 0 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int
block jj ,int block kk)

{
41 int i , j , k;

int ii , jj , kk;
43 int dbg0, dbg1;

45 int tmp;
i = 0;

47 j = 0;
k = 0;

49 for ( ii = 0; ii < n0; ii+= block ii)
for ( jj = 0; jj < m1; jj+=block jj)

51 for (kk = 0; kk < m0; kk+=block kk)
{

53 printf ("ii = %d, jj = %d, kk = %d, i = %d, j = %d, k = %d\n" , ii , jj , kk, i , j , k);
if (kk == 0)

55 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

57 ∗(c tmp + (i ∗ block jj + j)) = 0;

59 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (k = 0; k < min(block kk, m0 − kk); k++)

61 {
∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

63 printf ("Read a = %d value\n" , ∗(a + ((i + ii) ∗ m0 + k + kk)));
}

65 for (k = 0; k < min(block kk, m0 − kk); k++)
for (j = 0; j < min(block jj, m1 − jj); j++)

67 {
∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

69 printf ("Read b = %d value\n" , ∗(b + ((k + kk) ∗ m1 + j + jj)));
}

71 printf ("A_tmp\n") ;
for (dbg0 = 0; dbg0 < min(block ii, n0 − ii); dbg0++)

73 {
for (dbg1 = 0; dbg1 < min(block kk, m0 − kk); dbg1++)

75 printf ("%d " , ∗(a tmp + (dbg0 ∗ block kk + dbg1)));
printf ("\n") ;

77 }
printf ("B_tmp\n") ;

79 for (dbg1 = 0; dbg1 < min(block kk, m0 − kk); dbg1++)
{

81 for (dbg0 = 0; dbg0 < min(block jj, m1 − jj); dbg0++)
{

83 printf ("%d " , ∗(b tmp + (dbg1 ∗ block jj + dbg0)));

85 }
printf ("\n") ;

87 }

89 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

91 for (k = 0; k < min(block kk, m0 − kk); k++)
{

93 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));
printf ("Compute c_tmp (%d) += a_tmp (%d) * b_tmp (%d) \t | i = %d, j = %d, k = %d\n",∗(c tmp + (i ∗ block jj + j)), ∗(a tmp

+ (i ∗ block kk + k)), ∗(b tmp + (k ∗ block jj + j)), i , j , k);
95 }



if (kk + block kk >= m0)
97 {

printf ("Writing c\n") ;
99 for ( i = 0; i < min(block ii, n0 − ii) ; i++)

for (j = 0; j < min(block jj, m1 − jj); j++)
101 ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));

}
103 }

return 0;
105 }

107 int matrix multiply hw inter 1 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int
block jj ,int block kk)

{
109 int i , j , k;

int ii , jj , kk;
111 int min ii , min jj , min kk;

int tmp;
113

i = 0;
115 j = 0;

k = 0;
117

for ( ii = 0; ii < n0; ii+= 2 ∗ block ii)
119 for ( jj = 0; jj < m1; jj+=block jj)

for (kk = 0; kk < m0; kk+=block kk)
121 {

123 min ii = min(block ii, n0 − ii) ;
min jj = min(block jj, m1 − jj);

125 min kk = min(block kk, m0 − kk);

127 printf ("ii = %d, jj = %d, kk = %d, i = %d, j = %d, k = %d\n" , ii , jj , kk,i , j , k);
// buff0 load

129 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (k = 0; k < min(block kk, m0 − kk); k++)

131 ∗(a tmp 0 + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

133 for (k = 0; k < min(block kk, m0 − kk); k++)
for (j = 0; j < min(block jj, m1 − jj); j++)

135 ∗(b tmp 0 + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

137 printf ("Buff0 transfer:\n") ;
printf ("A_tmp_0\n") ;

139 for (dbg0 = 0; dbg0 < min ii; dbg0++)
{

141 for (dbg1 = 0; dbg1 < min kk; dbg1++)
printf ("%d " , ∗(a tmp 0 + (dbg0 ∗ block kk + dbg1)));

143 printf ("\n") ;
}

145 printf ("B_tmp_0\n") ;
for (dbg1 = 0; dbg1 < min kk; dbg1++)

147 {
for (dbg0 = 0; dbg0 < min jj; dbg0++)

149 {
printf ("%d " , ∗(b tmp 0 + (dbg1 ∗ block jj + dbg0)));

151
}

153 printf ("\n") ;
}

155
// buff1 load

157 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (k = 0; k < min(block kk, m0 − kk); k++)

159 {
if ( ii + i < n0) {

161 ∗(a tmp 1 + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));
printf ("Read a = %d value\n" , ∗(a + ((i + ii) ∗ m0 + k + kk)));

163 }
}

165 for (k = 0; k < min(block kk, m0 − kk); k++)
for (j = 0; j < min(block jj, m1 − jj); j++)

167 if ( ii + block ii < n0) ∗(b tmp 1 + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

169 printf ("Buff1 transfer:\n") ;
printf ("A_tmp_1\n") ;

171 for (dbg0 = block ii; dbg0 < block ii + min ii; dbg0++)
{

173 for (dbg1 = 0; dbg1 < min kk; dbg1++)
printf ("%d " , ∗(a tmp 1 + (dbg0 ∗ block kk + dbg1)));

175 printf ("\n") ;
}

177 printf ("B_tmp_1\n") ;
for (dbg1 = 0; dbg1 < min kk; dbg1++)

179 {
for (dbg0 = 0; dbg0 < min jj; dbg0++)

181 {
printf ("%d " , ∗(b tmp 1 + (dbg1 ∗ block jj + dbg0)));



183
}

185 printf ("\n") ;
}

187
//perform computation on buff0

189 if (kk == 0)
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

191 for (j = 0; j < min(block jj, m1 − jj); j++)
∗(c tmp + (i ∗ block jj + j)) = 0;

193 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

195 for (k = 0; k < min(block kk, m0 − kk); k++)
∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));

197 //store st0 buffer
if (kk + block kk >= m0)

199 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

201 ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
//perform computation on buff1

203 if (kk == 0)
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

205 for (j = 0; j < min(block jj, m1 − jj); j++)
if ( ii + i < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;

207 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

209 for (k = 0; k < min(block kk, m0 − kk); k++)
if ( ii + i < n0) ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 1 + (i ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));

211 //store st1 buffer
if (kk + block kk>= m0)

213 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

215 if ( ii + i < n0) ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
}

217
return 0;

219 }

221
int matrix multiply hw (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,int

block kk)
223 {

int i , j , k, ii , jj , kk, t , r , s ;
225 int min ii , min jj , min kk;

int offset bufflocal , offset ext memp;
227 int∗ lmemp, ∗ ememp;

int iter space ;
229 int db iter ;

ii = 0;
231 jj = 0;

kk = 0;
233 iter space = (int ) ( ceil (((double) n0) / block ii) ∗ ceil ( ((double) m1) / block jj) ∗ ceil ( ((double) m0) / block kk));

235 #ifdef DEBUG
printf ("\nIter space = %d\n" , iter space ) ;

237 #endif

if ( ceil ( ((double) n0) / block ii) > 1) db iter = 2;
239 else db iter = 1;

for (t = 0; t < iter space; t+= db iter)
241 {

243 min ii = min(block ii, n0 − ii) ;
min jj = min(block jj, m1 − jj);

245 min kk = min(block kk, m0 − kk);
i = 0;

247 j = 0;
k = 0;

249 s = 0;
#ifdef DEBUG

251 printf ("Buff0\n") ;
#endif

253 for (r = 0; r < min ii ∗ min kk + min jj ∗ min kk; r++)
{

255 #ifdef DEBUG
printf ("i = %d, j = %d, k = %d, ii = %d, jj = %d, kk = %d, s = %d\n" , i , j , k, ii , jj , kk, s) ;

257 #endif

if (s == 0){
259 offset bufflocal = i ∗ block kk + k;

offset ext memp = (ii + i) ∗ m0 + k + kk;
261 // printf (”Transfering a tmp[%d][%d] = a[%d][%d] = ”, i, k, i + ii , k + kk);

if (k < min kk − 1) k++;
263 else{

k = 0;
265 if ( i < min ii − 1) i++;

else {i = 0; s++;}
267 }

lmemp = a tmp 0 + offset bufflocal;
269 ememp = a + offset ext memp;



271
}else {

273 if (s == 1){
offset bufflocal = k ∗ block jj + j;

275 offset ext memp = (kk + k) ∗ m1 + j + jj;

277 if (k < min kk − 1) k++;
else{

279 k = 0;
if (j < min jj − 1) j++;

281 else {j = 0; s = 0;}
}

283 lmemp = b tmp 0 + offset bufflocal;
ememp = b + offset ext memp;

285
// printf (”%d\n”,∗(b + offset ext memp));

287
}

289 }
/∗transfer code ∗/

291 ∗lmemp = ∗ememp;
}

293 #ifdef DEBUG
printf ("Buff0 transfer:\n") ;

295 printf ("A_tmp_0\n") ;
for (dbg0 = 0; dbg0 < min ii; dbg0++)

297 {
for (dbg1 = 0; dbg1 < min kk; dbg1++)

299 printf ("%d " , ∗(a tmp 0 + (dbg0 ∗ block kk + dbg1)));
printf ("\n") ;

301 }
printf ("B_tmp_0\n") ;

303 for (dbg1 = 0; dbg1 < min kk; dbg1++)
{

305 for (dbg0 = 0; dbg0 < min jj; dbg0++)
{

307 printf ("%d " , ∗(b tmp 0 + (dbg1 ∗ block jj + dbg0)));

309 }
printf ("\n") ;

311 }

313 printf ("Buff1\n") ;
#endif

315 if ( ii + block ii < n0) {
i = block ii ;

317 for (r = 0; r < min ii ∗ min kk + min jj ∗ min kk; r++)
{

319 #ifdef DEBUG
printf ("i = %d, j = %d, k = %d, ii = %d, jj = %d, kk = %d, s = %d\n" , i , j , k, ii , jj , kk, s) ;

321 #endif

if (s == 0){
323 offset bufflocal = (i − block ii) ∗ block kk + k;

offset ext memp = (ii + i) ∗ m0 + k + kk;
325 if (k < min kk − 1) k++;

else{
327 k = 0;

if ( i < min ii + block ii − 1) i++;
329 else {i = 0; s++;}

}
331 lmemp = a tmp 1 + offset bufflocal;

ememp = a + offset ext memp;
333

}else if (s == 1){
335 offset bufflocal = k ∗ block jj + j;

offset ext memp = (k + kk) ∗ m1 + j + jj;
337 if (k < min kk − 1) k++;

else{
339 k = 0;

if (j < min jj − 1) j++;
341 else {j = 0; s = 0;}

}
343 lmemp = b tmp 1 + offset bufflocal;

ememp = b + offset ext memp;
345 }

/∗transfer code ∗/
347 ∗lmemp = ∗ememp;

}
349 #ifdef DEBUG

printf ("Buff1 transfer:\n") ;
351 printf ("A_tmp_1\n") ;

for (dbg0 = 0; dbg0 < min ii; dbg0++)
353 {

for (dbg1 = 0; dbg1 < min kk; dbg1++)
355 printf ("%d " , ∗(a tmp 1 + (dbg0 ∗ block kk + dbg1)));

printf ("\n") ;
357 }



printf ("B_tmp_1\n") ;
359 for (dbg1 = 0; dbg1 < min kk; dbg1++)

{
361 for (dbg0 = 0; dbg0 < min jj; dbg0++)

{
363 printf ("%d " , ∗(b tmp 1 + (dbg1 ∗ block jj + dbg0)));

365 }
printf ("\n") ;

367 }
#endif

369 }

371 //perform computation on buff0
if (kk == 0){

373 for ( i = 0; i < min ii; i++)
for (j = 0; j < min jj; j++)

375 ∗(c tmp + (i ∗ block jj + j)) = 0;
}

377 for ( i = 0; i < min ii; i++)
for (j = 0; j < min jj; j++)

379 for (k = 0; k < min kk; k++)
{

381 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));
#ifdef DEBUG

383 printf ("Compute c_tmp (%d) += a_tmp_0 (%d) * b_tmp_0 (%d) \t | i = %d, j = %d, k = %d\n",∗(c tmp + (i ∗ block jj + j)), ∗(
a tmp 0 + (i ∗ block kk + k)), ∗(b tmp 0 + (k ∗ block jj + j)), i , j , k);

#endif

385 }
//store st0 buffer

387 i = 0;
j = 0;

389
if (kk + block kk >= m0)

391 {
for (r = 0; r < min ii ∗ min jj ; r++)

393 {

395 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

397 #ifdef DEBUG
printf ("Store st0 j = %d, i = %d\n" , j , i ) ;

399 #endif

if (j < min jj − 1) j++;
401 else{

j = 0;
403 if ( i < min ii − 1) i++;

else {i = 0; s++;}
405 }

lmemp = c tmp + offset bufflocal;
407 ememp = c + offset ext memp;

