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Résumé

Pour le projet ALTO l’IPN d’Orsay, comme pour d’autres laboratoires qui

exploitent la technique ISOL pour produire des faisceaux radioactifs intenses

et purs, il est crucial, lorsque des isotopes de courte durée de vie sont produits

dans des cibles épaisses, de réaliser des cibles et des sources d’ions avec des

bonnes propriétés de sortie et de haute efficacité. Ainsi les études de R&D

sur les cibles et les sources d’ions sont très importantes pour l’optimisation de

la production, la sélectivité et la sortie des isotopes d’intérêt. Ces études sont

aussi nécessaires vers les futurs installations transnationales de recherche en

physique nucléaire SPIRAL-2 et EURISOL. Le travail présent est consacré

à la production d’isotopes de gallium riches en neutrons par la technique

de cible épaisse ISOL reposant sur la photo-fission et l’ionisation de sur-

face. Nous visons à l’étude de la structure nucléaire du 82,83,84Ge grâce à

la désintegration bêta du 82,83,84Ga. Dans ce but, nous nous concentrons

sur le développement d’une nouvelle source d’ionisation de surface faite de

matériaux à haute fonction de travail comme le Re et l’Ir. Un code C++ a

été construit pour simuler l’efficacité d’ionisation de la source pour des sur-

faces différentes (des matériaux différents et des dimensions différentes) et le

résultat a été comparé avec une base de données expérimentales du CERN. Le

code peut être utilisé pour optimiser les dimensions de la source d’ions dans

des agencements futurs. En même temps nous avons réalisé une expérience

d’essai afin de mesurer l’efficacité d’ionisation du gallium dans des cavits de

Re et Ir-Re. D’autre part, pour les études de structure nuclaire d’éléments
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réfractaires, comme le cobalt ou le nickel, pour lesquels on s’attend à ce

qu’ils révèlent un trésor d’informations de structure intéressantes, la tech-

nique ISOL à cible épaisse n’est plus appropriée. En effet, le point de fusion

élevé de ces éléments fait qu’ils se volatilisent et se libèrent difficilement

d’une cible épaisse. Alors une technique basée sur des cibles minces s’avère

nécessaire et le guide d’ions à laser, basé sur une cellule à gaz pour ther-

maliser, neutraliser et arrêter les produits de réaction reculants suivie d’une

ionisation résonnante laser pour les re-ioniser sélectivement, semble un bon

choix. Cependant, afin de déterminer si la technique convient pour ALTO,

nous devons répondre à la question quant au taux d’ionisation du gaz tam-

pon par le faisceau primaire ainsi que les charges secondaires? Autrement

dit, quel est le taux de production de paires ion-électron dans la cellule à

gaz? En effet, un taux d’ionisation trop grand empêche l’extraction efficace

des ions d’intért̂ du guide d’ions à laser. Pour répondre à cette question,

nous avons construit un code basé sur GEANT-4 pour simuler l’ionisation

du gaz tampon. En outre, dans un mouvement vers le projet SPIRAL-2 au

GANIL, où la fission de l’238U sera induite par des neutrons produits dans un

convertisseur carbonique depuis un faisceau de deutons, nous avons écrit un

code GEANT-4 pour simuler la production de neutrons, la fission induite par

neutron et le dépôt d’énergie dans une cellule à gaz de dimensions semblables

à la cellule proposée pour ALTO.
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Chapter 1

Introduction

Among the nuclear physics community, there is nowadays a huge interest in

nuclei that are located far away from the valley of stability. However, at a

first glance at the nuclear chart, we can see vast unknown territories on the

neutron-rich side of β stability, while research is impeded by experimental

difficulties.

The study of these nuclei is expected to let us apprehend the behaviour

of nuclear matter under extreme conditions as well as establish the evolu-

tion of the shell-model magic numbers for exotic nuclei. In order to study

such nuclei, we often need intense and pure radioactive ion beams (RIB).

To produce such beams, two complementary methods, the ISOL (Isotope

Separation On-Line) and the in-flight method, are used in nuclear physics

laboratories around the world.

For an ISOL-type facility, where the radioactive nuclei that are produced

are stopped before being extracted, a powerful method is to use fission in

thick targets, which can be induced by thermal neutrons, fast neutrons, pro-

tons or photons (see figure 1.1). A recent photo-fission experiment performed

at CERN [15] has indicated that the photo-fission mode can be an attractive

alternative to neutron-induced fission and this is the raison d′être for the

ALTO project at IPN Orsay.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Nuclear regions that are reachable by fission [34]

At ALTO, a 50 MeV electron beam, which is delivered by a linear ac-

celerator, interacts in a thick uranium target to produce bremsstrahlung.

