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RÉSUMÉ

Ce rapport résume les recherches que j’ai entreprises depuis la fin de mon doctorat de thèse à

l’automne 2001. Le travail présenté a été fait dans le cadre de divers projets et en collaboration

avec de nombreux chercheurs : l’Imperial College London, Royaume-Uni (2001–2004) ; Bureau de

Recherches Géologiques et Minières (BRGM), France (2004–présent) ; le Centre de recherches pour

le génie parasismique (Earthquake Engineering Research Centre) à l’Université d’Islande (2009–

2010). En outre, ce rapport énumère les activités d’enseignement, de supervision et de conseils

dans lesquels j’ai été impliqué depuis 2001.

Ma recherche s’est principalement focalisée sur la prédiction de mouvements fort du sol à des

fins d’ingénierie, soit pour des projets de conception ou de rénovation, soit pour l’évaluation de

l’aléa et du risque sismique. La plupart de mes études portent sur l’estimation des mouvements

sismiques empiriques par le biais des équations de prédiction de mouvements du sol (GMPEs, aussi

appelées modèles de mouvements du sol ou relations d’atténuation). Cette recherche met l’accent

sur : l’amélioration des prévisions des mouvements du sol médians et de la variabilité associée ; la

quantification, la compréhension et potentiellement la réduction de la variabilité ; l’évaluation et la

modélisation de la dépendance régionale des mouvements du sol ; et la confrontation de simulations

et d’estimations empiriques.

Mes recherches montrent que, bien que des progrès significatifs ont été accomplis au cours des

deux dernières décennies dans l’amélioration de la précision des estimations de mouvements du

sol médians pour un scénario donné, l’incertitude épistémique reste élevée et cela doit être pris en

compte aussi bien dans l’évaluation de l’aléa que du risque sismique. En outre, toutes les méthodes

permettant de réduire les écarts-types de GMPEs proposées jusqu’à présent, même si elles semblaient

prometteuses, se sont révélées largement inefficaces. Mes études ont démontré que les mouvements

sismique du sol peuvent varier considérablement selon les séismes ou les sites d’étude. Cela aussi

doit être pris en compte lors de l’évaluation de l’aléa et du risque sismique.

Toute tentative de réduire les incertitudes épistémiques et de dériver les GMPEs avec des écarts-

types plus faibles sont tributaires d’une part de l’augmentation de la densité des réseaux de mou-

vements forts ; et d’autre part et peut-être de manière plus importante encore, de l’amélioration de

la precision des métadonnées associées aux enregistrements de mouvements forts. Une telle base

de données ainsi améliorée devrait conduire à une meilleure compréhension des phénomènes phy-

siques et, de ce fait, à des résultats empiriques concernant l’effet de source, de trajet et de site sur

les mouvements sismiques.



ABSTRACT

This report summarises the research I have undertaken since finishing my Ph.D. thesis

in autumn 2001. The work reported was undertaken as part of various projects and in

collaboration with many researchers at: Imperial College London, UK (2001–2004); Bureau

de Recherches Géologiques et Minières (BRGM), France (2004–now); and the Earthquake

Engineering Research Centre, University of Iceland (2009–2010). In addition, this report

lists the teaching, supervision and consultancy work that I have been involved with since

2001.

My research has mainly been on the prediction of earthquake ground motions for engi-

neering purposes, e.g. design and retrofit projects and seismic hazard and risk assessments.

Most of my studies relate to empirical shaking estimation through ground-motion predic-

tion equations (GMPEs, also called ground-motion models and attenuation relations). It has

focussed on: improving estimates of the median ground motion and associated variability;

quantifying, understanding and potentially reducing variability; assessing and modelling

the regional dependence of strong ground motions; and combining simulations and empir-

ical estimates.

My research shows that, although significant progress has been made in the past couple

of decades in improving the accuracy of estimates of the median ground motion for a given

scenario, epistemic uncertainty remains high and this must be accounted for in all seismic

hazard and risk evaluations. In addition, all methods of reducing the standard deviations

of GMPEs proposed so far, although they looked promising, have proved to be largely inef-

fective. My studies have demonstrated yet again that earthquake ground motions can vary

significantly between earthquakes and sites and this also must be taken into account when

conducting seismic hazard and risk assessments.

Any attempt to reduce epistemic uncertainties further and derive GMPEs with lower

standard deviations are reliant on increasing the density of strong-motion networks but,

perhaps more importantly, improving the accuracy of the metadata associated with strong-

motion records. Such an improved database should lead to greater understanding of the

physical reasons for empirical findings concerning the effect of different source, path and

site parameters on earthquake ground motions.
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1. INTRODUCTION

Engineering seismology is the link between earth sciences and engineering. It is the study

of earthquakes and the associated ground motions with respect to their potential impact

on the built (and sometimes natural) environment. The aim of engineering seismology is

to provide civil engineers, decision makers, (re)insurers and others with the characteristics

of earthquake loads that should be considered in design, retrofitting or planning. These

estimated loading conditions must satisfy certain conditions regarding their level and fre-

quency of occurrence during the lifetime of a structure. Loading conditions appropriate

for a particular type of structure are expressed in terms of ground motion in the frequency

(period) and/or time domains.

One method for estimating these loading conditions is through equations based on

strong ground motion recorded by accelerographs1 during previous earthquakes. These

equations have a handful of independent parameters, such as magnitude and source-to-site

distance, and a dependent parameter, such as peak ground acceleration (PGA) or response

spectral acceleration. The coefficients in the equations are invariably found by regression

analysis. Although these equations are often referred to as attenuation relationships, atten-

uation relations or attenuation equations, they predict more than how ground motion varies

with distance. Consequently the preferred names for such equations are ground-motion

prediction equations (GMPEs) or ground-motion models (this name is sometimes preferred

because some models are not expressed in terms of equations but as tables or graphs). Ge-

ology is based on the concept of uniformitarianism, i.e. ‘the present is the key to the past’,

but for GMPEs since we are interested in making predictions it is the past that is the key to

the future: ground motions in future earthquakes will be like shaking in past events. These

equations are a key component in probabilistic seismic hazard analysis (PSHA) (Cornell,

1968) and deterministic (scenario-based) seismic hazard analysis (DSHA). Hence, over the

past forty years hundreds of GMPEs have been published and they remain the main method

for converting earthquake parameters (e.g. magnitude and source-to-site distance) to site

parameters (e.g. PGA) within seismic hazard analysis. An example of a recent GMPE is this

one by Ambraseys et al. (2005a) for the estimation of PGA:

1 Usually. Records from broadband instruments are occasionally used because they have the advantage of

lower noise levels and trigger thresholds; but they saturate for large-amplitude motions.
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log PGA = a1 + a2Mw + (a3 + a4Mw) log
√
r2jb + a2

5

+a6SS + a7SA + a8FN + a9FT + a10FO

where Mw is moment magnitude, rjb is the distance to the vertical projection of the rupture

on the surface (commonly known as the Joyner-Boore distance), SS = 1 for soft soil sites

and 0 otherwise, SA = 1 for stiff soil sites and 0 otherwise, FN = 1 for normal faulting

earthquakes and 0 otherwise, FT = 1 for thrust (reverse) faulting earthquakes and 0 oth-

erwise, FO = 1 for odd faulting earthquakes and 0 otherwise and a1–a10 are regression

coefficients.

Even after over four decades of deriving GMPEs and dramatic improvements in the

quality and quantity of strong-motion (accelerometric) data there remain a number of out-

standing issues. These issues can be roughly grouped into those concerning aleatory vari-

ability and those concerning epistemic uncertainties, which are defined and discussed in

the following sections. The following quotation by McGuire et al. (1995) emphasizes the

importance of ‘uncertainties’ in ground-motion prediction (note that ‘uncertainties’ in this

quotation refers to both aleatory variability and epistemic uncertainty):

In this age of tight budgets and competing resources, it is just as unaccept-
able to promote an overly-conservative seismic design or retrofit of an engi-
neered facility as it is to allow an unconservative design or retrofit. Defendable
decisions on seismic issues will be made only when unbiased estimates of me-
dian ground motions are developed, accounting for all current seismological
knowledge, when uncertainties are accurately represented so that the range of
possible ground motions for a given earthquake can be established, and when
an appropriate, explicit degree of conservatism is adopted in the choice of de-
sign or retrofit ground motion. The degree of conservatism should reflect the
importance of the facility, the consequences of failure, and the cost of design or
retrofit, among other things.

1.1 Aleatory variability

In the words of Stephen Jay Gould, a paleontologist: ‘The median is not the message’.

In fact in ground-motion prediction this should be ‘The median is not the whole message’

since predictions of the median are obviously important but so is the variability about the

median. As an example, variations up to a factor of twenty in response spectral ordinates

for the same magnitude and distance are possible (Figure 1.1).

GMPEs are greatly simplified models of complex phenomena related to the generation

and propagation of seismic waves from a finite, moving and non-uniform earthquake source

through a non-homogeneous crust to a site underlain by complex geology and often within
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an area of topographic relief (e.g. in a basin or on a hill). Therefore, it is no surprise that

such equations are associated with large standard deviations (generally known as sigma,

σ); these standard deviations are the aleatory variability of such models. For example, the

GMPE of Ambraseys et al. (2005a) given above is associated with a magnitude-dependent

standard deviation (on the logarithm) given by σ =
√
σ2

1 + σ2
2 where σ1 is the intra-event

term: 0.665 − 0.065Mw and σ2 is the inter-event term: 0.222 − 0.022Mw. σ must be used

within seismic hazard analysis to obtain appropriate hazard estimates (e.g. Bommer & Abra-

hamson, 2006).

It was shown by Douglas & Smit (2001) and others that equations using only mag-

nitude, source-to-site distance and simple site categories cannot hope to reduce the stan-

dard deviations associated with GMPEs to much below 0.2–0.3 (in common, base 10, log-

arithms), the level at which they are now. There is hope, however, that with the inclusion

of additional independent parameters (e.g. earthquake mechanism, better modelling of

the travel path and better site characterisation) that σs could be reduced. A better un-

derstanding of the source of the observed variability in ground motions would possibly

allow a reduction in σ. It is also important to better estimate the true σ associated with

a ground-motion prediction since the limited data currently available means that the stan-

dard deviations associated with current GMPEs may not be appropriate for all applications

[e.g. site-specific analyses (Atkinson, 2006)].

R. A. Fisher, the founder of modern statistics, wrote in 1925:

The populations which are the object of statistical study always display vari-
ation in one or more respects. To speak of statistics as the study of variation also
serves to emphasize the contrast between the aims of modern statisticians and
those of their predecessors. For until comparatively recent times, the vast ma-
jority of workers in this field appear to have had no other aim than to ascertain
aggregate, or average, values. The variation itself was not an object of study,
but was recognized rather as a troublesome circumstance which detracted from
the value of the average. The error curve of the mean of a normal sample has
been familiar for a century, but that of the standard deviation was the object
of researches up to 1915. Yet, from the modern point of view, the study of the
causes of variation of any variable phenomenon, from the yield of wheat to the
intellect of man, should be begun by the examination and measurement of the
variation which presents itself.

1.2 Epistemic uncertainty

The quantity of strong-motion data available for the derivation of GMPEs has increased

greatly in the past decade or two with the installation of digital networks and the occur-

rence of damaging earthquakes in areas of dense instrumentation (e.g. Northridge 1994;

Kobe 1995; Umbria-Marche 1997; Chi-Chi 1999; and Parkfield 2004). However, there is
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still insufficient data and understanding, to resolve questions concerning the most appropri-

ate independent parameters (e.g. how best to characterise local site geology?) or the true

scaling of ground motions with magnitude, distance and other parameters (e.g. what is the

best functional form?). This lack of data and knowledge means that numerous explanations

for the same observations are possible, many of which are equally likely. This is known as

epistemic uncertainty. With respect to GMPEs it is shown by the range of predicted ground

motions for the same scenario from various models (Figure 1.2). Given a large set of data

this epistemic uncertainty should reduce because some of the GMPEs can be rejected as

being a poor model of the observations. Given infinite data only one model could be said

to be true. However, this model (unless extremely complex) would be associated with a

non-zero σ showing that certain sources of variability are not considered. This shows the

separation between epistemic uncertainty and aleatory variability. It is important that the

state of knowledge concerning the expected ground motions for a certain scenario is ap-

propriately modelled when undertaking a seismic hazard assessment so that the epistemic

uncertainty is correctly captured.

Donald Rumsfeld famously said:

There are known knowns. These are things we know that we know. There
are known unknowns. That is to say, there are things that we know we don’t
know. But there are also unknown unknowns. There are things we don’t know
we don’t know.

Although criticized for the inelegance of its language this statement sums up some of

the difficulties in assessing epistemic uncertainties.

1.3 My research

One aim of my Ph.D. thesis (Douglas, 2001) was to better understand the source of the

observed variability in ground motions. This report does not discuss work undertaken dur-

ing my Ph.D. nor those articles published based on it (Douglas & Smit, 2001; Ambraseys

& Douglas, 2003b,a; Douglas, 2003b,a) or from that period (Ambraseys & Douglas, 2000;

Douglas, 2002). However, my subsequent research has benefited greatly from knowledge

and experience gained during my Ph.D. and developments (e.g. computer programs) un-

dertaken during those three years.

The following chapter (Chapter 2) discusses my research into ground-motion predic-

tion for engineering purposes. Where necessary it discusses studies conducted by other

researchers but in general the focus is on the outcomes of research I was involved with. My

research can be divided into the following overlapping themes.
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• Measuring, capturing and reducing epistemic uncertainty: Improving estimates of the

median ground motion and associated standard deviation.

• Quantifying, understanding and potentially reducing aleatory variability

• Regional dependence of strong ground motions

• Combining simulations with empirical estimates

1.4 Seismic hazard assessments in practice

It has often been said that seismic hazard assessment is not solely an academic exercise

as it provides estimates of earthquake shaking to be used by engineers for design, retrofit

or planning purposes. Therefore, I believe it is important to have some hands-on experi-

ence of consultancy projects connected with engineering projects. During my post-doctoral

research at Imperial College I was involved in a few such projects, although on a limited

basis. However, since I joined BRGM in September 2004 I have worked on roughly 40

seismic hazard assessments for projects concerning dams, nuclear power plants and similar

high-value facilities. One direct research outcome of these commercial projects was my

conference article (Douglas, 2006c) that presents a method for the estimation of correction

factors for adjusting ground-motion estimates for the ground surface down to large depths

(> 500 m) for use in the design of tunnels. This work was inspired by a task to provide

ground-motion estimates for the Lyon-Turin trans-Alpine rail tunnel. As well as commercial

projects, I have also worked on some public service projects at BRGM, mainly providing

advice on ground-motion prediction. These tasks have improved my understanding of the

needs of the end users in earthquake risk mitigation, which is vital to have if research is to

be useful and focussed.

In addition, since 2002 I have been a consultant to Güralp Systems Ltd, a manufacturer

of seismometers. I developed the software Strong-Motion Analysis and Research Tool (ART)

for distribution with their instruments. This collaboration has broadened my knowledge of

instrumentation and the needs of the end user of seismological data. I continue to provide

advice to Güralp Systems on future instrumentation and software needs.

1.5 Other research

Although my main topic of research since my Ph.D. has been ground-motion prediction,

I have participated in other research projects and have published a number of articles on

different topics. The following two chapters discuss my work on ground-motion prediction.
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This section briefly describes other research undertaken. This work helped me broaden my

knowledge and gave me a better insight into other aspects of risk assessment and manage-

ment.

While still at Imperial College as a post-doctoral researcher I collaborated with my su-

pervisor on a study to assess magnitudes of Indian earthquakes that occurred before the

advent of magnitude scales (Ambraseys & Douglas, 2004). This work used thousands

of macroseismic intensities from 27 earthquakes with both macroseismic intensities and

instrumentally-based magnitudes to derive equations to relate magnitude to the area con-

tained within various isoseismal contours. These equations were then used to estimate

magnitudes for 16 earthquakes that occurred during the pre-instrumental period 1804 to

1900.

One of my main responsibilities during my post-doctoral period was the maintenance

and updating of the Internet-Site for European Strong-motion Data (ISESD) and the de-

velopment of a CD ROM containing an extraction of the best data from this database and

an associated browser for sophisticated searches and analysis. ISESD’s past, present and

possible future is summarised in the article by Ambraseys et al. (2004b). ISESD is an

free and easy-to-use source for strong-motion data, which has proved popular with practi-

tioners and researchers in seismology, engineering and insurance. The CD ROM that was

developed during the period 2002–2004 (Ambraseys et al. , 2004a) has also been popular,

particularly for practicing engineers seeking good-quality data and for teaching purposes

because of its easy-to-use interface and visualisation tools. Based on the accelerogram se-

lection methods enabled by this CD ROM I contributed to an article discussing the selection

of strong-motion data for engineering purposes (Bommer et al. , 2003b). This interest in

the selection of time-histories for engineering analysis was also the basis for the paper Dou-

glas (2006d). The Strong-Motion Datascape Navigator that I developed for this CD ROM

has been used for other data dissemination projects (Douglas et al. , 2004a, 2006a). An-

other piece of research associated with ISESD and the CD ROM project was the assessment

of whether accurate spectral accelerations can be extracted from seemingly poor-quality

strong-motion records. A large proportion of the ISESD databank are records that triggered

on the S-wave, and hence the initial part of the motion is missing, or they were recorded

on instruments with low bit ranges, and hence lack resolution. I showed (Douglas, 2003d)

that given certain criteria accurate spectral accelerations could be extracted from such data,

thereby increasing the amount of data that could be used for ground-motion prediction

purposes, for example. The appropriate processing of strong-motion data is discussed by

Bommer & Douglas (2004). Recently I have returned to the problem of filtering of strong-

motion data with the article Douglas & Boore (2011), which discusses the application of
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high-cut filters.

A large part of my first three and a half years at BRGM were concentrated on par-

ticipation in the European Commission Sixth Framework Programme Integrated Project

ORCHESTRA (Open aRCHitEcture and Spatial data infrasTRucture for risk mAnagement).

This project had an information and communication technology (ICT) focus but BRGM,

and a few other partners, provided input from the risk management point of view. The

project made some breakthroughs in the ICT field, which are summarised in the associated

article (Douglas et al. , 2008) and book (Klopfer & Kanellopoulos, 2008): to both of which

I contributed. The pilot implementation of the architecture and some of the services devel-

oped during the project led by BRGM with partners from Ordnance Survey (UK) and the

Joint Research Centre (Italy) (Douglas et al. , 2006e) demonstrated the overall aim of the

project: to facilitate the creation of a system of services and data sources distributed over

the Internet to improve risk management. At the same time as ORCHESTRA I also con-

tributed advice to the Integrated Global Observing Strategy (IGOS) Geohazards initiative.

One aim of this project was to develop an online resource that could be used to search for

relevant hazard maps and related material. The outcome is a prototype metadata catalogue

and editor (Le Cozannet et al. , 2008), to which I contributed through reviews and advice

on the needs of end users.

For a related internal BRGM project (RISK-NAT) (Carnec et al. , 2005) I was charged

with investigating the possibility of undertaking risk evaluation for multiple risks (e.g.

earthquakes, landslides and floods) to obtain comparable results. Multi-risk evaluation is

an area of increasing interest since it would allow decision makers (e.g. politicians) to have

a consistent assessment of the level of risk associated with different hazards and, therefore,

enable the more efficient mitigation of risk by concentrating on the most important dangers.

While reading the literature on risk evaluation for non-earthquake hazards and following

discussions with researchers from other disciplines at BRGM and within the ORCHESTRA

project I was struck by the similarity of the steps within hazard evaluations but the large

differences between the assessment and modelling of the vulnerability of elements at risk.

Within earthquake risk evaluation it is common to model vulnerability through quantita-

tive functions, often known as fragility curves, that express the likelihood of an element

at risk suffering a certain level of damage given a level of ground shaking. However, in

non-earthquake risk evaluation such an approach, with a few exceptions (e.g. hurricanes),

is rarely, if ever, used. I realised that the reasons for this difference in modelling vulner-

ability between risks are numerous (e.g. the peril itself causes human causalities rather

than collapsing buildings, lack of observational data, complexity of damage mechanisms,

the temporal and geographical scales and the ability to modify the hazard level) (Douglas,
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2007c).

During the period 2006–2008 I was involved in the French national project VEDA (Vul-

nErability of structures: A Damage mechanics Approach) that sought to improve the mod-

elling of vulnerability of reinforced concrete structures to earthquake shaking. One aspect

of this improvement that was undertaken by BRGM in collaboration with one of the part-

ners, NECS, was the consideration of more than one characteristic of earthquake shaking

when deriving fragility curves. Currently almost all fragility curves assume that the dam-

age to a structure can be related solely to a single characteristic of earthquake shaking (e.g.

PGA) and accept the associated scatter in the derived fragility curves as part of the uncer-

tainty in the risk evaluation process. Within VEDA the effect of other parameters on the

damage level sustained by the structure were considered and, therefore, fragility surfaces

(they are no longer curves since more than one strong-motion parameter is used) were

derived. This work is summarised in the journal article (Seyedi et al. , 2010). My main

contribution to this work was in the selection of the strong-motion data and its use to con-

struct the surfaces as input to finite element modelling (Douglas, 2006d) but I also helped

in the statistical analysis of the results of this modelling.
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Fig. 1.1: Response spectral acceleration ratios [adjusted to account for minor differences in magni-

tude and distance using the GMPEs of Ambraseys et al. (2005a)] for the common stations

that recorded earthquakes of similar size and at similar locations (Les Saintes 2004–2005

sequence). Epicentral distances for the records are given in brackets after the station name.

From Douglas et al. (2006d).
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Fig. 1.2: Predicted PGA and SA(1 s) (unfilled circles) for aMw6 strike-slip earthquake at rjb = 20 km

on a NEHRP C site against publication date for over 250 published models. Filled circles

indicate models published in peer-reviewed journals and for which basic information on

the data is available. Also shown are the median PGA and SA(1 s) within five-year intervals

(solid line) and the median ±1 standard deviation (dashed lines). From Douglas (2010b).



2. GROUND-MOTION PREDICTION FOR ENGINEERING PURPOSES

This chapter summarises the studies I have authored or co-authored since 2001 (when I

finished my Ph.D.) on ground-motion prediction for engineering purposes. The focus is on

research that led to journal articles.

2.1 Methods for ground-motion prediction

Although my main topic of research has been empirical ground-motion prediction I have

been involved in a number of studies based on ground-motion simulations. Some of these

have sought to bring insights obtained from the simulations to improve empirical mod-

els where data is lacking. At present there are insufficient observations to fully constrain

ground-motion predictions over the entire range of magnitudes, distances, local site con-

ditions and other factors influencing shaking. Therefore, simulations can be important in

helping derive robust models.

During my post-doctoral period at Imperial I had an idea after reading the article by

Suhadolc & Chiaruttini (1987) about how the effect of variations in crustal structure on

earthquake ground motions could be incorporated into empirical GMPEs. At present al-

most all empirical GMPEs simply use distance to characterise the travel path from source

to recording site and data from regions of differing crustal structure are combined when

conducting regression analysis. However, crustal structure has been shown (e.g. Suhadolc

& Chiaruttini, 1987) to have an influence on shaking since seismic waves are reflected and

refracted from the interfaces between layers of differing velocities and densities. Therefore,

a significant proportion of the scatter observed in ground-motion observations, particularly

at intermediate and large distances, could be attributable to variations in crustal structure

between regions that contributed data. The idea developed in Douglas et al. (2004b) and

investigated further in Douglas et al. (2007) was to map variations in decay between re-

gions due to the effect of crustal structure into the distance metric used (Figure 2.1). Sepa-

rate mapping functions would be derived for each region of interest and then the equivalent

hypocentral distances computed for each record based on these functions. These equiva-

lent distances would then be used to derive through regression a single ground-motion

model for all areas combined but that accounts for variations in decay due to differences in
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crustal structure. For application in a specific region this ground-motion model would then

be made region specific by mapping the equivalent hypocentral distances back to standard

hypocentral distance through the mapping function for that region. This method was de-

veloped during a one-month stay at University of Trieste working with Peter Suhadolc and

Giovanni Costa. Unfortunately some test application of the method were not encouraging

but I believe that larger-scale test with reliable crustal models and observations would be

an interesting Ph.D. topic.

Fig. 2.1: Schematic diagram explaining the method for finding the equivalent hypocentral distance

from the real hypocentral distance. The actual decay curve in each region is derived from

simulations for a regional crustal structure model. Then the real decay curve is mapped to

a 1/r decay curve that assumes spherical spreading in a uniform crust. From Douglas et al.

(2004b).

One complication of the procedure of Douglas et al. (2004b, 2007) is the need to have

an appropriate 1D crustal structure model available for a given region. A number of studies

have shown that 1D models are not applicable for regions where 2D or 3D effects, e.g.

due to deep sedimentary basins, greatly influence the recorded motions. However, the

existing literature does not provide clear guidance on when 1D models are sufficient and

when 2D or even 3D models are necessary. Therefore, after some small-scale tests that

were published in a conference proceedings (Douglas et al. , 2006c), Hideo Aochi and I

invited a student (Walter Imperatori) of Peter Suhadolc to BRGM for a short stay to work

on this problem in more detail. Under our guidance he conducted a number of ground-

motion simulations for a 2D structure of the Friuli area and a series of 1D structures for the

same region (some of which were obtained by averaging the 2D structure in various ways).

The results from the different analysis were then compared to gain insight into when 1D

structures are sufficient and how they should be obtained from 2D sections. The results of
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this analysis are presented in Imperatori et al. (2010).

Again during my post-doctoral time at Imperial I applied to spend two months at NOR-

SAR to work with Hilmar Bungum on an application of the hybrid empirical-stochastic

technique (Campbell, 2003). In this technique predictions from empirical GMPEs are mod-

ified through the application of host-to-target adjustment factors derived through the ratio

of ground-motion estimates from stochastic models for the host region (where the empiri-

cal GMPEs are from) and the target region (where ground-motion estimates are required).

The result of this work is the article Douglas et al. (2006b), which was also co-authored by

Frank Scherbaum, in which the method is applied to southern Spain and southern Norway,

where there are few strong-motion records available but seismic hazard is not negligible.

Hideo Aochi arrived at BRGM on the same day as me (6th September 2004). His back-

ground was mainly earthquake source modelling and ground-motion simulations whereas

mine was primarily empirical ground-motion prediction. One of the first studies that we

worked on together was the comparison between simulations and predictions from empiri-

cal GMPEs. Hazard analysts and earthquake engineers generally are not comfortable with

using ground-motion simulations in practice, partly because they have not be sufficiently

tested against observations. Therefore, Hideo and I worked on comparing strong-motion

intensity parameters (e.g. PGA and relative significant duration) computed from ground-

motion simulations and predictions for the same scenarios from empirical GMPEs. In addi-

tion, we looked at correlations between pairs of parameters (e.g. between PGA and relative

significant duration) from the simulations and from an empirical databank. The results of

this analysis are presented in Aochi & Douglas (2006). This type of analysis was also ap-

plied as part of the benchmark exercise conducted for the Third International Symposium

on the Effects of Surface Geology on Seismic Motion (Aochi et al. , 2006). It was found

that the simulated ground motions are mainly compatible with the magnitude and distance

dependence modelled by the GMPEs but that the choice of a low stress drop leads to ground

motions that are smaller than generally observed.

From my arrival at BRGM and through my interactions with Hideo and other members

of the Seismic Risks Unit I started to see the need for an article discussing in simple terms

the advantages and disadvantages of different techniques for ground-motion prediction.

During the period 2004 to 2008 this article (Douglas & Aochi, 2008) was drafted with the

help of Hideo, particularly for the descriptions of the ground-motion simulation procedures.

It summarises in a series of tables over twenty methods for predicting earthquake ground

motions for engineering purposes, including listing their advantages and disadvantages and

key references.



2. Ground-motion prediction for engineering purposes 14

2.2 Aleatory variability

One focus of much recent research in ground-motion prediction is in the estimation, char-

acterisation and possible reduction in aleatory variability (standard deviation, σ) of GMPEs.

The aleatory variability associated with a GMPE has a strong influence on the hazard curve

derived from PSHA, particularly at long return periods (low exceedance probabilities) (e.g.

Bommer et al. , 2004). Therefore, there have been numerous efforts to understand the

source of ground-motion variability and to eventually improve the match between observa-

tions and predictions (meaning lower standard deviations). Since my Ph.D. this topic has

been one of the main foci of my research.

As discussed above Douglas et al. (2004b, 2007) developed a method to incorporate

the influence of crustal structure on the decay of ground motions into empirical GMPEs.

The aim of this procedure is to reduce the observed scatter in ground motions by better

modelling the variation in shaking due to variations in crustal structure between regions.

Although I believe this approach has the potential to reduce the observed scatter, this has

yet to be demonstrated.

Also discussed above was the study of Aochi & Douglas (2006) comparing ground-

motion simulations and predictions from empirical GMPEs. One of the findings of this

study is that, although variations in ground motions due to local site conditions and het-

erogeneities of the fault rupture are not present in the simulations conducted for this study,

the observed ground-motion variability was equal to or even higher than variabilities pre-

dicted by empirical GMPEs. This suggests that either there is some smoothing mechanism

(e.g. nonlinear site amplification) acting in earthquake shaking that means it is less variable

than present ground-motion simulations would suggest or that the standard deviations of

current empirical GMPEs are underestimating the true near-source ground-motion variabil-

ity. This could be so since most near-source data used for the derivation of GMPEs comes

from only a few well-recorded earthquakes (e.g. Northridge 1994 and Chi-Chi 1999) and

consequently this could lead to the false impression of predictability.

When deriving the GMPEs published as Ambraseys et al. (2005a) the pure error tech-

nique developed by Douglas & Smit (2001) was employed. This technique showed that the

σs obtained by the regression analysis were about as low as could be expected whatever

the functional form used. In addition, this technique allowed the magnitude dependence of

the ground-motion scatter to be investigated without needing to conduct regression analy-

sis, which generally makes the assumption that there is no magnitude dependence. After a

magnitude dependence of the scatter in ground motions was observed through this proce-

dure, weighted regression was performed using estimates of this magnitude dependency to
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compute the weighting function. As discussed by Draper & Smith (1981, pp. 108–116) this

is the appropriate method to conduct regression once a dependence of variability on one of

the dependent variables has been confirmed.

It is important to understand the source of ground-motion variability so that actions to

reduce it can be conducted in a focussed manner. For example, if it was demonstrated that

unmodelled site effects were contributing a significant proportion of the observed scatter

for a particular dataset then efforts should be made to better characterise the local site con-

ditions at strong-motion stations. This information could then be included within developed

GMPEs by more sophisticated terms modelling site amplification. Procedures to assess the

split in ground-motion variability between unmodelled source and site effects were devel-

oped by Douglas & Gehl (2008). We applied analysis of variance to residuals with respect

to various GMPEs for four datasets to quantify the contributions of source, site and other

effects to the overall variability. It was shown that for two datasets unmodelled source

effects were dominant (the importance of such effects are demonstrated by Figure 1.1)

whereas for two datasets unmodelled site effects were more important. A more graphic

illustration of the split between the different sources of variability that was also applied by

Douglas & Gehl (2008) is the drawing of two-way-fit plots (Tukey, 1972) (Figure 2.2). This

method clearly shows which is the dominant effect in explaining ground-motion variability

and also it demonstrates which stations and earthquakes systemically lead to positive or

negative residuals, i.e. observations being, respectively, higher or lower than predictions.

These techniques plus others have been recently employed by Teraphan Ornthammarath,

under my supervision, to Icelandic data (Ornthammarath et al. , 2010b,a).

Probably the main way in which it is hoped that aleatory variabilities of GMPEs can be

reduced is through better site characterisation since measurements can be made at strong-

motion stations and variations in shear-wave velocity (or other parameters) between sta-

tions incorporated into the developed model. For a site of interest, e.g. for a new engineer-

ing project, local site conditions could be measured and used within the GMPE to provide a

better estimate of the expected ground motions. One problem with modelling of site effects

in GMPEs is that it is expensive and time consuming to measure physical parameters at all

strong-motion stations. In 2006 I was invited to participate in a study that sought to use

the horizontal-to-vertical response spectral ratio to classify stations in Europe and the Mid-

dle East with respect to their natural period, as had been done by Zhao et al. (2006) for

Japanese sites. The results of this investigation were published as Fukushima et al. (2007),

in which many stations were successfully classified and improvements were noted in terms

of derived GMPEs with respect to the situation to when only rock/soil classes were used.

The use of site classes to account for variability in ground motions due to site response is
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Fig. 2.2: Two-way-fit plot (Tukey, 1972) for data from the Les Saintes 2004–2005 sequence. The

numbers on the ordinate axes are the approximate residuals with respect to the GMPEs of

Ambraseys et al. (2005a). From Douglas & Gehl (2008).

no longer considered state of the art since within each class sites can display greatly differ-

ent amplifications. Therefore, there has been a move over the past decade towards explic-

itly using average shear-wave speed in near-surface layers within GMPEs; often the speed

in the top 30 m (Vs,30). However, the top 30 m only controls short-period ground motions

(although it is generally assumed that it is a reasonable proxy for longer-period motions

too) and, therefore, a better measure to characterise sites is Vs, 1
4
, the average shear-wave

speed over a depth equal to a quarter wavelength of the period of interest (Joyner et al. ,

1981). Vs, 1
4
, in general, takes account of more of the upper layers than Vs,30 and, hence,

should be a better indicator of site amplification. Vs, 1
4

requires information on shear-wave

velocity down to a much greater depth than is usually available for most strong-motion

stations. Douglas et al. (2009) present a framework that can make most use of available

site information to mitigate this problem of lack of data. We show that by using available

constraints shear-wave velocity profiles can be estimated for all considered strong-motion

stations and, thus, Vs, 1
4

can be assessed along with its confidence limits (Figure 2.3). These

estimates can be included within weighted regression analysis (with weights dependent on

the width of the confidence limits) to derive GMPEs using Vs, 1
4

as the site parameter. I

plan to focus on applying this approach in the coming years, in collaboration with Pierre
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Gehl and Fabian Bonilla (who helped develop the method). We have recently developed

the weighted regression technique and we have applied it to test data (Gehl et al. , 2010).

Vs (m/s)
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10 000
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Vmax
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Statistical distribution of 

parameters (V0, Vmax, 

max. depth, slope, …) 

based on real profiles

Interpolation 

(few constraints)

Crustal structure

Fig. 2.3: Summary of the method used to generate profiles of wave speed with depth, using various

types of information. From Douglas et al. (2009).

During my post-doctoral period at Imperial I was invited to contribute to a review article

on the effect of faulting mechanism (also known as style of faulting) on strong ground

motions (Bommer et al. , 2003a; Strasser et al. , 2006). In this article, we summarised

the state of knowledge of this effect and showed that the classification scheme used to

categorised earthquakes with respect to mechanism can have a significant impact on the

modelled effect. However, we found that inclusion of style of faulting in empirical GMPEs

does not significantly reduce σ.

In 2008 I was asked to contribute to a study on the effect of fault maturity on strong

ground motions being conducted at LGIT Grenoble. I provided strong-motion data and

advice on the study, which was mainly conducted by Mathilde Radiguet. The result of this

work was Radiguet et al. (2009), in which it is shown that fault maturity could be as im-

portant as style-of-faulting or buried/surface rupture (e.g. Somerville, 2003) in explaining

source-related ground-motion variability. Since fault maturity could be assessed before an

earthquake, inclusion of such a parameter within GMPEs has the potential to reduce σ.
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2.3 Epistemic uncertainty

Another main theme of recent research in engineering seismology is the quest to identify,

quantify and capture epistemic uncertainty in ground-motion predictions. This refers to un-

certainty in predictions due to a lack of data or knowledge with which to constrain models.

For example, an infinite number of functional forms could be fitted through a cloud of dat-

apoints (e.g. observed PGAs) all of which have a similar associated standard deviation and

many of which could not be discounted based on current physical understanding. There-

fore, it is necessary to capture this epistemic uncertainty when conducting seismic hazard

assessments, e.g. through logic trees when making PSHAs. Studies addressing these issues

that I was involved in are briefly discussed here.

One concern when selecting GMPEs to populate a logic tree is that the GMPEs should

be derived using state of the art procedures and using large observational datasets (e.g.

Bommer et al. , 2010) otherwise the apparent uncertainty in the hazard results could be

being driven by poorly-constrained GMPEs that do not closely model observations. For ex-

ample, as discussed below in more detail, ground motions from small earthquakes decay

more rapidly than those from large shocks, although this has not been captured in many

GMPEs until recently. Consequently selecting (generally older) GMPEs that do not model

magnitude-dependent decay in an attempt to account for epistemic uncertainty would gen-

erally not be appropriate.

During the final six months of my post-doctoral research at Imperial I helped develop

a new set of GMPEs based on data from Europe, the Mediterranean and the Middle East

(EMME) elastic response spectra for both horizontal and vertical components of ground

motion based on state of the art procedures (Ambraseys et al. , 2005a,b). These models

benefited from the five and a half years I spent at Imperial during my Ph.D. and post doc,

working on the strong-motion database and associated research, for example the compre-

hensive catalogue of GMPEs (Douglas, 2004a) that gave me a good overview of the state of

the art. The improvements incorporated in the models of Ambraseys et al. (2005a,b) over

the majority of previous GMPEs derived for EMME included the individual processing of all

of the selected strong-motion data, incorporation of style-of-faulting terms into the models,

modelling of magnitude-dependent decay and weighted regression analysis to account for

the observed magnitude-dependence of the aleatory variability. These models also greatly

benefited from recording and collection of a much strong-motion data during the 1990s

and 2000s.

As part of an internal BRGM project on the uncertainties in earthquake risk (and loss)

estimation I undertook a study of the epistemic uncertainty of ShakeMaps, which seek to
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provide near real-time estimates of the ground shaking that occurs in epicentral regions.

Such maps have become a common element of post-earthquake descriptions and they may

be useful in helping assess the probable impact of an earthquake and to direct rescue efforts

to the potentially most-affected areas. However, the uncertainty of these maps is rarely

discussed. BRGM conducted a comparison between the modelled and observed damage

during the 2004 Les Saintes (Mw6.3) earthquake (off the coast of Guadeloupe) and noted

considerable differences (Le Brun et al. , 2005). A question posed was whether uncertain-

ties in the shaking estimates on Guadeloupe could be a reason for these differences. The

first step in seeking to answer this question was to assess the uncertainties in shaking esti-

mates on the island. The outcome of this work was the article Douglas (2007a) in which

various techniques (including the classic ShakeMap method) were combined with the avail-

able accelerograms to assess the epistemic uncertainty. The conclusion was that methods

that account for the spatial correlation of ground motions (e.g. ShakeMap) are better than

methods that ignore this correlation. Nevertheless even for a densely-instrumented island

such as Guadeloupe there is still much uncertainty in estimating ground motions more than

10 km from an accelerograph (Figure 2.4).

