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Abstract

Perceiving or understanding the environment surrounding of a vehicle is a
very important step in building driving assistant systems or autonomous vehicles.
In this thesis, we focus on using laser scanner as a main perception sensor in
context of dynamic outdoor environments. To solve this problem, we have to
deal with 3 main tasks : (1) identify static part and dynamic entities moving
in the environment, (2) use static part of the environment to build a map of
the environment and localize the vehicle inside this map : this task is know as
"Simultaneous Localization And Mapping" (SLAM) and finally (3) Detect And
Track Moving Objects (DATMO).

Regarding SLAM, the first contribution of this research is made by a grid-
based approach 1 to solve both problems of SLAM and detection of moving
objects. To correct vehicle location from odometry we introduce a new fast
incremental scan matching method that works reliably in dynamic outdoor
environments. After good vehicle location is estimated, the surrounding map
is updated incrementally and moving objects are detected without a priori
knowledge of the targets. Our second contribution is an efficient, precise and
multiscale representation of 2D/3D environment. This representation is actually
an extension of occupancy grid where (1) only cells corresponding to occupied
part of the environment are stored and updated (2) where cells are represented by
a cluster of gaussian to have a fine representation of the environment and (3) where
several occupancy grids are used to store and update a multiscale representation
of the environment.

Regarding DATMO, we firstly present a method of simultaneous detection,
classification and tracking moving objects. A model-based approach is introduced
to interpret the laser measurement sequence over a sliding window of time
by hypotheses of moving object trajectories. The data-driven Markov chain
Monte Carlo (DDMCMC) technique is used to explore the hypothesis space and
effectively find the most likely solution. An other important problem to solve
regarding DATMO is the definition of an appropriate dynamic model. In practice,

1. An occupancy grid is a decomposition of the environment in rectangular cells where each
cell contains the probability that it is occupied by an obstacle.
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objects can change their dynamic behaviors over time (e.g. : stopped, moving,
accelerating, etc...). To adapt to these changing behaviors, a multiple dynamic
model is generally required. But, this set of dynamic models and interactions
between these models are always given a priori. Our second contribution on
DATMO is a method to guide in the choice of motion models and in the estimation
of interactions between these motion models.

The last part of this thesis reports integration of these contributions on different
experimental platforms in the framework of some national and european projects.
Evaluations are presented which confirm the robustness and reliability of our
contributions.
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Chapitre 1

Introduction

1.1 Context

FIGURE 1.1 – Examples of intelligent vehicles : on the left, a cycab : experimental
vehicle of INRIA and on the right, the Daimler demonstrator of european project
PReVENT

We generally define an intelligent vehicle (FIGURE 1.1) as a vehicle designed

to help driving automatically or to monitor a human driver and assist him in

driving. They can warn the driver in case of a developing dangerous situation

and can provide capabilities of avoiding collisions or mitigate the consequence if

there is an inevitable collision. Moreover, these intelligent vehicle systems should

be able to operate in all traffic situations wherever on highways or in crowed

urban streets. To solve these tasks, they are equipped with sensors to perceive

their surrouding environment and with actuators to act in this environment.

1



2 Chapitre 1. Introduction

FIGURE 1.2 – Paradigm defining an intelligent vehicule

To work, an intelligent vehicule requires 3 fundamental components (FIG-

URE 1.2) : i) perceive and model the environnement where it is moving, ii) reason

and decide about futur actions to execute iii) and finally perform these actions.

Perception plays a fundamental role in construction of an intelligent vehicle as it

constitutes its first component and provides informations to other components.

Its objective is to interpret noisy and raw data of different sensors embedded

on a vehicle to model environment and understand current situation in order to

provide necessary informations to decide future actions to execute. The quality of

perception processing has an impact on the quality of the whole process.

FIGURE 1.3 – Example of perception from a vehicule equipped with a laser
scanner
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FIGURE 1.3 illustrates problems we have to solve, to design a perception

module in dynamic and outdoor environment. This figure shows data provided

by a laser scanner embedded on a vehicule moving in an urban environment. On

the right part, we see a picture to help us to understand the current situation.

On the left, we have a top view of the scene. Data provided by laser scanner

are represented by red dots. This data provides us with a 2D slice of the 3D

environment. This slice is located at the height of the laser scanner. Each red dot

corresponds to a hit of the laser. On the left in grey color, we also find the "real"

scene with objects it contains. The first thing that we can note is the important

difference between real scene and raw data provided by laser scanner. So, we

have to interpret this raw data to understand the current situation. For instance,

the environment is composed of static and dynamic objects. Usually, sensors do

not provide this kind of information and this is while interpreting the sensor data

that we are able to determine if an object is static or dynamic. Moreover, the

process done with dynamic objects is different of the process done with static

objects. With static objects, we build a map of the environment and localize the

ego vehicle inside this map. This process is known as SLAM 1 and is described in

section 1.2.1. Regarding dynamic entities, we have to identify them (we usually

speak about detection) and track them (ie, sequentially estimate their position and

some other quantities). This process is known as DATMO 2 and is described in

section 1.2.2.

An other important problem is due to the fact that we are only able to see a

part of objects present in the environment. For instance, this is the case for the car

on the left foreground that is parking ; we only see its left part and a part of its

bumper. Finally, perception that we have of objects (especially moving objects)

will change during time as it is moving.

As illustrated on the previous figure, design and development of perception

modules in outdoor and dynamic environment is still a scientific challenge. In

our research activities, we are interested in perception in outdoor and dynamic

environment. This document summarizes our contributions in this field : on one

hand on the static part of the environnement and on the other hand on the dynamic

part of the environment. In next section, we give an overview of the problematic of

1. SLAM stands for Simultaneous Localization And Mapping.
2. DATMO stands for Detection And Tracking of Moving Objects.
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perception in dynamic and outdoor environments. Afterwards, we introduce our

contributions and give the outline of the document.

1.2 Problematic

FIGURE 1.4 – The general perception process. Z denotes the perception
measurements, U denotes the motion measurements, X is the vehicle state, M

is the map of stationary objects and O denotes the states of moving objects.

The perception problem, as shown in FIGURE 1.4, can be treated as a

process of taking inputs from sensor measurements including measurements from

perception sensors such as laser scanners or cameras which is denoted by Z and

measurements from motion sensors such as odometry or inertial measurement

which is denoted by U . The process outputs include the estimated internal vehicle

state X , a static map of the surrounding environment M and a list of moving

objects O in the vicinity of the vehicle. The vehicle state is comprised of variables

regarding the vehicle itself such as speed and its relative pose to the map M .

The static map of vehicle environment M contains information about stationary

objects as well as their locations in the map. The moving objects list O contains

information about dynamic objects, their locations and dynamic states such as

velocity and moving direction.

For states which tend to change over time, we use specific variables to indicate

values of each state at certain time. For instance, xt indicates the true state of the

vehicle at time t. This allows to define the trajectory of the vehicle over time :

X = x0:t = {x0, x1, ..., xt} (1.1)

As the vehicle moves, its state xt evolves, the motion sensors allow to measure

the control ut of its displacement and the perception sensors allow to collect
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measurements of the environment zt. In addition, we define the following set to

refer data leading up to time t :

Z = z0:t = {z0, z1, ..., zt} (1.2)

U = u1:t = {u1, u2, ..., ut} (1.3)

The static map M is denoted by a list of stationary objects in the environment :

M = {m1,m2, ...,mK} (1.4)

where K is the total number of objects in the environment, and each mk with

1 ≤ k ≤ K specifies properties and location of the corresponding object.

O denotes the moving objects lists up to time t :

O = O1:t (1.5)

The moving objects list Ot at time t is composed of a finite set of N objects,

where each ont with 1 ≤ n ≤ N contains information about locations and dynamic

states of each object at time t :

Ot = {o
1
t , o

2
t , ..., o

N
t } (1.6)

Our objective here is to estimate (1) the state of the vehicle X , the static map

M and the state of moving objects O given sensor measurements Z and U over

time. This problem is known as the SLAM with DATMO.

[WTT03] introduced a mathematical framework to solve SLAM with DATMO

in dynamic environments in which SLAM is integrated with tracking generalized

objects (both static and dynamic). The SLAM with DATMO problem can be

represented by a joint posterior over states of all objects need to estimate (ego-

vehicle pose, stationary objects, dynamic objects) given all sensor measurements :

P (X,M,O|Z,U) (1.7)

He showed that estimating (1.7) is computationally demanding and generally

infeasible because of high dimension of the joint state variable. Overcoming

this daunting task, he proposed to solve SLAM with DATMO instead which
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decomposes the SLAM with DATMO estimation problem into two separate

estimators :

P (X,M,O|Z,U)
︸ ︷︷ ︸

SLAMMOT

= P (X,M |Z(s), U)
︸ ︷︷ ︸

SLAM

P (O|Z(d))
︸ ︷︷ ︸

Moving objects Tracking

(1.8)

if in some way we are able to decompose the measurements Z into static and

dynamic measurements :

Z = Z(s) + Z(d)

︸ ︷︷ ︸

Moving objects Detection

(1.9)

where Z(s) and Z(d) denote measurements corresponding to static objects and

dynamic objects respectively. The decomposition in (1.9) corresponds to the

moving objects detection step in DATMO.

By such maintenance of separate posteriors for stationary objects and moving

objects, the resulting estimation problem of SLAM with DATMO (1.8) are much

lower dimensional than problem of direct estimating SLAM with DATMO in

(1.7). In the two next sub-sections, we briefly introduce SLAM problem and

DATMO problem.

1.2.1 Simultaneous Localization And Mapping (SLAM)

When a vehicule is moving, we need to know its relative position to its

environment. A precise localization system is therefore essential. It is known that

GPS and DGPS often fail in urban areas because of urban canyon effects, and

good inertial measurement systems (IMS) are very expensive. If we can have a

stationary objects map in advance, the map-based localization techniques such

as those proposed by [Ols00, FBDT99] and [DBFT99] can be used to increase

the accuracy of the pose estimate. Unfortunately, it is difficult to build an usable

stationary objects map a priori because of temporary stationary objects such as

parked cars. Stationary objects maps of the same scene built at different times

could still be different, which means that we have to do online map building to

update the current stationary objects map. This problem is known as Simultaneous

Localization And Mapping (SLAM). It allows intelligent vehicles to operate in an

unknown environment and then incrementally build a map of this environment

and concurrently use this map to localize themselves. To solve this problem, we
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have to find a representation to map the environment and to design techniques to

localize the vehicle inside the environment.

Over the last decade, the SLAM problem has attracted immense attention in

the mobile robotics literature [Chr02], and SLAM techniques are at the core of

many successful systems [Thr02]. However, [WT02] have shown that SLAM can

perform badly in crowded urban environments because of the static environment

assumption. Moving objects have to be detected and filtered out.

1.2.2 Detection And Tracking of Moving Objects (DATMO)

The moving objects tracking problem has been originated from radar tracking

systems and extensively studied for several decades [BSF88, BP99]. Many

tracking studies suppose that the measurements correspond uniquely to moving

objects and focus on the multi-objects tracking problem. However most of the

real applications include spurious elements in the measures or presence of static

objects. Obviously detecting correctly the moving objects is a critical aspect of a

moving objects tracking system.

Moving objects detection in crowded urban environments is not easy because

of a wide variety of targets. With cameras, detection of moving objects is

usually based on a definition of some predefined classes of objects as a set of

features 3 (for instance, pedestrians or vehicles) or based on a statistical model of

their appearance in images 4[VJ01]. When laser scanner are used, motion-based

approaches are usually the preferred solutions since both appearance-based and

feature-based methods rely on prior knowledge of the objects. In addition, the

shape of moving objects seen by laser scanner can change significantly from scan

to scan. As a result, it is hard to define features or appearances for detecting variety

of objects with laser data.

After moving objects are identified, the multi-objects tracking problem arises

in order to estimate dynamic states of each object. In general, the problem of

tracking multiple objects consists of two parts : Filtering and Data Association

[BSF88]. Filtering methods deal with the problem of tracking one specific object

which consists in estimating its state from given observations over time. In the

case of tracking multiple objects, data association consists in identifying which

3. We speak about feature-based detection.
4. We speak about appearance-based detection.



8 Chapitre 1. Introduction

observation corresponds to which object being tracked, then filtering techniques

are applied to estimate object states with known observations. In general clutters,

occlusions or mis-detections from the detector could cause more challenging

situations to the data association step. In addition, changing motion behaviors

of moving objects make defining a suitable motion model of the objects being

tracked difficult.

1.3 Contributions and Outline of the document

This document is composed of 5 chapters :

– Regarding the SLAM problem, we present our two contributions in chap-

ter 2.

Our first contribution [29, 5], in the framework of the PhD Thesis of Trung-

Dung Vu, is made by a complete solution to solve both problems of SLAM

and detection of moving objects which is based on occupancy grid[Elf89a]

to represent the vehicle map. An occupancy grid is a discretization of the

environment in rectangular cells (see section 2.1.2 for more details). In

addition, a probabilistic measure of occupancy is estimated for each cell

of the grid which indicates that cell is occupied by an object or not. Due

to large scales of the environment (e.g. city-sized), at a given time, only

an online grid is maintained representing the local map surrounding of the

vehicle. To correct vehicle location from odometry, we introduce a new and

fast grid-based scan matching method which works reliably in dynamic

environments. When good vehicle locations are estimated, we are able

to build a consistent local map of the vehicle environment incrementally

when new measurements arrive. And then based on the constructed local

grid map, moving objects can be detected when they enter object-free

regions. One important advantage of this approach is the fact that no model

assumption is required to separate moving and stationary objects.

For large 2D or 3D environments, it is trivial to say that a vehicle evolves

in an environment where it has enough space to move, therefore most of

this space is empty with respect to the vehicle volume. It implies that a lot

of the time the algorithm used to update the grid with new observations is

dedicated to update empty cells. Thus, it is not appropriate to use classical
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occupancy grids for large maps and neither in 3D where most of the space

is empty. An other problem, when using occupancy grids, is that a cell

is considered as a full block, so all the information concerning the shape

of the cell contents is lost. A way to alleviate this problem is to attach

some sort of statistical shape description to every occupied cell. Finally,

grids are neither unable to provide a multi-scale representation of the

environment. Nevertheless, this kind of representation is usefull for some

tasks in mobile robotics : for instance, coarse maps are used in path planning

[YSSB98] or localization [RB05] algorithms in order to obtain a rough

trajectory or position estimate at a low computational cost. Then, at a second

stage, this estimate is used to initialize the fine scale search algorithms,

thus accelerating convergence. Our second contribution [21, 4], in the

framework of the PhD Thesis of Manuel Yguel, is a new map representation

to overcome these limitations of classical occupancy grids : multi-scale

gaussian maps. We firstly detail this representation composed of 3 scale map

where each scale is a sparse grid and each cell is represented by one or more

gaussian. We also define a method to update a multi-scale gaussian map

with observations. Finally, we detail an error-driven refinement algorithm

for coarser scales to improve the quality of the representation.

– Regarding the DATMO problem, our two contributions are detailled in

chapter 3.

In our first contribution [23, 5], in the framework of the PhD Thesis of

Trung-Dung Vu, we formulate the detection and tracking problem as finding

the most likely trajectories of moving objects given data measurements over

a sliding window of time. A trajectory (track) is regarded as a sequence

of object shapes (models) produced over time by an object which must

be satisfied the constraint of both an underlying object motion and the

consistency with measurements observed from frame to frame. In this

way, our approach can be seen as a batch method searching for the

global optimum solution in the spatio-temporal space. Due to the high

computational complexity of such a scheme, we employ a Markov chain

Monte Carlo (MCMC) technique that enables traversing efficiently in the

solution space. We employ the detection results from the previous chapter

as a coarse detector to generate potential moving object hypotheses with
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predefined models that helps to drive the search more efficiently. This

technique earns its name data-driven MCMC (DDMCMC) in the literature

[ZZT00].

Regarding filtering, the definition of an appropriate dynamic model is one

of the most important problem to solve. In practice, objects can change their

dynamic behaviors over time (e.g. : stopped, moving, accelerating, etc...).

To adapt to these changing behaviors, a multiple dynamic model is generally

required. The definition of this set of dynamic models is crucial for tracking

of moving objects. In our second contribution [33, 6], in the framework of

the PhD Thesis of Julien Burlet, we present a method to help us design this

set of motion models and also to automatically model interactions between

the different motion models instead of defining them a priori. This method

used a set of trajectories of past moving objects present in the environment

to learn the interactions between motion models and secondly analyzing

this learned set of motion models help us to design the final set of motion

models. The main advantage of this method is to design multiple motions

models that are very close to the real motions of tracked objects. Finally,

we detail how we improve our adaptive method to track objects by adding

a classification module [17]. For this, we consider the set of motion models

as a set of behaviors and use classification techniques to identify typical

behaviors.

– Our last contribution is an integration and validation of this work on

different experimental platforms in the framework of some national and

european projects. This contribution is reported in Chapter 4. For each

project, we describe experimental platforms that have been used for inte-

gration and experimentation. Afterwards, we detail for each experimental

platform the used contributions and how they have been integrated. Finally,

evaluations are presented which confirm the robustness and reliability of

our contributions.

– We conclude and give some perspectives to our researches in chapter 5.