Fission is induced by those photons with an energy at the Giant Dipole Res-

onance (GDR) of 238U. The GDR cross section of 238U is shown in figure 1.2

and as can be seen, a maximum fission cross section of 160 mb is obtained

for photons having an energy around 15 MeV. Besides, the results in [32]

indicate that by increasing the energy of the electron beam the amount of

bremsstrahlung and hence the photo-fission yield also grow, settling for 50

MeV as an optimal energy (see figure 1.2).

At the ALTO project, as at many others using the ISOL technique, it is

crucial, when short-lived isotopes are produced in thick targets, to realise tar-
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Figure 1.2: (a) The solid line is the γ spectrum produced by electrons of
various energies. The dots are experimental data for the photo-fission cross
section of 238U. (b) Photo-fission yield per electron for 238U as function of
electron energy [32]

get and ion-source systems with good release properties and high efficiency.

Therefore, R & D studies on target and ion source are very important for op-

timisation of the production, selectivity and release of the isotopes of interest.

These studies are also needed towards the future SPIRAL-2 and EURISOL

nuclear physics facilities [49, 57].

The present work is dedicated to the production of neutron-rich gallium

isotopes by the ISOL thick-target technique using photo-fission and a surface

ion source. We aim at the study of the structure of 82
32Ge50,

83
32Ge51,

84
32Ge52

via the β decay of 82
31Ga51,

83
31Ga52,

84
31Ga53.

We focus on the development of a new surface ion source made from ma-

terials with a high work function φ, which can give high ionisation efficiencies
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for elements with low ionisation potentials, like alkalines as well as gallium

and indium. For instance for gallium, its neighbour elements have a suffi-

ciently higher ionisation potential and thus they are not ionised. As such a

surface ion source can give us a very selective gallium ion beam. In accor-

dance with the Saha-Langmuir theory, the ionisation efficiency does not only

depend on the ioniser work function but also on the heating temperature.

While the ionisation efficiency is proportional to the heating temperature, a

high temperature of the ioniser also makes for a faster release of the short-

lived isotopes and it reduces the decay losses. From these facts, the ioniser

material must exhibit the following characteristics: high work function, high

melting point and high electrical conductivity (for easy heating).

Apart from tungsten (φ = 4.55 eV, Tmelting = 3422◦C) used at ISOLDE,

rhenium (φ = 4.96 eV, Tmelting = 3180◦C) and iridium (φ = 5.27 eV,

Tmelting = 2466◦C) are considered as good candidates for a surface ioniser

because the Saha-Langmuir equation indicates for these materials high sur-

face ionisation efficiencies. This has motivated us to equip the surface ion

source at ALTO with rhenium and iridium-coated rhenium ioniser tubes of

the same dimensions as the surface ion source at ISOLDE. We performed a

test experiment to measure the ionisation efficiency for gallium. The present

status and results of the experiment are described in chapter 4. We also

built a simulation code for the ionisation efficiency of the different surface

ionisation sources (different materials and dimensions), the result of which

was compared with experimental data from CERN. The code can be used to

optimise ion source dimensions in future designs (see chapter 4).

On the other hand, for future nuclear structure studies of refractory ele-

ments such as cobalt or nickel (atomic numbers Z = 27 and 28 respectively),

of which it is expected that they may reveal much interesting structure infor-

mation, the ISOL technique with a thick target is no longer suitable. Indeed,

the high melting point of these elements makes it difficult to volatilise as well
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as release them from a thick target. For such a situation, a technique based

on thin targets is needed and the laser ion guide based on a gas cell to ther-

malise, neutralise and stop the recoiling nuclear reaction products combined

with a laser beam to re-ionise them selectively, seems a good choice [53, 25].

However, in order to know whether the technique is suitable for ALTO,

we need to answer the question as to what the ionisation rate is of the buffer

gas by the primary electron beam and secondary charges? In other words,

what is the ion-electron pair production rate in the gas cell? This is most

important since the ionisation rate negatively affects the extraction efficiency

of the laser ion guide whenever it becomes bigger than 1010 s−1cm−3 [23].

To answer this question, we built a code based on the Geant-4 toolkit to

simulate the ionisation of the buffer gas. Furthermore, in a move towards

the SPIRAL-2 project at GANIL, where fission of 238U will be induced by

neutrons produced in a carbon converter from a deuteron beam, we also

wrote a Geant-4 code to simulate the production of neutrons, the neutron-

induced fission and the energy deposit in a gas cell of similar dimensions

as the proposed gas cell for ALTO. We likewise performed a simulation for

the gas cell at Leuven to compare with published results [23]. This work is

described in chapter 5.

