
HAL Id: tel-00545724
https://theses.hal.science/tel-00545724v1

Submitted on 11 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Analysis of Reliable Peer-to-Peer Storage
Systems

Julian Monteiro

To cite this version:
Julian Monteiro. Modeling and Analysis of Reliable Peer-to-Peer Storage Systems. Networking and
Internet Architecture [cs.NI]. Université Nice Sophia Antipolis, 2010. English. �NNT : �. �tel-00545724�

https://theses.hal.science/tel-00545724v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

T H È S E
pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice - Sophia Antipolis

Mention : INFORMATIQUE

Présentée et soutenue par

Julian Geraldes MONTEIRO

Modeling and Analysis of Reliable
Peer-to-Peer Storage Systems

Thèse dirigée par : Stéphane PÉRENNES et Olivier DALLE

préparée au sein du projet MASCOTTE - INRIA / I3S (CNRS/UNS)

soutenue le 16 novembre 2010

Jury :

President : Alain JEAN-MARIE Directeur de Recherche INRIA - LIRMM (Maestro)
Rapporteurs : Virgílio ALMEIDA Professeur - U. Federal de Minas Gerais, Brésil

Fabien MATHIEU Ingénieur - Orange Labs
Pierre SENS Professeur - U. Pierre Marie Curie, Paris VI (Regal)

Directeurs : Stéphane PÉRENNES Directeur de Recherche - CNRS (Mascotte)
Olivier DALLE Maître de Conférences - U. Nice Sophia (Mascotte)

Examinateurs : Frédéric GIROIRE Chargé de Recherche - CNRS (Mascotte)
Alfredo GOLDMAN Professeur - U. de São Paulo, Brésil





À minha querida Mayara e à minha família.
À ma dulcinée Mayara et à ma famille.
To my beloved Mayara and my family.





Acknowledgments

Firstly, I would like to thank my brave advisors Olivier Dalle, Stéphane Pérennes and
Frédéric Giroire who accepted me as a student and spent a lot of time with me. Their
complementary skills worked greatly! I’ve learned much from them. I would not have
started my PhD without Olivier and his generosity. Stéphane and his incredible knowl-
edge and personality gave me willingness to learn. Fredo, who really supported me
every day (and night!) and put me to work with his enormous patience and kindness. I
carry with me their friendship and profissionalism.

I thank the reviewers of this thesis, Virgilio Almeida, Fabien Mathieu and Pierre Sens
for their invaluable feedback. Also, Alain Jean-Marie and Alfredo Goldman to be part of
the jury. Thanks for the UbiStorage guys, Sébastian Choplin and Hung-Cuong Le.

I greatly appreciate the support of Afonso Ferreira and Alfredo Goldman, who
brought me to this amazing group of people that is the Mascotte team. Led by the boss
Jean-Claude Bermond, who has an incredible energy of life and keeps all of us together.
I will not forget that he made me overcome the challenge of finishing a marathon (liter-
ally!).

Je remercie à tout le monde de la grande famille Mascotte qui m’ont donné la joie de
passer les journées ensemble et m’ont laissé de souvenirs pour toute la vie: Aurélien,
Christelle, David, Dorian, Fabrice, Florian, Gianpiero, Hervé, Ignasi, Issam, Joanna,
Juan-Carlos, Judicael, Luc, Michel, Nathan, Nicolas, Remig, Sandeep et Pato. Un merci
tout spécial à la gentillesse de nos assistants Patricia et Sandra. Et bien sûr, Fred Majus
à 3 rose de vents qui nous a accueilli plusieurs fois avec ses barbecues animé par les
caipirinhas de Napi.

Ahhh claro, um especial agradecimento aos sinceros amigos brasileiros! Napinho
(Jean-Marc), Jujulio, Dodo, Joana, Gugu, Cristiana, Léo e Ronan, que compartilharam
comigo esse período de grande experiência e que tornaram tudo muito mais fácil e di-
vertido.

Agradeço à minha família e aos meus caros amigos lá de longe que não me deixaram
em nenhum momento.

Admiro minha querida Mayara, que foi muito corajosa em me acompanhar! Esteve
sempre presente e me deu seu incondicional apoio durante esses três anos longe da
nossa terra natal. Agradeço ainda mais pela família que estamos formando juntos. Uma
grande alegria.

Antibes
November 30, 2010





Abstract

Large scale peer-to-peer systems are foreseen as a way to provide highly reliable data
storage at low cost. To ensure high durability and high resilience over a long period
of time the system must add redundancy to the original data. It is well-known that
erasure coding is a space efficient solution to obtain a high degree of fault-tolerance by
distributing encoded fragments into different peers of the network. Therefore, a repair
mechanism needs to cope with the dynamic and unreliable behavior of peers by contin-
uously reconstructing the missing redundancy. Consequently, the system depends on
many parameters that need to be well tuned, such as the redundancy factor, the place-
ment policies, and the frequency of data repair. These parameters impact the amount of
resources, such as the bandwidth usage and the storage space overhead that are required
to achieve a desired level of reliability, i.e., probability of losing data.

This thesis aims at providing tools to analyze and predict the performance of general
large scale data storage systems. We use these tools to analyze the impact of different
choices of system design on different performance metrics. For instance, the bandwidth
consumption, the storage space overhead, and the probability of data loss should be as
small as possible. Different techniques are studied and applied. First, we describe a
simple Markov chain model that harnesses the dynamics of a storage system under the
effects of peer failures and of data repair. Then we provide closed-form formulas that
give good approximations of the model. These formulas allow us to understand the
interactions between the system parameters. Indeed, a lazy repair mechanism is studied
and we describe how to tune the system parameters to obtain an efficient utilization
of bandwidth. We confirm by comparing to simulations that this model gives correct
approximations of the system average behavior, but does not capture its variations over
time. We then propose a new stochastic model based on a fluid approximation that
indeed captures the deviations around the mean behavior. These variations are most of
the time neglected by previous works, despite being very important to correctly allocate
the system resources.

We additionally study several other aspects of a distributed storage system: we
propose queuing models to calculate the repair time distribution under limited band-
width scenarios; we discuss the trade-offs of a Hybrid coding (mixing erasure codes
and replication); and finally we study the impact of different ways to distribute data
fragments among peers, i.e., placement strategies.

Keywords: Data storage, peer-to-peer, performance analysis, Markov chains, fluid
models, queue models, simulations.





Resumé

Les systèmes pair-à-pair à grande échelle ont été proposés comme un moyen fiable
d’assurer un stockage de données à faible coût. Pour assurer la pérennité des données
sur une période très longue, ces systèmes codent les données des utilisateurs comme un
ensemble de fragments redondants qui sont distribués entre différents pairs du réseau.
Un mécanisme de réparation est nécessaire pour faire face au comportement dynamique
et non fiable des pairs. Ce mécanisme reconstruit en permanence les fragments de re-
dondance manquants. Le système dépend de nombreux paramètres de configuration qui
doivent être bien réglés, comme le facteur de redondance, sa politique de placement et la
fréquence de réparation des données. Ces paramètres affectent la quantité de ressources,
telles que la bande passante et l’espace de stockage, nécessaires pour obtenir un niveau
souhaité de fiabilité, c’est-à-dire, une certaine probabilité de perdre des données.

Cette thèse vise à fournir des outils permettant d’analyser et de prédire la perfor-
mance de systèmes de stockage de données à grande échelle en général. Nous avons
utilisé ces outils pour analyser l’impact de différents choix de conception du système sur
différentes mesures de performance. Par exemple, la consommation de bande passante,
l’espace de stockage et la probabilité de perdre des données, doivent être aussi faibles
que possible. Différentes techniques sont étudiées et appliquées.

Tout d’abord, nous décrivons un modèle simple par chaîne de Markov qui exploit la
dynamique d’un système de stockage sous l’effet de défaillance des pairs et de répara-
tion de données. Puis nous établissons des formules mathématiques closes qui donnent
de bonnes approximations du modèle. Ces formules nous permettent de comprendre
les interactions entre les paramètres du système. En effet, un mécanisme de réparation
paresseux (lazy repair) est étudié et nous décrivons comment régler les paramètres du
système pour obtenir une utilisation efficace de la bande passante. Nous confirmons
en comparant à des simulations que ce modèle donne des approximations correctes du
comportement moyen du système, mais ne parvient pas à capturer ses importantes vari-
ations au fil du temps. Nous proposons ensuite un nouveau modèle stochastique basé
sur une approximation fluide pour saisir les écarts par rapport au comportement moyen.
Ces variations qui sont généralement négligées par les travaux antérieurs, sont très im-
portants pour faire une bonne estimation des ressources nécessaires au système.

De plus, nous étudions plusieurs autres aspects d’un systéme de stockage distribué:
nous utilisons un modèle de files d’attente pour calculer le temps de réparation pour
un système avec bande passante limitée; nous étudions un système de codage hybride:
en mixant les codes d’éffacement avec la simple réplication des données; enfin, nous
étudions l’impact des différentes façons de distribuer des fragments de données entre
les pairs, i.e., les stratégies des placements.

Mots clés: Stockage de données, pair-à-pair, analyse de performance, chaînes de
Markov, modèle fluide, modèle de file, simulations.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background on Peer-to-Peer Storage Systems . . . . . . . . . . . . . . . . . 3

1.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Peer-to-Peer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Data Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Repair Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Methodology 21
2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 The Equilibrium Probabilities . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Modeling one Rabbit . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Modeling a Population of Rabbits . . . . . . . . . . . . . . . . . . . 27

2.2 Stochastic Fluid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Modeling a Very Large Population of Rabbits . . . . . . . . . . . . . 29

2.3 Network Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Appendix: Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Mean Behavior and Guideline to Lazy Repair 37
3.1 Markov Chain Model (MCM) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Stationary Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Distribution of Blocks’ Redundancy Level . . . . . . . . . . . . . . . 43
3.2.3 Estimating the Bandwidth Consumption . . . . . . . . . . . . . . . 43
3.2.4 Estimating the Data Loss Rate . . . . . . . . . . . . . . . . . . . . . 45

3.3 Simulation Model (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Transient Phase (Warm-up) . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Measured Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Average System Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Validation of Approximation . . . . . . . . . . . . . . . . . . . . . . 52



x CONTENTS

3.5 How to Set the System Parameters . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Determining the Block Size (Lb) . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Determining the Reconstruction Threshold (r0) . . . . . . . . . . . . 56
3.5.3 Determining the Redundancy (r) . . . . . . . . . . . . . . . . . . . . 57

3.6 Different Distributions of Reconstruction Times . . . . . . . . . . . . . . . . 59
3.6.1 Modeling a Constant Reconstruction Time . . . . . . . . . . . . . . 59
3.6.2 Modeling More General Distributions . . . . . . . . . . . . . . . . . 60
3.6.3 Semi-Markovien Processes . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Capturing the Variations 65
4.1 Study of Correlation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 The Problem of Correlation . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Correlation and the System Size . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Bandwidth Provisioning and Loss of Data . . . . . . . . . . . . . . 68

4.2 A New Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 The New Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Validation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Convergence of the Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Proof of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Convergence in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Model Discussions - Future Directions . . . . . . . . . . . . . . . . . 82

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Repair Time Distribution Under Bandwidth Constraints 85
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Preliminary: Impact of Disk Asymmetry . . . . . . . . . . . . . . . . . . . . 89
5.3 The Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Distribution of Reconstruction Time . . . . . . . . . . . . . . . . . . 98
5.4.2 From Where the Deads Come From? . . . . . . . . . . . . . . . . . . 101
5.4.3 Discussing the Implementation of Regenerating Codes . . . . . . . 102
5.4.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.1 Storage System Description . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 The GRID’5000 Infrastructure . . . . . . . . . . . . . . . . . . . . . . 105
5.5.3 Experimentation Results . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Contents xi

6 Placement Policies 109
6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Without Resource Constraints . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2 Results under Resource Constraints . . . . . . . . . . . . . . . . . . 117

6.4 Proposition for P2P Storage System Architectures . . . . . . . . . . . . . . 119
6.4.1 External Reconstruction Strategy . . . . . . . . . . . . . . . . . . . . 119
6.4.2 What Should Be the Size of the Neighborhood? . . . . . . . . . . . 121
6.4.3 Replication versus Erasure Codes . . . . . . . . . . . . . . . . . . . 122

6.5 Analytical Estimations of MTTDL . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5.1 Buddy Placement Policy . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5.2 Global Placement Policy . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5.3 Chain Placement Policy . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Hybrid Coding 131
7.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Reconstruction Process . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1.2 Code Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Markov Chain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.1 Model of the Hybrid System . . . . . . . . . . . . . . . . . . . . . . 135
7.2.2 Model of the Reed-Solomon System . . . . . . . . . . . . . . . . . . 138
7.2.3 Bandwidth Usage and Loss rate . . . . . . . . . . . . . . . . . . . . 139
7.2.4 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.5 Reconstruction Rates γ and γ− . . . . . . . . . . . . . . . . . . . . . 143

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.1 Fixed Space Overhead Scenario . . . . . . . . . . . . . . . . . . . . . 145
7.3.2 Same Bandwidth Usage . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.3.3 Same Durability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3.4 Mixing Hybrid and RS . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Concluding Remarks and Future Research 151
8.1 Results and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Using Evolving Graphs for Routing Protocols 155
A.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.3 Evolving Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3.1 Journey Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



xii CONTENTS

A.3.2 Foremost Journey Algorithm . . . . . . . . . . . . . . . . . . . . . . 159
A.4 Routing Protocols for MANETs . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.5 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.5.1 Mobility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.6.1 Random Waypoint Mobility Model . . . . . . . . . . . . . . . . . . 166
A.6.2 Intermittent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.7 Further analyses and improvements . . . . . . . . . . . . . . . . . . . . . . 169
A.7.1 Bottlenecks and Congestion . . . . . . . . . . . . . . . . . . . . . . . 170
A.7.2 Congestion with varying flows over time . . . . . . . . . . . . . . . 171
A.7.3 Reducing congestion in EGForemost . . . . . . . . . . . . . . . . . . . 171

A.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B Corral - Linux Versioning Device 177
B.1 Design and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Personal Publications 182

Bibliography 184



List of Figures

1.1 Growth estimation of produced data versus available storage . . . . . . . 1
1.2 Example of system using simple replication. . . . . . . . . . . . . . . . . . 8
1.3 Example of system using erasure codes. . . . . . . . . . . . . . . . . . . . . 8
1.4 Repair process of Reed-Solomon erasure codes. . . . . . . . . . . . . . . . . 12
1.5 Block redundancy over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Sketch of the peer-to-peer storage system evaluation. . . . . . . . . . . . . 18

2.1 Raving Rabbids (Les lapins crétins). Copyright Ubisoft. . . . . . . . . . . . . 23
2.2 Simple Markov chain to model the one rabbit with 2 states. . . . . . . . . 24
2.3 Probability density function of the rabbit population . . . . . . . . . . . . . 26
2.4 Complete Markov chain to model the population of rabbits with N+1 states. 27
2.5 Probability density function of rabbits for the first 5 iterations. . . . . . . . 28
2.6 Probability density function of rabbits simulation. Probabilities psunny =

0.25, pexit = 0.9 and penter = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Probability density function of rabbits using the Fluid models. . . . . . . . 30
2.8 Probability density function of rabbits using Fluid models. Probabilities

psunny = 0.25, pexit = 0.9 and penter = 0.3. . . . . . . . . . . . . . . . . . . . . 31
2.9 Probability density function of rabbits for different values of N. . . . . . . 32

3.1 Markov chain modeling the behavior of one block. . . . . . . . . . . . . . . 39
3.2 Distribution of blocks’ redundancy level at the steady state. Parameters

N = 2000, B = 2·105, s = 6, r = 6 r0 = 2, MTTF = 180 days, θ = 18 hours. 43
3.3 Timeseries of the number of fragments per block. . . . . . . . . . . . . . . . 48
3.4 Timeseries of the number of the fragments stored per peer. . . . . . . . . . 48
3.5 Accuracy of estimations for different ratios α/γ. . . . . . . . . . . . . . . . 52
3.6 System with fixed number of blocks B, increasing s and decreasing L f . . . 56
3.7 System with fixed space-overhead of 2. The parameters s = r = 16. . . . . 57
3.8 System with fixed values of s and r0, and increasing values of r. . . . . . . 58
3.9 System with fixed s and increasing values of r0. . . . . . . . . . . . . . . . . 58
3.10 Modeling a system with constant reconstruction time. . . . . . . . . . . . . 60
3.11 Modeling a system with a general reconstruction time distribution. . . . . 60
3.12 Transforming a large Markov chain into a semi-markovian process. . . . . 62

4.1 Histogram of the bandwidth used by reconstructions. . . . . . . . . . . . . 67
4.2 Avg. bandwidth usage and std. variation for different system size N. . . . 68
4.3 Avg. bandwidth usage and std. variation for different number of blocks B. 68
4.4 Data loss for different provisioning scenarios using the SM. . . . . . . . . . 69
4.5 CDF of the number of fragments per disk in the system. . . . . . . . . . . . 72
4.6 Timeseries of the bandwidth usage for SM and FM. . . . . . . . . . . . . . 76
4.7 Bandwidth consumption vs number of peers N for SM, FM. . . . . . . . . 77



xiv LIST OF FIGURES

4.8 Bandwidth consumption vs number of blocks B for SM, FM. . . . . . . . . 77
4.9 Average time to cancel a basis of vector noises. . . . . . . . . . . . . . . . . 81
4.10 Trajectories of the deviation for two different values of B. . . . . . . . . . . 82
4.11 Average deviation for systems with different values of B. . . . . . . . . . . 82

5.1 Distribution of fragments per failed disk for different disk size factor x. . . 91
5.2 Transition around state i of the Markovian queuing model. . . . . . . . . . 95
5.3 Distribution of reconstruction time for different disk capacities x. . . . . . 99
5.4 Distribution of reconstruction time for different MTTFs. . . . . . . . . . . . 100
5.5 Distribution of dead blocks reconstruction time for two different scenarios. 101
5.6 Distribution of reconstruction time for different values of degree d. . . . . 103
5.7 Average Reconstruction Time for different values of degree d. . . . . . . . 103
5.8 Reconstruction time for different scheduling strategies. . . . . . . . . . . . 104
5.9 Cumulative number of dead blocks for different scheduling strategies. . . 104
5.10 Distribution of reconstruction time on a experimentation. . . . . . . . . . . 105
5.11 Timeseries of the queue size and upload bandwidth over time. . . . . . . . 106

6.1 Example of different placement strategies: Global, Chain and Buddy. . . . 111
6.2 Variations of bandwidth usage across users for the three placement strate-

gies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Example of the cumulative number of dead blocks for a period of three

years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Average reconstruction time for different bandwidth limits for the three

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5 Fraction of block losses per year for different bandwidth limits. . . . . . . 119
6.6 Comparison between the Chain policy with internal reconstruction and

with external reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.7 Study of the size of the block neighborhood. . . . . . . . . . . . . . . . . . 121
6.8 Sample part of the Markov chain for s + r = 5 and r + 1 = 3. . . . . . . . . 127

7.1 Description of the Reed-Solomon and Hybrid systems . . . . . . . . . . . . 133
7.2 Markov chain of the system based on Reed-Solomon. . . . . . . . . . . . . 137
7.3 Markov chain of the Hybrid system. . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Accuracy of the approximations. . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 Influence of the reconstruction times on the system loss rate. . . . . . . . . 144
7.6 Comparison of the bandwidth usage and loss rate of RS and Hybrid. . . . 146
7.7 Comparing systems with the same Bandwidth usage and increasing re-

dundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.8 Comparing systems with the same Loss Rate and increasing redundancy. 148
7.9 Evaluation of a Mixed system for different values of RS redundancy. . . . 149
7.10 Evaluation of a Mixed system for different space overheads. . . . . . . . . 150

A.1 The evolution of a MANET over time. The indices correspond to succes-
sive snapshots in time. “Zzz” indicates a sleeping node. . . . . . . . . . . . 158



List of Figures xv

A.2 Evolving graph corresponding to the MANET in Fig. A.1. Edges are la-
beled with corresponding presence time intervals. Observe that {E,G,F} is
not a valid journey, since the edge {G,F} exists only in the past with respect
to {E,G}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.3 Lifecycle of a node in the Intermittent Mobility Model. . . . . . . . . . . . 164
A.4 Drop ratio as a function of PAUSETIME (mobility). . . . . . . . . . . . . . . 166
A.5 Drop ratio as a function of mobility using a low density of nodes scenario. 167
A.6 Number of changes in the network topology in the Intermittent Model

scenario for different values of SLEEPPROB. . . . . . . . . . . . . . . . . . . 168
A.7 Total drop rate as a function of SLEEPPROB (connectivity). . . . . . . . . . 168
A.8 Drop packets by NRTE ratio as a function of SLEEPPROB (connectivity). . 169
A.9 Average end-to-end delay of packets successfully delivered in all protocols. 170
A.10 Number of dropped packets by IFQ overflow on a HOLDTIME 180s scenario.171
A.11 Number of dropped packets over time for one single Intermittent Scenario

(SleepProb. 50% and HOLDTIME 180s). . . . . . . . . . . . . . . . . . . . . 172
A.12 Number of dropped packets over time for one single Intermittent Scenario

with varying flow. The SLEEPPROB value is 20% and HOLDTIME is 180
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.13 Number of dropped packets by IFQ overflow with different solutions to
minimize the drop rate (enforced jitter, smart jitter and raise de IFQ length
to 500pkts). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.1 Example of use of the CORRAL system over time. . . . . . . . . . . . . . . . 180
B.2 Elapsed time of many transactions on many files (Postmark benchmark). . . 181
B.3 Disk space usage after the first run (Andrew like benchmark). . . . . . . . . . 181
B.4 Sequential write throughput on a big file (Bonnie++ benchmark. . . . . . . . 181





List of Tables

1.1 Characteristics of some proposed distributed storage systems . . . . . . . 16

3.1 Summary of the main notations. . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Average and standard deviation of bandwidth usage . . . . . . . . . . . . 53
3.3 Data loss rate per year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Relative Standard Deviation of bandwidth usage (Std.Dev/Mean) . . . . . 77

5.1 Summary of the main notations. . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Reconstruction time T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Summary of the main notations and their default values. . . . . . . . . . . 113
6.2 Summary of results (without bandwidth constraints). . . . . . . . . . . . . 114
6.3 Comparison of replication and erasure codes for the Chain placement. . . 123

7.1 Summary of the main notations. . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Average and standard deviation of bandwidth usage . . . . . . . . . . . . 142
7.3 Data loss rate per hour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1 Edge schedules for the EG in Fig. A.2. . . . . . . . . . . . . . . . . . . . . . 162
A.2 Approaches used to minimize the bottlenecks (Fig. A.13). . . . . . . . . . . 172





CHAPTER 1

Introduction

“Memory is the mother of all wisdom.”
— Aeschylus, 525 – 456 B.C

1.1 Motivation

The amount of digital information produced by each individual every year is enormous
and tends to grow continuously. For instance, the dissemination of digital media, digital
photos, digital videos, electronic mail, personal blogs, etc. promotes the production of
digital data on a daily basis by every computer user. These data, or at least part of it,
must be stored reliably.

In the reports conducted since 2007 by the International Data Corporation (IDC) [53,
54], their authors state that the amount of digital data per person on the planet was
already 75 gigabytes in 2009. They estimate that “Between 2009 and 2020, the information
in the Digital Universe will grow by a factor of 44; the number of files to be managed will grow by
a factor of 67, and storage capacity will grow by a factor of 30”. In the same report, they claim
that if people want to store every gigabyte of digital content created, there is already
a gap of 35% in the space available. This gap is likely to increase in the next years, as
depicted in Figure 1.1. IDC data shows that 25% of this information is unique. Even
though much of this content is not that important, that is, not requiring a high degree of
protection, the other fraction of these data indeed needs a high level of protection and
redundancy in order to ensure its availability over a long period of time. This enormous
growth incites the research on reliable and long-term data storage solutions that consume a
low amount of resources.

Source: IDC Digital Universe Study, sponsored by EMC, May 2010
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Figure 1.1: Growth estimation of produced data versus available storage [54].
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Traditional solutions to make a primary backup of data are magnetic tapes, optical
media or external backup-drives. Although they are commonly used, these solutions are
not renowned to be durable. Moreover, their operation requires a manual maintenance
procedure to keep the physical medium protected and up-to-date. Nowadays, another
options to maintain a safe backup are the on-line services, data centers and high-end
NAS (Network Attached Storage) appliances. These approaches can be highly reliable,
but also tend to be very expensive. Moreover, if durability is the first concern, then
relying on only one external backup provider can be risky. The data also need to be
replicated somewhere else, for the sake of redundancy and geographic dispersion (i.e.,
to keep data safe from natural catastrophes).

Recently, networked devices and bandwidth have become cheaper and widely avail-
able, allowing new forms of data storage on distributed architectures. It seems that peer-
to-peer storage is a natural evolution for data backup. The popularization of peer-to-
peer overlay networks by many applications incites the use of this technology to de-
velop a large-scale platform that provides reliable and safe data storage. These highly
distributed solutions are foreseen as an interesting alternative to the traditional data cen-
ters and in-house backup solutions. The advantages of a peer-to-peer network can be
many: one can achieve a highly reliable system at low cost, that by nature distributes the
data among peers that are in different geographical regions of the globe. Moreover, this
architecture has a high potential to be scalable.

Challenges

In the past few years many peer-to-peer storage systems have been proposed as reliable
and cost effective solutions. But their deployment in practice is still a challenging en-
deavor. Distributed systems are prone to peer disconnections, peer unavailability, disk
failures and malicious behaviors. To ensure high durability and high resilience over a
long period of time the system must distribute redundant data among different peers.
A self-repair mechanism needs to handle the dynamic and unreliable behavior of peers
by continuously reconstructing the missing redundancy. This process consumes band-
width, which is often the scarcest resource of a peer-to-peer network, at least when com-
pared to storage space and computing capacity. If the peers’ bandwidth is very limited,
the reconstruction of the lost redundancy takes long time to finish, which substantially
impacts the expected data lifetime. Furthermore, the implementation of such a system
raises plenty of questions: How much redundancy should be added? How much band-
width is used by the repairing process? When to trigger the repairing? What is the
probability of data loss? Where to place the redundant replicas? How the constraints of
bandwidth affect the data lifetime?

Our Goal

This thesis aims at providing tools to analyze and to predict the performance of a gen-
eral large-scale data storage system. These techniques range from: formal analysis, us-
ing Markov chains and fluid models; simulations, using a custom cycle based simulator;
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and experimentation, using the Grid5000 platform. We use these tools to analyze the
impact of different choices of system design on a set of performance metrics of interest.
In particular, our goal is to provide practical contributions that can enhance the utiliza-
tion of a peer-to-peer storage system. For instance, the bandwidth consumption, the
storage space overhead, and the probability of data loss should be as small as possible.
Moreover, we give special attention to harness the variations around the average system
performance.

1.2 Background on Peer-to-Peer Storage Systems

The concepts of the studied peer-to-peer storage systems are presented in this section.
First, we give a brief description of its general characteristics, followed by some back-
ground on peer-to-peer networks in Section 1.2.2, which is the main substrate used by
the large-scale distributed storage systems. Then, in Section 1.2.3 we give an overview
of the basic techniques to introduce data redundancy (replication and erasure codes),
followed by the details of the repairing service in Section 1.2.4. Finally, in Section 1.2.5
we present a compilation of distributed storage systems proposed in the literature.

1.2.1 Description

Data. The purpose of a storage system is to keep data persistent and accessible. The
data stored in the system can be of any nature: personal files, company documents,
public content, etc. Hereafter and throughout this thesis, we generalize that notion and
denote the user data as data blocks, or simply blocks for short. However, the type and
format of these data can be of any kind: files, blobs, raw bits, etc. Information security
is also considered, we assume that the original data is encrypted by the user before the
archival process. Nonetheless, other kind of security concerns, as privacy, malicious
peers, etc. are not addressed in this thesis.

Peers. We denote as peer (or node) the entity of the network that participates of the
storage system. These peers can be laptops, desktop computers, enterprise servers,
brick storage devices or any computer that stays turned on for a considerable amount of
time. As opposed to peers of file-sharing applications, which are often opportunists: they
connect to network only when they want some content, and after they never come back.
Hence, a distributed storage system relies on peers that are regularly connected to the
network (e.g., during working hours) and share some of their resources (e.g., bandwidth
and storage space). Usually, it is a assumed that a peer-to-peer overlay network is used
as main infrastructure. Although, our methods and analysis can be applied to any kind
of distributed storage system.

Redundancy. Distributed (or peer-to-peer) storage systems are prone to disk failures
(or peers that permanently leave the network). Hence, redundancy data need to be
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introduced and distributed among peers to ensure high availability, durability and
resilience. The addition of redundant data can be done by trivial Replication [23, 108],
in which full-copies of the data are sent to different peers in the system; or be based on
the more complex and space efficient erasure codes [97, 79], such as Reed Solomon [101],
Digital Fountains [26], Regenerating Codes [42] or Hierarchical Codes [46].

Repair. Even with a high degree of redundancy, to achieve long term fault tolerance the
storage system needs to have a monitoring and a repairing service to cope with peer
failures. These services continuously monitor the redundancy level of data blocks and
decide if a repairing process of missing redundancy (namely reconstruction) needs to be
done.

Usage. Two kinds of system usage are easily distinguished: the first group is a typical
distributed file-system usage (e.g, Farsite [23], CFS [35], Pastis [25]) that supports contin-
uous read and write operations; the second group is a versioned backup or data archival
system (e.g., Intermemory [56], Glacier [59]), in which the stored data is immutable. The
write operations are solely the introduction of new blocks. Read operations are very
occasional. Our models and analysis are valid for both kind of usages.

Metrics. We focus our analysis on the bandwidth required by the self-repairing mecha-
nism to achieve a certain degree of reliability (i.e., probability of data loss) and occuping
a certain amount of storage space. The resources needed for the user accesses or writes
to data should be accounted separately. In fact, one can also be interested in another
metric: the performance of access time. That is, the latency of read and write operations
and the throughput of transfers.

1.2.2 Peer-to-Peer Networks

Although there is no general consensus on the definition of Peer-to-Peer (P2P) networks,
researchers agree that “decentralized”, “node equality”, and “resource sharing” are the
main keywords used in their definitions [78]. The linguistic construction “peer-to-peer”
already suggests that a P2P network is composed of network nodes (called peers) which
are treated equally and communicate directly with each other, as opposed to the tradi-
tional client-server network, in which several clients connect to one server and no one
connects to the clients. The resulting communication topology is hence different. In a
P2P network the majority of peers (ideally all of them) make resources available to other
peers. Resources are of various natures: computational time, storage space, services,
bandwidth, etc. Thus, P2P networks are nowadays massively used by different kind of
applications, for example, content distribution, file sharing, storage services, telephony,
video streaming, etc. Within the following definitions, instead of storage applications,
we give examples of content distribution and file sharing applications.
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Classification

According to the survey by Theotokis et al. [115], the P2P hierarchy could be categorized
in three big groups: decentralized, hybrid, and centralized.

• Decentralized: in a pure decentralized P2P network, all peers play the same role in
the network and there is no central coordination. If they leave, the network stays
alive (e.g., Gnutella v0.4 [64], Freenet [29], BitTorrent with distributed tracker [30]).

• Hybrid: in hybrid P2P networks (or partially centralized as defined in [115]), some
of the peers assume a more important role. Usually, they have more knowledge
about the network than others (e.g., Kazaa [74], super-peers in Gnutella v0.6 [67]),
and act as local central indexes to provide local coordination.

• Centralized: in centralized P2P networks, its operation depends on the existence
of one or more central servers (e.g. Napster, Seti@Home, BitTorrent tracker). These
central servers are exogenous entities (they are not peers) that provide to peers
the knowledge required to operate in the P2P network. Such servers do not share
content of physical resources, they act as directories that provide addresses of peers
that contain the requested resource.

In the P2P survey by Lua et al. [78], an other detailed classification is given. Accord-
ing to its organization, the P2P (or overlay) networks are divided into two categories:

• Unstructured: peers are distributed as a random graph in a flat or hierarchical man-
ner and use flood, random walks or expanding-ring time-to-live to search for con-
tent. Examples of this organization are Freenet, Gnutella, KaZaa, BitTorrent with
tracker. The searching mechanisms in unstructured networks have the advantages
of simplicity and the intrinsic capabilities to query for unknown content (e.g., it is
easy to implement a “search” for content primitive based on keywords). However,
they have several issues regarding scalability and persistence.

• Structured: the topology of the overlay network determines the placement of the
content. Distributed Hash Table (DHT) [112] is the most common structural archi-
tecture for novel P2P overlay networks, which provides a “store” and “lookup”
service similar to the one of a traditional hash table. In this architecture a unique
identification is assigned to every peer. Every data object also has an identification,
namely key, chosen in the same identifier space of the peers. This structured graph
enables efficient “lookup”, “store” and “retrieval” operations of data objects us-
ing the given keys. The operation to lookup a given key is performed in O(log N)

hops (where N is the total number of peers), which allows this architecture to be
very scalable. But note that, in its simplest form, this class of architecture does
not support complex queries based on the data content (as is possible when using
unstructured architectures). The key to be searched needs to be known by other
means.
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DHT Implementations. In general, peer-to-peer storage systems use this structured
overlay architecture as a base infrastructure. Thus, here follows some examples
of some DHT implementations. Proposed by Stoica et al. in 2001, Chord [112,
75] is one of the first distributed hash lookup services, derived from the work by
Plaxton [95]. In Chord the nodes are organized on a virtual ring, each node has a
list of successor and predecessor nodes (logical neighbors) and a finger table that is
used for routing in the ring space. The key lookups are performed by iterating over
the peers’ finger tables, which is achieved in O(log N) hops. Proposed by Rostron
and Druschel, Pastry [107] is another well known key-based routing hash lookup
substrate, which is very similar to Chord. The main difference is its identifier space
that is not organized as ring, but based on the proximity of numerical identifiers.
Several other scalable DHTs have been proposed, with different properties. For
example, CAN [100], Kademlia [81], Koorde [65], Kelips [58] and Tapestry [132]. It
is not our intention to give a detailed explanation of such protocols.

Churn and Failure Model

When developing a durable storage system, the first two performance metrics that come
to mind are data availability and durability [28]. These two metrics are associated to
the peers’ dynamics, namely churn. The term churn represents the oscillations on the
number of peers that participate in the network, which are mainly occasioned by peer
joins, transient departures, and failures. A peer failure represents a permanent depar-
ture, which could be caused by a hardware crash or a network disconnection.

Different models to characterize churn (or availability) can be found in the literature.
The simplest one is the use of a single variable that represents the fraction of nodes that
are available at any given time [125, 44]. This approach does not give any insights about
the distribution of node departures and arrivals, but allows us to estimate an average
behavior.

Thus, more refined models are often found in the literature. Bhagwan et al. in [19],
present the host turnover, i.e., the rate that new nodes arrive in the system and the rate
that existing hosts leave permanently. These metrics are important for peer-to-peer sys-
tems that rely upon long-term host membership. It does not account for short time dis-
connections. Other studies, for example Rhea et al. in [103] and Stutzbach et al. in [113],
characterize the churn with two metrics: the session length (the elapsed time between
when a node joins the network until the next time it leaves); and the lifetime (the time
between the node enters the network for the first time and leaves the network perma-
nently). Hence, the sum of a node’s session times divided by its lifetime is often called
its availability [103, 19].

In the model by Rodrigues and Liskov [105] the peer can leave the system for short
periods of time, as for example during restarts or power outages. If a peer stays discon-
nected for a time smaller than a given timeout τ (usually a few hours), the system does
not react as a failure. Otherwise, the peer is considered to have failed permanently. In
this thesis, we focus our discussions on this kind behavior as we argue that it represents
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more accurately the behavior of distributed storage systems, where peers are supposed
to be regularly connected to network.

Remark on availability scenario. Should be noted that in a P2P storage system, the peers are
interested in participating in the network to gain storage space (as the business model
of Wuala [129], for example, where on-line time can be “traded” for storage space).
Many works analyze the performance of P2P storage in a highly dynamic scenario, with
the use of some real world traces as a reference, e.g., Skype trace, Overlab, Planetlab,
Gnutella [59, 41]. Unfortunately, to this date, there are no public available traces for P2P
storage systems. Hence, we believe that the behavior of such a system is closer to the
PlanetLab traces, where nodes are highly available (for a timeout of 24 hours, we obtain
an expected peer lifetime of around 90 days [41]). In that case, departures are due to long
maintenance or failures.

Failure Model. In our models a peer failure represents a disk crash or a peer that defini-
tively leaves the system. In both cases, it is assumed that all the data on the peer’s
disk are lost. Following other works in the literature [98, 14, 73], these events occurs
independently of one another, according to a memoryless process. For a given peer, the
probability to fail at any given time step is α = 1/MTTF, where MTTF is the expected
lifetime of peers (Mean Time To Failure). The probability for a peer to be alive after T
time steps is (1− α)T. It is important to note that if, for a single disk, this is a rare event,
a system with thousands of disks continuously experiences such failures [91].

However, other failure models, for example having a different rate for different disk
age, can be modeled with more complex Markovian models.

1.2.3 Data Redundancy

In the following, we give an overview of the two classic methods to introduce redun-
dancy to data: replication and erasure codes.

Simple Replication

When employing a replication scheme, the original data is copied as-is to k different
nodes of the network. In that case, even if k − 1 peers are not available or have failed,
the original data can still be recovered. Figure 1.2 depicts the introduction of a file with
replication factor k = 3. The repair process when a replica is lost is straightforward:
it is sufficient that one of the remaining replicas sends a new copy to a different peer.
We define the stretch factor (or space-overhead) as the ratio between the amount of space
consumed over the original size of the data. The inverse is named useful space. In the
simple replication the stretch factor is k, the useful space is 1/k.

The replication scheme is the most natural method to add data redundancy. Every
copy of the original data is equivalent, which makes the system development easier.
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Figure 1.2: Example of System using simple replication, with k = 3 replicas. It tolerates
k− 1 failures and consumes k times the original space.

However, to achieve high availability the space-overhead of replicated systems is very
high.

Erasure Coding

Error Correcting Codes (ECCs) [60] are being employed for a long time to prevent loss of
information in digital communications. These codes were developed to detect and correct
bits of errors that occur during the transmission of a data stream. A class of ECC is the
erasure codes [97], which is used when the system can distinguish in advance that one of
the encoded fragments is missing or is corrupted. The erasure codes can be seen as a
generalization of RAID (Redundant Array of Inexpensive Disks) parity schemes [88].

Coding:
s + r fragments

+ Network
File File

Remaining
Fragments

X X
X

XXX
Figure 1.3: Example of system using erasure codes, with s = 3 and r = 6. It tolerates r
failures and consumes s+r

s = 3 times the original space.

In general, a data block b of size lb is cut into s equally sized initial fragments (or
pieces) of size l f = lb/s. Then, r pieces of redundancy are added, in such a way that the
initial data can be reconstructed from any subset of s pieces among the s + r. The stretch
factor is then (s + r)/s. The useful space is s/(s + r). Note that replication can be seen
as a special case of erasure codes, when s = 1. Figure 1.3 depicts an example of erasure
codes with s = 3 and r = 6. In that case, the system can tolerate up to 6 permanent
failures. But note that the space-overhead in this example is only (3 + 6)/3 = 3, which
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is the same overhead as the replication example above that tolerates only two failures
(Figure 1.2)1.

When the original data can be recovered from any combination of s fragments among
s + r, we say that the corresponding erasure coding is a Maximum Distance Separable
(MDS) code. The classic Reed-Solomon [101] is an example of such a code.

The process of repairing the missing redundancy fragments is more complex than
the trivial replication. For example, to regenerate one missing fragment when using the
Reed-Solomon codes, it is necessary to first gather s fragments from the network, then
reconstruct the whole original data block, and then regenerate the missing fragment.
This process is discussed more deeply in the next section.

Reed-Solomon Codes. The most used code in practice is indeed the Reed-Solomon.
Hence, in the following we give a primer on how it works (as described in the tutorial
by Plank [93]). The RS coding method splits a data block b of size lb into s fragments of
size lb/s each. Let us defineD as a vector containing the s initial fragments d1, . . . , ds, and
C as the vector to be generated containing the s + r redundancy fragments c1, . . . , cs+r,
in such a way that the loss of any r fragments of C can be tolerated. The vector C is
generated from an operator F , which is an encoding matrix of size (s + r)× s with the
following property: any sub-matrix formed by deleting r rows of the matrix F is invertible.
This property guarantees that the original data can be recovered from any s rows. It is
also interesting to have the first s rows as the identity matrix (s× s matrix). This property
guarantees that the first s encoded fragments of C remains the same as the original D.

Indeed, the matrix F can be easily derived from a Vandermonde matrix, Vi,j =

ji−1 [93], for example. Finally, to generate the redundancy fragments C, it is sufficient
to multiply FD = C, as follows

s


r



s︷ ︸︸ ︷

1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
1 1 1 . . . 1
1 2 3 . . . s
1 4 9 . . . s2

...
...

...
...

1 2r−1 3r−1 . . . sr−1




d1

d2
...

ds

 =



c1 = d1

c2 = d2
...

...
cs = ds

cs+1

cs+2
...
cs+r


(1.1)

In this case the first s elements of the encoded fragments C are equal to the original
elements. The others, cs+1, . . . cs+r, are linear combinations of the rows of D.
Recovering from failures: from a vector C ′ ⊆ C of size at least s (that is, at most r elements
missing), we can regenerate the original data vector D. The indices of these remaining

1Some traditional works use the notation (n,m) or (n,k), to express respectively, the total number of
encoded fragments and the original number fragments. In our notation, it is equivalent to note (s+r, s).
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elements of C should be known (i.e., the erasure property). Let F ′ be a matrix whose
rows are a subset of F with the same indices as C ′. By construction we know that F ′D =

C ′ holds (we know that F ′ is invertible). Then, the original data vector can be calculated
trivially with D = C ′F ′−1. One can solve that system using Gaussian Elimination.

Note that all the Reed-Solomon calculations are done using the algebra in the Galois
Fields of size 2w elements (denoted GF(2w)). Usually w is chosen as 8 or 16, to match
the machine byte length. In that case, the values of s and r are subject to the constraints
s + r < 256 or s + r < 65536, respectively. It should be noted that the costs of encoding
and decoding are quadratic on the number of fragments, which can make the choice of
very large values of s and r infeasible in today’s computers [94]. The ZFec library is an
open-source implementation of Reed-Solomon erasure codes. It can be found in [126].

Regenerating Codes

Proposed by Dimakis et al. [41], the Regenerating Codes seem a promising alternative
to obtain a reliable and space efficient erasure codes, in a manner that consumes less
communication resources to repair the missing redundancy fragments. These codes are
based on Network Coding, which is a field of Information and Coding Theory. The basic
idea is to combine small parts of packets flowing in a network (usually making linear
combinations or simple XORs), in contrast to just storing and forwarding them.

To prove the efficiency of their codes, they use an Information Flow Graph with a net-
work coding theory. Then, they derive the bounds on the amount of information that
needs to be exchanged in order to recreate one missing fragment, as a function of the
repair degree d (the number of peers that are contacted to reconstruct the fragment).
They show that the amount of information to transfer can be close to the size of one frag-
ment. There are two special cases of these codes: the Minimum-Bandwidth Regenerating
Codes (MBR), that consumes less bandwidth to repair but cost more in space overhead.
The second, Minimum-Storage Regenerating Codes (MSR), has the same space efficiency
as the Reed-Solomon, but consumes slightly more bandwidth to repair.

However, in their first proposal, these codes do not have the Systematic Repair prop-
erty. That is, when a fragment is regenerated, it is not exactly the fragment that was lost,
but rather a different linear combination of the remaining ones. This property is named
Functional Repair. Recent works do study Regenerating Codes with the Systematic Re-
pair property, but it still in early stages development. Its feasibility was proved only for
some small values of s and r [42]

Moreover, it is not yet proved that these codes could be applied in real systems. Du-
minuco et al. in [47] experimented these codes in a statical environment. They show
that the amount of meta-data to be exchanged among peers (mainly sub-fragments coe-
ficients) could be prohibitive.

Availability Expressions

Data availability means the probability that the data block is accessible at any given time.
That is, it gives the ability for the user to retrieve its contents when desired. Whereas data
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durability means that the data block is not lost due to permanent disk failures. Maybe the
data is not available at a given moment, due to transient disconnections, but as soon as
the missing peer(s) comes back the data will be made available again. Note that avail-
ability implies durability, but the opposite is not true. Data durability can also be defined
as the expected lifetime of the data.

In the following, we give two expressions to estimate the availability of one data block
when using replicated and erasure coded systems. We assume that the peers are inde-
pendent of each other. Let a be the peer’s availability, that is the probability to be present
in the system at any given time step.

