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Résumé

La simulation numérique est l’un des outils les plus puissants pour concevoir et
optimiser les systèmes industriels. Dans le domaine de la Dynamique des Flu-
ides Numériques (CFD, "Computational Fluid Dynamics"), la simulation aux
grandes échelles (LES, "Large Eddy Simulation") est aujourd’hui largement
utilisée pour calculer les écoulements turbulents réactifs, où les tourbillons de
grande taille sont calculés explicitement, tandis que l’effet de ceux de petite
taille est modelisé. Des modèles de sous-mailles sont requis pour fermer les
équations de transport en LES, et dans le contexte de la simulation de la com-
bustion turbulente, le plissement de la surface de flamme de sous-maille doit
être modelisé.
En général, augmenter le plissement de la surface de flamme de sous-maille fa-
vorise la combustion. L’amplitude de la promotion est donnée par une fonction
d’efficacité, qui est dérivée d’une hypothèse d’équilibre entre la production et
la destruction de la surface de flamme. Dans les méthodes conventionnelles,
le calcul de la fonction d’efficacité nécessite une constante qui dépend de la
géométrie de la chambre de combustion, de l’intensité de turbulence, de la
richesse du mélange de air-carburant etc, et cette constante doit être fixée au
début de la simulation. Autrement dit, elle doit être déterminé empiriquement.
Cette thèse développe un modèle de sous-maille pour la LES en combustion
turbulente, qui est appelé le modèle dynamique de flammelette épaissie (DTF,
"dynamic thickened flamelet model"), qui détermine la valeur de la constante
en fonction des conditions de l’écoulement sans utiliser des données empiriques.
Ce modèle est tout d’abord testé sur une flamme laminaire unidimensionnelle
pour vérifier la convergence de la fonction d’efficacité vers l’unité (aucun plisse-
ment de la surface de flamme de sous-maille). Puis il est appliqué en com-
binaison avec le modèle dynamique de Smagorinsky (Dynamic Smagorinsky
model) aux simulations multidimensionnelles d’une flamme en V, stabilisée en
aval d’un dièdre. Les résultats de la simulation en trois dimensions sont alors
comparés avec les données expérimentales obtenues sur une expérience de même
géométrie. La comparaison montre la faisabilité de la formulation dynamique.

Mots clés: Modèle dynamique, Simulation aux grandes échelles, Flammes tur-
bulentes prémélangées
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Abstract

Numerical simulation is one of the most powerful tools to design and optimize
industrial facilities. In the field of Computational Fluid Dynamics (CFD),
Large Eddy Simulation (LES) is widely used to compute turbulent reacting
flows, where larger turbulent motions are explicitly computed, while only the
effect of smaller ones is modeled. Subgrid models are required to close the
transport equations in LES, and in the context of the simulation of turbulent
combustion, the subgrid-scale wrinkling of the flame front must be modeled.
In general, subgrid-scale flame wrinkling promotes the chemical reaction. The
magnitude of the promotion is given through an efficiency function derived
from an equilibrium assumption between production and destruction of flame
surface. In conventional methods, the calculation of the efficiency function
requires a constant which depends on the geometry of the combustion chamber,
turbulence intensity, the equivalence ratio of the fuel-air mixture, and so on;
this constant must be prescribed at the beginning of the simulation. In other
words, empirical knowledge is required.
This thesis develops a subgrid-scale model for LES of turbulent combustion,
called the dynamic thickened flamelet (DTF) model, which determines the value
of the constant from the flow conditions without any empirical input.
The model is first tested in a one-dimensional laminar flame to verify the con-
vergence of the efficiency function to unity (no subgrid-scale flame front wrin-
kling). Then it is applied to multi-dimensional simulations of V-shape flame
stabilized downstream of a triangular flame holder in combination with the dy-
namic Smagorinsky model. The results of the three-dimensional simulation are
then compared with the experimental data obtained through the experiment
of the same geometry. The comparison proves the feasibility of the dynamic
formulation.

Key words: Dynamic model, Large eddy simulation, Turbulent premixed com-
bustion
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ened laminar flame −ρ (ũu− ũũ) . . . . . . . . . . . . . . . . . 58
2.22 Ratio of the analytically calculated subgrid-scale momentum flux

to the exact value of the convection transport of momentum . . 59
2.23 The dynamically calculated Smagorinsky constant and the subgrid-

scale momentum flux in a laminar flame . . . . . . . . . . . . . 60
2.24 The dynamically calculated Smagorinsky constant and the subgrid-

scale momentum flux calculated with Moin’s procedure in a lam-
inar flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.25 Comparison of the intermediate terms in the calculation of the
Smagorinsky constant CS . . . . . . . . . . . . . . . . . . . . . 63

2.26 Comparison of the intermediate terms in the calculation of the
Smagorinsky constant CS . . . . . . . . . . . . . . . . . . . . . 64

3.1 Computational mesh . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Inner flame structure. . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Ratio of the thicknesses of resolved and test-filtered flames and

the LES filter size to yield γ = ratio as functions of the test-filter
size ∆̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Generic reaction rates calculated with Boger’s algebraic model . 77
3.5 Generic reaction rates calculated with the Arrhenius law . . . . 78
3.6 Comparison of the progress variables calculated with different

field variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Ratio of 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 and the LES filter size ∆F to yield

γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 = 1 as functions of the test-filter size ∆̂ . . . 80

3.8 Comparison of the generic reaction rates of thickened flame and
filtered thickened flame . . . . . . . . . . . . . . . . . . . . . . . 81

3.9 Configuration of computational domain: All scales are given in
mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10 Computational mesh for two-dimensional simulation . . . . . . 83
3.11 Instantaneous resolved fields of the flame computed using Colin’s

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.12 Definition of the control volume for the integral operation . . . 85



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page xiii — #13
✐

✐

✐

✐

✐

✐

List of Figures xiii

3.13 Effect of the test-filter size on the principal reaction rate calcu-
lated with filtered variables. Top to bottom ∆̂ = 1.0×10−2, ∆̂ =
1.5 × 10−2, ∆̂ = 2.0 × 10−2, ∆̂ = 3.0 × 10−2 (m), the reaction
rates were calculated with reduced Arrhenius law. . . . . . . . . 86

3.14 Effect of the control volume size on β and the efficiency E . . . 91
3.15 Influence of the chemical model used in the dynamic thickened

flamelet model . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.16 Profiles in a laminar one-dimensional flame . . . . . . . . . . . 95
3.17 The Smagorinsky constant CS and the turbulent viscosity τ cal-

culated with the dynamic Smagorinsky model and Moin’s pro-
cedure in a laminar one-dimensional flame . . . . . . . . . . . . 96

3.18 Fields of the Smagorinsky constant CS and the turbulent viscos-
ity µt calculated with the standard dynamic Smagorinsky model 98

3.19 Cross sectional view of the Smagorinsky constant CS calculated
with the dynamic Smagorinsky model and Moin’s procedure . . 99

3.20 Cross sectional view of the turbulent viscosity µt calculated with
the dynamic Smagorinsky model and Moin’s procedure . . . . . 100

4.1 Temperature and chemical species distribution with the stream
line for the initialization of the flame. . . . . . . . . . . . . . . . 105

4.2 Time averaged stream lines obtained through a simulation using
a constant efficiency constant β. . . . . . . . . . . . . . . . . . . 110

4.3 Time averaged reaction rate of the principal reaction obtained
through a simulation using a constant efficiency constant β. . . 111

4.4 Comparison of the time averaged values and the root mean square
values of the velocity in x direction on the center line of the com-
bustion chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Instantaneous field of the principal reaction rate where the reac-
tion zone came close to the flame holder with β = 0 . . . . . . . 112

4.6 Instantaneous field of the principal reaction rate where the reac-
tion zone came close to the flame holder with β = 0.7 . . . . . . 112

4.7 Time averaged temperature fields obtained through a simulation
using a constant efficiency constant β. . . . . . . . . . . . . . . 113

4.8 Root mean square values of temperature obtained through a sim-
ulation using a constant efficiency constant β. . . . . . . . . . . 114

4.9 Time averaged fields of major variables calculated with dynamic
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.10 Time averaged fields of major variables calculated with dynamic
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.11 Instantaneous fields of the reaction rate, Charlette’s constant β,
and the efficiency function E obtained in the simulation using
the dynamic thickened flamelet model. . . . . . . . . . . . . . . 119

4.12 Time evolution of reaction zone of the principal reaction . . . . 121



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page xiv — #14
✐

✐

✐

✐

✐

✐

xiv List of Figures

4.13 Time evolution of the constant β . . . . . . . . . . . . . . . . . 122
4.14 Time evolution of the efficiency function . . . . . . . . . . . . . 123
4.15 Time averaged values of the Smagorinsky constant, CS . . . . . 125
4.16 Time averaged values of the turbulent viscosity µt . . . . . . . 125
4.17 Time averaged temperature field, its root mean square value,

and the stream line of the time averaged field calculated with the
dynamic thickened flamelet model and the dynamic Smagorinsky
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.18 Time averaged temperature field, its root mean square value,
and the stream line of the time averaged field calculated with the
dynamic thickened flamelet model and the dynamic Smagorinsky
model with Moin’s procedure . . . . . . . . . . . . . . . . . . . 127

4.19 Comparison of the time averaged values and the root mean square
values of the velocity in x direction on the center line of the com-
bustion chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.20 Time averaged fields of the constant β, the value of the efficiency
function, and the principal reaction rate obtained through the
simulation with the dynamic thickened flamelet model and the
dynamic Smagorinsky model . . . . . . . . . . . . . . . . . . . . 129

4.21 Time averaged fields of the constant β, the value of the effi-
ciency function, and the principal reaction rate obtained through
a simulation with the dynamic thickened flamelet model and the
dynamic Smagorinsky model . . . . . . . . . . . . . . . . . . . . 130

5.1 Configuration of three-dimensional computational domain . . . 134
5.2 Temperature iso-surface of 800K of the initial condition . . . . 135
5.3 Initial fields of temperature (K) and reaction rate of the principal

reaction (kg/m3 · s) on the z = 0 plane. . . . . . . . . . . . . . 136
5.4 Comparison of the β fields on z = 0 plane calculated with dif-

ferent averaging interval . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Comparison of the distribution of β calculated with different

averaging intervals . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6 Comparison of β and efficiency fields calculated with different

averaging intervals . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.7 Comparison of the CS fields on z = 0 plane calculated with

different averaging intervals . . . . . . . . . . . . . . . . . . . . 142
5.8 Comparison of the µt fields on z = 0 plane calculated with dif-

ferent averaging intervals . . . . . . . . . . . . . . . . . . . . . . 143
5.9 Comparison of the CS distribution in z direction calculated with

different averaging intervals . . . . . . . . . . . . . . . . . . . . 144
5.10 Comparison of the µt distribution in z direction calculated with

different averaging intervals . . . . . . . . . . . . . . . . . . . . 145



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page xv — #15
✐

✐

✐

✐

✐

✐

List of Figures xv

5.11 Iso-surface of vorticity magnitude, |ω| = 12000, of an instanta-
neous field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.12 Iso-surfaces of relative helicity, h = 0.9 and h = −0.9 of an
instantaneous field . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.13 Time averaged reaction rate on several z planes . . . . . . . . . 148
5.14 Time averaged temperature on several z planes . . . . . . . . . 149
5.15 Amplitude of the time averaged velocity in the x direction and

the streamlines of the time averaged field based on the velocity
components of the x and y directions . . . . . . . . . . . . . . . 151

5.16 Amplitude of the time averaged velocity in the z direction and
the streamlines of the time averaged field based on the velocity
components of the z and y directions . . . . . . . . . . . . . . . 152

5.17 Streamlines of the time averaged flow field in the recirculation
motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.18 Temporal evolution of dynamically calculated Charlette’s con-
stant β on the c̃ = 0.5 surface . . . . . . . . . . . . . . . . . . . 154

5.19 Temporal evolution of the value of the efficiency function on the
c̃ = 0.5 surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.20 Time averaged field of Charlette’s constant β . . . . . . . . . . 157
5.21 Time averaged field of the efficiency function . . . . . . . . . . 158
5.22 Time averaged field of the dynamically calculated Smagorinsky

constant CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.23 Time averaged fields of the turbulent viscosity µt . . . . . . . . 160
5.24 Comparison of the time averaged filtered progress variable [c̃]

and its resolved variance with the experimental data . . . . . . 163

B.1 Shape of the Gaussian filter . . . . . . . . . . . . . . . . . . . . 184
B.2 Coupling of the AVBP code and the DTF-DS code. . . . . . . . 185



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page xvi — #16
✐

✐

✐

✐

✐

✐



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page xvii — #17
✐

✐

✐

✐

✐

✐

List of Tables

2.1 Numerical parameter of the flame. . . . . . . . . . . . . . . . . 30
2.2 Combinations of the filter type . . . . . . . . . . . . . . . . . . 38
2.3 Effective filter size δe required to reproduce laminar conditions 42

3.1 Flame parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Chemical parameters for the reaction rate . . . . . . . . . . . . 71
3.3 Flame thickness of a filtered flame (∆̂ = 1.0× 10−2 m). . . . . 75
3.4 Flame thickness of a filtered flame (∆̂ = 1.5× 10−2 m). . . . . 75
3.5 Flame thickness of a filtered flame (∆̂ = 2.0× 10−2 m). . . . . 75
3.6 Flame thickness of a filtered flame (∆̂ = 3.0× 10−2 m). . . . . 75
3.7 Comparison of the integral of the generic reaction rate (

∫
W dx).

∆̂ = 1.5× 10−2 (m). . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Comparison of the integral of the generic reaction rate (

∫
W/αdx).

∆̂ = 1.5× 10−2 (m). . . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Comparison of 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 . . . . . . . . . . . . . . . . . . 80

3.10 Comparison of γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 calculated with the averaged

variables in whole domain . . . . . . . . . . . . . . . . . . . . . 88
3.11 Comparison of

(1 + min
[
γF,Γγ∆〈u

′

γ∆〉/SL

]
)/(1 + min

[
F,Γ∆〈u

′

∆〉/SL

]
) in the

denominator of the dynamic formulation calculated with the av-
eraged variables in whole domain . . . . . . . . . . . . . . . . . 88

3.12 Comparison of β calculated with the averaged variables in whole
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.13 Comparison of E calculated with the averaged variables in whole
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.14 Comparison of β calculated by the alternative formulation with
the averaged variables in the whole domain . . . . . . . . . . . 89

3.15 Comparison of E calculated by the alternative formulation with
the averaged variables in the whole domain . . . . . . . . . . . 89

4.1 Chemical parameters for the reaction rate. . . . . . . . . . . . . 104



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page xviii — #18
✐

✐

✐

✐

✐

✐

xviii List of Tables

5.1 Numerical parameters of the simulation. . . . . . . . . . . . . . 164
5.2 Comparison of the computational costs of the simulation per-

formed with the dynamic thickened flamelet (DTF) and the dy-
namic Smagorinsky (DS) models. . . . . . . . . . . . . . . . . . 164

5.3 Comparison of the CPU time of the time evolution part and the
part of the dynamic procedures. . . . . . . . . . . . . . . . . . . 164



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 1 — #19
✐

✐

✐

✐

✐

✐

Introduction and motivation

In our society the importance of combustion is inestimable. We utilize the
energy generated through combustion not only in the domestic equipments
such as heating systems, gas stoves, and vehicles, but also in large facilities like
power plants, ironworks, and waste combustion facilities. Public transportation
depends greatly on combustion through the use of buses, ships, and planes.
Nobody lives without it.
In designing of these equipments and facilities, experimental studies with proto-
type models are indispensable for generating the optimal performance. Nowa-
days, the reduction of greenhouse gases is also an important topic. Careful
designing of efficient facilities is then of huge importance. However, the con-
struction of a prototype itself costs time and resources.
Numerical simulation is a powerful tool in this scene. It allows us to investigate
the optimal configuration of the target facilities before the construction of the
prototype. Though there are always some discrepancies between the results of
simulations and practical systems, the optimization is done without consuming
any resources.
In computational fluid mechanics, three major approaches have been proposed:
Direct Numerical Simulation (DNS), Reynolds Averaged Navier-Stokes (RANS)
simulation and Large Eddy Simulation (LES). DNS is the simplest method that
simulates flows without any models. The precision of this method relies on the
density of the computational mesh, which, in general, leads to a prohibitive
computational costs for the sufficient resolution of turbulent structures. RANS
calculates only the average field of the variables. It reduces the computational
costs dramatically, but the information of the local structure is not taken into
account and is lost. To describe these lost information, powerful models are
required. In LES, larger turbulent structures are calculated explicitly similar
to DNS, while smaller structures are modeled; the quality of models determines
the reliability of the simulation. The advantage of this method is that the com-
putational grid does not need to be as dense as in DNS, and the computational
costs are reduced.
The combustion researchers also explore the advantages of LES for simulations
of turbulent combustion. The difficult element in the LES of turbulent com-
bustion is that the LES grids are generally larger than the flame structures and
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2 Introduction and motivation

the evolution of the flame is not resolved on the mesh. To overcome this diffi-
culty, a flame tracking technique is necessary, and, in addition, the subgrid-scale
structure of the flame needs to be modeled.
Various models have been developed for the sub-grid scale flame wrinkling.
Damköhler (1940) is the pioneer of the modeling of the flame propagation speed.
Then numerical models derived from correlation of experimental data(Abdel-
Gayed et al. (1987), Bradley (1992)) and based on the theoretical analysis
such as the Renormalization Group Theory (RNG) (Yakhot (1988), Pocheau
(1994)) have been proposed. An approach that considers the flame surface as a
scale invariant surface has led to fractal models(Gouldin (1987), Gouldin et al.
(1989), Gulder (1991)). However, no researcher has achieved to described the
turbulent flame speed with a single universal model.
In the course of the development of the subgrid-scale models, dynamic pro-
cedures have been proposed. The applications of the dynamic procedure to
the level set approach and to the fractal-similarity model have been performed
by several authors (Im et al. (1997), Bourlioux (2000), Knundsen and Pitsch
(2008), Knikker et al. (2002), Knikker et al. (2004)), but the application to
the Thickened Flamelet (TF) model has not yet been done.
The present study aims to develop a dynamic subgrid-scale model for LES of
turbulent combustion based on the TF model. In the context of the TF model,
the thickened flame is known to be less sensitive to turbulence than the original
flame; thus, an efficiency function E is introduced to counter balance the effect
of thickening and to evaluate that of turbulence on the promotion of reaction
rate. This function requires an empirical constant that must be presumed
before the simulation depending on the configuration. However, the empirical
input becomes no longer required by applying a dynamic procedure for the
constant. This kind of a dynamic determination of the constant is common in
computational fluid mechanics for the calculation of Reynolds stresses, (see, for
example, the dynamic Smagorinsky model (Germano et al. 1991)), although
few reports are found in the context of the simulations of turbulent combustion.
The original version of the dynamic procedure investigated in the present study
has been proposed by Charlette et al. (2002b). The authors have derived the
procedure and tested its ability in a simple geometry of a flame evolving in
statistically homogenous turbulence.
The present study targets more realistic turbulent flames: a V-shaped flame
investigated by Boger and Veynante (2000), Knikker et al. (2000), Knikker
et al. (2002), Knikker et al. (2004), and Giacomazzi et al. (2004).

Structure of the manuscript

The theoretical background of the simulation of turbulent combustion is pre-
sented in Chapter 1. This chapter introduces the transport equations of physical
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Introduction and motivation 3

quantities and the LES models for turbulence and combustion. The concept of
the dynamic thickened flamelet (DTF) model is also given in this chapter.
In the second chapter, one-dimensional tests of the DTF model are conducted.
Because this model has not been tested strictly under a laminar condition
where the efficiency function E should be unity, one-dimensional tests are per-
formed to verify if the model returns correct output in laminar conditions. The
dependence of the results on the choice of thickening factor, chemical model
for reaction rate, and filtering process are discussed. Tests of the dynamic
Smagorinsky model on a laminar flame are also presented. These tests aim to
observe the existence of the unresolved fluxes opposite to the gradients and the
ability of the dynamic Smagorinsky model to reproduce it.
The third chapter describes the implementation of the DTF model into the
AVBP code, which has been developed by CERFACS and IFP. The same tests
as performed in chapter 2 are performed to verify the conclusion of Chapter
2. Then the DTF model is applied to an instantaneous solution of a two-
dimensional turbulent flame calculated with a fixed model constant, and the
filter size and the interval of averaging for the calculation of the efficiency
function are optimized. The Dynamic Smagorinsky model is also tested with the
two-dimensional flame to observe the prediction of the model under turbulent
conditions.
Two-dimensional simulations with and without the DTF model are performed in
Chapter 4. Their results are compared to observe the performance of the DTF
model of calculating turbulent combustion without any input. Then the DTF
model is combined with the dynamic Smagorinsky model and two-dimensional
simulations are conducted. Two types of the dynamic Smagorinsky models,
both considering the density change across the flame and not, are tested and
the effect of the density change is observed.
A three-dimensional simulation follows in Chapter 5. The simulation is per-
formed with the DTF model and the dynamic Smagorinsky model retaining the
same configuration as that of Chapter 4. The results are then compared to the
experimental data. The comparison of results of simulations and experiments
is not straightforward and is briefly discussed.
Lastly, general conclusions and perspectives are drawn in the final chapter.
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Chapter 1

Theory and models for turbulent

combustion simulations

This chapter aims to introduce the fundamental equations describing
turbulent flow, the behavior of flame, and their interaction. Further
information can be found in Poinsot and Veynante (2005), Ferziger
and Perić (2002),Veynante and Vervisch (2002), and Pitsch (2006).

1.1 Conservation equations

Suppose that a control volume is defined in the middle of a flow of density ρ,
and that a conserved scalar φ is defined for unit mass, the conservation law for
this control volume is described as

∂

∂t

∫

Ω
ρφ dΩ +

∫

S
ρφu · n dS =

∑
fφ , (1.1)

where the first term represents the integral over the volume and the second
term corresponds to the integral on the surface of the control volume, n is
the unit vector normal to the surface and u is the flow velocity. The terms
on the left-hand-side are the temporal change of the conserved scalar and the
convective transfer through the surface of the control volume respectively. The
right-hand-side is the sum of the source or sink term other than the convective
term. The differential form of this equation is written as

∂ (ρφ)

∂t
+ div (ρφu) = qφ , (1.2)

where qφ is the source term of φ.
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6 Chap. 1 - Theory and models for turbulent combustion simulations

1.1.1 Conservation of mass and momentum

If we set φ = 1, the equation above describes the conservation of mass,

∂

∂t

∫

Ω
ρ dΩ +

∫

S
ρu · n dS = Q , (1.3)

∂ρ

∂t
+ div (ρu) = q . (1.4)

Considering that the source term of mass is equal to zero, the differential form
leads to a well-known continuity equation,

∂ρ

∂t
+ div (ρu) = 0 . (1.5)

Setting φ = u, the integral form of the generic equation (Equation 1.1) writes

∂

∂t

∫

Ω
ρu dΩ +

∫

S
ρuu · n dS =

∑
f . (1.6)

This equation describes the momentum conservation. The source term is due
to the surface and the body forces which act on the control volume. For multi
species flows, this force can be written as

∑
f = ρ

N∑

k=1

Ykfk , (1.7)

where Yk is the mass fraction of species k, and fk is the sum of surface and
body forces which work on the species. The surface force is caused by pressure
gradient, shear stress, surface tension, and so on; the body force is the sum of
the gravity, centrifugal and Coriolis forces, electromagnetic force, etc. However
considering that the effects of these forces are small and negligible, the equation
yields

∂

∂t

∫

Ω
ρu dΩ +

∫

S
ρuu · n dS =

∫

S
T · n dS , (1.8)

where T represents the stress tensor on the surface of the control volume. For
Newtonian fluids, which is a good representative of many actual fluids, the
stress tensor T can be written as

T = −

(
p+

2

3
µ divu

)
I+ 2µD, (1.9)

where p is the static pressure, µ is the dynamic viscosity, I is the unit tensor
and D is the deformation tensor,

D = −
1

2

[
gradu+ (gradu)T

]
. (1.10)

The differential form of the momentum conservation equation is given as

∂ (ρu)

∂t
+ div (ρuu) = divT . (1.11)
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1.1 - Conservation equations 7

1.1.2 Conservation of species and energy

For other conserved scalars, a gradient approximation is usually introduced for
the diffusive transport. Fourier’s law for heat diffusion and Fick’s law for mass
diffusion are the well-known examples. Representing diffusion velocity by Vφ,
this approximation writes

∫

S
φVφ · n dS = −

∫

S
Γ gradφ · n dS , (1.12)

where Γ is the diffusion coefficient of φ. The conservation of species and that of
energy can be described with this equation. In multi species flow, the gradient
approximation gives the diffusion velocity Vk of species k,

YkVk = −Dk gradYk , (1.13)

and this velocity should satisfy

N∑

k=1

YkVk,i = 0 . (1.14)

where the subscript i represents the direction of the coordinate system. In
general, the sum of the diffusion velocity approximated with the gradient as in
Equation 1.13 does not satisfy Equation 1.14. To hold the relation of Equation
1.14, a correction convection velocity Vc,

Vc =
N∑

k=1

Dk gradYk , (1.15)

is introduced and the diffusion velocity is corrected as

YkVk = −Dk gradYk + YkV
c . (1.16)

Substituting the mass fraction Yk of species k into φ, the generic equation
(Equation 1.1) gives

∂

∂t

∫

Ω
ρYk dΩ +

∫

S
ρYku · n dS =

∑
SYk

. (1.17)

The right-hand-side contains the source term caused by chemical reactions and
the transport of Yk due to mechanisms other than the convection transport;
thus, the right-hand side is rewritten as

∑
SYk

=

∫

S
ρDk gradYk · n dS +

∫

Ω
ω̇k dΩ , (1.18)
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8 Chap. 1 - Theory and models for turbulent combustion simulations

where Dk is called as the diffusivity of species k. Here the product ρDk repre-
sents Γ of the Equation 1.12. The equation then leads to

∂

∂t

∫

Ω
ρYk dΩ +

∫

S
ρYku · n dS =

∫

S
ρDk gradYk · n dS +

∫

Ω
ω̇k dΩ , (1.19)

and its differential form is

∂ (ρYk)

∂t
+ div (ρuYk) = div [ ρDk (gradYk)] + ω̇k . (1.20)

For the conservation of energy, that of enthalpy is often considered. The equa-
tion can be derived following relation

h = ht − E = et + p/ρ− E , (1.21)

where et is total energy (t indicates "total"), h is enthalpy and E is kinetic
energy. The derivation of the transport equations starts from the conservation
of total energy et, whose differential form is written as

∂ρet
∂t

+ div (ρuet) = −divq+ div (T · u) + Q̇e + ρ

N∑

k=1

Ykfk · (u+Vk) , (1.22)

where Q̇e is the source term of heat and the last term is the power produced
by volume force fk on species k, q is the energy flux given by

q = −λ gradT + ρ
N∑

k=1

hkYkVk . (1.23)

The first term is the heat diffusion approximated with Fourier’s law and the
second term is the energy diffusion due to the diffusion of species.
The equation for kinetic energy is obtained by taking the product of the equa-
tion of momentum (Equation 1.11) with u.

∂ (ρu)

∂t
· u+ div (ρuu) · u =

∂

∂t

(
ρ
1

2
u · u

)
+ div

[
ρu

(
1

2
u · u

)]

=
∂ρE

∂t
+ div (ρuE) = divT · u+ ρ

N∑

k=1

Ykfk · u . (1.24)

From the relation ht = et + p/ρ, the left-hand side of Equation 1.22 leads to

∂ρet
∂t

+ div (ρuet) =
∂ρht
∂t

+ div (ρuht)−
∂p

∂t
− div (pu) . (1.25)

Then the equation for the total enthalpy, ht, is written as

∂ρht
∂t

+div (ρuht) =
∂p

∂t
−divq+div [(T+ pI) · u ]+Q̇e+ρ

N∑

k=1

Ykfk ·(u+Vk) .

(1.26)
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1.2 - Numerical method for turbulent simulations 9

Subtracting Equation 1.24 from this equation, the conservation equation for
enthalpy is derived as

∂ρh

∂t
+div (ρuh) =

∂p

∂t
−divq+u·grad p+(T+ pI) : gradu+Q̇e+ρ

N∑

k=1

Ykfk ·Vk .

(1.27)
The integral form of this equation can also be derived through the same ap-
proach or directly from the differential form.

∂

∂t

∫

Ω
ρh dΩ +

∫

S
ρhu · n dS =

∂

∂t

∫

Ω
p dΩ−

∫

S
q · n dS

+

∫

Ω
[u · grad p+ (T+ pI) : gradu] dΩ

+

∫

Ω
Q̇e dΩ +

∫

Ω

(
ρ

N∑

k=1

Ykfk ·Vk

)
dΩ . (1.28)

In the AVBP code which is used in this study, this equation is further trans-
formed to that of sensible enthalpy, hs, as

hs = h−

N∑

k=1

∆h0f,kYk . (1.29)

Combining this equation with that of species conservation (Equation 1.20), the
transport equation of hs becomes

∂ρhs
∂t

+ div (ρuhs) = ω̇T +
∂p

∂t
+ div (λ gradT )− div

(
ρ

N∑

k=1

hs,kYkVk

)

+u · grad p+ (T+ pI) : gradu+ Q̇e + ρ
N∑

k=1

Ykfk ·Vk ,(1.30)

where Fick’s law for diffusion velocities Vk is not substituted for the simplic-
ity. Sensitive enthalpies for each species hs,k are tabulated as function of the
temperature in the AVBP code.

1.2 Numerical method for turbulent simulations

1.2.1 Direct Numerical Simulation

Direct Numerical Simulation (DNS) is the simplest method of computational
fluid mechanics, where the transport equations are directly descretized and the
simulations are performed without any model. When sufficient computational
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10 Chap. 1 - Theory and models for turbulent combustion simulations

resources are available, all variables are computed precisely. This is the reason
why it is sometimes referred as "numerical experiment".
However, to obtain precise results, the mesh size must be fine enough to resolve
the smallest eddies represented by the Kolmogrov scale (Kolmogorov 1941);
required resources are proportional to Re3/4 for each spatial direction (Tennekes
and Lumley 1976). Besides this, in simulations of turbulent combustion, the
grid size must be, at least, approximately tenth as small as the laminar flame
thickness to resolve the flame front. The numerical scheme for the time-advance
must also be chosen with great care, because DNS also requires high precision
for time-advance; the time step must also be small, and the numerical scheme
must be stable for the selected time step. Most simulations, therefore, use
explicit methods. The use of DNS is, thus, limited to the low Reynolds number
(Re) and simple geometry simulations.
In spite of the limitations above, DNS is a quite useful tool for understanding
the turbulence structure and turbulence-combustion interaction; it allows us to
obtain the information, which cannot be accessed through experiments. These
results can also be used to develop numerical models.

1.2.2 Reynolds Averaged Navier Stokes equations

Reynolds Averaged Navier Stokes (RANS) equations are a method for calcu-
lating turbulent flows. This method considers only the averaged values of the
variables. Consequently, the requirement of the computational resources is con-
siderably reduced; turbulent flows under industrial conditions, represented by
the high Reynolds numbers, can also be simulated.
Here, the philosophy of the RANS equations is explained using the momentum
equation. Applying ensemble averaging, all variables are decomposed into an
averaged part and a fluctuation part.