409 /∗transfer code ∗/
∗ememp = ∗lmemp;

411 #ifdef DEBUG
printf ("%d (add = %x) <= %d (add = %x)\n" , ∗ememp, ememp, ∗lmemp, lmemp);

413 #endif

}
415 #ifdef DEBUG

printf ("Storing c0[%d][%d]\n" , ii , jj ) ;
417 for (dbg0 = 0; dbg0 < min ii; dbg0++)

{
419 for (dbg1 = 0; dbg1 < min jj; dbg1++)

{
421 printf ("%d " , ∗(c + (ii + dbg0) ∗ m1 + dbg1 + jj));

}
423 printf ("\n") ;

}
425 #endif

}
427

//perform computation on buff1
429 if (kk == 0){

for ( i = block ii ; i < block ii + min ii; i++)
431 for (j = 0; j < min jj; j++)

if ( ii + i < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;
433 }

for ( i = block ii ; i < block ii + min ii; i++)
435 for (j = 0; j < min jj; j++)

for (k = 0; k < min kk; k++)
437 if ( ii + i < n0)

{
439 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 1 + ((i − block ii) ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));

#ifdef DEBUG
441 printf ("Compute c_tmp (%d) += a_tmp_1 (%d) * b_tmp_1 (%d) \t | i = %d, j = %d, k = %d\n",∗(c tmp + (i ∗ block jj + j)), ∗(

a tmp 1 + ((i − block ii) ∗ block kk + k)), ∗(b tmp 1 + (k ∗ block jj + j)), i , j , k);
#endif

443 }



445 //store st1 buffer
i = block ii ;

447 j = 0;
if (kk + block kk >= m0)

449 {
for (r = 0; r < min ii ∗ min jj ; r++)

451 {
offset bufflocal = i ∗ block jj + j;

453 offset ext memp = (ii + i) ∗ m1 + j + jj;
if (j < min jj − 1) j++;

455 else{
j = 0;

457 if (( i < block ii + min ii − 1) && (ii + i < n0 − 1)) i++;
else {i = 0; s++;}

459 }
lmemp = c tmp + offset bufflocal;

461 ememp = c + offset ext memp;
/∗transfer code ∗/

463 ∗ememp = ∗lmemp;
}

465 #ifdef DEBUG
printf ("Storing c1[%d][%d]\n" , ii + block ii , jj ) ;

467 for (dbg0 = block ii; dbg0 < block ii + min ii; dbg0++)
{

469 for (dbg1 = 0; dbg1 < min jj; dbg1++)
{

471 printf ("%d" , ∗(c + (ii + dbg0) ∗ m1 + dbg1 + jj));
printf ("(%d) " , ∗(c tmp + (dbg0 ∗ block jj + dbg1)));

473 }
printf ("\n") ;

475 }
#endif

477 }
if (kk + block kk < m0) kk+= block kk;

479 else {
kk = 0;

481 if ( jj + block jj < m1) jj+= block jj;
else {

483 jj = 0;
if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;

485 }
}

487

489 }
return 0;

491 }

493 int matrix multiply hw orig (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1)
{

495 int i , j , k;
int tmp;

497

499 for ( i = 0; i < n0; i++)
for (j = 0; j < m1; j++)

501 {
tmp = 0;

503 for (k = 0; k < m0; k++)
{

505 tmp += ∗(a + (i ∗ m0 + k)) ∗ ∗(b + (k ∗ m1 + j));

507 }
∗(c + (i ∗ m1 + j)) = tmp;

509 }
return 0;

511 }

513
int main()

515 {
int error found = 0;

517 int i , j ,k;
int n0, m0, n1, m1;

519 int block ii , block jj , block kk;
int tmp;

521 n0 = MAXN0;
m0 = MAXM0;

523 n1 = MAXM0;
m1 = MAXM1;

525 block ii = BL II;
block jj = BL JJ;

527 block kk = BL KK;
printf ("Main\n") ;

529 for (n0 = 1; n0 < MAXN0; n0++)
for (m0 = 1; m0 < MAXM0; m0++)

531 for (m1 = 1; m1 < MAXM1; m1++)



{
533

#ifdef DEBUG
535 printf ("\n ================================================================================\ n") ;

printf ("Testing with n0 = %d, m0 = %d, m1 = %d\n" , n0, m0, m1);
537 #endif

n1 = m0;
539 #ifdef DEBUG

printf ("matrix A\n") ;
541 for ( i = 0; i < n0; i++){

for (j = 0; j < m0; j++)
543 {

∗(a + i ∗ m0 + j) = i ∗ m0 + j + 1;
545 printf ("%d\t",∗(a + i ∗ m0 + j));

}
547 printf ("\n") ;

}
549

printf ( "matrix B\n") ;
551 for ( i = 0; i < m0; i++){

for (j = 0; j < m1; j++)
553 {

∗(b + i ∗ m1 + j) = i ∗ m1 + j + 1;
555 printf ("%d\t" , ∗(b + (i ∗ m1 + j)));

557 }
printf ("\n") ;

559 }
#endif /∗DEBUG∗/

561 for ( i = 0; i < n0; i++)
for (j = 0; j < m1; j++)

563 c[ i ∗ m1 + j] = 0;

565 for ( i = 0; i < n0; i++)
for (j = 0; j < m1; j++)

567 {
c test [ i ∗ m1 + j] = 0;

569 for (k = 0; k < m0; k++)
c test [ i ∗ m1 + j] += a[i ∗ m0 + k] ∗ b[k ∗ m1 + j];

571 }
#ifdef DEBUG

573 printf ("matrix C\n") ;
for ( i = 0; i < n0; i++){

575 for (j = 0; j < m1; j++)
printf ("%d\t" , c test [ i ∗ m1 + j]);

577 printf ("\n") ;
}

579
printf ("Testing original version\n") ;

581 #endif /∗DEBUG∗/
matrix multiply hw orig ((int ∗) a, (int ∗) b, (int ∗)c, n0, m0, m1);

583
for ( i = 0; i < n0; i++)

585 for ( j =0; j < m1; j++)
{

587 if ( c test [ i ∗ m1 + j] != c[i ∗ m1 + j]) printf ("Error on c_test[%d][%d] = %d != %d = c[%d][%d]\n" , i , j , c test [ i ∗ m1 + j],c
[ i ∗ m1 + j], i , j) ;

589 }
for ( block ii = 1; block ii <= n0; block ii++)

591 for ( block jj = 1; block jj <= m0; block jj++)
for (block kk = 1; block kk <= m1; block kk++)

593 {

595
#ifdef DEBUG

597 printf ("\n block_ii = %d, block_jj = %d, block_kk = %d\n\n" , block ii , block jj , block kk);

599

601 printf ("Testing transformed version\n") ;
#endif

603
for ( i = 0; i < n0; i++)

605 for (j = 0; j < m1; j++)
c[ i ∗ m1 + j] = 0;

607 // matrix multiply hw inter 1 (( int ∗) a, ( int ∗) b, ( int ∗)c, n0, m0, m1, block ii , block jj , block kk );

609

611 matrix multiply hw ((int ∗) a, (int ∗) b, (int ∗)c, n0, m0, m1, block ii , block jj , block kk);
#ifdef DEBUG

613 printf ("matrix C (computed)\n") ;
printf ("x\t") ;

615 for (j = 0; j < m1; j++)
printf ("%d\t" , j) ;

617 printf ("\n") ;
for (j = 0; j < m1 + 1; j++)



619 printf ("-\t") ;
printf ("\n") ;

621 for ( i = 0; i < n0; i++){
printf ("%d |\t" , i ) ;

623 for (j = 0; j < m1; j++)
printf ("%d\t" , c[ i ∗ m1 + j]);

625 printf ("\n") ;
}

627 #endif /∗DEBUG∗/
for ( i = 0; i < n0; i++)

629 for ( j =0; j < m1; j++)
{

631 if ( c test [ i ∗ m1 + j] != c[i ∗ m1 + j])
{

633 printf ("Error on c_test[%d][%d] = %d != %d = c[%d][%d] (add = %x)\n" , i , j , c test [ i ∗ m1 + j],c[ i ∗ m1 + j], i , j
, (c + i ∗ m1 + j));

printf ("Error found on block_ii = %d, block_jj = %d, block_kk = %d\n" , block ii , block jj , block kk);
635 printf ("and with n0 = %d, m0 = %d, m1 = %d\n\n" , n0, m0, m1);

error found = 1;
637 }

639 }
#ifdef DEBUG

641 printf ("\nFinish testing with block_ii = %d, block_jj = %d, block_kk = %d\n" , block ii , block jj , block kk);
printf ("and with n0 = %d, m0 = %d, m1 = %d\n\n" , n0, m0, m1);

643 #endif

if (error found == 1) return −1;
645 }

}
647 printf ("End\n") ;

649
return 0;

651 }

Linux with shared memory and processes simulation

This code represents the almost final version of the matrix-matrix multiplication code. It was
transformed by hand and divided into multiple functions that will be synthesized as an accelerator.
The FIFO communications are simulated using Linux named pipes and local memories using Linux
shared memories. It was compiled and executed on a multiprocessor system so as to find possible
bugs obtained during manual code transformations. SystemC could be used for system simulation,
however the presented here C code is closer to the code that is synthesized using C2H.

1
/∗ int a tmp[BL II MAX ∗ BL KK MAX]; ∗/

3 /∗ int b tmp[BL JJ MAX ∗ BL KK MAX]; ∗/
/∗ int a tmp 0[BL II MAX ∗ BL KK MAX]; ∗/

5 /∗ int b tmp 0[BL JJ MAX ∗ BL KK MAX]; ∗/
/∗ int a tmp 1[BL II MAX ∗ BL KK MAX]; ∗/

7 /∗ int b tmp 1[BL JJ MAX ∗ BL KK MAX]; ∗/
/∗ int c tmp[BL II MAX ∗ BL JJ MAX ∗ 2]; ∗/

9
int ∗a tmp;

11 int ∗b tmp;
int ∗a tmp 0;

13 int ∗b tmp 0;
int ∗a tmp 1;

15 int ∗b tmp 1;
int ∗c tmp;

17

19 int dbg0, dbg1, dbg2;

21 /∗ Pipes declarations ∗/
int st1 buff0 [2];

23 int buff0 buff1 [2];
int buff1 st0 [2];

25 int st0 st1 [2];
int c01 st0 [2];

27 int c01 st1 [2];
int buff01 c01 [2];

29

31
int min(int min0, int min1)

33 {
if (min0 < min1) return min0;

35 else return min1;
}



37
int matrix multiply hw inter 0 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int

block jj ,int block kk)
39 {

int i , j , k;
41 int ii , jj , kk;

int dbg0, dbg1;
43

int tmp;
45 i = 0;

j = 0;
47 k = 0;

for ( ii = 0; ii < n0; ii+= block ii)
49 for ( jj = 0; jj < m1; jj+=block jj)

for (kk = 0; kk < m0; kk+=block kk)
51 {

printf ("ii = %d, jj = %d, kk = %d, i = %d, j = %d, k = %d\n" , ii , jj , kk, i , j , k);
53 if (kk == 0)

for ( i = 0; i < min(block ii, n0 − ii) ; i++)
55 for (j = 0; j < min(block jj, m1 − jj); j++)

∗(c tmp + (i ∗ block jj + j)) = 0;
57

for ( i = 0; i < min(block ii, n0 − ii) ; i++)
59 for (k = 0; k < min(block kk, m0 − kk); k++)

{
61 ∗(a tmp + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

printf ("Read a = %d value\n" , ∗(a + ((i + ii) ∗ m0 + k + kk)));
63 }

for (k = 0; k < min(block kk, m0 − kk); k++)
65 for (j = 0; j < min(block jj, m1 − jj); j++)

{
67 ∗(b tmp + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

printf ("Read b = %d value\n" , ∗(b + ((k + kk) ∗ m1 + j + jj)));
69 }

printf ("A_tmp\n") ;
71 for (dbg0 = 0; dbg0 < min(block ii, n0 − ii); dbg0++)

{
73 for (dbg1 = 0; dbg1 < min(block kk, m0 − kk); dbg1++)

printf ("%d " , ∗(a tmp + (dbg0 ∗ block kk + dbg1)));
75 printf ("\n") ;

}
77 printf ("B_tmp\n") ;

for (dbg1 = 0; dbg1 < min(block kk, m0 − kk); dbg1++)
79 {

for (dbg0 = 0; dbg0 < min(block jj, m1 − jj); dbg0++)
81 {

printf ("%d " , ∗(b tmp + (dbg1 ∗ block jj + dbg0)));
83

}
85 printf ("\n") ;

