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INTRODUCTION

The prevalence of social networks, blogs, wikis, media-sharing sites and folksonomies in the past
few years heralds the arrival of theWeb 2.0 era. TheWeb 2.0 sites provide users the freedom to share
their information and express their feelings by posting blogs, submitting comments and tagging
content. This differs from the traditional “Web-as-information-source” websites in the sense that
users are not only limited to passively browse the content created for them but are also encouraged
to contribute to the information creation. The Web 2.0 revolution is transforming the Internet to a
collaborative media where users can meet, read and write.
The user-generated content constitutes a rapidly increasing proportion for the Web. In the most

famous social networking site Facebook, more than 30 billion pieces of content, such as web links,
news stories, blog posts, photo albums, etc., are shared each month [1]. In the recently popular
mini-blog service Twitter, about 750 tweets are generated per second, which account for 65 millions
tweets per day [2]. In the meantime, 24 hours of new videos are uploaded to the YouTube site every
minute [3].
Such user-generated content is thus becoming a richer and richer source of information. In 2006,

the power of users and their generated content was admitted in TIME magazine. The author of the
cover story explained in “Person of the year – You” [4] that

“It’s a story about community and collaboration on a scale never seen before. It’s

about the cosmic compendium of knowledge Wikipedia and the million-channel peo-

ple’s network YouTube and the online metropolis MySpace. It’s about the many wrest-

ing power from the few and helping one another for nothing and how that will not only

change the world, but also change the way the world changes.”

A more convincing example of the power of user-generated content as an active information
source was presented after the crash of a USAirways flight in New York’s Hudson River in January
2009. The first tweet broke that news 4 minutes after the incident, which was around 15 minutes
earlier than the mainstream media [5].
However, efficiently and accurately discovering valuable information from the huge amount of

information is not an easy task. During the past few years, with the explosion of information, people
rely more and more on search engines to access the information in the Internet: 3 billions, 280
millions and 80 millions queries are tackled each day by Google, Yahoo and Bing respectively [6].
Yet, the prevalence of the Web 2.0 applications brings new challenges to traditional search. As
previously stated, content is being generated at an unprecedented rate, which makes it more and
more difficult and expensive to keep up with the pace of its generation and evolution.
More importantly, users do not have any limit in the content they submit and the way they interpret

the content. Such arbitrariness and subjectivity impose higher requirements for search engines to
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distinguish “I just watched a plane crash into the Hudson” from “I just watched two swans swim in
the Hudson” and bubble the valuable information up. In fact, according to the study of US market
research firm Pear Analytics, 40% of the messages sent via Twitter are “pointless babble” [7].
Moreover, the value of the same information might vary across users. The success of infinite-

inventory retailers like Amazon and Netflix ascribes the long-tail phenomenon [8] and confirms the
diversity of user preferences. Personalizing the search for each individual user has in fact attracted a
lot of attention from both industry and academe in the past few years. Yet, the emergence of the Web
2.0 applications opens up a new path to understand the user preferences. With Web 2.0, users have
the opportunity to explicitly express what they like and what they do not like. Better personalization
can be achieved should such information be taken into account while leaning the user preferences.
All these challenges are calling for more technologies that can be leveraged to implement the

search in order to make full use of the emerging source of valuable and timely information, while
preserving the reliability and the low cost.
Peer-to-peer network is well known for its scalability and robustness. Comparing to the Web

2.0 technology, the peer-to-peer technology gained its popularity several years in advance. In 1999,
Napster became the major on-line music sharing system. Although the original service was shut
down in 2001 for copyright reasons, it paved the way for the success of numerous peer-to-peer
applications. The most commonly known applications are for content delivery. Since 2004, the
peer-to-peer file sharing applications, like Gnutella and BitTorrant, are the largest contributors of
network traffic on the Internet. Live streaming is another successful application of content delivery
in peer-to-peer systems. PPStream, one of the most popular peer-to-peer streaming video software,
has more than 400 millions installations with 11 millions daily and 100 millions monthly active
users [9]. The well-known Skype is one of the most widely used Internet phone applications using
peer-to-peer technology. A report from TeleGeography Research stated that Skype-to-Skype calls
accounted for 13% of all international call minutes in 2009 [10].
A peer-to-peer network is a distributed architecture composed of participants that collaborate

with each other to share resources, such as processing power, storage and bandwidth, without any
centralized coordination server. Peers are both suppliers and consumers of resources, in contrast
to the traditional client-server model where the servers supply and the clients consume. As the
peers also play as resource suppliers, even if the arrival of new peers increases the demand on the
system, the total capacity of the system increases accordingly, which provides the system more
scalability. The distributed nature of peer-to-peer networks also improves the robustness of the
system by avoiding the single point of failure faced by centralized systems. More importantly, it
provides a promising possibility to manage the user-generated content in Web 2.0 applications. As
John Robb wrote [11]:

“What is Web 2.0? It is a system that breaks with the old model of centralized Web

sites and moves the power of the Web/ Internet to the desktop. ... Basically, Web 2.0
puts the power of the Internet in the hands of the desktop PC user where it belongs.”

The Web 2.0 technology offers users the freedom to create information while the peer-to-peer
systems rely on users to deliver information. Both of them are trying to break through the limit
of central providers and explore the potential of users as much as possible. Building the Web 2.0
applications on top of the peer-to-peer paradigm could open the door to many interesting innovations.
User experience can be further enhanced should users share and search the information created by

iv
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themselves in a peer-to-peer way to avoid the probably redundant collecting and re-distributing
procedure. This would be the key for efficiency, scalability and robustness.

Contribution Motivated by these observations, we aim to provide efficient search for the Web 2.0
applications. We highlight in this thesis the potential of using user-generated tags to personalize
the search and the applicability of such personalized search in fully decentralized peer-to-peer envi-
ronments. In this work, we focus on the collaborative tagging systems, where users add metadata
in the form of tags to describe and share content. However, the idea and the resulting algorithms
are not limited to collaborative tagging systems. Due to the intrinsic similarities, these can be eas-
ily extended to other Web 2.0 applications compatible with social tagging to support personalized
search.
More specifically, we consider the tagging behaviors of users as the indicator of their preferences

and associate each user with a set of other users sharing similar interests with her to personalize the
search. Given a query, we aim to efficiently find the top-k answers that match the individual needs of
the querier. Similar users can be identified either off-line or on-line according to the personalization
requirements. We first study the feasibility of a state-of-the-art off-line personalization in peer-to-
peer systems. Then we propose a hybrid interest model requiring on-line personalization to improve
the search efficiency. Therefore, we examine how this on-line personalization can be integrated to
existing centralized collaborative tagging systems. Upon that, we investigate another algorithm that
supports on-line personalization in peer-to-peer environments. We detail the contributions of this
thesis following the order of the chapters:

Chapter2: Off-line personalized query processing

• P3K is our first protocol that personalizes the top-k processing in peer-to-peer systems using
implicit user affinities underlying the tagging behaviors. The main objective of P3K is to show
the applicability of a previous personalized approach [12], designed for centralized systems,
in fully decentralized environments. P3K relies on a gossip-based protocol to associate each
user with a set of social acquaintances. Relevant personalized information is locally main-
tained to enable efficient top-k processing. Experimental results based on real dataset show
that little storage at each user suffices to get almost the same results as the state-of-the-art
centralized solution with infinite storage.

• P4Q is an extension of P3K that enhances the system performance in terms of storage, band-
width and robustness. Queries are gossiped among social acquaintances, computed on the
fly in a collaborative, yet partitioned manner, and results are iteratively refined and returned
to the querier. P4Q relies on profile digests encoded in Bloom filters to limit the bandwidth
during the gossip and actively react to system dynamics. Analytical and experimental evalua-
tions convey the scalability of P4Q for top-k query processing, as well its inherent ability to
cope with users updating profiles and departing.

Chapter3: On-line personalized query processing

• DT2 aims to personalize the top-k processing of queries reflecting emerging interests of the
users. To this end, a hybrid interest model is proposed to leverage both the tagging profile
and the current query to personalize the query processing on-line. DT2 is implemented in

v
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a centralized collaborative tagging system by doing top-k twice: the first top-k associates
each user, at query time, a set of appropriate users and the second top-k processes the query
with these users. The users are folded into the query processing in an incremental manner to
guarantee the balance between result quality and search efficiency. The advantages of on-line
personalization are highlighted through experimental evaluations on real datasets.

• DT2P2 is a protocol that performs on-line personalization in peer-to-peer systems. Different
from the state-of-the-art approaches that perform query processing in peer-to-peer systems
through query routing, the DT2P2 user who sends the query dynamically maintains a network
of users matching her hybrid interests. The query is then iteratively processed in the refined
network. In this way, the querier always has full control of the information used for her query
processing. This is achieved through a gossip-based protocol. A cache of such networks are
employed to enhance the efficiency of query processing.

vi
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BACKGROUND

1.1 Context

1.1.1 Collaborative tagging systems

Collaborative tagging has blossomed with Web 2.0 and is an important feature of manyWeb 2.0 ser-
vices. This represents the practice of users to freely create and manage tags for annotating content,
which helps users remember and organize information, such as email (Gmail), web sites (delicious),
photos (Flickr), videos (Youtube), blogs (Technorati) and academic papers (CiteULike). Collabora-
tive tagging system is a typical application of Web 2.0 that specifically supports tagging.
Figure 1.1 gives an example of the popular social bookmarking web service delicious [13],

which is also the most famous representative of collaborative tagging systems. This figure de-
picts the URLs bookmarked by the user John. Each URL is associated with a set of tags given
by John, reflecting his understanding of the content linked by this URL. For example, the URL
‘html5boilerplate.com’ is tagged with “bestpractice”, “boilerplate” and “markup” by John, where
“boilerplate” and “markup” characterize its content and “bestpractice” represents John’s assess-
ment on its value. These tags can later be used by either John or other users to search for this
URL.
A critical characteristic of collaborative tagging that promotes social navigation is its prolific vo-

cabulary contributed by the users. Users do not have any limit in the tags they use to describe a
resource. People can even invent their personally meaningful tags to facilitate the resource orga-
nization. Different users may use “template”, “framework” or some other synonyms instead of
“boilerplate” to tag the URL “html5boilerplate.com” as John did. This enables the most diverse
criteria to be allocated to the resources and in this way guarantees a much broader access to them.
According to the analysis of [14], only 50% bookmarked URLs in delicious contain in their page
texts the tags used to annotate them. This reveals that using the user generated tags is a good com-
plement of the full text search. For pictures and videos which do not contain full text themselves,
user generated tags provide more comprehensive description that can be leveraged in the search

1
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User

Tags

URL

Figure 1.1: Example of delicious

procedure, which would have a large impact on improving the search quality.
Yet, performing effective search using the user generated tags is challenging, especially when

users search for the most appropriate (top-k) answers that match a potentially ambiguous query.
First, the low participation barrier of tagging and the lack of any pre-defined ontology may result

in very noisy description and make the search ambiguous. The URL “html5boilerplate.com” judged
as “bestpractice” by John may be considered “useless” by another user. As a result, like all the Web
2.0 applications, it is important to identify valuable information from the huge amount of interfering
data generated by the users.
Secondly, collaborative tagging systems confront the rapidly increasing contents as all the Web

2.0 applications. delicious claimed more than 5.3 millions users and 180 millions unique book-
marked URLs by the end of 2008 [15]. CiteULike [16], the first service for bookmarking and
discovering academic papers, indexes more than 4 millions papers and thousands of new papers are
added each day [16]. The most popular photo sharing website Flickr [17] had an average inflow of
920, 000 photos in 2006 [18], accumulated to more than 4 billions in October 2009 [19].
In addition, despite of the continuous explosion of resources in collaborative tagging systems,

according to the analysis on delicious, the tagging vocabulary gradually saturates [20] and the use
of tags stabilizes to a power-law distribution [21]. As a result, a tag that is applied to a large number
of resources is becoming less descriptive for any given URL in delicious, which makes it more
challenging to use as a navigational aid. A URL tagged as “bestpractice” can be either a recipe
for chocolate cake or a tutorial for HTML5 boilerplate. It is thus crucial to bubble up the tutorial
for HTML5 boilerplate among the large amount of URLs considered as “bestpractice” by different
users when John searches for the best practice of HTML5 boilerplate.
Personalization is an appealing way in this context to take these challenges up by limiting the

search space within a subset of relevant information, which can in turn disambiguate the query
processing. We thus carry out our work in the context of collaborative tagging systems and focus
in this thesis how the efficient search can be achieved in such systems by personalizing the query
processing with user generated tags.
In fact, collaborative tagging has the most typical characteristics of Web 2.0 applications in terms

2
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of user participation, dynamic content and collective intelligence. In the meantime, the search
challenges faced by collaborative tagging systems can be considered as microcosms of those in
general Web 2.0 applications. The algorithms investigated in this thesis can be easily extended to
other Web 2.0 applications that support collaborative tagging.

1.1.2 Large-scale distributed systems

The first challenge faced by collaborative tagging systems is the large scale and the rapid increasing
of its information space. Storing the huge amount of information generated by the users is not an
easy task for central servers, especially when fine-grained information on a user basis is also to
be maintained to provide personalized search. Moreover, any single point of failure of the central
server may lead the search service unavailable.
We thus aim to provide personalized search in large-scale peer-to-peer environments, where each

user is associated with one underlying machine, corresponding to one peer in collaborative tagging
systems. There is no central server in the system: each user is in charge of a small portion of the
overall information and users collaborate with each other to process the queries. As a result, the
capability of the system becomes proportional to its size: the more users are in the system, the
larger the storage is and the more queries can be served at the same time.
The main problems we face to personalize the query processing in peer-to-peer systems are (i)

how to effectively organize the information in the systems; (ii) how to efficiently use this information
for query processing.
Ideally, a large-scale distributed system should be self-organized and load balancing. The content

shared and tagged by users should be evenly distributed across peers in a way that the necessary
information can be intentionally accessed at query time.
The system should also adapt fast to changes in very dynamics environments. In the presence of

large-scale failure, i.e., a bunch of users leave the system simultaneously, the system should show its
self-healing ability in the sense of keeping the network connected and guaranteeing the quantity of
available information to perform high quality search. In addition to the active joining and leaving of
users in the system, users continuously create, share and tag new content. Such information should
be timely incorporated to the search procedure for improving the result quality.
Considering the size of the current collaborative tagging systems and the potentially larger size in

the future, the peer-to-peer systems that perform the search in collaborative tagging systems should
be highly scalable. It should be able to serve more queries at the same time with the increase of the
number of users. Scalability also requires simplicity. The underlying mechanism to organize the
information and process the query should be as simple as possible. Given the freedom of each user,
a system of millions of users can easily get out of control.
In the next section, we introduce the major techniques concerned in this thesis for self-organizing

the information and processing the query that meet the above requirements.

1.2 Major techniques

1.2.1 Gossip-based communication

In order to meet the requirements of simplicity, scalability and robustness of the query processing
in peer-to-peer systems, gossip-based protocols appear to be a pragmatic solution. Gossip-based

3
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protocols, also known as epidemic protocols, are main representatives of fully distributed and self-
organizing systems.
Since the first use in propagating updates in loosely replicated database to maintain the con-

sistency of replicas in 1987 [22], gossip-based protocols gained their reputation for information
dissemination [23, 24, 25], topology management [26, 27, 28], data aggregation [29, 30, 31], failure
detection [32, 33], garbage collection [34], load balancing [35] and synchronization [36] in the past
twenty years.
The principal operation of a gossip-based protocol is that each peer periodically exchanges the

information it possesses with another peer in the network and updates its local information accord-
ingly. The time period is referred to as a cycle. Each peer running the gossip-based protocol has two
threads: an active thread initiating communication with other peers, and a passive thread waiting
for incoming messages. A gossip between two users can be fully characterized by three functions:

• PeerSelection: This function is only performed by the peer running the active thread. The
peer selects another peer from the peers it knows to gossip with. This peer can be selected
either randomly or based on some specific criteria.

• DataExchange: This function specifies which data a peer would send to the peer gossiping
with it. It can be performed by the peer running either active or passive thread.

• DataProcessing: This function defines, upon receiving the new data from another peer, how
to process these data. It can also be performed by both peers depending on the presence of
new data.

Figure 1.2 illustrates a gossip between two peers at a given a cycle. We use p to denote the peer
who initiates the gossip (active thread) and p′ to denote the peer who reacts to the gossip (passive
thread).

p p Phase 1:

p p Phase 2:

p p Phase 3:

PeerSelection: p   p'

DataProcessing DataProcessing

DataExchange

Active thread Passive thread

DataExchange

Figure 1.2: A gossip operation between two peers
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This simple paradigm allows fast spreading the information known by a single peer over the
network. The information locally stored by each peer can also be updated through the DataProcess-
ing function. According to the application that a gossip-based protocol is dedicated to, these three
functions are implemented differently to reflect the desired characteristics. In this thesis, we de-
rive from the general gossiping model mainly the aspects of topology management and information
dissemination, which can be leveraged to enable efficient search in peer-to-peer systems.

Topology management Maintaining complete membership table that contains all the peers in
a system on each peer is infeasible for large-scale and highly dynamic networks. Tremendous
synchronization problems would arise with such effort, especially when a large percentage of peers
join in a few minutes [37, 38, 39].
Gossip-based topology management takes this challenge up based on the assumption that each

peer only maintains a very small number of neighbors, constituting its partial view of the complete
network. Through continuously exchanging their neighbors and refreshing their partial views, peers
can self-organize into different topologies that suit certain applications.
More specifically, when gossiping, each user picks a peer from her partial view with the PeerSe-

lection function to gossip with. The type of information exchanged between peers is the membership
from their partial views, selected by theDataExchange function. After a gossip, theDataProcessing
funtion updates their partial views by incorporating (part) of the received membership if necessary.
Figure 1.3 illustrates the join of a new peer in a network. The peer p6 first gossips with a peer

p3 who has already in the network. Such a peer can be discovered in various ways, including
broadcasting in the local network, making use of a designated multicast group, etc. p3 exchanges
its neighbors p1, p4, p5 with p6. Then p6 can selects p1 and p5 for her own partial view according to
the specific application. Once p6 becomes a member of the network, it can gossip with its neighbors
to further improve its view.

p1

p2

p3

p4

p5
p6

p1, p4, p5

(a) Gossip

p1

p2

p3

p4

p5
p6

(b) Updated partial view

Figure 1.3: Example of gossip-based topology management

Typically, depending on the target applications, the view of each user can be managed in two
main manners: (i) managing the membership at random leads to randomized topology [40, 27, 26],
which ensures good properties as small distance between any two peers, small clustering coeffi-
cient, etc. [41, 26]; (ii) managing the membership based on specific criteria leads to structured
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networks [28, 42, 43], which may serve a multitude of peer-to-peer applications. In our work, both
the manners are considered to organize the users in collaborative tagging systems for personalizing
the search.

Information dissemination In general, gossiping is a personification of efficient information
propagation and gossip-based protocols have been mostly associated with the information dissemi-
nation in distributed systems.
Figure 1.4 depicts how the information is disseminated through the gossip among peers. Basically,

at each cycle, the peers who possess a piece of information gossip with a peer in they know and
exchange a message with it. After a few cycles, all the peers in the network can be aware of the
information.
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Figure 1.4: Example of gossip-based information dissemination

As shown in [44], the expected number of cycles to propagate a message to the entire network
does not depend on the out-degree of the peers. The efficiency of information dissemination is
further characterized in [45] in terms of replication (the number of replicas of a given information
in the network at a certain moment in time) and coverage (the number of peer that have seen this
information over time).
Thanks to its efficiency and scalability, we rely on gossip in the desired peer-to-peer systems

to disseminate both the user-generated content and the query. Efficient search can be achieved
while maximizing the utility of the information sent, received and stored by each peer in the system
through gossiping.
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1.2.2 Top-k processing

In collaborative tagging systems, users issue queries in the form of a set of keywords to search for
the desired results. As users are mainly interested in the first few results returned by the search
engines, we focus in this thesis on the top-k processing. Here we refer a result as an “object”,
which can be a document, a URL, a picture, a video or a user depending on the actual application.
Given a query, a top-k processing algorithm aims at retrieving the k most relevant objects. The goal
is typically to minimize the time it takes to come up with these objects as well as the amount of
storage needed to perform the actual computation.
Among the large amount of work on top-k processing, the family of TA-style algorithms stands

out as an extremely efficient method. A common premise of these algorithms is the (partial) scores
of objects are pre-computed and organized in inverted lists for each term (keyword) that may appear
in the query. Each entry in the inverted list of a term contains the unique score of the object for
that term. Entries are sorted in descending order of their scores to enable early pruning for the
low-scoring objects based on a monotonic aggregation function that determines the relevance of an
object to a given query. An example of the inverted lists is given in Figure 1.5.

keyword 1

7

5

3

object 1

object 2

object 3

keyword 2

15

9

5

object 3

object 1

object 4

keyword n

17

7

5

object 6

object 2

object 1

Figure 1.5: Example of inverted lists

The core idea of the TA-style algorithms is overviewed in [46, 47]. Here we only give a brief
introduction of the two algorithms concerned in this thesis.

Threshold Algorithm (TA) The threshold algorithm was independently found by several research
groups [48, 49, 46] around the year 2000. The main process consists of scanning the inverted lists
in a breadth-first manner (sorted access) and computing dynamic thresholds during the processing
to control the termination. When an object is scanned in one list under sorted access, its complete
score is computed by randomly accessing its scores in other lists. A heap of k objects having
the highest relevance scores is maintained. These objects are sorted in descending order of their
relevance scores. Once the score of the kth object is not smaller than the threshold, the k objects in
the heap form the final results. The threshold is the sum of the scores of the last seen object in each
of the scanned lists. As the objects are ordered in the inverted lists, this guarantees that any objects
that do not have a higher score than the threshold can not belong to the top-k results.
Figure 1.6 illustrates, through the example in Figure 1.5, how the top-2 objects for the query

composed of keyword 1 and keyword 2 can be obtained with the threshold algorithm. The two
inverted lists concerned by the query are scanned during the processing. When the first object (object
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1) of the first list (keyword 1) is scanned, its complete relevance score is obtained by summing its
scores in both lists. Then the first object of the second list (object 3) is scanned and added to the
heap with its complete score. At the end of each step, the threshold is computed and compared to
the score of the second (kth) object in the heap. As it is larger, the second object of the first list
(object 2) is scanned. Yet, it is not added to the heap as its score is smaller than the 2 first objects.
After Step 4, the threshold becomes smaller than the score of object 1 and we obtain the object 3
and object 1 as the top-2 results.

Score

16object 1

Step 1:
Score

18object 3

16object 1

Step 2:

Threshold = 7+15=22 Threshold = 7+15=22

Score
Step 4:

Threshold = 5+9=14

Score 
Step 3:

Threshold = 5+15=20

Top-2 18object 3

16object 1

18object 3

16object 1

Figure 1.6: Example of TA

The threshold algorithm is optimal in a stronger sense than the previous Fagin’s algorithm [50]
based on inverted lists, i.e., TA is instance optimal in every database as opposed to Fagin’s algorithm
that is only optimal in a high-probability worst-case sense.

No Random Accesses Algorithm (NRA) There are some scenarios where the random access is
not allowed or very expensive comparing to the sorted access. A number of system issues that cause
random access expensive are discussed in [51]. To deal with this problem, the No Random Accesses

algorithm [46, 52] was proposed by restricting the random access while scanning the inverted lists.
In NRA, the lists are also scanned in a breadth-first manner. A best score and a worst score of each
object are updated and ranked in the heap once it is accessed under sorted access. The worst score
assumes that if an object has not been seen in some lists during the scanning, its scores in those lists
are 0. In contrast, the best score assumes that its scores equal to the scores of the last seen object in
each of those lists. The real score of an object lies between its worst score and best score. The pro-
cessing stops if the worst score of the kth object in the heap is larger than the best scores of any other
objects out of the first k objects. NRA is instance optimal among the algorithms that do not use ran-
dom access. Figure 1.7 illustrates the top-2 processing with NRA using the same example as before.
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Figure 1.7: Example of NRA

Both TA and NRA guarantee the correctness of the top-k objects while TA also preserves the
correct order of them in the result list according to their relevance scores to the query. If we wish
to know the sorted order in NRA, this can easily be determined by finding the top-1 object, the
top-2 objects, etc. The advantage of TA is its bounded size of heap (k) which is independent of the
size of the database. In contrast, NRA requires maintaining all the objects accessed under sorted
accesses. When the heap is not a problem, NRA provides more efficient top-k processing thanks
to the low cost of sorted access. We detail how these two algorithms are employed respectively to
meet our specific needs in the following chapters. All the other specific techniques concerned by the
proposed algorithms in this thesis will be gradually presented when the corresponding algorithm is
introduced.

1.3 State-of-the-art on personalized and/or decentralized search

The contribution of this thesis lies in personalizing the top-k processing in collaborative tagging
system using user-generated tags and decentralizing this personalized processing in peer-to-peer
environments using gossip-based communication model. We give a high-level overview of the state-
of-the-art approaches concerning the important concepts to clarify the positioning of our research
in this section. As shown in Figure 1.8, we are first interested, in this section, in the existing per-
sonalization strategies. Then we introduce the search strategies in both structured and unstructured
peer-to-peer networks. Finally, we overview the representative approaches that achieve personalized
search in peer-to-peer networks.

1.3.1 Personalized search

Early in 2000, Lawrance [53] pointed out the importance for future search engines to leverage (either
explicit or implicit) context information to improve the search process. This was also confirmed in
[54] where personalized search was considered as a promising way for boosting the quality of search
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Personalized search Distributed search

Structured P2P networks

Unstructured P2P networks

Figure 1.8: Overview of the state-of-the-art

engines. A challenge for personalization lies in learning the user’s preferences that are rich enough
to successfully personalize the query results. There are several prior attempts on personalizing the
search.
One approach is to let users explicitly specify their interests [55, 56]. The user interests are then

used to filter the search results by checking the similarity between the candidate results and their
interests. For instance, in [56], users manually select several topics from the ODP hierarchy [57],
which best fit her interests, to form their interest profiles. At query time, the output given by a search
service (from Google, Yahoo, ODP Search, etc.) is re-ranked using a calculated distance from the
user profile to each output result. Although the precision of this personalized search significantly
surpassed that offered by unpersonalized search in a set of experiments, according to the studies
of [58], the majority of users do not have initiatives to provide any explicit feedbacks on the search
results or their interests.
As a consequence, many later works [59, 60, 61, 62, 63] attempt to automatically learn the user

preferences without any user efforts to personalize the search. Typically, such preferences can be
learned based on either the individual user’s own activities or those of a group of users having
similar interests. A wide range of user activities have been considered, including user’s search
histories [64, 62, 61], browsing histories [60] and tagging behaviors [63].
In [59], each user’s past queries are mapped to a hierarchical tree of categories based on ODP,

which represents the user’s search intent. A new query can then be automatically associated to a
subset of categories that serve as a context to disambiguate the words in the query. In [63], user’s
tagging behaviors in social bookmarking systems is used to personalize the search. In the proposed
system, a user profile is a vector with n components, corresponding to a vector of tags, where the
value for each tag is the number of documents tagged by the user with that tag. Each document also
has a profile that is a vector of tags. The value of each tag is the number of users in the system who
have tagged the document with that tag. At query time, the similarities between a user profile and
the candidate document profiles are computed to rank the documents for the querier.
In most of the above personalized search approaches, only the information of the user herself

is used to create her profile. There are also some approaches that incorporate the preferences of
a group of users to personalize the search. Such group can be either explicitly declared [65] by
joining different user groups in on-line social network services or implicitly captured [66,67,68,69]
by detecting the latent similar pattern in user behaviors.
The potential for using on-line social networks to enhance personalized search is investigated
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though the PeerSpective prototype proposed in [65]. In PeerSpective, the Web pages visited by a
dozen of researchers working in the same lab are indexed. When a query is issued, it is processed
with this index. The obtained results are ranked according to their scores that reflect both their
PageRank [70] scores and their scores from all the social friends who have visited them before. The
user base of this experiment is very small and represents a single community of highly specialized
interests. Yet, the results indicate that leveraging the interests of social friends is promising to
personalize the search.
The group of users sharing similar interests can also be implicitly formed based on the past behav-

iors of the users. Collaborative filtering [71] is one way that data from similar users is identified for
improving the search experiences for an individual user. In [60], each user’s profile is derived from
the browsing history of a group of users. Each user is characterized by a term-weight vector that
reflects her browsing history. The similarity between two users is measured by the Pearson coeffi-
cient between their term-weight vectors. The neighbors of a user are the users who have the most
similarity with her. A user’s profile is computed from a weighted combination of her neighbors’
term-weight vectors. Personalized search results can then be obtained by measuring their relevance
to the user’s profile. The evaluation in [60] shows that the user profile learned from a group of
users adapts better to user preferences than the user profile based on individual user’s own browsing
history.
Similarly, a variety of methods for producing personalized hotlists in delicious are proposed

in [67]. The URLs bookmarked by social friends, derived from their similar tagging behaviors,
are used to generate the hotlists. These social friends are obtained based on the overlap on the
tagged URLs, the overlap on the used tags or the overlap on both the URLs and the tags. Their
evaluation shows that users’ tagging behaviors can be used to derive implicit social ties and such
ties are good indicators of user preferences, which ensures higher relevance than global processing.
A large-scale evaluation and analysis of personalized search strategies are conducted in [72]. The

profile of each user is a weighting vector of some pre-defined topic categories built with her click
history. Each page is also presented as a weighting vector of the same pre-defined topic categories.
Personalized search results are obtained by either person-level ranking or group-level ranking. In
the personal-level ranking, the pages are ranked according to their cosine similarity to the user’s
profile. In the group-level ranking, the relevance of a result is computed by merging the clicks of
each group user according to her similarity with the user who issues the query.
These group-based personalization approaches differ from each other mainly in the ways they

measure the similarity between users and they score the relevance of each candidate result. Differ-
ently, a general indexing and query processing framework which applies to a wide class of similarity
measures and scoring functions is developed in [12]. This work focuses on the trade-off between
storage and processing time to provide personalized top-k processing. Since it serves as a baseline
of the algorithms proposed in our work, we will detail this approach in the next chapter.
Table 1.1 summarizes the characteristics of the above approaches according to the way the per-

sonalization is carried out. Basically, the personalization based on a group of users provides better
results than that solely relies on the querier’s interests. The previous works also show that the im-
plicit relationship between users is very effective to be leveraged for improving the result quality.
Although the Explicit and the Implicit approaches were not directly compared, we believe that we
can learn a lot from people we may not know but with whom we share many interests. Therefore,
our research focuses on the implicit relationship (Implicit) with a group of users having similar
interests (Group) for personalizing the search.
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Table 1.1: Characterization of the state-of-the-art personalized search approaches

Explicit1 Implicit2

Individual3 [56], [55] [59], [62], [61], [63], [72], [64]
Group4 [65] [60], [66], [67], [68], [69], [12], [72], [62]

1 user preferences are explicitly declared by the user.
2 user preferences are implicitly derived from their past behaviors.
3 user preferences are based on her own past behaviors.
4 user preferences are based on a group of users having similar preferences.

1.3.2 Distributed search

With the increasing amount of content sharing applications in peer-to-peer systems, an emerging
challenge is to support efficient search in such highly distributed environments. Previous works
focus on top-k processing in both structured and unstructured peer-to-peer networks.

Key techniques in distributed top-k processing In peer-to-peer networks, data are distributed
among peers and each peer is only in charge of a subset of data. Several algorithms have been
proposed to process the top-k queries in such environments. A common assumption underlying
these approaches is that the data are vertically distributed over peers, where each peer provides a
ranking of the data they have over some attributes.
The algorithm TPUT (Three-Phase Uniform Threshold), proposed in [73], aims to prune unnec-

essary data objects transmitted between the peer processing the query and those possessing the data.
This is achieved through a three phase algorithm. In the first phase, each peer forwards to the peer
which processes the query the top-k objects in its local index according to the query attributes it
has. This allows to compute a relevance score lower bound for the final top-k objects. In the second
phase, the objects having a relevance score larger than the assigned threshold for each attribute are
sent to the peer who processes the query. In the last phase, this peer computes the relevance scores
of all the objects it has received to obtain the final top-k objects. TPUT reduces network traffic
by one to two orders of magnitude compared to applying the existing TA algorithm in distributed
networks. TPAT [74] is a modification of TPUT where the threshold for each attribute is adapted to
the distribution of the relevance scores in its inverted list. Yet, as stated by the authors, this approach
may incur very high computational cost.
KLEE [75] improves TPUT through a combination of histograms and Bloom filters to reduce

the communication costs. When a peer is required to return its local top-k objects, it piggybacks
a histogram of the local relevance score distribution and the Bloom filters that summarizes the
objects in each of the histogram intervals. The peer who processes the query can then combine this
information to derive a higher threshold than TPUT would have. The performance of algorithms in
the TPUT family are further optimized in [76]. In this approach, peers are organized in hierarchical
groups in the second phase of the processing according to the information they send to the peer
which processes the query. Each intermediate peer in the resulted hierarchy only aggregates the
objects from its children, which reduces the bandwidth consumption. An adaptive mechanism is
also used to choose different threshold for each peer.
The algorithms of TPUT family have been designed for general networks without any assumption

on network topology. Once the right peers for processing a query are identified, efficient top-k
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processing can be carried out in either structured or unstructured peer-to-peer networks.

Search in structured peer-to-peer networks In structured peer-to-peer networks, the peers to
process a query, e.g. those owing the query related attributes, can be achieved using Distributed
Hash Tables (DHT).
A distributed hash table allocates the association 〈key, value〉 among the peers in a network.

Each peer is in charge of a set of keys. According to the applications, the key and the value may
represent different things. For instance, in a file sharing system, a key is the identifier of a file and
its value is a list of peers who possess this file. In a system that provides top-k processing, a key
is an attribute that characterizes the objects and its value is a list of objects related to this attribute.
Distributed systems based on DHTs are very efficient and scalable to support keyword search. The
peers in the systems form structured networks where their neighbors are selected according to the
keys they are in charge of. The search in DHT corresponds to first find the peers who are in charge
of a given key and then query its values owned by each of these peers.
CAN [77], Chord [78] and Pastry [79] are the most representative systems that rely on different

forms of DHT to enable efficient search. CAN [77] is based on a d-dimensional Cartesian coordinate
space in a d-torus. The entire coordinate space is partitioned among all the peers in the system so
that each peer owns its own distinct zone within the whole space. Each 〈key, value〉 pair is mapped
to the coordinate space and stored by the peer who owns the corresponding zone within in which
the pair lies. The users whose zones are adjacent to a user serves as its routing index. The query is
forwarded in CAN in a greedy manner: each peer who receives the query sends it to an adjacent peer
whose zone contains the 〈key, value〉 whose key is the most similar to the query. The complexity
of routing in CAN is O(d × N1/d), where N is the number of peers in the network. Chord [78] is
based on a logical ring constituting the peer identifiers from 0 to 2b − 1. b should be large enough
to avoid collisions. Each 〈key, value〉 pair is assigned to the first peer in the clockwise order of
the ring whose identifier is equal or larger than that of the key. This peer is called the successor of
that key. The routing table of a peer whose identifier is n consists of at most b (O(logN)) other
peers. Each peer is the successor of the key whose identifier is n + 2i+1 (1 ≤ i ≤ b). With greedy
routing, the number of peers that must be contacted to find a successor in a network of N peers
is O(logN). Pastry [79] is also based on a circular space where each peer is randomly assigned a
128-bit identifier ranging from 0 to 2128 − 1. Each peer is responsible for the set of 〈key, value〉
pairs whose identifiers are the closest to its own. Pastry uses a prefix-based routing. Messages
are routed to the peer whose identifier is numerically closest to the given key, i.e., having the most
common prefix as the searched key, in less than O(log2bN) steps. b is a small parameter indicating
the number of bits solved at each step.
DHTs are efficient for searching in the sense that any key can be exhaustively retrieved within

O(logN) steps. However, the most widely used DHTs only provide answers as “found” or “not
found” according to the exact match. More recently, the data management community has focused
on the extending such architecture based on DHTs to support more complex queries, i.e., the top-k
queries [80, 81, 82, 83].
In Minerva [82], a Chord-based DHT is used to partition the term space. Each peer publishes

per-term summaries of its local index to the directory. The DHT determines the peer currently
responsible for each term summary. Each peer maintains for each term a PeerList that contains all
the peers who have posted a summary for that term as well as the necessary statistics for the query
processing. At query time, the query is first routed to the peers responsible of the query terms to
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obtain a set of PeerLists. The most promising peers for processing a query is computed from these
PeerLists. Finally the query is processed with the local index of these peers. Any algorithm of the
TPUT family [73, 74, 75, 76] can be used in this context.