Q = [Q] +Q′ , (1.31)

where [Q] is the averaged value of Q. Introducing Favre filtering, {Q} =
[ρQ]/[ρ] and Q = {Q}+Q′′, the momentum equation (Equation 1.11) becomes

∂ ([ρ]{u})

∂t
+ div ([ρ]{u}{u}) = div [T] + div τ , (1.32)

where [T] is the mean viscous stress tensor,

[T] = −

(
[ p ] +

2

3
µ div {u}

)
I+ µ

(
grad {u}+ (grad {u})T

)
, (1.33)

and τ is the Reynolds stresses,

τ = −[ρ]{u′′u′′} = −[ρ] ({uu} − {u}{u}) . (1.34)
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1.2 - Numerical method for turbulent simulations 11

The existence of the Reynolds stresses makes the equation unclosed. This term
is usually modeled based on the concept proposed by Boussinesq (1877),

τ = −
2

3
µt div {u}I+ µt

(
grad {u}+ (grad {u})T

)
, (1.35)

where µt is the turbulent viscosity. The most widely used model for the calcula-
tion of µt is the k− ε model, where µt is obtained from the transport equations
of turbulent kinetic energy k and its dissipation ε. The readers are referred to
Wilcox (1998) and Menter (1993) for the details of the k − ε model.
Though RANS is capable of simulating high Re flows, only the averaged in-
formation is available; simulations of transient flows, auto ignition, and flame
instabilities can not be performed with RANS.

1.2.3 Large Eddy Simulation

Large Eddy Simulation (LES) is widely used for the simulation of non-reacting
flows (Lesieur (1997), Ferziger (1997), Piomelli and Chasnov (1996), Lesieur and
Métais (1996), Piomelli (1999), Sagaut (2000), and Meneveau and Katz (2000)).
Turbulent flows are characterized by random velocity fluctuations and the eddy
structures that cover a large range of sizes. Thus, a turbulent field is considered
as a superposition of different scales of eddies. The perfect computation of
turbulent flows demands perfect reproduction of these eddies; the grid scale
must be smaller than that of the smallest eddies. Here comes a question: how
large are the smallest eddies? From the Kolmogorov theory (Kolmogorov 1941),
it is known that this smallest scale is written as ld = (ν/ε)/ . However, this
scale is so small that makes it prohibitive to calculate all the eddies in turbulent
flows except for simple geometries.
One of the solution is to calculate only large size eddies, which are dependent
on the geometry, while small size eddies are considered to be more universal.
The name Large Eddy Simulation comes from this idea. In this context the
separation of small and large eddies is an important issue. To separate these
two scales, the transport equations are modified by applying a so-called LES
filter.

1.2.3.1 Filtering process and averages

In the context of Large Eddy Simulation, one of the following filters is applied
to physical quantities.

• Cut-off filter (in the spectral space)

F̂ (k) =

{
1 k ≤ kc = π/∆
0 otherwise

(1.36)
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12 Chap. 1 - Theory and models for turbulent combustion simulations

This filter is applied in the spectral space and cancels any eddy lower
than ∆. It can be rewritten in the physical space as

F (xi) =
1

∆

sin(kcxi)

kcxi
. (1.37)

• Box or Top hat filter

F (x) = f(x1, x2, x3) =

{
1/∆3 |xi| ≤ ∆/2
0 otherwise

(1.38)

• Gaussian filter

F (x) = f(x1, x2, x3) =

(
6

π∆2

)3/2

exp

[
−

6

∆2

(
x21 + x22 + x23

)]
(1.39)

Figures 1.1 to 1.4 show the shape of these filters. All the filters are normalized
as, ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

F (x1, x2, x3) dx1dx2dx3 = 1 . (1.40)

Figure 1.1 : Shape of the cut-off filter in spectral space.

The filtered quantity Q(x) of a physical quantity Q(x) at the point x =
(x1, x2, x3) is defined as

Q(x) =

∫
Q(x)F (x− x′)dx′ . (1.41)
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Figure 1.2 : Shape of the cut-off filter in physical space. Horizontal axis was non-
dimensioned by the filter size ∆.

Figure 1.3 : Shape of the top hat filter. Horizontal axis was non-dimensioned by the
filter size ∆.
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14 Chap. 1 - Theory and models for turbulent combustion simulations

Figure 1.4 : Shape of the Gaussian filter. Horizontal axis was non-dimensioned by
the filter size ∆.

Another way of filtering is the mass weighted, or Favre, filtering. This filtering
simplifys the filtered transport equations. The definition of the Favre filtered
quantity, Q̃(x), of Q(x) is

Q̃(x) =
ρQ

ρ
=

∫
ρ(x′)Q(x′)F (x− x′)dx′

∫
ρ(x′)F (x− x′)dx′

. (1.42)

1.2.3.2 Filtered equations

In the present study, the transport equations are filtered with the Favre filter.
Ignoring the volume force terms, they are written as follows:

• Conservation of mass
∂ρ

∂t
+ div (ρũ) = 0 (1.43)

• Conservation of momentum

∂ (ρũ)

∂t
+ div (ρũũ) = divT− div {ρ (ũu− ũũ)} (1.44)

• Conservation of species k

∂ρỸk
∂t

+div
(
ρũỸk

)
= −div

(
ρỸkVk

)
−div

{
ρ
(
ũYk − ũỸk

)}
+ω̇k (1.45)
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• Conservation of energy

∂ρh̃s
∂t

+ div
(
ρũh̃s

)
= ω̇T +

∂p

∂t
+ div

(
λ gradT

)
− div

(
ρ

N∑

k=1

˜hs,kYkVk

)

+u · grad p+ (T+ pI) : gradu+ Q̇e

−div
{
ρ
(
ũhs − ũh̃s

)}
. (1.46)

The filtered equations cannot be solved directly, because filtering operation pro-
duces extra-terms due to unresolved motions, which are lost in the simulation.
For example, the "subgrid-scale (SGS) Reynolds stresses",

τ s = −ρ(ũu− ũũ) , (1.47)

corresponds to the filtered momentum flux due to unresolved small scales. The
subgrid-scale Reynolds stress must be appropriately modeled to obtain realistic
behavior of large scale eddies. A number of attempts have been made for this
purpose. They are mostly based on the Smagorinsky model and the scale
similarity model. The mixed model (Bardina et al. 1983) and the dynamic
procedure (Germano et al. 1991) have been proposed in the course of the
modeling attempts.

1.2.3.3 Reynolds stresses

Among several models for the Reynolds stresses, the details of the Smagorinsky
model, the scale similarity model, and the dynamic procedure are given in the
following.

The Smagorinsky model

The Smagorinsky model was proposed by Boussinesq (1877) as eddy-viscosity
model based on the analogy of turbulent and laminar flows and extended to
LES by Smagorinsky (1963). The anisotropic part of SGS Reynolds stress is
assumed to be proportional to the strain rate of the large scale.

τ sij −



τ skkδij = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
= µtSij , (1.48)

where µt is the eddy viscosity and Sij is the strain rate. The form of the eddy
viscosity is derived by dimensional arguments as

µt = CSρ∆
|S| , (1.49)

where CS is a model parameter and CS ≈ 0.04 for isotropic turbulence, ∆ is the
filter length scale, and |S| = (2SijSij)

1/2. However, the model parameter CS
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16 Chap. 1 - Theory and models for turbulent combustion simulations

depends strongly on the flow configuration. It may be a function of Reynolds
number and/or other parameters and may take different values in different
flows: Deardorff (1970) used CS = 0.01 in channel flow simulations, McMillan
et al. (1980) found that CS decreases with increasing strain rate in statistically
homogeneous turbulence. Equation 1.48 contains the sum of the isotropic part
in the left-hand-side. In incompressive flows, it may be neglected because its
contribution is minute compared to the thermodynamic pressure (Erlebacher
et al. 1990). The use of the subgrid-scale kinetic energy is also possible.
Defining the filtered kinetic energy K̃ and the grid scale kinetic energy KGS as

K̃ =
1

2
ρ

3∑

i=1

ũiui (1.50)

KGS =
1

2
ρ

3∑

i=1

ũiũi, (1.51)

respectively, the subgrid-scale kinetic energy KSGS is written as

KSGS = K̃ −KGS =
1

2
ρ

3∑

i=1

(ũiui − ũiũi) =
1

2
τ skk , (1.52)

which is the half of the sum of the isotropic part of Reynolds stress.
From Yoshizawa’s expression (Yoshizawa 1986) the subgrid-scale kinetic energy
KSGS is given as

KSGS = 2CI∆
2|S|2 , (1.53)

where CI is Yoshizawa’s constant given as CI = 0.045 in statistically homoge-
neous turbulence. Then each term of the isotropic part of Reynolds stress is
calculated as

τ sij |i=j = 2µtSij +



CI∆

|S| . (1.54)

In the present study, the flow is considered to be incompressible; the isotropic
part may then be neglected since the effect is small as verified by Erlebacher
et al. (1990) and Moin et al. (1991).

The scale similarity model

In the scale similarity model or Bardina’s model (Bardina et al. 1980), the
smallest resolved eddies, which are slightly larger than the filter size, and the
largest unresolved eddies, slightly smaller than the filter size, are assumed to
behave similarly. This concept leads to

τ sij = −ρ(uiuj − uiuj) (1.55)
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in constant density flows. Although this model is able to reproduce the backscat-
ter of energy from smaller to larger scales, the model is known to be insuffi-
ciently dissipative. To cure this shortcoming, the model is often combined with
the Smagorinsky model to form the so-called "mixed model" (Bardina et al.
1983).

The dynamic procedure

An alternative method for calculating the Reynolds stresses is to use a second
filter of a size larger than that of the LES filter. This procedure was originally
proposed by Germano et al. (1991) and modified by Lilly (1992). The dynamic
procedure is usually combined with an eddy viscosity model like the Smagorin-
sky model. Thanks to the second filtering, the model constants, which are
strongly affected by the configuration of flows, may be derived at every spatial
point and every time step.
Here, we concentrate on the classical dynamic procedure of Lilly (1992) to avoid
numerical complexities. Though this formulation is relatively simple, it yields
a sufficiently accurate results, provided that the LES filter and test filter size
lie in the inertial range.
Assuming that the density is constant, the Reynolds stresses at the LES filter
scale, ∆, are written as

τij = −ρ(uiuj − uiuj) . (1.56)

At the filter size of ∆̂, the Reynolds stresses are

Tij = −ρ(ûiuj − ûiûj) , (1.57)

where ·̂ represents the double filtering by filters of the size of ∆ and ∆̂. Sub-
tracting the first equation, after filtering by ∆̂, from the second, we get the
Germano identity,

ûiuj − ûiûj = Tij − τ̂ij , (1.58)

where all quantities are known (left-hand-side from the resolved flow field, right-
hand-side through the model).
Applying the Smagorinsky model, Reynolds stresses are written as

τ sij −
1

3
τ skkδij = 2ρCS∆


|S|Sij (1.59)

T s
ij −




T s
kkδij = 2ρCS∆̂

|Ŝ|Ŝij (1.60)

with the same modeling constant. Substituting these relations into the Ger-
mano identity,

(ûiuj − ûiûj)−
1

3
(ûkuk − ûkûk)δij = 2CS(

̂
∆

2
|S|Sij − ∆̂2|Ŝ|Ŝij) . (1.61)
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18 Chap. 1 - Theory and models for turbulent combustion simulations

This equation gives a set of equations, where the only unknown term is the
model constant CS . Solving this equation provides the value of the constant
CS . Lilly (1992) proposed a method that uses the least square method. For
the simplicity, we rewrite this equation as

Lij −
1

3
δijLkk = 2CSMij . (1.62)

Cs is then calculated as

Cs =
1

2
(LijMij/M

2
ij) . (1.63)

Moin et al. (1991) developed this procedure for the application to compress-
ible flows. In the context of the dynamic procedure with density changes, the
Reynolds stresses are calculated as

τ sij = −ρ(ũiuj − ũiũj) = ρuiuj − (ρui ρuj/ρ) , (1.64)

where ·̃ represents the Favre filtering. The same equation at the double filter

size ∆̂ is
Tij = ρ̂uiuj − (ρ̂ui ρ̂uj/ρ̂) . (1.65)

Following the formalism of the standard dynamic procedure, the relation be-
tween the Reynolds stresses at two scales (the Germano identity) is deduced
as

Tij − τ̂ij =
̂(
ρui ρuj

ρ

)
−

ρ̂ui ρ̂uj

ρ̂
= ̂(ρũiũj)−



ρ̂

(
ρ̂ũiρ̂ũj

)
. (1.66)

Reynolds stresses are given with the Smagorinsky model:

τ sij −



τ skkδij = 2CSρ∆


|S|Sij , (1.67)

T s
ij −




T s
kkδij = 2CS ρ̂∆̂

|Ŝ|Ŝij . (1.68)

Substituting these relations into the Germano identity, we get
{

̂(ρũiũj)−
1

ρ̂

(
ρ̂ũiρ̂ũj

)}
−

{
̂(ρũkũk)−

1

ρ̂

(
ρ̂ũkρ̂ũk

)} δij
3

= 2CS

{(
̂ρ∆

|S|Sij

)
− ρ̂∆̂|Ŝ|Ŝij

}
. (1.69)

This equation can be solved using the same procedure as that applied to Equa-
tions 1.62 and 1.63. However, the value of the Smagorinsky constant calculated
by the models above shows strong oscillation in space. To avoid this, the terms
in the formulation are usually averaged on the statistically homogeneous direc-
tion of turbulence.

Cs =
1

2
(〈LijMij〉/〈M

2
ij〉) , (1.70)
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where 〈·〉 represents averaging in the direction. If such a direction does not
exist, the terms can be averaged in time (Piomelli and Liu (1995), Ghosal et al.
(1995), and Cheng et al. (2003)), or along streamlines (Meneveau et al. 1996).
For more details of the dynamic procedure, the discussion about the test-filter
size, ∆̂, can be found in Meneveau and Lund (1997), Chester et al. (2001),
Pope (2004), and Bou-Zeid et al. (2008). A developed version of the dynamic
procedure, which has two constants is presented in Moin (1991) and Salvetti
and Banerjee (1995).

1.3 Models of turbulent combustion

1.3.1 The level set approach

The level set approach is a technique for the localization of the flame front.
Williams (1985) proposed the prototype of this method. In this context, the
flame front is considered to be infinitely thin, and the inner structure of the
flame is not resolved. Instead, a transport equation called as the G-equation is
used to track the position of the flame front.

ρ
∂G

∂t
+ ρU · ∇G = ρSL |∇G| , (1.71)

where ρ is the density, U the fluid velocity, and SL the laminar flame speed.
The position of the flame front is represented by G = G0 and other values of G
are related to the distance from the flame front (Kerstein et al. 1988). In the
context of LES, this equation is filtered with the LES filter;

ρ
∂G

∂t
+ ρU · ∇G = ρ0ST

∣∣∇G
∣∣ , (1.72)

where ρ0 is the density of unburned gas and ST the turbulent flame speed that
requires a model. Models for turbulent flame speed ST for a corrugated flamelet
and the thin reaction zone flames are found in Peters et al. (1997) and Peters
(1999). Details for this approach are discussed in Peters (2000).
Utilization of the dynamic procedure for the determination of turbulent flame
speed ST in the G-equation was also proposed and tested in Im et al. (1997),
Bourlioux (2000), and Knundsen and Pitsch (2008).

1.3.2 The Flame Surface Density model

The flame surface density model is based on the idea that the intensity of the
reaction rate is proportional to the available flame surface, Σ, per unit volume;
the reaction rate may be calculated by

¯̇ω = Ω̇Σ , (1.73)
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20 Chap. 1 - Theory and models for turbulent combustion simulations

where Ω̇ is the mean local burning rate per unit of flame area. This concept
was first proposed by Marble and Broadwell (1977) in the RANS context. It
allows the separation of the effects of turbulence from the reaction rate model;
the reaction models need not to be modified to include turbulence effects. The
flame surface density is calculated with a transport equation such as that found
in Candel and Poinsot (1990).
For the modeling of the effect of turbulence on the flame surface density Σ,
Trouvé and Poinsot (1994) divided the turbulence effects into unsteady strain-
ing and curvature effect. The authors also observed the dependence of the
evolution of Σ on the Lewis number using DNS. Vervisch et al. (1995) demon-
strated the relationship between Σ and the probability density function.
Based on these investigations, Boger et al. (1998) proposed an algebraic closure
for Σ for LES. Richard et al. (2007) performed an engine cycle simulation using
this model and demonstrated its feasibility. Chakraborty and Cant (2009)
conducted simulations with the transport equation of Σ and compared LES
result with that of DNS. The results were quite similar
A dynamic procedure was also proposed by Knikker et al. (2002) and Knikker
et al. (2004), developing the fractal-similarity model. However, a full simulation
is yet to be performed.

1.4 The Dynamic Thickened Flamelet Model

1.4.1 The thickened Flamelet model

The Thickened Flamelet model was proposed by Butler and O’Rourke (1977)
and tested by O’Rourke and Bracco (1979) to resolve the extremely thin flame
front of a laminar flame compared to the acceptable grid size. This model
allows us to simulate turbulent combustion in combination with LES, whose
computational mesh is relatively coarse.
The starting point of this model is the thickening of the flame without changing
the propagating speed. From the theory of laminar premixed flame, the relation
between the flame propagating speed SL and the flame thickness δL are given
as

SL ∝
√

aW, δL ∝
a

SL
, (1.74)

where a is the thermal diffusivity and W is the mean reaction rate. Then,
thickening the flame without changing the laminar flame speed is achieved by
multiplying a and W by F and 1/F respectively:

SL ∝

√
(Fa)

(
W

F

)
, F δL ∝

(Fa)

SL
, (1.75)

where F is called as the thickening factor. Following this, we get the transport
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equation of chemical species for a thickened flame,

∂ρỸk
∂t

+▽ · (ρũỸk) = ▽ · (ρFDk ▽ Ỹk) +
ω̇k

F
(1.76)

Unfortunately, thickening the flame modifies the flame-turbulence interaction
as the Damkohler number, Da, which compares the time scales of chemical
reaction and turbulence (Da = tt/tc, where tt and tc are respectively the time
scales of turbulence and chemical reaction), is decreased by a factor, F . For
example, the flame becomes less sensitive to turbulent motions.
An efficiency function E is introduced to recover the lost flame surface wrinkling
so that the thickened flamelet model propagates a flame of thickness FδL at
the turbulent flame speed ST = ESL. Then the transport equation becomes

∂ρỸk
∂t

+▽ · (ρũỸk) = ▽ · (ρEFDk ▽ Ỹk) +
E

F
ω̇k . (1.77)

Colin et al. (2000) proposed

E = 1 + α
2 ln(2)

3cms(Re
1/2
t − 1)

Γ

(
∆

δl
,
u′∆
S0
L

)
u′∆
S0
L

, (1.78)

where Γ is an efficiency function that evaluates the increase in the flame surface
area caused by the turbulence and Ret = u′Lt/ν is the turbulent Reynolds
number calculated with RMS velocity u′ and integral length scale Lt. α is a
model constant and cms = 0.28 was introduced based on the comparison to
DNS data of Yeung et al. (1990). Γ is given by

Γ

(
∆

δl
,
u′∆
S0
L

)
= 0.75 exp

[
−

1.2

(u′∆/S
0
L)

0.3

](
∆

δl

)2/3

. (1.79)

Charlette et al. (2002a) formed another model expression for E,

E =

(
1 + min

[
∆

δl
,Γ

u′∆
S0
L

])β

, (1.80)

where ∆ is outer cut-off scale given as the LES filter size. β depends on the
configuration of the turbulent flow; this must be presumed before the compu-
tation.
The advantage of this expression is to recover several situations. When β = 0,
the value of efficiency is E = 1 and corresponds to laminar cases. β = 1
corresponds to the situation where the flame fills the volume (Catrakis and
Dimotakis 1996). The case with β between 0 and 1 recovers the fractal model,
where the fractal dimension D = β + 2. The readers are refered to Gouldin
(1987), Gouldin et al. (1989) and Gulder (1991) for the fractal model.
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1.4.2 Formulation of the Dynamic Thickened Flamelet model

The efficiency functions E mentioned above require to prescribe the model con-
stant α or β. Similar to the case of the Smagorinsky model, the determination
of the constant demands empirical knowledge, since the value may strongly
depend on the configuration such as the shape of combustion chamber and
the condition of turbulence. It is also possible to apply the dynamic proce-
dure for the determination of turbulent flame speed. Charlette et al. (2002b)
showed the feasibility of the dynamic procedure in combination with thickened
flamelet model, but the authors used a quite simple geometry. The application
to complex geometries has not yet been done.
In the present study, the Germano identity is applied to the reaction rate for
the dynamic determination of β, following Charlette et al. (2002b). Estimation
of the reaction rate requires information of the field such as temperature and
mass density of chemical species. Representing these variables by q̃, we get
ω̇k = ω̇k(q̃). In addition to this, the thickening factor F is defined as F = ∆/δL
in the LES context. Thus the Germano identity leads to

︷ ︸︸ ︷
E∆ ω̇k(q̃) = Eγ∆ ω̇k(̂̃q) , (1.81)

where γ is the ratio of the second filter to the first filter size (γ = ∆̂/∆).
Introducing the generic form of reaction rate, ω̇k(q) = W (q)/∆ (Charlette
et al. 2002b), ︷ ︸︸ ︷

E∆

∆
Wk(q̃) =

Eγ∆

γ∆
Wk(̂̃q) . (1.82)

Substituting E (Equation 1.80),

︷ ︸︸ ︷(
1 + min

[
∆
δ
l
,Γ

u′

∆

S0

L

])β

∆
Wk(q̃) =

(
1 + min

[
γ∆
δ
l
,Γ

u′

γ∆

S0

L

])β

γ∆
Wk(̂̃q) . (1.83)

As all of the variables in this equation except β can be extracted from the
calculated field, β can be obtained as

β =

log


γ

︷ ︸︸ ︷
Wk (q̃)
Wk

(
̂̃q
)




log




+min

[
γ∆
δ
l
,Γ

u′
γ∆
S
L

]

︷ ︸︸ ︷

1 + min

[
∆

δl
,Γ

u′
∆

S0
L

]




. (1.84)
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The efficiency function E is then calculated substituting this value into Equa-
tion 1.80. If the turbulence is sufficiently strong, the expression of the efficiency
function reduces to a simpler form,

E =

(
1 +

∆

δ0l

)β

≈

(
∆

δ0l

)β

. (1.85)

It also reduces the expression for β as,

β = 1 +

log



︷ ︸︸ ︷
W∆(q̃)

W
γ∆

(
̂̃q
)




log (γ)
. (1.86)

1.4.3 Strong and weak forms of the Dynamic model

The dynamic model is described through Equation 1.83. The advantage of
this form is the local determination of β at each computational grid point.
However, it gives a constant which changes even inside of a thin flame. This
has no physical meaning because the objective of the dynamic procedure is to
determine a single efficiency function that is constant across the flame front.
For this reason, a weak form of the model is preferred. Averaging the both sides
of the Equation 1.83 over a given volume results in

〈
︷ ︸︸ ︷(
1 + min

[
∆
δ
l
,Γ

u′

∆

S0

L

])β

∆
Wk(q̃)

〉
=

〈
(
1 + min

[
γ∆
δ
l
,Γ

u′

γ∆

S0

L

])β

γ∆
Wk(̂̃q)

〉
,

(1.87)
where 〈Q〉 represents the average of Q over a sufficiently large domain for
eliminating unphysical fluctuations. For practical applications, u′

∆
is presumed

to be uncorrelated to the local raw reaction rate Wk over the averaging volume.
Note that this assumption corresponds to a constant efficiency function over
the averaging domain. Representing the volume average of u′∆ by 〈u′∆〉, the
equation yields


1 + min


∆
δl

,Γ

〈
u′
∆

〉

S0
L






β 〈︷ ︸︸ ︷
Wk(q̃)

〉

= γ−1


1 + min


γ∆

δl
,Γ

〈
u′
γ∆

〉

S0
L






β
〈
Wk(̂̃q)

〉
. (1.88)
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Then

β =

log


γ

〈︷ ︸︸ ︷
Wk (q̃)

〉

〈
Wk

(
̂̃q
)〉




log




+min


 γ∆

δ
l
,Γ

〈

u′
γ∆

〉

S
L




+min


 ∆

δ
l
,Γ

〈

u′
∆

〉

S
L







. (1.89)

This form of the dynamic procedure is referred as the weak form in the present
study, while the original form is referred as the strong form.
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Chapter 2

Mono-dimensional test case

This chapter presents the results of test cases of the LES models de-
scribed in Chapter 1. LES models are based on several hypothesis and
the validity of these hypothesis depends on the numerical configuration.
The purpose of the tests performed in this chapter is to verify the model
performances for the computation of laminar flames. These tests are
mandatory for the cases, where the effect of subgrid-scale turbulence
vanishes, i.g., due to a weak turbulence, fine grid meshes or laminar
combustion. One-dimensional tests are chosen as the simplest proce-
dure to verify the performance of the LES turbulence model and that of
the power law dynamic thickened flamelet model.

2.1 Introduction

The dynamic procedures described in the previous chapter are constructed for
simulations of turbulent regime. For the flexibility of the application, the mod-
els should also be able to represent laminar or weak turbulent combustion. In
these conditions, β should approach zero. Since the denominator of Equation

1.84 also approaches zero, γ
︷ ︸︸ ︷
Wk (q̃) /Wk

(
̂̃q
)

should converge to 1. In this term,

the reaction rates are calculated using LES filtered and test-filtered variables,
where several types of reaction models and filtering procedures can be used.
The influences of the different combinations of the reaction model and the fil-
tering procedure on the value of this term of are first tested.
In the context of the thickened flamelet model, the thickness of a flame is
multiplied by a thickening factor F , and the LES filter size ∆ is not explicitly
defined. Then the value for ∆ must be given depending on the thickening
factor F . For this purpose, the relation between thickening and LES filtering
of a laminar flame is also investigated.
Applications of the dynamic Smagorinsky model to a laminar flame is then
tested. This model is widely used in turbulent flow simulations, but its com-
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bination with the thickened flamelet model is rare. The output of this model
in a thickened flame should be observed before the implementation to multi-
dimensional simulations. The outputs are compared by changing the filter sizes
and the thickening factor F of the thickened flame.

2.2 Numerical configuration

2.2.1 1D laminar flame

In the case of a one-dimensional flame, the transport equations presented
in the first chapter are simplified as follows:

• Conservation of mass
∂ρ

∂t
+

∂ρu

∂x
= 0 (2.1)

• Conservation of species k

∂ρYk
∂t

+
∂ρuYk
∂x

= −
∂

∂x
(ρYkVk) + ω̇k (2.2)

• Conservation of energy

ρCp

(
∂T

∂t
+ u

∂T

∂x

)
= −

N∑

k=1

hkω̇k +
∂

∂x

(
λ
∂T

∂x

)
− ρ

∂T

∂x

N∑

k=1

Cp,kYkVk(2.3)

For a steady laminar flame, these equations are further reduced:

• Conservation of mass

ρu = constant = ρuSL , (2.4)

where ρu and SL are the density of unburned gas and the laminar flame
speed respectively.

• Conservation of species of k

ρuSL
dYk
dx

= −
d

dx
(ρYkVk) + ω̇k (2.5)

• Conservation of energy

ρuSLCp
dT

dx
= −

N∑

k=1

hkω̇k +
d

dx

(
λ
dT

dx

)
− ρ

dT

dx

(
N∑

k=1

Cp,kYkVk

)
(2.6)

To get simple analytical solutions, several assumptions are introduced:
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• Characteristic quantities such as molecular weights Wk, heat capacities
Cp,k and diffusivities Dk are identical for all species and Lewis numbers
for all species are unity;

Wk = W

Cp,k = Cp

Dk = D

Lek =
λ

ρCpDk
= 1 (2.7)

• The chemical reaction is supposed to be one step without backward re-
action;

N∑

k=1

ν ′kMk →

N∑

k=

ν ′′kMk , (2.8)

where Mk is the symbol of species k, ν ′k and ν ′′k are its molar stoichiometric
coefficients.

As the reaction is one step, the source terms of all species are linked through
the single progress rate Q,

Q =
ω̇k

Wkνk
, (2.9)

where νk = νk
′′ − νk

′. Then the heat source term is written as

ω̇T = −
N∑

k=1

∆h0f,kω̇k = −Q
N∑

k=1

∆h0f,kWkνk . (2.10)

The heat release through the complete burning of unit mass of fuel can be
defined as

Qfuel =

∑N
k=1∆h0f,kWkνk

WF νF
, (2.11)

where the subscript F denotes fuel. Note that this quantity is the total enthalpy
change through the combustion of unit mass fuel and not the heat release by a
certain species. It is derived as

ω̇T = −WF νF QQfuel = −Qfuel ω̇F (2.12)

Using this relation and Fick’s law for the diffusion velocity, Equations 2.4 to
2.6 become

ρu = constant = ρuSL (2.13)

ρuSL
dYF
dx

=
d

dx

(
ρD

dYF
dx

)
+ ω̇F (2.14)
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ρuCpSL
dT

dx
=

d

dx

(
λ
dT

dx

)
−Qfuel ω̇F (2.15)

As the specific heat per unit mass for all species are considered to be equal,
the last term of the heat transport equation is eliminated (see Equation 1.14).
The mass fraction, Yk, of species k can be derived from YF as

Yk = Yk,u − (YF,u − YF )
Wkνk
WF νF

, (2.16)

where YF,u and Yk,u are the fuel mass fraction and the mass fraction of species
k in unburned gas respectively.

2.2.2 Progress variable c

Introducing non-dimensional variables Y = (YF − YF,b) / (YF,u − YF,b) and
c = (T − Tu) / (Tb − Tu), Equations 2.14 and 2.15 can be rewritten as

ρuSL
dY

dx
=

d

dx

(
ρD

dY

dx

)
+ ω̇F / (YF,u − YF,b) (2.17)

ρuSL
dc

dx
=

d

dx

(
λ

Cp

dc

dx

)
− ω̇F / (YF,u − YF,b) , (2.18)

where YF,b is the fuel mass fraction in burnt gas, Tu and Tb are the temperature
of cold and burnt gas respectively. Tb is calculated by

Tb = Tu −Qfuel (YF,u − YF,b) /Cp . (2.19)

Because the Lewis numbers for all species are assumed to be unity, the sum of
the two transport equations above becomes

ρuSL
d

dx
(Y + c) =

d

dx

[
ρD

d

dx
(Y + c)

]
. (2.20)

As Y = 1 and c = 0 in unburned gas and Y = 0 and c = 1 in burnt gas, the
solution of this equation is

Y + c = 1 . (2.21)

Using this relation, the distribution of fuel YF and temperature field T can be
calculated from the c field. This variable c is called the progress variable.

2.2.3 Closures for the reaction rate

Three different models of chemical reaction are tested. The details of each
model are given in the following.
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Reduced reaction model and analytical solution

A closure is required for the reaction rate to solve the equation of the
progress variable c (Equation 2.18). For the first step, the simplified model
for chemical reaction of Ferziger and Echekki (1993) was used. This model
considers a one step chemistry of a mixture of fuel and oxidizer to the products
and supposes that the reaction rate depends only on temperature. The tem-
perature T is represented by the progress variable c. The reaction rate is given
by

ω̇c(c) = ω̇F / (YF,u − YF,b) =

{
0 c < c∗

ρuR(1− c) c ≥ c∗ ,
(2.22)

where c∗ is the threshold of the temperature at which the reaction starts, and R
is a constant which is determined by the continuity of the curve of the progress
variable c;

∂c

∂x

∣∣∣∣
x=−0

=
∂c

∂x

∣∣∣∣
x=+0

(2.23)

The equation of the progress variable (Equation 2.18) can now be solved. In
the zone where x < 0, c = 0 at x = −∞ and c = c∗ at x = 0, the general
solution is

c = c∗ exp

(
SL

Du
x

)
. (2.24)

On the other side, where x > 0, the general solution writes

c = 1 + (c∗ − 1) exp (z2x) , (2.25)

with

z2 =
SL

2Du
−

[(
SL

2Du

)2

+
R

Du

]1/2
. (2.26)

where the boundary conditions c = c∗ at x = 0 and c = 1 at x = ∞ are applied.
The solution of Equation 2.18 is then,

c (x) =

{
c∗ exp (αx) x ≤ 0
1 + (c∗ − 1) exp (βx) x > 0

(2.27)

with

α =
SL

Du
(2.28)

β =
SL

2Du
−

[(
SL

2Du

)2

+
R

Du

]1/2
. (2.29)
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Substituting these equations to Equation 2.23, R is given as

R =
SL

2

Du

c∗

(c∗ − 1)2
(2.30)

The reaction rate reproduced with this model is indicated in Figure 2.1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

c

ω̇
/
(ρ

u
R
)

Figure 2.1 : Reaction rate of Ferziger non-dimensioned by ρuR (= 8.57× 103

kg/m3 · s) as a function of progress variable c. c∗ = 0.5.