}
87

for ( i = 0; i < min(block ii, n0 − ii) ; i++)
89 for (j = 0; j < min(block jj, m1 − jj); j++)

for (k = 0; k < min(block kk, m0 − kk); k++)
91 {

∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp + (i ∗ block kk + k)) ∗ ∗(b tmp + (k ∗ block jj + j));
93 printf ("Compute c_tmp (%d) += a_tmp (%d) * b_tmp (%d) \t | i = %d, j = %d, k = %d\n",∗(c tmp + (i ∗ block jj + j)), ∗(a tmp

+ (i ∗ block kk + k)), ∗(b tmp + (k ∗ block jj + j)), i , j , k);
}

95 if (kk + block kk >= m0)
{

97 printf ("Writing c\n") ;
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

99 for (j = 0; j < min(block jj, m1 − jj); j++)
∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));

101 }
}

103 return 0;
}

105
int matrix multiply hw inter 1 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int

block jj ,int block kk)
107 {

int i , j , k;
109 int ii , jj , kk;

int min ii , min jj , min kk;
111 int tmp;

113 i = 0;
j = 0;

115 k = 0;

117 for ( ii = 0; ii < n0; ii+= 2 ∗ block ii)
for ( jj = 0; jj < m1; jj+=block jj)

119 for (kk = 0; kk < m0; kk+=block kk)
{

121



min ii = min(block ii, n0 − ii) ;
123 min jj = min(block jj, m1 − jj);

min kk = min(block kk, m0 − kk);
125

printf ("ii = %d, jj = %d, kk = %d, i = %d, j = %d, k = %d\n" , ii , jj , kk,i , j , k);
127 // buff0 load

for ( i = 0; i < min(block ii, n0 − ii) ; i++)
129 for (k = 0; k < min(block kk, m0 − kk); k++)

∗(a tmp 0 + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));
131

for (k = 0; k < min(block kk, m0 − kk); k++)
133 for (j = 0; j < min(block jj, m1 − jj); j++)

∗(b tmp 0 + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));
135

printf ("Buff0 transfer:\n") ;
137 printf ("A_tmp_0\n") ;

for (dbg0 = 0; dbg0 < min ii; dbg0++)
139 {

for (dbg1 = 0; dbg1 < min kk; dbg1++)
141 printf ("%d " , ∗(a tmp 0 + (dbg0 ∗ block kk + dbg1)));

printf ("\n") ;
143 }

printf ("B_tmp_0\n") ;
145 for (dbg1 = 0; dbg1 < min kk; dbg1++)

{
147 for (dbg0 = 0; dbg0 < min jj; dbg0++)

{
149 printf ("%d " , ∗(b tmp 0 + (dbg1 ∗ block jj + dbg0)));

151 }
printf ("\n") ;

153 }

155 // buff1 load
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

157 for (k = 0; k < min(block kk, m0 − kk); k++)
{

159 if ( ii + i < n0) {
∗(a tmp 1 + (i ∗ block kk + k)) = ∗(a + ((i + ii) ∗ m0 + k + kk));

161 printf ("Read a = %d value\n" , ∗(a + ((i + ii) ∗ m0 + k + kk)));
}

163 }
for (k = 0; k < min(block kk, m0 − kk); k++)

165 for (j = 0; j < min(block jj, m1 − jj); j++)
if ( ii + block ii < n0) ∗(b tmp 1 + (k ∗ block jj + j)) = ∗(b + ((k + kk) ∗ m1 + j + jj));

167
printf ("Buff1 transfer:\n") ;

169 printf ("A_tmp_1\n") ;
for (dbg0 = block ii; dbg0 < block ii + min ii; dbg0++)

171 {
for (dbg1 = 0; dbg1 < min kk; dbg1++)

173 printf ("%d " , ∗(a tmp 1 + (dbg0 ∗ block kk + dbg1)));
printf ("\n") ;

175 }
printf ("B_tmp_1\n") ;

177 for (dbg1 = 0; dbg1 < min kk; dbg1++)
{

179 for (dbg0 = 0; dbg0 < min jj; dbg0++)
{

181 printf ("%d " , ∗(b tmp 1 + (dbg1 ∗ block jj + dbg0)));

183 }
printf ("\n") ;

185 }

187 //perform computation on buff0
if (kk == 0)

189 for ( i = 0; i < min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

191 ∗(c tmp + (i ∗ block jj + j)) = 0;
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

193 for (j = 0; j < min(block jj, m1 − jj); j++)
for (k = 0; k < min(block kk, m0 − kk); k++)

195 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));
//store st0 buffer

197 if (kk + block kk >= m0)
for ( i = 0; i < min(block ii, n0 − ii) ; i++)

199 for (j = 0; j < min(block jj, m1 − jj); j++)
∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));

201 //perform computation on buff1
if (kk == 0)

203 for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
for (j = 0; j < min(block jj, m1 − jj); j++)

205 if ( ii + i < n0) ∗(c tmp + (i ∗ block jj + j)) = 0;
for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)

207 for (j = 0; j < min(block jj, m1 − jj); j++)
for (k = 0; k < min(block kk, m0 − kk); k++)

209 if ( ii + i < n0) ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 1 + (i ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));



//store st1 buffer
211 if (kk + block kk>= m0)

for ( i = block ii ; i < block ii + min(block ii, n0 − ii) ; i++)
213 for (j = 0; j < min(block jj, m1 − jj); j++)

if ( ii + i < n0) ∗(c + ((i + ii) ∗ m1 + j + jj)) = ∗(c tmp + (i ∗ block jj + j));
215 }

217 return 0;
}

219
int read pipe one element (int∗ pipe fd read)

221 {
char readbuffer;

223 int nbytes;
nbytes = read(∗pipe fd read, &readbuffer, sizeof(readbuffer)) ;

225 return (int) readbuffer;
}

227
int write pipe one element(int∗ pipe fd write , int data)

229 {
char data char = (char) data;

231 write(∗pipe fd write , &data char, sizeof(data char));
return 0;

233 }

235 int matrix multiply hw buff0 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj
,int block kk, int iter space , int db iter)

{
237 int i , j , k, ii , jj , kk, t , r , s ;

int min ii , min jj , min kk;
239 int offset bufflocal , offset ext memp;

int∗ lmemp, ∗ ememp;
241 int dummy read = 0;

int r sup;
243 int bool nsent = 1;

int tmp;
245 int∗ buff0 buff1 write = &buff0 buff1[1];

int∗ buff01 c01 write = &buff01 c01[1];
247 int∗ st1 buff0 read = &st1 buff0[0];

ii = 0;
249 jj = 0;

kk = 0;
251

for (t = 0; t < iter space; t+= db iter)
253 {

255 min ii = min(block ii, n0 − ii) ;
min jj = min(block jj, m1 − jj);

257 min kk = min(block kk, m0 − kk);
i = 0;

259 j = 0;
k = 0;

261 s = 0;

263 /∗ read from the st1 buff0 pipe ∗/
dummy read += read pipe one element (st1 buff0 read);

265 #ifdef DEBUG
printf ("Read from st1_buff0 pipe\n") ;

267 printf ("Buff0\n") ;
#endif

269 r sup = min ii ∗ min kk + min jj ∗ min kk;
bool nsent = 1;

271 for (r = 0, tmp = dummy read; r < r sup; r++)
{

273 #ifdef DEBUG
printf ("i = %d, j = %d, k = %d, ii = %d, jj = %d, kk = %d, s = %d\n" , i , j , k, ii , jj , kk, s) ;

275 #endif

if (s == 0){
277 offset bufflocal = i ∗ block kk + k;

offset ext memp = (ii + i) ∗ m0 + k + kk;
279

if (k < min kk − 1) k++;
281 else{

k = 0;
283 if ( i < min ii − 1) i++;

else {i = 0; s++;}
285 }

lmemp = a tmp 0 + offset bufflocal;
287 ememp = a + offset ext memp;

289
}else {

291 if (s == 1){
offset bufflocal = k ∗ block jj + j;

293 offset ext memp = (kk + k) ∗ m1 + j + jj;

295 if (j < min jj − 1) j++;
else{



297 j = 0;
if (k < min kk − 1) k++;

299 else {k = 0; s = 0;}
}

301
lmemp = b tmp 0 + offset bufflocal;

303 ememp = b + offset ext memp;

305

307 }
}

309 /∗transfer code ∗/
∗lmemp = ∗ememp;

311 /∗ sync code ∗/
if ((r == r sup − 1) & bool nsent)

313 {
bool nsent = 0;

315 tmp = 0;
write pipe one element(buff0 buff1 write , 0);

317 #ifdef DEBUG
printf ("Write to buff0_buff1 pipe\n") ;

319 #endif

321 }
}

323 write pipe one element(buff01 c01 write, tmp);
#ifdef DEBUG

325 printf ("Write to buff01_c01 pipe\n") ;
#endif

327
#ifdef DEBUG

329 printf ("Buff0 transfer:\n") ;
printf ("A_tmp_0\n") ;

331 for (dbg0 = 0; dbg0 < min ii; dbg0++)
{

333 for (dbg1 = 0; dbg1 < min kk; dbg1++)
printf ("%d " , ∗(a tmp 0 + (dbg0 ∗ block kk + dbg1)));

335 printf ("\n") ;
}

337 printf ("B_tmp_0\n") ;
for (dbg1 = 0; dbg1 < min kk; dbg1++)

339 {
for (dbg0 = 0; dbg0 < min jj; dbg0++)

341 {
printf ("%d " , ∗(b tmp 0 + (dbg1 ∗ block jj + dbg0)));

343
}

345 printf ("\n") ;
}

347 #endif

if (kk + block kk < m0) kk+= block kk;
349 else {

kk = 0;
351 if ( jj + block jj < m1) jj+= block jj;

else {
353 jj = 0;

if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;
355 }

}
357 }

359 /∗ read from the st1 buff0 pipe ∗/
dummy read += read pipe one element (st1 buff0 read);

361 #ifdef DEBUG
printf ("Read (clear)  st1_buff0 pipe\n") ;

363 #endif

365 return 0;
}

367

369 int matrix multiply hw buff1 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj
,int block kk, int iter space , int db iter)

{
371 int i , j , k, ii , jj , kk, t , r , s ;

int min ii , min jj , min kk;
373 int offset bufflocal , offset ext memp;

int∗ lmemp, ∗ ememp;
375 int dummy read = 0;

int r sup;
377 int bool nsent = 1;

int tmp;
379 int∗ buff0 buff1 read = &buff0 buff1[0];

int∗ buff1 st0 write = &buff1 st0[1];
381 int∗ buff01 c01 write = &buff01 c01[1];

383 ii = 0;



jj = 0;
385 kk = 0;

387 for (t = 0; t < iter space; t+= db iter)
{

389
min ii = min(block ii, n0 − ii) ;

391 min jj = min(block jj, m1 − jj);
min kk = min(block kk, m0 − kk);

393 i = 0;
j = 0;

395 k = 0;
s = 0;

397 /∗ read from the buff0 buff1 pipe ∗/
dummy read += read pipe one element (buff0 buff1 read);

399 #ifdef DEBUG
printf ("Read from buff0_buff1 pipe\n") ;

401 #endif

403 #ifdef DEBUG
printf ("Buff1\n") ;

405 #endif

if ( ii + block ii < n0) {
407 i = block ii ;

r sup = min ii ∗ min kk + min jj ∗ min kk;
409 bool nsent = 1;

for (r = 0, tmp = dummy read; r < r sup; r++)
411 {

#ifdef DEBUG
413 printf ("i = %d, j = %d, k = %d, ii = %d, jj = %d, kk = %d, s = %d\n" , i , j , k, ii , jj , kk, s) ;

#endif

415 if (s == 0){
offset bufflocal = (i − block ii) ∗ block kk + k;

417 offset ext memp = (ii + i) ∗ m0 + k + kk;
if (k < min kk − 1) k++;

419 else{
k = 0;

421 if ( i < min ii + block ii − 1) i++;
else {i = 0; s++;}

423 }
lmemp = a tmp 1 + offset bufflocal;

425 ememp = a + offset ext memp;

427 }else if (s == 1){
offset bufflocal = k ∗ block jj + j;

429 offset ext memp = (k + kk) ∗ m1 + j + jj;
if (j < min jj − 1) j++;

431 else{
j = 0;

433 if (k < min kk − 1) k++;
else {k = 0; s = 0;}

435 }

437 lmemp = b tmp 1 + offset bufflocal;
ememp = b + offset ext memp;

439 }
/∗transfer code ∗/

441 ∗lmemp = ∗ememp;
if ((r == r sup − 1) & bool nsent)

443 {
bool nsent = 0;

445 tmp = 1;
write pipe one element(buff1 st0 write , 0);

447 #ifdef DEBUG
printf ("Write to buff1_st0 pipe\n") ;

449 #endif

451 }
}

453
write pipe one element(buff01 c01 write, tmp);

455 #ifdef DEBUG
printf ("Write to buff01_c01 (buff1) pipe\n") ;

457 #endif

459 #ifdef DEBUG
printf ("Buff1 transfer:\n") ;