In pSearch [80], peers are organized using CAN. Each peer is responsible for storing the index
containing certain terms. Given a document, a term vector is computed using latent semantic index-
ing (LSI) [84]. In this way, documents that are semantically close to each other are stored logically
close to each other in CAN. Query is routed to the proper regions, much smaller than the case where
the documents are randomly distributed, to obtain the top-k results.

Search in unstructured peer-to-peer networks Without imposing any stringent constraints over
the network topology, unstructured peer-to-peer networks can be constructed more efficiently com-
paring to structured peer-to-peer networks. Yet, the lack of structure leads the efficient search more
difficult.
In purely unstructured peer-to-peer networks like Gnutella [85], blind search through flooding is

usually used for content discovery. To find a file, a peer sends the query to its neighbors and these
neighbors continue to forward the query to their neighbors until the query reaches some pre-defined
radius. Despite its simplicity, flooding is in general not very scale, since in a large network the
successful search may decrease dramatically without significantly enlarging the flooding extent.
To improve the search performance, some guided search approaches have been proposed [86,

87]. Basically, queries are not necessarily flooded through the entire network anymore, but can be
purposefully routed to the relevant parts of the network. In [86], a variant of flooding is proposed.
The query is only forwarded to the peers who have not received it before. Each peer processes
the query with its local index, merges the sorted result lists from its children and sends back its
result list to its parent. The querier only needs to merge the result lists from its direct neighbors to
obtain the final top-k results. PlanetP [87] uses gossip to globally replicate a membership directory.
Each peer maintains an inverted index of its documents and spreads the term-to-peer index. Based
on this replicated global index, a searching peer first identifies the set of peers having the query
related terms with the global index and then ranks the relevant documents returned by these peers
to determine the most pertinent ones with a TFxIDF-ranking algorithm.
Another possibility is to exploit interest-based locality as a search guidance [88,89,90,91,92,93].

The basic assumption of these approaches is that if a peer has a file required by another peer, it is also
likely to have other files required by the same peer. For instance, in [91], the similarity between two
peers are derived from the fraction of documents they have for each topic. Each peer maintains both
short-links and long-links to according to their similarities, constituting a small-work network. The
query is then routed in a greedy manner following these links to achieve efficient top-k processing.
In [88], shortcuts among peers are established according to previous successful queries.
Some works [94, 95, 96] rely on super-peers to forward and process the top-k queries. The

approach proposed in [94] aims to reduce the number of objects transmitted among super-peers.
Each super-peer manages an index containing the information about the contribution of its local
peers and adjacent super-peers for answering recently posed queries. Query is first routed in a
spanning tree rooted at the querying super-peer to the super-peers who have recently answered
the same query. Each super-peer then processes the query in its inner network and sends the
possible results back to the querying super-peer. Similarly, in BRANCA [95], network paths are
pruned according to result caching. The core of BRANCA is the integration of a semantic caching
of query results and a routing index. Specifically, the semantic caching improves conventional
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cache-replacement schemes by retaining data that are more likely to be retrieved by subsequent
queries. The routing index tags additional information to each entry in a routing table, which serves
as a brief summary of the data in the subnet corresponding to that entry. In BRANCA, each super
peer caches data fetched from various subnets in the past top-k search. Given a new query, the
cache allows a super-peer to forward the query only to a small part of the network that may contain
the final results. SPEERTO [96] also relies on super-peers and explores a skyline-based routing.
The top-k queries are forwarded among super-peers using skyline operators.

These search approaches in peer-to-peer networks aim to provide efficient top-k processing with
low network traffic. In structured peer-to-peer networks, the documents are indexed in a global
manner and the indexes are distributed among peers. The querying peer can identify the peers
responsible for the queried terms in very limited steps. Yet, the management of the global index
requires substantial bandwidth consumption and the stability of the peers in the system. In contrast,
the search in unstructured peer-to-peer networks is more flexible. In such networks, each peer lo-
cally manages the documents it publishes. Well designed indexing and routing techniques ensure
efficient search with low network traffic. We thus design our algorithms in this thesis on top of un-
structured peer-to-peer networks. The previous approaches in unstructured peer-to-peer networks
are efficient in terms of response time and bandwidth consumption. None of them is however per-
sonalized. Actually, personalization is critical in collaborative tagging systems for disambiguating
the queries and fulfilling the individual needs. For this reason, we try to perform personalized top-k
processing in unstructured peer-to-peer networks.

1.3.3 Personalized search in distributed systems

In fact, there are indeed a few works [97, 98, 99, 100] in distributed systems that consider personal-
ization for improving the search accuracy.
In [97], personalized search is achieved in a peer-to-peer network through personalized PageR-

ank [101]. The personalized PageRank is computed in a distributed manner and each peer is aware
of the ranks of the pages owned by its neighbors. Upon issuing a query, the peer first forwards the
query to its neighbor having the highest ranked page according to its personalized PageRank. Each
peer receiving the query continues to forward the query to its unvisited neighbor with highest ranked
page until the desired number of results is obtained.
MAAY [98] is a decentralized personalized search engine that aims to provide personalized re-

sults by taking into account the common interests between peers and the thematic similarity between
documents. The peers, documents and words are organized in a bipartite graph, where links exist
between documents sharing common users and documents sharing common words respectively.
MAAY peers learn locally from their previous interactions the profiles of others peers and use feed-
backs to raise words characterizing documents. Using these profiles, the querying peer can choose
peers to query and rank documents according to its own profile. The similarity between a peer’s
query and a document is measured by the combination of the distance between this document and
all the other documents owned by this user containing the query words in the graph derived from
the queried peers. This graph-based approach provides good approximation of personalized results
to its users in a peer-to-peer way.
In [99], different routing strategies are proposed to personalize the top-k processing based on the

peer-to-peer Web search engine Minerva [82]. The key idea is for each querying peer to select a few
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most promising users in the system to process their top-k query. Both the social query routing and
the spiritual query routing lead to personalized results. The social query routing simply relies on a
set of explicit friends to process the query. The spiritual query routing selects target peers based on
the behavioral affinity. An information-theoretic measure, Kullback-Leibler divergence [102], on
the tag frequency distribution of a peer’s bookmarked pages is used to quantify this affinity. The
Minerva framework is extended by keeping at each peer a list of such peers to enable either social
or spiritual routing. Yet, it is unclear that how the behavioral affinity can be captured using DHT in
Minerva.
The common goal of these approaches in peer-to-peer systems is to take advantage of the social

aspects to personalize the search. The approach proposed in [97] focuses on the Web search. The
employed personalized PageRank is not applicable in collaborative tagging systems, where the links
among items do not exist. In MAAY, peers rely on their previous requesting and responding inter-
actions to identify the similar peers for query processing. The personalization highly depends on
the activity level of each user. Inactive users that rarely send queries can hardly find good users to
personalize their search and this is undesirable. In [99], several strategies that personalize the top-k
processing through social routing are compared. But it focuses more on the result quality under
each strategy. It is unclear that how the behavioral affinities among users can be actually captured.
Our work extends this line of research that personalizes the search in peer-to-peer networks. We
mainly focus on how to identify and leverage the social aspects in top-k processing so that the result
quality is independent of the querier’s activity level. More importantly, different from the previous
work, we specifically design algorithms that are adequate for collaborative tagging systems.

1.4 Conclusion

In this chapter, we clarified the context of our research and reviewed some existing works that
improve search quality through personalization. In general, the search results are personalized ac-
cording to either the querier’s own preferences or those of a group of promising users. Such user
preferences can be explicitly declared by each user or implicitly captured through their past behav-
iors. We focus in this thesis on the implicit affinity among a group of users as it appears to be the
most promising way to provide high quality personalization. Yet, the previous works mainly rely on
the past user behaviors to deduce their preferences, which makes it difficult to fit the emerging inter-
ests of the queriers. We thus intend to propose a new scheme of personalization that is appropriate
for all kinds of queries.
Our main purpose is to provide personalized query processing in fully decentralized environ-

ments. This is because the scalability problem faced by centralized systems may be significantly
alleviated. In peer-to-peer systems, information is distributed among peers, so that each peer only
has to maintain a very limited amount of information and more queries can be tackled at the same
time. This also avoids the central authorities abusing the personalized information at their disposal.
In peer-to-peer systems, more efforts are dedicated to improve the search efficiency. We carry out
our research in unstructured peer-to-peer systems since they do not rely on any global index and are
very flexible in the face of peer dynamics. However, to the best of our knowledge, only a few works
address the personalization issue. Unfortunately, these approaches are not satisfactory enough as
they either impose constraints on the user activities or require additional links among data items.
That is why we devote to the algorithms that achieve personalized query processing in peer-to-peer
systems in our work.
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OFF-LINE PERSONALIZED QUERY PROCESSING

2.1 Introduction

Collaborative tagging systems represent huge mines of information but make their exploration chal-
lenging because of the unstructured nature of the tagging and the lack of fixed ontology. An appeal-
ing way to disambiguate the exploration process in collaborative tagging systems is to personalize
the search by exploiting information from the social acquaintances of the user, typically users that
exhibit similar tagging behaviors. If a computer scientist searches “matrix” in Google for exam-
ple, she is probably seeking some mathematical notions, but the first several pages returned from
Google are all about the movieMatrix. In contrast, a Keanu Reeves fan may just look for this movie.
Personalization based on user affinities has the potential to disambiguate these situations.
Several personalized approaches have been proposed to leverage social networks in search pro-

cedures [99, 65]. So far, however, these approaches focused mainly on explicit social networks,
i.e., social networks established a priori, independently of the tagging profiles (e.g., Facebook). We
argue for improving the information retrieval quality by exploiting the implicit user-centric correla-
tion in shared interests. The motivation stems from the observation that people you might not know,
but with whom you share many interests, can be very helpful when searching the web.
Very elegant approaches have recently been proposed to capture and leverage this implicit per-

sonalization through social scoring models that capture the user-centric correlation among different
tags in order to improve information retrieval quality [66,103]. But getting these to work is challeng-
ing. First, maintaining the fine-grained information on a user basis is extremely space consuming.
Under the estimation of [12], several terabytes are necessary to personalize the top-k processing in
a delicious system of only 100, 000 users. Considering that the actual system has millions of users,
a centralized personalization approach seems cumbersome. Moreover, the users in collaborative
tagging systems are very active and they continue changing their profiles by tagging new content.
This makes it difficult for a centralized system to capture these changes timely.

As a consequence, leveraging implicit social networks in the search process calls for decentralized
solutions. Besides being scalable and able to cope with dynamics, decentralized solutions circum-
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vent the danger of central authorities abusing the information at their disposal, e.g., exploiting the
user profiles for commercial purposes, or suffering from denial of service attacks as observed in
August 2009 on Facebook, Twitter and LiveJournal at once. Therefore, we aim to provide efficient
and scalable personalized query processing, based on implicit social networks, in a peer-to-peer
manner.
This chapter is organized as follows. Section 2.2 describes the system model and highlights our

motivation of performing the off-line personalization in peer-to-peer systems. Section 2.3 introduces
the algorithm P3K, our first step toward a fully decentralized and personalized query processing
scheme. Section 2.4 presents an advanced algorithm, namely P4Q, to address the storage, bandwidth
and dynamics issues in the decentralized environments. Section 2.5 concludes this chapter.

2.2 Social network model and background

2.2.1 Social network model

We consider collaborative tagging sites to be based on as an information space U × I × T, where
U denotes the set of users, I contains the items in the system and T is the set of all related tags.
Tagged(u, i, t) captures the fact that a user u tags the item i with the tag t. Each user has a profile
that conveys her endorsement of visited items by tagging them. The profile of a user u is described
as a set of her tagging actions, i.e.,

Profile(u) = {〈i, t〉|Tagged(u, i , t)}.

The whole network is modeled as a directed graph where each node (peer) corresponds to a user
and an edge represents a link between two users. When there is a directed edge from user ui to
user uj , uj is considered as a neighbor of ui. All the neighbors of ui, which can be either explicitly
declared like friends in Facebook or implicitly captured through similar tagging behaviors, form her
social network. In this work, we are only interested in the implicit relationship between users, i.e.,
the implicit social networks.
We refer such implicit social network as personal network, noted as Network(u), in the follow-

ing to not confuse with the traditional sense of social network as neighbors in our personal network
are those with similar tagging behaviors and might be and remain unknown to the actual user. Fig-
ure 2.1 depicts our social network model. As we can see, the user u2 is considered as a neighbor in
the user u1’s personal network because they have similar profiles.

2.2.2 Off-line personalization

We consider a query Q = {t1, ..., tn}, issued by a user ui with a set of tags t1, ..., tn. The personal-
ized query processing for Q aims to return a set of items having the highest relevance scores from
ui’s personal network. This relevance score is thus user-specific and network-aware as shown in
Figure 2.2(b). In contrast, in a traditional non personalized approach, all the users in the system
would be considered for the query processing (Figure 2.2(a)). The personalization lies in limiting
the search space within a subset of the system, namely the relevant users to the querier.
We refer this as an off-line personalization since the implicit social network of each user is built

independently of the query processing. In other words, the social network of each user is pre-
computed and known at her query time. Once a user issues a query, the system only needs to
process this query within the user’s social network to obtain the personalized query results.

18



Social network model and background

u1

u2

u3

u7

u8

u9

u4

u6

u5

personal network of u1

Profile(u1)

i1

i1

t1

t2

i3 t1

i4 t3

i6 t5

Profile(u2)

i1

i2

t1

t3

i3 t1

i5 t3

i6 t5

Figure 2.1: Social network model
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Figure 2.2: Rationale of personalization

Such off-line personalized query processing was first proposed by Amer-Yahia et al. [12] for
centralized collaborative tagging systems. The most straightforward strategy in their work, called
Exact, is to build one inverted list for each 〈tag, user〉 pair. Query Q generated by a user ui is
processed on the 〈tn, ui〉 lists, where tn ∈ Q, using a traditional top-k processing algorithm such as
NRA and TA. However, storing these lists is prohibitive space-wise for a single server. As shown
in Figure 2.3(a), if the tag t1 is used in all the users’ personal networks, as many as inverted lists
should be maintained for t1, which highly duplicates the information to store. Therefore, they
explore another strategy, Global Upper-Bound, which maintains user-independent inverted lists. In
the inverted list of a tag, only the maximum score over all personal networks for each item is
maintained. The exact score of an item for a user’s query within her personal network is computed
at query time. With Global Upper-Bound, a considerable storage space is saved as only one list is
maintained for each tag (Figure 2.3(b)) but much more time is required for query processing. To
strike a balance between the two extremes, users are then clustered according to their similarities
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Figure 2.3: Centralized off-line personalization

with each other. Only score upper-bounds over all clusters are maintained in per 〈tag, cluster〉 pair
inverted list. However, the proposed strategies have to trade the processing efficiency for the storage
capability. The efficiency highly relies on the right clustering and is not very flexible with a dynamic
set of users.
In this chapter, we take these challenges, faced by these centralized solutions in terms of stor-

age and processing time, up in a fully decentralized and gossip-based way to achieve the off-line
personalized query processing. We use the term “user” to mean a user in the collaborative tagging
system and its associated underlying machine in the peer-to-peer system and generally refer to the
canonical user as “she”.

Exact [12] 
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Figure 2.4: Organization of the work on off-line personalized query processing
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As shown in Figure 2.4, we first introduce the algorithm P3K, which decentralizes the Exact

strategy proposed in [12]. More specifically, the personal network and the associated per 〈user, tag〉
inverted lists are stored by each user. The query is locally processed within each user’s personal
network. The size of personal network is further limited to ensure the scalability of the system and
it approximates well the result quality that can be obtained with Exact. In order to render users
the freedom to adjust the storage they offer for the query processing and optimize the bandwidth
consumption of the system, another algorithm P4Q is further proposed. In this algorithm, the top-
k queries are gossiped and collaboratively processed in a distributed manner. In addition, P4Q
contains a mechanism that proactively reacts to the dynamics involved in the system in terms of
interest evolving and user departing. We detail these two algorithms in the following sections.

2.3 Toward personalized peer-to-peer query processing

In this section, we present P3K (Personalized Peer-to-Peer top-K processing), our first step toward
a decentralized and personalized query processing protocol that accounts for implicit user affinities.
The objective of P3K is to assess the feasibility of the off-line personalized top-k processing in a
peer-to-peer environment.
In P3K, each user maintains a set of neighbors that form her personal network. A query is

processed with the information available in the querier’s personal network to get personalized query
results. This full control of the personal network allows for a full personalization of the query
processing. More importantly, the processing and storage capability increases linearly with the
number of users avoiding the potential bottleneck at a single server.
There are many possibilities of establishing the neighborhood relationship between two users

according to their implicit affinities. We do not assume any particular metric to define the similarity
between two users. Various notions of similarity [67] can be exploited according to the specific
applications. Here, we use, for the sake of comparison, the criterion in [12] that a user uj is a
neighbor of the user ui if and only if uj tagged a sufficient number of items with at least one same
tags as ui, i.e.,

|{i|∃t ∈ T, Tagged(ui, i, t) ∧ Tagged(uj , i, t)}| > threshold. (2.1)

In this setting, a key problem is how to efficiently discover each user’s personal network in a
peer-to-peer way, i.e., converging to the right set of neighbors as quickly as possible to guarantee
the quality of top-k results.

2.3.1 Personal network construction

At the heart of P3K lies the sub-protocol that provides each user with a personal network. For the
sake of presentation simplicity, we first assume no restriction on the size of the personal network of
a user. Then we will discuss how we limit this size and maintain only a relevant fraction of this.

2.3.1.1 Unlimited personal network

An unlimited personal network contains all the users sharing similar tagging behaviors as neighbors
according to the metric described in Formula 2.1. Namely, two users are considered neighbors if
the number of items they tag using the same tags reaches a given threshold. This threshold can be
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Top layer

Bottom layer

Figure 2.5: Two-layer network model

trained for each user according to the equilibration between its value and the corresponding result
quality of previous queries.
The personal network of each user is discovered and maintained through a two-layer gossip proto-

col (Figure 2.5). The top layer is in charge of tracking the similarity between users and discovering
new neighbors. All the neighbors of a user u in the top layer form her personal network. Underly-
ing the top layer, a bottom layer, typically known as a random peer sampling (RPS) [26], provides
each user with r neighbors picked uniformly at random from the system. This second set of users
is called the random view. As different user interests may lead to disjoint personal networks, the
random view is maintained to keep the whole network connected. Once the top layer has stabilized,
the bottom layer enables the users to discover new neighbors through RPS in case of changes in a
user profile.
The bottom layer and the top layer run in parallel, i.e., at the beginning of each cycle, a user

gossips with both a neighbor from her random view and a user from her personal network. The
pseudo-code of the gossip protocol is presented in Algorithm 2.1. We use view(u) to stand for
either the personal network or the random view of a user u for the ease of presentation. uinit is the
user who initiates the gossip and udest is the user gossiping with uinit. Table 2.1 compares in detail
how the three functions, described in Section 1.2.1 that characterize a gossip, are implemented in
both layers for maintaining the personal networks.

Table 2.1: Characterization of the two-layer gossip protocol

Function Bottom layer Top layer

PeerSelection()
select neighbor with oldest timestamp

from random view
select neighbor with oldest timestamp

from personal network

DataExchange()
send a subset of random neighbors

from random view
send a subset of random neighbors

from personal network

DataProcessing()
keep r random users
for random view

keep all users matching Formula 2.1
for personal network

Note that a timestamp is used for each neighbor and the neighbor with oldest timestamp is al-
ways selected as gossip destination. Once a user is picked, its timestamp is set to zero and other
neighbors’ timestamps are increased by 1. The timestamp ensures that all the neighbors have a
comparable chance of participating in gossiping. Neighbors in personal networks are exchanged
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Algorithm 2.1 Personal network construction through gossip
Active Thread
for each cycle do

udest = PeerSelection(view(uinit))
dataToSend = DataExchange(view(uinit))
Send dataToSend to udest

Receive udest.dataToSend from udest

view(uinit) = DataProcessing(udest.dataToSend, view(uinit))
end for

Passive Thread
loop

Receive uinit.dataToSend from uinit

dataToSend = DataExchange(view(udest))
Send dataToSend to uinit

view(udest) = DataProcessing(uinit.dataToSend, view(udest))
end loop

between gossiping users in the top layer. The underlying intuition is that neighbors’ neighbors are
likely to be neighbors as they all share similar interests. This enables the users to find their personal
networks quickly as we will see in Section 2.3.3.2.

2.3.1.2 Limiting the size of personal network

Obviously, an unlimited personal network may grow to infinity as the number of users involved
in the system increases. This may generate a lot of information exchanges and increase storage
requirements. In practice, a carefully selected subset of users should be representative enough
to provide most of the useful information for top-k processing. We hence bound the size of the
personal network by a number s so that only the s users with the highest similarity are involved in
the personal network of a given user.
In collaborative tagging systems, the similarity between users depends on the tagging behaviors

exhibited in their profiles. The overlap among the tags in different user profiles reflects their com-
mon interests on topics. Instead, the overlap among tagged items reveals their similar preferences
on specific items. Because a tag can be used for several items, and the same item can be tagged
differently by different users [104], we compare tagging behaviors by comparing the number of
〈item, tag〉 pairs in common rather than the number of items tagged by both users with the same
tags. The intuition is that the more common tags are used for an item, the more similarly the users
understand and judge the world. We thus refine the similarity between two users ui and uj as

Similarity(ui, uj) = |{〈i, t〉|Tagged(ui , i, t) ∧ Tagged(uj , i, t)}|. (2.2)

For each candidate neighbor uj of user ui, we re-compute their similarity and keep the s users
having highest similarity with ui as neighbors. The personal network formed with such refined
similarity constitutes the P3K personal network.
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2.3.2 Inverted lists and query processing

We use the same scoring function as in [12] to rank the items for the sake of comparison. The score
of an item i for user ui and tag tn is defined as the number of users in ui’s personal network who
tagged i with tn, i.e.,

Scoreui,tn(i) = |{〈uj , i, tn〉|∀uj ∈ Network(ui), Tagged(uj , i, tn)}|.

The overall score of an item i for user ui’s query Q, composed of a set of tags t1, ..., tn, is the sum
of all the scores related to the query, i.e.,

Score(Q, i) =
∑

tn∈Q

Scoreui,tn(i).

Alternative functions can be used to compute such a user-specific score.
In the process of gossiping, the profiles of a querier ui’s neighbors are stored by herself. To

enable efficient top-k processing, inverted lists for each 〈user, tag〉 pair are also computed and
stored by the user. The inverted list of the pair 〈ui, tn〉 contains all the items that are tagged by at
least one neighbors in ui’s personal network with the tag tn. The score of each item i in that list is
Scoreui,tn(i). The items are sorted in descending order of their scores to form the inverted list of
〈ui, tn〉.
The inverted lists are constructed lazily so that an inverted list is computed only when it is neces-

sary for the query processing. There is no need to pre-compute the inverted lists for the tags that may
never be queried as in a centralized case, especially before the personal networks stabilize. When
new neighbors are found through gossiping, the information in the profiles of users who no longer
belong to the personal network is removed from the corresponding inverted lists if they have been
added before.
When a user generates a query, she first checks whether the inverted lists for the tags in the

query already exist and determines whether they should be updated to reflect new neighbors. If new
neighbors do exist, the information in their profiles is added to the inverted lists. Once all the related
lists are up-to-date, the user processes her query locally with NRA (Section 1.2.2) to get the top-k
results.

2.3.3 Experimental evaluation

In this section, we report on the evaluation of P3K and compare it against the state of the art central-
ized version [12]. We first describe in Section 2.3.3.1 the delicious dataset used for the evaluation
and the evaluation metrics. In Section 2.3.3.2, we assess P3K qualitatively, i.e., the relevance of the
personal networks through the quality of the top-k processing results. We compare P3K with the
state of the art centralized personalized top-k approach [12]. We then proceed to the quantitative
evaluation (Section 2.3.3.3) of P3K with respect to space requirement, response time and scalability.

2.3.3.1 Experimental setup

Data set and query generation The evaluation of P3K has been conducted in PeerSim [105], an
open source simulator for P2P protocols. The dataset used in the evaluation was crawled in January
2009 from delicious. The dataset contains 13, 521 distinct users who participated in 31, 833, 700
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tagging actions, involving 4, 741, 631 distinct items and 620, 340 distinct tags. The distribution of
tagging behaviors follows a long tail distribution as most items and tags are used by few users [106].
We reduce the dataset by randomly picking 10, 000 users and building their profiles with the items
and tags used by at least 10 distinct users. This does not affect the top-k results as only the items
ranked at the tail of the candidate list are removed from the dataset. Those items are hardly involved
in the final results.
The remaining dataset contains 101, 144 items, 31, 899 tags and 9, 536, 635 tagging actions1. In

the experiments reported below, each user processes exactly one query: one item was randomly
picked from the user’s profile, the query of that user was then generated with the tags used by that
user to annotate this item following the assumption that the tags used by a user to tag an item are
precisely those she would use to search for that particular item.

Evaluation metrics As a baseline for comparison we use the two extreme approaches presented
in [12]: one of them, Exact, does not limit the storage space but exhibits a low processing time;
an alternative one, Global Upper-Bound, requires significant processing time but reduces storage
space. Our goal is to show that P3K achieves the best of both approaches.
We first evaluate the ability of P3K to discover users sharing similar tagging behaviors with re-

spect to quality, convergence and impact on the top-k results. We assume that each user builds her
personal network by first discovering the contact information of any user currently in the system us-
ing the random peer sampling service. The personal network is then gradually built and maintained
through the gossip protocol.
The personal networks are compared to ideal ones2 obtained off-line using the global information

about all users’ profiles. We measure the success ratio as the number of neighbors that are in the
personal network (and should be) over the total number of neighbors in the ideal personal network.
Before evaluating the impact of the quality of the personal network on the top-k results, we measure
the number of cycles required to converge to a stable personal network with unlimited size.
We evaluate the speed of convergence with the average of the resulting success ratios over all

users for each cycle, i.e.,

success_ratio =
1

|U |

∑

ui∈U

Number of Good Neighbors in Current Network

Number of Neighbors in Ideal Personal Network
.

success_ratio reaches 1 when all users find their ideal personal networks. This metric cannot be
applied to the approach described in [12] where the personal network is given to each user by the
system (namely pre-computed and stored in the central database).
To evaluate the top-k results, we compare P3K with the results of Exact ([12]) as the baseline.

Note that all algorithms proposed in [12] provide the same top-k items and only differ in processing
time and storage space.

1Interestingly, although there are only about 3, 000 most frequent English words, the cleaned dataset contains ten
times that number of tags. This is due to the multi-word expressions, like socialnetwork, socialsearch, socialresponsiblil-
ity etc., which give a more precise description of the items. This also gives a hint of the ability of the tagging vocabulary
to grow infinitely.

2By ideal, we mean the same as the one obtained in a centralized system using the entire set of profiles (Exact scheme
in [12].)
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We use recall [107] to evaluate the quality of top-k results. The recall Rk is the proportion of the
total number of relevant items that are retrieved in the top k:

Rk =
Number of Retrieved Relevant Items

Total Number of Relevant Items
.

Recall quantifies the coverage of the result set and varies between 0 and 1. In this context, an ideal
Rk = 1 means that P3K achieves the same top-k results as Exact.
Each user stores the profiles of her neighbors and builds inverted lists accordingly. The space

requirement for each user is measured as the number of entries in the inverted lists and the num-
ber of entries in the profiles of her neighbors. The response time of a query is dominated by the
query execution time over related inverted lists because queries are processed locally and there is
no delay due to network transmission. The execution time for a query is quantified by the number
of sequential accesses of related inverted lists, which is considered as an objective metric in [12].

2.3.3.2 Qualitative P3K evaluation

Unlimited personal network evaluation We assume here that the size of personal networks is
unlimited. For the sake of comparison, we use the same similarity metric between users as in [12]:
two users are neighbors if they have at least 2 items tagged with the same tag. Any user matching
the criterion is integrated in the personal network of a user. We evaluate the convergence properties
of the personal networks by measuring the number of gossip cycles required for users to build their
personal networks.
Two gossipSize, 20 and 50, are considered (the bottom layer and the top layer gossip protocols are

set with the same parameter). This means that 20 or 50 neighbors’ contact information and profiles
are exchanged upon gossip. Figure 2.6 conveys the fact that exchanging more information leads to a
faster convergence. After 100 cycles, users have almost converged to their ideal personal networks.
However, even though a large number of users are able to discover their ideal neighbors quickly,
the remaining users may take a long time to converge. Through intensive analysis of user profiles,
those poorly performing users turn out to have few neighbors reflecting their sparse interests. This
situation remains marginal.
To evaluate the quality of the top-k results, we run top-10 processing in a centralized implementa-

tion of Exact and take the 10 returned items for each query as relevant items. This was compared to
the results obtained with P3K (unlimited personal network). Figure 2.7 depicts the evolution of R10

for three values of recall as personal networks converge. A recall of 1 means that the same results
as the centralized solution are achieved.
At cycle 50, more than 77% of the queries get exactly the same results as in the centralized

approach and the rest of the queries retrieve at least 8 out of 10 relevant items. R10 keeps improving
with time and about 98.5% of the queries obtain all relevant items at cycle 250. This evaluation
shows that P3K, with unlimited personal networks, provides almost the same personalized top-k
results as in the centralized approach.

P3K personal network evaluation (limited) Wemeasure, in the dataset used for the experiments,
the average size of unlimited personal networks, referred to as networkSize, and the maximum
networkSize over all users. The results are reported in Table 2.2. On average, each user maintains
about 18% other users as neighbors regardless of the size of the system. This is clearly too high a
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Figure 2.7: Recall evolution (gossipSize=50)

number when considering large-scale networks. We now evaluate the impact of limiting the size of
personal networks.

Table 2.2: networkSize in systems of different scale

Number of users Average networkSize Max networkSize

1000 180 750

5000 897 4165

10000 1801 8350

A limited number of the s most representative neighbors are now maintained in the personal
networks. Again the baseline reference for the top-k results are the ones achieved by the centralized
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implementation, which we compare now against our decentralized solution with the size of personal
network restricted to s (for various values of s). We also compare the selection procedure underlying
P3K (the s users with the highest similarity as defined by Formula 2.2) with three alternatives:
Random. At each cycle, only s random users are kept as neighbors if more than s users meet the

unlimited personal network criterion. The intuition is that a random sample is usually representative
of the population from which it is drawn. However, this sampling is not uniform as in-degree of
each peer are not limited while constructing the overlay network. Therefore, users having high
in-degrees are more likely to be selected as neighbors.
Biased Random. This is a probabilistic version of our P3K selection procedure: s users are

selected as neighbors. The probability that a user uj is kept as neighbor of user ui is proportional
to the similarity between them. So users with higher similarity are more likely to be chosen as
neighbors while users with lower similarity are not dropped completely to avoid losing the variety
of items in the later constructed inverted lists.
Nearest. As users are more likely to benefit from users having similar interests, measured by the

similarity between them, this strategy has complete confidence in users possessing most similarity
with the gossip initiator and chooses them as neighbors.

Cumulative curves in Figure 2.8 show the percentage of top-10 queries achieving a given recall
(X-axis) for different sizes of personal networks. Not surprisingly, as only a limited number of
neighbors are kept in personal networks, the recall fails to attain 1 for all queries. However, more
than 80% of the queries can get at least 7 relevant items with at most 200 neighbors, which is only
10% of the average networkSize.

We consider a recall larger or equal to 0.7 as satisfactory. We ignore in Figure 2.9 the users with
a personal network of size less than the one considered in the X-axis. For those, the limitation is
not meaningful as they have their complete personal networks. P3K outperforms the alternative
approaches in terms of top-10. When networkSize is relatively small, the difference among these
strategies is prominent, while the discrepancies are less visible for higher values of networkSize. The
difference and similarity among these strategies also show that users with similar tagging behaviors
are more representative and contribute more to the final top-k results.
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Figure 2.9: Recall of different strategies

2.3.3.3 Quantitative P3K evaluation

Space requirement Not surprisingly, the maximum space requirement, over the centralized ap-
proach, is reached when the personal network is unlimited. Figure 2.10 compares individual user’s
space requirement with that in Exact and Global Upper-Bound in [12].
The space required by a user depends on the number of tagging actions involved in her neighbors’

profiles (Figure 2.10(a)) and the total length of the inverted lists (Figure 2.10(b)). Users are ranked
in ascending order of their space requirements for unlimited personal network and the value on the
X-axis can be considered the rank. As expected, no user needs to store as much information as
in the Exact reference approach of [12], nor even as the Global Upper-Bound approach, the most
effective storage wise among those in [12]. Moreover, the user with the largest neighbors’ profiles
stores only 20% of the whole tagging action set.
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Figure 2.11: Space requirement in limited P3K personal network

Although no user needs to maintain the entire set of profiles as a centralized approach would do,
keeping 20% of that set in a personal hard drive might reveal critical. Figure 2.11 shows however
how the space requirement can be significantly limited: 18.2% of the users have a personal network
of size less than 200. This corresponds to the part of the curves that overlap in both unlimited and
limited versions of P3K. For the others, 49.1% of the entries in inverted lists and 69.2% of the
entries in neighbors’ profiles are saved. Hence, the space clearly becomes less of an issue in a fully
decentralized approach such as P3K.

Query response time Figure 2.12(a) illustrates the response time at gossip cycle 50 when users
find on average 90% of their ideal neighbors in unlimited personal networks. As the query is pro-
cessed locally and there is no transmission delay, the processing time is measured by the number of
sequential accesses in inverted lists. Here, we compare only the processing time with that of Exact,
shown to be the most efficient among the algorithms in [12].
Interestingly, shorter inverted lists do not necessarily mean less execution time because the lack

of information may decrease the scores of certain items and, as a result, more entries in the lists may
need to be checked to get the final top-10 items. However, the penalty in time consumption remains
reasonable. On average, only 3% more time is required to process these queries. If the network
continues to converge, at cycle 250, only a handful of queries exhibit different processing time as
with the querier’s ideal personal network (Figure 2.12(b)).

For P3K, as inverted lists are changed, the number of sequential accesses to get the top-10 items
is no longer the same as before (Figure 2.13). About 18.2% of the queries require the same time to
retrieve the results while 39.9% consume less time and 41.9% require more time. On average, only
5% more sequential accesses are required for each query.