Figures 2.2 and 2.3 show the c fields of several values of c∗ and the distributions
of other major variables for c∗ = 0.5. To compare the profile with the flame of
other chemical reaction model, the length scale is non-dimensionalized with a
laminar diffusive flame thickness δ0l = Du/SL.
Table 2.1 indicates the input parameters of the flame.

SL(m/s) δ0l (m) Tu(K) Tb(K) ρu(kg/m
3)

0.41 5.82× 10−5 300 2300 1.202

Table 2.1 : Numerical parameter of the flame.

Arrhenius law

For the one-dimensional test, the Arrhenius law is also implemented. As the
inputs, the field of the progress variable c is obtained by filtering a Heaviside
function with a Gaussian filter of filter size δf = δ0l /c

∗
√
6/π, where c∗ = 0.5,

to obtain the same flame thickness as that of the analytical solution calculated
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Figure 2.2 : Profiles of the progress variable c calculated with the reduced reaction
model of Ferziger as a function of the reduced spatial coordinate x+ = x/δ0l . c∗ =
0.5(−) , c∗ = 0.7 (−−) , c∗ = 0.9 (−·−).

with Ferziger’s model defined by 1/|∇c|max. The temperature field and the
distribution of the chemical species in the flame are calculated with this progress
variable. The constants of the Arrhenius law are first set to the values of one
step combustion of propane and air mixture. Then the pre-exponential factor
was adjusted for keeping the integral of the reaction rate over the flame to be
ρuSL. The same procedure is found in Trouvé and Poinsot (1994).
The reaction rate as a function of the progress variable and the profile of the
flame are shown in Figures 2.4 and 2.5. Similar to Ferziger’s reaction model,
the chemical reaction occurs in the zone where the progress variable c takes
relatively high values. As the maximum value of the reaction rate is slightly
higher than Ferziger’s reduced reaction model, the reaction zone shown in the
bottom right figure of Figure 2.5 is thinner than that of Ferziger’s reduced
reaction model of Figure 2.3.

The algebraic model of Boger

Boger et al. (1998) developed an algebraic model for LES from DNS data and
Boger (2000) validated this model using experimental data. They assumed
that the flame surface density Σ takes a parabolic shape function of the filtered
progress variable c̄, given by
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Figure 2.3 : Profile of a one-dimensional laminar flame: c∗ = 0.5, x axis is the
distance non-dimensioned by diffusive laminar flame thickness δ0l = Du/SL.
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Figure 2.4 : Reaction rate calculated with the Arrhenius law as a function of progress
variable c.

Σ =
α+

∆
4 c̄(1− c̄) , (2.31)

where α+ is a model parameter and ∆ is the filter dize. The factor 4 was
introduced from the fact that the maximum of the parabolic function is 1/4.
The value of α+/∆ is evaluated from the arithmetic average of maximum and
minimum values of Σ at the level of c̄ = 0.5 found in DNS data.
The value of α+ for laminar cases may be calculated through a one-dimensional
test case. The authors got

α+
lam =

√
6

π
≈ 1.4 . (2.32)

Note that this value is obtained by the application of a Gaussian filter to an
infinitely thin flame front. The value may be different for other types of filters.
In laminar cases, the global reaction rate is ρuSL. Thus the reaction rate in
a filtered laminar flame can be described locally as a function of the filtered
progress variable c̄,

ω̇c ≈ ρuSL4

√
6

π

c̄(1− c̄)

∆
(2.33)

For turbulent flames, the reaction rate is multiplied by a wrinkling factor Ξ,
which is the ratio of the flame surface and its projection in the propagation



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 34 — #52
✐

✐

✐

✐

✐

✐

34 Chap. 2 - Mono-dimensional test case

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x /δ0
l

c

−10 −5 0 5 10

0.2

0.4

0.6

0.8

1

1.2

x /δ0
l

ρ

−10 −5 0 5 10
0.5

1

1.5

2

2.5

3

x /δ0
l

u

−10 −5 0 5 10

2000

4000

6000

8000

x /δ0
l

ω̇

Figure 2.5 : Profile of a one-dimensional laminar flame calculated with the Arrhenius
law. x axis is the distance non-dimensioned by diffusive laminar flame thickness δl.
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direction,

ω̇c ≈ ρuSL4

√
6

π
Ξ
c̄(1− c̄)

∆
, (2.34)

where a model is required for Ξ. In practice, the reaction rate is written in
terms of mass weighted filtered progress variable,

ω̇c ≈ ρuSL4

√
6

π
Ξ
c̃(1− c̃)

∆
, (2.35)

including the effect of the laminar transport.
The relation of the reaction rate and the filtered progress variable c and the
profile of the flame calculated through this model are shown in Figures 2.6 and
2.7 respectively. The reaction rate is non-dimensioned by ρuSL/∆. The field
of the filtered progress variable c is obtained by applying a Favre filter to a
Heaviside function centered at x = 0 and the size of ∆.
Because the reaction rates depend only on the progress variable c in this chapter,
W (q̃) and W (̂̃q) are written as W (c̃) and W (̂c̃) respectively. The reaction rates
are referred in this form in the following.
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Figure 2.6 : Reaction rate of Boger et al. (1998) as a function of filtered progress
variable c.

2.2.4 LES filter

To investigate the influence of the filter type, three different combinations of
the filters as shown in Table 2.2 are tested. Case 1 is the simplest combination
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Figure 2.7 : Profile of a one-dimensional laminar flame calculated with Boger’s
model. x axis is the distance non-dimensioned by diffusive laminar flame thickness
δ0l = Du/SL
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where all filtering processes are done in a standard manner. Case 2 retains Favre
filter as the LES filter but the test-filter remains standard. This combination
imitates the application of the standard test-filter to the LES solution calculated
with Favre averaged transport equations. Case 3 is essentially similar to Case
2, but a Favre type filter is applied to obtain double filtered terms. This is the
method described in Moin et al. (1991) for the dynamic Smagorinsky model.
Successive application of Favre filters of sizes ∆ and ∆̂ is identical to a single

application of Favre filter of the effective filter size ∆̂ =

√
∆

2
+ ∆̂2, if the filters

are Gaussian. The type of the filter is Gaussian throughout the tests of this
study.
In practice, the combination of filters are limited to Case 3. The filtered trans-
port equation of the chemical species (Equation 1.45) is written

∂ρỸk
∂t

+ div
(
ρũỸk

)
= −div

(
ρỸkVk

)
− div

{
ρ
(
ũYk − ũỸk

)}
+ ω̇k (2.36)

This equation describes the transport of the Favre filtered mass fractions of
the chemical species. The filtered equation yields the transport equation of the
Favre filtered variables. The source term of the right-hand-side must, then,
be calculated with Favre filtered variables. In the same manner, filtering the

original transport equation by a filter of the size of ∆̂ yields a transport equation

of the Favre filtered variables at ∆̂.

∂ρ̂ ˜̃Yk
∂t

+ div
(
ρ̂˜̃u ˜̃Yk

)
= −div

(
ρ̂
˜̃
YkVk

)
− div

{
ρ

(
˜̃
uYk − ˜̃u ˜̃Yk

)}
+ ̂̇ωk , (2.37)

where ˜̃· represents Favre filtering by the filter of the size of ∆̂. The source term

is then calculated by Favre filtered variables by a filter of size ∆̂. The dynamic

formulation thus uses Favre filtered variables by the filers ∆ and ∆̂. This is
identical to Case 3 where the single LES filter is the Favre filtering. Case 1 is
performed as this is the most essential filter combination, and Case 2 is added
to investigate the possibility of a simple test-filtering process.
The dynamic Smagorinsky model is also tested using the same combinations
of the filters as indicated in Table 2.2. Dynamically calculated results are
compared to analytical values of the subgrid stresses, that are obtained by
filtering the analytical solution of a laminar flame and taking the difference of
the analytical and the filtered solutions.

2.3 Results

2.3.1 Dynamic thickened flamelet model

Both strong and weak forms of the dynamic thickened flamelet model are tested
on the one-dimensional flame. In the model formulation (Equations 1.84 and
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Case Single LES filter (̃·) Double filter (̂̃·)
1 standard twice standard
2 Favre Favre + standard

3 Favre Favre (∆̂ =

√
∆

2
+ ∆̂2)

Table 2.2 : Combinations of the filter type

1.89 for the strong and the weak forms, respectively), the LES filter was repre-
sented by the form of Favre averaging (̃·). This may be replaced by a standard
filter (·) or other types of filters. The effect of the change in filter type and in
reaction model is discussed in the following.

2.3.1.1 Strong form

The dynamic thickened flamelet model without averaging process was first
tested. When the flame is close to a laminar state, the efficiency, E, should
be about unity. In the case where u′∆ is very low, E ≈ 1 should correspond

to γ
︷ ︸︸ ︷
W (c̃) /W

(
̂̃c
)

≈ 1. Figure 2.8 displays the reaction rates of this equa-

tion,
︷︸︸︷
ω̇(c̃)

(
=
︷ ︸︸ ︷
W (c̃) /∆

)
and ω̇(̂c̃)

(
= W

(
̂̃c
)
/∆̂
)

calculated using Ferziger’s

reduced reaction model. As it indicates, the two values were close at only
one point in the front edge and at the rear side of the flame, and the relation

γ
︷ ︸︸ ︷
W (c̃) /W

(
̂̃c
)
=
︷︸︸︷
ω̇(c̃) /ω̇(̂c̃) = 1 holds. Consequently β takes a large positive

or negative values except in this region, as the denominator of Equation 1.83 is
approximately zero when turbulence is weak. Then the efficiency, E, changes
strongly across the flame. The same problem was also observed in the cases
where Boger’s algebraic model and Arrhenius law were used. Thus, the strong
form of dynamic thickened flamelet model cannot be applied to a laminar flame.

The relation γ
︷ ︸︸ ︷
W (c̃) = W

(
̂̃c
)

should hold in the limit of the laminar case (see

Equation 1.83), but again, this relation was not satisfied except at a few points,
and the efficiency calculated through the dynamic procedure does not converge
to unity. The weak form of the dynamic thickened flamelet model is required
to overcome this difficulty. Thus the discussion is focused on the weak form in
the following.

2.3.1.2 Weak form

As was described above, in the limit of laminar conditions,
〈
γ
︷ ︸︸ ︷
W (c̃)

〉
=
〈
W
(
̂̃c
)〉

(2.38)
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Figure 2.8 : Reaction rates in the dynamic formulation (Equation 1.84): ω̇ (c) (−),
︷︸︸︷
ω̇(c̃)

(
=
︷ ︸︸ ︷
W (c̃) /∆

)
(−−) and ω̇(̂c̃)

(
= W

(
̂̃c
)
/∆̂
)
(−·−) (kg/m3 ·s) calculated with

Ferziger’s reduced reaction rate model. ∆ = 2.0 × 10−3(m) and ∆̂ = 1.0 × 10−2(m)
(γ = 5.10), horizontal axis is the distance non-dimensioned by diffusion laminar flame
thickness (x+ = x/δ0l ).
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should hold. This formulation consists of two operators and one function: fil-
tering, integration over a volume, and a function of reaction rate. The filtering
operator needs filter sizes ∆ and ∆̂ as inputs for LES and test-filtering re-
spectively. The LES and test-filter sizes define the filter size ratio γ, which is

generally calculate as γ =

√
∆̂2 +∆

2
/∆, when Gaussian filters are applied.

The choice of the function for the chemical reaction is also important. Here we
discuss Ferziger’s reduced model, Boger’s algebraic model and the Arrhenius
law. Different combinations of the filter sizes and chemical reaction models
clearly produces different values of the both sides of Equation 2.38, but they
should be identical.
The flexibility of the dynamic thickened flamelet model in terms of the choices
of filter sizes and the chemical reaction model was tested changing their com-
bination. The tests were performed using two types of the field of the progress
variable, c. The first one was the field obtained by applying a Gaussian filter
of size δf = δ0l /c

∗
√
6/π to a Heaviside function, where c∗ = 0.5. This filter-

ing yields a field of the progress variable c that has the same laminar flame
thickness defined as 1/ |∇c|max as that of the analytical solution of the reduced
reaction model of Ferziger. When the filter combination of Case 1 was used, a
standard filter was applied to a Heaviside function, while a Favre type filter was
applied for Cases 2 and 3. In these conditions, the effective filter size ratio, γ

was precisely calculated with γ =

√
∆̂2 +∆

2
+ δf

2/

√
∆

2
+ δf

2 since Gaussian
filters were applied. The second method used the c field of the analytical solu-
tion, calculated with the reduced reaction model of Ferziger, shown in Figure
2.3. In this case, δf was not defined explicitly, but the same value was used as
a reference.

Influence of filter type

The filtering process plays an important role in the formulation of the dynamic
model. Its choice is also crucial in the context of LES. To reduce the com-
plexity of the filtered transport equations, Favre filtering, rather than standard
filtering, is frequently applied to the original transport equations. This change
in filtering is generally assumed not to alter the validity of the SGS models.
Shown in Figures 2.9 and 2.10 are the values of the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

calculated with different combinations of filters, pre-

sented in Table 2.2, and different models for reaction rate. The c field was
obtained by filtering a Heaviside function by a Gaussian filter of size δf . The
horizontal axis is the LES filter size non-dimensioned by δf . The filter sizes
were set to satisfy the relation ∆̂/∆ = 2 in Figure 2.9 and ∆̂/∆ = 10 in 2.10
respectively.
It is clearly seen that the reaction rate ratio was always unity with the filter com-
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binations of Cases 1 and 3 (the solid and the dashdot lines, respectively). On the
contrary, the combination of Case 2 (the dashed line) yielded the reaction rate
ratio lower than unity independent from the choice of reaction model. These re-

sults show that the value of γ calculated with γ =

√
∆̂2 +∆

2
+ δf

2/

√
∆

2
+ δf

2

cannot be used with the filter combination of Case 2. This was due to the ap-
plication of the non mass weighted filter after the mass weighted filtering, and
that the filter size ∆̂ was not an appropriate value to calculate γ correctly. It
was possible to correct ∆̂ by forcing,

√
∆̂2 +∆

2
+ δf

2

√
∆

2
+ δf

2
=

〈
W
(
̂̃c
)〉

〈︷ ︸︸ ︷
W (c̃)

〉 , (2.39)

but, as will be discussed below, the filter size used to obtain a laminar flame,
δf , also needs to be corrected in a practical application of the dynamic model.
Then, the correction of ∆̂ is not an attractive method. Thus, the filter combi-
nation of Case 2 was not preferable.
Figures 2.11 and 2.12 are the results of the tests, where the c field was ana-
lytically obtained with the reduced reaction model of Ferziger, for the cases of
∆̂/∆ = 2 and ∆̂/∆ = 10 respectively. All the results deviated from unity, when
∆/δf was small. As shown in Figure 2.13, the increase in γ was stronger than

the decrease in

〈︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

when ∆̂/∆ = 2 and ∆/δf < 3, and the

reaction rate ratio

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

increased with ∆/δf , but it decreased

when ∆/δf > 3, .
Similar to Figures 2.9 and 2.10, the lines in Figures 2.11 and 2.12 of the filter
combinations of Cases 1 and 3 converged to unity with the increase of ∆/δf .
The result of Case 2 also converged, but not to unity. The deviations of the re-
sults from those of Figures 2.9 and 2.10 found when ∆/δf < 20 were because of
the fact that the effective filter size ratio γ was calculated with δf = δ0l /c

∗
√
6/π

considering that the analytical solution of the c field calculated with the reduced
reaction model of Ferziger was close to the Gaussian filtered Heaviside function.
However, the results show that the use of δf in the calculation of γ was inap-

propriate to obtain

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

= 1. An alternative filter size that

reproduces the field of the progress variable c of the reduced reaction model of
Ferziger from a Heaviside function was required for this relation.

Table 2.3 shows the values of the filter size that yield

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

= 1

when ∆/δf = 2 for different combinations of filters and reaction models. The
values are referred as the effective filter size δe in the following. All values of δe
were remarkably larger than δf (≈ 1.6× 10−4 (m)). This is due to the fact that



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 42 — #60
✐

✐

✐

✐

✐

✐

42 Chap. 2 - Mono-dimensional test case

the field of the progress variable c obtained using the reduced reaction model
of Ferziger takes longer distance to change from 0 to 1 than that obtained by
applying a Gaussian filter of size δf to a Heaviside function, and a larger filter
size than δf was required to retain the same integral of reaction rate as that
calculated with the c field obtained with Ferziger’s model.

Filter Reaction model
combination Ferziger Arrhenius Boger

Case 1 5.4 5.4 5.8
Case 2 2.0 4.5 2.3
Case 3 6.2 5.9 6.7

Table 2.3 : Effective filter size δe (×10−4 m) that yields

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

= 1

when ∆/δf = 2 for different combinations of filter combination and reaction model.

Using δe, the convergence of

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

was observed again and the

results are presented in Figures 2.14 and 2.15. The lines of Cases 1 and 3 became

close to those of Figures 2.9 and 2.10 and the values of

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

were approximately equal to unity, in spite of the use of the progress variable
field calculated with the reduced reaction model of Ferziger. This means that
the analytically obtained c field with this reaction model can be approximated
with a Gaussian filtered Heaviside function of size δe, when the filter combina-
tion of Case 1 or Case 3 is chosen. However, the result obtained with Case 2
did not converge to unity, though δf was replaced by δe.
From the results presented here, the filter combinations of Cases 1 and 3 are

verified to yield the reaction rate ratio

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

approximately

equal to unity by correcting δf . These cases can reproduce a laminar condition,
even if the field of the progress variable c was obtained with the reduced reaction
model of Ferziger.
In a practical implementation of the dynamic procedure into combustion sim-
ulations, however, the density of the flow media changes considerably through
combustion and only the filter combination of Case 3 can be retained. Case 2
represents the simplest way of implementation of the dynamic procedure using
a standard filter to the Favre filtered transport equation. This method is at-
tractive because of its simplicity, but it cannot be used as it breaks the relation
described in Equation 2.38.
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Choice of reaction model

It is also important to observe the differences caused by the chemical model
selection since the reaction rates that appear in the dynamic formulation are
calculated with it. The dynamic thickened flamelet model was tested in com-
bination with Ferziger’s model, Boger’s model, or the Arrhenius law.
Top left plots of Figures 2.9 and 2.10 display the results calculated with the
reduced reaction model of Ferziger, where the c field of a laminar flame was

given as a Gaussian filtered Heaviside function. The values of

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
and

〈
W
(
̂̃c
)〉

were identical when the filter combinations of Cases 1 and 3 were

applied. The line of Case 2 was always approximately 0.8 and lower than unity.
The results of Boger’s algebraic model are presented in the top right plots of
Figures 2.9 and 2.10. From the construction of this model, it is easily deduced
that the integral value of the reaction rate is always equal to ρ0SL, and the ratio
should always be unity as long as the same types of filters are applied at the LES

and test-filter scales. The formulation of γ =

√
∆̂2 +∆

2
+ δf

2/

√
∆

2
+ δf

2

yielded the ideal values of the reaction rate ratio,〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

, when the filter combination of Cases 1 and 3 were ap-

plied. Even this reaction model did not give the desired result if the filter
combination of Case 2 was applied.
The Arrhenius law yielded similar results to the reduced reaction model of
Ferziger. The results calculated with filter combination of Cases 1 and 3 were
always unity, but the result of Case 2 was about 0.8 and far from unity.
The comparisons in Figures 2.11 and 2.12, where the laminar flame was given
as the analytical solution of the reduced reaction model of Ferziger, show that

the deviation of the reaction rate ratio

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

from unity found

when ∆/δf < 20 depended on the reaction model, but the results were similar
to Figures 2.9 and 2.10 when ∆/δf > 20. The deviations found when ∆/δf < 20
were suppressed by the use of δe instead of δf for the calculation of the effective
filter size ratio γ, as shown in Figures 2.14 and 2.15.

From the comparison by the chemical reaction model, it is verified that the

value of the reaction rate ratio,

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

, is independent from the

choice of the chemical reaction model, when δf is replaced by the effective filter
size δe.

Influence of the filter size ratio ∆̂/∆

Another important parameter in the formulation is the filter size ratio ∆̂/∆.
Before the application to the computational simulation, the condition of the
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Figure 2.9 : Influence of the combination of filters on the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

as a function of the LES filter size, non-dimensioned by δf =

δ0l /c
∗
√
6/π. The field of the progress variable in a laminar flame was obtained by

filtering a Heaviside function by a Gaussian filter of size δf and the effective filter size
ratio γ was calculated with δf . Reaction rates were calculated with Ferziger’s reduced
chemical reaction model (top left, c∗ = 0.5), Boger’s algebraic model (top right) and

the Arrhenius law (bottom). ∆̂/∆ = 2. Filters were chosen as shown in Table 2.2,
Case 1 (−), Case 2 (−−), and Case 3 (−·−).
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Figure 2.10 : Influence of the combination of filters on the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

as a function of the LES filter size, non-dimensioned by δf =

δ0l /c
∗
√
6/π. The field of the progress variable in a laminar flame was obtained by

filtering a Heaviside function by a Gaussian filter of size δf and the effective filter size
ratio γ was calculated with δf . Reaction rates were calculated with Ferziger’s reduced
chemical reaction model (top left, c∗ = 0.5), Boger’s algebraic model (top right), and

the Arrhenius law (bottom). ∆̂/∆ = 10. Filters were chosen as shown in Table 2.2,
Case 1 (−), Case 2 (−−), and Case 3 (−·−).
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Figure 2.11 : Influence of the combination of filters on the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

as a function of the LES filter size, non-dimensioned by δf =

δ0l /c
∗
√
6/π. The field of the progress variable in a laminar flame was computed with

the reduced reaction model of Ferziger. The effective filter size ratio γ was calculated
with δf . Reaction rates are calculated with Ferziger’s reduced chemical reaction model
(top left, c∗ = 0.5), Boger’s algebraic model (top right) and Arrhenius law (bottom).

∆̂/∆ = 2. Filters are chosen as shown in Table 2.2, Case 1 (−), Case 2 (−−), and
Case 3 (−·−).
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Figure 2.12 : Influence of the combination of filters on the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

as a function of the LES filter size, non-dimensioned by δf =

δ0l /c
∗
√
6/π. The field of the progress variable in a laminar flame was computed with

the reduced reaction model of Ferziger. The effective filter size ratio γ was calculated
with δf . Reaction rates are calculated with Ferziger’s reduced chemical reaction model
(top left, c∗ = 0.5), Boger’s algebraic model (top right) and Arrhenius law (bottom).

∆̂/∆ = 10. Filters are chosen as shown in Table 2.2, Case 1 (−), Case 2 (−−), and
Case 3 (−·−).
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Figure 2.13 : Intermediate terms in the calculation of the reaction rate ra-

tio

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

, as functions of the LES filter size, non-dimensioned by

δf = δ0l /c
∗
√
6/π. A laminar flame was computed with the reduced reaction model

of Ferziger. The effective filter size ratio γ was calculated with δf . ∆̂/∆ = 2.

The filter combination of Case 1 was used. γ (−),

〈︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

(−−), and
〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

(−·−).

filter length scale that satisfies the formulation should be obtained. This test
is extremely important because the filter length is also restricted by the size of
the computational configuration.
Comparing Figures 2.9 and 2.10 which indicate the results calculated with
∆̂/∆ = 2 and ∆̂/∆ = 10 respectively, and the field of the progress variable c in
a laminar flame was obtained by filtering a Heaviside function, the differences
caused by change in ∆̂/∆ was not significant when the filter combinations of
Cases 1 and 3 were used.
As shown in Figures 2.11 and 2.12, the differences between the results of ∆̂/∆ =
2 and ∆̂/∆ = 10 cases became more remarkable with low values of ∆/δf , when
the analytical solution of the progress variable field of the reduced reaction
model of Ferziger was used as a laminar flame. However, as observed in Figures
2.14 and 2.15, they were eliminated by introducing the effective filter size δe
presented in Table 2.3.
The filter size ratio, thus, does not significantly affect the reaction rate ratio,
when the effective filter size ratio γ is calculated using appropriate value for δf
and appropriate filter combination is chosen (Case 1 or Case 3 in Table 2.2).
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Figure 2.14 : Influence of the combination of filters on the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

as a function of the LES filter size, non-dimensioned by δf =

δ0l /c
∗
√
6/π. The field of the progress variable in a laminar flame was computed with

the reduced reaction model of Ferziger. The effective filter size ratio γ was calculated
with the effective filter size δe presented in Table 2.3. Reaction rates are calculated
with Ferziger’s reduced chemical reaction model (top left, c∗ = 0.5), Boger’s algebraic

model (top right) and Arrhenius law (bottom). ∆̂/∆ = 2. Filters are chosen as shown
in Table 2.2, Case 1 (−), Case 2 (−−), and Case 3 (−·−).
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Figure 2.15 : Influence of the combination of filters on the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

as a function of the LES filter size, non-dimensioned by δf =

δ0l /c
∗
√
6/π. The field of the progress variable in a laminar flame was computed with

the reduced reaction model of Ferziger. The effective filter size ratio γ was calculated
with the effective filter size δe presented in Table 2.3. Reaction rates are calculated
with Ferziger’s reduced chemical reaction model (top left, c∗ = 0.5), Boger’s algebraic

model (top right) and Arrhenius law (bottom). ∆̂/∆ = 10. Filters are chosen as shown
in Table 2.2, Case 1 (−), Case 2 (−−), and Case 3 (−·−).
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Summary

According to the results obtained through the tests, the influence of choices of
chemical reaction model, filter type and the filter size ratio can be summarized
as follows:

• In the tests, where a laminar flame was obtained by applying a Gaussian
filter to a Heaviside function, the filter combinations of Cases 1 and 3,
indicated in Table 2.2, yielded reasonable results independent from the
choice of the chemical reaction model and the filter size ratio between
the LES and test-filter sizes. Application of the standard type filter to
the Favre filtered variables (filter combination of Case 2) resulted in a
breakdown of the relation described in Equation 2.38.

• When a laminar flame was analytically obtained with the reduced re-
action model of Ferziger, the effective filter size δe that reproduces the
field of the progress variable c in a laminar flame from a Heaviside func-
tion must be calculated to obtain the correct effective filter size ratio γ

for

〈
γ
︷ ︸︸ ︷
W (c̃)

〉
/
〈
W
(
̂̃c
)〉

= 1. This method works well with the filter

combinations of Cases 1 and 3, but not with the combination of Case 2,
showing the difficulty of the use of this filter combination.

• The choice of the reaction rate model has little influence on the validity of
Equation 2.38. All chemical reaction models tested here yield reasonable
results when the filter combination of Case 1 or Case 3 is applied and δf
was corrected.

• The filter size ratio between the LES and test-filter sizes is not a signif-
icant factor - at least in a one-dimensional case. Its impact should be
investigated in multi-dimensional cases, as this term also appears in the
denominator of the formulation (Equation 1.89).

The change of the density is not negligible in combustion simulations and the
filter combination of Case 3 should be applied to them.

2.3.2 Relation between thickening and filtering of a laminar

flame

In the previous tests, the LES filter size ∆ and the test-filter size ∆̂ were
explicitly defined and the effective filter size ratio γ was calculated using these
values. However, in the context of the thickened flamelet model, the flame is
thickened by a thickening factor F , and the LES filter size ∆ is not defined.
An equivalent filter size ∆F to thickening by a factor F must be given to the
dynamic procedure to calculate γ.



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 52 — #70
✐

✐

✐

✐

✐

✐

52 Chap. 2 - Mono-dimensional test case

Figure 2.16 displays the ratio of thicknesses of the LES filtered laminar flame
δL and the laminar flame δ0l as functions of the LES filter size non-dimensioned
by δf = δ0l /c

∗
√
6/π, which is the filter size that yields a laminar flame whose

thickness, defined by 1/ |∇c|max, is identical to that of the flame calculated
with the reduced reaction model of Ferziger. c∗ was set to 0.5. The results of
four combinations of filter type and the definition of the flame thickness are
presented.
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Figure 2.16 : Thickness of a filtered flame δL/δ
0
l as functions of the LES filter size,

non-dimensioned by δf = δ0l /c
∗
√
6/π, where c∗ is set to 0.5. Flame thickness was

defined as the distance where the progress variable changes from 0.01 to 0.99 (left)
and the maximum value of the progress variable gradient (δL = 1/ |∇c|max, right).
Application of a standard filter (−) and a mass weighted (Favre) filter (−−).

All lines were almost straight, but the values of δL/δ
0
l and ∆/δf were not

identical except when a standard filter was applied, the flame thickness was
defined as δL = 1/ |∇c|max, and the ∆ was sufficiently large.
When the flame thickness was defined as the distance that the progress variable
takes to change from 0.01 to 0.99 (δ0.990.01 , left plot of Figure 2.16), the ratio δL/δ

0
l

was approximately half of ∆/δf . The lines can be approximated as

δL
δ0l

= 0.5143
∆

δf
+ 0.5987 , (2.40)

when a standard filter was applied (solid line), and

δL
δ0l

= 0.4800
∆

δf
+ 0.6165 , (2.41)

when a Favre filter was applied (dashed line).
The lines of the right plot, where the flame thickness was defined as δL =
1/ |∇c|max, were closer to the line of δL/δ0l = ∆/δf than those in the left plot.
This was due to the fact that the thickness δ0.990.01 of a laminar flame is larger
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than the thickness defined as 1/ |∇c|max as displayed in Figure 2.17, and less
influenced by filtering. They are approximately

δL
δ0l

= 0.9772
∆

δf
+ 0.7345 , (2.42)

when a standard filter was applied (solid line), and

δL
δ0l

= 0.7967
∆

δf
+ 0.7578 , (2.43)

when a Favre filter was applied (dashed line).

Figure 2.17 : Definition of flame thicknesses. δ0.990.01 is the flame thickness defined
as the distance, where the progress variable changes from 0.01 to 0.99, and δ∇c is the
thickness defined as the inverse of the maximum value of the progress variable gradient.
δ0l is the diffusion flame thickness Du/SL.

Thus, the thickness ratio δL/δ
0
l was approximately proportional to the filter size

∆, when ∆ is sufficiently large, but the proportionality coefficient depended
on the filter type and the definition of the flame thickness. Representing the
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proportionality coefficient by a, and suppose that the filter size ∆ is large
enough, the relation between δL/δ

0
l and ∆/δf reduces to

δL
δ0l

= a
∆

δf
. (2.44)

Then, the filter size ∆F to yield a flame of thickness Fδ0l is written as

∆F =
1

a
Fδf =

1

a
F
δ0l
c∗

√
6

π
= αFδ0l , (2.45)

where the product of terms other than Fδ0l was represented by α for the clarity.
In previous tests, the value of δf was corrected for a laminar flame calculated
with the reduced reaction model of Ferziger, using ∆ and ∆̂. In the context
of the thickened flamelet model, however, ∆ is not defined, and it must be
obtained for the calculation of γ, i.e., the value of α in Equation 2.45 has to
be determined. This calculation of α will be conducted in the next chapter
through a test similar to that performed above.