During 2006 I was asked by Hilmar Bungum to help him and Mukat Sharma (of IIT

Roorkee) develop GMPEs for the Himalayas, an area of high seismic hazard and risk but

with only limited strong-motion data. Previous GMPEs for this area are poorly constrained

due to a lack of data and, therefore, it was decided to supplement data from India with

records from tectonically-similar regions. This led to the inclusion of data from the Zagros

area of Iran. Through the long-distance supervision via email of the data collection and

analysis conducted by Mukat and his student Jainish Kotadia this collaboration resulting in

the GMPEs presented in Sharma et al. (2009).

It would be thought that ground motions predicted by GMPEs for the same geograph-

ical area should be becoming more consistent with time thanks to the inclusion of more

data and a convergence of analysis techniques. This would be an indirect test of whether

epistemic uncertainty in ground-motion predictions is reducing, as data and knowledge in-

crease. In an attempt to investigate if uncertainty is reducing, I have recently completed

a study (Douglas, 2010a,b) in which predicted PGA and SA(1 s) from published GMPEs

from the 1960s to 2008 are compared (see Figure 1.2). Predicted ground motions for the

well-instrumented area with the longest history of strong-motion recording, California, do

show a convergence over time but the epistemic uncertainties remain high. Areas with

shorter histories of strong-motion recording, such as EMME, show higher dispersion in the

predicted ground motions and little recent convergence. This demonstrates that epistemic

uncertainty is real and it must be accounted for in seismic hazard assessments by, for ex-



2. Ground-motion prediction for engineering purposes 20

ample, the use of logic trees (e.g. Bommer & Scherbaum, 2008).

2.3.1 Weak motion

With the recent advent of dense networks of highly-sensitive digital accelerometers and

broadband seismometers and the easy accessibility of their records, there has been a ten-

dency to develop GMPEs based on these data, even when the majority of such observations

are of motions much too small to cause damage or often even to be felt by the population.

Such records are often called ‘weak-motion data’ to contrast them with ‘strong-motion data’,

which is traditionally large enough to be associated with at least felt reports (the trigger

levels of analogue instruments are generally much higher than those of digital sensors).

Datasets from analogue networks often show a strong positive correlation between magni-

tude and distance because of the high trigger thresholds and cost and difficulty of digitizing

accelerograms from small earthquakes at great distances. In contrast, datasets from digital

networks do not show such a clear dependency as even at large distances accelerometers

can reliably capture the shaking from small earthquakes. The availability of weak-motion

data for regions where no or only limited data was previously recorded seems to imply that

GMPEs developed using these data are more suitable for that area than GMPEs imported

from other regions. However, this turns out to be not necessarily so.

During the late 1990s and early 2000s I attended many conferences where I saw re-

searchers presenting comparisons between PGA (or other strong-motion parameters) from

small earthquakes recorded on digital accelerometers against predictions from GMPEs such

as that by Ambraseys et al. (1996), which was almost entirely derived using records from

analogue instruments. They showed that most PGAs at intermediate and large distances

(> 20 km) from small events (Mw < 5.5) were greatly overestimated by GMPEs such as

those by Ambraseys et al. (1996). This they often attributed to regional dependence of

ground motions. As discussed in Section 2.4 I was educated in an environment where

regional dependency was not considered to be important and, therefore, this explanation

intrigued me.

In early 2003 I was looking around for a good topic for a presentation and associated

paper for a conference in Macedonia to commemorate the fortieth anniversary of the de-

structive Skopje earthquake. Remembering the series of presentations on weak-motion

data and the large quantity of such data in the Imperial College strong-motion archive, I

decided to write a short paper on the use of weak-motion data for the derivation of GMPEs

(Douglas, 2003c). This article briefly discusses a number of issues related to such data and

contrasts them with the situation for strong-motion data, including: data quality, the assess-
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ment of independent parameters (e.g. Mw and mechanism), the scaling of weak-motions

with magnitude and distance and the variability in such motions. It summarised the ma-

jor issues concerning the use of weak-motion data that have been recently the focus of

much research and debate, namely: the decay of shaking from small earthquakes is more

rapid than that of shaking of large earthquakes (Figure 2.5), there is a higher magnitude-

dependency of ground motions from small earthquakes than from large shocks (Figure 2.6)

and the aleatory variability associated with weak motions is greater than that associated

with strong motions. In Douglas (2003c) I relate the difference in ground-motion scaling

with magnitude and distance compared with that modelled by GMPEs such as Ambraseys

et al. (1996) to the assumption when deriving GMPEs that distance decay is magnitude-

independent. In addition, the censored nature of datasets from analogue networks (i.e.

there are few records from large distances from small earthquakes since there amplitudes

are below the trigger level) means that the true decay rate of ground motions from small

earthquakes is biased upwards. Similar conclusions have been reached by, for example,

Bommer et al. (2007) and Cotton et al. (2008).

For the derivation of the new set of GMPEs using the updated strong-motion archive at

Imperial College (Ambraseys et al. , 2005a) we decided that it was important to improve

the match between weak-motion data and predictions through the use of more complex

functional forms. To decide on the functional form to adopt we fitted simple equations for

decay rate to data from the ten best-recorded earthquakes in the Ambraseys et al. (2005a)

dataset. A clear magnitude dependence of these decay rates was observed. For simplicity a

linear dependence of decay rate on magnitudes was adopted for the derivation of the final

GMPEs. This change to the functional form means that PGA from a Mw5 event is modelled

to decay at a rate of −1.614 whereas PGA from a Mw7.5 earthquake decays at a rate of

−0.829. This contrasts with the PGA decay rate modelled by Ambraseys et al. (1996) of

−0.922, which is independent of magnitude.

In addition, to modelling the magnitude-dependency of the decay rate of ground mo-

tions within Ambraseys et al. (2005a) modelling of the magnitude-dependency of the

aleatory variability of ground motions was also attempted. This was done through the

use of pure-error analysis on the binned ground-motion data (Douglas & Smit, 2001) to

obtain an estimate of the magnitude dependence of the scatter followed by weighted re-

gression analysis to incorporate this dependency. This weighted regression accounts for

lower observed variability in ground motions from large earthquakes and gives these data

more weight within the curve-fitting. An examination of the weighted residuals shows that

this technique removes the magnitude dependence of scatter previously observed. Later

studies (e.g. Bommer et al. , 2007) have shown that this technique, although statistically
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justified, may not be ideal since it is sensitive to the choice of bin size. In addition, the use

of Ambraseys et al. (2005a) within PSHA has led to an impression that it is overestimating

seismic hazard because the large standard deviations modelled for small magnitudes play

too important a role in the overall hazard curve (Musson, 2009). Although observational

evidence for a dependence of ground-motion variability on magnitude is strong the reasons

for this are not fully understood and it may be necessary to cap the dependency at a certain

magnitude, for example. Some of the magnitude-dependency is likely to be only apparent

and not real and due to the poor metadata (e.g. magnitudes and locations) of small earth-

quakes (e.g. Bommer et al. , 2007). This apparent scatter should not be included within

the computed σs.

Recently a issue related to the use of weak-motion data has been considered within the

NGA project: are records from aftershocks compatible with those from mainshocks? In

the past this issue had not been studied, probably because the limited data then available

meant that such a question was not a high priority. Recent well-recorded earthquakes have,

however, led some researchers to consider this issue (Abrahamson & Silva, 2008; Chiou

& Youngs, 2008b). Within databases from the wider European region aftershock records

contribute a large proportion of available data, particularly for small magnitudes. In a

recent conference article (Douglas & Halldórsson, 2010) some issues related to the use of

aftershock motions are discussed. In the article it is shown that roughly 40% of the data

used for the derivation of GMPEs from European databases are from aftershocks (and for

some GMPEs the percentage is much higher). This has serious implications if such motions

are significantly different than those from mainshocks. Through re-analysis of the data of

Ambraseys et al. (2005a) we showed within Douglas & Halldórsson (2010) that aftershock

motions from Europe are not significantly different than those from mainshocks, although

this conclusion needs to be confirmed with a more thorough analysis. We studied the

aftershock records from the 2008 Ölfus (south Iceland) earthquake (Mw6.3) to determine

the magnitude and distance scaling of weak motions and the magnitude dependence of

σ. This analysis confirmed previous observations that weak motions show a much higher

dependency on magnitude and faster decay than strong motions. In contrast to most other

studies, however, the standard deviations obtained from this analysis were not much larger

than those reported for strong motions (roughly 0.3, in terms of common logarithms). The

aftershocks of the 2008 Ölfus earthquake were well located and characterised in terms

of magnitude due to the presence in that area of a dense seismic network. This further

suggests that a proportion of the scatter observed for weak motions can be attributed to

poor estimates of the locations and sizes of earthquakes.

Following the publication of Douglas et al. (2006d) concerning the ground motions ob-
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served in the French Antilles I was re-examining the broadband data, provided by Philippe

Jousset, of some Les Saintes aftershocks from the small array operated near the Bouillante

geothermal power plant. I noticed some large-amplitude long-period motions present on

these records that are surprising given the moderate sizes of these earthquakes (Mw ∼ 5).

Philippe Jousset and I collaborated on a study of these motions and also those recorded

on the accelerometric networks on Guadeloupe from these earthquakes (Jousset & Dou-

glas, 2007). We found that almost all records from the earthquakes (independent of site

conditions) featured the large-amplitude long-period (5–10 s) motions that contribute to a

localized peak (a bump) in the displacement response spectra, not matched by the spectra

predicted by GMPEs or design codes (Figure 2.7). Philippe Jousset theorized that these

long-period motions are due to fluid in the earthquake source. Whatever the cause it is im-

portant to know whether it is a phenomenon that can occur in larger earthquakes because

these long-period motions could be important for seismic design.

In addition to the studies I was involved with, various articles (e.g. Bommer et al. ,

2007; Cotton et al. , 2008) have shown that the strong temptation to derive GMPEs for

an area using only weak-motion data, however abundant, should be resisted since the

extrapolation of such models to larger magnitudes is likely to lead to incorrect seismic

hazard assessments.

2.4 Regional dependence

During my Ph.D. my supervisor, Nick Ambraseys, and other members of the engineering

seismology group at Imperial College were of the opinion that earthquake ground motions

for the same magnitude and source-to-site distance were similar in most seismically-active

areas of EMME and further-a-field, e.g. California (e.g. Ambraseys et al. , 1997). Therefore,

this belief rubbed off on me and for the analyses I conducted for my Ph.D. I combined data

from many different regions. Partly this was due to need because of a lack of sufficient

strong-motion data from large earthquakes but mainly because limited analyses had not

shown a clear dependence of ground motions on region. During my post-doctoral period,

however, and with the increasingly availability of strong-motion data from a number of

well-recorded earthquakes in the late 1990s and early 2000s I decided to more rigorously

investigate whether strong ground motions show a significant dependence on region.

The method that I developed to investigate regional dependency was similar to that

Patrick Smit and I adopted to estimate the smallest standard deviations possible for simple

ground-motion prediction equations (Douglas & Smit, 2001) namely the binning of data

into small magnitude and distance (and eventually site class) intervals and conducting
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statistical analyses on the binned data. The advantage of such an approach is that it does

not depend on the functional form adopted for the fitting of GMPEs, which is a topic of

considerable debate. However, given the still limited data this binning strategy leads to

small datasets and hence reduces the power of the statistical tests. Given the need for

sufficient data from different regions, within Douglas (2004b) records from five regions that

were the richest in observations within the Imperial College strong-motion archive (Central

Italy, Greece, Friuli, the Caucasus and southern Iceland) were selected. After binning these

observations, analysis of variance was applied to data from pairs of regions within each

bin with sufficient records, to test whether ground motions in one region were significantly

different than those in the other. The conclusion I reached was that, although for certain

periods and for some pairs of regions there are indications of significant differences, overall

earthquakes ground motions in these five regions were comparable (e.g. Figure 2.8). One

limitation of this analysis was that the data only allowed testing up to about Ms5.5.

Most GMPEs derived specifically for use in Europe and neighbouring areas rarely use

much, if any data, from California or elsewhere (e.g. Ambraseys et al. , 1996) even though

records from the large magnitude range are much more abundant from these regions than

from Europe. In the past this may have been partly due to a lack of availability of these

data and partly due to a lack of time to collect and process the records in a uniform way.

However, in the background I believe that there was a belief that GMPEs derived solely

using data from the wider European region would be more acceptable to practitioners in

Europe than models that used a combined European-Californian(-Japanese) dataset. To

more scientifically investigate whether this aversion to the use of non-European data was

justified I applied the technique developed to study inter-regional differences in Europe

to compare ground motions in Europe to those in California and New Zealand (Douglas,

2004c). The outcome of this analysis was that ground motions in Europe seem to be on

average significantly lower than those in California (Figure 2.9). This result seemed to sup-

port the tradition of using purely European datasets when deriving GMPEs for the Europe

and neighbouring areas.

However, between acceptance and publication of the GMPEs I helped derive during my

final six months at Imperial College (Ambraseys et al. , 2005a), the well-recorded Mw6

Parkfield earthquake occurred. For interest I quickly compared the reported PGAs from

this earthquake with those predicted by the PGA GMPE of Ambraseys et al. (2005a) and

found a good match at all distances (Figure 2.10). This figure and brief associated text

were included as an addendum to the published article of Ambraseys et al. (2005a). The

example seemed to cast doubt on the significance of the results I obtained earlier (Douglas,

2004c), although it was for a single earthquake and hence firm conclusions could not be
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drawn. More recent work by other authors (e.g. Stafford et al. , 2008) have shown little

evidence for differences in ground motions in California and Europe.

Part of the study on strong-motion data from the French Antilles (Douglas et al. , 2006d)

are tests of a group of GMPEs against observations from the area to see whether predictions

are in line with the data. These tests were conducted using the quantitative procedure

introduced by Scherbaum et al. (2004). These tests imply that for crustal earthquakes

none of the considered GMPEs provided a good match to the observations. At first sight this

suggests that there may be a significant difference in ground motions in the French Antilles

and elsewhere (e.g. California and EMME). However, as discussed above the scaling and

variability of ground motions from small earthquakes (the majority of those recorded by

networks on the French Antilles) are significantly different to those from larger events.

Therefore, Douglas et al. (2006d) note that it was too early to provide firm conclusions on

the predictable of ground motions in the French Antilles using non-native GMPEs.

The results of Douglas et al. (2006d) for subduction earthquakes are based on lim-

ited data. However, the occurrence of a large (Mw7.4) shock off Martinique in late 2007

and a number of smaller subduction earthquakes in the period 2005–2008 meant that a

reanalysis of this expanded dataset could be useful. In addition, Rosemarie Mohais of the

Seismic Research Centre in Trinadad contacted me following the publication of Douglas

et al. (2006d) concerning possible collaboration. This collaboration lead to the article

Douglas & Mohais (2009), in which data from subduction earthquakes near Trinadad and

the French Antilles were combined to test eight sets of GMPEs for their abilities to pre-

dict ground motions in the Lesser Antilles. The analysis showed that ground motions from

subduction earthquakes in the Lesser Antilles are well predicted by GMPEs derived from

Japanese data (Figure 2.11).

In 2006 I was invited to contribute to a special issue on response spectra for the ISET

Journal of Earthquake Technology. I decided to write a review article with some new work

on the topic of regional dependency (Douglas, 2007b). This decision was made due to my

interest in regional dependency of strong ground motions; current debates in the literature

on this topic; and having reviewed numerous articles purporting to have found evidence

for differences in ground motions in one area compared with another. In the article I firstly

discuss what I have recently entitled pseudo-regional dependency (Douglas, 2011). This

is the apparent difference between ground motions in two regions due to source, path or

site factors that could be modelled within well-characterised GMPEs. For example, rock in

one area may be on average much harder than those in another, which would contribute

to a difference in shaking but which could be modelled by using either a more refined site

classification or explicitly the Vs of the near-surface materials. Another example, is that in
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one area earthquakes may be on average deeper than those in another, which may affect

ground motions but which could be modelled by using hypocentral distance or explicitly

accounting for focal depth within the GMPE. Once such pseudo-regional dependency is

removed, in Douglas (2007b, 2011) I argue that there is limited observational evidence for

regional dependency and that it is more defensible to use robust well-constrained GMPEs

even if they are from a different geographical area rather than local GMPEs, which are often

poorly constrained particularly for large magnitudes.

The importance of whether ground motions show a strong regional dependency is an

important practical issue. For many parts of the world, e.g. France, there are few strong-

motion records from earthquakes larger than about Mw5 but for these areas seismic haz-

ard assessments must be made (e.g. Douglas, 2006a). Therefore, it is important to know

whether ground-motion estimates from one part of the world can be transported from one

area with abundant data (the host) to another (the target) without leading to a significant

under- or over-estimation of ground motions or its associated variability in the target.

2.4.1 Modelling regional dependence

Although regional dependence of ground motions has not been proved one way or another,

I have been involved in a number of studies that present methods for the adjustment of

ground-motion predictions in the host area to make them more applicable in the target

area.

During my post-doctoral period I went to the University of Trieste for a month in autumn

2002 to work with Peter Suhadolc and Giovanni Costa to test an idea I had to incorporate

the effect of crustal structure into GMPEs (see Section 2.1). The layering of the crust means

that earthquake ground motions do not display a smooth decay with distance that can be

modelled by a 1/r or similar decay term. Since the crustal structure varies with region

this effect could be contributing to some of the observed scatter within ground motions, as

discussed above. In addition, this means that using a GMPE derived for one area may not be

appropriate if it is transferred to a target region where the crustal structure is different. The

procedure developed in Douglas et al. (2004b) seeks to model the effect of crustal structure

through simulations and then map this into an equivalent hypocentral distance for use in

regression of empirical data. Then for a target region simulations are conducted to compute

this mapping function and this is used to map the equivalent hypocentral distances of the

GMPE back to true hypocentral distances for that region. It was hoped that this technique

would reduce σs and also capture the effect of region on ground motions. Limited analyses

(Douglas et al. , 2004b), however, did not bear this out. This idea was revisited in Douglas
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et al. (2007) to investigate the impact of parameters neglected in the original investigation,

most notably focal depth, on the decay functions for different regions. It was found that

these characteristics could be more important in explaining the decay of ground motions

than are variations in crustal structure. Consequently an attempt to use the technique of

Douglas et al. (2004b) to adjust GMPEs to capture the effect of crustal structure should

account for focal depth as well.

Towards the end of my post-doctoral period I was invited to contribute to two studies

(Bommer et al. , 2003a; Douglas et al. , 2006b) of the series of articles that were inspired by

the PEGASOS project to assess the seismic hazard at four nuclear power plants in Switzer-

land. My contribution (Douglas et al. , 2006b) was an application of the hybrid empirical-

stochastic technique of Campbell (2003) and its extension to a composite ground-motion

model. Most of this work was undertaken during a two-months stay at NORSAR in autumn

2003 under the supervision of Hilmar Bungum although the final computations and writing

were not completed until 2005. For this task I wrote a freely-available computer program

(CHEEP) to make the adjustments. In addition, I collected the parameters required to

construct the stochastic models for the target regions (southern Spain and southern Nor-

way). This technique promises to make a set of GMPEs more appropriate for application

in a target region by adjusting them to account for differences in, for example, geometrical

spreading or site attenuation. Therefore, if regionality in shaking is clearly demonstrated

the method has the ability to account for it in ground-motion predictions.

A recent study that sought to estimate one of the parameters that would be required to

develop stochastic models for France is Douglas et al. (2010). The parameter estimated

is κ (e.g. Anderson & Hough, 1984), which is thought to be predominantly measuring

site attenuation in the top few hundred metres below the site. Based on the analysis of

hundreds of accelerometric records from France a set of κ models for French sites were

derived, which could be useful in adjusting GMPEs from other parts of the world to make

them more French. It appears that κ for French sites is roughly half way between that for

active (e.g. California) and stable (e.g. eastern North America) regions.
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(a) Unadjusted Ambraseys et al.

(2005a) (rock) plus site effects
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(b) Bias-corrected Ambraseys et al.

(2005a) (rock) plus site effects
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(c) Event-specific model (rock) plus site

effects
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(d) Kriging
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(e) Method of King et al. (2004)
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(f) Method of ShakeMap

Fig. 2.4: PGA from the Les Saintes earthquake predicted by various methods. Numbers correspond

to the strong-motion stations and the star indicates the epicentre. From Douglas (2007a).
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Fig. 2.5: Decay of PGA with epicentral distance (repi) for three small-and-moderate earthquakes, all

well recorded, and the best-fit decay curve of the form log y = a1 + a2 log
√
r2epi + a2

3. The

left-hand graph is for the 14/10/1997 15:23 Umbria-Marche aftershock (Mw5.6) (a2 =

−1.63, a3 = 9.99, 35 records), the central graph is for the 29/09/1999 00:13 Kocaeli

aftershock (Mw5.2) (a2 = −2.41, a3 = 37.4, 22 records) and the right-hand graph is for

the 25/02/2001 18:34 Nice earthquake (Mw4.5) (a2 = −1.96, a3 = 6.70, 21 records).

From Douglas (2003c).
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Fig. 2.6: Comparison of the scaling of PGA with magnitude for a source-to-site distance of 15 km

from six equations that have used data from different magnitude ranges. No conversion be-

tween magnitude scales was attempted and consequently some of the differences between

the scalings of PGA with magnitude could be caused by the lack of a common magnitude

scale. Predictions from the equations of Ambraseys et al. (1996) and Ambraseys & Dou-

glas (2003b) are for rock sites; other equations are independent of site conditions. From

Douglas (2003c).
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Fig. 2.7: Elastic displacement response spectra (black lines) observed from 2nd December 2004

14:47 (Mw5.0) aftershock, predicted Eurocode 8 spectra (light grey lines) normalized to
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longer periods in EC8) and predicted spectra using the procedure of Malhotra (2006) (dark

grey lines). The SD plateaux in the HAZUS and ASCE 7-05 spectra begin at periods of 1.0

and 1.8 s, respectively. Also given are the station codes, epicentral distances and Eurocode

8 site classes. From Jousset & Douglas (2007).
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Fig. 2.8: Graphs for each bin where analysis of variance was performed to compare ground motions

in central Italy and Greece. Each small graph displays the means of the transformed ground

motions for each of the four strong-motion parameters considered (the first two points are

PGA and following pairs are SA(0.2s), SA(0.5s) and SA(1.0s). The ordinate of the small

graphs is logarithm of acceleration in m/s2. Therefore they can be thought of as response

spectra with only four ordinates. The left point in each pair is for central Italy and the

right point is for Greece. If the difference in means was found to be significant at the 5%

significance level using the F-test then the marker is a cross rather than a dot. The two

numbers in the top right corner are the total number of records in the bin from each region

(the left number is for central Italy and the right number is for Greece). The small graphs

are arranged in an overall plot showing the magnitude (on the y-axis) and distance (on the

x-axis) ranges of the bins. From Douglas (2004b).
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Fig. 2.9: Like Figure 2.8 but for California and Europe. From Douglas (2004b).
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Fig. 2.10: Comparison of the observed free-feld PGAs measured during the Parkfield (28/09/2004)

earthquake as reported in the Internet Quick Report of the California Integrated Seismic

Network to the median PGAs predicted using the equation of Ambraseys et al. (2005a)

(thick line), for an Mw6.0 strike-slip earthquake and stiff soil site class, and those pre-

dicted using the equation of Boore et al. (1997) (thin line), for an Mw6.0 strike-slip

earthquake and Vs,30 = 420 m/s. The dotted portions are for the extension of the predic-

tions outside their distance range of strict applicability. From Ambraseys et al. (2005a).
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Fig. 2.11: Normalized residuals for the equation of Kanno et al. (2006) with respect to hypocentral

distance and Mw. Dots and crosses are for intraslab and interface events, respectively.

From Douglas & Mohais (2009).



3. FUTURE RESEARCH

In the first section I discuss some ideas on the possible future direction of engineering

seismology in general. This document ends with my plans for my own research and how

this fits into these overall goals.

3.1 Aims for engineering seismology in general

C.P. Snow in his 1970 follow-up1 to his ‘Two cultures’ lecture discusses the differences be-

tween art and science. He notes that in art if one wishes to fully understand an idea it is

important to return to the original sources. For example, to understand what Shakespeare

had to say on a particular subject then it is necessary to read his plays. There is no progres-

sion in the sense of artist building on the work of other artists and hence there is always

a need to study the original work. In contrast, scientists build on the work of earlier re-

searchers and, hence, it is no longer necessary, for example, to read Newton’s Philosophiæ

Naturalis Principia Mathematica since its truths have been built on by scientists for four

hundred years. Therefore, in art the original reference is king whereas in science it is just

the foundation for future work. Truths do not need to be rediscovered again and again.

Empirical ground-motion prediction can still be thought of in this sense as an art be-

cause there are few theories that do not needed to be re-examined when new observations

are made or the data is analyzed in a different way. This means that some original ref-

erences from 1960s or even before retain their value. There are a number of reasons for

ground-motion prediction being more of an art than a science. Firstly the subject is rela-

tively young compared with other fields of science: no quantitative measures of near-source

earthquake shaking were available before the Long Beach earthquake of 1933 and the first

attempts at deriving empirical GMPEs were made in the 1960s. Secondly, strong-motion

data from the near-source zone of moderate and large earthquake is still sparse and for

many damaging earthquakes (e.g. Haiti 2010) there are no near-source records. A related

problem is that until the late 1990s access to strong-motion data was still limited and many

potentially useful records and their associated metadata were difficult, if not impossible,

to obtain. This limited the number of researchers that could work on these data. Thirdly,

1 The case of Leavis and the serious case
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metadata (e.g. local site conditions of the top few hundred metres) associated with strong-

motion records are still often poor and, hence, it is difficult to reach firm conclusions since

they are based on assumptions. Finally and probably most importantly, the generation and

propagation of seismic waves close to large earthquakes is a complex science and conse-

quently multiple interpretations of the same observation are possible. This leads to the

large epistemic uncertainty in ground-motion predictions. In the coming decades engineer-

ing seismology must seek to become more of a science rather than an art.

Like all predominantly electronic devices strong-motion instruments are fast becoming

better and cheaper (e.g. Trifunac, 2007). In addition to standard technologies of seismome-

ters based on force-balance accelerometers, new devices based on micro-electromechanical

systems (MEMS) are leading to great reductions in instrumentation costs (although the

data quality is slightly poorer than traditional accelerometers). In addition, wireless and

Internet technologies mean that instruments no longer need to be visited to retrieve records

but these data can be downloaded remotely. These cheaper and easier-to-install-and-use

instruments means that strong-motion networks should be expanded so that damaging

earthquakes always produce some near-source data. Such data would help augment the

available observations, particularly for less-seismically-active regions. Examples of what

could be achieved are the Japanese K-Net and KiK-Net (e.g. Beroza, 2010) and the low-cost

monitoring of the Alpine Fault in New Zealand by the Canterbury Regional Strong Motion

Network (e.g. Avery, 2006).

It is not enough, however, to simply increase the quantity of strong-motion data because

data without detailed metadata have limited value. Therefore, it is necessary to improve

in-parallel the quality of the metadata. This means feeding back into the strong-motion

database new findings (e.g. rupture location) on given earthquakes from, for example,

journal articles. Such work has been undertaken in the past (e.g. ISESD and the Next

Generation Attenuation, NGA, projects) but this needs to be a routine task in order to

maintain the most reliable strong-motion database possible. In addition, projects should be

undertaken to systematically measure geotechnical properties (e.g. shear-wave velocities)

at strong-motion stations. This would enable more detailed and accurate analyses to be

made. A recent example of such systematic measurement of near-surface properties is

that undertaken for the Turkish National Strong-Motion Network (Akkar et al. , 2010).

Online access to these data and the full metadata should be secured by the permanent

establishment of easy-to-use websites. Many such websites currently exist but their funding

is often limited to short-term projects and metadata is rarely their priority. For most analyses

less but higher-quality data is a priority.

Using this larger and more detailed database, analyses should be performed to look
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for ‘theoretical understandings of empirical reality’ as sought by Paul A. Samuelson in eco-

nomics. A large proportion of strong-motion studies report an empirical finding without

much investigation of its physical reason. An example of this are style-of-faulting terms

(i.e. terms to model the difference in ground motions from strike-slip, normal and reverse

earthquakes), which have been derived many times but with limited physical insight into

the reasons for the findings (Bommer et al. , 2003a). At present most ground-motion models

are derived simply through regression analysis. They are basically curve-fitting exercises.

Such an approach is probably adequate for combinations of independent parameters (e.g.

magnitude and source-to-site distance) close to the barycentre of the dataset. However,

such models can break down when applied to combinations of independent parameters not

present in the dataset. Theoretical understanding of the reasons for the empirical findings

could allow models to be derived that are not just the result of curve-fitting and conse-

quently extrapolate well outside their ‘comfort zone’ (Bommer et al. , 2010).

A more general way in which I hope that engineering seismology develops is to reduce

the number of ‘me too’ papers that simply present similar results to earlier articles but for

a different region or dataset but without advancing the state of knowledge. In addition,

there are too many least-publishable-unit articles that would be better combined into a

complete study. These two types of articles contribute to reviewer and editor overload and a

clogging up of the peer-review system. There are many important and interesting questions

in engineering seismology that remain to be asked and answered and these should be the

focus of future research and not simply repeatedly asking and answering the same questions

in the same way.

3.2 Plans for my own research

In the future I plan to help contribute to the study of engineering seismology on the topics

outlined above. This section briefly discusses my research plans for the coming few years

(other ideas have been mentioned earlier). I am involved in a number of studies that are

nearing completion or submitted and under review. For example, in a follow-up to Douglas

et al. (2009) Pierre Gehl, Fabian Bonilla and I develop a regression technique to weight

data depending on the uncertainty of Vs estimates (Gehl et al. , 2010). In the coming

months I will complete an update to my reports summarising previous empirical GMPEs

(Douglas, 2004a, 2006b, 2008), combining all previous reports with the addition of more

recent models plus, for completeness, a list of GMPEs derived based on simulations.

I plan to work on developing improved analysis techniques to make best use of avail-

able data on source, path and site parameters and then apply them for specific datasets.
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For example, this work will include improving and applying the framework developed in

Douglas et al. (2009) so that it can be used to develop GMPEs that make best use of avail-

able site information. In addition, my recent work on Icelandic data has shown that GMPEs

cannot be developed for most parts of the world, even those with reasonable strong-motion

databanks, simply through regression analysis on the available data but that other informa-

tion (e.g. Q-models) needs to be used to constrain certain parameters. This work has also

shown that large epistemic uncertainties require suites of GMPEs to be developed and used

for seismic hazard analysis to capture this uncertainty.

I plan to continue work on searching for additional parameters (e.g. Vs,1/4 mentioned

above) that can be included within GMPEs to reduce σ. The utility of additional parameters

to improve ground-motion prediction should be statistically tested before their inclusion.

Through this work it is hoped that insight into the causes of apparent regional dependency

of ground motions can be found and included within GMPEs and thereby reduce the per-

ceived requirement for regional or local GMPEs.

One of the major topics that I wish to continue to investigate, and which has been a

subject of much work within SHARE and commercial projects such as the PEGASOS Re-

finement Project, is the adjustment of GMPEs to make that more appropriate for a given

target area. This task requires, for example, that GMPEs derived using strong-motion data

are adjusted at their lower-magnitude ends to match the observations from a given area.

Although procedures for this adjustment have been published this is still a topic of research.

In particular, whether σs have to be adjusted when making such a correction is a subject

of debate. Also I hope to be able to make a contribution to extracting more information

from the vast databanks of weak-motion data that are currently available for many parts

of the world, e.g. France. I would like to be involved in a project to develop a suite of

GMPEs for France by using the techniques that have been proposed in the past five years

and the considerable strong-motion databank that is now available, thanks to the national

accelerometric network (RAP).

In the coming few years I plan to develop my research interest into the assessment of

ground motions from earthquakes associated with geothermal power production through

the EC-funded GEISIR FP7 Project. BRGM is one of the main partners of this project and

I am involved in the workpackage (WP5) concerning seismic hazard assessment from such

triggered and induced events. This will be a challenging topic since there are limited data

to help constrain predictions but also it is an important subject because of the planned

development of geothermal power plants in various parts of the world.

Additional ideas for future research projects include: a test of phase spectra to select

cut-off frequencies for the filtering of strong-motion data, following examples shown in
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Abrahamson & Silva (1993); a detailed reappraisal of the importance of focal depth on

earthquake shaking from small and moderate earthquakes, such as conducted by McGarr

(1984), based on data from recent earthquakes with well-constrained depths; an obser-

vational and simulation-based study of the physical reasons for the observed dependency

of ground motions on focal mechanism; a comparison of methods for the incorporation of

nonlinear soil behaviour into PSHA, e.g. using the approach of Bazzurro & Cornell (2004)

and a technique based on predicting the amplification directly for a given magnitude and

source-to-site distance; and, an estimation of the confidence limits of median predictions

from GMPEs [extending the analysis of Douglas (2007b); Chiou & Youngs (2008a); Douglas

(2010a)].
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Memberships of professional societies

2001–2004 The Society of Earthquake and Civil Engineering Dynamics, United Kingdom

2002–2004 Earthquake Engineering Field Investigation Team, United Kingdom

2003–now European Association of Earthquake Engineering

2005–now French Association of Earthquake Engineering (AFPS)



4. Curriculum vitae 47

List of publications

Journal (42 in total): Ambraseys, N., & Douglas, J. 2000. Reappraisal of surface wave

magnitudes in the Eastern Mediterranean region and the Middle East.

Geophysical Journal International, 141(2), 357–373.

Ambraseys, N. N., & Douglas, J. 2003a. Effect of vertical ground mo-

tions on horizontal response of structures. International Journal of

Structural Stability and Dynamics, 3(2), 227–265.

Ambraseys, N. N., & Douglas, J. 2003b. Near-field horizontal and ver-

tical earthquake ground motions. Soil Dynamics and Earthquake Engi-

neering, 23(1), 1–18.
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Winter, T., Comte, J. P., Mompelat, J. M., Aochi, H., Auclair, S., Barras,

A. V., Bertil, D., Bes de Berc, S., Bourdon, E., Chauvet, M., Dominique,

P., Douglas, J., Lemoine, A., Negulescu, C., Ollagnier, S., Pericat, J.,
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Citations of journal articles

The following table gives the total number of citations for each journal article as listed in

the ISI Web of Knowledge published by Thomson Reuters. * indicates that the journal is

not listed in the ISI Web of Knowledge; for these articles, the total number of citations from

the cited reference search of ISI Web of Knowledge are given.
Douglas (2003a) 99

Ambraseys et al. (2005a) 95

Bommer et al. (2003a) 46*

Ambraseys & Douglas (2003b) 45

Ambraseys & Douglas (2004) 35

Ambraseys et al. (2004b) 32*

Douglas & Smit (2001) 24

Douglas (2007b) 17*

Douglas et al. (2006d) 14

Douglas (2004b) 13

Douglas (2003d) 11*

Ambraseys & Douglas (2000) 10

Ambraseys et al. (2005b) 10

Douglas (2007c) 9

Jousset & Douglas (2007) 9

Douglas et al. (2006b) 8

Aochi & Douglas (2006) 6

Douglas et al. (2004b) 6*

Douglas (2002) 3

Douglas & Aochi (2008) 3

Douglas & Gehl (2008) 3

Douglas & Mohais (2009) 3

Fukushima et al. (2007) 3

Douglas (2003b) 2

Douglas (2007a) 2

Douglas et al. (2008) 2

Ambraseys & Douglas (2003a) 1*

Douglas et al. (2007) 1

Douglas et al. (2010) 1

Douglas et al. (2009) 1

Le Cozannet et al. (2008) 1

Radiguet et al. (2009) 1

Sharma et al. (2009) 1

Strasser et al. (2006) 1

Aochi et al. (2011) 0

Beauval et al. (2010) 0

Bommer et al. (2010) 0

Douglas (2006a) 0*

Douglas (2010b) 0

Douglas & Boore (2011) 0

Imperatori et al. (2010) 0

Seyedi et al. (2010) 0

Total: 405 113*
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SUMMARY
There have been many attempts to improve parametric catalogues for surface wave
magnitudes for earthquakes of this century, and many of these attempts have been
based on empirical adjustments to homogenize and complete catalogues without
recourse to the instrumental data with which these magnitudes have been calculated.
Using the Prague formula with station corrections and a substantial volume of
amplitude and period readings of surface waves, culled from station bulletins, we
calculated uniformly the magnitude of all significant earthquakes, 1519 in all, in the
Eastern Mediterranean region and in the Middle East between 1900 and 1998. We also
calculated station corrections and their variation with time, and examined the effect of
distance adjustment of the Prague formula on Ms estimates.

We find that the current procedure of averaging station magnitudes underestimates
Ms . This underestimation depends on the variance and on the number of station
magnitudes available for the calculation of Ms , which can be as large as 0.3 magnitude
units or more. We also find that station corrections have a rather small overall effect
on event magnitude, of less than +0.1, except when the number of observing stations
is small, in which case the correction may reach +0.3 magnitude units. Event
magnitudes derived from station magnitudes with distance adjustment, calculated from
the original Prague formula, are on average 0.1 units larger than Ms without distance
correction. We find that for shallow events, Gutenberg’s estimates are, on average,
larger by 0.12 units and show a significant scatter, with a standard deviation three
times the mean value. We find similar differences and scatter for surface wave
magnitudes estimated by other workers and agencies.

Key words: earthquakes, Eastern Mediterranean, Middle East, surface wave magnitudes.

estimates of fault slip rates measured at the surface. The data
INTRODUCTION

set for Ms≥5.7 is complete. Also, we have chosen to re-evaluate
Ms of all earthquakes with reliable estimates of seismic momentThe purpose of this paper is to provide homogeneous surface
M0 , regardless of magnitude, that could allow not only investi-wave magnitudes over a period of 98 years, much longer than

the time that has elapsed since the advent of the magnitude gation of the scaling of surface wave magnitude with seismic
moment down to small magnitudes, but also an extension toscale, which are needed for the study of continental deformation

and for the assessment of seismic hazard in the Eastern the period for which, via Ms , seismic moments can be assigned
to events back to 1900. We also included for reassessment allMediterranean region and the Middle East.