Chapitre 2

Simultaneous Localization and

Mapping

2.1 Introduction

Simultaneous localization and mapping is commonly abbreviated as SLAM

and is also known as the concurrent mapping and localization problem. SLAM

is actually a "chicken-and-egg" problem. Vehicle location and map are both

unknown. When the vehicle moves, it accumulates errors in odometry, making

it gradually less certain as to where it is. For building an accurate map of the

environment, we need to know correct poses of the vehicle. But to estimate the

correct vehicle poses, we need to localize the vehicle in the map which requires

that an accurate map of the environment is available. The term simultaneous

localization and mapping describes the resulting problem : In SLAM, the vehicle

acquires a map of the environment while simultaneously localizing itself to this

map given all measurements from odometry and perception sensors.

In the probabilistic form, the SLAM problem involves estimating the proba-

bility distribution :

P (xt,M |z0:t, u1:t)
1 (2.1)

This probability distribution describes the joint posterior density of the map and

vehicle state at time t given the measurements and control inputs up to time t. In

1. Instead of determining the whole trajectory of the ego vehicle X as in equation 1.8, in
practise we are usually only interested in determining the current state of the ego vehicle xt.

11
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general, since data arrives over time, a recursive solution to SLAM is desirable.

Starting with an estimate for the distribution P (xt−1,M |z0:t−1, u1:t−1) at time

(t−1), the joint posterior, following a control ut and measurement zt, is estimated

using a Bayes filtering process :

P (xt,M |z0:t, u1:t)
︸ ︷︷ ︸

posterior at t

∝ P (zt|xt,M)
︸ ︷︷ ︸

update

∫

xt−1

P (xt|xt−1, ut)P (xt−1,M |z0:t−1, u1:t−1)
︸ ︷︷ ︸

posterior at t−1
︸ ︷︷ ︸

prediction

(2.2)

For this computation, we need to specify two probabilities : the sensor

measurement model P (zt | xt,M) and the vehicle motion model P (xt | xt−1, ut).

The sensor model describes the probability of making an observation zt when the

vehicle state and a map of environment is known. The motion model describes

the probability distribution on vehicle state transition assumed to be a Markov

process of first order in which the next state xt depends only on the immediately

proceeding state xt−1 and the applied control ut, and is independent of both the

observations and the map.

In the literature, solutions to the probabilistic SLAM can be roughly classified

according to methods to represent the map M and the underlying technique to

estimate the posterior (2.2) which involves finding an appropriate representation

for the measurement model and motion model. Before describing state-of-the-art

SLAM algorithms, we introduce a probabilistic method, the Bayesian Filters, a

class of recursive algorithms for state estimation that forms the basis of virtually

every techniques presented in this document.

2.1.1 Bayesian Filters

The task of estimating system states from sensor data is at the core of any

intelligent vehicle. State estimation addresses the problem of estimating quantities

from sensor data that are not directly observable, but that can be inferred. In

most intelligent vehicles applications, determining what to do is relatively easy

if one only knew certain quantities. For example, moving a vehicle is relatively

easy if the exact location of the vehicle and the position of all nearby obstacles
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are known. Unfortunately, these variables are not directly measurable. Instead, a

vehicle has to rely on its sensors to gather this information. Sensors carry only

partial information about those quantities, and their measurements are corrupted

by noises. Probabilistic state estimation methods seek to recover state variables

from the noisy data by computing belief distributions over possible states taking

the uncertainty into account.

Bayesian Filtering (sometimes known as Bayesian Sequential Estimation)

[AM79] is a widely accepted probabilistic framework to the problem of estimating

dynamic states of a system evolving in time given sequential observations or

measurements about that system. The idea behind the Bayesian Filtering is that

allows to use past and present measures in sequence to enhance the estimation of

the actual system state.

The underlying task of the filter is to estimate the posterior probability

P (st|z0:t, u1:t) where st represents the state of the system at time t, z0:t represents

observations on the state of the system from time 0 to time t and u1:t represents

actions of the system from time 1 to time t. An important property of the Bayesian

filter is that this probability can be solved recursively using the Bayesian theorem :

P (st|z0:t, u1:t)
︸ ︷︷ ︸

posterior at t

= η P (zt|st)P (st|z0:t−1, u1:t)

= η P (zt|st)
︸ ︷︷ ︸

update

∫

st−1

P (st|st−1, ut) P (st−1|z0:t−1, u1:t−1)
︸ ︷︷ ︸

posterior at t−1
︸ ︷︷ ︸

prediction

(2.3)

where η is the normalization constant. The recursive computation is initialized by

the prior distribution p(s0|z0) = p(s0).

This algorithm can be interpreted as transformations over distributions of

probability. Using the state transition function P (st|st−1, ut) and the previously

estimated probability P (st−1|z0:t−1, u1:t−1), we obtain a distribution P (st|z0:t−1, u1:t)

which is commonly called the prediction step. Then introducing the new measure

we update the distribution with the likelihood P (zt|st) to obtain the desired result

P (st|z0:t, u1:t). The process is illustrated in FIGURE 2.1. We note that the system

used for the Bayesian filtering example presented is just a simple case with one

state variable and one observation variable. In general, the system can have more

than one observation at a time or some applications can have measures depending
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of two states (as the odometry does) or access to inputs of the system. However,

all those cases we can solve with the same methodology to the simple case.

FIGURE 2.1 – Sequential Bayesian Filtering.

It is clear that in order to compute the sequential Bayesian filter, defini-

tions of the likelihood function (or measurement model) P (zt|st) and the state

transition function (dynamics model) P (st|st−1, ut) are required. And for any

implementation also the description of the probability density functions have to

be chosen. Common choices are unimodal Gaussian, mixture of Gaussians and

set of particles.

When the sensor model is Gaussian and the dynamics model is linear with

Gaussian noise then the sequential Bayesian filtering algorithm leads to the well-

known Kalman Filter [Kal60]. The key idea behind the Kalman Filter is the remark

that we stay in the "Gaussian world" as long as we start with Gaussians and

perform only linear transformations.

In order to handle the nonlinear and non-Gaussian situations, extensions have

been made to the standard Kalman Filter. The Extended Kalman Filter (EKF)

[AM79] is one of the extensions which uses a first order Taylor series expansion

of the nonlinear functions for the approximation of the dynamics and likelihood

model.

To handle highly nonlinear and non-Gaussian models in Bayesian filtering,

Particle filters [AMGC02] are more accurate than Kalman-based methods because

of its ability to handle highly nonlinear and non-Gaussian models with a clear
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and neat numerical approximation. The key idea is to approximate the posterior

distribution with a set of randomly sampled particles that have weights associated

to them. The more particles are, the better represented a probability function will

be. Particle filtering is a very powerful method that can manage any distribution

(notably multimodals) and any nonlinear function. Defining a reasonable number

of particles and ensuring that sampling correctly the high likelihood regions is in

general not well defined.

2.1.2 Map Representation

The choice of map representation is an important step when dealing with the

perception problem. Popular methods for representing maps of the environment

include : feature-based approach [LDW91], grid-based approach [Elf89a], direct

approach [LM97a].

Feature-based Representation

Feature-based approaches compress measurement data into predefined fea-

tures which can be geometric primitives like points, lines, circles, etc,... Mapping

then amounts to estimating the parameters of the primitives as to best fit the

observations. To detect geometric features, among popular methods we can

name some notable ones : the split-and-merge method [EF97] for detecting

line segments, the Hough-transform [PRB03] or RANSAC [FP02] methods for

detecting lines or circles. An example of a two-dimensional geometric feature

map is presented in the image FIGURE 2.2(b).

In terms of spatial information content, feature maps are limited to parametric

landmarks or modeled objects. The geometric representation does suffer from

not being able to represent more complex environments, such as the space in

between the features, and natural structures. Furthermore they usually are only

approximation of natural structures.

Grid-based Representation

Evidence grids or occupancy grids were first introduced by Elfes [Elf89a]. In

this representation, the environment is subdivided into a regular array or a grid

of rectangular cells. The resolution of the environment representation directly
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(a) Point cloud map (b) Feature map

(c) Grid map

FIGURE 2.2 – Example of different representation methods of the map built from
the same set of laser data measurements.

depends on the size of the cells. In addition to this discretization of space, a

probabilistic measure of occupancy is estimated for each cell of the grid which

indicate that cell is occupied by an obstacle or not.

An example of an occupancy grid map representation is shown in FIG-

URE 2.2(c), where white regions correspond to free cells, and black regions

to occupied cells. The evidence grid is an efficient approach for representing

uncertainty and for fusing multiple sensor measurements. It is also ideal for

incorporating different models of sensor uncertainty.
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Direct Representation

Direct method is often introduced when range sensors like laser scanners

are used. This method is using raw data measurements to represent the physical

environment without extracting predefined features. In the laser case, each laser

scan measurement is a set of points which are impacts of laser beams with

obstacles. A map can be constructed by simply aggregating measured points

leading to a point cloud map representation (FIGURE 2.2(a)).

2.1.3 Simultaneous Localization And Mapping (SLAM)

Kalman Filter SLAM

Knowing how to represent the map, it now remains to find appropriate

representations for the measurement model and the motion model to estimate the

posterior in the equation (2.2). By far the most common representation for these

models is a linear function with additive Gaussian noise, leading to the use of the

Kalman filter based approach to solve the SLAM problem [Tho].

Maps in the Kalman filter approach are commonly represented by a set of

features. Appropriate features may be landmarks, distinctive objects or geometric

shapes in the environment. KF-SLAM can be implemented in O(K2) time, where

K is the number of features in the map (the most costly operations in updating the

Kalman filter are matrix multiplications). In practice, the number of features is not

known a priori. State-of-the-art implementations often grow this list dynamically.

To do so, they maintain a list of candidate features, using a separate Kalman filter

for these candidates. If a feature is observed sufficiently often, it is permanently

added to the list of features in the map. Outliers, that is, measurements that

do not correspond to any known feature with sufficient likelihood, are usually

ignored. These techniques work particularly well when features are scarce in the

environment.

Maximum Likelihood SLAM

Another popular approach to SLAM problem is the incremental maximum

likelihood method. Unlike Kalman filter methods which try to perform a full

posterior estimation over the vehicle pose and map, its idea is to incrementally
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build a single map as the sensor data arrives without keeping track of any residual

uncertainty. The advantage of this paradigm lies in its simplicity which accounts

for its popularity.

Thus, the incremental Maximum Likelihood method simply requires search-

ing in the space of all poses xt when a new data item arrives, to determine the pose

x̂t that maximizes :

x̂t = argmax
xt

p(xt|zt, ut, x̂t−1, M̂t−1) = argmax
xt

{P (zt|xt, M̂t−1)P (xt|ut, x̂t−1)}

(2.4)

In this equation, the term P (zt|xt, M̂t−1) is the probability of observing the most

recent measurement zt given the pose xt and the map M̂t−1 constructed so far.

The term P (xt|ut, x̂t−1) represents the probability that the vehicle is at location xt

given that previously it was at position x̂t−1 and has carried out (or measured) the

motion ut. The resulting search of x̂t is then appended to the map along with the

corresponding scan zt :

M̂t = M̂t−1 ∪ {〈x̂t, zt〉} (2.5)

Maximizing (2.4) is equivalent to finding the vehicle pose xt satisfying the

vehicle motion model under which the measurement zt is best fit to the given

map Mt−1. In the literature, we often coin the term scan matching SLAM to this

maximum likelihood SLAM approach. Depending on the map representations

(Section 2.1.2), we have corresponding scan matching methods as seen in the

literature : direct [LM97b], feature-based [RFDW07] or grid-based [TBF00].

FastSLAM

An alternative SLAM approach is FastSLAM [MTKW02] which is set to

overcome drawbacks of the KF-SLAM methods (linear and Gaussian model

assumptions) and the ML-SLAM methods (cyclic mapping inability). To estimate

the SLAM posterior (2.1), particle filter is used to represent non-linear models and

non-Gaussian distributions. Since the high dimensional state-space of the SLAM

problem makes direct application of particle filter computationally infeasible. The

key idea of FastSLAM is to reduce the sample space by applying Rao-Blackwell
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theorem [Mur99], whereby a joint state is partitioned according to the product rule

P (x1, x2) = P (x2|x1)P (x1) and, if P (x2|x1) can be represented analytically, only

P (x1) need to be sampled.

The FastSLAM approach estimates the posterior probability of a joint state

over the map M and the vehicle trajectory x0:t rather than the single pose xt. This

probability can be factored as :

P (x0:t,M | z0:t, u1:t) = P (x0:t | z0:t, u1:t)
︸ ︷︷ ︸

estimate of trajectory

P (M | x0:t, z0:t)
︸ ︷︷ ︸

map with known trajectory

(2.6)

Here, a particle filter is used to estimate the probability P (x0:t|z0:t, u1:t) about

potential trajectories x0:t of the vehicle given its observation z0:t and its odometry

measurements u1:t. When knowing the knowledge of vehicle trajectory x0:t

and observations z0:t, the probability P (M |x0:t, z0:t) over the map M becomes

a problem of mapping with known poses and can be computed analytically.

Briefly, in FastSLAM each particle represents a possible vehicle trajectory and

a corresponding map making the computation in (2.6) efficiently.

2.1.4 Synthesis and Contributions on SLAM

Synthesis of SLAM techniques

Direct approach, despite of being the simplest, can represent any kind of

environments. However, its disadvantage lies in the important memory usage and

the lack of a precise representation of the uncertainty in sensor measurements.

Feature-based maps are attractive because of their compactness. However, con-

cerning the environment representability, they are limited to indoor or structured

environments where features are easy to define and extract. Whereas grid-based

approaches typically require a huge amount of memory, but they are able to

represent arbitrary features and provide detailed representations. Regarding sensor

characteristics, grid-based approaches are the easiest to implement and the most

suitable for range sensors such as sonar and laser. One more advantage of the

grid-based approach over the other two is that it takes the sensor characteristics

into account so that it can explicitly model the free space which provides

useful information for robot navigation applications. Because of advantages over

others, nowadays, occupancy grid have become the most common choice among
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map representation methods, particular for applications in outdoor environments

[WTT03, 29, MBB+08].

The beauty of the KF-SLAM approaches comes from the fact that they

estimate a fully correlated posterior over feature maps and robot poses. Their

weakness lies in the strong assumptions that have to be made on both the

robot motion model and the sensor noise. In addition, KF SLAM only works

with feature maps. And it is not always easy to define and extract features

in unstructured and outdoor environments. Maximum Likelihood SLAM (ML-

SLAM) is attractive because of its computational effectiveness and can be applied

to any kind of map representations. However, in contrast to KF-SLAM, ML-

SLAM only computes the most likely map at each time so that it is unable to

close the loop in cyclic environments. FastSLAM shares the fancy property with

KF approach when it maintains the full posterior but is much faster compared to

the classical KF-SLAM. FastSLAM can be considered as running multiple ML-

SLAM which allows loop closure. It can be applied for feature-based and grid-

based mapping so that it is also suitable for outdoor applications.

In practice, for applications where a consistent global map is required and a

real-time performance is not necessary (ex : applications focusing on constructing

accurate maps), FastSLAM is a better choice. However, for applications where

only an instantaneous map is required (ex : obstacle avoidance applications), ML-

SLAM is preferred because it can be computed very fast.

Contributions on SLAM

Our first contribution [29, 5], in the framework of the PhD Thesis of Trung-

Dung Vu, is an algorithm to solve SLAM with moving object detection in outdoor

and dynamic environment from a ground moving vehicle equipped with a 2D

laser scanner as the main perception sensor. Our approach here follows the work

of Wang in [Wan04]. It is based on Occupancy Grid to represent the environment

and ML SLAM. This contribution is detailled in the next section.

Our second contribution [21, 4], in the framework of the PhD Thesis of Manuel

Yguel, is an efficient, precise and multiscale representation. This representation

is actually an extension of occupancy grid where (1) only cells corresponding

to occupied part of the environment are stored and updated (2) where cells

are represented by a cluster of gaussian to have a fine representation of the
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environment and (3) where several occupancy grids are used to store and update

a multiscale representation of the environment. This contribution is detailled in

section 2.3.

2.2 Grid-based SLAM in dynamic environments

2.2.1 Introduction

In this section, we will present an algorithm to solve SLAM with moving

object detection in dynamic environments from a ground moving vehicle equipped

with a 2D laser scanner as the main perception sensor. Our approach here follows

the work of Wang in [Wan04].

For the SLAM part, similar to Wang’s work, we use a grid-based method to

represent the vehicle environment. We employ a maximum likelihood SLAM

approach (subsection 2.1.3) for mapping process thanks to its computational

effectiveness. Due to large scales of the environment (e.g. city-sized), at a given

time, only an online grid is maintained representing the local map surrounding of

the vehicle. Instead of using an ICP-based method like in [Wan04] for vehicle

localization, we introduce a new and fast grid-based scan matching method

which does not need to find corresponding features and can work reliably in

dynamic environments. When good vehicle locations are estimated, we are able to

build a consistent local map of the vehicle environment incrementally when new

measurements arrive. And then based on the constructed local grid map, moving

objects can be detected when they enter object-free regions. This idea originated

from the work of Wang which is simple but is shown to work quite well in practice.

One important advantage of this approach is the fact that no model assumption is

required to separate moving and stationary objects.