Summary

From the test performed here, the thickness of a filtered laminar flame δL was
verified to be approximately proportional to the filter size ∆. The proportion-
ality coefficient of δL to ∆, which is represented by a in Equation 2.44, depends
on the definition of the flame thickness and the filter type. In the context
of the thickened flamelet model, an equivalent filter size ∆F that yields the
field of the progress variable c in a thickened flame of thickness Fδ0l from a
Heaviside function must be calculated by determining the proportionality co-
efficients a of Equation 2.44 and corresponding α of Equation 2.45. This test
will be conducted in the next chapter.

2.3.3 The dynamic Smagorinsky model

The subgrid-scale flux

In the LES context, the subgrid-scale flux of a filtered quantity, Q̃, is usually
modeled by using the gradient assumption,

ρ(ũQ− ũQ̃) = −
µt

σt
∇Q̃ , (2.46)

where µt and σt are the turbulent viscosity and the turbulent Schmidt number
respectively.
When the direction of the subgrid-scale flux is opposite to that predicted by
Equation 2.46, the counter-gradient-like transport occurs, and µt becomes neg-
ative. The effect of the subgrid-scale fluxes is limited in the LES context than
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in RANS simulations, because, unlike to RANS, most part of the convection
transport of the scalar quantities are resolved in LES. However, it is worth ob-
serving the magnitude of subgrid-scale flux that takes place in a laminar flame.
For the details of the counter gradient transport in the RANS context, the
readers are referred to Bray et al. (1981), Shepherd et al. (1982), Libby and
Bray (1981), Bray et al. (1989). Bray (1996), and Veynante et al. (1997).
In this section, the subgrid-scale momentum flux (Reynolds stresses) across a
laminar flame is calculated by applying a LES filter to the flame obtained
in the previous section, and its magnitude is observed. This subgrid-scale
momentum flux is also calculated with the dynamic Smagorinsky model to
assess the validity of this model.
The dynamic Smagorinsky model is designed to calculate the subgrid-scale
momentum flux, which remains unclosed in the equation after the filtering
operation. This term is called Reynolds stresses, τ , and is usually modeled as
follows:

τ = −ρ(uu− ūū) = 2µtS ≡ 2CSρ∆
|S|S (2.47)

where µt is the turbulent viscosity, CS is a model parameter to be determined,
∆ is the filter length scale, S is the strain rate defined as

S =

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.48)

and |S| = (2SijSij)
1/2. This formulation may be rewritten using Favre averaged

variables.
τ = −ρ(ũu− ũũ) = 2µtS̃ ≡ 2CSρ∆

|S̃|S̃ , (2.49)

where

S̃ =

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.50)

Analytical values of the subgrid-scale transport

The subgrid-scale momentum flux was obtained analytically by filtering the
analytical solution of a laminar flame, which was obtained in the previous
section, and by calculating with the equation below.

−ρ (ũu− ũũ) (2.51)

Figure 2.18 shows the analytical subgrid-scale momentum flux obtained by
filtering variables of a flame calculated with Ferziger’s reaction rate (c∗ = 0.5)
displayed in Figure 2.3. The horizontal axis of the left plot is the position from
the flame surface non-dimensioned by the laminar diffusion flame thickness δ0l =
5.82×10−5 (m). Even though the flame was laminar, subgrid-scale momentum
flux existed and took negative values, i.e. in the direction opposite to the
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gradient assumption (Equation 2.46). As explained in Poinsot and Veynante
(2005), this was caused by the thermal expansion of the burnt gas through the
flame. The intensity of the peak value of the subgrid-scale momentum flux
increased with the filter size ∆̂. This was because of that a larger filter made
the field smoother, and the effect of the subgrid-scale became more important.
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Figure 2.18 : Analytically calculated subgrid-scale momentum flux through a laminar

flame −ρ (ũu− ũũ). ∆ = δ0l (= Du/SL)(−), ∆ = 2δ0l (−−) , ∆ = 5δ0l (−·−) and ∆ =
10δ0l (− with •). The horizontal axis of the left plot was non-dimensioned by the
laminar diffusion flame thickness, δ0l = Du/SL = 5.82× 10−5 m

Figure 2.19 represents the ratio of the subgrid-scale momentum flux to the
exact value of the convection transport of momentum ρũu. As expected, this
ratio increased with the filter size. The value stayed small when the LES filter
size was δ0l and 2δ0l , but it was not negligible when the LES filter size is larger
than 5δ0l . The same test with a flame thickened by a factor of 20 and a filter
size of 20δ0l , 40δ

0
l , 100δ

0
l , and 200δ0l yielded exactly same results, and it was

well verified that thickening of a laminar flame did not alter the nature of the
subgrid-scale momentum flux as far as the relation of the flame thickness and
the LES filter size stayed the same (Figure 2.20).
Additional one-dimensional tests were performed by setting the configuration
similar to the multi-dimensional simulations that will be performed in Chap-
ters 4 and 5. The computational mesh for the two-dimensional simulation is
presented in Figure 3.10 in the next chapter. The LES filter size of this test
was set to 5.0× 10−4 m corresponding to the computational mesh size used in
the two-dimensional simulation, and the flame was thickened by a factor of 5,
10, 20 and 30. The results are indicated in Figures 2.21 and 2.22.
It is clearly shown that the subgrid-scale momentum flux opposite to the gradi-
ent assumption existed in a thickened laminar flame and its amplitude depended
on the thickening factor. When the thickening factor was 5, the ratio of the
subgrid-scale momentum flux to the exact convection transport was approxi-
mately 9%. This value decreased as the thickening factor increased. With the
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(ũ

u
−

ũ
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Figure 2.19 : The ratio of the analytically calculated subgrid-scale momentum flux
to the exact value of the convection transport of momentum. −ρ (ũu− ũũ) /− ρ (ũu):
∆ = δ0l (= Du/SL)(−), ∆ = 2δ0l (−−) , ∆ = 5δ0l (−·−) and ∆ = 10δ0l (− with •). The
horizontal axis of the left plot was non-dimensioned by the laminar diffusion flame
thickness, δ0l = Du/SL = 5.82× 10−5 m
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Figure 2.20 : Analytically calculated subgrid-scale momentum flux −ρ (ũu− ũũ) in

a thickened laminar flame by the factor of 20. ∆ = 20 δ0l (= 20Du/SL)(−), ∆ =
40 δ0l (−−) , ∆ = 100 δ0l (−·−) and ∆ = 200 δ0l (− with •). The horizontal axis of the
left plot was non-dimensioned by the laminar diffusion flame thickness, δ0l = Du/SL =
5.82× 10−5 m
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thickening factor of 20, it was lower than 1% and with that of 30, it became
negligible.
These results suggest that, in the two-dimensional simulations performed in
Chapter 4, the subgrid-scale momentum flux in the flame is opposite to the
gradient assumption (Equation 2.46), if the turbulence is weak. However, the
amplitude can be decreased by changing the thickening factor. It is thus ex-
pected that the subgrid-scale momentum flux opposite to the gradient assump-
tion is also negligible in the simulations of Chapter 4, if the flame is thickened
more than 20 times.
In the case of the three-dimensional simulation performed in Chapter 5, whose
computational mesh is represented in Figure 5.1 of Chapter 5, the computa-
tional grid size at the flame holder is 1.0 mm. This condition approximately
corresponds to the ∆ = 20δ0l case shown in Figure 2.20. Then the subgrid-
scale momentum flux is approximately 4% of the exact convection transport
of momentum as is represented in Figure 2.19 with the solid line. Thus the
subgrid-scale momentum flux in the flame is also negligibly small in the three-
dimensional simulations of Chapter 5.
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Figure 2.21 : Analytically calculated subgrid-scale momentum flux in a thickened

laminar flame −ρ (ũu− ũũ). ∆ = 5.0× 10−4 m. The flame was thickened by a factor
of 5 (−), 10(−−) , 20(−·−), and 30(− with •). The horizontal axis of the left plot was
non-dimensioned by the laminar diffusion flame thickness, δ0l = Du/SL = 5.82× 10−5

m
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ũ
)/
(ρ
ũ
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Figure 2.22 : Ratio of analytically calculated subgrid-scale momentum flux to the

exact value of the convection transport of momentum −ρ (ũu− ũũ) / − ρ (ũu). ∆ =
5.0 × 10−4 m. The flame is thickened by the factor of 5 (−), 10(−−) , 20(−·−), and
30(− with •). The horizontal axis of the left plot was non-dimensioned by the laminar
diffusion flame thickness, δ0l = Du/SL = 5.82× 10−5 m

Subgrid transport calculated with the dynamic Smagorinsky model

Figure 2.23 compares the subgrid-scale momentum flux calculated by the dy-
namic Smagorinsky model and the analytical value. The results of the dynamic
Smagorinsky model were calculated with different test-filter sizes; ∆̂/∆ = 2,
∆̂/∆ = 5 and ∆̂/∆ = 10, where ∆ = δ0l . The analytical value of subgrid-
scale momentum flux ρ(ũu − ũũ) was obtained in the same manner that was
described above and the Smagorinsky constant CS was calculated by using this
value;

CS = τij/
(
ρ∆


|S̃|S̃ij

)
(2.52)

= −ρ(ũu− ũũ)/



2ρ∆

2

√
2

(
dũ

dx

)2dũ

dx



 . (2.53)

The dynamic Smagorinsky model predicted relatively well the subgrid-scale
momentum fluxes. Even though some discrepancies existed in the middle of the
flame, it reproduced the same tendency as that of the analytically calculated
subgrid-scale momentum flux.
At both edges of the flame, the Smagorinsky constant took a large negative val-
ues. This was caused by small values of the velocity derivative used as the strain

rate in this test. As the strain rate was close to zero,
̂

∆
2
|S|Sij ≈ ∆̂2|Ŝ|Ŝij ≈ 0,

and the value of the Smagorinsky constant diverged (see Equation 1.61). In
spite of this divergence of the constant, predicted subgrid-scale momentum flux
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Figure 2.23 : The dynamically calculated Smagorinsky constant and the subgrid-scale
momentum flux in a laminar flame. The horizontal axes of the right plots were non-
dimensioned by the laminar diffusion flame thickness δ0l = 5.82× 10−5 (m). ∆ = δ0l .
The lines correspond to the analytical value (−) and dynamically calculated values with

∆̂/∆ = 2 (−−), ∆̂/∆ = 5 (−·−), and ∆̂/∆ = 10 (− with •).

did not diverge. This was because the strain rates were close to zero and the
values calculated with Equation 1.48 converged to zero.
The influence of the test-filter size was verified to be weak. The results calcu-
lated with different test-filter sizes did not change in order of magnitude. Also,
the result did not vary linearly with the test-filter size. A test-filter size, double
of the LES filter size (= δ0l ), produced the largest difference from the analytical
value of the subgrid-scale momentum flux, and when the test-filter size was five
times of the LES filter size, the results were the closest.
Application of the Moin’s procedure (Moin et al. 1991) was also tested. It
writes

{
̂(ρũiũj)−

1

ρ̂

(
ρ̂ũiρ̂ũj

)}
−

{
̂(ρũkũk)−

1

ρ̂

(
ρ̂ũkρ̂ũk

)} δij
3

= 2CS

{(
̂ρ∆

|S|Sij

)
− ρ̂∆̂|Ŝ|Ŝij

}
, (2.54)
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and in one-dimensional case, it reduces to

(̂ρũũ)−
1

ρ̂

(
ρ̂ũρ̂ũ

)

= 2CS








︷ ︸︸ ︷

ρ∆
2

√
2

(
dũ

dx

)2dũ

dx


− ρ̂∆̂

√√√√

(
d̂̃u
dx

)
d̂̃u
dx





. (2.55)

For the following discussion, we represent this equation as,

Term1− Term2 = 2CS (Term3− Term4) . (2.56)

In the case of the standard dynamic Smagorinsky model, they correspond to

Term1 = ρ̂̃uu
Term2 = ρ̂̃û̃u

Term3 = ρ∆
2

︷ ︸︸ ︷√
2

(
dũ

dx

)2dũ

dx

Term4 = ρ∆̂2

√√√√2

(
d̂̃u
dx

)2
d̂̃u
dx

.

The results are presented in Figure 2.24. The analytical value represented by
the solid line is the same data as that presented in Figure 2.23. The position
of the peak value was slightly different from analytical result as shown in the
bottom right plot of Figure 2.24. The position of the peak in the results of
the standard dynamic Smagorinsky model was at the same x coordinate as the
analytical subgrid-scale transport. This deviation was due to the sensitivity of
this procedure to the density change through the flame.
Figures 2.25 and 2.26 compare the intermediate terms in the calculation of the
Smagorinsky constant. As is seen in Figure 2.25 the terms of Moin’s model
were smaller on unburned side (x < 0) and larger on burnt side (x > 0). Since
the density was included in the filtering, the filtered values were more strongly
influenced by the values of a high density zone, i.e. on the unburned side, than
by those of a low density zone, i.e. on the burnt side. This trend was noticeable
in zones where the density gradients took large values (see Figure 2.3). The
Term1− Term2 and Term3− Term4 yielded the fields as indicated in Figure
2.26. The field of Term1 − Term2 preserved the influence of density change,
and it made the dynamically calculated subgrid stress field deviate towards the
burnt gas side.
The amplitude of the calculated stress field was similar to that of the standard
model. However, unlike to the result of standard model, the result with filter
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Figure 2.24 : The dynamically calculated Smagorinsky constant and the subgrid-scale
momentum flux calculated with Moin’s procedure in a laminar flame. The horizontal
axes of the right plots were non-dimensioned by the laminar diffusion flame thickness,
δ0l = 5.82×10−5 (m). ∆ = δ0l . The lines correspond to the analytical value (−) and the

dynamically calculated values with ∆̂/∆ = 2 (−−), ∆̂/∆ = 5 (−·−) and ∆̂/∆ = 10 (−
with •).

size ∆̂ = 5∆ had the same height of peak as that of the analytical value, and
the peak of the ∆̂ = 10∆ result was closer to zero than the analytical value. It
may be said that Moin’s model yields, potentially, better approximation of the
subgrid-scale momentum flux in a one-dimensional laminar flame.

In this section, the existence of the subgrid-scale momentum flux opposite to
the gradient assumption in a laminar flame was verified and both the standard
dynamic Smagorinsky model and Moin’s procedure succeeded in predicting its
emergence.
However, the subgrid stress opposite to the ones predicted from the usual gra-
dient assumption may cause numerical instabilities in practical simulations.
Furthermore, because the reaction zone is amplified in the use of the thick-
ened flamelet model, and the region where the subgrid stress takes negative
value is also enlarged, the possibility of numerical instabilites increases. In
this study, the negative values of the subgrid stresses will be set to zero in
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Figure 2.25 : Comparison of the intermediate terms in the calculation of the
Smagorinsky constant CS. The horizontal axes were non-dimensioned by the lami-
nar diffusion flame thickness, δ0l = 5.82× 10−5 (m). ∆ = δ0l . The lines correspond to
the terms of Moin’s model (−) and standard dynamic Smagorinsky model using Favre

filtering (−−), Term1 to Term4 correspond to ρ̂ũu, (1/̂̃ρ)ρ̂ũρ̂ũ,
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Figure 2.26 : Comparison of the intermediate terms in the calculation of the
Smagorinsky constant CS. The horizontal axes were non-dimensioned by the lami-
nar diffusion flame thickness δ0l = 5.82× 10−5 (m). ∆ = δ0l . The lines correspond to
the terms of Moin’s model (−) and standard dynamic Smagorinsky model using Favre

filtering (−−), term1 to term4 correspond to ρ̂ũu, (1/̂̃ρ)ρ̂ũρ̂ũ,
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the multi-dimensional simulations considering the fact that the influence of the
subgrid-scale momentum flux opposite to the gradient assumption is small and
to avoid numerical instabilities.

2.4 Conclusion

Following the tests performed in this chapter, several remarks can be made:

• The strong form of the dynamic thickened flamelet model cannot be ap-
plied to the present study because it results in a negative/positive infinite
value of the constant β and a strong variation of the efficiency in the flame.
For this reason, the weak form is chosen in this study.

• Moin’s filtering process, described in Moin et al. (1991) for the double
filtered terms in the formulation of the dynamic procedure (combination
of two Favre filters), yields ideal convergence of the constant β in the limit
of the weak turbulence, unlike to the combination of Favre filtering and
simple filtering. It does not depend on the choice of the reaction model.

• The change in filter size ratio between the LES and the test-filters ∆̂/∆
does not significantly affect the value of the reaction rate ratio〈
γ
︷ ︸︸ ︷
W (q̃)

〉
/
〈
W
(
̂̃q
)〉

.
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• The thicknesses of filtered laminar flames δL were proportional to the
filter size ∆, when ∆ is sufficiently large compared to the filter size δf ,
which was used to obtain the progress variable field in a laminar flame
from a Heaviside function.

• For the dynamic Smagorinsky model, both the standard and Moin’s pro-
cedure were tested on a laminar flame. All of the results show the ex-
istence of the subgrid stresses opposite to the ones predicted from usual
gradient assumption that is caused by the thermal expansion of the flow
media, but the influence have been shown to be small. Thus, it will be
neglected in multi-dimensional simulations in the following chapters to
avoid numerical instabilities.
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Chapter 3

Implementation into the AVBP

code

In this chapter, the implementation of the dynamic model into the
AVBP code is performed and tested. In the previous chapter, the dy-
namic model was applied to a one-dimensional flame and the filtering
procedure was discussed. Here the validity of the conclusion of Chapter
2 is investigated in the AVBP code and the numerical configurations,
such as the test-filter length and the integral interval for the averaging,
are discussed in view of multi-dimensional simulations.

3.1 Introduction

Before simulations of turbulent combustion with the dynamic models, tests to
assess their application are mandatory. In this chapter, the assessment is done
through two simple tests.
In the first test, the dynamic thickened flamelet model is applied to a laminar
one-dimensional flame. The results are compared with those of the previous
chapter.
In the second test, the calculation of the constant β is analyzed through the
application of the model to a two-dimensional turbulent flame, computed with
Colin’s efficiency function (Colin et al. 2000). The influence of the filter size
and the size of integral volume is also examined.
Using the same geometry, the dynamic Smagorinsky model is also tested. This
test is performed to examine the effect of the dynamic Smagorinsky model
on a flame, and to determine the test-filter size for its application to multi-
dimensional simulations.
The AVBP code has been developed by CERFACS (European Centre for Re-
search and Advanced Training in Scientific Computation) and IFP (French
Institute of Petrol) in France for simulations of laminar and turbulent com-
pressible combustion. This solver uses cell-vertex finite volume discretization



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 68 — #86
✐

✐

✐

✐

✐

✐

68 Chap. 3 - Implementation into the AVBP code

method so that unstructured grids for complex geometries can also be treated
(see Selle et al. (2004)). Several schemes for the time evolution are available,
such as Runge-Kutta method of several orders, Lax-Wendroff (Hirsch 1989),
and Two step Taylor-Galerkin schemes (Donea (1984), Quartapelle and Selmin
(1993), and Colin and Rudgyard (2000)).

3.2 Application to laminar combustion

This test has two major objectives:

• Determination of the proportionality coefficient α that gives an equivalent
filter size ∆ = αFδ0l to obtain a thickened flame of thickness Fδ0l .

• Verification of the convergence of the term to unity,

γ〈
︷ ︸︸ ︷
W (q̃)〉

〈W (̂̃q)〉
. (3.1)

In the previous chapter, two tests were performed on a laminar flame. In
the first test, a laminar flame was produced by applying a Gaussian filter of
size δf = δ0l /c

∗
√

6/π, to a Heaviside function, and the thickness was clearly
defined by δ0l = Du/SLc

∗, where c∗ was set to 0.5. Then thickened flames were
obtained by applying filters of size ∆ = Fδf , where F changed from 2 to 30,
to the laminar flame. In this test, all the filters were Gaussian type, and the

expression, ∆̂ =

√
∆̂2 +∆

2
was true. The convergence of the reaction rate

ratio γ〈
︷ ︸︸ ︷
W (c̃)〉/〈W (̂c̃)〉 to unity was, therefore, well verified.

However, in the second test, where the laminar flame was obtained with the
reduced reaction model of Ferziger, the value of δf = δ0l /c

∗
√
6/π was no longer

valid, and a "corrected" value for δf was calculated to satisfy γ〈
︷ ︸︸ ︷
W (c̃)〉/〈W (̂c̃)〉 =

1.
In practical simulations thickened flame is not obtained by filtering but by
thickening, and the LES filter size ∆ is not explicitly defined. ∆ must be de-
termined through a test to calculate the filter size ratio γ for multi-dimensional
simulations performed in Chapter 4 and Chapter 5.
As verified in the previous chapter, the thickness of the filtered laminar flame
δL is proportional to the filter size ∆ (see Figure 2.16 of Chapter 2). Then the

effective filter size ratio γ =

√
∆̂2 +∆

2
/∆ is identical to the ratio of test-filtered

laminar flame thickness δT and resolved laminar flame thickness δF (= Fδ0l ),

γ =
δT
δF

. (3.2)
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Simultaneously, ∆ is given as αδF , then,

γ =
δT
δF

=

√√√√
(

∆̂

αδF

)2

+ 1 . (3.3)

Both γ and α are, thus, computable from the observation of flame thicknesses
of resolved and test-filtered flames.
The thickness of the thickened laminar flame and that of the test-filtered thick-
ened laminar flame are calculated by two methods, based on the distance that
the progress variable c takes to change from 0.01 to 0.99 and the inverse of the
maximum gradient of the progress variable. See Section 2.3.2 of Chapter 2 for
detailed description.
As in the one-dimensional case, the value of Equation 3.1 should be unity for
one-dimensional laminar flames. If not, the constant β of the dynamic proce-
dure diverges. This point is verified again in the AVBP code. The reaction rates
W (̂̃q) and W (q̃) in Equation 3.1 are calculated using the progress variables,
c̃ and ̂̃c, defined with resolved and test-filtered variables for Boger’s algebraic
model and the reduced Arrhenius law, and directly using filtered variables for
the Arrhenius law. The details of reaction rate models are given in the following
section. This reaction rate is substituted into Equation 3.1 and the value of γ to

satisfy γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 and the value of α, which gives this γ, are calculated.

In this test, the term 〈
︷ ︸︸ ︷
W (q̃)〉 reduces to 〈W (q̃)〉 by integrating the reaction

rate across the flame front since the filtering process conserves the integral.

3.2.1 Configuration

This test is based on a simple configuration of long, narrow channel that has the
length of 0.3m and the width of 0.001m. Figure 3.1 is a close up of the mesh
near x = 0. The same uniform mesh continues from x = −0.15 to x = 0.15, a
distance sufficient to start and finish combustion. The left-hand-side and the
right-hand-side are the inlet and the outlet respectively. The inlet velocity is
set to 0.41 m/s, which is the laminar flame speed of the fuel of methane-air
at stoichiometry. The equivalence ratio of the incoming methane-air mixture
is stoichiometric. The upper and bottom boundaries are treated as symmetric
boundaries. An analytical solution of a one-dimensional laminar flame is given
as the initial condition and the flame is stabilized by TTGC scheme along two
million iterations using two step chemical reaction.

C3H8 + 5O2 =⇒ 3CO + 4H2O

CO + 1/2O2 ⇐⇒ CO2 (3.4)

The detail of this two step reaction is given in Section 4.2. The thickening factor
F is set to 20. This value will be used in the multi-dimensional simulations in
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chapter 4 and chapter 5. The inputs are shown in table 3.1. The laminar flame
thickness is obtained using the proposition of Blint (1986).

sL(m/s) δ0l (m) Tu(K) Tb(K) ρu(kg/m
3) F ∆̂(m)

0.41 4.84× 10−4 300 2300 1.202 20 0.015

Table 3.1 : Flame parameters

Figure 3.1 : Computational mesh

Three reaction rate models are employed in this test:

• Boger’s algebraic model

ω̇ = 4ρus
0
l

√
6

π

c̃(1− c̃)

∆
(3.5)

In generic form (Charlette et al. 2002b), it writes

W∆(c̃) = 4ρus
0
l

√
6

π
c̃(1− c̃) (3.6)

then

ω̇ =
W∆(c̃)

∆
. (3.7)

• Arrhenius law using the progress variable (reduced Arrhenius law)

ω̇ =
A

F
ρu(1− c̃) exp

(
−

Ea

R(300 + 2000× c̃)

)
(3.8)

W∆(c̃) = Aαδ0l ρu(1− c̃) exp

(
−

Ea

R(300 + 2000× c̃)

)
(3.9)

where Ea is the activation energy, R is the gas constant, A is the pre-
exponential factor determined according to the laminar flame speed, and
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α is a constant that gives the filter size ∆ to obtain a flame of thickness
Fδ0l (∆ = αFδ0l ). ω̇ and W∆(c̃) are related as:

ω̇ =
W∆(c̃)

∆
=

W∆(c̃)

αFδ0l
. (3.10)

• Arrhenius law using filtered variables

ω̇ =
A

F
ρX̃a

C3H8
X̃b

O2
exp

(
−

Ea

RT̃

)
(3.11)

W∆(X̃C3H8
, X̃O2

, T̃ ) = Aαδ0l ρX̃
a
C3H8

X̃b
O2

exp

(
−

Ea

RT̃

)
(3.12)

where Xk are molar fractions of species k. a and b are the specific con-
stants of the reaction respectively. These values are summarized in Table
3.2. Here again

ω̇ =
W∆(c̃)

∆
=

W∆(c̃)

αFδ0l
. (3.13)

a b A(cgs) Ea(cal.mol−1)

0.9028 0.6855 2.0× 1012 33000

Table 3.2 : Chemical parameters for the reaction rate

Boger’s algebraic model and the reduced Arrhenius law need the calculation of
the progress variable. Several definitions of the progress variable are possible.

c =
T − Tu

Tb − Tu
(3.14)

c =
Yi − Yib
Yib − Yiu

(3.15)

The definition of the progress variable plays an important role. The most
common method is to use the temperature for the definition of the progress
variable as in Equation 3.14. The use of mass fractions of chemical species
participating in the reaction, i.e. of C3H8, O2 and CO + CO2 is also possible.
The former should be used carefully since in non-adiabatic case the maximum
temperature of the burnt gas depends on the configuration and it is not a fixed
parameter. Consequently, the progress variable might not reach unity even if
all the fuel is burnt. In this study, the temperature of burnt gas is verified to be
2300 K and the progress variable defined with temperature can be employed.
In the case of the Arrhenius law, the definition of the progress variable is not
required: the reaction rate can also be calculated with the test-filtered variables.
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Calculation of the filtered variables

In the previous chapter, filtering procedure was also discussed. Here we im-
plement the third combination of Table 2.2, as the density of the flow media
changes significantly across the flame and the simulation code is written with
Favre averaging.
To calculate the reaction rate at the test-filter scale, test-filtered fields of the
variables are necessary. When employing the Arrhenius law, filtered fields of
temperature and concentration of chemical species need to be calculated. As
conservative transport equations are discretized in the AVBP code, the variables
Q are multiplied by density ρ. The · indicates the LES filtered quantity. They
are divided by density to obtain the primitive variables and the values take the
Favre averaged form (Q̃ = ρQ/ρ). To obtain the test-filtered variable of Q, both
of the terms ρQ and ρ are filtered and the test-filtered variable is calculated as

ρ̂Q/ρ̂. This operator is represented by ˜̃Q in the following.
The field of the test-filtered temperature is calculated from the test-filtered en-
thalpy field. This is because, in the AVBP code, the energy transport equation
is written using total enthalpy. The enthalpy field is first test-filtered and the
kinetic energy that is calculated with the test-filtered velocity is subtracted to
obtain the total sensible enthalpy of all species.

˜̃
hs =

˜̃
H −

˜̃
E =

˜̃
H −

1

2
˜̃ui˜̃ui (3.16)

Then, using the test-filtered concentration of chemical species, the temperature
is calculated from the following relation,

˜̃
hs =

∑

i

∫ ˜̃
T

T0

˜̃
Y iCv,idT (3.17)

The values of the specific heat of each chemical species are tabulated and given
to the code as input data.

3.2.2 Results

Test for flame thickness

Figure 3.2 shows the fields of resolved temperature, mass fractions of C3H8

and O2 and the corresponding test-filtered fields. The reaction rates calculated
through the Arrhenius law using the variables of the thickened and the filtered
thickened flame are shown as references of the flame positions. The flame
thicknesses calculated with these fields are indicated in Tables 3.3 to 3.6. The
thickening factor is set to F = 20, and the test-filter size varies from ∆̂ =
1.0 × 10−2 to ∆̂ = 3.0 × 10−2 (m). The last two rows of these tables are the
LES filter size ∆F (= αFδ0l ) and the coefficient α that provide γ equal to the
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thickness ratios, calculated with Equation 3.3. The ratio of the resolved and
test-filtered flame thicknesses and ∆F are plotted in Figure 3.3 as functions of
the test-filter size ∆̂.
The results indicate that the proportionality coefficient α of LES filter size
∆F against the resolved laminar flame thickness δF (∆F = αδF ) to yield γ
that is equal to the ratio of thickened and filtered thickened flame thicknesses
decreased as the test-filter size increased. This comes from the fact that the
profiles of the resolved variables in a thickened flame are not identical to that
of a Gaussian filtered Heaviside function. As Equation 3.3 implicitly suppose
that the profiles of resolved variables in a thickened flame are identical to the
Gaussian filtered Heaviside function, test-filter size ∆̂ affected the value of α.
α also depended on the variable, which is used in the calculation of the progress
variable and the definition of the flame thickness. This is because of the de-
pendence of the resolved flame thicknesses δF on the choice of the variable and
the definition of the thickness. The larger the flame thickness is, the less α
becomes, as α is defined as α = ∆/δL, where ∆ is the LES filter size and δL is
the flame thickness of the filtered laminar flame by this filter. The discrepancy
of the flame thicknesses due to the different variables chosen for the calculation
of α was caused by the use of different Schmidt numbers Sc for each chemical
species. Consequently, the diffusion properties of C3H8 and O2 were different
from conduction property of temperature, and resulted in the dependence of
the flame thickness on the choice of the variable.
Unlike to the proportionality coefficient α, the value of ∆F did not depend
much on the definition of flame thickness as shown in Figure 3.3. It slightly
decreased with the increase of ∆̂, but the value was always around 0.009 m.
Thus, the thickened flame by a factor of 20 was verified to be approximated by
a Gaussian filtered laminar flame by a filter size of 0.009 m in the AVBP code.

Test for the selection of reaction models

Figures 3.4 and 3.5 compare the reaction rates calculated with variables of
thickened flame and those calculated with test-filtered variables, and Figure
3.6 displays the fields of the progress variables, c̃, and the test-filtered progress
variable, ̂̃c, obtained from different resolved and test-filtered variables. In Figure
3.5, the reaction rates are divided by α to exclude the dependence of reaction
rates on this term. Boger’s algebraic model made no difference between the
maximum value of the two reaction rates, because the reaction rate only de-
pends on the progress variable c. The value does not depend on the choice of
variable (YC3H8

, YO2
or T ) for the calculation of the progress variable. Since

It does not change even in the case where the reduced Arrhenius law is ap-
plied, only the field of the reaction rate calculated with the progress variables
based on temperature is displayed for the reduced Arrhenius law in Figure 3.5.
When the reaction rate was calculated with the Arrhenius law using the test-
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Figure 3.2 : Inner flame structure of thickened flame (solid line) and filtered flame
after thickening (dashed line). The reaction rates are calculated with the variables
of thickened flame (solid line) and filtered variables after thickening (dashed line).