In this work, we also briefly show the results of the photo-fission yield

measurements at ALTO. The fission fragments were ionised in a hot plasma

ion source, mass separated and detected by germanium and scintillator de-

tectors. The measurements were carried out at masses 78 to 95, 117 to 144

and at mass 160. Finally, we summarise the first physics result from ALTO,

during which a surface ion source with a tungsten ioniser was used to ionise

selectively the neutron-rich gallium isotopes produced in the photo-fission of
238U. A detailed description of the experiment and the observation of the β

decay of these isotopes are presented in chapter 3.
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Chapter 2

ISOL Technique and
description of the ALTO
project

2.1 Introduction

For studies of nuclei far from stability, it is often necessary to have intense,

mass-separated radioactive ion beams (RIBs) uncontaminated by isobars

from neighboring elements. In order to produce such beams, laboratories

use one of two existing methods: ISOL (Isotope Separation On-line) and In-

Flight methods. The schematic view of the ISOL and In-Flight techniques is

shown in figure 2.1.

The ISOL technique was invented in Copenhagen over 50 years ago and

eventually migrated to CERN where a suitable proton driver beam was avail-

able at the Synchro-Cyclotron [50]. The quick spread of the technique to

many other laboratories has resulted in a large user community (for exam-

ple ALTO at IPN Orsay, SPIRAL-1 at GANIL, TRIUMF, LOUVAIN-la-

NEUVE...), which has assured the continued development of the method

and the physics in the front-line of fundamental research and the application

of the method to many applied sciences. The technique is today established

7
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Figure 2.1: Schematic view of ISOL and In-Flight techniques [34].

as one of the main techniques for on-line production of high intensity and

high quality isotopic beams. The thick targets used allow the production

of unmatched high intensity radioactive beams. The fact that the ions are

produced at rest makes it ideally suitable for low-energy experiments and for

post- acceleration using well established accelerator techniques.

In the ISOL technique, the target, ion source and electromagnetic mass

separation are very essential. Contrary to the In-Flight method, as referred

to, the ISOL method has been associated with thick targets (the case of thin

targets placed in a gas cell is discussed in section 5.1) such that the reaction

products are thermalised in the target itself and diffuse out to an ion source

for further acceleration and separation.
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2.2 ISOL Technique

For an ISOL-type facility, a powerful method to produce the radioactive ion

beams is by using fission reactions of actinide nuclei induced by thermal

neutrons, fast neutrons, protons or photons, or by using spallation reactions

(while the In-Flight method is mostly using fragmentation reactions). The

great advantage of the thick targets is the large number of target atoms avail-

able for the production of the ions. The disadvantage with ISOL production

in general is the difficulty to achieve high beam purity due to the many iso-

bars of different elements produced simultaneously in the target. High beam

purity can only be achieved with a combination of measures such as the right

choice of target material, driver beam and ion source. Furthermore, refrac-

tory elements are in general difficult to produce due to the high temperatures

required to make them volatile, see figure 2.2.

It is therefore crucial, when short-lived isotopes are produced in thick

targets, to realize target and ion-source systems with good release properties

and high efficiency. So in the ISOL technique, R&D studies of target and

ion source are very important for optimization of production, selectivity and

release of the isotopes of interest.

2.2.1 Target ion-source in the centre of ISOL tech-
nique

In the ISOL technique, the intensity of the separated radioactive beam of

interest depends on many factors. It can be characterized as follows:

I = φ.σ.N.εtarget.εsource.εsepar.εdet (2.1)

Here φ is the flux of the incoming beam, σ is the reaction cross section, N

is the number of atoms in the target, εtarget is the element release efficiency

from the target, εsource is the efficiency of the ion source, εsepar is the sepa-
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Figure 2.2: Boiling and melting point of elements

ration efficiency and εdet is the efficiency of the detection system (see figure

2.3).

In the next sections, I am going to discuss the release from the target and

the selectivity of the ion source.