In the next section, we describe the different components of the grid-based

mapping process : incremental grid mapping with known trajectories and Grid-

based Scan Matching. Algorithm for detecting moving objects is presented in

section 2.2.3.
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2.2.2 Grid Mapping

Incremental Grid Mapping with Known Trajectories

In the occupancy grid representation, the vehicle environment is divided into

a two-dimensional lattice M of rectangular cells and each cell is associated with

a measure taking a real value in [0, 1] indicating the probability that the cell is

occupied by an obstacle or not. A high value of occupancy grid indicates the cell

is occupied and a low value means the cell is free. Suppose that occupancy states

of individual grid cells are independent, the objective of a mapping algorithm is

to estimate the posterior probability of occupancy P (M i | x1:t, z1:t) for each cell

of grid M i, given observations z1:t = {z1, ..., zt} at corresponding known poses

x1:t = {x1, ..., xt}.

In the literature, many methods are used for occupancy grid mapping, such as

Bayesian [Elf89a], Dempster-Shafer [PNDW98] and Fuzzy Logic [OUV97]. Here

we apply Bayesian Update scheme [TBF05] that provides an elegant recursive

formula to update the posterior under log-odds form :

log O(M i | x1:t, z1:t) = log O(M i | x1:t−1, z1:t−1) +

+ log O(M i | zt, xt) (2.7)

where O(a | b) = odds(a | b) = P (a | b) / (1− P (a | b))

It is easy to see that the desired probability of occupancy, P (M i | x1:t, z1:t), can

be recovered from the log-odds representation. Moreover, since the updating

algorithm is recursive, it allows for incremental map updating when new sensor

data arrives.

In (2.7), the probability P (M i | xt, zt), is called the inverse sensor model. It

specifies the probability that a grid cell M i is occupied based on a single sensor

measurement zt at location xt. This probability is called "inverse" since it reasons

from effects to causes : it provides information about the world conditioned on a

measurement caused by this world.

In our case, laser scanner is used as the main perception sensor. This sensor

is very common in robotics and currently the state-of-the-art sensor for distance

measurements. The signal of a laser-range finder is emitted in a beam and the

sensor uses a rotating mirror to combine several distance measurements to a
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two dimensional scan. At each time t we receive a complete scan zt, which is a

combination of N distance measurements zt = {znt , 1 ≤ n ≤ N}. We assume that

these distance measurements are independent and therefore consider the beams

individually.

FIGURE 2.3 – This figure shows the occupancy probability of cells along a beam
measuring a distance of 4m.

Figure 2.2.2 shows the function we use to compute the occupancy probability

of cells related to a laser beam measuring a specific distance (4m in this case).

Between the sensor and the measured distance it is more likely to be free, at the

measured distance we expect the grid cell to be occupied. Note that because of the

small error of the sensor this function has only a narrow peak. So, the occupancy of

the cell where the beam ends should be increased. On the other side the occupancy

of the cells between the robot and the end-point, should be decreased.

Grid-based Scan Matching

In the previous subsection, we described an incremental algorithm to update

the occupancy grid map over time given laser scan measurements at known corre-

sponding vehicle locations. In order to build a consistent map of the environment,

a good vehicle localization is required. However, using only odometry provided by

vehicle internal sensors often results in unsatisfied maps due to its inherent errors
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(see FIGURE 2.4 left). With the objective of correcting odometry errors whereby

obtaining a good map, we would like to perform simultaneous localization and

mapping using one of SLAM algorithms as introduced in Section 2.1. Here we opt

for the incremental maximum likelihood SLAM method due to the advantage of

its computational and memory complexity over other methods (subsection 2.1.3).

FIGURE 2.4 – Maps built directly from raw laser data collected from a vehicle
moving along a straight street : with vehicle localization using odometry (left) ;
and using results of scan matching (right). Note that the scan matching results are
not affected by moving objects in the street. See FIGURE 2.10 for the resulting
occupancy grid map.

Here we introduce an alternative grid-based scan matching method to solve

(2.4). In our approach, given an underlying vehicle dynamics constraint, the

vehicle pose is estimated by correcting the correlation of the current laser scan

with the local grid map constructed from all observations in the past instead

of only with one previous scan. The advantage of our method is two folds.

First, using grid-based correlation, measurement uncertainties are taken into

account. Second, a trade-off between the vehicle dynamics model and a matching

with the grid map make the localization results more robust. This is because

in outdoor environments when measurements are quite sparse making scan

matching difficult, we can temporarily rely on the vehicle dynamics until enough

measurements are collected to correct the vehicle pose. The proposed method is

presented in the following.

At first we describe how we represent the motion model and the measurement
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model in (2.4).

For the motion model, we adopt a probabilistic velocity motion model

similar to that described in [TBF05]. The vehicle motion ut is comprised of two

components, the translational velocity vt and the yaw rate ωt. FIGURE 2.5 depicts

the probability of being at location xt given previous location xt−1 and control ut.

This distribution is obtained from the kinematic equations, assuming that vehicle

motion is noisy along its rotational and translational components.

FIGURE 2.5 – The probabilistic velocity motion model P (xt | xt−1, ut) of the
vehicle (left) and its sampling version (right).

FIGURE 2.6 – The measurement model P (zt | xt,Mt−1).

For the measurement model P (zt | xt,Mt−1), mixture beam-based model is

widely used in the literature [FBT99, HSB03]. However, the model comes at the

expense of high computation since it requires ray casting operation for each beam.

This can be a limitation for real time application if we want to estimate a large

amount of measurements at the same time. To avoid ray casting, we propose an
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alternative model that only considers end-points of the beams. Because it is likely

that a beam hits an obstacle at its end-point, we focus only on occupied cells in

the grid map.

A voting scheme is used to compute the probability of a scan measurement

zt given the vehicle pose xt and the map Mt−1 constructed so far. First, from the

vehicle location xt, individual measurement znt is projected into the coordinate

space of the map. Call hitnt the grid cells corresponding to the projected end-

points. If this cell is occupied, a sum proportional to the occupancy value of the

cell will be voted. Then the final voted score represents the likelihood of the

measurement. Let P (M i
t ) denote the posterior probability of occupancy of the

grid cell M i estimated at time t, we can write the measurement model under the

sum following :

P (zt | xt,Mt−1) ∝
N∑

n=1

{P (M
hitnt
t−1 ) such that Mhitnt

t−1 is occupied } (2.8)

The proposed method is just an approximation to the measurement model because

it does not take into account visibility constraints (e.g. a beam can not pass through

an occupied cell), but experimental evidences show that it works well in practice.

Furthermore, with a complexity of O(N) where N is the number of beams per

scan, the computation can be done rapidly.

It remains to describe how we maximize (2.4) to find the correct pose x̂t. Hill

climbing strategy in [TBF00, HSB03] can be used but may suffer from a local

maximum. Exploiting the fact that the measurement model can be computed very

quickly, we perform an extensive search over the vehicle pose space. A sampling

version of the motion model (FIGURE 2.5 right) is used to generate all possible

poses xt given the previous pose xt−1 and the control ut. The resulting pose will

be the pose at which the measurement probability achieves a maximum value.

Because of the inherent discretization of the grid, the sampling approach turns out

to work very well. In practice, with a grid map resolution of 20cm, it is enough to

generate about three or four hundreds of pose samples to obtain a good estimate

of the vehicle pose with the measurement likelihood that is nearly unimproved

even with more samples. The total computational time needed for such a single

scan matching is about 10ms on a conventional PC. An example of scan matching

result is shown in FIGURE 2.7. The most likely vehicle pose is obtained when the
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laser scan is aligned with the occupied parts of the map and at the same time the

vehicle dynamics constraint is satisfied.

FIGURE 2.7 – Example of scan matching result. From left to right : reference
image ; local map created so far Mt−1 and previous vehicle pose xt−1 ; laser scan
at time t ; and matching result is obtained by trading off the consistency of the
measurement with the map and the previous vehicle pose.

Local Mapping vs. Global Mapping

Up to now, we have not yet considered the loop-closing problem in our

mapping process. It is well known that the grid-based maximum likelihood SLAM

approach we utilized does not provide a mechanism for loop closing and also is

suffered from too much storage and computation load for large scale environments

(e.g. mapping city-sized environments). Our strategy is that only one local map is

maintained at a point in time representing the local environment surrounding of

the vehicle. The size of the local map is chosen so that it should not contain loops

and the resolution is maintained at a reasonable level. Every time the vehicle

arrives near the map boundary, a new grid map is initialized. The pose of the

new map is computed according to the vehicle global pose and cells inside the
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FIGURE 2.8 – A local map is maintained at a time. When the vehicle arrives at the
boundary of the grid map, a new grid is created.

intersection area are copied from the old map (see FIGURE 2.8). A global map is

constructed by concatenating local maps sequentially.

2.2.3 Dealing with dynamic environments

FIGURE 2.9 – Moving object detection example. See text for more details.

Besides the computational effectiveness, one attraction of our algorithm is that

it is not affected by dynamic entities in the environment (see FIGURE 2.4 right).
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Since we only consider occupied cells, spurious regions in the occupancy grid

map that might belong to dynamic objects do not contribute to the sum (2.8).

The voting scheme ensures that measurement likelihood reach a maximum only

when the measurement is aligned with the static parts of the environment. To some

meaning, measurements from dynamic entities can be considered as outliers. This

property is very useful for moving object detection process.

The second step is after dynamic measurements are determined, moving

objects are then identified by clustering end-points of these beams into separate

groups, each group represents a single object. Two points are considered as

belonging to the same object if the distance between them is less than 0.3m.

FIGURE 2.9 illustrates the described steps in moving object detection process.

The leftmost image depicts the situation where the vehicle is moving along a street

seeing a car moving ahead and a motorbike moving in the opposite direction. The

middle image shows the local static map and the vehicle location computed by

SLAM and the current laser scan is drawn in red. Measurements which fall into

free region in the static map are detected as dynamic and are displayed in the

rightmost image. After the clustering step, two moving objects in green boxes are

identified and correctly corresponds to the car and the motorbike.

Note that our map updating procedure makes use of results from moving object

detection step. Measurements detected as dynamic are not used to update the map

in SLAM. For unknown measurements, a priori we will suppose that they are

static until latter evidences come. This will help to eliminate spurious objects and

result in a better map. FIGURE 2.10 shows two occupancy grid maps constructed

from the same laser data in FIGURE 2.4 with and without filtering out dynamic

measurements. We can see that the left one built without the filtering step results

in many fuzzy regions.

2.3 Multiscale Gaussian Maps

2.3.1 Introduction

To update an occupation grid with sensor data, one should find all the cells that

need to be updated. In practice, this is the task that is the most computationally

expensive. The parts of the grid that must be updated are the empty part and the



30 Chapitre 2. Simultaneous Localization and Mapping

FIGURE 2.10 – Occupancy grid maps built with and without filtering out detected
moving objects.

θω

A

B

C

DMaximum measurable range

FIGURE 2.11 – 2D and 3D definitions of the different space regions according to their visibility.
Left : for a 2D cone, the point ω is the sensor position, it is empty otherwise the sensor could not
have been put there. A is outside the sensor field of view. This place is hidden and treated as
hidden in an occupancy update algorithm. B is in the empty area. C is in the occupied area. D is
in the hidden area inside the sensor field of view. The blue arrow is the sensor direction (or forward
vector) and with the point ω it defines the sensor position. The angular field of view, θ, and the
maximum measurable range define the 2D cone geometry. Right : for a 3D cone. The red arrow is
the up vector, the blue one is the forward vector and ω defines the sensor position. The angles θ

and φ (horizontal and vertical, respectively) define the angular field of view ; with the maximum
measurable range, they define the 3D cone geometry.
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occupied part. In particular, as a real sensor has a limited field of view, it is not

necessary to consider most of the grid. In 2D, the field of view is usually defined

by a single angle, the angular field of view (θ in fig. 2.11(a)) and the maximum

distance that the range-finder can detect : the maximum measurable range. In 3D

it is defined by two angles : the angular horizontal field of view and the angular

vertical field of view and the maximum measurable range (see fig. 2.11(b)). The

shape of the field of view is called a cone measurement, see fig. 2.11.

ω

hz

FIGURE 2.12 – Ray tracing techniques to update an occupancy grid.

With a laser range-finder the cone measurement is very narrow. Therefore, it

is acceptable to make the approximation that it is a segment. This segment links

the sensor origin ω and the point on the line of sight at the beginning of the

hidden area h. Based on that assumption, the common algorithm in 2D traverses

the segment [ω,h] using the well known, Bresenham algorithm ([FVFH90], see

FIGURE 2.12). This algorithm is well suited for small, dense occupancy grids :

for instance, it is very well suited for updating the local occupancy grid built in

section 2.2. However, for a wide map, it is trivial to say that a vehicle evolves in

an environment where it has enough space to move, therefore most of this space

is empty with respect to the vehicle volume. It implies that a lot of the time the

Bresenham algorithm is dedicated to update empty cells. Thus, it is not appropriate

to use classical occupancy grids for large maps and neither in 3D where most of

the space is empty.

An other problem, when using occupancy grids, is that a cell is considered
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as a full block, so all the information concerning the shape of the cell contents

is lost. A way to alleviate this problem is to attach some sort of statistical

shape description to every occupied cell. Two seminal works in this direction are

gaussian maps [MLT00] and the Normal Distribution Approach (NDT) [BS03],

these approaches significantly improve accuracy by approximating the shape

of the cell contents with gaussian clusters. The accuracy of these approaches,

together with their relative simplicity has contributed to making them very popular

in the map building community [GSB05, RB05]. That being said, a single

gaussian is still a poor representation when there are several objects with different

orientations in the cell.

Finally, grids are neither unable to provide a multi-scale representation of the

environment. Nevertheless, this kind of representation is usefull for some tasks in

mobile robotics : for instance, coarse maps are used in path planning [YSSB98,

PR98] or localization [RB05] algorithms in order to obtain a rough trajectory

or position estimate at a low computational cost. Then, at a second stage, this

estimate is used to initialize the fine scale search algorithms, thus accelerating

convergence.

In this section, we present a new map representation to overcome these

limitations of classical occupancy grids : multi-scale gaussian maps. In the next

subsection, we present this representation. In section 2.3.3, we explain how to

update a multi-scale gaussian map. This procedure adapts existing clusters in

order to minimize the representation error. It is similar to the standard update of

conventional Gaussian maps, except that it takes into account the fact that a cell

may contain several Gaussians. Section 2.3.4 presents our error-driven refinement

algorithm for coarse scales to improve the quality of the representation at coarse

level. This step is our main contribution, at every refinement step new Gaussian

clusters are added to the cells where the representation error is maximum.

2.3.2 Map Representation

We suppose that a localization is provided and we construct a 3 scale map

processing every scale independently :

– At the fine scale, cells have a side of 0.2m ;

– At the intermediate level, cells have a side of 1m ;

– At the coarse level, cells have a side of 5m.
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FIGURE 2.13 – Top left : 3D simulated scene. Top right : fine scale of the refined
map. Bottom left : intermediate scale of the refined map. Bottom right : coarse
scale of the refined map

Each scale is a sparse grid where only occupied cells are stored. A sparse grid is

encoded using a special hash table : each occupied cell is indexed by a key built

upon its integer coordinates inside the grid. Basically, the grid is seen as a 3-D

array, and like for a matrix, an unique integer can be associated to a cell (i, j, k) :

key = k + w ∗ j + h ∗ w ∗ i

where w and h are the number of cells in the width and the height of the grid.

This supposes that the grid is contained inside a bounding box with dimensions

(hs, ws, ds) where d is the number of cells in the depth of the grid and s is the

cell size in meters. Thus for each real point, one compute the 3-D coordinates of

its cell, then the key of the cell in the hash table. A cell is represented by one or
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more gaussian : in the fine scale there is only one gaussian per cell and in coarser

scales, a cell can contain several gaussians. FIGURE 2.13 gives an illustration of

our map representation for a 3D simulated scene.

2.3.3 Map Updating

This section presents the procedure to update an existing map from sensor

data. At this point, we assume that the number k of Gaussian clusters per cell is

known. The actual estimation of k is handled by the refinement algorithm that we

will discuss in section 2.3.4.

Our goal here is to update the Gaussians’ mean value µ and covariance Σ in

order to minimize the representation error with respect to the input data. Every

observation is used to incrementally update the different scales independently.

The basic idea is to find the cell where the input point falls and then updating the

cluster in that cell that is "closest" to the input point.

As in most incremental approaches, an important question is how much to

adapt the clusters – i.e. finding the ’right’ learning rate. In the following subsec-

tion, we describe the use of the cluster’s occupancy to control the adaptation. It

can be intuitively explained as follows : the more a cluster has been observed, the

more is known about it and the less reasonable it is to modify it. So, this adaptation

depends on the occupancy of a cluster. In next subsection, we describe how this

occupancy is computed for a point and a cluster.

Computing Cluster Occupancy

Basically, we project 2D (resp. 3D) grid modelling the environment on 1D

(resp. 2D) grid. The idea is to have for each cell, the range of the closest point.

Moreover, performing this "back projection" we avoid the computational burden

associated to the Bresenham algorithm. The Bresenham algorithm need to access

sequentially all the cell of the ray. However this access is very costly, since it

is a search in the hash map even if the cell does not exist since it is empty.

Furthermore the Bresenham algorithm accesses several times the cells that are

close to the sensor since several rays traverse them. On the contrary, the back

projection algorithm tests, in parallel, each occupied cell at most one time, and
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only the occupied cells.

