
Program Transformations and Memory
Architecture Optimizations for High-Level

Synthesis of Hardware Accelerators

Alexandru PLESCO
Ph.D. Defense

Supervisors: Christophe Alias, Alain Darte, Tanguy Risset
Compsys Team

Laboratoire de l’Informatique du Parallélisme (LIP)

École Normale Supérieure de Lyon
France

September 27, 2010

1 / 1



Digital circuits design methodologies

Description level

Schematics, RTL

Structural VHDL

Behavioral VHDL

Verilog rst

Q

clk

D

rst

Q

clk

D

In

Higher abstraction level ⇒ Easier for designer, harder for compiler.

2 / 1



Digital circuits design methodologies

Description level

Schematics, RTL

Structural VHDL

Behavioral VHDL

Verilog

entity latch is

   port(s,r: in bit;

            q,nq:out bit);

end latch;

architecture str of latch is

    component nor_gate
.....

begin

....

end str;

entity top is

    .....

architecture ta of top

   component latch

....

begin

...

end ta;

   n1: nor_gate

      port map (r,nq,q);

    l1: latch

         port map(s,r,q,nq);

Higher abstraction level ⇒ Easier for designer, harder for compiler.

2 / 1



Digital circuits design methodologies

Description level

Schematics, RTL

Structural VHDL

Behavioral VHDL

Verilog

entity latch is

   port(s,r: in bit;

....

end str;

entity top is

    .....

architecture ta of top

   component latch

....

begin

...

end ta;

begin

.....

....

....

process(s,r)

begin

if s = ’1’ then q:=’1’...

elsif r = ’1’ then q:=’0’

         port map(s,r,q,nq);

    l1: latch

Higher abstraction level ⇒ Easier for designer, harder for compiler.

2 / 1



Digital circuits design methodologies

Description level

Schematics, RTL

Structural VHDL

Behavioral VHDL

Verilog

module latch (s,r,n,qn);

input s,r;

output q,qn;

....

endmodule

end

module top

.....

always @(....)

begin

...

end

endmodule

latch mygate(....)

always @(r or s)

begin

if (s)

q <=1...

else if (r)

q <=0...

Higher abstraction level ⇒ Easier for designer, harder for compiler.

2 / 1



High-Level Synthesis (HLS)

Increasing complexities of accelerated algorithms:

Telecommunication equipment (3G, 4G, . . . )

Multimedia devices (Video/audio CODECS, . . . )

High performance computing (encryption, simulation, . . . )

ý Increasing demands in processing power

+ Short time to market
+ Development effort

ý HLS tools become mandatory to meet design constraints

3 / 1



High-Level Synthesis (HLS)

Increasing complexities of accelerated algorithms:

Telecommunication equipment (3G, 4G, . . . )

Multimedia devices (Video/audio CODECS, . . . )

High performance computing (encryption, simulation, . . . )

ý Increasing demands in processing power
+ Short time to market
+ Development effort

ý HLS tools become mandatory to meet design constraints

3 / 1



What is HLS?

HA

directives, class library,

configuration file, ...

code C

High level
HLS

FSM, instruction−level parallelism, 

resource sharing, software pipelining, ...

ý Optimize memory accesses, data reuse, and interconnections

4 / 1



What is HLS?

HLS
code C

High level

directives, class library,

configuration file...

HA

memory
local

memory
external

optimized interface

ý Optimize memory accesses, data reuse, and interconnections

4 / 1



What is HLS?

directives, class library,

configuration file...

code C

High level
HLS

HA

memory
local

memory
external

Thesis leitmotiv

optimized interface

Source−level preprocessing

ý Optimize memory accesses, data reuse, and interconnections

4 / 1



What is HLS?

directives, class library,

configuration file...

code C

High level
HLS

HA

memory
local

memory
external

Thesis leitmotiv

optimized interface

Source−level preprocessing

ý Optimize memory accesses, data reuse, and interconnections

4 / 1



Outline

5 / 1



Design with MMAlpha HLS tool

SRAM
DDR

SDRAM

HA

MMAlpha

CPU ?

??

Alpha SRE

MMAlpha

Slave HA

Synchronous interface

Regular control inside
HA (dataflow)

6 / 1



Design with MMAlpha HLS tool

SRAM
DDR

SDRAM

HA

MMAlpha

CPU
glue
logic

Alpha SRE

Glue logic: interface +
memory manager for

data reuse

burst transfers

6 / 1



Design with MMAlpha HLS tool

SRAM
DDR

SDRAM

HA

MMAlpha

CPU
glue
logicMB/s

~40

~80 MB/s

Alpha SRE Problems

Small bandwidth

Multi-port memory
controller?