Scalability As shown in Table 2.2, the size of unlimited personal networks grows linearly with the
number of users in the system. With P3K, we observe from Figure 2.14 that the necessary number
of neighbors to obtain the top-10 results of the same quality remains stable even with an increasing
number of users. Clearly, the larger the network, the smaller the ratio of necessary neighbors in the
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Figure 2.12: Number of sequential accesses in unlimited personal network
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personal network (s) over the total number of users (N ). This shows that P3K scales well: there is
no need to maintain large personal networks to obtain good personalized top-k results. Well selected
neighbors, i.e., those sharing the most similar tagging behaviors, bring most of the relevant items
and preserve their relative order to a query even though their overall scores decrease.

2.3.4 Summary

We presented in this section our first peer-to-peer approach to personalize top-k processing in col-
laborative tagging systems. We described the design and implementation of our approach and in-
vestigated its performance. The evaluation shows that P3K (i) provides comparable top-k results
to the state-of-the-art centralized approaches [12]; (ii) saves storage space by limiting the size of
users’ personal networks; (iii) exhibits a slight overhead, with respect to computation time, over
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the fastest centralized variant in [12]. The experimental results are encouraging and we believe that
decentralization is the right way to provide personalized top-k processing in a scalable manner.
Still, it leaves several research issues. First of all, P3K achieves scalable top-k processing by

limiting the size of the personal network. Although this ensures a good approximation of the results
that can be obtained in the reference centralized system, the required storage may still be prohibitive
for certain users using mobile devices with very limited capability. In fact, better results should be
expected if more information beyond the limited personal network is accessible during the query
processing. Moreover, maintaining the personal network requires measuring the similarity between
users. Gossiping the whole profiles of the users may incur unnecessary bandwidth consumption
as only the users who are similar enough to a user are kept in her personal network. In addition,
users in collaborative tagging systems are very active and frequently tag new items. Any change
in a user’s profile may trigger the evolution of her personal network, as well as the query results.
Actually, a robust system should be able to follow such changes timely. We try to address these
issues in the next section.

2.4 Gossiping personalized queries

As we have seen, our fully decentralized solution P3K, consists for each user to locally store and
maintain her implicit social network, enabling thereby efficient top-k query computation while al-
leviating the scalability problem faced by the state-of-the-art centralized solutions [12]. Yet, P3K
requires every user to store all profiles of the acquaintances in her personal network: these are
then massively replicated and hence hard to maintain. As shown in Figure 2.8, several hundreds
of profiles are needed to return accurate results in a system of only 10, 000 users. Maintaining all
necessary profiles in a real system of several millions of users seems simply inadequate.
At the other extreme, a storage-effective strategy consists for each user to store and maintain only

her own profile and seek other profiles on the fly, i.e., whenever a query is to be processed. Clearly,
this optimizes the storage and maintenance issues but might induce a large number of messages and
a large latency if profiles of acquaintances are to be consulted at query time. In addition, the profiles
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of temporarily disconnected users may be unavailable which, in turn, might significantly hamper
the accuracy of the query processing.
In this section, we present P4Q (Performant Personalized Peer-to-Peer Query processing), a bi-

modal, gossip-based solution to personalize the query processing. P4Q does not rely on any central
server: users periodically maintain their networks of social acquaintances by gossiping among each
other and computing the proximity between tagging profiles. Each user however only locally stores
a limited subset of profiles according to her storage capability. Different from P3K, where the query
is locally processed by the queries, the query in P4Q is gossiped and computed collaboratively. In
the following, we explain in detail (i) how the personal networks are maintained with respect to the
storage capability and bandwidth requirement; (ii) how the queries are gossiped to avoid saturat-
ing the network by contacting all the users in the personal network at the same time, and refresh
the part of the network originating from the querier by generating a wave of refreshments in the
personalization process; (iii) how the users react to dynamics involved in the system.

2.4.1 System model and data structures

As in P3K, each P4Q user maintains two data structures: a personal network and a random view.
Yet, as shown in Figure 2.15, the specific data maintained in the personal network and the random
view are slightly different. For the random view, only a digest of profile is stored for each neighbor.

Personal network The personal network of a user ui ∈ U is a set of s neighbors having the most
similar interests with her, noted as Network(ui ). A similarity score Similarity(ui, uj) is used to
quantify the similarity between the user ui and her neighbor uj . We define the similarity score as
the number of common tagging actions in two users’ profiles, i.e.,

Similarity(ui , uj ) = |Profile(ui ) ∩ Profile(uj )|

= |{〈i , t〉|Tagged(ui , i , t) ∧Tagged(uj , i , t)}|

Here we use the term “common tagging action” to stand for the couple 〈i, t〉, where the same item i
was tagged by both ui and uj with the same tag t.
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As a tag can be used for different items and an item may receive different tags from different users,
the metric we use takes the users’ preferences on both topics (tags) and specific objects (items) into
account. The higher the score, the more interests are shared between ui and uj . This definition is
consistent with what we used in Section 2.3.1.2 to limit the size of P3K personal network and was
proven to be effective. The only difference is in P4Q the similarity is computed directly with this
metric without passing through Formula 2.1. In fact, the similarity score is application-specific and
P4Q is independent of the way similarity is defined.
The query results of a user ui depend only on the profiles of the neighbors in her personal network.

This means that the relevance of an item for a query issued by a user is not computed based on the
whole set of users but only the set of users restricted to her personal network. To guarantee the
effectiveness of the query processing, the size of the personal network s should be relatively large.
In order to maintain the local storage in reasonable bounds as well as keep the stored profiles up-to-
date, only the profiles of the c neighbors uj having the highest Similarity(ui, uj) are stored. Note
that users may adjust c depending on their expectation on the query results (with respect to latency
and accuracy) and their storage availability. Typically, the larger c, the more accurate the results
obtained by computed the query locally.
In order to limit the overhead of the protocol, a digest of profile (Digest(uj )) is also stored along

with each neighbor in the personal network. A digest is a compact summary of a user’s profile
encoded using a Bloom filter [108]. The digests are used in P4Q to estimate the similarity between
users.

Profile digest Since transferring the whole profile of a user may be bandwidth consuming, in P4Q
an upper-bound of the similarity between users is first computed based on the digests of profiles.
This avoids transferring unnecessarily entire profiles. P4Q relies on Bloom filters to generate a
compact representation of the profiles. A Bloom filter [108] is a space-efficient probabilistic data
structure that is used to test the presence of an element in a set. An empty Bloom filter is a bit array
ofm bits, all set to 0. An element is added to a Bloom filter using a set of hash functions to determine
the positions of this element in the Bloom filter. The bits at the corresponding positions are then set
to 1. To query the presence of an element in a set, the same hash functions are used. The element
is considered present if all the resulted bits have been set to 1. The main advantage of Bloom filters
is that they do not generate any false negative, i.e., if an element is in the set, its presence will be
detected. Yet, an answer may be false positive as all the concerned bits can be set to 1 due to the
insertion of other elements. P4Q relies on Bloom filter to assess the similarity score between users
encountered during the personal network maintenance. As a consequence, using Bloom filters, P4Q
may over-estimate a score due to the false positive answers. Yet, should estimation qualify a user to
belong to the personal network, more information would be transmitted to obtain the exact similarity
as we will see in Section 2.4.2.1. In fact this can be controlled by adjusting the size of the Bloom
filter according to the number of elements to insert.
A profile of a user consists of the tagging actions of this user, namely which item is annotated

with which tag by this user. As a result, the information on tags, items, or both could be used to
derive the profile digest from a profile.
The profile digest can be a Bloom filter of items (ItemBloom). Each item tagged by a user is

inserted to the Bloom filter to form the profile digest. Such a Bloom filter allows checking whether
a user has tagged a given item. The profile digest can also be a Bloom filter of tags (TagBloom).
Each tag used by a user is inserted to the Bloom filter to form the profile digest. Such a Bloom filter
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allows checking whether a user has used a given tag. Finally, the profile digest can be a composition
of a Bloom filter of items and a Bloom filter of tags (ItemTagBloom). Such a Bloom filter can be
used to assess if a user has used either a tag or an item. Note that the association between an item
and a tag is not reflected in the digest. More specifically, the presence of the item i and the tag t in
a user’s profile digest does not necessarily mean that i was tagged with t.
The use of profile digest to compute un upper-bound of the similarity between users first enables

to limit the unnecessary exchanges of profiles during the personal network maintenance. Secondly,
this enables to limit the number of users that should be contacted at query time. In P4Q, we choose
to use all the available information about items and tags and implement the ItemTagBloom scheme
to encode the digest of a profile. As we show in the experimental evaluation, this represents the most
accurate solution to assess the similarity between users. We detail these issues in the following.

2.4.2 Bimodal gossiping

P4Q relies on a two-mode gossip protocol as represented in Figure 2.15. The lazy mode runs peri-
odically at a low frequency and is responsible for maintaining the personal network and the random
view. The eager mode runs on-demand and is in charge of the collaborative query processing while
refreshing a specific portion of users’ personal networks. The eager mode is only activated upon
queries and stops when the query is accurately computed. Queries are gossiped among the neigh-
bors in personal networks for collecting the profiles of similar neighbors required to compute the
query but which are not stored by the querier. We now describe the lazy and eager modes of the
P4Q gossip protocol.

2.4.2.1 Maintaining personal networks: The lazy mode

The personal network of each user is discovered and maintained through a two-layer gossip as
described in Section 2.3.1.1. The mere difference is that only the profile digests are exchanged
between users in the bottom layer.
As we know, the gossip message of a user in the top layer is composed of a subset of her neighbors’

profiles. In P4Q, these profiles are randomly selected from the c profiles stored in the user’s personal
network. During a gossip between the user ui and the uj , they first send to each other a such
message. Then ui computes Similarity(ui, ul) for each received user ul and Similarity(ui, vj)
for each user vj in her random view. If vj qualifies to be incorporated in the personal network, the
profile of vj is obtained by directly contacting vj . User ui (uj) keeps in her personal network the s
users with the highest (positive) scores and the profiles of the top ranked c users are locally stored.
To avoid overloading the system, the transmission of profiles in the top layer gossip follows a

3-step protocol. Algorithm 2.2 depicts the data exchange procedure.

• Score estimation: The first exchange (1-18) of the digests enables to estimate the similarity
between users using the profile digests. Based on the information in the profile digest, an
upper-bound of similarity score between a pair of users can be computed. It is possible for
a user ul to become a neighbor of the user ui only if (i) this estimated upper-bound is larger
than the similarity score between ui and the least similar neighbor in her personal network,
or (ii) this upper-bound is larger than 0 while the user ui has not yet the desired number of
neighbors in her personal network. Otherwise, there is no need to exchange the profile since
ul can not qualify for the personal network of ui.
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Algorithm 2.2 Gossiping profiles in lazy mode
1. Input: Profile(ui ) & received profile digests
2. Output: new Network(ui)
3. for each received Digest(ul) do
4. if ul ∈ Network(ui) then
5. if Digest(ul) does not change then
6. drop Digest(ul)
7. else
8. estimate the similarity upper-boundUbScore(ui, ul)
9. if |Network(ui)| < s and UbScore(ui, ul) then
10. add ul to Candidates

11. else if | Network(ui) | = s then
12. if UbScore(ui, ul) > Min{Similarity(ui, um), um ∈ Network(ui)} then
13. add ul to Candidates

14. end if
15. end if
16. end if
17. end if
18. end for
19. if Candidates is not empty then
20. for each ul in Candidates do
21. require her tagging actions for computing Similarity(ui, ul)
22. end for
23. receive the required information
24. for each ul in Candidates do
25. compute Similarity(ui , ul)
26. if Similarity(ui , ul) is one of the s highest scores then
27. add ul to Network(ui) with Similarity(ui , ul) and Digest(ul)
28. end if
29. end for
30. for each ul added to Network(ui) do
31. if Similarity(ui , ul) is one of the c highest scores then
32. require the rest of the tagging actions in Profile(ul )
33. end if
34. end for
35. end if

• Exact score computation: The second exchange (19-29) of tagging actions that contribute to
the upper-bound estimation enables to pre-compute the exact similarity score of each user. As
only the c users’ profiles having the highest scores will be stored, there is no need to transmit
the other neighbors’ profiles.

• Profile exchange: The last exchange (30-35) only happens if there are indeed profiles that
should be stored, namely if ul is one the c most similar users for ui.

Figure 2.16 further illustrates the upper-bound estimation and the exact score computation during
a gossip through an example.
We now detail how the upper-bound of similarity score is estimated based on the ItemTagBloom

digest. Both a Bloom filter of items and a Bloom filter of tags are used to form a user’s profile
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Figure 2.16: Estimating scores in gossip

digest. When the user ui receives the profile digest of the user ul, she first queries the items she has
tagged to detect their common items. Then for each of the common items, she continues querying
if the tags used by herself to tag this item is also used by ul. The score upper-bound can thus be
estimated by counting her tagging actions where both the concerned items and tags are used by ul.
More formally, the score upper-bound can be expressed as

UbScore(ui, ul) = |{〈i, t〉|Tagged(ui , i, t) ∧ Tagged(ul, i, ∗) ∧ Tagged(ul, ∗, t)}|,

where Tagged(ul, i, ∗) represents an item tagged by the user ul regardless of the tags used and
Tagged(ul, ∗, t) represents a tag used by ul in her profile regardless of the tagged item.
Specifically, as shown in Figure 2.16, when the user u1 receives the profile digest of the user u3,

she first detects their common items i1 and i3 by querying the items tagged by herself (i1, i2 and
i3) in the item part of Digest(u3). Then u1 queries her tags t1, t2 and t3 of i1 in the tag part of
Digest(u3) to check whether they are also used by u3. Similarly, u1 also queries her tag t2 of i3 in
Digest(u3) to detect its presence. Finally, u1 obtains the score upper-bound 4.
The size of each Bloom filter is adaptively generated to guarantee a fixed false positive rate,

which is dependent on the size of Bloom filter and the number of elements to insert. Any change
in the profile requires re-generation of the corresponding profile digest. Note that the false positive
would not lead to any incorrectness while selecting the neighbors for the personal network since a
misjudgment only over-estimates the score upper-bound. The exact similarity score between two
users is further verified in the second step of the gossip of profiles. After this step, the neighbor
selection is based on the exact scores and is thus correct. The only impact of the false positive is to
transmit some useless tagging actions for computing the exact scores. Yet, a low false positive rate
would keep this impact marginal.

Finally, the lazy mode runs at a low frequency keeping a low level network traffic.
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2.4.2.2 Processing queries: The eager mode

Should a user be able to compute a query based on all the profiles of her personal network, the result
would be exact (recall of 1). However, for space and result freshness reasons, only the profiles of
the c neighbors having the highest similarity scores are locally stored. This can be used to compute
a partial result to the query. Yet, the user has to contact other users in the network for collecting the
missing profiles. This is achieved in a collaborative and distributed manner by gossiping the queries
in the personal network using the top layer protocol in eager mode. The queries are gradually pro-
cessed collaboratively by the querier and other users reached by the queries. The reason for only
gossiping the queries within personal networks is twofold. Firstly, it is unlikely that the profiles
stored by random neighbors are required by the querier. Secondly, applying various gossip frequen-
cies (generated by the on demand nature of the eager mode) at the bottom layer may jeopardize the
uniform randomness of the underlying network topology [26].
The eager mode of P4Q works as follows and the first cycle of gossip is illustrated in Figure 2.17.

The querier ui first processes her query Q based on the profiles in her personal network ( 1©). This
provides a partial and local result to the query. The remaining list of a user ui for query Q, denoted
LQ(ui), is the set of users from her personal network whose profiles are not stored locally but would
contribute to the query processing. While the query is collaboratively answered by potentially all
the neighbors in ui’s personal network, only the neighbors who have used the tags in the query are
actually involved in the query processing. The remaining list of the user ui for her query Q is thus
composed of users in her personal network who have used at least one tag in the query but are not
locally stored by ui ( 2©). This information is clearly reflected in their profile digests since the tags
used by each of the neighbors is present in their ItemTagBloom digests. Note that the remaining list,
being built using the Bloom filters, might contain some users who did not use the query tags due
to the false positive answers. Yet, this has no impact on the result quality as no useful profiles is
missing. As we will see, the profiles that can not contribute to the query processing but are added
to the remaining list do not interfere and are automatically filtered out when the query is processed.
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Those profiles of users in the remaining list are discovered through gossip. User ui initiates
a gossip with a neighbor uj having the oldest timestamp in LQ(ui) and attaches the query and
the remaining list to the gossip message containing the profile digests she wants to send to uj as
described in the lazy mode ( 3©). When uj receives the message, she checks whether she locally
stores the profiles of the users in LQ(ui), removes them from the remaining list and processes her
share of the query locally ( 4©). This updated remaining list is then split into two parts ( 5©): a portion
α (0 ≤ α ≤ 1) is sent back to the querier in her gossip message containing the profile digests ( 6©),
the remaining portion forms her remaining list for the query Q: LQ(uj). The intuition is that, this
user will take care of a portion of the remaining list herself through gossip while the portion sent
back to the querier will be processed by the querier through other of her neighbors. The partial
result of the query is sent back to the querier in a message independent on the gossip. A list of
users whose profiles are used for the computation are also sent to the querier in the same message.
This information is used to estimate the quality of the current results. The more users’ profiles have
been used for the query processing, the closer the results should be to the ideal ones. At the end of
the first cycle, the querier updates the query results with the partial result received during this cycle
( 7©).

In the second cycle, both ui and uj gossip with one of their neighbors that are also in their
remaining lists if the sizes of their remaining lists are larger than 0. If none of the users in the
remaining list is the neighbor of the gossip initiator, a user is chosen randomly from her remaining
list as gossip destination. Contacting such users ensures to find at least one profile interested by the
querier. Receiving the gossip message, the gossip destinations of ui and uj do the same processing
as uj did in the first cycle. At the end of the second cycle, the querier updates the query results with
the new available partial results received during this cycle.
This process continues until none of the users reached by Q has a remaining list. At this moment,

the accurate (recall of 1) personalized results, based on the information of whole personal network,
are obtained. The query results are in fact updated and displayed at the end of each cycle and the
querier can estimate the quality of the results according to the number of profiles that have been
used for the query processing and decide whether she is satisfied. The querier stops waiting the
incoming partial result lists if all her neighbors’ profiles are used for the processing.
Algorithm 2.3 is the query processing at the querier, whereas Algorithm 2.4 shows how a query

is gossiped between two users. The gossip initiator (uinit) is the user who forwards the query and
the remaining list and the gossip destination (udest) is the user who processes the query and splits
the remaining list.
The splitting process, specified by the splitting factor α, is used to avoid taking the same profile

into account several times during the query processing, if this profile is stored by more than one user
reached by the query. This ensures that every user participating in the query processing is in charge
of a different part of the initial remaining list and guarantees the accuracy of the final results. The
optimality of α in P4Q will be discussed later.
As opposed to the lazy mode, the eager mode runs at a higher frequency in order to provide quick

responses for the queries. Although it temporarily increases the network traffic due to the gossip
exchanges of profiles, it significantly helps updating the personal networks of the users participating
in the gossip (Section 2.4.6.4).
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Algorithm 2.3 Query processing at the querier
1. Input: querier ui’s query Q & Network(ui)
2. Output: personalized query results of Q
3. process Q with the profiles in Network(ui)
4. if ui stores all her neighbors profiles then
5. display query results and return
6. else
7. build the remaining list LQ(ui)
8. repeat
9. gossip with a neighbor uj in LQ(ui)
10. receive new LQ(ui) from uj

11. receive partial results from collaborating users
12. compute and display new results with available information
13. until all neighbors’ profiles are used for query processing
14. end if

Algorithm 2.4 Gossiping queries in eager mode
1. Gossip Initiator (uinit )
2. for each cycle do
3. if |LQ(uinit )| > 0 then
4. if ∃ul ∈ LQ(uinit ) & ul ∈ Network(uinit ) then
5. udest ← ul with maximum timestamp
6. set udest ’s timestamp to 0
7. else
8. select udest from LQ(uinit )
9. end if
10. send Q and LQ(uinit ) to udest in gossip message
11. receive gossip message containing new LQ(uinit ) from udest

12. maintain personal network as in lazy mode
13. end if
14. end for

15. Gossip Destination (udest )
16. loop
17. receive gossip message containing Q and LQ(uinit ) from uinit

18. remove each ul from LQ(uinit ) if Profile(ul ) is stored by udest

19. LQ(udest)← (1− α)*|LQ(uinit )| users from LQ(uinit )
20. LQ(uinit )← LQ(uinit )\LQ(udest)
21. send LQ(uinit) to uinit in gossip message
22. process Q with profiles required by uinit and stored by udest

23. send partial result to the querier
24. maintain personal network as in lazy mode
25. end loop
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2.4.3 Collaborative top-k query processing

We illustrate in this section the collaborative query processing in P4Q in the context of top-k pro-
cessing.

Queries and scoring We consider a query Q = {t1, ..., tn}, issued by a user ui with a set of tags
t1, ..., tn. The personalized top-k processing for Q aims to return the k items having the highest
relevance scores from ui’s personal network. We always consider the same scoring function as
in [12]. More specifically, we define the score of an item i for a user uj and a query Q as the
number of tags in Q used by uj to annotate i, i.e.,

Scoreuj ,Q(i) = |{tm|tm ∈ Q,Tagged(uj , i , tm )}|.

Thus the relevance score of the item i for the user ui’s query Q as the sum of Scoreuj ,Q(i) of each
neighbor uj in ui’s personal network, i.e.,

Score(Q , i) =
∑

uj∈Network(ui )

Scoreuj ,Q(i)

Similarly, alternative monotonic scoring functions can also be used to compute the relevance score.

Top-k processing in P4Q As presented above, in P4Q, a query is processed in collaboration
among the querier and the users reached by the query. We here describe how the partial results are
computed by each user and how the querier updates the top-k results upon receiving new partial
results at each cycle.
In P4Q, once a user uj receives a query Q, she computes a partial result for Q with the profiles

that she stores and should be used for the query processing. These profiles can be either her own
profile or those stored in her personal network. We denote this set of profiles GoodProfiles(uj ,Q).
uj computes a partial relevance score for each item appearing in these profiles. With respect to the
definition of the overall relevance score Score(Q , i), the partial relevance score of an item i can be
computed as the sum of Scoreul ,Q(i) for each Profile(ul ) in GoodProfiles(uj ,Q), i.e.,

PartialScoreuj
(i) =

∑

Profile(ul )∈GoodProfiles(uj ,Q)

Scoreul ,Q(i).

The partial result for the query Q is a list containing all the items having positive partial relevance
scores and the items are ranked in descending order of their scores.
The querier’s local processing before gossiping the query is also carried out this way and the k

items ranked on top of the resulting list are displayed as the first query results for the querier.
Existing top-k techniques cannot be directly used within P4Q as the partial result lists in P4Q are

computed on the fly and asynchronously provided to the querier. So we adapt the classical NRA
(No Random Accesses) [47] algorithm to P4Q while minimizing the processing time. In P4Q, at
the end of each cycle, k items are returned to the querier. Algorithm 2.5 shows the pseudo-code of
the top-k processing at a given cycle.
For any query, at a given cycle, the querier already has the partial result lists used for the top-k

processing in the previous cycle and the resulting candidate heap of items, where each item has a
best-case score and a worst-case score and they are ranked according to their worst-case scores as in
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Algorithm 2.5 Per cycle top-k processing of the querier
1. Input: ui’s query Q & candidate heap & old partial result lists & new partial result lists
2. Output: new top-k items
3. ScanningLists ← new partial result lists
4. ScanningPosition ← 1
5. while worst-case score of the kth item in candidate heap < max{best-case scores of items in candidate

heap but not in top-k} do
6. for each partial result list l in ScanningLists do
7. get the item i in the ScanningPosition of l
8. update the last seen value and last scanned position of l
9. if i ∈ candidate heap then
10. update i’s best-case score and worst-case score
11. else
12. add i in candidate heap
13. end if
14. update the best-case scores for items in candidate heap
15. re-order candidate heap
16. end for
17. ScanningPosition ← ScanningPosition + 1
18. for each partial result list l ∈ old partial result lists do
19. if last scanned position = ScanningPosition − 1 then
20. add l to ScanningLists

21. end if
22. end for
23. end while

classical NRA. In NRA, the ranked lists are scanned sequentially in parallel. The worst-case score
takes the most pessimistic assumption that if an item has not been seen in some lists while scanning,
then it does not exist in those lists. Alternatively the best-case score takes the most optimistic
assumption that its scores in those lists equal to the scores of the last seen items in those lists. In the
current cycle, the querier receives some new partial result lists. The query is processed using all the
available information to compute the new top-k items.
The processing begins by scanning the new partial result lists sequentially in parallel. For each

partial result list (old or new), the last scanned position is maintained. Each time the cursor reaches a
new position, all the partial result lists stopped at this position before should continue to be scanned
with the currently scanned ones. At this point, we guarantee that each partial result list is scanned
only once during the whole processing. Once a new item is encountered in a partial result list, the
querier first checks if it is already in the candidate heap. If it exists, its best-case score and worst-
case score are updated. Otherwise, it is added to the heap. The best-case scores of other items in the
candidate heap should be accordingly updated. The scores are computed using the same assumption
as in NRA. The candidate heap is kept sorted in descending order of the worst-case scores. For the
items with equal worst-case scores, the ones with larger best-case scores are ranked ahead. The
processing stops when none of the items out of the first k items has a best-case score larger than
the worst-case score of the kth item. Several optimizations are possible to incorporate into the basic
algorithm, like not re-ranking the candidate heap once an item is modified. These consist of part of
the future work.
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2.4.4 Analysis of the query processing

To analyze the efficiency of the query processing, we consider a simplified model. We assume that
each time a query is gossiped, the same number of profiles, noted as X, can be found in the gossip
destination’s local storage. As guaranteed by our gossip strategy described in Section 2.4.2.2, at
least 1 profile can be found (X ≥ 1) by contacting its owner in the gossip.

Theorem 2.4.1. Given a query Q and the querier ui’s remaining list of length L, ui gets the best

results that her personal network can provide within R(α) cycles, where

R(α) =







1− logα[(1− α)L/X + α] 0.5 ≤ α < 1
1− log1−α[αL/X + (1− α)] 0 < α < 0.5
L/X α = 0, α = 1

Proof. As described in the algorithm, at a given cycle, a user with her remaining list of length l for
the query Q initiates a gossip with one of her neighbors. AfterX profiles are found, the length of her
remaining list becomes α(l−X) while her neighbor obtains a remaining list of length (1−α)(l−X).
α is the splitting factor as described in Section 2.4.2.2. If 0.5 ≤ α ≤ 1, comparing to her neighbor,
the gossip initiator has a longer (equal) remaining list. Meanwhile, among all gossip initiators in
this cycle, the one possessing the longest remaining list before should still have the longest after this
cycle. So at the end of each cycle, it is always the user ui who has the longest remaining list as she
first gossips the query Q. From the definition, we know that ui gets the best results that her personal
network can provide when none of the users reached by Q has a remaining list, i.e., the length of
ui’s remaining list becomes 0 as she has the longest one. Note the length of ui’s remaining list after
the rth cycle as L(r), we have

L(1) = α(L−X),

L(2) = α[L(1) −X] = α2L− α2X − αX,

...

L(r) = α[L(r − 1)−X] = αrL− αrX − αr−1X − ...− αX

= αrL−

r
∑

i=1

αiX

=

{

αrL− α(1−αr)
1−α X 0.5 ≤ α < 1

L− rX α = 1

For ui to get the best results in R(α) cycles, it is sufficient to let L[R(α)] = 0, then we can get

R(α) =

{

1− logα[(1− α)L/X + α] 0.5 ≤ α < 1
L/X α = 1

If 0 ≤ α < 0.5, similarly, we can obtain the length of the longest remaining list after the rth cycle
as

L(r) = (1− α)[L(r − 1)−X] = (1− α)rL−

r
∑

i=1

(1− α)iX

=

{

(1− α)rL− (1−α)[1−(1−α)r ]
α X 0 < α < 0.5

L− rX α = 0
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Hence, for the longest remaining list to become 0, we have

R(α) =

{

1− log1−α[αL/X + (1− α)] 0 < α < 0.5
L/X α = 0

Theorem 2.4.2. Given L and X, the number of cycles for the querier ui to get the best results for her

query Q, R(α), is monotonically increasing with α if 0.5 ≤ α < 1 and monotonically decreasing

with α if 0 < α < 0.5. The minimum number can be achieved at α = 0.5.

Proof. Let 0.5 < α2 < α1 < 1, we have

R(α1)−R(α2)

= (1− logα1
[(1− α1)L/X + α1])− (1− logα2

[(1− α2)L/X + α2])

=
ln[(1 − α2)L/X + α2]

ln α2
−

ln[(1− α1)L/X + α1]

ln α1

=
ln[(1 − α2)L/X + α2] ln α1 − ln[(1− α1)L/X + α1] ln α2

ln α1 ln α2

Considering L ≥ X and α2 < α1, we have

[(1− α2)L/X + α2]− [(1 − α1)L/X + α1]

= (α1 − α2)(L/X − 1) > 0

Then ln[(1− α2)L/X + α2] > ln[(1− α1)L/X + α1].
Moreover, as lnα2 < ln α1 < 0, we have

R(α1)−R(α2) > 0

Hence, R(α) is monotonically increasing with α if 0.5 ≤ α < 1.
Similarly, for 0 < α2 < α1 < 0.5, let β1 = 1 − α1 and β2 = 1− α2, we have 0.5 < β1 < β2 < 1.
Then R(α1) − R(α2)=R(β1) − R(β2) < 0. Hence, R(α) is monotonically decreasing with α if
0 < α < 0.5. Moreover,

R(0.5) −R(1) = R(0.5) −R(0)

= 1− log0.5(0.5L/X + 0.5) − L/X

= log0.5
2L/X

L/X + 1
< 0,

Therefore, R(α) gets the minimum number at α = 0.5.

Theorem 2.4.3. The number of users involved in the processing of a query Q is bounded by 2R(α).

The number of partial results sent to the querier for her query Q is bounded by 2R(α) − 1.

Proof. Suppose all the users involved in the query processing finish their tasks simultaneously, i.e.,
their remaining lists become 0 at the same cycle. Then at the 1st cycle, one new user is involved
except for the querier. So the total number of involved users is 2. Using mathematical induction, if
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at the rth cycle, 2r users are involved and none of them has finished their remaining lists, then at the
(r+1)th cycle, each of them gossip with another user, which implies that 2r new users are involved.
So the total number of users is 2r+2r=2r+1. Actually, at a given cycle, the size of the remaining list
is different for each user if α 6= 0.5. The users having no remaining list would stop the eager gossip
so that no more new users would be further involved in by them. So 2R(α) is an upper bound of the
number.
If at least one profile is found among profiles stored by each involved user and these profiles have

at least one item tagged by a tag in the query, each user should send her partial result to the querier.
This implies the upper bound is 2R(α) − 1 because the querier has her partial result locally.

Theorem 2.4.4. The number of eager gossip messages for transmitting the remaining lists during

the processing of a query Q is bounded by 2× (2R(α) − 1).

Proof. We begin by counting the number of gossips occurred during the processing of Q. At the
1st cycle, one gossip is done between the querier and one of her neighbor. Supposing all the users
involved in the processing finish their remaining lists at the same time, at the 2nd cycle both the
querier and her neighbor gossip with another user. So two gossips are done. This process continues
until no user has a remaining list. In fact, at the rth cycle, 2r−1 gossips are done. So the total
number of gossips during the first r cycles is

∑r
i=1 2r−1 = 2r − 1. During each cycle of eager

gossip, 2 messages are exchanged for the transmission of the remaining lists: one for forwarding
the gossip initiator’s remaining list and the other for returning her the new remaining list. Hence,
the total number of the eager gossip messages is 2 × (2R(α) − 1) if the processing ends at cycle
R(α). Again, this number can be achieved only when α = 0.5 and it is in fact an upper bound.

2.4.5 Coping with profile dynamics

Users in collaborative tagging systems are usually active and continuously tagging new items in
the systems. This results in profile changes and potentially changes the similarity between users.
Personal networks should be updated to reflect such changes. When a user changes her profile,
all the replicas of her profile should be updated in order to take the new information into account
while refining the personal network. As this profile may be later used by other users to process their
queries, timely update may directly affect the accuracy of the resulting top-k items.
In this section, we investigate how the gossip protocol in both lazy and eager modes can be

fine-tuned respectively to cope with profile dynamics.
In P4Q, this is achieved collaboratively by users participating in the gossip with two basic opera-

tions: self-promotion and mutual-aid.

Self-promotion Self-promotion consists for a user to proactively disseminate her profile upon
changes. In the standard algorithm, ui picks uj with the oldest timestamp to gossip with in her
personal network. The neighbor relation in P4Q is not necessarily symmetric and uj may not
consider ui as her neighbor. Therefore the changes in ui’ s profile might not be immediately taken
into account, until ui encounters a similar neighbor.
To address this issue, when ui changes her profile, she proactively promotes her new profile

by picking from her personal network the most similar user ul instead of the user uj with the
oldest timestamp. The intuition is that even if the neighbor relation is not symmetric, as ul has the
highest similarity score, she is also the most likely user to store ui’s profile. Self-promotion helps

45



CHAPTER 2

in disseminating the new profile, starting with the users who are the most likely to be interested in
ui’s new profile. Therefore, self-promotion speeds up the propagation of profile changes over the
network.
Self-promotion is only allowed in the first cycle after a user changes her profile. Then the user

continues with the standard gossip algorithm selecting the destination based solely on the times-
tamp. This is to avoid that too active users keep gossiping with a handful of users, which are the
most similar, preventing other users who are interested in their profiles from receiving the new
information.
It is worth noticing that self-promotion is only applied in lazy mode. Effectively, even if the eager

mode usually generates a wave of refreshment in the profiles, the main goal of the eager mode is
to solve a query. As described in Section 2.4.2.2, the gossip destination in eager mode should be
preferentially selected from the remaining list to guarantee the most efficient query processing.

Mutual-aid In P4Q, upon gossip for personal network maintenance (top layer of the lazy mode),
the gossip initiator sends a subset of the profiles stored in her personal network to the gossip des-
tination which in turn does the same. This subset is composed of a random subset of the similar
profiles during standard operation. When a user’s profile is updated, propagating updates may take
some time. Mutual-aid consists in having each user gossip an update when inconsistencies are de-
tected. Typically, if a user receives an out-of-date profile, she will gossip the up-to-date version of
that profile regardless of the subset selection.
Since personal networks of similar users are likely to overlap when the system has converged in a

relatively stable state, mutual-aid enables to efficiently update profile within groups of similar users.

2.4.6 Experimental evaluation

In this section, we report on the evaluation of P4Q, which has also been conducted using PeerSim.
The same delicious dataset and queries as those for evaluating P3K are used. We first assess in
Section 2.4.6.2 the efficiency of the lazy mode for the personal network maintenance and that of the
eager mode for the top-k processing. We then focus on the cost of P4Q with respect to storage and
bandwidth consumption in Section 2.4.6.3. We finally evaluate in Section 2.4.6.4 the ability of P4Q
to deal with profile changes and user departures.