Data Availability of Replicated System. Since any single peer among the k peers that hold
one of its copies is enough to recover the original block, the resulting block availability
is trivial [105]:

Arepl = 1− (1− a)k

Data Availability of Erasure Codes. Here we give the availability expression for one
data block coded with standard MDS codes (e.g., Reed Solomon, Regenerating Codes,
etc.) [105, 41]:

Aerasure =
n

∑
i=s

(
n
i

)
ai(1− a)n−i

These simple expressions are often found in the literature [125, 18, 76, 105, 41], how-
ever they do not consider the failure rate of peers and the repairing time of the lost redun-
dancy, which can take too long to finish and impacts negatively this metric. Throughout
this dissertation we give methods that indeed takes into account these processes.

Furthermore, other codes (e.g., Hierarchical, Hybrid, etc.) may need the presence of
less or more than s fragments, which invalidate this expression.

1.2.4 Repair Service

In this section we give details of the two crucial sub-systems that any distributed storage
system should have: a monitoring subsystem and a repairing subsystem.

Monitoring

The monitoring subsystem needs to continuously monitor the redundancy level of data
blocks to decide if a repairing process of missing redundancy (namely reconstruction)
needs to be started. We assume that a general P2P overlay network has a layer that can
detect node departures. Different architectures are possible to monitor the system’s state.
As explained in Section 1.2.2, the organization of the P2P overlay can be centralized or
decentralized. If it is centralized, one (or many) dedicated central server keeps the meta-
data information with the localization of each redundancy fragment of every data block.
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This central server monitors if peers leave the system. In a fully decentralized archi-
tecture, the management of the monitoring system is also distributed, usually with the
employment of a Distributed Hash Table substrate. In that case, each peer is responsible
for monitoring a subset of other peers (neighbors). Additionally, the integrity of the data
has to be checked periodically.

Repairing

When the monitoring system detects that a data block b needs to be repaired, a recon-
struction takes place. Thus, either a central server or a peer is chosen to be in charge of
the reconstruction of the missing redundancy fragments of b. This peer is called the re-
constructor. The repair mechanism of a MDS code is done in three consecutive phases: (1)
retrieval, in which the reconstructor has to download s fragments among the remaining
block’s fragments; (2) recoding, in which the reconstructor recreates the data block; and fi-
nally (3) sending, in which the reconstructed missing fragments are sent to different peers
(including the reconstructor itself that may keep one of the regenerated fragments). We
consider here that the CPU recoding time is negligible compared to the network trans-
mission time. Therefore, the reconstruction time is the sum of the retrieval and sending
phases, along with the elapsed waiting time to start the reconstruction. Figure 1.4 illus-
trates that process.

2) Download s fragments

2

3

File 3) Reconstruct file

4

4) Regenerate missing fragments

5
5) Upload to different peers

Network

1) Choose reconstructor peer1

Figure 1.4: Repair process of Reed-Solomon erasure codes.

The amount of data transmitted per block b is then (s + r− 1)L f in total, with L f the
size of a fragment in bytes.

Remark on Monitoring Traffic. Usually, in an environment with collaborative peers and
where disk crashes are the main cause of failures, then knowing which peers have left
is enough to trigger the reconstruction process. The control traffic induced by this layer
is, mainly, composed of periodic pings to test if the machines are up and running. Since
the amount of traffic induced by the reconstruction transfers is much higher than the
monitoring traffic, this later can be considered negligible here. Thus, the bandwidth
consumption studied in this thesis is due solely to the reconstruction process.
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Bandwidth Consumption

The bandwidth is one of the most scarce resource of the system. It should be noted that
this repairing process consumes an important amount of network bandwidth to repair
one missing fragment. Furthermore, if the peers bandwidth is limited then the elapsed
time to finish the reconstruction process can be very long, which increase the probability
of losing data exponentially. We discuss this behavior in detail throughout the thesis.
In the following we give an overview of different reconstruction strategies that can be
considered to reduce this traffic overhead.

Lazy Strategy. Delaying the reconstruction, i.e., waiting for a block to lose more than
one fragment before rebuilding it, amortizes the costs of bandwidth usage over several
failures. Hence, we study a threshold based reconstruction policy (often called Reactive Lazy
Repair [20, 38]).

Time
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s+r
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X (block dead)

Threshold level

Full redundancy

Reconstruction
time

Reconstruction
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Figure 1.5: Block redundancy level over time. When using a deterministic lazy recon-
struction strategy the repair process starts when the level reaches the threshold r0.

As depicted in Figure 1.5, the reconstruction starts when the number of fragments of
a block drops to a threshold value r0. Note that, when r0 is set to r− 1, the reconstruction
starts as soon as a first piece is lost. This special case is called eager policy and the
induced cost to reconstruct the block is very high, because it is necessary to transfer
s + 1 fragments to reconstruct only 1 fragment. Setting a lower value for r0 decreases
the number of reconstructions (as the reconstruction starts only after that r − r0 pieces
are lost), but increases the probability of losing a block. The lazy repair strategy is studied
in more detail in the Chapters 3,4, and 7.

Hybrid solution. Another approach to reduce the overhead of reconstruction is to keep a
full-replica of the data along with the erasure coded fragments. That is, to use a Hybrid
solution, mixing erasure codes and replication on the same system. Then, most of the
time the communication overhead of reconstruction is very low: if the full-replica is
present, the reconstruction is a trivial copy of a fragment. When the full-replica is lost a
normal reconstruction is needed. We study the advantages of this approach in Chapter 7.
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Proactive repair. In proactive strategies, the repairing process runs periodically or at ran-
dom intervals of time to check the redundancy of blocks and proceed with the repairs.
It is named Fixed Repair Epoch in [125]. These strategies can have some advantages, for
instance a smooth usage of bandwidth. In a similar approach, Sit et al. [110] propose
a solution that continuously introduces new replicas in the system whenever there is
bandwidth available. Duminuco et al. [48] also study this approach but using erasure
codes and mixing with reactive repair.

1.2.5 Related Work

In the following we present some studies that compare the use of the two redundancy
schemes: simple replication and erasure codes. Then, in the next section we compile a
list with the characteristics of several proposed systems found in the literature.

Replication versus Erasure Codes

Weatherspoon and Kubiatowicz [125] show that, in most of the cases, erasure codes use
an order of magnitude less bandwidth and storage space than replication to provide
similar system durability. The bandwidth accounted in their work is due to periodic
repair procedures.

Bhagwan et al. [20] also came to the same conclusion when studying data availabil-
ity for the TotalRecall system. They propose two interesting equations to estimate the
amount of redundancy needed to obtain a certain level of data availability given the
peer’s availability.

Utard and Vernois [120] do a more detailed analysis that takes into consideration the
repair time of lost fragments along with the peer’s availability. They show that when
the availability of peers is very small (high churn), then it is better to use replication
instead of erasure codes, because of the intrinsic cost to repair the erasure codes which
is higher than replication (at least s peers need to be available during a time window
to reconstruct the data). However, in their study they assume an eager repair strategy,
which is resource consuming.

Rodrigues and Liskov in [105] compare replication with the Hybrid solution (mix-
ing both replication and erasure codes). They studied some real world traces (Overnet,
Farsite and Planetlab) and proposed a failure model based on a membership timeout.
After the timeout expired, the node state changes to “failed”, and their data need to be
repaired. They state that erasure codes are interesting for certain scenarios of availability.
In some cases, however, the complexity of having such solutions does not pay the gains
in storage efficiency. If the desired reliability is high, erasure codes are an interesting
solution.

In this thesis, we focus our discussions on systems that use erasure codes, as we are
interested in highly durable systems that consumes less resources. However, our method-
ology applies to both techniques. Recall that replication is a special case of erasure codes
when s = 1.
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Related Systems

The need for long-term archival system is not a recent topic. Many systems have been
proposed in the past 15 years, mainly motivated by the growing interest in digital li-
braries. Some examples of early works are the Eternity Service [15], the Intermem-
ory [56], and the Stanford Archival Repository Project [34]. Since then, many practical
storage systems have emerged as peer-to-peer storage solutions. In the following we
present a representative list of them. The survey by Hasan et al. [61], the thesis of Du-
minuco [45] and Dandoush [36] also compile some information. A summary is shown
in Table 1.1.

• Farsite [23]: is an implementation of a server-less distributed file-system that ex-
ploit the idle resources of Desktop PCs at Microsoft. Reliability is ensured by using
replication of the whole file among nodes (the use of erasure codes is also men-
tioned). They also propose placement schemes that take into account the peer’s
availability.

• OceanStore [69]: proposes an architecture to provide a global storage service based
on a federation of untrusted servers that supports nomadic data. Their work have
many folds, many of them are addressed in the Weatherspoon’s PhD Thesis [124].
Pond [102] is an OceanStore prototype, that implements a file-system-like inter-
face. It is based on the Tapestry DHT overlay network to store files (namely, data
object). Their architecture is layered and also mixes the use of replication (to have
a primary replica) and erasure codes (for archival). Any machine in the system
may store archival fragments. The primary replica uses Tapestry to distribute the
fragments uniformly throughout the system.

• Cooperative File System (CFS) [35]: it is a read-write storage system with NFS-like
interface. Built on top of the Chord DHT location protocol, they propose the DHash
put/get interface. A file is divided into blocks, to each block is assigned a different
key. They proposed the use of replication of blocks as a redundancy scheme. The
replicas are sent to the peers on the closest successors peers on the Chord ring. CFS
is a read-only system from the perspective of the users. However, the publishers
can update their work. Deletes are not allowed.

• PAST [108]: similar to CFS in function, it is as a large-scale persistent storage for
immutable data built on top of Pastry DHT. It uses replication to add data redun-
dancy. They propose a replica diversion scheme to allow load balancing, on which
replicas of files are placed on peers outside of its neighborhood.

• Ivy [83]: is a multi-user read-write peer-to-peer file system that provides a NFS-
like interface to clients. It is based on log files that record the changes made to files.
These logs are stored and replicated using a DHT.

• Pastiche [33]: is a simple peer-to-peer backup system. The data are organized
in chunks that are replicated to buddies chosen among the Pastry DHT neighbors.
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These buddies are nodes that store similar content, hence storage space can be
saved when the content are equal.

• pStore [17]: it is a distributed backup system with file versioning that has focus
on security. In the pStore the data are cut into fragments that are then replicated
among all nodes of the network at random.

• TotalRecall [20]: is another peer-to-peer storage system that stores files using either
replication or erasure codes. Its architecture is similar to the other systems. Fur-
thermore, they propose different repair strategies: the eager reconstruction (when
using replication), and they propose a lazy repair (when using erasure codes).

• Glacier [59]: is a backup storage system proposed to be tolerant against many cor-
related failures. To achieve that it uses proactive repair and maintains a high level
of redundancy using both replication and erasure codes. The placement strategy
stores objects with similar keys on the same set of peers.

• Pastis [25]: is a multi-user decentralized read-write file system. It is built on top of
a modified version of PAST/Pastry DHT. Pastis stores file’s blocks in inode struc-
tures similar to the Unix Files System (UFS). Thus, it provides an NFS-like inter-
face. The fault-tolerance and availability is provided by the PAST layer, hence, full
replication of the data blocks.

• BitVault [130]: is another storage system of immutable data within a local net-
work. It is a continuation of the RepStore [131] project. Peers are organized in
a Xring DHT [133] that provides membership services. It uses replica of files for
redundancy. The repair is done eagerly.

Table 1.1: Characteristics of some proposed distributed storage systems

System DHT Object Redundancy Repair Data Data
type scheme policy access placement

Farsite Groups file replication eager read-write availability
OceanStore Tapestry file/block both eager/lazy read/write global/neighbors
CFS/Dhash Chord block replication eager updates neighbors
PAST Pastry file replication eager read-only neighbors
Ivy Chord modif. log replication eager read/write neighbors
Pastiche Pastry chunk replication - load buddies
pStore Chord block replication eager read/write random/global
TotalRecall any file erasure/repl. lazy DHT random/global
Glacier any any both proactive/eager read/write Bloom filter
Pastis PAST/Pastry inode/block replication eager read/write neighbors
BitVault XRing object replication eager load balance load balance

The objective of this compilation is to gather the general properties of the proposed
systems that are relevant to this thesis. We do not aim at specifying the working details of
a new storage system, but instead we aim at studying models that harness its behavior.
Indeed, these models can then be used to improve its overall performance in several
aspects. In this compilation we do not address other, not less important, issues, e.g.,
security, privacy, access efficiency, etc.
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Open-source Solution

There is an effort by the open-source community to create a global storage cloud. The
Tahoe-LAFS [127] project have been widely disseminated and is already included in the
packages of the Ubuntu Linux distribution. Its implementation uses the Reed-Solomon
erasure codes to add redundancy. Its source code is also available as open-source. Any
user can create its own P2P network or participate in public ones.

Commercial Solutions

Commercial companies, like Wuala 2, CrashPlan 3, and Ubistorage 4, exploit the erasure
coding technology to deliver a reliable backup solution. They use the network formed
by client peers to store the redundancy. In Wuala, a user can buy storage space, or,
more interestingly, trade local storage space and bandwidth time in order to gain reliable
storage in the Wuala network. The amount of earned storage is a function on the amount
of space given and the amount of time the computer is plugged into the network. A
minimum of 4 hours per day is needed5.

Ubistorage is a French company that provides data storage solutions for small and
medium companies. Their services comprise the deployment of a dedicated terminal on
their clients. This terminal acts as a Network Attached Storage (NAS) device that stay
turned on permanently. The company then exploit these devices to store the redundant
data coded with erasure coding. In the case of failure, the terminal is replaced and the
data is recovered.

Other solutions that are rapidly growing are the on-line storage services. Mainly
motivated by the cloud computing [16] era that requires data storage on-demand. That
is, a service that is flexible and elastic, while keeping data reliably. Examples of these
services are the AmazonS3 6, the Google Storage 7, and the Microsoft SkyDrive 8. Their
services are focused on global availability of data, fast access and some level of durability.

For instance, in the Amazon S3 service agreement9, they propose two kinds of stor-
age solutions: the reliable one, “Designed to provide 99.999999999% durability and 99.99%
availability of objects over a given year. Designed to sustain the concurrent loss of data in two
facilities.”; or a less expensive Reduced Redundancy Storage, which gives 99.99% of dura-
bility, which is designed to sustain the loss of data in a single facility only. The business
model is based on monthly fees per GB used and a cost per million of operations per-
formed.

2http://www.wuala.com
3http://www.crashplan.com
4http://www.ubistorage.com/
5(as service agreement in August 2010)
6http://aws.amazon.com/s3/
7http://code.google.com/intl/pt-BR/apis/storage/
8http://explore.live.com/windows-live-skydrive
9(as accessed in August 2010)

http://www.wuala.com
http://www.crashplan.com
http://www.ubistorage.com/
http://aws.amazon.com/s3/
http://code.google.com/intl/pt-BR/apis/storage/
http://explore.live.com/windows-live-skydrive
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1.3 Summary

In this section, we compile the main design decisions and the variables that have an in-
fluence on the performance of P2P storage systems. Figure 1.6 shows a mind map of the
main topics around P2P storage that are discussed throughout this text. The interaction
between these branches are complex as they affect each other. As depicted in the map,
the system analysis is divided in three big dimensions: Design, Environment, and Metrics.
They are detailed as follows:
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Figure 1.6: Sketch of the peer-to-peer storage system evaluation: design decisions, envi-
ronmental variables and analyzed metrics.

• Design Decisions (on the left): are the parameters chosen when specifying, devel-
oping or configuring the system. Usually they are chosen according to the environ-
mental variables that the system is planned to work with. Also, the design depends
on desired performance metrics. The design decisions relevant to this thesis are be
branched into three topics: redundancy scheme, repair mechanism and placement
policy.

• Environmental Variables (on top): are the variables that affect directly or in-
directly the system’s behavior during run-time. The system analysis depends
strongly on the environmental variables that the system is aimed to work for. As
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pointed above, they also help the decision of the system design. Examples of en-
vironmental variables are: the kind of system usage (file-system, archival, etc.),
the behavior of peers (availability rate, failure rate, space, etc.) and the amount of
resources available (bandwidth and space).

• Performance Metrics (on bottom): the performance metrics for such systems are
numerous. The most common ones are: data availability, data durability, space us-
age and bandwidth consumption. Our goal is to obtain a system with a maximum
of data availability and durability, but using the minimum of space overhead and
bandwidth consumption.

1.4 Contributions and Organization

The contributions of this thesis are organized as follows:

• Chapter 2 - Methodology:

We give an overview of the analysis techniques used throughout the thesis. First
we give some background on the use of discrete time Markov chains to estimate the
mean behavior of dynamic systems. Then, we present a simple example of model-
ing the populations of rabbits. This small example already exhibits the problematic
of capturing the variations around the mean value. Then, we describe how to bet-
ter capture the system dynamics by presenting the insights of a stochastic Fluid
model. We finish with the description and discussion of simulation techniques.

• Chapter 3 - Mean Behavior and Guideline to Lazy Repair: We model a general
storage system by using a Markov chain model. This model allows us to take
into account the effects of disk failures along with the time consumed by the self-
repairing process. We confirm that a lazy repair strategy can be employed to amor-
tize the repairing cost, mainly bandwidth. We then derive closed-form mathemat-
ical expressions that estimate the system average behavior. These formulas give a
good intuition of the system dynamics. Our contribution is a guideline to system
designers and administrators to choose the best set of parameters.

The results presented in this chapter appeared in [3, 13] and were published in [4, 10].

• Chapter 4 - Capturing the Variations: We propose and study fluid models that
assess the variations on the bandwidth consumption and the probability of data
loss. These variations are caused by the simultaneous loss of multiple data blocks
that results from a peer failure (or a peer leaving the system). In addition to its
expectation, it gives a correct estimation of its variations.

The results presented in this chapter appeared in [3] and were published in [4].

• Chapter 5 - Analysis of the Repair Time under Limited Bandwidth: The speed of
the repair of a data block is crucial for its survival. This speed is mainly determined
by how much bandwidth is available. But in practice, concurrent reconstructions
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do compete for the same bandwidth. In this chapter, we propose a new analytical
framework that takes into account this correlation. Mainly, we introduce queuing
models in which reconstructions are served by peers at a cadence that depends on
the available bandwidth. Moreover, we study the efficiency of different scheduling
policies when serving data. The goal of this study is to provide a tight estimation
of the probability of data loss under constrained bandwidth.

A paper with the results of this chapter is under review.

• Chapter 6 - Data Placement Strategies: We study the impact of different data
placement strategies on the system performance. This study is motivated by prac-
tical peer-to-peer storage systems that store data in logical neighbors. We use sim-
ulations and combinatorial models to show that, without resource constraints, the
average values are the same no matter which placement policy is used. However,
the variations in the use of bandwidth are much more bursty under the local poli-
cies (in which the data are stored in logical neighbors). When the bandwidth is
limited, these bursty variations induce longer maintenance time and henceforth a
higher risk of data loss.

The results presented in this chapter appeared in [2] and were published in [9, 1].

• Chapter 7 - Hybrid Coding: The reconstruction process of storage systems based
on erasure codes (e.g., Reed-Solomon) have an important overhead in bandwidth
consumption. In this chapter, we study the use of Hybrid coding: mixing era-
sure codes and simple data replication, i.e., keep one replica of the data along
with the erasure codes. We model this systems using Markov chains, and then
derive closed-form expressions to approximate the bandwidth usage and the sys-
tem durability. We show when the Hybrid system has better trade-offs between
bandwidth, space usage, and durability.

A paper with the results of this chapter is being prepared for publication.

Appendices: We discuss briefly two orthogonal works done during this thesis:

• The first is the use of Evolving Graphs for performance evaluation of routing pro-
tocols for mobile ad hoc networks with known connectivity patterns. This study
started during my Master studies, at University of São Paulo, Brazil. The results of
this work were published in [5, 7, 8].

• The second work, is the proposition of a stackable Copy-on-Write file versioning
device using Linux Device-Mapper (namely Corral). This work was presented in [12].



CHAPTER 2

Methodology

This chapter gives an overview of the modeling techniques used throughout the thesis.
First we give some background on the use of discrete time Markov chains to estimate
the mean behavior of dynamic systems. Then, we present a toy example of modeling a
rabbit population. The idea is to give the insights that will be useful in the Chapter 3.
This small example already exhibits the problematic of capturing the variations around
the mean value. Then, we describe how to better capture the system dynamics by pre-
senting the insights of a Fluid model, which will be useful in the Chapter 4. We finish
with the description and discussion of simulation techniques used to validate the models
proposed in this thesis.

2.1 Markov Chains

A model is an abstraction of a system that captures some part of its behavior in order to
be analyzed. When studying dynamic systems that evolve during time, we can model
them as a time dependent stochastic process. That is, the behavior of the system is rep-
resented as a probabilistic model that evolves randomly in time. Thus, a discrete time
stochastic process X is family of ordered random variables {X(t) : t = 0, 1, 2, . . .} on a
given probability space. The set of possible values of X(t) is known as the state space S
of the stochastic process [22]. At a time t the process is in state X(t) ∈ S.

A stochastic process constitutes a Markov chain if the next probabilistic behaviour of
the process depends only on the present state of the process. It is not influenced by
its past history. This is called the Markovian property. Despite its very simple structure,
the Markov chain model is a extremely useful tool to understand the behavior of a wide
variety of dynamic systems. Specifically, a Markov process allows us to model the uncer-
tainty in many real-world systems that evolve dynamically in time. The basic concepts
of a Markov process are state and transition. The “art” of modelling is then to find an ade-
quate state description such that the associated stochastic process exhibits the Markovian
property [116].

2.1.1 Definition

Formally, consider a sequence {X(t) : t ≥ 0} of a random variable X on a discrete state
space. Let us assume X in a finite state space S whose elements are numbered [0..n],
where n is the cardinality of S minus one. If X(t) = i, then the process is said to be in
state i at time t. Whenever the process is in state i, we note Pij the fixed probability that it
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will be next in state j. In a Markov chain, the conditional distribution of any future state
X(t + 1) depends only on the present state, X(t). That is,

P{X(t + 1) = j|X(t) = i} = Pij.

The probabilities Pij are called one-step transition probability, and represents the probabil-
ity that the process will, when in state i, next make a transition into state j. We have
that

0 ≤ Pij ≤ 1, ∀i, j ∈ [0..n], and
n

∑
j=0

Pij = 1, ∀i ∈ [0..n].

Then, P is the one-step transition matrix defined by the probabilities Pij, for every
value of i, j. We assume that this matrix have rows that sum to 1. Given an initial state
X(0) at time zero, the Markov chain evolves over time. That is, at each time step the next
step is defined according to the one-step transition probabilities, Pij.

When studying the behavior of X during time, one can be interested in the probabil-
ity of the system to be in a given state at a given time step t. We define then for each
t ≥ 0, the t-step transition probabilities as

P(t)
ij = P{X(t) = j|X(0) = i}, ∀i, j ∈ [0..n],

that is, the probability to reach the state j at time t from state i at time 0. By the Chapman–
Kolmogoroff equations we have that the t-step transition probabilities P(t)

ij can be calcu-

lated recursively from the one-step probability P(1)
ij . Note that P(1)

ij = Pij. Indeed, the
t-step transition matrix is the matrix product Pt = Pt−1·P.

2.1.2 The Equilibrium Probabilities

In this section we discuss the equilibrium distribution probabilities of the Markov chain.
The equilibrium distribution, noted by the state vector πj, ∀j ∈ [0..n], is the probability
of the process to be in a given state j after a long-run. A finite Markov chain has an
unique equilibrium distribution if it is ergodic, that is, for every state i it is aperiodic and
irreducible.
Periodicity: the period qi of a state i is given by qi = gcd{n : P[X(n) = i|X(0) = i] > 0},
where gcd denotes the greatest common divisor. Then, the state i is aperiodic if qi = 1,
i.e., the returns to state i occur at irregular times.
Irreducibility: the state i is irreducible if from i it is possible to reach every other state
j, ∀j ∈ [0..n]. If there is an absorbing state, the chain is not irreducible.

If the Markov chain has these properties, applying the operator P multiple times,
shows that P(t)

ij converges to some value as t → ∞, which is the same for all i. In other
words, the system converges to the equilibrium distribution of the process to be in state
j after a large number of transitions. Note that this value is independent of the initial
state.

Formally, the probability distribution πj, j ∈ [0..n], is said to be a stationary equi-
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librium distribution for the Markov chain with one-step transitions Pij, when πj =

limt→∞ P(t)
ij , j ∈ [0..n]. Then, πj is the unique non-negative solution of:

πj =
n

∑
k=0

πkPkj, j ∈ [0..n] and
n

∑
j=0

πj = 1.

Solving. There are many methods to calculate such equilibrium distribution [116]: it
can be calculated iteratively, iterating with the matrix P until the vector π reaches the
equilibrium; another method is to calculate directly by solving the above linear system
using Gauss-Jordan elimination; more generally, one can use any known method to find
the eigenvector with eigenvalue equals 1. The Perron-Frobenius theorem ensures that
such a vector exists for a stochastic matrix. That is

π = Pπ,

which is equivalent to solve π(P− In) = 0, where In is the identity matrix of size n. This
system can be solved by adding the normalization equation ∑n

j=0 πj = 1.

2.1.3 Toy Example

Figure 2.1: Raving Rabbids
(Les lapins crétins). Copyright
Ubisoft.

In the following, we give an example of a rabbit popu-
lation. Every rabbit can be either inside (IN) the jail or
be playing outside (OUT) in the garden. The time is dis-
crete with a granularity of one day. Hence, starting at
time t = 0 the system advances one day per time-step.
Two kinds of events could happen to this population at
each time-step:

• When it occurs to be a sunny day, the rabbits that
are inside the jail can go out to play outside, with a
certain probability pexit. The outside rabbits remain
outside.

• When it occurs to be a cloudy day, the outside rab-
bits could get inside, with a probability penter. The
rabbits inside remain inside.

Sunny and cloudy events are treated as a sequence of Bernoulli trials [106]. Sunny
days have probability psunny to occur and cloudy days 1− psunny.

Note that, the outside population can be deduced from the number of inside rabbits.
We are interested in the system expected state. That is, the probability that the system is in
a given state at a random moment. What is the expected number of rabbits inside and
outside, for given values of psunny, penter and pexit?
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2.1.4 Modeling one Rabbit

First, we construct a Markov chain model to represent the behavior of one single rabbit.
From that chain, it is very easy to estimate the expected number of inside and outside
rabbits at the system’s steady state. As depicted in Figure 2.2, the chain has 2 states,
X = [0, 1] (note, 0 := IN and 1 := OUT), and has 4 transitions as follows:

P0,0 = (1− psunny) + psunny·(1− pexit) = 1− psunny·pexit

P0,1 = psunny·pexit

P1,0 = (1− psunny)·penter

P1,1 = psunny + (1− psunny)·(1− penter) = 1− (1− psunny)·penter

In other words, when the rabbit is inside, X(t) = 0, then it remains inside if it is a cloudy
day (1− psunny) or if it is a sunny day and it has decided not to go outside psunny·(1−
pexit). If the rabbit is outside, X(t) = 1, it can get inside if it is a cloudy day and it has
decided to get in (1− psunny)·penter. The other cases are symmetric.

Figure 2.2: Simple Markov chain to model the one rabbit with 2 states.

Solving. For example, when psunny = 1/2, pexit = 1/2 and penter = 1/2, we obtain the
one-step transition matrix as follows:

P =

(
P0,0 P0,1

P1,0 P1,1

)
=

(
3/4 1/4
1/4 3/4

)
When iterating the transition matrix, we note that after a small number of iterations

the probability distribution converges to the values π = {0.50, 0.50} (when rounding to
two decimal places).

P1 =

(
0.75 0.25
0.25 0.75

)
, P2 =

(
0.62 0.38
0.38 0.62

)
, P3 =

(
0.56 0.44
0.44 0.56

)
, . . . , P7 =

(
0.50 0.50
0.50 0.50

)
.

This means that in a long run, the probability of the rabbit being inside is one half. An-
other simple method to obtain the stationary distribution is to solve the trivial system of
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two variables, π0 and π1,

π0 = 0.75π0 + 0.25π1

π1 = 0.25π0 + 0.75π1

together with the normalizing equation π0 + π1 = 1. The solution is π0 = π1 = 0.5.
In simple words, this result means that the probability of the rabbit being inside or

outside is the same 0.5. If we have a population of N elements, it is a common procedure
to assume that all the elements of the population are independent of each other, then
the equilibrium probability of a given state is the fraction of elements that are in that
state. In our example, for a population of N rabbits, the equilibrium distribution gives
the expectation of N/2 rabbits inside.

The Problem of Correlations. In this example, if we model one rabbit and we assume
that it represents the behavior of the whole population, then we are neglecting the fact
that rabbits on the same geographical place are strongly correlated. Indeed, rabbits that
are on the same place are affected on the same way by sunny or cloudy events. When it
is a sunny day the rabbits follow the same trajectory. There is no rabbit that will come
inside in this day; the only possibility is to go outside. The extreme case is when all the
population is correlated, as studied in the following.

Indeed, the strong correlation of these events is not well captured by this first Markov
chain model. That is, the simple Markov chain gives the mean value of inside and out-
side rabbits at the steady state. However, the equilibrium probability does not give the
distribution of probabilities at given moment of time. The remaining problem is: for a
given day, what is the probability that x percent of rabbits are inside at that day? What is the
distribution function of states probabilities? What are the variations around the mean?

To better illustrate that difference, we perform two kinds of numerical simulations of
the system (a kind of Monte-Carlo simulations [106]). The first, as shown in Listing 2.1
(page 34), simulates the behavior of rabbits assuming they are independent of each
other. That is, for every rabbit we choose two random numbers uniformly (i.e., perform
two Bernoulli trials [106]): one for sunny or cloudy day; the other to move or stay. The
second, Listing 2.2 (page 35), simulates the system taking into account the correlation of
sunny and cloudy days. That is, first performs a Bernoulli trial to choose for sunny or
cloudy day; then for every rabbit in the corresponding state (inside if sunny, or outside
if cloudy) we perform the other Bernoulli trial. The difference is subtle. These two code
snippets are appended at the of this chapter. They can be executed using the R statistical
software [114].

Probability Distribution. Figure 2.3 shows the results of a simulation of N = 200 rabbits
with equal probabilities psunny = penter = pexit = 1/2. On the left side (a) and (c) are the
results of the independent rabbits simulation (Listing 2.1), on the right side (b) and (d) are
the results assuming a correlated system (Listing 2.2). On top we present the histogram
of inside rabbits, and on the bottom we can check its behavior during time (only a short
time window is shown). Note that both simulations give the same mean value of rabbits
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inside (100). But, on the left side the values are very concentrated around the mean value.
In fact this distribution is equivalent to N Bernoulli trials with probability p = 1/2,
hence the standard deviation σ =

√
N·p·(1− p) =

√
N/2 = 7.07. On the right side,

the simulation of the correlated system shows a somehow counter intuitive result. The
distribution of the probability of rabbits inside is uniform. This means that at any given
time, every combination of rabbits inside or outside is equiprobable.
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(d) Sim. Correlated

Figure 2.3: Probability density function and timeseries of the rabbit population simula-
tion (N = 200, and all probabilities are 1/2). Both simulations show an average of 100
rabbits inside, but the variations are very different.

We conclude that modeling the dynamics of a population by one of its entities needs
to be done with care. In the following, we give a second Markov chain model that indeed
captures the real distribution of rabbits inside and outside at any given time.
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... ...

Figure 2.4: Complete Markov chain to model the population of rabbits with N+1 states.
Only the transitions from state i are shown. Note here pcloudy = 1− psunny.

2.1.5 Modeling a Population of Rabbits

To take into consideration the correlation of the sunny and cloudy events presented
above, we describe a more complete Markov chain. Indeed, in this complete chain every
state represents the number of rabbits that are inside, from 0 to N. Recall that the number
of rabbits outside can be deduced from the number of rabbits inside.

The transitions build a complete directed graph, every state having a transition to
every other state (see Figure 2.4). Each transition Pij is the exact probability to change
from i rabbits to j rabbits in one day. More precisely, every transition Pij is written as:

Pij =


psunny·δ(i− j, i, pexit) when j < i

(1− psunny)·δ(j− i, N − i, penter) when j > i

1−∑N
j=0,j 6=i Pij when j = i

where δ(k, n, p) = (n
k)pk(1 − p)n−k is the binomial distribution, i.e., the probability to

obtain exactly k success in n trials with probability p. The first line (j < i) represents the
sunny days, where the transitions go to lower indexes, i.e., the rabbits go outside. The
second line (j > i) represents the cloudy days, when the outside rabbits go inside.

The stationary distribution of this chain gives the probability density function of the
number of rabbits inside at any given time. The R code to obtain the stationary state of
this chain is given in Listing 2.3 (page 35).

The results obtained by this chain match very precisely the results obtained by sim-
ulation. To give an idea of how the state vector evolves during time, Figure 2.5 shows
the first five iterations of the complete chain, starting from the state vector with exactly
50% of rabbits inside. The probabilities are psunny = pexit = penter = 1/2. We see that the
system converges very quickly to the uniform distribution. As predicted by the simula-
tions.

For the sake of completeness, let us try different values of probabilities to verify
the results of the complete chain. Figure 2.6 shows the histogram of a simulation with
probabilities psunny = 0.25 (assume they are in England!), pexit = 0.9, and penter = 0.3.
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Figure 2.5: Probability density function of rabbits for the first 5 iterations. At the begin-
ning, the state vector X(0) (on top) is exactly with half of the rabbits inside. Then, it
converges very quickly to the uniform stationary distribution.
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Figure 2.6: Probability density function of rabbits simulation (N = 200, and probabilities
psunny = 0.25, pexit = 0.9 and penter = 0.3).

These values are chosen in such way that the expected number of rabbits inside and
outside is still half and half (actually, any values that holds pexit =

(1−psunny)·penter
psunny

will
have π = [0.5, 0.5] as stationary equilibrium, this comes from the stability equations).
On the left side, as expected, the simulation of the independent system has values very
concentrated around the mean. However, the correct distribution of the correlated
system has a strange form, and the analytical result obtained by the complete Markov
chain matches very close the simulation (Figure 2.6(b)). For the curious, in this scenario
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the probability of having between 30 and 40 rabbits inside in the steady state is close to
zero; meanwhile, the probability of having no rabbits inside is considerable.

Conclusion. In this section, we have shown that the dynamics of the system can be
precisely modeled by a Markov chain. However, this model suffers some scalability
issues: the number of states depending linearly on the size of the population and the
number of transitions depends quadratically.

Furthermore, note that the construction of this complete chain is feasible only be-
cause the system is very simple. If we model a system with more than two possible “lo-
cations” (e.g., inside, outside and eating), the chain would have an enormous number of
states. Which turns the use of that approach unpractical. For example, if the number of
rabbit locations is three, the number of possible states would be of order O(N2), and the
number of transitions of order O(N4).

This engenders the development of practical methods that could give an intuition of
the system dynamics. In the next section we discuss a stochastic Fluid model, which is
more efficient in execution time and memory usage.

2.2 Stochastic Fluid Models

Fluid models are used to harness the dynamic characteristics of a population by sim-
plifying its interactions. The principle of the fluid model is that when the number of
elements in the population is large, the model can be approximated by a determinis-
tic equation of its average behavior (often called “mean-field” approach) [24, 71]. This
technique allows us to describe the macro behavior of the system dynamics in a simple
way.

The stochastic fluid approach is used to simplify the complex stochastic Markov
model by considering the average behavior of its entities. But the usefulness of this ap-
proach is that it allows us to capture the system averages and its variation in an efficient
way.

2.2.1 Modeling a Very Large Population of Rabbits

Following the example of the rabbit population given in the last section, we show here
its modeling based on a stochastic fluid model for the correlated case. The idea is to have
a state vector Y with two states Y0 ∈ [0 .. N], and Y1 ∈ [0 .. N], (Y0 := number of rabbits
inside, Y1 := number of rabbits outside). To this vector we apply one of two operators at
each time step. One represents the events of sunny days and the other of cloudy days.
They are constructed as follows:

Msunny =

[
1− µ(pexit) 0

µ(pexit) 1

]
Mcloudy =

[
1 1− µ(penter)

0 µ(penter)

]
,

where µ(p) is the fraction of rabbits that change states when an event occurs, and p the
probability to move (either pexit or penter). These operators are stochastic matrices that
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represent the flow of rabbits when an event occurs. The first Msunny is applied with
probability psunny, and the other Mcloudy with probability 1− psunny.

Then, the transition of the system is defined as

Y(t + 1) = M(t)·Y(t), t ≥ 0

where M(t) is a randomly chosen matrix of, either Msunny with probability psunny, or
Mcloudy with probability (1− psunny).

First Order Model. First, we present a simple model, namely deterministic, in which the
fraction of rabbits that change state is exactly the probability to move, that is µ(p) = p.

Second Order Model. The other model, more refined, takes into consideration the small
fluctuations around the exact fraction. Namely, binomial, it considers that the amount of
rabbits that change states follows a binomial distribution with N elements and probabil-
ity p. Then, we normalize to obtain a fraction µ(p) = randBinom(p, N)/N. In fact, this
almost 1 corresponds to the simulated system, in which for every rabbit we pick a ran-
dom variable to decide if it changes state or not. Formally, it corresponds to N Bernoulli
trials with probability p that, when normalized, give an average p and a standard devia-
tion σ =

√
N·p·(1− p)/N. Remark that the standard error σ/(N·p) becomes very small

when N is large, which means that for very large N the results of the second model leads
to the first model.
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Figure 2.7: Probability density function of rabbits using the Fluid models (N = 200 and
equal probabilities 0.5). Both models give almost the same results.

The first fluid model (deterministic) can be simulated using the source code shown
in Listing 2.4 (page 36). The more refined (binomial) is shown in Listings 2.5 (page 36).

1Indeed, we say that it is almost the behavior of the real correlated system because we chose the binomial
for a population with size fixed as N. Indeed, in the real system the number of rabbits in these trials depends
on the system evolution. However, choosing a fixed value N already gives a very good approximation.
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Figure 2.7 shows the probability distribution for N = 200 and probabilities psunny = 0.5,
pexit = 0.5, and penter = 0.5 (same parameters as in Figure 2.3). The results obtained
using the deterministic and binomial fluid models are close to the complete Markov chain
calculations, and the results of both models are very close.

Let us try different parameters. Figure 2.8 shows the results for a population of
N = 200 rabbits and probabilities psunny = 0.25, pexit = 0.9, and penter = 0.3 for both
Fluid models. The first remark is that both models give the same average and the same
standard deviation. The binomial model is very similar to the correct distribution calcu-
lated using the complete Markov chain. However, the deterministic Fluid model has a
peaky distribution instead of the smooth behavior of the binomial model. This behavior
is determined by the fact that there is no “noise” in the Fluid property, when an event
occurs, exactly the same amount of elements will change state. Hence, some states are
never reached.
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Figure 2.8: Probability density function of rabbits using Fluid models (deterministic and
binomial), N = 200 and the probabilities psunny = 0.25, pexit = 0.9 and penter = 0.3. Their
results are compared to the complete Markov chain.

To complete this study, we show in Figure 2.9 three scenarios with increasing amount
of rabbits from 103 to 105. The probabilities remain the same (as in Figure 2.8). Note that
the results for 105 rabbits are very close to the deterministic Fluid model. Which comes
from the fact that for large values of N the binomial distribution is very concentrated
around the mean value, hence it is closer to the deterministic model. These results com-
fort our claim that the deterministic Fluid model represents correctly the behavior of the
system for large values of N.

The advantage of these fluid models is that they can be calculated very quickly! They
do not depend on the number of entities in the system. Furthermore, the mean value and
standard deviation can also be calculated analytically.
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(b) N = 104
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Figure 2.9: Probability density function of rabbit population using the binomial Fluid
model, with same parameters as Figure 2.8, but with increasing values of N. As the
values of N increase the distribution tends to the deterministic model.

Solving Analytically. The expected number of rabbits in each state can be derived from

E[Y(t + 1)] = E[M(t)]E[Y(t)]

The expectation of M(t) is given by

E[M(t)] = E[(psunny·Msunny + (1− psunny)·Mcloudy)]

= psunny·E[Msunny] + (1− psunny)·E[Mcloudy]

= psunny·Msunny + (1− psunny)·Mcloudy
= P.

Hence, E[M(t)] is equivalent to the transition matrix of the Markov chain, P, for one
rabbit. Then, since E[Y(t + 1)] = P·E[Y(t)], E[Y(t)] converges to the same stationary
distribution π of the independent system already calculated in Section 2.1.4 (page 24).

Moreover, we can also calculate analytically the variation around the mean value.
The standard deviation of the coordinates of the vector Y(t) is calculated as follows

σ(Yi(t)) =
√

E[Yi(t)2]−E[Yi(t)]2

we know that E[Y(t)] = π, but E[Y(t)2] is more difficult to calculate. It comes from
Y(t + 1)2 = (M(t)·Y(t))2. Then we note that it depends on all the cross-products of
YiYj, ∀i, j ∈ [0, n], which can be calculated by a linear system of equations. We omit the
details here, but a equivalent analysis is done in Chapter 4 for the P2P storage model.

e

2.3 Network Simulation

Computer simulation is a cheap and powerful method to analyze the behavior of com-
plex network systems. Similarly with the analytical models, simulation is all about cre-
ating models to represent (or mimic) the reality. Indeed, these models are simplified ab-
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stractions of the real behavior of the studied system. If the abstractions are too complex,
the simulation models are more subject to implementation errors, making it difficult to
certify and validate the results. Further on, the simulation of complex models could take
too long to finish, which makes the observation of rare events a difficult task. On the op-
posite, if the models are too simple then the accuracy could not be enough to observe the
desired metrics. With that in mind, one needs to find what is the good trade-off between
complexity of implementation and accuracy of the model when planing simulations.

In the early stages of this work, an extensive research was done on the pre-existent
simulators of P2P and large-scale networks. Our findings show that there are many
kinds of simulators available, each one with different goals. NS2 [85], OmNet++ [123]
are the de facto standard for network simulation. Their behavior is highly trusted within
the networking community. They are discrete-event simulators, organized according to
the OSI model. However, they are built to simulate packet level communications with
great detail, e.g., the TCP stack. Usually, the feasible scenarios evaluated with these
simulators are around hundred of nodes, and the simulated time ranges from minutes
to weeks.

By nature, the P2P systems comprise a large network with a high level of interac-
tion between its entities. Hence, the simulation complexity of such systems also reaches
large levels. In our case, we want to simulate storage systems with thousands, or even
millions of nodes, each storing tens of thousands data fragments. A real storage system
has millions, or even billions of objects. On such enormous systems, we want to study
permanent data loss, which should be “rare” events. Hence, the constraints are multiple,
usually in processing capacity and memory consumption.

In order to cope with this extremely challenging scalability issue, one possibility is
to lower the complexity of the model [104]. For example, many works that study large-
scale networks try not to simulate the lower levels of the network (packet transmissions,
congestion, etc.), instead they create analytical models to simplify the simulation [21, 70].
As stated by Riley and Ammar [104], the simulation of large-scale systems with great
detail is a challenging task.

Some surveys on P2P simulators can be found in the literature [84, 117, 111].
They provide a study and a classification of the simulators mostly used in research
papers. Among them, the simulators that are close to our needs are the PeerSim [89],
OverlayWeaver [86], FreePastry [51], OverSim [87], PlanetSim [77], SimGrid [27], and
ProtoPeer [52]. Most of the time, the objective of these simulators is to implement
new routing paradigms (DHT, Gossip, etc.) or to evaluate different applications (e.g.,
file-sharing protocols, video streaming, etc.).

P2P Storage System Simulation. We are interested in evaluating the characteristics of
a large-scale P2P storage system that keeps data safe and reliable for long time. Hence,
we are evaluating the durability and reliability of the system. Since the probabilities
that are involved are very small, it is necessary to make long simulations to harness the
occurrence of such rare events. In other words, we want to observe the macro-behavior
of the system. This means that in our simulations we are not interested in modeling the
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low level details of the network, neither in the interactions of the base protocols that are
used by the system (e.g., TCP stack, DHT protocols, etc.)

Cycle-based Simulators. Our simulator is a cycle-based (or cycle-driven) simulator that is
similar to PeerSim [89] in concept, that was developed mainly to evaluate epidemic (or
gossip) protocols. In this kind of simulators the notion of time is discrete. Each time
step has the same length, which is the granularity of the system and corresponds to one
cycle of simulation. This granularity depends on the modeling assumptions and on the
metrics that are being studied. For example, in our case, to evaluate the durability of
the distributed storage system we use hours or seconds as granularity. However, when
evaluating the epidemic protocols, each time step corresponds to one “cycle” of message
exchanges. In this case the notion of time is not that important because the import metric
is the number of messages transmitted/received to achieve a certain state (or goal). The
advantages of using that approach are the simplicity of implementation and the gains
in the speed of execution. This improvement comes when many events are aggregated
and processed together (e.g., peer failures). As opposed to the traditional event-based
simulator in which every event is triggered and treated separately.