Afterwards, we use this "back projection" to compute occupancy. The oc-

cupancy of a cell, C, in the map is given by comparing the range measured in

the pixel of its projection, I , in the range image with its actual range, δ. For

a Gaussian, the occupancy is obtained by averaging the occupancy of n points

sampled from the Gaussian distribution (rejecting those that fall outside the cell).

FIGURE 2.14 – Computation of occupancy in the range image of the bounding
sphere of a cell.

We only need to guarantee that there are enough samples to provide a good

estimate. To define n, we compute an upper bound of the number of points in the

range image that can be contained in the cell. This is done using the projected

bounding sphere of the cell. Let δmin and δ be the distance to the image plane

in the camera coordinate system and the distance to the center of c (fig. 2.14),

respectively. Then the projection of the bounding sphere of c occupies an area

of 3π
4

(
δmin

δ
a
)2

(orange disc in Fig. 2.14), where a is the length of the side of

c. Knowing the area of one pixel of the range image p, an upper bound for the

number of pixels that may be projected back into the original cluster is :

B , ⌈
3π

4p

(
δmin

δ
a

)2

⌉ (2.9)

which is the number of samples we are looking for. So, making n = B gives

us a good chance to cover every range image cell that effectively contains an

observation from the cluster.
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Updating Gaussian Clusters from Data

For every observation, a single cluster per scale will be updated. The cluster

is selected by finding the cell that contains the observation and then finding the

cluster having the minimum distance to that point.

Once the cluster has been selected, its parameters are updated by means of a

stochastic gradient descent algorithm. The principle is to update the cluster by a

fraction of the negative gradient with respect to each observation. As more and

more samples are processed, the magnitude of the adaptation should decrease to

ensure convergence. A good example is the on-line computation of the sample

mean :

µ
n = µ

n−1 + 1
n
(zn − µ

n−1)

where n represents the number of samples processed so far, and zn − µ
n−1 can

be understood as the negative gradient, and 1
n

the fraction of the gradient to be

taken into account. This decreasing weight is called the learning rate and is noted

ǫ. In our approach, the value of ǫ depends on the occupancy, as described in

section 2.3.3.

In the case of points, a distance metric between a point and a Gaussian should

be used. We have chosen to use the probability measure given by (2.10) :

d(p,w) ,
1

2

[
(p− µw)TΣw

−1(p− µw) + log (det(Σw))
]
, (2.10)

This distance is the addition of the Mahalanobis distance and a volume term. Com-

pared to the pure Mahalanobis distance, the volume term aims at compensating the

fact that the Mahalanobis distance of a big cluster tends to make every point very

close.

Learning Rate

Our idea is to define the learning rate from the occupancy : the higher the

occupancy of a cluster, the better the accuracy of its position and shape is supposed

to be ; thus, a small value of ǫ should be used. If, on the other hand, the occupancy

is low, the current estimated state of the reference vector can be assumed to be
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Algorithm 2.1 Map update with points : pointUpdate
{w1, . . . ,wK} ← the k Gaussian reference vectors of the cell

2: {ǫj|i = 1, . . . , k} ← the associated learning rates
z = p← the observed point

4: n← argmini=1,...,k d(z,wi)
µwn

← µwn
+ ǫn(p− µwn

)
6: Σwn

← Σwn
+ ǫn

[
(p− µwn

)T (p− µwn
)−Σwn

]

based on insufficient statistics and the learning rate should be high to permit the

reference vector to adapt itself.

In log-ratio the occupancy typically is bounded in [−omax, omax] and the

learning rate varies within [ǫmin, ǫmax]. For our approach we have chosen a linear

mapping between both values :

ǫ(o) =
ǫmin − ǫmax

2omax

(o+ omax) + ǫmax . (2.11)

2.3.4 Map Refinement

The idea is to start with a single gaussian per cell, and then to refine it

by inserting additional gaussian clusters in order to achieve a balance between

representational complexity and accuracy. This refinement is only performed for

intermediate and coarse scales. We aim at adding clusters only in those regions

where the Gaussian shapes have already converged to their final shapes, which can

be deduced from its occupancy. Accordingly, we choose to refine a cell c only if

its occupancy probability is above 0.5. In particular, from now on, we will assume

that there is a given budget of Gaussians per scale that needs to be allocated in an

optimal way through a refinement process. The refinement process is driven by a

measure of the representation error. The map is periodically refined by inserting a

new cluster in the cell that has the maximum error. After every insertion, the shape

of the other clusters in the same cell should be modified accordingly ; this is done

by running a clustering algorithm using the cells of the finer scale as input.

The following subsections provide the details of the refinement algorithm : the

error metric used to find where to add a new gaussian cluster is introduced in next

subsection and secondly we present the clustering algorithm.



38 Chapitre 2. Simultaneous Localization and Mapping

Error Computation

To find the cell to refine, we compute an error value per cell for the

intermediate and coarse scale. For a given cell, this value is basically the sum

of errors between each coarse or intermediate gaussian and the corresponding fine

gaussians. So for a given cell, the value is the sum of errors of each coarse or

intermediate gaussian. More formally, this value is the sum of the Mahalanobis

distance between the center of each gaussian cluster and the Gaussian cluster of

the finer scale.

For the cells cs of the coarse scale, s, having reference vectors (i.e. mean

values) {w1, . . . ,wK} and finer data at s − 1 : {z1, . . . , zN} ∈ G(φ(cs)), we

compute the average distance of each datum to its closest reference vector :

E(cs) =
1

N

k∑

i=1

N∑

j=1

(1− ǫzj
)δ(wi, zj) (µ

wi
− µ

zj
)TΣ−1

zj
(µ

wi
− µ

zj
) , (2.12)

where δ(wi, zj) is one if wi is the closest reference vector to zj using the

Mahalanobis distance defined by zj and zero otherwise. The occupancy is used

through the learning rate to assign higher error weights to occupied clusters,

disregarding those whose occupancy is low and, in consequence, whose accuracy

may still improve without the need of adding extra clusters.

Figure 2.15 illustrates the error computed for each cell of the coarse scale at

the beginning of the refinement process where at the coarse level, we only have

one gaussian per cell. The top of the figure represents the contribution of each cell

of the fine scale to the error of the corresponding coarse cell. Most of cells at fine

scale have a small contribution to the error : because at this level, the gaussian

is usually a good approximation of corresponding data. The most important error

(shown by yellow and red colors) is due to the stairs which are not very well

modelized by gaussians. At the coarse level, we see that using only one gaussian

per cell gives very poor approximation. For instance, the gaussian in red is a very

poor approximation of the real data(see top left figure 2.13) : a part of stairs and a

part of one pole and one background wall. In this case, the first refinement process

will add one gaussian in this cell.
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← 81870

← 496363

← 1137630

← 1634160

← 5231

← 31736

← 79464
← 101959

FIGURE 2.15 – Up : fine scale is colored with the magnitude of the contribution to the error at
the coarser scale. Down : coarse scale, mean error. Error palettes are on the right.

Clustering for Map Refinement

In this section, we describe our clustering approach for map refinement. This

method solves a hard clustering problem : we are looking for a partition C∗ =

{C∗
1 , . . . , C

∗
k} of the G(φ(cs)) into k classes represented by k reference vectors

that minimizes the clustering distortion :

E(C∗,{w∗

1
,...,w∗

k
}) = argmin

{C1,...,Ck},{w1,...,wk}

k∑

i=1

ECi
(wi) (2.13)

This is done by using the well known k-means clustering algorithm [Llo82].The

optimal clusters are computed iteratively from the set of reference vectors : each

datum is associated to its closest reference vector ; then, the minimizer of each

cluster energy is computed.

An important drawback of k-means is that is highly dependent on initial-

ization. Moreover, even if the algorithm is guaranteed to converge, it often gets

stuck in local minima of EW ∗ . To get out of the local minima a so called “swap”

procedure is used. One cluster is chosen, either randomly or because of its short
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distance to a different cluster with more elements. Then, a simulation is done by

reallocating that reference vector to the region of space with maximum error. If

the resulting partition has a lower clustering distortion, the result is accepted and a

new simulation is done. Otherwise, the result is rejected and the procedure stops.

2.4 Conclusion

In our first contribution [29, 5], we have presented a method to perform SLAM

with detection of moving objects. This method is based on a fast grid-based

scan matching algorithm which allows estimating precise vehicle locations and

building a consistent map surrounding of the vehicle. After a consistent local

vehicle map is built, moving objects are detected reliably without knowing a prior

knowledge of that objects. The results obtained from moving object detection step

help to filter out spurious objects resulting in a better map of the environment.

Experiments on real-traffic data have shown that our system can successfully

perform a real time mapping with moving object detection from a vehicle moving

at high speeds in different dynamic outdoor scenarios (see sections 4.3, 4.4

and 4.6).

In our second contribution [21, 4], we have proposed a comprehensive frame-

work to build two and three-dimensional maps from range data. The proposed

representation enhances the accuracy of previous approaches by enabling the

presence of several Gaussians per cell. These Gaussians are added by means

of a refinement algorithm which inserts them where the representation error is

maximum. This contribution has been validated by modelling a 3D environment

observed by a laser scanner (see section 4.5).
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Detection And Tracking of Moving

Objects

ïż£

3.1 Introduction

While SLAM as described previously are responsible for modeling static

part of the environment, DATMO deals with dynamic part of the environment.

Its objective is to detect and track moving objects which enables the prediction

of their future behaviors. Many tracking works suppose that the measurements

correspond uniquely to moving objects and then focus on multi objects tracking

problems. However most of the real applications include spurious elements in the

measurements or presence of static objects. Radar data has ground noise (climatic

perturbations, floor of the sea), video images have non stable backgrounds (trees

on the wind, changing light conditions, moving camera), laser data includes

non moving targets or spurious ground measures. Obviously detecting correctly

moving objects is a critical aspect of a moving object tracking system. It is also a

very important step for SLAM since separating moving objects from static objects

is a key point in order to build accurate maps in highly dynamic environments (e.g.

urban streets).

41
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3.1.1 Moving Object Detection

Here we discuss different methods developed to detect moving objects with a

particular use of laser sensor. In computer vision domain, moving object detection

algorithms can be classified as appearance-based, feature-based, motion-based

and model-based methods. Compared with images, laser data has less information

so that the appearance-based approaches are not directly applicable.

The idea of feature-based method is to define a set of simple features and

to use these features to detect specific moving entities. For instance, [SBFC01]

presented a method using simple features to detect people in office environments.

This method can be useful on restricted ambient, but it is clearly not well suited

for outdoor conditions where a tree can be similar to a pedestrian. Moreover, it is

difficult to extend this method to detect other object classes rather than people.

In section 2.2, we presented a motion-based method for moving object

detection from a moving ground vehicle using occupancy grid. This general

algorithm can be applied in any kind of environments and can be used to detect

any kind of objects. One drawback of this approach is when an object appears

in a previously not observed location, then we can say if it is moving or not. A

priori we can suppose that new objects are static until evidence demonstrates the

opposite. This method is simple, clear and can be implemented in real-time.

(a) scans from vehicle are often split up into
separate clusters due to occlusions or glassy
surfaces.

(b) when moving, vehicle comes in different
size (visible parts) which degrades the track-
ing result

FIGURE 3.1 – Vehicle model can help better interpreting laser data.

All methods mentioned above are model-free approaches which have an

advantage that they can be used to detect moving objects of any kind without

knowing a prior knowledge about that objects. However, as indicated by [PT08],

these mentioned methods pose several problems in particular with laser sensors.

Firstly, due to partial occlusions or laser-absorbed object surfaces (ex : glassy or
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black surfaces), an object can be divided into several segments (FIGURE 3.1(a)).

Secondly, only parts of the objects currently facing the sensor are visible, as

the object moves it comes in different sizes that degrades the tracking results

(FIGURE 3.1(b)). In these figures, we can see the importance of using a geometric

vehicle model which allows to naturally handle the disjoint point clusters and

the estimation of geometric shape of vehicles leads to more accurate tracking

results. [PT08] proposed to use flexible models to detect moving vehicles. [PT08]

introduced a method constructing a virtual grid in polar coordinate from laser data

and use a scan differencing technique to detect motion evidences. Then flexible

rectangular models are fitted to these evidences and vehicle sizes can be learned

adaptively after several observations. This method can detect vehicles successfully

but does not model and detect pedestrians, bicyclists or motorcyclists which is a

prerequisite for driving in populated areas.

3.1.2 Tracking of Moving Objects

Once moving objects are detected and located, it is desirable to track them in

order to estimate their dynamic states. Object tracking allows to aggregate object

observations over time in order to enhance the estimation of dynamic states. The

state vector can include position, speed, acceleration, geometric description, a

classification of object, etc... Usually these state variables can not be observed

or measured directly, but they can be estimated through tracking process.

In general, the problem of tracking multiple objects consists of two parts :

Filtering and Data Association [BSF88]. Filtering methods deal with the problem

of tracking one specific object which consists in estimating its state from given

observations over time using a bayesian filter. In the case of tracking multiple

objects, data association consists in identifying which observation corresponds to

which object being tracked, then filtering techniques are applied to estimate object

states with known observations. In the following we will discuss the popular

methods of filtering and data association in tracking.

3.1.3 Filtering - Multiple Dynamic Model

When the dynamics of a mobile object can be represented by a single model,

we can apply directly Bayesian filtering methods such as the Kalman filter,
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FIGURE 3.2 – two examples of wrong associations due to a wrong choice of set
of motion models

Extended KF or Particle filter to estimate object dynamic states (see section 2.1.1).

In practice, however, object can change their dynamics behaviors over time (e.g. :

stopped, moving, accelerating, etc...). To adapt to these changing behaviors, a

multiple dynamics model is generally required. The definition of this set of

dynamic models is crucial for tracking of moving objects especially for the

prediction phase. For instance, if motion models are defined with too low speed,

during tracking we obtain a frequent lost of tracked objects, because detections

are frequently outside of gating window. On the contrary, if motion models are
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defined with too high speed, we obtain wrong associations because predictions

are far from detected objects. In this case, association is sometimes done with

an other object as illustrated in figure 3.2(a). For the same reasons, a tracked

vehicle is sometimes associated with false alarms on road border as illustrated

in figure 3.2(b).

To deal with these motion uncertainties, Interacting Multiple Models (IMM)

[MABSD98, RLP03] have been successfully applied in several applications [Bla86,

BB95, BP00a]. The IMM approach overcomes the difficulty due to motion

uncertainty by using more than one motion model. The principle is to assume

a set of models as possible candidates of the true displacement model of the

object at one time. To do so, a bank of elemental filters is ran at each time,

each corresponding to a specific motion model, and the final state estimation is

obtained by merging the results of all elemental filters according to the distribution

probabilty over the set of motion models.

Also, the probability the object changes of motion mode is encoded in a

Transition Probability Matrix (TPM) which gives the distribution P (µt| µt−1), i.e.

the transition between motion models which is assumed Markovian. Nevertheless,

to apply IMM on a real application a number of critical parameters have to

be defined for instance the set of motion models and the transition probability

matrix(TPM). In practice, the TPM is often assumed known and is chosen

a priori. Even if the design of TPM for different applications have been

studied [BW92][MP98], its definition and construction do not rely on the real on-

line data and so such TPMs can not be adapted to the real application. therefore it

is an important issue to automatically adapt the TPM to fit the application of the

IMM algorithms.

Few publications address this specific problem and in most of them, simplest

problems are considered (binary system case) [SKF72] or the TPM is assumed

to belong to a set of finite candidates TPMs [Tug82b]. Also, in [GH00] modes

transition chain is formalized as a bayesian network and a maximum likelihood

estimator of the TPM is proposed. However, [JLA03][JL04] give algorithms to

adapt on-line the TPM under the assumption that the unknown TPM is random

but time-invariant. In all these works, assumption on estimated TPM is relatively

strong or algorithm complexity is too hight to address real time applications.

An iteration of an IMM with M filters is composed of four phases.
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1. Filtering for each filter (for i = 1, 2, . . . ,M ) :
– Prediction phase using the displacement model of the filter ;

– New estimation of ith filter P (xi
t) with observation zt.

2. Update of probability distribution over the set of models (for i = 1, 2, . . . ,M ) :
– Compute likelihood Li

t that the new observation zt corresponds to model

i : Li
t = P (zt|µ

i
t) ;

– Compute probability P (µ̃i
t) to be at time t in the model i whatever the

model j at previous time was :

P (µ̃i
t) =

∑

j P ([µt = i] | [µt−1 = j])P (µj
t−1) ;

– Compute probability to be in model i at time t :

P (µi
t) = Li

tP (µ̃i
t).

3. Fusion of estimations :
– P (Xt) =

∑

i P (µi
t)P (xi

t).

4. Reinitialisation of each filter (for i = 1, 2, . . . ,M ) :
– Compute probability P (µ̃i

t) to be in model i at time t :

P (µ̃i
t) =

∑

j P ([µt = i]| [µt−1 = j])× P (µj
t−1) ;

– Compute probability to go from a specific model j at time t− 1 knowing

that we are in the model i at time t : P (µj
t−1|µ

i
t) = P ([µt = i]| [µt−1 = j])/P (µ̃i

t) ;

– Initialization at time t, using estimations at time t − 1 : P (xi
t) =

∑

j P (xj
t−1)P (µj

t−1|µ
i
t) ;

Data Association

Data association arises from the task of multi-target tracking given observa-

tions about objects over time (returned by the detector for example). The objective

is to work out which observation was generated by which target. Because of the

ambiguity of sensor measurements, the data association problem in multi-target

tracking becomes more complicated. Actually the number of observations do not

necessarily correspond to the number of objects. And the number of objects is

difficult to estimate since one object might be temporarily occluded or unobserved

simply because objects can enter or go out of ranges of vehicle sensors. Moreover,

the perception sensors or the object detection process might generate false alarm

measurements.