461 printf ("A_tmp_1\n") ;
for (dbg0 = 0; dbg0 < min ii; dbg0++)

463 {
for (dbg1 = 0; dbg1 < min kk; dbg1++)

465 printf ("%d " , ∗(a tmp 1 + (dbg0 ∗ block kk + dbg1)));
printf ("\n") ;

467 }
printf ("B_tmp_1\n") ;

469 for (dbg1 = 0; dbg1 < min kk; dbg1++)
{

471 for (dbg0 = 0; dbg0 < min jj; dbg0++)



{
473 printf ("%d " , ∗(b tmp 1 + (dbg1 ∗ block jj + dbg0)));

475 }
printf ("\n") ;

477 }
#endif

479 }
else

481 {

483 write pipe one element(buff1 st0 write , 0);
write pipe one element(buff01 c01 write, 1);

485 #ifdef DEBUG
printf ("Write to buff1_st0 pipe\n") ;

487 printf ("Write to buff01_c01 (buff1) pipe\n") ;
#endif

489
}

491 if (kk + block kk < m0) kk+= block kk;
else {

493 kk = 0;
if ( jj + block jj < m1) jj+= block jj;

495 else {
jj = 0;

497 if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;
}

499 }
}

501 return 0;
}

503
int matrix multiply hw st0 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,

int block kk, int iter space , int db iter)
505 {

int i , j , k, ii , jj , kk, t , r , s ;
507 int min ii , min jj , min kk;

int offset bufflocal , offset ext memp;
509 int∗ lmemp, ∗ ememp;

int r sup;
511 int dummy read = 0;

int dummy read1 = 0;
513 int tmp;

int bool nsent = 1;
515 int∗ buff1 st0 read = &buff1 st0[0];

int∗ c01 st0 read = &c01 st0[0];
517 int∗ st0 st1 write = &st0 st1[1];

ii = 0;
519 jj = 0;

kk = 0;
521 for (t = 0; t < iter space; t+= db iter)

{
523

min ii = min(block ii, n0 − ii) ;
525 min jj = min(block jj, m1 − jj);

min kk = min(block kk, m0 − kk);
527 i = 0;

j = 0;
529 k = 0;

s = 0;
531 //store st0 buffer

i = 0;
533 j = 0;

535

537 dummy read += read pipe one element (buff1 st0 read);
#ifdef DEBUG

539 printf ("Read from buff1_st0 pipe\n") ;
#endif

541 dummy read1 += read pipe one element (c01 st0 read);
#ifdef DEBUG

543 printf ("Read from c01_st0 pipe\n") ;
#endif

545
if (kk + block kk >= m0)

547 {
r sup = min ii ∗ min jj ;

549 bool nsent = 1;
for (r = 0, tmp = dummy read + dummy read1; r < r sup; r++)

551 {

553 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

555 #ifdef DEBUG
printf ("Store st0 j = %d, i = %d\n" , j , i ) ;

557 #endif

if (j < min jj − 1) j++;



559 else{
j = 0;

561 if ( i < min ii − 1) i++;
else {i = 0; s++;}

563 }
lmemp = c tmp + offset bufflocal;

565 ememp = c + offset ext memp;

567 /∗transfer code ∗/
∗ememp = ∗lmemp;

569 if ((r == r sup − 1) & bool nsent)
{

571 bool nsent = 0;
write pipe one element(st0 st1 write , 0);

573 #ifdef DEBUG
printf ("Write to st0_st1 pipe\n") ;

575 #endif

577 }

579 #ifdef DEBUG
printf ("%d (add = %x) <= %d (add = %x)\n" , ∗ememp, ememp, ∗lmemp, lmemp);

581 #endif

}
583 #ifdef DEBUG

printf ("Storing c0[%d][%d]\n" , ii , jj ) ;
585 for (dbg0 = 0; dbg0 < min ii; dbg0++)

{
587 for (dbg1 = 0; dbg1 < min jj; dbg1++)

{
589 printf ("%d " , ∗(c + (ii + dbg0) ∗ m1 + dbg1 + jj));

}
591 printf ("\n") ;

}
593 #endif

}
595 else

{
597

write pipe one element(st0 st1 write , 0);
599 #ifdef DEBUG

printf ("Write to st0_st1\n") ;
601 #endif

603 }
if (kk + block kk < m0) kk+= block kk;

605 else {
kk = 0;

607 if ( jj + block jj < m1) jj+= block jj;
else {

609 jj = 0;
if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;

611 }
}

613 }
return 0;

615 }

617 int matrix multiply hw st1 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,
int block kk, int iter space , int db iter)

{
619 int i , j , k, ii , jj , kk, t , r , s ;

int min ii , min jj , min kk;
621 int offset bufflocal , offset ext memp;

int∗ lmemp, ∗ ememp;
623 int r sup;

int dummy read = 0;
625 int dummy read1 = 0;

int tmp;
627 int bool nsent = 1;

int∗ st0 st1 read = &st0 st1[0];
629 int∗ c01 st1 read = &c01 st1[0];

int∗ st1 buff0 write = &st1 buff0[1];
631 int min iii ;

ii = 0;
633 jj = 0;

kk = 0;
635

write pipe one element(st1 buff0 write , 0);
637 #ifdef DEBUG

printf ("Write to st1_buff0 pipe\n") ;
639 #endif

641 for (t = 0; t < iter space; t+= db iter)
{

643
min ii = min(block ii, n0 − ii) ;

645 min jj = min(block jj, m1 − jj);



min kk = min(block kk, m0 − kk);
647 i = 0;

j = 0;
649 k = 0;

s = 0;
651 //store st1 buffer

i = block ii ;
653 j = 0;

dummy read += read pipe one element (st0 st1 read);
655 #ifdef DEBUG

printf ("Read from st0_st1 pipe\n") ;
657 #endif

659 dummy read1 += read pipe one element (c01 st1 read);
#ifdef DEBUG

661 printf ("Read from c01_st1 pipe\n") ;
#endif

663
if ((kk + block kk >= m0) && (ii + i < n0))

665 {
min iii = min(min ii, n0 − (ii + block ii)) ;

667 r sup = min iii ∗ min jj ;
bool nsent = 1;

669 for (r = 0, tmp = dummy read + dummy read1; r < r sup; r++)
{

671 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

673 if (j < min jj − 1) j++;
else{

675 j = 0;
if (( i < block ii + min ii − 1) && (ii + i < n0 − 1)) i++;

677 else {i = 0; s++;}
}

679 lmemp = c tmp + offset bufflocal;
ememp = c + offset ext memp;

681 /∗transfer code ∗/
∗ememp = ∗lmemp;

683 if ((r == r sup − 1) & bool nsent)
{

685 bool nsent = 0;
write pipe one element(st1 buff0 write , 0);

687 #ifdef DEBUG
printf ("Write to st1_buff0 pipe\n") ;

689 #endif

691 }

693 }
#ifdef DEBUG

695 printf ("Storing c1[%d][%d]\n" , ii + block ii , jj ) ;
for (dbg0 = block ii; dbg0 < block ii + min ii; dbg0++)

697 {
for (dbg1 = 0; dbg1 < min jj; dbg1++)

699 {
printf ("%d" , ∗(c + (ii + dbg0) ∗ m1 + dbg1 + jj));

701 printf ("(%d) " , ∗(c tmp + (dbg0 ∗ block jj + dbg1)));
}

703 printf ("\n") ;
}

705 #endif

}
707 else

{
709 write pipe one element(st1 buff0 write , 0);

#ifdef DEBUG
711 printf ("Write to st1_buff0 pipe in else\n") ;

#endif

713 }
if (kk + block kk < m0) kk+= block kk;

715 else {
kk = 0;

717 if ( jj + block jj < m1) jj+= block jj;
else {

719 jj = 0;
if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;

721 }
}

723 }
return 0;

725 }

727 int matrix multiply hw c01 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,
int block kk, int iter space , int db iter)

{
729 int i , j , k, ii , jj , kk, t , r , s ;

int min ii , min jj , min kk;
731 int offset bufflocal , offset ext memp;

int∗ lmemp, ∗ ememp;



733 int dummy read;
int tmp = 0;

735 int∗ c01 st0 write = &c01 st0[1];
int∗ c01 st1 write = &c01 st1[1];

737 int∗ buff01 c01 read = &buff01 c01[0];
int cswitch;

739 int iter int ;
ii = 0;

741 jj = 0;
kk = 0;

743 cswitch = 0;

745 for (t = 0; t < iter space ∗ 2; t+=db iter)
{

747
#ifdef DEBUG

749 printf (" ------------------------------------------------------------------------------------------\ n") ;
printf ("II = %d, JJ = %d, KK = %d, cswitch = %d\n" , ii , jj , kk, cswitch);

751 #endif

min ii = min(block ii, n0 − ii) ;
753 min jj = min(block jj, m1 − jj);

min kk = min(block kk, m0 − kk);
755 i = 0;

j = 0;
757 k = 0;

s = 0;
759

dummy read = read pipe one element (buff01 c01 read);
761 #ifdef DEBUG

printf ("Read from buff01_c01 pipe = %d\n" , dummy read);
763 #endif

765 if (dummy read == 0)
{

767 a tmp = a tmp 0;
b tmp = b tmp 0;

769
}

771 else

{
773 a tmp = a tmp 1;

b tmp = b tmp 1;
775

}
777 i = 0; j = 0; k = 0;

for (r = 0; r < min ii ∗ min jj ∗ min kk; r++)
779 {

if ( ii + i < n0 − block ii){
781

if (k == 0) lc tmp = 0;
783 else lc tmp += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));

785 if (k == min kk − 1)
{

787 ∗(c tmp 0 w + (i ∗ block jj + j)) = ((kk == 0) && (k == 0)) ? lc tmp : ∗(c tmp 0 r + (i ∗ block jj + j)) + lc tmp;
}

789 if (k < min kk − 1) k++;
else {

791 k = 0;
if (j < min jj − 1) j++;

793 else {
j = 0;

795 i++;
}

797 }
}

799 }

801 if (dummy read == 0)
{

803 write pipe one element (c01 st0 write , tmp);
#ifdef DEBUG

805 printf ("Write to c01_st0 pipe\n") ;
#endif

807
}

809 else

{
811 write pipe one element (c01 st1 write , tmp);

#ifdef DEBUG
813 printf ("Write c01_st1 pipe\n") ;

#endif

815 }

817
if (cswitch < 1) cswitch++;

819 else {
cswitch = 0;



821 if (kk + block kk < m0) kk+= block kk;
else {

823 kk = 0;
if ( jj + block jj < m1) jj+= block jj;

825 else {
jj = 0;

827 if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;
}

829 }
}

831 }
return 0;

833 }

835 int matrix multiply hw buff0 process (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int
block jj ,int block kk, int iter space , int db iter)

{
837 int childpid ;

if ((childpid = fork()) == −1)
839 {

perror("fork") ;
841 exit(1) ;

}
843 if (childpid == 0)

{
845 /∗ child process executes buff0 and exits immediatly ∗/

close (buff0 buff1 [0]) ;
847 close (buff01 c01 [0]) ;

close ( st1 buff0 [1]) ;
849

matrix multiply hw buff0 (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
851 exit (0) ;

}
853 return 0;

}
855 int matrix multiply hw buff1 process (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int

block jj ,int block kk, int iter space , int db iter)
{

857 int childpid ;
if ((childpid = fork()) == −1)

859 {
perror("fork") ;

861 exit(1) ;
}

863 if (childpid == 0)
{

865 /∗ child process executes buff0 and exits immediatly ∗/
close (buff1 st0 [0]) ;

867 close (buff01 c01 [0]) ;
close (buff0 buff1 [1]) ;

869
matrix multiply hw buff1 (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;

871 exit(0) ;
}

873 return 0;
}

875
int matrix multiply hw st0 process (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int

block jj ,int block kk, int iter space , int db iter)
877 {

int childpid ;
879 if ((childpid = fork()) == −1)

{
881 perror("fork") ;

exit(1) ;
883 }

if (childpid == 0)
885 {

/∗ child process executes buff0 and exits immediatly ∗/
887 close (buff1 st0 [1]) ;

close (c01 st0 [1]) ;
889 close ( st0 st1 [0]) ;

matrix multiply hw st0 (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
891 exit(0) ;

}
893 return 0;

}
895

int matrix multiply hw st1 process (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int
block jj ,int block kk, int iter space , int db iter)

897 {
int childpid ;

899 if ((childpid = fork()) == −1)
{

901 perror("fork") ;
exit(1) ;

903 }
if (childpid == 0)



905 {
/∗ child process executes buff0 and exits immediatly ∗/

907 close ( st0 st1 [1]) ;
close (c01 st1 [1]) ;

909 close ( st1 buff0 [0]) ;
matrix multiply hw st1 (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;