Important design and
programming effort

6 / 1



Design with MMAlpha HLS tool

SRAM
DDR

SDRAM

HA

MMAlpha

CPU
glue
logic

MPMC

~80 MB/s

MB/s

~40

Alpha SRE Problems

Small bandwidth

Multi-port memory
controller?

Important design and
programming effort

6 / 1



Moving the glue logic inside the HA

CPU0 HA

SDRAM

DDR

SRAM
Cache

CPU1

Control logic: inside HA.

Which HLS tool?

7 / 1



Moving the glue logic inside the HA

CPU0 HA

SDRAM

DDR

SRAM
Cache

CPU1

Control logic: inside HA.

Which HLS tool? Spark

7 / 1



Design with Spark and WRaP-IT

Front end Opt

Open64+WrapIT

Whirl2C

C code

VHDL
C code

Backtrack opt.

for (k=2; k<=M; k++)

for (l=1; l<=N; l++)

S3

if (k==l) 

S4

Source C code
Fusion(Enclose(S3),2)

........

Spark config.
[general info]

10 1 1 0
........

Perf. eval.

DineroIV
Cache simul.

Instrument
Mem. access

FSM estimation
of execution

Spark

WrapIT

Input
Input

Manual transf.

8 / 1



Experimental results

h264/h263 YUV420 to RGB444 converter

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

Cache
misses

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

Memory
R/W

 0

 200

 400

 600

 800

 1000

 1200

 1400

FSM
states

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07 Spark_Only
WRaPit0
WRaPit1
WRaPit2
WRaPit3
All_transf

Execution
cycles

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07 Spark_Only
WRaPit0
WRaPit1
WRaPit2
WRaPit3
All_transf

Manual
transformation
sequences

increases the cache hit ratio

decreases the memory bandwidth requirements

increases the number of FSM states (may degrade frequency)

decreases the total execution time

9 / 1



Try to improve HLS tools with high-level transformations

Experiments with MMAlpha

Parallel (systolic) architecture.

Data should be available at MMAlpha ports, fed by FIFOs.

Need to implement (in VHDL) a complex memory controller.

ý Improved performances but still (very) limited by bandwidth.

Experiments with Spark

Accelerator to be connected to a CPU, possibly with a cache.

I/O pins: 1 dedicated pin per data bit

Apply loop transformations: optimize transfers and reuse.

ý Loop transformations appeared to be useful. But:

How to interface? No way to reuse pins.

Thus performances improvements could only be simulated.

Frequency sometimes lower.

10 / 1



Try to improve HLS tools with high-level transformations

Experiments with MMAlpha

Parallel (systolic) architecture.

Data should be available at MMAlpha ports, fed by FIFOs.

Need to implement (in VHDL) a complex memory controller.

ý Improved performances but still (very) limited by bandwidth.

Experiments with Spark

Accelerator to be connected to a CPU, possibly with a cache.

I/O pins: 1 dedicated pin per data bit

Apply loop transformations: optimize transfers and reuse.

ý Loop transformations appeared to be useful.

But:

How to interface? No way to reuse pins.

Thus performances improvements could only be simulated.

Frequency sometimes lower.

10 / 1



Try to improve HLS tools with high-level transformations

Experiments with MMAlpha

Parallel (systolic) architecture.

Data should be available at MMAlpha ports, fed by FIFOs.

Need to implement (in VHDL) a complex memory controller.

ý Improved performances but still (very) limited by bandwidth.

Experiments with Spark

Accelerator to be connected to a CPU, possibly with a cache.

I/O pins: 1 dedicated pin per data bit

Apply loop transformations: optimize transfers and reuse.

ý Loop transformations appeared to be useful. But:

How to interface? No way to reuse pins.

Thus performances improvements could only be simulated.

Frequency sometimes lower.

10 / 1



Outline

11 / 1



Goal of this study: use HLS tools as a back-end compiler

Show that high-level transformations are useful and needed.

Focus on accelerators limited by bandwidth: optimize
throughput and put necessary hardware for computations.

Optimize transfers at C level.

Compile any new functions with the same HLS tool.

ý Try to consider HLS tools the same way back-end compilers are
used, in standard compilation, by front-end optimizers.

12 / 1



C2H (Altera HLS tool) main features

Syntax-directed translation to hardware

Hierarchical FSMs: stalls to wait for the longest inner FSM.