The data association for multi-target tracking consists in deducing the number

of true objects and identifying if each observation corresponds to an already
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known object being tracked, to a spurious measure or to a new object in the

scene that will be started to be tracked. The complexity to solve data association

grow exponentially with the number of targets in the scene. FIGURE 3.3 shows

an example of data association given object observations over five time steps. The

solution found is comprised of two tracks τ1, τ2 and a false alarm observation τ0.

FIGURE 3.3 – Example of data association. a) A set of observations Y (each circle
represents an object observation together with numbers representing time steps. b)
A solution of data association which is comprised of two tracks and a false alarm.

In the literature, data association algorithms are often categorized according

to the objective function that they purport to optimize :

– Heuristic approaches typically involve optimizing associations between

observations and targets under an explicit objective function.

– Maximum a posteriori (MAP) approaches find the most probable associa-

tion, given all observations returned so far, then estimate tracks with this

found association.

– The Bayesian approaches generate optimal filtering predictions by summing

over all possible associations, weighted by their probabilities.

Data association algorithms can also be categorized by the way in which they

process the measurements :

– Single-scan algorithms estimate the current states of targets based on their

previously computed tracks and the current scan of measurements.

– Multi-scan algorithms may revisit past scans when processing each new

scan, and can thereby revise previous association decisions in the light of

new evidences.

The simplest data association method using a heuristic approach is the Greedy

Nearest Neighbor (GNN) [BP99]. It processes the new observations in some order
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and associates each with the target whose predicted position is closest, thereby

selecting a single association after each scan. The method requires very little

computation and is extremely fast. One drawback is its inability of correcting

error associations at later steps.

MAP approaches includes the well-known multiple hypothesis tracking (MHT)

algorithm [Rei79, CH96a]. MHT is a multi-scan association algorithm that

maintains multiple hypotheses associating past observations with targets. When

a new set of observations arrives, a new set of hypotheses is formed from

each previous hypothesis. The algorithm returns a hypothesis with the highest

posterior as a solution. MHT is categorized as a "deferred logic" method in

which the decision about forming a new track or removing an existing track

is delayed until enough measurements are collected. The main disadvantage

of MHT in its pure form is its computational complexity since the number of

hypotheses grows exponentially over time. Various heuristic methods have been

developped to control this growth [Bla04] but these methods are applied at the

expense of sacrificing the MAP property. However, since the underlying MAP

data association problem is NP-hard, so we do not expect to find efficient, exact

algorithm.

Exact Bayesian data association is even less tractable than the MAP com-

putation. Several "pseudo-Bayesian" methods have been proposed, of which the

best-known is the joint probabilistic data association (JPDA) filter. JPDA is well

described in [BSF88] which is a suboptimal single-scan approximation to the

optimal Bayesian filter. In its original form, JPDA assume the number of targets

is fixed. However, it can be modified to track with varied number of objects

[SBFC01]. At each time step, instead of finding a single best association between

observations and tracks, JPDA enumerates all possible associations (NP-hard) and

computes association probabilities {βjk}, where βjk is the probability that j-th

observation associates with the k-th track. Given an association, the state of a

target is estimated by a filtering algorithm and this conditional state estimate is

weighted by the association probability. Then the state of a target is estimated

by summing over the weighted conditional estimates. JPDA has proved more

efficient in cluttered environments compared with GNN [BSF88] but prone to

make erroneous decision since only single scan is considered and the association

made in the past is not reversible.
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Recently, sampling data association methods using Markov chain Monte Carlo

(MCMC) have achieved notable success in vision tracking [SN05, YCMW06,

ZNW08]. The idea behind these methods is to use MCMC sampling instead of

enumerating over all possible associations. Unlike MHT and JPDA, MCMC data

association (MCMCDA) is a true approximation scheme for the optimal Bayesian

filter ; i.e., when run with unlimited resources, it converges to the Bayesian

solution. [ORS04] showed that a single-scan version MCMCDA can be designed

to approximate JPDA in polynomial time and a multi-scan version MCMCDA can

be designed to converge to the full Bayesian solution.

3.1.4 Synthesis and Contributions on DATMO

To solve the SLAM and DATMO problem, the first step is to detect moving

entities. In section 2.2, we proposed a motion-based method to solve this

problem. As described previously, model-free approaches pose several problems

in particular use with laser sensors. To overcome this difficulty, in section 3.2,

we introduce a model-based approach [23, 5] to improve the detection process

and also the tracking process. We define fixed models to represent several typical

moving object classes and introduce a method to perform both moving object

detection and tracking which is able to detect and classify buses, cars, motor/bi-

cyclists and pedestrians.

Regarding the multi objects tracking problem, it consists in general of two

parts : Filtering and Data Association [BSF88]. Regarding filtering, the definition

of an appropriate dynamic model is one of the most important problem to solve.

In practice, however, object can change their dynamics behaviors over time (e.g. :

stopped, moving, accelerating, etc...). To adapt to these changing behaviors, a

multiple dynamics model is generally required. The definition of this set of

dynamic models is crucial for tracking of moving objects especially for the

prediction phase. In section 3.3, we define a method to guide us in the choice of

motion models and to estimate the interactions between this set of motion models.

Regarding Data Association problem, Markov Chain Monte Carlo (MCMC) have

achieved notable success in vision tracking. This method is able to provide a true

approximation scheme for the optimal Bayesian filter and is able to perform data

association using multi-scans and some constraints on dynamic models to improve

the robustness of the data association process. In section 3.2, we describe how we
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used MCMC to solve the data association problem.

3.2 DATMO Formulation

3.2.1 Introduction

Our algorithm to solve DATMO is summarized as follows. We formulate the

detection and tracking problem as finding the most likely trajectories of moving

objects given data measurements over a sliding window of time (FIGURE 3.4a)).

A trajectory (track) is regarded as a sequence of object shapes (models) produced

over time by an object which must be satisfied the constraint of both an underlying

object motion and the consistency with measurements observed from frame to

frame. In this way, our approach can be seen as a batch method searching

for the global optimum solution in the spatio-temporal space. Due to the high

computational complexity of such a scheme, we employ a Markov chain Monte

Carlo (MCMC) technique that enables traversing efficiently in the solution space.

We employ the detection results from the previous chapter as a coarse detector

to generate potential moving object hypotheses with predefined models that helps

to drive the search more efficiently. This technique earns its name data-driven

MCMC (DDMCMC) in the literature [ZZT00].

The remaining of the section is organized as follows. In the following section,

we introduce a general formulation of the moving object detection and tracking

problem and detail this solution in section 3.2.3. In Section 3.2.4, we present

the algorithm to find the optimal trajectories of moving objects using a spatio-

temporal MCMC sampling method.

3.2.2 DATMO Formulation

We consider detection and tracking in a sliding window of time which is

comprised of T ∈ N+ last frames. Let Z be the set of all data measurements

within the time interval [1, T ] and Z = {z1, ..., zT} where zt denotes the laser

scan measurement at time t. The current time corresponds to t = T . Assuming

that within [1, T ] there are K unknown number of objects moving in the vicinity

of the vehicle.
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The moving object detection and tracking problem is formulated as maxi-

mizing a posterior probability (MAP) of an interpretation of tracks ω of moving

objects, given a set of laser measurements Z over T frames :

ω∗ = argmax
ω ∈Ω

P (ω|Z) (3.1)

In the following, we describe solution space Ω and object shape models.

Solution Space

A solution ω for the Equation (3.1) includes a set of K trajectories (tracks) of

moving objects appeared during the tracking over the last T frames 1 :

ω = {τ1, τ2, ..., τK} (3.2)

Each track τk in ω is defined as a sequence of the same object appears in time :

τk = {τk(t1), ..., τk(t|τk|)} (3.3)

where ti ∈ [1, T ], |τk| is the length of track, τk(t) represents moving object

detected at time t with its associated properties will be described in the next

subsection related to objects model.

FIGURE 3.4 shows an example of one possible interpretation of moving

objects from a sequence of four laser scans. The solution found is comprised of

seven tracks of five cars, one bus and one pedestrian ω = {τ1, ..., τ7}.

We introduce the notation ωt =
⋃K

k=1 τk(t) representing the set of moving

objects visible at time t (see FIGURE 3.5). Since object occlusion or missing object

detection might happen, we set 1 ≤ (ti+1 − ti) ≤ tmax. Looking at this figure,

vertically at each time slice ωt can be seen as the result of the moving object

detection at time t and horizontally ω can be seen as a data association process

over object observation space given by the detector. In this meaning, searching

the solution ω means that we simultaneously deal with both detection and tracking

1. Here, we are interested in finding the trajectory of all moving objects present in the
environment knowing the observations : P (ω|Z). This is slightly different from the classical
problem of DATMO where we are interested in finding the list of all moving objects present in the
environment knowing the observations : P (O|Z).
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FIGURE 3.4 – Example of an interpretation of moving object trajectories from
a laser data sequence. (a) Data comprised of four scans consecutive : in blue is
current scan and in green are scans in the past ; (b) A solution found including
seven tracks of four cars and one bus represented by red boxes and one pedestrian
represented by red dots which are imposed on the range data ; (c) situation
reference.

problems.

The complexity of the entire solution space Ω (ω ∈ Ω) can be roughly

estimated as follows :

Ω = ∪∞
k=0Ωk

Ωk = {∪
T
l=1Tl}

k,

Tl = (3×R3 +R2)l

where Ωk is the subspace of solutions comprised of exactly k tracks, Tl is the

space for tracks with length of l, R3 is the space for position and orientation

parameters of non-people object classes (we have three classes) and R2 is the

space for position parameters of the people class.



3.2. DATMO Formulation 53

FIGURE 3.5 – Illustration for the notation in use.

Object models

FIGURE 3.6 – Box model and point model to represent moving objects.

In general, there are so many classes of objects in traffic scenes but the number

classes of moving objects of interest is quite limited. Here we distinguish four

classes of moving objects : bus, car, bike, pedestrian (motorcycles and bicycles

belong to the bike class). We use a box model of fixed size to represent bus, car,

bike and a point model to represent pedestrian. Our approach is different with

the approach proposed by Petrovskaya [PT08] who used a flexible box model to

represent cars and introduced a method to learn object sizes during tracking. A

problem with this approach is that during most of the time objects being tracked,

they are not totally visible to the laser sensor so that the adaptive sizes do not

necessarily correspond to the actual size of the objects being tracked. In addition,

her work only deals with detection and tracking of vehicles.

To generalize, we represent models of objects as follows. For the box model,
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object is parameterized by M = {c, x, y, wc, lc, θ} which are object class, object

center position, width, length and orientation respectively. Herein wc and lc are

constants with respect to the width and length of each object class c. For the point

model, object is parameterized by M = {c, x, y}which are object class and object

center (see FIGURE 3.6).

3.2.3 DATMO Decomposition

According to the Bayes rule, the posterior probability P (ω|Z) is decomposed

into :

P (ω|Z) ∝ P (ω)P (Z|ω) (3.4)

where P (ω) and P (Z|ω) are the prior and likelihood probabilities respectively. In

the following, we describe the prior model and the likelihood model.

Prior Probability

The prior P (ω) in the Equation (3.4) simply reflects the probability we have

seen an arrangement of K object trajectories on road without taking into account

the sensor observations. Assuming that the occurrence of an object is independent

of the others, we define the prior of a solution ω is a product of probabilities of

individual tracks :

P (ω) =
K∏

k=1

P (τk) (3.5)

The probability P (τk) encodes the temporal consistency of object positions within

the track which is denoted by PT (.). The probability PT (.) controls the inner-

smoothness of each track independently (FIGURE 3.7). However, without an a

priori knowledge of the number of targets, the inner-smoothness constraint will

favor shorter paths, and therefore will split a trajectory into a large number of sub-

tracks. To overcome this overfitting problem, we add a prior term PL(.) which

encodes the preference of longer track. Now we can write :

P (τk) = PL(τk)PT (τk) (3.6)
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FIGURE 3.7 – Temporal consistency of a track. Obviously the arrangement of cars
on the right is more relevant to a correct motion than that on the left.

Likelihood Probability

The likelihood P (Z|ω) (3.4) reflects the probability we observe the measure-

ments Z given ω which contains the states of all moving objects appeared during

the time interval [1, T ]. Note that the measurements Z comes from both static and

dynamic objects.

Let Z(d) denote all laser measurements which is identified from the step

described in section 2.2 as being caused by moving objects from the solution ω.

We have Z(s) = Z − Z(d) the remained measurements which are supposed to be

caused by static objects. Note that Z include T laser scans Z = {z1, ..., zT}. We

denote z
(d)
t and z

(s)
t as measurements from dynamic and static objects at time t

respectively.

By this definition, besides information about dynamic objects, the solution ω

can be considered as a partition of Z into dynamic and static measurements. From

frame to frame, these measurements should be consistent with each others. We

can therefore decompose the likelihood into a product of two terms :

p(Z|ω) =
T∏

i,j=1

P (zi|ωj)
T∏

i,j=1

P (zi|z
(s)
j ) (3.7)

where the first term encodes the likelihood of a laser scan at a time given

observations of moving objects and the second term encodes the consistency of
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the scan with static parts of the environment. (Remember that ωi denotes list of

moving objects at time i).

FIGURE 3.8 – Four types of constraint used to compute the likelihood. The red
dots are measurements that violate the laser visibility constraint.

The first term is then further decomposed :

T∏

i,j=1

P (zi|ωj) =
∏

i

P (zi|ωi)
∏

i 6=j

P (zi|ωj)

=
∏

i

PM1
(z

(d)
i |ωi)PM2

(z
(s)
i |ωi)

∏

i 6=j

PM3
(z

(s)
i |ωj) (3.8)

The second term in (3.7) is rewritten as :

T∏

i,j=1

P (zi|z
(s)
j ) =

∏

i 6=j

PM4
(zi|z

(s)
j ) (3.9)

The meaning of each probability component is as follows. PM1
scores the

fitness of dynamic measurements to the moving objects. PM2
, PM3

and PM4

penalizes the violation of laser visibility constraint. In particularly, PM2
penalizes

situations that laser can see through dynamic objects. PM3
penalizes the situations

where moving objects are detected at position that has seen static objects. PM4

penalizes the situations where laser can see through static objects. FIGURE 3.8,

in order from left to right, illustrates the meanings of probabilities PM1
, PM2

, PM3

and PM4
respectively.
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3.2.4 Efficient DATMO Computation using MCMC

We want to find the solution ω that maximizes the posterior probability

defined in (3.4). However, as stated in Section 3.2.2, the solution space contains

subspaces of varying dimensions (number of tracks). It also includes both discrete

variable (object-track associations) and continuous variables (object positions and

directions). These makes the optimization challenging. Although the problem is

restricted within a sliding window, searching in the solution space for Equation

(3.4) is still challenging.

Dealing with this difficulty, we employ a Markov chain Monte Carlo (MCMC)

method. We introduce the basic idea of MCMC in the following. In next

subsection, we detail how we use the detection results from the previous chapter as

a coarse detector to generate potential moving objects hypotheses with predefined

models that helps to drive the search more efficiently. Finally, we explain how we

represent the hypothesis space and use it to generate hypothesis.

MCMC algorithm

The basic idea of MCMC is as follows. A Markov chain can be designed

to sample a probability distribution π(ω) (in our case π(ω) = P (ω|Z)). At each

iteration, we sample a new state ω′ from the current state ωn following a proposal

distribution q(ω′|ωn−1) (in simple words, what new state should the Markov chain

go from the previous state). The new candidate state ω′ is accepted with the

following probability A(ωn−1, ω
′) where

A(ωn−1, ω
′) = min(1,

π(ω′)

π(ωn−1)

q(ωn−1|ω
′)

q(ω′|ωn−1)
) (3.10)

otherwise the sampler stay at ωn−1.

The overview of MCMC algorithm is shown in Algorithm 3.1. This is the

well-known Metropolis-Hasting algorithm [Tie96]. The proposal probability q(.)

is called the dynamics of the Markov chain.

It is proved that the Markov chain constructed this way has its stationary

distribution equal to π(ω), independent of the choice of the proposal probability

q(.) and the initial state ω0. However, the choice of the proposal probability

q(.) can affect the efficiency of the MCMC significantly. A random proposal



58 Chapitre 3. Detection And Tracking of Moving Objects

Algorithm 3.1 MCMC Sampler
1: Input : Z, nmc, ω

∗ = ω0 Output : ω∗

2: for n = 1 to nmc do
3: Propose ω′ according to q(ω′|ωn−1)
4: Sample U from Uniform[0, 1]
5: if U < A(ω, ω′) then
6: ωn = ω′

7: if P (ωn|Z) > P (ω∗|Z) then ω∗ = ωn

8: else
9: ωn = ωn−1

10: end for

probability will lead to a very slow convergence rate while a proposal probability

designed with domain knowledge will make the Markov chain traverse the

solution space more efficiently. If the proposal probability is informative enough

so that each sample can be thought of as a hypothesis, then the MCMC

approach can be though of as a stochastic version of the hypothesize and test

approach [ZZT00] that earns the approach its name Data-Driven MCMC method

(DDMCMC).