2.4 Appendix: Listings

In this section we give the source code used to perform the simulations and to evaluate
the complete Markov chain model presented in this chapter. These code snippets can be
executed using the R statistical software [114].

Listing 2.1: Simulation of Rabbits (Independent system)

# Input: L: sim. length; N: number of rabbits; Psunny , Pexit , Penter: probabilities
# Return: vector with the number of rabbits inside over time
simIndep = function(L, N, Psunny , Pexit , Penter) {

Xtime = array(0,L)
Xtime [1] = N/2 #fraction of inside rabbits
for (i in 2:L) {

X = 0
for (j in rep(0, Xtime[i-1])) # inside rabbits

if (runif (1) < Psunny && runif (1) < Pexit) # if sunny go outside
X = X - 1

for (j in rep(0, N - Xtime[i-1])) # outside rabbits
if (runif (1) < (1-Psunny) && runif (1) < Penter) # if cloudy get inside

X = X + 1
Xtime[i] = Xtime[i-1] + X

}
return(Xtime)

}
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Listing 2.2: Simulation of Rabbits (Correlated system)

# Input: L: sim. length; N: number of rabbits; Psunny , Pexit , Penter: probabilities
# Return: vector with the number of rabbits inside over time
simCorrelated = function(L, N, Psunny , Pexit , Penter) {

Xtime = array(0,L)
Xtime [1] = N/2 # fraction of inside rabbits
for (i in 2:L) {

X = 0
if (runif (1) < Psunny) { # sunny days

for (j in rep(0, Xtime[i-1])) # inside rabits
if(runif (1) < Pexit) # go outside

X = X - 1
} else { # cloudy days

for (j in rep(0, N-Xtime[i -1])) # outside rabits
if (runif (1) < Penter) # get inside

X = X + 1
}
Xtime[i] = Xtime[i-1] + X

}
return(Xtime)

}

Listing 2.3: Complete Markov Chain Model (Prob. distribution of rabbits inside)

# Input N: number of rabbits , Psunny , Pexit , Penter: probabilities
# Return: the probability distribution of rabbits inside
mcmCompleteChain <- function(N, Psunny , Pexit , Penter) {

size <- N+1
M <- matrix(rep(0,size*size), nrow=size , ncol=size);
# create the transitions of M
for (i in 0:N) {

for (j in 0:N) {
if (j < i) {

M[j+1,i+1] <- Psunny*dbinom(i-j, i, Pexit) # left arrows
} else if (j > i) {

M[j+1,i+1] <- (1-Psunny)*dbinom(j-i, N-i, Penter) # right arrows
}

}
}
diag(M) <- -colSums(M) # fill the diagonals
M[1,] <- rep(1,size) # add an equation (sum X = 1)
b <- c(1,rep(0,size -1))
X <- solve(M,b) # solve M*X = b
return(X)

}
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Listing 2.4: Stochastic Fluid model (deterministic)

# Input: L: sim length; N: number of rabbits; Psunny , Pexit , Penter: probabilities
# Return: vector with the number of rabbits inside over time
fluidSimDeterm = function(L, N, Psunny , Pexit , Penter) {

Msunny = matrix(c(1-Pexit , Pexit , 0, 1), ncol =2)
Mcloudy = matrix(c(1, 0, Penter , 1-Penter), ncol =2)
Y = c(N,0) # initial state vector (1: inside , 2: outside)
Ytime = array(0,L) # Y(t)
for (i in 1:L) {

if (runif (1) < Psunny) {
Y = Msunny %*% Y

} else {
Y = Mcloudy %*% Y

}
Ytime[i] = Y[1]

}
return(Ytime)

}

Listing 2.5: Stochastic Fluid model (binomial)

# Input: L: sim. length; N: number of rabbits; Psunny , Pexit , Penter: probabilities
# Return: vector with the number of rabbits inside over time
fluidSimBinom = function(L, N, Psunny , Pexit , Penter) {

Y = c(N,0) # initial state vector (1: inside , 2: outside)
Ytime = array(0,L) # Y(t)
for (i in 1:L) {

if (runif (1) < Psunny) {
p = rbinom(1,N,Pexit)/N # fraction of rabbits go outside
Msunny = matrix(c(1-p, p, 0, 1), ncol =2)
Y = Msunny %*% Y

} else {
p = rbinom(1,N,Penter)/N # fraction of rabbits get inside
Mcloudy = matrix(c(1, 0, p, 1-p), ncol =2)
Y = Mcloudy %*% Y

}
Ytime[i] = Y[1]

}
return(Ytime)

}



CHAPTER 3

Mean Behavior and Guideline to
Lazy Repair

In this chapter, we study a general storage system that uses erasure coding as redun-
dancy scheme. To ensure durability, such distributed systems must have a self-repairing
mechanism that maintains a minimum number of redundant fragments available in the
network, even after multiple failures. This process, however, consumes an important
amount of bandwidth, which is presumably the most scarce resource of the network. As
shortly mentioned, the lazy repair strategy is an easy and practical solution to reduce the
bandwidth consumption induced by the self-repairing process. Recall that in the lazy
repair, the block reconstruction process starts when the number of available redundant
fragments drops below a given threshold level. Hence, the dynamics of the system be-
comes more complex, which engenders the development of more refined models. We
model and analyze the system steady-state using a discrete-time Markov chain. This
model takes into account the effects of disk failures along with the time consumed by
the repairing process. Then, it allows us to estimate the probability of losing data and
the bandwidth usage. We also discuss a fundamental question for such systems that
is how to choose the basic set of parameters, such as s, r, and r0, to obtain an efficient
utilisation of the bandwidth for a desired level of reliability.

The results presented in this chapter appeared in [3, 13] and were published in [4, 10].

Our Contribution

Our contribution is twofold.
First, we propose a simple Markov chain model to harness the storage system dy-

namics. From this model we derive approximated closed-form mathematical expres-
sions that are then validated by simulations. These formulas give a good intuition of
the system average behavior in function of its parameters. We evaluate the bandwidth
consumption and the data loss rate for different scenarios. Then, we confirm that a lazy
repair strategy can be employed to amortize the repairing cost even on high availability
scenarios.

Second, from a practical point of view, we give a guideline of how to choose the best
set of system parameters to obtain a desired level of reliability under a given constraint
of bandwidth consumption, or vice-versa. We considered two scenarios: in the first one
we study the trade-off between the bandwidth consumption and the loss rate for a fixed
storage space; in the second scenario, for a given reliability, we show how to provision
the space overhead to obtain an optimal bandwidth usage. We also discuss the impact of
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the environment variables on the performance metrics, such as the number of peers, the
amount of stored data, and the disk failure rate.

Related work.

Many works study the use of erasure codes schemes to add reliability to data storage.
Distributed Hash Tables (DHT) based systems have been studied formally without the
storage layer [75], but they have different requirements (e.g., network connectivity in-
stead of data durability).

The behavior of a storage system using full replication is studied in [98], where a
Markov chain model is used to derive the lifetime of the system, and other practical
metrics like storage and bandwidth overhead. Piconni et al. [90], use a similar Markov
chain to study a replicated system using DHTs and propose a method to estimate the
rate of reconstruction under constrained bandwidth scenarios. They do not study the
more complex case of erasure coding.

Datta and Aberer in [38] study analytical models for systems based on erasure coding
for different lazy maintenance strategies. Wu et al. in [128] use differential equations
to characterize the interplay between data repair and bandwidth consumption. Their
analysis does not provide closed form expressions neither discussions on the choice of
parameters. Utard and Vernois [120] propose a more sophisticated Markov chain that
takes into account the availability of peers along with durability. However they assume
the simple eager repair strategy and they do not give closed-form equations.

Similarly to our work, Alouf et al. in [14] use a Markovian analysis to evaluate the
performance of systems based on erasure coding. They study two different schemes of
data recovery (centralized vs. distributed) and estimate the data lifetime and availability.
Their analysis does not address the bandwidth consumption.

Our work differentiates from those as we analyze the bandwidth efficiency along with
the data loss rate of erasure codes using lazy repair strategy. Furthermore, we explore the
parameter space to give a simple procedure to estimate their values.

Organization

The remainder of this chapter is organized as follows: in the next section we present a
simple Markov chain model, along with a compilation of closed-form formulas to esti-
mate the system metrics in Section 3.2. Then, in Section 3.3 we describe the Simulation
Model. In Section 3.4, the results obtained by the simulations are compared to Markov
chain model for a different set of scenarios. Then we give a method to choose the best
system parameters in Section 3.5. Finally, in Section 3.6 we describe how to model dif-
ferent reconstruction times when using the Markov chain modeling.
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3.1 Markov Chain Model (MCM)

In this section, we present the simple Markov Chain Model that we evaluate in the rest
of the chapter. Similarly to the approaches found in the literature [98, 14, 38], this chain
represents the behavior of a general distributed storage system by modeling a single data
block. We derive the average values that characterize the system behavior (probability
of data loss and average bandwidth consumption) from its stationary distribution.

3.1.1 States and Transitions

The behavior of a single block is modeled by a finite discrete time Markov Chain with
time step τ.

r00 r

δ(r0) δ(r0 + 1)δ(0)

γ · (1− δ(0))

γ · (1− δ(r0))

δ(r)δ(r− 1)

r− 1r0 + 1Dead

1

Figure 3.1: Markov chain modeling the behavior of one block.

The chain (as depicted in Figure 3.1) has r + 2 states, that are the r levels of redun-
dancy of a block b, plus a level 0 (no more redundancy), and a Dead state. We note
r(b) the number of remaining redundancy fragments of block b. Three different kinds of
states can be distinguished:

• Non-Critical: when r0 + 1 ≤ r(b) ≤ r;

• Critical: when 0 ≤ r(b) ≤ r0;

• Dead: when the block has less than s fragments,

Recall that r0 is the threshold level to start the reconstruction process (i.e., lazy repair).
A block can be affected by two different kinds of events: a fragment loss, which occurs
when a peers that contain one of the fragment of block b fails; or the block reconstruction,
which is the process of repairing the lost fragments of block b.

Fragment Loss

The probability for a block at level i to lose one fragment during a time step is denoted
by δ(i) and is given by

δ(i) := (s + i)α
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where α is the probability for a peer to experience a failure during the time step. That is,
a block at level i has s + i fragments present in the network. Hence, the probability δ(i)
is the probability to lose one fragment among the i available fragments. A block with no
more redundancy fragments may die with probability δ(0).

Note on the complete chain: For the sake of clarity of exposition, we do not describe here
the most accurate and complex chain, but rather a simplified version (where unlikely
transitions are ignored). For instance, a block at level i could lose many fragments during
one time step. Hence, in the complete chain we add transitions from every state i, for
every possibility of multiple failures j, from 1 to i, with probability

δ′(i, j) =
(

s + i
j

)
αj(1− α)s+i−j+1.

The simplified chain, however, give very good approximations and provide the intu-
ition of the system behavior for small values of α. We actually use the more sophisticated
chain in our computations and comparisons.

Reconstruction

When a block becomes critical, r(b) ≤ r0, the reconstruction starts. The reconstruction is
modeled as follows: the average duration of a reconstruction being noted θ (expressed in
time steps), at each time step, a critical block has a probability γ := 1/θ to be rebuilt. In
that case it goes to the top, r. Note that we also assume that if the block loses a fragment
during a time step, it cannot be reconstructed during the same time step. If a block
loses more than r(b) + 1 redundancy fragments before being reconstructed, it goes to the
Dead state. In that chain, we choose to implement the reconstruction after the impact of
failures. The other choice is also possible, it changes only slightly the transitions.

A Poisson reconstruction time is used, for mathematical tractability, and because we
think it approximates well the random nature of network delays. Note that most other
types of reconstruction could be captured by MCMs. For example, a reconstruction last-
ing a deterministic time can be modeled by labeling the states of a critical block by the
progress of the reconstruction. A more detailed discussion on that follows in Section 3.6

In our model, due to the stability assumption (the number of blocks is constant), if
a data block is lost then it is replaced by a new block with full redundancy and spread
at random among peers (expressed by the transition from dead state to level r with
probability one). This purely formal assumption does not affect the system behavior
because dead blocks are rare events, but it makes the analysis more tractable.

More Refined Models. Furthermore, the Markov Chain approach allows us to model more
complex systems or behaviors. For example several classes of peers, with different disk
size, failure rate, availability, or bandwidth, can be introduced easily. For k families of
peers, the state of a block would be a k-uple {ni}, i ∈ {0, k− 1} where ni is the number
of fragments on peers of family i. This would lead to Markov chains with nk states that
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could be solved as long as k remains small.
A summary of the notations used throughout this chapter is given in Table 3.1.

Table 3.1: Summary of the main notations.

N Number of peers
s Number of initial fragments of a block
r Number of redundancy fragments of a block

r(b) Number of remaining redundancy fragments of block b
r0 Reconstruction threshold value

Ltotal Total amount of data in the system, in bytes
L f Size of a fragment, in bytes
Lb Initial size of a block, in bytes (Lb = s·L f )
B Total number of blocks in the system (B = Ltotal/Lb)
F Total number of fragments in the system (F = B(s + r))
F Expected number of fragments at steady state

MTTF Peer mean time to failure (hours)
α Peer failure rate (α = 1/MTTF)

δ(i) Probability for a block at level i to lose one fragment
δ(i, j) Probability for a block at level i to lose j fragments

θ Average number of time steps to reconstruct one block
γ Prob. for a block to be reconstructed at a time step (γ = 1/θ)
τ Time step of the model

3.2 Approximations

In this section we present explicit expressions based on the simplified Markov chain that
estimate the system main metrics: the average bandwidth, the data loss rate and the peek
of bandwidth. These expressions give an intuition of the system behavior in function of
its parameters, such as the erasure code settings: s, r, r0, and fragment size L f ; and as
the system characteristics: amount of data B, peer failure rate α = 1/MTTF, and the
reconstruction rate γ = 1/θ. We provide good approximations for ratios α/γ � 1,
which is the case for practical systems where the block reconstruction process is much
faster than the peer failure rate.

3.2.1 Stationary Distribution

The finite Markov chain presented above is irreducible and aperiodic. Hence, the prob-
ability to be in a state converges towards a unique stationary distribution denoted by P,
where Pi is the stationary probability to be in state i. In a system where the blocks are
distributed uniformly at random and the peers fails independently, we can say that each
state in the chain represents the fraction of blocks at that state.



42 CHAPTER 3. MEAN BEHAVIOR AND GUIDELINE TO LAZY REPAIR

The stationary distribution can be computed exactly in time polynomial in r by find-
ing the eigenvector with eigenvalue 1 or simply by a Howard Perron Frobenius iteration.
The complexity is independent of the number of blocks B or of the number of peers N.

Note that, because of the simple form of the system (the system without the first
row is lower triangular) it is easy to derive simple closed-formulas that estimate the
distribution of the blocks’ redundancy level. The stationary distribution of that chain
can be computed by the stability equations as follows:

Pr−1 = δ(r)
δ(r−1)Pr

Pr−2 = δ(r−1)
δ(r−2)Pr−1 = δ(r)

δ(r−2)Pr

.. = ..

Pr0+1 = δ(r)
δ(r0+1)Pr

Pr0 = δ(r0+1)
δ(r0)+γ·(1−δ(r0))

Pr0+1

.. = ..

P0 = δ(1)
δ(0)+γ·(1−δ(0))P1

Pdead = δ(0)P0

Hence, we can easy distinguish three groups of equations:

Pi =



δ(r)
δ(i) Pr, if r0 < i ≤ r

δ(i+1)·Pi+1
δ(i)+γ·(1−δ(i)) , if 0 ≤ i ≤ r0

δ(0)P0, if i = dead

All probabilities can be expressed in function of P(r), which in turn is computed by
the normalization

r

∑
i=0

Pi + Pdead = 1.

Developing this expression and assuming small values of the ratio α/γ, the fraction of
blocks at level Pr can be simplified as

Pr ≈
1

(s + r)·(Hs+r − Hs+r0)
,

where Hn = ∑n
k=1

1
k is the harmonic number of n. Note that, hereafter we use the approxi-

mation ln(n) ≈ Hn. The fraction of blocks at each Non-Critical state i is then Pi ≈ (s+r)·Pr
(s+i) ,

which evaluates as
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Figure 3.2: Distribution of blocks’ redundancy level at the steady state. Parameters N =
2000, B = 2·105, s = 6, r = 6 r0 = 2, MTTF = 180 days, θ = 18 hours.

Pi ≈
1

(s + i)· ln( s+r
s+r0

)
, if r0 < i ≤ r. (3.1)

A rough approximation of the number of blocks in the Non-Critical states is:

P′i ≈
1

r− r0
, if r0 < i ≤ r.

In fact, this approximation assumes that the blocks in Non-Critical states are uniform
while other states are negligible. It is close to the exact values when α/γ � 1, s is large
and r− r0 is small.

3.2.2 Distribution of Blocks’ Redundancy Level

If every block is at maximum redundancy, the total number of fragments stored in the
system is F = B·(s + r). However, at the steady-state this is not true. In that case, the
average redundancy level, E[P], is in between r and r0. Figure 3.2 illustrates the average
number of blocks in each redundancy level. Note that the number of blocks in the Non-
Critical states (levels 8 to 11) are not evenly distributed. We can then estimate the total
number of fragments at the steady-state F = B ·E[P], which is approximated by

F ≈ B·(s + r + r0

2
). (3.2)

3.2.3 Estimating the Bandwidth Consumption

To estimate the bandwidth consumed by the reconstructions, we first need to define the
repair bandwidth inefficiency ε(i), as the amount of data that need to be transferred to
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reconstruct i missing fragments: ε(i) = (s + i− 1)·L f , where L f is the size of a fragment.
That is, the peer in charge of the reconstruction must download s fragments from other
peers and then send i − 1 reconstructed fragments (assuming that the peer in charge
keeps a fragment). When a block needs to be reconstructed, the number of missing
fragments is in most of the cases r − r0. Sometimes it could be a little bit larger if two
fragments were lost during the reconstruction, which is rare when the ratio α/γ� 1.

Average bandwidth consumption. At the steady-state the number of blocks that fin-
ish the reconstruction at each time step is equal to the number of reconstructions that
start (by a cut argument in the chain). Then the average bandwidth consumption comes
straightforward from the transition of the state r0 + 1 to the state r0. That is, the fraction
of blocks that goes from the last Non-Critical state towards r0, given by δ(r0 + 1)·Pr0+1.

For a system with B blocks, the average number of blocks finishing the reconstruction
is

Ravg = B·(s + r0 + 1)·α·Pr0+1.

For each block, the amount of information to be transferred is, in most of the cases,
ε(r − r0). If the reconstructions are uniformly distributed, the average bandwidth con-
sumption per peer is

BWavg ≈
Ravg·ε(r− r0)

N·τ ,

which evaluates as

BWavg ≈
B·α

N· ln( s+r
s+r0

)τ
·(s + r− r0 − 1)·L f . (3.3)

Note that BWavg does not depends on the reconstruction rate γ. This expression is valid
for systems with ratio α/γ � 1 (see Figure 3.5 in page 52, and corresponding discus-
sion).

For the sake of verification, when r0 = r − 1 (eager repair) the expression evaluates
to BWavg(eager) ≈ αB(s + r)L f /N. Recall that B(s + r)L f = Ltotal is the total amount of
data in the system, then

BWavg(eager) ≈ α·Ltotal

N
.

Peek of bandwidth consumption. It is known that the dynamics of a system with many
blocks is not smooth at all. There are peeks of resource consumption when a peer fails,
because many fragments are lost at the same time and trigger many reconstructions. The
number of blocks that start reconstruction when a peer fails is

Rstart =
F
N
·Pr0+1,

where F/N is the average number of fragments per disk, and Pr0+1 is the fraction of
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these fragments that belongs to blocks that are at the last Non-Critical state (i.e., need to
start the reconstruction). The amount of data transfer induced by these reconstructions
is Qpeek = Rstart·ε(r− r0) and can be approximated as

Qpeek ≈
B·(s + r)

N·(s + r0 + 1)· ln( s+r
s+r0

)
·(s + r− r0 − 1)·L f .

Note that, when r0 = r− 1, the amount of data to be transferred is Qpeek(eager) ≈ B(s +
r)L f ·s/N. This expression evaluates to Ltotal ·s/N. Hence, s times the average amount of
data stored per peer, which confirms the high overhead of repairing a failed disk when
using the eager repair.

Indeed, Qpeek can be used to calculate the average time to reconstruct the data of a
failed peer, which in turn can be used to re-estimate the reconstruction rate γ for a given
bandwidth capacity. A detail discussion on that metric is done in Chapters 4 and 5.

3.2.4 Estimating the Data Loss Rate

The evaluation of Pdead = δ(0) · P0 gives the fraction of blocks that are lost per time step
τ. Hence in a system with B blocks the data loss rate can be calculated as LossRate =

B · Pdead/τ. When α/γ� 1 it is closely approximated as

LossRate ≈ B
(s + r0 + 1)· ln ( s+r

s+r0
)τ
· (s + r0)!
(s− 1)!

·
(

α

γ

)r0+2

. (3.4)

3.3 Simulation Model (SM)

We developed a custom cycle-based simulator to evaluate several characteristics of the
real system. The simulator does not aim at capturing the low level details of the network
(such as packet level communication, traffic congestion or latency), but it focuses on the
global evolution of blocks’ states in the presence of peer failures and reconstructions1.

Our goal is to simulate the behavior of the storage system for many years. Then, the
choice of a cycle-based design is based on performance of execution, facility of imple-
mentation and validation. The time step (granularity) of the simulated system is one
hour. Hence, all the events that occur on the same time step can be aggregated and
processed together. This granularity is not far from reality. Note that, in practice it cor-
responds to a system where the control is done every hour to check if the peers are alive.

The simulator monitors precisely the evolution of the blocks in the system, that is,
their redundancy level and location at each time step. For each peer, it stores a list of
all the blocks having a fragment stored on it. The overview of the simulator is depicted
in the Procedure 3.1. We describe here the default behavior of the simulator, but several
other aspects were implemented: for example, different data placement policies; differ-
ent reconstruction strategies; different failure models.

1The simulator can be downloaded from http://www-sop.inria.fr/members/Julian.Monteiro/p2p-
storage-sim/
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3.3.1 Initialization

For a general analysis we assume that the system is initialized with B blocks of data.
Every block b in the system has the same size Lb. Also, every block has exactly the same
amount of redundancy fragments, s+ r (full redundancy). The fragments are distributed
uniformly at random among N peers. Thus, each peer starts with an average of B(s +
r)/N fragments.

3.3.2 Execution

When a disk failure occurs, the simulator updates the state of the blocks that have lost
a fragment. The blocks that have reached the threshold level start the reconstruction
process. To each of these blocks is assigned a reconstructor peer. We modeled two kinds
of reconstruction processes: a deterministic, in which a reconstruction lasts a period of
exactly θ time steps; and a poissonian, at each time step every block has a probability 1/θ

to finish the reconstruction.
We study the system characteristics in the steady-state. Hence, we make the simpli-

fying assumption that the amount of data stored in the system B is kept constant over
the time. Dead data blocks (i.e., blocks that have less than s fragments of redundancy)
are replaced by a new block, or somehow re-injected in the system. The number of peers
N is also kept constant over time, that is, failed peers are replaced by new peers. New
peers appear empty.

3.3.3 Transient Phase (Warm-up)

We focus on the properties of the stationary state of the system. However, during the
initial steps of the simulation the system is in a transient phase. The cycles corresponding
to this phase are removed, hence they are not considered into the aggregated results.

There are different system metrics that can be considered to achieve the stationary
state. For instance, when analyzing the Markov chain, one can use the second eigenvalue
to estimate the speed of converge to the equilibrium distribution.

In the simulated system, the transient phase mainly occurs because the initial distri-
bution of fragments in the system is different from the system steady state. For instance,
in the initialization phase all blocks have the full redundancy (s + r fragments), and the
amount of data is evenly distributed among all peers. But, as already pointed out, in
a system with lazy repair, this is not true after some period of execution. Figure 3.3
shows a timeseries of one year of simulation for a system with parameters s = 6, r = 6,
r0 = 2, N = 2000, B = 2·105, MTTF = 180 days and θ = 18 hours. We see that af-
ter approximately one hundred days (2400 time steps) the average number of blocks at
each redundancy level reaches a constant fraction. Its distribution is the same as the one
presented in Figure 3.2 (page 43). Nonetheless, this period of one hundred days is not
sufficient to characterize the system steady state. Figure 3.4 depicts the average and std.
deviation of the amount of fragments per disk. In the beginning all disks contain more
or less the same amount of fragments B(s + r)/N = 1200. During the execution, the
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Procedure 3.1 Overview of the cycle-based P2P storage simulator

initialize (N, B, s, r); {distribute B*(s+r) fragments among N disks}
time← 0
while time not finished do

{1. generate disk failures}
for all block b in failed disks do

update the state of b
end for

{2. monitor blocks’ states:}
for all block b in failed disks do

if r(b) ≤ r0 then
assign a reconstructor peer for b
add b to the reconstruction set

end if
if reconstructor peer of b has failed then

re-assign a reconstructor and re-start reconstruction of b
end if

end for

{3. handle the reconstructions:}
for all block b in reconstruction set do

if reconstruction finished then
spread the rebuilt missing fragments at random
remove b from the reconstruction set

end if
end for

{4. ensure the stability of the system:}
reintroduce fragments of the dead blocks
replace crashed peers with new empty ones

{5. collect statistics.}

time← time + 1
end while
{6. summarize results}
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Figure 3.3: Timeseries of the number of fragments per block during the first year of
simulation. After 100 days the system reaches the steady-state for this metric.
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Figure 3.4: Timeseries of the number of the fragments stored per peer (average and
std. deviation) during five years. After approximately 500 days the system reaches the
steady-state for this metric.

average amount of fragments converges very quickly to a constant value of more or less
1000 fragments, as estimated by the Equation (3.2).

However, the variations around the mean value take more time to converge. In the
given example, for a peer MTTF of 180 days, the std. deviation of fragments per peer
reaches the steady state only after 500 days. Again, this happens because in the steady
state the number of fragments per disks are not close to the average. That is, failed disks
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are replaced by empty disks. Hence, old disk have more fragments than young ones.
Summarizing, it is important to remove the first part of the simulation traces when

studying the steady state properties. An estimation of this period could be done with
the time where almost all disks have been replaced at least once.

Simulation Time. We evaluate several scenarios with different parameters. When study-
ing the bandwidth consumption, for example, it is sufficient to simulate a few years of
the system (e.g., 5 to 20 years) to achieve a good confidence interval in that metric. How-
ever, when studying the data loss rate (which are rare events) it is necessary to simulate
much more time to achieve a good certitude on the number of dead blocks. Thus, for
some scenarios we evaluate hundreds of years. Even with this simulated time, it is dif-
ficult to obtain precise results of the occurrence of rare events, which motivates us to
develop precise analytical models that estimate correctly the system behavior.

3.3.4 Measured Metrics

At the end of each time step (cycle) the simulator keeps track of many performance
metrics. The main ones are:

- number of reconstructions in progress (hence the bandwidth usage);
- number of starting, restarting, and finishing reconstructions;
- total number of fragments available;
- average reconstruction time;
- amount of fragments transferred (upload and download);
- average redundancy level of blocks;
- number of blocks at each redundancy level;
- number of failed disks;
- average and std. deviation of disk’s occupancy;
- average and std. deviation of disk’s lifetime.

Note that some of them are kept for the sake of verification (e.g., disk’s lifetime).
After the simulation finished, these traces are aggregated and summarized. For each
metric we keep the average, std. deviation, minimum and maximum of its values.

Furthermore, for every finished reconstruction, a more detailed information is kept
in a separated trace file: e.g., the respective block id, the finish cycle, the elapsed recon-
struction time, the number of re-starts, the number of fragments reconstructed.

3.4 Average System Behavior

In this section we discuss the performance metrics for different system characteristics.
We compare the average behavior of the system given by the Simulation Model (SM)
with the one predicted by the MCM and its approximations.
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Simulation scenarios. A large number of simulations with different sets of parameters
were performed. We first give an example of a medium size network composed by N =

4000 peers (different scenarios with N spanning from 50 to 1 million of peers are also
evaluated); Let us choose s = 8, r = 6 and r0 = 3 (we discuss about these choices in the
next section) and a fragment size L f = 512 KB. We obtain a block size Lb = s·L f = 4 MB
and a system-wide number of blocks B = 8·105 (i.e., the space overhead (s+ r)/s = 1.75,
hence a total of total 5.6 TB). The initial amount of data per disk is 1.4 GB (at the steady
state it is 1.2 GB)2. Disk capacity is chosen to be 8 times the average amount of data per
disk, i.e., 10GB.

The average time to reconstruct a block is θ = 6 hours. It includes the timeout delay
to detect that a peer has disappeared (temporary churn) and the delay to perform the
reconstruction, i.e., the time to collect the remaining fragments, to recalculate the erasure
code and redistribute the missing fragments. The average lifetime of a disk or Mean Time
To Failures (MTTF) is assumed to be 1 year (see e.g. [91, 109] for a discussion). This value
is less than a typical time-span of warranties applied by major hardware vendors, which
is 3 years. Indeed, this value is a conservative choice and comprises the probability of
other hardware failures and of software maintenance. In general, the simulation time
Tsim was chosen to be 10 years, with a time step of one hour, which leads to 87600 cycles.

For such parameters, the average bandwidth usage per peer BWavg ≈ 1.23 Kbit/s
(total of 4.93 Mbit/s). When a peer fails, the total amount of data to be transferred
Qpeek ≈ 1.28 MB per peer (total of 5.12 GB). For a provisioned reconstruction time θ = 6
hours the LossRate ≈ 3·10−3 per year.

3.4.1 Discussion

In the following, we discuss the behavior of the system under different scenarios. Ta-
ble 3.2 presents the average and standard deviation of bandwidth consumption, and
Table 3.3 presents the data loss rate per year for a representative subset of our experi-
ments. In all the studied scenarios only the evaluated parameter is changed, while the
others remain constant.

We observe that the MCM and the approximated equations (Equation (3.3) page 44
and Equation (3.4) page 45) give a very precise estimation of the system metrics, except
for some extreme values. For example, the loss rate when r0 is close to r differ from 30%.
The reason is that, for high values of r0, the probability to lose a block becomes very
small, and these results are an average over rare events which is difficult to obtain by
simulations.

Remark on data loss. In practice the system parameters are set in a way that the probability
of a data loss is very low (e.g., in the order of 10−10). However, it is difficult to simulate
such rare events in a reasonable time. To solve this issue, in the evaluation of the loss

2To be able to execute the simulations in a reasonable amount of time, we choose a system with disk
size 100 times smaller than the one expected in practice As a matter of fact, to simulate 4000 peers with
small disks of size 5GB, the simulator needs to deal with 40 millions of fragments. Hence, the importance
to propose scalable analytical models that can accurately estimate the behavior of very large systems.
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rate (Table 3.3) we set the MTTF of disks as low as 90 days and kept a reconstruction
threshold of only r0 = 2.

Reconstruction Threshold (r0)

We first evaluate a scenario with fixed parameters and different values of the reconstruc-
tion threshold (from 1 ≤ r0 ≤ 5). As shown in Table 3.2a, the amount of bandwidth
consumption increases very rapidly when r0 is close to r, as stated by the Equation (3.3)
in page 43. However, as shown in Table 3.3a, when increasing r0 the probability to ex-
perience a failure decreases exponentially. The parameter r0 is discussed more deeply in
the next section.

System Size (B and N)

To evaluate the behavior of different system sizes, we divided our experiments in three
different scenarios. The first is a system with varying amount of total data (absolute
number of blocks B), while keeping the number of peers N constant. Thus, the amount
of data per peer increases with B. Tables 3.2b and 3.3b show that the bandwidth con-
sumption and the loss rate increase linearly with the amount of data in the system, as
estimated by the Equation (3.3) of BWavg per peer and Equation (3.4) of LossRate.

The second scenario, is a system with fixed amount of data but varying the number of
peers (from 100 to 106). In this case the amount of data per peer decreases as N increases.
We confirm by simulations that the total average bandwidth consumption remains the
same when the number of peers increase (see Table 3.2c). Hence, the amount of band-
width consumed per peer is reduced as N increase, which confirms the Equation (3.3).
Note that, as soon as the absolute number of blocks B remains constant, the data loss
rate does not change when increasing N (see Table 3.3c). Furthermore, we highlight that
increasing N the standard variation of the bandwidth consumption decreases. In other
words, for the same amount of data, a larger system behaves much more smoothly. This
behavior is discussed in detail in Chapter 4.

Another possible scenario is varying the amount of data and the number of peers at
the same rate. That is, the amount of data stored per peer b = B

N remains constant. Then,
we remark that BWavg per peer does not change. But, in this case LossRate increases
when the system is larger (it depends on the absolute number of blocks in the system, B,
we discuss the choice of this parameter in the next section).

Block Reconstruction Time (θ = 1/γ)

When the reconstruction time θ is increased, the results obtained by simulations and
by MCM show that it affects very slightly the average bandwidth consumption (see Ta-
ble 3.2d). In the approximations, as we assumed a ratio α/γ << 1, this small factor
is neglected. Note that when increasing θ, data loss rate increases exponentially (see
Table 3.3d).
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Peer Lifetime (MTTF = 1/α)

Increasing the values of the peer lifetime MTTF, affects the bandwidth consumption
almost linearly, as shown in Table 3.2e. As expected, the loss rate decreases exponentially
when α decrease (see Table 3.3e).
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Figure 3.5: Accuracy of estimations for different ratios α/γ.

3.4.2 Validation of Approximation

Figure 3.5 shows the accuracy of Equations (3.3) and (3.4) compared to the MCM for
different ratios of α/γ. Note that for values of α/γ < 10−3 the results obtained by the
equations are very close to the MCM. For such values of α/γ our experimentation with
different parameters confirmed the accuracy of the equations.

3.5 How to Set the System Parameters

The choice of the system parameters depends on multiple constraints, for instance, the
storage space-overhead, the bandwidth consumption, the desired level of reliability, etc.
In this section, we propose a methodology to choose the main system parameters B, L f ,
s, r, r0, for a desired reliability (probability of data loss) or a given limit on the bandwidth
consumption.

In brief, we start defining a suitable value for s and L f , which depends on the system
architecture and usage. Then, if the space-overhead ( s+r

s ) is fixed, we choose the best r0

for the given constraints. Otherwise, we first choose r0 and then calculate the best value
of r to minimize the bandwidth consumption.
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Table 3.2: Average and standard deviation of total bandwidth usage (in Mbits/s) ob-
tained using the SM, MCM and approximations, for different values of r0, B, N, θ and
MTTF.

(a) Reconstruction threshold (r0)
r0 1 2 3 4 5
SM 3.22 ±2.2 3.85 ±2.6 4.90 ±3.2 6.95 ±4.4 12.94 ±8.1
MCM 3.19 3.86 4.92 6.97 12.98
Approx 3.19 3.86 4.93 7.00 13.09

(b) Total amount of data (B x 103)
B 400 600 800 1000 1200
SM 2.49 ±1.6 3.69 ±2.4 4.90 ±3.2 6.10 ±4.0 7.38 ±4.8
MCM 2.46 3.69 4.92 6.15 7.38
Approx 2.47 3.70 4.93 6.16 7.39

(c) Number of peers (N)
N 100 1000 10000 100000 1000000
SM 5.05 ±19.45 4.90 ±6.3 4.92 ±2.1 4.92 ±0.6 4.92 ±0.2
MCM 4.92 4.92 4.92 4.92 4.92
Approx 4.93 4.93 4.93 4.93 4.93

(d) Reconstruction time (θ = 1/γ, in hours)
θ 1 6 12 18 24
SM 4.92 ±10.7 4.90 ±3.2 4.88 ±2.2 4.87 ±1.8 4.86 ±1.5
MCM 4.93 4.92 4.91 4.89 4.88
Approx 4.93 4.93 4.93 4.93 4.93

(e) Peer failure rates (MTTF = 1/α, in years)
MTTF 1 2 3 4 5
SM 4.90 ±3.2 2.49 ±2.2 1.67 ±1.8 1.25 ±1.5 1.00 ±1.3
MCM 4.92 2.46 1.64 1.23 0.99
Approx 4.93 2.47 1.64 1.23 0.99
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Table 3.3: Data loss rate per year (number of blocks) obtained using the SM and MCM,
for different values of r0, B, θ and MTTF. See the remark on data loss.

(a) Reconstruction threshold (r0)
r0 1 2 3 4
SM 3.4 · 103 ± 80 1.1 · 102 ± 11 4.5± 2.1 2.5 · 10−1 ± 0.5
MCM 3.4 · 103 1.1 · 102 4.2 1.9 · 10−1

Approx 2.6 · 103 0.9 · 102 3.3 1.1 · 10−1

(b) Total amount of data (B x 103)
B 400 800 1200 1600
SM 2.2 ± 1.5 4.5 ± 2.1 6.1 ± 2.5 8.0 ± 2.9
MCM 2.1 4.2 6.2 8.3
Approx 1.7 3.3 5.0 6.6

(c) Number of Peers (N)
N 100 1000 10000 100000 1000000
SM 3.9 ±9.1 4.1 ±2.0 4.3 ±1.9 4.3 ±2.0 4.3 ±2.0
MCM 4.2 4.2 4.2 4.2 4.2
Approx 3.3 3.3 3.3 3.3 3.3

(d) Reconstruction time (θ = 1/γ, in hours)
θ 1 6 12 18 24
SM 0 4.5 ±2.1 7.1 · 101 ±8.5 3.5 · 102 ±19.2 1.0 · 103 ±34.2
MCM 4.9 · 10−3 4.2 7.1 · 101 3.4 · 102 1.0 · 103

Approx 5.0 · 10−3 3.3 10.5 · 101 8.4 · 102 3.3 · 103

(e) Peer failure rates (MTTF = 1/α, in days)
MTTF 30 60 90 120 180
SM 8.2 · 102 ± 29.7 3.0 · 101 ± 4.2 4.5 ±2.1 0.9± 0.9 0.3± 0.5
MCM 8.2 · 102 3.0 · 101 4.24 1.0 0.1
Approx 7.0 · 102 2.5 · 101 3.3 0.9 0.1
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Parameters

In the following experiments, we assume a network composed by N = 500 peers and
Ltotal = 20 TB of data to be stored. Let us choose s = 16, r = 16 and r0 = 8 (we discuss
about this choice in the next section) and a fragment size L f = 320 KB. We obtain a block
size Lb = s·L f = 5 MB and the total number of blocks B = Ltotal/Lb = 222. The initial
amount of data per disk is 82 GB (at the steady state it is 72 GB). For such parameters,
the average bandwidth usage per peer BWavg ≈ 57.8 kbps. When a peer fails, the total
amount of data to be transferred Qpeek ≈ 246 GB (504 MB per peer). For a provisioned
reconstruction time θ = 12 hours the LossRate ≈ 5.7·10−8 per year.

3.5.1 Determining the Block Size (Lb)

The total number of blocks in the system is defined by B = Ltotal/Lb. For a given amount
of data Ltotal , how do we choose Lb? Similarly, knowing that Lb = s·L f , how do we
choose s and L f ?

In this discussion we assume that r and r0 are defined as a factor of s, that is, r = k·s
and r0 = k0·s. Hence, increasing s means increasing r and r0 proportionally. By rewriting
r and r0 in the Equation (3.3) in page 3.3, we note that BWavg does not almost depend
on the ratios between B, s and L f , but mainly on the constant Ltotal . Hence, the choice
of the block size is based only on the LossRate equation.and the system’s usage and
architecture.

Architectural issues: from a theoretical point of view, to obtain lower values of LossRate,
B should be as small as possible, and therefore Lb as big as possible.

However, in practice we can deduce a lower bound for B based on Rstart, the number
of blocks that start the reconstruction when a peer fails. To balance the load among peers,
every peer should process the reconstruction of at least one block, thus Rstart ≥ N. Let
us take the eager scenario (r0 = r− 1) for the sake of exposition, then Rstart evaluates as
Rstart ≈ B(s + r)/N. Then we have B(s + r)/N ≥ N, which gives B ≥ N2/(s + r) as
lower bound of B.

The choice of Lb also depends on the main usage of the storage system. Two main
groups of usage can be distinguished. For an archival usage, in which the access to the
stored data is very rare, the block size Lb could be very large. Conversely, in a file-system
usage that supports continuous read and write operations, it is interesting to have a very
small block size, such that the overhead of accessing and modifying a block is low.

The choice of s: For a fixed Lb = s·L f , s should be as large as possible and L f as small as
possible. Figure 3.6 shows the bandwidth consumption and probability of data loss (in
log scale) when using the MCM, for a system with fixed B, increasing s from 4 to 64, and
proportionally decreasing L f . In this experiment, k = 1 and ko = 1/2. As expected, the
results show that larger values of s do not impact the bandwidth consumption, whereas
the probability of data loss decreases exponentially, as stated in Equation (3.4).
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Figure 3.6: System with fixed number of blocks B, increasing s and decreasing L f . The
redundancy r and reconstruction threshold r0 are chosen as a factor of s, respectively,
r = s and r0 = s/2.

But note that the size of L f should not be too small. Some practical limits (e.g., hard-
disk sector size, etc.) impose a value of at least 4 KB, which is also the common value of
file system’s block size. Moreover, the amount of metadata, m f , that should be kept is lin-
early dependent on the number of fragments of a block. In a practical system m f � L f ,
if not, the metadata takes up an important space that could be used to achieve more
redundancy.

Another factor on the choice of s is the encoding and decoding rate of the erasure
codes. Some implementations of the classic Reed-Solomon use words of length one byte
to improve the efficiency (they work on the Galois Field GF(28)), which leads to the
practical limitation s + r ≤ 256. The overhead of the encoding is of order O(s·r). Very
high values of s could impact negatively the encoding throughput. For instance, when s
and r are large (e.g., s = r = 128) the encode throughput could be as low as 20 Mbps, on
a Core 2 Duo 2.16Ghz, Otherwise, in our experiments we achieved a throughput of 140
Mbps for values of s + r = 32, and 600 Mbps for values of s + r = 16. We measured the
in memory encoding using the Zfec library [126] (see [94] for more information).

3.5.2 Determining the Reconstruction Threshold (r0)

For a given s, the choice of the threshold value r0 depends on two factors: the desired reli-
ability and the bandwidth capacity. The reliability can be calculated using Equation (3.4).
It is sufficient to find the smallest r0 that matches the desired LossRate. If r is not chosen
yet, then it can be replaced with r = r0 + 1, and the choice of r0 is conservative.

Figure 3.7 shows the trade-off between the bandwidth consumption and the data loss
rate (in log scale). In this experiment the space-overhead (s+r)

s is fixed to 2, this means
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r = s. Increasing r0 means more reliability (LossRate decreases exponentially) at the cost
of more bandwidth consumption. Note that the bandwidth consumption increases very
fast when r0 is close to r. For example, to provision a system to have LossRate < 10−20

(20 nines of reliability, which is more than many RAID and NAS systems), and peer’s
MTTF of 1 year, we find the value r0 = 10 using the Equation (3.4). Then, the bandwidth
consumption comes directly from Equation (3.3).
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Figure 3.7: System with fixed space-overhead of 2. The parameters s = r = 16. The
choice of r0 depends on the desired reliability (prob. of data loss) and the bandwidth
consumption.

3.5.3 Determining the Redundancy (r)

When s and r are defined, provisioning the system is easy and relies on the choice of
the best r0 that matches the resource constraints. However this is not always the case. If
the space-overhead is not a problem, the parameter r can be chosen in such way that the
bandwidth consumption is optimal. Figure 3.8 shows an experiment with fixed s = 16
and r0 = 6, and increasing values of r. The results show that higher values of r decrease
slightly the LossRate, however, the BWavg follows a parabolic shape, for low values of r
(extreme case r = r0 + 1, the eager policy) the bandwidth consumption is very high, then
it decays very fast. At a certain point the bandwidth consumption starts to grow with r.

Intuitively, we increase the value of r to delay the repair process because the overhead
of the blocks’ reconstruction. Mainly, we aim at reducing the fraction of blocks at the last
Non-Critical state (s + r0 + 1). This strategy has a strong effect when r is close to r0 (see
Equation (3.1)) but it decreases slowly when r− r0 is large. However, at a certain point,
the cost of having more fragments outweigh the gains of reducing the fraction of blocks
at the state s + r0 + 1.

To obtain the best bandwidth consumption for a given s and r0, it is sufficient to find
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Figure 3.8: System with fixed values of s and r0, and increasing values of r.
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Figure 3.9: System with fixed s and increasing values of r0. The value r is defined by the
optimal bandwidth utilisation.

the derivative of Equation (3.3) with respect to r. The best r is given by ∂BWavg
∂r = 0, which

evaluates to the following equation:

r0 − s− r + (s + r) · ln
(

s + r
s + r0

)
= 0. (3.5)

The term r can then be isolated numerically (using the Maple software, for example), but
it does not have a nice readable form:

r = s·(eW(− r0
(s+r0)·e

)+1 − 1) + r0·e
W(− r0

(s+r0)·e
)+1, (3.6)

where W is the Lambert W function [32].
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In the given example, for s = 16 and r0 = 8, the optimal value of r equals 40 (space-
overhead of 3.5). In this case, the average bandwidth consumption is 39.1 Kbps per
peer, instead of 57.8 Kbps when the space-overhead is 2. Figure 3.9 shows a system with
increasing values of r0, and r chosen according to Equation (3.5). The bandwidth con-
sumption is optimal for those values of s and r0. Note that the bandwidth consumption
increases very slowly, while the LossRate decreases exponentially.