Access to external memory through arrays and pointers.

One local memory for each local array.

Software pipelined loops ý Optimize CPLI (initiation interval)

Basic software pipelining with rough data dependence analysis.

Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system

Accelerator initiated as a (blocking or not) function call.

Memory mapped connection ports with Avalon interconnect.

A few compilation pragmas

restrict: pointer does not alias with any other pointer.

arbitration share: how many accesses without re-arbitration.

13 / 1



C2H (Altera HLS tool) main features

Syntax-directed translation to hardware

Hierarchical FSMs: stalls to wait for the longest inner FSM.

Access to external memory through arrays and pointers.

One local memory for each local array.

Software pipelined loops ý Optimize CPLI (initiation interval)

Basic software pipelining with rough data dependence analysis.

Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system

Accelerator initiated as a (blocking or not) function call.

Memory mapped connection ports with Avalon interconnect.

A few compilation pragmas

restrict: pointer does not alias with any other pointer.

arbitration share: how many accesses without re-arbitration.

13 / 1



C2H (Altera HLS tool) main features

Syntax-directed translation to hardware

Hierarchical FSMs: stalls to wait for the longest inner FSM.

Access to external memory through arrays and pointers.

One local memory for each local array.

Software pipelined loops ý Optimize CPLI (initiation interval)

Basic software pipelining with rough data dependence analysis.

Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system

Accelerator initiated as a (blocking or not) function call.

Memory mapped connection ports with Avalon interconnect.

A few compilation pragmas

restrict: pointer does not alias with any other pointer.

arbitration share: how many accesses without re-arbitration.

13 / 1



C2H (Altera HLS tool) main features

Syntax-directed translation to hardware

Hierarchical FSMs: stalls to wait for the longest inner FSM.

Access to external memory through arrays and pointers.

One local memory for each local array.

Software pipelined loops ý Optimize CPLI (initiation interval)

Basic software pipelining with rough data dependence analysis.

Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system

Accelerator initiated as a (blocking or not) function call.

Memory mapped connection ports with Avalon interconnect.

A few compilation pragmas

restrict: pointer does not alias with any other pointer.

arbitration share: how many accesses without re-arbitration.

13 / 1



Nested finite state machines and pipelined accesses
C

o
n
tr

o
l

D
at

ap
at

h

Port a Port b Port c

Pipeline

Access

FIFO

Pipeline

Access

FIFO

c[i] = ...b_sum...a_sum....

for (j = 0... for (j = 0;...

for (i = 0; i < n; i++)

accelerator function FSM

latency

restart

void acc(int *a, int *b, int *c) {
int i, j, k, a_sum, b_sum;

for(i=0; i<n; i++) {
for(j=0; j<m; j++)

a_sum += a[j];

for(j=0; j<p; j++)

b_sum += b[j];

c[i] = a_sum + b_sum;

}
}

14 / 1



DDR SDRAM asymmetric accesses

Cache

HA

DDR PRE−

CHARGE

WRITE READ

BANK

ACTIVE

IDLE

WR

WR

PRE

RD

tR
A
S

P
R
E

RD

ACTIV

tRCD

PRE

tRP

WR RD

DDR-400 128Mbx8, size of 16MB, CAS 3, at 200MHz.

Successive reads to the same row: 1 data every 10ns .

Successive reads with a row change: 1 data every 80ns .

ý For accelerators exploiting full bandwidth, frequent changes of
rows kill the throughput. Need to use “burst” communications.

15 / 1



DDR SDRAM asymmetric accesses

Cache

HA

DDR PRE−

CHARGE

WRITE READ

BANK

ACTIVE

IDLE

WR

WR

WR

PRE

RD

tR
A
S

P
R
E

RD

ACTIV

tRCD

PRE

tRP

RD

DDR-400 128Mbx8, size of 16MB, CAS 3, at 200MHz.

Successive reads to the same row: 1 data every 10ns .

Successive reads with a row change: 1 data every 80ns .

ý For accelerators exploiting full bandwidth, frequent changes of
rows kill the throughput. Need to use “burst” communications.

15 / 1



DDR SDRAM asymmetric accesses

Cache

HA

DDR PRE−

CHARGE

WRITE READ

BANK

ACTIVE

IDLE

WR

WR

PRE

RD

tR
A
S

P
R
E

WR RD

PRE

tRP

tRCD

ACTIV

RD

DDR-400 128Mbx8, size of 16MB, CAS 3, at 200MHz.