911 exit(0) ;
}

913 return 0;
}

915
int matrix multiply hw c01 process (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int

block jj ,int block kk, int iter space , int db iter)
917 {

int childpid ;
919 if ((childpid = fork()) == −1)

{
921 perror("fork") ;

exit(1) ;
923 }

if (childpid == 0)
925 {

/∗ child process executes buff0 and exits immediatly ∗/
927 close (buff01 c01 [1]) ;

close (c01 st0 [0]) ;
929 close (c01 st1 [0]) ;

matrix multiply hw c01 (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
931 exit(0) ;

}
933 return 0;

}
935

int matrix multiply hw modul (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj
,int block kk)

937 {
int iter space ;

939 int db iter ;
int status ;

941 pid t done;
iter space = (int ) ( ceil (((double) n0) / (block ii ∗ 2)) ∗ ceil ( ((double) m1) / block jj) ∗ ceil ( ((double) m0) / block kk));

943
db iter = 1;

945 #ifdef DEBUG
printf ("\nIter space = %d, db_iter = %d\n" , iter space , db iter) ;

947 #endif

949 /∗ Call accelerators ∗/
/∗ buff0 ∗/

951 matrix multiply hw buff0 process (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
/∗ buff1 ∗/

953 matrix multiply hw buff1 process (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
/∗ c01 ∗/

955 matrix multiply hw c01 process (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
/∗ st0 ∗/

957 matrix multiply hw st0 process (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;
/∗ st1 ∗/

959
matrix multiply hw st1 process (a, b, c, n0, m0, m1, block ii , block jj , block kk, iter space , db iter) ;

961
while (1){

963 if ((done = wait(&status)) == −1)
{

965 if (errno == ECHILD) break; /∗ no more child processes ∗/
}

967 else

{
969 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)

{
971 printf ("error status on exit of the child %d" , done);

exit(1) ;
973 }

}
975 }

977 return 0;

979 }

981
int matrix multiply hw (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,int

block kk)
983 {

int i , j , k, ii , jj , kk, t , r , s ;
985 int min ii , min jj , min kk;

int offset bufflocal , offset ext memp;
987 int∗ lmemp, ∗ ememp;

int iter space ;
989 int db iter ;



int min iii ;
991 ii = 0;

jj = 0;
993 kk = 0;

iter space = (int ) ( ceil (((double) n0) / (block ii ∗ 2)) ∗ ceil ( ((double) m1) / block jj) ∗ ceil ( ((double) m0) / block kk));
995

#ifdef DEBUG
997 printf ("\nIter space = %d\n" , iter space ) ;

#endif

999
db iter = 1;

1001 for (t = 0; t < iter space; t+= db iter)
{

1003
min ii = min(block ii, n0 − ii) ;

1005 min jj = min(block jj, m1 − jj);
min kk = min(block kk, m0 − kk);

1007 i = 0;
j = 0;

1009 k = 0;
s = 0;

1011 #ifdef DEBUG
printf ("Buff0\n") ;

1013 #endif

for (r = 0; r < min ii ∗ min kk + min jj ∗ min kk; r++)
1015 {

#ifdef DEBUG
1017 printf ("i = %d, j = %d, k = %d, ii = %d, jj = %d, kk = %d, s = %d\n" , i , j , k, ii , jj , kk, s) ;

#endif

1019 if (s == 0){
offset bufflocal = i ∗ block kk + k;

1021 offset ext memp = (ii + i) ∗ m0 + k + kk;

1023 if (k < min kk − 1) k++;
else{

1025 k = 0;
if ( i < min ii − 1) i++;

1027 else {i = 0; s++;}
}

1029 lmemp = a tmp 0 + offset bufflocal;
ememp = a + offset ext memp;

1031

1033 }else {
if (s == 1){

1035 offset bufflocal = k ∗ block jj + j;
offset ext memp = (kk + k) ∗ m1 + j + jj;

1037
if (j < min jj − 1) j++;

1039 else{
j = 0;

1041 if (k < min kk − 1) k++;
else {k = 0; s = 0;}

1043 }
lmemp = b tmp 0 + offset bufflocal;

1045 ememp = b + offset ext memp;

1047

1049 }
}

1051 /∗transfer code ∗/
∗lmemp = ∗ememp;

1053 }
#ifdef DEBUG

1055 printf ("Buff0 transfer:\n") ;
printf ("A_tmp_0\n") ;

1057 for (dbg0 = 0; dbg0 < min ii; dbg0++)
{

1059 for (dbg1 = 0; dbg1 < min kk; dbg1++)
printf ("%d " , ∗(a tmp 0 + (dbg0 ∗ block kk + dbg1)));

1061 printf ("\n") ;
}

1063 printf ("B_tmp_0\n") ;
for (dbg1 = 0; dbg1 < min kk; dbg1++)

1065 {
for (dbg0 = 0; dbg0 < min jj; dbg0++)

1067 {
printf ("%d " , ∗(b tmp 0 + (dbg1 ∗ block jj + dbg0)));

1069
}

1071 printf ("\n") ;
}

1073
printf ("Buff1\n") ;

1075 #endif

if ( ii + block ii < n0) {
1077 i = block ii ;



for (r = 0; r < min ii ∗ min kk + min jj ∗ min kk; r++)
1079 {

#ifdef DEBUG
1081 printf ("i = %d, j = %d, k = %d, ii = %d, jj = %d, kk = %d, s = %d\n" , i , j , k, ii , jj , kk, s) ;

#endif

1083 if (s == 0){
offset bufflocal = (i − block ii) ∗ block kk + k;

1085 offset ext memp = (ii + i) ∗ m0 + k + kk;
if (k < min kk − 1) k++;

1087 else{
k = 0;

1089 if ( i < min ii + block ii − 1) i++;
else {i = 0; s++;}

1091 }
lmemp = a tmp 1 + offset bufflocal;

1093 ememp = a + offset ext memp;

1095 }else if (s == 1){
offset bufflocal = k ∗ block jj + j;

1097 offset ext memp = (k + kk) ∗ m1 + j + jj;
if (j < min jj − 1) j++;

1099 else{
j = 0;

1101 if (k < min kk − 1) k++;
else {k = 0; s = 0;}

1103 }
lmemp = b tmp 1 + offset bufflocal;

1105 ememp = b + offset ext memp;
}

1107 /∗transfer code ∗/
∗lmemp = ∗ememp;

1109 }
#ifdef DEBUG

1111 printf ("Buff1 transfer:\n") ;
printf ("A_tmp_1\n") ;

1113 for (dbg0 = 0; dbg0 < min ii; dbg0++)
{

1115 for (dbg1 = 0; dbg1 < min kk; dbg1++)
printf ("%d " , ∗(a tmp 1 + (dbg0 ∗ block kk + dbg1)));

1117 printf ("\n") ;
}

1119 printf ("B_tmp_1\n") ;
for (dbg1 = 0; dbg1 < min kk; dbg1++)

1121 {
for (dbg0 = 0; dbg0 < min jj; dbg0++)

1123 {
printf ("%d " , ∗(b tmp 1 + (dbg1 ∗ block jj + dbg0)));

1125
}

1127 printf ("\n") ;
}

1129 #endif

}
1131 /∗ //perform computation on buff0 ∗/

i = 0; j = 0; k = 0;
1133 for (r = 0; r < min ii ∗ min jj ∗ min kk; r++)

{
1135 if ((kk == 0) && (k == 0)) ∗(c tmp + (i ∗ block jj + j)) = ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));

else ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));
1137 #ifdef DEBUG

printf ("Compute c_tmp (%d) += a_tmp_0 (%d) * b_tmp_0 (%d) \t | i = %d, j = %d, k = %d\n",∗(c tmp + (i ∗ block jj + j)), ∗(a tmp 0 +
(i ∗ block kk + k)), ∗(b tmp 0 + (k ∗ block jj + j)), i , j , k);

1139 #endif

1141 if ( k < min kk − 1) k++;
else {

1143 k = 0;
if (j < min jj − 1) j++;

1145 else {
j = 0;

1147 i++;
}

1149 }
}

1151
//store st0 buffer

1153 i = 0;
j = 0;

1155
if (kk + block kk >= m0)

1157 {
for (r = 0; r < min ii ∗ min jj ; r++)

1159 {

1161 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

1163 #ifdef DEBUG
printf ("Store st0 j = %d, i = %d\n" , j , i ) ;



1165 #endif

if (j < min jj − 1) j++;
1167 else{

j = 0;
1169 if ( i < min ii − 1) i++;

else {i = 0; s++;}
1171 }

lmemp = c tmp + offset bufflocal;
1173 ememp = c + offset ext memp;

1175 /∗transfer code ∗/
∗ememp = ∗lmemp;

1177 #ifdef DEBUG
printf ("%d (add = %x) <= %d (add = %x)\n" , ∗ememp, ememp, ∗lmemp, lmemp);

1179 #endif

}
1181 #ifdef DEBUG

printf ("Storing c0[%d][%d]\n" , ii , jj ) ;
1183 for (dbg0 = 0; dbg0 < min ii; dbg0++)

{
1185 for (dbg1 = 0; dbg1 < min jj; dbg1++)

{
1187 printf ("%d " , ∗(c + (ii + dbg0) ∗ m1 + dbg1 + jj));

}
1189 printf ("\n") ;

}
1191 #endif

}
1193

//perform computation on buff1
1195 i = block ii ; j = 0; k = 0;

for (r = 0; r < min ii ∗ min jj ∗ min kk; r++)
1197 {

if ( ii + i < n0)
1199 {

if ((kk == 0)&&(k == 0)) ∗(c tmp + (i ∗ block jj + j)) = 0;
1201 ∗(c tmp + (i ∗ block jj + j)) += ∗(a tmp 1 + ((i − block ii) ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));

#ifdef DEBUG
1203 printf ("Compute c_tmp (%d) += a_tmp_1 (%d) * b_tmp_1 (%d) \t | i = %d, j = %d, k = %d\n",∗(c tmp + (i ∗ block jj + j)), ∗(

a tmp 1 + ((i − block ii) ∗ block kk + k)), ∗(b tmp 1 + (k ∗ block jj + j)), i , j , k);
#endif

1205 }
if (k < min kk − 1) k++;

1207 else {
k = 0;

1209 if (j < min jj − 1) j++;
else {

1211 j = 0;
i++;

1213 }
}

1215 }

1217
i = block ii ;

1219 j = 0;
if (kk + block kk >= m0)

1221 {
min iii = min(min ii, n0 − (ii + block ii)) ;

1223 for (r = 0; r < min iii ∗ min jj ; r++)
{

1225 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

1227 if (j < min jj − 1) j++;
else{

1229 j = 0;
if (( i < block ii + min ii − 1) && (ii + i < n0 − 1)) i++;

1231 else {i = 0; s++;}
}

1233 lmemp = c tmp + offset bufflocal;
ememp = c + offset ext memp;

1235 /∗transfer code ∗/
∗ememp = ∗lmemp;

1237 }
#ifdef DEBUG

1239 printf ("Storing c1[%d][%d]\n" , ii + block ii , jj ) ;
for (dbg0 = block ii; dbg0 < block ii + min ii; dbg0++)

1241 {
for (dbg1 = 0; dbg1 < min jj; dbg1++)

1243 {
printf ("%d" , ∗(c + (ii + dbg0) ∗ m1 + dbg1 + jj));

1245 printf ("(%d) " , ∗(c tmp + (dbg0 ∗ block jj + dbg1)));
}

1247 printf ("\n") ;
}

1249 #endif

}
1251 if (kk + block kk < m0) kk+= block kk;



else {
1253 kk = 0;

if ( jj + block jj < m1) jj+= block jj;
1255 else {

jj = 0;
1257 if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;

}
1259 }

1261
}

1263 return 0;
}

1265
int matrix multiply hw orig (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1)

1267 {
int i , j , k;

1269 int tmp;

1271
for ( i = 0; i < n0; i++)

1273 for (j = 0; j < m1; j++)
{

1275 tmp = 0;
for (k = 0; k < m0; k++)

1277 {
tmp += ∗(a + (i ∗ m0 + k)) ∗ ∗(b + (k ∗ m1 + j));

1279
}

1281 ∗(c + (i ∗ m1 + j)) = tmp;
}

1283 return 0;
}

1285

1287 /∗ int a tmp[BL II MAX ∗ BL KK MAX]; ∗/
/∗ int b tmp[]; ∗/

1289 /∗ int a tmp 0[]; ∗/
/∗ int b tmp 0[]; ∗/

1291 /∗ int a tmp 1[BL II MAX ∗ BL KK MAX]; ∗/
/∗ int b tmp 1[BL JJ MAX ∗ BL KK MAX]; ∗/

1293 /∗ int c tmp[]; ∗/

1295 int alloc shmem(int∗ sid a tmp,int∗ sid b tmp,int∗ sid a tmp 0,int∗ sid b tmp 0, int∗ sid a tmp 1, int∗ sid b tmp 1, int∗ sid c tmp, int∗
sid a , int∗ sid b , int∗ sid c )