We sought to reassess uniformly surface wave magnitudes events in our area whose magnitude was calculated by Gutenberg.
In addition, we reappraised the magnitude of smaller eventsfor earthquakes from 1900 to 1998 in an area of intense seismic

activity that extends from the Ionian Sea and Libya in the (Ms<5.7) that are associated with surface faulting, with earth-
quakes whose magnitude has been overestimated by otherwest to Tadzhikistan and Pakistan in the east, and from

the Danube and the Caucasus in the north to Ethiopia and the workers or agencies, and with earthquakes that triggered strong-
motion instruments or have caused exceptionally high damage,Arabian Sea in the south, in the area between 10°–44°N and

18°–70°E shown in Fig. 1. We have chosen to re-evaluate Ms events that are of special interest to the engineer. The data set
for Ms<5.7 is homogeneous but not complete.of all earthquakes large enough (Ms≥5.7) to be of interest

for the assessment of total strain measured geodetically for These criteria are satisfied by 1519 earthquakes between 1900
and 1998, the surface wave magnitude of which was reappraisedcomparison with that accounted for by earthquakes and with

357© 2000 RAS



Near-field horizontal and vertical earthquake ground motions
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Abstract

Strong-motion attenuation relationships are presented for peak ground acceleration, spectral acceleration, energy density, maximum

absolute input energy for horizontal and vertical directions and for the ratio of vertical to horizontal of these ground motion parameters.

These equations were derived using a worldwide dataset of 186 strong-motion records recorded with 15 km of the surface projection of

earthquakes between Ms ¼ 5:8 and 7.8. The effect of local site conditions and focal mechanism is included in some of these equations.

q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Earthquake ground motions; Peak ground acceleration; Response spectra; Vertical to horizontal ratios

1. Introduction

Strong ground motions from close to large magnitude

earthquakes are the most severe earthquake loading that

structures undergo. However, in the past because of a lack of

adequate strong-motion data from close to large magnitude

earthquakes, equations to estimate strong ground motions

have been derived mainly using strong-motion records from

the intermediate- and far-field of earthquakes. In the past

decade sufficient strong-motion records from close to large

magnitude earthquakes have become available to derive

equations for estimating ground motions using only such

records. In this article we present such equations derived

using a worldwide dataset of 186 strong-motion records

recorded with 15 km of the surface projection of earth-

quakes between Ms ¼ 5:8 and 7.8.

The strong-motion parameters that we have chosen to

examine are: horizontal and vertical peak ground accelera-

tion and the ratio of these quantities, horizontal and vertical

spectral acceleration and the ratios of these quantities,

horizontal and vertical energy density and the ratio of these

quantities and horizontal and vertical maximum absolute

input energy and the ratio of these quantities. Peak ground

acceleration is important because it fixes the zero period

ordinate of response spectra, which are extensively used in

seismic design, and is especially important for defining

seismic code response spectra, which are commonly defined

in terms of peak ground acceleration. Spectral acceleration

is important because after multiplying it by mass it gives the

maximum force that the single-degree-of-freedom system

that models the structure will be subjected to during the

earthquake. Recently interest in the use of energy based

strong-motion parameters, such as examined in this article,

for seismic hazard assessment [26] seismic hazard disag-

gregation [16] and seismic design [8] has increased. All

these uses of energy quantities require equations to estimate

strong ground motions, such as provided in this article.

In this paper we examine the peak and spectral values of

the vertical acceleration relative to the horizontal in the

frequency and time domains to answer the question of

whether the vertical component of ground motion consti-

tutes a significant proportion of the inertial loading that has

to be resisted by a building and by its foundations.

2. Data and method used

2.1. Selection of records

We selected 186 free-field, chiefly triaxial strong-motion

records from 42 earthquakes following the free-field

definition of Joyner and Boore [23] using the criteria: Ms $

5:8; d # 15 km and h # 20 km. The chosen records and

other tabulated material are listed in Ref. [3]. The

distribution of the records used with respect to geographical

location and earthquake mechanism is given in Table 1.

Fig. 1 shows the distribution of the data with magnitude and

distance. Although some authors have found evidence for

differences in strong ground motions due to the tectonic

environment [28] the limited number of records fulfilling

0267-7261/03/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.
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Single-degree-of-freedom (SDOF) elastic models are commonly used for gaining an un- 
derstanding of the response of structures to earthquake ground motions. The Btandard 
SDOF model used does not account for the effect of gravity or the combined effect of 
horizontal and vertical excitations on horiwntal response. The purpose of this paper is 
to review previous work on this topic and to investigate a series of SDOF models that do 
incorporate these effects and to compare their response to the response of the standard 
model using 186 strong-motion records of near-field earthquake ground motions. It is 
found that for mast realistic SDOF models and mcet earthquake ground motions the 
effect of vertical excitation on horizontal response is small. 

Keywords: Strong g~ound motion; response spectra; vertical motions. 

1. Introduction 

Singiedegre+of-freedom (SDOF) elastic models are commonly used for gaining an 
understanding of the response of structures to earthquake ground motions. The 
standard SDOF model usually used does not account for the effect of gravity or 
the combined effect of horizontal and vertical excitations on horizontal response. 
There are a series of SDOF models in the Kterature that do include these effects, 
however they have not been thoroughly investigated in the past. Therefore the 
purpose of this paper is a more thorough examination of these models than has 
been undertaken before. 

In this &st section we introduce the SDOF models under investigation and 
review previous work on these models. In later sections we study the different types 
of response of these models using a large set of near-field earthquake ground motion 
records and compare their response to the response of the standard model. 
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S U M M A R Y
This article is concerned primarily with the evaluation of the size and location of northern Indian
and southern Tibetan earthquakes during the last 200 yr. It draws attention to the problems
of assessing intensity of early and more recent earthquakes in a built environment, which is
different from that for which the intensity scale has been constructed and to the way in which
isoseismals are drawn.

Through a re-evaluation of intensities and a reassessment of isoseismals, a formula for
the estimation of surface wave magnitude using isoseismal radii is derived. This formula is
used to estimate the surface wave magnitudes of 16 earthquakes that occurred in the region
between 1803 and 1900. This study shows that it is possible to calculate accurate surface wave
magnitudes for earthquakes that occurred before the advent of the scale and that there is no
need to resort to empirical formulae for the assessment of the size and seismic moment release
of pre-20th-century earthquakes. Also derived are formulae for the conversion of Ms to M 0.
In total, locations, surface wave magnitudes and M 0 estimates are presented for 43 important
events that occurred in the region between 1803 and 1974, eight of which were in the lower
crust or were subcrustal. We find that the M 0–Ms scaling for India yields smaller Ms than the
global relation and that the methodology used can help to evaluate more realistic slip rates as
well as to address other issues related to earthquake hazard in northern India.

Key words: earthquakes, Himalayas, intensity, magnitude, north India.

1 B A C KG RO U N D

The study area includes northern Afghanistan, Pakistan, India and
southern Tibet and is shown in Fig. 1. Its systematic study is of con-
siderable importance not only because of its significance in global
tectonics, but also because destructive earthquakes occur in the re-
gion (see Table B1 in Appendix B). To study this area, more infor-
mation about earthquakes and more field evidence of recent tecton-
ics are needed. Especially, we need a significantly more extensive
sample of seismicity, particularly of the larger events in terms of
location and magnitude, covering much more than the period of the
few decades of modern seismology, which is minutely brief on the
timescale involved in tectonic processes. Obviously the large earth-
quakes, which are the most informative events, are far less numerous
than small earthquakes and as such are not easily counted unless the
period of observation is sufficiently long.

Much of what is known about the seismicity of northern India
and adjacent regions comes from recent events of the instrumental
period. It is very possible, therefore, that its present-day seismicity
may not reflect the actual distribution and pattern of earthquakes
over a longer period of time and that the present pattern of activity
may be the result of scant and incomplete sampling.

Just as instrumental data are needed for the study of modern
earthquakes, to give parameters that are important for the assess-

ment of earthquake hazard, appropriate methods must also be de-
veloped from macroseismic observations for the study of large
events of the early instrumental and pre-instrumental periods. This
requires:

(i) reinterpretation of primary macroseismic information of
earthquakes in the instrumental period (after 1900) and uniform
assessment of intensities;

(ii) calculation of the instrumental surface wave magnitude of
events for which macroseismic information is available;

(iii) from (i) and (ii) derivation of a regional magnitude scaling
law, which can be used to assess the magnitude of earthquakes in
the pre-instrumental period (before 1900); and, finally,

(iv) the general location and magnitude of these early events.

Readily available macroseismic information for northern India is
rather poor and easily subject to misinterpretation. It comes from
the well-known published works of: Oldham (1899), Middlemiss
(1910), Heron (1911), Stuart (1919), Auden & Ghosh (1934), West
(1934), Brett (1935), West (1936), Gee (1937), Dunn et al. (1939)
and Gee (1953).

In this study, we used additional information culled chiefly from
published and unpublished local and foreign reports written by the
civil authorities, such as government documents from the Indian
subcontinent and from Tibet, official correspondence kept at the

C© 2004 RAS 165
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Abstract - The Internet Site for European Strong-Motion Data (ISESD) provides
unlimited free access to over 2,000 strong-motion records of earthquakes from
Europe, the Mediterranean and the Middle East (EMME). Four mirror sites of
ISESD have been operating since 26th March 2002. The URLs of these sites are:
www.isesd.cv.ic.ac.uk, smbase.itsak.gr, seismo.univ.trieste.it and www.isesd.hi.is.
ISESD provides a basis for improved dissemination of strong-motion data in
EMME. There are a number of future improvements to ISESD which would
improve its usefulness to seismologists, earthquake engineers and insurance
specialists.

1. Introduction

Strong-motion seismology is a rapidly growing research field of great practical value,
providing data and models needed in earthquake engineering design. The number of strong-
motion accelerometric stations and networks in EMME has been growing rapidly during the last
two decades resulting in voluminous strong-motion data, which has stimulated both applied
modelling and theoretical studies. This data collection has not been coordinated across state
boundaries and within many countries there is more than one organisation involved, in most
cases both governmental institutions and private industrial companies. This lack of formal
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Centre, CH-8044 Zürich, Switzerland.
∗Corresponding author. Tel.: +44-20-75946059, Fax: +44-20-72252716, E-mail:
n.ambraseys@imperial.ac.uk

Received 17 May 2004; accepted 10 November 2004

Abstract. This article presents equations for the estimation of horizontal strong ground
motions caused by shallow crustal earthquakes with magnitudes Mw ≥5 and distance to the
surface projection of the fault less than 100 km. These equations were derived by weighted
regression analysis, used to remove observed magnitude-dependent variance, on a set of 595
strong-motion records recorded in Europe and the Middle East. Coefficients are included
to model the effect of local site effects and faulting mechanism on the observed ground
motions. The equations include coefficients to model the observed magnitude-dependent
decay rate. The main findings of this study are that: short-period ground motions from
small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r,
the average effect of differing faulting mechanisms is not large and corresponds to factors
between 0.8 (normal and odd) and 1.3 (thrust) with respect to strike-slip motions and that
the average long-period amplification caused by soft soil deposits is about 2.6 over those on
rock sites. Disappointingly the standard deviations associated with the derived equations are
not significantly lower than those found in previous studies.

Key words: strong ground motion estimation, attenuation relations, Europe, Middle East

1. Introduction

This paper is the latest in a series of studies on the estimation
of strong ground motions for engineering design using the strong-
motion archive at Imperial College London. Previous studies include:
Ambraseys and Bommer (1991), Ambraseys et al. (1996), Ambraseys and
Simpson (1996) and Ambraseys and Douglas (2003). There are a number of



DOI 10.1007/s10518-005-0186-x
Bulletin of Earthquake Engineering (2005) 3:55–73 © Springer 2005
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Abstract. This article presents equations for the estimation of vertical strong ground
motions caused by shallow crustal earthquakes with magnitudes Mw ≥5 and distance to the
surface projection of the fault less than 100 km. These equations were derived by weighted
regression analysis, used to remove observed magnitude-dependent variance, on a set of 595
strong-motion records recorded in Europe and the Middle East. Coefficients are included
to model the effect of local site effects and faulting mechanism on the observed ground
motions. The equations include coefficients to model the observed magnitude-dependent
decay rate. The main findings of this study are that: short-period ground motions from
small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r,
the average effect of differing faulting mechanisms is similar to that observed for horizon-
tal motions and is not large and corresponds to factors between 0.7 (normal and odd) and
1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification
caused by soft soil deposits is about 2.1 over those on rock sites.

Key words: attenuation relations, Europe, Middle East, strong ground motion estimation

1. Introduction

This is a companion article to Ambraseys et al. (2004) (here called Paper
1) to provide ground motion estimation equations for vertical peak ground
acceleration and spectral acceleration for 5% damping. It uses the same set
of data, functional form and regression method as used in Paper 1 and
therefore the equations derived here for vertical motions are consistent with
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Abstract. This paper is concerned with testing the validity of the ground motions estimated
by combining a boundary integral equation method to simulate dynamic rupture along finite
faults with a finite difference method to compute the subsequent wave propagation. The vali-
dation exercise is conducted by comparing the calculated ground motions at about 100 hypo-
thetical stations surrounding the pure strike-slip and pure reverse faults with those estimated
by recent ground motion estimation equations derived by regression analysis of observed
strong-motion data. The validity of the ground motions with respect to their amplitude, fre-
quency content and duration is examined. It is found that the numerical simulation method
adopted leads to ground motions that are mainly compatible with the magnitude and dis-
tance dependence modelled by empirical equations but that the choice of a low stress drop
leads to ground motions that are smaller than generally observed. In addition, the scatter in
the simulated ground motions, for which a laterally homogeneous crust and standard rock
site were used, is of the same order as the scatter in observed motions therefore, close to
the fault, variations in source propagation likely contribute a significant proportion of the
scatter in observed motions in comparison with travel-path and site effects.

Key words: attenuation relations, boundary integral equation method, finite difference
method, ground motion estimation equations, simulated ground motions, uncertainty

1. Introduction

Ground motions close to the fault are influenced directly by the rup-
ture process. Hereafter, these ground motions are termed ‘near-field’ or
‘near-source’ ground motions in agreement with common engineering seis-
mology terminology. Such rupture processes are very heterogeneous due
to the existence of asperities and barriers, the fault geometry, fault seg-
mentation and so forth. The rupture process can be simulated without
any hypotheses on rupture area, amount of slip, rupture time, rupture
directivity and slip-time function, but based on the mechanics controlled
by an initial condition and some stress-slip constitutive law on the fault
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Comment on “Test of Seismic Hazard Map from 500 Years of Recorded

Intensity Data in Japan” by Masatoshi Miyazawa and Jim Mori

by Céline Beauval, Pierre-Yves Bard, and John Douglas*

Miyazawa and Mori (2009) propose testing probabilistic
seismic hazard assessments (PSHAs) for Japan in terms of
predicted macroseismic intensities against those observed
over the past 500 yrs. While the comparison presents a real
interest to the seismological and engineering communities,
their reasoning is based on an incorrect hypothesis and leads
to several problems. Comparing probabilistic estimates and
observations is an important topic; any available observa-
tions should be used to infer constraints on the probabilistic
estimates. Testing long-term earthquake hazard predictions is
currently one of the biggest challenges in the area of engi-
neering seismology. Several current large-scale seismic
hazard projects have work packages dedicated to developing
so-called validation techniques (e.g., the European Commis-
sion-funded Seismic Hazard Harmonization in Europe
[SHARE] project and the Global Earthquake Model).
Obviously, this task should be performed with great caution,
as such validation studies have a direct impact on, for exam-
ple, estimates of seismic risk and building regulations.

Miyazawa and Mori propose to compare “the maximum
recorded intensity map for the past 500 yrs” and “the max-
imum predicted intensity map for the ∼500-yr return period
from the PSHM [probabilistic seismic hazard map]” (see their
abstract). They state that “the purpose of [their] article is to
compare the records of historical maximum intensities for
the past 500 yrs with the predicted maximum intensities from
the HERP hazard map” (Miyazawa and Mori, 2009, p. 3141,
see next paragraph for the misuse of “maximum”; Headquar-
ters for Earthquake Research Promotion [HERP], 2005).
Later in the paper, they indeed directly compare the maxi-
mum “recorded” intensities for 1498–2007 and the seismic
intensity maps for a 10% probability of exceedance in 50 yrs
(p. 3145, fig. 4, and fig. 5). Therefore, their article apparently
relies on the hypothesis that at a site, the maximum observed
intensity value during 475 yrs is equivalent to the intensity at
a 475-yr return period (intensity with 10% exceedance prob-
ability over 50 yrs). This assumption is not correct. The error
in making this hypothesis is rather well known within the
PSHA community, and it has recently been clearly demon-
strated by Beauval et al. (2008). In brief, within PSHA,
the occurrences of intensities at a site are generally assumed
to follow a Poisson process. A Poisson process with a 475-yr
return period has an average occurrence of 1 every 475 yrs;
hence, there is a probability of 37% that this Poisson

phenomenon (exceedance of a considered intensity level)
does not occur at all in a time window of 475 yrs. Further-
more, Beauval et al. (2008) show that, for a meaningful com-
parison with a 20% uncertainty level, a minimum observed
time window of 12,000 yrs is required for estimating site
accelerations corresponding to a 475-yr return period at a
single given site. Therefore, if the intensity catalog covers
475 yrs, the maximum intensity observed at a site cannot
be so easily linked with the intensity for a 475-yr return per-
iod. It can be higher or it can be lower. Both can be compared
only in probabilistic terms. The maximum acceleration over
500 yrs is a random variable characterized by a probability
distribution (e.g., Beauval et al., 2006, in which synthetic
seismic catalogs were used to establish the distribution for
the maximum “observed” acceleration over time periods
of 50 yrs).

Furthermore, in the probabilistic seismic hazard com-
munity, terms used are of utmost importance. There has been
much misunderstanding since the beginning of PSHA, and
efforts have been made to clarify terms and definitions
(e.g., Abrahamson, 2000; Bommer, 2002). In many places
in their article, Miyazawa and Mori (2009) refer to the “max-
imum intensity for a 475-yr return period” (see the abstract,
p. 3141, and their conclusion that “the PSHMs show the max-
imum intensity for a 475-yr return period”). What is calcu-
lated in a probabilistic seismic hazard study is the intensity
for a 475-yr return period, which is not a “maximum” inten-
sity. This misuse is persistent through the paper, and it brings
even more confusion because this intensity is compared to a
true maximum “observed/recorded” intensity. Note that the
intensity with a given probability of at least one exceedance
during 50 yrs can be calculated from the distribution of max-
imum intensities over time windows of 50 yrs (using many
time windows; see Musson, 1999 and Beauval et al., 2006).
The intensity with 10% probability of exceedance can be
extracted from this distribution; it is no longer a maximum
intensity but rather a threshold.

It is worth noting that several authors have worked on
this validation issue using strong-motion records or instru-
mental intensities and have proposed robust methods that
could be applied to historical intensities; none of these stud-
ies are cited in Miyazawa and Mori (2009). The main idea is
to combine multiple sites in space, to compensate for the fact
that available observation time windows within earthquake
catalogs are too short, and to compare observed probabilities
of exceedance of given intensity/acceleration levels with
calculated probabilities (PSHA). Such techniques were first
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Style-of-Faulting in Ground-Motion Prediction
Equations
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Abstract. Equations for the prediction of response spectral ordinates invariably include magnitude,
distance and site classification as independent variables. A few equations also include style-of-
faulting as a fourth variable, although this has an almost negligible effect on the standard deviation
of the equation. Nonetheless, style-of-faulting is a useful parameter to include in ground-motion
prediction equations since the rupture mechanism of future earthquakes in a particular seismic source
zone can usually be defined with some confidence. Current equations including style-of-faulting use
different schemes to classify fault ruptures into various categories, which leads to uncertainty and am-
biguity regarding the nature and extent of the effect of focal mechanism on ground motions. European
equations for spectral ordinates do not currently include style-of-faulting factors, and seismic hazard
assessments in Europe often combine, in logic-tree formulations, these equations with those from
western North America that do include style-of-faulting coefficients. In this article, a simple scheme
is provided to allow style-of-faulting adjustments to be made for those equations that do not include
coefficients for rupture mechanism, so that style-of-faulting can be fully incorporated into the hazard
calculations. This also considers the case of normal fault ruptures, not modelled in any of the current
Californian equations, but which are the dominant mechanism in many parts of Europe. The scheme
is validated by performing new regressions on a widely used European attenuation relationship with
additional terms for style-of-faulting.

Key words: attenuation relations, fault rupture mechanism, logic-tree analysis, seismic hazard as-
sessment

1. Introduction

Predictive equations for estimating the values of particular ground-motion para-
meters for future earthquake scenarios constitute a basic tool for seismic hazard
assessment. There is now a large number of equations for the prediction of ordin-
ates of the acceleration response spectrum, which, despite its shortcomings as an
effective design tool to control damage (Priestley, 2003), is still the most widely
used representation of earthquake ground motion employed in engineering prac-
tice. As many as 50 spectral ordinates prediction equations have been published in
the last decade alone, the common parameters in which are the earthquake mag-
nitude and a measure of the source-to-site distance (Douglas, 2003). The majority
of these equations also include terms to represent the influence of between two
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On the selection of ground-motion prediction 
equations for seismic Hazard analysis
Julian J. Bommer, John Douglas, Frank Scherbaum, Fabrice Cotton, Hilmar Bungum, and Donat Fäh
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INTRODUCTION

A key element in any seismic hazard analysis is the selection of 
appropriate ground-motion prediction equations (GMPEs). 
In an earlier paper, focused on the selection and adjustment of 
ground-motion models for probabilistic seismic hazard analysis 
(PSHA) in moderately active regions—with limited data and 
few, if any, indigenous models—Cotton et	al. (2006) proposed 
seven criteria as the basis for selecting GMPEs. Recent experi-
ence in applying these criteria, faced with several new GMPEs 
developed since the Cotton et	al. (2006) paper was published 
and a significantly larger strong-motion database, has led to 
consideration of how the criteria could be refined and of other 
conditions that could be included to meet the original objec-
tives of Cotton et	al. (2006). In fact, about a dozen new GMPEs 
are published each year, and this number appears to be increas-
ing. Additionally, Cotton et	al. (2006) concluded that the cri-
teria should not be excessively specific, tied to the state-of-the-
art in ground-motion modeling at the time of writing and thus 
remaining static, but rather should be sufficiently flexible to be 
adaptable to the continuing growth of the global strong-motion 
database and the continued evolution of GMPEs. 

The purpose of this paper is to present an update of these 
criteria, which formed a small section of the Cotton et	 al. 
(2006) paper but which are the exclusive focus of this study. 
The revised and extended list of selection criteria should be of 
use to those charged with conducting seismic hazard analyses, 
primarily as a way of avoiding unintended subjectivity in the 
process of assembling suites of GMPEs to be used in the haz-
ard calculations. At the same time, the suite of criteria—which 
are actually for excluding GMPEs from a global set rather than 
selecting in the strict sense—may also be useful as a checklist 
for those developing new GMPEs. 

OBJECTIVES OF GROUND-MOTION MODEL 
SELECTION

The two fundamental components of a PSHA are a model for 
the occurrence of future earthquakes in terms of magnitude, 
frequency, and location; and a model for the estimation of 
ground-motion parameters at a given site as a result of each 
earthquake scenario. The epistemic uncertainty in both com-
ponents must be identified, quantified, and captured in the 
analysis, the most widely used tool for this purpose being the 
logic tree (e.g., Kulkarni et	al. 1984; Bommer and Scherbaum 
2008). In order to capture the epistemic uncertainty in both 
median ground-motion predictions and their associated alea-
tory variability, it has become standard practice to include 
more than one GMPE in logic-tree formulations for PSHA 
(e.g., Bommer et	al. 2005). 

The approach of Cotton et	 al. (2006) to populate the 
ground-motion branches of a logic-tree begins with the prem-
ise that to avoid availability traps (e.g., Kahnemann et	al. 1982), 
whereby an analyst may choose those models with which he or 
she is most familiar, the starting point should be to assemble 
a comprehensive list of all ground-motion models that meet 
the standard scientific quality criteria of international peer-
reviewed journals and then eliminate those considered unsuit-
able. The first basis for exclusion of a model is that it is from a 
tectonic region that is not relevant to the location of the site 
for which the PSHA is being conducted. We believe that this 
should not be a basis for selection or exclusion on purely geo-
graphical criteria (i.e., only using models derived for the host 
country or region) since several studies have concluded that 
there is no strong evidence for persistent regional differences 
in ground motions among tectonically comparable areas, at 
least in the range of moderate-to-large magnitude earthquakes 
(e.g., Douglas 2007; Stafford et	al. 2008), although some stud-
ies have found modest differences in ground-motion attenua-
tion (for high-frequency response parameters) between active 
regions (Scasserra et	al. 2009). Rather, this criterion would sim-
ply mean not including equations for subduction earthquakes 
in the analysis of hazard due to shallow crustal earthquakes, 
and vice versa. One should also exclude equations derived for 
volcanic areas for PSHA in a region that does not have this fea-
ture and models for deep Vrancea-type earthquakes for areas 
not affected by such events. In some cases, there may be a clear 
basis for other exclusions, such as in the United States where 

1. Civil & Environmental Engineering, Imperial College London, 
U.K.

2. Earthquake Engineering Research Centre, University of Iceland, 
Selfoss, Iceland (on teaching leave  from RNSC/RIS, BRGM, 
Orléans, France)

3. Institut für Geowissenschaften Universität Potsdam, Potsdam, 
German

4. LGIT, Université Joseph Fourier, Grenoble, France
5. NORSAR/ICG, Kjeller, Norway
6. Swiss Seismological Service, ETH, Zurich, Switzerland



RESEARCH NOTE

Note on scaling of peak ground acceleration and peak ground
velocity with magnitude
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SUMMARY

The theoretical scaling of near-field peak ground acceleration and peak ground velocity
with moment magnitude,Mw, is found using an L model of rupture. This scaling matches
well with the magnitude scaling of recent attenuation relations.

Key words: earthquakes, fault models, strong ground motion.

1 SCAL ING OF PEAK GROUND
ACCELERAT ION WITH MW

Scholz (1982a) discusses the consequences of the L rupture

model for the scaling of peak ground acceleration, PGA, with

rupture length, L. This note shows that derivations of the scaling

of peak ground acceleration and peak ground velocity with

magnitude made using this rupture model are consistent with

what has been found empirically in strong-motion attenuation

relations. Therefore, suggesting that the L model of rupture

is applicable to the derivation of strong-motion attenuation

relations.

There are two main models of earthquake rupture: the L

model and the W model (Scholz 1982b). An L model is one

in which the fault is mechanically unconstrained (or loosely

constrained) at the base, so that slip is determined by the length

of faulting and the correlation between slip and length is

explained if the stress drop is constant (Scholz 1982a). A W

model is one in which the slip is constrained to be zero at the

base of the fault, so that slip and stress drop are determined by

the fault width (Scholz 1982b). Scholz (1994a,b) and Wang

& Ou (1998) have presented results supporting the validity

of the L model in describing the scaling of earthquake faults.

On the other hand, Romanowicz (1992, 1994) prefers the W

model of rupture.

The seismic moment of a earthquake with a vertical,

rectangular rupture plane of length L, width W, rigidity m,
and slip u is

M0 ¼ kuLW : (1)

The definition of Mw is (Kanamori 1978):

Mw ¼
2

3
logM0 � 6 (2)

where M0 is in N m.

Also, Scholz (1982b) found that the slip and the fault length

for earthquakes that rupture the entire seismogenic zone are

related approximately by u=aL.
Scholz (1982a) derives eq. (3) for the estimation of near-field

peak ground acceleration, amax, for an earthquake with rupture

length L given the near-field peak ground acceleration, a*max,

which occurred for a unit earthquake with rupture length L*

equal to the depth of the seismogenic layer, W:

amax ¼
ffiffiffiffiffiffiffiffiffiffiffi
ln

L

L�

r
a�max : (3)

Note that eq. (3) is a simple relation which does not

explicitly include many important factors that are known to

influence PGA in the near-field case. These include: focal depth,

focal mechanism, dip of fault, distance to the source, local soil

conditions, topography and directivity. More complex models

are needed to include such effects. Eq. (3) is a scaling relation

which assumes that all other factors affecting near-field PGA

are equal for a unit earthquake and an earthquake of rupture

length L.

Eq. (3) is only valid for earthquakes that rupture the entire

seismogenic layer. In fact, it only gives larger peak ground

accelerations for the larger earthquake when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnL=L�

p
>1, i.e.

L>exp (1)L*. Using eq. (1) with u=aL to express L in terms

of M0, m, W and a, the inequality L>exp (1)L* with L*=W,

eq. (2) and converting from natural to common logarithms

leads to this inequality when eq. (3) applies:

Mw >
2

3
½logðakW 3Þ þ 2 log expð1Þ � 9� : (4)

Stock & Smith (2000) have recently found no evidence for a

change of fault scaling from self-similarity, i.e. M0yL3, to that

predicted by the L model, i.e. M0yL2, for normal and reverse

mechanism earthquakes. However, they do find such a change

Geophys. J. Int. (2002) 148, 336–339
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Earthquake ground motion estimation using strong-motion records:

a review of equations for the estimation of peak ground

acceleration and response spectral ordinates
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Abstract

Engineering seismology is the link between earth sciences and engineering. The main input of engineering seismology in

engineering design are loading conditions which must satisfy certain conditions regarding their level and frequency of

occurrence during the lifetime of a structure. One method for estimating these loading conditions is through equations based on

strong ground motion recorded during previous earthquakes. These equations have a handful of independent parameters, such

as magnitude and source-to-site distance, and a dependent parameter, such as peak ground acceleration (PGA) or spectral

acceleration, and the coefficients in the equation are usually found by regression analysis.

This review examines such equations in terms of data selection, accelerogram processing techniques of the strong-motion

records used to construct the equations, the characterisation of earthquake source, travel path and local site used and regression

techniques employed to find the final equations.

It is found that little agreement has been reached in the past 30 years of ground motion estimation relation studies. Workers

have chosen their techniques based on the available data, which varies greatly with geographical region. Also it is noted that

there is a need to include more independent parameters into ground motion estimation equations if the large uncertainties

associated with such equations are to be significantly reduced. The data required to do this is, unfortunately, scarce.

D 2002 Elsevier Science B.V. All rights reserved.

Keywords: seismology; geologic hazards; seismic risk hazard; earthquake engineering; engineering seismology; attenuation relations

1. Introduction

Engineering seismology is the link between earth

sciences and engineering. The main input of engineer-

ing seismology in engineering design is loading con-

ditions which must satisfy certain conditions regarding

their level and frequency of occurrence during the

lifetime of a structure. Loading conditions appropriate

for a particular type of structure are expressed in terms

of ground motion in the frequency and/or time

domains. One method for estimating these loading

conditions is through equations based on strong

ground motion recorded during previous earthquakes.

These equations have a handful of independent
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What is a Poor Quality Strong-Motion Record?

J. DOUGLAS
Department of Civil and Environmental Engineering, Imperial College of Science, Technology and
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Abstract. Some accelerograms are affected by non-standard recording and digitization problems
that mean they are often not used in strong-motion studies. These non-standard problems cannot
be corrected by the standard processing techniques that remove low and high-frequency noise from
the time-history. Records from analogue instruments are more prone to these problems but even
records from digital instruments, which are becoming increasingly common, can be affected by
such errors. Since all strong-motion data is valuable it is important to know whether any useful
information can be obtained from accelerograms that are affected by such problems. This article
examines whether strong-motion records from analogue instruments that are missing their initial part
due to late triggering of the instrument and also strong-motion records from digital instruments with
low A/D converter resolution can be used for response spectral studies. It is found, by simulating such
errors on high-quality strong-motion records, that good response spectral ordinates can be obtained
from such ‘poor-quality’ records within the period range of most engineering interest.

Key words: accelerograph design, low digitizer resolution, response spectra, S-wave trigger, simu-
lated errors, strong-motion records

Abbreviations: PGA – peak ground acceleration; PGV – peak ground velocity; ISESD – internet
Site for European Strong-Motion Data; A/D – analogue to digital

1. Introduction

Some accelerograms are affected by non-standard recording and digitization prob-
lems that mean they are often not used in strong-motion studies. These non-standard
problems cannot be corrected by the standard processing techniques that remove
low and high-frequency noise from the time-history. Records from analogue in-
struments are more prone to these problems but even records from digital instru-
ments, which are becoming increasingly common, can be affected by such errors.
Since all strong-motion data is valuable it is important to know whether any useful
information can be obtained from accelerograms that are affected by such prob-
lems. Hudson (1979) estimated that the cost of deploying and maintaining suitable
strong-motion networks results in a direct cost for each important strong-motion
record of about $10,000. Therefore it is vital that the most use is made of all
strong-motion records even if they are of poor quality.

Currently the Internet Site for European Strong-Motion Data (ISESD) (Am-
braseys et al., 2002) contains some records affected by such errors and there are
also many records contained within the databanks of the partners of this project that
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An investigation of analysis of variance as a tool for exploring regional
differences in strong ground motions
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Abstract

The statistical technique known as analysis of variance is applied to a large set of European strong-motion data to
investigate whether strong ground motions show a regional dependence. This question is important when selecting
strong-motion records for the derivation of ground motion prediction equations and also when choosing strong-
motion records from one geographical region for design purposes in another. Five regions with much strong-motion
data (the Caucasus region, central Italy, Friuli, Greece and south Iceland) are investigated here. For the magnitude
and distance range where there are overlapping data from the five areas (2.50 ≤ Ms ≤ 5.50, 0 ≤ d ≤ 35 km)
and consequently analysis of variance can be performed, there is little evidence for a regional dependence of
ground motions. There is a lack of data from moderate and large magnitude earthquakes (Ms > 5.5) so analysis of
variance cannot be performed there. Since there is uncertainty regarding scaling ground motions from small to large
magnitudes whether ground motions from large earthquakes are significantly different in different parts of Europe
is not known. Analysis of variance has the ability to complement other techniques for the assessment of regional
dependence of ground motions.

Introduction

One important problem in the derivation of equations
for the estimation of earthquake ground motions is the
selection of records based on their geographical origin
(e.g. Douglas, 2003a). To derive equations for which
the coefficients are robust and which can be used for
a wide range of magnitudes and distances it is desired
that the set of records used be as large as possible.
However, some previous studies (e.g. Sigbjörnsson and
Baldvinsson, 1992; Lee, 1995; Free, 1996) have found
that strong ground motions seem to have a regional
dependence. The regional differences between ground
motions in eastern and western North America, ENA
and WNA, respectively, have been much studied. For
example, Campbell (2003) shows, using the stochas-
tic ground motion estimation method (Boore, 1983),

that higher stress drops (�σ ), lower path attenuation
(Q) and lower site attenuation (κ) in ENA compared
to WNA leads to much higher estimated short-period
spectral accelerations in ENA than in WNA. On the
other hand, Hanks and Johnston (1992) examine the ar-
eas enclosed by Modified Mercalli intensities for ENA
and WNA earthquakes and find that the areas within
isoseismals indicating damage (VI to VII and greater)
are similar for the two regions for earthquakes with
Mw ≤ 7 but that the lower path attenuation and possi-
ble higher stress drops in ENA could lead to differences
in ground motions for larger earthquakes and at large
distances (R > 150 km).

The consequence of finding regional differences in
ground motions is that data from different areas should
not be combined because it would increase the stan-
dard deviation of the derived equations and could lead
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Seismic-hazard assessment

An earthquake occurs when a fault (an area of weakness) in the Earth’s crust
(the brittle outermost layer), ruptures and releases energy in the form of
waves. When these waves reach the Earth’s surface they cause the

shaking that is responsible for most earthquake damage. Earthquakes can also
trigger landslides that in turn cause destruction, such as during the recent disaster
in Kashmir. Other effects can occur, such as liquefaction where the soil loses its
strength due to shaking and hence can no longer correctly support structures. Bird
& Bommer (2004) find that in 88% of recent earthquakes, ground shaking was the
major cause of loss compared with landslides, liquefaction or other effects. The
accurate estimation of this shaking (earthquake ground motion) is the subject of
this article.

It is important to distinguish between the hazard, which cannot be altered, and
the risk, which can be modified by changing the vulnerability and exposure of
the building stock. Earthquake risk mitigation seeks to reduce earthquake losses
through actions that decrease the risk. Two ways of doing this are to i) move
vulnerable infrastructure away from hazardous areas, i.e. those prone to strong

difficulties in predicting earthquake ground motions in metropolitan france

John Douglas
Researcher,

Engineering Seismology

Development Planning 

and Natural Risks Division

BRGM

j.douglas@brgm.fr 

The accurate estimation of the characteristics of the
shaking that occurs during damaging earthquakes is
vital for efficient risk mitigation in terms of land-use
planning and the engineering design of structures
that can adequately withstand these motions.
The empirical estimation of these movements based
on observed shaking in previous earthquakes is
discussed in this article. Due to a lack of recordings
from damaging earthquakes in metropolitan France,
however, it is difficult to apply this technique.
Research is hence underway to develop simulation
methods based on physical models.

The church of Venelles (Bouches-du-Rhône)
totally destroyed by the quake on 11 June 1909.

Eglise de Venelles (Bouches-du-Rhône)
totalement ruinée par la secousse sismique

du 11 juin 1909.
Source: “La grande peur de la Provence” by J.C.Rey.

Published by Autres Temps, 1992.

Difficulties in predicting
earthquake ground motions

in metropolitan France
and possible ways forward
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Abstract Accurate estimates of the ground motions that occurred during damaging
earthquakes are a vital part of many aspects of earthquake engineering, such as the study
of the size and cause of the uncertainties within earthquake risk assessments. This article
compares a number of methods to estimate the ground shaking that occurred on Guadeloupe
(French Antilles) during the 21st November 2004 (Mw 6.3) Les Saintes earthquake, with
the aim of providing more accurate shaking estimates for the investigation of the sources
of uncertainties within loss evaluations, based on damage data from this event. The various
techniques make differing use of the available ground-motion recordings of this earthquake
and by consequence the estimates obtained by the different approaches are associated with
differing uncertainties. Ground motions on the French Antilles are affected by strong local
site effects, which have been extensively investigated in previous studies. In this article, use
is made of these studies in order to improve the shaking estimates. It is shown that the simple
methods neglecting the spatial correlation of earthquake shaking lead to uncertainties similar
to those predicted by empirical ground-motion models and that these are uniform across
the whole of Guadeloupe. In contrast, methods (such as the ShakeMap approach) that take
account of the spatial correlation in motions demonstrate that shaking within roughly 10 km
of a recording station (covering a significant portion of the investigated area) can be defined
with reasonable accuracy but that motions at more distant points are not well constrained.