∆̂ = 1.5× 10−2 (m).
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variable used YC3H8
YO2

T ∇YC3H8
∇YO2

∇T

thickened flame (mm) 9.90 10.35 10.27 4.85 5.26 5.64
filtered thickened flame (mm) 14.26 15.31 15.58 7.18 7.57 8.16

ratio 1.44 1.48 1.52 1.48 1.44 1.45

∆F for γ = ratio (mm) 9.65 9.17 8.77 9.16 9.66 9.56
α 0.974 0.886 0.854 1.889 1.837 1.696

Table 3.3 : Flame thickness calculated with the variables indicated in the first row.

∆̂ = 1.0× 10−2 m.

variable used YC3H8
YO2

T ∇YC3H8
∇YO2

∇T

thickened flame (mm) 9.90 10.35 10.27 4.85 5.26 5.64
filtered thickened flame (mm) 19.07 20.15 20.66 9.35 9.80 10.55

ratio 1.93 1.95 2.01 1.93 1.86 1.87

∆F for γ = ratio (mm) 9.11 8.98 8.59 9.10 9.54 9.49
α 0.920 0.868 0.837 1.876 1.814 1.682

Table 3.4 : Flame thickness calculated from the variables indicated in the first row.

∆̂ = 1.5× 10−2 m.

variable used YC3H8
YO2

T ∇YC3H8
∇YO2

∇T

thickened flame (mm) 9.90 10.35 10.27 4.85 5.26 5.64
filtered thickened flame (mm) 24.16 25.77 26.54 11.85 12.33 13.26

ratio 2.44 2.49 2.58 2.44 2.34 2.35

∆F for γ = ratio (mm) 8.98 8.77 8.39 8.97 9.43 9.40
α 0.908 0.847 0.817 1.850 1.793 1.667

Table 3.5 : Flame thickness calculated with the variables indicated in the first row.

∆̂ = 2.0× 10−2 m.

variable used YC3H8
YO2

T ∇YC3H8
∇YO2

∇T

thickened flame (mm) 9.90 10.35 10.27 4.85 5.26 5.64
filtered thickened flame (mm) 35.84 37.87 39.07 17.32 17.85 19.15

ratio 3.62 3.66 3.81 3.57 3.39 3.39

∆F for γ = ratio (mm) 8.62 8.52 8.17 8.75 9.25 9.25
α 0.871 0.824 0.796 1.804 1.759 1.639

Table 3.6 : Flame thickness calculated with the variables indicated in the first row.

∆̂ = 3.0× 10−2 m.
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Figure 3.3 : Ratio of the thicknesses of thickened and test-filtered flames (top)
(δT /δF ) and the LES filter size ∆F to yield γ that is equal to the ratio of thickened and

filtered thickened flame thicknesses (bottom) as functions of the test-filter size ∆̂. The
flame thicknesses were calculated as the distances that the resolved variables change
from 1 to 99 % (left) and from the maximum gradient of resolved variables (right).
The results were obtained from C3H8 (solid line), O2 (dashed line), and temperature
fields (dotted line).
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filtered variables, the reaction rate calculated with resolved variables exceeded
the other, as indicated in Figure 3.5.
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Figure 3.4 : Generic reaction rates calculated with Boger’s algebraic model. Reaction
rates are calculated with the resolved variables (solid line) and the test-filtered variables
(dashed line). The progress variable is calculated from mass fractions of C3H8 (upper

left), that of O2 (upper right), and temperature (bottom). ∆̂ = 1.5× 10−2 (m).

Tables 3.7 and 3.8 show the integral values of the generic reaction rates and their
ratios, providing the values of γ required to ensure the relation γ

∫
W (q̃)dx =∫

W (̂̃q)dx. In this study, integration from negative to positive infinity is equiv-
alent to the operation indicated as 〈·〉, the relation is rewritten as γ〈W (q̃)〉 =

〈

︷ ︸︸ ︷
W (̂̃q)〉. The difference of the integral values comes from the difference of the

flame thickness and the maximum value. In the case of Boger’s algebraic model,
the maximum values of the reaction rates were always the same, but the dis-
tances that the progress variable needs to become unity from zero were slightly
different as shown in Figure 3.6. Thus, the integrals of the reaction rates took
somewhat different values.

The ratios 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 and the LES filter size ∆ to obtain γ equal to these

ratios calculated through Equation 3.3 are plotted in Figure 3.7 as functions
of the test-filter size ∆̂ for different chemical models. Again, these ratios are

the values of γ required to obtain γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 = 1. The lines of the reac-
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Figure 3.5 : Generic reaction rates calculated with the Arrhenius law (left) and the
reduced Arrhenius law (right). Reaction rates are calculated with the resolved variables
(solid line) and the test-filtered variables (dashed line). The progress variable for the

reduced Arrhenius law is calculated from temperature. ∆̂ = 1.5× 10−2
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Figure 3.6 : Comparison of the progress variables calculated with different field vari-
ables. Use of YC3H8

(solid line), YO2
(dashed line) and temperature (dotted line)
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Reaction model Boger (YC3H8
) Boger (YO2

) Boger (T )
thickened flame (×10−3) 3.17 3.45 3.54

filtered thickened flame (×10−3) 6.17 6.60 6.87
ratio 1.95 1.91 1.94

Table 3.7 : Comparison of the integral of the generic reaction rate (
∫
W dx). ∆̂ =

1.5× 10−2 (m).

Reaction model reduced Arrhenius Arrhenius
thickened flame (×10−3) 4.82 2.79

filtered thickened flame (×10−3) 9.06 3.27
ratio 1.88 1.17

Table 3.8 : Comparison of the integral of the generic reaction rate (
∫
W/α dx).

∆̂ = 1.5× 10−2 (m).

tion rate ratios obtained with the reduced Arrhenius law and Boger’s algebraic
model were close to those obtained in the test for flame thickness as displayed
in the left plot of Figure 3.7. (see also Figure 3.3). However, the Arrhenius law
always yielded the reaction rate ratio smaller than those obtained in this test.
This deviation resulted in the difference of ∆ plotted in the right figure of Figure
3.7. The values of ∆ with Boger’s algebraic model and the reduced Arrhenius
law were close to the values of ∆F obtained from the observation of the flame
thicknesses (see again Figure 3.3), but the values of ∆ with the Arrhenius law
was more than twice as large as ∆F obtained through the thickness observation.
This shows that the thickening of a laminar flame can be approximated by a
Gaussian filtering with a filter size of ∆F , when the reaction rate is calculated
with Boger’s algebraic model or the reduced Arrhenius law, but the applica-
tion of the Arrhenius law requires the LES filter size of ∆ different from ∆F

obtained from the observation of the flame thickness, thus, the thickened and
test-filtered flame thicknesses require different values of the proportionality co-
efficient α and, the thickening cannot be approximated by the filtering. To

assure γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 = 1, the value of reaction rate ratio obtained here are

used as the effective filter size ratio γ in the two-dimensional test in the next
section. These values are given in Table 3.9.

The deviation of 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 with the use of the Arrhenius law was caused

by the different Schmidt numbers Sc for each chemical species. The difference
of Sc resulted in the difference of the diffusion properties of C3H8 and O2 from
that of conduction heat transfer, and the profiles of these variables became
different from that of temperature. The deviation among the variables became
larger after the application of the test-filter, because the test-filter was mass
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weighted and contained density that changes with temperature. This causes
the difference in the progress variables c̃ and ̂̃c based on the different resolved
variables as figure 3.6 displays. Because Arrhenius law uses all of these three
resolved variables, temperature, mass fractions of C3H8 and O2, this chemical
model was more sensitive to the discrepancy than the other two models tested
here. Consequently 〈W (̂̃q)〉 depended more strongly on the filter size ∆̂ than

the others and it resulted in the discrepancy of the ratio 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 from

the value calculated with other chemical models.

Figure 3.7 : Ratio of 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 (left) and the LES filter size ∆F (right) to

yield γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 = 1 as functions of the test-filter size ∆̂. The reaction rate was

calculated with Boger’s algebraic model (solid line), the reduced Arrhenius law (dashed
line), and the Arrhenius law (dotted line).

∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2 3.0× 10−2

Boger 1.48 1.94 2.47 3.62
reduced Arrhenius law 1.48 1.88 2.33 3.33

Arrhenius law 1.04 1.17 1.36 1.81

Table 3.9 : Comparison of 〈W (̂̃q)〉/〈
︷ ︸︸ ︷
W (q̃)〉 calculated with different chemical

models and different test-filter size: These ratios are the values of γ to obtain

γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 = 1

Figure 3.8 compares the generic reaction rates of thickened flame and filtered
thickened flame as functions of resolved and test-filtered temperature respec-
tively. It can be seen that the maximum value of the reaction rate changes with
the Arrhenius law but stays identical with the reduced Arrhenius law. This is
because the combination of the values of field variables to yield the maximum
reaction rate was different for the thickened and the test-filtered thickened flame
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in the case of the Arrhenius law. The combinations are
(T (K) YC3H8

YO2
) = (1946.87 0.0196688 0.0513303) for non-filtered vari-

ables and (1976.67 0.0133326 0.0459647) for filtered variables.
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Figure 3.8 : Comparison of the generic reaction rates of thickened flame and filtered
thickened flame: Arrhenius law (left) and reduced Arrhenius law (right): thickened

flame (solid line) and filtered flame after thickening (dashed line): ∆̂ = 1.5×10−2 (m)

3.2.3 Summary

From the obtained results, the observations can be summarized as follows.

• From the observation of the thickness of the thickened and the filtered
thickened flame, the thickening of flame and the application of Gaussian
filter are not identical. Consequently Equation 3.3, that is based on the
application of Gaussian filter, does not yield the exact filter size ratio
γ. To obtain a correct γ, an appropriate laminar flame thickness, which
depends on the test-filter size ∆̂, is required.

• For Boger’s algebraic model and the Arrhenius law with the progress
variable, the value of the laminar flame thickness, δ0l , obtained from the
comparison of reaction rates of the thickened and the filtered thickened
flames gives γ close to the thickness ratio of the thickened and the filtered
thickened flames, and also assures the convergence of reaction rate ratio

γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 to unity.

• The Arrhenius law is quite sensitive to the difference of the diffusion prop-
erties of chemical species and temperature, which is due to the difference

in the Schmidt number Sc. γ for γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 = 1 was obtained

from the test performed in this section, but the value is approximately
twice as large as that obtained from the thickness observation.
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In the two-dimensional test of the next section, the value of γ is taken from
Table 3.9 for each reaction model and each test-filter size.

3.3 Application to a two-dimensional turbulent com-

bustion

The purposes of this test are:

• Observation of the effect of the filter size on the output of the dynamic
model

• Observation of the effect of control volume size for the weak form of the
dynamic model

• Comparison of the results given by different reaction models

As for the one-dimensional case, the effect of the filter size is an important
factor. Since the choice of the filter size affects the calculation of not only the
numerator but also the denominator of the formulation (Equation 1.89), its
effect on the denominator should be analyzed with a special attention. This
test is not possible in the one-dimensional cases where the flow is considered to
be laminar.
To apply the weak form of the dynamic model, a control volume must be defined
for the calculation of the integral and average. In the one-dimensional cases, the
integration is performed across the whole flame front. But in multi-dimensional
simulations of a combustion chamber, the integration volume must be clearly
defined.
The choice of the reaction model also plays an important role. The dynamic
model is theoretically applicable to any kind of reaction model, but it does
not mean that the result is independent from the choice of the reaction model.
The comparison of the results of different chemical models provides tips for the
choice of the reaction model.

3.3.1 Configuration

As an initial test of the implementation of the dynamic procedure to turbulent
combustion, a flame was first calculated with Colin’s efficiency function (Colin
et al. 2000) for reference. Figures 3.9 and 3.10 display the configuration of the
computational domain and the computational mesh used in this test respec-
tively. Flow speed at the inlet was set to 5 m/s and that of the coflow was
20 m/s. The flame was stabilized behind a flame holder. Figure 3.11 presents
instantaneous resolved fields of this flame. The computation provided the dis-
tribution of the resolved variables that enter the dynamic procedure, such as
the temperature and the chemical species mass fractions.
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Figure 3.9 : Configuration of computational domain: All scales are given in mm

Figure 3.10 : Computational mesh for two-dimensional simulation (top) and its zoom
in the vicinity of the flame holder (bottom). Scales are given in m
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Figure 3.11 : Instantaneous resolved fields of the flame computed using Colin’s model.
First reaction rate (kg/m3 · s), efficiency function, temperature (K) and the stream
line (top to the bottom) thickening factor F = 20.
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Figure 3.12 : Definition of the control volume for the integral operation

The control volume in this test was defined as displayed in Figure 3.12, and
contains all the points which is within [x− dx/2, x+ dx/2]. Accordingly model
parameter will depend only on the downstream location..

3.3.2 Results

Effect of filter size

The influence of the filter size was investigated setting the length of the control
volume to 0.3m, i.e. the integral operation was completed using the whole
combustion chamber downstream of the flame holder. This definition of the
control volume allows to evaluate the statistical tendencies of the terms that
emerge in the formulation of the dynamic model.
The test-tilter size ∆̂ has upper and lower limits. The distributions of the
generic reaction rate calculated with the reduced Arrhenius law using the fil-
tered variables W (̂̃q) are shown in Figure 3.13. The filter size was increased
from ∆̂ = 1.0 × 10−2 m to ∆̂ = 3.0 × 10−2 m. As the filter size became
larger, the distance between the two flame surfaces became shorter and then

the surfaces disappear. This makes γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 calculated with the re-

duced Arrhenius law larger and the value of β becomes unphysical large value.
So the upper limit of the test-filter size ∆̂ is about 2.0× 10−2m.
The lower limit is restricted by the assumption made in the construction of the
dynamic model, ∆̂ is larger than the flame thickness. Considering the thickness
of flame presented in Tables 3.3 to 3.6, the value ∆̂ = 1.0× 10−2 m is close to
the resolved flame thickness and the assumption is not valid. It is to say that
∆̂ = 1.0× 10−2 m is around the lower limit of the test-filter size.
The value of the major terms in the formulation, Equation 1.89, are given in
Table 3.10 to 3.13. The subgrid-scale velocity fluctuation at the test-filter level,
u′γ∆ is estimated from

u′γ∆ = γ1/3u′∆ (3.18)
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Figure 3.13 : Effect of the test-filter size on the principal reaction rate calculated with

filtered variables. Top to bottom ∆̂ = 1.0× 10−2, ∆̂ = 1.5× 10−2, ∆̂ = 2.0× 10−2, ∆̂ =
3.0× 10−2 (m), the reaction rates were calculated with reduced Arrhenius law.
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assuming the constant turbulence dissipation rate (Kolmogorov theory, Kol-
mogorov (1941)),

ǫ =
u′∆

3

∆
=

u′γ∆
3

γ∆
. (3.19)

All of the intermediate terms presented in Tables 3.10 and 3.11 increased in
value with the filter size. The value of the constant β depended on the chemical
model. The Arrhenius law yielded negative β when ∆̂ ≤ 2.0× 10−2m. This is
because of the low γ value due to the different Schmidt numbers of chemical
species as discussed in the previous section. Boger’s algebraic model gave β in
between five and ten and the value decreased with the filter size ∆̂. The result
of the reduced Arrhenius law also indicated the decreasing tendency of β with
∆̂. The value changes between 15 and 20. The transition of the efficiency E
was similar to that of β. The results of the standard Arrhenius law indicated
as 1.00 were actually slightly smaller than unity because β is negative, but they
are larger than 0.995 and indicated as 1.00.

Alternative formulation

Although some tendencies were observed in the results presented above, the
values of β were extremely high. β is theoretically of the order of D− 2, where
D is the fractal dimension of the flame surface. This was caused by the fact that
the ratio of 1 + min[F,Γ∆〈u

′

∆〉/SL] and 1 + min[γF,Γγ∆〈u
′

γ∆〉/SL] was close
to unity (see Table 3.11). Then, the log operator in Equation 1.89, provided
a value approximately zero and the value of β became large. In fact u′γ∆ was
probably poorly estimated. To avoid this problem, an alternative formulation
is tested. This formulation suppose that the ratio of the turbulence strengths
at the two scales is approximated by the filter size ratio.

1 + min

[
γ∆
δ
l
,Γ

〈u′

γ∆〉
s0
l

]

1 + min

[
∆
δ
l
,Γ

〈u′

∆〉
s0
l

] ≈ γ . (3.20)

and β is calculated as

β = 1 +

log



︷ ︸︸ ︷
W∆(q̃)
Wγ∆

(
̂̃q
)




log(γ)
, (3.21)

which is the same expression as Equation 1.86, and the efficiency E is obtained
from

E =

(
1 + min

[
∆

δl
,Γ

u′∆
s0l

])β

. (3.22)
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∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2

Boger (C3H8) 1.082 1.135 1.178
Reduced Arrhenius law 1.160 1.280 1.430

Arrhenius law 0.850 0.831 0.844

Table 3.10 : Comparison of γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 calculated with the averaged variables

in whole domain with different chemical models and different test-filter size: γ was
taken from table 3.9 for each chemical reaction model.

∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2

Boger (C3H8) 1.008 1.017 1.026
Reduced Arrhenius law 1.008 1.015 1.023

Arrhenius law 1.000 1.001 1.003

Table 3.11 : Comparison of (1+min
[
γF,Γγ∆〈u′

γ∆〉/SL

]
)/(1+min

[
F,Γ∆〈u′

∆〉/SL

]
)

in the denominator of the dynamic formulation (Equation 1.89) calculated with the av-
eraged variables in whole domain. 1+min[F,Γ∆〈u′

∆〉/SL] = 1.017, u′

∆ was calculated
from u′

γ∆ = γ1/3u′

∆, γ was taken from table 3.9 for each chemical reaction model.

∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2

Boger (C3H8) 9.45 7.66 6.37
Reduced Arrhenius law 17.56 16.03 15.40

Arrhenius law −0.16 −0.19 −0.17

Table 3.12 : Comparison of β calculated with the averaged variables in whole domain.
γ was taken from table 3.9 for each chemical reaction model.

∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2

Boger (C3H8) 1.18 1.14 1.12
Reduced Arrhenius law 1.35 1.32 1.30

Arrhenius law 1.00 1.00 1.00

Table 3.13 : Comparison of E calculated with the averaged variables in whole domain.
γ was taken from table 3.9 for each chemical reaction model.
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Tables 3.14 and 3.15 are the values of β and the efficiency, E, calculated with
the averaged variables in the whole combustion chamber. The value of β re-
mained lower than unity and the order was similar to the value reported by
Charlette et al. (2002b) except when using the Arrhenius law. This unexpected
negative values of β with Arrhenius law was caused by low γ obtained in the
one-dimensional test. The value of β did not significantly change with the test-
filter size ∆̂ compared to the results of the original formulation and the values
of the efficiency were almost constant when ∆̂ ≤ 2.0× 10−2m.

∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2

Boger (C3H8) 0.202 (1.48) 0.190 (1.94) 0.181 (2.47)
reduced Arrhenius law 0.376 (1.48) 0.390 (1.88) 0.423 (2.33)

Arrhenius law −4.148 (1.04) −1.200 (1.17) −0.540 (1.36)

Table 3.14 : Comparison of β calculated by the alternative formulation with the
averaged variables in the whole domain. The values of γ used in the calculation are
shown in brackets. They were taken from Table 3.9 for each chemical reaction model.

∆̂ (m) 1.0× 10−2 1.5× 10−2 2.0× 10−2

Boger (C3H8) 1.003 1.003 1.003
reduced Arrhenius law 1.007 1.007 1.007

Arrhenius law 0.970 0.991 0.996

Table 3.15 : Comparison of E calculated by the alternative formulation with the
averaged variables in the whole domain. γ was taken from Table 3.9 for each chemical
reaction model.

Effect of the control volume size for integration

The control volume should be broader than the flame thickness calculated with
filtered variables. Since the thickness is verified to be around 2.0 × 10−2 m
when ∆̂ = 1.5 × 10−2 m (see Table 3.4) in laminar case, the minimum width
of the control volume with this test-filter size is, then, expected to be at least
4.0× 10−2 m.
The influence of the control volume size is shown in Figure 3.14, which displays
the constant β and the efficiency E as functions of the x coordinate. On the
left are the results calculated with Boger’s algebraic model and on the right are
those calculated with the reduced Arrhenius law. ∆̂ was set to 1.5 × 10−2 m.
The fluctuations of β and the efficiency decay with the increase of the control
volume size, but the general tendency that β increases with x and the positions
of undulations are not altered.
In the results from tests of small control volume sizes (dx ≤ 1.0 × 10−2m),
several minor peaks can be seen. This is a typical result that occurs when
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the control volume size is not large enough. They decreased in the result of
dx = 4.0× 10−2m.
At x ≈ 0.11m, the values of β calculated with the reduced Arrhenius law have
a major peak when the control volume size is small, but no longer exist in the
result of dx > 4.0× 10−2 m. These peaks stand at the position where the two
flame surfaces approach each other, and W (̂̃q) takes small value. Though it is
not so steep, a peak is also found in the result calculated with Boger’s algebraic
model at the same position. The use of a large control volume suppresses the
emergence of such peaks caused by the approaching surfaces.
In spite of the different control volume sizes, all results indicate the same order
of the efficiency E and the same tendency that it gradually increases with the
distance from the flame holder. Considering the fact that the result of small
control volume contains oscillations of β and E, and that that of a large control
volume loses the local information, dx = 4.0 × 10−2m is a reasonable control
volume width. Though β takes slightly negative values at some points, it is
limited in the zones, where the flame wrinkling is weak (see Figure 3.11), and
the values of E are quite close to unity. In the simulations of the following
chapters, dx = 4.0× 10−2m is then chosen for the control volume size.

Comparison of the chemical models

As shown in Tables 3.14 and 3.15, the Arrhenius law yields negative values of
β and the efficiency becomes lower than unity. Boger’s algebraic model yielded
smaller values of the constant β than the reduced Arrhenius law did.
The negative value of β calculated by the Arrhenius law was caused by small
γ obtained in the one-dimensional tests. The value obtained in the one-dimen-
sional test was too small to be used in turbulent simulations, and resulted in
the negative β values. This infers that the condition of diffusion of chemical
species in the two-dimensional turbulent case differed from that in the laminar
one-dimensional case. The value of γ obtained in the previous section is not
the "correct" value for the test performed in this section.
The difference of β between the results obtained by using Boger’s model and

the reduced Arrhenius law is due to the smaller value of γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 as

presented in Table 3.10. Though the value of γ for the reduced Arrhenius law,
taken from Table 3.9, was smaller than that for Boger’s algebraic model, the

reduced Arrhenius law yielded larger ratio of γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉, and provided

larger β. This is related to the geometry of the flame surface.
As shown in Figures 2.6 and 2.4 of Chapter 2, the reaction rate calculated
through the reduced Arrhenius law leans towards the side of higher progress
variable, compared to that calculate through Boger’s algebraic model. Then the

ratio 〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉 becomes large when the flame surface is convex against

the unburned gas, and small when it is concave, because, as Figure 3.15 shows,
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Figure 3.14 : Effect of the control volume size on β and the efficiency E. The reaction
rates are calculated with Boger’s algebraic model (left) and the reduced Arrhenius law
(right). dx = 2.0 × 10−3 m (narrow solid line), dx = 1.0 × 10−2 m (solid line),
dx = 4.0 × 10−2 m (bold solid line), dx = 1.5 × 10−1 m (narrow dashed line), and
the result of the use of the whole zone behind flame holder as one control volume (bold
dashed line).



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 92 — #110
✐

✐

✐

✐

✐

✐

92 Chap. 3 - Implementation into the AVBP code

Figure 3.15 : Influence of the chemical model used in the dynamic thickened flamelet
model. Convex (left) and concave (right) to fresh gas cases. The two bold lines rep-
resent the reaction rate calculated with Boger’s algebraic model (solid line) and the
reduced Arrhenius law (dashed line).

the area, where the filtered progress variable is high, becomes smaller/larger
when the flame surface is convex/concave and 〈W (̂̃q)〉 becomes smaller/larger
than a planar flame surface per unit length along the surface. This effect of the
geometry of the flame surface is not significant with Boger’s algebraic model,
because the distribution of the reaction rate against the progress variable is
centered at c = 0.5.
In the flame used for the two-dimensional test, the flame surface was rather con-

vex against the unburned gas, and the reaction rate ratio, γ〈
︷ ︸︸ ︷
W (q̃)〉/〈W (̂̃q)〉,

calculated through the reduced Arrhenius law became larger than that calcu-
lated through Boger’s algebraic model as shown in Table 3.10. The sensitivity
of the reduced Arrhenius law to the geometry of the flame surface can also be
seen in Figure 3.14. The oscillation of β and the efficiency are more signif-
icant in the results calculated with the reduced Arrhenius law than in those
calculated with Boger’s algebraic model.

Summary

The results of two-dimensional test case are summarized as follows.

• The test-filter size ∆̂ must be in the range of 1.0×10−2 < ∆̂ < 2.0×10−2

(m) in the configuration of this study. If the test-filter size is smaller than
this range, it is close to the thickness of flame calculated with test-filtered
variables. This condition is out of the assumption of ∆̂ > Fδ0l . A test-



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 93 — #111
✐

✐

✐

✐

✐

✐

3.4 - Test of the dynamic Smagorinsky model 93

filter size larger than this range let the two flame surfaces approach to
each other and make them into one flame or the flame surfaces disappear.
The test-filter size ∆̂ is then fixed at ∆̂ = 1.5 × 10−2 (m) in the multi-
dimensional simulations in the following chapters.

• The control volume size for the integration and the averaging is fixed to
2.0×10−2 (m). The volume smaller than this size causes strong oscillation
of the constant β and the larger volume loses local information.

• Application of the Arrhenius law in the calculation of the constant of
Charlette, β, is not preferred. The dynamic procedure with this chemical
model predicts negative values of the constant β. It is related to the
low γ obtained in the one-dimensional tests due to the difference of the
Schmidt number Sc. Boger’s algebraic model and reduced Arrhenius law
are, then, implemented in the multi-dimensional simulation.

• The reduced Arrhenius law is more sensitive to the geometry of the flame
surface than Boger’s algebraic model. It causes the oscillation of β and
the efficiency, which is more remarkable than that observed in the results
of Boger’s algebraic model.

3.4 Test of the dynamic Smagorinsky model

Test for the dynamic Smagorinsky model

To observe the impact of the dynamic Smagorinsky model, the standard dy-
namic Smagorinsky model and that with Moin’s procedure (Moin et al. 1991)
are applied to the one-dimensional thickened laminar flame and the two-di-
mensional turbulent flame presented in the previous chapters. The tests are
performed by changing the filter size for the filtering process, employed in the
model.
Figure 3.16 displays profiles of the one-dimensional thickened laminar flame.
The profiles are similar to those obtained in Chapter 2 (see Figures 2.3, 2.7,
and 2.5). The reaction rate is lower than in the profiles of the previous chapter
because the flame is thickened by a factor of 20, and the reaction rate is divided
by 20.
Both the standard dynamic Smagorinsky model and that based on Moin’s pro-
cedure are applied to this flame. To suppress the oscillation and to avoid
the divergence of the Smagorinsky constant, a small damping factor D =
1.0× 10−3(m4/s4) is added to the denominator of Equation 1.63.

CS =
1

2
LijMij/(M

2
ij +D) (3.23)
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This value selected is the minimum required to suppress the oscillation of the
Smagorinsky constant, CS , outside of the reaction zone, where the flow is lam-
inar and CS is zero. The value of D is kept the same for all cases tested here.
A comparison of the output of the two models is displayed in Figure 3.17. The
test-filter size, ∆̂S , was changed from 1.0 × 10−3, 2.5 × 10−3, to 5.0 × 10−3

(m), corresponding to ∆̂S = 2∆, ∆̂S = 5∆, and ∆̂S = 10∆, where ∆ is
the grid size of the computational mesh. As for the one-dimensional test of the
previous chapter, both models yielded negative constant CS , i.e. the unresolved
momentum transport occurs in the direction opposite to its gradient. The
absolute value of the Smagorinsky constant is larger than in Chapter 2, but
turbulent stresses are smaller. This is caused by the thickening of the flame
that decreased the velocity gradient. This effect is also observed in the previous
chapter as displayed in Figure 2.21.
Except for the result of ∆̂S = 1.0 × 10−3 (m), the outputs of the standard
dynamic Smagorinsky and that of Moin’s procedure do not notably differ. The
width of the zone where negative CS was predicted grows with the test-filter
size ∆̂S , but the absolute value of the Smagorinsky constant did not change
significantly with it. The results for ∆̂S = 2.5 × 10−3 (m) are very similar in
both cases.
The difference between the two models was considerable when ∆̂S = 1.0×10−3

(m). Both results show large CS values in the middle of the flame compared
to the other ∆̂S . This is due to the fact that the terms Lij and Mij contain
density ρ when Moin’s procedure is applied. As the density decreases by a
factor of about six across the flame, the orders of Mij and Lij also reduce to
one sixth through the flame, and those of the products, LijMij and M2

ij reduce

to approximately 1/36. When the filter size ∆̂S is small, the values of LijMij

and M2
ij in the burnt side become of the same order of the magnitude as the

values calculated in the laminar zone, then damped by D.
The results presented here show that the standard dynamic Smagorinsky model
and Moin’s procedure predict similar values of the turbulent stresses in the
flame. If negative turbulent stresses are clipped at zero in simulations to avoid
numerical instabilities, the two models are expected to yield quite similar re-
sults.
To observe the effect of the filter size ∆̂S in a configuration similar to the simu-
lation of turbulent combustion, the models were applied to the two-dimensional
turbulent flame displayed in Figure 3.11. The prediction of the Smagorinsky
constant CS and the turbulent viscosity µt given by the standard dynamic
Smagorinsky model in the two-dimensional turbulent combustion is presented
in Figure 3.18. This result is calculated with ∆̂S = 2.5 × 10−3 (m). It indi-
cates that the negative CS zone widely exists around the reaction zone. Similar
distribution of CS were obtained by changing the filter size ∆̂S and also by
applying Moin’s procedure. To compare the results of the standard dynamic
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Figure 3.16 : Profiles in a laminar one-dimension flame. Temperature, density,
velocity, and the reaction rate. Thickening factor F = 20.
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Smagorinsky model and that of Moin’s procedure, cross sections at several x
coordinate are presented in Figures 3.19 and 3.20.
In the case of ∆̂S = 1.0 × 10−3 (m), a strong oscillation of the Smagorinsky
constant CS was observed in both cases of the standard Smagorinsky model and
Moin’s model. It is hard to distinguish a specific trend due to the difference in
the formulation, however, the oscillation was sharper with the standard model.
This oscillation declined as the test-filter size ∆̂S increased. When the test-filter
size, ∆̂S , was larger than ∆̂S > 1.25 × 10−3 (m), a negative constant CS was
found only in the area where density change occurred. ∆̂S = 2.5×10−3 (m) gave
approximately same results with both models, with the main discrepancy being
the height of the negative peaks observed in the result of Moin’s procedure.
Similar to the result of the laminar case shown in Figure 3.17, these peaks were
found at the edges of the zone where the density change started or finished.
These peaks affected the field of the turbulent viscosity µt, however, the middle
row of Figure 3.20 shows the effect to be mild.
The use of ∆̂S = 5.0 × 10−3 (m) increased the difference between the two
models. In the result of the standard model, the variations of the CS field
were more gentle, and the widths of each "cavity" were larger than the case of
∆̂S = 2.5×10−3 (m). The result of Moin’s procedure also showed the expansion
of the "cavity" size, but also indicated the apparition of negative peaks that
did not exist in the result of ∆̂S = 2.5× 10−3 (m).
These results infer that the density change through the flame does not sig-
nificantly affect the dynamic calculation of the Smagorinsky constant, if ∆̂S =
2.5×10−3 (m) is applied. This can be explained by the relation of test-filter size
∆̂S and the flame thickness. If the density change in the range of the test-filter
size is not large, ρ may be considered to be constant and the formulation of
Moin’s model reduces to the standard dynamic Smagorinsky model. This case
corresponds to the result calculated with ∆̂S = 2.5× 10−3 (m). If ∆̂S is larger
than the flame thickness, ρ is no longer constant in the range of the test-filter
size, and the outputs of the two models are different. This is observed in the
result of ∆̂S = 5.0×10−3 (m), and typically occurs if the dynamic Smagorinsky
model is applied to a flame without thickening. In that situation Moin’s model
is more appropriate than the standard model. In our study, however, the flame
is thickened by a factor of 20 and the dilatation effect was not significant in
terms of the calculation of the Smagorinsky constant.