3.6 Different Distributions of Reconstruction Times

In the previous sections, we presented models for a geometric distributed reconstruction
time. This was mainly, as briefly mentioned, for the clarity of the presentation (smaller
and simpler models) and because of the possibility to derive closed-form formulas in
this case. In fact, our method is more general and can be adapted for large families of
distributions. Unfortunately, in some ill-behaved cases, the models are too large (too
many states) and the computations are not possible. Nevertheless, we show that, by
reducing these large chains to semi-markovian processes with only three states, we are
able to compute at least the average behavior even for complex continuous or discrete
reconstruction time distributions.

Discussion about Real Distribution Times. Several models of the reconstruction time have
been introduced or can be considered depending on the system implementation specifics
(time to detect peer failures, periodic control time, scheduling of the reconstruction) and
on the characteristics of the network (high available bandwidth, latency, losses, etc.).
All these different parameters affect the block reconstruction time. To cite a few: the
reconstruction time can be constant, exponential (or its discrete counterpart, geometric).

3.6.1 Modeling a Constant Reconstruction Time

In systems having a large detection time of failures (let us say many hours, or some
days), the reconstruction time can be approximated by a constant time. This is possible
because the detection time is much larger than the time to reconstruct a block (or a failed
disk).

These systems can also be modeled by a Markov Chain, as shown in Figure 3.10.
States: each reconstruction “state” is now modeled by a path of length θ (reconstruction
time, in time steps). When in reconstruction, at each time step, a block advances by one
step. The chain has θ·(r0 + 1) + r− r0 + 1 states.
Transitions: the transitions are from (j, i) to (j, i + 1), with 0 ≤ j ≤ r0 and 0 ≤ i ≤ θ − 2.
At the end of the path (i.e., end of the reconstruction), we have a transition from the state
(j, θ − 1), 0 ≤ j ≤ r0, to the state of full redundancy r.
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Figure 3.10: Modeling a system with con-
stant reconstruction time.
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Figure 3.11: Modeling a system with a
general reconstruction time distribution.

3.6.2 Modeling More General Distributions

More generally, any discrete time distribution can be modeled by a Markov chain, see
Figure 3.11. We note pj the probability to be reconstructed in time j, j ∈ N. Similarly
to the previous model for deterministic time, each reconstruction “state” is modeled by
a path but of length max{j; pj > 0}. Note that the length is potentially infinite. In the
previous model, we had one transition from the states (i, θ − 1), 0 ≤ i ≤ r0 towards the
state with full redundancy (r). Now, we have one transition per state of the path, (j, i),
to the state r taken probability pj (if pj = 0, we consider that there is no transition).

Note that, in case of an infinite chain, states corresponding to very long reconstruc-
tion times will practically never be attained, either because: 1) the block will die before
this event; 2) in practical system, infinite reconstruction time has no meaning. Hence,
these infinite chains can be closely approximated by truncating the distribution, leading
to a finite chain.

Note that a continuous distribution can be approximated by a discrete Markov Chain
with a small enough time step.

Discussion on the Number of States

As soon as the reconstruction is not poissonian, the probability to be reconstructed de-
pends on the time of the past when the reconstruction started. Hence, the reconstruction
time θ has to be hard coded in the chain states. The number of states thus depends lin-
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early on the time granularity of the chain. If the time step τ is small (in comparison to
θ), the number of states can be big. There is some flexibility on the choice of the time
step, but unfortunately there are some limits: the time step cannot be chosen close to
the average reconstruction time (γ << 1 is better), as it would lead to errors in the es-
timation of bandwidth usage and of the number of dead if at the same time αN is large
(αN close to one or larger). For most systems, it is not a problem, as the computation of
eigenvectors is polynomial in the number of states of the system. But nevertheless, for
some ill-behaved systems, the number of states could be probibitively high. Fortunately
this difficulty can be overcome with the use of semi-markovian processes.

3.6.3 Semi-Markovien Processes

A semi-markovian process (see for example [106]) is a stochastic process with states in-
dexed by S ⊆ N. When it enters state i, it stays there for a random time having mean µi

and then makes a transition to state j with probability Pij. This random time can depend
of j and is chosen according to a distribution Fij. Note that when the time spent in a node
is always one, the process is just a discrete Markov chain. Note that a semi-markovian
process is not markovian in the sense that it does not satisfy the Markov property (inde-
pendance from the past) that, if t > τ1 > τ2,

P[X(t) = i|X(τ1) = j and X(τ2) = k] = P[X(t) = i|X(τ1) = j],

where Xt is the state of the system at time t. The main result that we use here, is that we
can compute the stationnary distribution of a semi-markovian process directly from the
one of its underlying markov chain.

We define Pi as the proportion of time that the process is in state i. To calculate Pi,
we consider πi, the proportion of transitions that take the process into state i. If we note
Xn the state of the system after the nth transition. {Xn; n ≥ 0} is a Markov chain with
transition probabilities Pij. Then πi is just the stationary probability of this chain. We
have the following theorem:

Theorem 1. Under some conditions on the semi-markovian processus (see [106] p. 453), we
have, for i = 1, 2, . . . N,

Pi =
πiµi

∑N
j=1 πjµj

.

Construction of the Semi-Markovian Process

We here transform the Markov Chain with a large (possibly infinite) number of states
into a semi-markovian process with three states, see Figure 3.12:

- a state OK, corresponding to a contraction of the states r0 + 1 ≤ i ≤ r;

- a state R, corresponding to the states (i, j) with 0 ≤ i ≤ r0;

- and a last state, Dead, for the single state Dead of the Markov chain.
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OK

Dead

R

Figure 3.12: Transforming a large (possibly infinite) Markov chain into a semi-markovian
process with three states.

The possible transitions are defined by the contraction (there is a transition between
two states A and B of the semi-markov process if there exist two states of the original
Markov chain, one contracted in A and the other in B, with a transition in the original
chain). Note that we did not represent the transition from OK to Dead in Figure 3.12, as
it is highly unikely in any practical system. A distribution of time spent in each of these
states is associated with each possible transitions. These distributions are computed as
follows3 .
Small preliminary computations. Let us denote by Pi(k, T) the probability to lose k
fragments during a time of T time step when you are at state i (i.e., when you have s + i
remaining fragments). The probability for a peer to die during T time steps is β(T) =

1− (1− α)T. (In the case of continuous distributions, just take β(T) = 1− exp(−αT) and
replace the following sum over T with integrals.) Hence, we get

Pi(k, T) =
(

s + i
k

)
β(T)k(1− β(T))k.

Distribution of the transition R→ Dead: the block takes the transition at time T if

- the reconstruction time is larger than T. It happens with probability P[RT ≥ T].

- r0 fragments are lost between time 0 and time T − 1. Probability Pr0(r0, T − 1), as
we have s + r0 fragments when the reconstruction starts.

- one fragment is lost at time T, happening with probability: sα as we have s remain-
ing fragments before dying.

3Note that more direct formulas can be derived at the price of a small approximation/assumption. If
we consider that the reconstruction suppose to last a time T lasts a time T even if the block cannot be
reconstructed, the distribution corresponding to the transition from R to OK simply is the reconstruction
time distribution.
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Note that we negletected here the possibility of k > 1 multiple fragment losses during
one time step, as there are basically of order αk(s + r0) and that α is small in the sys-
tems we analyze. Nevertheless, the more complete expressions can be easily derived by
adding the probabilities to have k failures in time T − 1 and r0 − k + 1 ones in the last
time step. It gives

PR,Dead(T) = P[RT ≥ T]Pr0(r0, T − 1)sα.

From the distribution, we derive the probability to take the transition R→ Dead which
is only

PR,Dead = ∑
T

PR,Dead(T).

It give the probability of the second transition from state R, as PR,OK = 1− PR,Dead.
Distribution of the transition R→ OK: the block takes the transition at time T if

- the reconstruction time is T (probability P[RT = T]).

- the block did not die before (probability ∑T
T=1 Pr0(r0 + 1, T).

We have

PR,OK(T) = P[RT = T]
T

∑
T=1

Pr0(r0 + 1, T).

Distribution of the transition OK→ R: The transition occurs as soon as r− r0 fragments
are lost, giving

POK,R(T) = Ps+r(r− r0, T).

The semi-markov process is now defined. We then use Theorem 1 to compute its
stationary distribution, from which can be extracted the average reconstruction time and
the rate of block deaths.

3.7 Conclusion

In this chapter, we analyzed the steady-state of a peer-to-peer storage system based on
traditional erasure codes and lazy repair. From a simplified Markov Chain Model we de-
duced close-form mathematical expressions to estimate the system behavior. The results
were focused on the metrics: probability of losing data and bandwidth consumption. We
described a methodology to determine the main system parameters, such as the number
of initial fragments s, the reconstruction threshold r0 and the space-overhead defined by
(s + r)/s. We show that the lazy repair mechanism can be employed to achieve a better
utilization of bandwidth for a given reliability, at the cost of additional space usage.

Furthermore, we highlighted that a simple Markov chain can be easily designed to
capture the system average behavior, however the results obtained by simulation show
an important variation around its mean that is not captured by simple Markov chains.
Hence, in the next chapter we propose and analyze a fluid model that harnesses these
variations.





CHAPTER 4

Capturing the Variations

In the previous chapter, we presented a Markov chain model that represents the behavior
of a single data block. This chain allows us to compute the average behavior of the
system accurately. Simulations confirm our analytical results, but also indicate that the
deviations around the average behavior (i.e., the standard deviation) are much higher
than those given by the Markov model.

These variations are explained by the fact that when a disk failure occurs (or a peer
permanently leaves the system) many data fragments are lost at the same time. This corre-
lation induces large peaks in the bandwidth consumption. In addition, when the band-
width is limited, those peaks tend to slow down the repairing process, resulting in data
loss. Indeed, when the repairing time is longer, a damaged block is more likely to lose
its remaining redundancy fragments to a point where it cannot be repaired. The con-
sequence is that a bandwidth provisioning decision not taking into account these varia-
tions would lead to an erroneous design which in turn would introduce a risk of losing
a significant amount of data.

In this chapter, we propose and study a new stochastic model based on a fluid ap-
proximation that assesses the variations on the bandwidth consumption and the proba-
bility of data loss. In addition to its expectation, the fluid approximation gives a correct
estimation of its variations. This new model is also validated by simulations.

The results presented in this chapter appeared in [3] (best student paper award) and were
published in [4].

Our contribution

In order to take into account the variations around the mean, we propose a new stochas-
tic Fluid Model, that does not represent a single block anymore, but the whole system.
We provide a mathematical analysis of this model by giving a method to compute all
the moments of its associated stationary distribution. Simulations show that the Fluid
Model predicts the system very well (1% margin). Moreover, this model is scalable since
its complexity is proportional to the erasure code length and does not depend on the
number of peers.

To the best of our knowledge, this work is the first study to propose an analytical
model that takes into account the correlations between data block failures. Along with
failure correlation, we also point out the impact of disk age heterogeneity on the system,
and propose a new shuffling policy and a biased reconstruction policy to reduce this
impact.
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Organization

The remainder of this chapter is organized as follows: in the following section we dis-
cuss the deficiencies of the proposed simple Markov chain model and highlight the im-
portance of capturing the system variations. We then propose a new Fluid Model in
Section 4.2 that better captures the system variations, followed with its analysis, vali-
dation and some avenues for future research. Finally, our concluding remarks are in
Section 4.4.

4.1 Study of Correlation Effects

In this section, we point out the deficiencies of the simple Markov chain Model (MCM)
to model the simultaneous loss of fragments when a disk fails. We show in Section 4.1.2
the significant impact of this correlation on the variations of bandwidth usage, even for a
large system. In Section 4.1.3, we examine a provisioning scenario and show that, when
not taken into account, this variation could lead to a very high loss rate.

4.1.1 The Problem of Correlation

As shown in the previous chapter, the system averages are estimated precisely by the
MCM. However, as shown in Tables 3.2 (page 53) and 3.3 (page 54), the standard devia-
tion (after the± sign) obtained by simulations can not be captured by the Markov Chain
Model (MCM).

Figure 4.1 shows an histogram with the distribution of the bandwidth consumption
over time. In the top plot we have the results obtained using the Simulation Model
(SM), and in the bottom a system equivalent to the MCM, with independent fragment
failures. As previously stated, the average value of both systems are very close (4.92
versus 4.90 Mbits/s). However, the variations around this average are totally different.
The standard deviation is 3.22 Mbits/s in the SM, to compare with only 0.10 Mbits/s in
the MCM. This difference is explained by the fact that a disk failure impacts simultaneously
all the blocks that have fragments stored on it. Therefore, when a failure happens, many
blocks lose one fragment at the same time. Moreover, an important proportion of these
blocks needs to start the reconstruction, which induces high peaks in the bandwidth
consumption.

Note that the standard deviation of the independent model can be deduced directly
from the MCM. Each block has a probability p = ∑r0

i=0 P(i) of being in reconstruction,
with P the stationary distribution of the MCM. Hence, the total number of blocks in
reconstruction is the sum of independent variables and follows a binomial distribution
of parameters B and p. This distribution is very concentrated around its mean Bp and
the standard deviation is given by

√
Bp(1− p).

We conclude that modeling the behavior of a single block using the MCM and ex-
trapolating the results to the whole system do not lead to an accurate representation of
the system.



4.1. Study of Correlation Effects 67

F
re

qu
en

cy

0 5 10 15 20 25

0
50

0
15

00

Sim. Model

Mean = 4.90 Mbits/s
Std.Dev. = 3.22 Mbits/s

Reconstruction Bandwidth (Mbit/s)

F
re

qu
en

cy

0 5 10 15 20 25

0
20

00
0

Markov Chain Model

Mean = 4.92 Mbits/s
Std.Dev. = 0.10 Mbits/s

Figure 4.1: Histogram of the bandwidth used by reconstructions. Top: Simulation
Model. Bottom: Markov Chain Model. (Notice that y-scales are not the same.)

4.1.2 Correlation and the System Size

The impact of data loss correlation shown above actually depends on the amount of
fragments stored on the disk. A somewhat extreme case is when the number of peers
is equal to the number of fragments of a block at full redundancy, that is N = s + r.
In such a system all the blocks lose one fragment whenever a disk crashes and all the
blocks follow the same trajectory. Almost at the opposite, when the disk contains few
fragments (the extreme being each disk contains at most one fragment), trajectories do
get independent and the system does not deviate from its mean. These two extreme
examples illustrate the fact that the impact of correlation depends on the ratio between
the number of fragments per disk and the number of peers (a peer failure simultaneously
impacts about B(s+r)

N fragments). In an extremely large system, the dynamic gets closer
to the independent case. The following simulations confirm this intuition.

To illustrate it, we simulate systems with the same amount of data (number of
blocks), but with varying number of peers (between 50 and 1 million) and varying num-
ber of fragments per disk. Figure 4.2 shows the average bandwidth consumption and
standard deviation (represented by the lines) given by SM and MCM. These values can
also be seen in Table 3.2 (page 53). The standard deviation of MCM is very far from the
SM. This is obvious for small systems: 0.10 vs 19.45 for 100 peers. But this is true even
for large systems: the deviation is still 5 times higher for a system with 100, 000 peers.
The deviation of the dependent system decreases monotonically with the system size to-
ward the limit obtained for the independent system. In this example, when the number
of peers reaches 1 million, both standard deviations are of the same order. As expected,
the standard deviation of the MCM is almost constant, as it depends only on the number
of blocks which is constant here.
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Figure 4.3 shows the average bandwidth consumption and standard deviation for a
system with fixed number of peers and increasing number of blocks. The results ob-
tained by the SM and MCM grows linearly with B, however the standard deviations can
not be estimated by the MCM.

4.1.3 Bandwidth Provisioning and Loss of Data

We show that the data loss correlation has a strong impact on the variations of the band-
width usage. But do these variations really affect the system reliability? What happens
if the amount of bandwidth available, or allowed by the user application, is limited?
To answer these questions, we simulate different scenarios with bandwidth limitation.
This limit varies from µ to µ + 10σ, with µ and σ respectively the expectation and the
standard deviation given by the MCM. In these experiments, when the bandwidth is not
sufficient to carry out all the reconstruction demands, a queue is used to store the blocks
to be rebuilt. The reconstructions then start in FIFO order when bandwidth is available.

Figure 4.4 shows the cumulative number of dead blocks for different limits of band-
width. We see that limiting the bandwidth has very strong impact. Between µ (4.95
Mbits/s) and µ + 5σ (5.90 Mbits/s), the loss rate per year dropped from 11.2 blocks in
the former to 0.12 block in the later.

If we have no limit on the bandwidth, the estimated number of dead blocks per year
is 4.5 · 10−3, which is respectively 2400 and 26 times less than the former cases.

Note that for all these experiments, the available bandwidth is greater than the av-
erage bandwidth given by the MCM. Hence, it is only the fact of delaying some block re-
constructions that increases the probability to lose fragments. As a consequence, provisioning
the system based on a model assuming block independence, as the MCM, could lead to
disastrous effects. As a matter of fact, in the MCM, the bandwidth usage is very con-
centrated around its mean. For example, the probability to exceed µ + 5σ is less than
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Figure 4.4: Data loss for different provisioning scenarios using the SM.

5.8 · 10−7. A provisioning of this amount of bandwidth seems a very safe one. But as
we see in Figure 4.4, such a dimensioning would lead to data loss. Therefore, it is very
important to have a model that takes data loss correlation into account.

4.2 A New Stochastic Model

The discussion above shows that the system cannot be seen as a set of independent
blocks; so we need to model the system globally. For this purpose, we propose in this
section a new approximated model based on a fluid approximation. We provide a theo-
retical analysis in Section 4.2.2, giving its average behavior, the variation from its mean
and a way to compute any of its moments. In Section 4.2.3, we show by means of simu-
lations that it models very closely the variations of a realistic system.

4.2.1 The New Model

We need to model the whole system. Block states could be fully described by a vector
encoding the location of its fragments. This would lead to a gigantic Markov Chain (with
around N(s+r)B states) which is too big to compute its stationary distribution. Therefore,
we propose a new Markovian Approximated Model whose purpose is too approximate
this gigantic chain.

The Approximated Model. The Approximated Model is derived from the following ob-
servation: fragments are spread randomly during the initialization phase and whenever
a reconstruction occurs. Hence, we make the following approximation:

(A) At any time the fragments of a block are randomly placed into the system1.

1Assumption (A) is indeed an approximation since the fragments of a block whose last reconstruction
occurred at time T0 can only be located on the disks that where in the system at time T0 and never got faulty
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In such a case, the state of a block is fully described by its level of redundancy and blocks
at the same level are equivalent. Hence a Markov Chain that counts how many blocks are
at each level can be used. The system is described by a vector B(t) = (B0(t), · · · , Br(t))
where Bi(t) is the number of blocks at level i at time t. This discrete chain can be formally
described, but it is still too large for practical use (it has (r + 1)B states). However since
many blocks are in the same state, we use a fluid approximation for that chain (see [71]
for references on fluid models).

Fluid Model Approximation for Large Systems (Fluid Model). The process to dis-
tribute the fragments among the disks follows a multinomial distribution during time
(Assumption (A)). When the number of blocks B is large compared to N, as in prac-
tical systems, the multinomial distribution is very concentrated around its mean: the
standard error of the number of fragments per disk is of order O( 1√

B/N
). The fluid ap-

proximation consists in neglecting these variations around the mean and considering
that, at each time step, the proportion of blocks affected by the reconstructions and peer
faults is exactly the average proportion.

We present here this stochastic Fluid Model, with discrete time step τ. The system is
described by the state vector X(t) = (Xr(t), · · · , X0(t)), where Xi(t) counts the fraction
of blocks that are in state i at discrete time t (i.e., X(t) = B(t)/B). The evolution of
the state vector is then modelled as follows. First, we define two matrices: R, which
represents the effects of the reconstruction process on the state vector,

R =



1 γ · · · γ
. . .

1
1− γ

. . .
1− γ


and F′, the effects of a disk failure,

F′(t) =



1− µr(t) µ0(t)

µr(t)
. . .
. . . . . .

. . . . . .
µ1(t) 1− µ0(t)


where µi(t) is the fraction of blocks in state i affected by a failure. We then express a
transition of the system as

X(t + 1) = M(t)·X(t),

since. The correct statement is that the fragments of a block with age T − T0 are randomly spread on disks
with age at least T − T0. Nevertheless we assume that (A) holds.
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with M(t) a random product defined as follows

M(t) =
{

R·F′ with prob. f (disk failure);
R with prob. 1− f (recons. only),

where f is the probability to experience a disk failure during a time step. At each time
step, if no disk failure occurs, we only account for the effects of reconstructions; other-
wise the disk failure effect is added. Henceforth, we note F = R·F′ for simplicity.

The model makes the following assumptions:

- At most one disk can fail during a time step.

- The failure rate during a time step is f = αN.

- Whenever there is a failure, a block at level i has probability µi(t) to lose a fragment.
This is indeed hypothesis (A). A first approach is then to consider that each disk
contains a proportion 1/N of fragments (i.e., about B(s + r)/N), then the probabil-
ity to lose a fragment at level i (assuming a fault) is µi(t) = s+i

N . It corresponds to a
first Simple Fluid Model (SFM).

Our first simulation experiments showed that this approximation already gives good
results, but we can still refine it further as follows.

Disk age and number of fragments in a disk. When a disk fails, it is replaced by a new
empty disk. Since disks fill up during the system life, a newly replaced disk is empty,
while an old disk contains many fragments. Disk age and disk size distributions can be
approximated closely for systems with large number of blocks. When a block is recon-
structed, each of the rebuilt fragment is sent on a random peer. Hence, at each time step,
the distribution of the rebuilt fragments among the peers follows a multinomial distri-
bution, with parameters the number of rebuilt fragments and 1/N. As the multinomial
distribution is very concentrated around its mean, the filling up process can be approxi-
mated by a affine process of its age, in which, at each time step, each disk gets in average the
number of reconstructed fragments divided by the number of peers. That is, the speed
that disks get filled is approximated as:

v ≈ α
F̄
N

,

where F̄/N is the average number of fragments per disk. At age K, a disk has approxi-
mately v·K fragments. Thus, it represents a factor ω ≈ v·K/(F̄/N) = αK of the average
disk capacity.

The age of death follows a geometric law of parameter α, as at each time step a disk
has a probability α to experience a failure. That is,

Pr[death age = K] = (1− α)K−1α.

Hence, disks with very heterogeneous number of fragments are present in the system. This
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strong heterogeneity of the number of fragments per disk may have a significant influ-
ence on the variations of the system. As a matter of fact, when the system experiences a
disk failure, we may lose a lot of fragments if the disk was almost full, but a lot less for a
young disk. Therefore, we propose a refinement of the Simple Fluid Model to take these
variations into account.

Figure 4.5 shows the cumulative distribution function (CDF) of the number of pieces
per disk obtained using the SM. It is compared with the CDF of the geometric law of
parameter α normalized by the average disk occupancy F̄/N = 2000 fragments (in this
example α = 1/(24× 365)). We see that the distribution of disk occupancy is very close
from what expected from the previous discussion.
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Figure 4.5: CDF of the number of fragments per disk in the system.

Remark. In this modeling, for the sake of exposition, we assume that disks have unlimited capacity
(or equivalently, they die before they get filled up). This assumption makes the analysis more
tractable. Indeed, in Chapter 5 we do take into account the limited capacity of disks. Which is
done by modeling it by a truncated geometric distribution.

Refinement of the Fluid Model. We can take the disk size distribution into account and
modify µi(t) accordingly. This can be done by setting

µi(t) =
(s + i)ω(t)

N
,

where ω(t) is the disk filling ratio, ω(t) = αK, taken accordingly to the distribution of the
number of fragments in a disk that have died with age K:

Pr[ω(t) = αK] = (1− α)K−1α, for K ≥ 1.

where ω(t) follows a geometric distribution with E[ω(t)] = 1 (i.e., an average filling
ration of 1), which indeed represents the average disk capacity F̄/N.

Note that the model is scalable since its size is s + r and the random transition ma-
trix at time t can be computed in time O((s + r)2). Finally, let us summarize the new
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notations that will be used throughout this section:

f Probability to have a disk failure during a time step ( f = αN)
R Matrix that represents the effects of the reconstructions
F Matrix that represents the effects of a disk failure
µi Probability of a block in state i to be affected by a failure
ω Filling ratio of a failed disk

4.2.2 Analysis

We present a theoretical analysis that allows us to compute all the moments of the sta-
tionary distribution of the Fluid Model. The analysis boils down to the analysis of a
random matrix (or matrix distribution), M(t). Note that we do not give a closed formal
solution to this difficult problem because there exists no general theory to get the distri-
bution of a random product of two matrices. It is not surprising since, for example, only
determining if the infinite product of two matrices is null is an undecidable problem [80].

Expression of the expectation of the Simple Fluid Model. A transition of the system
transforms the state vector X = (X1, · · · , Xn) according to

X(t + 1) = M(t)X(t).

Hence,
E[X(t + 1)] = E[M(t)]E[X(t)].

The expectation of the transition matrix is given by

E[M(t)] = E[ f F(t) + (1− f )R] = f E[F(t)] + (1− f )R,

with E[F(t)] = E[RF′(t)] = RE[F′(t)], as F′ is independent of R. We have E[F′(t)] = F′,
with F′ corresponding to the failure matrix for an average filling ratio of 1. Therefore,
we obtain the same expectation for the Simple Fluid Model and the Fluid Model. To
summarize, we get

E[M(t)] = f RF′ + (1− f )R.

The linear operator E[M(t)] is a probability matrix and it can be computationally
checked that 1 is the only eigenvalue with norm one. Hence we have E[X(t)] converges
to E0, solution of the equation

E0 = ( f RF′ + (1− f )R)E0.

Note that, since ( f RF′ + (1− f )R) is roughly equivalent to the matrix transition of the
MCM, we find that E[X(t)] converges to the stationary vector of the single block model.
This is expected since expectations are linear.
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Expression of the standard deviation of the Simple Fluid Model. We want to compute
the standard deviation of the state vector X, meaning the standard deviation of each of
its coordinates. We recall that each coordinate corresponds to the number of blocks in a
given state.

Let start by computing E[X2].

X(t + 1)2 = (M(t)X(t))2.

That is

X2
i =

(
n

∑
j1=1

mij1 Xj1

)(
∑
j2

mij2 Xj2

)
.

We get
X2

i = ∑
j1,j2

mij1 mij2 Xj1 Xj2 .

Note that, as X2 depends of all the cross-products of Xi and Xj, we have to compute all
their expectations.

Expression of the expectations of the cross-products. We have

XiXj =

(
n

∑
k1=1

mik1 Xk1

)(
n

∑
k2=1

mjk2 Xk2

)
.

Hence
XiXj = ∑

k1,k2

mik1 mjk2 Xk1 Xk2 .

It gives for the expectations:

E[XiXj] = E[ ∑
k1,k2

mik1 mjk2 Xk1 Xk2 ].

By linearity and independence (of mij and Xi), we obtain

E[XiXj] = ∑
k1,k2

E[mik1 mjk2 ]E[Xk1 Xk2 ].

The method is to write a linear system of equations linking the cross-product expecta-
tions at time t + 1 with the expectations at time t. Let ind be the function [1, n]× [1, n]→
[1, n2], ind(i, j) = (i− 1)n + j. Let us define the matrix N by

Ni′ j′ = E[mi,k1 mj,k2 ],

with i′ = ind(i, j) and j′ = ind(k1, k2). Note that this matrix is of dimensions n2 × n2.

We now need to compute E[mi,k1 mj,k2 ]. As the matrix of transition M(t) is stochastic,
we have to sum over all possible disk fillings ω(t) to obtain the expectation. If, we note
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F(k) the matrix F(t) for a filling ratio equal of k, the definition of M(t) gives

E[mik1 mjk2 ] =
∞

∑
k=1

Pr [ω(t) = α·k]
(

f F(k)
ik1

F(k)
jk2

)
+ (1− f )Rik1 Rjk2 .

Ni′ j′ is then directly derived. Now, if we note Z the vector of the cross-products
(Zind(i,j) = XiXj), we have

E[Z(t + 1)] = N(t)E[Z(t)]

Again, as the linear operator E[Z(t)] is a probability matrix and because it can be checked
that it has no eigenvalue with norm one other than 1, we have E[Z(t)] converges to E0,
solution of the equation

E0 = N(t)E0.

When Z is computed (by a resolution of a linear system with n2 variables and equations),
we can extract the coefficients E[X2

i ] and compute the standard deviations with

σ(Xi) =
√

E[X2
i ]−E[Xi]2.

Conclusions for the number of reconstructions and the bandwidth. The fraction of
blocks in reconstruction ξ is equal to the sum of the fraction of blocks in the states from
0 to r0. We note ξ = ∑r0

i=0 Xi. We have

E[ξ] =
r0

∑
i=0

E[Xi] and V[ξ] =
r0

∑
i=0

r0

∑
j=0

cov[XiXj].

The covariances can be extracted from the previous computations (cov[Xi, Xj] =

E[XiXj]−E[Xi]E[Xj]).
Each reconstruction lasts in average θ = 1/γ, translated in the model by a probability

γ to be reconstructed. Hence the expectation of the bandwidth BW used by the system
during one time step is

E[BW] = γ(s + r− r0)L f BE[ξ].

Recall that L f is the size of a fragment and s + r− r0 is roughly the number of fragments
sent during a reconstruction. We also get directly the variance

V[BW] = (γ(s + r− r0)L f B)2V[ξ].

Remark: Other moments can be computed similarly, albeit with additional complexity,
as we need to compute all cross-products (E[X1 . . . Xk] for the k-th moment).

4.2.3 Validation of the Model

We run an extensive set of simulations to validate the Fluid Model (FM) for different
values of parameters. Figure 4.6 presents an example of a timeseries of the bandwidth
usage. The top plot is the Simulation Model and the bottom one the Fluid Model. As
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expected, the averages of the two models are almost the same (few tenths of percent).
But in addition, we observe that the variations are now very close as well (3.22 Mbits/s
vs. 3.14 Mbits/s).
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Figure 4.6: Timeseries of the bandwidth usage for SM and FM during 60 days at the
steady-state.

Figure 4.7 shows the standard deviation of the bandwidth use in both models for
systems with different number of peers and fixed amount of system data. Figure 4.8
shows the standard deviation of the bandwidth for increasing amount of data. We see
that the values are very close and differ by only few percents. The average bandwidth
use is about the same in all these experiments. Note that the variations of the FM and
SFM are of the same order of magnitude, but still differ by around 20 to 40 percent in
most cases, showing the impact of the heterogeneity of disk occupancy, and hence the
need for the Fluid Model.

A summary of results is given in Table 4.1. We see that the relative standard deviation
of the two models differs from less than 5 percent for this set of parameters. We conclude
that the system is modeled very closely by the FM.

Influence of the parameters. Note that the standard deviation does not seem to de-
pend of the value of r0. To give an intuition of the influence of the parameters on
the system variations, we provide here a rough estimate of relative standard deviation
(Std.Dev/Mean) of the bandwidth usage.

When there is a disk failure, in average, roughly Rstart ≈ B(s+r)
N(r−r0)

block reconstructions
start. The average number of reconstructions can then be estimated by

E[R] ≈ f Rstart.

Let us now estimate its variance. When f is small, there are two cases: either no
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Figure 4.7: Bandwidth consumption vs
number of peers N for SM, FM (SFM is also
given for comparison).
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number of blocks B for SM, FM (SFM is also
given for comparison).

Table 4.1: Relative Standard Deviation of bandwidth usage (Std.Dev/Mean) for different
values of r0, B, N, θ and MTTF.

(a) Reconstruction threshold (r0)
r0 1 2 3 4 5
SM 0.69 0.67 0.65 0.63 0.62
FM 0.64 0.64 0.64 0.64 0.64

(b) Total amount of data (B x 103)
B 400 600 800 1000 1200
SM 0.65 0.65 0.65 0.65 0.65
FM 0.64 0.64 0.64 0.64 0.64

(c) Number of peers (N)
N 100 1000 10000 100000 1000000
SM 5.18 1.85 0.58 0.19 0.06
FM 5.42 1.75 0.57 0.18 0.06

(d) Reconstruction time (θ = 1/γ, in hours)
θ 1 6 12 18 24
SM 2.17 0.66 0.45 0.37 0.28
FM 2.10 0.64 0.44 0.36 0.27

(e) Peer failure rates (MTTF = 1/α, in years)
MTTF 1 2 3 4 5
SM 0.66 0.89 1.07 1.21 1.31
FM 0.64 0.89 1.08 1.25 1.41
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failure occurs with probability 1 − f and no reconstruction starts, or there is a failure
and Rstart blocks start the reconstruction. The reconstruction lasts θ time steps. Then the
system reconstructs Rstart/θ blocks per time step during a time θ. Hence it gives

V[R] ≈ (1− f θ)E[R]2 + f θ

(
E[R]

f θ
− E[R]

)2

.

That is
V[R] ≈ (1− f θ + f θ(1/ f θ − 1)2)E[X]2.

When f θ is small, we get

Rel.Std.Dev.[R] ≈ 1√
αNθ

.

From this approximation, the system variations should be roughly independent of r0,
but inversely proportional to

√
N,
√

θ and proportional to
√

MTTF. These tendencies
are seen in Table 4.1 and Figures 4.7 and 4.8.

4.3 Convergence of the Fluid Model

We consider the system under assumption (A) (at any time the fragments of a block
are randomly placed into the system). We prove here that the trajectory of the fluid model
remains close to the one of the system. Close means here that the deviation is proportional to√

B log B. It implies that both trajectories converge when B grows to infinity. First, we note
that we are not in the classic situation analyzed by Kurtz in [71]. As a matter of fact, we
apply two different operators according to if there is a failure or not. The fluid model then
also is no more deterministic, but random. Our proof is inspired by the work of Hennion
on the products of positive random matrices [62]. Note that the result presented here can
easily be generalized to a system with a larger number k of different events (here k = 2).
The only condition is that the random product of the k matrices should have a positive
probability to be strictly positive after some time T. Finally, we observe the deviations
and the speed of convergence in practice in Section 4.3.2.

4.3.1 Proof of Convergence

Sketch of the proof. The idea of the proof of convergence is the following.

- Each transition adds a small noise (vector with null sum, V). At each transition,
the trajectory of the system is different from the one of the fluid model by a small
noise of amplitude of order

√
B log B.

- This noise decreases with time. As a matter of fact, there is a positive probability
that the random product of matrices is a strictly positive matrice P after some time,
with Pij > ε. In this case, the norm ∑i |(PV)i| < ∑i(1− ε)|Vi| decreases.
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- Hence the difference between trajectories is bounded.

- We deduce the convergence when the amount of data B groes to infinity.

- Let us also note that the bound we get is very pessimistic. As a matter of fact, the
noises do not add upp. On the contrary, they cancel each other out as they have an
expectation of 0 on each coordinate (thus, like a classic random walk the deviation
is not linear but in

√
time, see for example [106]).

Proof

- Each transition adds a small noise.

Let S be the system states. We note W(t) the vector of dimension |S| = r + 2
coding the number of blocks in each state. B is the total population (total number of
blocks). The variable X(t) = W(t)/B represents the average statistical distribution
of the population at time t.

We note E the space of the contexts (here E = {failure, no failure}). Let p(e) be the
probability of the situation e. We define Ae the matrix associated to the situation
e in the following way: the coefficient Ae(i, j), (i, j) ∈ S2 denotes the probability
that an individual in state i goes to state j in context e. The transition made by the
individuals are considered independant, when the context e is given.

In context e, the number of individuals taking transition i → j is the sum
of Bernoulli variables having value 1 with probability Ae(i, j). Its average is
Ae(i, j)Wi(t). Recall that the application of the Chernoff bound applied to n i.i.d.
random variables Zi of mean µ gives

P[
n

∑
i=1

Zi ≤ (1− δ)µ] ≤ exp(−µδ2

2
).

If we choose δ =

√
2k log(µ)√

µ , we have that ∑n
i=1 Zi ≤ µ−

√
2kµ log(µ) with a proba-

bility smaller than 1
µk .

Here, µ = Ae(i, j)Wi(t) ≤ B and n = Xi(t)B. Hence, we have a deviation larger
than

√
2kB log(B) with probability smaller than 1

Xi(t)kBk .

Hence, with probability 1− 1
B ,

W(t + 1) = Ae(t)W(t) + V(t),

where V(t) is a vector with sum zero and of of weak amplitude (
√

W(t) log(W(t))).

- This noise decreases with time.

There is a positive probability that the random product of matrices is a strictly
positive matrice after some time T0. As a matter of fact, if the system experiences
n = r + 2 peer failures during period T0, a block can go from any state to any state.
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Fact 4.3.1. Let be a vector V = (V1, . . . , Vn) with null sum (∑i Vi = 0) and a strictly
positive matrix of probability M (∀i, j, Mij > 0) with smallest coefficient m. If we note
W = MV, we have W is a vector with null sum and

∑
i
|Wi| ≤ (1−m)∑

i
|Vi|,

as some mass is transferred from the positive coefficients to the negative coefficients.

Hence, during time a noise vector is multiplied by strictly positive probability ma-
trix and, thus, decreases. We can derive a crude bound of the time of convergence.

Consider now our random product of matrices over T0 time step. The matrix M is
R with probability 1− αN and F with probability αN. Now consider the number
of matrices F over T0 time step. In average, we have αNT0 of them. Using Chernoff
bounds, we have that

Pr[#F <
αT0

2
] ≤ e−

αT0
8 .

By choosing T0 = 2 n
αN , we get

Pr[#F < n] ≤ e−
n
4 .

Hence, the noise will disappear at the speed larger than (1− ε)1/αNn.

- The difference between trajectories is bounded. We consider the trajectory of the
system and the one of the fluid model subject to the same events. The deviation
during a time step t is a vector V(t) of norm at most

√
W(t) log(W(t)). At time

t1 = t0 + ∆t, we have

W(t1) = NX(t1) +
∆t

∑
t=1

(
∆t

∏
θ=t

Ae(t0+θ))δ(t0 + t),

where X(t1) = ∏∆t
θ=1 Ae(t0+θ)X(t0) is the trajectory of the fluid model.

We have seen that after a period T0 = 2n/αN, a noise decreases by a factor at
least 1− ε with probability close to 1. This implies that the above sum is less than
∑i = 0, 1, . . . (1ε)bi/T0c = T

ε times the norm of a single deviation. So,

W(t1)− NX(t1) ≤ T0(1− ε)
δt
T 0 |W(t0)− NX(t0)|

+
T0
√

W(t) log(W(t))
ε .

Thus, the two trajectories are linked. Moreover, if W(t0) = NX(t0), the two trajec-

tories remain at distance T0
√

W(t) log(W(t))
ε .

- When B groes to infinity, the trajectory of the fluid model converges to the trajec-
tory of the system. As a matter of fact, the componant of the state vector grow
linearly with B, when the deviation grows in

√
B.
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Figure 4.9: Average time to cancel a basis of vector noises.

4.3.2 Convergence in Practice

We study here the convergence of the fluid model towards the system in practice. We do
two kinds of experimentations. In the first one, we look at the speed of cancellation of a noise
by the system. We observe that in practice a noise decreases very quickly (confirming
that, if the above analysis proves the convergence, it gives a very pessimistic bound on
the speed of convergence). In the second kind of experiments, we are interested in the
value of the deviation between the model and the system by considering systems with
different amount of data. We observe that, as expected, the trajectories remain close during
time and that they converge when the amount of data increases.

Noise cancellation. We consider here a basis of noise vectors, the family of vectors
{Vi; v1 = 1, vi = −1, vj 6=i = 0}. Any noise vector with null sum can be expressed as
a linear combination of these vectors. We take each of these vectors and we apply to
them the random product of the matrices defining the system. Figure 4.9 (Left) shows
the speed of cancellation of these noise vectors. We see that in average the noise is di-
vided by 2 after 300 time steps and by 4 after around 600 time steps. The histogram of
the mean time (over 10,000 runs) to divide a noise by two is given in the left plot. We see
that this time is concentrated around it mean.

Trajectories remain close. Figure 4.10 shows the two trajectories of the system and of
the fluid model for two different values of B, 106 and 4 · 106 blocks. We see that

- the deviation level is very small;

- the deviation level remains constant with time, as explained above by the noise cancel-
lation.

Convergence of the fluid model.
We then consider systems with a constant number of peers (N = 5000), but with

different amounts of data. Figure 4.11 presents the average relative deviation of the
systems for different values of B from one million to one billion blocks. We observe the
convergence as B grows.
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Figure 4.10: Trajectories of the deviation
for two different values of the number of
blocks B. The trajectories remain close
during time.
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Figure 4.11: Average deviation for systems
with different values of B. The fluid model
converges towards the system when the
amount of data increases.

4.3.3 Model Discussions - Future Directions

We showed that the Fluid Model closely models the behavior of the real system. In fact,
we see that the non uniform repartition of the fragments between the different disks
increases the standard deviation of the bandwidth use. To lower the impact of disk age
and to have more uniform disk fillings, we propose two new policies:

• Shuffling algorithms. At each time step, a proportion of the fragments in the sys-
tem are chosen at random and sent to a random disk. If all fragments are con-
cerned, we obtain an ideal system with perfectly uniform repartition of the frag-
ments among the disks. Note that in fact, it corresponds to the Approximated
Model of Section 4.2. The advantages of such policy are that it lowers the differ-
ences in number of fragments of the disks, but also decreases the correlation be-
tween old blocks that were more present on old disks. However, a drawback is the
introduction of more network traffic in the system to redistribute the fragments.

• Biased reconstruction policy. Another way to obtain more uniform disk fillings
is to change the reconstruction policy. During the last phase of the reconstruction,
the rebuilt fragments are sent to random peers. We propose to choose these peers
not uniformly, but to select with higher probability disks with less data. By doing so,
the new disks fill up faster. One drawback of this policy, is that it reinforces the
correlation between blocks rebuilt at the same time. But it has the advantage of not
changing the bandwidth needs.

4.4 Conclusion

In this chapter, we show through simulations and formal analysis that modeling such a
system by independent blocks, each following its own Markov Chain is very far from re-
ality: if the expectations are perfectly captured, deviations from the mean are extremely
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underestimated. This is due to data loss correlation: a failing disk affects tens of thou-
sands of blocks. We also show by simulation that these variations (e.g., in bandwidth
usage) can have a severe impact on the reliability (probability of data loss).

We then introduce an Approximated Fluid Model that captures most of the system
dynamic. Simulations show that this model gives very tight results. We believe that the
methods proposed here can be applied in other contexts where correlation phenomena
occur. We are working at adapting the presented methods to different (non Poissonian)
failure models and different reconstruction models, e.g. deterministic reconstruction
time. It could also be interesting to study data placement strategies other than random.

This work also raises a more theoretical question. The fluid models have a simple
dynamic, since it is defined as a random product of two small dimension matrices. De-
termining the behavior of such a product is known to be intractable, but in our specific
case we succeeded to get exact formulas and compute the moments of the distribution.
It would be interesting to find general non trivial conditions (other than commutability)
under which the dynamic can be computed.





CHAPTER 5

Repair Time Distribution Under
Bandwidth Constraints

To ensure long-term fault tolerance, the storage system must have a self-repairing service
that continuously reconstructs the fragments of redundancy that are lost. The duration
of this repairing process is crucial to determine the system reliability. That is, repairs that
last long increase the probability of losing data exponentially. This speed is mainly de-
termined by how much bandwidth is available by the peers’ upload link capacity, which
in turn is arguably one of the most scarce resource of such systems (i.e., when com-
pared to the processing capacity or the storage space). In the literature, the durations of
the reconstructions are modeled as independent (e.g., poissonian, deterministic, or more
generally following any distribution). In practice, however, numerous reconstructions
start at the same time (when the system detects that a peer has failed). Consequently,
they are correlated to each other because concurrent reconstructions do compete for the
same bandwidth. This correlation negatively impacts the efficiency of the bandwidth
utilization and henceforth the repair time.