{
1297 int errsv ;

int size a tmp = BL II MAX ∗ BL KK MAX;
1299 int size b tmp = BL JJ MAX ∗ BL KK MAX;

int size a tmp 0 = BL II MAX ∗ BL KK MAX;
1301 int size b tmp 0 = BL JJ MAX ∗ BL KK MAX;

int size a tmp 1 = BL II MAX ∗ BL KK MAX;
1303 int size b tmp 1 = BL II MAX ∗ BL KK MAX;

int size c tmp = BL II MAX ∗ BL JJ MAX ∗ 2;
1305 int size a = MAXN0 ∗ MAXM0;

int size b = MAXM0 ∗ MAXM1;
1307 int size c = MAXN0 ∗ MAXM1;

/∗ create ∗/
1309

∗sid a tmp = shmget(IPC PRIVATE, size a tmp, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
1311 if (∗sid a tmp == −1)

{
1313 perror("Creating a_tmp shared memory failed\n") ;

exit(EXIT FAILURE);
1315 }

1317 ∗sid b tmp = shmget(IPC PRIVATE, size b tmp, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid b tmp == −1)

1319 {
perror("Creating a_tmp shared memory failed\n") ;

1321 exit(EXIT FAILURE);
}

1323 ∗sid a tmp 0 = shmget(IPC PRIVATE, size a tmp 0, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid a tmp 0 == −1)

1325 {
perror("Creating a_tmp shared memory failed\n") ;

1327 exit(EXIT FAILURE);
}

1329 ∗sid b tmp 0 = shmget(IPC PRIVATE, size b tmp 0, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid b tmp 0 == −1)

1331 {
perror("Creating a_tmp shared memory failed\n") ;

1333 exit(EXIT FAILURE);
}

1335 ∗sid a tmp 1 = shmget(IPC PRIVATE, size a tmp 1, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid a tmp 1 == −1)

1337 {
perror("Creating a_tmp shared memory failed\n") ;



1339 exit(EXIT FAILURE);
}

1341 ∗sid b tmp 1 = shmget(IPC PRIVATE, size b tmp 1, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid b tmp 1 == −1)

1343 {
perror("Creating a_tmp shared memory failed\n") ;

1345 exit(EXIT FAILURE);
}

1347 ∗sid c tmp = shmget(IPC PRIVATE, size c tmp, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid c tmp == −1)

1349 {
perror("Creating a_tmp shared memory failed\n") ;

1351 exit(EXIT FAILURE);
}

1353 ∗sid a = shmget(IPC PRIVATE, size a, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid c tmp == −1)

1355 {
perror("Creating a shared memory failed\n") ;

1357 exit(EXIT FAILURE);
}

1359 ∗sid b = shmget(IPC PRIVATE, size b, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid c tmp == −1)

1361 {
perror("Creating a shared memory failed\n") ;

1363 exit(EXIT FAILURE);
}

1365 ∗sid c = shmget(IPC PRIVATE, size c, IPC CREAT | IPC EXCL | S IRUSR | S IWUSR | S IRGRP);
if (∗sid c tmp == −1)

1367 {
perror("Creating a shared memory failed\n") ;

1369 exit(EXIT FAILURE);
}

1371

1373 /∗ attach ∗/
a tmp = (int ∗) shmat(∗sid a tmp, 0, 0);

1375 if (a tmp == −1)
{

1377 perror("Error attaching a_tmp\n") ;
exit(EXIT FAILURE);

1379 }
b tmp = (int ∗) shmat(∗sid b tmp, 0, 0);

1381 if (b tmp == −1)
{

1383 perror("Error attaching b_tmp\n") ;
exit(EXIT FAILURE);

1385 }
a tmp 0 = (int ∗) shmat(∗sid a tmp 0, 0, 0);

1387 if (a tmp 0 == −1)
{

1389 perror("Error attaching a_tmp_0\n") ;
exit(EXIT FAILURE);

1391 }
b tmp 0 = (int ∗) shmat(∗sid b tmp 0, 0, 0);

1393 if (b tmp 0 == −1)
{

1395 perror("Error attaching b_tmp_0\n") ;
exit(EXIT FAILURE);

1397 }
a tmp 1 = (int ∗) shmat(∗sid a tmp, 0, 0);

1399 if (a tmp 1 == −1)
{

1401 perror("Error attaching a_tmp_1\n") ;
exit(EXIT FAILURE);

1403 }
b tmp 1 = (int ∗) shmat(∗sid b tmp, 0, 0);

1405 if (b tmp 1 == −1)
{

1407 perror("Error attaching b_tmp_1\n") ;
exit(EXIT FAILURE);

1409 }
c tmp = (int ∗) shmat(∗sid c tmp, 0, 0);

1411 if (c tmp == −1)
{

1413 perror("Error attaching c_tmp\n") ;
exit(EXIT FAILURE);

1415 }
a = (int ∗) shmat(∗sid a, 0, 0);

1417 if (a == −1)
{

1419 perror("Error attaching a\n") ;
exit(EXIT FAILURE);

1421 }
b = (int ∗) shmat(∗sid b, 0, 0);

1423 if (b == −1)
{

1425 perror("Error attaching b\n") ;
exit(EXIT FAILURE);



1427 }
c = (int ∗) shmat(∗sid c, 0, 0);

1429 if (c == −1)
{

1431 perror("Error attaching c\n") ;
exit(EXIT FAILURE);

1433 }

1435 return 0;
}

1437
int dealloc shmem(int sid a tmp,int sid b tmp,int sid a tmp 0,int sid b tmp 0, int sid a tmp 1, int sid b tmp 1, int sid c tmp, int sid a , int

sid b , int sid c )
1439 {

/∗ Detach first ∗/
1441 if (shmdt(a tmp) == −1)

{
1443 perror("Error detaching a_tmp") ;

exit(EXIT FAILURE);
1445 }

if (shmdt(b tmp) == −1)
1447 {

perror("Error detaching b_tmp") ;
1449 exit(EXIT FAILURE);

}
1451 if (shmdt(a tmp 0) == −1)

{
1453 perror("Error detaching a_tmp_0") ;

exit(EXIT FAILURE);
1455 }

if (shmdt(b tmp 0) == −1)
1457 {

perror("Error detaching b_tmp_0") ;
1459 exit(EXIT FAILURE);

}
1461 if (shmdt(a tmp 1) == −1)

{
1463 perror("Error detaching a_tmp_1") ;

exit(EXIT FAILURE);
1465 }

if (shmdt(b tmp 1) == −1)
1467 {

perror("Error detaching b_tmp_1") ;
1469 exit(EXIT FAILURE);

}
1471 if (shmdt(c tmp) == −1)

{
1473 perror("Error detaching c_tmp") ;

exit(EXIT FAILURE);
1475 }

if (shmdt(a) == −1)
1477 {

perror("Error detaching a") ;
1479 exit(EXIT FAILURE);

}
1481 if (shmdt(b) == −1)

{
1483 perror("Error detaching b") ;

exit(EXIT FAILURE);
1485 }

1487 if (shmdt(c) == −1)
{

1489 perror("Error detaching c") ;
exit(EXIT FAILURE);

1491 }

1493 /∗ Dealoc ∗/
if (shmctl (sid a tmp, IPC RMID, 0) == −1)

1495 {
printf ("Identifier error %d\n" , sid a tmp);

1497 perror("Error destroing a_tmp") ;
exit(EXIT FAILURE);

1499 }
if (shmctl (sid b tmp, IPC RMID, 0) == −1)

1501 {
perror("Error destroing b_tmp") ;

1503 exit(EXIT FAILURE);
}

1505 if (shmctl (sid a tmp 0, IPC RMID, 0) == −1)
{

1507 perror("Error destroing a_tmp_0") ;
exit(EXIT FAILURE);

1509 }
if (shmctl (sid b tmp 0, IPC RMID, 0) == −1)

1511 {
perror("Error destroing b_tmp_0") ;

1513 exit(EXIT FAILURE);



}
1515 if (shmctl (sid a tmp 1, IPC RMID, 0) == −1)

{
1517 perror("Error destroing a_tmp_1") ;

exit(EXIT FAILURE);
1519 }

if (shmctl (sid b tmp 1, IPC RMID, 0) == −1)
1521 {

perror("Error destroing b_tmp_1") ;
1523 exit(EXIT FAILURE);

}
1525 if (shmctl (sid c tmp, IPC RMID, 0) == −1)

{
1527 perror("Error destroing c_tmp") ;

exit(EXIT FAILURE);
1529 }

if (shmctl (sid a , IPC RMID, 0) == −1)
1531 {

perror("Error destroing a") ;
1533 exit(EXIT FAILURE);

}
1535 if (shmctl (sid b, IPC RMID, 0) == −1)

{
1537 perror("Error destroing b") ;

exit(EXIT FAILURE);
1539 }

if (shmctl (sid c , IPC RMID, 0) == −1)
1541 {

perror("Error destroing c") ;
1543 exit(EXIT FAILURE);

}
1545

return 0;
1547

}
1549 int main()

{
1551 int sid a tmp, sid b tmp, sid a tmp 0, sid b tmp 0, sid a tmp 1, sid b tmp 1, sid c tmp, sid a , sid b , sid c ;

int error found = 0;
1553 int i , j ,k;

int n0, m0, n1, m1;
1555 int block ii , block jj , block kk;

int tmp;
1557 int prcts = 0;

/∗ pipe ∗/
1559 pipe (st1 buff0);

pipe (buff0 buff1);
1561 pipe (buff1 st0) ;

pipe ( st0 st1 ) ;
1563 pipe (c01 st0) ;

pipe (c01 st1) ;
1565 pipe (buff01 c01);

/∗ shared memory ∗/
1567 alloc shmem( &sid a tmp, &sid b tmp, &sid a tmp 0, &sid b tmp 0, &sid a tmp 1, &sid b tmp 1, &sid c tmp, &sid a, &sid b, &sid c);

1569 n0 = MAXN0;
m0 = MAXM0;

1571 n1 = MAXM0;
m1 = MAXM1;

1573 block ii = BL II;
block jj = BL JJ;

1575 block kk = BL KK;
printf ("Main\n") ;

1577
for (m0 = 1; m0 <= MAXM0; m0++)

1579 for (m1 = 1; m1 <= MAXM1; m1++)
for (n0 = 1; n0 <= MAXN0; n0++)

1581 {

1583 printf ("%d percents done\n" , (int)( prcts ∗ 100.0 / (MAXN0 ∗ MAXM0 ∗ MAXM1)));
prcts++;

1585
printf ("\n ================================================================================\ n") ;

1587 printf ("Testing with n0 = %d, m0 = %d, m1 = %d\n" , n0, m0, m1);

1589 n1 = m0;
#ifdef DEBUG

1591 printf ("matrix A\n") ;
#endif

1593 for ( i = 0; i < n0; i++){
for (j = 0; j < m0; j++)

1595 {
∗(a + i ∗ m0 + j) = i ∗ m0 + j + 1;

1597 #ifdef DEBUG
printf ("%d\t",∗(a + i ∗ m0 + j));

1599 #endif

}
1601 #ifdef DEBUG



printf ("\n") ;
1603 #endif

}
1605 #ifdef DEBUG

printf ( "matrix B\n") ;
1607 #endif

for ( i = 0; i < m0; i++){
1609 for (j = 0; j < m1; j++)

{
1611 ∗(b + i ∗ m1 + j) = i ∗ m1 + j + 1;

#ifdef DEBUG
1613 printf ("%d\t" , ∗(b + (i ∗ m1 + j)));

#endif

1615
}

1617 #ifdef DEBUG
printf ("\n") ;

1619 #endif

}
1621

for ( i = 0; i < n0; i++)
1623 for (j = 0; j < m1; j++)

c[ i ∗ m1 + j] = 0;
1625

for ( i = 0; i < n0; i++)
1627 for (j = 0; j < m1; j++)

{
1629 c test [ i ∗ m1 + j] = 0;

for (k = 0; k < m0; k++)
1631 c test [ i ∗ m1 + j] += a[i ∗ m0 + k] ∗ b[k ∗ m1 + j];

}
1633 #ifdef DEBUG

printf ("matrix C\n") ;
1635 for ( i = 0; i < n0; i++){

for (j = 0; j < m1; j++)
1637 printf ("%d\t" , c test [ i ∗ m1 + j]);

printf ("\n") ;
1639 }

1641 printf ("Testing original version\n") ;
#endif /∗DEBUG∗/

1643 matrix multiply hw orig ((int ∗) a, (int ∗) b, (int ∗)c, n0, m0, m1);

1645 for ( i = 0; i < n0; i++)
for ( j =0; j < m1; j++)

1647 {
if ( c test [ i ∗ m1 + j] != c[i ∗ m1 + j]) printf ("Error on c_test[%d][%d] = %d != %d = c[%d][%d]\n" , i , j , c test [ i ∗ m1 + j],c