The target: release of elements

Target-material selection begins by considering the physical, chemical, and

thermal properties of the target material in relation to those of the prod-

uct species. One of the principal problems lies in the availability of target

materials that are sufficiently refractory so that they can be raised to the

temperatures necessary for fast release of the product species without exces-
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Figure 2.3: Target ion-source problematics [34]

sive vaporization or sublimation of the target itself. The choice of material

is further restricted by the requirement that the radioactive species be eas-

ily diffused from the target material and readily volatilized for subsequent

transport to the ionisation region of the source. Thus in the ideal case, the

radioactive species should possess physical and chemical properties almost

opposite to those of the target material itself. For release of the species of

interest, the species should not form refractory compounds within the target

material, should rapidly diffuse to the surface, and upon reaching the sur-

face, the species should be readily desorbed. Obviously, for compound target

materials, those with the highest percentage of the production nuclei are de-

sirable in order to maximize the production rate of the species of interest.
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One of the materials that can satisfy the mentioned criteria for production of

neutron-rich radioactive species through fission is UCx. By using this target,

we can produce the species of interest from helium to neptunium (the latter

through capture of an incident irradiating particle). The typical design of a

target ion source is shown in figure 2.4, the fission target includes 148 pills

of uranium carbide heated to 2200 ◦C for release of the elements [34].

Figure 2.4: A typical design of the target coupled to the surface ion source
[34].

The ion source: selectivity of the beams

• High-temperature plasma ion source
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For isotopes of elements with ionisation potential Wi > 7 eV and for the

creation of multiply charged ions, electron impact ionisation is mostly used

[2]. The atoms or ions are bombarded by energetic electrons, thereby losing

one or more of their outer electrons. In the plasma ion source, electron impact

ionisation is used to ionise the atoms that are present in the gas phase inside

the ion source. The electron flux is created by a discharge in a low-pressure

environment. In this way plasma is produced in which the ions are confined,

preventing them from wall collisions and neutralization. In general, plasma

ion sources are not selective, since the energy spectrum of the electrons is

broad and allows for the ionisation of virtually every element.

• Surface ion source

When an atom with low ionisation potential Wi hits the hot surface of a ma-

terial with a high work function φ (e.g. noble metal), it has a high probability

to give its valence electrons to the metal and get ionised (see figure 2.5). This

process is called (positive) surface ionisation. An analogous process of neg-

ative surface ionisation exists for elements with high electron affinity which

hit the hot surface of a material with low work function and get negatively

ionised.

The single positive ionisation efficiency can be calculated with the Saha-

Langmuir equation:

εsurface =
1

1 + g0

g+
exp

(
Wi−φ

kT

) (2.2)

Here, g0 and g+ are the statistical weights of the atomic ground and ionic

states, respectively, k is the Boltzmann constant and T is the temperature

in Kelvin.

In practice, the positive surface ionisation source shows a high efficiency

for elements which have a low ionisation potential when using high work
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Figure 2.5: Surface ionisation principle [42].

function materials at high temperature (≈ 2000◦C) like Ta (φ = 4.1 eV),

W (φ = 4.55 eV), Re (φ = 4.96 eV), Ir (φ = 5.27 eV), ... The efficiency

of positive surface ionisation can be significantly enhanced when using a hot

cavity in which a thermal plasma is created consisting of surface-ionised ions

and thermionic electrons emitted from the cavity surface by heating. The

tube and the inner space of the cavity close above the surface become slightly

positive and the positive ions that are in the cavity are repelled. So they may

be extracted from the cavity without wall collisions, or in other words, they

will not recombine.

The positive surface ionisation source is selective if the neighbouring ele-

ments have a sufficiently higher ionisation potential. In particular, this ion
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source results in high efficiency for alkalines which have the lowest ionisation

potential as well as elements which have a little bit higher ionisation potential

such as gallium, see figure 2.6.

Figure 2.6: Ionisation potentials of the elements [34]

• Laser ion source

A method that has been successfully implemented at ISOL systems is

resonant laser ionisation. For many metallic elements, the requirements of

the ion source of an ISOL facility (efficiency, selectivity and rapidity) are ide-

ally fulfilled by a resonance ionisation laser ion source (RILIS) [41]. Presently

such ion sources have been used at the RIB facilities IRIS (Gatchina), ISOLDE

(CERN), LISOL (Leuven), TRIUMF (Vancouver)... to provide beams with

low isobaric contamination.
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In a resonance ionisation laser ion source (RILIS) the valence electron is

excited by resonant photo-absorption via several intermediate steps into the

continuum, see figure 2.7. The position of the excited state is specific for

each element. Tuning the laser wavelengths to this fingerprint provides an

ionisation method with high intrinsic elemental selectivity.

Figure 2.7: Schematic representation of resonant laser ionisation [41].

Resonance ionisation was already applied for many elements (see figure

2.8) [28, 29, 58].