Summary

As mentioned above, a small test-filter, ∆̂S , causes a strong oscillation in the
CS field and a large test-filter enlarges the zone where CS takes negative val-
ues. Conventionally, the oscillation of the dynamically determined Smagorinsky
constant is eliminated by, a) averaging in the direction where the turbulence is
considered to be homogeneous, or b) filtering if such a direction does not exist.



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 98 — #116
✐

✐

✐

✐

✐

✐

98 Chap. 3 - Implementation into the AVBP code

Figure 3.18 : Fields of the Smagorinsky constant CS (top) and the turbulent viscosity
µt (bottom) calculated with the standard dynamic Smagorinsky model. Test-filter size

∆̂S is set to 2.5× 10−3 (m). The solid lines correspond to the contours of 0.

In the present study, averaging is possible in three-dimensional simulations in
the depth direction (on z axis), but in two-dimensional simulations, the z axis
does not exist and the filtering is the sole choice. The result of the filtering
depends on the filter size. The test-filter is commonly applied several times
until the oscillation reduces to a reasonable level, but this procedure is not
siginificantly different from using a large test-filter for the calculation of the
constant CS . The only limitation of the test-filter size is that ∆̂S < lt, where lt
is the integral length scale and lt ∼ 1.0× 10−2 (m) in our configuration. Then
∆̂S = 2.5× 10−3 (m) is a reasonable value.
It is well verified that the subgrid-scale flux of momentum opposite to its gra-
dient takes place in the flame and that dynamic Smagorinsky model is able to
predict it. However, it is not desirable and should be avoided in the simulation
because the implementation of negative turbulent stresses may cause numerical
instabilities. For this reason, negative values of the Smagorinsky constant are
set to zero in the multi-dimensional simulations of the following chapters.

3.5 Conclusion

From the test cases performed in this chapter, following points came to light:

• For the dynamic thickened flamelet model, the equation that gives the
filter size ratio of Gaussian filter,

γ =

√√√√
(

∆̂

Fδ0l

)2

+ 1 (3.24)
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Figure 3.19 : Cross sectional view of the Smagorinsky constant CS calculated with
the dynamic Smagorinsky model (bold solid line) and Moin’s procedure (dashed line).

∆̂S = 1.0× 10−3 (m) (left), ∆̂S = 2.5× 10−3 (m) (center), and ∆̂S = 5.0× 10−3 (m)
(right) at x = 0.01, x = 0.06, x = 0.11, x = 0.16, and x = 0.21 from top to bottom.
Density (narrow solid line) is added to visualize the density change.
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Figure 3.20 : Cross sectional view of the turbulent viscosity µt calculated with the

dynamic Smagorinsky model (bold solid line) and Moin’s procedure (dashed line): ∆̂S =

1.0 × 10−3 m (left), ∆̂S = 2.5 × 10−3 m (center), and ∆̂S = 5.0 × 10−3 m (right) at
x = 0.01, x = 0.06, x = 0.11, x = 0.16, and x = 0.21 from top to bottom. Density
(narrow solid line) is added to visualize the density change.
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is not exact, but gives a good approximation, when a correct value of δ0l ,
which depends on the test-filter size and the chemical reaction model, is
given. The value for γ obtained from the observation in this chapter is
used in the multi-dimensional simulations of the following chapter.

• The Arrhenius law is too sensitive to the difference of diffusion properties
of the resolved variables due to the use of different Schmidt numbers,
and causes difficulties in the dynamic thickened flamelet model. Boger’s
algebraic model or the reduced Arrhenius law are preferred.

• The application of the reduced Arrhenius law yields stronger oscillation
of the value of the Charlette’s constant β than that calculated through
the application of Boger’s algebraic model. This is due to the sensitivity
of the reduced Arrhenius law to the geometry of the flame surface.

• The test-filter size ∆̂ = 1.5× 10−2 (m) and the control volume size dx =
2.0×10−2 (m) were shown to be the optimal values for the configurations
of this study. These values are used in the multi-dimensional simulation.

• For the dynamic Smagorinsky model, the results of the standard model
and that of Moin’s procedure were not significantly different. They are
expected to yield similar results when a negative Smagorinsky constant
is clipped to zero. This point is discussed again in the next chapter by
applying them to the two-dimensional simulations.

• The test-filter size ∆̂S = 2.5× 10−3 (m) reduces the oscillation of the CS

field considerably and is smaller than the integral length scale, lt. This
value is, thus, applied to the multi-dimensional simulation.
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Chapter 4

Two-dimensional simulation

This chapter presents the results of the two-dimensional simulations
performed with the models tested in Chapter 3. Because three-
dimensional simulations are numerically too expensive to perform with
different numerical conditions, the effect caused by the difference in
models is investigated through two-dimensional simulations as a first
step in this chapter.

4.1 Introduction

Two-dimensional simulations are a first step towards three-dimensional simu-
lations. Although the structure of the turbulence is three-dimensional and the
turbulence energy does not sufficiently dissipate, the low computational costs
allows fast comparisons between results of different numerical configurations.
This is an important step in the elimination of possible errors, and to deter-
mine the best configuration for obtaining realistic results in three-dimensional
simulations.
In the next section, the numerical configuration for the two-dimensional simu-
lations is presented. The results of the non-dynamic simulations, i.e., constant
β cases are discussed in Section 4.3. This is followed by those of dynamic
thickened flamelet model in Section 4.4 and of the combination of dynamic
thickened flamelet model and dynamic Smagorinsky model in Section 4.5. The
conclusions of this chapter are given in Section 4.6.

4.2 Numerical configuration

In this study, a V-shaped flame anchored behind a triangle flame holder is
investigated. For the presentation of the geometry and the computational mesh,
the readers are referred to Figures 3.9 and 3.10 in Section 3.3.1. The flame is a
premixed flame of propane and air at stoichiometric conditions with a two-step
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chemical reaction,

C3H8 + 5O2 =⇒ 3CO + 4H2O

CO + 1/2O2 ⇐⇒ CO2 (4.1)

The reaction rates are calculated through Arrhenius law;

ω̇1 = A1ρXC3H8

α1XO2

β1 exp

(
−
Ea1

RT

)

ω̇2 = A2ρXCO2

α2XO2

β2 exp

(
−
Ea2

RT

)
. (4.2)

The parameters of each reaction are given in Table 4.2.

Parameters αi βi Ai(cgs) Eai(cal.mol−1)

Reaction (1) 0.9028 0.6855 2.0× 1012 33000
Reaction (2) 1.0 0.5 4.51× 1010 12000

Table 4.1 : Chemical parameters for the reaction rate.

To reduce the influence of boundary conditions, two co-flows are introduced
above and below the outlet of the main flow. The temperature of the inlet gas
and the walls of main chamber are set to 300 K. That of the co-flow is 2200 K.
The computational mesh consists of two parts, one for the combustion chamber
and the other for the inlet of co-flows. The former is filled with relatively fine
cells where the maximum cell size is ∆ ≈ 6.0× 10−4 m, and this part contains
about 50,000 cells. In the second part, the cell size is kept fine in the vicinity of
the conjunction area with the primary chamber, but the resolution is gradually
reduced from this area to the other boundaries to decrease computational costs.

Initial condition

For all simulations performed in this chapter, the initial condition is the same
as the one presented in the previous chapter (see Section 3.3.1). The flame was
initially defined as a jumping boundary of temperature and chemical species
beside the flame holder. This initial flame is superimposed on the flow field
that is calculated separately without the flame (Figure 4.1). The flame is then
stabilized using Colin’s efficiency model (Equation 1.78, Colin et al. (2000))
with a thickening factor of F = 20 and a constant of α = 0.3, which has
been obtained empirically (Gonçalves dos Santos 2007). The initial condition
is presented in Figure 3.11 of the previous chapter.
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Figure 4.1 : Temperature (K) (above) and mass fraction of C3H8 (kg/kg) (below)
with the stream line for the initialization of the flame.



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 106 — #124
✐

✐

✐

✐

✐

✐

106 Chap. 4 - Two-dimensional simulation

Boundary conditions

In the main combustion chamber, the boundary condition at the walls is given
by a logarithmic wall law (Schmitt 2005) with heat losses. The wall heat flux
is calculated through

qwall =
1

Rwall
(Tref − Twall) (4.3)

where the thermal resistance of the wall is set to Rwall = 0.1Km2/W taking
the value retained by Varoquié (2004) and Gonçalves dos Santos (2007) and
Tref is equal to Tref = 300K. At the flame holder, a no-slip adiabatic con-
dition is chosen and the walls of secondary chamber are modeled as slip and
adiabatic. The characteristic boundary conditions (Poinsot and Lele 1992) are
applied to the inlet and outlet to release the acoustic energy from the com-
putational domain. For the description of the philosophy of the characteristic
boundary condition, readers are refered to Appendix A. At the main inlet, the
incoming velocity, temperature, and the mass fractions of the chemical species
are respectively set to 5.0m/s, 300K, and at stoichiometry. At the inlet of the
co-flows, the same physical quantities are set to 20m/s, 2000K, and 1.00 for
N2 and 0 for other chemical species. Only the pressure is set to the 101325Pa
at the outlet.
The Reynolds number based on the dimension of the flame holder and on the
maximum velocity beside the flame holder (10m/s) is of the order 104.

Determination of the thickening factor

Flame thickening is performed by multiplying the diffusion coefficient and di-
viding the reaction rate by the thickening factor F in the transport equation of
chemical species (see Equation 1.77). This is a deliberated manner for ampli-
fying the flame thickness without changing the flame speed. On the contrary,
if the flame is absent, this modification of the equation simply changes the dif-
fusive properties of the chemical species, and it has no sense. The thickening
factor is, thus, determined, depending on the reaction rate, according to Légier
et al. (2000),

F = 1 + (Fmax − 1) θ , (4.4)

where Fmax is given as an input and θ is a sensor function which detects the
existence of the reaction zone. This equation allows to set a thickening factor
equal to unity in the zone where the reaction does not take place and to Fmax

in the reaction zone. The sensor function is written

θ = tanh

(
Cf

Ω

Ω0

)
. (4.5)

Ω0 is the max value of Ω that the sensor function is expected to take in the
reaction zone. Cf is a coefficient introduced for setting the thickening factor
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F to be Fmax in the whole reaction zone. F does not reach Fmax without this
coefficient as tanh(1) ≈ 0.762. An over-large value of Cf leads to the Heaviside
function-like distribution of F between the reaction and non-reaction zone. Cf

is set to 500, taking the value of Truffin (2005). This method was also tested
and verified in Gonçalves dos Santos (2007).
One of the variations of this method can be found in Schmitt et al. (2007),
where the authors varied F depending on the grid resolution. It is a sophisti-
cated method for assuring the good resolution of the flame front on the LES
grid. The variation of F in the reaction zone, however, may affect the results of
dynamic thickened flamelet model, and its effect is expected not to be simple
to understand. In this study the former method is therefore adopted.

Variations of the thickened flamelet model and the turbulence

model

The simulations of this chapter are performed with the thickened flamelet model
and the Smagorinsky model. Both models have the dynamic version for the de-
termination of the constants. Firstly, the simulations are conducted with fixed
constants for both the thickened flamelet model and the Smagorinsky model.
The constant β for the thickened flamelet model is varied from zero to 0.7,
while the Smagorinsky constant, CS , is set to CS = 0.0324 (= 0.182). The
results are presented in Section 4.3. Then, the dynamic thickened flamelet
model is applied to the simulation with constant CS in Section 4.4, and full dy-
namic simulations with the dynamic thickened flamelet model and the dynamic
Smagorinsky model are completed in Section 4.5.

4.3 Simulations without the dynamic procedures

A series of simulations without the dynamic procedures are performed before
their application to the simulations. The value of the constant β is given at
the beginning and kept constant during the simulation. CS is set to 0.0364.
The objective of these simulations is to investigate the influence of the value
of β on the flame and to obtain a reference flame to compare with the results
calculated with the dynamic models. All simulations are performed over 500,000
iterations, which corresponds to approximately 0.1 s. This time interval is
sufficiently long to eliminate the influence of initial conditions and to obtain a
statistically steady flame.
In Figures 4.2 and 4.3, the stream lines of the time averaged fields and the time
averaged reaction rates of the principal reaction (C3H8+5O2 =⇒ 3CO+4H2O)
are respectively presented. It is clearly shown that the size of the recirculation
zone decreased when the constant β increased for β ≥ 0.3, while it did not
change much when β < 0.3. The increase of the efficiency function E due



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 108 — #126
✐

✐

✐

✐

✐

✐

108 Chap. 4 - Two-dimensional simulation

to the increase of β enhanced the reaction, and the time averaged reaction
zone came close to the flame holder as displayed in Figure 4.3. This caused the
acceleration of the flow due to the thermal expansion to occur closer to the flame
holder, and the size of the recirculation zone reduced with the increase of β.
Figure 4.4 compares the x component of the time averaged velocity calculated
with different β. The time averaged velocity did not change while β was smaller
than 0.3. The result of β = 0.5 deviated from those of β ≤ 0.3 at x > 0.1,
indicating the promotion of chemical reaction due to the higher value of β. That
of β = 0.7 was remarkably different from the others. The recirculating speed
was higher than the others and the value of u became positive at a position
considerably closer to the flame holder. The acceleration also occurred quite
closer to the flame holder than the other results, but u converged to around
40 m/s independent from the value of β, because the amounts of the incoming
fuel and air were kept constant, and then, the integral of chemical reactions did
not change.
In Figure 4.3, the zone, where the time averaged reaction rate was smaller than
20 kg/m3 · s downstream of the flame holder, became larger when the value
of β changed from 0 to 0.3, and returned to be small as it changed from 0.3
to 0.7. When β ≤ 0.3, the increase of β made the efficiency function larger
immediately downstream of the flame holder and the flame turned to be less
sensitive to the resolved flow motions. Then the wrinkling of the flame surface
became weak and the time averaged reaction zone became narrower and longer
in this zone as Figure 4.3 displays. Consequently the size of the area, where the
time averaged reaction rate was smaller than 20kg/m3 · s, became larger. As β
further increased, however, the reaction rate close to the flame holder became
high, and the area reduced again. Figures 4.5 and 4.6 display representative
instantaneous fields of the reaction zone that came close to the flame holder for
β = 0 and β = 0.7 respectively.
The comparison of the time averaged reaction zone (Figure 4.3) also gives the
information about the length of the flame from the flame holder. The length
was not so different when β was smaller than 0.3. This shows that the values
of the efficiency function stayed at a same level and, a priori, they were close to
unity despite of the increase in the constant β from 0 to 0.3, i.e., turbulence was
weak except immediately downstream of the flame holder. Figures 4.7 and 4.8
respectively display the time averaged temperature fields and their root mean
square values for different values of β. The latter can be interpreted to be the
time averaged strength of the resolved wrinkling. When β ≤ 0.3, the zones,
where the root mean square values were larger than 600 K, at approximately
x = [0.05, 0.15] (m) became narrower with the increase of β, showing that the
resolved wrinkling reduced when β increased. As β further increased, the high
wrinkling zone approached to the flame holder, and the flame length became
shorter. In Figure 4.3, the case of β = 0.7 clearly shows shorter flame length
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than the case of β = 0.5 does.
The time averaged temperature fields indicate the relation between the reaction
rate and the resolved flame wrinkling. The higher the heat release is, the higher
the temperature becomes immediately downstream of the flame holder. At the
same time, the more the flame is wrinkled, the smaller the high temperature
zone becomes, because high wrinkling of the resolved flame surface let the cold
unburned gas come into this zone.
In the results with β ≤ 0.5, the zones, where the time averaged temperature
was higher than 2000 K, were approximately identical to the zones, where the
time averaged reaction rate was smaller than 20 kg/m3 · s (see also Figure 4.3).
The size of this high temperature zone of β = 0.7 case was considerably larger
than the corresponding low reaction rate zone, because of the high reaction rate
due to the high efficiency function. High values of the efficiency function with
β = 0.7 also made the position of the second high temperature zone, which
started at x ≈ 0.15 (m) and where temperature was higher than 2000 K,
significantly closer to the flame holder than the other results.

Summary

In this section, the simulations without dynamic procedures were performed.
The results revealed that the flame came closer to the flame holder when higher
values of β was used. This is because of the increase in the efficiency function
and the reaction rate also increased with β immediately downstream of the
flame holder. The increase of the reaction rate in this zone caused the acceler-
ation of flow to occur close to the flame holder and resulted in the reduction of
the recirculation zone in size. It was also verified that the length of the flame
from the flame holder did not change much when β ≤ 0.3, showing that the
turbulence was weak, while the flame was shortened as β further increased.

4.4 Simulation with the dynamic thickened flamelet

model

The simulation presented above for the non-dynamic simulation is also per-
formed with the dynamic thickened flamelet model. The configuration is iden-
tical to the two-dimensional test of the previous chapter. For the definition of
the control volume used in the formulation, see Section 3.3.1. In the previous
chapter, the Arrhenius law was shown to be very sensitive to the use of dif-
ferent Schmidt numbers Sc for each chemical species. The simulations, then,
retain Boger’s algebraic model and the Arrhenius law using the progress vari-
able. The mass fraction of propane, YC3H8

, is used for the calculation of the
progress variable c̃.
In Figure 4.9, time averaged temperature fields and root mean square values
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Figure 4.2 : Time averaged stream lines obtained through a simulation using a con-
stant efficiency constant β. β is set to 0.0, 0.1, 0.3, 0.5 and 0.7 from the top to the
bottom.
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Figure 4.3 : Time averaged reaction rate of the principal reaction (kg/m3 ·s) obtained
through a simulation using a constant efficiency constant β. β is set to 0.0, 0.1, 0.3, 0.5
and 0.7 from the top to the bottom
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Figure 4.4 : Comparison of the time averaged values and the root mean square values
of the velocity in x direction on the center line of the combustion chamber (y = 0): β
was set to 0 (narrow solid line), 0.1 (narrow dashed line), 0.3 (narrow dotted line),
0.5 (bold solid line), and 0.7 (bold dashed line).

Figure 4.5 : Instantaneous field of the principal reaction rate (kg/m3 · s) where the
reaction zone came close to the flame holder. β = 0

Figure 4.6 : Instantaneous field of the principal reaction rate (kg/m3 · s) where the
reaction zone came close to the flame holder. β = 0.7
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Figure 4.7 : Time averaged temperature fields (K) obtained through a simulation
using a constant efficiency constant β. β is set to 0.0, 0.1, 0.3, 0.5, and 0.7 from the
top to the bottom
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Figure 4.8 : Root mean square values of temperature (K) obtained through a simula-
tion using a constant efficiency constant β. β is set to 0.0, 0.1, 0.3, 0.5, and 0.7 from
the top to the bottom
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of temperature, stream lines of the time averaged fields, time averaged values
of β, time averaged values of the efficiency function E, and time averaged
reaction rates of the principal reaction obtained through the simulation with the
dynamic thickened flamelet model are displayed. The constant β was calculated
using Boger’s algebraic model in the dynamic procedure. Since the constant β
and the efficiency function E were calculated only in the reaction zone, the time
averaged values of β and E were obtained only using the values in the presence
of the reaction zone. The use of Boger’s algebraic model in the calculation of
the constant β succeeded in computing the flame without any input for β, and
yielded reasonable results similar to the constant β case. The result was close
to those of β = 0.3 and β = 0.5.
The time averaged field of β shows the statistical trend of the distribution of
β. In the result obtained with Boger’s algebraic model displayed in Figure 4.9,
β was smaller than 0.1 immediately downstream of the flame holder. In the
middle of the combustion chamber, there was a zone, where β was higher than
0.3, but outside of this zone, it stayed between 0.1 and 0.3. Downstream of
x = 0.2 (m), β increased up to the outlet of the chamber. The value of β was
lower than 0.5 except close to the outlet of the chamber.
A low value of β found downstream of the flame holder indicates that the flame
was not significantly wrinkled. The flame was strained by the shear flow linked
to the sudden expansion, but the flame surface remained planar, and the value
of β was low. The emergence of the high β zone in the middle of the chamber
was caused by the approach of the two flame surfaces. As was seen in Figure
3.13 of the previous chapter, when the two flame surfaces approach, the reaction

rate of the test-filtered flame decreases and the product γ〈
︷ ︸︸ ︷
W∆(q̃)〉/〈Wγ∆(̂̃q)〉

increases. Thus the value of β also becomes high.
Figure 4.10 displays the time averaged fields of the major variables obtained
through the simulation with the dynamic procedure using the reduced Arrhe-
nius law in the calculation of β. Compared with the results obtained using the
Boger’s algebraic model, presented in Figure 4.9, the values of β were remark-
ably high, and the time averaged field of the principal reaction rate, indicated
in the last figure of Figure 4.10, shows that the flame was stabilized, not behind,
but rather beside the flame holder.
In fact the flame was not stable throughout the simulation. Figure 4.11 shows
instantaneous fields of the reaction rate, β, and the efficiency function E at a
typical occurrence of the instability, observed at 175 ms after the simulation
started. As discussed in the previous chapter, the dynamic thickened flamelet
model is sensitive to the geometry of the flame surface, when the Arrhenius
law is implemented in the dynamic procedure. Although the curvature is the
same, the model yields a higher constant β when it is convex to the unburned
gas than when it is concave. This led to the extreme growth of the convex
flame surface in the simulation performed here, and resulted in the flame that
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Figure 4.9 : Time averaged fields of major variables calculated with dynamic model.
Top to bottom: time averaged temperature field (K), root mean square value of temper-
ature (K), streamline of the time averaged field, time averaged β field, time averaged
field of the efficiency function, and time averaged reaction rate field (kg/m3 · s). The
value of β was calculated using Boger’s algebraic model in the dynamic procedure,
while the Arrhenius law was used for the time evolution. The test-filter size ∆̂, the
effective filter size ratio γ and the width of the control volume for integration dx were
respectively set to ∆̂ = 1.5× 10−2 (m), γ = 1.94, and dx = 4.0× 10−2 (m)
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climbed up the incoming flow. Only Boger’s algebraic model is, therefore, used
in the calculation of the constant β in simulations in the next section and also
in the next chapter.
Figures 4.12 to 4.14 display the temporal evolution of the reaction zone, the
constant β and the efficiency function E respectively. The values of β and E
were calculated only in the reaction zone, and set to zero and unity respectively
outside of this zone. As the control volume for the calculation of integrals and
the averages in the dynamic procedure was defined as a rectangular zone (see
Section 3.3.1) having a width of 0.04 m, the values of β are constant on a x =
const line in the reaction zone of an instantaneous field, and the instantaneous
distribution of the constant β inside the reaction zone can be plotted as a
function of x coordinate. Comparison of the instantaneous field of the reaction
zone, the plots of β, and the distribution of the efficiency function, shows the
dependence of β on the shape of the flame surface. The top figures of Figures
4.12 to 4.14 indicate the instantaneous fields at 70 ms after the simulation
started (400, 000th iteration). The reaction zone was not significantly wrinkled
immediately downstream of the flame holder. β was, then, zero and the value
of the efficiency function was unity. The wrinkling started at x ≈ 0.01 (m) and
β also started increasing. The existence of the wrinkling kept the values of β
non-zero up to x = 0.14 (m). Then β became 0 again in [0.14, 0.17]. Note that
the strength of the wrinkling at a certain x coordinate is the average of upper
and lower reaction surfaces in the control volume. Besides this, the wrinkling
greater than the test-filter size, ∆̂ = 0.015 (m) is considered to be fully resolved
and it does not enhance the increase of β. At x ≈ 0.17 (m), β started increasing
again. This transition of β corresponded to the apparition of high wrinkling at
x ≈ 0.19 (m). The values of β stayed at the same level while the flame surfaces
exists, but started increasing at x ≈ 0.23 (m) toward unity. This is because
combustion had almost finished before x ≈ 0.23 and the reaction rates in the
formulation,

β = 1 +

log



︷ ︸︸ ︷
W∆(q̃)
Wγ∆

(
̂̃q
)




log(γ)
, (4.6)

︷ ︸︸ ︷
W∆(q̃) and Wγ∆

(
̂̃q
)

were almost equal, but non-zero.

A peak of β emerged at x ≈ 0.04 (m) in the plot at 77 ms. This peak grew with
time and the value of β reached 0.6 at 105 ms. This growth corresponded to a
local flame extinction observed at 98 ms, which was induced by the interaction
of the two flame surfaces. During this process, the wrinkling of the flame surface
increased continuously, and the value of β also increased.
It is also worth discussing the evolution of the second peak of β corresponding
to the position of a peninsula-like structure and a small cusp, found in the
top figure of Figure 4.12 at x ≈ 0.13 (m) in the upper and lower surfaces
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Figure 4.10 : Time averaged fields of major variables calculated with dynamic model.
Top to bottom: time averaged temperature field (K), root mean square value of temper-
ature (K), streamline of the time averaged field, time averaged β field, time averaged
field of the efficiency function, and time averaged reaction rate field (kg/m3/sec).
The value of β was calculated using the reduced Arrhenius law, while the Arrhenius
law was used for the time evolution. The test-filter size ∆̂, the effective filter size
ratio γ and the width of the control volume for integration dx were respectively set to
∆̂ = 1.5× 10−2 (m), γ = 1.88, and dx = 4.0× 10−2 (m)
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Figure 4.11 : Instantaneous fields of the reaction rate (kg/m3·s), Charlette’s constant
β, and the efficiency function E obtained in the simulation using the dynamic thickened
flamelet model at 175 ms after the start of the simulation. The value of β was calculated
using the reduced Arrhenius law in the dynamic procedure, while the Arrhenius law was
used for the time evolution.
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respectively. The peak was still not remarkable at 70 ms, but the low peak
grew with time and reached 0.5 at 105 ms.
At 70 ms, the cusp in the lower flame surface was small, and the value of β
was raised by the wrinkling around the peninsula. The effect was averaged
out in the control volume and β remained small. At 77 ms, the cusp became
shaper, but was still small. At 84 ms, it became smaller and the value of β
also declined. From 91 ms, the growth restarted and continued until 105 ms,
increasing the value of β.

Summary

In this section, the simulations with the dynamic thickened flamelet model were
conducted in combination with the Smagorinsky model of CS = 0.0324. The
results show the dependence of the output of the dynamic thickened flamelet
model on the choice of the chemical model used in the calculation of β. The
sensitivity of the use of the reduced Arrhenius law in the dynamic thickened
flamelet model resulted in an extremely high values of the efficiency function,
that the flame was not stabilized by the flame holder and climbed up the in-
coming flow. Boger’ s algebraic model is then chosen for the calculation of β
in the following simulations.
The results with Boger’s algebraic model have been investigated in detail. The
value of the dynamically determined β was the same order as the empirical
value such as β = 0.5 and the efficiency function E was at the reasonable
level. The transition of β and E with the wrinkling of the reaction zone proves
the ability of this model of calculating the efficiency function E dynamically
without any empirical input for β.

4.5 Combination of the dynamic procedure with the

dynamic Smagorinsky model

In the previous section, the simulation with the dynamic thickened flamelet
model succeeded in computing a realistic combustion using Boger’s algebraic
model in the calculation of β. In this section, the dynamic procedure is
combined with the dynamic Smagorinsky model. Two types of the dynamic
Smagorinsky model are applied to the simulation. One is the standard dynamic
Smagorinsky model and the other uses Moin’s procedure (see Section 1.2.3.2).
The Smagorinsky constant CS is set to zero when the dynamic Smagorinsky
model returns negative values of CS .
Figures 4.15 and 4.16 compare the time averaged values of the Smagorinsky
constant CS and that of the turbulent viscosity µt calculated with the stan-
dard dynamic Smagorinsky model and with Moin’s procedure. In figure 4.16,
the result calculated with constant CS (= 0.0324) is also indicated for the com-
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Figure 4.12 : Time evolution of reaction zone of the principal reaction from 70 ms
(900,000th iteration) to 105 ms (920,000th iteration). The Arrhenius law was used
for the calculation of the reaction rate, while Boger’s algebraic model was used in
the dynamic procedure to calculate β. The test-filter size ∆̂, the effective filter size
ratio γ and the width of the control volume for integration dx were respectively set to
∆̂ = 1.5 × 10−2 (m), γ = 1.94, and dx = 4.0 × 10−2 (m). Each figure shows the
instantaneous field at 70, 77, 84, 91, 98, 105 ms top to bottom.
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Figure 4.13 : Time evolution of the constant β plotted as a function of the down-
stream coordinate from 70 ms (900,000th iteration) to 105 ms (920,000th iteration).
The Arrhenius law was used for the calculation of the reaction rate, while Boger’s al-
gebraic model was used in the dynamic procedure to calculate β. The test-filter size ∆̂,
the effective filter size ratio γ and the width of the control volume for integration dx
were respectively set to ∆̂ = 1.5× 10−2 (m), γ = 1.94, and dx = 4.0× 10−2 (m). Each
figure shows the instantaneous field at 70, 77, 84, 91, 98, 105 ms top to bottom.
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Figure 4.14 : Time evolution of the efficiency function from 70 ms (900,000th itera-
tion) to 105 ms (920,000th iteration). The Arrhenius law was used for the calculation
of the reaction rate, while Boger’s algebraic model was used in the dynamic procedure
to calculate β. The test-filter size ∆̂, the effective filter size ratio γ and the width of
the control volume for integration dx were respectively set to ∆̂ = 1.5 × 10−2 (m),
γ = 1.94, and dx = 4.0 × 10−2 (m). Each figure shows the instantaneous field at 70,
77, 84, 91, 98, 105 ms top to bottom.
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parison. Unlike to the results of the test performed in Chapter 3, the fields
of time averaged CS were considerably different, when different types of the
dynamic Smagorinsky model were applied. CS of the standard Smagorinsky
model was smaller than 0.01 almost everywhere in the combustion chamber
except immediately downstream of the flame holder. This value is quite small
compared to the reference value of CS = 0.0324 (= 0.182), which was used in
the constant CS simulations. The output of Moin’s procedure was closer to the
reference than that of the standard dynamic Smagorinsky model, but smaller
than the reference value too.
Observing more in detail, the outputs of both models in burnt gas had the same
tendency and they were of the same order. Behind the flame holder (x < 0.02)
the incoming and the recirculating flows encounter and a shear flow takes place.
It makes the terms of deformation tensor high and increases the value of CS .
Both models predicted high values of CS here. In the zone inside or close to
the recirculation zone, CS of both models were between 0.0025 and 0.01, then,
lower than the reference value.
The most remarkable difference of these results was found along the unburned
side edge of the time averaged reaction zone. These zones corresponded to
the position where the time averaged values of temperature started to increase
as Figures 4.17 and 4.18 display for the standard Smagorinsky model and that
with Moin’s procedure respectively. The standard dynamic Smagorinsky model
returned the values of CS less than 0.0025 here, while Moin’s procedure yielded
the values between 0.01 and 0.0324. This shows the impact of the density
change on the determination of CS , which was not observed in the test case of
the previous chapter and proves the requirement to consider the density change.
The differences of the Smagorinsky constant reflected in the time averaged fields
of the turbulent viscosity µt, as Figure 4.16 displays. The same discrepancy of
the time averaged CS fields can also be found in those of µt calculated with
the dynamic Smagorinsky models. The field of µt calculated with constant
CS showed higher values than that calculated with the dynamic Smagorinsky
models almost everwhere in the computational domain. In front of the flame
holder the two dynamic Smagorinsky models predicted remarkably smaller tur-
bulent viscosity µt than the non-dynamic Smagorinsky model did. Both in the
unburned and the burnt gases, µt calculated with the non-dynamic Smagorin-
sky model was considerably higher than the values obtained with the dynamic
Smagorinsky models. However, downstream of the flame holder, where the sud-
den expansion induced a shear flow, µt in the non-dynamic Smagorinsky model
became lower than the value predicted by the dynamic Smagorinsky models.
To observe the effect of the dynamic Smagorinsky models on the combustion,
the time averaged temperature field, its root mean square values and the stream
lines of the time averaged fields are presented in Figures 4.17 and 4.18 for
the combination of the dynamic thickened flamelet model and the dynamic
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Figure 4.15 : Time averaged values of the Smagorinsky constant, CS calculated with
the standard dynamic Smagorinsky model (top) and with Moin’s procedure (bottom).