Imagine a scenario where users are connected using a typical home connection via an
Asymmetric Digital Subscriber Line (ADSL) with upload capacity of 1Mbps. We expect
that only part of this bandwidth is allocated to the storage system, let us say 128kbps.
The average amount of data per peer is 100 gigabytes. When a peer fails, if 100 peers
participate to the repairing process at an optimal rate of 128kbps, then the system would
need theoretically 17 hours to recovery the contents of the failed disk. By our models, if
we consider that peers have an expected lifetime of 1 year, this repair time lasts around
22 hours, which gives a probability of data loss per year (PDLPY) of 10−8 (we set s = 7
and r = 7). However, due to several factors, in practice the repair time is in fact much
greater than this optimal time. For instance, the imbalance on the amount of data per
peer negatively impacts the efficiency of the bandwidth utilization. Continuing with the
same example, for the same average amount of data per disk of 100 gigabytes, if the
system have disks with heterogeneous capacity (limited to 3 times the average amount),
then the repair time of a disk reaches 9 days. Which gives a PDLPY of 0.2. Many orders
of magnitude more than the previous case! Hence, the importance of having models
that estimate precisely the repairing time and henceforth the probability of data loss for
limited bandwidth scenarios.

A paper with the results of this chapter has been submitted to the IEEE International Parallel
& Distributed Processing Symposium (IPDPS’2011).
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Our contribution

In this chapter we propose a new analytical model that precisely estimates the repair time
and the probability of losing data of storage systems based on erasure codes. This model
takes into account the bandwidth constraints of peers when processing reconstructions.
Mainly, we introduce queuing models in which reconstructions are served by peers at a
rate that depends on the available bandwidth.

We show that is crucial to take into account the peer imbalance (i.e., young peers inher-
ently store less data than the old ones) to estimate the system efficiency. Indeed, we show
that the traffic load is not well distributed among peers: young peers inherently store
less data than the old ones, thus they contribute asymmetrically to the reconstruction
process. Hence, we propose to introduce biases in the protocol to correct this imbalance,
and show that it improves the efficiency of the system.

We discuss how far the distribution of the reconstruction time given by the model
is from the exponential classically used in the literature. We exhibit the different pos-
sible shapes of this distribution in function of the system parameters. This distribution
impacts the durability of the system.

We address scheduling and control issues. Indeed, each peer is involved in many re-
constructions, thus we need to schedule their order of execution. We compare several
policies, and propose a simple greedy-like policy that allows the system to reduce the recon-
struction time.

We show a somewhat counterintuitive result that we can reduce the reconstruction time
by using a less bandwidth efficient Regenerating Code. This is due to the degree of freedom
given by erasure codes to choose which peers participate to the repair process.

To the best of our knowledge, this is the first detailed model proposed to estimate
the distribution of the reconstruction time under limited bandwidth constraints. We
validate our model by an extensive set of simulations and by test-bed experimentation using
the GRID’5000 platform.

Related Work

Several works related to P2P storage systems have been done, and a large number of
systems have been proposed [28, 23, 20, 69]. But few theoretical studies exist. Most
studies are Markov chain models that assume in fact a poissonian reconstruction process
(i.e., with independent reconstruction time). Furthermore, in these models, only the
average analysis are studied and the impact of congestion is not taken into account.

In [98, 14, 38] the authors use a Markov chain model to derive the lifetime of the
system. In these works, the reconstruction time follows an exponential (or geometric)
distribution, which is a tunable parameter of the models. However, in practice, a large
number of repairs start at the same time when a disk is lost (corresponding to tens or
hundreds of GBs of data). Hence, the reconstructions are not independent of each other.

Dandoush et al. in [37] perform a simulation study of the download and the repairing
process. They use the NS2 simulator to measure the distribution of the repair time. They
state that a hypo-exponential distribution is a good fit for the block reconstruction time.
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However, they assume that reconstruction events are independent, which means that
they do not take into account their correlation when a disk fails.

Similarly to our study, other works also discuss the impacts of competition for the
bandwidth. Ramabhadran et Pasquale in [99] address resource allocation problems in
replicated systems. They study different schemes to optimize the average file availabil-
ity.

Picconi et al. in [90] study the durability of storage systems. Using simulations they
characterize a function to express the repair rate of systems based on replication. How-
ever, they do not study the distribution of the reconstruction time and the more complex
case of erasure coding neither.

Organization

The remainder of this chapter is organized as follows: in the next section we give some
details about the studied system, then in Section 5.2 we discuss the impact of load imbal-
ance. The queueing model is presented in the Section 5.3, followed by its mathematical
analysis. The estimations are then validated via an extensive set of simulations in Sec-
tion 5.4. Lastly, in Section 5.5, we compare the results of the simulations to the ones
obtained by experimentation.

5.1 Description

In this section we give details about the studied storage system and the modeling
assumptions.

Peer bandwidth. In a peer-to-peer system, peers are typically connected to the network
via an ADSL (Asymmetric Digital Subscriber Line) link. Thus, we model here asym-
metric capacities as they are the configurations most often encountered in practice: each
peer has a maximum upload and download bandwidth, resp. BWup and BWdown; we
set BWdown = 10BWup (in real systems, this value is often between 4 and 10). The bot-
tleneck of the system is considered to be the peer links and not the network internal links.

Peer availability and peer failures. Peers can be highly available (as servers that are
kept in a controlled environment), or conversely, be barely available with a low presence
interval. Since we consider the case of backup storage systems, the peers are expected to
stay connected at least few hours per day.

Following the work by Dimakis [41] on network coding, we use similar values
of availability and failure rate from the PlanetLab [92] and Microsoft PCs traces [23].
To distinguish from transient failures, a peer is considered as failed if it leaves the
network for more than a timeout, which was set to 24 hours. In that case, all data
is considered lost. The Mean Time To Failure (MTTF) in the Microsoft PCs and the
PlanetLab scenarios are respectively 30 and 60 days. For given values of s = 7 and r = 7,
we achieve a block availability of 5 nines in the Microsoft PCs scenario. The peer failures
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are then considered as independent and Poissonian with mean value given by the traces
explained above. We consider a discrete time in the following and the probability to fail
at any given time step is denoted as α = 1/MTTF.

Redundancy Scheme and Repair. In this study we use Regenerating Codes (RC) [41] to
introduce redundancy, as they are foreseen as the most efficient codes in terms of band-
width usage. Similarly to the Reed-Solomon erasure codes, a data block is divided into s
fragments, to which are added r fragments of redundancy. Then, the n = s+ r fragments
are spread into n peers in such a way that the block can be regenerated by retrieving any
s fragments. However, when employing the Regenerating Codes, the repairing process
can be done by creating a new fragment to replace the missing one, instead of regenerat-
ing the whole block as required by Reed-Solomon codes. Hence, a lost fragment can be
repaired efficiently by contacting d peers, with s ≤ d < n (d is called the repair degree of
the block). Each one of the d peers needs to send a small sub-fragment to the reconstruc-
tor peer, which in turn will store the repaired fragment. This reconstructor peer which is
in charge of the repair is chosen uniformly at random. To achieve this repair efficiency,
these codes introduce an overhead on the fragment size (that is, how much the original
fragment must be increased in size to achieve the regenerating code property). δMBR is
the overhead factor of the Minimum-Bandwidth Regenerating Codes [41]. It is defined as
follows:

δMBR(d) =
2d

2d− s + 1
.

The most efficient case is when d is the maximum, d = n− 1. Hereafter we note Lr =

δMBR(n− 1)L f , as the amount of information transferred to reconstruct one fragment
when d = n− 1, where L f is the original size of the fragment.

Nevertheless, the model presented in this work can be adapted to systems using
different codes to introduces redundancy, e.g., Replication, Reed-Solomon, Hierarchical
codes [46], or Hybrid coding. Basically, the main change would be to replace the
bandwidth efficiency of RC by the bandwidth efficiency of the other code.

Monitoring the data and network size. We consider distributed systems of any size,
e.g., thousands of peers. However, for practical reasons and maintainability, the frag-
ments of blocks are often stored on small logical subset of peers that are self-structured.
This subset is inherited from the DHT terminology of P2P architectures, where they are
often called leafset or neighborhood. In the following examples, we consider sizes of neigh-
borhood of 100 to 200 peers. Hereafter in this chapter, we use the terms peer and disk
interchangeably.

Table 5.1 shows a summary of the notations used in this chapter.
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5.2 Preliminary: Impact of Disk Asymmetry

In this section we start by showing that the efficiency of the system is affected by the im-
balanced distribution of data among peers. We then estimate analytically this imbalance
and its impact. After this preliminary study, the definition of the queuing model is given
in Section 5.3.

Factor of efficiency. When a peer fails, it is replaced by a new peer with an empty disk.
Since disks fill up during the system life, a recently replaced disk is empty, while an old
disk contains many fragments. Hence, at any given time disks with very heterogeneous
number of fragments are present in the system. This heterogeneity has a strong impact
on the reconstruction process: (1) when a disk dies, the number of block reconstructions
that start depends on the number of fragments present in this disk. A lot of fragments
are lost if the disk was full, but much less for a young disk. (2) during the repair, the
peers have to send fragments to the reconstructors that rebuild the missing fragments.
A peer storing more fragments has to send a lot more fragments during this phase than a
peer with fewer fragments. Hence, such peers become a bottleneck of the system, when
on the contrary the less loaded peers stay idle during some part of the time.

To estimate the impact of this imbalance on the system, we introduce a factor of effi-
ciency ρ when the system is under load, defined as

ρ(load) =
work

min(load, bandwidth)

where load is the sum over all peers of the number of fragments in their queues at the
beginning of the time step; bandwidth is the total bandwidth of the system (BWup·N/τ)
accounted in time steps of size τ; and work is the number of fragments that were effec-
tively uploaded by the peers during the time step. When ρ = 1, the system works at its
maximum speed, meaning that no peer was idle while another one could not finish its
work. Note that ρ greatly depends of the load. If the load is very large compared to the
bandwidth of the system, every peer works at almost full capacity and the efficiency is
close to one. Similarly, when the load is small, everybody has few fragments to upload
and all the work is done. But, between these two cases, the imbalance between the peers
causes a range of inefficiencies.

Estimation of the Imbalance
The disk size has in fact a very strong effect on the general imbalance of the system.

Figure 5.1 shows an histogram with the number of fragments in failed disks. These
results are obtained by simulation of N = 200 peers with MTTF = 60 days (1440 hours).
The amount of data per peer is 14GB. We set s = r = 7, and the fragment size lr = 2 MB.
Hence we have a total of F = 7·105 fragments in the system. Then, the average number
of fragments per peer is D̄ = 7000.

We denote the disk capacity of peers as C (number of fragments). Hence, x = C/D
is the size factor of disks, i.e., how big is the disk when compared to the average amount
of fragments per disk in the system. When the size factor x = 3 (that is, disk capacity
C = 21, 000 fragments), the imbalance is very large. At the opposite, when x = 1.1,
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Table 5.1: Summary of the main notations.

N Total number of peers
s Number of initial fragments of a block
r Number of redundancy fragments of a block
n Number of fragments of a block, n = s + r
d Repair degree of the Regenerating Code, by default d = n− 1

δMBR Efficiency of the Regenerating Codes
L f Size of a fragment, in bytes
Lr Amount of data to repair a fragment
B Total number of blocks in the system
F Total number of fragments in the system
α Peer failure rate (α = 1/MTTF)

NF Number of peers with full disks
ϕ Ratio of full disks, NF/N
C Capacity of a disk (number of fragments)
D̄ Average number of fragments per disk
x Disk size factor, x = C/D

BWup Peer upload bandwidth (kbit/s)
v Rate at which a disk fills up (fragments per cycle)

Tmax Number of time steps to fill up a disk, Tmax = C/v

the disk size is close to the average number of pieces per disk in the system. Hence,
most of the disk fillings become very concentrated around the average value (83%, in
our example). The disks that are not full (17%) have an almost uniform distribution. In
the following, we give a method to calculate that imbalance analytically.

Disk age and disk size distributions can be precisely approximated for systems with
a large number of blocks. The block fragments are reconstructed by peers that have free
space in their disks (i.e., there are N − NF such peers, where NF is the number of peers
with full disks). Since these peers are chosen at random to reconstruct the blocks, at each
time step the distribution of the rebuilt fragments among peers follows a multinomial
distribution with parameters: the number of rebuilt fragments and 1/(N − NF). As the
multinomial distribution is very concentrated around its mean, the filling up process can
be approximated by an affine process of its age, in which, at each time step, each disk gets the
number of reconstructed fragments divided by the number of non-full peers, roughly

v =
αF

N − NF

where α is the peer failure rate. This filling process stops when the disk is full. That is
after a number of time steps Tmax such that C = αTmaxF/(N − NF), where C is the peer
disk capacity (maximum number of fragments per disk). The number of fragments of a
disk thus depends on the age of the disk.

At each time step a disk has a probability α to experience a failure. Hence, the dead
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Distribution of the number of fragments per disk
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Figure 5.1: Distribution of fragments per failed disk for different disk size factor x of 1.1,
2, and 3. The number of full disks in each scenario is respectively 83%, 18%, and 4%.
(y-scales are different)

age of a disk follows a geometric law of parameter α. That is, Pr[dead age = T] = (1−
α)T−1α. Hence the distribution of the number of fragments in a disk follows a truncated
geometric distribution, that is, for 1 ≤ T < Tmax

Pr[D = vT] = (1− α)T−1α, and
Pr[D = C] = 1− (1− α)Tmax .

(5.1)

Note that here v, NF, and Tmax are unknown for the moment. The value of v depends
on the number of full disks NF, and of Tmax depends directly of the filling rate v. To
find the value of these variables, we use the fact that we know the expectation of the
geometric distribution which is just the average number of fragments inside the system.
This number is F/N (we neglect here the fragments that are in reconstruction, first or-
der approximation for small α). Hence, we get E[D] = D := F/N. By definition, the
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expectation is also given by

E[D] =
Tmax−1

∑
i=1

vi(1− α)i−1α + C(1− (1− α)Tmax).

To obtain Tmax, we now have to solve the equation:

1
x
=

1− α− (1− α)Tmax+1

αTmax
,

obtained by identifying the two expressions for the expectation, by dividing by v, and
because C = xD. By solving that equation using the Maple software, we obtain that

Tmax =
αW( 1

α ln(1− α)x(1− α)
x+α−xα

α )− ln(1− α)x(1− α)

ln(1− α)α
,

where W is the Lambert W function. For example, when MTTF = 1440 hours (α =

1/1440), the number of full disks and the number of time steps to fill up a disk are, for
different disk capacities:

x NF (in %) Tmax(hours)
1.1 83 278
1.5 42 1257
2 20 2293
3 6 4060

We verify that these values are very close to the ones obtained by simulation (Figure 5.1).

Effects of the Imbalance on the Bandwidth Efficiency Since some peers store less frag-
ments, their load during the reconstruction process is also smaller. Thus, the overall
bandwidth of the system is not fully utilized.

In a system using Regenerating Codes encoding, to repair a fragment, d = n− 1 small
sub-fragments have to be sent to the peer in charge of the reconstruction. Simulations
show that the speed of the reconstruction is given by the time that the most loaded peer
takes to send the fragment. This time is in turn given by the number of fragments stored
by this peer. We get this number from the distribution of the number of fragments per
peer previously derived. For a majority of data blocks, the most loaded peer storing one of
its fragment is in fact a full disk. This claim is valid for most systems in practice, that is, for
the parameters usually found in the literature.

Indeed, recall that NF denotes the number of full disks (and ϕ = N f /N the fraction
of full disks). We compute the probability for a block that one of its fragment is on a full
peer (with n − 1 available fragments when it is being repaired). Recall also that a full
disk stores x times the average number of fragments per disk in the system. Then, the
fraction of fragments stored on full disks is ϕx. The probability of the block to have at
least one fragment on a full disk is then

Pf ull = 1− (1− xϕ)n−1.
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For a system with n = 14 (the value of N f for different values of x is given above), the
probability for different disk capacities is

x 1.1 1.5 2 3
ϕx 0.91 0.63 0.4 0.18

Pf ull 1− 10−14 1− 10−5 1− 10−3 0.92

We see that for most practical systems, each block has a fragment on a full disk.
Hence, it is enough to consider the work done by the most loaded peers to obtain the
reconstrution times. These peers have a load greater than the average load by a factor of
1
x .

Factor of efficiency. An other way to phrase it: the factor of efficiency ρ of the system is
approximately

ρ ≈ 1
x

where x is the fraction between disk capacity and the average number of fragments per
disk.

More complex models for large disk capacities. We consider that in practice, for fair-
ness issues, the storage system sets a limit of disk capacity not too far from the average
amount of data stored. A factor x between 1.1 and 3 seems reasonable. For systems with
a very large disk capacity (for example x = 10), ρ has to be estimated in a different way.
As a matter of fact, a large number of blocks store no fragments on full disks. It is thus
not enough to only consider the load of the full disks. This difficulty can be addressed
by using a multi-queue model. The peers are partitioned into a number C of classes de-
pending on the number of data they store. The model has one queue per class. When
a disk fails, we estimate the number of fragments that each class has to upload, that is
how much work they do, and in this way derive the factor of efficiency ρ. The analysis
of this model is beyond the scope of our study here.

5.3 The Queueing Model

We introduce here a Markovian Model that allows us to estimate the reconstruction time
under bandwidth constraints. The model makes an important assumption:

1. The limiting resource is always the upload bandwidth.

Assumption 1 is reasonable as download and upload bandwidths are strongly asymmet-
ric in common installations. Using this assumption, we model the storage system with a
queue storing the upload load of the global system.
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5.3.1 Model Definition

We model the storage system with a Markovian queuing model storing the upload
needs of the global system. The model has one server, Poissonian batch arrivals and
deterministic time service (Mβ/D/1, where β is the batch size function). We use a
discrete time model. The peers in charge of repairs process blocks in a FIFO order.

Chain States. The state of the chain at a time t is the current number of fragments in
reconstruction, denoted by Q(t).

Transitions. At each time step, the system reconstructs blocks as fast as its bandwidth
allows it. The upload bandwidth of the system, BWupN, is the limiting resource. Then,
the service provided by the server is

µ = ρ
BWupN

Lrτ
,

which corresponds to the number of fragments that can be reconstructed at each time
step τ. The factor ρ is the bandwidth efficiency as calculated in the previous section,
and Lr is the number of bytes transferred to repair one fragment. Hence, the number of
fragments repaired during a time step t is µ(t) = min(µ, Q(t)).

The arrival process of the model is caused by peer failures. When a failure occurs, all
the fragments stored in that peer are lost. Hence, a large number of block repairs start at
the same time. We model this with batch inputs (sometimes also called bulk arrival in the
literature). The size of an arrival is given by the number of fragments that were stored
on the disk. As explained in Section 5.2, it follows a truncated geometric distribution.

We define β as a random variable taking values β ∈ {0, v, 2v, . . . , Tmaxv}, which repre-
sents the number of fragments inside a failed disk (see Equation (5.1) for the probability
distribution function of β). Recall that v is the speed at which empty disks get filled, and
that Tmax = C/v is the elapsed time to fill a disk. Further on, β/v is the elapsed time to
have a disk with β fragments.

The arrival process of the model is Poissonian. A batch arrives during a time step
with probability f , with f ≈ αN. For the simplicity of the exposition, we consider here
that only one failure can happen during a time step (note that to ensure this, it is suffi-
cient to choose a small enough time step). Formally, the transitions of the chain are, for
∀i ≥ µ,

Qi → Qi−µ with prob. 1− f // no failures
Qi → Qi−µ+β, ∀β with prob. f (1− α)

β
v−1α // failures

Qi → Qi−µ+C with prob. f (1− (1− α)Tmax) // full disk fail

When 0 ≤ i < µ, the i blocks in the queue at the beginning of the time step are recon-
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structed at the end. Hence, we have transitions without the term i− µ:

Qi → Q0 with prob. 1− f // no failures
Qi → Qβ, ∀β with prob. f (1− α)

β
v−1α // failures

Qi → QC with prob. f (1− (1− α)Tmax) // full disk fail

Figure 5.2: Transition around state i of the Markovian queuing model.

Figure 5.2 presents the transitions for a state i. The following table summarizes the
notation introduced in this section.

Q(t) Number of fragments to be repaired
f Batch arrival rate, f = αN
β Number of fragments on a failed disk (i.e., batch size)
ρ Factor of efficiency, ρ ≈ 1

x
µ Service rate, µ = ρBWupN/Lrτ (fragments per time step)

5.3.2 Analysis

Here, we give the expressions to estimate the values of two important system metrics:
the distribution of the block reconstruction time and the probability of data loss. These
expressions are derived from the stationary distribution of the Markovian model, as pre-
sented in the following.

A Normalized Model. The queuing model has a service of µ and an input process of
average f β. To simplify the presentation of the analysis, we introduce then a normalized
model with service of 1, hence an input of mean β′ = β/µ.

5.3.2.1 Stationary Distribution

We analyze here the stationary state of this normalized queuing model. As the chain is
irreducible and aperiodic, it exists when the service rate is larger than the load. Let P be
the probability generating function of the Markovian model, that is P is defined as:

P(z) = ∑
i

Pizi,
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where Pi is the probability that the system is in state i, that is, i fragments have to be
repaired.

The system reconstructs one block per time step (unless of course, no block is in the
queue). It is translated in the generating function language into a division by z. The
effect of a peer failure is translated by a multiplication by the probability generating
function of the input I, defined as

I(z) =
∞

∑
j=0

Ijzj,

with Ij the probability that the batch is of size j. Hence, we obtain the functional equation(
P(z)− P0

z
+ P0

)
I(z) = P(z).

It gives

P(z) =
(z− 1)P0

z
I(z) − 1

.

As P(1) = 1, I(z)− z admits 1 as a root and thus can be written as I(z)− z = (z− 1)Q(z).
We have

P(z) =
P0 I(z)
Q(z)

. (5.2)

As we have seen in Section 5.2, the size of the input follows a truncated geometric
distribution of parameter α. A batch is of size vj with probability (1− α)j−1α, for j ∈
[0, 1, ..., Tmax]. It gives

I(z) = (1− f ) + f
Tmax−1

∑
j=1

(1− α)j−1αzvj + f (1− α)Tmax−1zvTmax .

It can be rewritten as

I(z) = 1 +
f (zv − 1)(zTmax(1− α)Tmax − 1)

(1− α)zv − 1
.

We factorize I(z)− z by (z− 1). We get

Q(z) = I(z)− z

= (z− 1)(−1 +
f (∑v

j=1 zi)(zvTmax (1−α)Tmax−1)
(1−α)zv−1 ).

The value of P0 is obtained by the normalization ∑∞
i=0 Pi = 1 which implies P(1) = 1.

P0 =
Q(1)
I(1)

= 1− 1
α
( f v((1− α)Tmax − 1)).

We now have an expression of the three terms of Equation 5.2 and we get a close form of
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the probability generating function P(z).

5.3.2.2 Distribution of the Waiting Time

The distribution of the block reconstruction time is given by the stationary distribution
P of the model calculated above. As we have Markovian (batch) arrivals, the probability
for a batch to arrive when there are n blocks in the queue is exactly Pn (for the difference
of distribution for an arriving customer and an outside observer, see for example [31]). If
there are Q fragments in the queue when a batch of size β′ = jv arrives, the arriving frag-
ments have waiting times of Q + 1, Q + 2, Q + β′. We define the probability generating
function J as

J(z) =
Tmax

∑
j=1

(
(1− α)j−1α

jv

∑
i=1

zi
)

.

The probability generating function W of the waiting times then is just

W(z) = P(z)J(z).

The distribution of the waiting times can then be directly obtained from the generat-
ing function by extracting its coefficients

Pr(W = k) = [zk]W(z) =
dkW(z)
k!(dz)k

∣∣∣∣
z=0

. (5.3)

The first coefficients can be computed numerically and then a singularity analysis gives
the asymptotic behavior, see for example [49]. Hence, the value of Pr(W = k) can be
computed analytically. However, in the following, we also use another method and
calculate them numerically by iterating the queuing model.

5.3.2.3 Number of Dead Blocks

The expected number of dead blocks is indirectly given by the model by computing the
waiting time in the queue of a block that has to be reconstructed.

As a matter of fact, a block dies if it loses, before the end of the reconstruction, the
r− 1 fragments of redundancy that it has left when the repair starts, plus an additional
fragment. The probability for a peer to still be alive after a period of time of θ time step
is (1− α)θ , where α is the probability for a disk to die during a time step, that is

α =
τ

MTTF
.

Hence a good approximation of the probability Pr[die] to die during a reconstruction
lasting a time θ is given by

Pr[die|W = θ] =
s+r

∑
i=r

(
s + r

i

)
(1− (1− α)θ)i((1− α)θ)s+r−i.
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For practical systems, the ratio θ/MTTF is small as the probability to of data loss should
be very low. Hence Pr[die] is well approximated by

Pr[die|W = θ] ≈
(

s + r
r

)
(1− (1− α)θ)r((1− α)θ)s−1.

From this and from the distribution of the waiting time, we get the probability to die
during a reconstruction, PD, with

PD =
∞

∑
i=0

Pr[die|W = i]Pr[W = i].

The number of dead blocks during a time T, DT, is then obtained by the number of
reconstructions during T, RT:

DT = PDRT. (5.4)

5.3.2.4 Bandwidth Usage

The bandwidth usage is directly given by the distribution of the number of reconstruc-
tions being processed by the system, which comes from the stationary distribution of the
queuing model.

5.4 Results

To validate our model, we compare its results with the ones produced by simulations,
and test-bed experimentation. We use a custom cycle-based simulator. The simulator
models the evolution of the states of blocks during time (number of available fragments
and where they are stored) and the reconstructions being processed. When a disk failure
occurs, the simulator updates the state of all blocks that have lost a fragment, and starts
the reconstruction if necessary. The bandwidth is implemented as a queue for each peer.
The reconstructions are processed in FIFO order.

We study the distribution of the reconstruction time and compare it with the expo-
nential distribution which is often used in the literature. We then discuss the cause of
the data losses. Finally, we present two important practical implementation points: (1)
when choosing the parameters of the Regenerating Code, it is important to give to the
peer in charge of the repair a choice between several peers to retrieve the data; (2) we
show the strong impact of different scheduling options on the data loss rate.

5.4.1 Distribution of Reconstruction Time

Figure 5.3 shows the distribution of the reconstruction time and the impact of the peer
asymmetry on the reconstruction time for the following scenario: N = 100, s = 7, r = 7,
Lr=2 MB, B = 50000, MTTF = 60 days, BWup = 128 kpbs. All parameters are kept constant,
except the disk size factor x (recall that x is the ratio of the maximum capacity over the
average amount of data per peer).
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Figure 5.3: Distribution of reconstruction time for different disk capacities x of 1.1, 2,
and 3 times the average amount. The average reconstruction times of simulations are
respectively 3.2, 9.6, and 21 hours (Note that some axis scales are different).

First, we see that the model (dark solid line) closely matches the simulations (blue
dashed line). For example, when x = 1.1 (top plot), the curves are almost merged. The
average reconstruction times are 3.1 cycles vs 3.2 for the model. We see that there is a
small gap when x = 3. As a matter of fact, we saw in Section 5.2 that simulating the
queue of the full disks is an approximation in this case, as only 92% of the blocks have a
fragment on a full disk.

Second, we confirm the strong impact of the disk capacity. We see that for the three
values of x considered, the shape of the reconstruction times are very different. When
the disk capacity is close to the average number of fragments stored per disk (values of
x close to 1), almost all disks store the same number of fragments (83% of full disks).
Hence, each time there is a disk failure in the system, the reconstruction times span
between 1 and C/µ, explaining the rectangle shape. The tail is explained by multiple
failures happening when the queue is not empty. When x is larger, disks also are larger,
explaining that it takes a longer time to reconstruct when there is a disk failure (the
average reconstruction time raises from 3.2 to 9.6 and 21. when x goes from 1.1 to 2. and
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3.). As the number of fragments per disk follows a truncated geometric distribution, we
see the rectangle shape is replace by a trapezoidal shape explained by the large range of
disk fillings.

Third, we compare the distributions obtained with the exponential distribution that
is classically used in the literature. We see that the distributions are far from the expo-
nential when x = 1.1 and x = 2, but get closer for x = 3. Hence, as we will confirm,
the exponential distribution is only a good choice for some given sets of parameters. To
finish, note that the tails of the distribution are close to exponential.

Figure 5.4 presents the distribution of a distributed storage system experiencing three
different rates of failures: MTTF of 90, 180 and 360 days. We clearly see the evolution
of the shape of the distribution due to the larger probability to experience failures when
the peer queues are still loaded. The average reconstruction time increases from 5 hours
when the MTTF is 360 days to 12 hours when the MTTF is 90 days.
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Figure 5.4: Distribution of reconstruction time for different MTTFs.

For the sake of completeness, we ran simulations for different sets of parameters. We
present in Table 5.2 a small subset of these experiments. The default values are s = 7, r =
7, c = 1.1, N = 100, B = 5× 104, MTTF = 60 days, BWup = 128 kbps.

Table 5.2: Reconstruction time T (in hours) for different parameters.

(a) Amount of data (B× 102).
B 500 1000 1500
Tsim 3.26 8.65 25.60
Tmodel 3.06 8.15 23.91

(b) Number of peers (N).
N 100 200 300 400
Tsim 3.26 1.91 1.51 1.25
Tmodel 3.06 1.80 1.43 1.17

(c) Disk capacity (c).
c 1.1 1.5 2.0 3.0
Tsim 3.26 5.50 9.63 21.12
Tmodel 3.06 5.34 9.41 27.7

(d) Peer Lifetime (MTTF).
MTTF 60 120 180 365
Tsim 3.26 2.90 2.75 2.65
Tmodel 3.06 2.68 2.60 2.49

(e) Peer Upload Bandwidth (kbps).
BWup 64 128 256 512
Tsim 8.75 3.26 1.69 1.07
Tmodel 8.25 3.06 1.61 1.03
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5.4.2 From Where the Deads Come From?

In this section, we discuss in which circumstances the system has more chances to lose
some data. First a preliminary remark: backup systems are conceived to experience
basically no data loss. Thus, for realistic sets of parameters, it would be necessary to
simulate the systems for a prohibitive time to see data losses in our simulations. We
hence present here results for scenarios where the redundancy of the data is lowered
(r = 3 and r = 5).
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Figure 5.5: (Top): Distribution of dead blocks reconstruction time for two different sce-
narios. Scenario A: N = 200, s = 8, r = 3, b = 1000, MTTF = 60 days. Scenario B:
N = 200, s = 8, r = 5, b = 2000, MTTF = 90 days. (Bottom): Fitting of exponential
distribution with the tail of queueing model (axis scales are different).

We plot in Figure 5.5 the cumulative number of dead blocks that the system experi-
ences for different reconstruction times. We give this fraction in function of the time the
block spent in the system before dying. For the queuing model, we derive the expected
number of blocks that died at time T from the distribution of the reconstruction time.
A block dies at time T if its reconstruction process lasts a time θ ≥ T and that it loses r
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fragments during time T with at least one exactly at time T. This can be expressed as

N[die at time T] = Pr[die at time T] ∑
θ≥T

NP[W = θ]

with
Pr[die at time T] = (s+r−1

r−1 )(1− (1− α)T)r((1− α)T)s−1−
(s+r−1

r−1 )(1− (1− α)T−1)r((1− α)T)s−1.

We give the distribution of the reconstruction times as a reference (vertical lines). The
model (black solid line) and the simulation results (blue dashed line) are compared for
two scenarios with different number of blocks: there is twice more data in Scenario B.

The first observation is that the queueuing models predict well the number of dead
experienced in the simulation, for example, in the scenario A the values are 21,555 versus
20,879. The results for an exponential reconstruction time with the same mean value are
also plotted (queue avg.). We see that this model is not close to the simulation for both
scenarios (almost the double for Scenario A). We also test a second exponential model
(queue tail): we choose it so that its tail is as close as possible to the tail than the queuing
model (see Figures 5.5a and 5.5b). We see that it gives a perfect estimation of the dead
for Scenario B, but not for Scenario A.

In fact, two different phenomena appear in these two scenarios. In Scenario B (higher
redundancy), the lost blocks are mainly coming from long reconstructions, from 41 to 87 cycles
(tail of the gray histogram). Hence, a good exponential model can be found by fitting
the parameters to the tail of the queuing model. On the contrary, in Scenario A (lower
redundancy), the data loss comes from the majority of short reconstructions, from 5.8 to 16.2
cycles (the right side of the rectangular shape). Hence, in Scenario A, having a good
estimate of the tail of the distribution is not at all sufficient to be able to predict the failure
rate of the system. It is necessary to have a good model of the complete distribution!

5.4.3 Discussing the Implementation of Regenerating Codes

As presented in Section 5.1, when the redundancy is added using regenerating codes,
n = s + r peers store a fragment of the block when s are enough to retrieve the block.
When a fragment is lost, s ≤ d ≤ n− 1 peers are in charge of repairing the fragments.
The larger d is, the smaller is the bandwidth needed for the repair. Figures 5.6 and 5.7
show the reconstruction time for different values of the degree d. We observe an inter-
esting phenomena: at the opposite of the common intuition, the average reconstruction
time decreases when the degree decreases: 10 cycles for d = 13, and only 6 cycles for
d = 12. The bandwidth usage increases though (because the δMBR is higher when d is
smaller). The explanation is that the decrease of the degree introduces a degree of freedom
in the choice of the peers that send a sub-fragment to the peer that will store the repaired
fragment. Hence, the system is able to lower the load of the more loaded disks and to
balance more evenly the load between peers.

In fact, we can estimate for which degree of freedom, the reconstruction time is min-
imum. It happens when the load of the full disks is the same as the load of the other
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times!

disks. We define δ = n− 1− d the allowed degree of freedom for the choice of which
peers uploads the sub-fragments. The full disks store a proportion ϕx of the fragments
of the system, with ϕ the fraction of full disks. We simply look at the how much work
we must do on the full disks. The probability to have i fragments (among the n− 1 frag-
ments) on full disks is (n−1

i )(ϕx)i(1− ϕx)n−1−i. Those blocks sends i− δ units of work
the full disks (whenever i ≥ δ). So the load of the full disks is

n−1

∑
i=δ

(i− δ)

(
n− 1

i

)
(ϕx)i(1− ϕx)n−1−i.

We presented here a cut argument for only two classes of peers (full disks and non full
disks). This argument can be generalized to any number of peer classes.

When the load of the full disks becomes equal to the load of the other disks (∑n−1
i=δ (d−

i + δ)(n−1
i )(ϕx)i(1− ϕx)n−1−i), it is no more useful to decrease d. We see that the average

reconstruction time increases when d is too small, as the increased usage of bandwidth
is no more compensated by a better balance of the load.

Note that this phenomena exists for other codes like Reed Solomon where the peer
in charge of the reconstruction has to retrieve s fragments among the s + r− 1 remaining
fragments.

5.4.4 Scheduling

As peers have a large number of repairs to carry out but very limited bandwidth, the
question of which repairs to do first is crucial. In this section, we study three different
scheduling choices: FIFO, RANDOM, and MOST-DAMAGED data block first.

The FIFO is the default scheduling in the simulator, as discussed in Section 5.1, the
blocks are processed in the order of arrival. In the RANDOM scheduling, the simulator
processes blocks in a random order (at each time step the list of blocks to be reconstructed
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is shuffled). In the MOST-DAMAGED scheduling the blocks are ordered by the level of
redundancy (i.e., blocks with less fragments available come first). In case of tied values,
then the FIFO order is assumed.

Figure 5.8 presents the reconstruction time of these three schedulings. All strategies
give almost the same average reconstruction time, 4.40, 4.43, 4.43 respectively for FIFO,
RANDOM and MOST-DAMAGED. We see that their distribution changes slightly. In the
RANDOM order the shape has the form of a geometric distribution, with many blocks
finishing the reconstruction “early”. However, as depicted in Figure 5.8, the differences
in the number of dead blocks are enormous. When using the RANDOM scheduling, the
dead increases considerably, as expected. The MOST-DAMAGED strategy has a recon-
struction time very close to the others but the number of losses is much lower. Hence,
this is the strategy of choice when implementing such systems.
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Processing the most damaged first is the
best strategy.

5.5 Experimentation

Aiming at validating the simulation and the model results, we performed a batch of real
experimentation using the GRID’5000 platform [57]. We used a prototype of storage
system implemented by a private company (Ubistorage [119]).

Our goal is to validate the main behavior of the reconstruction time in a real environ-
ment with shared and constrained bandwidth, and measure how close they are to our
results.

5.5.1 Storage System Description

In few words, the system is made of a storage layer (upper layer) built on top of the
DHT layer (lower layer) running Pastry [107]. The lower layer is in charge of managing
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the logical topology: finding peers, routing, alerting of peer arrivals or departures. The
upper layer is in charge of storing and monitoring the data.

Storing the data. The system uses Reed-Solomon erasure codes [79] to introduce redun-
dancy. Each data block has a peer responsible of monitoring it. This peer keeps a list of
the peers storing a fragment of the block. The fragments of the blocks are stored locally
on the PASTRY leafset of the peer in charge [72].

Monitoring the system. The storage system uses the information given by the lower
level to discover peer failures. In PASTRY, a peer checks periodically if the members of
its leafset are still up and running. When the upper layer receives a message that a peer
left, the peer in charge updates its block status.

Monitored metrics. The application monitors and keep statistics on the amount of data
stored on its disks, the number of performed reconstructions along with their duration,
the number of dead blocks that cannot be reconstructed. The upload and download
bandwidth of peers can be adjusted.

5.5.2 The GRID’5000 Infrastructure

GRID’5000 is an infrastructure dedicated to the study of large scale parallel and dis-
tributed systems. It provides a highly reconfigurable, controllable and monitorable ex-
perimental platform to scientists. The platform contains 1582 machines accounting for
3184 processors and 5860 cores. The machines are geographically distributed on 9 differ-
ent hosting sites in France (two additional sites in Luxemburg and Porto Alegre, Brazil
are being added). These site are connected to RENATER Education and Research Net-
work with a 10Gb/s link.
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Figure 5.10: Distribution of reconstruction time on a experimentation with 64 nodes dur-
ing 4 hours compared to simulations.

5.5.3 Experimentation Results

There exist a lot of different storage systems with different parameters and different
reconstruction processes. The goal of the work is not to precisely tune a model to a
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specific one, but to provide a general analytical framework to be able to predict any
storage system behavior. Hence, we are more interested here by the global behavior of
the metrics than by their absolute values.
Studied Scenario. By using simulations we can easily evaluate several years of a system,
however when doing experimentation this is not the case. We need to plan our exper-
iments to last a few hours. Hence, we define an acceleration factor, as the ratio between
experiment duration and the time of real system we want to imitate. Our goal is to check
the bandwidth congestion in a real environment. Thus, we decided to shrink the disk
size (e.g., from 10 gigabytes to 100 megabytes, a reduction of 100×), inducing a much
smaller time to repair a failed disk. Then, the peer failure rate is increased (from months
to a few hours) to keep the ratio between disk failures and repair time proportional. The
bandwidth limit value, however, is kept close to the one of a “real” system. The idea is
to avoid inducing strange behaviors due to very small packets being transmitted in the
network.
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Figure 5.11: Timeseries of the queue size during time (top) and the upload bandwidth
ratio (bottom).

Figure 5.10 presents the distribution of the reconstruction times for two different ex-
perimentation involving 64 nodes on 2 different sites of GRID’5000. The amount of data
per node is 100 MB (disk capacity 120MB), the upload bandwidth 128 KBps, s = 4, r = 4,
LF = 128 KB. We confirm that the simulator gives results very close to the one obtained
by experimentation. The average value of reconstruction time differs from some seconds.

Moreover, to have an intuition of the system dynamics over time, in Figure 5.11 we
present a timeseries of the number of blocks in the queues (top plot) and the total upload
bandwidth consumption (bottom plot). We note that the rate of reconstructions (the
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descending lines on the top plot) follows an almost linear shape. Comforting our claim
that a determinist processing time of blocks could be assumed. In these experiments the
disk size factor is x = 1.2, which gives a theoretical efficiency of 0.83. We can observe
that in practice, the factor of bandwidth utilization, ρ, is very close to this value (value
of ρ = 0.78 in the bottom plot).

5.6 Conclusion

In this chapter, we propose and analyze a new Markovian analytical model to model
the repair process of distributed storage systems. This model takes into account the
correlation between data repairs that compete for the same bandwidth. We bring to light
the impact of peer heterogeneity on the system efficiency. The model is validated by
simulation and by real experiments on the GRID’5000 PLATFORM.

We show that the exponential distribution classically taken to model the reconstruc-
tion time is valid for certain sets of parameters, but that different shapes of distribution
appear for other parameters. We show that it is not enough to be able to estimate the tail
of the repair time distribution to obtain a good estimate of the system loss rate.

The results provided are for systems using Regenerating Codes that are the best
codes known for bandwidth efficiency, but the model is general and can be adapted
to other codes. We exhibit an interesting phenomena to keep in mind when choosing
the code parameter: it is useful to keep a degree of freedom on the choice of the users
participating in the repair process so that loaded or deficient users do not slow down the
repair process, even if it means less efficient codes.

In addition, we confirm the strong impact of scheduling on the system loss rate.





CHAPTER 6

Placement Policies

In a distributed storage system using erasure codes, a data block is encoded in many
redundancy fragments. These fragments are then sent to distinct peers of the network.
In this chapter, we study the impact of different placement policies of these fragments
on the performance of storage systems. Several practical factors (easier control, software
reuse, latency) tend to favor data placement strategies that preserve some degree of lo-
cality. We compare three policies: two of them are local, in which the data are stored in
logical neighbors, and the other one, global, in which the data are spread randomly in
the whole system. We focus on the study of the probability to lose a data block and the
bandwidth consumption to maintain such redundancy. We use simulations to show that,
without resource constraints, the average values are the same no matter which placement
policy is used. However, the variations in the use of bandwidth are much more bursty
under the local policies. When the bandwidth is limited, these bursty variations induce
longer maintenance time and henceforth a higher risk of data loss. We then show that
a suitable degree of locality could be introduced in order to combine the efficiency of
the global policy with the practical advantages of a local placement. Additionally, we
propose a new external reconstruction strategy that greatly improves the performance of
local placement strategies. Finally, we give analytical methods to estimate the mean time
to the occurrence of data loss for the three policies.

The results presented in this chapter appeared in [2] and were published in [9, 1].

Our Contribution

As far as we know, we present the first practical study of data placement for systems
using Erasure Codes. We show that, even for local policies, the erasure codes experience
less data loss than replication schemes with the same resources.

We show that, without bandwidth constraints, the distribution of the bandwidth usage
among peers is much smoother for the Global policy. Despite that all policies have the
same average bandwidth consumption and probability of data loss, the mean time be-
tween data loss events is longer for the local policies. We provide then analytical methods
to estimate this metric for the three policies.

When limiting the maximum available bandwidth per peer, we exhibit that the Global
policy experiences a lot less data loss than the local policies for similar resources. In
addition, the loss events for local policies are more frequent compared to the provisioning
scenario (in certain cases even more frequent than for the Global).

We then discuss the size of the leafset in the local policies. We show that these policies
can be adapted to achieve performances close to the Global placement, while keeping
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the practical advantages of locality. We propose a new reconstruction scheme, namely
external reconstruction, which reduces by 40 to 50 percent the number of block losses when
using the local policies.

Related Work.

The majority of existing or proposed systems, e.g. Intermemory [56], Farsite [23],
CFS [35], PAST [44], Glacier [59], use a local placement policy. For example, in PAST,
the authors use the Pastry DHT to store replicas of data into logical neighbors. In the
opposite way, some systems use a Global policy, as OceanStore [69], pStore [17], Total-
Recall [20] or GFS [55]. GFS spreads chunks of data on any server of the system using a
pseudo-random placement.

Chun et al. in [28] also discuss the impacts of local placement (namely small scope).
They state that local placement is easy to maintain but induces higher reconstruction
times. Conversely, larger scope (Global policy) has lower reconstruction time and hence-
forth higher durability. However, they do not address the impact of different bandwidth
limits, neither erasure codes redundancy.

Ktari et al., in [68], discuss the impact of data placement. They do a practical study
of a large number of placement policies for a system with high churn. They exhibit
differences of performance in terms of delay, control overhead, success rate, and overlay
route length.

Lian et al., in n [73] study the impact of data placement on the Mean Time to Data
Loss (MTTDL) metric, but for a system based of simple replication. They show that the
MTTDL is lower for the Global policy (called random placement) when compared to the
local policy (called sequence). But they do not discuss other very important metrics: the
probability to lose a block and the bandwidth usage.

There are also other studies that evaluate the replica placement, however with focus
on the lookup latency and/or throughput performance [122]. Others are focused on
Content Delivery Networks [66], which is not our case here.

Organization

The remainder of this chapter is organized as follows: in the next section we present
the different placement policies, followed by the details of the simulator in Section 6.2.
Then, in Section 6.3 we present our results. Section 6.3.1 we study the behavior of the
system without resource constraints, and then under bandwidth constraints in Sec-
tion 6.3.2. Finally, we propose some improvements of the placement and reconstruction
architectures in Section 6.4, followed by analytical methods to estimate the MTTDL
metric for the three placements in Section 6.5.
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6.1 Description

In distributed storage systems using erasure codes, each block of data is divided into s
fragments. Then, r fragments of redundancy are added in such a way that any subset
of s fragments from the s + r fragments are sufficient to regenerate the data block. The
s + r fragments are then sent to different peers of the network. The different placement
policies studied in this chapter are detailed in the following and depicted in Figure 6.1.