However, for transitions to high-lying (> 6 eV) first excited states of non-

metals, laser beams in the far ultraviolet (λ < 200 nm) are required. These

can only be produced with low intensity and/or low duty cycle. Thus, these

elements are less suitable for efficient laser ionisation.
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Figure 2.8: Elements that have been ionised with a laser ion source.

To achieve maximum ionisation efficiency, intense laser beams are used for

excitation and ionisation. The laser beams need to have a sufficient overlap

in time and space with the atomic beam of radio-isotopes. Since presently

only pulsed lasers can provide sufficient beam power, the atoms have to be

confined in the interaction region for a while. In order to store atoms, we

can use a hot cavity with small outlet hole or a buffer gas. In the hot cavity

that is commonly used, the average residence time of an atom is of the order

of some 0.1 ms [41]. Thus, a laser system with a repetition rate of the order

of 10 kHz is required to assure that each atom has a chance to interact with

the laser beams. The simplest version of the ioniser cavity is identical to the

ioniser tube of a surface ion source, like the Nb, Ta and W tubes which can
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be well heated above 2000 ◦C. Thus, the delay in the target and ion source

system is normally dominated by the target. Due to the high temperature of

the ioniser cavity, most molecules are dissociated and the laser-ionised beam

consists purely of atomic ions.

Unfortunately, the hot cavity acts simultaneously as a surface ioniser for

elements with low ionisation potential, yielding an isobaric background. In

order to suppress this contamination, ioniser cavities made from low work

function materials (e.g. TaC and Y2O3) should be used [41].

However, it is necessary to consider that, before being ionised, the radio-

isotopes have to be released from the target. Thus, refractory elements could

well be laser ionised when supplied as atomic beam, but they are practically

not released from a thick ISOL target. To avoid such an undesired chemical

selectivity of the target, it is better to use a buffer gas cell coupled to RILIS

for refractory elements (see section 5.2).

2.3 Description of the ALTO Project

In this part, we are going to summarise the production experiment at the

LPI machine of CERN and its results which are basic to build ALTO project.

Also, a short description of the ALTO project will be presented.

2.3.1 The production experiment at the LPI machine

In order to study the feasibility of photo-fission at Orsay, a PARRNe-1 (Pro-

duction d’Atomes Radioactifs Riches en Neutrons) the photo-fission experi-

ment was carried out at CERN to investigate the production of neutron-rich

radioactive noble gas isotopes by photo-fission [15] (see figure 2.9). The re-

sults of the experiment provided the information on the photo-fission yield

of noble gas isotopes needed for the design of the ALTO project at Orsay.

In this experiment, an incident electron beam of 50 MeV was delivered by
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Figure 2.9: Schematic view of the experimental set-up at the LEP Injector
Linac [15].

the LPI machine (LEP Pre-Injector). The 50 nA electron beam bombarded

an intermediate tungsten converter with a thickness of 4 mm placed first at

4 cm and then at 8 cm from the UCx target. The target (with a ratio of 4

carbon atoms for 1 uranium atom) included 67 UCx pills of 14 mm diameter

and placed in a 106 mm long graphite container. The target contains 23

g of 238U and its density is 3.6 g/cm3. A measurement without tungsten

converter was also performed. In this case, a 10 nA primary electron beam

bombarded directly the UCx. During the experiment, the graphite container

was heated at 1800 ◦C [15].

The obtained results (see figures 2.10, 2.11) for the production rates of

the noble gas isotopes of Kr and Xe are compared with those obtained at KVI
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Figure 2.10: Production rates obtained for Xe isotopes at the LPI in different
configurations compared with results obtained at KVI with deuterons of 80
MeV on a Be converter at 8 cm [15].

(Groningen) for the same experimental set-up and conditions (i.e. the same

conditions for the release of the noble gases) but with a deuteron beam of 80

MeV (50 nA intensity). In the latter experiment, the deuteron-to-neutron

converter was made of a 20 mm thick Be target and was placed at 8 cm from

the UCx target.

When the intermediate converter was used in the first experiment, fission

was induced by the bremsstrahlung emitted from the tungsten converter. On

the contrary, without intermediate converter, the bremsstrahlung produced

from the UCx itself will induce fission of the target. The obtained results first

of all indicate that the production rate is higher when the target is placed
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Figure 2.11: Production rates obtained for Kr isotopes at the LPI in different
configurations compared with results obtained at KVI with deuterons of 80
MeV on a Be converter at 8 cm [15].

closer to the converter. This can be explained by the larger solid angle for

a closer target. Without the converter, the production rate is even higher,

because all of the bremsstrahlung produced in the target will travel through

it and may induce fission. Finally, without converter, the production yields

for noble gas isotopes are 3 times larger by photo-fission than by neutron-

induced fission as measured at KVI. These results show that photo-fission is

a promising method to produce intense neutron-rich ion beams.