Successive reads to the same row: 1 data every 10ns .

Successive reads with a row change: 1 data every 80ns .

ý For accelerators exploiting full bandwidth, frequent changes of
rows kill the throughput. Need to use “burst” communications.

15 / 1



DDR SDRAM asymmetric accesses

Cache

HA

DDR PRE−

CHARGE

WRITE READ

BANK

ACTIVE

IDLE

WR

WR

WR

PRE

RD

tR
A
S

P
R
E

RD

ACTIV

tRCD

PRE

tRP

RD

DDR-400 128Mbx8, size of 16MB, CAS 3, at 200MHz.

Successive reads to the same row: 1 data every 10ns .

Successive reads with a row change: 1 data every 80ns .

ý For accelerators exploiting full bandwidth, frequent changes of
rows kill the throughput. Need to use “burst” communications.

15 / 1



Simple example: vector sum

int vector_sum (int* __restrict__ a, int* __restrict__ b,

int* __restrict__ c, int n) {
int i;

for (i = 0; i < n; i++) c[i] = a[i] + b[i];

return 0;

}

/RAS

/CAS

/WE

DQ

PRECHARGE READ

ACTIVATE

PRECHARGE READ

ACTIVATE

store c(i)

PRECHARGE

ACTIVATE

WRITE

load a(i)

a(i) b(i)

load b(i)

c(i)

Non-optimized version: time gaps + data thrown away.

16 / 1



Simple example: vector sum

int vector_sum (int* __restrict__ a, int* __restrict__ b,

int* __restrict__ c, int n) {
int i;

for (i = 0; i < n; i++) c[i] = a[i] + b[i];

return 0;

}

/RAS

/CAS

/WE

DQ

ACTIVATE

PRECHARGE READ PRECHARGE READ

ACTIVATE

store c(i) ... c(i+k)

PRECHARGE

ACTIVATE

WRITEblock size

load a(i) ... a(i+k)

a(i+k)a(i) b(i+k)

load b(i) ... b(i+k)

c(i) c(i+k)b(i)

Optimized block version: reduces gaps, exploits burst.

16 / 1



Strip-mining and loop distribution

Loop distribution: too large local memory.
Unrolling: too many registers.

}
ý

strip-mining +
loop distribution.

for (i=0; i<MAX; i=i+BLOCK) {
for(j=0; j<BLOCK; j++) a_tmp[j] = a[i+j]; //prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b[i+j]; //prefetch

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j]; //store

}

ý Does not work!

first data
received

latency

first request

DDR

i loop

time

pipeline

computation

j loop

fetch a,b

j loops

store

j loop

Accesses to arrays a and b
still interleaved!

Loop latency penalty.

Outer loop not pipelined.

17 / 1



Strip-mining and loop distribution

Loop distribution: too large local memory.
Unrolling: too many registers.

}
ý

strip-mining +
loop distribution.

for (i=0; i<MAX; i=i+BLOCK) {
for(j=0; j<BLOCK; j++) a_tmp[j] = a[i+j]; //prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b[i+j]; //prefetch

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j]; //store

}

ý Does not work!

first data
received

latency

first request

DDR

i loop

time

pipeline

computation

j loop

fetch a,b

j loops

store

j loop

Accesses to arrays a and b
still interleaved!

Loop latency penalty.

Outer loop not pipelined.

17 / 1



Introduce false dependences

for (i=0; i<MAX; i=i+BLOCK) {
for(j=0; j<BLOCK; j++) tmp = BLOCK; a_tmp[j] = a[i+j];

for(j=0; j<tmp; j++) b_tmp[j] = b[i+j];

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j];

}

latency

first request

pipeline

j loop

fetch a

DDR

store

time

computation

j loop j loop

fetch b

first data
received i loop

j loop

ý Still pay loop latency penalty and poor outermost loop pipeline.

18 / 1



Emulating nested loops with a single loop & an automaton

i=0; j=0; bi=0;

for (k=0; k<4*MAX; k++) {
if (j==0) a_tmp[i] = a[bi+i];

else if (j==1)

b_tmp[i] = b[bi+i];

else if (j==2)

c_tmp[i] = a_tmp[i] + b_tmp[i];

else c[bi+i] = c_tmp[i];

if (i<BLOCK-1) i++;

else {
i=0;

if (j<3) j++;

else {j=0; bi = bi + BLOCK;}
}

}

CPLI = 21! Problem with
dependence analyzer and
software pipeliner.