Moving object hypothesis generation

To make the proposals more informative, we take advantage of the detection

module in section 2.2.3 which can help to identify moving parts of dynamic

objects. Combined with suitable object models, all possible object hypotheses

are generated at location of these detected motion evidences. The principle is

that we want to keep the detection rate high and accept false alarms to cover

as many potential moving objects as possible. These rough hypotheses provide

initial proposals for the MCMC sampler (Algorithm 3.1) that performs a finer

search over the spatio-temporal space to find the most likely trajectories of moving

objects with a maximum of posterior probability.

The goal of the first step is to build a set of dynamic segments corresponding

to potential moving objects. Note that objects can be divided into several parts so

that several segments might be related to the same object.

Figure 3.9 illustrates our detection process. In the figure, the bottom image

describes a situation when the host vehicle moving along the street seeing two cars
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FIGURE 3.9 – Object detection based on occupancy grid.

moving ahead, another car coming out of the left turn and two pedestrians walking

on the left pavement. The image on top left shows the local grid map constructed

around the host vehicle (blue box). In red color is the current laser scan.

Laser impacts that fall into free or unexplored regions are detected as dynamic

measurements and are displayed in the top right image. Dynamic measurements

are then grouped into segments represented in green boxes corresponding to

moving objects. Note that the car coming from the left turn is divided into two

segments.Two false alarms are also displayed.

Starting from identified dynamic segments, we generate object hypotheses by

fitting predefined object models to each segment. The objective is to generate

all possible hypotheses corresponding to potential moving objects. The model

fitting is carried out as follows. For each segment, a minimum bounding box is

computed and corresponding sides of the segment are extracted. We remark that

at one time instant, maximum two sides of a segment can be seen by the laser

sensor. Providing that the size of a bounding box of a segment is larger than a

threshold, the segment is classified as a L-shape if it has two visible sides, as an I-



60 Chapitre 3. Detection And Tracking of Moving Objects

shape if only one side is visible. Otherwise it is classified as a "mass point"-shape.

Depending on the shape and size of segments, object hypotheses are generated

using suitable models. L-shape segments will generate bus, car hypotheses, I-

shape segments create bus, car, bike hypotheses and "mass-point" segments will

generate pedestrian hypotheses.

FIGURE 3.10 – Illustration of fitting object box model (green) to L-shape and
I-shape segments (red). The last two shapes show that using box model helps
connecting discontinued segments.

FIGURE 3.10 shows possible hypotheses of an object as a box model given L-

shape and I-shape segments of different sizes. Note that by fitting object models

to segments in this way, models can cover segments nearby so that naturally

overcome object splitting problem caused by laser measurement discontinuities

(FIGURE 3.1).

Neighborhood graph of hypotheses

We use a graph 〈V,E〉 to represent the relationship of all coarse moving object

hypotheses generated as described above within the time interval [1, T ]. Let hi
t

denote the i-th hypothesis generated at time t. Each hypothesis hi
t is represented

by a node in V . We define the neighborhood between two nodes in the graph by

edges in E of two types : sibling edges and parent-child edges. Sibling edges

represent exclusion relationship between object hypotheses that are generated

from the same moving evidence so that if one is selected to form a track then

the other are excluded. Parent-child edges reflect possible temporal association

between hypotheses (possible data association).

FIGURE 3.11 shows an example of neighborhood graph of moving object

hypotheses generated over three frames. Object hypotheses at each frame are

numbered and object classes are represented by nodes of different shapes. Sibling
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FIGURE 3.11 – Example of a neighborhood graph of moving object hypotheses
generated over three frames.

nodes are displayed inside gray circles. Parent-child nodes are connected by

segments.

Markov chain dynamics

The Markov chain dynamics correspond to sampling the proposal distribution

q(ω′|ωn−1) described in Algorithm 3.1 (line 3). We assume that at the (n − 1)-th

iteration we have a sample ωn−1 = {τ1, ..., τK} comprised of K tracks which is

formed from nodes of moving objects in V and now propose a candidate ω′ for

the n-th iteration. Let V ∗ denote the set of all unselected nodes in V and do not

share any sibling edge with nodes contained in ωn−1.

FIGURE 3.12 illustrates the described dynamics moves of the Markov chain

which we use to traverse the solution space. Four first types of moves are temporal

dynamics and the last one is a spatial dynamics. The temporal moves help to

form tracks (data association of object hypotheses over T frames) and the spatial

move helps to improve the detection results (to compensate errors from the model-

fitting step described in the subsection 3.2.4). At each iteration, one of the above

dynamics is chosen randomly. Since the dynamics moves are stochastic and

reversible, it is guaranteed that the Markov chain designed this way is ergodic (i.e.,

any state is reachable from any other state within finite number of iterations) and

aperiodic (i.e., the Markov chain does not repeat in a fixed pattern). This ensures
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FIGURE 3.12 – Dynamics moves of the Markov chain.

that the entire solution space can be explored if the MCMC sampler constructed

this way is run with unlimited resources.

Incremental computation

For each MCMC move, we need to compute the ratio π(ω′)
π(ω)

= P (ω′|Z)
P (ω|Z)

in

(3.10). In one iteration, our algorithm only changes maximum two tracks. Thus

the new posterior probability can be computed more efficiently by incrementally

computing it only within the related terms in (3.4). This is in contrast to the

particle filters where the evaluation of each particle (joint state) needs the

computation of the full joint likelihood. One more interesting property of the

MCMC approach is that, we only need to keep one hypothesis of object trajectory

solution in the memory at one time instant compared with all solution hypotheses

have to be maintained in case of tracking with MHT. Moreover, the execution time

can be controlled by the number of sampling iterations nmc.
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3.3 Adaptative Interactive Multiple Models

3.3.1 Introduction

In previous section, we develop a general framework to perform object

detection and tracking at the same time with an explicit integration of various

aspects including prior information, object model, measurement model, motion

model in a theoretically sound formulation. One of the prior information for each

track of ω is PT (τk). This term is measured by the smoothness of object motion

according to its underlying dynamics model. Since in urban scenarios objects are

high maneuvers, we opt for a multiple model approach to model object dynamics.

For classes of bus, car, bike, four modes of dynamics are used : constant velocity,

constant acceleration, turning and stationary mode. For pedestrians, we force the

acceleration to zero and only one constant velocity model is used. Box-model

dynamic states are (x, y, θ, θ̇, v, a) with the velocity v and acceleration a are

always in the direction θ of the longer edge l. Dynamic states for point-model

objects are (x, y, vx, vy).

In this section, we detail our second contribution [33, 6] on DATMO. We

present a method to automatically model the interactions between the different

motion models instead of defining them a priori and also to guide us in the

choice of motion models. The main advantage of this method is to design multiple

motions models that are very close to the real motions of tracked objects. Actually,

the motion models of objects tracked in section 3.2 have been choosen using this

method. In next subsection, we detail the principle of our approach and explain

how we use it in the framework of multiple objects tracking. In the last subsection,

we describe how we can use this principle to find the pertinent model for an IMM.

Actually, TPM model changes in displacement of moving objects. So, this

set of changes of displacement could be seen as a set of behaviors. For instance,

when moving in an environment, some objects will have similar behaviors (e.g

pedestrians crossing a parking or cars moving in a specific direction). These

similar behaviors will cause the same changes of displacements. To obtain a

classification of behaviors of objects, we use automatically online adapted TPM

to characterize typical displacements of objects. Afterwards, this classification is

used to specify a precise TPM for a given object and so to obtain more adapted

modelization of typical displacements of this object.
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3.3.2 Principle

Algorithm 3.2 TPM adaptation

1: Adaptation of TPM(T 1 = (z11 , ..., z
1
length(1)), . . . , T

N = (zN1 , ..., zNlength(N)))
2: for all Trajectory T i do
3: Si ← [ ]
4: /* Obtaining of µ1,...µlength(i) using IMM */
5: for all observation zij in T i do
6: {µj, P (X)} ← IMM(zij)
7: Si ← Si ∪ [µj]
8: end for
9: /* Determination of the most likely sequence of models MLSM */

10: MLSM← V iterbi(Si)
11: /* Quantification of most likely transitions between models */
12: for all Couple ( SMPk, SMPk+1) in MLSM do
13: i← MLSMk

14: j ← MLSMk+1

15: Fij = Fij + 1
16: end for
17: end for
18: /* Update of TPM */
19: TPM← Normalization(F )
20: Return TPM

The principle of the method is the following. For a given number N of

trajectories 2, we build sequences of associated motion models probabilities. And

then, using these motion models probabilities, the TPM is adapted and reused

in the IMM filters for the next estimations. The TPM is initially chosen to be

uniform. In more details, algorithm 3.2, given in pseudo-code, is the algorithm

defined to compute one adaptation of the TPM. An adaptation of the TPM is done

after a given number N of trajectories obtained from past tracked objects, to update

TPM using a window on trajectories.

The algorithm given in pseudo-code is the algorithm developped to determine

the TPM of an IMM. This algorithm uses a predefined IMM (i.e., a set of motion

models) with an uniform TPM and a collected set of N trajectories of past objects.

2. A trajectory is defined as the sequence of observations (provided by a detector) of a past
object. The observations composing the ith trajectory are noted : T i = (zi1, ..., z

i
length(i)) where

zij is jth observation of the ith trajectory
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The algorithm delivers as an output a new estimation of the TPM. Our algorithm

is composed of a main loop over these N trajectories (cf. lines 3-19). Inside this

loop, the processing on each trajectory is divided in 3 steps :

1. Computation of distribution on motion models using IMM ; (cf. lines

3-8)

For each observation, the position of the object is estimated by the IMM

filter. So, the distribution µj on motion models is computed (line 6). So, we

obtain for a given trajectory a sequence Sn of distributions on models (line

7).

2. Determination of the most likely sequence of transitions between

motion models ; (cf. lines 9-10)

During this step, we determine the most likely sequence of transitions

between motion models knowing a given trajectory (i.e., a given sequence

of K observations). More formally, we are interested in determining the

most probable sequence µ0 µ1...µK knowing the trajectory z0 z1...zK that

maximizes

max{P (µ0 µ1...µK | z0 z1...zK)} (3.11)

Using bayes rule and taking into account that the TPM is markovian, we

have :

P ( µ0 µ1... µK | z0 z1...zK) = αP (µ0)
K∏

k=1

P (µk| µk−1) P (zk | µk)

where P (µk| µk−1) is the TPM and P (zk | µk) is the likelihood of an

observation knowing the motion model. The number of possible sequence

of motion models is equal to KM2 with M the number of motion models

and K the length of the sequence of observations.

To find the sequence µ0 µ1...µK which maximizes equation 3.11, we use the

Viterbi algorithm [For73].

3. Quantification of the most probable transitions between models. (lines

11-17)

The last step of the algorithm consists in quantifying the number of
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transitions between models using the previous most likely sequence of

transitions between models (lines 11 to 17). For this, we use an intermediate

matrix named matrix of frequencies. This matrix models the number of

transitions from one model to an other. We note F this matrix and Fij gives

us the number of transitions from model i to model j. The update of this

matrix of frequencies F is done by counting over the most likely sequence

of transitions between models : for each transition in this sequence, the

corresponding element in the matrix is incremented (line 15).

At the end of the algorithm, after processing the set of N trajectories, an

estimation of the TPM is obtained by normalizing the matrix F (line 21 and 22).

Collecting the set of trajectories

To determine the TPM, we need to collect a set of trajectories. In section 3.2,

we define a complete framework for DATMO. In this framework, we used IMM

filters to track objects. A description of the motion models used for these IMM

filters is given in section 3.3.1 and before adaptation we consider that the TPM for

each IMM filter is uniform. For each tracked object, we memorize its complete

trajectory and when it leaves the field of view of the laser scanner, we collect its

trajectory for adaptation of TPM.

3.3.3 Continuous and online adaptation of TPM

One of the advantage of our method is to determine the TPM associated with

a given IMM and a set of trajectories. In this section, we describe how we can

use this principle to continuously and online adapt the TPM. The basic idea is the

following one : we periodically collect the set of trajectories of objects that have

left the environment and use them to update the TPM. The principle of the method

is illustrated in figure 3.13. Regarding the framework described in section 3.2,

at each timeframe, we obtain for each object the corresponding sequence of

observations. We split the set of sequence of observations in two subsets : objects

still present in the environment and objects that have just left the environment.

For objects that are still present in the environment, we use the current estimate of

TPM to continue to track them since they leave the environment. So we only use

sequence of observations of objects that have left the environment to update the
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FIGURE 3.13 – Use of adaptative IMM for multi objects tracking

TPM. After collecting a set of N trajectories, we decide to update the TPM and to

use this new TPM to track future objects. The main advantage of this method is to

continuously and online adapt the TPM.

3.3.4 Use of adaptation to define the set of motion models for

IMM

Introduction

To use our adaptative method, we have to define the set of motion models

composing the IMM filter. The choice of these models and their interactions via

TPM is critical to obtain an efficient filtering. The adapted TPM directly depends

on the definition of these models. In this section, we present how results of

adaptation could be used to check if the set of choosen motion models is pertinent

or not.

First of all, we define a set of initial motion models. Using these motion

models, we propose a method to redefine the parameters of the models and the

set of models based on the results of adaptation.
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FIGURE 3.14 – Set of initial motion models

Initial choice of set of motion models

The choice of the set of filters composing an IMM is essentially based on

two criteria : speed and orientation of motion models. As we are concerned with

tracking vehicles or pedestrian mostly on road environments, we choose to have

8 directions and 2 speeds. Moreover, we decide to have 3 translational speeds in

the direction of the ego vehicle and only 1 translational speed in the direction

perpendicular to the direction of the ego vehicle. The 16 defined motion models

are illustrated in figure 3.14.

Redefinition of motion models after adaptation

Analyzing adapted TPM, some rules can be defined to modify the initial set of

motion models and as a consequence improve the quality of tracking. For instance,

an error on the choice of speed could be detected for a set M of m motion models

defining the same direction but with different speeds, if we have after adaptation

almost all the transitions for only a subset of M to itself. If we look at the TPM, we

will see one or several "picks" for a given direction. For instance, in figure 3.15,

on the diagonal (corresponding to motion models 7,8, 12 and 13 on figure 3.14),

we see 3 "picks" corresponding to transition of a given motion model to itself.

Intuitively, the solution is to redefine speeds of M taking as reference speed,

motion models with the most important transitions corresponding to the "picks"

in TPM.

Formally, let {V1, V2, ..., Vm} be the set of speeds increasingly ordered for a
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FIGURE 3.15 – Example of adapted TPM with a wrong initial set of motion
models

given direction. If there exists i with i ∈ [1,m] as TPM(i, i) > G et TPM(j, j) < ǫ

and TPM(i, j) < ǫ, ∀j 6= i, with G a high value and ǫ a negligeable value, so

V1 = Vi −∆, VM = Vi +∆ with ∆ < |Vi−Vi−1|+|Vi−Vi+1|
2

and V2, .., Vm−1 defined

to obtain a regular discretization on [V1, .., Vm].

An error on orientations will be detected in the same way by too important

transitions for a given direction and negligeable transitions for neighboring

directions. We will also see one or several "picks" for a given direction. The

solution is also to discretize orientations for motion models which transitions are

negligeable.

Formally, let {θ1, θ2, ..., θM} be the set of defined orientations in different

models for a given orientation. If there exists i with i ∈ [1,m] as TPM(i, i) > G

et TPM(j, j) < ǫ TPM(i, j) < ǫ, ∀j 6= i, with G a high value and ǫ a negligeable

value, so θ1 = θi − ∆, θm = θi + ∆ avec ∆ < |θi−θi−1|+|θi−θi+1|
2

et θ2, .., θm−1

defined to obtain a regular discretization on [θ1, ..., θm].

3.3.5 Interacting Multiple Models based Classification of Mov-

ing Objects

In this section, we detail how we improved our adaptive method to track

objects by adding a classification module [17]. The intuitive idea is to consider
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the set of changes of displacement as a set of behaviors. The goal is in a first

stage to compute TPM classes modeling typical object behaviors. The second

stage aims to identify which behavior and thus at which TPM class it belongs.

This identification permits afterwards to assign a specif TPM to moving objects,

modeling in a better way the tracked object behavior.

In the first part, we present the general principle. The class computation is

exposed in a second part. In the third part, we explain how a class is assigned to

each track. The way the classification module output is used in the multiple object

tracking is shown in the fourth part. Finally a conclusion is given.

Principle

Predictions

Ended trajectories
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Trajectories of current

tracked objects Use of classes
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Adapted global

Classes of TPM

Trees of objects

after estimation

Trees of elaged
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IMM Filter

TPM adaptation FusionTPM

objects
final TPM used

Ended trajectories Associated to objects

To user

C1, C2, ..., Ck

GATING

FILTERING

suppressed objects

Trees of

FIGURE 3.16 – General schema showing the classification use in the filtering
process

The method’s general principle is illustrated in the figure 3.16. The filtering

part is again represented with yellow boxes as defined in the previous section.