The success of the photo-fission experiment is the basis of the ALTO

project at IPN Orsay. The purpose of the project is to investigate neces-

sary parameters for the construction of the ISOL-based SPIRAL-2 facility at
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GANIL. Also, it opens the possibility to study neutron-rich nuclei produced

in a thick actinide target by photo-fission.

2.3.2 Production of neutron-rich nuclei by photo-fission

The success of the PARRNe-1 experiment shows that photo-fission of 238U

could be an alternative to neutron-induced fission for the production of

neutron-rich radioactive beams [13, 32].

Figure 2.12: Two possible configurations of the ALTO project. (a) The
intermediate converter produces bremsstrahlung radiation and these photons
induce fission of 238U. (b) The bremsstrahlung radiation is produced in the
target itself.

With an electron driver, an electron beam can be focused onto a con-

verter or onto a uranium carbide target directly to generate bremsstrahlung
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radiation (see figure 2.12). Fission will be induced by those photons at the

right energy to excite the Giant Dipole Resonance (GDR) of 238U. Large

fission event yields are thus expected at the GDR energy, which is around

15 MeV. At this energy the photo-fission cross section reaches 160 mb [16].

At that point the photo-electric and the Compton scattering cross sections

are starting to fall off rapidly so the main contributions to γ absorption

are e+e− pair production and the photonuclear reactions (γ, f), (γ, n) and

(γ, 2n). Although the absolute fission cross section is rather small (compared

to 1 barn for neutron-induced fission), the fission yield can be enhanced by

neutrons from the (γ, n) and (γ, 2n) reactions. Therefore, in a thick target,

photo-fission may be a rather interesting way of producing radioactive fission

fragments.

Since for the ALTO project a linear accelerator delivers a 50 MeV elec-

tron beam, simulations of the bremsstrahlung spectra from a UCx cylindrical

target with a thickness of 30 g/cm2 and a density of 3.6 g/cm2, as well as

those for 7.5 g/cm2 and 30 g/cm2 thick tungsten converters, for a 50 MeV

incident electron beam, were carried out by means of the Fortran code FI-

CEL [24]. Also, the photo-fission yields for several configurations (with a 30

g/cm2, 7.5 g/cm2 thick tungsten converter placed at 4 cm and 8 cm from the

UCx target, or without converter) as a function of the target thickness were

calculated. The results are shown in figures 2.13, 2.14 and 2.15.

From these figures, we can see that the bremsstrahlung spectra in the

forward direction corresponding to the tungsten converter and the UCx tar-

get are quite the same. However, the simulated results are consistent with

the experimental ones from the PARRNe-1 experiment at LPI in that the

photo-fission yield is highest for the configuration without an intermediate

converter, since no photons are lost for fission when the generation of the

bremsstrahlung happens inside the target. In all configurations, the number

of fission events increases with the thickness of the UCx target and it reaches
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saturation at a thickness of 8 cm.

2.3.3 The ALTO facility

The core of the ALTO facility is a linear accelerator that was obtained from

CERN, the LEP (Large Electron-Positron collider) Pre-Injector, also known

as LPI. This accelerator provides an electron beam with an energy of 50 MeV

and nominal intensity of 10 µA. The schematic lay-out, given in figure 2.16,

presents an overall view of the main components of the ALTO accelerator.

The electron beam from the ALTO accelerator is focused onto a thick

target of uranium carbide (UCx). The bremsstrahlung produced by the in-

teraction of the incoming electrons and the target induces photo-fission. The

fission fragments are ionised by an ion source (the accelerator is operated

in combination with various types of ion source, including plasma, surface

ionisation or laser ion sources, see section 2.2.1), mass-separated by a mag-

netic spectrometer and sent to the detection area. An overview of the ALTO

facility is shown in figure 2.17. ALTO is expected to produce 1011 fissions

per second at 10 µA beam current.

The ALTO accelerator was put in operation in December 2005 and the

first photo-fission yield measurements with a uranium target were carried

out in June 2006. For radioprotection issues, the intensity of the accelerated

electron beam was limited to 100 nA instead of the 10 µA nominal current.