Global Policy

File
 #1

File
 #2

Chain Policy

File
 #1 File

 #2

Buddy Policy

File
 #1 File

 #2

Figure 6.1: Placement of two blocks b1 and b2 in the system. Global: s + r fragments
are placed at random among all peers; Chain: fragments are placed on s + r neighboring
peers; Buddy: many small subsystems of size s+ r, in this case all peers inside each small
group contain the same data.

Global Policy

In the Global policy, the s+ r fragments of a block are sent to s+ r peers chosen uniformly
at random among all the N peers present in the system. In this case, the peer in charge of
monitoring the state of a block and reconstructing it is also selected among all peers in
the system.

Chain (or Neighborhood) Policy

In the Chain, which is a local policy, the network is seen as a directed ring of N peers. The
fragments are then sent to s + r consecutive peers chosen uniformly at random among
the N possible sequences of s + r peers. This policy corresponds to what is done in most
distributed systems implementing a DHT. That is, the peer responsible for a data block
stores the blocks’ fragments on its closest neighbors. Note that these neighbors are also
in charge of monitoring and reconstructing these blocks.
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Buddy (or RAID) Policy

The Buddy is an extreme case of a local policy, in which the peers are divided into C
independent clusters of size exactly s + r each. The fragments are then sent to a cluster
chosen uniformly at random among the clusters. In this situation, all peers of a cluster
store fragments of the same set of blocks. It could be seen as a collection of local RAID
like storage.

6.2 Simulations

To evaluate these policies, we use the same cycle-based simulator as the one described in
Chapter 3 (Section 3.3). In addition, we implemented the different placements policies as
described above. These policies are used in the initialization phase of the simulation, in
the choice of the reconstructor peer, and when the missing fragments are redistributed.

Furthermore, in this chapter the reconstruction time is not modeled by a tunable pa-
rameter (as the parameter θ in Chapter 3). In fact, this study comprises a more refined
modeling of the storage system, in which the repair time is a consequence of the avail-
able bandwidth of peers (as modeled in Chapter 5). The peer bandwidth is modeled as
follows.

Bandwidth Queue model

We model the bandwidth as a resource constraint per peer, and not as a global shared
link constraint as is done in [73, 98]. Each peer has a maximum upload and download
bandwidth, resp. BWup and BWdown. We assume asymmetric capacities, as often encoun-
tered in practice, e.g. ADSL lines (in our experiments BWdown = 5BWup). So the limiting
resource is the upload bandwidth and it is the one presented in our results.

To model bandwidth, we implemented a non blocking FIFO queue with one server.
When there is a peer failure, the blocks to be reconstructed are put in the queue. The
simulator processes these blocks at each cycle (FIFO order). For each block it tries to re-
trieve the fragments, then resends the redundancy fragments to different peers (if the
corresponding peers has still some available bandwidth). If some fragments are not
available (i.e. peers storing it already reached the maximum uploading capacity), then it
tries to download the fragments of the next block in the queue (non blocking policy).

Monitored metrics

We focus our analysis on three main metrics:

• Bandwidth: Average bandwidth consumption per peer, i.e., estimated from the
number of fragments transmitted and received per hour due to the reconstruction
process;

• FDLPY: Fraction of Data Loss Per Year, which gives the probability of losing a data-
block per year;
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Table 6.1: Summary of the main notations and their default values in our experiments.
See Remarks 1 and 2 for the choice of the parameter values.

N Number of peers 1, 005
B Total number of blocks in the system 105

s Number of initial fragments of a block 9
r Number of redundancy fragments 6
r0 Reconstruction threshold value 2

MTBF Peer mean time to failure 90 days
BWup Upload bandwidth per peer 6-18 kbit/s and Unlim.

τ Time step of the model 1 hour

• MTTDL: Mean Time To Data Loss, i.e., the period of time between two occurrences
of data loss in the system.

Simulation parameters

We did a large number of simulations for different sets of the parameters. The default
parameter values used in the simulations are given in Table 6.1, otherwise they are ex-
plicitly indicated. The considered size of fragment is L f = 400 KB. With s = 9 and r = 6,
the original data block size Lb = 3.6 MB, and the total size with redundancy is 6 MB.
Two remarks on the choice of the parameter values:

Remark 1 (Size of the simulated system): In practice, peers have huge disks of tens of
Gigabytes, each one containing tens of thousands of blocks. Furthermore a real system
with 1000 peers would deal with tens of millions of fragments. As we want to be able
to simulate a storage system for several years in a reasonable time, we chose a disk size
around 100 times smaller than the one expected in practice. Each peer stores only 1500
fragments in the system, which still corresponds to a total of 1.5 millions of fragments
and 571GB of data. Note that the upload bandwidth (BWup spans from 6 to 18 kbit/s
in our experiments) directly derives from this choice: disks containing 100 times more
data would need a peer bandwidth 100 times larger to maintain the redundancy, that is
already in order of Mbits/s and close to the bandwidth limits encountered in practice.

Remark 2 (Measuring block losses): The parameters of real systems are set in such a
way that the occurrence of a data loss is a very rare event. As it is impossible to simulate
in a reasonable time events of very low probability, for example 10−15, we choose non
realistic values for some parameters (in particular, the reconstruction saddle r0 = 2 is set
very low). In this way, we experience data loss in our simulations. Also for this reason,
some of our simulations correspond to 200 simulated years (with time granularity of 1
hour).

Of course, real systems would have a completely different data loss rate than the one
reported here for the sake of comparison.



114 CHAPTER 6. PLACEMENT POLICIES

6.3 Results

In this section, we evaluate the three data placement policies for the three following
metrics: use of bandwidth, number of dead blocks, and mean time to data loss. First, we
study the provisioning scenario (unlimited bandwidth) in Section 6.3.1, which is important
to measure the required bandwidth to maintain the system. Afterwards, we analyze
scenarios with constrained resources, in Section 6.3.2.

6.3.1 Without Resource Constraints

Briefly, the results shown here are: (1) the three placement strategies have the same value
of average bandwidth demand; (2) however local policies exhibit strong variations in
resource usage across peers; (3) they have the same data loss rate, (4) but the MTTDLs of
the Buddy and the Chain policies are longer.

In our modeling, the unlimited bandwidth scenario means that the system can pro-
cess all the reconstructions in one time step of the simulator (set to one hour). A sum-
mary of the simulation results are presented in Table 6.2. We then discuss: first, the
bandwidth consumption; then, the data loss rate; and finally, the mean time do data
loss.

Table 6.2: Summary of results (without bandwidth constraints).

Policy Bandwidth (kbit/s) FDLPY (% of blocks) MTTDL (years)
Global 1.99 (± 1.34) 4.1 · 10−2 (± 0.6 · 10−2) 0.02 (± 0.02)
Chain 1.99 (± 12.83) 4.1 · 10−2 (± 8.6 · 10−2) 4.0 (± 3.0)
Buddy 1.99 (± 15.92) 4.4 · 10−2 (± 25.4 · 10−2) 25.8 (± 21.7)

Average Bandwidth Usage

The left column of Table 6.2 shows the average value of upload bandwidth usage across
peers during time (i.e., at each time step we measure the average number of fragments
transmitted by each peer), along with the experimental standard deviation (in parenthe-
sis).

First, as expected, the average bandwidth use across peers is roughly the same for all
policies, 1.99 kbit/s. The reason is that the different placement policies do not change
the number of fragments that have to be reconstructed.

However, the variations are not the same, because the policies change the repartition
of the pieces among peers. The Chain policy and Buddy policy variations are signifi-
cantly higher, respectively, 9.5 and 11.8 times more than the Global policy. Figure 6.2
gives an explanation of this behavior. It depicts the bandwidth usage of the 1005 users
of the system at a typical instant of time for the three different policies under the same
failure scenario. We see that the load is around 2 kbit/s for all the users and all strategies.
However, we see that the distributions of the bandwidth are not the same at all.
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Figure 6.2: Variations of bandwidth usage across users for the three different policies for
a typical time step and under the same failure scenario.

In the case of the Global policy (top graph), the fragments of the blocks are placed
among all the peers in the system. Consequently the load of the retrieval phase of the re-
construction is uniformly distributed among all peers. Furthermore, the peers in charge
of a block reconstruction are also randomly chosen among all peers. So the sending
phase of the reconstruction is also evenly distributed. In the example, the standard de-
viation of the bandwidth of the Global is 1.34 kbit/s.

On the opposite (bottom graph), in the Buddy setting, some groups of s + r users
have a very high bandwidth demand, e.g. around 1500 kbit/s. We can identify three
groups that correspond to three different sets of peer crashes that triggered reconstruc-
tions. In the Buddy policy (similarly to RAID systems), when a failure happens, only the
immediate neighbors possess the remaining fragments of the blocks. Moreover, these
neighbors are also in charge of the reconstructions, leading to a very high bandwidth
load on these peers, while the others peers in the system are spared1.

The situation for the Chain policy (middle graph) is similar to the Buddy. We also
observe three spikes for certain subsets of users. But, differently, these spikes (1) involve
more peers and (2) have shapes of pyramids. It is explained as follows. (1) A peer stores
fragments of blocks that are managed by peers at distance s + r (chain size). In addition,
a block reconstruction affects peers at distance s + r. Hence, when a peer crashes, peers
at distance 2(s + r) − 1 contribute to the reconstruction. (2) The spikes correspond to

1There are two groups of peers in each spike of the Buddy. A bigger one around 1500 kbit/s, that
corresponds to peers doing the retrieval and sending phases of the reconstruction (i.e., s + r − r0 uploads
for each block). The smaller one, with an upload bandwidth around 400 kbit/s, correspond to peers that
have failed and were replaced with empty disks. As they are empty, they do not send fragments to the
reconstructors (no retrieval upload), but they are in charge of some reconstructions, so we see their sending
upload (i.e. r− r0 fragments for each block).
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multiple disk failures. In this scenario, peers close to several failed peers contribute
more than peers close to a single failed peer. Hence, the pyramid shaped spikes. To
conclude, we see that a peer failure is a quite big local event for the two local policies.

Data loss rate

We then compare the probability of losing a block in the three different policies. The
results are shown in the middle column of the Table 6.2, normalized as the Fraction of
Data Loss Per Year (FDLPY).

When there is no bandwidth limit, the expected number of dead blocks is the same for the
three policies (roughly 0.04% of blocks lost per year). As a matter of fact, the probability
for a block to die does not depend on where its fragments are placed. It can be easily
calculated using a Markov Chain Model, as explained in Chapter 3. Note that the devia-
tions during time of the number of dead blocks is higher for local policies. This is further
explained by looking at the MTTDL metric.

Mean Time To Data Loss

The measure of the time between two occurrences of data loss shows that the three poli-
cies have very distinct behaviors, as depicted in the right column of Table 6.2. In our
simulations, the Global policy loses a data-block every 9 days, the Chain policy every 4
years and Buddy every 25.8 years. However, as we have seen before, the three policies
have in average the same number of dead blocks per year. In other words, the average
quantity of data loss per year is the same, but the distribution across time of these losses
is very different.

Figure 6.3: Illustrative example of the cumulative number of dead blocks for a period of
three years.

The Figure 6.3 illustrates an example of the cumulative number of dead blocks for a
period of 3 years (this example uses a different set of parameters with increased failure
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rate). The same failure scenario of peers is used in the three placement policies. We see
that the loss occurs regularly for the Global policy. Conversely, they occur very rarely for
the Buddy placement, but, when they occur, they affect a large batch of data. Basically,
all the blocks of a small buddy subsystem of size s + r peers lose all their blocks at the
same time. The behavior of the Chain policy is somewhere in the middle of both.

Also, due to its very large variations of behavior, the buddy policy has the drawback
of being not very predictable. We see in Figure 6.3 that the Global and the Chain policies
experienced around 2,000 block losses after 6 years, when the Buddy policy experienced
almost 4,000. Even if they have the same probability of data loss. In a long-run, the
number of expected losses are the same.

6.3.2 Results under Resource Constraints

In this section, we study the behavior of the system with bandwidth limitation per peer
(meaning that now each peer has a maximum upload and download bandwidth). In
this context we show that, using similar available resources, the amount of data loss
is no more the same for the three data placement policies. The Global policy behaves
considerably better in comparison to the Chain and Buddy policy. Furthermore, the local
policies now experience more loss events (smaller MTTDL).

Reconstruction Time versus Bandwidth

Figure 6.4 gives the average reconstruction time for different upload bandwidth limits
BWup, ranging from 6 kbit/s to 18 kbit/s. The unlimited bandwidth value is given for
the sake of comparison. The value of 1 is the time granularity of our simulator (one
hour).
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Figure 6.4: Average reconstruction time for different bandwidth limits for the three strate-
gies.
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We see that the average reconstruction time is a lot longer for the Chain policy and
even more for the Buddy policy compared to the Global one. As an example, for a
maintenance bandwidth of 6 kbit/s, the reconstruction time is around 49 hours for the
Chain policy and 82 hours for the Buddy, but only 2 hours for the Global policy. This
bandwidth limit corresponds to three times the average bandwidth usage of the system
(as computed without resource constraints). Hence, we see that the imbalance of the
reconstruction load among peers has a very strong impact on the reconstruction time,
even if each policy has the same average bandwidth demand. For a bandwidth limit of
18 kbit/s, which represents 9 times the average bandwidth needed, the difference is still
very large: 1, 14, and 30 times for the Global, Chain and Buddy, respectively. Thus,
under resource constraints, the big local events constituted by peer failures induce longer
reconstruction time and henceforth an increase of data loss when using the local policies,
as shown in the following.

FDLPY versus Bandwidth

A critical performance measure of a P2P storage architecture is the probability of losing
a block for a given amount of bandwidth. Figure 6.5 compares the trade-offs of the
three policies for different values of BWup. The following table summarizes the values
of fraction of data loss per year for the three policies under resource constraints.

FDLPY (%)
Max.BW 6 9 12 15 18 Unlim.
Global 0.05 ±0.01 0.05 ±0.01 0.04 ±0.01 0.04 ±0.01 0.04 ±0.01 0.04 ±0.01
Chain 10.6 ±1.3 3.5 ±0.8 1.8 ±0.5 1.1 ±0.4 0.8 ±0.3 0.04 ±0.09
Buddy 26.0 ±3.5 12.5 ±2.5 7.1 ±1.9 4.6 ±1.6 3.2 ±1.4 0.04 ±0.25

We see that the Global policy behaves a lot better for any bandwidth limit than the
Chain policy, which itself is more efficient than the Buddy policy. For example, for a
bandwidth limit of 18 kbit/s (which represents 9 times the average bandwidth need of
the system), the Global experiences 0.04% of data loss per year, to compare with 0.8%
and 3.2% for the Chain and the Buddy, respectively.

MTTDL versus Bandwidth

Opposed to what was showed without bandwidth constraints, the Global policy behaves
better than the others with low bandwidth limitations. The following table shows the
MTTDL for the three policies under resource constraints.

MTTDL (hours)
Max.BW 6 9 12 15 18 Unlim.
Global 166 ±184 180 ±188 193 ±223 219 ±230 220 ±239 215 ±235
Chain 53 ±69 160 ±221 323 ±422 565 ±600 850 ±900 35,143 ±26, 635
Buddy 75 ±74.9 178 ±176 341 ±337 570 ±510 860 ±855 226,000 ±190, 424
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Figure 6.5: Fraction of block losses per year (see Remark 2) for different bandwidth limits
for the three strategies.

For comparison, without resource constraints, the time between data loss were 0.02,
4.0, and 25.8 years respectively for the Global, Chain and Buddy. Conversely, with an
available bandwidth of 6 kbit/s, these values are 166, 53, and 75 (in hours), many orders
of magnitude less. These results show that the impact of the bandwidth limits per peer
needs to be taken into account when analyzing such systems.

6.4 Proposition for P2P Storage System Architectures

In this section, we suggest some modifications of the architecture of systems implement-
ing local policies. We also discuss the best choice of their parameters. First, we propose
an external reconstruction strategy for the local policies, and show that it can lower the du-
ration of the sending phase of reconstructions, and thus reduce the probability of data
loss. Second, we show that having a larger neighborhood is sufficient to greatly improve
the Chain policy performance. Hence, an architecture with the advantage of locality and
performance close to the ones of a Global strategy can be obtained. Finally, we carry out
some comparisons between Replication and Erasure Code schemes. We show by simu-
lations that, for the same amount of bandwidth and space overhead, the Erasure Codes
are better even for the Chain policy.

6.4.1 External Reconstruction Strategy

We propose here a new reconstruction architecture for the Chain policy, namely external
reconstruction. The idea is to use peers outside the Chain group to carry out the recon-
struction process. In this way, the bandwidth usage is more uniformly spread among
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Figure 6.6: Comparison between the Chain policy with internal reconstruction and with
external reconstruction. The fraction of block losses (see Remark 2) for different band-
width limits is presented. There is an improvement of about 50% on the fraction of data
losses.

peers. More precisely, only the upload bandwidth of the retrieval phase of the recon-
struction is needed locally, while the bandwidth for the sending phase is provided by all
the peers of the system. Hence, the External Reconstruction has two main advantages:

• a local control for discovering failed peers and updating the data-blocks’ states;

• a more uniform distribution of resources among peers, which lowers the recon-
struction time.

However, a small cost is paid: in the internal reconstruction, the peer in charge may
be chosen in such a way that it possesses a piece of the block to be reconstructed. It
reduces by a factor of (s − 1)/s the bandwidth needed for the retrieval phase of the
reconstruction. Conversely, in the external reconstruction, the reconstructor does not
contain any piece.

A rough estimate of the gain in terms of reconstruction time can be given. In the
internal reconstruction, the local peers have to upload (s− 1) + (r− r0) fragments, noted
as uinternal . However, when using the external reconstruction they only have to upload s
fragments, noted as uexternal . As the local peers are the bottleneck of the reconstruction,
the gains in terms of bandwidth and hence of reconstruction time are roughly 1− s/(s−
1 + r− r0) (it comes from the ratio 1− uexternal/uinternal). With the parameters chosen in
our experiments, this factor would be 0.25. Note that the gains in terms of data loss will
be significantly higher (see Section 6.4.2).

Figure 6.6 compares the internal and external policies. It gives the trade-off between
the average number of dead blocks per year and the available bandwidth. For the same
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bandwidth, the fraction of data loss decreases by a factor between 0.5 and 0.6 for this set
of parameters. We see that, by choosing to carry out the reconstructions externally, the
chain policy behaves substantially better.

6.4.2 What Should Be the Size of the Neighborhood?

We showed above that the Global policy in practice (under tight resource constraints)
behaves significantly better than the local policies. Nevertheless, as already stated in
the introduction, there exist important practical considerations that explain the choice of
local placement. Would it be possible to obtain the same practical advantages as the local
policies (a small sub-network to monitor) but without paying the high cost of the Chain
and Buddy in terms of probability of data loss?

In this section, we study the impact of the size of the block neighborhood on the system
performance. The block neighborhood is defined as the peers that can receive fragments
of this block (of size s + r for Buddy and Chain, and of size N for Global).
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Figure 6.7: Study of the size of the block neighborhood. Fraction of block losses (see Re-
mark 2) per year for different sizes of neighborhood and different number of fragments
per disks.

Figure 6.7 shows the average number of dead blocks per year for different sizes of the
neighborhood. The sizes range from s + r = 15 (corresponding to the size of the neigh-
borhood for the Chain policy) to 90. The experiment was done for different amounts of
data per disk (i.e., number of blocks per disk), from 40 to 200, which is, as we will see,
an important parameter when choosing the neighborhood size. We see that barely in-
creasing the neighborhood from 15 to 20 has a striking impact on the data loss: with 120
blocks per disk, the fraction of data loss drops from 4.1% to 1.6%, representing a decrease
of almost 61 percent. Thus, increasing the size even by few units leads to strong improve-
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ments of the system performance. However, the number of dead blocks decreases from
0.17% to 0.16% for neighborhoods of sizes 85 and 90 nodes. The marginal improvement
strongly decreases.

The shapes of the curves may be explained as follows. When there is a peer failure,
its neighbors are in charge of reconstructing the lost fragments. Hence the reconstruction
time (minus the discovery time) depends almost linearly on the neighborhood size. This
dependence can be directly translated to the probability data loss:

Exponential relation between the probability to die and the reconstruction time.
During a reconstruction, a block dies if it loses r0 + 1 fragments before it finishes. The
probability for a peer to be alive after a time T is exp(−λT), where λ is the peer failure
rate. Hence a good approximation of the probability to die during a reconstruction
lasting a time T is given by

Pr[die|Rtime = T] =
(

s + r0

r0 + 1

)
(1− e−λT)r0+1(e−λT)s−1.

Hence we have an exponential relationship between the number of block losses and
the neighborhood size.

The neighborhood size should mainly be chosen in function of two parameters: the
disk size (or the number of fragments per disk) and the peer bandwidth. Note that a
size of D

(r−r0)BWup
allows to reconstruct the blocks in one time step and is sufficient to

get the benefits of Global (with D the number of fragments per disk, BWup expressed in
blocks/time step and 1/(r− r0) the fraction of blocks of the lost disk that go beyond the
saddle value).

Concluding, to implement a local policy, the neighborhood should at least be a lit-
tle bit larger than s + r, as the marginal utility of increasing the block neighborhood is
tremendous for very small sizes. In addition, the neighborhood size should be chosen
in function of the disk size: The larger the number of fragments per disk, the larger the
block neighborhood should be.

6.4.3 Replication versus Erasure Codes

Other experimental studies on data placement analyze the case of replication instead of
Erasure Codes, see e.g. [121, 43, 35, 73]. It is shown in [125] that Erasure Codes could be
used to achieve a high availability of data storage with low space overhead, but these
studies assume a Global and random placement strategy. We show here that, even for
local policies, the erasure codes scheme is more efficient than replication, meaning that it
has less probability of losing data for the same storage and bandwidth usage. Hence, we
confirm the pertinence to carry out an analysis of data placement when using erasure
codes.

Note first that replication is a special case of erasure codes, but with only one initial
fragment (s = 1). Hence, we used exactly the same simulator to carry out the experi-
ments. We evaluated the system for different number of replicas k, with values varying
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from 1 to 4. To have the same storage overhead factor, we compare the scenarios using k
replicas with a system with r = k·s erasure coded fragments. The reconstruction thresh-
old value is set to r0 = r− s ( k0 = k− 1 to the case of replication), this way both schemes
experience a close number of reconstructions, that is, roughly the same bandwidth us-
age. We present in Table 6.3 the average bandwidth use and fraction of data loss per
year for both techniques. In the case of erasure codes, the number of initial fragments is
s = 4. For a value of replication k = 3 (this means r = 12 to the case of erasure codes),
the reconstruction starts when the number of available fragments of a block is 2 (and
when it is 8 for the erasure codes).

Table 6.3: Comparison of replication and erasure codes when using the Chain placement.
Number of dead blocks per year and average bandwidth usage for different values of
redundancy k.

Estimated Fraction of Data Loss per Year (%)
k = 1 2 3 4

Repl. 2.2 · 101 3.0 · 10−1 3.8 · 10−4 1.9 · 10−4

Erasure 6.9 · 101 2.5 · 10−6 3.2 · 10−17 4.3 · 10−29

Upload Bandwidth usage (kbit/s)
k = 1 2 3 4

Repl. 1.08 3.24 4.34 5.40
Erasure 1.45 2.47 3.42 4.37

In the case of erasure codes s = 4 and r = s·k

We see that, for k = 1, the system with replicas behaves better than erasure codes,
while using less bandwidth. But, as soon as k ≥ 2, systems with erasure codes behave
strikingly better: they experience a lot fewer block losses while using a little less band-
width. In practice, to have a very low probability of data loss, real systems use values of
k larger than 4, see e.g. [121]. Thus, systems with erasure codes have less probability of
losing data for the same amount of resources and realistic levels of redundancy.

6.5 Analytical Estimations of MTTDL

In the last sections it is shown that fragment placement has a strong impact on the system
performance. In the following we describe the analytical methods to compute exact
values and approximations of the MTTDL for the three policies.

Here we study the case where the reconstruction starts as soon as one of its fragments
is lost, namely eager reconstruction strategy. In addition, the blocks are reconstructed in
one time step, i.e., there is enough bandwidth to process the reconstruction quickly. After
the reconstruction, the regenerated missing fragments are spread among different peers.
Hence, after each time step, the system is fully reconstructed.
Data Loss Rate. A data loss occurs when at least one block is lost. A block is considered
lost if it loses at least r + 1 fragments during one time step, otherwise, recall that all the
s + r fragments are fully reconstructed at next time step. The data loss rate for a given



124 CHAPTER 6. PLACEMENT POLICIES

block comes straightforward. This loss rate does not depend on the placement policy (as
soon as it is assured that all fragments are stored on different peers). Hence, we have
the same expected number of lost blocks for the three placement policies. However, as
stated in Section 6.3.1, the measure of the time to the first occurrence of data loss shows
that the three policies have very distinct behaviors. It is shown by simulations that the
average quantity of data loss per year is the same, but the distribution across time of
these losses is very different (see Figure 6.3).

In the next three sections (Section 6.5.1, 6.5.2 and 6.5.3), we present methods to com-
pute exact values and approximations of the MTTDL for the three placement policies.
For each policy, we calculate the probabilty Ppolicy of data loss at any given time step.
Then, we deduce MTTDLpolicy = 1/Ppolicy. We start by presenting the calculations for
the Buddy policy as it is the simplest one, then we present the Global and Chain in fol-
lowing.

6.5.1 Buddy Placement Policy

In the Buddy placement policy, the N peers are divided into C clusters of size s + r each.
In this strategy, the calculation of the MTTDLbuddy is straightforward. Given a cluster,
the probability to have a block loss is the probability that the cluster loses at least r + 1
peers (i.e., fragments), is given by

Pcluster =
s+r

∑
j=r+1

(
s + r

j

)
αj(1− α)s+r−j. (6.1)

In fact, when that happens all the data stored on that cluster is lost. Remember that α

is the probability of a given peer to fail at one time step. Since all the C clusters are
independent, the probability to have a data loss is given by Pbuddy = 1− (1−Pcluster)

C.
If the average number of cluster failures per time step C·Pcluster � 1, as expected in

a real system (i.e., the probabilty of simultaneous cluster failures is small), then we have
Pbuddy ≈ C·Pcluster, and so MTTDLbuddy ≈ 1/(C ·Pcluster).

If (s + r)α � 1, we can approximate even more. In other words, this assumption
means that the probability of a peer failure α is small. Since the ratio between two con-
secutive terms in sum of Equation (6.1) is≤ (s+ r)α, we can bound its tail by a geometric
series and see that it is of O((s + r)α). We obtain Pcluster ≈ (s+r

r+1)α
r+1. Then we have

MTTDLbuddy ≈
1

N
s+r · (

s+r
r+1)α

r+1
. (6.2)

6.5.2 Global Placement Policy

In the Global policy, block’s fragments are parted between s + r peers chosen uniformly
at random. First, we present the exact calculation of the MTTDLglobal . We then present
approximated formulas that give an intuition of the system behavior.
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First, we consider i failures happening during one time step. Let F denote the set of
the placement classes (i.e., groups of s+ r peers) that hold at least r + 1 of these i failures;
we have:

#F =
i

∑
j=r+1

(
i
j

)(
N − i

s + r− j

)
(6.3)

Then, suppose we insert a new block in the system: his s + r fragments are dispatched
randomly in one of the ( N

s+r) placement classes with uniform probability. Thus, the prob-
ability Pblock(i) for the chosen class to be in F is:

Pblock(i) := P [placement in F] =
∑i

j=r+1 (
i
j)(

N−i
s+r−j)

( N
s+r)

As block insertions are independent, if we consider our B blocks one after the other, the
probability that none of them falls in F is (1 − Pblock(i))B. We then come back to the
global probability of data loss considering different failure scenarii:

Pglobal := P [data loss] = P
[⋃

{i failures}[failure kills a block]
]

=
N

∑
i=r+1

(
N
i

)
αi(1− α)N−iP [i failures kill a block]

Which gives us the MTTDL of the system using the global policy:

MTTDL−1
global ≈

N

∑
i=r+1

(
N
i

)
αi(1− α)N−i

1−
(

1−
∑i

j=r+1 (
i
j)(

N−i
s+r−j)

( N
s+r)

)B (6.4)

Approximation

We provide here approximations for systems with low peer failure rates, as for example
Brick storage systems [73]. Each peer is a “brick” dedicated to data storage, that is, a
stripped down computer with the fewest possible components: CPU, motherboard, hard
drive and network card. In these storage systems, we have either αN � 1 or αN ∼ 1,
i.e., we have a not too high mean number of peer failures per time step. If we simplify it
further, we find (the details are in [1]):

MTTDLglobal ≈
1

B(s+r
r+1)α

r+1
(6.5)

6.5.3 Chain Placement Policy

For the Chain policy, the computation of MTTDLchain is more difficult than the two pre-
vious ones, mainly because the chains are not independent of each other. From the defi-
nition of the Chain policy, a data loss occurs only when r + 1 (or more) peer failures are
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located at s + r consecutive peers.
We present in this chapter two approaches to compute or approximate the MTTDL

for the Chain policy. We first describe computations using Markov chains techniques,
and we then describe an analytical approximation value assuming that α is small
enough.

6.5.3.1 Markov Chain Approach

The idea is to survey the N sequences S1, S2, . . . , SN of s + r consecutive peers. First,
we define a binary-vector (bi, bi+1, . . . , bi+s+r−1) for each Si, where the elements of this
vector represent the state of peers of Si: bj = 1 if the peer numbered j is failed, bj = 0
otherwise, i ≤ j < i + s + r. Peer numbered N + k is really the peer numbered k. Remark
that the binary-vector of Si+1 is (bi+1, . . . , bi+s+r).

As an example, consider a system composed of N = 10 peers with the values s = 3
and r = 2. The first sequence S1 of peers is associated with the vector (b1, . . . , b5). If
∑5

i=1 bi ≥ 3, then it means that there is a data loss. Otherwise we have for example
the vector (0, 0, 1, 0, 0). Thus we now look at the vector (b2, . . . , b6) associated with the
second sequence S2 of peers. To get this new vector, we remove the first bit b1 of the
previous vector and we add the new bit b6 at the end. We get for example (0, 1, 0, 0, 1) if
b6 = 1. Two peer failures appear in the sequence S2, and so we do not have a data loss. If
for example b7 = 1, then the vector associated with S3 is (1, 0, 0, 1, 1). In that case a data
loss is found.

We now want to compute the probability to find at least one “bad” sequence Si con-
taining at least r + 1 bits 1 in its vector. We use a discrete time discrete space Markov
chain to represent the transitions between sequences. Indeed, the set of states V of such
Markov chain is the set of all possible binary-vectors of size s + r such that the sum of its
elements is at most r, plus an absorbing state namely vdead (containing all other binary-
vectors of size s + r in which the sum of its elements is greater than r). For a binary-
vector (bi, bi+1, . . . , bi+s+r−1), we have two possible transitions: (bi+1, . . . , bi+s+r−1, 1)
with probability α and (bi+1, . . . , bi+s+r−1, 0) with probability 1− α. One of these vec-
tors (states) could belong to vdead. Remark that we can see this Markov chain as a De
Bruijn graph [39].

Consider the previous example with s = 3 and r = 2. Figure 6.8 describes the two
possible transitions from the state (1, 0, 0, 1, 0) (corresponding to the current sequence Si):
the last peer of the next sequence Si+1 is failed with probability α, and it is not failed with
probability 1− α. The two possible states are (0, 0, 1, 0, 1) and (0, 0, 1, 0, 0), respectively.
Furthermore from state (0, 0, 1, 0, 1), it is possible to transit to state vdead because with
probability α the vector of the next sequence is (0, 1, 0, 1, 1).

First, we assume that the N peers are ordered in a line instead of a ring. In other words
we do not take into consideration such vectors of sequences: (. . . , bN , b1, . . .). In that case
we look at N− (s + r) + 1 sequences. We compute the distribution of probability π after
N steps as follows: π = v0MN where v0 = (0, 0, . . . , 0) is the state without peer failures
and M is the transition matrix of our Markov chain. In that case Pline is π(vdead).
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3 Chain Policy

In this policy, block’s fragments are dispatched into “chains” of s+r consecutive peers on the
identifiers ring. Hence, a block dies when at least r +1 peers die among s + r consecutive
ones: we denote by “syndrome” such an event and focus on the existence of syndromes to
characterize blocks’ deaths.

First, we survey the eager reconstruction policy under the “one time step reconstruc-
tion” approximation, providing both MCM and analytical expression of the MTTDL. We then
show how one can generalize these results to any reconstruction time θ. Anyway we don’t
handle the saddle case in the present paper; we will do so in some future work.

3.1 Eager reconstruction in unit time step

3.1.1 Markov Chain Approach

Our approach here is to consider a “snapshot” of the system at a given time step. We survey
all the consecutive chains on the ring by a Markov process which jumps into its absorbing
state when it encounters a “dead” chain (more than r + 1 dead peers). We then make the
hypothesis that every chain contains at least one block, which implies that absorption in the
Markov chain coincides with detection of a block loss.

We can see a state of the chain as a node (b1, . . . ,bs+r ) of a De Bruijn graph representing
the states of the peers in the current chain, 1 standing for “dead” and 0 for “available”. When
we transit from state (b1, . . . ,bs+r ) to (b2, . . . ,bs+r ,b), we draw state b of the next peer on the
ring: since the system’s state is memoryless (dead peers are renewed at each time step), b = 1
(resp. b = 0) with probability α (resp. 1−α). If we reach a state (b1, . . . ,bs+r ) with

�
bi > r ,

we transit to the absorbing state of the chain.

(1,0,0,1,0)

(0,0,1,0,0)
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Figure 7: Sample part of the chain for s + r = 5 and r +1 = 3.

3.1.2 Number of states

With this first approach, the size of the state space is #S = 1+�r
i=0

�s+r
i

�
, as all states with

more than r deads are mapped into the absorbing one. Actually we can reduce this state

14

Figure 6.8: Sample part of the Markov chain for s + r = 5 and r + 1 = 3.

To get the value Pchain, we have to carefully take into consideration sequences con-
taining peers on both borders of the network (becoming a ring again). The concerned se-
quences admit vectors (. . . , bN , b1, . . .). We get π = ∑v∈V P(v)(v0Mbi1

. . . Mbis+r
MN−(s+r)

Mbi1
. . . Mbis+r−1

) with P(v) the probability to have v as initial state, and Mk, k ∈ {0, 1},
the transition matrix replacing α by k.

The number of states of the previously described Markov chain is |V| = 1 +

∑r
i=0 (

s+r
i ) states. Lemma 1 proves that we can reduce this number of states showing

some properties.

Lemma 1. There exists a Markov chain having the same π(vdead) such that:

|V| = 1 +
r

∑
i=0

(
s + r

i

)
−

r

∑
k=1

k−1

∑
j=0

(
s + k− 1

j

)
(6.6)

Proof. One of the peer failures in the chain is meaningful if and only if it can be present
in some following chain containing at least r + 1 failures. For example, in the state
(1, 0, . . . , 0), the first dead is not meaningful because, even if we have r dead peers fol-
lowing, it will be too far away to make a chain with r + 1 peer failures. In this sense,
states (0, 0, . . . , 0) and (1, 0, . . . , 0) are equivalent and we can merge them.

More generally suppose we have k peer failures in the current state (current sequence
of peers): we miss r + 1− k peer failures to make a data loss; hence, a peer failure in the
current sequence will have incidence if and only if it is one of the last s + k− 1 peers of
the chain: otherwise, even if the next r + 1− k peers are dead, they won’t fit with our k
deads in a frame of size s + r.

Thus, among all the states with k peer failures, only those where all failures are in
the tail of size s + k− 1 are meaningful. As to the others, the first failures do not matter
and we can forget them. This merging algorithm leads us to state space size (6.6): in a
nutshell, we forget all states with k failures and less than k peer failures in the tail of size
s + k− 1.

We presented a method to compute the exact value of Pchain (MTTDLchain =

1/Pchain). We now propose a simple method to approximate the MTTDL using Absorb-
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ing Markov chains techniques. We first consider that the number of peers is infinite. In
fact peers numbered i, i + N, i + 2N, . . ., i + kN, . . . represent the same peer numbered
i but at different time steps. Then the corresponding fundamental matrix gives us the
average time tabs to absorption, that is the average number of consecutive sequences of
peers to find a data loss. Thus MTTDLchain ≈ btabs/Nc. Indeed let P and Q denote the
transition matrices of respectively the complete chain (described before) and the sub-
chain where we removed the absorbing state and all its incident transitions. Then the
fundamental matrix R = (I − Q)−1 gives us the time to absorption tabs starting from
any state (see [106] for details). tabs is not exactly the MTTDL since N − (s + r) steps
correspond to one time step (we survey the whole ring). Hence, btabs/Nc gives us the
expected number of time steps before we reach the absorbing state, which is, this time,
the MTTDL we are looking for.

6.5.3.2 Analytical Approximation

In the rest of this section, a syndrome is a sequence of s + r consecutive peers containing
at least r + 1 peer failures. Under the assumption that α is “small enough” (we will see
how much), we can derive an analytical expression of the MTTDL.

MTTDLchain ≈
1

N r+1
s+r (

s+r
r+1)α

r+1
. (6.7)

Let us begin with two lemmas.

Lemma 2. The probability to have two distinct syndromes is negligible compared to the proba-
bility to have only one and bounded by

P [∃ two distinct syndromes | ∃ a syndrome] <
αN(s + r) · (α(s + r))r−1

r!
(6.8)

Proof. The probability for a syndrome to begin at a given peer (the beginning of a syn-
drome being considered as his first peer failure) is given by p = α ∑s+r−1

i=r (s+r−1
i )αi(1−

α)s+r−1−i. Meanwhile, we have

P [∃ 2 distinct syndromes] = P
[
∪|i−j|≥s+r∃ 2 syndromes beginning at peers i and j

]
,

which is ≤ (N
2 )p2 < (pN)2. Normalizing by pN gives us the probability to have two

syndromes knowing that there is at least one:

P [∃ two distinct syndromes | ∃ a syndrome] < pN.

Hence, we would like to show that pN is negligible. An upper bound on p is easy to
figure out: given that α(s + r) � 1, we have p ≈ (s+r−1

r )αr(1− α)s−1 ≤ (α(s + r))r/r!,
and so pN ≤ (αN(s+ r))(α(s+ r))r−1/r!. Hence, assuming αN(s+ r)� 1 (or otherwise
r ≥ log N) suffices to conclude.
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Lemma 3. The probability to have more than r + 1 dead peers in a given syndrome is negligible
and bounded by

P [∃ > r + 1 dead peers | ∃ ≥ r + 1 peers] < α(s + r) (6.9)

Proof. Since we are working in a syndrome, the probability we want to bound is, in a
given chain:

P [∃ > r+1 dead peers | ∃ ≥ r+1 dead peers] =
∑s+r

r+2 (
s+r

i )αi(1− α)s+r−i

∑s+r
r+1 (

s+r
i )αi(1− α)s+r−i

≤ ∑s+r
r+2 (

s+r
i )αi(1− α)s+r−i

(s+r
r+1)α

r+1(1− α)s−1

Since the ratio between a term of the binomial series and its predecessor is α
1−α ·

s+r−i
i+1 ,

we can bound the tail of the binomial sum by a geometric series of common ratio q =
α

1−α ·
s−1
s+r � 1. Thus we have:

P [∃ > r+1 dead peers | ∃ ≥ r+1 dead peers] <
α

1− α
· s− 1

r + 2
· 1

1− q
< α(s+ r) � 1.

Therefore, if we only look for a single syndrome with exactly r + 1 dead peers, we
get a close approximation of the MTTDL.

Pchain = P [∃ one syndrome]

= P [∪i∃ one syndrome beginning at peer i]

= (N − (s + r))p

Indeed, since there is only one syndrome, the events [syndrome begins at peer i] are ex-
clusives. Here p is the probability for the syndrome to begin at a given peer, which we
saw in proof of lemma 2. Given lemma 3, we can approximate it by (s+r−1

r )αr+1(1− α)s−1,
which leads us too:

MTTDL
′
chain ≈

1
N(s+r−1

r )αr+1
(6.10)

One may notice that this is the same formula as (6.2) in the Buddy case with c = N r+1
s+r .

Validity of the approximation

Numerical results suggests that the Equation (6.10) is a good approximation for α <

10−3, while s have little influence (and r almost none) on the relative variation between
simulation and approximation.
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6.5.4 Discussion

The approximations given by the Equations (6.2), (6.5), and (6.7) give an interesting
insight on the relation between the placement policies. For instance, note that the ra-
tio between MTTDLbuddy and MTTDLchain does not depend of N, nor B, nor s. When
B � ( N

r+1), the ratio between MTTDLbuddy and MTTDLglobal depends on the number of
fragments per disk B(s + r)/N.

MTTDLbuddy

MTTDLchain
≈ r + 1,

MTTDLbuddy

MTTDLglobal
≈ B(s + r)

N
,

MTTDLchain

MTTDLglobal
≈ B(s + r)

N(r + 1)
.

We succeeded in quantifying the MTTDL of the three policies. The Buddy policy has
the advantage of having a larger MTTDL than the Chain and the Global. However, when
a failure occurs a large number of reconstructions start. When the bandwidth available
for reconstruction is low, the reconstructions are delayed which may lead to an increased
failure rate. This trade-off has still to be investigated.

6.6 Conclusion

In this chapter, we show that placement policies strongly impact the performance of P2P
storage systems. We study three different policies, a Global and two local, and show that
under resource constraints, the Global policy behaves better in terms of probability of
data loss and MTTDL than the local policies.

We suggest architectural choices to improve the performances of local policies. We
show that, by using a new reconstruction strategy, namely external reconstruction, and
by increasing the size of the neighborhood, local policies can have performances almost
equivalent to the ones of the Global, while keeping their practical advantages.
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Hybrid Coding

It is known that erasure codes are a very efficient solution in space to obtain fault-
tolerance. However, as previously addressed in Chapter 3, the reconstruction process
of storage systems based on erasure coding has an important overhead in bandwidth
consumption. When a fragment of redundancy is lost, the whole original data has to be
retrieved to regenerate the lost fragment. At the opposite, in a system using full replica-
tion, a repair is done by simply sending again the lost data. However, adding more re-
dundancy increases considerably the space overhead, and consequently the bandwidth.

In this chapter, we investigate in detail the use of a Hybrid coding: mixing erasure
codes and simple data replication, i.e., keep one full replica of the data along with the
erasure code fragments. The idea is to try to get the best of both worlds: the storage
efficiency of erasure codes and the repair efficiency of replication. We try to answer the
following question: for a given erasure coding configuration, is there a Hybrid solution that
performs better in terms of bandwidth and loss rate, and that uses the same or less storage space?
We present results for the Reed-Solomon (RS) coding as we argue that these codes are the
most widely used in practice. Nonetheless this analysis can applied for different codes.

Our Contribution

We model the Hybrid system and the Reed-Solomon system using a continuous-time
Markov chain. These chains are more refined than the one previously studied, as they
take into consideration the existence of the reconstructor peer. From these Markov chains
we derive closed-form expressions to approximate the bandwidth usage and the system
durability. These expressions are validated by simulations. We analyze different scenar-
ios and we characterize when it is interesting to use the Hybrid solution.

To summarize our results:

• when storage is the scarce resource, RS system have a higher durability;

• when bandwidth is the scarce resource, the Hybrid solution is the better choice;

• when the storage overhead is not sufficient to use Hybrid, we propose a simple
Mixed system that is better than RS in terms of bandwidth.

To the best of our knowledge, this is the first study to compare the efficiency of the
Hybrid system with lazy repair Reed-Solomon system. These two solutions are, from
our point of view, the most practical methods to obtain an efficient utilization of the
bandwidth when employing erasure codes on distributed storage.
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Related Work

P2P and large scale distributed storage systems have been analyzed by using Markov
chains: for erasure codes in [14, 38, 120] and for replication in [98, 28]. In this work, we
model the Hybrid system with a Markovian model. We also introduce a new chain for
RS systems that models the failure of the reconstructor during a repair.

Rodrigues and Liskov in [105] compare the Hybrid system versus replication in P2P
Distributed Hash Tables (DHTs). However, there is no analysis of the impact of the Hy-
brid compared to the traditional erasure codes. Dimakis et al. in [41] study the efficiency
of bandwidth consumption for different redundancy schemes, among them the Hybrid
approach. They state that the Hybrid has a better availability/bandwidth trade-off than
the traditional erasure codes. But they do not consider the lazy repair. Both of these
works focus on availability and they do not consider the durability of the data. They also
do not take into account the time to process the reconstructions. Camargo et al. in [40],
evaluate by simulations the use of hybrid coding. They compare the bandwidth con-
sumption of the hybrid solution to an ideal erasure code.