Keywords Ground-motion estimation · Guadeloupe · Les Saintes · ShakeMap ·
Site effects · Spatial correlation · Strong ground motion · Uncertainties

1 Introduction

This article has the simple aim of estimating the earthquake ground motion that occurred
on the island group of Guadeloupe (French Antilles) during the damaging Les Saintes

J. Douglas (B)
ARN/RIS, BRGM, 3 avenue C. Guillemin, BP 36009, Orléans Cedex 2 45060, France
e-mail: J.Douglas@brgm.fr
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ON THE REGIONAL DEPENDENCE OF EARTHQUAKE            
RESPONSE SPECTRA 

John Douglas 
ARN/RIS, BRGM 
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45060 Orléans Cedex 2, France 

ABSTRACT 

 It is common practice to use ground-motion models, often developed by regression on recorded 
accelerograms, to predict the expected earthquake response spectra at sites of interest. An important 
consideration when selecting these models is the possible dependence of ground motions on geographical 
region, i.e., are median ground motions in the (target) region of interest for a given magnitude and 
distance the same as those in the (host) region where a ground-motion model is from, and are the aleatoric 
variabilities of ground motions also similar? These questions can be particularly difficult to tackle in 
many regions of the world where little observed strong-motion data is available since there are few 
records to validate the choice of model. Reasons for regionally dependent ground motions are discussed 
and possible regional dependence of earthquake response spectra is examined using published ground-
motion models, observed accelerograms and also by using ground motions predicted by published 
stochastic models. It is concluded that although some regions seem to show considerable differences in 
spectra it is currently more defensible to use well-constrained models, possibly based on data from other 
regions, rather than use predicted motions from local, often poorly-constrained, models. 

KEYWORDS: Ground-Motion Estimation, Attenuation Relationships, Regional Dependence, Analysis 
of Variance, Stochastic Method 

INTRODUCTION 

 The selection of ground-motion estimation equations (e.g., Douglas, 2003) for use in estimating 
elastic earthquake response spectra at sites in most regions of the world, such as many parts of Europe 
and India, is a challenging task due to the relatively short histories of quantitative recording of ground 
motions of engineering significance by strong-motion networks in these areas. For example, the French 
accelerometric network (the Réseau Accélérometrique Permanent, RAP) is only about ten years old and 
the seismicity level of metropolitan France is moderate; therefore, there are only a handful of records 
from earthquakes of magnitudes greater than Mw = 5.0 and at source-to-site distances less than 100 km. 
Two recent empirical ground-motion models have been published based on French data (Marin et al., 
2004; Souriau, 2006). However, these equations are only for the estimation of peak ground acceleration 
(PGA) and, in addition, are based on data from small earthquakes. Due to the observation that ground 
motions from small and large earthquakes scale differently with magnitude and distance (e.g., Pousse 
et al., 2007), these equations cannot be used for the estimation of ground motions from damaging 
earthquakes. In addition, as shown by Trifunac and Todorovska (2000), the extrapolation of ground-
motion estimates for soil sites derived from weak motions may not be appropriate for large events due to 
nonlinear site amplifications. 
 Although the study of Douglas (2003) lists over 120 equations for the estimation of PGA (this list 
was updated in two recent reports (Douglas, 2004a, 2006) to over 200 equations), most of the equations in 
the literature have: (a) been superseded by more recent equations from the same authors or by other 
studies for the region, (b) fail one or more of the criteria listed by Cotton et al. (2006), or (c) cannot be 
used for near-source distances or for moderate or large earthquakes due to the distribution with respect to 
magnitude and distance of the data used to derive the equation. After removing these equations the 
seismic hazard analyst is left with a choice of possibly 20–30 equations. 
 Criteria for the further narrowing down and weighting of these possible ground-motion models have 
been discussed by Scherbaum et al. (2004) and Scherbaum et al. (2005), specifically with respect to the 
selection of models for seismic hazard analysis in Switzerland, a country where the choice of ground-
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Abstract. An evaluation of the risk to an exposed element
from a hazardous event requires a consideration of the ele-
ment’s vulnerability, which expresses its propensity to suf-
fer damage. This concept allows the assessed level of haz-
ard to be translated to an estimated level of risk and is of-
ten used to evaluate the risk from earthquakes and cyclones.
However, for other natural perils, such as mass movements,
coastal erosion and volcanoes, the incorporation of vulnera-
bility within risk assessment is not well established and con-
sequently quantitative risk estimations are not often made.
This impedes the study of the relative contributions from dif-
ferent hazards to the overall risk at a site.

Physical vulnerability is poorly modelled for many rea-
sons: the cause of human casualties (from the event itself
rather than by building damage); lack of observational data
on the hazard, the elements at risk and the induced dam-
age; the complexity of the structural damage mechanisms;
the temporal and geographical scales; and the ability to mod-
ify the hazard level. Many of these causes are related to the
nature of the peril therefore for some hazards, such as coastal
erosion, the benefits of considering an element’s physical
vulnerability may be limited. However, for hazards such as
volcanoes and mass movements the modelling of vulnerabil-
ity should be improved by, for example, following the ef-
forts made in earthquake risk assessment. For example, ad-
ditional observational data on induced building damage and
the hazardous event should be routinely collected and cor-
related and also numerical modelling of building behaviour
during a damaging event should be attempted.

1 Introduction

There has been growing interest in conducting multi-risk as-
sessments recently. For example, numerous EC-funded Sixth
Framework Programme Integrated Projects, such as from the
information technology viewpoint:ORCHESTRA(2006),
OASIS(2006) andWIN (2006) and with regards data collec-

Correspondence to:J. Douglas
(j.douglas@brgm.fr)

tion: PREVIEW (2006), are investigating aspects of multi-
risk management. The software applications developed for
the American HAZUS-MH (FEMA, 2003), the New Zealand
RiskScape (King and Bell, 2005) and the French ARMAGE-
DOM (Sedan and Mirgon, 2003) projects are being devel-
oped in the direction of multi-risk evaluation. Also currently
on going is theRisk Map Germany(2006) initiative. An
evaluation of the risk to an exposed element from a given
hazard requires a consideration of the element’s vulnerabil-
ity, expressing its propensity to suffer damage. This concept
allows the assessed level of hazard to be translated to an esti-
mated level of risk. This approach is well established within
a few risk domains, such as earthquake risk where numerous
fragility curves (expressing the damage level to a building
given, for example, the amplitude of ground shaking) ex-
ist. However, for many hazards, such as mass movements,
coastal erosion and volcanoes, the incorporation of vulnera-
bility within risk assessment is not well-established and few,
if any, fragility curves have been developed (e.g.Douglas,
2005). This article discusses reasons for this difference in
approach, which are important if it is hoped to develop a
consistent method of risk assessment for various risks and, in
particular, if it is hoped that the techniques applied in earth-
quake risk evaluation can be used for other types of risks.

This article is only concerned with risks related to natu-
ral hazards, e.g.: earthquakes, landslides, tsunamis, coastal
erosion and floods.Borst et al.(2006), for example, develop
a methodology for the assessment of man-made risks. Only
the modelling of physical vulnerability, and not the social
vulnerability of populations, is discussed here.

The following section briefly discusses the methods com-
monly adopted to assess risk for different natural hazards,
contrasting the approach usually followed for earthquake risk
(where fragility curves are used) to that adopted in other risk
domains (where fragility curves are rarely used). Section3
discusses the reasons why the vulnerability of elements at
risk is not often considered within risk assessments for nat-
ural hazards other than earthquakes. The article ends with
some conclusions and suggestions.

Published by Copernicus GmbH on behalf of the European Geosciences Union.



Bull Earthquake Eng (2010) 8:1515–1526
DOI 10.1007/s10518-010-9195-5

ORIGINAL RESEARCH PAPER

Consistency of ground-motion predictions from the past
four decades

John Douglas

Received: 22 December 2009 / Accepted: 4 June 2010 / Published online: 22 June 2010
© Springer Science+Business Media B.V. 2010

Abstract Due to the limited observational datasets available for the derivation of ground-
motion prediction equations (GMPEs) there is always epistemic uncertainty in the estimated
median ground motion. Because of the increasing quality and quantity of strong-motion
datasets it would be expected that the epistemic uncertainty in ground-motion prediction
(related to lack of knowledge and data) is decreasing. In this study the predicted median
ground motions from over 200 GMPEs for various scenarios are plotted against date of
publication to examine whether the scatter in the predictions (a measure of epistemic uncer-
tainty) is decreasing with time. It is found that there are still considerable differences in
predicted ground motions from the various GMPEs and that the variation between estimates
is not reducing although the ground motion estimated by averaging median predictions is
roughly constant. For western North America predictions for moderate earthquakes have
show a high level of consistency since the 1980s as do, but to a lesser extent, predictions
for moderate earthquakes in Europe, the Mediterranean and the Middle East. A good match
is observed between the predictions from GMPEs and the median ground motions based
on observations from similar scenarios. Variations in median ground motion predictions for
stable continental regions and subduction zones from different GMPEs are large, even for
moderate earthquakes. The large scatter in predictions of the median ground motion shows
that epistemic uncertainty in ground-motion prediction is still large and that it is vital that
this is accounted for in seismic hazard assessments.

Keywords Strong-motion data · Ground-motion prediction equations (GMPEs) ·
Epistemic uncertainty · Shallow crustal earthquakes · Stable continental regions (SCRs) ·
Subduction zones
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Abstract Over the past four or five decades many advances have been made in earth-

quake ground-motion prediction and a variety of procedures have been proposed. Some of

these procedures are based on explicit physical models of the earthquake source, travel-

path and recording site while others lack a strong physical basis and seek only to replicate

observations. In addition, there are a number of hybrid methods that seek to combine

benefits of different approaches. The various techniques proposed have their adherents and

some of them are extensively used to estimate ground motions for engineering design

purposes and in seismic hazard research. These methods all have their own advantages and

limitations that are not often discussed by their proponents. The purposes of this article are

to: summarise existing methods and the most important references, provide a family tree

showing the connections between different methods and, most importantly, to discuss the

advantages and disadvantages of each method.

Keywords Earthquake � Earthquake scenario � Seismic hazard assessment �
Strong ground motion � Ground-motion prediction

1 Introduction

The accurate estimation of the characteristics of the ground shaking that occurs during

damaging earthquakes is vital for efficient risk mitigation in terms of land-use planning and

the engineering design of structures to adequately withstand these motions. This article has

been provoked by a vast, and rapidly growing, literature on the development of various

methods for ground-motion prediction. In total, this article surveys roughly two dozen

methods proposed in the literature. Only about half are commonly in use today. Some

techniques are still in development and others have never been widely used due to their

limitations or lack of available tools, constraints on input parameters or data for their

application.
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High-frequency filtering of strong-motion records
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Abstract The influence of noise in strong-motion records is most problematic at low and
high frequencies where the signal to noise ratio is commonly low compared to that in the mid-
spectrum. The impact of low-frequency noise (<1 Hz) on strong-motion intensity parameters
such as ground velocities, displacements and response spectral ordinates can be dramatic and
consequentially it has become standard practice to low-cut (high-pass) filter strong-motion
data with corner frequencies often chosen based on the shape of Fourier amplitude spectra and
the signal-to-noise ratio. It has been shown that response spectral ordinates should not be used
beyond some fraction of the corner period (reciprocal of the corner frequency) of the low-cut
filter. This article examines the effect of high-frequency noise (>5 Hz) on computed pseudo-
absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency
noise our analysis shows that filtering to remove high-frequency noise is only necessary in
certain situations and that PSAs can often be used up to 100 Hz even if much lower high-
cut corner frequencies are required to remove the noise. This apparent contradiction can be
explained by the fact that PSAs are often controlled by ground accelerations associated with
much lower frequencies than the natural frequency of the oscillator because path and site
attenuation (often modelled by Q and κ , respectively) have removed the highest frequencies.
We demonstrate that if high-cut filters are to be used, then their corner frequencies should be
selected on an individual basis, as has been done in a few recent studies.

Keywords Strong-motion data · Ground-motion prediction equations ·
Ground-motion models · Filtering · Response spectra · Stochastic method · κ
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Abstract A statistical method to quantitatively assess the relative importance of unmod-
elled site and source effects on the observed variability (σ ) in ground motions is presented.
The method consists of analysis of variance (ANOVA) using the computed residuals with
respect to an empirical ground-motion model for strong-motion records of various earth-
quakes recorded at a common set of stations. ANOVA divides the overall variance (σ 2) into
the components due to site and source effects (respectively σS

2 and σE
2) not modelled by the

ground-motion model plus the residual variance not explained by these effects (σR
2). To test

this procedure, four sets of observed strong-motion records: two from Italy (Umbria-Marche
and Molise), one from the French Antilles and one from Turkey, are used. It is found that for
the data from Italy, the vast majority of the observed variance is attributable to unmodelled
site effects. In contrast, the variation in ground motions in the French Antilles and Turkey
data is largely attributable, especially at short periods, to source effects not modelled by the
ground-motion estimation equations used.

Keywords Strong-motion data · Ground-motion prediction equations(GMPEs) · Analysis
of variance · Site effects · Source effects · Two-way-fit plots

1 Introduction

Analysis of variance (ANOVA) is a powerful technique developed by R.A. Fisher (e.g. Fisher
1990) in which the total variation within a set of observations is separated into components
associated with possible sources of variability (e.g. Moroney 1990). ANOVA is commonly
employed when controlled experiments, such as agriculture tests, are conducted. In con-
trolled experiments the independent effects of each of the control (predictor) variables can
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Comparing predicted and observed ground motions
from subduction earthquakes in the Lesser Antilles
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Abstract This brief article presents a quantitative
analysis of the ability of eight published empirical
ground-motion prediction equations (GMPEs) for
subduction earthquakes (interface and intraslab)
to estimate observed earthquake ground motions
on the islands of the Lesser Antilles (specif-
ically Guadeloupe, Martinique, Trinidad, and
Dominica). In total, over 300 records from 22
earthquakes from various seismic networks are
used within the analysis. It is found that most
of the GMPEs tested perform poorly, which is
mainly due to a larger variability in the observed
ground motions than predicted by the GMPEs, al-
though two recent GMPEs derived using Japanese
strong-motion data provide reasonably good pre-
dictions. Analyzing separately the interface and
intraslab events does not significant modify the

J. Douglas (B)
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45060 Orléans Cedex 2, France
e-mail: j.douglas@brgm.fr

R. Mohais
Seismic Research Center, University of West Indies,
St Augustine, Trinidad & Tobago

Present Address:
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School of Mathematics and Statistics,
University of South Australia, Mawson Lakes,
5095, South Australia, Australia

results. Therefore, it is concluded that seismic
hazard assessments for this region should use a va-
riety of GMPEs in order to capture this large epis-
temic uncertainty in earthquake ground-motion
prediction for the Lesser Antilles.

Keywords Strong-motion data · Lesser Antilles ·
Ground-motion prediction equations ·
Subduction earthquakes

1 Introduction

The large (Mw7.4) earthquake that occurred be-
tween the islands of Martinique and Dominica in
the Lesser Antilles on 29 November 2007 demon-
strated the importance of deep intraslab earth-
quakes in this subduction zone. This earthquake
was widely felt throughout the eastern Caribbean
and it caused damage to buildings on Martinique
and Barbados and slight damage on other islands
in the region, e.g., Dominica. On Martinique, the
macroseismic intensity was estimated to be be-
tween VI and VII on the EMS98 scale (Schlupp
et al. 2008).

Due to the lack of sufficient strong-motion
data recorded on islands of the Lesser Antilles,
seismic hazard assessments in this region are
currently obliged to adopt or adapt published
ground-motion prediction equations (GMPEs)
derived using the much more abundant data from
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How Accurate Can Strong Ground Motion Attenuation Relations Be?

by John Douglas and Patrick M. Smit*

Abstract This article gives the results of a study using 1484 strong-motion re-
cords, which tried to find an upper limit on the accuracy that attenuation relations
can achieve independently of the functional form adopted and the methods used for
the construction of the equation. It is found that the current data do not allow a
significant improvement in the uncertainty over what has been found for previous
attenuation relations. Also, we find evidence for significant nonuniform scatter with
respect to magnitude and that the scatter is not dependent on the amplitude of ground
motion.

Introduction

Attenuation relations are still a fundamental part of en-
gineering seismology, providing a vital link in seismic haz-
ard analysis. Over the past 30 yr, many attenuation relations
have been published using different sets of data, independent
parameters, functional forms, and regression methods. Re-
views of such equations have been undertaken by, among
others, Idriss (1978), Campbell (1985), and Joyner and
Boore (1988). Predicted ground motion from such equations
can vary considerably depending on which published equa-
tion is used. What does not seem to be so variable though
is the uncertainty associated with these equations. This un-
certainty, expressed as a factor of �1 standard deviation,
associated with almost all attenuation relations for peak or
spectral values, is between 1.5 and 2.0, and there has been
little or no decrease in this uncertainty through the use of
more data or more complex methods of analysis.

This article assesses limits on the accuracy of predicted
ground motion using attenuation relations caused only by
the inherent scatter in the data and not by the methods used.

Data and Method Used

Table 1 summarizes the data and the accelerogram cor-
rection method used. As part of Ambraseys et al. (2000,
2001), the independent parameters associated with the Eu-
ropean records used in this study have been verified by uni-
formly recalculating MS from amplitude and period data and
the Prague formula (Ambraseys and Douglas, 2000), and by
using the available information on the fault rupture and the
hypocentral location. The independent parameters of the
other records used have been taken from the International
Seismological Centre, the U.S. National Earthquake Infor-
mation Center, or from special studies. Therefore, the mag-

*Present address: National Emergency Operation Centre, P.O. Box
8044, Zürich, Switzerland.

nitudes and distances used for this study are as accurate as
possible at the present time.

Draper and Smith (1981, pp. 33–42) discuss the idea of
pure error, which gives the upper bound on the accuracy that
the equations obtained by regression can achieve. To cal-
culate it requires repeat runs, where the independent param-
eters are the same, and then the pure error is simply the best
estimate of the unbiased population standard deviation (i.e.,
standard deviation with the n/[n�1] correction factor), r, of
the dependent parameter for each repeat run. Simple atten-
uation relations would predict the same ground motions
caused by the same magnitude earthquake recorded at the
same distance; therefore, comparing two or more such
ground motions would yield the pure error for this case.

Obviously in seismology there are no repeat runs; there-
fore, approximate repeats need to be used to compute the
pure error in a set of records. For this study, the data space
is divided into 2 km by 0.2 MS unit intervals, and the records
within each bin are assumed to be approximate repeats. Pure
error analysis does assume that the explanatory variables (in
this case, MS, d, and site category) are accurately measured,
as does the regression analysis used for the derivation of
strong-motion attenuation relations; therefore, no further as-
sumption is made in this study over the one that is assumed
by previous studies on attenuation relations.

This concept can be taken further by removing the scat-
ter that can be explained by more independent parameters,
such as soil type (see later), focal mechanism, and focal
depth, by splitting the data space further using categories
within each of these parameters. As more parameters are
included, the number of records that are approximate repeats
decreases dramatically, and hence the reliability of such es-
timates of pure error decreases.

Pure error analysis provides the lower bound on the
standard deviation possible by fitting any functional form,
no matter how complex, to the data, and so shows how much
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On the Incorporation of the Effect of Crustal
Structure into Empirical Strong Ground Motion
Estimation

J. DOUGLAS1, P. SUHADOLC2,∗ and G. COSTA2

1Department of Civil & Environmental Engineering, Imperial College London, South Kensington
Campus, London SW7 2AZ, UK. 2Universitá degli studi di Trieste, Dipartimento di Scienze della
Terra, Via E. Weiss 1, 34127 Trieste, Italy.
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Abstract. This article has two purposes. Firstly, a validation exercise of the modal summation tech-
nique for the computation of synthetic strong-motion records is performed for two regions of Europe
(Umbria-Marche and south Iceland), using a variety of region specific crustal structure models, by
comparing the predicted ground motion amplitudes with observed motions. It is found that the rate of
decay of ground motions is well predicted by the theoretical decay curves but that the absolute size
of the ground motions is underpredicted by the synthetic time-histories. This is thought to be due to
the presence of low-velocity surface layers that amplify the ground motions but are not included in
the crustal structure models used to compute the synthetic time-histories.

Secondly, a new distance metric based on the computed theoretical decay curves is introduced
which should have the ability to model the complex decay of strong ground motions. The ability
of this new distance metric to reduce the associated scatter in empirically derived equations for the
estimation of strong ground motions is tested. It is found that it does not lead to a reduction in the
scatter but this is thought to be due to the use of crustal structure models that are not accurate or
detailed enough for the regions studied.

Key words: attenuation relations, crustal structure, modal summation, strong ground motion estim-
ation

1. Introduction

The layered structure of the Earth’s crust means that the dependence of ground
motion amplitudes on distance may not display a smooth decrease with distance
due to the dominance of individual seismic phases over specific distance ranges
(e.g. Suhadolc and Chiaruttini, 1987). The most important discontinuity in the
Earth for engineering seismology is that between the crust and the mantle called the
Mohorovičić discontinuity (or Moho). It is at a depth of 20–30 km over most of the
Earth. The change in wave velocity at such discontinuities results in the reflection
of seismic waves which are incident at greater than the critical angle of incidence.
∗Corresponding author, Tel: +39 040 558 21 22, Fax: +39 040 558 21 11, E-mail: suhadolc@
dst.units.it, costa@dst.univ.trieste.it
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A preliminary investigation of strong-motion data from the
French Antilles
John Douglas · Didier Bertil · Agathe Roullé ·
Pascal Dominique · Philippe Jousset
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Abstract Strong-motion networks have been operat-
ing in the Caribbean region since the 1970s, how-
ever, until the mid-1990s only a few analogue stations
were operational and the quantity of data recorded was
very low. Since the mid-1990s, digital acceleromet-
ric networks have been established on islands within
the region. At present there are thought to be about
160 stations operating in this region with a handful on
Cuba, 65 on the French Antilles (mainly Guadeloupe
and Martinique), eight on Jamaica, 78 on Puerto Rico
(plus others on adjacent islands) and four on Trinidad.

After briefly summarising the available data from
the Caribbean islands, this article is mainly concerned
with analysing the data that has been recorded by the
networks operating on the French Antilles in terms of
their distribution with respect to magnitude, source-to-
site distance, focal depth and event type; site effects
at certain stations; and also with respect to their pre-
dictability by ground motion estimation equations de-
veloped using data from different regions of the world.
More than 300 good quality triaxial acceleration time-
histories have been recorded on Guadeloupe and Mar-
tinique at a large number of stations from earthquakes

J. Douglas (�)· A. Roullé · P. Dominique · P. Jousset
BRGM, 3 avenue C. Guillemin, BP 36009, 45060 Orléans
Cedex 2, France
e-mail: j.douglas@brgm.fr

D. Bertil
BRGM, Morne Houëlmont, Route de 1’Observatoire,
97113 Gourbeyre, Guadeloupe, France

with moment magnitudes larger than 4.8, however,
most of the records are from considerable source-to-
site distances. From the data available it is found that
many of the commonly-used ground motion estima-
tion equations for shallow crustal earthquakes poorly
estimate the observed ground motions on the two is-
lands; ground motions on Guadeloupe and Martinique
have smaller amplitudes and are more variable than
expected. This difference could be due to regional de-
pendence of ground motions because of, for exam-
ple, differing tectonics or crustal structures or because
the ground motions so far recorded are, in general,
from smaller earthquakes and greater distances than
the range of applicability of the investigated equations.

Keywords Strong-motion data . Caribbean . French
Antilles . Ground-motion models . Ground-motion
estimation . Attenuation relations . Site effects

Introduction

The Caribbean region is an area of moderate to high
seismic hazard (e.g. Bernard and Lambert, 1988;
Tanner and Shedlock, 2004). Feuillet et al. (2002) car-
ried out a detailed study of the recent tectonics and
related seismic and volcanic activity in the Lesser An-
tilles. In the northern part of the arc, a series of grabens
dominate with normal faults oriented in the east-west
direction, perpendicular to the trench. The leading edge
of the arc near Guadeloupe appears to be the site of
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The importance of crustal structure in explaining the
observed uncertainties in ground motion estimation

John Douglas · Hideo Aochi · Peter Suhadolc ·
Giovanni Costa
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Abstract In this short article, the possible reduction in the standard deviation of
empirical ground motion estimation equations through the modelling of the effect of
crustal structure is assessed through the use of ground-motion simulations. Simulations
are computed for different source-to-site distances, focal depths, focal mechanisms
and for crustal models of the Pyrenees, the western Alps and the upper Rhine Graben.
Through the method of equivalent hypocentral distance introduced by Douglas et al.
[(2004) Bull Earthquake Eng 2(1): 75–99] to model the effect of crustal structure in
empirical equations, the scatter associated with such equations derived using these
simulated data could be reduced to zero if real-to-equivalent hypocentral distance
mapping functions were derived for every combination of mechanism, depth and
crustal structure present in the simulated dataset. This is, obviously, impractical. The
relative importance of each parameter in affecting the decay of ground motions is
assessed here. It is found that variation in focal depth is generally more important
than the effect of crustal structure when deriving the real-to-equivalent hypocentral
distance mapping functions. In addition, mechanism and magnitude do not have an
important impact on the decay rate.

Keywords Strong ground motion · Attenuation relations · Ground-motion
models · Ground-motion estimation equations · Crustal structure · France · Standard
deviation · Equivalent hypocentral distance
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Abstract: Sensors provide some of the basic input data for risk management of natural and 
man-made hazards. Here the word ‘sensors’ covers everything from remote sensing 
satellites, providing invaluable images of large regions, through instruments installed on the 
Earth’s surface to instruments situated in deep boreholes and on the sea floor, providing 
highly-detailed point-based information from single sites. Data from such sensors is used in 
all stages of risk management, from hazard, vulnerability and risk assessment in the pre-
event phase, information to provide on-site help during the crisis phase through to data to 
aid in recovery following an event. Because data from sensors play such an important part in 
improving understanding of the causes of risk and consequently in its mitigation, 
considerable investment has been made in the construction and maintenance of highly-
sophisticated sensor networks. In spite of the ubiquitous need for information from sensor 
networks, the use of such data is hampered in many ways. Firstly, information about the 
presence and capabilities of sensor networks operating in a region is difficult to obtain due 
to a lack of easily available and usable meta-information. Secondly, once sensor networks 
have been identified their data it is often difficult to access due to a lack of interoperability 



Making the Most of Available Site Information

for Empirical Ground-Motion Prediction

by John Douglas, Pierre Gehl, Luis Fabian Bonilla, Oona Scotti,
Julie Régnier, Anne-Marie Duval, and Etienne Bertrand

Abstract This article proposes a new framework for the inclusion of site effects in
empirical ground-motion prediction equations (GMPEs) by characterizing stations
through their one-quarter wavelength velocities and assessed confidence limits.
The approach is demonstrated for 14 stations of the French accelerometric network
(Réseau Accélérométrique Permanent). This method can make use of all the available
information about a given site, for example, the surface geology, the soil profile, stan-
dard penetration test measurements, near-surface velocity estimated from the topo-
graphic slope, depth to bedrock, and crustal structure. These data help to constrain
the velocity profile down to a few kilometers. Based on a statistical study of 858 real
profiles from three different regions (Japan, western North America, and France)
physically realistic profiles are generated that comply with the information available
for each site.

In order to evaluate the confidence limits for the shear-wave velocity profiles and
derived site amplifications for each station, a stochastic method is adopted: several
thousand profiles are randomly generated based on parameters derived in the statis-
tical study and the constraints available for each station. Then, the one-quarter
wavelength assumption is used to estimate the amplification for each station. It is
found that a good knowledge of near-surface attenuation (i.e., κ or Q) is mandatory
for obtaining precise amplification estimates at high frequencies. Nevertheless, the
proposed scheme highlights the important differences in the uncertainties of the site
amplifications, depending on the information available for a given station. We suggest
that these results could, therefore, be used when developing GMPEs by weighting
records from each station depending on the variability in the computed one-quarter
wavelength velocities.

This approach relies on the assumption that local site effects are only one-
dimensional, which is far from true, especially in sedimentary basins. However, most
GMPEs only model one-dimensional site effects, so this is not an issue specific to this
study. Finally, a way to improve this technique is to use earthquakes or noise recorded
at the stations to further constrain the shear-wave velocity profiles and to consequently
derive more accurate one-quarter wavelength velocities.

Introduction

Local site effects have long been recognized as an
important factor contributing to variations in strong ground
motions (e.g., Boore, 2004). Therefore, the vast majority of
empirical ground-motion prediction equations (GMPEs) try
to model the differences between ground motions at sites
with different local site conditions (e.g., Douglas, 2003).
Various approaches have been followed from simple binary
soil/rock classifications (e.g., Berge-Thierry et al., 2003) to
the explicit use of shear-wave velocity (e.g., Joyner and
Fumal, 1984) and also others such as individual site coeffi-

cients for each strong-motion station considered (e.g.,
Kamiyama and Yanagisawa, 1986). These various proce-
dures are discussed by Douglas (2003). The method that
can be chosen is dependent on the quality of readily available
information on site characteristics at strong-motion stations.
The explicit use of average (measured or estimated) shear-
wave velocity down to 30 m (VS30), with the additional
consideration of the effect of basin depth, was adopted by
all participants of the Pacific Earthquake Engineering Re-
search (PEER) Next Generation Attenuation (NGA) project
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A j Model for Mainland France

JOHN DOUGLAS,1 PIERRE GEHL,1 LUIS FABIAN BONILLA,2 and CÉLINE GÉLIS
2

Abstract—An important parameter for the characterization of

strong ground motion at high-frequencies ([1 Hz) is kappa, j,

which models a linear decay of the acceleration spectrum, a(f), in

log-linear space (i.e. a(f) = A0 exp(- p jf) for f [ fE where f is

frequency, fE is a low frequency limit and A0 controls the amplitude

of the spectrum). j is a key input parameter in the stochastic

method for the simulation of strong ground motion, which is par-

ticularly useful for areas with insufficient strong-motion data to

enable the derivation of robust empirical ground motion prediction

equations, such as mainland France. Numerous studies using

strong-motion data from western North America (WNA) (an active

tectonic region where surface rock is predominantly soft) and

eastern North America (ENA) (a stable continental region where

surface rock is predominantly very hard) have demonstrated that j
varies with region and surface geology, with WNA rock sites

having a j of about 0.04 s and ENA rock sites having a j of about

0.006 s. Lower js are one reason why high-frequency strong

ground motions in stable regions are generally higher than in active

regions for the same magnitude and distance. Few, if any, estimates

of js for French sites have been published. Therefore, the purpose

of this study is to estimate j using data recorded by the French

national strong-motion network (RAP) for various sites in different

regions of mainland France. For each record, a value of j is esti-

mated by following the procedure developed by Anderson and

Hough (Bull Seismol Soc Am 74:1969–1993, 1984): this method is

based on the analysis of the S-wave spectrum, which has to be

performed manually, thus leading to some uncertainties. For the

three French regions where most records are available (the Pyre-

nees, the Alps and the Côtes-d’Azur), a regional j model is

developed using weighted regression on the local geology (soil or

rock) and source-to-site distance. It is found that the studied regions

have a mean j between the values found for WNA and ENA. For

example, for the Alps region a j value of 0.0254 s is found for rock

sites, an estimate reasonably consistent with previous studies.

Key words: Strong-motion data, kappa, high-frequency

decay, France, RAP, near-surface attenuation.

1. Introduction

As is the case for many regions with limited

observational ground motion databases, seismic haz-

ard assessment in France is complicated by large

epistemic uncertainty concerning the expected

ground motion in future earthquakes. Thanks to the

establishment in the past couple of decades of a

reasonably dense national strong-motion network in

the most seismically active parts of France (the

Réseau Accélérometrique Permanent, RAP) many

thousands of accelerometric records are now freely

available (PÉQUEGNAT et al., 2008). Nevertheless, due

to the relatively low earthquake occurrence rates in

mainland France there are very few records from

earthquakes with moment magnitude, Mw, greater

than 5.0. Due to recognized differences in magnitude-

and distance-scaling of ground motions from small

and large earthquakes (e.g. BOMMER et al., 2007;

COTTON et al., 2008, and references therein) it is

currently not possible to develop robust, fully-

empirical ground motion prediction equations

(GMPEs) reliable for higher magnitudes based on

these data. Three alternative methods for the esti-

mation of earthquake ground motions in France could

be applied: (1) assume that ground motions in France

are similar to those in areas for which robust GMPEs

(either empirical or simulation-based) have been

proposed (e.g. California, Japan or Italy) (e.g. COTTON

et al., 2006); (2) develop simulation-based GMPEs

using input parameters derived from seismological

analyses, as, for example, have been developed for

eastern North America (e.g. ATKINSON and BOORE,
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Site Classification Using Horizontal-to-vertical 
Response Spectral Ratios and its Impact 

when Deriving Empirical Ground-motion 
Prediction Equations

Site Classification Using Horizontal-to-vertical Response Spectral RatiosY. Fukushima et al. YOSHIMITSU FUKUSHIMA

Shimizu Corporation, Tokyo, Japan

LUIS FABIÁN BONILLA and OONA SCOTTI

Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France

JOHN DOUGLAS

BRGM, Orléans, France

We classify sites based on their predominant period computed using average horizontal-to-vertical
(H/V) response spectral ratios and examine the impact of this classification scheme on empirical
ground-motion models. One advantage of this classification is that deep geological profiles and high
shear-wave velocities are mapped to the resonance frequency of the site. We apply this classification
scheme to the database of Fukushima et al. [2003], for which stations were originally classified as sim-
ply rock or soil. The calculation of average H/V response spectral ratios permits the majority of sites in
the database to be unambiguously classified. Soft soil conditions are clearly apparent using this tech-
nique. Ground-motion prediction equations are then computed using this alternative classification
scheme. The aleatoric variability of these equations (measured by their standard deviations) is slightly
lower than those derived using only soil and rock classes. However, perhaps more importantly, pre-
dicted response spectra are radically different to those predicted using the soil/rock classification. In
addition, since the H/V response spectral ratios were used to classify stations the predicted spectra for
different sites show clear separation. Thus, site classification using the predominant period appears to
be partially mapped into the site coefficients of the ground-motion model.

Keywords H/V; Response Spectral Ratio; Site Classification; Attenuation Relation; Predominant Period

1. Introduction

It is well known that precise site classification is important in determining accurate empirical
ground-motion prediction relations. However, possessing a good knowledge of site condi-
tions is rather exceptional. Even well-characterized sites do not always have complete
geotechnical information down to the bedrock. For example in Japan, the surface array
K-net has geotechnical characterization down to a maximum depth of 20 m. Thankfully,
its complementary borehole array KiK-net, has information down to 100 or 200 m depth

Received 12 July 2006; accepted 23 April 2007.
Address correspondence to Yoshimitsu Fukushima, Shimizu Corporation, Tokyo, Japan;

E-mail: yyff@kke.blglobe.ne.jp
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2D versus 1D ground-motion modelling for the Friuli region,
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ABSTRACT We perform a series of simulations of seismic wave propagation from potential
earthquakes to evaluate how the 2D (in the NW-SE direction) geological structure of
the Friuli (NE Italy) basin affects ground motions, particularly in terms of peak ground
velocity (PGV). The decay of PGV with source-receiver distance from the 2D
modelling is compared to that obtained from 1D modelling, using a standard model
for seismological studies in this region, one obtained by averaging the 2D model along
the source-receiver distance and one based on the local structure under the receiver.
Synthetic seismograms are computed using a finite-difference technique for point
sources with an upper frequency cut-off of 0.6 Hz. 2D effects are clearly seen,
particularly in the centre of the sedimentary basin, for certain earthquake scenarios.
The analysis of the role played by the main heterogeneities on the propagating
wavefield permits us to conclude that an acceptable fit to the 2D PGV values for the
entire section is possible using a series of 1D models for the Friuli region except for
shallow earthquakes located to the north-west of the basin, where the structure of the
basin edge is complex. 

1. Introduction

In well-studied regions, such as California, 3D geological structure models are often used for
ground-motion modelling, since they show significant differences to predictions based on 1D
structures (e.g., Graves and Wald, 2001; Wald and Graves, 2001; Liu and Archuleta, 2004).
However, information on the 2D or 3D velocity crustal structure of many regions of the world is
still largely unavailable. Even in areas where such information has been published, 1D models are
still preferred for many seismological applications. In some analyses, different 1D models are
chosen for different stations to better characterize the structure between source and certain
receivers, as seen in Wu et al. (2001) for the Chi-Chi earthquake and Liu et al. (2006) for the
2004 Parkfield earthquake, for example. This is because both analytical and semi-analytical
methods (e.g., modal summation and reflectivity methods), which are widely used to produce
synthetic seismograms for forward modeling and inverse analysis, are often formulated for a 1D,
vertically heterogeneous but horizontally uniform, model. Although such 1D approximation is
not better than any well-calibrated 2D or 3D model, numerous studies [e.g., those of Wu et al.
(2001) and Liu et al. (2006)] imply that a station-adjusted 1D model can provide reasonably
accurate ground motion predictions. In this article we ask these related questions for the Friuli
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Long-period earthquake ground displacements recorded
on Guadeloupe (French Antilles)

P. Jousset∗,† and J. Douglas

BRGM-ARN, 3 avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 2, France

SUMMARY

Displacement time-histories derived from accelerograms of three recent earthquakes in western North
America (Hector Mine, Mw 7.1; Denali, Mw 7.9; and San Simeon, Mw 6.5) have been shown to
feature large long-period (∼10 s) ground-motion cycles. Such long-period displacements cause a localized
peak within the displacement response spectrum that is currently not considered within any earthquake
engineering design spectra. These displacement pulses have also been shown to be persistent and to feature
on time-histories from widely separated stations (∼20 km).

Broadband and accelerometric data from the Les Saintes earthquake sequence of 2004–2006 (4.9�Mw

�5.3) recorded on Guadeloupe (French Antilles) are shown in this article to feature similar long-period
motions. The broadband data are used to independently corroborate the displacement time-histories derived
through high-pass filtering and double integration of accelerometric data. It is shown that high-quality
broadband data are suitable for this purpose. The long-period motions observed cause a localized peak
in displacement response spectra at periods between 5 and 10 s. It is suggested here that the cause of
these large-amplitude long-period motions are specific source mechanisms, which may possibly involve
the presence of fluids within the source.

The form of the displacement response spectra from these time-histories is significantly different from
the spectral shape specified in recent seismic design codes since the peak in the spectra is at a much
greater period than expected. This leads to an underestimation of spectral displacements for periods
between about 5 and 10 s. Therefore, if these observed long-period cycles are a common feature of
earthquake ground motions the standard form of displacement design spectra may need to be reconsidered.
Copyright q 2007 John Wiley & Sons, Ltd.
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Abstract: Hazard analysts and risk managers of natural perils, such as earthquakes, 

landslides and floods, need to access information from sensor networks surveying their 

regions of interest. However, currently information about these networks is difficult to 

obtain and is available in varying formats, thereby restricting accesses and consequently 

possibly leading to decision-making based on limited information. As a response to this 

issue, state-of-the-art interoperable catalogues are being currently developed within the 

framework of the Group on Earth Observations (GEO) workplan. This article provides an 

overview of the prototype catalogue that was developed to improve access to information 

about the sensor networks surveying geological hazards (geohazards), such as earthquakes, 

landslides and volcanoes. 

Keywords: hazard maps, geohazards, OGC metadata catalogue, risk management, GEOSS. 