These measurements are presented in the following chapter, along with the

perspectives for physics experiments at ALTO.
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Figure 2.13: Angular and energy distributions of the bremsstrahlung emission
per 50 MeV incident electron. The cylindrical converter is made from W.
Top: the thickness is 30 g/cm2. Bottom: the thickness is 7.5 g/cm2 [24].
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Figure 2.14: Angular and energy distributions of the bremsstrahlung emission
per 50 MeV incident electron. The cylindrical converter is made from UCx,
the thickness is 30 g/cm2 [24].



2.3. DESCRIPTION OF THE ALTO PROJECT 27

Figure 2.15: Number of fission events Y produced in the target per unit
of 50 MeV incident electron current as function of target thickness. The
radius of the UCx target is 0.7 cm. Four configurations are considered: a
30 g/cm2 W converter (approximately twice the electron range) was placed
at 4 cm from the target, a 7.5 g/cm2 W converter (approximately half the
range) was placed at 4 and 8 cm from the target, and a configuration without
converter [24].
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Figure 2.16: Overview of the ALTO accelerator. (1) Electron-gun, (2) pre-
buncher, (3) buncher, (4) solenoid, (5) quadrupoles, (6) beam profiler, (7)
acceleration section, (8) beam profiler [38].

Figure 2.17: Overview of the ALTO facility [45].



Chapter 3

Production measurements and
nuclear structure studies at
ALTO

3.1 Production measurements at ALTO

3.1.1 Description of the experiment

In order to confirm the expected improvement of the production yields for

photo-fission with the 50 MeV and 10 µA electron beam at ALTO with re-

spect to the PARRNe setup that was based on the 26 MeV and 1 µA deuteron

beam, an experiment dedicated to the measurement of the production yields

was carried out with the electron current provisionally limited to 100 nA.

The uranium carbide target was composed of 143 disks of 14 mm in diame-

ter. It contained approximately 73 g of 238U, which corresponds to a density

of 3.36 g/cm3. To allow for a fast release of the fission fragments, the UCx

target was heated to 2200 ◦C. The measurement was performed with a MK5

ISOLDE type hot plasma ion source.

As mentioned in the previous chapter (see section 2.3.1), with a 50 MeV

electron beam of 10 nA hitting directly the UCx target at LPI, one could

observe a gain in the production yield of noble gases of a factor 3 times bigger

29
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than with the 80 MeV deuteron beam of 50 nA on a beryllium converter at

KVI (20 mm thick converter at 8 cm from the UCx target). So extrapolating

the results from LPI and KVI, we expected to obtain yields that are similar to

what had been measured with the 1 µA deuteron beam during the PARRNe

experimental program [45].

The measurements relied on the observation of the β decay of mass-

separated isotopes that were implanted in a mylar tape at the collection

point during a given time. Around the collection point we placed a 4π plas-

tic scintillator and a germanium detector (see Fig. 3.1). The activity was

periodically removed to avoid the build-up of background radiation. The

cycle was repeated until enough statistics were accumulated for the charac-

terisation of one isobaric chain and the collection time was optimised for each

isobaric chain in order to enhance the activity of interest. The measurement

was performed for the masses 78 to 95, 117 to 144 and at mass 160.

The data-acquisition system was based on a COMET-6X (Codage et Mar-

quage En Temps) module, which allows to encode signals delivered by up to

six detectors per module with a capacity to chain five modules together.

With each amplitude that is encoded an absolute time information is associ-

ated with 400 ps resolution. From the triggerless data stream we can rebuild

single γ spectra as well as β-γ coincidences.

3.1.2 Experimental production yields

The production yields were determined from the areas of the photo-electric

absorption peaks of the characteristic γ rays emitted by the different isotopes.

The γ lines were identified in β-γ coincident spectra. We use the following

equation for the production rate φ:

φ =
Nd

tcoll − 1−e−λtcoll

λ

(3.1)
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Figure 3.1: Experimental setup of the yield measurements [45].

Here, tcoll is the collection time in a measurement cycle, λ is the decay

constant of the nucleus, and Nd is the number of disintegrations during ncy

cycles of measurement. It is given by:

Nd =
A

ncyτεIγ

(3.2)

In this formula, A is the area of the γ line, τ = 0.9 is a correction for

the dead time of the electronics and the dat acquisition system, ε is the

detection efficiency, and Iγ is the absolute intensity of the γ line taken from

literature. The measurement of 47 isobaric chains was thus performed during

the experiment.