By using Markov chains, we exhibit the impact of this parameter on the average sys-
tem metrics. Furthermore, they only consider RS using an eager repair policy, which is
highly inefficient for the bandwidth. In [20], the authors propose the lazy repair mecha-
nism to improve the reconstruction process. Here, we thus compare Hybrid and an RS
system using lazy repair.

Other works introduced other efficient and promising codes, as for example Regener-
ating codes [41] and Hierarchical codes [46]. However, as far as we know, they are not used
in practice yet. Hence, we focus on RS codes.

Organization

The remainder of this chapter is organized as follows: In the next section we give the
details of the Hybrid solution. Then, in Section 7.2 we present the Markov chain models
for both systems, along with a compilation of closed-form formulas and the validation
by simulation. In Section sec:hybrid-results we show the results and discuss when it is
interesting to use the Hybrid solution.

7.1 Description

In distributed storage systems using Reed-Solomon (RS) erasure codes, each block of data
b is divided into s fragments. Then, r fragments of redundancy are added to b in such a
way that any subset of s fragments from the s + r fragments are enough to reconstruct
the whole information of b. Observe that, the case s = 1 corresponds to the simple
replication. In the Hybrid system, one of the s + r peers stores a full copy of the orginal
data, namely full-replica (see Figure 7.1).
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Figure 7.1: Description of RS and Hybrid systems. Both systems store the data fragments
in s + r peers. In the Hybrid system, one of the peers keeps a full-replica.

7.1.1 Reconstruction Process

To ensure fault tolerance, the storage systems must have a maintenance layer that keeps
enough redundancy fragments available for each block b. We consider here archival
systems, where there are only transient churn and permanent peer departures or fail-
ures [28]. We describe in the following the reconstruction process in both systems.

Traditional Reed-Solomon Approach (RS). For the traditional Reed-Solomon, we as-
sume a lazy repair strategy [38] which is more efficient in terms of bandwidth. Given a
threshold 0 ≤ r0 < r, the reconstruction process starts only when the number of frag-
ments of b is less than or equal to s + r0. Observe that the case r0 = r− 1 corresponds to
the eager reconstruction.

When the reconstruction starts, a peer p(b) is chosen to be the reconstructor. It re-
trieves s remaining fragments of b, rebuilds the missing redundancy, and resends the
missing fragments into the system. Note that, after reconstructing the missing redun-
dancy of b, the peer p(b) possesses a full-replica of the block which is discarded after-
wards. We refer to this system as the Traditional Reed-Solomon (RS).

Hybrid Approach. In the Hybrid system, we call by pc(b) the peer that contains a full-
replica of the block b. When there is a failure, two cases can happen.

If the peer pc(b) is still alive, it generates the lost fragments from its full-replica. It
then sends the missing fragments to different peers in the network. To be able to do
that, the peer only needs to store the initial block or, equivalently, s fragments. As a
matter of fact, it can quickly create the other fragments at will. For usual parameters, the
coding/decoding is very fast and the bottleneck is the peer upload bandwidth (at least
20 Mbps for s + r ≤ 128 when using the library ZFEC [94], on a Intel Core-Duo 2.16 Ghz).

When the peer pc(b) fails, a new peer is chosen to maintain the full-replica. In this
case, the whole block needs to be reconstructed. This is accomplished by using the tradi-
tional Reed-Solomon process, with the addition that the reconstructor keeps a full-replica
of the block at the end of the process. From that we see that a Hybrid system can be easily
built in practice from an RS system.
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7.1.2 Code Efficiency

As explained in [41], a system in a steady state has to rebuild in average as much data as
what is lost. The bandwidth usage induced by the reconstructions thus depends directly
on the space overhead used to encode redundancy, defined as k = (s + r)/s. A second
important factor is the efficiency of the reconstruction process. We define the efficiency
factor ρ of a P2P storage system as the number of bits of data transferred to reconstruct
one bit of data. We can then express the average bandwidth usage of a P2P storage
system as:

E[BW] = αNρkd,

where α is the peer failure rate per unit time, N the total number of peers in the system,
and d the amount of data per disk.

Efficiency of Replication and RS. In systems using replication, a replica is recovered by
just sending a copy to a new peer. Consequently, ρrepl = 1, the optimal efficiency.

In an eager RS system, s fragments of redundancy are exchanged to reconstruct one
fragment of data: ρRS = s. This is highly inefficient. However, RS systems can be made
a lot more efficient by using the lazy repair policy. In this policy, s + i − 1 fragments
are sent to recover i fragments (s are retrieved by the peer that reconstructs the block,
it keeps one fragment, and then sends the i − 1 missing fragments). Remember that,
when using the lazy repair strategy we start the reconstruction at the redundancy level
r0. Hence, in most of the cases, the number of missing fragments is i = r− r0 when the
reconstruction is fast enough. Consequently,

ρRS ≈
s + r− r0 − 1

r− r0
.

Replication has a better efficiency factor than RS systems (even if, for large r − r0,
the difference is not as significant). However, if we consider the space overhead needed
to tolerate n f failures, RS has an important advantage. One needs to add n f fragments
of size only Lb/s each (with Lb the size of a block) to tolerate n f failures (thus kRS =

(s + n f )/s, in an eager RS system). In replication systems, n f whole copies of the data
are needed (krepl = n f + 1). In a lazy RS system, the trade-off is more complex, as
redundant fragments can be added in the systems for two reasons: tolerate more failures
or improving the bandwidth efficiency of the code. We will discuss that more thoroughly
in the following of the chapter.

Efficiency in Hybrid system. The idea of this system is to try to have the repair efficiency
ρ of the replication, while having a storage overhead to tolerate failures close to the one
of RS system.

As stated, the reconstruction in the Hybrid consumes one fragment when pc(b) is
alive or s fragments when the full-replica needs to be replaced. In both cases, one bit of
bandwidth is used to recover one bit of data, thus ρHybrid = 1, which is the optimal value.
The Hybrid system is able to tolerate one more failure by adding one small fragment of
redundancy (as in RS systems). However, it uses an additional copy of the data. Never-
theless, the value of kHybrid to tolerate n f failures has to be determined: the presence of the
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Table 7.1: Summary of the main notations.

s Number of initial fragments
r Number of redundancy fragments (RS system)
r0 Reconstruction threshold
k Storage space overhead: (s + r)/s
α Peer failure rate
γ Fragment reconstruction rate
θ Average time to reconstruct one fragment: θ = 1/γ
γ− Block reconstruction rate
θ− Average time to retrieve the whole block: θ− = 1/γ−

full-replica allows the system to tolerate more than r failures. In fact, the Hybrid system can
tolerate up to s + r− 1 failures in some cases (when pc(b) is not affected). Furthermore,
the full-replica also greatly improves the speed of the reconstruction as a simple transfer
is needed. This affects greatly the system durability (see Figure 7.5).

To summarize, the use of the Hybrid system improves the reconstruction efficiency,
but at the cost of additional storage space and/or of a smaller tolerance to failures.

We analyze and compare the precise trade-off redundancy-durability of the Hybrid system
and of lazy RS system in the following.

7.2 Markov Chain Models

We model the behavior of a block in the Hybrid system and in the traditional RS sys-
tem with lazy repair by Continuous Time Markov Chains (CTMCs). From the stability
equations of these chains, we derive the bandwidth usage and the system durability. We
also give explicit closed-form formulas that approximate the system behavior. They also
give a good intuition of the influence of the parameters. To model the RS system, we
use a slightly different CTMC from the classic ones found in the literature [14, 38]. We
take into account the possible death of the peer in charge of the reconstruction during
the reconstruction process.

7.2.1 Model of the Hybrid System

In Figure 7.3, it is presented the Markov chain that models the behavior of a block b in
the Hybrid system. Recall that, in a Hybrid system, s + r Reed-Solomon fragments and
one replica are present inside the system. We make the choice here that the peer storing
the full-replica also stores one of the RS fragments. Hence, there are 2s + r− 1 fragments
per block.

In brief, the states of the chain are grouped into two columns. The level in a column
represents the number of Reed-Solomon fragments present in the system. The column
codes the presence of the replica: present for the left states and absent for the right ones.

States. The chain has s + 2r + 1 states: {Si; 1 ≤ i ≤ s + r}, {S−i ; s ≤ i ≤ s + r − 1} and
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SDEAD. A state at level i (Si or S−i ) represents the case where i peers store a fragment. The
states Si (left) correspond to the case where the full replica is present inside the system.
In this case, a block can only die if the replica is lost. Hence, we have s + r such states.
The states S−i (right) correspond to the cases where the replica was lost. We need at least
s RS fragments inside the system in order to reconstruct the block, otherwise the block
is lost. Hence, we have r states. Finally, the state SDEAD represents the other situations
when the block can no longer be reconstructed.

Transitions. The transitions of the chain correspond to peer failures and reconstructions.
As in most analytical works of the literature [98, 38, 14], the peer failures are considered
independent. The peer lifetime follows an exponential distribution of parameter α. A
peer is still alive after a time t with probability exp(−αt) and, in average, the lifetime is
MTTF = 1/α. When a block has i fragments, it loses one fragment with rate αi. The
replica is lost with rate α and one of the other RS fragments with rate α(i− 1). Thus, we
have the following transitions:

Si
α(i−1)→ Si−1 2 ≤ i ≤ s + r

Si
α→ S−i−1 s + 1 ≤ i ≤ s + r

Si
α→ SDEAD 1 ≤ i ≤ s

S−i
αi→ S−i−1 s + 1 ≤ i ≤ s + r− 1

S−s
αs→ SDEAD

The reconstruction process of b starts when a fragment is lost. We model a Poisson
reconstruction as it is classically done in the literature [14, 98]. We use here processes
with two different rates for the two cases: presence or absence of the full-replica. When
the replica is present, the peer storing it sends the missing fragments one by one into the
system with rate γ. We note θ = 1/γ the average time to send one fragment. When the
replica is lost, the system rebuilds it. A peer is chosen as the new storer of the full-replica.
It retrieves s fragments. We note γ− the reconstruction rate of the replica and θ− = 1/γ−

the average time to reconstruct it. Obviously, we have θ− > θ. Given these notations,
the transitions that represent the reconstruction process are:

Si
γ→ Si+1 1 ≤ i ≤ s + r− 1

S−i
γ−→ Si+1 s ≤ i ≤ s + r− 1

We consider here a system with a constant amount of data. Hence, new data is rein-
troduced into the system when we experience a loss. Note that, this assumption has a
small influence on the results for practical storage systems in which it is expected to have
a very small probability of losing data. The rate of reintroduction of the data is γT.

SDEAD
γT

→ Ss+r
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Recons No Recons

Figure 7.2: Markov chain of the system
based on Reed-Solomon.

Replica No Replica

Figure 7.3: Markov chain of the Hybrid
system.
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7.2.2 Model of the Reed-Solomon System

We also model the behavior of a block b in a lazy RS system by a CTMC, depicted in
Figure 7.2. We did not use the chains classically used in the literature [14, 38]. Our chain
models the possible loss of the reconstructor p(b) during a reconstruction. We draw our
inspiration from the chain representing the Hybrid system. We code here the presence
of the peer p(b) in the system, in a way similar to how we code the presence of the
full-replica in the Hybrid system.

States. The chain has s + 2r + 1 states: {Si; 1 ≤ i ≤ s + r − 1}, {S−i ; s ≤ i ≤ s + r}
and SDEAD. Similarly to the Hybrid chain, the states of the chain are grouped into two
columns. A state at level i (Si or S−i ) represents the case where i peers store a fragment.
The states Si correspond to the second phase of the reconstruction (the reconstructor
has retrieved the whole block). In this phase, a block can only die if the peer p(b) dies.
Hence, we have s + r− 1 such states. The states S−i correspond to the three other cases:
no reconstruction at the present time (sufficient number of present fragments), the first
phase of the reconstruction (p(b) is retrieving the s fragments), or the reconstructor died
during the reconstruction. When p(b) did not retrieve the block, we need at least s frag-
ments inside the system. Hence, we have r + 1 states. Finally, the state SDEAD represents
the other situations when the block can no longer be reconstructed.

Transitions. The downwards transitions are similar to the ones in the Hybrid chain.
When a block has i fragments, it loses one fragment with rate αi. When the block is under
reconstruction, it loses the reconstructor (which stores one of the i fragments) with rate
α. It gives the following transitions:

Si
α(i−1)→ Si−1 2 ≤ i ≤ s + r− 1

Si
α→ S−i−1 s + 1 ≤ i ≤ s + r− 1

Si
α→ SDEAD 1 ≤ i ≤ s

S−i
αi→ S−i−1 s + 1 ≤ i ≤ s + r

S−s
αs→ SDEAD

The reconstruction process starts when the number of fragments in the system
reaches the level s + r0. We use here Poisson processes with two different rates for the
two phases of the reconstruction. In the first phase, s fragments must be retrieved by the
reconstructor, which then reconstructs the missing fragments. During the second phase,
the reconstructor sends the missing fragments one by one into the system. We note γ−

the reconstruction rate of the first phase. Thus, the average time to retrieve the s frag-
ments and to rebuild the missing fragments is θ− = 1/γ−. We note γ the rate of the
second phase, giving an average time θ = 1/γ to send one fragment into the system.
Observe that θ− > θ.

Si
γ→ Si+1 1 ≤ i ≤ s + r− 2

Ss+r−1
γ→ S−s+r

S−i
γ−→ Si+1 s ≤ i ≤ s + r0
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At last, to have a constant amount of data inside the system, we have the transition

SDEAD
γT

→ S−s+r

7.2.3 Bandwidth Usage and Loss rate

7.2.3.1 Steady-state

From the CTMC, we can derive the bandwidth usage and the loss rate of the systems.
The principle is to compute the stationary distribution. The steady-state of the Markov
chains presented above can be calculated exactly in polynomial time in s + r, by finding
the eigenvector of eigenvalue 1 of the transition matrix. Another method is to solve
the linear system of stability equations together with the normalization ∑i Pi + ∑i P−i +

Pdead = 1.

We note Pi (resp. P−i ) the probability to be at state Si (resp. S−i ) in the stationary
distribution, for each i = 1, . . . , s + r. We also denote by Pdead the probability to be at
state SDEAD. We have

Tdead,dead =
Hdead

Pdead
,

where Tdead,dead is the return time to Sdead and Hdead the holding time in state Sdead. By
construction, Hdead = 1

γT . Hence we derive the lifetime of a block:

li f etimeblock = Tdead,dead =
1

γTPdead
.

The loss rate of a system with B blocks then is

loss ratesystem =
B

Tdead,dead
= BγTPdead.

The expected bandwidth is given by the product of the rate at which a reconstruction
transition is taken times the amount of data used by the reconstruction.
Hybrid system: Two cases. The reconstruction of a fragment transfers only one fragment.
The reconstruction of the full-replica transfers s fragments.

E[BWHb] ≈
[

sγ−
s+r−1

∑
s

P−i + γ
s+r−1

∑
i=1

Pi

]
L f B,

with L f the size of a fragment.
RS system: Also two cases. The first phase of the reconstruction sends s fragments into
the system. This phase is done when we have at most s+ r0 fragments inside the system.
In the second phase of the reconstruction (reconstructor has retrieved s fragments), a
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reconstruction uses only one fragment.

E[BWRS] ≈
[

sγ−
s+r0

∑
s

P−i + γ
s+r−1

∑
i=1

Pi

]
L f B.

These formulas can be computed formally and numerically by using, for example,
the MAPLE software. However, they do not give any idea of how the system behaves.
Hence, we present approximated closed-form formulas in the next section.

7.2.3.2 Approximations

We present here approximated closed-form formulas that give a good intuition of the
system behavior and of the influence of the different parameters. The approximations
assume that α(s+ r)� γ and that γ, γ− and γT are of the same order. Observe that these
assumptions are reasonable. In a practical system, if we want a very small loss rate, the
time to reconstruct a block or a fragment has to be greatly smaller than the time to lose
a peer. This is especially true for back-up systems with small churn where most peer
losses correspond to disk failures. The following formulas are first order expressions
when α/γ → 0. The main idea of the proof for the Hybrid system is to prove that a
state at level i is of order θ( α

γ )
s+r−i. For the RS system, we similarly find the order of

each state. The proofs are omitted due to the lack of space. However, they are validated
in Section 7.2.4 by comparing them to the exact numerical values given by the stability
equations of the chains.

Approximations for Hybrid systems. We note Pdead (resp. Ps+r) the probability to be
at state SDEAD (resp. Ss+r) in the stationary distribution. Under these assumptions, we
have

PHb
dead ≈

α
γ>

(s+r−1)!
(s−1)!

[(
α
γ

)r
+ ∑r

i=1

(
α

γ−

)i (
α
γ

)r−i
]

PHb
s+r. (7.1)

If γ = γ−, the formula simplifies to

PHb
dead;γ=γ− ≈

2α

γT
(s + r− 1)!
(s− 1)!

(
α

γ

)r

PHb
s+r. (7.2)

In both cases, PHb
s+r is

PHb
s+r = 1− α(s + r− 1)

γ
− α

γ−
+ o(

α

γ
).

The bandwidth usage in this system is well estimated by

E[BWHb] ≈ α(2s + r− 1)L f B. (7.3)

These formulas are validated in Section 7.2.4 and discussed in Section 7.3.
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Approximations for lazy RS systems. For RS systems, we have

PRS
dead ≈

αs
γ>

(s + r0)!
s!

(
α

γ−

)r0+1 1
Hs+r − Hs+r0

, (7.4)

where Hn = ∑n
i=1 1/i is the n-th harmonic number. We also estimate the bandwidth

usage of the system in the steady-state:

E[BWRS] ≈
α(s + r− r0 − 1)L f B

α
γ (r− r0 − 1) + α

γ− + Hs+r − Hs+r0

. (7.5)

In the case γ = γ−, we obtain a simplified formula:

E[BWRS
γ=γ− ] ≈

BL f (s + r− r0 − 1)α
α
γ (r− r0) + Hs+r − Hs+r0

. (7.6)

Note that for the RS system, these formulas are similar to the ones approximated
from the simplified Markov chain in Section 3.2 (page 41).
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Figure 7.4: Accuracy of the approximations compared to the numerical solutions of the
MC stability equations for different values of α/γ.

7.2.4 Validations

7.2.4.1 Validation of the Markov Chains

We validate the models by comparing them with the results of simulations. We im-
plemented a custom cycle-based simulator to evaluate several characteristics of a real
system. The simulator models the evolution of the blocks’ states during time (number of
available fragments and where they are stored) and the reconstructions being processed.
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Table 7.2: Average and standard deviation of bandwidth usage (in Kpbs per peer) ob-
tained using the simulations and the MC models.

(a) Total amount of data
D (in GB) 100 200 400 500
RS (MCM) 0.66 1.32 2.65 3.31
RS (Sim) 0.68 +- 0.32 1.35 +- 0.65 2.70 +- 1.31 3.39 +- 1.62
Hybrid (MCM) 0.50 0.99 1.99 2.49
Hybrid (Sim) 0.51 +- 0.22 1.02 +- 0.43 2.04 +- 0.87 2.56 +- 1.08

(b) Number of peers (N), with fixed amount of data
N 500 700 900 1000
RS (MCM) 1.32 1.32 1.32 1.32
RS (Sim) 1.36 +- 0.92 1.35 +- 0.77 1.34 +- 0.69 1.34 +- 0.64
Hybrid (MCM) 0.99 0.99 0.99 0.99
Hybrid (Sim) 1.02 +- 0.61 1.02 +- 0.52 1.02 +- 0.46 1.02 +- 0.43

Table 7.3: Data loss rate per hour obtained using the simulations and the MC models.

(a) Total amount of data
D (in GB) 100 200 400 500
RS (MCM) 4.9 · 10−3 9.9 · 10−3 2.0 · 10−2 2.5 · 10−2

RS (Sim) 4.7 · 10−3 8.7 · 10−3 1.9 · 10−2 2.3 · 10−2

Hybrid (MCM) 8.8 · 10−4 1.7 · 10−3 3.5 · 10−3 4.4 · 10−3

Hybrid (Sim) 7.6 · 10−4 1.4 · 10−3 2.9 · 10−3 3.9 · 10−3

(b) Number of peers (N), with fixed amount of data
N 500 700 900 1000
RS (MCM) 1.7 · 10−3 1.7 · 10−3 1.7 · 10−3 1.8 · 10−3

RS (Sim) 1.5 · 10−3 1.6 · 10−3 1.6 · 10−3 1.7 · 10−3

Hybrid (MCM) 9.9 · 10−3 9.9 · 10−3 9.9 · 10−3 9.9 · 10−3

RS (Sim) 9.4 · 10−3 9.6 · 10−3 9.8 · 10−3 9.7 · 10−3

When a disk failure occurs, the simulator updates the state of all blocks that have lost a
fragment, and starts the reconstruction if necessary.

We ran extensive simulations for different sets of parameters for both systems. A
small summary of the results is shown in Tables 7.2 and 7.31. The results obtained from
the stationary distribution of the CTMCs are compared with the results given by the
simulator. We see that the MC models closely match the simulation results.

1In practice, storage systems should have a very low data loss rate, e.g. 10−20. Such a loss rate is
impossible to evaluate by simulation. To overcome this difficulty, we choose a non realistic set of parameters
to experience losses for the experiments of Tables 7.2 and 7.3 In particular, the reconstruction threshold
r0 = 2 and the disk MTTF = 90 days are set very low.
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7.2.4.2 Validation of the approximations

We validate the approximated formulas by comparing them with the results of the
Markov chains. Recall that they are first order formulas when α/γ → 0. Figure 7.4
shows the accuracy of the closed-form approximations versus the results obtained by
the Markov Chain models for different ratios of α/γ. The figure confirms that the dif-
ference decreases when the ratio decreases. For values of α/γ < 10−3 the results given
by the approximations are very close to the Markov chain models. Note that it corre-
sponds to real scenarios: if we consider a disk Mean Time To Failure (MTTF) of 1 year,
and a reconstruction time of 1 hour, this ratio is 1.1 · 10−4. For a MTTF of 2 years and
a reconstruction of 10 minutes, the ratio is 9.5 · 10−6. For such values of α/γ, several
experiments with different sets of parameters confirmed the accuracy of the equations.

7.2.5 Reconstruction Rates γ and γ−

To finish this section and before studying different system design scenarios, we discuss
the impact of reconstruction rates on the system loss rate. The results presented hereafter
are calculated numerically from the stability equations of the CTMCs.

If the Hybrid system has a large advantage in terms of bandwidth consumption, it
has also a good behavior in terms of loss rate. As a matter of fact, when the full-replica
is present, the reconstruction time θ is smaller than the one of the RS system. Only
one fragment has to be sent into the system instead of doing a full RS reconstruction.
Figure 7.5 (left) shows the loss rate for different ratios between θ and θ− (in fact, we
fixed θ− = 32 and varied θ from 1 to 32). Note first that, in this case, the loss rate
of the RS is not much impacted by the θ, which confirms that it only depends on θ−

(Equation 7.4). Conversely, the Hybrid system is sensible to ratio θ/θ−. The smaller the
ratio, the better the loss rate because of the increased efficiency of the repair using the
full-replica. In practice, it is not easy to guess the ratio a priori (we have to compare
the upload of one fragment by the peer storing the full-replica and the upload of one
fragment by s different peers. The ratio strongly depends on the network behavior and
on the peer characteristics). Hence, in the following, we present plots with θ = θ−. We
are being conservative with the Hybrid solution. The goal is to ensure that when the
Hybrid solution is better in an experiment, it is true for any values of θ−.

As stated by Equations 7.1 and 7.4, the loss rates of both systems are exponentially
impacted by the reconstruction rates γ and γ−. Figure 7.5 (right) depicts this behavior
for increasing values of θ = 1/γ (with θ = θ−, s = 16, r = 24, r0 = 7). Obviously, longer
reconstruction times mean less durability. The bandwidth consumption remains almost
constant when varying γ and γ− (when α/γ � 1 as in the studied systems), so these
figures are omitted.

7.3 Results

In this section, we compare the Hybrid systems with the lazy Reed-Solomon systems. We
use three metrics: bandwidth usage, loss rate, and storage overhead. The experiments
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Figure 7.5: Influence of the reconstruction times on the system loss rate. Left: study of
the ratio θ/θ−. Right: the loss rate varies exponentially with the reconstruction time.

try to answer the following question: for a given RS configuration, is there a Hybrid system
that performs better in terms of bandwidth and loss rate, and that uses the same or less storage
space?

Three main scenarios are studied. In the first, we have a fixed storage space. In the
second, we compare both approaches when they consume the same amount of band-
width. In the third scenario, they have the same data loss rate.

In the light of these studies, we discuss which system should be used in function
of the parameters. In brief, when the bandwidth is not the issue, it is better to use an
RS system as it has a much better reliability. However, when bandwidth is the sparse
resource, it is better to choose the Hybrid system (if possible), as it achieve a much bet-
ter durability for the same bandwidth usage. When the storage space is too limited to
allow system designer to use the Hybrid approach, we propose a Mixed approach which
improves the system behavior when compared to RS at the cost of an increased imple-
mentation complexity. The results presented hereafter are calculated numerically from
the stability equations of the CTMCs.

Value of the parameters for the studies. In the following experiments, we use a set of
default parameters for the sake of consistency (except when explicitly stated). We study
a system with N = 10000 peers. Each of them contributes with d = 64 GB of data (total
of 640 TB). We choose a system block size of Lb = 4 MB, s = 16, giving L f = 256 KB.
The system wide number of blocks is then B = 1.6·108. The MTTF of peers is set to one
year. The disk failure rate follows as α = 1/MTTF. The block average reconstruction
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time is θ = θ− = 12 hours. Observe that we are penalizing the Hybrid solution when
choosing θ = θ− (see discussion of Section 7.2.5). The goal is to ensure that, when the
Hybrid solution is better in an experiment, it is true for any values of θ−.

A first remark: Feasibility of a Hybrid Solution. To use a Hybrid system, the amount
of space available must be at least two times the original data, as a full-replica is stored.
We say that the storage overhead has to be greater than 2: k ≥ 2 or, equivalently, r ≥ s.
For the remainder of this chapter, we aim at comparing both systems when using the same storage
overhead k. Hence, the redundancy factor of the Hybrid is set to r′ = r− s+ 1. That is, the space
consumed by the full-replica in the Hybrid system is taken out from the redundancy of
the RS.

7.3.1 Fixed Space Overhead Scenario

The first scenario of study has a fixed storage overhead k = 2.5 for both systems. Then,
for the chosen value s = 16, the redundancy r in RS is r = 24. Consequently, for the
Hybrid system the redundancy is only r′ = 24− 16 + 1 = 9.

Threshold value of RS. When the above parameters are fixed, the choice of the threshold
value r0 gives the trade-off between the bandwidth and data loss rate for the RS system
(see Figure 7.6). As we have seen in Section 7.1.2, when r0 is close to r, the RS system
consumes a lot of bandwidth. The extreme case is the eager reconstruction, r0 = r − 1:
in our scenario, it consumes 645 kbps per peer (to maintain 64 GB per peer). However,
the benefits in loss rate are enormous, the RS achieves a loss rate of 10−29 block per
hour (data lifetime of 1024 years). When decreasing the threshold r0, the improvement
of bandwidth is very pronounced when r0 is close to r. Then the gains become less
important when it approaches to 0 (this behavior can be explained by the Harmonic
sum factors in Equations 7.5 and 7.6 giving the bandwidth consumption of RS systems).
Conversely, the loss rate increases exponentially when r0 decreases (Equation 7.4).

Comparison with Hybrid. Note that the Hybrid system has no threshold value to tune:
its bandwidth and loss rate are constant in this experiment. We remark that, for the eager
case (r0 = r − 1), the RS system consumes s times more bandwidth than the Hybrid
system. This can be explained from Equations 7.3 and 7.6: BWRS/BWHybrid ≈ s, but, at
the same time, it has a loss rate smaller by a factor of at least α(s−1).

We confirm that, for a given storage overhead, the RS system is a better option than the
Hybrid to achieve low values of loss rate, but this comes at the cost of a very high bandwidth
demand.

However, when using the Hybrid solution, one can obtain a reasonable value of loss
rate while using much less bandwidth for maintenance. For example, Figure 7.6 shows
that, for an RS with threshold r0 ≤ 7, the durability of the Hybrid is better. Moreover,
the Hybrid consumes much less bandwidth. For instance, when r0 = 6, the durability of
Hybrid is two orders of magnitude smaller than RS. It comes with a gain in bandwidth
of 34% (the Hybrid consumes 42.5 kbps instead of 64.5 kbps of the RS). In the following,
we see that these gains are even much larger when there is more available space.
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Figure 7.6: Comparison of the bandwidth usage and loss rate of RS (s = 16, and r = 24)
and Hybrid (r′ = 9) systems and for different values of reconstruction threshold r0. Both
systems consume the same storage space.

7.3.2 Same Bandwidth Usage

In this scenario, we compare systems with the same bandwidth usage and increasing
levels of redundancy. That is, we study the question: for a given bandwidth usage, which
system is more durable? We show that the Hybrid is a better option in this case.

To compare the systems in this scenario, we need to choose the value of the threshold
r0 for which we have approximately the same bandwidth usage. This can be done by
equaling the approximations for bandwidth usage in both systems (Equations 7.3 and
7.6). We can then numerically isolate the term r0 in function of s and r and choose the
largest value of r0 that gives a bandwidth consumption close to the Hybrid solution.

Figure 7.7 shows the experiment with increasing values of the redundancy r, from 16
to 48 (i.e., space overhead between 2 and 4). We see that, while using the same or less
bandwidth, the Hybrid achieves a loss rate of many orders of magnitude smalller than
the RS.

The explanation is that, starting from the eager RS system which has a very small
loss rate (see Figure 7.6), we lower the threshold value r0 to reduce the bandwidth con-
sumption. We have to lower a lot this value to obtain the same bandwidth than Hybrid
and lowering r0 increases the loss rate exponentially, see Equation 7.4.

Remark that, for the range 16 ≤ r ≤ 26, we have straight lines for RS in the plots.
This is due to the fact that, for these values of r, we have to lower the threshold to r0 = 0.
In other words, there is no value of r0 that matches the bandwidth of the Hybrid in these
cases.

We confirm that, for the same amount of bandwidth usage, the Hybrid gives a much more
durable solution (for the same space overhead). We conclude that the Hybrid uses the band-
width much more efficiently than the RS, since its reconstruction process does not waste
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Figure 7.7: Comparing systems (s = 16) with the same Bandwidth usage and increasing
redundancy (i.e., storage space). For the RS system, choose the r0 that gives the closest
bandwidth usage of the Hybrid. Both systems consume the same storage space.

any transferred information (see discussion of Section 7.1.2).

7.3.3 Same Durability

In this scenario, we compare systems with the same loss rate for increasing values of
redundancy. Figure 7.8 shows an experiment with r varying from 16 to 48 (we remind
that r′ = r− s+ 1). The threshold value of RS is chosen to give the same loss rate than the
Hybrid. That is, pick the smaller r0 that gives a durability close to the Hybrid. Actually,
this value can be calculated using the approximated formulas, by equaling the equations
giving Pdead (Equations 7.1 and 7.4). We roughly obtain that the sought-after value of r0

is r0 ≈ r− s− 1. Note that it gives r0 = r′ − 2.
As an example, when r = 32 (k = 3), both systems get a loss rate of 10−20, but the

Hybrid consumes 32% less bandwidth.
We confirm that, to achieve the same level of durability, the Hybrid system consumes less

bandwidth than the RS (for the same space overhead).
In this study, we first consider the Hybrid system corresponding to a fixed storage

overhead. We then found an RS system with the same durability. Conversely, for a given
storage overhead, if we choose an r0 for the RS system, there exist a Hybrid system with
the same (or better) durability if r ≥ s + r0 + 1 (coming from r0 = r′ − 2), i.e., the storage
overhead is more than 2s+r0+1

s . Otherwise, there exists no Hybrid system for the targeted
durability.

For system designers, if the most scarce resource is the bandwidth, then it is interest-
ing to pay a little bit in space to be able to use an Hybrid solution. This way, they have a
system that consumes less bandwidth and is more reliable.
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Figure 7.8: Comparing systems with the same Loss Rate and increasing redundancy (i.e.,
storage space). For the RS, choose the smaller r0 that gives the same or better loss rate
than Hybrid (i.e., r0 ≈ r− s + 1). Both systems consume the same storage space.

7.3.4 Mixing Hybrid and RS

In what precedes, we show that, if we target a given durability, the Hybrid is an inter-
esting and a feasible solution when the amount of storage space available is more than
twice the original data (storage overhead k ≥ 2s+r0+1

s ). In this section, we study the fol-
lowing problem: is it possible to perform better than the RS system when the storage overhead
is less than this value?

For system designers that are ready to cope with some additional implementation
complexity, we present a new system, namely Mixed system. The idea is simply to store a
full-replica of the data for some of the blocks of the system, when the others use a simple
RS redundancy. We show that this Mixed strategy allows to improve the bandwidth use
of systems with a small storage overhead.

Building a Mixed system. When the storage overhead k is fixed, we can use an RS
system with r = (k − 1)s. The threshold r0 is then chosen according to the targeted
system durability. Note that in this system, a space of r− r0 redundant fragments is used
to lower the bandwidth usage (Equation 7.5). It is not necessary to obtain the desired loss
rate (Equation 7.4). We try in the following to use this extra space to build full-replica for
some blocks.

In a Mixed system with a storage overhead of r, some blocks are coded with RS with
a redundancy of R ≤ r and the others with Hybrid with r′ = r0 + 1. The two kinds of
blocks have approximately the same durability with this value of r′. The proportion of
blocks that can employ a Hybrid system can be calculated by F = (r− R)/(s + r0 + 1−
R). An RS system with redundancy R uses s+ R fragments. Hence, r− R is the space left
when we have coded a block with a redundancy of R (instead of r). A Hybrid system
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uses 2s + r0 + 1 fragments. Hence, we can build a Hybrid block with s + r0 + 1 − R
additional fragments.

Figure 7.9 (left) shows the fraction F of Hybrid blocks versus RS when increasing the
redundancy R (from 9 to 20), for a fixed s = 16, r0 = 8, and r = 20 (remark r− r0 < s).

We now have to find the best R in terms of bandwidth usage. Two contradictory ef-
fects appear: when decreasing R, more blocks can be coded in the more efficient Hybrid.
However, at the same time, the RS consumes more bandwidth. The extreme case is the
inefficient eager RS.
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Figure 7.9: Evaluation of a Mixed system with maximum redundancy r = 22 for different
values of RS redundancy R ≤ r. Left plot, the proportion of blocks using the Hybrid
for different values of R. Right plot, the corresponding bandwidth consumption. The
dashed vertical line represents the best Mixed system.

To discover the best proportion of RS and Hybrid for a given r, we experiment all
values of R from r0 + 1 to r. Figure 7.9 (left) shows the bandwidth of a Mixed system.
The straight line is the traditional RS system with r = 20. It is shown as a reference.
When R = 17, the bandwidth consumption get the optimal value (in this case, the frac-
tion of blocks that have a full-replica is 62.5%). It represents an improvement of 15% in
bandwidth. When R = 9, the RS is in eager reconstruction. The remaining r − R = 13
fragments can be used to keep a proportion of 81.25% of blocks with a Hybrid system,
but for this value of R we note that the Mixed system performs poorly compared the RS.
In the opposite case, when R = 20, there is no extra space to build Hybrid blocks and all
blocks employ the RS.

Benefits of the Mixed System for different storage overheads. We now consider differ-
ent storage overheads: redundancies r from r0 + 1 to r0 + s. Note that the limit redun-
dancy r0 + s offers a space sufficient to build a complete Hybrid system. For each value
of r in the previous interval, we build the best Mixed system in terms of bandwidth by
selecting the best value of R.
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Figure 7.10: Evaluation of the Mixed system for different space overheads (values of
redundancy r). The Mixed is an interesting solution when the space overhead does not
allow a full Hybrid solution k < 2s+r0+1

s , but when k is not too low (more precisely, when
16 ≤ r ≤ 24).

The benefits of the Mixed system can be seen in Figure 7.10. This experiment shows
the bandwidth and loss rate for different values of the redundancy r from 9 to 25. We
see that for very low values of redundancy, there is no advantage of using the Mixed
solution. However, for 16 ≤ r ≤ 25, the Mixed system is a better option (lower band-
width and lower loss rate) than the traditional RS. When r = 25, there is enough space
to employ the Hybrid system, which is the best solution in bandwidth and loss rate.

7.4 Conclusion

In this study, we compare the trade-offs between durability, bandwidth usage and stor-
age overhead of the Hybrid system against a traditional Reed-Solomon erasure code.
In practice, since the bandwidth is costly, we confirm that the Hybrid is an interesting
solution to obtain a durable system with a minimal bandwidth usage. This advantage
comes at the cost of additional storage overhead. On the other hand, when the space is
the scarce resource, we show that the traditional RS system is more efficient in space to
achieve a desired durability. However, this comes at the cost of high bandwidth usage.

When the storage overhead is not sufficient to use the Hybrid, we propose a simple
Mixed system that is better than RS in terms of bandwidth and loss rate. This shows
that different strategies to mix RS and replication can be imagined. The conception of an
optimal strategy has still to be investigated.



CHAPTER 8

Concluding Remarks and Future
Research

The contributions of this thesis belong to two domains of science. On one side we have
the analysis of a dynamic system that is complex by nature: a large-scale peer-to-peer
data storage system with billions of entities interacting with each other. This magni-
tude incites the research on novels techniques that harness its dynamics. On the other
side, we bring practical results that can be directly applied to the development and im-
plementation of peer-to-peer data storage systems. Our results show how to measure
and improve the system reliability while keeping a reduced consumption of resources.
A brief summary of these contributions are presented in the next section. Then in Sec-
tion 8.2 we outline avenues for further research.

8.1 Results and Methodology

Instead of studying the detailed peculiarities of a specific storage system, we tried to
move our analysis towards the modeling of its general behavior. This way our contribu-
tions are more general as well. Altough, throughout this dissertation, we kept our focus
on the same systems metrics: bandwidth consumption, probability of losing data, and
space usage. Then, we walked through many different design choices that impact their
performances.

Using a Markov Chain model we characterized the average behavior of an erasure
coded storage system that employs a lazy repair. Then we derived closed-form math-
ematical expressions that give the intuition of the system metrics. These expressions
bring into light the relation between the main system parameters, and take into account
the peers’ failure rate and data repair rate. This model and its formulas were validated
by simulations (Chapter 3).

The simulations gave us another interesting insight about the dynamic evolution of
the system. The variations around the mean behavior are very important for provision-
ing its resources. Hence, we developed a fluid model that captures that dynamic and
that allows us to give all the variations around the mean behavior (Chapter 4). Continu-
ing on the same way, we went through a more detailed study of the repairing processes
of the missing redundancy. We developed a queueing model that gives a refined distri-
bution of the reconstruction time for a given limit of peers bandwidth (Chapter 5). This
model takes into account the important impact of the peer imbalance on the repair time,
and henceforth of the increased probability of data loss.
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Additionally to these general studies, we show by simulations the impacts of differ-
ent data placement strategies on the system metrics. We highlight the needs of a large
neighborhood size to cope with the bursty characteristics of bandwidth consumption
(Chapter 6). Furthermore, we study in detail the use of Hybrid coding solution that
mixes the use of erasure coding with replication. We claim that, in practice, this is the
solution of choice when implementing such storage systems (Chapter 7).

In brief, all these studies show that a distributed large-scale data storage solution can
be optimized to consume less resources while keeping its reliability. At this moment,
there are already some commercial solutions and open-source efforts to deploy such a
system, which gives us an extra motivation to continue our efforts on building efficient
solutions to improve its performance.

Analyzing a dynamic system that evolves over time is a challenging task. From our
point of view, the techniques and methodologies that were used to obtain our results are
themselves contributions. Indeed, we used several tools to address the “same” problem
from different angles. That is, to obtain the results mentioned above, we went through
a cyclic process of trying different methodologies to estimate the system metrics and to
understand their dynamic behavior. Our methodology was usually to start by creating
a simulation model, then deriving the mathematical models to characterize its behav-
ior. During this processes of validation, the analytical models were solved by numerical
computations and verified using mathematical software packages. Also, we point out
the importance of the experimentation using a grid testbed to check if our models were
close to a real system.

8.2 Future Research

It is clear that digital data storage is a main concern of the modern society. The use
of large-scale data storage solutions is not yet in the mainstream. But we do believe
that they will turn into a popular solution in the next years. Indeed, the emergence of
cloud computing infrastructures is already pushing forward the demand of online data
storage. Further on, the magnitude of these global services turns them into a large-scale
storage system by itself, i.e., with the same issues and challenges of a peer-to-peer system
but in a controlled environment.

In a short term, there are many issues to be studied that could be done by using the
techniques that we used throughout this dissertation:

- Transient-phase. We focused on the steady-state properties of the system, which
already gave us a good understanding of its behavior. However, not less important than
that is the dynamic behavior of the transient phase of the system, i.e., when the amount
of peers and the amount of data keep increasing.

- Time-dependent failure models. Another point is to study different models of
peer availabilities and failures that depends on the past history of the peer. For example,
failure models in which old disks have more probability to fail.

- Churn during reconstructions. As briefly mentioned, there are many churn models
to characterize the dynamics of the network. However, to the best of our knowledge no
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study of peer-to-peer storage systems do consider a complex churn model while model-
ing the reconstruction process. That is, during the reconstruction process the peers can
leave and come back. Hence, one should consider the minimum time window that all
the related peers of a reconstruction were available to transfer the fragments.

- Scheduling strategies. We pointed out by simulations that the scheduling strate-
gies when processing the reconstruction of data blocks greatly impacts the reconstruc-
tion time. Hence, by simulations we show that the use of the most-damaged scheduling
can reduce the data loss rate. Although, the development of analytical models for this
scheduling strategy has yet to be done.

In a long term research, we aim at studying different techniques, as described in the
following:

- Simulating large systems. When we want to validate a new model or a new system
architecture, we often need to simulate the system. As the goal is to see if such systems
can scale, we need to simulate large systems, with sometimes millions of peers with large
disks, accounting for billions of chunks of data. It becomes impossible to accomplish on
a single machine, leading to questions about efficient distributed simulations.

- Simulating rare events. We want to simulate practical systems with a very small
probability of losing data, e.g., of the order of 10−20 during one year. It would take a
prohibitive simulation time to see occurrence of loss events. A common procedure is
to tune the parameters to induce the appearence of such rare events. Although, this
can bias the results. Hence, we should consider the use of different techniques to study
rare events. For example, with the use of mathematical frameworks as the importance
sampling of Monte Carlo simulations.

- System size. For most of the peer-to-peer applications there is a common sense
that having larger networks is much better than smaller networks. For example, in file-
sharing or content distribution applications the system bahaves better when the network
is large (it makes easier to find peers that have the requested content). However, in peer-
to-peer storage sytems the gains of having a very large network maybe do not pay the
costs of maintain it. Thus, one can imagine to split the big system into small independent
sub-systems. This incites the research on the optimum size of a sub-system that keeps the
desired performance metrics of the whole system. Further on, the analysis of a smaller
system is more tractable.

- Combinatorial problems. We are also interested in more theoretical problems. For
instance, the efficiency of the bandwidth utilization by the repairing process of erasure
codes can be improved. We aim at developing combinatorial algorithms to calculate the
best matching of reconstructor peers and of sending peers. That is, how to choose the
best combination of peer connections to improve to efficiency of the network utilization.
Another example is the optimal placement strategy of the redundancy fragments on
disks, aiming at minimize the variations of bandwidth consumption when a disk fails.

— that’s all folks —





APPENDIX A

The Use of Evolving Graphs for
Performance Evaluation of Routing

Protocols for Dynamic Networks

The assessment of routing protocols for mobile wireless networks is a difficult task, be-
cause of the networks’ dynamic behavior and the absence of benchmarks. However,
some of these networks, such as intermittent wireless sensors networks, periodic or
cyclic networks, and some delay tolerant networks (DTNs), have more predictable dy-
namics, as the temporal variations in the network topology can be considered as deter-
ministic, which may make them easier to study. Recently, a graph theoretic model – the
evolving graphs – was proposed to help capture the dynamic behavior of such networks,
in view of the construction of least cost routing and other algorithms. The algorithms
and insights obtained through this model are theoretically very efficient and intrigu-
ing. However, there is no study about the use of such theoretical results into practical
situations. Therefore, the objective of our work is to analyze the applicability of the
evolving graph theory in the construction of efficient routing protocols in realistic sce-
narios. In this study, we use the NS2 network simulator to first implement an evolving
graph based routing protocol, and then to use it as a benchmark when comparing the
four major ad-hoc routing protocols (AODV, DSR, OLSR and DSDV). Interestingly, our
experiments show that evolving graphs have the potential to be an effective and pow-
erful tool in the development and analysis of algorithms for dynamic networks, with
predictable dynamics at least. In order to make this model widely applicable, however,
some practical issues still have to be addressed and incorporated into the model, like
adaptive algorithms. We also discuss such issues in this study, as a result of our experi-
ence.