 

1. Introduction 

Attempts to catalogue sensor data lead to gathering heterogeneous information, which makes the 

architecture of such catalogues difficult to manage. This is because scientists and engineers concerned 

with geological hazards, such as earthquakes, landslides and volcanoes (here grouped under the 

collective term geohazards), use heterogeneous in-situ and remote sensing data and modelling tools to 
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Short Note

Dependency of Near-Field Ground Motions on the Structural

Maturity of the Ruptured Faults

by M. Radiguet, F. Cotton, I. Manighetti, M. Campillo, and J. Douglas

Abstract Little work has been undertaken to examine the role of specific long-term
fault properties on earthquake ground motions. Here, we empirically examine the in-
fluence of the structural maturity of faults on the strong ground motions generated by
the rupture of these faults, and we compare the influence of fault maturity to that of
other source properties (slip mode, and blind versus surface rupturing). We analyze the
near-field ground motions recorded at rock sites for 28 large (Mw 5.6–7.8) crustal
earthquakes of various slip modes. The structural maturity of the faults broken by
those earthquakes is classified into three classes (mature, intermediate, and immature)
based on the combined knowledge of the age, slip rate, cumulative slip, and length of
the faults. We compare the recorded ground motions to the empirical prediction equa-
tion of Boore et al. (1997). At all frequencies, earthquakes on immature faults produce
ground motions 1.5 times larger than those generated by earthquakes on mature faults.
The fault maturity appears to be associated with larger differences in ground-motion
amplitude than the style of faulting (factor of 1.35 between reverse and strike-slip
earthquakes) and the surface rupture occurrence (factor of 1.2 between blind and
surface-rupturing earthquakes). However, the slip mode and the fault maturity are
dependent parameters, and we suggest that the effect of slip mode may only be
apparent, actually resulting from the maturity control. We conclude that the structural
maturity of faults is an important parameter that should be considered in seismic
hazard assessment.

Online Material: List of ground-motion records.

Introduction

The level and variability in earthquake ground motions
depend on three main factors: the earthquake source proper-
ties, the details of the wave propagation through the hetero-
geneous transmission medium, and the local site effects (e.g.,
Douglas, 2003; Mai, 2009). While many studies have been
conducted in the last couple of decades to quantify the role of
local site effects and to improve our understanding of wave
propagation, little work has been done to examine which
source properties, other than the earthquake size, may have
a strong effect on the ground motions. The only additional
source properties that have so far been included in ground-
motion studies are the earthquake slip mode (normal,
reverse, or strike slip; e.g., Bommer et al., 2003), the regional
tectonic setting (e.g., Spudich et al., 1999), and the pres-
ence or lack of significant coseismic slip at surface (e.g.,
Somerville, 2003; Kagawa et al., 2004). On the other hand,
several studies have suggested that some of the earthquake
source properties strongly depend on some of the intrinsic

properties of the long-term faults on which the earthquakes
occur. The plate tectonic context (intraplate versus interplate
faults; e.g., Scholz et al., 1986), the long-term slip rate (e.g.,
Anderson et al., 1996), the geometry (e.g., Stirling et al.,
1996), and the structural maturity of the long-term faults
(Manighetti et al., 2007) have all been recognized as major
fault properties having a significant effect on earthquake
variability (i.e., variability in stress drop, slip amplitude, rup-
ture length, and magnitude). Because structural maturity de-
pends together on the age, slip rate, cumulative slip, and
length of the faults (Manighetti et al., 2007), and hence is
an integrated property, it may be the fault property to have
the largest impact on the earthquake source. Our specific
objective is to examine whether the fault structural maturity
has an influence on the near-field ground-motion variability.
If such an influence is demonstrated, it may allow signifi-
cant improvement of the available ground-motion predic-
tion equations (GMPEs), (e.g., Douglas, 2003) mainly by
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Development of seismic fragility surfaces for reinforced concrete
buildings by means of nonlinear time-history analysis

D. M. Seyedi1,∗,†, P. Gehl1, J. Douglas1, L. Davenne2, N. Mezher2 and S. Ghavamian2

1BRGM—Natural Risks and CO2 Storage Safety Division, 3 Avenue Claude Guillemin,
BP 36009, F-45060 Orléans, France

2NECS, 196 rue Houdan, F-92330 Sceaux, France

SUMMARY

Fragility curves are generally developed using a single parameter to relate the level of shaking to the
expected structural damage. The main goal of this work is to use several parameters to characterize the
earthquake ground motion. The fragility curves will, therefore, become surfaces when the ground motion
is represented by two parameters. To this end, the roles of various strong-motion parameters on the induced
damage in the structure are compared through nonlinear time-history numerical calculations. A robust
structural model that can be used to perform numerous nonlinear dynamic calculations, with an acceptable
cost, is adopted. The developed model is based on the use of structural elements with concentrated
nonlinear damage mechanics and plasticity-type behavior. The relations between numerous ground-motion
parameters, characterizing different aspects of the shaking, and the computed damage are analyzed and
discussed. Natural and synthetic accelerograms were chosen/computed based on a consideration of the
magnitude-distance ranges of design earthquakes. A complete methodology for building fragility surfaces
based on the damage calculation through nonlinear numerical analysis of multi-degree-of-freedom systems
is proposed. The fragility surfaces are built to represent the probability that a given damage level is reached
(or exceeded) for any given level of ground motion characterized by the two chosen parameters. The
results show that an increase from one to two ground-motion parameters leads to a significant reduction
in the scatter in the fragility analysis and allows the uncertainties related to the effect of the second
ground-motion parameter to be accounted for within risk assessments. Copyright q 2009 John Wiley &
Sons, Ltd.

Received 5 September 2008; Revised 23 February 2009; Accepted 26 May 2009

KEY WORDS: seismic vulnerability; fragility surfaces; numerical structural modeling; dynamic analysis;
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Ground-Motion Prediction Equations Based on Data
from the Himalayan and Zagros Regions

MUKAT LAL SHARMA1, JOHN DOUGLAS2,
HILMAR BUNGUM3, and JAINISH KOTADIA1

1Department of Earthquake Engineering, Indian Institute of Technology Roorkee,

Roorkee, India
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This study derives ground-motion prediction equations for the horizontal elastic response spectral
acceleration for 5% damping for application to the Indian Himalayas. The present equations
include a consideration of site category (rock/soil) and style-of-faulting (strike-slip/reverse). Due
to a lack of near-field data from India, additional strong-motion data have been included from the
Zagros region of Iran, which has comparable seismotectonics to the Himalayas (continental
compression). A set of 201 records from 16 earthquakes were used within the regression. The
derived model predicts similar ground motions to previously published equations for the Himalayan
region but with lower standard deviations.

Keywords Ground-Motion Prediction Equations; Strong-Motion Data; India; Iran; Himalayas

1. Introduction

One of the prerequisites for seismic hazard analyses is a ground-motion prediction

equation (GMPE) to transform event parameters (e.g., earthquake location and magni-

tude) to site parameters characterising the seismic hazard at a site (e.g., peak ground

acceleration (PGA)). Douglas [2003] provided a recent review of GMPEs for PGA and

elastic response spectral ordinates. When conducting a seismic hazard analysis it is

important to select a set of GMPEs that are appropriate for the region of interest, i.e.,

they correctly predict the median ground motion and its variability.

For the Indian Himalayas due to limited strong-motion data there are only a few and

relatively poorly constrained GMPEs available [e.g., Singh et al., 1996; Sharma, 1998,

2000; Jain et al., 2000; Saini et al, 2002; Sharma and Bungum, 2006; Raghukanth and

Iyanger, 2007], only two of which [Singh et al., 1996; Sharma, 1998] could pass the

GMPE selection criteria of Cotton et al. [2006] (since the others were not published in

international peer-reviewed journals). However, the Himalayas are an area of high

seismic hazard, vulnerability and exposure, including many important civil engineering

projects such as hydroelectric dams. Therefore, there is a great need for robust GMPEs in

order to derive earthquake design parameters and for accurate earthquake hazard and risk

assessments.

The main reason why sufficiently reliable GMPEs have so far not been derived for

the Himalayan region is a lack of data, especially near-field data. This situation is in turn

Received 1 November 2008; accepted 2 March 2009.
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Comment on “Influence of Focal Mechanism in Probabilistic Seismic

Hazard Analysis” by Vincenzo Convertito and André Herrero

by F. O. Strasser, V. Montaldo, J. Douglas, and J. J. Bommer

Introduction

The influence of style-of-faulting on strong ground-
motions has been the subject of debate for some time. Al-
though some controversy persists, the general consensus is
that ground motions produced by reverse faults are higher
than those produced by normal faults, whereas motions from
strike-slip faults are somewhere in between. In a recent ar-
ticle, Convertito and Herrero (2004) derived a correction
factor for focal mechanism to be applied to predictive equa-
tions. This issue was previously addressed by Bommer et al.
(2003). Although this article is cited by Convertito and Her-
rero, it seems that its aims and scope were not well under-
stood, and we would therefore like to clarify what the
method presented therein entails, especially because we feel
that Convertito and Herrero’s approach of characterizing fo-
cal mechanisms based solely on the radiation pattern is dif-
ficult to justify.

After presenting their correction scheme, Convertito
and Herrero go on to present an implementation of proba-
bilistic seismic hazard analysis (PSHA) explicitly accounting
for focal mechanism. This represents a real innovation in
terms of methodology because it allows propagation of the
improvements in ground-motion prediction gained through
the focal-mechanism adjustments to hazard estimation.
Characterizing the dominant scenario in terms of focal
mechanism furthermore has the advantage of providing con-
straints for numerical simulations that are derived directly
from the hazard computation, rather than from arbitrary as-
sumptions. However, in our opinion, the methodology pre-
sented by Convertito and Herrero has some serious short-
comings which would need to be addressed before it can
lead to improvements of the PSHA methodology. Our dis-
cussion includes a comparison with the new Italian seismic
hazard map, which was derived using the Bommer et al.
(2003) adjustment methodology.

Focal Mechanism in Ground-Motion Prediction

In the first part of their article, Convertito and Herrero
derive a correction factor for focal mechanism to be used in
conjunction with empirical predictive equations that do not
include a style-of-faulting factor. The purpose of this cor-
rection factor seems to us to be essentially identical with that
of the adjustment factors suggested in Bommer et al. (2003).
Both methods are based on the simple observation that, if
one accepts that focal mechanism significantly influences
ground motions, the values predicted using mechanism-

independent equations derived through regression on empir-
ical data will reflect the composition of the underlying data-
set. The main difference between the methods lies in the
representation of the focal-mechanism effects: Convertito
and Herrero choose to use the theoretical SH-wave radiation
pattern as a basis for their correction factor, whereas the
adjustment presented in Bommer et al. (2003) consists in
estimating a style-of-faulting factor such as those used in
mechanism-dependent predictive equations.

The radiation pattern will undoubtedly affect the spatial
distribution of ground motion, but it is debatable whether
the influence of the focal mechanism on ground motions can
be represented using solely this variable, ignoring other ef-
fects contributing to the style-of-faulting factor found in
mechanism-dependent equations. In terms of physics, dif-
ferences in the ground motions produced by various types
of focal mechanisms result from differences in the orienta-
tion of the principal stresses in different tectonic regimes;
these will also result in differences in stress drop (McGarr,
1984). From the practical point of view, radiation-pattern
effects are difficult to quantify in a realistic manner. In the
near-source region, radiation-pattern effects are complex be-
cause of the finite dimensions of the rupture area and the
inhomogeneity of the rupture process. Radiation pattern ef-
fects are also difficult to decouple from dynamic effects such
as directivity. At greater distances, the radiation pattern usu-
ally deviates from the theoretical formulation for a point-
source dislocation due to attenuation and scattering effects.
Furthermore, the radiation pattern is related to the coherent
(i.e., low-frequency) part of the motion and it is therefore
unlikely that it will capture the variability of high-frequency
motion, in particular, peak ground acceleration (PGA), which
will be affected by small-scale heterogeneities. Finally, the
theoretical average radiation-pattern factor as computed fol-
lowing the method of Boore and Boatwright (1984) is the
same for reverse and normal faults, assuming a common dip
angle. This means that the commonly observed higher
ground motions from reverse events than from normal earth-
quakes will not be captured by such a model. Indeed, any
differences between these two mechanisms will be caused
by differences in dip, which in Convertito and Herrero
(2004) are exaggerated by the choice of a very shallow angle
(12�) for thrust events, crustal reverse earthquakes having
commonly a steeper dip (e.g., Jackson, 2001).

The inadequacy of the radiation pattern as a means to
characterize focal-mechanism effects becomes evident when
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Abstract Over the past four or five decades many advances have been made in earth-

quake ground-motion prediction and a variety of procedures have been proposed. Some of

these procedures are based on explicit physical models of the earthquake source, travel-

path and recording site while others lack a strong physical basis and seek only to replicate

observations. In addition, there are a number of hybrid methods that seek to combine

benefits of different approaches. The various techniques proposed have their adherents and

some of them are extensively used to estimate ground motions for engineering design

purposes and in seismic hazard research. These methods all have their own advantages and

limitations that are not often discussed by their proponents. The purposes of this article are

to: summarise existing methods and the most important references, provide a family tree

showing the connections between different methods and, most importantly, to discuss the

advantages and disadvantages of each method.

Keywords Earthquake � Earthquake scenario � Seismic hazard assessment �
Strong ground motion � Ground-motion prediction

1 Introduction

The accurate estimation of the characteristics of the ground shaking that occurs during

damaging earthquakes is vital for efficient risk mitigation in terms of land-use planning and

the engineering design of structures to adequately withstand these motions. This article has

been provoked by a vast, and rapidly growing, literature on the development of various

methods for ground-motion prediction. In total, this article surveys roughly two dozen

methods proposed in the literature. Only about half are commonly in use today. Some

techniques are still in development and others have never been widely used due to their

limitations or lack of available tools, constraints on input parameters or data for their

application.

J. Douglas (&) � H. Aochi
ARN/RIS, BRGM, BP 36009, 3 Avenue C. Guillemin, 45060 Orleans Cedex 2, France
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Earthquake ground-motion estimation that transforms event parameters, e.g. magnitude

and source location, to site parameters, either time-histories of ground motions or strong-

motion parameters (e.g. peak ground acceleration, PGA, or response spectral displacement)

is a vital component within seismic hazard assessment be it probabilistic or deterministic

(scenario-based). Ground-motion characteristics of interest depend on the structure or

effects being considered (e.g. McGuire 2004). At present, there are a number of methods

being used within research and engineering practice for ground-motion estimation; how-

ever, it is difficult to understand how these different procedures relate to each another and

to appreciate their strengths and weaknesses. Hence, the choice of which technique to use

for a given task is not easy to make. The purpose of this article is to summarise the links

between the different methods currently in use today and to discuss their advantages and

disadvantages. The details of the methods will not be discussed here; these can be found

within the articles cited. Only a brief description, list of required input parameters and

possible outputs are given. The audience of this article includes students and researchers in

engineering seismology but also seismic hazard analysts responsible for providing esti-

mates for engineering projects and earthquake engineers seeking to understand limits on

the predictions provided by hazard analyses. Numerous reviews of ground-motion simu-

lation techniques have been published (e.g. Aki 1982; Shinozuka 1988; Anderson 1991;

Erdik and Durukal 2003) but these have had different aims and scopes to this survey.

Only methods that can be used to estimate ground motions of engineering significance

are examined here, i.e. those motions from earthquakes with moment magnitude Mw

greater than 5 at source-to-site distances \100 km for periods between 0 and 4s (but

extending to permanent displacements for some special studies). In addition, focus is given

to the estimation of ground motions at flat rock sites since it is common to separate the

hazard at the bedrock from the estimation of site response (e.g. Dowrick 1977) and because

site response modelling is, itself, a vast topic (e.g. Heuze et al. 2004). Laboratory models,

including foam models (e.g. Archuleta and Brune 1975), are not included because it is

difficult to scale up to provide engineering predictions from such experiments.

Section 2 summarises the different procedures that have been proposed within a series

of one-page tables (owing to the vast literature in this domain, only brief details can be

given) and through a diagram showing the links between the methods. The problem of

defining an earthquake scenario is discussed in Section 3. Section 4 is concerned with the

testing of methods using observations. The article concludes with a discussion of how to

select the most appropriate procedure for a given task.

2 Summaries of Different Procedures

As described by Ólafsson et al. (2001) there are basically two approaches to the con-

struction of models for the prediction of earthquake ground motions: the mathematical

approach, where a model is analytically based on physical principles, and the experimental

one, where a mathematical model, which is not necessarily based on physical insight, is

fitted to experimental data. In addition, there are hybrid approaches combining elements of

both philosophies. Earthquakes are so complex that physical insight alone is currently not

sufficient to obtain a reasonable model. Ólafsson et al. (2001) term those models that only

rely on measured data ‘black-box’ models.

Figure 1 summarises the links between the different methods described in Tables 1–22.

Each table briefly: (1) describes the method; (2) lists the required input parameters (bold

for those parameters that are invariably used, italic for parameters that are occasionally

188 Surv Geophys (2008) 29:187–220
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Table 1 Method of representative accelerograms

Description of method

Records are chosen from databanks containing accelerograms that are appropriate for the considered site.
Selection is often made considering the magnitude and distance (and occasionally other characteristics
such as style-of-faulting) of the scenario event. Records with elastic response spectra that match a design
spectrum are often preferred. After selection scaling of the amplitude (and occasionally the time scale) is
often performed to corrected for differences to the design ground-motion parameters (e.g. PGA). A
modern variant of this technique that is increasing in popularity is the minor adjustment of time-histories
so that their response spectra better match the design spectrum

Input parameters Outputs Key references

Magnitude, distance, design
response spectrum,
seismotectonic regime, source
depth, style-of-faulting

Scaled (modified) natural
accelerogram reliable
up to 1–4s for analogue
or for digital (Akkar and
Bommer 2006)

Guzman and Jennings (1976),
Dowrick (1977),
Campbell (1986),
Joyner and Boore (1988),
Shome et al. (1998),
Bommer et al. (2000),
Bommer and Ruggeri (2002),
Bommer and Acevedo (2004),
Baker and Cornell (2006),
Watson-Lamprey and
Abrahamson (2006),
Beyer and Bommer (2007),
Hancock et al. (2008)

Available tools Used in research Used in practice

Various websites (e.g. Ambraseys et al.
2004b) and CD ROMs
(e.g. Ambraseys et al. 2004a) providing
accelerograms; RSPMATCH2005
(Hancock et al. 2006); RASCAL
(Silva and Lee 1987); WAVGEN
(Mukherjee and Gupta 2002)

Often Very often although they are
rarely called ‘representative
accelerograms’.

Advantages Disadvantages/limitations

Rapid; straightforward; many available records
from Internet sites and CD ROM collections;
can account for effects (e.g. near-field pulses)
that are not well modelled by other methods;
well established; since the ground motions have
occurred in the past, they are physically possible;
more easily understood and accepted by decision
makers since based on observations; only requires
standard scenario characteristics; includes
ground-motion variability; can provide triaxial
time-histories consistent with observed correlations
between components

Still lack of near-source records from large
events (hence difficult to know if
observations are well representative
of the true range of possible motions
or sampling artifact); difficult to find
records to match scenario characteristics
in addition to magnitude and distance;
small databanks for most regions
(outside California and Japan); often implicit
assumption is that host and target regions have
similar characteristics (or that strong motions
are not dependent on region); difficult
to ascertain whether certain records are
applicable elsewhere due to particular site
or source effects; scaling can have significant
impact on results of dynamic analyses
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Table 2 Method of empirical ground-motion models (ground-motion prediction equations, GMPES)

Description of method

A databank of accelerograms and metadata from a region are collated and processed. Strong-motion
intensity parameters (e.g. PGA) are computed for these accelerograms. Regression analysis is performed
using a handful of source, path and site independent variables and the intensity parameter as the
dependent variable. Less popular variants consist of the development of tables, graphs or neural nets for
prediction purposes. The developed models are evaluated for a given scenario and the results are
commonly weighted

Input parameters Output parameters Key references

Magnitude, distance,
near-surface site
characteristics, style-
of-faulting, source depth,
seismotectonic regime,
gross source characteristics,
deep geology

Strong-motion intensity
parameters (e.g.
PGA, PGV, PGD,
response spectral
ordinates, duration,
other parameters)

Esteva and Rosenblueth (1964),
Trifunac (1976), Joyner and
Boore (1988), Abrahamson and
Shedlock (1997), Anderson (1997b),
Lee et al. (2000), Campbell (2002),
Douglas (2003),
Scherbaum et al. (2004),
Bommer and Alarćon (2006),
Power et al. (2008),
Abrahamson et al. (2008)

Available tools Used in research Used in practice

Various websites (e.g. Ambraseys et al. 2004b) and
CD ROMs (e.g. Ambraseys et al. 2004a) providing
accelerograms; various spreadsheets and computer
codes for evaluating models and for regression
analysis; OpenSHA (Field et al. 2003)

Very often Very often

Advantages Disadvantages/limitations

Rapid; well established; can be simply and
easily applied without having to set up lots
of simulations (hence useful for regional
PSHA); only requires standard scenario
characteristics; more easily understood
and accepted by decision makers since
based on observations; easy to develop
new GMPEs; includes ground-motion
variability; can model different causes
of variability (e.g. inter-event, inter-site
and record-to-record variation)

Output is strong-motion parameter rather than
time-history; strong-motion parameter is not
always useful for sophisticated engineering
analyses; still lack of near-source records
from large events (hence difficult to know
if observations are well representative of the
true range of possible motions or sampling
artifact); small databanks for most regions
(outside California and Japan); often
implicit assumption is that host and
target regions have similar characteristics
(or that strong motions are not dependent
on region); applies to a generic (mainly
unknown) situation so cannot account for
site-specific conditions; never sure of having
the correct functional form; observed data
smoothed due to large scatter in observations;
requires lots of records to derive models; at
edges of dataspace predictions poorly
constrained; physically basis of coefficients is
not always clear; ground motions from small
and large events scale differently with magnitude
and distance hence difficult to use weak records
to predict strong motions; debate over preference
for global, regional or local models; large
epistemic uncertainty, mainly due to limited data

Surv Geophys (2008) 29:187–220 191

123



Table 3 Methods based on macroseismic intensity-ground-motion correlations

Description of method

A databank of accelerograms and their associated macroseismic intensity (and possibly other metadata) from
a region are collated and processed. Strong-motion intensity parameters (e.g. PGA) are computed for
these accelerograms. Regression analysis is performed with macroseismic intensity (and possibly other
parameters) as the independent variable(s) and the strong-motion parameter as the dependent variable.
Assessed macroseismic site intensity is converted to a strong-motion intensity parameter
using the previously derived correlation

Input parameters Outputs Key references

Macroseismic site
intensity, seismotectonic
regime, source depth,
magnitude, distance

Strong-motion
intensity parameters
(e.g. PGA, PGV, PGD,
response spectral ordinates,
duration, other parameters)

Cancani (1904), Gutenberg and Richter
(1942), Hershberger (1956), Ambraseys
(1974), Trifunac and Brady (1975),
Murphy and ÓBrien (1977), Campbell
(1986), Wald et al. (1999), Atkinson
and Sonley (2000), Sokolov and Wald
(2002), Kaka and Atkinson (2004),
Souriau (2006)

Available tools Used in research Used in practice

None known Rarely Occasionally

Advantages Disadvantages/limitations

Rapid; straightforward; more easily
understood and accepted by decision
makers since based on observations;
only requires standard scenario
characteristics; includes ground-motion
variability; historical earthquake
catalogues often defined only in terms
of macroseismic intensities hence less
conversions required than other techniques;
does not require strong-motion data if adopt
data/model from another region; easier to
apply ground-motion estimates for risk
evaluation if vulnerability functions defined
in terms of macroseismic intensity

Output is strong-motion parameter rather
than time-history; strong-motion parameter
not always useful for sophisticated engineering
analyses; often implicit assumption is that host
and target regions have similar characteristics (or
that strong motions are not dependent on region);
weak statistical dependence (lack of clear physical
relationship) between ground-motion parameters
and intensity; intensities in catalogues are subjective
and can be associated with large inaccuracies; few
reliable usable correlations between intensity and
different strong-motion parameters because there
are many intensity scales, intensity assessment can
be country-dependent and lack of intensity data from
close to accelerograph stations; many intensity
relationships derived using isoseismal contours, which
leads to positive bias in estimated motions; applies to
a generic (mainly unknown) situation so cannot account
for site-specific conditions; never sure of having the
correct functional form; observed data smoothed due
to large scatter in observations; requires lots of records
to derive correlations; at edges of dataspace predictions
poorly constrained; physically basis of coefficients not
always clear; ground motions from small and large
events scale differently with magnitude and distance
hence difficult to use weak records to predict strong
motions; debate over preference for global, regional or
local models; large epistemic uncertainty, mainly due
to limited data
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considered and normal font for those parameters that are often implicitly, but not often

explicitly, considered) and the outputs that can be reliably obtained; (3) lists a maximum of

a dozen key references (preference is given to: the original source of the method, journal

articles that significantly developed the approach and review articles) including studies that

test the approach against observations; (4) lists the tools that are easily available to apply

approach (public domain programs with good documentation help encourage uptake of a

method1); (5) gives the rough level of use of the technique in practice and in research; and

finally (6) summarises the advantages and disadvantages/limitations of the method. The

following sections introduce each of the four main types of methods.

2.1 Empirical Methods

The three methods described in this section are closely based on strong ground motion

observations. Such empirical techniques are the most straightforward way to predict

ground motions in future earthquakes and they are based on the assumption that shaking in

future earthquakes will be similar to that observed in previous events. The development of

these methods roughly coincided with the recording of the first strong-motion records in

Table 4 Methods based on stationary black-box simulations

Description of method

This type of method was developed to fill in gaps in early observational databanks, particularly, for large
earthquakes. White noise (sum of cosines with random time delays) is modified by filtering in the
frequency domain to obtain acceleration time-histories that conform to the observed main characteristics
of earthquake ground motions

Input parameters Outputs Key references

Magnitude, distance,
near-surface site
characteristics, source
depth, seismotectonic regime

Artificial acceleration
time-histories reliable
from 0 to about 2s

Housner (1947, 1955),
Bycroft (1960),
Housner and Jennings
(1964), Jennings et al.
(1968), Dowrick (1977)

Available tools Used in research Used in practice

None known Very rarely Very rarely

Advantages Disadvantages/limitations

Rapid; straightforward; provides
as many independent time-histories
for a scenario as required; includes
consideration of ground-motion
variability; time-histories adequate
for examining elastic response of
lightly damped structures; well-suited
for analytic solutions and Monte Carlo
simulations of structural response;
do not require knowledge of
source, path and site

Do not generally involve rigorous considerations of the physics
of the earthquakes; not appropriate for modelling smaller
earthquake motions or for use in studies where the less
intense but longer tails of accelerograms are thought to be
significant, e.g. liquefaction studies; does not consider
non-stationarity in time and frequency domains of
earthquake ground motions; true ground-motion variability
can be underestimated; frequency content not realistic;
not accurate close to source where non-stationarity important;
for generic scenario; too many cycles in ground motions;
energy content of motions not realistic

1 Some of the programs for ground-motion prediction are available for download from the ORFEUS
Seismological Software Library ðhttp : ==www:orfeus� eu:org=Software=softwarelib:htmlÞ:
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the 1930s but they continue to be improved. Empirical methods remain the most popular

procedure for ground-motion prediction, especially in engineering practice. Tables 1–3

summarise the three main types of empirical methods.

2.2 Black-box Methods

This section describes four methods (Tables 4–7) that can be classified as black-box

approaches because they do not seek to accurately model the underlying physics of

earthquake ground motion but simply to replicate certain characteristics of strong-motion

records. They are generally characterised by simple formulations with a few input

parameters that modify white noise so that it more closely matches earthquake shaking.

These methods were generally developed in the 1960s and 1970s for engineering purposes

to fill gaps in the small observational datasets then available. With the great increase in the

quantity and quality of strong-motion data and the development of powerful techniques for

physics-based ground-motion simulation, this family of prediction techniques has become

less important although some of the procedures are still used in engineering practice.

2.3 Physics-based Methods

Although this class of methods was simply called the ‘mathematical approach’ by Ólafsson

et al., (2001) the recent advances in the physical comprehension of the dynamic phe-

nomena of earthquakes and in the simulation technology means that we prefer the name

Table 5 Methods based on non-stationary black-box simulations

Description of method

White noise is modified by filtering in the frequency domain and then it is multiplied by an envelope
function in the time domain. Also this method can account for non-stationarity in frequency domain and a
consideration of phase. Frequency content and envelope function developed using equations developed
through regression analysis of observational data

Input parameters Outputs Key references

Magnitude, distance,
near-surface site
characteristics, style-of-
faulting, source depth,
seismotectonic regime

Artificial acceleration
time-histories reliable
from 0 to about 4s (e.g.
Sabetta and Pugliese
1996)

Sabetta and Pugliese (1996),
Montaldo et al. (2003),
Pousse et al. (2006)

Available tools Used in research Used in practice

Program of Pousse et al. (2006) Occasionally Rarely

Advantages Disadvantages/limitations

Rapid; straightforward; only requires a handful
of input parameters; close link to observations;
provides as many independent time-histories for
a scenario as required; includes consideration of
ground-motion variability; accounts for non-
stationarity in time and frequency domains; do
not require knowledge of source, path and site

Do not generally involve rigorous considerations
of the physics of the earthquakes; require good
databanks to constrain empirical parameters;
true ground-motion variability can be
underestimated
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‘physics-based methods’. These techniques often consist of two stages: simulation of the

generation of seismic waves (through fault rupture) and simulation of wave propagation.

Due to this separation it is possible to couple the same source model with differing wave

propagation approaches or different source models with the same wave propagation code

(e.g. Aochi and Douglas 2006). In this survey emphasis is placed on wave propagation

techniques.

Source models that have been used extensively for ground-motion prediction include

theoretical works by: Haskell (1969), Brune (1970, 1971), Papageorgiou and Aki (1983),

Gusev (1983), Joyner (1984), Zeng et al. (1994) and Herrero and Bernard (1994). Such

insights are introduced into prescribed earthquake scenarios, called ‘kinematic’ source

models. It is well known that the near-source ground motion is significantly affected by

source parameters, such as the point of nucleation on the fault (hypocentre), rupture

velocity, slip distribution over the fault and the shape of the slip function (e.g. Miyake

et al. 2003; Mai and Beroza 2003; Tinti et al. 2005; Ruiz et al. 2007). This aspect is

difficult to take into account in empirical methods. Recently it has become possible to

introduce a complex source history numerically simulated by pseudo- or fully-dynamic

modelling (e.g. Guatteri et al. 2003, 2004; Aochi and Douglas 2006; Ripperger et al.

2008) into the prediction procedure. Such dynamic simulations including complex

source processes have been shown to successfully simulate previous large earthquakes,

such as the 1992 Landers event (e.g. Olsen et al. 1997; Aochi and Fukuyama 2002).

This is an interesting and on-going research topic but we do not review it in this article.

Table 6 Methods based on autoregressive/moving average (ARMA) simulations

Description of method

Parametric time-series models (ARMA models), where a random process is modelled by a recursive filter
using random noise as input, are used. The parameters of the filter are determined from observed
accelerations by using a suitable criterion for the goodness of fit

Input parameters Outputs Key references

Magnitude, distance,
near-surface site
characteristics,
seismotectonic regime,
source depth

Artificial acceleration
time-histories reliable
from 0 to about 2s

Jurkevics and Ulrych (1978),
Nau et al. (1982), Ólafsson and
Sigbjörnsson (1995), Ólafsson
et al. (2001)

Available tools Used in research Used in practice

None known Rarely Very rarely

Advantages Disadvantages/limitations

Rapid; nonparametric method to compute
acceleration envelopes so does not rely
on assumed envelope shape; provides
as many independent time-histories for
a scenario as required; includes consideration
of ground-motion variability; well-suited for
Monte Carlo simulations of structural response;
ARMA models only need a handful of coefficients
to give a good statistical fit to time histories; do not
require knowledge of source, path and site

Do not generally involve rigorous
considerations of the physics of
the earthquakes; true ground-motion
variability can be underestimated;
not commonly used so poorly known;
requires observational data to constrain
input parameters; assumes that the strong-
motion phase can be modelled as a locally
stationary stochastic process; does not give
reliable estimate outside range of data
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All of the physics-based deterministic methods convolve the source function with

synthetic Green’s functions (the Earth’s response to a point-source double couple) to

produce the motion at ground surface. Erdik and Durukal (2003) provide a detailed review

of the physics behind ground-motion modelling and show examples of ground motions

simulated using different methods. Tables 8–18 summarise the main types of physics-

based procedures classified based on the method used to calculate the synthetic seismo-

grams in the elastic medium for a given earthquake source. Most of these are based on

theoretical concepts introduced in the 1970s and 1980s and intensively developed in the

past decade when significant improvements in the understanding of earthquake sources and

wave propagation (helped by the recording of near-source ground motions) were coupled

with improvements in computer technology to develop powerful computational capabili-

ties. Some of these methods are extensively used for research purposes and for engineering

projects of high-importance although most of them are rarely used in general engineering

practice due to their cost and complexity.

2.4 Hybrid Methods

To benefit from the advantages of two (or more) different approaches and to overcome

some of their disadvantages a number of hybrid methods have been proposed. These are

summarised in Tables 19–22. These techniques were developed later than the other three

families of procedures, which are the bases of these methods. Since their development,

Table 7 Methods based on spectrum-matching simulations

Description of method

This method was developed to provide acceleration time-histories whose elastic response spectra exactly
match a target spectrum. White noise is modified by filtering in the frequency domain and then it is
multiplied by an envelope function in the time domain so that the response spectrum matches the target
within a specified tolerance. An iterative process is used

Input parameters Outputs Key references

Elastic response
spectrum, duration of
strong shaking

Artificial acceleration
time-histories reliable
from 0 to about 2s

Kaul (1978), Vanmarcke (1979),
Naeim and Lew (1995)

Available tools Used in research Used in practice

SIMQKE (Vanmarcke and Gasparini
1976), various updates and
numerous similar codes

Occasionally Often

Advantages Disadvantages/limitations

Rapid; straightforward; provides time-histories
whose elastic response spectra exactly
match design spectrum; only requires
an elastic response spectrum as input;
commonly used in past so well
established; do not require knowledge
of source, path and site; easy-to-use
software freely available

Do not generally involve rigorous
considerations of the physics of the
earthquakes; true ground-motion
variability can be underestimated;
too many cycles in ground motions;
energy content of motions not realistic;
velocity and displacement time-histories
not realistic
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mainly in the 1980s and 1990s, they have been increasingly used, especially for research

purposes. Their uptake in engineering practice has been limited until now, although they

seem to be gaining in popularity due to the engineering requirement for broadband time-

histories, e.g. for soil–structure interaction analyses.

3 Earthquake Scenario

Before predicting the earthquake ground motions that could occur at a site it is necessary to

define an earthquake scenario or scenarios, i.e. earthquake(s) that need(s) to be considered

in the design (or risk assessment) process for the site. The methods proposed in the

Table 8 Methods based on physics-based stochastic models

Description of method

A Fourier spectrum of ground motion is estimated using a stochastic model of the source spectrum that is
transferred to the site by considering geometric decay and anelastic attenuation. The parameters that
define the source spectrum and the geometric and anelastic attenuation are based on simple physical
models of the earthquake process and wave propagation. These parameters are estimated by analysing
many seismograms. After the Fourier spectrum at a site is estimated time-histories can be computed by
adjusting and enveloping Gaussian white noise to give the desired spectrum and duration of shaking.
Some authors develop equations like those developed from observational data (Table 2) based on
thousands of simulations for various magnitudes and distances

Input parameters Outputs Key references

Source spectral
amplitude, geometric
decay rates, anelastic
attenuation, local site
amplification and
attenuation, source
spectral shape, source
duration, path duration

Ground-motion time-histories reliable
from 0 to about 2s

Hanks (1979), Hanks and
McGuire (1981), Boore (1983),
Silva et al. (1999), Atkinson
and Somerville (1994), Boore
(2003), Atkinson and Boore (2006)

Available tools Used in research Used in practice

SMSIM (Boore 2005), RASCAL
(Silva and Lee 1987) and numerous similar codes

Often Occasionally

Advantages Disadvantages/limitations

Rapid; good predictions for
short-period motions; useful
for regions lacking observational
data from damaging earthquakes
because the parameters required can
be estimated using data from standard
seismological networks; input parameters
have physical meaning hence link between
physics and ground motions; realistic looking
time-histories; acts as a link between
engineering and seismological approaches

Long-period motions can be poorly estimated since
generally only for S waves; does not generate three-
component seismograms with physically-expected
coherency; does not account for phase effects due
to propagating rupture or wave propagation and,
therefore, may not be reliable in near-source region;
uncertainty in shape of source spectra for moderate
and large events; variability only taken into account
by the random generation of the phase; frequency
content is stationary with time hence late-arriving
surface waves and attenuated shear waves are not
modelled; for generic scenario and not a specific
source, path and site
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literature to define these scenarios (e.g. Dowrick 1977; Hays 1980; Reiter 1990; Anderson

1997a; Bazzurro and Cornell 1999; Bommer et al. 2000) are not discussed here. In this

section the focus is on the level of detail required to define a scenario for different ground-

motion prediction techniques, which have varying degrees of freedom. In general, physics-

based (generally complex) methods require more parameters to be defined than empirical

(generally simple) techniques. As the number of degrees of freedom increases sophisti-

cated prediction techniques can model more specific earthquake scenarios, but it becomes

difficult to constrain the input parameters. The various methods consider different aspects

of the ground-motion generation process to be important and set (either explicitly or

implicitly) different parameters to default values. However, even for methods where a

characteristic can be varied it is often set to a standard value due to a lack of knowledge. In

fact, when there is a lack of knowledge (epistemic uncertainty) the input parameters should

be varied within a physically realistic range rather than fixed to default values. Care must

be taken to make sure that parameters defining a scenario are internally consistent. For

example, asperity size and asperity slip contrast of earthquake ruptures are generally

inversely correlated (e.g. Bommer et al. 2004).