2.4.6.1 Experimental setup

System setting As defined in Section 2.4.1, each user maintains the s users having the highest
similarity scores with her in her personal network, and stores c profiles. To guarantee that the top-k
items for a query are derived from a search space containing sufficient choices, the size of personal
network s is set to 1000 in our simulations. In fact, regardless of the size of personal network,
the querier can get the accurate results within a limited number of cycles (Theorem 2.4.1). As
mentioned above, each user stores c profiles of the most similar neighbors in her personal network.
Several values for c are considered in the evaluation. The goal of P4Q is to provide users with an
adaptive system where they can trade the number of profiles to store in their personal networks and
their activities in the system depending on their requirements with respect to the query results and
their capability in both storage and bandwidth.
To emphasize the effectiveness of our protocol, we first consider uniform systems where all users

have identical storage capacity. We vary the value of c and it is set to 10, 20, 50, 100, 200, 500
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or 1000 respectively in 7 different scenarios. Two heterogeneous settings with respect to storage
capability are then considered, following a Poisson distribution (the parameter λ of the Poisson
distribution is set to 1 and 4 respectively). The detailed distribution is depicted in Table 2.3. In
the λ = 1 scenario, more than 73% users only store 10 or 20 profiles. This can be considered as a
network where the users are for instance mobile phones with limited memory. In contrast, the λ = 4
scenario mimics a network where the majority of users can provide significant storage space.

Table 2.3: Distribution of stored profiles (c)

c 10 20 50 100 200 500 1000

λ = 1 36.79% 36.79% 18.39% 6.13% 1.53% 0.31% 0.06%
λ = 4 2.06% 8.25% 16.49% 21.99% 21.99% 17.59% 11.73%

Profile digest selection As described in Section 2.4.2.1, P4Q relies on the digests of profiles
containing both tags and items, encoded using the ItemTagBloom scheme, to estimate the similarity
score upper-bound during the gossip. In order to back up our choice, we evaluate this scheme against
two natural alternatives where the users rely only on the items (ItemBloom) or the tags (TagBloom),
to estimate the score upper-bound using profile digests. We also consider the third alternative that
uses ItemBloom but does not estimate the score upper-bound. In this later case, the exact similarity
is computed if there is any common item between two profile digests of ItemBloom. The evaluation
shows that ItemTagBloom (i) outperforms the third alternative by estimating the upper-bound as
it is more effective to detect the similarity between users; (ii) achieves the best balance between
estimation accuracy and bandwidth (storage) requirement.
We first explain how the score upper-bound can be estimated based on ItemBloom and TagBloom.

• ItemBloom. If the items are inserted in the Bloom filter to form the profile digest, ui first
checks if the items from her profile are encoded in ul’s digest. The score upper-bound is
estimated by ui as the number of her tagging actions related to the common items with ul,
contained in her digest, i.e.,

UbScore(ui, ul) = |{〈i, t〉|Tagged(ui , i, t) ∧ Tagged(ul, i, ∗)}|.

Only the tagging actions involved in the computation of score upper-bound contribute to the
exact similarity score.

• TagBloom. If the tags in a profile are inserted in the Bloom filter to form the profile digest, ui

first checks if the tags from her profile are encoded in ul’s digest. The score upper-bound is
estimated by ui as the number of her tagging actions related to these common tags, i.e.,

UbScore(ui, ul) = |{〈i, t〉|Tagged(ui , i, t) ∧ Tagged(ul , ∗, t)}|.

Similarly, only these tagging actions can contribute to the exact similarity score.

Figure 2.18 compares the computation overhead and the potentially storage and bandwidth re-
quirement of these approaches. The overhead is computed by dividing the minimum number of
exact similarity score computations necessary to obtain a personal network of size s by the desired
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Figure 2.18: Comparison of profile digests

size s. Whether the exact similarity score of a user needs to be computed depends on the estimation
of the similarity upper-bound as we described in Section 2.4.2.1. The larger the overhead, the less
accurate the estimation of the similarity upper-bound is.
The average computation overhead for different sizes of personal network is shown in Fig-

ure 2.18(a). We observe that with a false positive rate (FP ) close to 0, the smaller the desired per-
sonal network, the more significant the saving in computation thanks to the upper-bound estimation.
ItemBloom without score estimation always requires the most computation. With a personal net-
work of 1000 neighbors in our setting, ItemTagBloom outperforms both ItemBloom and TagBloom.
The average overhead of ItemTagBloom accounts for only 49% and 41% of each respectively.

Figure 2.18(b) compares the size of the profile digest built with different Bloom filters. The
digests are ranked in descending order of their sizes that guarantee a false positive rate of 0.1%.
On average, the size of a profile digest in TagBloom is 2, 689 bits and that of a profile digest in
ItemBloom is 3, 588 bits. The average size of a profile digest in ItemTagBloom is thus 6, 277 bits,
which is the sum of the above ones. Here we use an adaptive profile digest for each user’s profile.
In other words, the size of the Bloom filter is dependent on the number of items or tags in the
user’s profile. In contrast, if the profile digests of uniform size are used, to guarantee that 99% of
ItemBloom have a false positive rate of 0.1%, 20, 000 bits are needed for each digest.

As expected, ItemTagBloom provides the most accurate estimation of the similarity score upper-
bound but requires the largest profile digests. Yet, the size of the largest profile digest of Item-
TagBloom in our experiments is 188, 837 bits (23.6K bytes) and the average size is only 6, 277 bits
(0.78K bytes). We thus focus in our experiments on the profile digest in ItemTagBloom as it requires
much less computation overhead than the other alternatives. Different profile digests might be used
for other applications to achieve the best balance between the accuracy of estimation and the size of
profile digest.
Figure 2.19 shows the computation overhead of ItemTagBloom with different false positive rates.

A false positive rate of 0.1% guarantees almost the same level of accuracy as there is no false
positive. The only way to avoid false positive is not to use a Bloom filter but to use the list of items
or tags as the profile digest instead. However, this multiplies the size of the digest by a large factor
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depending on the size of an item identifier or a tag (12.4 in our dataset). Therefore, we use a false
positive rate of 0.1% in the following.

2.4.6.2 Qualitative P4Q evaluation

Personal network maintenance in lazy mode We first evaluate the ability of P4Q to discover
users having similar tagging behaviors. We assume that each user builds her personal network by
first discovering the contact information of any user currently in the system using the random peer
sampling protocol. The s users with the highest similarity score are gradually integrated in the
personal network through the gossip protocol in lazy mode. We evaluate the convergence property
of the personal networks by measuring the average success ratio as defined in Section 2.3.3.1.
There is a trade-off between convergence speed and bandwidth consumption orchestrated by the

number of profiles exchanged in gossip. The more profiles are exchanged at each cycle, the faster
users discover new neighbors for their personal networks (convergence) and the more bandwidth is
required. Figure 2.20(a) compares different number of profiles exchanged in each cycle (gossipSize)
and confirms its impact on convergence. In this experiment, each user stores all the profiles in her
personal network and 10 random profile digests are gossiped in the bottom layer of the protocol
(lazy mode). In the following experiments, at most 50 profiles are exchanged in each cycle as
it guarantees similar convergence while requiring only 23% of the peak bandwidth when all the
profiles in the personal network are exchanged.
Figure 2.20(b) shows the convergence speed assuming uniform storage across users. Not surpris-

ingly, the more profiles are stored, the faster the users successfully build their personal networks.
More profiles in the personal network gives the current neighbors more opportunities to discover
new neighbors increasing the diversity of profiles proposed in each gossip. Yet, even when only
10 profiles are stored, at the end of the 200th cycle, more than 68% of neighbors in the personal
networks are identified. If the users provide sufficient storage, we observe that 50 cycles are enough
to feed more than 90% of the personal networks.
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Figure 2.20: Personal network convergence

Query processing in eager mode As described above, the queries are processed through the
eager mode of P4Q. To evaluate the quality of the top-k results, we run a top-10 processing in a
centralized implementation of our protocol and take the 10 returned items for each query as relevant
items. The results obtained with P4Q are then compared to this baseline. In our experiments, we
use average R10 over all queries as the results depends on the query and the user who generates it.
In this context, an ideal recall = 1 means that all queries processed in P4Q achieve the same top-k
results as the baseline.
Figure 2.21 depicts the evolution of the average R10 assuming each user stores 10 profiles in her

personal network with different values of α. The smaller α, the larger portion of the remaining list is
taken in charge by the gossip destination. If α is set to 0, the query is successively forwarded along
a path away from the querier. This is similar to the traditional routing of queries in an unstructured
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P2P system [106]. In contrast, α = 1 means only the neighbors of the querier are asked one by
one. We vary the value of α to measure the efficiency of our protocol between the two extremes
(Figure 2.21).

The average recall at cycle 0 corresponds to the top-10 results obtained by local processing with
profiles in the personal networks. Encouragingly, with only 10 profiles, on average, more than 4
good items out of 10 can be returned without any gossip.
We observe from Figure 2.21 that the splitting factor α has an important impact on the top-k

processing speed: α = 0.5 outperforms other values and the closer α to 0.5, the faster the top-10
results approach the reference. This confirms our analytical measures.
Figure 2.22 depicts the latency of the top-k processing with α = 0.5 assuming users store dif-

ferent profiles in their personal networks. At the end of the 10th cycle, all the queries get the most
relevant results, i.e., R10 = 1. Interestingly, the improvement in average recall after the first cycle
is much more significant than that in the following cycles. This means that users with limited stor-
age and little patience do not need to wait long time and the relatively satisfactory results can be
obtained almost immediately.
As α = 0.5 performs the best, 0.5 is considered the default value in the following evaluation.

However, users still have the freedom to change that value if they have limited bandwidth or if they
are willing to keep their personal networks more up-to-date. Detailed results will be presented later
(Section 2.4.6.4).

2.4.6.3 Cost analysis

Storage requirements As opposed to P3K where the each user stores all their neighbors’ profiles
and the related inverted lists, users in P4Q only store a limited number of their neighbors’ profiles
significantly limiting the storage requirements.
Each user stores the profile digests of all its neighbors in her personal network and random view

and the profiles of c closest neighbors. In our experiments, on average, each profile digests accounts
for 0.78K bytes. The total storage required for the profile digests (1000 in personal network and 10
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Figure 2.23: Space requirement

in random view) is thus 787.8K bytes.
So the storage requirement is mostly determined by the size of the stored profiles, which in turn

is strongly dependent on the contents of the profiles. We still use the metric in Section 2.3.3.1 to
measure the space requirement. The length of each profile is defined as the number of tagging
actions it contains. The overall storage for the profiles in the personal network is then simply the
sum of their lengths.
Figure 2.23 illustrates the storage requirement of each user for various numbers of stored profiles.

Users are ranked in ascending order of their space requirements and the value on the X-axis can
be simply considered as their ranks. Obviously, the more profiles a user stores, the more space is
required. Yet, if a user does not have a sufficient number of neighbors exhibiting similar interests
with her, her storage remains the same even if she can store more. Note that storing 10 profiles
requires only 6.8% of the space required to store all profiles in the personal network, while storing
500 requires 73.6% of that space. To illustrate this further, a single item (URL) in our trace is
identified by its 128 bits MD4 hash value and each user has a 4 bytes ID. Assuming that each
tag can be identically presented as a 16 bytes string, a tagging action takes 36 bytes. Storing 10
profiles in the personal network, requires only 12.5M bytes. This requirement can even be fulfilled
by mobile devices with limited capabilities.

Bandwidth consumption Due to the periodic behavior of lazy gossiping and the burst of com-
munication generated by eager gossiping, data are continuously exchanged in the system. We now
evaluate the bandwidth consumption of personal network maintenance and top-k processing. We
concentrate on the two heterogeneous scenarios, namely the Poisson distribution with λ = 1 and
λ = 4.

Personal network maintenance traffic As mentioned above, 50 profile digests are regularly
transferred by each user having more than 50 profiles in her personal network. This imposes a
transmission of 39K bytes for each user. Only 7.8K and 15.6K bytes are transmitted for users
having 10 or 20 profiles in their personal networks.
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Except for the profile digests, the information received by each user for maintaining her personal
network consists of two parts: (i) the tagging actions to compute the exact similarity scores accord-
ing to the estimation and, (ii) the whole profiles to be stored in the personal network. The latter
ones are only transmitted when better profiles are discovered. We trace the information exchanged
by each user as the time passes in the scenarios with λ = 1 and λ = 4 respectively.
In the λ = 1 scenario, on average, at each cycle, before the personal networks stabilize, 74.6%

of users in the system have to transmit further information for measuring the exact similarity while
only 4.5% of them require the exchange of the whole profiles. For these users, 8.94K bytes and
528K bytes are transmitted respectively if they have such need in a give cycle. Practically, the
maximum information transmitted in a single cycle does not exceed 5M bytes. Similar performance
is observed in the λ = 4 scenario. On average, at each cycle, 79.6% users have to transmit 12.56K
bytes for measuring the similarity while 15.3% of them need the whole profiles of 580K bytes. This
is due to the fact that more neighbors could be identified at the same time while gossiping with a
user having a large number of profiles in her personal network and more profiles are necessary to
feed the personal network of a user having high storage capability. In the bottom layer of the lazy
gossip, 10 profile digests of 7.8K bytes are exchanged at each cycle. In fact, using the profile digests
to estimate the similarity score upper-bounds avoids on average 13% users (λ = 1) and 8% users
(λ = 4) from requiring additional information to compute the exact scores at each cycle, comparing
to the case where any common item in the profile digest would require such computation. This is
due to the fact that unqualified users are immediately pruned after the upper-bound estimation. This
brings a save of 6.91K bytes (λ = 1) and 11.12K bytes (λ = 4) per cycle for each user.

Query processing traffic When a query is gossiped in the system, 3 kinds of information
are transmitted: the forwarded remaining list, the returned remaining list and the partial result lists
returned to the querier along with users whose profiles are used to build these lists.
In our experiments, a user is identified by a 4 bytes ID. The score of each item in the partial

result list can also be presented by a 4 bytes integer. Figure 2.24 depicts the quantity of information
transmitted to answer a query in the scenarios with λ = 1 and λ = 4 respectively. For the sake of
visibility of the figure, only 100 queries, randomly picked from the whole set of queries, are shown.
The values on the Y-axis represent the sum of the information transmitted by all the users reached by
the query during the query processing period. Users are ranked in ascending order of the quantity of
partial result lists which consume most of the bandwidth compared to other information. The value
on the X-axis represents an individual query.
On average, in the λ = 1 scenario, 573K bytes are transmitted to answer a query and in the

λ = 4 scenario, 360K bytes are transmitted. The reason is that in a system where many users have
large storage capacity, several profiles involved in a user’s query could be found through a single
user. This prevents different users from transmitting the same items appearing in different profiles.
It is worth noticing that using the Bloom filter of tags in the profile digest, on average, the initial
forwarded remaining list accounts for only 87% its length if no such information is available in
both λ = 1 and λ = 4 scenarios. This further confirms the benefits of using the profile digest
ItemTagBloom in P4Q.

Note that the remaining lists are piggybacked in the eager gossip messages and do not generate
additional messages in the system. In contrast, each partial result list is sent to the querier in a
separate message. On average, to answer a query, 230 such messages are transferred to the querier
in the λ = 1 scenario and 71 in the λ = 4 scenario. As a result, the size of each message is in
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Figure 2.24: Query processing bandwidth

fact very small. This also verifies the bound on the number of partial result lists of the analysis
(Theorem 2.4.3).

2.4.6.4 Dynamics

Users in collaborative tagging systems are usually active in the sense that they change their profiles
frequently by tagging new items. In addition, new users keep joining the system and users are not
on-line at all times. We evaluate in this section the impact of both forms of dynamics, respectively
the profile dynamics and the users churn (users leaving) on the same delicious trace.

Profile dynamism First, we analyze the underlying patterns of changes in the system during the
whole year of 2008. We observe that every week, more than 3000 users change their profiles while
less than 60 new users are involved in the system on average. As the modification of profiles
dominates the arrival of new users, we focus on the impact of changes on user profiles. Note that
the number of cycles for new users to build their own personal networks should be similar but
smaller than the case where no user exists in the system before as shown in Figure 2.20(b). Our
analysis also shows that the number of users changing their profiles per week remains stable. We
take the week having the largest variation to run the simulation. We assume that all users change
their profiles simultaneously, i.e., each user adds the new tagging actions happened in the same day
to her profile at the same moment of the simulation. The simulations are run for each day in this
week, but only one of them is shown as they all exhibit similar trends.

Updating profiles A user profile may be replicated in different personal networks. When a
profile is updated, the changes are captured through the gossip protocol. To evaluate the ability
of P4Q to capture such changes, we consider the average update rate (AUR) as a measure of the
freshness of the profiles in the users’ personal networks at a given cycle. The update rate for a user
is defined as the number of profiles in her personal network that have been updated over the number
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of profiles that have been subject to changes. The average update rate is averaged over all users, i.e.,

AUR =
1

|U |

∑

ui∈U

Number of Updated Profiles In Network(ui )

Number of Profiles In Network(ui ) Owing Update

AUR attains 100% when the profiles in all users’ personal networks are up-to-date.
To highlight the impact of storage on the evolution of the average update rate, the simulations

are first run in homogeneous settings where all users have the same number of profiles (c) in their
personal networks. We consider the day where 1540 users changed their profiles with an average of
8 new tagging actions per profile. Maximum change was observed in a profile with 268 new tagging
actions. Table 2.4 summarizes the influence of profile changes in different settings.

Table 2.4: Impact of profile changes in different systems

c
% of users having
to update profiles

Average number
of profiles to update

Maximum number
of profiles to update

10 80.9% 4 10

20 82.0% 7 16

50 88.2% 15 34

100 88.2% 26 61

200 88.2% 43 106

500 88.2% 76 224

1000 88.2% 105 388

In lazy mode, i.e., after users changing their profiles, no query is generated, we compute the
average update rate after each cycle. To emphasize the ability of P4Q to enable efficient profile
updating by using self-promotion and mutual-aid, we also compare the AUR with the case where
users always gossip with each other in the same way even if the changes occur. We observe from
Figure 2.25(a) that a small number of stored profiles (c) guarantee a high average update rate. After
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30 cycles, more than 95% profiles are updated in both systems for users storing 10 or 20 profiles
while only 40% of the profile are updated after 100 cycles for the users storing 500 or 1000 profiles.
Not surprisingly, the more profiles are stored in the personal network, the more difficult it is to keep
all of them up-to-date.
However, if the users actively react to the changes as described in P4Q, we observe from Fig-

ure 2.25(b) that the profile updating is significantly accelerated. If each user stores only 10 profiles,
all the users can update their stored profiles within 10 cycles. Encouragingly, even if each user
stores 500 or 1000 profiles, more than 80% profiles are updated within 20 cycles. This significant
improvement in updating rate comes from the fact that users are more voluntary to promote their
own changes (self-promotion) and share with other users their up-to-date information (mutual-aid).
Similarly, in the heterogeneous scenarios with λ = 1 and λ = 4, Figure 2.26 confirms the former

observation that if most of the users in the system store a small number of profiles, it is easier to
keep them up-to-date. In fact, gossiping in the P4Q allows appealing updating rate regardless of the
distribution of profiles stored in each user’s personal network.
We now consider the impact of running the eager mode on the freshness of the system. The

lazy mode guarantees that the personal networks are updated uniformly across users as the gossip
protocol runs periodically on every user. Instead, the eager mode runs on demand, upon query, and
impacts a small portion of the network, i.e., the small fraction of users reached by the query and
contributing to the query processing. This has a significant impact on the freshness of the personal
networks of such users. To illustrate the ability of the eager mode to cope well with dynamics, we
compute the average update rate over the users participating in the eager gossip. The number of
such users reached by the query in the two heterogeneous scenarios is shown in Figure 2.27. The
X-axis captures the query identification and the queries are ranked in descending order of their Y-
axis values. On average, during the processing of a single query, 219 users are reached by the query
in the λ = 1 scenario while 66 users are reached in the λ = 4 scenario. With the help of the tag
information, contained in the profile digests, the number of neighbors to collect during the eager
mode is reduced. As a result, instead of gossiping a list of s − c neighbors, only a sublist of users
who have used at least one tag in the query are gossiped. This leads to a reduction of 37 users
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Figure 2.28: AUR evolution in eager mode

(λ = 1) and 9 users (λ = 4) reached by the query.
Figure 2.28 shows the impact of the eager gossip on profile updating. To see a significant impact,

a series of queries are consecutively sent by the same user before the next cycle of lazy gossip
begins. Here we also compare P4Q against the reference where all users gossip in the same way
regardless of the profile changes. We observe that if most users have small storage capacity (λ = 1),
the acceleration effect of eager gossip is prominent. After answering a single query, on average,
about 50% profiles are updated in P4Q. 10 consecutive queries enable all the users reached by the
queries to update more than 85% of the changed profiles. Yet, all the changes are not taken into
account only relying on the eager mode. This is due to the fact that in the absence of the lazy gossip,
changes of users that are not reached by the queries are not yet propagated. This also explains why
the impact of eager gossip is less significant when users have large storage capacity. Moreover, with
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Figure 2.29: Personal network evolution in lazy mode

small storage capacity, in each cycle of gossip, the same profiles are proposed. Once a profile is
updated, the gossip protocol ensures a fast dissemination.
It is worth noticing that in P4Q, when the users have large storage capacity (λ = 4), gossiping

in eager mode with mutual-aid significantly outperforms the reference. Answering 10 consecutive
queries allows the users participating in the query processing to update more than 10% of their
stored profiles, which, as we observe from Figure 2.28, is very difficult if users do not actively react
to the changes.

Updating neighbors Active tagging behaviors of users may not only impact the stored profiles,
but also the personal networks themselves. Considering the same day in the simulation, we observe
that the changes in profiles led to 1719 users changing an average of 2 (maximum 148) neighbors
in their personal networks. We now evaluate how fast such changes are captured under the lazy
mode. To this end, we compute the ratio of users discovering all their new neighbors over the users
whose personal networks should change. Note that this is a strict metric in the sense that even when
most of a user’s new neighbors are discovered, the ratio is still 0 unless her personal network is
completed.
Figure 2.29 shows that, if users do not actively react to profile changes (reference), in both set-

tings, after 30 cycles, half of the users have discovered all their relevant neighbors and at the 100th
cycle, the number reaches 80%. Yet, P4Q provides even better performance: if most users have a
large storage capacity (λ = 4), less than 20 cycles are needed to provide 50% users with their new
personal networks while 80% users find all their new neighbors using half the cycles required in
the reference. Note that in P4Q, users find new neighbors faster if they have large storage capacity.
This is because only a handful of new tagging actions are added to the profiles each day, new neigh-
bors are more likely to have low similarity scores when compared to the existing neighbors. When
users have small storage capacity, they only keep the profiles having the highest similarity scores in
their personal networks. Exchanging such profiles between two users makes it difficult to find the
neighbors that are less similar. However, benefiting from the more up-to-date profiles when users
have small storage capacity, the new trends in their personal networks can be efficiently captured,
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which is also slightly more efficient than the reference.
We do not display the results for the eager mode. Effectively the eager mode does not impact the

neighbors discovery as the gossip operations are limited to the querier’s neighborhood.

Churn Users who do not store all their neighbors’ profiles should collect more information
through gossiping. However, the original owner of a profile may not be on-line at query time.
We now evaluate the failure-resilience capability of P4Q. Inherently, the fact that users store several
profiles in addition to their own profiles guarantees a minimum number of replicas of each profile
in the system. Moreover, if the owner of a given profile has left the system, the replicas of her
profile would not be out-of-date. Effectively, her opinion on the tagged items remains meaningful
and no new tagging actions can be added to her profile during her absence. However, the departure
of a large number of users will inevitably cause problems. More specifically, this will influence the
query processing time as more users should be contacted to get the necessary profiles but also the
top-k quality, as some profiles might no longer exist in the system.
Unfortunately, no information regarding the on-line time of each user could be obtained by crawl-

ing a delicious trace. So we simply assume that a given percentage of randomly chosen users leave
the system simultaneously. Figure 2.30 illustrates the impact of the number of leaving users on
the top-k processing in the λ = 1 and λ = 4 scenarios respectively. We denote the percentage
of leaving users by p. Obviously, the more users leave the system, the slower the average recall
improves along time. However, even 90% users have left, at the end of the 10th cycle, on average,
about 8 relevant items can be returned to the querier in the λ = 1 scenario (Figure 2.30(a)). Better
results are observed in the λ = 4 scenario (Figure 2.30(b)). This is due to the fact that in the latter
system, more replicas are available thanks to larger storage capacity of the remaining users. If only
10% of the users leave, the degradation on processing time is negligible. Yet, the average recall fails
to get 1 regardless of how long the users wait because a certain number of queriers cannot find all
the profiles in their personal networks (Figure 2.30(c)). However, even if 50% of the users leave
simultaneously in the λ = 4 scenario, the percentage of non complete queries remains smaller than
5%. Those results confirm that our system is robust in the face of user departures: after waiting for
a limited time (10 cycles), almost all the relevant items can be proposed to the querier.

2.4.6.5 Synthesis

Our evaluation demonstrates that the users get fairly good results immediately. Those results can
be refined collaboratively until accurate results are provided within a small number of gossip cycles.
Although P4Q takes more time to build the personal networks if the users store less, once most
of the neighbors are identified, P4Q guarantees a better freshness of the local stored information
and consumes less bandwidth for the personal networks maintenance. However, users still have the
possibility to store more information if they are willing to get a better result immediately. Consider
for instance the scenario with λ = 1. Assume 1 minute per cycle and 5 seconds per cycle are used
in the lazy mode and the eager mode respectively, the query can be accurately answered within
50 seconds with an average bandwidth consumption of 91 Kbps (Kbits per second) for the querier.
The background traffic for maintaining the personal network through lazy gossip is only 7.6 Kbps
and this may increase to 79.2 Kbps in eager gossip. Even if all users simultaneously change their
profiles, in half an hour, 95% of the local stored information is updated and more than 50% users’
new neighbors are identified. In fact, if the system that applies P4Q to provide personalized top-k

59



CHAPTER 2

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

A
v
e

ra
g

e
 r

e
c
a

ll

Cycles

p=0
p=10%
p=30%
p=50%
p=70%
p=90%

(a) Average recall evolution (λ = 1)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10

A
v
e

ra
g

e
 r

e
c
a

ll

Cycles

p=0
p=10%
p=30%
p=50%
p=70%
p=90%

(b) Average recall evolution (λ = 4)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10  20  30  40  50  60  70  80  90

%
 o

f 
q

u
e

ri
e

s
 u

n
a

b
le

 t
o

 g
e

t 
R

1
0
=

1

% of user departure

λ=1
λ=4

(c) Queries failed to get R10 = 1

Figure 2.30: Impact of user departure on top-k

60



Conclusion

processing can tolerate more bandwidth consumption, both the lazy mode and the eager mode can
run in higher frequency, which would significantly decrease the personal networks construction time
as well as the query processing time.

2.4.7 Summary

In this section, we presented, P4Q, a pragmatic decentralized technique to perform personalized
search queries using implicit user affinities. P4Q relies on a lazy mode of gossip to capture such
affinities and maintain the personal networks. Profile digests encoded in Bloom filters are used to
limit the bandwidth consumption during the gossip of profiles. An eager mode of gossip is used to
collaboratively collect the information for query processing so that the users have total freedom to
determine the storage they provide with respect to their expectation on query results and response
time. As we have seen, the eager mode of gossip also generates a wave of refreshments for the users
participating in the query processing. This gives the users clearly incentives to contribute for other
users’ query processing. In addition, the users in P4Q proactively react to the dynamics involved
in their profiles, guaranteeing the robustness and scalability of the query processing in peer-to-peer
environments. The efficiency of P4Qwas conveyed in both analytical and experimental evaluations.

2.5 Conclusion

In this chapter, we proposed two protocols, P3K and P4Q, to perform personalized query processing
in large-scale peer-to-peer systems. Different from the state-of-the-art approaches, the way P3K and
P4Q personalize the query processing is inspired by the off-line personalization of [12]. They are
however decentralized, which we believe is the key to their scalability.
Both P3K and P4Q rely on a gossip-based protocol to discover and leverage implicit relation-

ship among users. In fact, equipping each P3K or P4Q user with a pre-defined explicit network
(e.g., explicit social network in Facebook) as input would be straightforward: only the local query
processing of P3K or the eager mode of P4Q would suffice.
In fact, P3K can be considered as a special case of P4Q: when the P3K personal network of each

user is small, i.e., consisting of only a few neighbors or very small profiles, the whole personal
networks can be maintained with the lazy mode of P4Q and stored by each user. As a consequence,
the queries can be processed locally without further gossiping. Yet, P4Q provides a more general
and complete solution to perform personalized query processing in peer-to-peer systems. Whereas
we use standard techniques to compute profile proximity (number of common item-tag) and rank
queries (NRA), P4Q is generic in the sense that alternative techniques could be used.
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ON-LINE PERSONALIZED QUERY PROCESSING

3.1 Introduction

The tagging behaviors of users in collaborative tagging systems have been well exploited to enhance
the search by personalizing the query results according to the user preferences [67, 103, 63, 66, 12].
As shown in [12], both the processing time and the result quality can be improved by narrowing
down the search space within a subset of the system, namely the subset of users having similar
tagging behaviors with the querier. The algorithms proposed in Chapter 2 further confirm the effi-
ciency of leveraging the tagging behaviors to personalize the query processing in fully decentralized
systems.
Obviously, selecting the right subset of users is the key to the result quality. All these approaches

are based on the assumption that the tagging profiles are representative enough to model the user
preferences. This allows decoupling the personalization and the query processing by pre-computing
the subset of users off-line, which in turn ensures short response latency at query time.
Not surprisingly, if a query is highly correlated to the querier’s tagging profile, which is used

to model her preferences and select the neighbors, the personalized query results would be more
satisfactory than the results obtained without any specification. Nevertheless, if the query is not
correlated to the querier’s profile, typically representing an emerging interest of the querier, the
result quality may degrade. For instance, if a computer scientist majored in peer-to-peer systems
dedicates to a new project and wants to find some papers about “database system” and “information
retrieval”, she may hardly find any valuable information from the limited number of users in her
personal network who are solely interested in peer-to-peer systems. Involving more such users in
the query processing may increase the probability to find the desired papers but it appears to be not
really efficient considering the huge number of scientists working on peer-to-peer systems but not
really knowledgeable in the search topics.
Clearly, in order to effectively handle both queries that are correlated with the tagging profile, as

well as those that are not correlated to that profile, the adequate personalization should be carried
out based on both (i) the tagging profile of the querier as well as (ii) the query itself. In this way, the
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emerging interest can be explicitly expressed while personalizing the query processing. In addition,
this would ensure the querier to receive some interdisciplinary papers that aim to build distributed
databases in priority for example.
Putting this into practice requires first to refine the user preference by leveraging both the tagging

profile and the query. This in turn requires performing the personalization on-line because the
emerging interests can only be realized when a query is issued. In this chapter, we investigate
two algorithms to perform such on-line personalized query processing. The first algorithm, DT2,
is designed for classical collaborative tagging systems, where a central server is in charge of the
query processing. The second algorithm, DT2P2, achieves the same goal in a fully decentralized
environment in collaboration of the users in the system. We introduce DT2 in Section 3.2 and DT2P2

in Section 3.3 respectively.

3.2 DT2: centralized on-line personalization

3.2.1 DT2 in a nutshell

We propose in this section the DT2 protocol that performs on-line personalized top-k processing in
centralized collaborative tagging systems. More specifically, we consider a collaborative tagging
system (folksonomy) as F = 〈U, I, T〉. A triple 〈uo, im, tn〉 ∈ F captures the fact that user uo

tagged item im with tag tn. A user uo’s profile is represented by her tagging history, namely all
the triples associated with uo. We denote by I(uo) ⊂ I and T (uo) ⊂ T the sets of items and tags
respectively associated with uo. Users issue queries in the form of keywords (tags). Given a query
Q(uo) = {t1, ..., tn} made of a set of tags t1, ..., tn, the goal of top-k processing is to efficiently
determine the k items with the highest relevance scores with respect to Q(uo).
As its name indicates, the DT2 protocol is itself composition of two underlying top-k protocols

as depicted in Figure 3.1.
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Figure 3.1: Do Top-k Twice (DT2)

The first top-k protocol underlying DT2 seeks to determine a small network of appropriate users
within which to issue the query, i.e., the personal network of a user for a specific query. The second
top-k protocol underlying DT2 screens the personal network made of these users, and determines
the k most appropriate items.
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As the query results highly depend on the personal network obtained in the first top-k processing,
a crucial technical aspect underlying DT2 is to model the interest of the querier, at query time,
through the computation of a hybrid interest vector that accounts for both the tagging profile of the
querier and the query itself, while dynamically assigning appropriate weights to each. Then the top-
k appropriate users can be selected by comparing the querier’s hybrid interest against the tagging
profiles of other users.
We detail our DT2 protocol in an incremental manner in the following: we first describe how

we derive our notion of querier’s hybrid interest from her tagging profile and query; then we intro-
duce our first top-k processing scheme and how we determine, given an interest vector, a personal
network; after that, we present our second top-k processing scheme and how we use the personal
network above to compute the k most relevant items; at last, we investigate how the size of personal
network can be adaptively adjusted for each query to guarantee the best balance between result
quality and response time.
To avoid confusions in the following, we denote by k1 the size of the personal network computed

in an incremental manner as we describe in this section and by k2 the number of resulting items as
specified in the original query.

3.2.2 A hybrid interest model

We capture the interest of a user using the classical vector space model (VSM) [109] applied to our
on-line personalization context. We describe below how we separately model the profile and the
query, and then how we model their combination.

Profile vector The profile of a user is modeled as a vector representing the user’s tagging actions.
Each element in the vector corresponds to a tag in the system, whose weight represents the number
of items tagged by the user with that tag. The weight is 0 if a tag has never been used by the user.
The profile of a user uo is thus represented as follows:

~p(uo) = [wp(uo, t1), wp(uo, t2), ..., wp(uo, t|T|)],

where wp(uo, tn) = |{im|im ∈ I(uo),∃〈uo, im, tn〉 ∈ F}|. This weight wp(uo, tn) captures the fact
that how many time the tag tn was used by the user uo to tag the items. The larger the weight, the
more the user is interested in that tag.

Query vector A query Q(uo) issued by a querier uo is modeled as a query vector ~q(uo). Each
element in the vector also corresponds to a tag in the system. The weight for each tag in the query
is 1 and the weights for the other tags are 0. That is:

~q(uo) = [wq(uo, t1), wq(uo, t2), ..., wq(uo, t|T|)],

where wq(uo, tn) = 1 if tn ∈ Q(uo) and wq(uo, tn) = 0 otherwise.

Hybrid interest vector The profile vector of a user is derived from a user’s tagging actions and
as such reflects her past and current history: it somehow represents the sustainable interests of the
user. A query vector, on the other hand, expresses the need of a user at query time. In DT2, we use
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a hybrid interest model, combining the profile and the query to compute an interest vector. This is
then used to select the most qualified users to address the query.
More specifically, we model the hybrid interest vector ~l

(

uo, Q(uo)
)

of a querier uo at the time of
her query Q(uo) as a linear combination of her profile vector ~p(uo) and query vector ~q(uo):

~l
(

uo, Q(uo)
)

= (1− α)
~p(uo)

‖~p(uo)‖
+ α

(

~w
(

uo, Q(uo)
)

·
~q(uo)

‖~q(uo)‖

)

(3.1)

Two complementary weighting aspects are crucial in the expression of the hybrid interest (For-
mula 3.1).