The test-filter size ∆̂S for the calculation of the Smagorinsky constant CS was set to
2.5× 10−3 m.

Figure 4.16 : Time averaged values of the turbulent viscosity, µt calculated with
the standard dynamic Smagorinsky model (top), Moin’s procedure (middle), and the

Smagorinsky model with constant CS (= 0.0324). The test-filter size ∆̂S for the cal-
culation of the Smagorinsky constant CS was set to 2.5 × 10−3 m for the use of the
dynamic Smagorinsky models.
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Smagorinsky model and for that of the dynamic thickened flamelet model and
the dynamic Smagorinsky model with Moin’s procedure, respectively. The
values of β were calculated using Boger’s algebraic model in the dynamic pro-
cedure. The differences due to the introduction of Moin’s procedure was not
significant and these results were quite similar to that of the constant CS case
displayed in the top three figures of Figure 4.9.

Figure 4.17 : Time averaged temperature field (K), its root mean square value,
and the stream line of the time averaged field calculated with the dynamic thickened
flamelet model and the dynamic Smagorinsky model. The value of β was calculated
using Boger’s algebraic model in the dynamic procedure.

Figure 4.19 displays the time averaged velocity in x direction on the center line
(y = 0) of the combustion chamber and its root mean square values. The time
averaged velocity is related to the the total reaction rate in the upstream, as
the acceleration of the flow media occurs through the density change across
the flame. This plot indicates that the time averaged velocity on this line did
not change much. However, a slight deviations are observed in the plot of
the root mean square value of velocity in x direction. This resulted from the
low turbulent viscosity µt calculated with the standard dynamic Smagorinsky
model, but the difference between the results calculated with Moin’s procedure
and the Smagorinsky model with constant CS were not significant.
Though the difference of the time averaged fields of temperature and the stream-
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Figure 4.18 : Time averaged temperature field (K), its root mean square value and
the stream line of the time averaged field calculated with the dynamic thickened flamelet
model and the dynamic Smagorinsky model with Moin’s procedure. The value of β was
calculated using Boger’s algebraic model in the dynamic procedure.
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Figure 4.19 : Comparison of the time averaged values and the root mean square
values of the velocity in x direction on the center line of the combustion chamber
(y = 0): CS = 0.0324 (solid line), the result of the standard dynamic Smagorinsky
model (dashed line) and the result of Moin’s procedure (long dashed line)
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line were not significant, the discrepancies of the fields of the Charlette’s con-
stant β and that of the efficiency function are clearly shown in Figures 4.20 and
4.21, which display the fields of the time averaged values of β and the efficiency
function E conditioned by the presence of the reaction zone and that of the
reaction rate of the principal reaction obtained through the simulation with
the standard dynamic Smagorinsky model (Figure 4.20) and that with Moin’s
procedure (Figure 4.21). These fields indicate that the value of β calculated in
combination with the standard dynamic Smagorinsky model was higher than
that calculated with Moin’s procedure especially on the centerline of the com-
bustion chamber, and the efficiency function E did so at the edge of the zone,
where β took non-zero values downstream of the flame holder. The difference in
β came from the difference of the magnitude of the flame wrinkling between the
scale of flame thickness Fδl0 and that of the test-filter size ∆̂, i.e. the wrinkling
between these scales was stronger when the standard dynamic Smagorinsky
model was applied than when the dynamic Smagorinsky model with Moin’s
procedure was used. On the other hand, the difference of the efficiency func-
tion E on the edges of the non-zero β zone was due to the difference of the
fluctuating velocity u′, as the values of β here were similar in both cases.
These changes were due to the dynamic determination of the Smagorinsky
constant CS . As displayed in Figures 4.15 and 4.16, time averaged values of
CS and µt were smaller in the case when the standard dynamic Smagorinsky
model was applied everywhere in the computational domain than in the case
where Moin’s procedure was applied. This smaller CS led to less dissipation
of the resolved turbulence, which increases the resolved flame wrinkling and
the fluctuating velocity u′, then, β and E also increased. The increased values
of β and E made the time averaged reaction rate slightly higher than that
calculated with Moin’s procedure. However, the fields were almost identical.
This fact proves the robustness of the dynamic thickened flamelet model that
it corrects the eventual distrust of the fluctuating velocity u′ due to the use
of different models for CS . Since the value of the Smagorinsky constant CS

predicted using the dynamic Smagorinsky model with Moin’s procedure was
closer to the reference value of CS = 0.0324 than when standard dynamic
Smagorinsky model was used, the fields of β and the efficiency function E
obtained using the Moin’s procedure were closer to those of the constant CS

case than those calculated using the standard dynamic Smagorinsky model (see
the last three figures of Figure 4.9).

Summary

Contrary to the test case performed in the previous chapter, the results of the
simulations performed with the standard dynamic Smagorinsky model and that
of Moin’s procedure clearly showed difference due to the density change across
the flame. The standard dynamic Smagorinsky model predicted considerably
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Figure 4.20 : Time averaged fields of the constant β, the value of the efficiency func-
tion, and the principal reaction rate obtained through the simulation with the dynamic
thickened flamelet model and the dynamic Smagorinsky model. The value of β was
calculated using Boger’s algebraic model in the dynamic procedure.
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Figure 4.21 : Time averaged fields of the constant β, the value of the efficiency func-
tion, and the principal reaction rate obtained through the simulation with the dynamic
thickened flamelet model and the dynamic Smagorinsky model with Moin’s procedure.
The value of β was calculated using Boger’s algebraic model in the dynamic procedure.
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low values of the Smagorinsky constant CS , while the prediction of Moin’s
procedure was of the same order as that of the conventional value CS = 0.0324.
The discrepancy in CS led to the difference of the intermediate values, such as
Charlette’s constant β and the efficiency function E. However the time averaged
values of physical quantities such as temperature and reaction rate obtained
through the simulations performed with these two models were almost identical
and similar to the constant CS case. This fact shows the robustness of the
dynamic thickened flamelet model that it corrects the eventual distrust of the
fluctuating velocity u′ caused by the use of different types of the Smagorinsky
model.
Because Moin’s procedure is a method adapted to flows with density change, it
is chosen for the three-dimensional simulation performed in the next chapter.

4.6 Conclusion

In this chapter, two-dimensional simulations of the V-flame using the dynamic
thickened flamelet model and the dynamic Smagorinsky model were performed
and the ability of the dynamic thickened flamelet model of calculating the effi-
ciency function without any input for Charlette’s constant β was demonstrated.
At the same time, the optimal combination of models was determined for the
three-dimensional simulation of the next chapter.
For the calculation of the constant β in the dynamic thickened flamelet model,
Boger’s algebraic model rather than Arrhenius law with the progress variable
was chosen, because the Arrhenius law was very sensitive to the geometry of
the flame surface, and the flame was not stabilized downstream of the flame
holder.
Contrary to the result of test case in the previous chapter, the standard dy-
namic Smagorinsky model and the dynamic Smagorinsky model with Moin’s
procedure yielded remarkably different results in terms of the Smagorinsky con-
stant CS and the turbulent viscosity µt. It shows the importance of density
change across the flame for the determination of CS .
In spite of the discrepancy of CS predicted by the standard dynamic Smagorin-
sky model and that with Moin’s procedure, the time averaged fields of physical
quantities such as temperature and reaction rate were almost identical to those
of the constant CS case. This fact demonstrates the robustness of the dynamic
thickened flamelet model, that it corrects the eventual distrust of the fluctuat-
ing velocity due to the use of different Smagorinsky models, even if unsteady
flow characteristics remains to be compared.
Since Moin’s procedure is a method adapted to flows with density change, it
will be retained for the three-dimensional simulations in the next chapter.
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Chapter 5

Three-dimensional simulation

In this chapter, a three dimensional full dynamic simulation is per-
formed using the dynamic thickened flamelet model and the dynamic
Smagorinsky model. From the simulations conducted in the previous
chapter, Boger’s algebraic model and Moin’s procedure were chosen for
dynamic thickened flamelet model and for the dynamic Smagorinsky
model respectively. The results of the simulation of this chapter are
compared to the experimental results obtained at E.M2.C. laboratory.

5.1 Introduction

In the previous chapter, two-dimensional simulations with and without dynamic
models were performed and the results proved the capability of the dynamic
thickened flamelet model and the dynamic Smagorinsky model of calculating
the V-flame combustion. In this chapter, the models are applied to a simulation
of a V-flame in a three dimensional configuration.

5.2 Configuration

The configuration of the computational domain is presented in Figure 5.1. As
for the two-dimensional simulations, the flame is stabilized behind a triangu-
lar flame holder. The origin of the coordinates is set at the front edge of the
flame holder on the centerline of the combustion chamber. To reduce the influ-
ence of the boundary conditions, a co-flow is injected into a secondary domain
surrounding the burner inlet. The mesh contains approximately 4.7 million
cells. The grid size is ∆ = 1.0 × 10−3 (m) from the inlet (x = −0.1 (m) ) to
x = 0.15 (m), then it gradually increases.
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Figure 5.1 : Configuration of computational domain: All scales are given in mm
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Initial condition

Similar to the two-dimensional case, the flame was at first given as a jumping
boundary of temperature and mass fraction of chemical species beside the flame
holder. This jump was superimposed to the velocity field obtained through a
simulation without flame. Then the flame was stabilized using the dynamic
thickened flamelet model and the Smagorinsky model with CS = 0.0324 through
300, 000 iterations corresponding to approximately 0.08 seconds sufficient to
obtain a statistically steady flame. The temperature iso-surface of 800K, the
fields of temperature and the reaction rate of the principal reaction (C3H8 +
5O2 =⇒ 3CO + 4H2O) on the z = 0 plane, are presented in Figures 5.2 and
5.3 respectively.

Figure 5.2 : Temperature iso-surface of 800K of the initial condition

Boundary condition

The boundary conditions are similar to those of the two-dimensional simula-
tions. At the main inlet of the primary combustion chamber, the stoichiometric
mixture of air and propane enters at 5m/s and 300K. Nitrogen is injected from
the co-flow inlet at a speed of 22m/s and temperature of 2000K. To these in-
lets and the outlet, characteristic boundary conditions (Poinsot and Lele, 1992,
see also Appendix A for the detail) are applied. The flame holder is considered
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Figure 5.3 : Initial fields of temperature (K) and reaction rate of the principal reac-
tion (kg/m3 · s) on the z = 0 plane.

as a no-slip adiabatic wall, while the other walls are described as slip wall with
heat losses. The reference temperature is set to 300K at these walls. A slip
and adiabatic condition is applied to the sides of the secondary domain, where
the co-flow is injected.

Description of the dynamic models

Following the investigations of the previous chapter, Boger’s algebraic model
and Moin’s procedure are retained for the dynamic thickened flamelet model
and the dynamic Smagorinsky model respectively. A modified formulation,
Equations 3.21 and 3.22 in Chapter 3, of the dynamic thickened flamelet model
is used in this chapter. For the detail of this modified formulation, see Section
3.3.2 in Chapter 3.

5.3 Test cases

In the context of the dynamic Smagorinsky model, it is widely done to average
the intermediate terms in the calculation of the Smagorinsky constant CS in the
direction, where the turbulence is considered to be homogeneous, to suppress
numerical instabilities (Germano et al. (1991), Moin et al. (1991), Piomelli
et al. (1991) and Pope (2004)). Equation 1.63 is then rewritten as

Cs =
1

2
(〈LijMij〉/〈M

2
ij〉) , (5.1)

where 〈·〉 represents averaging in the direction, where the turbulence is ho-
mogeneous. In the simulation of this chapter, for example, the condition of
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turbulence is supposed to be statistically similar in z direction. However the
existences of the flame and the lateral walls make this assumption questionable.
The conditions of turbulence are not the same close to the wall and in the mid-
dle of the chamber. In addition to this, the flame surface is three dimensional
and not always parallel to the z axis. Then a line parallel to the z axis can
intersect with the flame surface and contains both unburned and burnt gases,
where the characteristics of the turbulence are different. Then the length for
the averaging should be as short as possible to conserve the local information,
and long enough to suppress oscillations of CS .
The same thing can be said in the calculation of the efficiency constant β.
In the two-dimensional simulations, the interval for the averaging (dx) was
determined in the manner that the interval always contains both unburned and
burnt sides of the flame. It was also verified that too short intervals lead to
strong oscillations of β and the efficiency function (see Section 3.3 in Chapter
3). In this section, a test for the interval in z direction is performed before the
three-dimensional simulation.
For the dynamic Smagorinsky model, three types of averaging are tested. In
the first case, no averaging is done and CS is calculated locally. The second
case is the averaging on the whole line that is parallel to the z axis, defined
between the two lateral walls and contains the target point. In the third case
CS is averaged using the data on the points, which is on the line defined in
the second case and whose distance from the target point is lower than 0.02m.
Then the interval is 0.04m if the target point is farther than 0.02m from the
wall. If it is closer than 0.02m, the interval reduces to the sum of 0.02m and
the distance to the wall.
The test of the dynamic thickened flamelet model is conducted using the same
widths of the averaging interval. Other intervals for the averaging are dx =
0.04m and dy = 0.05m (whole height of the combustion chamber). These
values are retained from the two-dimensional tests and assure that the averaging
interval contains both unburned and burnt sides of the flame.

5.3.1 Results of the test on the dynamic thickened flamelet

model

Figures 5.4 and 5.5 respectively compare the fields of β in the z = 0 plane
and transversal cuts at x = 0.06 and x = 0.12 in this plane calculated with
different dz. In Figure 5.4, dz increases from the top to the bottom. The
differences between the three results are not significant, but they slightly differ
as shown in Figure 5.5. The results calculated locally in terms of the z direction
contains small oscillations. This is due to the use of non-structured grid in the
simulation. The plotted values were calculated by interpolating the node values
of cells that contain the line where the values are plotted.
Immediately downstream of the flame holder, the value of β is 0.4 < β < 0.6,
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when β is calculated locally in terms of the z direction. The use of the averaging
induced 0.6 < β < 0.8 in this zone, and it was greater when the averaging was
performed using the whole span-wise length of the chamber than with dz = 0.02
(m). This means that the value of β was larger at other z position than at
z = 0 immediately downstream of the flame holder. On the contrary, in the
zone, where the value of β was not significantly different in the three results,
for example at x ≈ 0.11 (m), where β is around 0.4, the difference of β in the
z direction was small.
Figure 5.6 compares the distribution of β and the efficiency function in z di-
rection calculated with different values of dz at (x, y) = (0.06, 0.01) (m) and
(x, y) = (0.12, 0.02)(m). β was set to zero outside of the flame, then the values
of the efficiency function E were 1. It is clearly shown that the oscillations
of β and E were effectively suppressed using larger dz. The plot of dz = 0
displays large oscillations both in β and E. The use of dz = 0.04 reduced it,
but, conserved the general tendency. On the contrary, the averaging over the
whole span-wise distance of the chamber eliminated local trends and gave single
values for β and E.
It is not obvious whether the oscillations found in the result of dz = 0 are
unphysical. Because the oscillations are not strong compared to the results
of the two-dimensional test case (see Figure 3.14 of Chapter 3), they do not
cause numerical problems at least on these lines. However, the use of dz = 0
implicitly excludes the effect of the resolved flame surface curvatures in the z
direction. In this study, therefore, the averaging with dz = 0.04 is chosen as
for dx, which was set to 0.04 (m).
Interestingly the values of β were higher in the results at (x, y) = (0.06, 0.01)
(m) than at (x, y) = (0.12, 0.02)(m), but the values of the efficiency func-
tion were higher at (x, y) = (0.12, 0.02)(m). β is influenced by the term

γ
︷ ︸︸ ︷
W∆(q̃) /W∆̂

(̂̃q), which expresses the difference of the strength of flame surface
wrinkling at the scales of the flame thickness ∆ = Fδ0l and at the test-filter
size ∆̂, and the value of β contains the information related to the strength
of the unresolved wrinkling against that resolved on the computational mesh.
The efficiency function E is calculated using the value of β and the turbulent
strength, that is expressed using the fluctuating velocity u′∆. The value of E,
thus, may become low (high), when u′∆ is low (high), even if the value of β is
high (low).
From this test, the interval for the averaging in the z direction is set to dz = 0.04
to conserve the local trend of β and that of the efficiency as found in Figure 5.6.
It is also verified that the efficiency increases with the turbulence, although the
value of β may decrease with it.
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Figure 5.4 : Comparison of the β fields on z = 0 plane calculated with different
averaging interval. Top to bottom, local calculation, lz = 4.0× 10−2 m and the use of
the whole span-wise dimension of the combustion chamber. Scales are given in mm
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Figure 5.5 : Comparison of the distribution of β calculated with different averag-
ing intervals at (x, z) = (0.06, 0)(m, left) and (x, z) = (0.12, 0)(m, right): dz = 0
(solid line), dz = 4.0× 10−2 m (bold dashed line) and the use of the whole span-wise
dimension of the combustion chamber (dashed line)
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Figure 5.6 : Comparison of β and efficiency field calculated with different averaging
intervals at (x, y) = (0.06, 0.01)(m, left) and (x, y) = (0.12, 0.02)(m, right): dz = 0
(solid line), dz = 4.0 × 10−2 m (dashed line) and the use of the whole span-wise
dimension of the combustion chamber (dotted line)
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5.3.2 Results of the test on the dynamic Smagorinsky model

Figure 5.7 compares the CS fields calculated with different averaging intervals
in the z direction. On the top is the result of local application of the dynamic
Smagorinsky model with Moin’s procedure. The averaging interval in z direc-
tion, which is represented by lz, is zero. In the middle, lz is 0.02m, and on the
bottom, lz is the whole span-wise dimension of the chamber.
The CS field was effectively smoothed, and the reduction of the oscillation of
CS was more remarkable than in the case of β. Contrary to the two-dimensional
case, CS was not zero in the reaction zone. The values were greater than 0.16
and considerably larger than the reference value CS = 0.0324 in homogeneous
turbulence. This is because of the three-dimensional structure of the turbu-
lence. Though the thermal expansion of the flow media is likely to cause the
negative Smagorinsky constant, the effect was weaker than the turbulence in
the z direction. As CS was calculated with the norm of the deformation rate

|Sij | =

√
2Sij

2
, CS was not zero if the terms, corresponding to the deformation

related to z direction, was dominant.
The distributions of CS and µt in z direction are indicated in Figures 5.9 and
5.10 respectively. As in Figure 5.7, the oscillation of CS decreased with the
increase of lz. Small oscillation existed also in the results calculated with av-
eraging on the whole span-wise dimension of the combustion chamber. This is
because of the use of an unstructured computational mesh. The values plot-
ted in the figure was obtained through the interpolation using the values at the
node points of cells that contain the line, where CS was plotted. In the test case
of dz conducted above for the calculation of β, the averaging was performed
in a volume, and not on a line. The oscillation of the result was, therefore,
clearly eliminated when dz was set as the whole span-wise dimension of the
combustion chamber.
The levels of the oscillation observed in the results of lz = 0.02m and the whole
span-wise length were of the same order of the magnitude. It implies that the
lz = 0.02m is sufficient to reduce the oscillation of CS and the use of longer
interval eliminates the local information, such as the upheaval found in the
results at y = 0.01 (in the middle) of lz = 0.02. However, the value found at
the upheaval was considerably large, and might cause unreasonable dissipation
of momentum in the simulation conducted in the next section.
When the Smagorinsky constant CS was locally calculated, the fields of the
turbulent viscosity µt also oscillated following the distribution of CS as shown
in Figure 5.10. The occurrence of peaks is especially remarkable in the second
and last figures in the left and right columns respectively. The discrepancies
between the results calculated with lz = 0.02m and the use of the whole span-
wise dimension of the combustion chamber as the averaging interval were not
significant. However, as observed in the second figure in the left column, the
value of µt in the middle of the chamber was approximately twice higher and it
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oscillated more strongly when it was calculated with lz = 0.02m than when it
was done using the whole span-wise dimension as the averaging interval. This
fact indicates the effect of the CS values calculated with lz = 0.02m which
may lead to an immoderate local dissipation of momentum and to numerical
problems.

Figure 5.7 : Comparison of the CS fields on z = 0 plane calculated with different
averaging intervals. Top to bottom, local calculation, lz = 4.0× 10−2 m and the use of
the whole span-wise dimension of the combustion chamber. Scales are given in mm

Through the test conducted here, it is verified that the use of larger lz eliminates
the oscillation of the Smagorinsky constant CS effectively. In the simulations of
this chapter, lz is then set to the whole length of the combustion chamber. Note
again that the negative values of CS are clipped at CS = 0 to avoid numerical
problems.

5.4 Result and discussion

5.4.1 Three-dimensional effect of turbulence

Contrary to the two-dimensional simulations, results of three-dimensional sim-
ulations contain complex turbulent structures due to the existence of the third
dimension, which enhances the dissipation of kinetic energy. To observe the
effect of three-dimensional turbulence, instantaneous vorticity iso-surfaces of
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Figure 5.8 : Comparison of the µt fields on z = 0 plane calculated with different
averaging intervals. Top to bottom, local calculation, lz = 4.0× 10−2 m and the use of
the whole span-wise dimension of the combustion chamber. Scales are given in mm
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Figure 5.9 : Comparison of the CS distribution in z direction calculated with different
averaging intervals at (x, y) = (0.06, 0)(0.06, 0.01)(0.06, 0.02)(m, left) and (x, y) =
(0.12, 0)(0.12, 0.01)(0.06, 0.02)(m, right). Local calculation (solid line), lz = 4.0 ×
10−2 m (dashed line) and the use of the whole span-wise dimension of the combustion
chamber (dotted line).



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 145 — #163
✐

✐

✐

✐

✐

✐

5.4 - Result and discussion 145

z

µ t

-40 -20 0 20 40
0

0.0002

0.0004

0.0006

z
µ t

-40 -20 0 20 40
0

0.0002

0.0004

0.0006

z

µ t

-40 -20 0 20 40
0

0.0002

0.0004

0.0006

z

µ t

-40 -20 0 20 40
0

0.0002

0.0004

0.0006

z

µ t

-40 -20 0 20 40
0

0.0002

0.0004

0.0006

z

µ t

-40 -20 0 20 40
0

0.0002

0.0004

0.0006

Figure 5.10 : Comparison of the µt distribution in z direction calculated with different
averaging intervals at (x, y) = (0.06, 0)(0.06, 0.01)(0.06, 0.02)(m, left) and (x, y) =
(0.12, 0)(0.12, 0.01)(0.06, 0.02)(m, right). Local calculation (solid line), lz = 4.0 ×
10−2 m (dashed line) and the use of the whole span-wise dimension of the combustion
chamber (dotted line).
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|ω| = 12000 at 47ms after the simulation started (t − t0 = 47 ms), are pre-
sented in Figure 5.11. To distinguish different surfaces, the iso-surfaces are
coloured by temperature. The sheet-like structure of the vorticity iso-surface
indicates the existence of a shear flow. In this instantaneous field, a shear flow
takes place downstream of the flame holder and the rear half of the combus-
tion chamber. In these zones, the turbulent structures are two-dimentsional
and three-dimensional effect of turbulence is weak. Between these zones, the
sheet of the iso-vorticy surface is disturbed, because of the existence of eddy
structures.
Figure 5.12 is the relative helicity iso-surfaces of h = 0.9 and h = −0.9 of the
same instantaneous field as that presented in Figure 5.11. Helicity, H, and
relative helicity, h, are quantities defined as the inner product of the velocity u

and the vorticity ω = ∇× u, and its direction cosine, respectively,

H = u · ω , (5.2)

h =
u · ω

|u||ω|
. (5.3)

Then, H is non-zero when the directions of vorticity and the flow velocity are
not orthogonal. High absolute values of relative helicity indicates the exis-
tence of a corkscrew-like motion around a streamline, then, that of the three-
dimensional turbulent structure. It takes positive (negative) values when the
corkscrew-like motion by the vorticity is clockwise (counter clockwise) viewed
from the downstream in the flow. In two-dimensional simulations, helicity is
always zero.

Effect on combustion

Figure 5.13 are the cross-sectional fields of the time averaged reaction rate of
the principal reaction, C3H8 + 5O2 =⇒ 3CO + 4H2O, at the center of the
chamber (z = 0) and close to the lateral walls (z = 0.035 and z = −0.035 m).
Immediately downstream of the flame holder, the distance between the two
flame surfaces was shorter close to the lateral walls than at the center of the
chamber. The positions, where the flame reached the upper and lower walls,
were also different. Near the lateral walls, the position was farther from the
flame holder than at the center of the chamber. These deviations of the reaction
zones were due to the existence of the lateral walls.
On the walls of the combustion chamber, heat loss boundary conditions were
applied. Thus, temperature became lower near the wall than in the middle of
the chamber as shown in Figure 5.14, and the reaction rate of the principal
reaction was also reduced. The reduction of the reaction rate made the flame
surfaces retreat, and the distance of the two flame surfaces reduced. As observed
in Chapter 4, the increase of the reaction rate makes the acceleration of the
flow occur closer to the flame holder. The discrepancy of the reaction rates
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Figure 5.11 : Iso-surface of vorticity magnitude, |ω| = 12000, of an instantaneous
field, 47ms after the simulation started. To distinguish the different surfaces, the
iso-surfaces are coloured by temperature (K).

Figure 5.12 : Iso-surfaces of relative helicity, h = 0.9 and h = −0.9, of an instanta-
neous field, 47ms after the simulation started.
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Figure 5.13 : Time averaged reaction rate (kg/m3 · s) of the principal reaction,
C3H8 + 5O2 =⇒ 3CO + 4H2O, on several z planes. Top to bottom, on z = −0.035,
z = 0, and z = 0.035 (m) planes. Scales are given in mm.

between near wall region and in the center of the chamber, then, resulted in
the difference of the size of the recirculating zone found in the time averaged
fields as will be discussed below.

Structure of the recirculation zone

In two-dimensional simulations presented in the previous chapter, the recircula-
tion zone found in time averaged fields behind the flame holder consisted of two
vortices. Also in the three-dimensional simulation performed here, two vortices
were found in the time averaged field of flow velocity, and they contained a
three-dimensional motion. Figure 5.15 is the cross-sectional fields of the time
averaged velocity in the x direction, [ũx], at the center of the chamber (z = 0)
and close to the lateral walls (z = 0.035 and z = −0.035m) with the stream-
lines based on the x and y components of the time averaged velocity fields.
[·] represents the time averaging, [Q] =

∫ tf
t0

Q(t)dt/
∫ tf
t0

dt, where tf and t0 are
the final and start times of the averaging period respectively. The existence of
the stagnation points in the figures of z = 0.035 and z = −0.035 planes were
caused by sources due to the convection in the z direction. The size of the
recirculation zone, where the x component of the time averaged velocity [ũx]
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Figure 5.14 : Time averaged temperature (K) on several z planes. Top to bottom,
on z = −0.035, z = 0, and z = 0.035 (m) planes. Scales are given in mm.
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was negative, was considerably larger close to the walls than in the middle of
the combustion chamber.
Figure 5.16 displays the streamlines of the time averaged flow field in the re-
circulation zone based on the velocity components of y and z directions in
x = 0.015, x = 0.0325, and x = 0.05 (m) planes with the amplitudes of the
time averaged velocity in z direction [ũz]. Directly downstream of the flame
holder (x = 0.015), the streamlines pointed towards the center of the chamber,
while they pointed opposite directions in the other planes at x = 0.0325 and
x = 0.05 (m).
Figure 5.17 presents the streamlines of the time averaged flow field that started
from vertical lines at (x, z) = (0.02, 0.035)(m) and (x, z) = (0.02, −0.035),
with the time averaged field of the z component of the flow velocity [ũz] on the
y = 0 plane. All the streamlines, started in the recirculation zone close to the
wall, came to the center of the combustion chamber, being involved into the
recirculation motion, and exited from the recirculation near the centerline of
the chamber.
These results show that there existed a recirculation motion, that advected heat
and mass from the wall-sides to the center of the chamber directly downstream
of the flame holder.

5.4.2 Temporal evolution and time average of the flame surface

Temporal evolution of β and the efficiency fields

In Figures 5.18 and 5.19, temporal evolutions of dynamically calculated Char-
lette’s constant β and the value of the efficiency function E on the c̃ = 0.5
surface are shown. The progress variable was defined using the mass fraction
of C3H8. To present the profile of the flame surface, contour lines of the y
coordinate are shown on the surface.
As the first (left top) figures of Figures 5.18 and 5.19 indicate, a hill was ob-
served behind the flame holder at t − t0 = 70.2 (ms). The hill was convected
downstream changing its height, and at t− t0 = 73.3, it reached the upper wall
of the combustion chamber. The zone where the flame surface interacted with
the wall became larger at t − t0 = 74.1, and the profiles of the flame surface
turned to be similar to that of at t − t0 = 70.2. Thus, these six figures cor-
respond to a cycle of the periodic motion of the flame surface. The period is
approximately 4 ms.
Throughout the period, the y coordinates of the flame surface were always
higher close to the centerline of the chamber than close to the lateral walls.
This was related to the heat loss boundary conditions applied to the walls.
The chemical reaction beside the lateral walls was limited by low temperature
compared with that in the middle of the chamber as already shown in Figures
5.13 and 5.14.



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 151 — #169
✐

✐

✐

✐

✐

✐

5.4 - Result and discussion 151

Figure 5.15 : Amplitude of the time averaged x component of the flow velocity [ũx]
(m/s) and the streamlines of the time averaged field based on the velocity components
of the x and y directions. Top to bottom, on z = −0.035, z = 0, and z = 0.035 (m)
planes
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Figure 5.16 : Amplitude of the time averaged z component of the flow velocity [ũz]
(m/s) and the streamlines of the time averaged field based on the velocity components
of the z and y directions. On x = 0.015 (m) (top left), x = 0.0325 (m) (top right),
and x = 0.05 (m) (bottom) planes.