Table 9 Methods based on physics-based extended stochastic models

Description of method

The fault rupture plane is modelled as an array of subfaults. Rupture initiates at the hypocentre and spreads
along the fault plane. The radiation from each subfault is modelled as in the physics-based stochastic
method (Table 8). Simulations from each subfault are summed at each considered observation point (after
accounting for correct time delays at observation point). The size of the subfaults controls the overall
spectral shape at medium frequencies. Some authors develop equations like those developed from
observational data (Table 2) based on thousands of simulations for various magnitudes and distances

Input parameters Outputs Key references

Source spectral
amplitude, fault
location and size,
rupture history,
geometric decay rates,
anelastic attenuation,
local site
amplification and
attenuation, source
spectral shape, source
duration, path duration

Ground-motion time-
histories reliable from
0 to about 4s

See Table 8, Beresnev and
Atkinson (1998), Atkinson and
Silva (2000), Motazedian
and Atkinson (2005)

Available tools Used in research Used in practice

FINSIM (Beresnev and Atkinson 1998),
EXSIM (Motazedian and Atkinson 2005)

Occasionally Rarely

Advantages Disadvantages/limitations

Rapid; good predictions for short-period motions; useful
for regions lacking observational data from damaging earthquakes
because most parameters required can be estimated using data from
standard seismological networks; input parameters have physical
meaning hence link between physics and ground motions;
good predictions for near-source regions; realistic looking time-
histories

Uncertainty in shape of
source spectra for moderate
and large events
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The basic parameters required to define a scenario for almost all methods are magnitude

and source-to-site distance (note that, as stated in Section 1, hazard is generally initially

computed for a rock site and hence site effects are not considered here). In addition, other

gross source characteristics, such as the style-of-faulting mechanism, are increasingly

being considered. An often implicit general input variable for simple techniques is ‘seis-

motectonic regime’, which is explicitly accounted for in more complex approaches through

source and path modelling. In this article, we assume that kinematic source models (where

the rupture process is a fixed input) are used for ground-motion simulations. Dynamic

source modelling (where the rupture process is simulated by considering stress conditions)

is a step up in complexity from kinematic models and it remains mainly a research topic

that is very rarely used for generating time-histories for engineering design purposes.

Dynamic rupture simulations have the advantage over kinematic source models in pro-

posing various possible rupture scenarios of different magnitudes for a given

seismotectonic situation (e.g. Anderson et al. 2003; Aochi et al. 2006). However, it is still

Table 10 Method based on group-velocity dispersion curves

Description of method

The dispersive properties of earthquake waves propagating through low-velocity layers of the crust are used
to model the phase characteristics of the simulated ground motion. Higher order modes of Love and
Rayleigh-wave group velocity dispersion curves are used. This technique models time variations in
frequency content as well as in amplitude due to surface wave dispersion. The stochastic nature of motion
is captured by random phasing. The smooth Fourier amplitude spectrum and duration used to scale the
ground motions are defined based on empirical ground-motion models or correlations with macroseismic
intensity (Tables 2, 3)

Input parameters Outputs Key references

Magnitude (or
epicentral
macroseismic
intensity), distance,
velocity and density
profile of site, style-of-
faulting, source depth,
seismotectonic regime

Ground-motion
time-histories reliable
from 0 to about 4s

Trifunac (1971, 1990),
Wong and Trifunac (1978),
Lee and Trifunac (1985, 1987)

Available tools Used in research Used in practice

SYNACC (Wong and Trifunac 1978) Rarely Very rarely

Advantages Disadvantages/limitations

Rapid; accounts for non-stationary
of time-histories; can be used to
generate strain, curvatures and
rotation (torsion and rocking)
components of motion consistent
with translation components; accounts
for detailed site characteristics;
includes some variability in ground
motions; combines aspects of empirical
and physics-based techniques; does not
require detailed source description;
seismograms have realistic appearance

Medium structure limited to stratified
layers; requires detailed velocity and
density profile for site; no large-scale
validation exercise conducted; not widely
used and therefore not widely accepted
by community; approach is strictly only
valid for surface waves; for generic source;
mainly based on observations at deep
alluvium sites
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difficult to tune the model parameters for practical engineering purposes (e.g. Aochi and

Douglas 2006) (see Section 2.3 for a discussion of dynamic source models).

Many factors (often divided into source, path and site effects) have been observed to

influence earthquake ground motions, e.g.: earthquake magnitude (or in some approaches

epicentral macroseismic intensity), faulting mechanism, source depth, fault geometry,

stress drop and direction of rupture (directivity); source-to-site distance, crustal structure,

geology along wave paths, radiation pattern and directionality; and site geology, topog-

raphy, soil–structure interaction and nonlinear soil behaviour. The combination of these

different, often inter-related, effects leads to dispersion in ground motions. The varying

detail of the scenarios (i.e. not accounting for some factors while modelling others) used

for the different techniques consequently leads to dispersion in the predictions. The un-

modelled effects, which can be important, are ignored and consequently predictions from

some simple techniques (e.g. empirical ground-motion models) contain a bias due to the

Table 11 Semi-analytical methods

Description of method

Solve the elastodynamic equation, complying with the boundary conditions of the free surface, continuity of
wave field across each interface and bonded motion at infinity, for a layered homogeneous and isotropic
elastic medium over a half-space with an earthquake point source buried inside. The solution is usually
derived using the generalized reflection and transmission matrix method, which excludes the growing
exponential terms. The solution is computed in the frequency domain and then converted to the time
domain. This easily allows the introduction of frequency-dependent attenuation parameters (e.g. quality
factor) independently for P and S waves

Input parameters Outputs Key references

Source location, velocity
and density profiles of
layered medium,
source time function
and mechanism,
quality factor of
medium

Ground-motion time-
histories reliable for a
frequency range
defined by number of
discrete frequencies or
wavenumbers

Aki and Larner (1970),
Kennett and Kerry (1979),
Bouchon (1981), Apsel and
Luco (1983), Luco and Apsel
(1983), Koketsu (1985), Takeo
(1985), Zeng and Anderson (1995),
Wang (1999), Aki and Richards
(2002), Bouchon and Sánchez- Sesma
(2007), Chen (2007)

Available tools Used in research Used in practice

Many authors freely provide their codes
on demand; COMPSYN (Spudich and
Xu 2003).

Often Often

Advantages Disadvantages/limitations

Numerically accurate over wide ange of frequencies; useful for
inverse problems; seismograms have realistic appearance; more
rapid than typical FDM; more accurate than typical FDM; stable
technique for layers of thicknesses from ms to kms; valid for a
wide range of frequencies; can account for material attenuation;
widely used in different fields of seismology; can provide static
deformation field; can give theoretical Green’s function for a unit
source so for arbitrary source (finite source with complex
source time function) synthetic waveforms
can be generated through convolution

Medium structure often limited
to stratified elastic layers;
time consuming to calculate
motions at many points
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(unknown) distribution of records used to construct the model with respect to these vari-

ables (e.g. Douglas 2007). There is more explicit control in simulation-based procedures.

Concerning empirical ground-motion models McGuire (2004) says that ‘only variables that

are known and can be specified before an earthquake should be included in the predictive

equation. Using what are actually random properties of an earthquake source (properties

that might be known after an earthquake) in the ground motion estimation artificially

reduces the apparent scatter, requires more complex analysis, and may introduce errors

because of the added complexity.’

In empirical methods the associated parameters that cannot yet be estimated before the

earthquake, e.g. stress drop and details of the fault rupture, are, since observed ground

motions are used, by definition, within the range of possibilities. Varying numbers of these

parameters need to be chosen when using simulation techniques, which can be difficult. On

Table 12 Finite difference methods (FDM)

Description of method

Directly solve the differential equation of elastic or (viscoelastic) wave propagation in a medium. The
volume is discretised, usually by equally-spaced grids, but some intelligent ways of using unstructured
grids have also been proposed. Finite fault sources are usually (except when dynamically modelling the
rupture process along the fault plane) treated as a series of point sources in the form of double couple
forces or stress gluts corresponding to a seismic moment. As for other pure numerical methods, anelastic
attenuation can be approximated as a damping factor in the elastic medium but more realistically it is
necessary to solve the visco-elastic equations. To simulate an unbounded medium, such as the Earth,
some absorbing boundary conditions should be introduced at the edges of the model space so as to avoid
artificial wave reflections. Both these aspects are still research topics

Input parameters Outputs Key references

Source location, time
function and
mechanism, velocity
and density profiles of
layered medium,
quality factor of
medium

Ground-motion time-
histories reliable for
low frequencies in
heterogeneous model
corresponding to grid
spacing (normally one
wavelength needs 5–10
spatial grid points)

Boore (1973), Virieux and Madariaga (1982),
Frankel and Clayton (1986), Levander (1988),
Graves (1996), Olsen et al. (1997), Pitarka et al.
(1998), Aoi and Fujiwara (1999), Day and Bradley
(2001), Oprsal and Zahradnik (2002), Olsen et al.
(2006), Komatitsch and Martin (2007), Moczo
et al. (2007b)

Available tools Used in research Used in practice

Many authors freely provide
their codes on demand,
e.g. http : ==geo:mff:cuni:cz=� io=

Often Occasionally

Advantages Disadvantages/limitations

Can treat any heterogeneous medium;
can allow volumetric visualization
of wave propagation without increasing
number of numerical calculations; rapid
computer development in 1990s means
that large calculations are easy for practical
applications; most efficient of all purely
numerical methods; complex geometry
more easy to model; can also treat any
anisotropy and/or anelastic media

Not better than semi-analytical methods with respect to
numerical accuracy; numerical dispersion; shows best
performance for structured grids; not good at treating
sharp interfaces with strong contrasts (e.g. internal
layering and topography); gridding does not always
correspond to material interfaces, which means that
elastic properties attributed to each grid point is usually
an average value thereby limiting the accuracy of the
method in heterogeneous media
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the other hand, only a limited and unknown subset of these parameters are sampled by

empirical methods since not all possible earthquakes have been recorded. In addition, due

to the limited number of strong-motion records from a given region possible regional

dependence of these parameters cannot usually be accounted for by empirical procedures

since records from a variety of areas are combined in order to obtain a sufficiently large

dataset.

Various prediction methods account for possible regional dependence (e.g. Douglas

2007) in different ways. Methods based on observed ground motions implicitly hope that

the strong-motion records capture the complete regional dependence and that the range of

possible motions is not underestimated. However, due to limited databanks it is not often

possible to only use records from small regions of interest; data from other areas usually

need to be imported. Physics-based methods explicitly model regional dependence through

the choice of input parameters, some of which, e.g. crustal structure, can be estimated from

geological information or velocimetric (weak-motion) data, while others, e.g. stress

parameters, can only be confidently estimated based on observed strong-motion data from

the region. If not available for a specific region parameters must be imported from other

regions or a range of possible values assumed.

Table 13 Finite element methods (FEM)

Description of method

Solve the variational, or weak form, of the equations of wave propagation with low-order polynomial bases
in the framework of unstructured elements. This leads to a linear system of equations in matrix form.
Normally the tensors are not diagonal and therefore the unknown solution vectors have to be numerically
inverted from these equations

Input parameters Outputs Key references

Source location, time
function and
mechanism, velocity
and density profiles of
layered medium,
mesh, quality factor of
medium

Ground-motion time-
histories reliable for a
frequency defined by
element spacing

Lysmer and Drake (1972),
Bao et al. (1998), Ma et al. (2007),
Moczo et al. (2007a)

Available tools Used in research Used in practice

Mostly commercial codes Rarely Rarely

Advantages Disadvantages/limitations

Can treat any heterogeneous medium;
can allow volumetric visualization
of wave propagation without increasing
number of numerical calculations;
complex geometry more easy to model;
parallelization of computer codes possible;
meshing can be made consistent with
material interfaces, which improves accuracy
of method (see Table 12)

Numerical dispersion; very numerically
expensive; parallelization usually difficult
because of domain participation and matrix;
complicated meshing is a big task that must
be completed before application of FEM code
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Although this article does not discuss site effects nor their modelling, it is important that

the choice of which technique to use for a task is made considering the potential use of the

ground-motion predictions on rock for input to a site response analysis. For example,

predictions from empirical methods are for rock sites whose characteristics (e.g. velocity

and density profiles and near-surface attenuation) are limited by the observational database

available and therefore the definition of rock cannot, usually, be explicitly defined by the

user; however, approximate adjustments to unify predictions at different rock sites can be

made (e.g. Cotton et al. 2006). In addition, the characteristics of the rock sites within

observational databases are generally poorly known (e.g. Cotton et al. 2006) and therefore

the rock associated with the prediction is ill-defined. In contrast, physics-based techniques

generally allow the user to explicitly define the characteristics of the rock site and therefore

more control is available. The numerical resolution of each method puts limits on the

velocities and thicknesses of the sufficiently layers that can be treated. Black-box

approaches generally neglect site effects; when they do not the parameters for controlling

the type of site to use are, as in empirical techniques, constrained based on (limited)

observational databases.

4 Testing of Methods

Predicted ground motions should be compared to observations for the considered site, in

terms of amplitude, frequency content, duration, energy content and more difficult to

characterise aspects, such as the ‘look’ of the time-histories. This verification of the

Table 14 Spectral element methods (SEM)

Description of method

Solve the variational, or weak form, of the equations of wave propagation with high-order basic functions
for unstructured elements. It is an integrated formulation of classical FEM (Table 13). This approach
is becoming popular for the simulation of ground motions from large earthquakes and for motions
affected by basin structures

Input parameters Outputs Key references

Source location, time
function and
mechanism; velocity
and density profiles of
layered medium;
mesh, quality factor of
medium

Ground-motion time-
histories reliable for a
frequency defined by
element spacing and
order of basic functions

Faccioli et al. (1997),
Komatitsch and Vilotte (1998),
Komatitsch and Tromp (1999),
Komatitsch et al. (2004),
Chaljub et al. (2007a)

Available tools Used in research Used in practice

SPECFEM3D (Chen et al. 2008) Occasionally Very rarely

Advantages Disadvantages/limitations

See Table 13; compared to FEM
calculation is faster thanks to
diagonal matrix; can use larger
elements thanks to higher-order
basic functions compared to FEM

Much more numerically expensive then FDM but less
expensive than FEM; simple structured elements
generally preferred

Surv Geophys (2008) 29:187–220 203

123



predictions is required so that the ground-motion estimates can be used with confidence in

engineering and risk analyses. Such comparisons take the form of either point comparisons

for past earthquakes (e.g. Aochi and Madariaga 2003), visually checking a handful of

predictions and observations in a non-systematic way, or more general routine validation

exercises, where hundreds of predictions and observations are statistically compared to

confirm that the predictions are not significantly biased and do not display too great a

scatter (a perfect fit between predictions and observations is not expected, or generally

possible, when making such general comparisons) (e.g. Atkinson and Somerville 1994;

Silva et al. 1999; Douglas et al. 2004). In a general comparison it is also useful to check

the correlation coefficients between various strong-motion parameters (e.g. PGA and rel-

ative significant duration, RSD) to verify that they match the correlations commonly

observed (Aochi and Douglas 2006).

For those techniques that are based on matching a set of strong-motion intensity

parameters, such as the elastic response spectral ordinates, it is important that the fit to non-

matched parameters is used to verify that they are physically realistic, i.e. to check the

internal consistency of the approach. For example, black-box techniques that generate

time-histories to match a target elastic response spectrum can lead to time-histories with

unrealistic displacement demand and energy content (Naeim and Lew 1995).

Table 15 Methods based on modal summation

Description of method

For a wave field in a limited area only consisting of wave-trains propagating away from the source, the
surface-wave formulation is adequate. Lateral heterogeneity can also be treated as coupling of local
modes

Input parameters Outputs Key references

Source location, time
function and
mechanism, velocity
and density profiles of
layered medium, quality
factor of medium

Ground-motion time-
histories reliable for
low frequencies in
heterogeneous model
defined by used mode
frequencies

Woodhouse (1974),
Swanger and Boore (1978),
Panza (1985), Panza and
Suhadolc (1987), Florsch et al.
(1991), Douglas et al. (2004),
Maupin (2007)

Available tools Used in research Used in practice

Some authors freely provide their codes on demand Occasionally Rarely

Advantages Disadvantages/limitations

Useful when surface waves dominate,
e.g. at long periods and moderate
distances; widely used for teleseismic
studies so efficient programs exist; the
dispersion parameters and eigenfunctions
need only be computed once for time-
domain synthesis for any type and depth
of source, at any azimuth and any distance;
time-domain synthesis simple and rapid;
useful for interpretation of relative importance
of source depth and site response; easy to
extend point source solutions to extended
sources; number of layers not a practical
limitation; useful for inverse problems

Only reliable when epicentral distance is greater
than focal depth; only gives an approximation
(of unknown accuracy) of the total motion; not
suitable when no surface layers
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A potentially useful approach, although one that is rarely employed, is to use a con-

struction set of data to calibrate a method and then an independent validation set of data to

test the predictions. Using such a two-stage procedure will demonstrate that any free

parameters tuned during the first step do not need further modifications for other situations.

Such a demonstration is important when there is a trade-off between parameters whereby

various choices can lead to similar predicted ground motions for a given scenario.

One problem faced by all validation analysis is access to all the required independent

parameters, such as local site conditions, in order that the comparisons are fair. If a full set

of independent variables is not available then assumptions need to be made, which can lead

to uncertainty in the comparisons. For example, Boore (2001), when comparing obser-

vations from the Chi-Chi earthquake to shaking predicted by various empirical ground-

motion models, had to make assumptions on site classes due to poor site information for

Taiwanese stations. These assumptions led to a lack of precision in the level of over-

prediction of the ground motions.

Until recently most comparisons between observations and predictions were visual or

based on simple measures of goodness-of-fit, such as: the mean bias and the overall

standard deviation sometimes computed using a maximum-likelihood approach (Spudich

et al. 1999). Scherbaum et al. (2004) develop a statistical technique for ranking various

empirical ground-motion models by their ability to predict a set of observed ground

motions. Such a method could be modified for use with other types of predictions.

However, the technique of Scherbaum et al. (2004) relies on estimates of the scatter in

observed motions, which are difficult to assess for techniques based on ground-motion

simulation, and the criteria used to rank the models would probably require modification

Table 16 Lattice particle method

Description of method

Instead of solving differential equation in continuous medium simulate physical interaction between
particles on a discrete lattice. Depending on the physical description and numerical discretisation this
method is also known as: lattice solid model, discrete element method or distinct element method

Input parameters Outputs Key references

Source location, time
function and
mechanism, velocity
and density profiles of
layered medium,
mesh, quality factor of
medium

Ground-motion time-
histories reliable for
low frequencies in
heterogeneous model
corresponding to a
large number of
elements

Mora and Place (1994),
Place and Mora (1999),
Dalguer et al. (2003),
Shi and Brune (2005)

Available tools Used in research Used in practice

None known Very rarely Very rarely

Advantages Disadvantages/limitations

Applicable for complex hydro-dynamical
problems that cannot be described as
a system of continuous mediums;
accurate for compressive waves

Complex calculation; less accurate
for shear waves; numerically expensive
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if applied to other prediction techniques. Assessment of the uncertainty in simulations

requires considering all sources of dispersion—modelling (differences between the actual

physical process and the simulation), random (detailed aspects of the source and wave

propagation that cannot be modelled deterministically at present) and parametric

(uncertainty in source parameters for future earthquakes) (Abrahamson et al. 1990). The

approach developed by Abrahamson et al. (1990) to split total uncertainty into these

different components means that the relative importance of different source parameters

can be assessed and hence aids in the physical interpretation of ground-motion

uncertainty.

In addition to this consideration of different types of uncertainty, work has been

undertaken to consider the ability of a simulation technique to provide adequate predictions

not just for a single strong-motion intensity parameter but many. Anderson (2004) pro-

poses a quantitative measure of the goodness-of-fit between synthetic and observed

accelerograms using ten different criteria that measure various aspects of the motions, for

numerous frequency bands. This approach could be optimised to require less computation

by adopting a series of strong-motion parameters that are poorly correlated (orthogonal),

and hence measure different aspects of ground motions, e.g. amplitude characterised by

PGA and duration characterised by RSD. A goodness-of-fit approach based on the time-

frequency representation of seismograms, as opposed to strong-motion intensity parame-

ters as in the method of Anderson (2004), is proposed by Kristeková et al. (2006) to

compare ground motions simulated using different computer codes and techniques. Since it

has only recently been introduced this procedure has yet to become common but it has the

promise to be a useful objective strategy for the validation of simulation techniques by

comparing predicted and observed motions and also by internal comparisons between

Table 17 Finite volume method

Description of method

Transform the differential equation into a conservative formulation inside a discrete volume. This leads
to an integral equation different from those of FEM and SEM; however, for certain simple cases
the method corresponds to FDM or FEM

Input parameters Outputs Key references

Source location, time
function and mechanism,
velocity and density
profiles of layered
medium, mesh, quality
factor of medium

Ground-motion time-
histories reliable for a
frequency defined by
element spacing

Dormy and Tarantola (1995),
LeVeque (2002), Käser and
Iske (2005)

Available tools Used in research Used in practice

None known Very rarely Very rarely

Advantages Disadvantages/limitations

Can correctly treat the material
interfaces; suitable for
unstructured meshes; can be
more accurate than FDM

Higher-order approximation numerically costly;
numerical efforts much heavier than FDM
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methods. Some comprehensive comparisons of the results from numerical simulations

have been made in the framework of recent research projects and workshops (e.g. Day

et al. 2005; Chaljub et al. 2007b).

If what is required from a method is a set of ground motions that include the possible

variability in shaking at a site from a given event then it is important to use a method

that introduces some randomness into the process (e.g. Pousse et al. 2006) to account for

random and parametric uncertainties. For example, results from physically based simu-

lation techniques will not reproduce the full range of possible motions unless a stochastic

element is introduced into the prediction, through the source or path. However, if what is

required from a technique is the ability to give the closest prediction to an observation

then this stochastic element is not necessarily required.

5 Synthesis and Conclusions

Dowrick (1977) notes that ‘[a]s with other aspects of design the degree of detail entered

into selecting dynamic input [i.e. ground-motion estimates] will depend on the size and

Table 18 Methods based on ray theory

Description of method

Green’s functions are calculated to describe the effect of wave propagation from source to site considering
the direct and reflected rays. The overall time-history is produced by summing the rays, which arrive
at different times. The amplitude and time relationships between these arrivals change with distance.
Overall duration related to crustal structure and focal depth. Maximum distance for realistic wave
propagation modelling depends on the number of rays

Input parameters Outputs Key references

Source location, time
function and
mechanism, velocity
and density profiles of
layered medium,
quality factor of
medium

Ground-motion time-
histories reliable for
low frequencies
depending on
heterogeneities

Heaton and Helmberger (1977),
Atkinson and Somerville (1994)

Available tools Used in research Used in practice

Some authors freely provide their codes
on demand; ISOSYN (Spudich and Xu 2003).

Often Rarely

Advantages Disadvantages/limitations

Economical, especially for high frequencies where
the contribution of surface waves is
small; arrival of different phases accurately
modelled; attenuation function derived from
focal depth and crustal structure and
therefore more appropriate when empirical
attenuation information lacking; provides
insight through analysis of crustal conditions
controlling details of observed ground motions
and also the effects of focal depth
on attenuation

Not efficient when many layers; cannot easily
account for attenuation; time-histories not
realistic because scattering not included;
low frequencies better predicted than
high frequencies
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vulnerability of the project’. This is commonly applied in practice where simple methods

(GMPEs, representative accelerograms or black-box methods) are applied for lower

importance and less complex projects whereas physics-based techniques are used for high

importance and complex situations (although invariably in combination with simpler

methods). Methods providing time-histories are necessary for studies requiring non-linear

engineering analyses, which are becoming increasingly common. Dowrick (1977) believes

that ‘because there are still so many imponderables in this topic only the simpler methods

will be warranted in most cases’. However, due to the significant improvements in tech-

niques, knowledge, experience and computing power this view from the 1970s is now less

Table 19 Methods based on empirical Green’s functions (EGF) (classic)

Description of method

Observed ground motion(s) recorded at a site (e.g. from aftershock(s) of a mainshock that is to be modelled)
are collected and are used as EGF(s). EGF(s) should have same focal mechanism(s) as modelled
earthquake. The modelled fault is divided into subfaults whose sizes equal the rupture area of the event(s)
contributing the EGF(s). Fault rupture is simulated and the EGFs are used as the ground motion from
each subfault. Therefore the simulated ground motion at a site is the weighted (moment scaling of small
events and correction for radiation pattern) time-delayed (to model rupture propagation) sum of the EGFs

Input parameters Outputs Key references

Recorded
accelerogram(s) of
small event(s) (1–3
magnitude units
smaller than modelled
event) in the source
region of the modelled
earthquake, basic
fault model, source-
to-site distances

Ground-motion time-
histories reliable from
0 to 1–10s, depending
on quality of EGF(s)

Hartzell (1978), Kanamori (1979),
Hadley and Helmberger (1980),
Dan et al. (1990), Irikura and
Kamae (1994), Tumarkin and
Archuleta (1994), Frankel (1995),
Kamae et al. (1998), Pavic et al. (2000)

Available tools Used in research Used in practice

None known Often Rarely

Advantages Disadvantages/limitations

Computation is rapid; EGFs already
contain all the information about
the path and local site effects; does
not explicitly compute the wave path
or site effects (since captured within the
time-histories from the small earthquake);
simulated motions are closely based on
observations; ground motions look realistic

Only possible where appropriate records of small events
from the source area recorded at sites of interest are
available (rare for source areas of future large
earthquakes); EGF(s) must have same focal
mechanism(s) as modelled earthquake; many (poorly
constrained) degrees of freedom therefore large
epistemic uncertainties in results; strictly only for
site(s) with available EGF(s); signal-to-noise ratio of
Green’s function limits long-period estimation; event
should be able to be considered as a point source;
difficult to match the source characteristics since the
stress drops of small and large earthquakes may be
different; valid up to the corner frequency of EGF(s);
debate over correct method to sum the EGFs; results
can have strong dependence on choice of EGF(s); does
not account for nonlinear site effects (not a problem
if predicting at rock sites)
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valid. Simple empirical ground-motion estimates have the advantage of being more

defensible and are more easily accepted by decision makers due to their close connection

to observations. Simulations are particularly important in regions with limited (or non-

existent) observational databanks and also for site-specific studies, where the importance of

different assumptions on the input parameters can be studied. However, reliable simula-

tions require good knowledge of the propagation media and they are often computationally

expensive.

One area where physics-based forward modelling breaks down is in the simulation of

high-frequency ground motions where the lack of detail in source (e.g. heterogeneities of

the rupture process) and path (e.g. scattering) models means high frequencies are poorly

predicted. Hanks and McGuire (1981) state that ‘[e]vidently, a realistic characterization of

high-frequency strong ground motion will require one or more stochastic parameters that

can account for phase incoherence.’ In contrast, Aki (2003) believes that ‘[a]ll these new

results suggest that we may not need to consider frequencies higher than about 10 Hz in

Strong Motion Seismology. Thus, it may be a viable goal for strong motion seismologists

to use entirely deterministic modeling, at least for path and site effects, before the end of

the twenty-first century.’

The associated uncertainties within ground-motion prediction remain high despite many

decades of research and increasingly sophisticated techniques. The unchanging level of

aleatory uncertainties within empirical ground-motion estimation equations over the past

thirty years are an obvious example of this (e.g. Douglas 2003). However, estimates from

simulation methods are similarly affected by large (and often unknown) uncertainties.

Table 20 Methods based on empirical Green’s functions (stochastic)

Description of method

As in the classic EGF method (Table 19) observed ground motion(s) recorded at a site (e.g. from
aftershock(s) of a mainshock that is to be modelled) are collected and are used as EGF(s). These are
stochastically summed (using a probability density of time delays) so that the simulated ground motions
are, on average, in exact agreement with current knowledge on earthquake scaling relations

Input parameters Outputs Key references

Recorded accelerogram(s)
of small event(s) (1–3
magnitude units smaller
than modelled event) in
the source region of the
modelled earthquake,
magnitude, stress drop
source-to-site distance

Ground-motion time-
histories reliable from
0 to 1–10s, depending
on quality of EGF(s)

See Table 19, Joyner and Boore (1986),
Wennerberg (1990), Ordaz et al. (1995),
Kohrs-Sansorny et al. (2005)

Available tools Used in research Used in practice

None known Often Rarely

Advantages Disadvantages/limitations

Rapid; far fewer degrees-of-freedom
than classic EGF approach;
simulates a multitude of rupture
processes; variability in simulated
ground motions; see Table 19

Source-to-site distance must be greater than
source dimensions therefore not for near-source
region since assumes point source and hence does
not model directivity; see Table 19
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These large uncertainties oblige earthquake engineers to design structures with large

factors of safety that may not be required.

The selection of the optimum method for ground-motion estimation depends on what

data are available for assessing the earthquake scenario, resources available and experience

of the group. Currently the choice of method used for a particular study is generally

controlled by the experience and preferences of the worker and the tools and software

available to them rather than it being necessarily selected based on what is most appro-

priate for the project.

There are still a number of questions concerning ground-motion prediction that need to

be answered. These include the following—possible regional dependence of ground

motions (e.g. Douglas 2007), the effect of rupture complexity on near-source ground

motion (e.g. Aochi and Madariaga 2003), the spatial variability of shaking (e.g. Goda and

Hong 2008) and the determination of upper bounds on ground motions (e.g. Strasser et al.

2008). All these questions are difficult to answer at present due to the lack of near-source

strong-motion data from large earthquakes in many regions (little near-source data exists

outside the western USA, Japan and Taiwan). Therefore, there is a requirement to install,

keep operational and improve, e.g. in terms of spatial density (Trifunac 2007), strong-

Table 21 Hybrid stochastic-empirical method

Description of method

A stochastic model (Table 8) is constructed for a target region (e.g. from existing literature). Stochastic
models are estimated for existing empirical ground-motion models (for different host regions) for
response spectra by finding models that lead to the minimum misfit between predicted response spectra
from empirical and stochastic models. Response spectra are predicted for various magnitudes and
distances (and other independent variables) by the empirical ground-motion models and then are
multiplied by the ratio between the response spectrum predicted by the stochastic models for the target
and host regions. These response spectral ordinates are then regressed to develop hybrid stochastic-
empirical ground-motion models for the target region

Input parameters Outputs Key references

Magnitude, distance, near-
surface site characteristics,
style-of-faulting,
seismotectonic regimes of
host and target regions,
source depth, gross source
characteristics, deep geology,
Source spectral amplitude,
geometric decay rates,
anelastic attenuation, local
site amplification and
attenuation, source spectral
shape, source duration, path
duration

Strong-motion intensity
amplitude parameters
(e.g. PGA, PGV, PGD
and response spectral
ordinates)

See Tables 2 and 8, Atkinson (2001),
Campbell (2003), Tavakoli and
Pezeshk (2005), Douglas et al. (2006),
Scherbaum et al. (2006), Campbell (2007)

Available tools Used in research Used in practice

CHEEP (Douglas et al. 2006) Occasionally Rarely

Advantages Disadvantages/limitations

See Tables 2, 8 See Tables 2 and 8; difficult to assess true variability of derived
models; not yet validated by observations
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motion networks in various parts of the world. In addition, the co-location of acceler-

ometers and high-sample-rate instruments using global navigation satellite systems (e.g.

the Global Positioning System, GPS) could help improve the prediction of long-period

ground motions (e.g. Wang et al. 2007).

In addition to the general questions mentioned above, more specific questions related to

ground-motion prediction can be posed, such as: what is the most appropriate method to use

for varying quality and quantity of input data and for different seismotectonic environments?

how can the best use be made of the available data? how can the uncertainties associated with

a given method be properly accounted for? how can the duration of shaking be correctly

modelled? These types of questions are rarely explicitly investigated in articles addressing

ground-motion prediction. In addition, more detailed quantitative comparisons of simula-

tions from different methods for the same scenario should be conducted through benchmarks.

Over time the preferred techniques will tend to move to the top of Fig. 1 (more

physically based approaches requiring greater numbers of input parameters) (e.g. Field

et al. 2003) since knowledge of faults, travel paths and sites will become sufficient to

constrain input parameters. Such predictions will be site-specific as opposed to the generic

Table 22 Hybrid numerical methods

Description of method

High frequencies from one method and low frequencies from another method to get hybrid synthetic ground
motions (after used matched filters to combine the two approaches) that are then used to simulate motions
from large earthquakes. This approach is taken since smaller scale heterogeneity in the Earth (source,
propagation path and site) is difficult to deterministically identify and our knowledge in each method is
limited. Those who propose EGF or stochastic methods (e.g. Tables 8, 9, 19 and 20) to generate high
frequencies assume relatively simple earthquake source description, whereas those who use semi-
analytical or numerical methods (see Tables 11–13) up to high frequencies adopt complex descriptions of
the earthquake source, which have been greatly developed in the past decade. There are numerous
combinations proposed in the literature

Input parameters Outputs Key references

See tables for the two
methods comprising
the hybrid approach

See tables for the two
methods comprising
the hybrid approach

Berge et al. (1998), Kamae et al. (1998),
Pitarka et al. (2000), Hartzell et al. (2002),
Mai and Beroza (2003), Gallovič and Brokešoá
(2007), Hisada (2008)

Available tools Used in research Used in practice

No ready-to-use code is known to exist Occasionally Occasionally

Advantages Disadvantages/limitations

Practical for a wide range of frequencies;
reduces computation time considerably;
works for near-source region; can handle
complex propagation media because crustal
phases and surface waves evaluated with
complete Green’s functions; can statistically
adjust the frequency content of ground motion
to that desired; see tables for the two methods
comprising the hybrid approach

Combination of two sets of simulation
results is not always easy; not evident
how to obtain triaxial time-histories
with correct correlation between
components; not evident that velocity
and displacement time-histories are realistic,
especially in the time domain, due to the
lack of causality of phase; see tables for
the two methods comprising the hybrid
approach

Surv Geophys (2008) 29:187–220 211

123



estimations commonly used at present. Due to the relatively high cost and difficulty of

ground investigations, detailed knowledge of the ground subsurface is likely to continue to

be insufficient for fully numerical simulations for high-frequency ground motions, which

require data on 3D velocity variations at a scale of tens of metres. In the distant future

when vast observational strong-motion databanks exist including records from many well-

studied sites and earthquakes, more sophisticated versions of the simplest empirical

technique, that of representative accelerograms, could be used where selections are made

not just using a handful of scenario parameters but many, in order to select ground motions

from scenarios close to that expected for a study area.
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Ólafsson S, Remseth S, Sigbjörnsson R (2001) Stochastic models for simulation of strong ground motion in
Iceland. Earthquake Engineering and Structural Dynamics 30(9):1305–1331

Olsen K, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simulation of the 1992 Landers
earthquake. Science 278:834–838

Olsen KB, Day SM, Minster JB, Cui Y, Chourasia A, Faerman M, Moore R, Maechling P, Jordan T (2006)
Strong shaking in Los Angeles expected from southern San Andreas earthquake. Geophys Res Lett
33(L07305). doi:10.1029/2005GL025472

Surv Geophys (2008) 29:187–220 217

123



Oprsal I, Zahradnik J (2002) Three-dimensional finite difference method and hybrid modeling of earthquake
ground motion. J Geophys Res 107(B8). doi:10.1029/2000JB000082

Ordaz M, Arboleda J, Singh SK (1995) A scheme of random summation of an empirical Green’s function to
estimate ground motions from future large earthquakes. Bulletin of the Seismological Society of
America 85(6):1635–1647

Panza GF (1985) Synthetic seismograms: The Rayleigh waves modal summation. Journal of Geophysics
58:125–145

Panza GF, Suhadolc P (1987) Complete strong motion synthetics. In: Bolt BA (eds) Seismic strong motion
synthetics. Academic Press, Orlando, pp. 153–204

Papageorgiou AS, Aki K (1983) A specific barrier model for the quantitative description of inhomogeneous
faulting and the prediction of strong ground motion. Part I. Description of the model. Bulletin of the
Seismological Society of America 73(3):693–702

Pavic R, Koller MG, Bard PY, Lacave-Lachet C (2000) Ground motion prediction with the empirical
Green’s function technique: an assessment of uncertainties and confidence level. Journal of Seis-
mology 4(1):59–77

Pitarka A, Irikura K, Iwata T, Sekiguchi H (1998) Three-dimensional simulation of the near-fault ground
motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake. Bulletin of the Seismological
Society of America 88(2):428–440

Pitarka A, Somerville P, Fukushima Y, Uetake T, Irikura K (2000) Simulation of near-fault strong-ground
motion using hybrid Green’s functions. Bulletin of the Seismological Society of America 90(3):
566–586

Place D, Mora P (1999) The lattice solid model to simulate the physics of rocks and earthquakes: Incor-
poration of friction. Journal of Computational Physics 150(2):332–372

Pousse G, Bonilla LF, Cotton F, Margerin L (2006) Non stationary stochastic simulation of strong ground
motion time histories including natural variability: Application to the K-net Japanese database. Bul-
letin of the Seismological Society of America 96(6):2103–2117, DOI: 10.1785/0120050134

Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA
project. Earthquake Spectra 24(1):3–21, DOI: 10.1193/1.2894833

Reiter L (1990) Earthquake Hazard Analysis: Issues and Insights. Columbia University Press, New York
Ripperger J, Mai PM, Ampuero JP (2008) Variability of near-field ground motion from dynamic earthquake

rupture simulations. Bulletin of the Seismological Society of America 98(3):1207–1228, DOI:
10.1785/0120070076

Ruiz J, Baumont D, Bernard P, , Berge-Thierry C (2007) New approach in the kinematic k2 source model for
generating physical slip velocity functions. Geophysical Journal International 171(2):739–754, DOI:
10.1111/j.1365-246X.2007.03503.x

Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake
ground motions. Bulletin of the Seismological Society of America 86(2):337–352

Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and
ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: The
case of rock motion. Bulletin of the Seismological Society of America 94(6):2164–2185, DOI:
10.1785/0120030147

Scherbaum F, Cotton F, Staedtke H (2006) The estimation of minimum-misfit stochastic models from
empirical ground-motion prediction equations. Bulletin of the Seismological Society of America
96(2):427–445, DOI: 10.1785/0120050015

Shi B, Brune JN (2005) Characteristics of near-fault ground motions by dynamic thrust faulting: Two-
dimensional lattice particle approaches. Bulletin of the Seismological Society of America 95(6):2525–
2533, DOI: 10.1785/0120040227

Shinozuka M (1988) Engineering modeling of ground motion. In: Proceedings of ninth world conference on
earthquake engineering, vol VIII, pp 51–62

Shome N, Cornell CA, Bazzurro P, Carballo JE (1998) Earthquakes, records and nonlinear responses.
Earthquake Spectra 14(3):469–500

Silva WJ, Lee K (1987) State-of-the-art for assessing earthquake hazards in the United States; report 24:
WES RASCAL code for synthesizing earthquake ground motions. Miscellaneous Paper S-73-1, US
Army Corps of Engineers

Silva W, Gregor N, Darragh B (1999) Near fault ground motions. Tech. rep., Pacific Engineering and
Analysis, El Cerrito, USA, PG & E PEER—Task 5.A

Sokolov V, Wald DJ (2002) Instrumental intensity distribution for the Hector Mine, California, and the Chi-
Chi, Taiwan, earthquakes: Comparison of two methods. Bulletin of the Seismological Society of
America 92(6):2145–2162