(1) The relative importance of tags Before combining the profile and the query, we adjust
the importance of tags in the query using the Hadamard product of the query vector and the weight
vector ~w

(

uo, Q(uo)
)

. More specifically, each tag tn in the query vector ~q(uo) is weighted by multi-
plying the weight w

(

tn, Q(uo)
)

in the corresponding position in its weight vector.
The rationale of this design choice is the following. If querier uo already tagged several items

with a given tag of the query, giving this tag a high weight does not bring much useful information
in addition to the profile. In contrast, a high weight for a rarely used tag helps involving users that
are interested in this tag in the query processing. We thus weight each element tn in the query vector
by its self-information −logP(tn), i.e.,

~w
(

uo, Q(uo)
)

=
[

w
(

t1, Q(uo)
)

, w
(

t2, Q(uo)
)

, ..., w
(

t|T|, Q(uo)
)]

,

where w
(

tn, Q(uo)
)

= −logP(tn) if tn ∈ Q(uo) and w
(

tn, Q(uo)
)

= 0 otherwise. P(tn) is
the fraction of the occurrence of tag tn in the overall behavior (~p(uo) and ~q(uo)) of the querier uo,
which is computed by the following formula:

P(tn) =
1 + wp(uo, tn)

∑

tm∈T (uo) wp(uo, tm) +
∑

tm∈Q(uo) wq(uo, tm)
.

The reason for using both the profile and the query to compute P(tn) is that P(tn) would be 0
for tags that are never used by uo before but used in Q(uo), if only the profile is considered. While
taking the query into account remains coherent with its meaning.

(2) The importance of the query w.r.t the profile The combination factor α (0 ≤ α ≤ 1) in
Formula 3.1 represents the weight given to the query with respect to the querier’s profile. The larger
α, the more emphasis is put on the query when selecting the relevant users to answer the query. On
the other hand, α = 0 means that the query is not taken into account in the querier’s interest, which
corresponds to an off-line personalization using only the querier’s profile.
Given a querier uo and a query Q(uo), we dynamically compute the combination factor α as

follows:
α = 1− cos

(

~p(uo), ~q(uo)
)

. (3.2)

The rationale here is the following. Basically, cos
(

~p(uo), ~q(uo)
)

measures the cosine similarity
between the querier uo’s profile vector and query vector. The larger the similarity, the more corre-
lated the query to the querier’s profile, and the smaller the combination factor α will be given to the
query when building the interest vector. The more correlated a query to the profile, the less addi-
tional information the query provides over the profile. Conversely, the less correlated a query to the
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profile, the more additional information the tags of the query bring to select relevant users, which
would not have been considered with the profile only, to process the query. In addition, dynamically
adjusting the value of α according to the similarity between the profile and the query avoids the
potentially training phase for a fixed α, for which it is in fact difficult to suit all the queries issued
by different users.
It is important to note that both the profile vector ~p(uo) and the query vector ~q(uo) are normalized

by dividing their norms, i.e., ‖~p(uo)‖ and ‖~q(uo)‖. The goal of this normalization is to prevent
dominant tags with high weights in the profile vector to bias the overall interest. The impact of α
and the weighting mechanism are measured in Section 3.2.6.2.

3.2.3 Selecting the top-k1 users

3.2.3.1 Similarity among users

Our DT2 algorithm selects the most relevant users to form the personal network and processes a
query Q(uo), issued by a querier uo, based on ~l

(

uo, Q(uo)
)

as computed above with Formula 3.1.
We use the cosine similarity to compute the similarity between users. More specifically, the simi-
larity of a user ud with a querier uo issuing a query Q(uo) is defined as the cosine of uo’s interest
vector and ud’s profile vector1, i.e.,

Similarity
(

〈uo, Q(uo)〉, ud

)

= cos
(

~l
(

uo, Q(uo)
)

, ~p(ud)
)

(3.3)

The fact that query of ud is not taken into account in the similarity measure is deliberate: even
if ~l

(

uo, Q(uo)
)

and ~l
(

ud, Q(ud)
)

are closely correlated to each other, it may only reflect the fact
that they are issuing similar queries. Such users (ud) are not necessarily helpful to answer the query
Q(uo) if they have not tagged many items on the searched topics. Only the items tagged by the tags
in the query are possible to appear in the query results, while such information is only reflected in
the users’ profiles. Moreover, the expecting items of uo and ud by issuing similar queries may be
completely different due to the diversity of their preferences. Therefore, even if one of them finds
the desired item, she may still not help the other user to get satisfactory result for her own query.
The k1 users having the highest similarity with the pair 〈uo, Q(uo)〉 form the personal network

used to serve the query Q(uo).

3.2.3.2 Inverted lists of users

Inspired from classical algorithms that merge inverted lists for ranking and retrieving the top-k items,
we perform a top-k processing on the users of the system to select the most qualified k1 users for
answering a query using the similarity defined in Formula 3.3. The originality of our approach is to
encode the tagging profiles of the users as inverted lists and apply a classical Threshold Algorithm
(TA) [46] to this context. To this end, we derive from Formula 3.3 an aggregation function repre-
senting the similarity measure between users. We prove the monotonicity of this function, which is
key to the correct application of TA.
In Formula 3.3, the similarity between 〈uo, Q(uo)〉 and ud is defined as the cosine of uo’s interest

vector and ud’s profile vector. As all the profile vectors are compared to the interest vector of uo,

1The measure depends on the query and is thus not symmetric. Even if two users uo and ud issue queries at the same
time, the similarity of ud with uo is different from the similarity of uo with ud.
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Similarity
(

〈uo, Q(uo)〉, ud

)

is a function of ~p(ud). Let

~̄p(ud) =
~p(ud)

‖p(ud)‖
= [w̄p(ud, t0), ..., w̄p(ud, t|T|)],

Similarity
(

〈uo, Q(uo)〉, ud

)

is also a function of ~̄p(ud), i.e.,

f
(

~̄p(ud)
)

= Similarity
(

〈uo, Q(uo)〉, ud

)

Theorem 3.2.1. The aggregation function f
(

~̄p(uo)
)

is monotone.

Proof. Let L(uo) = T (uo) ∪Q(uo),

f
(

~̄p(uo)
)

= cos
(

~l
(

uo, Q(uo)
)

, ~p(ud)
)

=

∑

tn∈L(uo)∩T (ud) wl(uo, tn)wp(ud, tn)
√

∑

tn∈L(uo) w2
l (uo, tn)

√

∑

tn∈T (ud) w2
p(ud, tn)

=
∑

tn∈L(uo)∩T (ud)

wl(uo, tn)
√

∑

tm∈L(uo) w2
l (uo, tm)

wp(ud, tn)
√

∑

tm∈T (ud) w2
p(ud, tm)

=
∑

tn∈L(uo)∩T (ud)

w̄l(uo, tn)w̄p(ud, tn),

where

w̄l(uo, tn) =
wl(uo, tn)

√

∑

tm∈L(uo) w2
l (uo, tm)

,

w̄p(ud, tn) =
wp(ud, tn)

√

∑

tm∈T (ud) w2
p(ud, tm)

In fact, w̄l(uo, tn) corresponds to the value of tag tn in the normalized interest vector of uo,
while w̄p(ud, tn) is the value of tag tn in the normalized profile vector of ud. As w̄l(uo, tn) can
be considered as a constant for any user ud (d 6= o), given any two users ud and ue, if for each
w̄p(ud, tn) and w̄p(ue, tn), tn ∈ L(uo) ∩ T (ud), we have w̄p(ud, tn) ≤ w̄p(ue, tn), then

w̄l(uo, tn)w̄p(ud, tn) ≤ w̄l(uo, tn)w̄p(ue, tn).

Hence
∑

tn∈L(uo)∩T (ud)

w̄l(uo, tn)w̄p(ud, tn) ≤
∑

tn∈L(uo)∩T (ue)

w̄l(uo, tn)w̄p(ue, tn).

Therefore, f
(

~̄p(ud)
)

≤ f
(

~̄p(ue)
)

and f
(

~̄p(ud)
)

is monotone. �

As we pointed out, the monotonicity of the aggregation function is crucial for the correctness
of the threshold algorithm. We explain in the following how we build the inverted lists in such a
way that this monotonicity is preserved. The inverted lists are built, one for each tag, for all the
tags used by at least one user in the system. Each inverted list contains all the users who have used
the corresponding tag. The score of each user ud in an inverted list is the value of the tag in her
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normalized profile vector ~̄p(ud). The users are sorted in descending order of their scores. More
formally, for each tn ∈ T,

List(tn) = {〈u1, scoretn(u1)〉, ..., 〈ud, scoretn(ud)〉, ...},

where ud ∈ {ud|ud ∈ U,∃〈ud, im, tn〉 ∈ F}, scoretn(ud) = w̄p(ud, tn) and scoretn(ud) ≥
scoretn(ud+1).
Going back to the proof of Theorem 3.2.1, we observe that if a user ud appears after a user ue in

all the inverted lists, i.e., w̄p(ud, tn) ≤ w̄p(ue, tn) for all tn, ud would not be ranked higher than ue

when selecting the top k1 users according to their similarity with 〈uo, Q(uo)〉. This allows the thresh-
old algorithm to prune the unqualified users earlier. Note that the score of user ud in the list List(tn)
is assigned as the value of tn in ud’s normalized profile vector w̄p(ud, tn) rather than the correspond-
ing value in her profile vector wp(ud, tn). This is due to the fact that wp(ud, tn) ≤ wp(ue, tn) does
not necessarily imply w̄p(ud, tn) ≤ w̄p(ue, tn) and may thus jeopardize the monotonicity of the
similarity measure.
Figure 3.2 gives a simple example of how the inverted lists are derived for the users’ profile

vectors. Taking John for example, we first compute the score for each tag in her profile vector by
dividing the number of tagging actions related to that tag by the norm of her profile vector and
obtain: w̄p(John, 2010) = 30/50 = 0.6, w̄p(John,music) = 0/50 = 0 and w̄p(John,movie) =
40/50 = 0.8. After computing the scores for all the users in the system, these are organized in per
tag list, containing all the users with positive value for that tag, and then ranked in their descending
order to form the final inverted lists.
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List(movie)List(music)List(2010)

Sort   Score

Figure 3.2: Example of inverted list computation

Note that the inverted lists are common to all users, and hence do not require much storage: at
most |U| × |T| entries should be maintained. This is in fact a very loose upper bound as the use of
tags follows a long-tail distribution.

3.2.3.3 Ranking users

When a user uo issues a query, DT2 first builds a hybrid interest vector using her profile and the
query as described in Formula 3.1. Then DT2 finds the top k1 users for answering the query. This
is achieved by first identifying the inverted lists of the tags appearing in uo’s hybrid interest vector.
The scores for tags that do not appear in the hybrid interest vector do clearly not contribute to the
overall similarity. The lists are scanned in a breadth-first manner, i.e., the first entries in each list are
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scanned first, and then the second entries are scanned and so on. The querier is skipped when she is
encountered in the inverted lists during scanning. The term sequential access is used to refer to the
read operation of a user in the inverted lists.
A heap of k1 entries in the form of pair

〈

ud, Similarity
(

〈uo, Q(uo)〉, ud)
)〉

is maintained and
these entries are sorted in descending order of Similarity

(

〈uo, Q(uo)〉, ud)
)

. Once a user ud

different from uo is seen in a list under sequential access, if she does not exist in the heap, her
similarity with 〈uo, Q(uo)〉 is computed using Formula 3.3. We use the term random access to refer
to the call of the function using Formula 3.3 to compute the similarity. If the obtained similarity
of ud is larger than that of the k1th user, the k1th entry in the heap is replaced by the new entry.
Otherwise, the new entry is discarded.
The algorithm stops as soon as the k1th user’s similarity is not smaller than a threshold. The

threshold is obtained by computing the cosine similarity between uo’s hybrid interest vector and a
virtual profile vector where the values for the tags related to the inverted lists under scanning are the
last seen values in each of the lists and those for other tags are 0, i.e.,

threshold =
∑

tn∈T (uo)∪Q(uo)

w̄l(uo, tn)b(tn),

where b(tn) is the last seen value in List(tn). The monotonicity of the similarity measure ensures
that users appearing after b(tn) in all List(tn) (tn ∈ T (uo) ∪ Q(uo)) would not have a higher
similarity than the threshold.
For the tags used by few users, the corresponding inverted lists may be very short. Once the

cursor reaches the end of those lists during scanning, the last seen values will no longer change.
This would keep the threshold high, and incur unnecessary computation as the users that did not use
these tags at all are still supposed to have the same level of interest in these tags, as indicated by
the last seen values. Therefore, b(tn) is set to 0 when the end of List(tn) is reached. This does not
affect the correctness of the top k1 selected users as the corresponding values in the profile vectors
of the users who do not appear in these lists are exactly 0. Algorithm 3.1 presents the user selection
procedure. We use Network

(

uo, Q(uo)
)

to denote the personal network containing the k1 users to
process the user uo’s query Q(uo).
Algorithm 3.1 mimics the threshold algorithm in [46] and is in the same sense instance optimal

(i.e., modulo a constant number of sequential accesses). In fact, several optimizations are possible
to incorporate into the basic algorithm. For instance, we do not need to rank the candidate heap
each time a user is seen but only after a bunch of users are discovered. These optimizations are
potentially parts of the future work.

3.2.4 Selecting the top-k2 items

3.2.4.1 Ranking items

The last phase of DT2 consists in finding the k2 items that are the most relevant to the query. The
search space is now reduced to the profiles of the selected k1 users only.
We adapt a widely used scoring function [110] to rank the items. More specifically, the score

of an item im for querier uo’s query Q(uo) is computed as the sum of the scores given to im by
each user ud in uo’s personal network, which is the number of tags used by ud to tag im times the
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Algorithm 3.1 Top k1 user selection
1. Input: uo’s query Q(uo)
2. Output: Network

(

uo, Q(uo)
)

3. ScanLists← {List(tn)|∀tn ∈ T (uo) ∪Q(uo)}
4. ScanPosition← 1
5. loop
6. for each List(tn) in ScanLists do
7. get user ud in ScanPosition of List(tn)
8. if ud exists and ud 6= uo then
9. threshold←threshold−w̄l(uo, tn)

(

b(tn)−scoretn
(ud)

)

10. b(tn)← scoretn
(ud)

11. if ud not in the heap then
12. compute Similarity

(

〈uo, Q(uo)〉, ud

)

13. if Similarity
(

〈uo, Q(uo)〉, ud

)

>Similarity
(

〈uo, Q(uo)〉, uk1

)

then
14. replace uk1 by ud and sort the heap
15. end if
16. end if
17. else if ud does not exist then
18. b(tn)← 0
19. end if
20. if Similarity

(

〈uo, Q(uo)〉, uk1

)

≥ threshold then
21. return the k1 users in the heap as Network

(

uo, Q(uo)
)

22. end if
23. end for
24. ScanPosition← ScanPosition+1
25. end loop

similarity between 〈uo, Q(uo)〉 and ud, i.e.,

Score
(

Q(uo), im
)

=
∑

ud∈Network(uo,Q(uo))

Score
(

ud, Q(uo), im
)

Similarity
(

〈uo, Q(uo)〉, ud

)

, (3.4)

where Score
(

ud, Q(uo), im
)

= |{〈ud, im, tn〉|tn ∈ Q(uo)}|.
Since the top-k2 query is processed using a network of k1 users selected on-line, there is no

need to pre-compute per tag inverted lists as the traditional approaches to enable efficient top-k
processing. The mere reading of tagging actions is enough to gradually compute the relevance
score of each candidate item and find the top k2 relevant items. As we will see later, computing the
inverted lists requires in fact more computation. Moreover, since the personal networks computed
on-line are query dependent, the probability that consecutive queries of the same user have exactly
the same personal network is very low. Pre-computed inverted lists would then hardly be re-used
and thus unworthy.
Instead, the relevance score of each item in DT2 is obtained by directly iterating over the tagging

actions of each user in the personal network, which is specifically tailored for a pair 〈user, query〉.
Once the relevance scores of all candidate items are computed, the k2 items with the highest scores
are selected by partially sorting these items. Note that since only a small size of the personal network
is enough to achieve good results, this operation is reasonable. Algorithm 3.2 depicts the top k2 item
selection procedure.
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Algorithm 3.2 Top k2 item selection

1. Input: Network
(

uo, Q(uo)
)

and Q(uo)
2. Output: top k2 items
3. for each ud in Network

(

uo, Q(uo)
)

do
4. F (ud, Q(uo))← get 〈ud, im, tn〉 for all tn ∈ Q(uo)
5. for each im in F (ud, Q(uo)) do
6. compute Score

(

ud, Q(uo), im
)

7. update Score
(

Q(uo), im
)

in the heap
8. end for
9. end for
10. for each im (m > k2) in the heap do
11. if Score

(

Q(uo), im
)

> Score
(

Q(uo), ik2

)

then
12. replace the k2th item ik2 in the heap by im
13. sort the first k2 items in the heap
14. end if
15. end for
16. return the first k2 items in the heap

3.2.4.2 Cost analysis

As described above, finding the top k2 items consists in iterating over the tagging actions of the k1

selected users, computing the relevance scores of the items appearing in their profiles and ranking
them accordingly. Supposing that for a user uo’s query Q(uo), each of the k1 selected users has
Nt(Q(uo)) tagging actions with a tag in Q(uo), and the cost for reading a tagging action and updat-
ing the relevant score of the corresponding item is cc, then the cost for computing the score of all
the candidate items can be described as

Cc(Q(uo)) = cc × k1 ×Nt(Q(uo)). (3.5)

If Ni(Q(uo)) items are involved in these tagging actions, Ni(Q(uo)) entries, containing the identi-
fier and the score of each item, should be maintained in the heap. In the worst case, when the score
of each item out of the first k2 items in the heap is larger than that of the k2th item, Ni(Q(uo))− k2

sorting operations are necessary to rank these items. Knowing that a single sorting over a sorted list
of k2 items can be achieved in O(logk2), assuming the cost of each sorting operation is cs, the cost
of ranking the top k2 items can be written as

Cs(Q(uo)) =
(

Ni(Q(uo))− k2

)

× cs × logk2. (3.6)

Therefore, given a personal network of k1 users, the total cost for obtaining the top k2 items is the
sum of Cc(Q(uo)) and Cs(Q(uo)).
If the inverted lists are computed before processing the query, assuming that each item im is

tagged by Nt(im) tags in the query Q(uo), the storage for the associated lists would be Nt(im)
times of the heap size in DT2, as each item appears in Nt(im) lists where it is tagged. Assuming

that all the inverted lists have the same length, i.e., Ni(Q(uo))×Nt(im)
|Q(uo)| , the cost for sorting one list

L(tn) would be

Cs(L(tn)) = cs ×
Ni(Q(uo))×Nt(im)

|Q(uo)|
log

(Ni(Q(uo))×Nt(im)

|Q(uo)|

)

.
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Thus the cost for sorting all the query related lists can be written as

Cs(L(Q(uo))) = |Q(uo)| × cs ×
Ni(Q(uo))×Nt(im)

|Q(uo)|
log

(Ni(Q(uo))×Nt(im)

|Q(uo)|

)

.

With k2 << Ni(Q(uo)) and Nt(im) ≈ |Q(uo)|, Cs(L(Q(uo))) is about
Nt(im)logNi(Q(uo))

logk2
times

more than Cs(Q(uo)) in DT2. This does not account for the cost of processing the query over these
lists. Considering that the cost for reading the tagging actions and computing the relevance scores
of the items is similar in both cases, this fully justifies our choice for the item top-k algorithm.

3.2.5 Adjusting the personal network

The key idea of DT2 lies in performing the personalization on-line by first associating the querier
with a personal network of the top k1 users and then processing the query within this network to
find the top k2 items.

3.2.5.1 Design choices

Unlike other top-k algorithms that also aim to obtain the k2 most relevant items, DT2 restricts the
search space only to the personal network of the top k1 users. Thus, selecting an appropriate value
for k1 is crucial to the result quality: (i) too small value of k1 would exclude some relevant items
out of the candidate set so that they could not appear in the results regardless of the value of k2; (ii)
too large value of k1 may introduce unnecessary noise to the candidate set by taking into account
the opinions of users with disjoint or even opposite interests and thus dilute the positive effect of
personalization. In addition, users behave differently in different applications and it is important to
adjust the value of k1 for each user according to her current situation. Furthermore, the larger k1,
the longer it requires to find these users and derive the top k2 items from their tagging profiles. It is
thus important to achieve a balance between the result quality and the processing time. We discuss
in the following how the parameter k1 can be adaptively adjusted so as to maximize the system
performance and the user satisfaction.

3.2.5.2 Incremental adjustment

In DT2, the users are folded into a querier’s personal network in an incremental manner. More users
are used for finding the top k2 items only if the querier appears to be not satisfied with the current
results obtained with a smaller personal network. Figure 3.3 illustrates how the size of personal
network is iteratively adjusted in DT2. We use directly, in the figure, the hybrid interest vector as an
input for the ease of presentation.
The system begins to process a querier’s query by selecting a small number of users, noted as

k
(0)
1 , and finding the top k2 items with the profiles of the k

(0)
1 users. The value of k

(0)
1 can be

empirically obtained through the statistics of query histories of either individual user or all users
in the system. If the querier is not satisfied with the top k2 items, the system continues to select

k
(1)
1 − k

(0)
1 (k(1)

1 > k
(0)
1 ) additional users in the next round and show the new top k2 items derived

from all the k
(1)
1 users’ profiles to the querier. This process continues until the user is satisfied or all

candidate users have already been exhausted and considered in the querier’s personal network: after

the rth round, the number of users having Similarity
(

〈uo, Q(uo)〉, ud

)

> 0 is smaller than k
(r)
1 .
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Figure 3.3: Adjusting the personal network (k1)

Both the computation of the additional users and that of the new items could actually be achieved
in an incremental manner. However, to continue the user selection without missing any qualified
user, all users that have been explored in the previous sequential access phase (previous round) are
maintained, i.e., we do not only maintain the k1 users with the highest similarities when a fixed k1

is used like in Algorithm 3.1.
Algorithm 3.3 depicts how the additional users are gradually involved in the querier’s personal

network in the (r + 1)th (r ≥ 0) round. We invoke Algorithm 3.1 in Algorithm 3.3 for the ease of

presentation, but the heap size is not limited to k
(r)
1 at the rth round. Indeed, all explored users are

maintained in the heap but only the first k(r)
1 are sorted.

Algorithm 3.3 Top k
(r+1)
1 user selection

1. Input: user heap after the rth round and k
(r+1)
1

2. Output: Network
(

uo, Q(uo)
)

with k
(r+1)
1 users

3. if heap size < k
(r+1)
1 then

4. continue the processing with Algorithm 3.1 for top k
(r+1)
1 users from last scanned positions of the rth

round
5. else
6. sort the heap by descending Similarity

(

〈uo, Q(uo)〉, ud

)

7. if Similarity
(

〈uo, Q(uo)〉, uk
(r+1)
1

)

≥ threshold then

8. return top k
(r+1)
1 users in heap as Network

(

uo, Q(uo)
)

9. else
10. continue the processing with Algorithm 3.1 for top k

(r+1)
1 users from last scanned positions of the

rth round
11. end if
12. end if

Tomerge the new users’ profiles of a given round with the results of the previous round, we follow
the principle of Algorithm 3.2: for each item appearing in the additional profiles, if it is already in
the item heap after the rth round, its relevance score is updated by taking the new information into
account; otherwise, it is added to the heap using Formula 3.4. Once all the scores are completely
computed, the new top k2 items are obtained by partially sorting the heap.

The latency of processing the query first on a personal network of k(r)
1 users and then on a personal

network of k
(r+1)
1 users mainly depends on the time to sort the first k2 items in the personal network

of k
(r)
1 users. There is almost no difference between finding directly the top k

(r+1)
1 users and finding
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them incrementally. Because continuing the processing only requires to sort the users in the heap
once if necessary (Algorithm 3.3, line 5-12), otherwise exactly the same processing is carried out

to obtain the top k
(r+1)
1 users. The only exception is that the top k

(r+1)
1 users can be selected

from the heap without further processing (line 7-8). In this case, the similarities of certain users
are computed in vain, which also requires longer time for sorting. However, the probability that
the top-k users are easier to find than the top-k′ users with k > k′ should be low. Denoting by
N

(r)
i (Q(uo)) the size of the item heap at the rth round, this latency can be expressed as Formula 3.6,

with Ni(Q(uo)) = N
(r)
i (Q(uo)). If a querier’s query is answered in R round, the total latency

comparing to processing it directly on a personal network of k
(R)
1 users is

Latency(Q(uo)) =

R−1
∑

r=0

(

N
(r)
i (Q(no))− k2

)

× cs × logk2.

3.2.6 Experimental evaluation

We evaluate DT2 in the context of collaborative tagging systems and compare it with tag-based
non-personalized and off-line personalized approaches.

3.2.6.1 Experimental setup

Datasets and query generation. We evaluate DT2 using real traces from CiteULike and delicious,
both being collaborative tagging sites through which users bookmark, annotate and share, respec-
tively, research papers and URLs.
The CiteULike trace involves 33, 834 users and was downloaded directly from the site in October

2008. The delicious trace involves 137, 897 users and was crawled in January 2009. We randomly
selected 10, 000 resp. 50, 000 users who participated in at least 10 tagging actions to run the simu-
lations. The figures of the datasets are depicted in Table 3.1.

Table 3.1: Datasets

Data Users Items Tags Tagging actions

CiteULike 10, 000 852, 581 189, 378 3, 084, 050

delicious 50, 000 3, 103, 204 687, 458 24, 626, 054

Selecting a good set of top-k queries and results is not an easy task, especially when the results
should meet the need of individual users who may exhibit different preferences facing a same query.
To address this issue, we generate queries for each user as follows: an item tagged by at least one
other user with the same tag is picked randomly from the items tagged by this user; the query is
generated with the tags used by this user to annotate this item; the item and all related tagging
actions of this user are removed from her profile and are excluded when computing her profile
vector. The underlying intuition is that the tags used by a user to annotate an item are often those
she feels appropriate to describe that item. Thus, they are likely to be the words she previously
used to search for that item. Figure 3.4 depicts the correlation between the generated queries and
the profiles. The bar at S = x corresponds to the percentage of queries whose similarities with the
querier’s profile are within the interval (x − 0.2, x]. Note that the bar at S = 0 corresponds to the
interval (−0.2, 0]. Yet, as the cosine similarity cannot be negative, the queries fall in this interval is
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equivalent to those having similarity 0 with the querier’s profile. We use S = 0 in the following to
avoid the misunderstanding.

Evaluation methodology We compare DT2 against both non-personalized and off-line personal-
ized approaches (tag-based) along the following properties: (i) result quality, (ii) storage and (iii)

processing time.

Result quality. We evaluate the result quality achieved by DT2 as its ability to retrieve and
highly rank the item initially removed from the querier’s profile. To this end, we use both the
average recall [107] and the mean reciprocal rank (MRR) [111] metrics to quantify it.

MRR has been used for applications where there is typically a single relevant item. The recip-
rocal rank of a querier’s query is the inverse of the rank of the removed item in the result list. If
the relevant item does not appear in the result list, the reciprocal rank is counted as 0. The mean
reciprocal rank is the average of the reciprocal ranks over all queries. The larger the MRR, the
higher the desired items are ranked.
Considering that users tend to look at only the top part of the ranked result list to find relevant

items, we also use the average recall in the top-k items over all queries as a measure of the result
quality, denoted as Rk. Recall is defined as the number of retrieved relevant items divided by the
total number of existing relevant items. In our case, if the item, initially removed from the querier’s
profile, is in the top-k items, the recall for this query is 1. It is 0 otherwise. Note that we do not use
the precison@k metric to measure the result quality: considering only one relevant item for each
query, the corresponding precision in the top-k items would simply be Rk/k.

Storage The inverted lists are encoded as 〈tag, user, score〉 entries in DT2 and
〈tag, item, score〉 entries in the non-personalized and off-line personalized approaches. We mea-
sure the storage, like in [12], as the total length of inverted lists.

76
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Processing time The time required for answering a query in DT2 consists of (i) the time
required to select the k1 most similar users and (ii) the time required to select the k2 most relevant
items over those k1 users’ profiles. We use the wall-clock time to compare this processing time with
the time to process the query in the alternative approaches. In addition, to convey the efficiency of
DT2 for selecting the top k1 users, we also compare it against the approach in [112]. To this end,
we measure the number of users for whom the similarities are computed before finding the top k1

ones.

3.2.6.2 Result quality

DT2 personalization We evaluate the effectiveness of DT2 by comparing MRR and Rk with 3
natural candidate strategies to achieve off-line personalization: they all rely solely on tagging pro-
files to restrict the search space. All three strategies model user profiles as vectors, and use the
cosine similarity between the vectors to determine the personal network. In the first strategy [63],
denoted by TagVec, the same profile model as DT2 is used, i.e., each element in the vector corre-
sponds to a tag in the system and its weight is the number of items tagged by the user with this tag.
In the second strategy [67, 12], denoted by ItemVec, each element in the vector corresponds to an
item in the system and its weight is 1 if the user has tagged this item. The similarity between two
users depends on the number of items they tagged in common. In the third strategy [67], denoted by
ItemTagVec, each element represents a pair 〈item, tag〉 and its weight is 1 if the user has tagged this
item with this tag. The similarity between two users depends on the number of times they tagged
the same items with the same tag and it is the same as the one used in P4Q (Section 2.4.1).
Before proceeding, we first examine the ability of these off-line personalization strategies to deal

with ambiguous queries compared to non-personalized processing. For the sake of comparison with
DT2, in both non- and off-line personalized approaches, the score of each item in the inverted lists is
computed as the number of times the item has been tagged with this corresponding tag. The scoring
function to rank the items is the same as the one used in DT2. In the non-personalized approach,
Similarity

(

〈uo, Q(ud)〉, ud

)

is set to 1 to ignore the effect of personalization.
Figure 3.5 compares the MRR in the non-personalized approach and the three off-line personal-

ized ones, with personal networks of 500 users. The queries are grouped according to their similari-
ties with the queriers’ profiles. We observe from the figure that regardless of the similarity between
the query and the querier’s profile, the non-personalized approach provides similar ranks for differ-
ent query groups. This is consistent with the random nature of the selected queries. In contrast, the
effectiveness of the three off-line personalized approaches highly depends on the similarity between
the query and the querier’s profile. If the query is correlated to the querier’s profile, the off-line per-
sonalized approaches achieve up to 2.8 times better MRR for CiteULike and 32% better MRR for
delicious than the non-personalized approach. This is due to the fact that the off-line personalized
approaches do not consider the irrelevant information introduced by the users having few common
interests with the querier. However, for queries that are not correlated to the querier’s profile, typ-
ically corresponding to the emerging interests, the off-line personalization degrades the MRR up
to 48% for CiteULike and 37% for delicious. Indeed, the search space is restricted to similar users
while the relevant items are likely to belong to users whose profile is similar to the query. This
observation precisely motivates our on-line personalization approach.
When comparing DT2 to the off-line personalized approaches, we observe from Figure 3.6 that

the more users are selected to answer the query, the better the MRR. Moreover, regardless of
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Figure 3.5: Non- vs. off-line personalized approaches
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Figure 3.6: Off-line personalized approaches vs. DT2 in MRR

this number (k1), DT2 clearly outperforms the three off-line personalized strategies: the MRR is
consistently more than 30% better than any other off-line personalized approach in both traces. The
fewer users are selected to answer a query, the more significant the difference. This is due to the fact
that when the query result only relies on a small number of users, the relative importance of each
user is higher. With only 25 users in DT2, the MRR is even better than in the off-line personalized
approaches involving 500 users. Clearly, considering both the query and the profile while modeling
the interest and selecting the users accordingly provides more qualified users to answer the queries.
The MRR conveys the ability of DT2 to retrieve and rank the relevant item of each query high.

Figure 3.7 further show how DT2 allows to obtain better results if only the top k2 items are returned.
Not surprisingly, regardless of the personalization strategy, the more items are returned to the user,
the better the average recall. Moreover, with the same number of k2, the average Rk2

obtained in
DT2 with only 25 users is always better than that in the three off-line personalized approaches with
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Figure 3.7: Off-line personalized approaches vs. DT2 in recall

500 users. Better results can be observed if more users are selected for the query processing in DT2.
For the ease of presentation, we use R10 instead of the recall with various k2 in the following.
When focusing on the queries that are not correlated to the querier’s tagging history (e.g. emerg-

ing interests), we observe in Table 3.2 and Table 3.3 that MRR and R10 in the personal network of
25 users in DT2 is up to 70% (resp. 225%) and 54% (resp. 150%) better than those in the personal
network of 500 users in TagV ec, which is the best among the off-line personalized approaches, on
the CiteULike (resp. delicious) trace. They are also up to 64% (resp. 146%) and 27% (resp. 46%)
better than the non-personalized approach. Those results confirm the effectiveness of DT2 to ac-
count for the emerging interests, representing 35% of the queries in CiteULike and 58% in delicious
(Figure 3.4).

Note that the overall performance on the CiteULike trace is better than that on the delicious trace
because the delicious trace is 5 times larger in terms of users than the CiteULike one while the

Table 3.2: MRR for queries not correlated to the profile

Similarity
(S)

CiteULike delicious

DT2

k1 = 25
TagVec

k1 = 500
Non

personalized
DT2

k1 = 25
TagVec

k1 = 500
Non

personalized
S = 0 0.248 0.146 0.151 0.224 0.069 0.091

0 < S ≤ 0.2 0.252 0.234 0.128 0.132 0.062 0.087

Table 3.3: R10 for queries not correlated to the profile

Similarity
(S)

CiteULike delicious

DT2

k1 = 25
TagVec

k1 = 500
Non

personalized
DT2

k1 = 25
TagVec

k1 = 500
Non

personalized
S = 0 0.389 0.253 0.342 0.322 0.129 0.221

0 <S ≤0.2 0.376 0.357 0.296 0.197 0.120 0.172
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queries are generated with the same procedure. Moreover, the delicious data is sparser than the
CiteULike one. Users in delicious are more versatile and tag various URLs while interests are most
focused in CiteULike.

Relevance of the interest model The weights of the query while modeling the interest of a pair
〈user, query〉 is captured by the combination factor α and the weight vector ~w

(

uo, Q(uo)
)

. To
emphasize the impact of the dynamic adaptation of α and ~w

(

uo, Q(uo)
)

on the result quality, we
evaluate the impact of α, applied to all queries in 25-user personal networks, regardless of their
similarities with the querier’s profile. The results are shown in Table 3.4 and Table 3.5 for MRR and
R10 respectively. They are also compared with the case where the query tags are equally weighted,
i.e., ~w

(

uo, Q(uo)
)

= [1, ..., 1]. α = 0 means that only the profile is used to select the users to
process the query and α = 1 corresponds to only considering the query. These results confirm that
(i) considering both the query and the profile achieves better result quality than considering only
either one of them; (ii) adjusting α depending on the similarity between the query and the profile
consistently achieves the best results; (iii) weighting the query tags according to their occurrence in
the querier’s overall behavior provides better results than considering them equally.