3.3. Adaptative Interactive Multiple Models 71

To specify for each track a TPM using a computed set of TPM classes, we add

three blocs at our adaptive filtering and the algorithm 3.3 gives the corresponding

algorithm :

Algorithm 3.3 Filtering using the classification module
1: /* Filtering takes as input current and past moving objects trajectory */
2: Filtering(T 1:I

current , T 1:J
past)

3: /* Compute the TPM corresponding to each trajectory */
4: for all i from 1 to I do
5: TPM i

current ← computeTPM(T i
current)

6: end for
7: for all j from 1 to J do
8: TPM j

past ← computeTPM(T j
past)

9: end for
10: /* Class building */
11: C1, .., Ck ← CEM(TPM1:J

past)
12: /* Class utilisation */
13: for all i from 1 to I do
14: if Traj1:I > L then
15: TPM

c(i)
current ← MostProbableClass(TPM i

current)
16: end if
17: end for
18: /* TPM Fusion */
19: /* Global TPM adaptation */
20: TPMg ← TPM_Adaptation(T 1:J

past)
21: for all i from 1 to I do
22: if TPMi exist then
23: Return α(TPM

c(i)
current + TPMg) in IMM

24: else
25: Return TPMg in IMM
26: end if
27: end for

1. a classification component (lines 3 to 11 of the algorithm 3.3) is added in

order to take as an input the same trajectories used in the adaptation method

i.e the most probable trajectories of past moving objects. This component

is shown in blue on the figure 3.16. It computes a set of TPM classes,

C1, C2, . . . , CK , which are stored in memory.

For each trajectory, we compute the distribution over motion models as a
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sequence. This sequence is then used to compute a frequency matrix which

is normalized to obtain a TPM. The process is the same as the one used in

the adaptation process but in this case the obtained TPM is local to each past

moving object and not global. In this way, the computation for J moving

object gives J TPM called local TPM but only one TPM called global is

updated during the adaptation process.

The purpose is then to compute classes using the set of J local TPM. The

class computation is performed using Classification Expectation Maximiza-

tion (CEM) [CG91] in which classes are represented by multidimensional

Gaussians. This classification algorithm have been chosen for its Gaussian

modelization and its iterative mode of action permitting to obtain an output

after any iteration. To apply CEM, the local TPM are simply transformed in

vector. Thus the M ×M matrix are transformed in M2 length vectors. By

this way, classes are modeled by Gaussians of mean and covariance matrix

with respectively a size of M2 and M2 ×M2.

In practice the classes computation is made every J achieved moving

objects as per the adaptation and it is performed using the whole history

of achieved trajectory.

Furthermore, it is necessary to define the number of classes to use the CEM

algorithm. Therefore this number depends on the user and the application.

2. In a class usage component (lines 12 to 17) where each current moving

object is assigned to a class. The aim is to compute the most probable class

for a given moving object and thus identify the object behavior in order to

assign it a more specific TPM, in order to enhance the next predictions. In

this part, only trajectories with a significant length L are considered in order

to obtain coherent classification.

3. The last component (lines 18 to 27) combines the TPM obtained by

adaptation and the one computed using the classification. It permits to

specify the used TPM while keeping the advantages of the adaptive TPM i.e

the global behavior of object and the robustness to behavior variation. The

result will then by used for each moving object for the next filtering step.

Nevertheless, as a specific TPM is only computed for trajectories with a

length above L, it is necessary to use only the global TPM for smaller
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trajectories. A trajectory with a length above L will take advantages of both

specific and global TPM. As both TPM are important and have comple-

mentaries advantages, the fusion is performed by adding and normalizing

the two associated matrix.

3.4 Conclusion

In summary, we have presented a method for simultaneous detection and

tracking moving objects (DATMO) in real time with a laser scanner using a

Bayesian-MCMC approach. The success of the method described in this chapter

lies in a general framework which integrates both top-down and bottom-up

processing.

First, a top-down strategy is introduced to treat DATMO problem as inter-

preting moving object trajectories from a sequence of laser measurements. This

allows explicitly incorporating various aspects including prior information, object

model, object motion model and measurement model into a theoretically sound

formulation. In theory, the optimum solution can be computed from the posterior

probability. In practice, the computation is infeasible due to the large and complex

solution space.

To make the search more efficiently, then we consider the detection result in

section 2.2 as a coarse moving object detection. This is used as bottom-up evi-

dences to generate hypotheses about potential moving objects. And using results

from bottom-up processing to guide proposal probabilities for the Markov chain

in an MCMC computational engine both takes advantages of the computational

efficiency of the bottom-up process and retains the optimality and robustness of

the Bayesian formation from the global view (top-down).

Our approach in this chapter emphasizes on the use of object models to

overcome existing problems of tracking using laser sensors. With the use of object

models, segmented objects caused by laser discontinuities are no longer a problem

and tracking results are more accurate. In our model-based approach moving

objects are naturally classified.

In this chapter, our second contribution is a set of methods to guide us in the

definition of dynamic models and to classify objects based on their trajectory.
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Firstly, we propose a method of adaptative filtering based on IMM, which enables

to automatically and online adapt transitions between a predefined set of dynamic

models. Taking into account past moving objects trajectories, the Transition

Probability Matrix is online and constantly updated, so transitions between motion

models fit better and better to real motions of moving objects and as a consequence

it improves quality of tracking. Nevertheless, it is still necessary to define the set

of motion models.

To overcome this difficulty, in a second step, we analyze results of adaptation

of TPM in order to validate the initial set of motion models. Actually, we

experimentally showed that this adaptation enables to check pertinence of defined

motion models and detect useless motion models and models that should be

redefined. So, we used this method to define the set of motion models in our

framework. Finally, this method provides a tool to define the set of motion models.

We extend this method with a behavior based classification module. Actually,

TPM models changes in displacement of past moving objects. So, these set of

changes of displacement could be seen as a set of behaviors. So we propose a

method to classify trajectories of moving objects using the corresponding TPM.

Afterwards, this classification is used to specify a precise TPM for a given object

and so to obtain more adapted modelization of typical displacements of this object.
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Applications

4.1 Introduction

This chapter details how the previous contributions on SLAM and DATMO

have been integrated and validated on some experimental platforms. This activity

is an important part of our research work, because it enables us to make the

link between our theoretical contributions and real applications. We describe

our contributions on several projects : national project puvame, european IP

PReVENT, NAVLAB public dataset, 3D Mapping with an industrial partner and

european project Intersafe2. For each projet, we briefly summarize the goal of

the project and present the experimental platforms. Afterwards, we explain which

contributions have been used and how they have been integrated. Finally, we give

some experimental results.

4.2 National project PUVAME

4.2.1 Project description

The national project PUVAME 1 [38] was created to generate solutions to

avoid collisions between VRU 2 and Bus in urban traffic. The project started on

october 2003 and ended in april 2006 and had 6 partners.

1. http ://emotion.inrialpes.fr/puvame/
2. Vulnerable Road Users

75



76 Chapitre 4. Applications

4.2.2 Experimental Platform

(a) (b)

FIGURE 4.1 – (a) Location of the cameras on the parking ; (b) Field-of-view of
the cameras projected on the ground.

The experimental setup used to evaluate the PUVAME system is composed of

2 distinctive parts :

– the ParkView platform that is used to simulate an intersection or a bus

stop. The ParkView platform is composed of a set of six off-board analog

cameras, installed in a car-park setup such as their field-of-view partially

overlap (see figure 4.1) ;

– and a cycab vehicule (figure 1.1) used to simulate a bus. It is connected

to the ParkView platform by a wireless connection : we can send it

informations about possible collisions and collect odometry data. In this

project, sensors embedded on the cycab were not used.

4.2.3 Experimental Results

In the framework of this project, 2 kinds of work have been performed : the

first one on sensor data fusion of offboard camera [37] and the second one on

tracking of pedestrians [35, 33].
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Sensor Data Fusion

In cooperation with David Raulo [37], we model the environment perceived by

the set of offboard camera with an occupancy grid. This occupancy grid has a size

of 150m × 50m and each cell has a size of 50cms. A partner of the project was in

charge of delivering a detector of pedestrians in image. We use this information to

build a sensor model using information provided by these detectors.

FIGURE 4.2 – The resulting probability that the cells are occupied after the
inference process with two cameras.

Figure 4.2 shows the same pedestrian seen by two cameras. The red area

corresponds to the most probable position of the pedestrian : this area is the

result of the fusion of the two yellow areas given the two cameras. The 3 green

areas around the pedestrian correspond to the fusion between the occluded area of

one camera with the free area of the other one. The area seen as free by the two

cameras has a very low probability of occupancy. The 4 areas seen as free by one

camera and out of the field of view of the second camera have a low probability

of occupancy.

Afterwards, a method for objects extraction from the grid has been imple-

mented [32].

Tracking of pedestrians

To validate our work on tracking with adaptative IMM (see section 3.3), ex-

periments on the ParkView platform have been carried out. In these experiments,
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a pedestrian moving in the car park is detected by the set of offboard camera. The

pedestrian describes in this way approximatively hundred trajectories to meet the

needs of our experiment.

Using these trajectories, our adaptive method is used to compute estimates and

the TPM of the IMM is updated for each ten trajectories.

FIGURE 4.3 – Tracking result after 50 trajectories (5 online re-adaptation of the
TPM)

To illustrate the effectiveness of our method, traces of tracking with and

without adaptation of the TPM are showed in figure 4.3. In these figures, the green

(lightest) line corresponds to the trajectory composed by observations (considered

as the ground truth), the blue(darkest) line is the trajectory described by estimates

computed without adaptation of the TPM and red line corresponds to the trajectory

obtained with estimates computed using our method. The ellipses at the end of the

trajectories give indications on the size of uncertainty on the final position and so

the estimates’ shape.

In figure 4.3, the pedestrian has achieved fifty random trajectories. Here, the

tracking performed by our method (red trajectory) is significantly improved after

five re-estimations while without adaptation, computed estimates are far from

observations during pedestrian’s motion changes.

Also, as adaptation is continuous using on-line data, even if pedestrian

trajectories vary because of changes in car park configuration, for instance if

cars exit the car park, the TPM is automatically readapted to fit this variation.

Thus the computed estimations are always better than using an a priori TPM,

or a learned TPM with a finite set of trajectories since our method is robust to

pedestrian behavior changes.
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4.3 European IP PReVENT-ProFusion

4.3.1 Project description

In the framework of the european IP PReVENT 3, we were involved in the

project ProFusion [39] [31] which was in charge of designing and developping

a generic architecture for Perception Solutions for automotive applications. We

developped a solution based on occupancy grid and integrate this solution on two

demonstrators : a Daimler demonstrator and Volvo Truck demonstrator.

The project started in february 2004 and ended in august 2008 and had 50

partners.

4.3.2 Demonstrators

Daimler demonstrator

(a) The Daimler demonstrator car (b) The Volvo Truck demonstrator

FIGURE 4.4 – The PReVENT demonstrators

The Daimler demonstrator car is equipped with a camera, two short range

radar sensors and a laser scanner (Figure 4.4(a)). The radar sensor is with a

maximum range of 30m and a field of view of 80˚. The data of radar are processed

and it delivers a list of moving objects. The maximum range of laser sensor is 80m

with a field of view of 160˚and a horizontal resolution of 1˚. The laser data are not

3. http ://www.prevent-ip.org/
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processed. In addition, vehicle odometry information such as velocity and yaw

rate are provided by the vehicle sensors. Images from camera are for visualization

purpose.

Volvo Truck demonstrator

The test vehicle platform is based on a Volvo FH12 420 Globetrotter truck

(figure 4.4(b)). The main components of the perception system are (1) a laser

scanner, mounted in the front left corner of the truck. This sensor has a field of

view of 210˚and a range of 80 meters, (2) a lane camera and vision system, (3) a

long range radar (LRR) system. This sensor has a field of view of 12˚and a range

of 200 meters and (4) a short-range radar (SRR) system.

Moreover, data of each sensor are processed, and each sensor delivers a list of

moving objects present in the environment.

4.3.3 Experimental Results

Daimler demonstrator

The SLAM and moving object detection contributions [29] detailed in sec-

tion 2.2 were integrated on this demonstrator. The grid has a size 200m × 40m

and each cell has a size of 20 cms. Confirmation of detection of moving objects by

laser scanner is performed with the two short range radars. Regarding Tracking of

Moving Objects, we integrated our contribution on adaptative IMM (section 3.3

associated with MHT algorithm [Rei79, CH96a] for Data Association 4. A

description of this work could be found in [7].

The detection and tracking results are shown in Figure 4.5. The images in the

first row represent online maps and objects moving in the vicinity of the vehicle

are detected and tracked. The current vehicle location is represented by blue box

along with its trajectories after correction from the odometry. The red points are

current laser measurements that are identified as belonging to dynamic objects.

Green boxes indicate detected and tracked moving objects with corresponding

tracks displayed in different colors. Information on velocities is displayed next

to detected objects if available. The second row are images for visual references

4. Our contribution detailed in section 3.2 was not available at this time.
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FIGURE 4.5 – Experimental results show that our algorithm can successfully
perform both SLAM and DATMO in real time for different environments

to corresponding situations. More results and videos can be found at http://

emotion.inrialpes.fr/~tdvu/videos/.

Moreover, our solution has been validated in complex crash and non-crash

scenarios and compared with Daimler solution [8]. To conduct the experiments,

we built up a comprehensive database that consists of short sequences of

measurements recorded during predefined driving maneuvers. To measure the

quality, we counted the false alarms that occurred in non-crash scenarios and

the missed alarms in case a collision was not detected by the application. As a

general result it can be stated that a reliable collision detection is achieved with

both perception modules. Whereas Module of Daimler enables a lower false alarm

rate, the crash detection rate of our module is very high (98.1%) in urban areas. A

description of this work could be found in [8].

Volvo Truck demonstrator

In cooperation with Ruben Garcia [24], we model the environment perceived

by the set of sensors with an occupancy grid. We built a sensor model for each

http://emotion.inrialpes.fr/~tdvu/videos/
http://emotion.inrialpes.fr/~tdvu/videos/
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FIGURE 4.6 – The sensors’ fusion between long range radar and laser.

sensor in a way similar to what we did in puvame [37]. We also used an adaptative

IMM associated with MHT algorithm [Rei79, CH96a] for Data Association,

similarly to what we did on the Daimler demonstrator.

The figure 4.6 illustrates the process of sensor fusion between long range

radar (LRR) and laser. The ego vehicle is located on the left. The white zone

corresponds to the fusion between the free zones of both fields of view of the

sensors. The only object detected by both sensors has a high probability of

occupancy and the area behind this object corresponds to occluded area. Other

objects (only detected by one sensor) have lower probabilities of occupancy than

the object detected by both sensors.

4.4 NAVLAB

4.4.1 Project description

In this part, we present how we use the public dataset NAVLAB [WDG+04]

obtained on the CMU demonstrator (Figure 4.7) to test and validate our contribu-

tions on model-based tracking. This dataset was collected using a moving vehicle

driven in real-life traffics.

4.4.2 CMU Demonstrator

A laserscanner is mounted on the moving vehicle. The maximum laser range

of the scanner is 80m with the horizontal resolution of 0.5˚. We only use laser

data and odometry vehicle motion information such as translational and rotational
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FIGURE 4.7 – Navlab testbed.

velocity (speed and yaw rate) are computed and provided by internal sensors.

Images from camera are only for visualization purpose.

4.4.3 Experimental Results

On this demonstrator, we test our approach for SLAM with moving objects

detection (section 2.2) and DATMO (section 3.2). The grid has a size of 25m ×

20m and each cell has a size of 20cms. A complete description of this work could

be found in [23].

Figure 4.8(a) shows an example of our detection and tracking algorithm in

action. In the ego-vehicle’s view, the detected moving objects and their trajectories

are shown in pink color with current laser scan is in blue color. Moving objects in

the situation include a bus moving in the opposite direction on the left, three cars

moving ahead and two pedestrians walking on the left pavement. Figure 4.8(b)

shows an example of our detection and tracking algorithm when an occlusion

occurs. Even if only a part of the second car is detected by the laser, we are

able to track this occluded car. With initial evaluations, the MCMC detection and

tracking outperforms the detection and tracking using MHT in our previous work

(see section 4.3) in terms of a higher detection rate and less false alarms.
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(a) Different object classes are successfully
detected and tracked.

(b) Example of tracking with occlusion.

FIGURE 4.8 – Moving object detection and tracking in action.

4.5 3D Mapping

4.5.1 Project description and Demonstrator

In 2008, we had a cooperation with an industrial partner to perform 3D

Mapping using a laser scanner. We had a dataset of 6 Millions of laser data

collected with a vehicle moving in an urban environment. The localization of the

vehicle was provided. A camera was also mounted on the vehicle and laser data

were synchronized with images. So, each laser data had 6 dimensions : x, y and z

(for position) and RGB component for color.

The problem was to propose a model of this 6D dataset with high precision and

significant reduction of size. We build a multiscale gaussian map of 700 meters ×

200 meters × 50 meters. This map was composed of 3 scales : cells have a size of

20 centimeters, 3.2 meters and 12.8 meters.

4.5.2 Experimental Results

With this data set, we have experimented the use of the color as an extra

clustering dimension. In this case, the points are gathered into a same cluster

if they are close in terms of location (ie, they produce the smallest possible
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FIGURE 4.9 – 3D representation of 3D laser data and color

FIGURE 4.10 – focus of the 3D representation of the roundabout
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ellipsoid in the 3D space) and in terms of color (they make the smallest ellipsoid

in the RGB color space). With that clustering, we were able to obtained a reduce

representation of less than 0.1% of the original data but nonetheless accurate (see

figure 4.9). Moreover, One can see in figure 4.10 that a significative distinction is

made between the object in the environment based upon the color. In particular

vegetation is well separated from artificial structure.