218 Surv Geophys (2008) 29:187–220

123



Souriau A (2006) Quantifying felt events: A joint analysis of intensities, accelerations and dominant fre-
quencies. Journal of Seismology 10(1):23–38, DOI: 10.1007/s10950-006-2843-1

Spudich P, Xu L (2003) Software for calculating earthquake ground motions from finite faults in vertically
varying media. In: IASPEI handbook of earthquake and engineering seismology, chap 85.14. Aca-
demic Press, Amsterdam, The Netherlands, pp 1633–1634

Spudich P, Joyner WB, Lindh AG, Boore DM, Margaris BM, Fletcher JB (1999) SEA99: A revised ground
motion prediction relation for use in extensional tectonic regimes. Bulletin of the Seismological
Society of America 89(5):1156–1170

Strasser FO, Bommer JJ, Abrahamson NA (2008) Truncation of the distribution of ground-motion residuals.
Journal of Seismology 12(1):79–105, DOI: 10.1007/s10950-007-9073-z

Swanger HJ, Boore DM (1978) Simulation of strong-motion displacements using surface-wave modal
superposition. Bulletin of the Seismological Society of America 68(4):907–922

Takeo M (1985) Near-field synthetic seismograms taking into account the effects of anelasticity: The effects
of anelastic attenuation on seismograms caused by a sedimentary layer. Meteorology & Geophysics
36(4):245–257

Tavakoli B, Pezeshk S (2005) Empirical-stochastic ground-motion prediction for eastern North America.
Bulletin of the Seismological Society of America 95(6):2283–2296, DOI: 10.1785/0120050030

Tinti E, Fukuyama E, Piatanesi A, Cocco M (2005) A kinematic source-time function compatible with
earthquake dynamics. Bulletin of the Seismological Society of America 95(4):1211–1223, DOI:
10.1785/0120040177

Trifunac MD (1971) A method for synthesizing realistic strong ground motion. Bulletin of the Seismological
Society of America 61(6):1739–1753

Trifunac MD (1976) Preliminary analysis of the peaks of strong earthquake ground motion – dependence of
peaks on earthquake magnitude, epicentral distance, and recording site conditions. Bulletin of the
Seismological Society of America 66(1):189–219

Trifunac MD (1990) Curvograms of strong ground motion. Journal of The Engineering Mechanics Division,
ASCE 116:1426–32

Trifunac MD (2007) Recording strong earthquake motion—instruments, recording strategies and data
processing. Tech. Rep. CE 07-03. Department of Civil Engineering, University of Southern California

Trifunac MD, Brady AG (1975) On the correlation of seismic intensity scales with the peaks of recorded
strong ground motion. Bulletin of the Seismological Society of America 65(1):139–162

Tufte ER (2006) Beautiful Evidence. Graphics Press, Cheshire, Connecticut, USA
Tumarkin A, Archuleta R (1994) Empirical ground motion prediction. Annali di Geofisica XXXVII

(6):1691–1720
Vanmarcke EH (1979) Representation of earthquake ground motion: Scaled accelerograms and equivalent

response spectra. State-of-the-Art for Assessing Earthquake Hazards in the United States 14, Mis-
cellaneous Paper S-73-1, U.S. Army Corps of Engineers, Vicksburg, Mississippi, USA

Vanmarcke EH, Gasparini DA (1976) Simulated earthquake motions compatible with prescribed response
spectra. Tech. Rep. R76-4. Dept. of Civil Engineering, Massachusetts Inst. of Technology, Cambridge,
USA

Virieux J, Madariaga R (1982) Dynamic faulting studied by a finite difference method. Bulletin of the
Seismological Society of America 72(2):345–369

Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration,
peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra 15(3):557–564

Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s
functions. Bulletin of the Seismological Society of America 89(3):733–741

Wang GQ, Boore DM, Tang G, Zhou X (2007) Comparisons of ground motions from collocated and
closely-spaced 1-sample-per-second Global Positioning System (GPS) and accelerograph recordings of
the 2003, M6.5 San Simeon, California, earthquake in the Parkfield Region. Bull Seismol Soc Am
97(1B):76–90. doi:10.1785/0120060053

Watson-Lamprey J, Abrahamson N (2006) Selection of ground motion time series and limits on scaling. Soil
Dynamics and Earthquake Engineering 26(5):477–482

Wennerberg L (1990) Stochastic summation of empirical Green’s functions. Bulletin of the Seismological
Society of America 80(6):1418–1432

Wong HL, Trifunac MD (1978) Synthesizing realistic ground motion accelerograms. Tech. Rep. CE 78-07.
Department of Civil Engineering, University of Southern California

Woodhouse JH (1974) Surface waves in a laterally varying layered structure. Geophysical Journal of the
Royal Astronomical Society 37:461–490

Surv Geophys (2008) 29:187–220 219

123



Zeng Y, Anderson JG (1995) A method for direct computation of the differential seismogram with respect to
the velocity change in a layered elastic solid. Bulletin of the Seismological Society of America
85(1):300–307

Zeng T, Anderson JG, Yu G (1994) A composite source model for computing realistic synthetic strong
ground motions. Geophysical Research Letters 21(8):725–728

220 Surv Geophys (2008) 29:187–220

123



Making the Most of Available Site Information

for Empirical Ground-Motion Prediction

by John Douglas, Pierre Gehl, Luis Fabian Bonilla, Oona Scotti,
Julie Régnier, Anne-Marie Duval, and Etienne Bertrand

Abstract This article proposes a new framework for the inclusion of site effects in
empirical ground-motion prediction equations (GMPEs) by characterizing stations
through their one-quarter wavelength velocities and assessed confidence limits.
The approach is demonstrated for 14 stations of the French accelerometric network
(Réseau Accélérométrique Permanent). This method can make use of all the available
information about a given site, for example, the surface geology, the soil profile, stan-
dard penetration test measurements, near-surface velocity estimated from the topo-
graphic slope, depth to bedrock, and crustal structure. These data help to constrain
the velocity profile down to a few kilometers. Based on a statistical study of 858 real
profiles from three different regions (Japan, western North America, and France)
physically realistic profiles are generated that comply with the information available
for each site.

In order to evaluate the confidence limits for the shear-wave velocity profiles and
derived site amplifications for each station, a stochastic method is adopted: several
thousand profiles are randomly generated based on parameters derived in the statis-
tical study and the constraints available for each station. Then, the one-quarter
wavelength assumption is used to estimate the amplification for each station. It is
found that a good knowledge of near-surface attenuation (i.e., κ or Q) is mandatory
for obtaining precise amplification estimates at high frequencies. Nevertheless, the
proposed scheme highlights the important differences in the uncertainties of the site
amplifications, depending on the information available for a given station. We suggest
that these results could, therefore, be used when developing GMPEs by weighting
records from each station depending on the variability in the computed one-quarter
wavelength velocities.

This approach relies on the assumption that local site effects are only one-
dimensional, which is far from true, especially in sedimentary basins. However, most
GMPEs only model one-dimensional site effects, so this is not an issue specific to this
study. Finally, a way to improve this technique is to use earthquakes or noise recorded
at the stations to further constrain the shear-wave velocity profiles and to consequently
derive more accurate one-quarter wavelength velocities.

Introduction

Local site effects have long been recognized as an
important factor contributing to variations in strong ground
motions (e.g., Boore, 2004). Therefore, the vast majority of
empirical ground-motion prediction equations (GMPEs) try
to model the differences between ground motions at sites
with different local site conditions (e.g., Douglas, 2003).
Various approaches have been followed from simple binary
soil/rock classifications (e.g., Berge-Thierry et al., 2003) to
the explicit use of shear-wave velocity (e.g., Joyner and
Fumal, 1984) and also others such as individual site coeffi-

cients for each strong-motion station considered (e.g.,
Kamiyama and Yanagisawa, 1986). These various proce-
dures are discussed by Douglas (2003). The method that
can be chosen is dependent on the quality of readily available
information on site characteristics at strong-motion stations.
The explicit use of average (measured or estimated) shear-
wave velocity down to 30 m (VS30), with the additional
consideration of the effect of basin depth, was adopted by
all participants of the Pacific Earthquake Engineering Re-
search (PEER) Next Generation Attenuation (NGA) project
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(Abrahamson and Silva, 2008; Boore and Atkinson, 2008;
Campbell and Bozorgnia, 2008; Chiou and Youngs, 2008;
Idriss, 2008), although Boore and Atkinson (2008) do not
find that the basin effect is significant for their model and
Idriss (2008) does not include a basin effect in his model.
Measuring near-surface wave velocities using conventional
methods, such as cross-hole or down-hole techniques, is
expensive and time consuming. Therefore, although such
velocities are required, it is unlikely that such measurements
will be made at many locations in the near future. In Japan
and the United States such measurements are routinely per-
formed. In Europe, however, it is thought that less than 100
strong-motion stations, from a total of over 2953 (European-
Mediterranean Seismological Centre, 2007), have had their
near-surface wave velocities measured and published.

What all previous approaches have in common is that
local site conditions at all stations used to derive GMPEs
are assumed to be known to the same detail and with the
same accuracy. This is not often true in practice. For exam-
ple, in the NGA flat file VS30 is available for some stations
based on measurements (from, e.g., cross-hole or down-hole
surveys) (for 35% of the records) but for other stations
(particularly those outside California) the VS30 values have
been estimated based on local geology and its correlation
with VS30. In the NGA flat file these estimated values are
clearly indicated and their estimated standard deviations
are higher than those from measurements; however, this
difference in the accuracy of VS30s was not considered by
the five GMPE-developer teams.

In addition, the method used to model site effects is
invariably limited by the quality of information available
for the most poorly characterized station used to derive
the GMPEs. For example, Spudich et al. (1999) attempted
to classify the stations used in their analysis into four cate-
gories: hard rock, soft rock, shallow soil, and deep soil but
were forced to adopt a simple binary soil/rock classification
because information was not available to classify all sites
into these four categories (29 records, from a total of 142,
were from sites classified as unknown soil or unknown rock).
In the extreme situation, if, for example, shear-wave velocity
profiles were available for all but one site and for that single
site the only information available is that it is a rock site, a
simple binary scheme would have to be used thereby throw-
ing away all the invaluable information available in the
velocity profiles. In practice it would be more likely that
the data from this single station would be dispensed with
for the analysis unless the station provides particularly useful
data, for example, records from very close to the source.

An alternative approach is firstly to use a simple classi-
fication technique that is obliged by the lack of information
for some stations and then, in a second step, to examine the
residuals with respect to more complex site characterization
parameters, such as VS30 or basin depth, for those stations
with more complete information. This approach has been fol-
lowed, for example, by Ambraseys (1995) to examine the
effect of VS30 and by Field (2000) for examining the effect

of sedimentary basins on ground motions. When applying
such an approach care needs to be taken to account for pos-
sible bias in the distributions with respect to other indepen-
dent variables for stations where detailed site information is
available. For example, Boore and Atkinson (2007) note the
strong negative correlation between shear-wave velocity and
basin depth for data in the NGA flat file.

None of these techniques to overcome the heteroge-
neous nature of local site information is completely satisfac-
tory. Therefore, the aim of this article is to propose a new
framework that makes use of all the available information
about local site conditions to allow the estimation of mean
shear-wave velocity profiles and their confidence limits for
each station. The method is a first-order, but robust, proxy for
site response estimation. These profiles can then be used to
apply the one-quarter wavelength velocity, VS1

4
, method to

model site effects within GMPEs (Joyner and Fumal,
1984) and a weighting scheme applied during the regression
analysis to account for the varying confidence limits of the
VS1

4
s. However, no new empirical GMPEs are computed in

this article. The following two sections describe the proposed
procedure including the method to generate a distribution of
possible shear-wave velocity profiles for each station. Then
in the section titled Application of Proposed Approach to
RAP Stations the technique is applied to 14 stations of the
French accelerometric network (Réseau Accélérometrique
Permanent [RAP]). Following this, a weighting scheme
for use in regression analysis when deriving GMPEs using
this approach is proposed. The article closes with a discus-
sion of the merits and disadvantages of the proposed method
to evaluate the shear-wave velocity profiles, the VS1

4
s, and site

amplifications using the one-quarter wavelength assumption.

Proposed Method

In the proposed procedure local site conditions are char-
acterized using the average near-surface wave velocities
down to a depth equal to one-quarter the wavelength of
the wave of interest (e.g., Joyner et al., 1981). Joyner et al.
(1981) and Boore and Joyner (1991, 1997) show that the
quarter-wavelength method for assessing site amplification
yields good estimates of the site amplification without the
requirement of complex computation. The equation to esti-
mate the spectral amplification, A�f�, (where f is frequency)
at a site is (e.g., Boore, 2003)

A�f� �
�������������������
ρsβs

�ρ�f� �β�f�

s
; (1)

where

�ρ�f� � 1

z�f�
Z

z�f�

0

ρ�z� dz;

�β�f� � z�f�
�Z

z�f�

0

�
1

β�z�

�
dz
��1

; z�f� �
�β�f�
4f

;
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where β�z� is the shear-wave velocity at depth z, ρ�z� is the
density at depth z, and βs and ρs are the shear-wave velocity
and the density at the source, respectively. For this study, the
site_amp program (Boore, 2005) is used to compute site
amplification using this method.

This technique models the effect of the impedance con-
trast between the underlying bedrock (with a high material
velocity) and the softer surface deposits (with a lower mate-
rial velocity). As waves travel vertically from one medium to
another the amplitudes of the waves increase (if the velocity
is decreasing towards the surface and losses due to reflection,
scattering, and anelastic attenuation are neglected) because
the energy along a tube of rays is constant.

For this article the one-quarter wavelength technique to
assess site amplifications is preferred to full one-dimensional
site response analysis using, for example, the Haskell–
Thompson method because the associated one-quarter wave-
length velocities, VS1

4
s, can be readily incorporated into the

functional form of the GMPEs (Joyner and Fumal, 1984).
Site amplifications derived from full one-dimensional site
response analysis could be directly incorporated into GMPEs
but such GMPEs would be difficult to use in practice for sites
without assessed amplifications. As will be shown in the
section titled Application of Proposed Approach to RAP
Stations, VS1

4
s can be estimated using our approach even for

sites where the knowledge of the subsoil structure is
limited (e.g., those sites only defined by site category). Aswill
be shown in the section titled Conclusions (and previously
shown by Boore and Joyner, 1991) the one-quarter wave-
length simplification for estimating site amplification does
not allow the prediction of the resonant peaks due to multiple
reflections of waves, which can be predicted by full one-di-
mensional site response analysis.

To apply this method, shear-wave velocity estimates
down to a few kilometers (to compute site amplifications
up to long periods, e.g., 10 sec) for every site considered need
to be available. Except for a few special sites, such as Cajon
Pass (USA) (e.g., Abercrombie, 1997), measured shear-wave
velocities are not available beyond a few tens or hundreds of
meters, if at all. However, other information is available that

can be used to approximate the shear-wave and density ve-
locity profiles down to the one-quarter wavelength depth.
The types of information available to estimate the profiles
are discussed in the following paragraph. This information
will allow a distribution of possible velocity and density pro-
files to be defined fromwhich the distribution of possibleVS1

4
s

can be estimated.Whenmore constraints are available, for ex-
ample, when a measured shear-wave velocity profile exists,
the distribution of VS1

4
for that station will be narrower than

when few constraints are available, for example,when the pro-
file is based only on local geological information. In addition,
geophysical considerations regarding factors like pressure and
temperaturevariationwithdepth could eventuallybe included.
However, in practice this type of information is evenmore dif-
ficult to find at each instrumented site. Strong-motion data
from stations with well-defined VS1

4
s should be given more

weight in the regression analysis than those data from stations
with few constraints on these velocities.

Table 1 lists the information that is sometimes available
to help constrain shear-wave velocity and density profiles
down to a few kilometers. Obviously not all these sources
of information are available for every site. For example, infor-
mation relying on on-site measurements (e.g., standard pene-
tration test [SPT] results) are rarely available for strong-motion
stations.However, someof these data (e.g., topographic slope)
can be calculated based on remote-sensing information; and
therefore, they exist for all sites.

Generation of Shear-Wave and Density Profiles

In this study, a large set of physically realistic profiles is
generated that can then be reduced by the application of con-
straints from information available at each strong-motion sta-
tion considered. The generation of these profiles has been
made using a Monte Carlo technique with input parameters
coming from the analysis of many (858) measured profiles,
which are assumed to be a representative sample of possible
near-surface velocity profiles. The random generation of
velocity profiles has been performed in a few previous stu-
dies (e.g., Bernreuter et al., 1986; Anderson et al., 1996)

Table 1
Information Available to Constrain Shear-Wave Velocity and Density Profiles down to a Few Kilometers

Type of Information Examples

Soil profile Bureau de Recherches Géologiques et Minières (BRGM) (2008b)
Crustal structure Souriau and Granet (1995), CRUST2.0 (Laske et al., 2005)
Generic VS profile Boore and Joyner (1991), Anderson et al. (1996), Boore and Joyner (1997), Parolai et al. (2002),

Chandler et al. (2005, 2006), Cotton et al. (2006)
Measured VS profile ROSRINE (2008)
Near-surface geology National/region/local geological maps (BRGM, 2008a), Wills et al. (2000)
Microtremor measurements Souriau et al. (2007)
Site class Borcherdt (1994), Comité Européen de Normalisation (2005)
SPT Wei et al. (1996), Hasancebi and Ulusay (2007)
Cone penetration test (CPT) Andrus et al. (2004)
Topographic slope Wald and Allen (2007)
Depth to bedrock (from, e.g., Bouguer gravity
data or H/V results)

Vallon (1999), Parolai et al. (2002)

1504 J. Douglas, P. Gehl, L. F. Bonilla, O. Scotti, J. Régnier, A.-M. Duval, and E. Bertrand



using different approaches than adopted here. Three sets of
profiles are used in this study (see the Data and Resources
section): those collected and disseminated by David Boore
for sites in western North America (277 sites), those col-
lected by Julien Rey for sites in France (43 sites), and those
compiled by Guillaume Pousse for Kik-Net strong-motion
stations in Japan (538 sites).

These profiles were normalized by dividing the velocity
in each layer by the velocity in the surface layer. Then,
the normalized velocity slope between two layers was calcu-
lated, using the following equation:

slope�n� � V 0
n�1 � V 0

n

Hn

; (2)

where V 0
n is the normalized velocity at layer n and Hn

the thickness of layer n. The 858 profiles lead to 3026
normalized slopes (one for each layer). Then, we extracted
the depth and the maximum velocity for each profile, as well
as the maximum and minimum thickness of each layer and
the surface velocity. The gross characteristics of the profiles
collected are summarized in Figures 1 and 2. These figures
show that the vast majority of profiles are of soft soil sites
with surface shear-wave velocities less than 400 m=sec and
that information is generally only available for the first 100 m
or less with a resolution generally higher than 50 m. Figure 3
shows the computed normalized slopes against depth.

To check that the parameters extracted from the ob-
served profiles were not correlated, we performed a principal
component analysis on characteristics such as slope, layer
depth, layer thickness, or velocity (Table 2). This analysis
shows that the slope is poorly correlated with the other
variables and, thus, here we neglect the correlation between
the slope and other parameters.
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Figure 1. Histograms showing the characteristics of the 858 shear-wave velocity profiles used to derive statistics for the generation of
stochastic profiles.
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Figure 2. Maximum shear-wave velocity within the profile
versus depth of profile for the 858 shear-wave velocity profiles. This
graph only goes up to 300 m due to a limited number of deeper
profiles.
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The gross characteristics of the profiles are approxi-
mately distributed according to these distributions:

• Maximum depth D: log-normal distribution (ϕ�x� �
�1=�xβ

������
2π

p
�� expf���ln�x� � α�2=2β2�g, where x is a ran-

dom variable and ϕ�x� is the probability density function)
with mean α � 4:08 and standard deviation β � 0:70;

• Minimum thickness Hmin: normal distribution (ϕ�x� �
�1=�σ ������

2π
p �� expf���x � μ�2=2σ2�g) with mean μ � 4:3 m

and standard deviation σ � 6:6 m;
• Maximum thickness Hmax: normal distribution with
μ � 37:6 m and σ � 39:5 m; and

• Surface velocity V0: log-normal distribution with
α � 5:28 and β � 0:49.

The maximum velocity Vmax depends on the depth D of
the profile; therefore, it was decided to divide the profiles
into three groups:

• D ≤ 50 m: normal distribution of Vmax with μ �
1091:8 m=sec and σ � 519:3 m=sec,

• 50 < D ≤ 100 m: normal distribution of Vmax with μ �
1141:8 m=sec and σ � 602:0 m=sec, and

• D > 100 m: normal distribution of Vmax with μ �
1240:7 m=sec and σ � 648:5 m=sec.

Thanks to all these distributions, it was possible to
generate stochastic profiles, using the following method:

• Random selection of a depth D, based on its statistical
distribution;

• From the surface to the depth D, generation, assuming a
uniform distribution, of layers whose thicknesses are con-
strained by Hmin and Hmax, both parameters being chosen
from their statistical distributions;

• Random selection of a surface velocity V0, based on its
statistical distribution;

• For each layer, generation of slope values, based on the
empirical distribution (the slope values were found not
to closely fit any tested statistical distribution so their
empirical distribution was used instead); and

• With the slope and the surface velocity V0, generation of
the velocity of each layer down to depth D.

In order to avoid unrealistic results, the profiles were
constrained using the following criteria:

• The velocity of a layer cannot be less than 50 m=sec; and
• The velocity cannot exceed the maximum velocity Vmax,
which is randomly selected from the statistical distribution.

Thus, this method can generate velocity profiles down to
depth D (usually between 50 and 200 m). However, this
approach cannot be used for deeper layers because it is based
on shallow profiles and using these values for greater depths
leads to unrealistic profiles. It was therefore decided to define
much looser constraints on the velocity profile between the
depth D and 10 km. First of all, in order to reflect the homo-
geneity of the medium at these depths, much thicker layers
were selected, between 50 and 500 m. The velocity contrast
between two layers can be defined by

Rn � V 0
n�1

V 0
n

: (3)

The values of the impedance factor Rn are based on the
858 profiles, leading to a log-normal distribution with pa-
rameters α � 0:41 and β � 0:48. We acknowledge that
the methodology used for the deeper layers is based on in-
formation extrapolated from the shallow parts of the profile.
This assumption is a reasonable way to construct a profile
between the upper layers, where statistical results from bore-
holes can be used, and the lower layers, where velocities
from crustal structural models are available. Finally, in order
to avoid unrealistic results, it was decided to keep only the
profiles where:

• The velocity does not exceed 3800 m=sec; and
• The velocity is not less than the value at the depth D.

Figure 4 summarizes the procedure that was used to gen-
erate the profiles. By visual inspection of numerous simula-
tions, the profiles generated using this approach were seen to
show similar characteristics to those in the set of 858
observed profiles. Even though some individual profiles
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Figure 3. Normalized slopes versus depth for the 858 shear-
wave velocity profiles. This graph only goes up to 200 m due to
few slopes from greater depths.

Table 2
Correlation Coefficients between Different Characteristics of the

Observed Profiles

VS

Depth to Top of
Layer

Layer
Thickness Slope

VS 1 0.4519 0.4152 �0:2089
Depth to top of
layer

1 0.7295 �0:2505

Layer thickness 1 �0:1861
Slope 1
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generated by this approach may be unrealistic, the average
characteristics of the profiles (which affect amplifications
predicted by the one-quarter wavelength method) should
match those observed in reality. It is important that there
are sufficient constraints in the profile simulation method
to exclude physically impossible profiles, but on the other
hand sufficient freedom must be given so as not to underes-
timate the width of the confidence limits of the pre-
dicted VS1

4
s.

Constraints on the Profiles

The previous method can be used to generate any kind
of velocity profile, for any kind of site. Yet, the main goal of
this study is to investigate the effects of the quantity of avail-
able information on site profiles on the variability of the am-
plification curve and VS1

4
, which could be used within

the GMPEs.
We have selected the five following types of information

that can be useful to constrain the profiles:
• Surface velocity, V0: this constraint is added in the pre-
vious method by selecting the same V0 for all the simulated
profiles.

• Mean velocity down to 30 m, VS30: this data can be ob-
tained with the site class (e.g., Eurocode 8 [EC8] classifi-
cation [Comité Européen de Normalisation, 2005]) or
approximated using the topographic slope (Wald and
Allen, 2007). If the approximate range of VS30 is known,
it is easy then to reject the profiles that do not fall into the
desired range.

• The velocity profile down to a certain depth: this can be
obtained from geological logs and geotechnical techniques
using correlations between SPT and/or soil/rock type and
VS. To use this constraint, we apply the same procedure
as for V0, except down to a certain depth. Then the profile
is again generated using random parameters. For sites with
soil profiles the empirical relations between soil type and
shear-wave velocity developed by Ohta and Goto (1978)
(their equations VII and VIII) have been used in combina-

tion with table 5.1 of Dowrick (2003) to convert soil/rock
descriptions to shear-wave velocities.

• The depth to the bedrock: with this information, we can
assume that, below a given depth, the velocity will not
be less than a certain value. This constraint may also be
added to the model if available.

• The mean crustal velocities: with these data, it is possible
to constrain the velocity at depths of greater than 1 km.

A coefficient of variation of 10% is applied to VS esti-
mates if they come from geological logs or geotechnical
techniques, and a coefficient of variation of 25% is assumed
if the VS estimates are deduced from empirical relations
between soil type and shear-wave velocity (Ohta and Goto,
1978).

Generation of Density Profiles

The density does not play a predominant role in the
variability of amplification curves. Thus, we used the veloc-
ity values to estimate the density using this linear relation
(Boore and Joyner, 1997):

ρ�VS� � 2500� VS � 300

3500 � 300
�2800 � 2500�: (4)

Boore and Joyner (1997) state that this relationship is
valid for VS between 300 m=sec and 3:5 km=sec. Some of
our profiles include VS outside this range (down to about
100 m=sec and up to 3:8 km=sec), but this should not have
a significant impact on the results. For example for VS �
100 m=sec, equation (4) gives ρ � 2481 kg=m3, which is
very similar to the recommendation of Boore and Joyner
(1997) of 2500 kg=m3 for VS < 300 m=sec.

Generation of Amplification Curves

After the simulation of thousands of possible velocity
and density profiles, the profiles that do not conform to
the constraints applicable for a station are excluded, thereby
leaving a set of possible profiles for that site. This subset of
profiles is then used within the one-quarter wavelength ap-
proach to estimate the possible site amplifications at that site.
The reduction in the uncertainty in the estimated site ampli-
fication after applying constraints can then be quantified by
comparing these amplifications with those computed using
the entire set of generated profiles.

The one-quarter wavelength method also requires the
shear-wave velocity and the density in the source region.
We chose to take the shear-wave velocity at 10 km for each
profile, thereby assuming a hypocentral depth of 10 km. As
shown previously, the density in the source region can be
deduced from the velocity. In other words, the reference
is a rock layer having a shear-wave velocity at 10 km depth.
The boundary conditions for both site response methods con-
sidered here (quarter-wavelength and Haskell–Thompson)
are elastic (also known as transmitting boundary conditions),

Figure 4. Summary of the method used to generate the velocity
profiles, using various types of information depending on the depth.
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which is equivalent to outcropping rock reference as is used
by the geotechnical engineering community.

Near-surface attenuation can be approximated using
(Anderson and Hough, 1984) exp�πκf, where κ is a spectral
decayparameter that is commonlyassumed tobe aconstant for
a given station although a weak positive dependence on dis-
tance has sometimes been observed (e.g., Anderson and
Hough, 1984). The amplification A�f� is then multiplied by
the near-surface attenuation, approximated using κ, to obtain
an overall amplification. As is standard practice (e.g., Boore
and Joyner, 1997) this attenuation filter is applied to the entire
frequency range even thoughκ is estimated based on the high-
frequency part of the Fourier amplitude spectra. In addition, κ
is assumed to be independent of frequency. In this study, we
use a mean value of κ for each profile, based on the empirical
relationship connecting VS30 and κ presented by Silva et al.
(1998): log κ � 1:6549 � 1:0930 logVS30. In order to model
uncertainties in theκ estimated by this equation,we have com-
puted a standard deviation of 0.25 from the data points pre-
sented in figure 21 of Silva et al. (1998), which has been
used to generate a κ for each profile. To keep the κ usedwithin
a physically realistic range (e.g., Silva et al., 1998, figure 21)
values less than 0.005 or greater than 0.15 were rejected. The
large variability in κ estimated from the VS30 is because near-
surface attenuation modeled by κ is affected by more than the

top 30 m at a site. In the absence of a better method to
estimate κ from a given shear-wave velocity profile, the large
range of κ given by this approach have been accepted even
though it could lead to overestimating the uncertainty in the
site response for frequencies greater than about 1 Hz, where
the effect of attenuation modeled by κ becomes important.
An alternative would be to use an attenuation (Q) profile,
possibly estimated based on empirical relationships between
VS andQ (e.g., Barker and Stevens, 1983); however, there are
few such correlations, and they are also associated with large
uncertainties.

Application of Proposed Approach to RAP Stations

Fumal and Tinsley (1985) present a method and relations
for the estimation of one-quarter wavelength velocity for sites
inCalifornia; a similar technique is applied here for the French
RAP sites selected. Recently an RAP working group compiled
information on local site conditions atmost of theRAP stations
(Groupe deTravail RAP, 2007). The type, quality, and quantity
of information for these stations could be considered represen-
tative of the situation for most strong-motion networks,
particularly those outside California or Japan, where routine
borehole velocity measurements have not been conducted.
From the investigated sites we have selected 14 stations that

Table 3
Strong-Motion Stations of the RAP Considered in This Study and the Information Available to Constrain the Shear-Wave Velocity and Density Profiles

down to a Few Kilometers

Station Latitude Longitude Information Available

NALS 43.699° N 7.258° E Surface geology, soil profile down to 39 m, SPT down to 39 m, H/V noise spectrum* (Bard et al., 2005), crustal
structure (Laske et al., 2005), topographic slope (Wald and Allen, 2007), site class (soil)*

NLIB 43.710° N 7.264° E Surface geology, soil profile down to 39 m, SPT down to 39 m, H/V noise spectrum* (Bard et al., 2005), crustal
structure (Laske et al., 2005), topographic slope (Wald and Allen, 2007), site class (soil)*

NPOR 43.700° N 7.286° E Surface geology, soil profile down to 39 m, SPT down to 39 m, H/V noise spectrum* (Bard et al., 2005), crustal
structure (Laske et al., 2005), topographic slope (Wald and Allen, 2007), site class (soil)*

NROC 43.716° N 7.293° E Surface geology, soil profile down to 39 m, SPT down to 39 m, H/V noise spectrum* (Bard et al., 2005), crustal
structure (Laske et al., 2005), topographic slope (Wald and Allen, 2007), site class (soil)*

OCKE 45.771° N 3.088° E Surface geology, soil profile down to 12 m, SPT down to 9 m, H/V noise spectrum*, crustal structure (Laske et al.,
2005), topographic slope (Wald and Allen, 2007), site class (soil)*

OCOR 45.798° N 3.028° E Surface geology, soil profile down to 11 m, H/V noise and earthquake spectra*, crustal structure (Laske et al.,
2005), topographic slope (Wald and Allen, 2007), site class (rock)*

OGBB 44.281° N 5.26° E Surface geology, soil profile down to 12.2 m, crustal structure (Laske et al., 2005), topographic slope (Wald and
Allen, 2007), site class (rock)*

OGDH 45.182° N 5.737° E Surface geology, soil profile down to 15 m, SPT down to 39 m, H/V noise and earthquake spectra*, depth to
bedrock (Vallon, 1999), crustal structure (Laske et al., 2005), topographic slope (Wald and Allen, 2007), site
class (soil)*

OGLP 44.307° N 4.69° E Surface geology, soil profile down to 10 m, SPT down to 13 m, H/V noise spectrum*, crustal structure (Laske et al.,
2005), topographic slope (Wald and Allen, 2007), site class (soil)*

OGMU 45.195° N 5.727° E Surface geology, H/V noise and earthquake spectra*, crustal structure (Laske et al., 2005), topographic slope (Wald
and Allen, 2007), site class (rock)*

OGSR 45.193° N 5.74° E Surface geology, soil profile down to 50 m, H/V noise and earthquake spectra*, depth to bedrock (Vallon, 1999),
crustal structure (Laske et al., 2005), topographic slope (Wald and Allen, 2007), site class (soil)*

PYFE 42.814° N 2.507° E Surface geology, soil profile down to 11 m, H/V noise and earthquake spectra*, crustal structure (Laske et al.,
2005), topographic slope (Wald and Allen, 2007), site class (soil)*

PYFO 42.968° N 1.607° E Surface geology, H/V noise and earthquake spectra*, crustal structure (Laske et al., 2005), topographic slope (Wald
and Allen, 2007), site class (soil)*

PYPE 42.673° N 2.878° E Surface geology, soil profile down to 78.5 m, H/V noise and earthquake spectra*, crustal structure (Laske et al.,
2005), topographic slope (Wald and Allen, 2007), site class (soil)*

*Data that were not used to constrain the profiles in this study.
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have a range of data available and are from various regions of
metropolitan France (see Table 3 for details).

Based on the information available for each of the 14RAP
stations (Table 3) stochastic shear-wave velocity profiles were
generated using the approach described previously. The mean
and the tenth and ninetieth percentile profiles for the fourteen
stations are displayed inFigure 5.Theprofiles for stations such
as NALS with available detailed soil profiles that can be con-
verted into approximate shear-wave velocities are, as ex-
pected, well constrained down to the bottom of the profile.
In contrast, profiles for stations such as OGMU, with few
available constraints on the near-surface shear-wave veloc-
ities, showmuch greater dispersion. There is limited informa-
tion available to constrain the profiles below the end of the

boreholes (at about 50 m) and above the start of the available
crustal structural models (at 1 or 2 km); and hence, profiles for
all stations show a wide dispersion within this depth range.

Figure 5 shows that some profiles (e.g., NALS, NLIB,
NPOR, and NROC) contain velocity inversions, which is ex-
plained by negative slopes (equation 2) as shown in Figure 3.
In addition, Figure 3 shows that negative slopes can even be
found in deeper layers (e.g., below 100 m), which corre-
sponds to the velocity inversions found in some profiles.

Using the stochastic velocity and density profiles, am-
plification curves for each of the sites were computed using
the one-quarter wavelength technique. Figure 6 shows the
mean and tenth and ninetieth percentile amplification curves
for the fourteen stations. As is expected the amplifications
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Figure 5. Estimated mean shear-wave velocity profiles for the 14 selected RAP stations (solid curves) and their 10% and 90% confidence
limits (dashed curves) using the method developed within this article.
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at stations with measured or, in the case of RAP stations,
estimated near-surface velocity profiles are less scattered
(e.g., NALS) than those at stations without such constraints
(e.g., PYFO). Surprisingly, however, even when detailed soil
profiles are available (from which shear-wave velocities can
be estimated) site amplifications at high frequencies still
show large dispersion. For example, the tenth and ninetieth
percentiles for the amplification at 10 Hz at NALS are
roughly 0.2 and 1.5 (Fig. 6), which is surprising because
for this site and 10 Hz the one-quarter wavelength is roughly
5 m; and hence, it would be thought that a shear-wave ve-
locity profile down to 39 m would be adequate to precisely
define the amplification.

The reason that the amplifications are not more precisely
defined when near-surface velocity profiles are available is

that near-surface attenuation (here modeled by κ) is not
known for these stations, and so it is estimated using the
equation of Silva et al. (1998) with its associated uncertainty.
It is this uncertainty that leads to the dispersion in the pre-
dicted amplification curves for high frequencies. Figures 7
and 8 show the effect of neglecting the uncertainty in the
estimation of κ from VS30 using the equation and data of
Silva et al. (1998) for two stations with detailed estimated
shear-wave velocity profiles: NALS and OGSR. When κ
is assumed to be precisely known (left-hand graphs in both
figures) the computed amplification curves are almost ex-
actly known for frequencies greater than roughly 1.5 Hz,
but when uncertainty in κ is included (right-hand graphs
in both figures) there is considerable uncertainty in the cal-
culated site amplifications. Anderson et al. (1996) examine
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the influence on ground motions of the top 30 m, and they
believe that near-surface attenuation is more important than
details of the velocity profile for controlling high-frequency
ground motions. The results of this study show the need to
measure the near-surface attenuation at strong-motion sta-
tions, in addition to near-surface velocities, if it is hoped
to calculate accurate site amplifications through modeling
of site response.

Drouet et al. (2008) invert ground motions recorded by a
selection of RAP stations to retrieve source, path, and site
parameters for two regions of France: the Pyrenees and
the Alps. Within their analysis they included records from

7 of the 14 stations studied here. Figure 9 compares the site
amplifications and their uncertainties retrieved by Drouet
et al. (2008) using their inversion technique to those derived
using the method followed here. The match between the two
sets of amplifications shown in Figure 9 is poor for all of the
stations. In general, the method followed here gives higher
amplifications than the approach of Drouet et al. (2008), ex-
cept for NROC and OGDH where the amplifications of
Drouet et al. (2008) are much higher. The amplifications
computed by Drouet et al. (2008) are relative to an average
of sites whose amplification is minimal whereas here the
amplifications calculated are absolute with respect to the
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source. Therefore, the two sets of amplifications are not
directly comparable. In addition, the procedure followed here
assumes one-dimensional linear site response; and therefore,
it cannot fully model site response at stations affected by
two- or three-dimensional effects, such as those in sedimen-
tary valleys (e.g., OGDH and OGSR, which are in the
Grenoble basin, and NROC, which is on sediments in Nice)
whereas the observational method of Drouet et al. (2008)
may pick up such effects.

Rodriguez-Marek et al. (1999) find that the consider-
ation of the depth to bedrock within site classification leads
to a reduction in the standard deviation of site amplification

estimates. In this study this common observation has been
tested for two stations: NALS on shallow sedimentary layers
in Nice and OGSR in a deep sedimentary basin in Grenoble.
In addition, the decrease in the scattering of the predicted site
amplifications through the use of additional constraints (e.g.,
near-surface shear-wave velocity profile) has been tested.
Figure 10 shows four computed site amplification curves
(with their confidence limits) for the NALS station when
(1) all available data (near-surface profile, depth to bedrock,
and crustal structure) have been used, (2) the near-surface
profile has been replaced by the measured VS30 and V0, (3)
the depth to bedrock has been removed as a constraint, and
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(4) only the VS30 and the crustal structure have been retained
as constraints. Figure 11 shows the four computed amplifi-
cation curves (with their confidence limits) for the OGSR
station for the same four sets of constraints. These two
figures show (by comparing the results for cases 1 and 2),
as expected, that a near-surface profile helps to narrow the
confidence limits of the site amplification curve for frequen-
cies around 1 Hz, but due to the uncertainty in near-surface
attenuation the accuracy of high-frequency (>2 Hz) ampli-
fications is not significantly improved over the case when a
measured VS30 is used instead. The inclusion of a depth to
bedrock constraint (compare cases 2 and 3) helps reduce the
uncertainty in the low frequency (<1 Hz) amplification
curves, confirming the conclusions of previous studies show-
ing the importance of depth to bedrock when computing site
response.