Better behavior (CPLI=3)
with case statement: by luck.

Further loop unrolling to get
CPLI = 1: too complex.

But DDR accesses still
interleaved: bad throughput!

19 / 1



Emulating nested loops with a single loop & an automaton

i=0; j=0; bi=0;

for (k=0; k<4*MAX; k++) {
if (j==0) a_tmp[i] = a[bi+i];

else if (j==1)

b_tmp[i] = b[bi+i];

else if (j==2)

c_tmp[i] = a_tmp[i] + b_tmp[i];

else c[bi+i] = c_tmp[i];

if (i<BLOCK-1) i++;

else {
i=0;

if (j<3) j++;

else {j=0; bi = bi + BLOCK;}
}

}

CPLI = 21! Problem with
dependence analyzer and
software pipeliner.

Better behavior (CPLI=3)
with case statement: by luck.

Further loop unrolling to get
CPLI = 1: too complex.

But DDR accesses still
interleaved: bad throughput!

19 / 1



Emulating nested loops, regrouping transfers

i=0; j=0; bi=0;

for (k=0; k<3*MAX; k++) {
if (j==0) { ptr_1 = &a[bi+i]; ptr_2 = &a_tmp[i]; }
else if (j==1) { ptr_1 = &b[bi+i]; ptr_2 = &b_tmp[i]; }
else if (j==2) { ptr_1 = &c_tmp[i]; ptr_2 = &c[bi+i];

c_tmp[i] = a_tmp[i] + b_tmp[i]; }
*ptr_2 = *ptr_1;

if (i<BLOCK-1) i++;

else { i=0; if (j<2) j++; else {j=0; bi = bi + BLOCK;}}
}

No more interleaving between arrays a and b;

CPLI not equal to 1, unless restrict pragma added: but leads
to potentially wrong codes.

How to decrease CPLI and generalize to more complex codes?

20 / 1



Decompose into communication & computation processes

������������������������������������������������

STORE0(t)

STORE1(t)

BUFF0_LD(t)

BUFF1_LD(t)

DDR’

time

p
ip

el
in

e 
le

v
el

COMP0(t) COMP1(t)

Pipeline computation
and communication.

Force suitable order
of DDR requests.

Overlap computation
and communication.

Play with flow/anti
dependences.

21 / 1



Decompose into communication & computation processes

BUFF0_LD(t)

BUFF1_LD(t)

DDR’

time

p
ip

el
in

e 
le

v
el

COMP0(t) COMP1(t)

STORE0(t−1)

STORE1(t−1)

Pipeline computation
and communication.

Force suitable order
of DDR requests.

Overlap computation
and communication.

Play with flow/anti
dependences.

21 / 1



Coarse-grain software pipelining

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

COMP0

STORE0

COMP1

STORE1

BUFF1_LDBUFF0_LD

1

0

1

1
00

0

1

0

1

0

1

0

1

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note: 

dependence

additional synchro.

COMP1

COMP0

COMP1

COMP0
BUFF0_LD

BUFF1_LD

BUFF0_LD

BUFF1_LD

Semantically, “as if”:

BUFF0 LD(t) at 4t, BUFF1 LD(t) at 4t + 2.

COMP0(t) at 4t + 2, COMP1(t) at 4t + 4.

STORE0(t) at 4t + 5, STORE1(t) at 4t + 7.

Here, STORE0(t − 1) finished before COMP0(t).
ý Similar to “double buffering”

22 / 1



General architecture organization: typical example

Use dedicated FIFOs of size 1 for synchronizations.
Data transfers done through explicit memory accesses.

ST0_ST1

C01_ST1C01_ST0

BUFF1_ST0

ST1_BUFF0

BUFF0_BUFF1

BUFF01_C01

BUFF0

ST0

BUFF1

ST1

COMP 0/1

STORE0

BUFF0_LD BUFF1_LD

STORE1

23 / 1



How to synchronize at C-level?

Need two kinds of synchronizations

Sequential access to shared resource (computation or DDR).

Data-flow: wait for data to arrive.

D
A

T
A

 R
E

C
E

IV
E

D
D

R
R

E
Q

U
E

S
T

pipeline depth for (t=0; t<iter_space; t+=db_iter) {
dummy_read += 

if (s==0) {
compute local and global addresses for array a
and scan the iteration space of array a;
if end of iteration space: s++;

} else if (s==1) { same as s==0 for array b; }
transfer data from DDR to local memory;

} 

}

*buff0_c01_write 
external linearized loop control; 

time

for(r=0, 

if (r == r_sup −1) {

 *st1_buff0_read;

 = tmp;

tmp = 0; }

tmp=dummy_read; r<r_sup; r++) {

*buff0_buff1_write = 0; 

24 / 1



Experimental results: typical examples

Typical speed-up vs
block size figure
(pS accurate simulation).