Table 3.4: MRR for varying α

With adaptive tag weights in ~w
(

uo, Q(uo)
)

α 0 0.2 0.4 0.6 0.8 1 1-S
CiteULike 0.149 0.188 0.233 0.249 0.251 0.246 0.256
delicious 0.032 0.049 0.094 0.137 0.146 0.142 0.147

With equal tag weights in ~w
(

uo, Q(uo)
)

α 0 0.2 0.4 0.6 0.8 1 1-S
CiteULike 0.149 0.184 0.229 0.244 0.251 0.241 0.251

delicious 0.032 0.048 0.090 0.129 0.139 0.140 0.136

Table 3.5: R10 for varying α

With adaptive tag weights in ~w
(

uo, Q(uo)
)

α 0 0.2 0.4 0.6 0.8 1 1-S
CiteULike 0.249 0.294 0.360 0.385 0.391 0.384 0.397
delicious 0.066 0.096 0.169 0.234 0.244 0.241 0.244

With equal tag weights in ~w
(

uo, Q(uo)
)

α 0 0.2 0.4 0.6 0.8 1 1-S
CiteULike 0.249 0.294 0.351 0.362 0.372 0.372 0.384

delicious 0.066 0.087 0.149 0.203 0.214 0.213 0.209

3.2.6.3 Storage and processing time

We evaluate the storage requirement and the query processing time of DT2 against (i) non-
personalized approach and (ii) the TagVec off-line personalized approach, which returns the best
results among the off-line personalized approaches.
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Storage requirement DT2 makes use of inverted lists of users, one for each tag. On the CiteULike
trace, 189, 378 inverted lists are maintained and the total length of these lists is 589, 740 entries. On
the delicious trace, 687, 458 inverted lists are maintained and the total length is 6, 570, 566 entries.
Note that this storage is independent of the number of users selected to answer a query, namely k1.
In the non-personalized approach, the same number of inverted lists is maintained but the total

length is 3, 030, 551 entries for CiteULike and 16, 521, 714 entries for delicious, which is respec-
tively 5 and 2.5 times the storage used by DT2. This is due to the fact that the number of items in
the system is much larger than the number of users.
In TagVec, the storage highly depends on the size of the personal network and the way the inverted

lists are built. The more users in the personal network, the more storage is needed. Here, we
compare DT2 with the most storage consuming but time efficient approach in [12] to build the
inverted lists in TagVec: for each user, the inverted lists are built for every tag used by at least
one user in her personal network. Taking 500-user personal networks on the CiteULike trace for
example, the total length of the stored inverted lists is 1, 894, 929, 966 entries, which is more than
3200 times of that in DT2. While for delicious, with personal networks of 500 users, the total length
of the inverted lists is 24, 453, 501, 395 entries, which is more than 3700 times of that in DT2. In
fact, even the most storage effective approach in [12] requires the same number of entries as the non-
personalized approach while each entry should contain more information in addition to the score
for the personalization need. Moreover, it dramatically increases the query processing time and is
thus not used as our baseline.

Performance of top-k1 user selection We first count the number of users whose similarity should
be computed to measure the efficiency of top k1 user selection. Obviously, if no inverted lists
of users are pre-computed, the system needs to traverse all the users to identify the top k1 users.
In [112], the authors proposed to only compute the similarity for users who have tagged the queried
resource to generate the tag recommendation: this dramatically decreases the amount of computa-
tion. In the following, we report on our comparison of DT2 with that in [112] by considering all the
users having at least one common tag with the querier’s hybrid interest vector.
Figure 3.8 shows the relation between the size of the personal network (k1) and the number of

sequential and random accesses on both the CiteULike and the delicious traces. The number of
sequential accesses is only slightly more than the number of random accesses. Considering that a
random access is more expensive than a sequential one [12], and a random access corresponds to
a computation of similarity between users, it is reasonable to compare the efficiency of top k1 user
selection with the number of such computations.
The number of similarity computations between users increases almost linearly with the size of

the personal network on CiteULike, but it increases slower on delicious. Even if 500 users should
be selected, only the similarity with 6.39% and 3.68% users in the system are computed on the
CiteULike trace and the delicious trace respectively. Computing the similarity with only 2.02% and
1.81% of the users is enough to select the top 25 users. With the method in [112], regardless of
the size of the personal network, on average, the similarities of 42.35% and 73.07% of users in the
system should be computed on CiteULike and delicious respectively. DT2 largely outperforms this
method while selecting the users to form the personal network.

Processing time The overall time needed to answer a query with DT2 consists of the time required
to select the top k1 users and the time required to retrieve the top k2 items. In the non-personalized
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Figure 3.8: Performance of top k1 user selection

approach and the TagV ec off-line personalized one, when a query is issued, the system only needs
to process it with the threshold algorithm by scanning the pre-computed inverted lists. Figure 3.9
summarizes the run-time performance of DT2 with different size of personal network (k1) compared
to TagVec with a personal network of 500 users for each querier and the non-personalized approach
when different number of items (k2) are returned as the results.

In Figure 3.9, k2 = 0 for DT2 corresponds to the time required for selecting the top k1 users. We
observe that although the more items are returned, the longer it takes to answer the query, the query
processing time in DT2 is dominated by the user selection procedure. This confirms our choice of
the simple top-k protocol for the item selection.
Comparing DT2 to the non-personalized approach, we observe when the number of returned

items is small (k2 ≤ 5 for CiteULike and k2 ≤ 10 for delicious), DT2 requires longer time than
the non-personalized approach. However, as k2 increases, the advantage of DT2 is gradually ex-
hibited. Selecting 25 users to obtain the top-10 items requires 64% and 101% the time of the non-
personalized approach for CiteULike and delicious respectively. If the top-20 items are required,
the time counts for only 30% and 63% of the non-personalized approach. Selecting more users
requires longer time but guarantees a better result quality. Selecting up to 500 users in CiteULike,
DT2 is still about 5% more efficient than the non-personalized approach if more than 10 items are
requested. This conveys DT2’s efficiency.
The processing time of DT2 is always longer than that of TagVec. This is due to the fact that

the users in the personal network of TagVec are selected according to the querier’s profile and thus
contribute few relevant items for the queries that are not correlated to the profile, counting for a
significant portion of the queries. The efficiency of TagVec is in fact obtained by sacrificing the
result quality and requiring prohibitive storage, which is thus undesirable.
Note that the processing time on CiteULike is much smaller than that on delicious regardless of

the used approach. As stated above, the users in CiteULike have more focused interests than those
in delicious, which makes the difference between users more significant to prune the unqualified
ones earlier.
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Figure 3.9: Query processing time

3.2.6.4 Fine tuning

We discuss here the impact of the size of personal network on the top k2 results. We begin the query
processing by selecting 25 users, which allows to provide relatively good results as we can see from
previous evaluation. Suppose that a querier is satisfied with the results if the desired item, which
was previously removed from her profile, appears in the top-10 items. This can be detected in real
life by observing the click on the results for instance. If the querier is not satisfied with the current

results, the system doubles the value of k1 (k(r+1)
1 = 2k

(r)
1 ) to add users in the querier’s personal

network and returns the new top-10 items. This process continues until the querier is satisfied or the
results cannot be further improved.
Figure 3.10 depicts the distribution of queries that can be satisfied within personal networks of

different sizes (k1). We observe that about 40% of queries in CiteULike and 22% of queries in
delicious can be satisfied within a personal network of 25 users. Only less than 1% users need the
opinions of more than 400 users to obtain satisfactory results. Moreover, we observe from the green

bars that, instead of processing the query in a personal network with at most k
(r)
1 users, processing

it in a personal network with k
(r+1)
1 users (k1=k

(r+1)
1 in Figure 3.10) may lead bad results for up to

13.5% queries. These results confirm the very fact that adjusting the size of the personal network in
an adaptive and incremental manner guarantees a good balance between the result quality and the
processing time: most queries can be satisfied with a handful of users and thus very efficiently.
We do not mention here the time for the queries processed within the personal networks of differ-

ent sizes. But as we analyzed in Section 3.2.5 and observed in Section 3.2.6.3, the latency due to
adjusting the size of personal network mainly depends on the time required for sorting the items in
the personal network, which is relatively small compared to the time needed for finding these users.
The time is thus comparable to that of processing directly the query in a large personal network.
However, the results are displayed to the querier with some time interval so that the querier will
have time to assess the current results while indicating the system whether to continue.
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Figure 3.10: Adaptive adjustment of k1 for top-10 items

3.2.7 Concluding remarks

The potential of personalizing the search process through social ties has been recognized and in-
vestigated quite often in the recent years. Various notions of affinities have also been developed to
explore similarities between users [60, 63, 64, 66, 67, 113]. These mainly focus on the past behav-
ior of users, such as their tagging histories [67, 63], their query histories [64, 72] or their browsing
histories [60]. Although the notion of recent history was distinguished in [72] and [114], these ap-
proaches are query-oblivious and mainly achieve good results, when queries are correlated to the
(recent) history.

Basically, DT2 is the first algorithm that narrows down the top-k processing on-line. The person-
alization in DT2 is achieved by capturing the similarity between users, on-line, based on both the
tagging history and the query. As we have shown in the previous section, this approach performs
well regardless of the correlation of the query with the querier’s tagging history.

DT2 is generic in the sense that alternative similarity measures [113], scoring functions
[66,115,116] and underlying top-k processing sub-algorithms [47,46] can be chosen and optimized
accordingly. For instance, other metrics could be considered to compute the similarity between
users, such as Jaccard similarity and Dice coefficient. Our preliminary experiments showed how-
ever the superiority of our cosine similarity metric compared to the others. Also, we considered the
classical No Random Access (NRA) algorithm when selecting the most appropriate users to per-
form a query. Our preliminary experiments (on CiteULike) have indeed conveyed the fact that NRA
requires much more computation to determine the similarity between users (about 18 times more
partial computation).2 An alternative approach we considered was that of [112], where the k nearest
neighbors to provide tag recommendation for a resource are obtained by considering only the users
who have annotated this resource. According to our experiments however, our TA-based approach
revealed faster. Still, we do believe there is room for improving the (space and time) performance
and result quality of DT2, and indirectly of the on-line personalization approach. For instance, anal-
ysis on users’ tagging behaviors would help understand the relationship between interest dispersion

2In fact, NRA cannot provide exact similarities for the top-k users, which should be thus re-computed while ranking
the items in DT2. The larger k, the more costly the additional computation will be.
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and user qualification, and thus help investigate more effective similarity measures to select the top-
k users for each querier’s query. Also, we focused in this work on top-k processing approaches that
are solely based on tags. It would be interesting to see how these can be combined with approaches
that use other sources of information, such as the keywords of a paper.

3.3 DT2P2: peer-to-peer on-line personalization

In the previous section, we explored the effectiveness of on-line personalization to satisfy person-
alized queries, especially those reflecting the queriers’ emerging interests. As we have seen, this
on-line personalization can be efficiently achieved in a centralized collaborative tagging system by
doing top-k twice. We are now taking a shift and investigate how the same on-line personalization
can be applied in a peer-to-peer environment.
A crucial issue for the efficiency of on-line personalization is to efficiently identify the right users

for answering a query once it is issued. This is achieved in DT2 by performing a TA-style top-k
processing on all the users in the system. Yet, in a peer-to-peer system, no user has such global
information and each user is only aware of a small portion of other users in the system. Therefore,
to perform the on-line personalization in a peer-to-peer system, the main problems we face are (i)
which should be the set of users each user is aware of; ii) how can a querier efficiently identify the
users for processing her query based on such partial information.
In this section, we present our algorithm DT2P2 that achieves on-line personalization for the top-

k query processing in peer-to-peer systems. In DT2P2, users flexibly and efficiently self-organize
into a multi-objective overlay that enables efficient top-k processing. The stable part of the overlay
aims to maintain the sustainable knowledge of each user about the system, i.e., the set of users
having similar tagging profiles. The flexible part of the overlay is in contrast maintained at query
time to associate each querier with the users that can serve the query processing according to her
hybrid interest as defined by the on-line personalization (Formula 3.1). Both parts are dynamically
maintained through periodically gossiping and computing the similarity among users.

3.3.1 System design

We consider a collaborative tagging system on top of a peer-to-peer network, i.e., each user in the
collaborative tagging system is associated with a peer and is characterized by her tagging profile.
Users issue queries in the form of a set of tags to search for the k most relevant items.
As shown in Section 3.2.6.2, the hybrid interest that takes into account both the profile and the

query outperforms the non-personalized and the off-line personalized top-k approaches. Here we
apply the same on-line personalization scheme in the context of peer-to-peer systems. More specifi-
cally, the profile of a user uo is modeled as a profile vector ~p(uo) and her query Q(uo) is modeled as
a query vector ~q(uo) as described in Section 3.2.2. Once a user uo issues a query Q(uo), her hybrid
interest at query time is expressed with the hybrid interest vector ~l

(

uo, Q(uo)
)

with Formula 3.1.
Therefore, the problem of providing on-line personalization for a user uo’s query Q(uo) is equiv-

alent to the problem how the user uo can efficiently find the users sharing the most similar interests
with her hybrid interest ~l

(

uo, Q(uo)
)

.
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3.3.1.1 System model

As users live in a fully decentralized system, each user plays several roles simultaneously: (i) stor-
ing and forwarding the replicas of profiles; (ii) collecting information and processing the query;
(iii) keeping the connectivity of the system. These roles are achieved by each user through main-
taining three data structures: an offer network, one or more demand networks and a random view.
Figure 3.11 depicts the offer network and the demand network(s) associated with each user, consti-
tuting the multi-objective overlay of DT2P2. The random view is omitted as it plays the same role
and ensures the connectivity of the system as that in our P4Q protocol (Section 2.4.1).

u1

u2

u3

u7

u8

u9

u4

u6u5

Offer network

Demand network 

of query 1

Demand network 

of query 2

Figure 3.11: System model

Offer network The offer network of a user uo is a set of so neighbors having the most similar
profile with her, noted as oNet(uo). Given a user ud, we use SimilarityO(uo, ud) to quantify the
similarity between her profile and that of uo and determine whether she should be a neighbor of uo

in oNet(uo). This similarity is computed as the cosine of their profile vectors, i.e.,

SimilarityO(uo, ud) = cos
(

~p(uo), ~p(ud)
)

.

The offer network is query-oblivious and each user has only one offer network. Considering that
users often have some continuity in their tagging behaviors, the offer networks built based on the
tagging profiles are relatively stable. Therefore the offer networks form the backbone of the entire
system.
For each neighbor in the offer network, both her profile vector and her whole profile are stored

along with her contact information. The offer network serves to store the replicas of the neighbors’
profiles. These profiles are also used to process the top-k queries.

Demand network The demand network of a querier uo for her query Q(uo) consists of sd neigh-
bors that uo relies on to answer Q(uo). Let ~l

(

uo, Q(uo)
)

be the hybrid interest vector of uo for
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query Q(uo), the similarity of a user ud to the querier uo and her query Q(uo) is measured by

SimilarityD

(

〈uo, Q(uo)〉, ud

)

= cos
(

~l
(

uo, Q(uo)), ~p(ud)
)

.

The sd users having the highest SimilarityD

(

〈uo, Q(uo)〉, ud

)

form the demand network of uo

for the query Q(uo). This demand network is equivalent to the personal network of each querier in
DT2 (Section 3.2.3.3). Yet, without global information, it is difficult for uo to identify her ideal3

demand network directly. Instead, uo gossips with other users in the system to gradually improve
her demand network. We use dNetc

(

uo, Q(uo)
)

to denote the demand network of uo at the cth
gossip cycle for answering her query Q(uo).
The demand network is query-specific and is maintained for each query. Once a query is issued,

the profile vector and the contact information of each neighbor is temporarily maintained at each
cycle until the query is resolved. As we will see, the offer networks help the queriers to efficiently
discover qualified neighbors for their demand networks by offering good candidates.

Random view Each user also maintains a set of sr random neighbors, whose profile vectors and
contact information are stored. These users forms her random view, denoted as RPS.

The maintenance of the offer network and the random view follows the same scheme as the lazy
mode in P4Q and leverages the same convergence property. The only difference is that instead of
gossiping the profile digests in Bloom filters, the profile vectors are first transmitted to determine
whether a user is a neighbor. We omit this part and more details can be referred to in Section 2.4.2.1.

3.3.1.2 Querying model

In DT2P2, a query is processed within the demand network of the querier for it. When a query is
issued, the querier gradually build her demand network by gossiping with her neighbors. The results
are refined by processing the query within each intermediate demand network until the querier is
satisfied or the demand network converges.
Finding the appropriate neighbors for the demand network at query time can be considered as the

querier brings her query and virtually “moves” in the system from her stable position defined by
her offer network to the query effective position defined by her demand network.
Figure 3.12 illustrates the movement of a querier with her query from her offer network toward

her demand network. The querier u1 and her query can be considered as a virtual user v1, who
joins the system at query time in the same position as u1 and whose preferences are characterized
by the hybrid interest of u1. v1 (u1) first gossips with her neighbor u3 to discover a new neighbor
u6 for her demand network, which corresponds to one step of movement. Then she gossips with her
neighbor u2 and this allows her to arrive a new position surrounded by u4 and u6. The movement
stops when the demand network converges, i.e., u4 and u6 appear to be the most qualified neighbors
for the demand network.
Here we use the notion of virtual user as the querier always stays in the stable position defined

by her offer network. The underlying intuition is that if two consecutive queries are not correlated
to each other, once the querier moves to a new position, where she is surrounded by the neighbors
in the demand network of the first query, it might be difficult for her to find good neighbors for the

3By ideal, we mean the demand network obtained using the entire set of profiles in the system.
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Figure 3.12: Querying model

demand network of the second query. In contrast, the offer network is built according to her tagging
profile, which is generally correlated to her queries.
We details in the following how the demand network is refined at query time and how the query

is processed accordingly.

3.3.2 Refining the demand network

When a query Q(uo) is generated, the querier uo first considers her offer network as her initial
demand network, and locally processes the query with the profiles of her neighbors in this network.
As we said, this is equivalent that a virtual user joins the system in the same position defined by
uo’s offer network. Considering that a user often searches for the topics she is interested in, it is
highly probable there is someone in her offer network who is also interested it the same topic. If
the querier uo is not satisfied with the current results, she begins to gossip with her neighbors to
refine this demand network. At each cycle, uo gossips with a neighbor from her demand network of
this query. The neighbor ud (ud ∈ dNet0

(

uo, Q(uo)
)

) whose profile vector is the most relevant to
the query and who does not gossip with uo recently is selected as gossip destination. The relevance
of the profile vector to the query is measured by the cosine similarity between the two vectors, i.e.,
cos

(

~p(ud), ~q(uo)
)

.
A timestamp is assigned to each neighbor in the demand network to adjust their order in gos-

sip. The initial value of each neighbor’s timestamp is 0. When a neighbor ud with timestamp
T (ud)(T (ud) ≥ 0) is selected as gossip destination, her timestamp is set to T (ud) − sd, where sd

is the size of the demand network. If some new users are discovered during the gossip and added to
the demand network, their timestamps are set to 0. The timestamp of each neighbor in the refined
demand network is then increased by 1. The querier only selects the gossip destination among the
neighbors having no negative timestamps, which ensures that the same user with high relevance to
the query would not be successively selected. In contrast, waiting at least sd cycles before being
selected again allows the corresponding neighbor to capture the changes in the system if any.
If no neighbor has a positive similarity to the query, a random neighbor with oldest timestamp

will be selected as gossip destination. Similarly, if more than one neighbor has the same similarity,
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a random one with oldest timestamp will be selected among them.
When receiving the gossip message containing the query from the querier, the user ud sends a

subset of the profile vectors in her offer network oNet(ud) that contains at least one common tag
with the query to querier. The underlying intuition is that the querier uo gossips with ud supposing
she is knowledgeable in the tags related to the query as indicated by her profile vector. In the
meantime, the neighbors in ud’s offer network are those having similar tagging profiles with her
and should also be knowledgeable in the query tags. Fetching such information from the gossip
destination allows the querier to quickly discover new qualified neighbors for her demand network.
Moreover, if a user’s profile does not contain any tag in the query, she will not contribute to the
query results. It is thus useless to recommend her profile to the querier for feeding her demand
network. The sd users having the highest similarity score SimilarityD

(

〈uo, Q(uo)〉, ud

)

among
the users in uo’s current demand network and those received from ud are kept to form a refined
demand network. Then the query is processed with the information in the refined demand network
to obtain the query results at this cycle.
This process continues for each gossip cycle until the user feels satisfied with the top-k results

or the demand network converges to a stable state, i.e., the neighbors remain the same during sd

cycles. In this case, keeping gossiping with these neighbors will not bring new neighbors if no
changes occur in the system. Note that it does not necessarily mean that the demand network is
the same as that obtained using the hybrid interest model over all the users in the system. In fact
it is still possible to further improve the result quality even if the demand network converges. It
is sufficient to use some other mechanisms to choose gossip destination when the demand network
converges, e.g., gossiping with a user from the random view who has the query tags in her profile
vector. Algorithm 3.4 depicts the gossip procedure for refining the demand network.

Algorithm 3.4 Per cycle demand network refinement

1. Input: Q(uo), oNet(uo) and dNetc−1

(

uo, Q(uo)
)

2. Output: dNetc
(

uo, Q(uo)
)

3. if dNetc−1

(

uo, Q(uo)
)

is empty then
4. dNetc−1

(

uo, Q(uo)
)

← oNet(uo)
5. end if
6. select ud from dNetc−1

(

uo, Q(uo)
)

with T (ud) ≥ 0 and max{cos
(

~q(uo), ~p(ud)
)

}
7. T (ud)← T (ud)− sd

8. gossip with ud and receive profile vectors ~p(ul) in oNet(ud) from ud

9. for each received ~p(ul) do
10. SimilarityD

(

〈uo, Q(uo)〉, ul

)

← cos
(

~l
(

uo, Q(uo)
)

, ~p(ul)
)

11. add ul to dNetc−1

(

uo, Q(uo)
)

12. T (ul)← 0
13. end for
14. keep sd users with largest SimilarityD

(

〈uo, Q(uo)〉, ud

)

in dNetc−1

(

uo, Q(uo)
)

to form
dNetc

(

uo, Q(uo)
)

15. for each ul in dNetc
(

uo, Q(uo)
)

do
16. T (ul)← T (ul) + 1
17. end for
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3.3.3 Processing the query

A query is processed in collaboration with the querier and other users who gossip with her. We here
describe how the querier processes the query based on the refined demand network of the query at
each cycle and how the other users contribute to the query processing.
As mentioned above, before gossiping the query, the querier uo first computes the top-k results

based on the profiles in her initial demand network (offer network). The top-k items are obtained
by directly iterating over these profiles. All the items tagged by the same user ul with the tags in the
query form a partial result list for this query, i.e.,

List
(

ul, Q(ul)
)

= {〈i1, Score
(

ul, Q(uo), i1
)

〉, ..., 〈i1, Score
(

ul, Q(uo), im
)

〉, ...}.

The score of each item in the list List
(

ul, Q(ul)
)

is the number of tags in the query Q(ui) that are
used by ul to tag it, i.e.,

Score
(

ul, Q(uo), im
)

= |{〈ul, im, tn〉|tn ∈ Q(uo)}|. (3.7)

Then the top-k items can be obtained by merging all the lists and bubbling up the k items with the
highest relevance scores. The relevance score of an item im to the querier uo’s query Q(uo) at the
cth cycle is computed with as

Score
(

Q(uo), im) =
∑

ud∈dNetc
(

uo,Q(uo)
)

Score
(

ud, Q(uo), im
)

Similarity
(

〈uo, Q(uo)〉, ul

)

, (3.8)

Formula 3.8 is the same as Formula 3.4 in DT2 to compute the relevance score. The only differ-
ence is that the query is processed in the intermediate demand network dNetc

(

uo, Q(uo)
)

instead
of the personal network in DT2.
Once the demand network dNetc

(

uo, Q(uo)
)

is refined and some neighbors in the former de-
mand network dNetc−1

(

uo, Q(uo)
)

are replaced by the new neighbors, the querier uo contacts the
user ud who is gossiping with her to ask for her contribution. Note that during the demand network
refinement phase, only the profile vectors are sent to the querier ud in order to not overload the
system by transmitting useless information. This is because the profiles of the users that cannot
be uo’s neighbors in dNetc

(

uo, Q(uo)
)

would not be used for the query processing. ud computes
the partial result lists as presented above with Formula 3.7 using the profiles of uo’s new neighbors
and sends them back to the uo. Merging these lists before sending to the querier may reduce the
transmission cost as there are common items in these lists, however, it would be difficult for the
querier to restore the list of any single user when the demand network evolves.
The partial result lists used in the previous cycle (c − 1) are temporarily stored by the querier to

serve the query processing in the refined demand network dNetc
(

uo, Q(uo)
)

if there are some com-
mon neighbors in dNetc

(

uo, Q(uo)
)

and dNetc−1

(

uo, Q(uo)
)

. This avoids consecutively transmit-
ting the same lists. Upon receiving the new lists, the querier merges all the lists corresponding to the
refined demand network dNetc

(

uo, Q(uo)
)

and computes the top-k items. Algorithm 3.5 depicts
the collaborative top-k query processing.

3.3.4 Boosting the query processing

Once a query is generated, the querier considers her offer network as the initial demand network
for this query. After the query is locally processed, the querier begins gossiping by selecting a
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Algorithm 3.5 Per cycle top-k processing

1. Input: Q(uo), oNet(uo), dNetc−1

(

uo, Q(uo)
)

and dNetc
(

uo, Q(uo)
)

2. Output: top k items
3. for each ul in dNetc(uo, Q(uo)) do
4. if ul not in dNetc−1

(

uo, Q(uo)
)

and not in oNet(uo) then
5. ask gossip destination ud for List

(

ul, Q(uo)
)

6. end if
7. end for
8. for each im inList

(

ul, Q(uo)
) (

ul ∈ dNetc
(

uo, Q(uo)
)

∧ul /∈ oNet(uo)∧ul /∈ dNetc−1

(

uo, Q(uo)
))

do
9. compute Score

(

Q(uo), im
)

10. add
〈

i1, Score
(

ul, Q(uo), im
)〉

to heap
11. end for
12. rank the first k items in heap
13. return the first k items in heap as top k items

neighbor from this demand network, which allows her to discover new neighbors and further refine
her demand network. Here the offer network serves as the starting point of the querier’s movement
towards the good neighborhood and results.
However, if a query is not very correlated to the querier’s profile, it would take more time for the

querier to find good neighbors for its demand network through gossiping. In an extreme case where
none of the neighbors in the querier’s offer network has used the query tags, the querier can only
gossip with a random neighbor from them. There is no guarantee that the selected user has used
these query tags so that she can hardly contribute to the query processing or bring new neighbors
for the current query’s demand network. As a consequence, the querier has to gossip with several
other neighbors before finding a good neighbor to process her query. In contrast, if a similar query
was previously issued by the querier, better results should be expected if the query is first processed
within the demand network of this query. Moreover, gossiping with users from this demand network
would also facilitate the discovery of new neighbors for the current query’s demand network. This
is because the neighbors in the offer network of the gossiped user are also likely to have profiles
correlated to the current query. In fact, when the query is correlated to the querier’s profile, if there
is a demand network previously built for a similar query, starting from this demand network would
also help the querier to find a better neighbor to gossip with as the users in this network are selected
with more emphasis on the similar query.

Motivated by these observations, we argue that if each user maintains a cache containing well
selected demand networks of her previous queries, the query results would be more efficiently im-
proved while she is “moving” towards the desired demand network. The cached demand networks
can serve as a shortcut on the path to the good neighborhood for answering a query. This can be
considered as the virtual user corresponding to the querier does not join the system always in the
same position but in a better position memorized by the querier. For instance, in Figure 3.13, the
user u1 has two demand networks in her cache, which define the position p1 and p2 in the system.
If the virtual user v1 starts her movement from p1, only one gossip would be enough to arrive the
same position where she needed two gossips to arrive without the cache.
We use Cache(uo) to denote the cache of a user uo. Each entry in the cache corresponds to

a query along with its demand network and the timestamp when it is added to the cache in form
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Figure 3.13: Querying with cache

of
〈

Qj(uo), dNet(uo, Qj(uo)), time
(

Qj(uo)
)〉

. dNet(uo, Qj(uo)) is the final demand network
where Qj(uo) was processed for the last time. Each cache contains at most sc entries.

In the following we explain (i) how the demand networks of previous queries are selected to feed
the cache, (ii) how the cache is used to serve the query processing and (iii) how to cope with the
impact of user departure on cache.

Managing the cache Caching is a useful technique for search engines that enables a shorter av-
erage query response time. With the cache of demand networks, it reduces the processing time by
reducing the number of gossips before satisfying a query and thus reduces the overall amount of
used bandwidth. In general, the probability that a query can benefit from the cache is higher if
more entries are kept in the cache. However, different from centralized search engine, which can
approximately have infinite caches as they store a large number of entries using RAM and disk, the
storage that an individual user in a peer-to-peer system can allocate to the cache highly depends on
her own capability and thus should be limited. In fact, even if a user can actually maintain a large
number of entries in the cache, it would not be a preferable choice in a highly dynamic environment
where the users leave and join the system and continue to change their interests by generating and
tagging new contents.
To maximize the utility of the cache and minimize the negative impact of dynamics, we keep in

the cache the demand networks of the queries whose union covers the maximum number of tags. We
also use a TTL (time-to-live) value to control the age of each entry and only the demand networks
of queries issued within the TTL are cached.
We prefer the demand networks of queries that maximize the coverage of tags rather than those

are frequently issued to feed the cache for the following reasons: (i) the user frequently asks for
something mainly because she is actually interested in it. In this case, the offer network composed
of users having similar profiles should already contain some good candidates to gossip with and
provide satisfactory results; (ii) different from in centralized search engines where the same query
may be generated by different users, in distributed systems, a user rarely sends the same query. Thus
the cache does not aim to directly provide the perfect results for a query but to offer some better
candidates (than those in the offer network) to gossip with. Therefore, there is no need to keep all
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the frequently asked queries in the cache as the demand networks of similar queries would consist
of common users.
We use a cache vector, noted as ~c(uo), to denote the tags covered by the queries in the cache

Cache(uo). We also use the notation CQ(uo) to represent the set of queries whose demand networks
are cached. Each element in the cache vector corresponds to a tag that appears in at least one query
in the cache and its value is the total times it appears in the cached queries, i.e.,

~c(uo) =
[

wc(t1, uo), wc(t2, uo), ..., wc(tn, uo)
]

,

where wc(tn, uo) = | {Qj(uo) | Qj(uo) ∈ CQ(uo) ∧ tn ∈ Qj(uo)} |. We keep the queries that
maximize the dimension of the cache vector in the cache.
An entry is considered expired and discarded from the cache if the difference between current

time and the time it was added in the cache is larger than the TTL. It is crucial to carefully select
the TTL value to guarantee the quantity of available information in the cache and the freshness of
such information. Too small TTL would cause the less active users to have few entries in their
caches while too large TTL would hurt the freshness of the entries. In the latter case, the query may
be guided to the users that are no longer interested in the searched topics or even be lost due to the
departure of the concerned users.
The queries of an individual user arrive in the system consecutively as a user rarely sends several

queries at the same time. So each user updates her cache by sequentially evaluating each query once
it is answered and replacing an old entry with the new one if necessary. Algorithm 3.6 depicts how
a user manages her cache. We use dim

(

~c(uo)
)

to denote the dimension of the cache vector ~c(uo).

Selecting the initial demand network When a query is issued, if the querier has some previously
computed demand networks in her cache, instead of directly considering her offer network as the
initial demand network, she selects from her offer network and cached demand networks the one
that is the most beneficial for the current query.
As presented above, the demand network is query-specific. The demand network of a query is

built based on the querier’s hybrid interest vector, which is a combination of her profile and her
query. For two queries of the same user, the interest vectors differ from each other only in the query
and the two corresponding weights (Formula 3.1), which are in fact determined by the query. The
more similar two queries, the more similar the corresponding interest vectors. Thus the more similar
their demand networks are. Therefore, the demand network of the query that is the most similar to
the current query is preferential to be selected as the initial demand network. The similarity between
two queries are measured by the cosine similarity between their query vectors, i.e.,

Similarity
(

Qi(uo), Qj(uo)) = cos(~qi(uo), ~qj(uo)).

Yet, for the query that is very correlated to the profile, the offer network should be good enough
as the initial demand network. In contrast, even the query corresponding to the best cached demand
network may have few common tags with the current query. To avoid misleading the query pro-
cessing, the final decision is made by comparing the similarity between the current query and the
profile to that between the current query and the query of the most qualified demand network in
the cache. If the former is larger, the query processing starts from the offer network as introduced
above. Otherwise, it starts from the selected demand network in the cache.
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Algorithm 3.6 Per user cache management
1. Input: Qcurrent(uo), Cache(uo) and ~c(uo)
2. Output: updated Cache(uo)
3. for each entry

〈

Qj(uo), dNet
(

uo, Qj(uo)
)

, time
(

Qj(uo)
)〉

in Cache(uo) do
4. if time

(

Qcurrent(uo)
)

− time
(

Qj(uo)
)

≥ TTL then
5. remove the entry from Cache(uo)
6. remove Qj(uo) from ~c(uo)
7. end if
8. end for
9. if | Cache(uo) | < c then
10. add

〈

Qcurrent(uo), dNet
(

uo, Q(uo)
)

, time
(

Qcurrent(uo)
)〉

to Cache(uo)
11. add Qcurrent(uo) to ~c(uo)
12. else
13. for each

〈

Qj(uo), dNet(uo, Qj(uo)), time
(

Qj(uo)
)〉

in Cache(uo) do
14. ~cj(uo)← remove Qj(uo) from ~c(uo)
15. ~cj(uo)← add Qcurrent(uo) to ~c(uo)
16. if dim

(

~c(uo)
)

≤ dim
(

~cj(uo)
)

then
17. add 〈Qj(uo),~cj(uo)〉 to candidates
18. end if
19. end for
20. if candidates not empty then
21. Qmax(uo)← Qj(ui) with max

{

dim
(

cj(uo)
)}

then min
{

time
(

Qj(ui)
)}

22. end if
23. replace the entry of Qmax(uo) by that of Qcurrent(uo) in Cache(uo)
24. ~c(uo)← ~cmax(uo)
25. end if
26. return Cache(uo)

Processing the query from a cached demand network Once a querier selects her initial demand
network for a query, the query is first processed within this network with the profiles of all the
neighbors in it. Different from the offer network, where the whole profiles of the neighbors are
locally stored by each, the demand networks in the cache only contain the profile vector of each
neighbor. For the neighbors that are also in a querier’s offer network, the partial result lists are
locally computed for each neighbor. Then the querier forwards the query to the other neighbors in
her demand network to fetch their partial result lists for this query. In this way, the user obtains the
first top-k items by merging all the partial result lists. If the user is not satisfied with the results, she
begins to gossip with the neighbors in her initial demand network and gradually improve the result
quality as presented in Section 3.3.2 and Section 3.3.3.

Handling churn Once the demand network of a query is added to the cache, the neighbors in it
remain the same until it is expired and removed from the cache. However, peer-to-peer systems
are dynamic in the sense that users frequently leave and join the system. As presented above, the
querier needs to contact the neighbors in the selected demand network to process her query. If some
users leave, the information in their profiles would be temporarily unavailable. This is unavoidable
to decrease the benefits of starting the query processing from a cached demand network. Moreover,
the leaving users can no longer gossip with the querier. In contrast, the offer network is periodically
maintained and once some neighbors leave, they can be quickly detected and replaced by active
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users as in many gossip-based protocols.
To minimize the influence of churn, once the leaving users are detected while fetching the partial

result lists from them, they are removed from the querier’s initial demand network of the current
query. The gossip destination is then selected from the active neighbors. As the profile vectors
received from the gossip destination are those in her offer network, they are more likely to be active
and can help the querier quickly repair her demand network. In the extreme case where all the
neighbors in the select demand network have left, the querier turns back to her offer network for the
query processing.
Note that even if some neighbors in the selected demand network have left, the network is not

updated in the cache. The reason is that the remaining users would still help the query to quickly
reach the user that is knowledgeable in the searched tags if the current query is similar enough
to the query of the selected demand network. Otherwise, starting from the offer network will not
be influenced by the incomplete demand networks. This also avoids the maintaining cost and the
leaving users can be efficiently replaced at query time as we will see in Section 3.3.5.2. In fact,
when the leaving users come back to the system, they can continue to serve the query processing.