It is possible to use our approach to develop generic am-
plification curves for the site classes defined in earthquake

design codes, for example, EC8 (Comité Européen de
Normalisation, 2005) in which site classes are based on
VS30: A, VS30 > 800 m=sec; B, 360 ≤ VS30 ≤ 800 m=sec;
C, 180 ≤ VS30 < 360 m=sec; and D, VS30 < 180 m=sec.
The four generic profiles and amplification curves corre-
sponding to EC8 site classes A, B, C, and D generated using
our approach and the appropriate constraint on VS30 are pre-
sented in Figures 12 and 13, respectively. Cotton et al. (2006)
present equations for the creation of profiles, based on the
generic rock profiles of Boore and Joyner (1997), for a given
VS30 to adjust GMPEs derived for different rock conditions.
Our results are compared in Figures 12 and 13 to profiles
produced by the approach of Cotton et al. (2006) and their
corresponding amplifications. These comparisons show that
the method developed in this article enables the construction
of realistic velocity profiles and are similar to the ones pro-
duced by the approach of Cotton et al. (2006). In addition,
our approach also allows the estimation of the confidence
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limits of the profiles. The development of generic profiles for
each site class enables our approach to be used to evaluate
the GMPEs derived using VS1

4
even for sites with little infor-

mation available on the subsoil structure. When using these
generic profiles (or associated site amplifications) account
should be made of the associated accuracy of the VS1

4
esti-

mates so that confidence limits of the predicted ground
motions can be correctly assessed.

Regression Analysis Using VS1
4
s

of Varying Accuracies

The VS1
4
s derived using the procedure given previously

are associated with different variabilities depending on the
data available to constrain the velocity and density profiles.
Therefore, when using these velocities (or the amplifications)
in the derivation of GMPEs, weights should be applied to ac-
count for their varying accuracies. As discussed by Draper
and Smith (1998, pp. 223–229) weighted least squares
should be applied when the observations have different
variances. However, this is not directly comparable to the

situation considered here, where the variances (accuracies)
of one of the input variables are not the same.

Huo and Hu (1991) describe an approach to account for
errors in magnitude and distance when developing GMPEs,
and Rhoades (1997) presents a regression method that ac-
counts for differences in variances of magnitudes between
earthquakes used to derive GMPEs. The technique of Rhoades
(1997) is not directly applicable here because his formulation
is based on assuming the errors in magnitude affect the intere-
vent terms whereas errors in VS1

4
will affect the intraevent

terms. In general, regression analysis using measurement-er-
ror models (e.g., Fuller, 1987) allows account to be made of
errors in the independent variables, such as VS1

4
. This type of

approach could be used to deal with differences in the var-
iances of the estimates ofVS1

4
for each station. Currently, there

is insufficient strong-motion data available from the RAP to
develop robust GMPEs; and therefore, in this article, no regres-
sion analysis has been attempted. Nevertheless, Table 4 pre-
sents the computed mean VS1

4
s and their tenth and ninetieth

percentile confidence limits for the fourteen RAP stations
and the four EC8 site classes for different spectral periods.
Such information would be the basis of the derivation of
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Table 4
ComputedMean VS14

and Its Tenth and Ninetieth Percentile Confidence Limits for the Fourteen RAP
Stations and the Four EC8 Site Classes for Different Spectral Periods

VS1
4

Station Statistical Measure 0.1 sec 0.2 sec 0.5 sec 1 sec 2 sec 5 sec 10 sec

NALS mean 175 211 959 1731 2528 2920 3203
tenth percentile 141 193 446 782 1215 2234 2730
ninetieth percentile 209 275 1768 2696 3216 3353 3550

NLIB mean 241 384 1306 1958 2676 2981 3235
tenth percentile 208 291 735 1037 1513 2358 2793
ninetieth percentile 272 571 2191 2923 3328 3398 3572

NPOR mean 209 177 981 1761 2549 2929 3207
tenth percentile 196 167 567 924 1416 2320 2774
ninetieth percentile 220 187 1724 2666 3200 3347 3547

NROC mean 252 269 637 1051 1928 2680 3083
tenth percentile 235 220 208 210 221 358 1603
ninetieth percentile 266 406 1692 2613 3173 3335 3539

OCKE mean 151 207 889 1477 2321 2849 3186
tenth percentile 114 133 153 210 283 1034 2065
ninetieth percentile 195 714 2298 2965 3350 3411 3582

OCOR mean 149 209 950 1534 2356 2862 3190
tenth percentile 109 129 150 221 305 1097 2095
ninetieth percentile 193 780 2353 2988 3362 3413 3581

OGBB mean 157 208 743 1133 1635 2559 3024
tenth percentile 116 134 154 208 275 686 1862
ninetieth percentile 197 620 1724 2146 2831 3201 3475

OGDH mean 129 317 1023 1472 2034 2724 3107
tenth percentile 96 181 318 433 762 1918 2483
ninetieth percentile 194 808 1904 2259 2910 3231 3489

OGLP mean 202 328 950 1295 1809 2632 3058
tenth percentile 153 151 165 238 337 1025 2036
ninetieth percentile 281 1166 1974 2281 2926 3236 3491

OGMU mean 939 1122 1345 1549 2061 2734 3110
tenth percentile 514 517 503 529 636 1647 2348
ninetieth percentile 1722 2046 2323 2466 3056 3288 3517

OGSR mean 206 256 1018 1755 2369 2857 3172
tenth percentile 149 192 250 377 1327 2221 2726
ninetieth percentile 267 522 1755 2227 2889 3221 3482

PYFE mean 163 214 882 1415 2042 2680 3078
tenth percentile 125 133 146 194 268 661 1813
ninetieth percentile 207 791 2232 2805 3166 3319 3529

PYFO mean 953 1185 1520 1842 2289 2749 3104
tenth percentile 512 521 524 560 710 1586 2294
ninetieth percentile 1844 2329 2810 3030 3198 3322 3529

PYPE mean 160 217 429 779 1451 2399 2923
tenth percentile 115 157 227 257 290 536 1679
ninetieth percentile 206 283 950 2026 2748 3131 3429

EC8 class A mean 1307 1633 2102 2408 2584 2526 2672
tenth percentile 662 645 787 991 1352 1628 1659
ninetieth percentile 2456 2946 3325 3464 3539 3421 3537

EC8 class B mean 625 932 1422 1923 2306 2366 2558
tenth percentile 300 339 426 516 754 1279 1409
ninetieth percentile 1413 2144 2921 3256 3422 3367 3507

EC8 class C mean 262 422 926 1477 2044 2254 2493
tenth percentile 154 173 203 263 351 891 1193
ninetieth percentile 537 1308 2485 3025 3309 3320 3482

(continued)
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GMPEs using VS1
4
(Joyner and Fumal, 1984) and a regression

procedure to account for the variation in the accuracies of the
velocities.

Conclusions

In this article we have estimated the shear-wave velocity
profiles and computed the VS1

4
s (Joyner and Fumal, 1984)

and site amplifications (and their confidence limits) for 14
stations in the RAP strong-motion network of France. In this
application most of the available data to constrain the pos-
sible shear-wave velocity profiles has been used. To compute
a set of realistic shear-wave profiles a stochastic profile
simulation technique was developed based on statistical de-
scriptions of the characteristics of 858 measured profiles
from western North America, France, and Japan. The advan-
tage of this is that when the computed VS1

4
s (or site ampli-

fications) are used to develop GMPEs the common as-
sumption of equal quality and quantity of site information
is no longer required. Data from stations should be weighted
within the regression analysis based on the accuracy of the
computed VS1

4
s. Such a weighted regression analysis is

planned for a future extension of this study.
This proposed method, therefore, has the ability to in-

corporate all the available information on local site condi-
tions into the derivation of ground-motion estimation
equations rather than, as is done at present, be forced to de-
fault to a crude site classification scheme because of a lack of
information for some stations. It accounts for the fact that the
quality of local site information varies significantly between
stations—a heterogeneity that is not normally considered
when deriving GMPEs. This method will not significantly im-
prove site-and earthquake-specific site response estimates
because, as Boore (2004) shows, these estimates require de-
tailed knowledge of the source and the three-dimensional
structure beneath the station. However, it should improve
overall estimates of average site response and, consequently,
empirical ground-motion predictions.

From this study a number of important conclusions on the
estimation of site amplifications based on modeling using
geophysical data can be made. It has been demonstrated that
precise amplification estimates at high frequencies rely on ac-
curate estimates of near-surface attenuation (i.e., κ or Q),
which is not usually measured, as well as near-surface
shear-wave velocity. In addition, the application of depth to
bedrock constraints can improve the accuracy of amplification
curves for frequencies around 1 Hz.

The presented technique, however, has some drawbacks.
Firstly, as pointed out by one of our reviewers (Adrian
Rodriguez-Marek), the use of the surface velocity V0 may
pose two problems due to the presence of an anthropogenic
shallow layer and the fact that the variability of this velocity
might be larger than the one computed from an average ve-
locity over a certain depth. Secondly, by using the one-quar-
ter wavelength approach we assume one-dimensional linear
site response, which is a common assumption when deriving
empirical GMPEs. However, this assumption means that pre-
dicted site amplifications derived using this approach are un-
likely to be accurate for sites with strong two- or three-
dimensional site effects (e.g., those stations in sedimentary
basins) or for sites where nonlinear soil response is possible
for large amplitude ground motions. Because nonlinear soil
response only becomes apparent for peak ground accelera-
tions greater than 0.1–0.2g (e.g., Beresnev and Wen,
1996), site amplification for the majority of records should
be accurately predicted despite neglecting nonlinearity.

The second disadvantage of the proposed approach is
that it does not currently make use of site response informa-
tion coming from analysis of recorded earthquakes or ambi-
ent vibrations, such as horizontal/vertical (H/V) spectral
ratios (e.g., Duval et al., 2001; Fukushima et al., 2007). This
information could be useful in constraining the shear-wave
velocity profiles at depths beyond the end of information
coming from boreholes. The disadvantage of not making
use of this information has been demonstrated here by the
generally poor match between computed site amplifications
and those presented by Drouet et al. (2008) for seven com-
mon stations. However, it should be possible to make use of
this information by conducting full one-dimensional site re-
sponse analysis (rather than making the one-quarter wave-
length approximation) for the set of generated profiles and
then rejecting those profiles whose site response does not
match the observations coming from recorded data. A benefit
of the one-quarter wavelength approach, however, is that the
one-quarter wavelength velocities (VS1

4
) obtained from the

profiles can be easily included within the functional form
of the derived GMPEs through the addition of a term:
k log�VS1

4
=V0�, where k and V0 are coefficients to be found

by regression analysis, which is based on the physics of site
response (Joyner and Fumal, 1984). Using the average ve-
locities down to a depth of one-quarter wavelength neglects
the effect of variation in the velocity structure below this
depth, which at high frequencies would mean neglecting
variations below a few tens of meters.

Table 4 (Continued)
VS1

4

Station Statistical Measure 0.1 sec 0.2 sec 0.5 sec 1 sec 2 sec 5 sec 10 sec

EC8 class D mean 127 139 389 811 1518 2023 2372
tenth percentile 79 79 82 95 128 205 708
ninetieth percentile 172 306 1550 2500 3042 3209 3423

Making the Most of Available Site Information for Empirical Ground-Motion Prediction 1517



As an example of the benefit of full one-dimensional site
response analysis when making use of results of H/V spectral
ratios (or other estimates of the site response) to better
constrain profiles, Figure 14 compares the amplification
curves computed using the Haskell–Thompson approach
with those estimated using the one-quarter wavelength
approximation for the OGDH station in the Grenoble basin.
This comparison shows that the Haskell–Thompson ap-
proach predicts this site’s fundamental frequency (at about
0.2 Hz) whereas the one-quarter wavelength approximation
does not. Consequently, if estimates of a site’s fundamental
frequency are available from observational data, such as H/V
spectral analysis, the one-quarter wavelength approximation
would not make use of this information. The OGDH
amplification curve for this station derived using the
Haskell–Thompson approach (Fig. 14) compares well with
the amplifications estimated by Drouet et al. (2008) (Fig. 9).
This example demonstrates the final principal disadvantage
of basing our approach on the one-quarter wavelength as-
sumption, that is, the site response at stations underlain
by large impedance contrasts, with consequently site re-
sponses featuring multireflections, could be poorly charac-
terized. Nevertheless, we prefer the one-quarter wave-
length approach for our procedure due to the ease with which
the VS1

4
s can be introduced into empirical GMPEs.

Data and Resources

Compilation of shear-wave velocity profiles for western
North American sites was done by David M. Boore (http://
quake.wr.usgs.gov/~boore/data_online.htm, last accessed
March 2008). Compilation of shear-wave velocity profiles

for French sites was done by Julien Rey. They cannot be
released to the public. Compilation of shear-wave velocity
profiles for Kik-Net sites was done by Guillaume Pousse.
All other data came from published sources listed in the
references.
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Long-period earthquake ground displacements recorded
on Guadeloupe (French Antilles)

P. Jousset∗,† and J. Douglas
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SUMMARY

Displacement time-histories derived from accelerograms of three recent earthquakes in western North
America (Hector Mine, Mw 7.1; Denali, Mw 7.9; and San Simeon, Mw 6.5) have been shown to
feature large long-period (∼10 s) ground-motion cycles. Such long-period displacements cause a localized
peak within the displacement response spectrum that is currently not considered within any earthquake
engineering design spectra. These displacement pulses have also been shown to be persistent and to feature
on time-histories from widely separated stations (∼20 km).

Broadband and accelerometric data from the Les Saintes earthquake sequence of 2004–2006 (4.9�Mw

�5.3) recorded on Guadeloupe (French Antilles) are shown in this article to feature similar long-period
motions. The broadband data are used to independently corroborate the displacement time-histories derived
through high-pass filtering and double integration of accelerometric data. It is shown that high-quality
broadband data are suitable for this purpose. The long-period motions observed cause a localized peak
in displacement response spectra at periods between 5 and 10 s. It is suggested here that the cause of
these large-amplitude long-period motions are specific source mechanisms, which may possibly involve
the presence of fluids within the source.

The form of the displacement response spectra from these time-histories is significantly different from
the spectral shape specified in recent seismic design codes since the peak in the spectra is at a much
greater period than expected. This leads to an underestimation of spectral displacements for periods
between about 5 and 10 s. Therefore, if these observed long-period cycles are a common feature of
earthquake ground motions the standard form of displacement design spectra may need to be reconsidered.
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1. INTRODUCTION

Obtaining reliable long-period (>1 s) ground-motion measurements of earthquakes is difficult due
to recording and processing noise. The advent of high-quality digital accelerometers with high
(24 bit) resolution has led to a significant reduction in the level of noise in accelerograms and
consequently a larger usable bandwidth (e.g. [1]).

Using records from such digital instruments Boore et al. [2] for the 1999 Hector Mine earthquake
(Mw 7.1), Boore [3] for the 2002 Denali earthquake (Mw 7.9) and Wang et al. [4] for the 2003 San
Simeon earthquake (Mw 6.5) discovered long-period (∼10 s) pulses in the processed displacement
traces that had not been observed in previous earthquakes (possibly because earlier earthquakes
were mainly recorded by analogue accelerographs and hence such long-period features could not
be resolved). These pulses contribute to a conspicuous localized peak in the displacement response
spectra of the records that could be important for the seismic design of long-period structures,
such as large bridges, tall buildings, and base-isolated structures.

In this article similar long-period displacement pulses are shown to feature on records from
three predominately normal-faulting aftershocks of the 2004 Les Saintes earthquake (Mw 6.3)
(e.g. [5]) near Guadeloupe (French Antilles). Processed displacement records from almost collo-
cated accelerometers and broadband seismometers are compared to confirm that these displacement
pulses are real and not just a consequence of recording noise. Interestingly, these aftershocks have
much lower magnitudes (4.9�Mw�5.3) than those in which such long-period pulses have been
observed in the past, suggesting that these motions can occur during moderate-size earthquakes.
Such long-period displacements mean that the displacement spectra of these records have peaks at
periods between 5 and 10 s, which is surprising due to the relatively small size of the earthquakes.

These observations are important from both an engineering and a seismological perspective.
From the engineering point of view, the purpose of this article is to examine recently proposed
design displacement response spectra in the light of these records. The importance of examining
the shape of the displacement spectra proposed in design codes has recently been highlighted
by Bommer and Pinho [6]. In a seismological context, a possible generation mechanism (fluids
within the source) for these large-amplitude long-period motions is suggested based on previous
observations of similar motions.

2. USE OF BROADBAND DATA FOR STRONG-MOTION SEISMOLOGY

Data from standard broadband seismometers have not often been used in strong-motion seismology
partly because the higher sensitivity of such instruments means that ground motions from close to
the source of moderate and large earthquakes are clipped (e.g. [7]). Some studies, such as Dahle
et al. [8], use records from seismometers to supplement the limited accelerometric data available
from their regions of interest (often stable continental regions) and from hard rock sites. Similarly
Frisenda et al. [9] and Bragato and Slejko [10] combine seismometric and accelerometric data in
order to create a large set of records for studying the scaling, with magnitude and distance, of
ground motions from small and moderate earthquakes in north-west Italy and in the eastern Alps,
respectively. Note that the interest in these studies are accelerations obtained from seismograms
whereas here the interest is displacements.

Zahradnı́k [11] shows that the noise levels in seismograms are generally lower and have dif-
ferent characteristics than those in accelerograms. These lower noise levels mean that the usable
bandwidth of records from seismometers should be greater than those from accelerometers and
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hence more reliable displacements can be obtained. A recent study that exploits these lower noise
levels is by Yu and Hu [12] who compare records from collocated accelerometers and broadband
seismometers of the TriNet network in southern California. They find that reliable ground motions
can be obtained up to a period of 20 s, which allows them to derive ground-motion estimation
equations for long-period acceleration response spectral ordinates.

A network of five stations with Güralp CMG40-T broadband seismometers (flat response
between 0.016 and 100 Hz) was recently installed at Bouillante on the west coast of Basse-Terre
(Guadeloupe, France) for a geothermal project [13]. These stations are close together in a roughly
circular formation in order to analyse the signals emanating from the nearby geothermal energy
source. By coincidence these stations are close (<4 km) to the accelerometric station Ecole Pigeon
(PIGA) operated by the Observatoire Volcanologique et Sismologique de Guadeloupe (Institut de
Physique du Globe de Paris, IPGP), which is part of the Réseau Accélérometrique Permanent
(RAP) of France. In particular, the broadband station LB6 is less than 1 km from Ecole Pigeon.
Records from these stations provide, due to their proximity and lower noise levels, an independent
test of the processed displacements deduced from the accelerograms recorded at Ecole Pigeon.

Records from the broadband network have been instrument corrected and then converted to
acceleration from velocity through time-domain differentiation [7]. In this study, we convert records
to displacement through time-domain integration. Due to the sensitivity of the instruments, records
are saturated when the ground-motion velocity exceeds 0.5 cm s−1, such as during the Les Saintes
mainshock (Mw 6.3), and hence cannot be used. However, smaller ground motions are successfully
recorded by the broadband network.

3. RECORD PROCESSING

The level of noise present in the broadband and accelerometric records means that some high-pass
filtering must be undertaken in order to obtain physically realistic displacements. In order to choose
the cut-offs of such filters the signal-to-noise ratio of each record (using the pre-event portion of the
record as an estimate of the noise) was examined and the location of the cut-offs chosen where this
ratio falls below three. High-pass filtering using a fourth-order Butterworth filter was then applied
to the acceleration trace after padding the time-history with zeros and then the filtered accelera-
tion was integrated to displacement. The recording of longer pre-event portions by accelerometers
would help estimate the cut-off frequencies required for high-pass filtering of these data.

Boore and Bommer [14] note that this procedure neglects the signal-generated noise. Therefore,
some of the processed displacements presented here could still contain some long-period noise
due to cut-off frequencies that are too small. However, when processing the records presented in
this article, the displacements were also examined and the cut-offs varied if the displacements
still seemed to be affected by noise. Noise was assumed to still be affecting the displacements if
the filtered waveform contained long-period oscillations along the entire length of the record or
other unphysical variations such as large displacements at the start or end of the time-history. As
shown below, the displacements obtained through this processing procedure show similar features
at adjacent stations (Figures 1 and 2) suggesting, following the reasoning of Hanks [15], that
the obtained displacements are a good representation of the ground motions. The same process-
ing procedure followed here was used by Ambraseys et al. [16] to process accelerograms from
Europe and the Middle East. Akbar and Bommer [17] independently reprocessed these Eurasian
records using a slightly different technique and found that, in general, many of the records in
Ambraseys et al. [16] were too severely filtered (shown by recovered peak ground velocities that
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are too low). This observation suggests that the records presented here are also possibly slightly too
severely filtered and that some of the signal has been removed as opposed to not being sufficiently
filtered.

Since the subject of this article are long-period motions, accelerometric records from stations
of the BRGM accelerometric network of Guadeloupe (e.g. [7]) equipped with 12-bit instruments
were discarded since they do not have sufficiently high resolution to allow accurate computation
of displacements. Table I lists the records examined in this article with the cut-off frequencies
used. Generally, the records from the broadband stations required a cut-off frequency of 0.03 Hz
while the higher noise levels in the accelerometer records obliged the use of cut-offs less than
0.1Hz. As broadband records are less noisy than those from accelerometers and since they record
continuously, we analysed the influence of the choice of cut-off frequency on accelerometric data
using the broadband signal as a reference, for two stations (LB6 and PIGA) about 1 km apart.
For the record from PIGA it is found that there is noise at frequencies less than 0.08 Hz but, in
fact, there is little energy in the broadband record at frequencies less than 0.06 Hz therefore little
signal is lost by filtering at 0.08 Hz. Only records with a filter cut-off frequency of not greater
than 0.1 Hz were retained for analysis.

Figure 1 displays comparisons between the displacements recorded at the broadband
stations and at the adjacent RAP PIGA for the three aftershocks. This figure shows that the

Figure 1. Ground displacements of the three aftershocks recorded at LB2, LB3, LB6 and Ecole Pigeon
(PIGA). NS component of LB2 was not working correctly at the time of earthquakes and LB3 and LB6

were not working correctly at the time of the third aftershock.
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Marie-Galante

Figure 2. Observed ground displacements for the three studied aftershocks. On the map, filled symbols
are rock sites, unfilled symbols are soft soil sites, triangles are broadband stations and squares are
accelerometric stations (see Table I for details). The black star indicates the location (Observatoire

Volcanologique et Sismologique de Guadeloupe) of the Le Moule earthquake (MD 3.7).
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Table I. Characteristics of records analysed in this study, where de is epicentral distance and
fl is the cut-off frequency of the high-pass filter used.

21/11/04 13:37 27/11/04 23:44 02/12/04 14:47
Mw 5.3 Mw 4.9 Mw 5.0

de fl de fl de fl
Station Site class Inst. type (km) (Hz) (km) (Hz) (km) (Hz)

GJYA Rock K2 30 0.10 39 0.10 35 0.08
ABFA Soft soil ES-T 33 0.10 — — — —
LB2 Rock CMG-40T 43 0.03 52 0.03 48 0.03
LB3 Rock CMG-40T 44 0.03 53 0.03 — —
LB6 Rock CMG-40T 46 0.03 55 0.03 — —
PIGA Rock ES-T 46 0.08 55 0.10 51 0.10
GFEA Soft soil K2 48 0.10 — — — —
IPTA Rock ES-T 48 0.10 58 0.10 53 0.10
MESA Soft soil ES-T 59 0.10 69 0.09 65 0.10
MOLA Rock ES-T 60 0.10 70 0.10 65 0.09
SFGA Rock ES-T 61 0.10 69 0.10 65 0.10
SROA Rock ES-T 62 0.10 72 0.10 67 0.09
BERA Rock ES-T 76 0.09 — — — —
TDBA Soft soil ES-T — — 22 0.10 — —
GHMA Hill AC-23H — — 36 0.10 32 0.10
PRFA Rock ES-T — — 38 0.08 34 0.09
JARA Soft soil ES-T — — 60 0.10 55 0.10

displacements are similar in form and amplitude. These close correlations between motions
observed at adjacent stations recorded by different types of instrument shows that these pro-
cessed displacements are a good estimate of the ground displacements that occurred at these
locations.

4. OBSERVED DISPLACEMENTS

The processed displacements displayed in Figure 1 are dominated by cycles of displacement with
periods of 5–10 s, which is a period much longer than normally would be considered dominant
within ground displacements from earthquakes of Mw ≈ 5 at such distances. These long-period
pulses are similar in form to those observed by Boore et al. [2] for the 1999 Hector Mine earthquake
(Mw 7.1), Boore [3] for the 2002 Denali earthquake (Mw 7.9) and Wang et al. [4] for the 2003
San Simeon earthquake (Mw 6.5).

Hanks [15] confirmed the validity of the processed displacement traces of the 1971 San Fernando
earthquake he obtained by showing that the displacements were similar at adjacent stations. Since
displacements are controlled by the long-period energy content of the ground motions, they are less
affected by surface site effects and also are more coherent than accelerations hence it is expected
that displacements should be similar over a range of a few kilometres.

Figure 2 shows that the processed displacements recorded at stations on Guadeloupe for
the three aftershocks display similar features and are highly coherent especially at rock sites.
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These similarities, across more than 50 km, further demonstrates that the processed displacements
are good representations of the ground displacements.

5. ELASTIC DISPLACEMENT RESPONSE SPECTRA

Due to the current trend towards displacement-based design, many standard elastic response spectra
recently proposed have been developed with a view to providing realistic long-period spectral
displacements (SDs). The displacement spectra used within HAZUS [18] and the ASCE 7-05
standard [19] feature an increase in SDs until a magnitude-dependent period at which a SD plateau
begins. The period at which this constant SD plateau ends is not given. The SDs of the HAZUS
spectrum reach a plateau at a period T given by [18]: T = 10(Mw−5)/2, which was adopted from
the study of Joyner and Boore [20] on the corner frequency of theoretical source spectra. For
Mw 4.9 and 5.3 this gives periods of 0.9 and 1.4 s, respectively. Similarly the ASCE 7-05 standard
uses the formula [19]: Tc = 100.3Mw−1.25 to define the period at which the SDs become constant.
For Mw 4.9 and 5.3 this gives Tc = 1.7 and 2.2 s, respectively, although the smallest magnitude
considered by Crouse et al. [19] is Mw 6.0. On the other hand, the Type 1 (for high-seismicity
zones, like Guadeloupe) design spectra of Eurocode 8 [21, Annex A] uses a more complicated
displacement spectral shape where the SDs increase until a plateau starting at 2 s and ending at
6 s and then they decrease until they equal peak ground displacement (PGD) at a period of 10 s.
Malhotra [22] has recently proposed a method to construct smooth design spectra based on the
well-established method of Newmark and Hall [23]. In this method the ratio PGD/PGV (whose
use in this context was first proposed by Bommer et al. [24]) is used to define the periods at
which the plateau in the displacement spectrum begins and ends and also the period at which SD
becomes equal to PGD.

Note that these design spectra are generalizations for engineering purposes that seek to capture
the main features of observed spectra. An exact match between these standardized shapes and
spectra from records should not be expected.

The calculated elastic displacement spectra for 5% damping for all considered records for the
three aftershocks are displayed in Figures 3–5. Also shown are displacement spectra predicted
using Eurocode 8 normalized to the observed SD at 15 s (where observed SDs for the examined
records approach PGD), in order to more easily compare the shape of the spectra, and the smooth
displacement spectra constructed using the method of Malhotra [22]. The spectra from the HAZUS
and ASCE 7-05 methodologies are not displayed on the figures due to a lack of space. However,
as stated above the SD plateaus of these spectra begin at a magnitude-dependent period, which is
indicated in the caption of the figures for both the HAZUS and ASCE 7-05 spectra.

These figures show that most of the spectra feature peaks between 5 and 10 s and the observed
SDs do not become equal to PGD until, at least, 10 s. The high-pass filtering could have affected
the SDs at periods greater than about 8 s [25] for records filtered at cut-offs of 0.1 Hz. For some
records (e.g. the spectra from the station GFEA) the long-period peak is not clearly present, which
could be due to long-period site effects since some stations are located on soft soil where large
site amplifications occur (e.g. [7]). The comparisons between the observed and design spectra
demonstrate that the form of the observed spectra is not well modelled by recent proposals. The
predominant localized peak means that SDs at periods between 5 and 10s are underestimated since
they are much higher than PGD and they fall outside the location of the expected plateau in the
displacement spectrum.
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Figure 3. Observed elastic displacement response spectra (black lines) for records from 21 November 2004
13:37 (Mw 5.3) aftershock, predicted Eurocode 8 spectra (light grey lines) normalized to observed SD at
15 s (at 4 s for vertical spectra since SDs are not defined for longer periods in EC8) and predicted spectra
using procedure of [22] (dark grey lines). The SD plateaus in the HAZUS and ASCE 7-05 spectra begin at
1.4 and 2.2s, respectively. Also given are the station codes, epicentral distances and Eurocode 8 site classes.
Lines for the observed spectra are thick for periods less than the conservative criteria given by Akkar and
Bommer [25] as to when the SDs are not affected by filtering, thinner for periods between their conservative

and tolerant criteria and thin for longer periods.
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Figure 4. Like Figure 3 but for records from 27 November 2004 23:44 (Mw 4.9) aftershock. The SD
plateaus in the HAZUS and ASCE 7-05 spectra begin at 0.9 and 1.7 s, respectively.

Copyright q 2007 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2007; 36:949–963
DOI: 10.1002/eqe



958 P. JOUSSET AND J. DOUGLAS

0

1

2 NS EW Z
GHMA 32km A

0

1

2
PRFA 34km A

0

1

2
GJYA 35km A

0

1

2

No data

LB2  48km A

0

1

2
PIGA 51km A

0

1

2
IPTA 53km A

0

1

2
JARA 55km C

0

1

2
MOLA 65km C

0

1

2
MESA 65km A

0

1

2
SFGA 65km A

 0  5 10 15
0

1

2

S
D

 (
m

m
)

Period (s)
 0  5 10 15

Period (s)
 0  5 10 15

Period (s)

SROA 67km A

Figure 5. Like Figure 3 but for records from 2 December 2004 14:47 (Mw 5.0) aftershock. The SD
plateaus in the HAZUS and ASCE 7-05 spectra begin at 1.0 and 1.8 s, respectively.
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6. DISCUSSION

The prominent period of the observed ground displacements during the three studied aftershocks
is 5–10 s, which is much greater than would commonly be expected from earthquakes of moderate
magnitudes such as these. As mentioned in the Introduction, this observation is interesting from
seismological and engineering viewpoints.

6.1. Seismological viewpoint

The occurrence of long-period motions at widely separated stations with different azimuths and site
conditions suggests that they are a source, rather than a path or site, effect. Unlike displacements
associated with surface waves generated by local site conditions (e.g. basins) that occur in the coda
of the record after the high-amplitude acceleration, these observed displacements occur within the
body-wave portion of the records.

Processes that generate unexpectedly long-period motions have been reported in several loca-
tions, such as, volcanoes and hydrothermal systems, e.g.: Aso volcano, Japan [26]; Galeras volcano,
Colombia [27]; Popocatepetl volcano, Mexico [28]; and at greater depths beneath these volcanoes
(e.g. [29, 30]). In these small systems, the existence of long (0.2–5 s) and very long-period (>5 s)
motions is explained by the interaction between fluids and solid rock [31–33].

The possible response of the hydrothermal system at Bouillante is not responsible for the recorded
signals because of the occurrence of long-period motions at locations far from Bouillante. Other
crustal earthquakes of similar size recorded at the same stations do not feature such long-period
oscillations, such as the earthquake on 23 March 2006 (MD 3.7) at Le Moule (see Figure 2), a
similar distance as the Les Saintes aftershocks but at a slightly deeper depth (24 km compared with
depths of 5–20 km for Les Saintes events). This observation suggests that the aftershock sequence
at Les Saintes has a specific behaviour with respect to the generation of long-period motions.

From the above observations, we suggest that the generation mechanism of the long-period
motions observed on Guadeloupe from Les Saintes sequence may involve the presence of fluids
within the source. Guadeloupe belongs to a subduction volcanic arc, where ancient and active
volcanoes exist (e.g. [34]). However, the Les Saintes sequence was related to a crustal fault
system; they were not subduction events. Aftershocks occurred for more than one year [5, 35],
which is not uncommon for such earthquake swarms. A preliminary analysis of smaller aftershocks
of magnitude about 4 recorded at the broadband network reveal that long-period motions were
also observed during these events, albeit less clearly.

These observations can be linked with results of source models (e.g. [36]) where the fault
model involves the lubrication of the fault using an elevated fluid pressure in a thin film of
viscous fluid that is sheared between nearly parallel surfaces. This model predicts that lubrication
by fluids should decrease the amplitude of frequencies above 1 Hz. Analysis of strong-motion
spectra suggest that, in general, ground motions recorded on Guadeloupe and Martinique seem
to be weaker than predicted by empirical ground motion models derived using data from other
regions [7]. The existence of fluid could, therefore, help explain why observed high-frequency
(>1 Hz) ground motions are damped whilst, as shown in this article, the long-period motions are
larger than expected.

In addition, long-period motions are not observed on all records of the aftershock sequence.
Ground motions of this sequence recorded at Bouillante of aftershocks of similar size some weeks
after the main shock exhibit long-period motions, whereas these motions are not observed for late
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aftershocks. Based on these observations, we speculate that the observed long-period oscillations
are due to a temporary source effect (such as the presence of fluids within the source) that vanished
some months after the mainshock.

6.2. Engineering implications

The observations reported in this article could have engineering implications for the design of
structures, such as long bridges and tall buildings, where SDs at periods greater than 5 s are used
in the design process. Due to the small size of the aftershocks studied here (Mw ≈ 5) and the
relatively large source-to-site distances the observed SDs are all less than 2mm, which is likely to
be much too small to cause damage to structures. However, the importance of these observations
lies in the possibility that the mechanism responsible for their creation (possibly fluids within the
source) could occur during larger earthquakes thus leading to long-period SDs that are much larger
than designed against based on seismic building codes, such as Eurocode 8 or ASCE 7-05.

Figure 3 of Faccioli et al. [37] presents average near-field and intermediate-field displacement
spectra derived from digital records of the Kobe earthquake. Like many of the displacement
spectra shown here, their average spectrum from intermediate-field records also features a plateau
at periods from 5 to 10 s whereas their near-field spectrum shows a plateau at a shorter period.
In addition, the recent studies cited above that have also found large-amplitude displacement
cycles [2–4] have observed them mainly at stations quite distant from the source. Although for
all earthquakes examined there is little or no near-source ground-motion data for which to check
for such long-period motions. Consequently, the unusual form of the displacement spectra shown
in Figures 3–5 could be a phenomenon that only occurs at source-to-site distances of greater
than about 30 km since at closer distances higher amplitude short-period effects could mask the
long-period motions. If this is true then it is unlikely to be too important for the definition of
design spectra since ground motions at greater than 30 km will be too small to cause much damage
except during large earthquakes.

To model the displacement spectra presented in Figures 3–5 so that the SDs at all periods are
well predicted, the form of the Eurocode 8 and the Malhotra [22] spectra could be retained but the
periods that control the start and end of the displacement plateau and where SD becomes equal to
PGD (TD , TE and TF in Eurocode 8 and T4, T5 and T6 in the method of Malhotra [22]) need to
be increased to roughly 4, 8 and to greater than 10 s, respectively. This will widen the plateau in
order to encompass the localized peak. Bommer and Pinho [6] recently suggested that the control
periods in Eurocode 8 may need to be lengthened to correctly specify SDs from large magnitude
earthquakes. The more simplified form of the displacement spectrum proposed in HAZUS and
ASCE 7-05, which is flat above a certain period, cannot be easily modified to account for the
observed localized peak. In order to envelope the observed long-period peak in the spectra, SDs
would have to increase up until roughly 5 s and then become equal to PGD multiplied by a factor
between 2 and 3 (for 5% damping). The displacement spectra derived by this method, however,
would not tend to PGD at long periods, which it must do according to the definition of response
SDs. In addition, the SDs for periods longer than about 10 s would be significantly overestimated.

The limited number of observations presented in this article and those in the previously cited
studies means that it is too early to definitively conclude that the long-period SDs predicted by
recent design spectra need to be modified. Additional studies based on data recorded by high-
quality digital accelerograms and/or broadband seismograms need to be conducted to examine how
common the large-amplitude long-period displacements that occurred during recent earthquakes are.
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If it is found that such ground motions frequently occur then modifications of design spectra
should be made. There is, however, no reason for the pulses to occur at similar periods. Resonance
frequencies of fluid-filled containers depend on physical properties of both fluid and surrounding
rock and the geometry of the container [32, 33]. Therefore, a systematic analysis of the source
mechanism is required before making any detailed recommendations on required modifications to
design spectra to incorporate these effects.

7. CONCLUSION

In this article, records of three aftershocks of a moderate-size earthquake recorded on two indepen-
dent networks of instruments were analysed. The data from accelerometers were integrated twice
after high-pass filtering to obtain displacements and the data from broadband velocity seismometers
were integrated once after instrument correction and filtering to yield displacements. By doing so,
we show that the displacements are similar in form and amplitude even for stations located more
than few kilometres apart. For larger earthquakes, the broadband instruments are saturated and
hence cannot be reliably used.

It is found that the prominent periods of ground motions are larger than expected for this size of
earthquake, suggesting that long-period motions may be more common for moderate earthquakes
than previously thought. A possible cause of these long-period motions is mechanical interaction
between rock and fluids at the source. The dynamic interaction between fluids and solids is able to
generate long-period waves due to the resonance of small structures [31–33]. If such long-period
motions prove to be observed during other earthquakes then it may be necessary to modify the
form of the long-period spectra specified in seismic building codes since they are shown here
to poorly model the form of the observed displacement spectra. However, this phenomenon may
occur rarely as few observations implying engineering consequence have been observed to date.
The unusual form of the displacement spectra observed could be a phenomenon that only occurs
at source-to-site distances of greater than about 30 km since at closer distances higher amplitude
short-period effects could mask the long-period motions. If this is true then it is unlikely to be of
major importance for the definition of design spectra since ground motions at greater than 30 km
will be too small to cause much damage except during large earthquakes.

These results also demonstrate that a comprehensive study of strong ground motion should
include co-locating accelerometers to record strong motions and broad-band seismometers for the
study of aftershocks and to verify the displacement time-histories derived through double integration
of accelerograms. Co-locating accelerographs and high-sampling-rate global positioning system
(GPS) instruments [4] can also provide joint validation of the long-period displacements observed
during earthquakes.
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