Figure 5.17 : Streamlines of the time averaged flow field that start from vertical lines
at (x, z) = (0.02, 0.035) and (0.02, −0.035)(m), with the time averaged field of the z
component of the flow velocity [ũz] (m/s) on the y = 0 plane. Scales are given in mm.
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The occurrences of local peaks in terms of the height of the flame surface along
the x direction firstly found in the middle of the chamber, and then, close to
the walls. Consequently the flame surface had three-dimensional profile, and
the values of β varied in the z direction.
The magnitude of β is determined by the relation of the flame surface wrinkling
at the flame thickness scale Fδ0l and that at the test-filter scale ∆̂. When the
wrinkling of the flame surface at the scale of Fδ0l is strong compared to that at

the scale of ∆̂, the term γ
︷ ︸︸ ︷
W∆(q̃) /W∆̂

(̂̃q) becomes large, then β also becomes

large. In fact, the value of the term γ
︷ ︸︸ ︷
W∆(q̃) /W∆̂

(̂̃q) strongly depends on
the wrinkling of the resolved flame surface. Thus, Figure 5.18 indicates that
the resolved wrinkling of the flame surface was high close to the flame holder
and it reduced with the x coordinate. Immediately downstream of the flame
holder, the values of the constant β tended to be larger close to the lateral
walls than in the middle of the combustion chamber. This was due to the high
curvature close to the walls. Though the resolved flame surface contained a
large structure in the middle of the chamber, the curvature was small and the
value of β remained small. On the contrary, small wrinkling structures found
close to the lateral walls resulted in the larger values of β than in the center.
However, the trend reversed after the flame surface reached the upper wall in the
middle of the chamber. When it interacted with the upper wall, a bowl-shaped
structure was formed around and induced high curvature. This resulted in the
higher β values in the middle of the chamber than close to the wall regions.
The trend of the efficiency function E was different from that of β. Directly
downstream of the flame holder, there was a zone where the efficiency function
was larger than 5.0. The efficiency function had the same trend of the constant
β in this zone, i.e., higher values close to the lateral walls than close to the
centerline of the chamber. However, this trend was limited here, and the values
of the efficiency function close to the centerline of the chamber quickly became
larger than close to the lateral walls. This trend was especially remarkable in
the second figure in the left column of Figure 5.19. This was caused by the
different magnitude of the flcutuating velcity u′∆ at the flame thickness scale.
In the results presented in Figures 5.18 and 5.19, the fluctuating velocity was
higher in the middle of the chamber than beside the lateral walls. Then turbu-
lence was stronger in the middle, but the flame surface was wrinkled in a manner
that it had a larger structure here. Most part of the wrinkling was resolved on
the mesh, and the value of the constant β became lower here than beside the
lateral walls. However, the high fluctuating velocity kept the efficiency function
larger than that in the zones close to the walls.
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Figure 5.18 : Temporal evolution of dynamically calculated Charlette’s constant β on the c̃ = 0.5 surface at t − t0 =
70.2, 71.0, 71.8, 72.5, 73.3, and 74.1 (ms) (top to bottom, left to right). The contour line indicates the y coordinate (mm).
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Figure 5.19 : Temporal evolution of the value of the efficiency function on the c̃ = 0.5 surface at t−t0 = 70.2, 71.0, 71.8, 72.5, 73.3,
and 74.1 (ms) (top to bottom, left to right). The contour line indicates the y coordinate (mm).
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Analysis of the time averaged properties

The time averaged fields of Charlette’s constant β and the value of the efficiency
function E in the planes of z = 0, z = −0.035, and z = 0.035 (m) are presented
in Figures 5.20 and 5.21. Since the values of the constant β were calculated
only in the reaction zone, they were set to zero outside of the flame. The time
averaged values of β were then obtained by summing up the values calculated in
the presence of the flame multiplied by the time step, and dividing it by the sum
of the time steps, during which the flame had been present. Zero values were
also taken into account, only when the values are calculated in the presence of
the reaction zone. The time averaged values of the efficiency function E were
also calculated in the same manner. In Figure 5.20, though the time averaged
fields of β on x = −0.035 and z = 0.035 (m) planes show small differences at
x ≈ 0.04 and x ≈ 0.12 (m), the β values at these positions are approximately
0.6 and 0.4 respectively, and the results of these two planes are quite similar
and symmetrical along the z = 0 plane.
Unlike to the two-dimensional case, the two flame surfaces were completely
separated and the value of the constant β was always zero between these flame
surfaces. The values of both β and the efficiency function in the reaction
zone were higher than the values observed in the two-dimensional simulations
(see Figures 4.9, 4.20, and 4.21 of Chapter 4). This is due to the fact that

the reaction rate ratio
︷ ︸︸ ︷
W∆(q̃) /Wγ∆

(
̂̃q
)

that appears in the formulation, was

larger than in the two-dimensional simulations, meaning that the wrinkling of
the resolved flame surface was stronger. It was especially strong immediately
behind the flame holder and in the zone, where the flame reached the walls.
However, the values of β are between 0.4 and 0.6 except at the tail of the flame,
and close to the recommended value 0.5 by Charlette et al. (2002a).
The values of these time averaged fields are in good accordance with the values
observed in the temporal evolution of the flame surface. This indicates that
periodic motions of the flame surface are similar to the one discussed above,
and the presented period represented well the others.

5.4.3 Output of the dynamic Smagorinsky model

Figures 5.22 and 5.23 respectively display the time averaged fields of the Sma-
gorinsky constant CS calculated with Moin’s procedure in the z = 0 plane and
the turbulent viscosity µt in z = 0, z = 0.035, and z = −0.035 planes. As the
intermediate terms for the calculation of CS were averaged in the z direction,
the fields of CS were identical in any z planes. Thus, only the field in the z = 0
plane is displayed.
Same as the two-dimensional simulations performed in the previous chapter,
time averaged value of CS took high values immediately downstream of the
flame holder and in the reaction zone. The values of CS were of the same order
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Figure 5.20 : Time averaged field of Charlette’s constant β. The time averaged
values were calculated using the values at the presence of the reaction zone and the total
present time of the reaction zone at the target position. Top to bottom, z = −0.035,
z = 0, and z = 0.035 (m) planes. Scales are given in mm.
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Figure 5.21 : Time averaged field of the efficiency function. The time averaged
values were calculated using the values at the presence of the reaction zone and the total
present time of the reaction zone at the target position. Top to bottom, z = −0.035,
z = 0, and z = 0.035 (m) planes. Scales are given in mm.
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of the magnitude as the two-dimensional case presented in the second figure of
Figure 4.15 in Chapter 4, but the turbulent viscosity was considerably larger
than in the two-dimensional case (see Figure 4.16 of Chapter 4). Consequently
the turbulence in the burnt gas became weaker than in the two-dimensional
case, and CS was also lower. This represents the higher dissipation of three-
dimensional turbulence than that of the two-dimensional one.

5.5 Comparison with experimental results

In this section, the simulation results are compared with the experimental re-
sults obtained by Knikker et al. (2002) and Knikker et al. (2004) by appliying
the Planar laser induced fluorescence (PLIF) on the OH radical in the center-
plane of the combustion chamber.
The field of the instantaneous progress variable c was reproduced assuming an
infinitely thin flame front. Then Favre averaged field of the progress variable
c̃ was obtained by a Gaussian filter of size ∆ = Fδ0l = 9.69 (mm), and the
ensemble average of the progress variable [c̃] was obtained by processing 200
images.
Figure 5.24 compares the time averaged Favre filtered progress variables [c̃] and
its resolved variance

[
c̃2
]
− [c̃]2, obtained from the simulation performed in this

chapter, and in the experiments of Knikker et al. (2002) and Knikker et al.
(2004). [·] represents time averaging, [Q] =

∫ tf
t0

Q(t)dt/
∫ tf
t0

dt, where tf and t0
are the final and start times of the averaging period respectively.
The results indicate qualitatively similar trends, that the flame surface ap-
proached to the walls and the variance increased with the x coordinate, but all
the plots also indicate that the simulated flame surface was closer to the walls
than that of the experiment at every x position. This infers that the reaction
rate was overestimated in the simulation.
Several factors can be mentioned as possible sources of this overestimation,
for example, lower heat losses at the walls than in reality, the use of the two-
step reaction model, the effect of the assumption applied to post-process the
experimental results that the flame is infinitely thin, and the possibility that the
stabilization of flame at the flame holder was not reproduced well through the
thickened flamelet approach, i.e. the interaction between the thickened flame
and turbulence was modified by flame thickening. The last one is the same
problem as that Gonçalves dos Santos (2007) encountered. Here, however, the
discussion is focused on the values of the efficiency function calculated with
the dynamic thickened flamelet model, assuming that the overestimation of
the reaction rate was due to the higher values of the efficiency function than
required. This assumption is plausible especially immediately downstream of
the flame holder, where the dynamic thickened flamelet model predicted values
of the efficiency function larger than 4.0 as shown in Figures 5.19 and 5.21.
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Figure 5.22 : Time averaged field of the dynamically calculated Smagorinsky constant
CS. Scales are given in mm.

Figure 5.23 : Time averaged fields of the turbulent viscosity µt. Top to bottom,
z = −0.035, z = 0, and z = 0.035 (m) planes. Scales are given in mm.



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 161 — #179
✐

✐

✐

✐

✐

✐

5.5 - Comparison with experimental results 161

The whole flame surface would retreat to the downstream, if the values of the
efficiency function were smaller in this zone, and may become closer to that
obtained through the experiment.
In this study, the formulation of the dynamic procedure was modified to avoid
unphysically high values of β. The motivation of this modification was that the
value of u′γ∆ calculated by the relations,

ǫ =
u′3

∆x
=

u′∆
3

∆
=

u′γ∆
3

γ∆
(5.4)

and
u′

3
= c2∆

3
x∇

2(∇× ũ) (5.5)

did not yield reasonable values of β. Both u′∆ and u′γ∆ were so small that

the term

(
1 + min

[
γ∆
δ
l
,Γ

〈u′

γ∆〉
s0
l

])
/

(
1 + min

[
∆
δ
l
,Γ

〈u′

∆〉
s0
l

])
in the formulation

of the dynamic procedure, Equation 1.89, became approximately unity, and
consequently β diverged. The modification was done by approximating that
the ratio of the terms related to the turbulence strength at the scale of the
thickness of the thickened flame Fδ0l and that at the test filter scale ∆̂ is equal
to the effective filter size ratio γ,

1 + min

[
γ∆
δ
l
,Γ

〈u′

γ∆〉
s0
l

]

1 + min

[
∆
δ
l
,Γ

〈u′

∆〉
s0
l

] ≈ γ . (5.6)

This approximation avoided the apparition of unphysically high values of β as
observed in Chapter 3 and kept it between 0 and 1.
However the comparison of the results of the simulation performed with this
modified model and the experiment indicates that the values of the efficiency
function calculated with this approximation were higher than those expected
from the experimental result, showing that the values of β was higher than those
in reality. This means that the left-hand-side term of Equation 5.6 should have
been larger than γ, and the modified version of the dynamic procedure requires
further development.
The other possibility to obtain the value of the left-hand-side term of Equation
5.6 is to solve the balance equations for the subgrid-scale turbulent kinetic
energy k∆ and kγ∆, at the flame thickness scale ∆ = Fδ0l and the test filter
scale γ∆ and to calculated u′∆ and u′γ∆. This method was not tested in this
study, as it requires to close and solve two additional transport equations and
increase the numerical costs. However, this is worth testing in the future.
From the comparison of the results of the simulation and the experiment, the
dynamic thickened flamelet model was observed to predict the reaction rate
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higher than in the experiment. It may be related to the problem that Gonçalves
dos Santos (2007) also encountered. The stabilization of flame at the flame
holder was not reproduced well through the thickened flamelet approach, i.e.
the interaction between the thickened flame and turbulence was modified by
flame thickening. However, these two flames are qualitatively quite similar,
and this fact shows the capability of the dynamic thickened flamelet model
of calculating the turbulent combustion without any input for the efficiency
function.

5.6 Computational costs of the dynamic procedures

Table 5.1 gives the numerical parameters of the simulation performed in this
chapter and tables 5.2 and 5.3 compare its computational costs for different
CPU numbers with optimized combinations of the CPU numbers for the AVBP
code, which conducted the simulation, and the DTF-DS code, which calculated
the values of the model constants. These values were obtained through simula-
tions on an IBM Power 6 cluster of IDRIS (Institute for Development and Re-
sources in Intensive Scientific computing) in France. As explained in Appendix
B, the model constants such as Charlette’s constant β and the Smagorinsky
constant CS were calculated separately from the simulation of the turbulent
combustion which was performed in the AVBP code. The two codes were cou-
pled every 100 iterations (see Figure B.2).
From the balance of the number of processors for the AVBP and DTF-DS codes
shown in Table 5.2 the simulations with the dynamic procedures cost more than
twice as much as those with constant model constants, but as Table 5.3 shows,
the percentage of the CPU time of the dynamic procedures in the total CPU
time decreased as the number of processors increased. The increase of the com-
putational costs with the increase of the number of processors occurred at the
AVBP side rather than at the DTF-DS side. This resulted from the different
frequencies of data exchanges among the CPUs in each code, i.e., the increase
of data exchange due to the increase of CPU number was more dramatic in the
AVBP code than in the DTF-DS code, where the AVBP code computed 100
iterations while the DTF-DS code calculated Charlette’s constant β just once.
When a larger number of processors are available, the percentage is expected
to further decrease, and the additional cost due to the implementation of the
dynamic procedures becomes less important. At least in the present study, the
total computational costs remained at an accessible level. Furthermore, the
present study did not focus on the optimization of the computational perfor-
mance of the dynamic thickened flamelet model. The computational costs can
probably be decreased by introducing sophisticated algorithms.
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Figure 5.24 : Comparison of the time averaged filtered progress variable [c̃] (left) and

its resolved variance
[
c̃2
]
− [c̃]

2
(right) obtained through the simulation (solid line) and

the experimental data (dashed line), where [·] represents the time averaging. Top to
bottom, at x = 0.0325, 0.0725, and 0.1125 (m). These distances respectively correspond
to 0.02, 0.06, and 0.10 (m) downstream of the flame holder. Scales are given in mm
in the plots.
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Number of grid points Number of iterations Coupling frequency
460434 300000 100

Table 5.1 : Numerical parameters of the simulation.

Number of processors Computational Physical CPU Restitution
Total AVBP DTF-DS efficiency (µs) time (s) time (h) time (days)
64 23 41 201.7 0.08 7740 5.0
128 50 78 211.4 0.08 8110 2.6
192 81 111 233.5 0.08 8960 1.9

Table 5.2 : Comparison of the computational costs of the simulation performed
with the dynamic thickened flamelet (DTF) and the dynamic Smagorinsky (DS) mod-
els. These values were obtained through simulations on an IBM Power 6 cluster
of IDRIS (Institute for Development and Resources in Intensive Scientific comput-
ing) in France. The calculation of DTF and DS models were performed succes-
sively on the same processors. Computational efficiencies were calculated through
[ CPU time ] / ([ number of iterations ]× [ number of grid points ]).

Number of CPU time (h)
processors Total AVBP DTF-DS

64 7740 2780 4960
128 8110 3150 4960
192 8960 3780 5180

Table 5.3 : Comparison of the CPU time of the simulation part (AVBP) and the part
of the dynamic procedures (DTF-DS).
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5.7 Conclusion

In this chapter, a three-dimensional full dynamic simulation of a V-shape flame
was performed. The time averaged field of the Favre filtered progress variable
[c̃] was then compared to the experimental result. The study in this chapter is
concluded as follows:

• The analysis of vorticity and helicity revealed the existence of three-
dimensional turbulent structure. This fact shows the importance of the
three-dimensional simulation.

• In addition to a recirculation motion of two vortices that lie along the
spanwise direction behind the flame holder, a convection motion from the
wallside to the center of the chamber was observed in the recirculation
zone.

• The heat loss boundary condition yielded the difference of the tempera-
ture between close to the centerline of the combustion chamber and beside
the lateral walls. It resulted in the remarkable difference of the reaction
rate between these zones.

• The comparison of the result with that of the experiment infers that
the values of the dynamically calculated Charlette’s constant were larger
than the values required to reproduce the experimental result. It could
be caused by poor prediction of the turbulence strength at the flame
thickness scale and at the test-filter scale or poor descriptions of the
flame stabilization immediately downstream of the flame holder by the
thickened flamelet model.

• The simulation result may be developed by solving transport equations
of kinetic energy for the calculation of fluctuating velocity.

• The numerical cost of the simulation performed with the dynamic proce-
dures was more than twice as much as that of simulations with constant
model constants, but it remains at an accessible level.
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Conclusions

In this study, the dynamic thickened flamelet model, which had been originally
proposed by Charlette et al. (2002b), was implemented into the AVBP code,
which was developed by CERFACS and IFP for simulations of turbulent com-
bustion, and a series of simulations of a V-shape flame stabilized downstream
of a triangle flame holder were performed in combination with the dynamic
Smagorinsky model.
For the implementation, the thickened flamelet model was first tested with
a one-dimensional laminar flame resolved on a sufficiently fine computational
grid, where the value of the flame front wrinkling factor should be unity. The
ability of the dynamic thickened flamelet model in a weak form was well verified,
while that in a strong form induced divergence of the efficiency function, and
did not represented laminar conditions.
The thickened flamelet model in a weak form was then tested using a laminar
one-dimensional flame resolved on an LES mesh by the use of the thickened
flamelet approach. It succeeded in reproducing laminar conditions, despite
that the mesh was relatively coarse and the flame was artificially thickened.
After the tests under laminar conditions, the model was applied to an instan-
taneous solution of a two-dimensional turbulent flame, obtained through a sim-
ulation with a fixed constant model and thickened flamelet approach. The
output of the original model was, however, not reasonable. This was due to
poor predictions of the turbulence strength at the test-filter scale. A modified
formulation of the model that does not require the prediction of the turbulence
strength was, therefore, proposed.
Using this modified formulation of the dynamic thickened flamelet model, the
effects of numerical parameters, such as the test-filter size, the width of the
averaging interval, and the choice of the reaction model in the calculation of the
Charlette’s constant β, were investigated, and the parameters were determined
for multi-dimensional simulations. Boger’s algebraic model and the reduced
Arrhenius law based on the progress variable were verified to be efficient in the
calculation of the constant β, while the standard Arrhenius law was observed



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 168 — #186
✐

✐

✐

✐

✐

✐

168 Conclusion

to be strongly influenced by the use of different Schmidt numbers Sc for each
chemical species, and caused numerical problems. Thus, only the two formers
were chosen for multi-dimensional simulations.
Two-dimensional simulations were conducted with the previously determined
parameters, and the result was compared with those obtained with the thick-
ened flamelet model with constant values of β. The result obtained using
Boger’s algebraic model in the calculation of the constant β was close to the
results calculated with β = 0.3 and β = 0.5. The dynamic thickened flamelet
model succeeded in reproducing a realistic turbulent combustion without any
empirical input for the constant β. Boger’s algebraic model was, thus, chosen to
be used in the three-dimensional simulation for the calculation of the constant
β.
Following the same manner, the dynamic Smagorinsky model was also tested.
Because the density of the flow media significantly changes across a flame front,
the output of the dynamic Smagorinsky model with density change (Moin’s
procedure) was also investigated in comparison with the standard dynamic
Smagorinsky model.
Applying a LES filter to a laminar one-dimensional flame, analytical values
of the subgrid-scale flux of momentum was obtained as the difference of fil-
tered and non-filtered fields. The obtained values revealed the existence of the
subgrid-scale flux of momentum in the direction opposite to the prediction of
the usual gradient assumption in a laminar one-dimensional flame. However
the magnitude was small compared to the resolved momentum flux and it was
negligible.
Then the dynamic Smagorinsky models, both with and without the density
change, were applied to the LES filtered laminar one-dimensional flame. Both
models reproduced well the subgrid-scale flux of momentum and yielded similar
values to the analytical values.
The models were then applied to a laminar one-dimensional flame resolved on
a LES mesh using the thickened flamelet approach. Both of them predicted a
subgrid-scale flux of momentum opposite to the direction of the usual gradient
assumption, but the magnitude of the subgrid-scale flux was smaller than that
obtained in the previous test, i. e., the flux would also be negligible in multi-
dimensional simulations performed in this study. The values of the Smagorinsky
constant CS were, thus, set to zero in the multi-dimensional simulations of this
study, when the dynamic Smagorinsky model returned negative CS values.
The test with an instantaneous solution of a two-dimensional turbulent flame
was also performed with both models. Both of them predicted negative CS in
the flame and their predictions were quite similar.
These two dynamic Smagorinsky models were coupled with the dynamic thick-
ened flamelet model for performing two-dimensional simulations. The time
averaged fields of the dynamically determined Smagorinsky constant CS and
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turbulent viscosity µt were, then, compared. Contrary to the test performed
with an instantaneous solution of a two-dimensional turbulent flame, the time
averaged fields were considerably different, and the difference demonstrated the
importance of considering the density change across the flame front.
Lastly, a three-dimensional simulation of a V-shape flame was performed using
the dynamic thickened flamelet model and the dynamic Smagorinsky model
with the density change, and the result was compared with the experimental
data of Knikker et al. (2002) and Knikker et al. (2004). The comparison in-
ferred that the magnitude of the efficiency function calculated with the dynamic
thickened flamelet model was larger than the values required to reproduce the
experimental data. However, the results were qualitatively quite similar, and
this fact proved the feasibility of the dynamic thickened flamelet model to com-
pute the turbulent combustion without any empirical input for the efficiency
function.
From the investigations of the present study of the dynamic thickened flamelet
model, several conclusions can be drawn:

• The original dynamic thickened flamelet model proposed by Charlette
et al. (2002b) causes a divergence of the constant β when the turbulence
strength is weak. This is due to the close values of fluctuating veloci-
ties u′∆ and u′γ∆ at the flame thickness scale and test-filter scale. To
overcome this problem, a modification was added in this study.

• The three-dimensional simulation of a V-shape flame stabilized down-
stream of a triangular flame holder was performed with the modified
dynamic thickened flamelet model, and the result was compared with the
experimental data. The comparison showed the feasibility of the dynamic
thickened flamelet model to compute a turbulent combustion without any
empirical input. However, some discrepancies were found between the nu-
merical results and experimental data.

• These discrepancies could be caused by poor prediction of the turbulence
strengths at the flame thickness scale and at the test-filter scale. For the
development of the precision of the dynamic thickened flamelet model,
a more appropriate procedure to calculate the turbulence strength is re-
quired. Another possible cause of the errors lies in the poor description
of the flame stabilization immediately downstream of the flame holder by
the thickened flamelet model.

• The numerical cost of the simulation performed with the dynamic pro-
cedures was more than twice as much as that of simulations with fixed
model constants, but it remains at an accessible level. It will be fur-
ther efficient by using a greater number of processors than in the present
study and by developing the computational algorithm for the dynamic
procedures.
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Future works

From the first proposition of the dynamic thickened flamelet model by Charlette
et al. (2002b), there have been little attempt for its development. The model,
therefore, still remains in a primitive stage. Further investigations are required
for the development. The major topics for this are summarized as follows:

• Development for the calculation of turbulent intensity at the thickness
scale of the thickened flame and at the test filter scale: The discrepancies
found between the result of the three-dimensional simulation and the
experimental data was probably caused by the poor approximation of the
terms related to the turbulence intensity. Solving transport equations
of kinetic energy is one of the powerful candidates to development the
precision of the dynamic thickened flamelet model.

• Further investigation of the impact of the reaction model used in the cal-
culation of Charlette’s constant β: In the present study, three reaction
model were tested for the calculation of the model constant β, but only
Boger’s algebraic model was applicable to the three-dimensional simula-
tion. However, It is not obvious to say that this model is the best one
to be used in the dynamic thickened flamelet model. For example, the
Arrhenius law can also be used, when the Schmidt numbers Sc are identi-
cal for all chemical species. The dependence of the choice of the reaction
model on the numerical configuration should be further investigated.

• Simulations of turbulent combustion under variable conditions of turbu-
lent intensity, equivalence ratio of the fuel-air mixture, and geometries of
the combustion chamber: In this study, only one combination of the inlet
speed, the equivalence ratio, and the geometry of combustion chamber
was considered. Simulations and experiments of different numerical con-
figurations and geometries of combustion chamber are required for the
development and inspections of the dynamic thickened flamelet model.

• Improvement of the algorithms and numerical setup: Because the present
study focused on the feasibility of the dynamic thickened flamelet model
to compute turbulent combustion, the algorithms in the computational
code were not highly developed. As the dynamic procedure mainly con-
sists of filtering and integrating processes, the development of these sub-
routines may dramatically decrease the numerical costs. The coupling
frequency of the AVBP code and the DTF-DS code, which was set to
100 in the present study, can also be further optimized depending on
numerical configurations.
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Appendix A

Characteristic boundary

condition

The idea of the characteristic boundary condition is to correct the temporal
evolution of the variables calculated by the numerical scheme by using the
so-called characteristic variables.
The characteristic variables are defined through transformation of the original
transport equations of conservative variables. This transformation starts, in
general, from the transformation of the original system into the system de-
fined by one normal to the boundary and two tangential bases, then into the
characteristic form by diagonalizing the normal Jacobian due to the first trans-
formation. There are several ways of this. The details of this process can
be found for example in Thompson (1987), Baum et al. (1995), Poinsot and
Veynante (2005) and Moureau et al. (2005).
After the transformation of the original transport equations into the normal
and tangential system, they write:

∂Vn

∂t
+N +

∂Vn

∂~n
+ T1

∂Vn

∂~t1
+ T2

∂Vn

∂~t2
+ S = 0 . (A.1)

~n is the normal vector to the boundary pointing to outside of the computational
domain. ~t1 and ~t2 are the tangential unit vectors on the boundary surface.
By diagonalizing N , the equation above becomes:

∂W

∂t
+D

∂W

∂~n
= SW − TW (A.2)
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180 Characteristic boundary condition

where

D =




~u · ~n+ c
~u · ~n− c 0

~u · ~n
~u · ~n

0 ~u · ~n
. . .

~u · ~n




(A.3)

and

W =




un + 1
ρcP

−un + 1
ρcP

ut1
ut2

−Y1

c2
P + ρ1
...

−YN

c2
P + ρN




(A.4)

SW is the sum of the terms due to diffusion and chemical reactions. TW is
related to the tangential terms. W is the vector of the characteristic variables.
The waves of each characteristic variable propagate at the speeds of correspond-
ing terms in D. There exist, thus, at least one incoming wave at any boundary
in a subsonic condition.
The time evolution of the conservative variables are calculated by the numerical
scheme using the original transport equations. Let us represent the vector of
conservative variables by U . Then the evolution of conservative variables is:

∂Up = Un+1 − Un , (A.5)

where the subscript p indicates the "prediction" as this value should be cor-
rected by the boundary condition. The evolution of the characteristic variables
is then obtained from that of the conservative variables. By representing the
transformation matrices between the two systems by LU and RU , it writes

∂W = LU∂U ∂U = RU∂W (A.6)

Then we get
∂Wp = LU∂Up (A.7)

However, the evolution of the characteristic variables related to the incoming
waves should be defined by boundary conditions.
For the clarity, the following discussion focuses on the case where the wave
of the second characteristic variable goes out through the boundary. This is
a typical outlet condition of subsonic simulations. Other evolutions of the



✐

✐

“these_Itaru_Yoshikawa” — 2010/9/16 — 12:25 — page 181 — #199
✐

✐

✐

✐

✐

✐

181

characteristic variables do not need to be modified. One of the simplest ways
is to calculate the evolution of incoming wave from the spatial derivative of
related characteristic variable at the boundary.

∂W2 = D22
∂W2

∂n
∆t (A.8)

The evolution of the conservative variable related to the incoming wave is then
subtracted from the evolution by setting the evolution of corresponding char-
acteristic variables to zero and the value above is substituted.

∂Wc = ∂Wp −




0
∂Wp2

0
0
0
...
0




+




0
∂W2

0
0
0
...
0




(A.9)

Here the subscript c indicates "corrected" value. This corrected evolution is
then cast to the evolution of conservative variables.

∂Uc = RU∂Wc (A.10)

There are several candidates for the application of the characteristic boundary
condition. In Hirsch (1989), a treatment of the characteristic boundary condi-
tion of advection terms in the bi-characteristic equations was presented. Uti-
lization of Fourier decomposition at the boundary was tested in Giles (1990).
Viscous and reaction terms were implemented by Sutherland and Kennedy
(2003). Nicoud (1999) tested the non-reflecting boundary condition defined
by different formulations and showed the dependence of the solution and its
convergence speed on the formulation.
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Appendix B

Implementation of the filtering

process and the dynamic

procedure

Implementation of the filtering process in multi-dimensional

simulations

As presented in Chapter 1, the filtering process is essential in the context of
the Large Eddy Simulation. It writes,

Q(x) =

∫
Q(x)F (x− x′)dx′ (B.1)

where Q(x) and Q(x) are a physical quantity and its filtered value at a position
x = (x1, x2, x3) respectively. In the present study, Gaussian filters are used.
Then,

F (x) = f(x1, x2, x3) =

(
6

π∆2

)3/2

exp

[
−

6

∆2

(
x21 + x22 + x23

)]
, (B.2)

where ∆ is the filter size. The shape of the filter is presented in Figure B.1.
In theory, the filtering should be done integrating the value of Q in the whole
computational domain. However, this procedure is numerically too expensive
and not efficient.
Considering the shape of a Gaussian filter, only the values of the variables of
points that are within a range of ∆ from the target point are used for the
calculation of the filtered variables.

Q(x) =

∫
Q(x′)F (x− x′)dx′

≈

∫

(x−x′)2<∆2

Q(x′)F (x− x′)dx′ . (B.3)
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184 Implementation of the filtering process and the dynamic procedure

Figure B.1 : Shape of the Gaussian filter. Horizontal axis was non-dimensioned by
the filter size ∆.

In a practical implementation, every grid point is named by a number. At the
beginning of the simulation, using these numbers, the filtering code creates a
list of points to be considered in the calculation of filtered variables for each
grid point. Because unstructured meshes are used in the present study, the
volume, dV , covered by one grid point is not constant. Then as a first step,
the sums of the original values on the listed points multiplied by the values of
F (x − x′)dV ′ are calculated at each grid, where dV ′ is the volume covered by
a grid point at x′. The sums are then divided by the sum of the volume. This
procedure writes,

Q(x) ≈

∑

(x−x′)2<∆2

Q(x′)F (x− x′)dV ′

∑

(x−x′)2<∆2

dV ′

. (B.4)

Dynamic calculation of the model coefficients

The calculation of the model coefficients such as Charlette’s coefficient β and
the Smagorinsky coefficient CS is performed separately from the computation of
the turbulent combustion which is performed in the AVBP code. As Figure B.2
presents, the AVBP code sends the values of variables which are required in the
calculation of the model coefficients to the code that conducts the calculation.
This code is mentioned as DTF-DS code in the following. After receiving the
variables, the DTF-DS code starts calculating the model coefficients β and CS ,
and returns their values back to the AVBP code. Because the time step is
quite small due to the use of the explicit time evolution procedure, the values
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of the model coefficients need not to be calculated at each iteration. Retaining
the value of Gonçalves dos Santos (2007), the two codes are coupled every 100
iterations. This frequency of the update of model coefficients corresponds to
each 27 µs in physical time. The AVBP code continues the simulation using
the values of the coefficients returned previously, while the new values of the
model coefficients are being calculated by the DTF-DS code.

AVBP

DTF-DS

S
e
n
d

 v
a
ri
a
b
le

s

S
e
n
d

 β
 a

n
d

 C
S

i = 0

Time evolution

Calculation of β and CS

i = 100 i = 200 i = 300 I = 400   ...Initialization

Figure B.2 : Coupling of the AVBP code and the DTF-DS code. i in the figure
represents the iteration step.
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