 0

 1

 2

 3

 4

 5

 6

 7

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p
e
e
d
-u

p

Block sizeSA: system alone.

VS0 & VS1: vector sum direct & optimized version.

MM0 & MM1: matrix-matrix multiply direct & optimized.

Kernel Speed-up ALUT Dedicated Total Total block DSP block Max Frequency
registers registers memory bits 9-bit elements (MHz > 100)

SA 1 5105 3606 3738 66908 8 205.85
VS0 1 5333 4607 4739 68956 8 189.04
VS1 6.54 10345 10346 11478 269148 8 175.93

MM0 1 6452 4557 4709 68956 40 191.09
MM1 7.37 15255 15630 15762 335196 188 162.02

25 / 1



Outline

26 / 1



Polyhedral model

Ex: product of polynomials

for (i=0; i<= 2*N; i++)

S1: c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + a[i]*b[j]

θ(S2, i , j) = i + 1

0 N = 3

S2:

S1:

i

j

N θ(S1, i) = 0

Affine (parameterized) loop bounds and accesses

Iteration domain, iteration vector

Instance-wise analysis

Affine transformations

27 / 1



Polyhedral model: tiling

Tiled product of polynomials

i

j

Tile band

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

������
������
������
������

θ(S2, i , j) =
(
i+j
i

)

Tile: atomic block
operation

Increases granularity of
computations

Tile band: double buffering

n loops transformed into n
tile loops + n block loops

Expressed from permutable
loops (function θ)

28 / 1



Overview of the method

Derive automatically the C2H-compliant C functions for the
pipelined accelerators: load, store and compute. Blocks obtained
by loop tiling, pipelined in a “double-buffering” scheme.

1 Communication coalescing - prefetches data out of tile,
following rows, and exploits data reuse

2 Local memory management - defines memory elements,
reduces size, and computes access functions

3 Code generation - generates final C code in a linearized form
while optimizing accesses to the DDR

29 / 1



Overview of the method

Derive automatically the C2H-compliant C functions for the
pipelined accelerators: load, store and compute. Blocks obtained
by loop tiling, pipelined in a “double-buffering” scheme.

1 Communication coalescing - prefetches data out of tile,
following rows, and exploits data reuse

2 Local memory management - defines memory elements,
reduces size, and computes access functions

3 Code generation - generates final C code in a linearized form
while optimizing accesses to the DDR

29 / 1



Overview of the method

Derive automatically the C2H-compliant C functions for the
pipelined accelerators: load, store and compute. Blocks obtained
by loop tiling, pipelined in a “double-buffering” scheme.

1 Communication coalescing - prefetches data out of tile,
following rows, and exploits data reuse

2 Local memory management - defines memory elements,
reduces size, and computes access functions

3 Code generation - generates final C code in a linearized form
while optimizing accesses to the DDR

29 / 1



Loop tiling: impact on communication

Version 1

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Version 2
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Load ∼ FirstRead ∩ tile domain Store ∼ LastWrite ∩ tile domain
FirstRead/LastWrite ∼ Array dataflow analysis

30 / 1



Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

LD

LD
LD

Valid load

(i) Load at least what is needed but not previously produced:

∪t≤T
{
In(t) \Out(t ′ < t)

}
⊆ Load(t ≤ T )

(ii) Do not overwrite live data:

Out(t < T ) ∩ Load(T ) = ∅

31 / 1



Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

LD

LDLD

Exact load

(i) Load exactly what is needed but not previously produced:

∀T ,∪t≤T
{
In(t) \Out(t ′ < t)

}
=Load(t ≤ T )

(ii) All loads must be disjoint:

Load(T ) ∩ Load(T ′) = ∅,∀T 6= T ′

31 / 1



Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

Out

LD
LD

LD

LD

Valid approximated load

(i) Load at least the exact amount of data:

∪t≤T
{
In(t) \Out(t ′ < t)

}
⊆ Load(t ≤ T )

(ii) Do not overwrite possible live data:

Out(t < T ) ∩ Load(T ) = ∅

31 / 1



Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

Out

LD
LD

LD

LDLD

Valid approximated load

(i) Load at least the exact amount of data:

∪t≤T
{
In(t) \Out(t ′ < t)

}
⊆ Load(t ≤ T )

(ii) Do not overwrite possible live data:

Out(t < T ) ∩ Load(T ) = ∅

31 / 1



Local memory management

Simplest case: immediate data consumption with no reuse

i

k

LD

a(i): external memory

atmp(σ(i)): local memory

ý Array contraction with a double buffering scheduling
(loop unrolling by 2 plus software pipelining of tiles)

32 / 1



Local memory management

Simplest case: immediate data consumption with no reuse

i

k

LDC

a(i): external memory

atmp(σ(i)): local memory

ý Array contraction with a double buffering scheduling
(loop unrolling by 2 plus software pipelining of tiles)

32 / 1



Local memory management

Simplest case: immediate data consumption with no reuse

i

k

CLD

a(i): external memory

atmp(σ(i)): local memory

ý Array contraction with a double buffering scheduling
(loop unrolling by 2 plus software pipelining of tiles)

32 / 1



Local memory management

Simplest case: immediate data consumption with no reuse

i

k

C LD

a(i): external memory

atmp(σ(i)): local memory

ý Array contraction with a double buffering scheduling
(loop unrolling by 2 plus software pipelining of tiles)

32 / 1



Local memory management

Simplest case: immediate data consumption with no reuse

i

k

C LD

a(i): external memory

atmp(σ(i)): local memory

ý Array contraction with a double buffering scheduling
(loop unrolling by 2 plus software pipelining of tiles)

32 / 1



General organization

Iteration over tiles

1 void Load0() {
2 for (T1 = ...) {
3 . . .
4 for (Tn−1 = ...) {
5 for (Tn = L(T1, . . . ,Tn−1);
6 Tn ≤ U(T1, . . . ,Tn−1);
7 Tn += 2) {
8 //Synchronize from Store1()
9 //Load(T1, . . . ,Tn) + sync. to Load1()

10 //Synchronize to Compute()
11 }}. . .}}
12 void Load1() {...}
13 void Store0() {...}
14 void Store1() {...}
15 void Compute() {...}

Similar for functions
Load1, Store0, Store1,
Compute

Loop nests: linearized

Synchronizations

Code generation ensures
spatial data locality for
optimized DDR access

33 / 1



Kernel code generation

FR(b(k,j))

(I,J,K)

j

k

FR(a(i,k))

i

T

Da :


T · I ≤ i ≤ T · I + (T − 1)
j = T · J
T · K ≤ k ≤ T · K + (T − 1)

: LD(a(i , k))

Db :


i = T · I
T · J ≤ j ≤ T · J + (T − 1)
T · K ≤ k ≤ T · K + (T − 1)

: LD(b(k, j))

Linearized loops ý use Boulet-Feautrier with (Da, θa), (Db, θb)

θa(i , j , k) = (0, i , k)
θb(i , j , k) = (1, k, j)

}
Arrays are read one after the other
Scan arrays row by row

34 / 1



Manually- vs. automatically-transformed

Method implemented in Chuba (array contraction: Bee)

Ex: Vector sum speed-ups

 0

 1

 2

 3

 4

 5

 6

 7

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
pe

ed
-u

p

Block size

Manual
Automatic

35 / 1



Synthesis results

Kernel Speed-up ALUT Dedicated Total
registers registers

System alone 4406 3474 3606
DMA direct implementation 1 4598 3612 3744
DMA transformed manually (1K tile) 5.95 9665 10244 10376
DMA transformed manually (8K tile) 6.01 9853 10517 10649
DMA automatic (8K tile) 5.98 11052 12133 12265
Vector sum direct implementation 1 5333 4607 4739
Vector sum transformed manually (1K tile) 6.50 10345 10346 11478
Vector sum transformed manually (8K tile) 6.54 10881 11361 11493
Vector sum automatic (8K tile) 6.51 11632 13127 13259

Kernel Total block DSP block Max Freq.
memory bits 9-bit elements (MHz)

System alone 66908 8 205.85
DMA direct implementation 66908 8 200.52
DMA transformed manually (1k tile) 203100 8 167.25
DMA transformed manually (8k tile) 1120604 8 162.55
DMA automatic (8k tile) 1120348 48 167.87
Vector sum direct implementation 68956 8 189.04
Vector sum transformed manually (1k tile) 269148 8 175.93
Vector sum transformed manually (8k tile) 1645404 8 164
Vector sum automatic (8k tile) 1644892 48 159.8