4.6 European Project Intersafe2

4.6.1 Project description

The INTERSAFE-2 european project 5 aims to develop and demonstrate a

Cooperative Intersection Safety System (CISS) that is able to significantly reduce

injury and fatal accidents at intersections. In this project, we are in charge of

developping the perception module for the Volkswagen Demonstrator.

The project started in june 2008 and will end in june 2011 and has 11 partners.

4.6.2 Demonstrator

Figure 4.11 illustrates the chosen sensor set and coverage area of the Volk-

swagen demonstrator car. The sensor set-up includes sensors which are already

in serial cars available, namely front ACC radar and rear-looking radar for lane

change support. These sensors are accompanied by a stereo camera system to the

front with high field of view of about 60˚. A scanning laser with a field of view

of about 160˚and dedicated radar sensors directed to +90˚and -90˚respectively are

foreseen for measuring the objects coming from the side. These sensors are able

to measure position, velocity and some geometrical parameters of the relevant

objects at intersections.

4.6.3 Experimental Results

On this demonstrator, we test our approach for SLAM with moving objects

detection (section 2.2) and and improvement on our contribution on DATMO

(section 3.2) is under investigation. The grid has a size of 25m× 20m and each cell

5. http ://www.intersafe-2.eu/public/
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FIGURE 4.11 – Sensors installed on the demonstrator vehicle

has a size of 20cms. A complete description of this work could be found in [22].

Moreover, fusion between stereovision and laserscanner is under investigation

(see section 5.2.3).

In Figure 4.12, the first column shows a left turn scenario where the demon-

strator car is turning left and a cyclist is going to right in front of the vehicle. This

cyclist is detected and tracked. In the second column we have a scenario where a

moving vehicle is coming from opposite direction and demonstrator is crossing a

vehicle on its right. In both of the cases, precise trajectories of the demonstrator

are achieved and local maps around the vehicle are constructed consistently.

4.7 Conclusion

In this chapter, we give an overview of the way our theoretical contributions

have been integrated on some industrial experimental platforms. We also summa-

rize the results obtained.
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FIGURE 4.12 – Experimental results show that the algorithm can successfully
perform both SLAM and moving objects detection in real time for different
environments.
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Conclusion and Perspectives

5.1 Conclusion

In this document, we have studied core tasks of the vehicle perception problem

including Simultaneous Localization And Mapping (SLAM) with Detection And

Tracking of Moving Objects (DATMO) in context of dynamic environments.

Particularly, we have focused on using a laser scanner as the main perception

sensor. Being prerequisites for driving assistant systems and autonomous naviga-

tion systems, the vehicle perception plays a very important role since any wrong

information perceived from the environments will affect the performance of the

whole system. Keeping this criterion in mind with an objective to obtain a fast,

robust and reliable solution to these essential perception tasks, our approaches

have been presented, tested though various off-line datasets and demonstrated

on real platforms to show that the requirements for real applications can be

achievable. We summarize our main contributions in what follows.

In Chapter 2, we described a grid-based algorithm to solve SLAM with

detection of moving objects. In the literature, SLAM algorithms have reached

a mature state but traditional approaches to SLAM usually assume that the

environments are static. To deal with dynamic environments, we propose to solve

both SLAM and detection of moving objects simultaneously and show that results

from the moving object detection step help to filter out spurious objects resulting

in a better map. The key point of our approach lies in a new grid-based scan

matching technique that works fast and quite robust in the presence of dynamic

entities. This allowed obtaining a precise vehicle localization in order to build

89



90 Chapitre 5. Conclusion and Perspectives

a consistent map of the environment. After a consistent map is constructed,

moving objects can be detected reliably without a prior knowledge of detected

objects. Experiments on real-life traffic data in the framework of european projects

PReVENT (section 4.3) and Intersafe2 (section 4.6) and with the NAVLAB

datasets (section 4.4) have shown that our proposed algorithms can successfully

perform a real-time mapping with moving object detection from a vehicle moving

at high speeds in different environments.

Occupancy grids are considered as the mainstream tool to map dynamic

outdoor environment while filtering out moving obstacles. However, it is well

known that occupancy grids suffer from a precision problem. This problem is

often discarded. For this reason, we propose to represent data in a given cell by one

or more gaussians. An other important problem with grids is the size of the grid

when representing large 2D or 3D environments. Moreover, most cells are empty

or unknown. So, we propose to represent only cells that are considered as occupied

using a sparse grid. Finally, we introduce a multiscale representation. Results on

simulated 3D data (section 2.3) and on real 3D+color data in cooperation with an

industrial partner (section 4.5) shows the interest of the method.

Chapter 3 follows the results in Chapter 2 where we focused on problems of

detection and tracking moving objects with the assumption that a good vehicle

localization is obtained. With the detection algorithm presented in Chapter 2,

moving objects are identified irrespective of their type and objects are represented

as free-form by a cluster of points. We showed that tracking objects using free-

forms leads to a degraded result and proposed to use model-based approaches

to represent objects. Fortunately, number of moving object classes appearing on

roads are quite limited and we classified them into several categories such as :

buses, cars, bikes and pedestrians.

Different from most previous works, we tackle the detection and tracking

as a whole process. We take a top-down approach and try to interpret the laser

measurement sequence with object models (shape) and their trajectories (motion).

The approach follows a Bayesian formulation and the solution is sought by

computing the maximum of the posterior probability in a joint multiple object-

trajectory space. The computation is generally intractable in such a complex

solution space and we employ a Markov chain Monte Carlo (MCMC)-based
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method. We design a reversible Markov chain to explore the solution space in

which detection results from Chapter 2 provide evidences (so-called data-driven or

bottom-up techniques) to make the top-down search more efficient than traditional

MCMC. This Bayesian-DDMCMC approach is more general and can successfully

handle the ambiguities in the presence of persistent occlusions. The proposed

algorithm is tested on challenging urban traffic datasets from NAVLAB datasets

(introduced in section 4.4) and evaluations showed promising results.

Regarding tracking, we started by proposing a method to automatically adapt

the TPM 1 associated with a set of motion models. In the litterature, to use IMM 2,

it is necessary to define a set of motion models which depends on the application

and should model all the possible motions of an object. Such a definition could

be difficult or impossible if the set of possible motions is varied. Secondly, we

explained how to use this automatic adaptation as a help to define the set of

motion models. Actually, analyzing the adapted TPM enables us with some rules

to modify or validate the set of initial motion models. Finally, we extended this

contribution by the definition of a method of classification enabling us to classify

the differents behaviors that could appear in a given environment and secondly to

reuse this classification to define a very specific TPM for each class of behavior

of moving objects.

These contributions have been used in the framework of the european project

PReVENT (section 4.3) and the national project PUVAME (section 4.2) with very

good results.

To summarize, the thesis is aimed at developing an efficient perception system

for intelligent vehicles and we have demonstrated that we are able to perform

simultaneous localization, mapping with detection, classification and tracking of

moving objects in real-time from a ground vehicle moving at high speeds in

urban environments. The obtained results will open a wide range of potential

applications as well as serve as a basis for pursuing the dream of building

autonomous intelligent vehicles.

1. Transition Probability Matrix
2. Interacting Multiple Models
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5.2 Perspectives

In this section, we give some perspectives of the work presented in this

document. Our main perspective in the futur is to design and develop generic

modules and solutions for perception tasks and to apply them to different domains

of applications. The 3 first perspectives are short term perspectives related to

SLAM and DATMO done in the framework of current PhD Thesis [1, 2, 3].

These PhD Thesis are done in the framework of the european project Interactive

(see section A.7 and http ://www.interactive-ip.eu) which goal is to build generic

modules for perception for automotive applications. These PhD Thesis will bring

new tools for our main perspective.

We conclude with 2 long term perspectives that constitute some extensions of

researches described in this document. The first perspective is related to trajectory

estimation and prediction of moving objects. The goal of this perspective is to

have a "higher level" understanding of the environment to make the link with the

navigation task and the decision layer of a typical architecture of an intelligent

vehicle. The second one is an extension of this work in the frame of ambiant

intelligence to extend our research on perception.

5.2.1 Environment Representation and Interpretation of Envi-

ronment

Representation of environment constitutes a key point to solve the SLAM

problem. In the PhD Thesis of Manuel Yguel [4], we proposed an interesting

solution to map large scale 2D and 3D environments. This representation has the

main advantages of being very precise and multiscale. But this representation

has several limits : first of all, updating of this representation is not real-

time, so we are not able to use it in applications where real time constraints

are important. Secondly, at the moment, no localization is provided with this

representation. Finally, we have not defined how to manage moving objects with

this representation.

On the other side, typical representation of roads environments designed by

Navteq 3, for instance, are a kind of topological maps where nodes represent

junctions between several roads and arcs are represented by polylines that connect

3. http ://www.navteq.com
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these junctions. This simple representation is very efficient for coarse localization

with GPS and motion measurements. But precise localization is impossible with

this kind of representation and sensors.

We are working on combination of these two representations. The topological

map could be used to provide a coarse localization of the vehicle. On fine scale,

we propose to use a gaussian local map and laser scanner to provide a precise

localization (similarly to section 2.2).

An other important drawback is that in our current environment representation,

there is any semantical information about the environment. In a perception

module, some high level information about environment are necessary. At the

moment, our perception module only provides a very limited understanding of the

environment : only informations about detection and tracking of moving objects

are available. We have no information about static part of the environment. For

instance, we would like to extract road border from a grid representation to use

them to improve the quality of localization at coarser level : for instance, provide

lateral localization as road lane positionning. The same kind of information

could be used to determine the border between free and occupied space in local

environment. This border is crucial to determine the free space in order to provide

information about where the vehicle can go in a short term.

This work is currently under investigation, in the framework of the PhD Thesis

of Asma Azeem [2], in cooperation with Navteq in the framework of the european

project Interactive.

5.2.2 Frontal object perception

The objective of this module is to detect and track every relevant obstacle

in the front area of the ego vehicle including stationary and moving objects and

provide information about these objects (ex : position and dynamic parameters,

etc.). Sensor data fusion and advanced filtering techniques should be taken into

account in order to obtain a more reliable perception result and provide additional

information not directly observed from sensor (ex : estimation of object velocity

from laser scanner data).

In this work, we plan to extend the PhD Thesis of Trung-Dung Vu [5] on

DATMO on several aspects :
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– The model-based tracking has proved to be very robust but at the moment

due to its high computational demand it is not real time. The idea is to put

more constraints on the hypothesis space according to our knowledge of

related applications ;

– Moreover, at the moment, any information is provided on static objects. For

instance, we would like to know if there are, in the environment, some static

objects that could move in the future like a car that is parked ;

– As this module is mainly concerned with detection and tracking of static

and dynamic objects, the map of the environment will only be used to

localize ego vehicle. To improve the precision and have more compact

representation, our idea is to perform localization and detection of moving

objects on a sliding window of observations.

– As described in detail in section 5.2.3, we plan to use fusion between vision,

radar and laser to improve the robustness of objects detection and tracking.

Basically, the idea is to check detection by laser with radar to improve

robustness and to use vision to quickly obtain class of objects for the model-

based tracking.

This work is currently under investigation, in the framework of the PhD Thesis

of Omar Chavez [1], in cooperation with Daimler (http ://www.daimler.com/)

and TRW (http ://www.trw.com) (for fusion between radar and vision) in the

framework of the european project Interactive.

5.2.3 Sensor Data Fusion

Sensor Data Fusion plays an important role in the conception and realization

of a perception module. Actually, there is no "perfect" sensor and each sensor has

its own physical properties. To solve this problem, an intelligent vehicle is usually

equipped with several kind of sensors. Data provided by these sensors are fusioned

to improve the quality of perception. Most of works described in this document

only use laser scanner.

In the framework of european project PReVENT-ProFusion, some studies

have been done on fusion on Daimler [7] and Vtech [24] demonstrators : we

performed fusion to improve robustness on estimation of moving objects attributes

(position, speed...). Fusion was performed after tracking. In this case, fusion

techniques were designed independently of the sensor processing. The main
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advantage is the genericity of sensor data fusion techniques designed but the

drawback is that some informations provided by each sensor at earlier stage have

been suppressed during sensor processing.

To avoid this problem, we are developping techniques to perform fusion after

detection phase using complementary informations provided by vision and laser

scanner. Actually, laser scanner processing provides very good rate of detections

of moving objects, but determination of class of objects is sometimes difficult

due to ambiguities in laser data. This is especially the case between cars and

buses/trucks which have a very similar box model when we only observe one

corner of the box model. In this case, we need to have informations about the

length of one side to decide between a car and a truck/bus. On the contrary, vision

processing provides lower rate of detections of moving objects, but determination

of class of moving objects is easier. So, we plan to integrate classification provided

by vision in the process of model-based tracking with laserscanner. Combining

data of vision and laser, we should quickly know the class of a given moving

object. This information will improve the quality of DATMO as we will be able to

use a box model as soon as a moving object will enter in the field of view of the

laser scanner.

This work is currently under investigation, in the framework of the PhD Thesis

of Qadeer Baig [3], in cooperation with Volkswagen and Technical University of

Cluj-Napoca for stereovision processing, in the framework of the european project

Intersafe2 (see section A.7 and http ://www.intersafe-2.eu).

5.2.4 Trajectory estimation and prediction of moving objects

We are able to estimate the position, speed and class of moving objects.

But these information are not enough to understand the futur behavior of

moving objects present in the environment. We are interested in knowing their

futur trajectories. In the past, we participated to the PhD Thesis of Dizan

Vasquez [Vas, 10, 40] related to this topic. This Thesis was built upon a family

of approaches which are based on the idea that, for a given environment, moving

objects follow typical motion patterns which may be observed consistently. Most

of these approaches operate in a learn then predict fashion : first, they learn motion

patterns from sensor data, then, they predict further motion on the basis of learned

patterns. The basis of this work is on Hidden Markov Model. However, unlike
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these approaches, which rely on clustering algorithms to identify motion patterns,

this work has set to integrate the whole learning process into an HMM parameter

and structure learning algorithm. The approach is based on the idea that a single

HMM may represent multiple motion patterns by defining an appropriate graph

structure.

In the futur, we plan to extend this past work on 2 aspects :

1. taking into account information about environment like road border for

instance. This information will play an important role in determining the

position that are reachable in the environment ;

2. taking into account information about class of moving objects to improve

the quality of prediction. This information is fundamental as futur trajectory

is different for different classes of moving objects.

If we provide robust prediction of future trajectories, these informations could

be used by the decision layer of a typical intelligent vehicle architecture.

5.2.5 Ambiant Intelligence and Perception

Technological evolution enables to build now computers and components of

very small size : for instance, sensors and actuators are present everywhere and

can communicate between themself and with different networks. This evolution

opens a lot of applications in our everyday life : prevention (fire, accidents)

assistance (guidance, distant control)... This evolution is general defined as

Ambiant Intelligence.

As sensors are present everywhere, perception tasks play an important role

in Ambiant Intelligence. Moreover, Ambiant Intelligence opens new challenges

for Perception : perception will be distributed and performed by heterogeneous

sensors. To solve these challenges, we have to deal with large scale sensor data

fusion and mapping of large environments. Solving these challenges is a natural

extension of the perspectives described in section 5.2.1 and 5.2.3.

Other important aspects of Ambiant Intelligence are the Detection and

Tracking of people and the recognition and monitoring of their activities. Our

contribution on DATMO (section 3.2) could be adapted to track people : we think

that model-based tracking has an important potential for multi objects tracking.

Moreover, our contribution on behavior based classification of moving objects
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(section 3.3.5) could bring new solutions to the problem of recognition of human

activities.

The last topic related to our researches and Ambiant Intelligence is what

we usually call the ubiquitous robotics. The goal is to integrate mobile robots

inside environments composed of sensors and actuators networks. In this case,

mobile robots could be considered as mobile sensors units that will cooperate

with sensor networks to improve the quality of perception of the environment.

For instance, a mobile robot could move to perceive a part of the environment

that is not perceived by any other sensor. So, data acquired by sensors present

(microphones, cameras...) in the environment are fused with data acquired from

embedded sensors in order to improve the quality of service.
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Current PhD Students

[1] Omar Chavez. Frontal moving objects detection and tracking. Phd thesis,

Grenoble University, UJF, Grenoble, France. since sep. 2010.

[2] Asma Azeem. Environment representation and interpretation. Phd thesis,

Grenoble University, UJF, Grenoble, France. since sep. 2009.

[3] Qadeer Baig. Detection Level Fusion between laserscanner and stereovi-

sion. Phd thesis, Grenoble University, UJF. since sep. 2008.

Past PhD Students

[4] Manuel Yguel. Variational Algorithms for On-line Updating of Dense

Maps in Sparse Multi-scale Representations. Application to robot naviga-

tion in 3D environments. Phd thesis, Grenoble University, INPG, Grenoble,

France, December 2009.

[5] Trung-Dung Vu. Vehicle Perception : Localization, Mapping with

Detection, Classification and Tracking of Moving Objects. Phd thesis,

Grenoble University, INPG, Grenoble, France, September 2009.
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