The results presented here were published in [5] (best student paper award), and [7, 8].

A.1 Introduction and Motivation

Wireless communication networks have become increasingly popular in the computing
industry and are widely available in our every day life. A MANET (Mobile Ad hoc
NETwork) is a collection of mobile devices that are dynamically connected in an arbitrary
manner, without the aid of any established infrastructure or centralized administration
[143, 166]. These mobile devices with wireless transmitters are called nodes. When two
nodes want to communicate, they may not be within each other’s range, but they may
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communicate if other nodes between them also participate in the network, acting as
routers, forwarding packets to the other end. These are called multi-hop wireless ad hoc
networks.

In several environments these nodes are free to move and they may have nonuni-
form characteristics, driving the emergence of complex ad hoc networks that may have
a highly dynamic behavior. Thus, a large number of routing protocols have been devel-
oped for MANETs [165, 134]. Besides the mobility, such protocols must deal with the
typical limitations of these networks, like energy limitations, low processing capacity,
low bandwidth, and high error rates [143].

There are different approaches which try to optimize the cost of a routing path, but,
until recently, most of them did not take into account the fact that some MANETs may
have known connectivity patterns, as in DTNs [170, 150] such as LEO satellite net-
works [147, 141] and Wireless Sensor Networks (WSNs), where, due to energy limita-
tions, network nodes can be scheduled to sleep in given periods [167, 163, 134, 152].

In this kind of networks, the topology dynamics at different time intervals can be
predicted (see Fig. A.1). Therefore, the performance evaluation of routing protocols
should be easier, although a formal tool for benchmarking such protocols has yet to
become a standard.

A.1.1 Our contribution

In this study we use evolving graphs (EG) – a formal abstraction for dynamic networks
[146, 139] –, in order to design and evaluate least cost routing protocols for MANETs
with known connectivity patterns. These protocols are then used as benchmarks for es-
tablishing fair comparisons between the four MANET routing protocols, namely DSDV
[156], DSR [151], AODV [157] and OLSR [149]. This is done through extensive simu-
lations using NS2 within different scenarios. It is important to note that the previous
protocols were designed to work within connected networks, as they are based in store-
and-forward techniques, and not on store-carry-forward as the EG techniques. However,
the EG routing protocols can be used as a lower bound reference.

We note that the algorithms and insights previously obtained through the EG model
are theoretically very efficient and intriguing. The central objective of our work is thus to
assess the usages of these theoretical results in practical situations, where packet drop-
ping, for instance, may pose unexpected challenges to the EG algorithms. As an exam-
ple, although we do not limit the buffer size on the nodes, we do propose an extensive
discussion on the nodes’ transmission queues.

The remainder of this work is organized as follows: After presenting the related
works, in the next section we describe the concept of evolving graphs. The routing proto-
cols to be compared are defined in Section A.4. Section A.5 shows the simulation envi-
ronment and the decisions made in the implementation. Section A.6 and A.7 present the
simulation results and analyses. We close the study with our conclusions and avenues
for future research in Section A.8.
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A.2 Related Work

It is interesting to note that the theory of Evolving Graphs is contemporary with the
formulation of DTNs, although they followed different objectives. The EG theory for-
malised in a graph theoretical framework the concept of networks with known connec-
tivity patterns. It focussed both on graph theory structural properties and on routing
issues related to the optimisation of packet delivery between two nodes, using one of
the following criteria: foremost, shortest, or fastest journey [135, 139, 146].

On the other hand, research done in the field of DTNs usually assume only partial,
or even no knowledge about future connectivity patterns [144, 170]. Noticeably, how-
ever, some research done in DTNs do assume known connectivity patterns, as in [150],
where the authors propose a Linear Programming solution when full future connectivity
knowledge is available. Some other algorithms which require less knowledge were also
presented. For the sake of conciseness, we will refer henceforth to networks with full
future connectivity knowledge as deterministic DTNs, or DDTNs for short.

Another difference is on the model, where bounded buffers were considered on the
nodes. In our work, we assume unbounded buffers, although we use bounded buffers
for message transmission. In [161] the authors also propose a deterministic solution
based on a tree construction, which considers in a simplified way the message transmis-
sion time.

In [164] the authors studied in detail the single-copy case, that is, for a message trans-
mission there is only one copy of the message on the network, which is the same as-
sumption used in the EG model, as described our study. They present an "Oracle-based"
optimal algorithm and several other partial knowledge algorithms. In their paper there
were no details on the possible congestion of the "Oracle-based" algorithms, which is one
of the main contributions of our work presented here.

Another work which considers predictable behavior is [154] that presents a shortest
delay path routing with a complete knowledge of future connections. It also compares
this algorithm with Hot potato, Most Frequent Neighbor and Epidemic Routings. How-
ever, there is only a very small experiment on the delays with bursty traffic.

Finally, a close approach aiming at benchmarking routing protocols in dynamic net-
works is the MERIT framework [145]. It uses the notion of competitive analysis [142]
on a dynamic setting in order to assess the quality of protocols studied on snapshots
describing the history of the network. The results proven include finding a sequence
of paths that connect a given pair of nodes throughout the system, such that the global
routing plus re-routing costs are minimized.

A.3 Evolving Graph Model

The evolving graph (EG) model, proposed in [146] aims to represent a formal abstraction
of dynamic networks, through the formalisation of a time domain in graphs.

As an example, consider the four snapshots taken at different time intervals of a
MANET, as depicted in Fig. A.1. As one can readily observe, nodes D and G are never



158 APPENDIX A. USING EVOLVING GRAPHS FOR ROUTING PROTOCOLS

connected on a single time interval. Notwithstanding, D can indeed send messages to
G, using the path over time composed of D, C, E, F, G. Surprisingly, this otherwise trivial
fact cannot be directly modeled by usual graphs.
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Figure A.1: The evolution of a MANET over time. The indices correspond to successive
snapshots in time. “Zzz” indicates a sleeping node.
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Figure A.2: Evolving graph corresponding to the MANET in Fig. A.1. Edges are labeled
with corresponding presence time intervals. Observe that {E,G,F} is not a valid journey,
since the edge {G,F} exists only in the past with respect to {E,G}.

Concisely, an evolving graph is an indexed sequence of τ subgraphs of a given graph,
where the subgraph at a given index corresponds to the network connectivity at the time
interval indicated by the index number, as shown in Fig. A.2.

The time domain is further incorporated into the model by restricting journeys (i.e.,
the equivalent of paths over time) to never move into edges which only existed in past sub-
graphs. A journey in an evolving graph is thus a path in the underlying graph whose
edge time-labels are in a non-decreasing order. Now, it is easy to see in Fig. A.2 that
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D, C, E, F, G is a journey, as mentioned above. Further, note that D, C, E, G is also a jour-
ney, with less hops, but delivering the message later (in time interval 3 instead of 2),
giving raise to different objective functions that may be optimized.

A.3.1 Journey Metrics

In the pursue of an optimal journey in networks with known connectivity patterns, three
metrics have been formalized until now for EG [139]. They are the foremost, shortest, and
fastest journey, which find, respectively, the earliest arrival date, the minimum number of
hops, and the minimum delay (time span) route. These three parameters can be individ-
ually optimized in polynomial time [139].

We use in this work the Foremost Journey algorithm, which computes from a source
node s the journeys that arrive the earliest as possible on all other nodes. The algorithm
to compute such journeys can be seen as an adaptation of Dijkstra’s shortest paths algo-
rithm [142], and is detailed below.

A.3.2 Foremost Journey Algorithm

Remind that, in order to compute shortest paths, the usual Dijkstra’s algorithm proceeds
by building a set C of closed vertices, for which the shortest paths have already been com-
puted, then choosing a vertex u not in C whose shortest path estimate, d(u), is minimum,
and adding u to C, i.e., closing u. At this point, all arcs from u to V − C are opened, i.e.,
they are examined and the respective shortest path estimate, d, is updated for all end-
points. In order to have quick access to the best shortest path estimate, the algorithm
keeps a min-heap priority queue Q with all vertices in V − C, with key d. Note that d is
initialized with ∞ for all vertices but for s, which has d = 0 (in terms of routing protocols,
d needs to be initialized with the current time t).

The main observation in Dijkstra’s method is that prefix paths of shortest paths are
shortest paths themselves. Unfortunately, the prefix journey of a foremost journey is not
necessarily a foremost journey (e.g., considering the EG in Fig. A.2, a message sent at
time interval 1 from A to G can use the journey A, B, E, G, with the packet reaching G at
time interval 3. The prefix journey A, B, E will reach E at time interval 2, although this is
not a foremost journey from A to E, which is in fact A, B, C, E, arriving at moment 1). On
the other hand, it was proven that there exists at least one foremost journey with such a
property in an evolving graph [146, 139].

To compute the Foremost journey starting at time t from s to all other nodes, we use a
direct adaptation of Dijkstra, sketched below, as detailed in [139]:

1. Set d(s) = t, and d(u) = ∞ for all other nodes.

2. Initialize min-heap Q, sorted by d, with only s in the root.

3. While Q 6= ∅ do

(a) x ← root of heap Q.
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(b) Delete the root of heap Q.

(c) For each open neighbor v of x do

i. Compute first valid edge schedule time greater or equal to current time
step

ii. Insert v in the heap Q if it was not there already.
iii. If needed, update d(v) and its key.

(d) Update the heap Q.

(e) Close x. Insert it in the foremost journeys tree.

At the end, we have a tree with the Foremost journey traversal paths from s (starting
at time t) to all other nodes.

Note that the computation of the first valid edge schedule done at the inner loop may
take into account the traversal time for the edge, i.e., the duration of the transmission, if
needed. This is the case of timed evolving graph [146].

A foremost journey from a source node s to all other nodes can thus be computed in
O(M(logδE + logN)) time, where N is the number of vertices, M is the number of edges
and δE is the maximum number of presence time intervals over all edges. The term logδE

stems from the lookups into the schedule list of intervals, which is required to decide the
earliest time interval in which to cross each visited edge.

The routing protocol originated by this algorithm will be henceforth referred to as
EGForemost and is detailed in next section.

A.4 Routing Protocols for MANETs

A great deal of work has been produced comparing the performance of the four main
MANET routing protocols, namely DSDV, DSR, AODV and OLSR, that were designed
to provide routes in connected networks [137, 138, 143, 158, 149].

The first of these routing protocols, Destination-Sequenced Distance Vector (DSDV)
described in [156], is a proactive table-driven protocol based on the distributed Bellman-
Ford algorithm, with loop-freedom improvement. Each node has a routing table for all
reachable nodes, which stores for each destination the next-hop, the number of hops,
and a sequence number. DSDV requires periodical flooding to update the routing table.

Dynamic Source Routing (DSR) [151] is a reactive protocol, allowing nodes to dynam-
ically discover a route to destination, on demand. Such routes are stored in a route cache
to enhance the performance. Source routing means that each packet carries in its header
the complete ordered list of nodes (the path) to the destination, so that the forwarding
nodes do not need to have the routing information. There is a clear compromise between
the size of routing tables and packet size.

The Ad-hoc On-Demand Distance Vector Routing (AODV) [157] is based on DSDV
and DSR. AODV is also a reactive protocol, which requests a route when needed, and
maintain a traditional routing table to destinations in use. A routing table entry is expired
if not used recently.
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Finally, Optimized Link State Routing (OLSR) [149], is a proactive table-driven proto-
col and inherits the use of link state algorithm, using shortest path first forwarding. It
periodically exchanges the topology information with neighbors, and every node main-
tains the topology of the whole network. To minimize flooding, OLSR uses nodes that
act as Multi Point Relays (MPR). Only these special nodes are responsible for forwarding
control traffic. As DSDV, this is a proactive protocol, so the routing paths are available
immediately when needed.

There are many other routing protocols [166, 134] with specialized characteristics. We
are not going to evaluate them here, mainly because this experiment aims to compare
EGForemost with massively tested and analyzed protocols, as are the four above.

The EGForemost protocol

One of the objectives of this work is to investigate the behavior of the EG foremost algo-
rithm as a theoretical optimal routing protocol. In this respect, it is important to mention
that its implementation as a distributed routing protocol, i.e., with control messages to
distribute the EG, keeping it up to date and fail safe mechanisms, is out of the scope of
this study. Therefore, we assume that all nodes have the knowledge of the EG, which
makes straightforward the implementation of the protocol. This is still true if the as-
sumption holds for transmitting nodes only.

Let edge schedules be a set of time intervals representing the existence of link-
connectivity between two nodes. An edge exists when two nodes are in the range of
each other. The evolving graph of a dynamic network can be represented by a list of edge
schedules for each pair of nodes. Thus, each node has a list of its neighbors at a given
time (as detailed in Section A.5.1, the EG is calculated from the mobility scenario and a
well known transmission range).

When a packet arrives at the routing layer of node u at time tnow, the node computes
the foremost journey (as shown in Section A.3.2) from the packet source to its destination.

Suppose that the journey next hop is the node v at time tv. If tv = tnow, then both
nodes are in the range of each other (i.e, there is an edge in edge schedules of (u, v) at time
tnow), and the packet is readily forwarded to v. Otherwise, if tv > tnow, the nodes are
not reachable, and the node u must schedule the transmission of the packet to the time
tv ahead. This is the earliest feasible edge present in edge schedules of (u, v) with time
greater than tnow.

In Table A.1 we show the corresponding edge schedules as shown in the example of
Fig. A.2. Note that the edge schedules are the presence time intervals at the labels.

As an example, the foremost journey for a message sent at time index 1 from D to G
will be D, C, E, F, G. The packet will reach F at the same time index 1, then afterwards F
will schedule to send the packet to G at the earliest edge presence in the edge schedules of
F− G. Hence the packet will be sent by F at time index 2.

If two routes have the same time length when computing the foremost journey, the
one with less number of hops will be chosen for routing, and if they even have the same
number of hops, the route with the smaller node ID will be chosen. This ensures a total
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Table A.1: Edge schedules for the EG in Fig. A.2.

Node pair Edge schedules
A – B 1, 2, 3
A – C 4
A – D 4
B – C 1, 3
B – E 2
C – D 1
C – E 1, 3, 4
E – F 1, 4
E – G 3
F – G 2

order when choosing nodes (i.e. sorting nodes in the heap).
In the examples above, the edges traversal times are not taken into account, for the

sake of a simpler illustration. In the implementation and in all simulations the edge
traversal time was indeed estimated (we include a discussion about it in Section A.7.1)

A.5 Simulation Environment

We have conducted our performance analyses using the NS2 [155] simulator version
2.31, with the mobile extensions by CMU Monarch which provides IEEE 802.11 Medium
Access Control (MAC) protocol [148], and realistic radio and physical layer with the
Two Ray Ground propagation model. The radio model uses characteristics similar to the
802.11g standards, modeled as a shared-media radio with a nominal bit rate of 54 MB/s
and an omni-directional antenna with nominal propagation range of 50m. The RTS/CTS
radio scheme was turned on in our experiments.

In the simulations, 60 nodes are randomly placed in terrains with size varying from
300m x 300m, 300m x 200m and a larger one with 1000m x 1000m area, these parameters
lead to different density of nodes and are discussed ahead. The simulation time is 3000
seconds, and the first 1000 seconds of each simulation are not considered, for the sake of
the stability of the movements [169]. A number of 10 constant bit rate (CBR) UDP traffic
flows are chosen between node pairs (nodes 1 to 10 are the transmitters and nodes 40 to
49 are the receivers). The average traffic rate is one packet/sec, with 256 bytes long packets.
Each flow starts to generate packets at random at instant 1000 seconds of simulation
and remains transmitting until the end. This low data rate is chosen to address a sensor
network-like environment, where dedicated sensor nodes are constantly collecting data.
The interface queue length at link layer (IFQ) was doubled from the default 50 packets to
100 packets at each node. We do not use TCP for the simulations, as we did not want to
investigate TCP particularities, which uses flow control, retransmit features and so on.
We are solely interested in the behaviour of the routing protocols.

In these experiments (in contrast with [5]) we decided to disable the ARP (Address
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Resolution Protocol) of mobile nodes, agreeing with the arguments in [140] by Carter, Yi
and Kravets, in that MANETs need to have their own ways of neighbour discovering.
This is because, in NS2, the address resolution is an approximation of the BSD Unix
ARP, so the resolution is performed on-demand as packets arrive from the application
layer, and the buffer size to each neighbor is only one single packet. When an address
resolution is in process, all incoming packets to the same destination will be dropped.
This leads to a great amount of dropped packets in ARP mode.

Therefore, in our simulations we assume that each node has the IP and MAC ad-
dresses of its neighbours.

A.5.1 Mobility Models

We divided our experiments into two separate kinds of scenarios. One uses the popular
Random Waypoint (RWP) model [151], while the other uses a new mobility model, called
Intermittent Model, which is more suitable to the case of WSNs and is explained below.

Random Waypoint Mobility Model

In the Random Waypoint (RWP) mobility model, a mobile node moves to a randomly
chosen location, with speed randomly chosen from 1 to 3 m/s according to a uniform
distribution, and pauses for a uniformly chosen time between 0 and PAUSETIME. The
simulation was run with values of PAUSETIME varying from 0 (continuous motion) to
1500 seconds (very low mobility in the network). To avoid known problems of the RWP
model, as shown in [169], we are using only non-zero values of minimum speed. The
use of this classical scenario, yet with its known limitations, is important to compare the
results with other performance studies. The program BonnMontion from the University
of Bonn [136], was used to generate these scenarios.

Intermittent Mobility Model

This mobility model is based on fixed nodes whose positions are chosen randomly with
uniform distribution. The nodes remain uninterruptedly turning themselves on and off
(awake and sleep) in given periods (see Fig. A.3). Here, the parameters we change are
the SLEEPPROB (ranging from 0 to 50%), and the HOLDTIME (ranging from 15s to 180s).
In the beginning of the simulation each node is awake, and for the entire simulation it
has a SLEEPPROB probability to go to sleep (turning itself off). If a node goes to sleep,
it remains off for a uniformly randomly chosen HOLDTIME. Once this time expires, the
node is turned on and stays awake for another period based on HOLDTIME. If a node
does not go to sleep (probability of 1− SLEEPPROB), it will stay awake for HOLDTIME

before trying again. It is important to point out that HOLDTIME is recomputed at each
state change.

This new model aims to capture the behavior of networks with functioning sched-
ules, like wireless sensor networks. Chapter 7 of [152] presents several related node
models.
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Figure A.3: Lifecycle of a node in the Intermittent Mobility Model.

With the aim of pursuing a constant traffic rate in the network, the nodes which
generate the traffic flows never go to sleep during the whole simulation.

In both models, for each evaluated parameter we created 20 random scenarios with
different random seeds. Therefore, we ran the simulation 320 times for the first model,
i.e., 20 times for each value of PAUSETIME: 0, 100, 200, 300, ..., 1500 seconds, and 440
times for the Intermittent Model, i.e., 20 times for each combination of SLEEPPROB:
0, 5, 10, ..., 50% and HOLDTIME: 15, 180 seconds. Note that in the second scenario we
change two parameters, and the value of 0% of SLEEPPROB means that no one goes to
sleep, hence the network remains static from the beginning to the end of the simulation,
which is relevant as a reference. All five routing protocols (AODV, DSDV, DSR, OLSR,
EGForemost) were run on the same 760 scenarios. Thus, identical mobility and traffic sce-
narios (as they have the same seeds) were used across protocols.

NS2 Implementation Details

Each simulation in NS2 generates a trace file, containing all communications that have
been done between nodes, including the MAC layer. These files were analyzed to con-
solidate the results, which are shown in Section A.6.

The implementations used to evaluate DSDV, AODV and DSR protocols are the ones
provided in the NS2 package. All of them were implemented by the CMU Monarch
group [159]. Concerning OLSR, we used the implementation by Francisco J. Ros [160]
(UM-OLSR) version 0.8.8. In all of them we used the default parameters and constants.
The AODV implementation, as of NS2 version 2.31, contains some further optimization
codes from [158].

In NS2, the node states “sleeping” and “awaken” used in the intermittent model sce-
narios are implemented using the commands on and off already implemented in the
mobile agent. But the last version of NS2 did not work correctly with this command. To
ensure correction, we removed the line that do a reset-state in the command off in
the mobilenode.cc file, which is only used by direct diffusion agent.

In order to generate the evolving graph that will be used as input to our protocol,
we use the following strategy. Mobility in NS2 is usually represented by a script in
Tcl language containing scheduling commands, e.g. setdest, on, or off. In general it is
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saved in a separate file used by the simulation. Therefore, we wrote a program (calceg)
that reads a mobility file used by NS2 and captures the node movements to generate a
corresponding EG. This EG is afterwards used as input for the foremost journey EG
based protocol (EGForemost), as shown in section A.3.2. Note that, to calculate the EG, the
transmission and reception range of each node must be taken into account; in our case
is fixed at exactly 50 meters . We build our EGs from the mobility models after a post
mortem analysis in a continuous way. It does not use any discretization technique. We
calculate analytically the exact moments where the nodes enter in the communication
range of each other, and also when they are not able to communicate anymore.

Before the simulation begins, this EG of the network is distributed among all nodes.
Each node in the simulated network knows the connectivity pattern of the network dur-
ing the simulation. This is important for benchmarking purposes, since the EG may
be generated and used as a reference when developing or tuning routing protocols and
mobility models. Furthermore, there are many practical situations, like those shown in
[153, 141, 168, 147, 134], in which an EG can be built before the routing phase.

From a theoretical perspective, the EG-based protocol can be considered as a dis-
tributed protocol, since there is no central controller. The fact that every node possesses
the full description of the EG is part of the set of our hypothesis. If each node has local
knowledge about future connectivity, then global knowledge might be obtained by a dis-
semination mechanism like the one deployed by OLSR. If this is the case, then a careful
study of the impact of this routing overhead should be conducted.

A.6 Simulation Results

In this section we show the results obtained by simulation of a DDTN composed of
wireless mobile nodes that move around, go to sleep for a while, and communicate with
each other.

As in the case of the mobility models, the results shown here are separated in two
parts, one using the RWP mobility model, and another using the Intermittent Model.

We focused our analysis in four main metrics:

• Average throughput: The average number of packets received per amount of time
(from the first packet sent to the last packet received);

• Average end-to-end delay: The average time between sending and successfully
receiving a packet;

• Ratio of dropped packets by no route (NRTE): Fraction of dropped packets by no
available route per total number of sent packets;

• Ratio of dropped packets by Interface Queue overflow (IFQ): Fraction of dropped
packets by link queue overflow per total number of sent packets. This queue is at the

0The EG implementation and related software can be found at http://www.ime.usp.br/ jm/mobidyn/-
software.
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link layer, i.e., it is used when the routing layer wants to effectively send a packet
to be delivered.

Error bars on the figures indicate a 95 percent confidence interval.

A.6.1 Random Waypoint Mobility Model

As mentioned earlier, in the RWP scenario the control parameter is the PAUSETIME. Low
values of PAUSETIME mean high mobility and high values of PAUSETIME mean low mo-
bility.

As shown in Fig. A.4, the EGForemost performance has the lowest values of dropped
ratio for all pause times, followed closely by reactive protocols. With low mobility (high
pause times), the number of dropped packets raise to 5.7% of the transmitted packets.
DSR has good values compared to others and it is surprising that AODV does not per-
form well (i.e. better than DSR) at high mobility values, in contrast to what was as
shown by Perkins, Royer, Das, and Marina in [158]. This behaviour may be explained by
the very low network load of our simulation (1 packet/s with 10 traffic sources).
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Figure A.4: Drop ratio as a function of PAUSETIME (mobility).

The pro-active, table-driven protocols do not perform well in this first scenario, since
the periodically updated tables do not get updated as fast as needed. The drop-ratio
for DSDV and OLSR are the worst, ranging from 60% in high mobility to 39% in low
mobility simulations, showing that they are very sensitive to mobility. They perform
better when the mobility decreases. Finally, EGForemost produced the best results in this
metric in all RWP simulations scenarios. The theoretical throughput of the network is
1 ∗ 256 ∗ 8 = 2048 bits/s and the EGForemost results are very close to it.

As stated before, the EGForemost, as expected, performed well in the above scenarios,
comforting our claim that it may serve as a benchmark when evaluating the performance
of other protocols on similar mobility models.
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Scenarios with low density of nodes

In the above scenarios, a terrain with 300m x 300m area was used. The coverage ratio,
i.e. the ratio between the sum of nodes transmission ranges divided by the field area
was 5.2. To simulate a scattered scenario we raised the terrain size to 1000m x 1000m,
which leads to a coverage ratio of 0.47. Using this scenario we can measure how routing
protocols behave when nodes remain disconnected for a long time, which is generally
the case of DTNs.
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Figure A.5: Drop ratio as a function of mobility using a low density of nodes scenario.

In Fig. A.5 one can see that regular ad hoc protocols are not adapted to a disconnected
environment. However, the EGForemost protocol shows that a high amount of packets
could still be delivered. In the high mobility scenarios the drop ratio was close to 20%
and it increases to 70% of drops in the low mobility scenarios. It should be noted that the
delivered packets have a high average end-to-end delay, ranging from 285 seconds with
PAUSETIME 0 to 606 seconds with PAUSETIME 1600s.

A.6.2 Intermittent Model

The intermittent scenario is well adapted to DDTNs, since the nodes’ on/off dynamics
are easily predicted or even pre-programmed.

We changed the values of SLEEPPROB from 0 to 50%. High probability to sleep means
that the network has a low connectivity, i.e., a large quantity of nodes are disconnected
from each other because many of them are in sleep state.

The values of HOLDTIME control how slow the nodes change their states (on/off)
or, in other words, how often connections among nodes change. Low values of HOLDTIME

means high dynamics and vice versa. Fig. A.6 illustrates this behavior of the Intermit-
tent Model scenario. In the low connectivity scenarios (SLEEPPROB at 50%) the number
of topology changes for a HOLDTIME of 15s is 12 times the number of those with HOLD-
TIME 180s.
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Figure A.7: Total drop rate as a function of SLEEPPROB (connectivity).

As we will see in the following, this model harness some characteristics of connec-
tivity dynamics that are not captured with the former RWP model.

After some experimentation of the simulation parameters, we reduced the size of the
simulation field to a rectangular 300x200m, so the coverage ratio is raised to 7.85. Other-
wise, the number of dropped packets was very high, as the nodes in these intermittent
scenarios do not move.

In Fig. A.7, we show again that the EGForemost has better values of drop rate. Observ-
ing the results, in the case of high dynamics (HOLDTIME equal 15s), the drop rate of
EGForemost is close to zero in all connectivity scenarios. On the other hand, in the case of
low dynamics (Fig. A.7b), the values of drop rate for EG decrease, with the other pro-
tocols, as the connectivity decreases (from 0 to 50% SLEEPPROB). This EGForemost loss of
performance (reaching 32% less if compared to the rate of flow) is not related to non-
existing routes, because, as shown in the graphics of Fig. A.8, the number of packets
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Figure A.8: Drop packets by NRTE ratio as a function of SLEEPPROB (connectivity).

dropped by NRTE is very low (an average of 5% on the both scenarios).
The values of EGForemost in Figs. A.8a and A.8b show that the number of dropped

packets by NRTE is a lower bound in this metric, i.e., when EGForemost drops a packet by
NRTE, it means that the requested path does not exist in any moment of time. Therefore,
EGForemost may again be used as a benchmark to measure how good the other protocols
are performing.

The increase of the total drop rate on low connectivity scenarios is not due to inexis-
tent routes, but to other reasons analysed below.

A.7 Further analyses and improvements

The goal of the foremost journey algorithm is to calculate journeys that reach the desti-
nation as soon as possible. However, in this process some packets may wait for a long
time for a connection to be established, and this waiting time is computed in the end-
to-end delay metric. In contrast, in the simulation of the other protocols some of these
"late" delivered packets are just being dropped and do not contribute to the end-to-end
delay count. In other words, when using the Foremost Journey EG based routing algo-
rithm, the packets end-to-end average delay is usually larger, even though it was proven
in [139] that EGForemost ensures that the packets will reach the destination as soon as pos-
sible if a journey exists in the network.

This gives the opportunity to add a new parameter MaxDelay in the EG algorithms,
which is the maximum delay time that a packet could wait to be delivered in the DDTN.
If the calculated delay time is greater than MaxDelay, the packet could be dropped in-
stead of overflowing the network.

Now, remind that almost all packets are delivered by the EGForemost protocol (see Fig.
A.4). Hence, to be fair with the foremost algorithm and better perceive the performance
of the EGForemost protocol, we calculated the average end-to-end delay taking into ac-
count only the packets that have been successfully delivered at the destination in all protocols
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Figure A.9: Average end-to-end delay of packets successfully delivered in all protocols.

(i.e. the intersection of received packets). The results in the Fig. A.9 shows EGForemost as
a lower bound in the end-to-end delay in this scenario. The reactive protocols, AODV and
DSR, do not have a smooth curve, due to the induced delays from the route discovering
process. The variance of their values is very high too. It is important to point out the
good performance of the OLSR protocol, very close to that of the EGForemost.

A.7.1 Bottlenecks and Congestion

The intrinsic behavior of EGForemost, namely to schedule packets to be sent when some
connections are established, yields the problem of bottlenecks [162], since a large quantity
of packets are scheduled to be sent at the same moment, and the link interface queue
(IFQ) cannot hold that incoming traffic (its size is 100 packets). Furthermore, the EG al-
gorithm do not have any mechanism to balance the flows and many flows with different
sources could potentially use the same path, even when some other ones are available at
the same cost (i.e. arriving at the same time).

We note that the simulation done using the random waypoint model does not suffer
from this effect. Due to the high mobility of such a scenario, the bottlenecks do not show
expressive values. This characteristic appeared in the low connectivity and low dynam-
ics scenarios of the Intermittent Model, in which the nodes in the evolving graph remain
disconnected for long time periods, and a large quantity of packets are then scheduled
to the moment when these nodes wake-up.

In Fig. A.10 we see the high values of dropped packets by IFQ overflow on a low con-
nectivity scenario (24% of packets are dropped by IFQ at SLEEPPROB 50%).

The histogram in Fig. A.11 shows the number of dropped packets over time for one
single simulation, namely with SLEEPPROB at 50% and HOLDTIME at 180s. It shows that
in EGForemost the packets are dropped in a burst, again because important nodes go to
sleep for a long time and when they wake-up, a large quantity of packets are waiting to
be sent, overflowing the queues that then drop the packets.
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Figure A.10: Number of dropped packets by IFQ overflow on a HOLDTIME 180s sce-
nario.

A.7.2 Congestion with varying flows over time

For the sake of clarity and to allow for comparisons, we show below the results of some
experiments using a variable offered load on the network, since the previous experi-
ments have very low traffic demand.

The same parameters from the intermittent model scenarios were used, but the traf-
fic flow rate was changed during time according to a non negative senoidal curve, with
discretized values of CBR chosen from the following rates: 0.5, 1, 2, 4, 6, 8, 10, 12, ..., 20
packets/second. The gray shaded area in Fig. A.12 represents the rate of traffic gener-
ated in the network by the 10 traffic sources.

Again, the number of dropped packets by EGForemost is the one with high peaks, and
with the increase of traffic rate its behaviour is even worse. Note that, even at time 2000
seconds, when the traffic rate is very low (one packet every 2 seconds) the number of
drops is high. This is due to many packets that are scheduled to be delivered at that
same point in time. Almost all packets dropped by the EG protocol resulted from IFQ
overflow.

A.7.3 Reducing congestion in EGForemost

The discussion above shows the importance of managing the flows of data during time,
even when using EG protocols as a reference. Unfortunately, balancing flows in evolving
graphs is still an open problem in Graph Theory. Therefore, we tried three different
empirical approaches to address the packet dropping problem caused by bottlenecks in
EGForemost (see Table A.2, below):

1. Jitter: Add an enforced jitter (a random value uniformly chosen between 0 to T
seconds) at sending time to each packet. We experimented with values 0.1 and 0.5
of T;
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Figure A.11: Number of dropped packets over time for one single Intermittent Scenario
(SleepProb. 50% and HOLDTIME 180s).

Table A.2: Approaches used to minimize the bottlenecks (Fig. A.13).

Packet IFQlen 500 Jitter 0.5s SmartJitter
p1 t t + rnd(0.5) t
p2 t t + rnd(0.5) t
... t t + rnd(0.5) t
p50 t t + rnd(0.5) t
p51 t t + rnd(0.5) t + δ

p52 t t + rnd(0.5) t + 2 ∗ δ

pn t t + rnd(0.5) t + (n− IFQlen) ∗ δ

2. SmartJitter: Add a fixed size jitter only when some connection is overflown. The
size of this jitter is the same as the average edge traversal time;

3. Increase the IFQ length: Raise buffer size of the interface queue from 100 to 500
packets. We also showed, as a reference, the values with IFQ length of 50 packets.

The results of the experiments with these three approaches can be seen in Fig. A.13.
IfqLen 100pkts is the reference curve, as seen in Fig. A.10. The error bars were removed
from this figure to increase readability, their values were between 0.01 and 0.04, and were
similar among the experiments.

The first approach is the enforced random chosen jitter when sending each packet at
each node, ranging from 0 to one tenth of a second (0.1s) and half of a second (0.5s). In
the average, the number of dropped packets decreased 32% and 75% respectively. One
drawback of this approach is the high values of end-to-end delay, due to the extra time
added at each scheduled packet.
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Figure A.12: Number of dropped packets over time for one single Intermittent Scenario
with varying flow. The SLEEPPROB value is 20% and HOLDTIME is 180 seconds.

The second approach, the SmartJitter, is an improvement of the former. Here, when
the queues (one for each pair of neighbours) are not full, the nodes can send packets to
other nodes without any jitter on sending time. However, when some node fills the IFQ,
then a fixed size jitter is added to each subsequent packet to be sent. The calculation of
the SmartJitter time at node u sending a packet to v at time tv is shown in the following
schema:

if npkts[tv] ≤ IFQlen then
smartjitter = 0

else
smartjitter = δ ∗ (npkts[tv]− IFQlen)

end if
npkts[tv] = npkts[tv] + 1

At the end, the sent time will be tv = tv + smartjitter and npkts[tv] is the number of
packets already scheduled to use the edge from u to v at time tv. IFQlen is the interface
queue length, and δ is the average traversal time of one-hop transmission. We used the
value 3.6 ms in all simulations, which was estimated from the average value of one-hop
transmission with packet size of 256 bytes. The value of the traversal time is linearly
dependent on the size of the packet. This value was obtained through simulations using
similar network loads. The traversal time used in the EG foremost algorithm is the same
estimated δ value.

With the SmartJitter, the number of dropped packets also decreased 75% compared
to the original EGForemost. The values reached by the SmartJitter are similar to ones with
the enforced jitter of 0.5s, thus, in the former case the average end-to-end delay is 10%
less than the enforced jitter.
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minimize the drop rate (enforced jitter, smart jitter and raise de IFQ length to 500pkts).

We note that the best solution is to increase the default length of the IFQ from 100 to
500 packets. In this case, the values of dropped packets decrease 92%. This shows that
the SmartJitter is a good solution when the size of IFQ buffer cannot be changed.

Finally, we tested the introduction of the SmartJitter at the first scheduled packet
(instead of waiting for the queue to become full). However, the end-to-end delay in-
creased, while the number of packets dropped remained roughly the same. This is the
reason why we do not report these results here. As a matter of fact, if the number of
npkts is very high compared to the queue size, a packet could be scheduled to be sent a
long time after its original time tv, at which point the edge could not be there anymore.

A.8 Conclusion

Our contribution in this study is to show that an EG based routing protocol is well suited
for networks with known connectivity patterns, like DDTNs, and that the model as a
whole may be a powerful tool for the development of DDTN routing protocols, even in
practical scenarios.

The EG based protocol has been formalized to provide optimal routing according to
its metrics. We implemented the Foremost Journey and performed extensive simulations
using NS2. We compared the performance of the new EGForemost with four major MANET
protocols: DSDV, DSR, AODV and OLSR. The results showed that the drop ratio by no
available route (NRTE) using EG was the lowest compared to all protocols in all metrics.
Consequently, EG values can be used as a benchmark in many cases.

This first implementation of an EG based protocol opens some avenues for further
detailed research. For instance, a routing bottleneck appears when most used nodes be-
come unavailable for a long period of time, causing overhead when they reappear in the
network, leading to packets being dropped due to collision and queue overflows. The
use of high values of enforced jitter time when sending packets can minimize the drop



A.8. Conclusion 175

rate, but is not feasible in regular protocols. We introduced the SmartJitter as an option
to minimize the congestion and achieved good results. The development of a good EG
adaptive algorithm could possibly manage this problem, anticipating congested nodes
in order to find out alternative routing paths. To date, however, there are no theoretical
results on flows over EG, which is in itself a very interesting open problem.

It should be noted that the high values of average end-to-end delay is an inherent
characteristic of the communication network dynamics. In the case of EG based proto-
cols, on which the foremost journey metric is studied, the end-to-end delay is in any case
the minimum arrival date for a packet. If long delays need to be managed, then one pol-
icy could be to drop packets that are aged in the network, or – even better – use a fastest
delay approach, described in[139], instead of the foremost journey as done here.

Future work includes implementation of other EG based protocols with different
metrics, like shortest path and fastest delay. A natural extension to this work is related to
the deviations in the predicted network dynamics, on which the actual EG used by the
nodes is not accurate anymore. This engenders the utilization of a model with stochastic
predictable behaviour to better address such variations.

Another open question relates to the case where global knowledge does not exist and
it cannot be easily computed locally. In such cases, as suggested by a reviewer, it would
be important to address the trade-off which exists between the amount and accuracy
of knowledge of network topology and the routing performance. In other words, EG-
foremost is a benchmark but its implementation may present a high overhead that is
required to achieve complete knowledge of the topology and its evolution; therefore
the other routing schemes will be compared as achieving different performances with
different routing overheads.

Finally, it would be worth providing a framework that unifies the theoretical power
expressed by evolving graphs with the engineering aspects captured in DTNs with
knowledge oracles. Major advances in the formalisation of dynamic networks are thus
to be expected.





APPENDIX B

Corral - Linux Stackable
Copy-on-Write File Versioning

Device

A very promising feature of modern file systems is the ability to maintain multiple ver-
sions of the stored data. A possible way to keep all this information is to perform peri-
odic snapshots of the system. The copy-on-write (CoW) method tends to be an efficient
way to manage and maintain these snapshots during time.

Our contribution. Based on these techniques we propose the CORRAL system: a
virtual block-device with transparent versioning, which uses the Linux device-mapper1

snapshot as a lower layer. The snapshot method uses a CoW technique to avoid dupli-
cating unchanged blocks between successive versions. As long as the data remains the
same, no duplication is done. The CORRAL system can be used with any file system and
can be implemented without the need of a kernel or module recompile. A fully func-
tional prototype is written in a Perl script with less than 500 lines and some experiments
were done to measure the effectiveness of the proposed system2.

Related Work. Similar to Plan 9 Fossil [96], Write Anywhere File Layout (WAFL) [63]
and Peabody [82], the CORRAL provides periodically snapshots of the entire file system.
However, these solutions are implemented at the file system layer. Our proposal is a de-
vice that can work with any kind of file system. The Clotho Transparent Data Versioning
[50] also share some of its features with our solution, although it has been implemented
as a separated kernel module.

The results presented here appeared in [12].

Device Mapper

A Logical Volume Manager (LVM)3 provides a higher-level view of the storage system
than the traditional view of disks and partitions. Advanced virtualization systems, like
Linux LVM2 or EVMS are built on top of the device-mapper kernel module, which cre-
ates a mapping from the physical sectors of a disk into a logical volume (i.e., block-
device). Every I/O request made to the logical volume is thus routed to the right sector
on one or more physical disks. There are many possible mappings, named targets.

1http://sourceware.org/dm/
2The source code can be downloaded from http://gforge.inria.fr/projects/corral
3http://sourceware.org/lvm2/

http://sourceware.org/dm/
http://gforge.inria.fr/projects/corral
http://sourceware.org/lvm2/
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In our case, the studied target is the snapshot one, which uses the CoW method to
consistently freeze the state of a logical block-device at a determined moment. This
target creates an image of the device, on which all the subsequent changes are written
on a different partition, keeping the original data intact.

Note that the snapshot feature of the Linux LVM2 implementation, that are mainly
used to consistently backup a file system, does not behave exactly as the snapshot device-
mapper described above; more than doing a snapshot the LVM2 uses a target called
snapshot-origin, which creates another layer of virtualization, inverting the roles of the
CoW process.

B.1 CORRAL Design and Architecture

The main goal of the CORRAL is to provide a block level versioning device on top of
device-mapper volumes. The expected characteristics of CORRAL are:

- to work with any file system;
- retention of multiple versions;
- deletion of intermediary versions;
- keep current and versioned data on the same disk;
- easy identification of modified blocks;
- operate on a mounted file system;
- use of standard user level tools.

Initialization: The idea of the CORRAL system is to use all the physical disks or vol-
umes as a container of chunks of blocks. Each chunk has the same size, fixed between 4
and 512KB. Some of these physical chunks are marked as free, and the others are part of
a version on the CORRAL system. The free physical chunks will be mapped to a device
named COW, and the combination of the physical chunks representing the last version
of the system is mapped to a device named PREV. Not yet modified chunks are mapped
using the target zero of the the device-mapper, which behaves similar to the /dev/zero
character-device. See Figure B.1a.

With these two devices we can create a third one, using the device-mapper snapshot
target already described. This device will be henceforth named CURRENT and will be
the one visible to the user, e.g., can be used to install a file system. Any write request
to CURRENT will be redirected to the COW, which is the copy-on-write device of the
snapshot target. Reads from the CURRENT will come from the PREV for unchanged data,
and from the COW if the block was already modified.

Versioning: At any moment it is possible to freeze the CURRENTi device to create a
new image of the system. The steps to create a version i + 1 are the following:

1) suspend the snapshot device;
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2) read the COWi metadata and mark the corresponding physical chunks as used;
3) create a new COWi+1 device using the remaining free physical chunks;
4) clone the mapping of CURRENTi into the PREVi+1 device;
5) create a new CURRENTi+1 snapshot device based on COWi+1 and PREVi+1;
6) replace CURRENTi with CURRENTi+1 in the snapshot device;
7) resume the snapshot device (now in version i + 1).

These operations can be done even on a mounted filesystem. All the pending opera-
tions will be blocked until the device is resumed.

Figure B.1 shows an example of usage of the CORRAL system. After the initialization,
two blocks are written: 17 and 32 (as shown in Figure B.1b). Then, a version freeze
command is executed. Figure B.1c shows the chunks disposition after the version freeze,
followed by a write operation to the logical chunk 32 (Figure B.1d). PREVi shows that the
logical chunks 17 and 32 were written in the past and are mapped to the physical chunks
3 and 4, respectively. The write operation allocates the next free chunk in the COWi to
store the new data. This allocation results from a CoW event from the PREVi and a merge
with the new content of the write operation. A mapping from the logical chunk 32 to the
physical chunk 5 is created in the kernel’s memory and stored on the exception table
metadata. All the new data is stored sequentially into the COWi device, which leads to a
shuffle effect on the physical disk because the logical chunks are not stored in the same
order on disk.

Following the scenario of the Figure B.1d, the logical chunk 32 has now two versions
on the disk: the version i is stored at position 4, and version i + 1 is stored at position
5. Subsequent writings to the logical chunk 32 during this snapshot will be redirected
to the same physical chunk 5. Keeping this mapping information as metadata allows an
easy recovery of ancient versions of the system.

To recover an archived version, it is sufficient to read the metadata to create a logical
device with a linear mapping from the physical chunks that belongs to the archived
version. Removal of old versions can be done with simple operations on the metadata,
freeing physical chunks occupied by the corresponding version when their reference
count reach zero.

B.2 Experimentation

Our goal is to quantify how file systems are performing when using the CORRAL ver-
sioning device with different chunk sizes. We used the microbenchmark Bonnie++, the
Postmark transaction benchmark and a Andrew-like benchmark to evaluate the system
[118]. All the benchmarks were run with and without CORRAL on three different file sys-
tems: Ext2, Ext3 and ReiserFS. A summary of the results are shown in Figures B.2,B.3,
and B.4.

Preliminary results show that the first time a chunk is written, triggering a CoW
event causes a significant degradation on the write throughput . Subsequent writes and
reads, however, have similar performance compared to the unversioned file system (see
Figure B.4). Nevertheless, this system provides an efficient way to maintain a consistent
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list of versioned chunks of file system, which can be easily used by a distributed backup
system.

Another important metric to consider is the amount of disk space used. Our pre-
liminary results showed that the allocated disk space is not correlated to the chunk size,
but rather to the file system used: the Ext2 and Ext3 file system use almost twice as
much space as with the ReiserFS (see Figure B.4). Hence, the performance of CORRAL

depends on the chosen file system, and further investigation and comparison with other
file systems need to be conducted in order to decide which one is best suited.
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