36 / 1



Synthesis results

Kernel Speed-up ALUT Dedicated Total
registers registers

System alone 4406 3474 3606
DMA direct implementation 1 4598 3612 3744
DMA transformed manually (1K tile) 5.95 9665 10244 10376
DMA transformed manually (8K tile) 6.01 9853 10517 10649
DMA automatic (8K tile) 5.98 11052 12133 12265
Vector sum direct implementation 1 5333 4607 4739
Vector sum transformed manually (1K tile) 6.50 10345 10346 11478
Vector sum transformed manually (8K tile) 6.54 10881 11361 11493
Vector sum automatic (8K tile) 6.51 11632 13127 13259

Kernel Total block DSP block Max Freq.
memory bits 9-bit elements (MHz)

System alone 66908 8 205.85
DMA direct implementation 66908 8 200.52
DMA transformed manually (1k tile) 203100 8 167.25
DMA transformed manually (8k tile) 1120604 8 162.55
DMA automatic (8k tile) 1120348 48 167.87
Vector sum direct implementation 68956 8 189.04
Vector sum transformed manually (1k tile) 269148 8 175.93
Vector sum transformed manually (8k tile) 1645404 8 164
Vector sum automatic (8k tile) 1644892 48 159.8

36 / 1



Synthesis results

Kernel Speed-up ALUT Dedicated Total
registers registers

System alone 4406 3474 3606
DMA direct implementation 1 4598 3612 3744
DMA transformed manually (1K tile) 5.95 9665 10244 10376
DMA transformed manually (8K tile) 6.01 9853 10517 10649
DMA automatic (8K tile) 5.98 11052 12133 12265
Vector sum direct implementation 1 5333 4607 4739
Vector sum transformed manually (1K tile) 6.50 10345 10346 11478
Vector sum transformed manually (8K tile) 6.54 10881 11361 11493
Vector sum automatic (8K tile) 6.51 11632 13127 13259

Kernel Total block DSP block Max Freq.
memory bits 9-bit elements (MHz)

System alone 66908 8 205.85
DMA direct implementation 66908 8 200.52
DMA transformed manually (1k tile) 203100 8 167.25
DMA transformed manually (8k tile) 1120604 8 162.55
DMA automatic (8k tile) 1120348 48 167.87
Vector sum direct implementation 68956 8 189.04
Vector sum transformed manually (1k tile) 269148 8 175.93
Vector sum transformed manually (8k tile) 1645404 8 164
Vector sum automatic (8k tile) 1644892 48 159.8

36 / 1



Synthesis results

Kernel Speed-up ALUT Dedicated Total
registers registers

System alone 4406 3474 3606
DMA direct implementation 1 4598 3612 3744
DMA transformed manually (1K tile) 5.95 9665 10244 10376
DMA transformed manually (8K tile) 6.01 9853 10517 10649
DMA automatic (8K tile) 5.98 11052 12133 12265
Vector sum direct implementation 1 5333 4607 4739
Vector sum transformed manually (1K tile) 6.50 10345 10346 11478
Vector sum transformed manually (8K tile) 6.54 10881 11361 11493
Vector sum automatic (8K tile) 6.51 11632 13127 13259

Kernel Total block DSP block Max Freq.
memory bits 9-bit elements (MHz)

System alone 66908 8 205.85
DMA direct implementation 66908 8 200.52
DMA transformed manually (1k tile) 203100 8 167.25
DMA transformed manually (8k tile) 1120604 8 162.55
DMA automatic (8k tile) 1120348 48 167.87
Vector sum direct implementation 68956 8 189.04
Vector sum transformed manually (1k tile) 269148 8 175.93
Vector sum transformed manually (8k tile) 1645404 8 164
Vector sum automatic (8k tile) 1644892 48 159.8

36 / 1



Contributions

Focus on memory optimizations and interface generation.

Demonstrates importance of source-to-source optimizations
(script + use of transformation tool) in front of HLS tools.

To our knowledge, first process to automate communications
and integrate hardware accelerators, entirely at C level.

Identifies important needs for synchronization mechanisms at
source level and for better pragmas (e.g., restrict for pairs).

Analysis and transformations appear to be very similar to
optimizations needed for GPUs.

Starting point for using HLS tools as back-end compilers?

37 / 1



Perspectives

Many opportunities for improvements.

Design more domain-specific code generation.

Define compilation directives at C level for hardware synthesis.

Design customized memories and inter-processes buffers.

Exploit schedule with slacks for GALS pipelined designs.

. . .

38 / 1