3.3.5 Experimental evaluation

We evaluate in this section the ability of DT2P2 to enable on-line personalization in peer-to-peer
environments. Section 3.3.5.1 assesses the efficiency of DT2P2. Section 3.3.5.2 emphasizes the
impact of cache on the efficiency, especially when the users’ interests change and users leave. We
finally introduce the cost of DT2P2 in terms of bandwidth and storage in Section 3.3.5.3.

3.3.5.1 Efficiency of query processing

We evaluate the efficiency of DT2P2 using real traces from CiteULike and delicious. We use exactly
the same subsets of data to establish the experimental systems as described in Section 3.2.6.1. In
other words, the same users as those in DT 2 are used for the experiments. Each user has the same
profile and issues the same query. The objective here is to measure how efficiently DT2P2 allows
each querier to obtain the ideal top-k results defined by our on-line personalization. As a result,
we use the relative recall at each cycle to assess how the result quality approximates the ideal one.
Relative recall is computed by dividing the recall at each cycle by the (ideal) recall obtained in DT2.
The larger the value, the better the result quality. Relative recall is 1 means the same level of result
quality as in DT2 is obtained.
To convey the rationality of DT2P2 as well as its efficiency, we compare it against 3 other can-

didate systems where each user is also equipped with her offer network, demand networks and
random view. Yet, each user solely relies on one of these networks to select the gossip destination
and compose the gossip message to refine the demand network for a given query.
Figure 3.14 compares the top-10 results obtained with the 4 different strategies in both traces. The

trends exhibited in different top-k results are quite similar so that we focus in this section on the top-
10 results. “dNet+dNet” corresponds to the case where the querier gossips with a neighbor from her
demand network as in DT2P2 but fetches the neighbors from the demand network of the gossiped
user instead. In contrast, with “oNet+oNet”, the querier always gossips with a neighbor from her
offer network and fetches the the neighbors from the offer network of the gossiped user to refine her
demand network. This strategy should be very efficient for the queries that are closely correlated to
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Figure 3.14: Efficiency of query processing

the querier’s profile. “RPS+RPS” can be considered as the worst case where the querier gossips in
a completely random manner.
We observe from this figure that 9 cycles and 15 cycles are enough to obtain the same top-10

results as in DT2 on CiteULike and delicious respectively. Note that the relative recall continues to
improve and surpasses 1 after certain cycles. This is due to the fact that the demand network of a
query is refined gradually and the query is processed with each intermediate network. As a result,
more users’ profiles (than the pre-defined size of demand network) are actually used to process
the query. This leads to better results than those obtained in the ideal demand network with fixed
number of similar neighbors.
The difference between DT2P2 and “oNet+oNet” confirms that the neighbors in the demand net-

work are more likely to provide, through gossiping, other good users for refining the demand net-
work. While fetching the profiles from the offer network of the gossiped users allows the querier to
discover more good neighbors at once for her demand network as shown by the difference between
DT2P2 and “dNet+dNet”.
Figure 3.15 shows the result improvement with DT2P2 for different queries. Queries are grouped

according to their similarities with the querier’s profile, noted as S. We observe that the more the
query is similar to the profile, the faster the relative recall reaches 1 during the gossip. Encour-
agingly, regardless of the similarity, the ideal result quality of our on-line personalization can be
obtained within 15 cycles. The improvement is more significant for the queries that are less corre-
lated to the querier’s profile. This further confirms that our on-line personalization is very effective
to cope with emerging interests of the queriers.

3.3.5.2 Effectiveness of cache

Dataset and setup We evaluate the benefit of using cache in DT2P2 with the trace from delicious.
The CiteULike trace we used does not contain any information about the occurrence time of each
tagging action as well as the arriving time of each query. It is thus unsuitable to mimic our dynamic
management of the cache. In contrast, in the delicious trace, each tagging action is associated with
the date indicating when it occurred.
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Figure 3.15: Efficiency of query processing

We focus on the experiments the tagging actions occurred from 2007-01-01 to 2008-12-31. We
use the tagging actions from 2007-01-01 to 2008-06-30 to build the profile of each user and the
tagging actions from 2008-07-01 to 2008-12-31 to generate the queries for each user. We randomly
pick 10, 000 users, who has at least 10 tagging actions in her profile and at least 2 queries, from the
entire delicious trace we have (Section 3.2.6.1). The queries for each user are generated by picking
each item tagged by this user from 2008-07-01 to 2008-12-31 and forming the corresponding query
with the tags used by this user to tag that item. The last query of each user is used to evaluate the
quality of the top-10 results and all the previous ones are used to gradually feed the cache.
As described above, only the queries issued at most TTL days prior to the current query (and

their demand networks) are kept in the cache. Figure 3.16 depicts the distribution of queries that can
be used to feed the cache given different TTL in our dataset. As expected, the large the TTL, the
more queries can be used to feed the cache of each user. As the dataset we use is relatively sparse,
for TTL = 30 days, only 18% users have more than 10 queries issued prior to the current query.
within 30 days. We thus focus in our experiments on TTL = 180 days, which guarantees that 65%
users have more than 10 candidate queries to feed their caches.

Result quality We evaluate the effectiveness of the strategy used in DT2P2 to feed the cache by
comparing the gain in recall at each cycle to 2 other strategies. The first is the well-known LRU ,
which in our case only keeps the most recently seen queries and their demand networks in the cache.
The second is referred to as LeastRelevant. It keeps the queries whose cosine similarity with the
querier’s profile are minimum in the cache. The underlying intuition is that the cache can serve
as a complement if the current query is not correlated to the querier’s profile. Otherwise, the offer
network of the querier should be good enough to act as the initial demand network. We define the
gain in recall at the cth cycle as

Gain(c) =
Rk(c)

R0
k(c)

,

where R0
k(c) is the recall at the cth cycle if no cache is used, where the querier always considers her

offer network as her initial demand network to process a query. The larger Gain(c), the better the
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Figure 3.16: Distribution of candidate queries with different TTL
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result quality. Gain(c) = 1 means the quality of the top-k results at the cycle c is the same as no
cache is used.
Figure 3.17 compares these 3 strategies. The size of the cache is set to 5 so that different queries

can be selected to feed the cache according to different strategies. The 0th cycle corresponds to the
query processing within the initial demand network. Using cache significantly improves the recall
at the first 2 cycles. The gain decreases as the cache only serves as the initial demand network for
certain queries. During the gossip, more qualified neighbors can be gradually identified and added
to the refined demand network regardless of its initial state. As a result, after the 3rd cycle, the result
quality improves in almost the same rate as no cache is used. Yet, the cache allows enhancing the
user experience by accelerating the query processing at the beginning.
Figure 3.18 further evaluates the impact of cache size on the query processing. Not surprisingly,
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Figure 3.18: Impact of cache size

the larger the cache, the better the result quality in the initial demand network and the faster the
result quality improves during the first 2 cycles. However, as shown in Figure 3.16, the number of
candidate queries to feed the cache decreases quickly with the size of the cache. This explains why
the difference between difference sizes of the cache is relatively small. In the following experiments,
we focus on the setting with cache size 5.

To understand the rationality underlying the initial demand network selection mechanism in
DT2P2, we are now interested in the impact of the query similarity on the efficiency of the query
processing. We group the queries that benefit from the cached demand network according to their
similarity with the corresponding selected queries or with the querier’s profile respectively. Figure
3.19 (a) shows that the more the current query is similar to the selected query, the better the result
quality in the initial demand network and the faster the result quality improves. This conveys that it
is reasonable to choose the demand network of the most similar query as the initial demand network.
In contrast, Figure 3.19 (b) reveals that the less a query is similar to the querier’s profile, the more
it can benefit from the cache. This result is confirms our expectation by using the cache.

Impact of dynamics on cache As the users in a peer-to-peer system is very dynamic in the sense
of leaving the system and changing their tagging profiles, we are now interested in how such dy-
namics influence the query processing, especially when the cache is used.

User departure Users in a peer-to-peer system can leave and join the system at any time. The
left of users would make their profiles unavailable for the cached demand networks where they are
involved in. As the offer network of each user is periodically maintained, the user departure mainly
influences the query processing when a cached demand network is selected as the initial demand
network as described in Section 3.3.4.
We assume that a random portion of users (p) leave the system simultaneously. We observe from

Figure 3.20 that the more users leave the system, the more the result quality degrades in the initial
demand network (Cycle 0). Yet, if only 10% users leave, the result quality is still better than that
if no cache is used (Gain(0) > 1). This is because the proportion of leaving users in each cached
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Figure 3.19: Impact of query similarity
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Figure 3.20: Impact of user departure

demand network is comparable to the overall proportion of leaving users. As a result, the large
proportion of remaining users in each demand network can provide enough information to process
the query. Even if the left of 50% users significantly degrades the result quality, after the 1st cycle
of gossip, the leaving users are replaced by the active ones. Since then the result quality continues
improving as no user leaves.

Interest change The tagging profile of a user in collaborative tagging system evolves when
she tags new items. The offer network evolves accordingly by replacing some neighbors with more
qualified ones that reflect the new trends exhibited in her new profile. Yet, the demand networks
in the cache do not change until it is expired or replaced. When a user issues a query, we wonder
whether it is better to consider her offer network or a probably “out-of-date” demand network as her
initial demand network for this query. To this end, we evaluate the impact of the interest change on
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Figure 3.21: Impact of interest change

the result quality.
We mimic the change of tagging profiles as follows: giving a time period of d days, for a query

issued by a user during this period, if the desired item for this query is found in the top-10 results,
the tagging actions related to this item are added to the profile. The underlying intuition is that when
a user discover a new item through querying, she is likely to tag this item by the tags used in the
query to describe it. The larger d, the more tagging actions are added to the profile and the more the
changes.
Figure 3.21 depicts the impact of interest change on the result quality. When the users’ profiles

change, the result quality based on cache is always better than the case where no cache is used
(Gain > 1). This is due to the fact that when new tagging actions that do not use the tags in the
query are added to the profile, the importance of the query tags in the profile vector decreases. The
offer network is persistently maintained so that the neighbors in it become less correlated to the
query tags. In contrast, the demand networks in the cache are selected if they give more emphasis
on the query tags. Encouragingly, the more the users change their profiles, the better the result
quality benefits from the cache. This conveys the effectiveness of using cache in DT2P2 to boost the
query processing with on-line personalization.

3.3.5.3 Cost

Storage requirements As presented above, in our system, each user stores (i) profile vectors and
entire profiles for the neighbors in her offer network and (ii) profile vectors for the neighbors in the
demand networks in her cache. We use an objective metric, similar to that in [12], to measure the
space requirement for each user. For a profile vector, each element can be presented as an entry in
the form of 〈tag,weight〉 and the required storage can be estimated by the total number of entries
it contains. A profile is a list of tagging actions. Similarly, the space required for storing a profile
can be estimated by the number of tagging actions it contains.
Figure 3.22 shows the storage requirement for each user. The total length of the profiles in the

offer network, the total length of the profile vector in the offer network and the cache are ranked
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Figure 3.22: Storage requirement

respectively. We observe that the required space for a user mainly depends on the profiles in her
offer network, which is about twice the space for maintaining the cache. Using the cache improves
the query processing without imposing much overhead in storage.

Bandwidth Due to the periodical maintenance of the offer network and the burst communication
for refining the demand network and processing the query, data are continuously exchanged in the
system. As the maintenance of offer network is quite similar to that in the lazy mode of P4Q, we
focus here on the bandwidth consumption due to the query processing and emphasize the impact of
cache on it.
Two kinds of information are transmitted during the query processing: (i) the profile vectors for

refining the querier’s demand network and (ii) the partial result lists of each new neighbors in the
demand network for processing the query. Each element in the profile vector can be presented as an
entry in the form of 〈tag,weight〉. The bandwidth due to the transmission of the profile vectors thus
mainly depends on the total length of these vectors. Similarly, each partial result list is composed
of entries in the form of 〈item, score〉. Considering that the size of an item is application specific,
we also use the total length of these partial result lists as a measure of the bandwidth consumption
for transmitting them.
Figure 3.23 illustrates the total number of entries received by each querier when processing her

query if no cache is used. As the querier stores the profiles of the neighbors in her offer network, no
transmission is required to process the query in her initial demand network. The total length of the
partial result lists decreases quickly and this explains why the improvement of query results mainly
occurs in the first few cycles. The transmission of profile vectors remains relatively stable because
at each cycle the same number of such vectors are transmitted until the query is solved.
Figure 3.24 shows how the bandwidth varies if the cache is used by each user. As we observed

from Figure 3.23, the profile vectors transmitted at each cycle is relatively stable, only the transmis-
sion of the partial result lists is compared in Figure 3.24. When the cache is used, the transmission is
mainly due to the query processing within the initial demand network (Cycle 0) because the querier
needs to contact certain neighbors in this network to fetch the partial result lists derived from their
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Figure 3.23: Transmission without cache
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Figure 3.24: Transmission of partial result lists

profiles. In the following cycles, less information is transmitted when the cache is used. In fact,
the total quantity of transmission is similar in both cases. Using the cache allows discovering the
candidate items earlier and thus improving the result quality faster.

3.3.5.4 Summary

Our evaluation demonstrates that on-line personalized query processing can be efficiently achieved
if the queriers virtually move in the system through gossiping with their neighbors. The same results
as those obtained in a centralized system (DT2) with global information can be obtained within 15
gossip cycles. If the cache, containing at most 5 cached demand networks, is used, the top-10
results improve more than 20% for the first few cycles. If the query corresponds to the emerging
interests of the querier, this improvement can be up to 2.8 times better. The cache also guarantees
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better results (10% per cycle) when the users interests change. There is a trade-off between the
query response time and the bandwidth consumption as the quantity of data transmitted in each
cycle is fixed (Figure 3.23). The shorter a gossip cycle, the more data is need to be transmitted for
each time unit. Assuming that the querier gossips every 1 second for refining her demand network,
which gives the querier enough time to assess the intermediate results, 15 seconds would be enough
to answer a query. This in turn requires on average a bandwidth of 63 Kbytes per second. More
adequate bandwidth would surely accelerate the query processing.

3.3.6 Concluding remarks

Personalized top-k processing in collaborative tagging systems has attracted a lot of research in-
terests in recent years. Both centralized [12, 66, 103] and decentralized [117, 118, 119] approaches
have been proposed to improve the effectiveness of the query processing in such environment. All
of these approaches rely on implicit affinities among users to personalize the query processing. Yet,
only the past tagging behaviors of the users are actually considered, which makes it difficult to fulfill
the emerging interests of the queriers.
The on-line personalization approach DT2 proposed in Section 3.2 addresses this problem and

copes well with the queries reflecting emerging interests. Query processing is personalized by
associating each querier with a set of social acquaintances whose tagging profiles are correlated to
the querier’s hybrid interest reflected in both her past tagging behavior and the query. This on-line
personalization is achieved in a centralized system by doing top-k twice.
The DT2P2 protocol we proposed in this section relies on gossip to discover and leverage the

implicit relations defined by the hybrid interest to provide the on-line personalized top-k processing
in peer-to-peer systems. As we have shown in the evaluation, this approach is very efficient to
perform the query processing and guarantees the same result quality as DT2.
We also use a cache of demand networks to accelerate the query processing. Caching is a useful

technique for Web search engines that are accessed by a large number of users. It enables shorter
average response time and reduces the workload on the search engines. In general, there are two
possible ways to use a cache: caching the answers [120,121] or caching the inverted lists [122,123].
The advantages and disadvantages of both ways are surveyed in [124]. The way we use the cache is
inspired from the inverted lists caching but different from it. Caching the demand networks is more
flexible in the sense that it does not aim to guarantee the results but only provides some access points
that shorten the path from the querier to the good results. The efficiency of this demand network
cache is conveyed by our evaluation.
DT2P2 achieves on-line personalization through gossiping in a fully decentralized collaborative

tagging system. Yet, we believe there is room to improve its performance. For instance, instead of
fetching all the profiles that contain at least one tags of the query, the querier can forward both the
query and her profile vector to the user gossiping with her. In this way, this user can pre-compute
the qualification of the neighbors in her offer network and only send those who are likely to be
neighbors in the querier’s demand network. This is expected to reduce the bandwidth consumption
during the gossip. In addition, the querier has no need to fetch the entire partial result lists. The
algorithms of TPUT family [73, 74, 75, 76] can be easily extended to this context for saving the
bandwidth during the query processing.
We focus in this work on how to efficiently achieve the same on-line personalization as in a

centralized system. It would be interesting to compare DT2P2 with other approaches [82, 96, 99]
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that also process top-k queries in peer-to-peer systems. These approaches differ from DT2P2 as they
all retrieve relevant information through query routing, which may lead to significant difference in
term of query response time and bandwidth consumption.

3.4 Conclusion

We presented in this chapter two algorithms, DT2 and DT2P2, that provide personalized top-k pro-
cessing on-line in centralized and peer-to-peer collaborative tagging systems respectively. We de-
scribed the design and the implementation of the two algorithms and investigated their performances
using real datasets. The experimental results assess that on-line personalization is promising to fit
the diversity of user preferences as well as their emerging interests. Performing the on-line person-
alization by doing top-k twice in a centralized system allows to narrow down the query processing
while decentralized solution allows this on-line personalization to go further in a more scalable
manner.
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CONCLUSION

4.1 Contributions

The Web 2.0 revolution has transformed the Internet from a passive read-only infrastructure to an
active read-write platform. The content of the Web 2.0 applications, especially that of the collabo-
rative tagging systems, is generated by every participant and is annotated with their freely chosen
tags. As a result of the rapidly growing quantity of such content, the user generated taxonomy, aka
folksonomy, has exposed its huge potential for search content in collaborative tagging systems. But
such a search can turn into a nightmare since the user freedom to choose tags reveals a big source
of ambiguities.
Personalization is an appealing way to disambiguate the search, as well as fulfill the diverse user

preferences hidden behind the queries. This is achieved in this thesis by exploiting the information
from the social acquaintances sharing similar interests with each querier.
We first proposed the protocol P3K, which decentralizes a state-of-the-art approach [12] and

achieves off-line personalized top-k processing in peer-to-peer systems. A gossip-based protocol
is employed to capture the implicit relationships among users and organize similar users in query-
efficient personal networks. Relevant information is locally maintained by each user to enable
efficient processing for her own queries. A personal network limiting procedure is also proposed.
P3K alleviates the scalability problem faced by the centralized solution, while preserving almost the
same result quality.
The second protocol we proposed, P4Q, goes one step further and enhances the system perfor-

mance in terms of storage, bandwidth and dynamics adaptability. P4Q relies on a bimodal gossip
to personalize the query processing. The maintenance of personal networks is performed in a lazy
mode, with a fairly low frequency to avoid overloading the system. The query processing is per-
formed in an eager mode, with increased frequency to reduce the latency of the query processing.
Queries are gossiped among social acquaintances and processed collaboratively on-the-fly. To limit
the bandwidth consumption, the gossip of profiles is decomposed in 3 steps, relying on a similarity
estimation mechanism based on profile digests encoded in Bloom filters. A response mechanism,
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which actively copes with the profile changes of each user and guarantees efficient personal network
refreshment in terms of updating the stored profiles and discovering new neighbors, is also incorpo-
rated in P4Q. P4Q provides efficient off-line personalized query processing in fully decentralized
systems with enhanced performance.
Since users may issue queries that reflect their emerging interests and are difficult to satisfy with

the off-line personalization, we proposed an on-line personalization scheme that relies on a hybrid
interest model to improve the search.
To apply the proposed on-line personalization scheme in centralized systems, the DT2 algorithm

was proposed. DT2 performs personalized query processing at query time by doing top-k twice.
The first top-k processing relies on a threshold algorithm to determine the personal network of the
querier according to her hybrid interest. The second top-k processing screens the items possessed
by the top-k users to obtain the query results. The users are folded into the personal networks in an
incremental manner to guarantee the balance between the result quality and the search efficiency. In
fact, DT2 provides high quality results for both ordinary and emerging interests and narrows down
the processing in terms of storage and time.
To apply the same on-line personalization scheme in peer-to-peer systems, we further proposed

the DT2P2 algorithm. DT2P2 relies on a gossip-protocol to maintain a multi-objective overlay,
where the offer network of each user associates her with social acquaintances sharing sustainable
interests and the demand network defined by her hybrid interest serves the query processing. Queries
are iteratively processed within the demand network at each gossip cycle. A cache of demand
networks is used to accelerate the query processing. DT2P2 efficiently provides the same result
quality as DT2 without any global information. It also exhibits good performance in the face of user
departing and interest change.
To summarize, the contribution of this thesis lies in (i) the realization of the off-line personalized

query processing in large-scale peer-to-peer systems; (ii) the proposition of the on-line personal-
ization query processing as well as a centralized realization; (iii) the realization of the proposed
on-line personalization in large-scale peer-to-peer systems. It is interesting to notice that, although
the proposed P4Q and DT2P2 algorithms aim to provide different personalization, be they off-line
or on-line, the underlying mechanisms are similar. Better performance might be expected through
their combination: queries reflecting ordinary interests of the querier could be processed by gossip-
ing the query while queries reflecting emerging interests could be processed by building a demand
network. This is potentially part of the future work.

4.2 Perspectives

We discuss in this section further issues that we believe to be interesting to explore. We foresee our
future research along two axes: anonymous query processing and persistent query processing.

Anonymity in personalized peer-to-peer query processing Monitoring and storing any kind of
user activity is a sensitive issue. Although collaborative tagging sites, as well as the most of Web
2.0 applications, are collaborative by nature, some users may not want to see their interests exposed.
In centralized approaches, the tagging behavior of every user is known to the central server but
no explicit association between a user and her interest is available to other users. A decentralized
approach prevents the danger of a central authority making commercial usage of the profiles of all
users, but might disclose the profiles of users to other users. Indeed, the proposed protocols (P3K,

108



Perspectives

P4Q and DT2P2) rely on users exchanging profiles in a peer-to-peer manner to maintain the personal
network and processing the queries.
Interestingly, in P3K although the personalized inverted lists of each user depend on her personal

network, users do not need to explicitly know from whom this information comes. The anonymity
can be preserved by decoupling the user identity (e.g. contact information like IP address) and the
profile during the gossip. Besides the one discussed in [125], there are two possibilities to achieve
such decoupling:

• Full decoupling: Each user only maintains a set of random user identities and a set of random
profiles for her random view. At each gossip, a user gossips with a random neighbor and
exchanges random profiles with her. The personal network is fed by the appropriate profiles
but there is no indication whose profiles they are. This strategy can guarantee the anonymity
but may take more time for each user to build her personal network.

• Partial decoupling: Each user maintains a set of random user identities in her random view and
the right profiles in her personal network. At each gossip, a subset of profiles in the personal
network is exchanged with a random neighbor. This strategy may improve the efficiency of
building the personal network but it would decrease the anonymity. A user who receives the
profiles can infer the interests of the user gossiping with her since the received users share
similar interests with that user.

In practice, not all the people care about anonymity. In contrast, some users might even consider
sharing their interests as a way to make new friends. It is thus interesting to investigate the impact
of these two possibilities on the anonymity and the efficiency of the query processing in P3K.
However, for P4Q and DT2P2, queries are collaboratively processed by several users. Receiving

directly the partial results contributed by these users would expose their interests to each other. To
address this problem, one can think of transmitting the query and the partial results via some third
part users randomly selected from the system. Some encryption strategies need be considered to
make sure that the third part users are not able to associate the user identity with the query or the
partial results. This represents an interesting perspective that can be explored.

Persistent personalized peer-to-peer query processing The protocols proposed in this thesis
aim to provide instant query processing, i.e., each query is processed only once with the information
available in the system at query time. Yet, in Web 2.0 applications, as well as collaborative tagging
systems, new contents are created and shared at a very high pace. As a consequence, users may be
willing to keep receiving the most recent results related to their queries. The ‘following’ operation in
Twitter is a nice attempt for users to keep up with the most up-to-date information they are interested
in.
Persistent search allows users to issue the query once and receive real-time updates whenever

there is a new result for that query. This ensures that users are always on the pulse of what is going
on, while liberating the users from repeating the query themselves.
Publish/Subscribe systems [126] are designed to disseminate messages in peer-to-peer environ-

ments, from users (peers) issuing events (publisher) to users interested in those events (subscriber).
Subscribers typically register with the system the type of events they are interested in by submit-
ting a persistent query for instance. Publishers simply post events. The system is responsible for
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delivering the right events to the right users. These systems are very effective to deal with persis-
tent queries. Yet, with the personalization requirement, it would become difficult for the system
to maintain fine-grained information about the preferences of each user and process the queries
efficiently.
In DT2P2, the personalized queries are processed on-line. A querier virtually “moves” in the peer-

to-peer system by refining her demand network, which allows her to approach the desired results
gradually. It is natural to extend this idea to persistent query processing. In other words, different
from Publish/Subscribe systems, where the queriers passively wait for incoming messages, they can
move, like DT2P2 users, in the network to actively discover the results. The only difference lies in
the fact that the demand network of a query is persistently maintained as long as the querier does
not abolish that query. Putting this to work is however challenging. Several critical issues should be
considered:

• Similarity measure: An adaptive metric that measures the similarity between users should be
defined. Since the querier’s demand network is refined based on this metric, it is important to
define and dynamically adjust this metric in such a way that the most recent changes in the
system (that match the query) could always be involved in the resulting demand network. To
this end, in addition to the profile and the query, many other factors might need to be taken
in to account, including the quality of the current query results, the arrival rate of the new
results, the activity level of the neighbors, etc.

• Cost issue: A user may issue several persistent queries during a same period. Maintaining a
demand network for each query might be costly in terms of bandwidth and storage. Therefore,
it would be interesting to investigate some mechanisms that exploit the similarity among
queries and refine their demand networks in a more efficient way to reduce the unnecessary
cost.

Despite these challenges, we believe that persistent personalized query processing in fully decen-
tralized systems is a promising way to efficiently improve the user satisfaction in nowadays highly
dynamic and prolific networks, and it is worth exploring.
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Les réseaux sociaux, les blogs, les wikis, les sites de partage de contenus sont toutes des facettes du
Web 2.0 qui dépendent des utilisateurs dans le service qui rendent. Dans cette nouvelle approche
du Web, les utilisateurs ne sont plus uniquement des lecteurs passifs mais ils peuvent aussi donner
leur avis sur les contenus du Web, interagir mais aussi fournir le contenu. Le contenu généré par les
utilisateurs constitue une proportion considérable du Web et devient une source d’informations de
plus en plus riche.
Une des applications émergentes du Web 2.0 est l’annotation collaborative de contenu qui permet

aux utilisateurs de donner leur avis sur le contenu du Web en associant aux éléments de contenu
des mots clés, appelé tag. Cela permet aux utilisateurs de créer et de gérer librement des tags
pour annoter le contenu, qui aide les utilisateurs à se souvenir et organiser les informations, comme
le courrier électronique (Gmail), sites web (delicious), photos (Flickr), vidéos (Youtube), blogs
(Technorati) et des documents académiques (CiteULike). Ces tags peuvent ensuite être utilisés par
des utilisateurs pour rechercher cette information.
Une caractéristique essentielle de l’annotation collaborative est de favoriser la navigation sociale.

Les utilisateurs n’ont pas de contrainte sur les mots clés qu’ils utilisent pour décrire une ressource.
Ils peuvent même inventer leurs propres tags ou leur associer une signification personnelle pour
faciliter l’organisation de leurs ressources. Selon l’analyse de [14], seulement 50% des URLs an-
notés dans delicious contiennent dans leur page les tags utilisés pour les annoter. Ceci révèle que
l’utilisation des tags générés par les utilisateurs est un bon complément à l’indexation du texte des
pages Web. En ce qui concerne les photos et les vidéos qui ne contiennent pas de texte, les tags
générés par les utilisateurs fournissent une description exploitable par la procédure de recherche.
Ceci aurait un impact important sur l’amélioration de la qualité de la recherche.
Pourtant, effectuer efficacement des recherches en utilisant les tags générés par les utilisateurs

est difficile, en particulier lorsque ces recherches engendrent des ambiguïtés. Par exemple, si un
informaticien recherche “matrix” dans Google, il est probablement à la recherche de notions mathé-
matiques. Cependant, les premières pages fournies par Google sont toutes sur le film “Matrix”. En
revanche, un fan de Keanu Reeves pourrait être à la recherche de ce film. La nature non structurée
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des mots clés, l’absence d’une ontologie fixe et la diversité des préférences des utilisateurs rendent
la recherche plus difficile parce que la valeur d’une même information peut varier d’un utilisateur
à l’autre. Par exemple, le même tutoriel pour “Latex” peut être très intéressant pour un expert
qui recherche des améliorations spécifiques, mais difficile pour un débutant à cause de l’absence
d’exemples intuitifs.
La personnalisation est une méthode prometteuse dans ce contexte pour éviter ces écueils tout

en limitant l’espace de recherche à un sous-ensemble d’informations pertinentes, permettant de
lever l’ambiguïté sur le traitement des requêtes. Nous effectuons donc nos travaux dans le cadre
des systèmes collaboratifs et nous présentons dans cette thèse, comment effectuer une recherche
efficace dans de tels systèmes en personnalisant le traitement des requêtes avec les tags générés par
les utilisateurs.

Objectifs et positionnement

Plusieurs approches personnalisées ont été proposées pour exploiter les réseaux sociaux figurant
dans des systèmes collaboratifs au sein des procédures de recherche [65, 99]. Jusqu’à présent, ces
approches ont porté principalement sur les réseaux sociaux explicites, établis a priori, indépendam-
ment des profils de l’utilisateur (par exemple Facebook). Nous plaidons pour l’amélioration de
la qualité de la recherche d’information en exploitant la corrélation implicite entre les utilisateurs
ayant des intérêts similaires. La motivation vient de l’observation que des personnes inconnues,
mais avec qui nous partageons de nombreux intérêts, peuvent être très utile pour rechercher sur le
Web.

Des approches [67, 60, 72] très élégantes ont récemment été proposées pour exploiter cette per-
sonnalisation implicite par des modèles sociaux. Diverses notions d’affinités ont également été
développées pour explorer les similarités entre les utilisateurs [63, 64, 66, 113]. Ces travaux précé-
dents confirment que les relations implicites entre les utilisateurs sont très efficaces pour améliorer la
qualité des recherches. Pourtant, ces travaux s’appuient essentiellement sur le comportement passé
des utilisateurs pour en déduire leurs préférences, tels que leur historique d’annotation [67, 63],
leur historique de recherche [64, 72] ou leur historique de navigation [60]. Il est donc difficile de
satisfaire les intérêts émergents des utilisateurs. Bien que la notion de l’histoire récente a été pro-
posée dans [72] et [114], ces approches permettent seulement d’obtenir de bons résultats lorsque les
requêtes sont corrélées aux événements récents. Nous proposons une nouvelle méthode de person-
nalisation qui est appropriée pour toutes sortes de requêtes.
Les solutions centralisées posent naturellement des problèmes de passage à l’échelle. Première-

ment, le maintien des informations précises sur les utilisateurs est extrêmement consommatrice
d’espace. En vertu de l’estimation de [12], plusieurs téraoctets sont nécessaires pour permettre de
personnaliser le traitement de requêtes top-k dans un système comme delicious contenant seule-
ment 100,000 utilisateurs. Considérant que delicious a actuellement des millions d’utilisateurs,
un système de recherche centralisé de personnalisation semble impossible à mettre en place. De
plus les utilisateurs des systèmes collaboratifs sont très actifs; ils changent leur profil en effectuant
constamment de nouvelles annotations sur de nouveaux contenus. Il est difficile pour un système
centralisé de prendre en compte en temps réel ces changements.
Nous soutenons qu’un système de recherche dans les réseaux sociaux implicites appelle à des so-

lutions décentralisées. En plus d’être capable de passer à l’échelle et de faire face à des changements
constants des profils des utilisateurs, les solutions décentralisées évitent le danger des autorités cen-
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trales qui pourraient abuser des informations à leur disposition. Les limites des systèmes centralisés
ont été illustrées par l’exploitation de profils d’utilisateurs à des fins commerciales, ou par les pannes
de déni de service Facebook, Twitter et LiveJournal suite à des attaques en août 2009 par exemple.
Par conséquent, nous visons à assurer le traitement à large échelle des requêtes personnalisées de
façon efficace pour des réseaux sociaux implicites en utilisant le paradigme pair-à-pair.
A notre connaissance, seuls quelques travaux abordent le problème de personnalisation dans des

systèmes décentralisés. Malheureusement, ces approches ne sont pas assez satisfaisantes car soit
elles imposent des contraintes sur les activités de l’utilisateur [98] ou elles exigent des liens supplé-
mentaires entre les données [97]. Nous nous concentrons principalement sur la façon d’identifier
et d’exploiter les aspects sociaux dans le traitement des requêtes de top-k de façon à améliorer la
qualité des résultats en pénalisant le moins possible les utilisateurs peu actifs vis-à-vis des utilisa-
teurs qui participent beaucoup au système. Plus important encore, contrairement aux travaux cités
précédemment, nous allons concevoir des algorithmes spécifiques aux systèmes collaboratifs.

Plan de la thèse

Dans cette thèse nous visons à fournir une recherche efficace pour les applications duWeb 2.0. Nous
mettons en évidence la possibilité d’utiliser les tags générés par les utilisateurs pour personnaliser la
recherche et l’applicabilité de la recherche personnalisée dans les environnements entièrement dé-
centralisés. Dans ce travail, nous nous concentrons sur les systèmes collaboratifs, où les utilisateurs
ajoutent des métadonnées sous la forme de tag pour décrire et partager le contenu. Plus précisément,
nous considérons le comportement des utilisateurs comme indicateur de leurs préférences et asso-
cions à chaque utilisateur un ensemble d’autres utilisateurs partageant des intérêts similaires afin de
personnaliser le traitement des requêtes top-k. Les utilisateurs similaires peuvent être identifiés, soit
hors ligne ou en ligne selon des exigences de personnalisation.
Cette thèse propose de nouveaux algorithmes permettant d’effectuer des recherches personnal-

isées de manière efficace dans des systèmes dynamiques, centralisés ou décentralisés, selon deux
axes majeurs : (i) la personnalisation hors ligne qui s’appuie sur le comportement passé des util-
isateurs et (ii) la personnalisation en ligne qui s’appuie sur le comportement passé et la requête en
cours. Par conséquent, cette thèse est organisée en deux chapitres principaux (chapitre 2 et chapitre
3). Ces deux chapitres sont respectivement dédiés à la personnalisation du traitement des requêtes
hors ligne et en ligne.
Dans le chapitre 2, nous présentons d’abord l’algorithme P3K, qui décentralise une approche

existante et réalise le traitement personnalisé des requêtes top-k hors ligne dans les systèmes pair-à-
pair. Ensuite, nous présentons P4Q, une extension de P3K qui améliore les performances du système
en termes de stockage, bande passante et la robustesse en distribuant le traitement des requêtes.
Dans le chapitre 3, afin d’améliorer encore la qualité des résultats pour les requêtes représentant

les intérêts émergents des utilisateurs, et donc non représentés dans son profil, nous proposons un
modèle hybride d’intérêt, prenant en compte à la fois le profil des utilisateurs mais également la
requête elle-même. Nous proposons une solution à la fois en centralisé, l’algorithme DT2, qui
effectue une recherche de type top-k à deux reprises. L’algorithme DT2P2 exécute efficacement la
personnalisation en ligne de manière entièrement décentralisée.
Avant les deux chapitres principaux, dans le chapitre 1, nous introduisons d’abord les systèmes

collaboratifs et les systèmes pair-à-pair à grande-échelle dans lesquels nos recherches sont menées.
Ensuite, nous présentons les principes fondamentaux des algorithmes épidémiques et des algo-
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rithmes du traitement des requêtes top-k, utilisés respectivement pour la construction des réseaux
sociaux et le traitement des requêtes top-k. Nous finissons ce chapitre en présentant des approches
existantes qui personnalisent le traitement des requêtes top-k dans les systèmes centralisés ou dé-
centralisés, puis discutons comment notre travail diffère de ces travaux précédents.
Enfin, dans le chapitre 4, nous concluons en réfléchissant aux améliorations futures des algo-

rithmes décentralisés proposés en terme de l’anonymat au sein de la personnalisation. Nous présen-
tons également de nouvelles fonctionnalités, comme le traitement des requêtes persistantes, qui
pourraient être intégrées à l’algorithme DT2P2 pour le rendre plus riche. Nous décrivons quelques
critères qui permettent de mesurer des similarités entre utilisateurs en temps réel et satisfaire les
besoins des utilisateurs d’une manière continue et efficace.