[ i ∗ m1 + j], i , j) ;
1649

}
1651 for ( block ii = 1; block ii <= n0; block ii++)

for ( block jj = 1; block jj <= m0; block jj++)
1653 for (block kk = 1; block kk <= m1; block kk++)

{
1655

1657 #ifdef DEBUG
printf ("\n block_ii = %d, block_jj = %d, block_kk = %d\n\n" , block ii , block jj , block kk);

1659

1661
printf ("Testing transformed version\n") ;

1663 #endif

1665 for ( i = 0; i < n0; i++)
for (j = 0; j < m1; j++)

1667 c[ i ∗ m1 + j] = 0;
// matrix multiply hw inter 1 (( int ∗) a, ( int ∗) b, ( int ∗)c, n0, m0, m1, block ii , block jj , block kk );

1669

1671 //matrix multiply hw (( int ∗) a, ( int ∗) b, ( int ∗)c, n0, m0, m1, block ii , block jj , block kk );
matrix multiply hw modul ((int ∗) a, (int ∗) b, (int ∗)c, n0, m0, m1, block ii , block jj , block kk);

1673 #ifdef DEBUG
printf ("matrix C (computed)\n") ;

1675 printf ("x\t") ;
for (j = 0; j < m1; j++)

1677 printf ("%d\t" , j) ;
printf ("\n") ;

1679 for (j = 0; j < m1 + 1; j++)
printf ("-\t") ;

1681 printf ("\n") ;
for ( i = 0; i < n0; i++){

1683 printf ("%d |\t" , i ) ;
for (j = 0; j < m1; j++)

1685 printf ("%d\t" , c[ i ∗ m1 + j]);
printf ("\n") ;

1687 }
#endif /∗DEBUG∗/



1689 for ( i = 0; i < n0; i++)
for ( j =0; j < m1; j++)

1691 {
if ( c test [ i ∗ m1 + j] != c[i ∗ m1 + j])

1693 {
printf ("Error on c_test[%d][%d] = %d != %d = c[%d][%d] (add = %x)\n" , i , j , c test [ i ∗ m1 + j],c[ i ∗ m1 + j], i , j

, (c + i ∗ m1 + j));
1695 printf ("Error found on block_ii = %d, block_jj = %d, block_kk = %d\n" , block ii , block jj , block kk);

printf ("and with n0 = %d, m0 = %d, m1 = %d\n\n" , n0, m0, m1);
1697 error found = 1;

}
1699

}
1701 #ifdef DEBUG

printf ("\nFinish testing with block_ii = %d, block_jj = %d, block_kk = %d\n" , block ii , block jj , block kk);
1703 printf ("and with n0 = %d, m0 = %d, m1 = %d\n\n" , n0, m0, m1);

#endif

1705 if (error found == 1)
{

1707 dealloc shmem( sid a tmp, sid b tmp, sid a tmp 0, sid b tmp 0, sid a tmp 1, sid b tmp 1, sid c tmp, sid a , sid b ,
sid c ) ;

1709 exit(EXIT FAILURE);

1711 }
}

1713 }
printf ("End\n") ;

1715
dealloc shmem( sid a tmp, sid b tmp, sid a tmp 0, sid b tmp 0, sid a tmp 1, sid b tmp 1, sid c tmp, sid a , sid b , sid c ) ;

1717
return 0;

1719 }

Final implementation synthesized with Altera C2H

This code represents the final code that contains the code of all the accelerators. It is ready to
be synthesized by the Altera C2H HLS tool.

#include "system.h"

2 #include "global.h"

4 #define BUFF0 SS 1
#define BUFF1 SS 1

6 #define ST0 SS 1
#define ST1 SS 1

8
/∗ #pragma altera accelerate enable interrupt for function accelerator ∗/

10 #pragma altera accelerate enable interrupt for function matrix multiply hw buff0
#pragma altera accelerate enable interrupt for function matrix multiply hw buff1

12 #pragma altera accelerate enable interrupt for function matrix multiply hw st0
//#pragma altera accelerate enable interrupt for function matrix multiply hw st1

14 #pragma altera accelerate enable interrupt for function matrix multiply hw c01

16 /∗ buff0 acc ∗/
/∗ fifo connection∗/

18 #pragma altera accelerate enable flow control for pointer matrix multiply hw buff0/st1 buff0 read
#pragma altera accelerate enable flow control for pointer matrix multiply hw buff0/buff0 buff1 write

20 #pragma altera accelerate enable flow control for pointer matrix multiply hw buff0/buff01 c01 write
#pragma altera accelerate connect variable matrix multiply hw buff0/st1 buff0 read to st1 buff0/out

22 #pragma altera accelerate connect variable matrix multiply hw buff0/buff0 buff1 write to buff0 buff1/in
#pragma altera accelerate connect variable matrix multiply hw buff0/buff01 c01 write to buff01 c01/in

24
/∗ data connection ∗/

26 #pragma altera accelerate connect variable matrix multiply hw buff0/ememp to altmemddr 0 arbitration share 16

28 /∗ local data connection ∗/
#pragma altera accelerate connect variable matrix multiply hw buff0/lmemp to buff0 0

30 #pragma altera accelerate connect variable matrix multiply hw buff0/lmemp to buff0 1

32 /∗ matrix multiply hw buff1 ∗/
/∗ fifo connection∗/

34 #pragma altera accelerate enable flow control for pointer matrix multiply hw buff1/buff1 st0 write
#pragma altera accelerate enable flow control for pointer matrix multiply hw buff1/buff0 buff1 read

36 #pragma altera accelerate enable flow control for pointer matrix multiply hw buff1/buff01 c01 write
#pragma altera accelerate connect variable matrix multiply hw buff1/buff1 st0 write to buff1 st0/in

38 #pragma altera accelerate connect variable matrix multiply hw buff1/buff0 buff1 read to buff0 buff1/out
#pragma altera accelerate connect variable matrix multiply hw buff1/buff01 c01 write to buff01 c01/in

40
/∗ data connection ∗/

42 #pragma altera accelerate connect variable matrix multiply hw buff1/ememp to altmemddr 0

44 /∗ local data connection ∗/



#pragma altera accelerate connect variable matrix multiply hw buff1/lmemp to buff1 0
46 #pragma altera accelerate connect variable matrix multiply hw buff1/lmemp to buff1 1

48 /∗ matrix multiply hw st0 ∗/
/∗ fifo connection∗/

50 #pragma altera accelerate enable flow control for pointer matrix multiply hw st0/buff1 st0 read
#pragma altera accelerate enable flow control for pointer matrix multiply hw st0/c01 st0 read

52 #pragma altera accelerate enable flow control for pointer matrix multiply hw st0/st0 st1 write
#pragma altera accelerate connect variable matrix multiply hw st0/buff1 st0 read to buff1 st0/out

54 #pragma altera accelerate connect variable matrix multiply hw st0/c01 st0 read to c01 st0/out
#pragma altera accelerate connect variable matrix multiply hw st0/st0 st1 write to st0 st1/in

56
/∗ data connection ∗/

58 #pragma altera accelerate connect variable matrix multiply hw st0/ememp to altmemddr 0 arbitration share 16
#pragma altera accelerate connect variable matrix multiply hw st0/lmemp to st0

60

62 /∗ matrix multiply hw st1 ∗/
/∗ fifo connection∗/

64 #pragma altera accelerate enable flow control for pointer matrix multiply hw st1/st0 st1 read
#pragma altera accelerate enable flow control for pointer matrix multiply hw st1/c01 st1 read

66 #pragma altera accelerate enable flow control for pointer matrix multiply hw st1/st1 buff0 write
#pragma altera accelerate connect variable matrix multiply hw st1/st0 st1 read to st0 st1/out

68 #pragma altera accelerate connect variable matrix multiply hw st1/c01 st1 read to c01 st1/out
#pragma altera accelerate connect variable matrix multiply hw st1/st1 buff0 write to st1 buff0/in

70
/∗ data connection ∗/

72 #pragma altera accelerate connect variable matrix multiply hw st1/ememp to altmemddr 0
#pragma altera accelerate connect variable matrix multiply hw st1/lmemp to st1

74
/∗ matrix multiply hw c01 ∗/

76 /∗ fifo connection∗/
#pragma altera accelerate enable flow control for pointer matrix multiply hw c01/c01 st0 write

78 #pragma altera accelerate enable flow control for pointer matrix multiply hw c01/c01 st1 write
#pragma altera accelerate enable flow control for pointer matrix multiply hw c01/buff01 c01 read

80 #pragma altera accelerate connect variable matrix multiply hw c01/c01 st0 write to c01 st0/in
#pragma altera accelerate connect variable matrix multiply hw c01/c01 st1 write to c01 st1/in

82 #pragma altera accelerate connect variable matrix multiply hw c01/buff01 c01 read to buff01 c01/out

84 /∗ data connection ∗/
#pragma altera accelerate connect variable matrix multiply hw c01/a tmp 0 to buff0 0

86 #pragma altera accelerate connect variable matrix multiply hw c01/b tmp 0 to buff0 1
#pragma altera accelerate connect variable matrix multiply hw c01/a tmp 1 to buff1 0

88 #pragma altera accelerate connect variable matrix multiply hw c01/b tmp 1 to buff1 1

90 #pragma altera accelerate connect variable matrix multiply hw c01/c tmp 0 r to st0 // st0 size ∗ 2
#pragma altera accelerate connect variable matrix multiply hw c01/c tmp 0 w to st0 // st0 size ∗ 2

92 #pragma altera accelerate connect variable matrix multiply hw c01/c tmp 1 r to st1 // st0 size ∗ 2
#pragma altera accelerate connect variable matrix multiply hw c01/c tmp 1 w to st1 // st0 size ∗ 2

94

96

98
int matrix multiply hw buff0 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj

,int block kk, int iter space , int db iter)
100 {

int i , j , k, ii , jj , kk, t , r , s ;
102 int min ii , min jj , min kk;

int offset bufflocal , offset ext memp;
104 int∗ lmemp, ∗ ememp;

int dummy read = 0;
106 int r sup;

int bool nsent = 1;
108 int tmp;

volatile int∗ restrict st1 buff0 read = (int ∗) ST1 BUFF0 OUT BASE;
110 volatile int∗ restrict buff0 buff1 write = (int ∗) BUFF0 BUFF1 IN BASE;

volatile int∗ restrict buff01 c01 write = (int ∗) BUFF01 C01 IN BASE;
112 int∗ restrict a tmp 0 = (int ∗) BUFF0 0 BASE;

int∗ restrict b tmp 0 = (int ∗) BUFF0 1 BASE;
114 ii = 0;

jj = 0;
116 kk = 0;

118 for (t = 0; t < iter space; t+= db iter)
{

120
if ( block ii < n0 − ii) min ii = block ii ;

122 else min ii = n0 − ii;
if ( block jj < m1 − jj) min jj = block jj;

124 else min jj = m1 − jj;
if (block kk < m0 − kk) min kk = block kk;

126 else min kk = m0 − kk;
i = 0;

128 j = 0;
k = 0;

130 s = 0;



132 /∗ read from the st1 buff0 pipe ∗/
dummy read += ∗st1 buff0 read;

134
r sup = min ii ∗ min kk + min jj ∗ min kk;

136 bool nsent = 1;
for (r = 0, tmp = dummy read; r < r sup; r++)

138 {

140 if (s == 0){
offset bufflocal = i ∗ block kk + k;

142 offset ext memp = (ii + i) ∗ m0 + k + kk;

144 if (k < min kk − 1) k++;
else{

146 k = 0;
if ( i < min ii − 1) i++;

148 else {i = 0; s++;}
}

150 lmemp = a tmp 0 + offset bufflocal;
ememp = a + offset ext memp;

152

154 }else {
if (s == 1){

156 offset bufflocal = k ∗ block jj + j;
offset ext memp = (kk + k) ∗ m1 + j + jj;

158
if (j < min jj − 1) j++;

160 else{
j = 0;

162 if (k < min kk − 1) k++;
else {k = 0; s = 0;}

164 }

166 lmemp = b tmp 0 + offset bufflocal;
ememp = b + offset ext memp;

168

170 }
}

172 /∗transfer code ∗/
∗lmemp = ∗ememp;

174 /∗ sync code ∗/
if (((r == r sup − 1) | (r == r sup − BUFF0 SS))& bool nsent)

176 {
bool nsent = 0;

178 tmp = 0;
∗buff0 buff1 write = 0;

180 }
}

182 ∗buff01 c01 write = tmp;

184 if (kk + block kk < m0) kk+= block kk;
else {

186 kk = 0;
if ( jj + block jj < m1) jj+= block jj;

188 else {
jj = 0;

190 if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;
}

192 }
}

194 dummy read += ∗st1 buff0 read; /∗ void the fifo ∗/
return 0;

196 }

198
int matrix multiply hw buff1 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj

,int block kk, int iter space , int db iter)
200 {

int i , j , k, ii , jj , kk, t , r , s ;
202 int min ii , min jj , min kk;

int offset bufflocal , offset ext memp;
204 int∗ lmemp, ∗ ememp;

int dummy read = 0;
206 int r sup;

int bool nsent = 1;
208 int tmp;

210 volatile int∗ restrict buff1 st0 write = (int ∗) BUFF1 ST0 IN BASE;
volatile int∗ restrict buff0 buff1 read = (int ∗) BUFF0 BUFF1 OUT BASE;

212 volatile int∗ restrict buff01 c01 write = (int ∗) BUFF01 C01 IN BASE;
/∗ local buffer declaration section ∗/

214 int∗ restrict a tmp 1 = (int ∗) BUFF1 0 BASE;
int∗ restrict b tmp 1 = (int ∗) BUFF1 1 BASE;

216 ii = 0;
jj = 0;

218 kk = 0;



220 for (t = 0; t < iter space; t+= db iter)
{

222
if ( block ii < n0 − ii) min ii = block ii ;

224 else min ii = n0 − ii;
if ( block jj < m1 − jj) min jj = block jj;

226 else min jj = m1 − jj;
if (block kk < m0 − kk) min kk = block kk;

228 else min kk = m0 − kk;
i = 0;

230 j = 0;
k = 0;

232 s = 0;
/∗ read from the st1 buff0 pipe ∗/

234 dummy read += ∗buff0 buff1 read;

236 if ( ii + block ii < n0) {
i = block ii ;

238 r sup = min ii ∗ min kk + min jj ∗ min kk;
bool nsent = 1;

240 for (r = 0, tmp = dummy read; r < r sup; r++)
{

242 if (s == 0){
offset bufflocal = (i − block ii) ∗ block kk + k;

244 offset ext memp = (ii + i) ∗ m0 + k + kk;
if (k < min kk − 1) k++;

246 else{
k = 0;

248 if ( i < min ii + block ii − 1) i++;
else {i = 0; s++;}

250 }
lmemp = a tmp 1 + offset bufflocal;

252 ememp = a + offset ext memp;

254 }else if (s == 1){
offset bufflocal = k ∗ block jj + j;

256 offset ext memp = (k + kk) ∗ m1 + j + jj;

258 if (j < min jj − 1) j++;
else{

260 j = 0;
if (k < min kk − 1) k++;

262 else {k = 0; s = 0;}
}

264

266 lmemp = b tmp 1 + offset bufflocal;
ememp = b + offset ext memp;

268 }
/∗transfer code ∗/

270 ∗lmemp = ∗ememp;
/∗ mettre dans une fonction ?∗/

272 if (((r == r sup − 1) | (r == r sup − BUFF1 SS)) & bool nsent)
{

274 bool nsent = 0;
tmp = 1;

276 ∗buff1 st0 write = 0; // = ∗lmemp
}

278 }
∗buff01 c01 write = tmp;

280
}

282 /∗ else forward the token to st0 ∗/
else {

284 ∗buff1 st0 write = 0;
∗buff01 c01 write = 1;

286 }
if (kk + block kk < m0) kk+= block kk;

288 else {
kk = 0;

290 if ( jj + block jj < m1) jj+= block jj;
else {

292 jj = 0;
if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;

294 }
}

296 }
return 0;

298 }

300 int matrix multiply hw st0 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,
int block kk, int iter space , int db iter)

{
302 int i , j , k, ii , jj , kk, t , r , s ;

int min ii , min jj , min kk;
304 int offset bufflocal , offset ext memp;

int∗ restrict lmemp;



306 int∗ restrict ememp;
int r sup;

308 int dummy read = 0;
int dummy read1 = 0;

310 int tmp;
int bool nsent = 1;

312 volatile int∗ restrict buff1 st0 read = (int ∗) BUFF1 ST0 OUT BASE;
volatile int∗ restrict c01 st0 read = (int ∗) C01 ST0 OUT BASE;

314 volatile int∗ restrict st0 st1 write = (int ∗) ST0 ST1 IN BASE;
/∗ local buffer declaration section ∗/

316 int∗ restrict c tmp = (int ∗) ST0 BASE;

318 ii = 0;
jj = 0;

320 kk = 0;
for (t = 0; t < iter space; t+= db iter)

322 {

324 if ( block ii < n0 − ii) min ii = block ii ;
else min ii = n0 − ii;

326 if ( block jj < m1 − jj) min jj = block jj;
else min jj = m1 − jj;

328 if (block kk < m0 − kk) min kk = block kk;
else min kk = m0 − kk;

330 i = 0;
j = 0;

332 k = 0;
s = 0;

334 //store st0 buffer
i = 0;

336 j = 0;

338
dummy read += ∗buff1 st0 read;

340 dummy read1 += ∗c01 st0 read;
if (kk + block kk >= m0)

342 {
r sup = min ii ∗ min jj ;

344 bool nsent = 1;
for (r = 0, tmp = dummy read + dummy read1; r < r sup; r++)

346 {

348 offset bufflocal = i ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

350 if (j < min jj − 1) j++;
else{

352 j = 0;
if ( i < min ii − 1) i++;

354 else {i = 0; s++;}
}

356 lmemp = c tmp + offset bufflocal;
ememp = c + offset ext memp;

358
/∗transfer code ∗/

360 ∗ememp = ∗lmemp;
if (((r == r sup − 1) | (r == r sup − ST0 SS)) & bool nsent)

362 {
bool nsent = 0;

364 ∗st0 st1 write = 0;
}

366

368 }

370 }else
{

372 ∗st0 st1 write = 0;
}

374 if (kk + block kk < m0) kk+= block kk;
else {

376 kk = 0;
if ( jj + block jj < m1) jj+= block jj;

378 else {
jj = 0;

380 if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;
}

382 }
}

384 return 0;
}

386
int matrix multiply hw st1 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,

int block kk, int iter space , int db iter)
388 {

int i , j , k, ii , jj , kk, t , r , s ;
390 int min ii , min jj , min kk;

int offset bufflocal , offset ext memp;
392 int∗ restrict lmemp;



int∗ restrict ememp;
394 int r sup;

int dummy read = 0;
396 int dummy read1 = 0;

int tmp;
398 int bool nsent = 1;

volatile int∗ restrict st0 st1 read = (int ∗) ST0 ST1 OUT BASE;
400 volatile int∗ restrict c01 st1 read = (int ∗) C01 ST1 OUT BASE;

volatile int∗ restrict st1 buff0 write = (int ∗) ST1 BUFF0 IN BASE;
402 /∗ local buffer declaration section ∗/

int∗ restrict c tmp = (int ∗) ST1 BASE;
404 int min iii ;

406 ii = 0;
jj = 0;

408 kk = 0;

410 ∗st1 buff0 write = 0;

412 for (t = 0; t < iter space; t+= db iter)
{

414
if ( block ii < n0 − ii) min ii = block ii ;

416 else min ii = n0 − ii;
if ( block jj < m1 − jj) min jj = block jj;

418 else min jj = m1 − jj;
if (block kk < m0 − kk) min kk = block kk;

420 else min kk = m0 − kk;
i = 0;

422 j = 0;
k = 0;

424 s = 0;
//store st1 buffer

426
i = block ii ;

428 j = 0;

430 dummy read += ∗st0 st1 read;
dummy read1 += ∗c01 st1 read;

432 if ((kk + block kk >= m0) && (ii + i < n0))
{

434 if (min ii < n0 − (ii + block ii)) min iii = min ii;
else min iii = n0 − (ii + block ii) ;

436 r sup = min iii ∗ min jj ;
bool nsent = 1;

438 for (r = 0, tmp = dummy read + dummy read1; r < r sup; r++)
{

440 offset bufflocal = (i − block ii) ∗ block jj + j;
offset ext memp = (ii + i) ∗ m1 + j + jj;

442 if (j < min jj − 1) j++;
else{

444 j = 0;
if (( i < block ii + min ii − 1) && (ii + i < n0 − 1)) i++;

446 else {i = 0; s++;}
}

448 lmemp = c tmp + offset bufflocal;
ememp = c + offset ext memp;

450 /∗transfer code ∗/
∗ememp = ∗lmemp;

452 if (((r == r sup − 1) | (r == r sup − ST1 SS)) & bool nsent)
{

454 bool nsent = 0;
∗st1 buff0 write = 0;

456 }

458 }

460 }else
{

462 ∗st1 buff0 write = 0;
}

464 if (kk + block kk < m0) kk+= block kk;
else {

466 kk = 0;
if ( jj + block jj < m1) jj+= block jj;

468 else {
jj = 0;

470 if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;
}

472 }
}

474 return 0;
}

476
int matrix multiply hw c01 (int∗ restrict a, int∗ restrict b, int∗ restrict c, int n0, int m0, int m1, int block ii ,int block jj ,

int block kk, int iter space , int db iter)
478 {

int i , j , k, ii , jj , kk;



480 int t , s ;
int min ii , min jj , min kk;

482 int lc tmp;
int r ;

484
int dummy read;

486 int tmp = 0;
volatile int∗ restrict c01 st0 write = (int ∗) C01 ST0 IN BASE;

488 volatile int∗ restrict c01 st1 write = (int ∗) C01 ST1 IN BASE;
volatile int∗ restrict buff01 c01 read = (int ∗) BUFF01 C01 OUT BASE;

490 /∗ local buffer declaration section ∗/
int∗ restrict a tmp 0 = (int ∗) BUFF0 0 BASE;

492 int∗ restrict b tmp 0 = (int ∗) BUFF0 1 BASE;
int∗ restrict a tmp 1 = (int ∗) BUFF1 0 BASE;

494 int∗ restrict b tmp 1 = (int ∗) BUFF1 1 BASE;

496 int∗ restrict c tmp 0 r = (int ∗) ST0 BASE;
int∗ restrict c tmp 0 w = (int ∗) ST0 BASE;

498 int∗ restrict c tmp 1 r = (int ∗) ST1 BASE;
int∗ restrict c tmp 1 w = (int ∗) ST1 BASE;

500 int cswitch = 0;

502 ii = 0;
jj = 0;

504 kk = 0;
for (t = 0; t < iter space ∗ 2; t+= db iter)

506 {

508 if ( block ii < n0 − ii) min ii = block ii ;
else min ii = n0 − ii;

510 if ( block jj < m1 − jj) min jj = block jj;
else min jj = m1 − jj;

512 if (block kk < m0 − kk) min kk = block kk;
else min kk = m0 − kk;

514
i = 0;

516 j = 0;
k = 0;

518 s = 0;

520 /∗ if (dummy read == 0) b tmp = b tmp 0, else b tmp = b tmp 1;... ∗/

522 dummy read = ∗buff01 c01 read;
if (dummy read == 0)

524 {
i = 0; j = 0; k = 0;

526 for (r = 0; r < min ii ∗ min jj ∗ min kk; r++)
{

528
if (k == 0) lc tmp = 0;

530 else lc tmp += ∗(a tmp 0 + (i ∗ block kk + k)) ∗ ∗(b tmp 0 + (k ∗ block jj + j));

532 if (k == min kk − 1)
{

534 ∗(c tmp 0 w + (i ∗ block jj + j)) = ((kk == 0) && (k == 0)) ? lc tmp : ∗(c tmp 0 r + (i ∗ block jj + j)) + lc tmp;
}

536 if (k < min kk − 1) k++;
else {

538 k = 0;
if (j < min jj − 1) j++;

540 else {
j = 0;

542 i++;
}

544 }
}

546 ∗c01 st0 write = lc tmp;
}

548 if (dummy read == 1)
{

550 //perform computation on buff1
i = block ii ; j = 0; k = 0;

552 for (r = 0; r < min ii ∗ min jj ∗ min kk; r++)
{

554 if ( ii + i < n0)
{

556 if ((kk == 0)&&(k == 0)) lc tmp = 0;
lc tmp += ∗(a tmp 1 + ((i − block ii) ∗ block kk + k)) ∗ ∗(b tmp 1 + (k ∗ block jj + j));

558 if (k == min kk − 1)
{

560 ∗(c tmp 1 w + ((i − block ii) ∗ block jj + j)) = ∗(c tmp 1 r + ( (i − block ii) ∗ block jj + j)) + lc tmp;
}

562
}

564 if (k < min kk − 1) k++;
else {

566 k = 0;
if (j < min jj − 1) j++;



568 else {
j = 0;

570 i++;
}

572 }
}

574 ∗c01 st1 write = lc tmp;
}

576 if (cswitch < 1) cswitch++;
else {

578 cswitch = 0;
if (kk + block kk < m0) kk+= block kk;

580 else {
kk = 0;

582 if ( jj + block jj < m1) jj+= block jj;
else {

584 jj = 0;
if ( ii + 2 ∗ block ii < n0) ii+= 2 ∗ block ii;

586 }
}

588 }
}

590 return 0;
}
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