Contributions

Les contributions de cette thèse sont récapitulées par le tableau A.1. Elles se décomposent en deux
axes, personnalisation hors ligne et personnalisation en ligne, correspondant aux deux chapitres
principales de cette thèse. Parmi les algorithmes proposés, P3K et P4Q réalisent la personalisation
hors ligne dans les système décentralisés et DT2 et DT2P2 réalisent la personnalisation en ligne dans
les système centralisés et décentralisés respectivement. Nous détaillons les différentes contributions
de cette thèse selon les deux axes dans la suite.

Table A.1: Positionnement des contributions

Personnalisation hors ligne Personnalisation en ligne

Centralisé DT2

Décentralisé P3K, P4Q DT2P2

Traitement des requêtes hors ligne

Le traitement personnalisé hors ligne des requête top-k a été proposée, pour la première fois,
dans [12] pour les systèmes collaboratifs centralisés. L’idée est de construire et de maintenir
pour chaque utilisateur, hors ligne, un réseau personnel des utilisateurs ayant des comporte-
ments d’annotation similaires pour traiter sa requête. Plus précisément, étant donné une requête
Q = {t1, ..., tn}, émise par un utilisateur ui avec un ensemble de tags t1, ..., tn, le traitement per-
sonnalisé de la requête Q vise à retourner un ensemble d’objets ayant les scores les plus élevés dans
le réseau personnel de ui. La personnalisation consiste à limiter l’espace de recherche à un sous-
ensemble du système, c’est à dire des utilisateurs ayant des intérêts similaires avec l’interrogateur.
Nous appelons cela une personnalisation hors ligne car le réseau personnel de chaque utilisateur est
construit indépendamment du traitement des requêtes. En d’autres termes, le réseau personnel de
chaque utilisateur est pré-calculé et connu au moment de la requête. Une fois qu’un utilisateur émet
une requête, le système n’a besoin que de traiter cette requête au sein de son réseau personnel pour
obtenir les résultats personnalisés.
Toutefois, les solutions centralisées pour mettre en œuvre cette personnalisation s’avèrent diffi-

ciles compte tenu du volume important d’informations qui doit être maintenu pour chaque utilisateur.
Par exemple, la stratégie la plus simple dans [12], dite Exact, consiste à maintenir une liste inversée
par paire 〈utilisateur, tag〉. Le score d’un objet dans une liste inversée 〈ui, tn〉 dépend de la façon
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dont cet objet a été annoté par les utilisateurs dans le réseau personnel de ui. Par conséquent, si un
tag est utilisé dans les réseaux personnels de tous les utilisateurs, autant de listes inversées devront
être maintenues. Ceci nécessite énormément d’espace en raison des informations massivement du-
pliquées. Des solutions alternatives pour économiser l’espace de stockage sont possibles, mais le
temps de traitement est augmenté et ce n’est pas très souple quand les utilisateurs sont dynamiques.

L’algorithme P3K Pour tenir compte de ces défis, nous proposons d’abord l’algorithme P3K, qui
décentralise l’approche Exact dans [12] et réalise le traitement personnalisé des requêtes top-k hors
ligne dans les systèmes pair-à-pair. Dans P3K, chaque utilisateur découvre et maintient périodique-
ment un ensemble de voisins qui forment son réseau personnel. Les informations contenues dans le
profil des voisins dans le réseau personnel d’un utilisateur sont organisées dans les listes inversées
pour chaque paire 〈utilisateur, tag〉 et stockés par elle-même. Chaque utilisateur traite localement
ses propres requêtes avec les listes inversées stockées. Ce contrôle total du réseau personnel permet
une personnalisation complète du traitement de la requête. Plus important encore, la capacité de
traitement et de stockage augmente d’une façon linéaire avec le nombre d’utilisateurs en évitant les
goulets d’étranglement potentiels inhérent à un seul serveur.
Un protocole épidémique est utilisé pour capturer les relations implicites entre les utilisateurs et

organiser les utilisateurs similaires dans le réseau personnel de chaque utilisateur d’une manière
dynamique. À chaque période, chaque utilisateur gossipe avec un de ses voisins. Elles échangent
leurs voisins dans leurs réseaux personnels. Chaque utilisateur sélectionne alors les utilisateurs les
plus similaires pour mettre à jour son réseau personnel. Une fois que ces réseaux personnels sont
mis en place, les utilisateurs recueillent les informations pertinentes de leurs voisins localement et
traitent leurs requêtes en utilisant un algorithme classique de top-k, dénommé NRA [46, 52]. Sans
contrainte de taille sur le réseau personnel, il peut croître indéfiniment. Cela peut générer un grand
nombre d’échanges d’informations et augmenter les besoins de stockage. Dans la pratique, un
sous-ensemble des utilisateurs soigneusement sélectionnés est suffisant pour fournir la plupart des
informations utiles pour le traitement des requêtes top-k. Nous limitons donc le réseau personnel de
chaque utilisateur à une certaine taille de sorte que seuls les utilisateurs avec les plus grandes sim-
ilarités soient impliqués dans le réseau personnel d’un utilisateur donné. À cet effet, une nouvelle
mesure est proposée pour affiner les similarités des voisins dans le réseau personnel illimité et faire
apparaître les plus pertinents qui forment le réseau personnel de P3K.
Nous évaluons P3K, à l’aide de PeerSim [105] avec un ensemble de données delicious de 10,000

utilisateurs collectés en janvier 2009. Les résultats expérimentaux montrent que si tous les utilisa-
teurs qualifiés sont conservés dans le réseau personnel, après 50 cycles de gossips, on retrouve au
moins 8 objets pertinents sur 10 (figure 2.7) avec un stockage négligeable par rapport à la solu-
tion idéale centralisée Exact [12] (figure 2.10). Grâce à la stratégie d’optimisation de P3K qui ne
garde que les voisins les plus proches dans le réseau personnel, plus de 30% de stockage est en
outre économisé pour chaque utilisateur (figure 2.11). En fait, P3K permet de récupérer presque les
mêmes résultats (figure 2.8) avec une légère pénalité dans le temps de traitement (figure 2.13), par
rapport à la solution la plus rapide parmi celles de [12]. Nous montrons également que P3K passe à
l’échelle : la taille nécessaire du réseau personnel pour obtenir les résultats de la même qualité reste
stable même avec un nombre croissant d’utilisateurs dans le système (figure 2.14). Pour résumer,
les résultats expérimentaux de P3K confirment que la décentralisation est une voie prometteuse pour
assurer que le traitement personnalisé des requêtes top-k passe à l’échelle.
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L’algorithme P4Q Ensuite, nous proposons P4Q, une extension de P3K qui améliore les per-
formances du système en termes de stockage, bande passante et la robustesse en distribuant le
traitement des requêtes.
Comme P3K, P4Q ne repose pas sur un serveur central. En revanche, P4Q est une solution

basée sur un protocole de gossip bimodal pour personnaliser le traitement des requêtes dans des
systèmes pair-à-pair. Le mode paresseux s’exécute périodiquement à une fréquence faible afin
de maintenir le réseau personnel. Le mode agressif fonctionne à la demande et est en charge du
traitement collaboratif des requêtes tout en rafraîchissant une partie spécifique de réseaux personnels
des utilisateurs. Le mode agressif est activé uniquement lors de la requête et s’arrête lorsque la
requête est précisément calculée.
Le maintien du réseau personnel est effectué avec le mode paresseux, à une fréquence assez

faible pour éviter de surcharger le réseau. Les utilisateurs maintiennent régulièrement leurs réseaux
personnels en gossipant entre eux et en calculant les similarités entre les profils comme dans P3K.
Pourtant, chaque utilisateur stocke seulement localement un nombre limité de profils, notamment
ceux de ses voisins les plus similaires. Le nombre de profils stockés sur chaque utilisateur est choisi
en fonction de sa capacité de stockage.
Pour limiter la consommation de bande passante, les utilisateurs n’échangent les profils de leurs

voisins durant le gossip que lorsque ceux-ci paraissent très similaires à leur propre profil. Ainsi,
des résumés de profils, codés dans les filtres de Bloom [108], sont d’abord échangés pour estimer
une limite supérieure de la similarité entre deux profils. Il est possible pour un utilisateur uj de
devenir un voisin de l’utilisateur ui si cette estimation de la limite supérieure est plus élevée que la
similarité entre ui et le voisin le moins similaire dans son réseau personnel, ou cette limite supérieure
est supérieure à 0 tant que l’utilisateur n’a pas encore le nombre désiré de voisins dans son réseau
personnel. Les actions d’annotation qui contribuent au calcul de la limite supérieure sont transmises
pour calculer la similarité exacte. Comme seuls les profils d’un sous-ensemble d’utilisateurs ayant
les similarités les plus importantes seront stockés, cela permet de réduire encore la consommation
de bande passante en évitant la transmission des profils inutiles. Pour assurer une bonne précision
de cette estimation, le filtre de Bloom est basé à la fois sur les tags et les objets contenus dans le
profil d’un utilisateur. La taille du filtre de Bloom est dynamiquement adaptée à la taille du profil
codé afin de garantir un faible taux de faux positifs1.
Le traitement des requêtes est basé sur le mode agressif de P4Q, c’est à dire avec une fréquence

accrue et est orientée vers les relations sociales. Chaque requête est d’abord calculée localement, sur
la base de l’ensemble des profils stockés, fournissant un résultat immédiat et partiel à l’utilisateur.
Ensuite, la requête, ainsi que la liste des profils nécessaires pour la traiter, est gossipé et calculé
d’une manière collaborative. La requête est gossipée d’abord au plus proche voisin et ensuite plus
loin en fonction de la proximité sociale entre les profils d’utilisateurs, d’une façon itérative pour
affiner les résultats. Chaque utilisateur atteint par la requête calcule localement sa part de la requête
sur la base des profils pertinents stockés localement, puis la gossipe plus loin. Les résultats sont
donc itérativement affinés dans un certain nombre de cycles de gossip, en récoltant des informations
pertinentes à chaque étape, et affichés directement à l’interrogateur. Comme le nombre de résultats
partiels à fusionner varie avec le temps, nous utilisons une variante de l’algorithme NRA pour

1Notez que les faux positifs ne conduirait pas à une inexactitude en sélectionnant les voisins pour le réseau personnel
car une erreur de jugement ne surestime le score de la limite supérieure et la similarité exacte est calculée avant de
transmettre le profil entier. Le seul impact des faux positifs est de transmettre certaines informations inutiles pour le
calcul de la similarité exacte. Pourtant, un faible taux de faux positifs tient cet impact marginal.
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récupérer le résultat top-k à partir des résultats partiels à chaque cycle. Cette variante garantit que
chaque liste de résultat partiel est numérisé qu’une seule fois pendant l’ensemble du traitement.
Une technique de partitionnement est utilisée pour éviter les utilisateurs de fausser les résultats en
prenant en compte des informations redondantes. Gossiper la requête évite de saturer le réseau en
communiquant avec tous les voisins dans le réseau personnel en même temps et rafraîchit la partie
du réseau provenant de l’interrogateur, générant une onde spécifique de rafraîchissements dans le
processus de personnalisation. L’utilisateur peut, à tout moment, consulter les résultats des requêtes
et décider si ceux-ci sont assez satisfaisants.
Les utilisateurs de systèmes collaboratifs sont généralement actifs et annotent en permanence des

nouveaux objets dans les systèmes. Pour garantir l’exactitude des résultats de la requête, P4Q con-
tient un mécanisme qui prend en compte activement les modifications du profil de chaque utilisateur
et garantit les rafraîchissements efficaces des réseaux personnels en termes de mise à jour des profils
stockés et découverte de nouveaux voisins. Ceci est réalisé de manière collaborative par les utilisa-
teurs participant au gossip à l’aide de deux opérations de base : auto-promotion et aide-mutuelle.
Auto-promotion consiste, pour chaque utilisateur, à diffuser son profil lorsque celui-ci change, d’une
manière proactive. Aide-mutuelle permet aux utilisateurs de partager avec d’autres utilisateurs leurs
informations à jour.
Nous évaluons P4Q la fois analytiquement et expérimentalement. L’analyse montre que le temps

de traitement d’une requête dans les cycles de gossip peut être approchée par O(log2L), où L est
le nombre de profils dans le réseaux personnel d’un utilisateur qui contribuent au traitement de la
requête, mais ne sont pas stockées par l’utilisateur. En outre, l’analyse borne le nombre de messages
engagés par la propagation de la requête et la transmission des résultats partiels. Nos évaluations
expérimentales confirment les résultats d’analyse. Nous utilisons les mêmes données que celles
de P3K. Nous considérons plusieurs scénarios de stockage. Nous montrons que même si chaque
utilisateur stocke seulement 10 profils dans son réseau personnel, les requêtes top-k peuvent être ex-
actement satisfaites en 10 cycles de gossip (figure 2.22), correspondant à 50 secondes avec un mode
de fonctionnement agressif toutes les 5 secondes. Nous mettons en évidence le compromis entre les
attentes de l’utilisateur sur les résultats de la requête, la latence de la réponse et la disponibilité du
stockage. En exécutant la mode paresseux chaque minute, même si tous les utilisateurs modifient
simultanément leurs profils, en une demi-heure, 95% des informations stockées sont mises à jour
(figure 2.26) et les nouveaux voisins de plus de 50% des utilisateurs sont identifiés (figure 2.29).
Le mode agressif génère aussi une onde de rafraichissements pour les utilisateurs qui participent
au traitement des requêtes (figure 2.28). Ceci fournit aux utilisateurs une incitation à contribuer
au traitement des requêtes des autres utilisateurs. Pendant ce temps, P4Q encourt une surcharge
acceptable en termes de consommation de bande passante : 7,6 Kbits par seconde est suffisant pour
maintenir le réseau personnel et 91 Kbits par seconde sont suffisants pour traiter une requête. P4Q
est également résistant au départ des utilisateurs : un départ massif de 50% des utilisateurs diminue
uniquement de 10% la qualité des résultats 10% (figure 2.30). Pour conclure, P4Q fournit un traite-
ment personnalisé efficace des requêtes hors-ligne dans des systèmes entièrement décentralisés avec
des performances améliorées.

Traitement des requêtes en ligne

Le approches de personnalisation hors ligne sont fondées sur l’hypothèse que les profils
d’annotation sont suffisamment représentatifs des préférences de l’utilisateur. Ceci permet le dé-
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couplage de la personnalisation et le traitement des requêtes en pré-calculant d’un sous-ensemble
des utilisateurs hors ligne, ce qui garantit à son tour de diminuer la latence de réponse au moment
de la requête. Ainsi, si une requête est fortement corrélée au profil de l’interrogateur, qui est utilisé
pour modéliser ses préférences et sélectionner les voisins pour son réseau personnel, les résultats
personnalisés sont plus satisfaisants que les résultats obtenus sans aucune spécification. Si la re-
quête n’est pas corrélée au profil de l’interrogateur, représentant par exemple un interêt émergent, la
qualité du résultat peut se dégrader. De toute évidence, afin de traiter efficacement les requêtes qui
sont corrélées au profil de l’interrogateur, ainsi que ceux qui ne sont pas corrélées à ce profil, la per-
sonnalisation adéquate doit être effectuée sur la base de (i) le profil d’annotation de l’interrogateur
et (ii) la requête elle-même. La mise en en pratique nécessite d’abord d’affiner les préférences des
utilisateurs en utilisant à la fois le profil et la requête. Ceci exige l’exécution de la personnalisa-
tion en ligne parce que les intérêts émergents ne peuvent être pris en compte quand une requête est
émise. À cet effet, nous étudions deux algorithmes pour effectuer un tel traitement personnalisé de
la requête en ligne dans les systèmes centralisés et décentralisés.

L’algorithme DT2 Nous proposons l’algorithme DT2 pour effectuer en ligne le traitement per-
sonnalisé des requêtes top-k dans les systèmes collaboratifs centralisés. DT2 effectue le traitement
personnalisé des requêtes au moment de la requête en effectuant 2 top-k successifs.
Le premier protocole de top-k sous-jacent à DT2 vise à déterminer un réseau de petite taille de k1

utilisateurs appropriés pour traiter la requête, c’est à dire le réseau personnel d’un utilisateur pour
une requête spécifique. Un aspect crucial ici est le calcul d’un vecteur d’intérêt hybride qui tient
compte à la fois du profil d’annotation et de la requête elle-même, tout en attribuant dynamiquement
le poids approprié à chacun. Deux aspects sont essentiels dans l’expression de cet intérêt hybride :
le premier ajuste l’importance relative des tags dans la requête et le second ajuste l’importance de la
requête par rapport au profil. Nous introduisons ensuite une métrique basée sur le calcul du cosinus
de similarité hybride. Cette métrique est monotone, elle permet de comparer ce vecteur d’intérêt
enter les profils des autres utilisateurs et de sélectionner les k1 utilisateurs les plus appropriés en
utilisant un algorithme classique TA [46].
Le deuxième protocole de top-k sous-jacent à DT2 parcourt le réseau personnel formé par ces

utilisateurs, et détermine les objets les plus appropriés. Nous montrons analytiquement que la con-
struction de listes inversées, puis le traitement de la requête avec un algorithme traditionnel de top-k
est plus coûteux que d’utiliser notre deuxième protocole de top-k.
L’originalité principale de DT2 est dans l’exécution de la personnalisation en ligne d’abord en

associant l’interrogateur d’un réseau personnel de k1 utilisateurs, puis en traitant de la requête au
sein de ce réseau pour trouver les k2 objets les plus appropriés. Ainsi, choisir une valeur appropriée
pour k1 est cruciale pour la qualité des résultats : (i) une valeur trop faible de k1 risque de faire
exclure certains objets pertinents; (ii) une valeur trop grande de k1 peut introduire des bruits inutiles
en tenant compte des avis des utilisateurs avec des intérêts disjoints ou opposés et ainsi diluer l’effet
positif de la personnalisation. En outre, plus la valeur de k1 est grande, plus le temps nécessaire
pour trouver ces utilisateurs est long. Il est donc important de parvenir à un équilibre entre la qualité
des résultats et le temps de traitement. Dans DT2, les utilisateurs sont considérés dans le réseau
personnel d’un utilisateur d’une manière progressive. Si l’utilisateur ne semble pas satisfait avec les
résultats actuels obtenus avec un certain réseau personel, plus d’utilisateurs sont alors considérés.
Nous évaluons DT2 à partir de traces réelles de CiteULike et delicious, impliquant 10,000 et

50,000 utilisateurs respectivement. DT2 surpasse d’autres approches de traitement des requêtes
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top-k basées sur des tags, personnalisé ou non. Par exemple, avec des réseaux personnels de 25
utilisateurs de delicious dans DT2, pour les requêtes corrélées aux profils, la qualité des résultats est
à peu près semblable à ceux obtenus avec des réseaux personnels des 500 utilisateurs en personnal-
isation hors ligne, et jusqu’à 47% mieux par rapport à une approche non-personnalisée de plus de
50,000 utilisateurs (figure 3.7). Pour les requêtes non-corrélées, la qualité des résultats est plus de
64% meilleure qu’avec la personnalisation hors ligne, et jusqu’à 46% de plus que sans personnali-
sation. En outre, le temps nécessaire pour obtenir les k2 objets avec 25 utilisateurs est toujours plus
court que dans une approche non-personnalisée (figure 3.9). Bien que DT2 prenne un peu plus de
temps que une approche personnlisée hors ligne, DT2 apporte un gain significatif sur la qualité des
résultats. DT2 nécessite environ 99,9% (respectivement 60%) de moins d’espace qu’une approche
personnalisée hors ligne (respectivement une approche non-personnalisée). En fait, DT2 fournit
des résultats de haute qualité pour les intérêts ordinaires et émergents, en réduisant le traitement en
termes de stockage et de temps.

L’algorithme DT2P2 Pour appliquer la personnalisation en ligne dans les systèmes pair-à-pair,
nous proposons également l’algorithme DT2P2. En DT2P2, les utilisateurs s’auto-organisent en
un overlay multi-objectif qui permet un traitement des requêtes top-k efficace d’une manière flexi-
ble. La partie “stable” de l’overlay a pour but de maintenir les connaissances durables de chaque
utilisateur sur le système, c’est à dire l’ensemble des utilisateurs ayant des profils similaires. Ces
utilisateurs constituent le réseau d’offre de chaque utilisateur. La partie “souple” de l’overlay est en
revanche maintenue lors de la requête et associe à chaque interrogateur, les utilisateurs qui peuvent
servir pour le traitement de sa requête en fonction de son intérêt hybride défini par la personnalisa-
tion en ligne. Ces utilisateurs constituent le réseau de demande de chaque utilisateur et de sa requête.
Les deux parties de l’overlay sont maintenus dynamiquement par un protocole de gossip et le calcul
des similarités entre les utilisateurs effectué d’une façon périodique.
Dans DT2P2, une requête est traitée au sein du réseau de demande de son interrogateur. Quand

une requête est émise, l’interrogateur construit progressivement son réseau de demande en commu-
niquant avec les voisins dans son réseau de demande. Chaque utilisateur qui reçoit le message de
gossip envoie un sous-ensemble des profils dans son réseau d’offre afin de contribuer au traitement
de la requête. L’interrogateur affine son réseau par le calcul des similarités entre son intérêt hybride
et les profils des utilisateurs reçus. Les résultats sont ensuite affinés par le traitement de la requête
au sein de chaque réseau de demande intermédiaire jusqu’à ce que l’interrogateur soit satisfait ou
que le réseau de demande converge.
Afin d’accélérer le traitement des requêtes, en particulier pour les requêtes qui sont peu corrélées

au profil de l’interrogateur, un cache de réseaux de demande est maintenu pour chaque utilisateur.
Un nombre limité de réseaux de demande, où l’union des requêtes correspondantes couvre le nom-
bre maximum de tags, sont maintenus dans le cache afin de maximiser l’utilité du cache et de
minimiser l’impact négatif de la dynamique. Une durée de vie (TTL) est également utilisée pour
contrôler l’âge de chaque réseau de demande dans le cache. Au moment de la requête, l’utilisateur
choisit parmi son réseau d’offre et ceux dans son cache, le réseau le plus susceptible de répondre à
sa requête comme réseau de demande initial et l’affine progressivement.
Nous évaluons DT2P2 en utilisant les mêmes ensembles de données de CiteULike et delicious que

ceux utilisés pour l’évaluation de DT2. Notre évaluation montre que le traitement personnalisé des
requêtes en ligne peut être réalisé efficacement si l’interrogateur affine progressivement son réseau
de demande par gossip. Les mêmes résultats que ceux obtenus dans un système centralisé (DT2)
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avec l’information globale peuvent être obtenus en 15 cycles de gossips (figure 3.14). Si le cache,
contenant au plus 5 réseaux de demande en cache, est utilisé, les résultats de top-10 s’améliorent de
plus de 20% pour les premiers cycles (figure 3.18). Si la requête correspond aux intérêts émergents
de l’interrogateur, cette amélioration peut aller jusqu’à 2,8 fois plus (figure 3.19). Le cache garan-
tit également de meilleurs résultats (10% par cycle) lorsque les intérêts des utilisateurs changent
(figure 3.21). Il y a un compromis entre le temps de réponse et la consommation de bande pas-
sante parce que la quantité de données transmises lors de chaque cycle est fixée. En supposant que
l’utilisateur gossipe chaque seconde pour affiner son réseau de demande, ce qui le donne suffisam-
ment de temps pour évaluer les résultats intermédiaires, 15 secondes serait suffisant pour répondre à
une requête. Cela nécessite, en moyenne, une bande passante de 63 kilo-octets par seconde. Plus de
bande passante accélérerait le traitement des requêtes probablement. Pour résumer, DT2P2 réalise
la personnalisation en ligne par gossip d’une manière entièrement décentralisée.

Conclusions et perspectives

Cette thèse propose de nouveaux algorithmes permettant d’effectuer des recherches personnalisées
de manière efficace dans des systèmes dynamiques, centralisés ou décentralisés, selon deux axes
majeurs : (i) la personnalisation hors ligne qui s’appuie sur le comportement passé des utilisateurs
et (ii) la personnalisation en ligne qui s’appuie sur le comportement passé et la requête en cours.
Nous présentons d’abord l’algorithme P3K, qui décentralise une approche existante et réalise le

traitement personnalisé des requêtes top-k hors ligne dans les systèmes pair-à-pair. Ensuite, nous
présentons P4Q, une extension de P3K qui améliore les performances du système en termes de
stockage, bande passante et la robustesse en distribuant le traitement des requêtes. Nos évaluations
analytiques et expérimentales démontrent leur efficacité pour le traitement des requêtes top-k, y
compris dans les systèmes dynamiques, et montrent en particulier que la capacité inhérente de P4Q
à faire face aux mises à jours des profils des utilisateurs.
Dans le but d’améliorer encore la qualité des résultats pour les requêtes représentant les intérêts

émergents des utilisateurs, et donc non représentés dans son profil, nous proposons un modèle hy-
bride d’intérêt, prenant en compte à la fois le profil des utilisateurs mais également la requête elle-
même. Nous proposons une solution à la fois en centralisée, l’algorithme DT2, qui effectue une
recherche de type top-k à deux reprises. L’algorithme DT2P2, exécute efficacement la personnali-
sation en ligne de manière entièrement décentralisée. Les résultats expérimentaux montrent que la
personnalisation en ligne est prometteuse pour répondre aux préférences diverses des utilisateurs.
Pour résumer, la contribution de cette thèse réside dans (i) la réalisation du traitement personnal-

isé des requêtes hors ligne dans les systèmes pair-à-pair à grande échelle; (ii) la proposition de la
personnalisation en ligne ainsi que d’une réalisation centralisée; (iii) la réalisation de la personnali-
sation en ligne dans les systèmes pair-à-pair à grande échelle. Mais plusieurs pistes sont possibles
pour mieux soutenir le traitement des requêtes personnalisé, en particulier dans systèmes pair-à-pair.
Tout d’abord, la surveillance et le stockage de tout type d’activité des utilisateurs est une question

sensible. Dans les approches centralisées, le comportement de chaque utilisateur est connu par
le serveur central, mais il n’y a pas d’association explicite entre un utilisateur et ses intérêts à la
disposition des autres utilisateurs. Une approche décentralisée empêche une autorité centrale de
faire un usage commercial des profils de tous les utilisateurs, mais susceptible de révéler les profils
des utilisateurs à d’autres utilisateurs. En effet, les algorithmes proposés (P3K, P4Q et DT2P2)
s’appuient sur les utilisateurs qui échangent des profils d’une manière pair-à-pair afin de maintenir
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Résumé étendu

le réseau personnel et traiter les requêtes. Pour assurer l’anonymat de chaque utilisateur, on peut
penser à la transmission du profil, de la requête et des résultats partiels par certains utilisateurs
choisis au hasard dans le système. Certaines stratégies de chiffrement doivent être considérées afin
de s’assurer que les utilisateurs choisis ne sont pas en mesure d’associer l’identité d’utilisateur avec
le profil, la requête ou les résultats partiels. Cela représente une perspective intéressante qui peut
être explorée.
En outre, les algorithmes proposés dans cette thèse ont pour objectif de traitement des requêtes

instantanées, c’est à dire chaque requête est traitée une seule fois avec les informations disponibles
dans le système au moment de la requête. Pourtant, dans les applications de Web 2.0, ainsi que
des systèmes collaboratifs, des nouveaux contenus sont créés et partagés à un rythme très élevé.
En conséquence, les utilisateurs peuvent être disposés à recevoir les résultats les plus récents ayant
trait à leurs requêtes. La recherche persistante permet aux utilisateurs d’émettre la requête une
fois et de recevoir des mises à jour en temps réel chaque fois qu’il y a un nouveau résultat pour
cette requête. En DT2P2, les requêtes personnalisées sont traitées en ligne. Un utilisateur “bouge”
virtuellement dans le système pair-à-pair en affinant son réseau de demande, ce qui lui permet
d’approcher les résultats souhaités progressivement. Il est naturel d’étendre cette idée au traitement
des requêtes persistantes. Le réseau de demande peut être maintenu aussi longtemps que l’utilisateur
ne supprime pas la requête. Mettre cette idée en pratique est toutefois difficile : plusieurs questions
importantes doivent être considérées comme par exemple, en plus du profil et de la requête, de
nombreux autres facteurs pourraient être pris en compte pour la sélection des voisins pour le réseau
de demande, y compris la qualité des résultats de la requête en cours, la fréquence d’arrivée des
nouveaux résultats, le niveau d’activité des voisins, etc. En plus, un utilisateur peut émettre plusieurs
requêtes persistantes au cours d’une même période. Il serait intéressant d’enquêter sur certains
mécanismes qui exploitent la similarité entre les requêtes et d’affiner leurs réseaux de demande
d’une manière plus efficace afin de réduire les dépenses non nécessaires en termes de stockage et de
bande passante.
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Résumé 
 

La révolution Web 2.0 a transformé l'Internet, une infrastructure 
auparavant en lecture seule, en une plate-forme collaborative 
en lecture-écriture. La forte augmentation des donnés générées 
par les utilisateurs des systèmes collaboratifs constitue 
désormais une source considérable d'informations. Pourtant, 
effectuer efficacement des recherches dans un tel 
environnement est devenu  plus difficile, en particulier lorsque 
ces recherches engendrent des ambiguïtés.  Personnaliser les 
recherches permet d'éviter ces écueils en limitant les 
recherches au sein d'un réseau très réduit de participants ayant 
des intérêts similaires. Toutefois, les solutions centralisées pour 
mettre en œuvre cette personnalisation s'avèrent difficile 
compte tenu du volume important d'informations qui doit être 
maintenu pour chaque utilisateur. La nature dynamique de ces 
systèmes, dans lesquels les utilisateurs changent 
potentiellement souvent d'intérêt, complique la tâche. 
 

Cette thèse propose de nouveaux algorithmes permettant 
d'effectuer des recherches personnalisées de manière efficace 
dans des systèmes dynamiques, centralisés ou  décentralisés, 
selon deux axes majeurs : (i) la personnalisation hors ligne qui 
s'appuie sur le comportement passé des utilisateurs et (ii) la 
personnalisation en ligne qui s'appuie sur le comportement 
passé et la requête en cours. 
 

Nous présentons d'abord l'algorithme P3K, qui décentralise une 
approche existante et réalise le traitement personnalisé des 
requêtes top-k hors ligne dans les systèmes pair-à-pair. 
Ensuite, nous présentons P4Q, une extension de P3K qui 
améliore les performances du système en termes de stockage, 
bande passante et la robustesse en distribuant le traitement 
des requêtes. Les deux algorithmes, P3K et P4Q, reposent sur 
des protocoles épidémiques pour capturer la similarité implicite 
entre les utilisateurs et associer ainsi à chaque utilisateur un 
"réseau personnel" dans lequel traiter la requête. Nos 
évaluations analytiques et expérimentales démontrent leur 
efficacité pour le traitement des requêtes top-k, y compris dans 
les systèmes dynamiques, en particulier que la capacité 
inhérente de P4Q à faire face aux mises à jours des profils des 
utilisateurs. 
 
Dans le but d'améliorer encore la qualité des résultats pour les 
requêtes représentant les intérêts émergents des utilisateurs, et 
donc non représentés dans son profil, nous proposons un 
modèle hybride d'intérêt, prenant en compte à la fois le profil 
des utilisateurs mais également la requête elle-même. Nous 
avons proposé une solution à la fois en centralisé, l'algorithme 
DT², qui effectue une recherche de type top-k à deux reprises. 
L'algorithme DT²P², exécute efficacement la personnalisation en 
ligne de manière entièrement décentralisée. Les résultats 
expérimentaux sur des traces réelles de systèmes collaboratifs,  
montrent que la personnalisation en ligne est prometteuse pour 
répondre aux préférences diverses des utilisateurs. 

N° d’ordre : XXXXXXXX 

Abstract 
 

The Web 2.0 revolution has transformed the Internet from a 
read-only infrastructure to an active read-write platform. The 
rapid increasing amount user-generated content in collaborative 
tagging systems provides a huge source of information. Yet, 
performing effective search becomes more challenging, 
especially when we seek the most appropriate items that match 
a potentially ambiguous query. Personalization is appealing in 
this context as it limits the search for the items within a small 
network of participants with similar interests. However, 
centralized solutions for this personalization do not scale given 
the large amount of information that needs to be maintained on 
a user basis, especially given the dynamic nature of the 
systems where users continuously change their profiles by 
tagging new items.   
 
In this regard, this thesis deals with the efficiency and scalability 
of personalized query processing, from centralized to 
decentralized systems, around two axes: (i) the off-line 
personalization that relies on users' past tagging behaviors and 
(ii) the on-line personalization that relies on both the past 
behaviors and the current query. 
 
We first present the algorithm P3K, which decentralizes a state-
of-the-art approach and achieves off-line personalized top-k 
processing in peer-to-peer systems. Then we present P4Q, an 
extension of P3K that enhances the system performance in 
terms of storage, bandwidth and robustness. Both P3K and 
P4Q rely on gossip-based protocols to capture the implicit 
similarity between users and associate each user with a set of 
social acquaintances to process the query. Analytical and 
experimental evaluations convey their scalability and efficiency 
for top-k query processing, as well as the inherent ability of P4Q 
to cope with users updating profiles and departing. 
 
To further improve the result quality for the queries depicting 
emerging interests of the querier, we propose a hybrid interest 
model, taking into account both the tagging profile and the 
query, to perform personalized query processing. This is 
achieved on-line in a centralized system by doing top-k twice 
with the algorithm DT². Then we propose the algorithm DT²P² 
that efficiently performs the same on-line personalization with 
improved scalability in a fully decentralized system. 
Experimental results on real datasets show that on-line 
personalization is promising to fulfill the diverse user 
preferences while the proposed algorithms make it feasible in 
both centralized and decentralized systems.   
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