In figure 3.2 we show the results for the production yields of the isotopic
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krypton and xenon chains together with related measured and calculated

data for comparison [45]. As we can see, the production yields obtained at

ALTO are compatible with the yields measured at PARRNe for 1µA. We

remind that the experiment was performed at an electron beam current of

100 nA. Therefore, at the nominal intensity of 10 µA, the ALTO yields should

be a hundred times better than at PARRNe.

In figures 3.3 and 3.4, we plot the production yields for the isotopic chains

of tin, indium, and iodine. Also, these results indicate that the production

yields at ALTO for an electron beam current of 100 nA are close to the

PARRNe rates [45].

3.2 Nuclear structure studies at ALTO

Once the production measurements were completed, the current of the elec-

tron beam was increased to 1µA. As such the photo-fission yield became

sufficient for the observation of the β decay of 83,84Ga.

3.2.1 The β decay of the nuclei 83,84Ga

Experimental setup

For this experiment, a surface ion source with a tungsten transfer line instead

of a hot plasma ion source was used for the first time at ALTO. From the

results that were obtained during the production measurements, a total in-

target photo-fission yield of 1010 per second was expected at 1µA. Although

the ionisation efficiency for gallium in a surface ion source is lower than in

a hot plasma ion source (0.7 % compared to 3 % as measured at ISOLDE,

Cern [56]), the surface ion source delivers a better selectivity for the gallium

beam (see chapter 4).

The detection setup can be summarised as follows. Around the collection

point, clover and coaxial germanium detectors are mounted in close geometry.
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Figure 3.2: Production yields at ALTO for the isotopic xenon and krypton
chains. The values for the ground-state half-lives are indicated.
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Figure 3.3: Production yields at ALTO for the isotopic tin chain. The values
for the ground-and isomeric-state half-lives are indicated.

A plastic scintillator to detect β particles serves for the creation of the β-γ

coincident spectrum. The detection system was calibrated with the standard
152Eu source. The physical information is contained in three spectra: the γ

spectrum gated by an event in the β detector, the time-energy matrix, and

the γ-γ coincidence matrix gated by an event in the β detector. Further

details of the experimental setup and the measurement method can be found

in [46].

Experimental results

Decay of 82,83Ga

The decay scheme of the 82Ga is shown in figure 3.5. For the study of
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Figure 3.4: Production yields at ALTO for the isotopic indium and iodine
chains. The values for the ground- and isomeric-state half-lives are indicated.
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Figure 3.5: Scheme of the β and βn decay of 82
31Ga51.

82Ga, the tape did not move. Due to the selectivity of the surface ion source,

we avoid most of the isobaric contamination and the activity in the tape is

dominated by the decay of 82Ga into 82Ge and 81Ge (by the βn path, see Fig.

3.5). The γ spectrum gated by a β event is presented in figure 3.6. All of

the photo-peaks belong to masses 82 and 81. One deduces that an excellent

beam of 82Ga was ionised and extracted.

At mass 83 (the decay scheme is shown in Fig. 3.7), several cycles of

collection and detection were used. A first cycle included 9 s collection and

1 s detection. Next we used a cycle with 2 s collection and 1 s detection.

The γ spectrum gated by β-event with all statistics for all cycles is shown

in figure 3.8. In a similar way as for mass 82, we find in this spectrum the

known peaks for mass 83.

Decay of 84Ga

At this mass, a cycle with 9 s collection and 1 s decay is used. The γ
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Figure 3.6: Gamma spectrum gated by β events obtained during the mea-
surement of the β decay of 82Ga.

spectrum gated by events in the β scintillator is reproduced in figure 3.9.

Statistatics were accumulated for 15 hours of beam time at a current of 1

µA. We can see the presence of two peaks at 100.0 keV and 242.4 keV, known

to stem from the β decay of 84Ge [19]. We observe two peaks at 42.7 keV and

386.0 keV, previously not reported in the literature, which are in coincidence

with the 100.0 keV line. We assign them to transitions between states of 84As.

We confirm the existence of two γ rays in the decay of 84Ga, one at 624.3

keV and the other at 1046.1 keV, which were detected before at ISOLDE.

From these observations, we conclude that mass 84 was collected on

the tape. However, we also observe characteristic γ rays of rubidium and

its daughter isotopes. Indeed, the rubidium isotopes are produced in large

amounts by photo-fission and since they belong to the chemical alkali group,

they are strongly ionised (the ionisation efficiency approaches 80% [3]) and

extracted from the source. They were stopped in the separator magnet but
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Figure 3.7: Scheme of the β and βn decay of 83
31Ga52

because of their huge production rate and insufficient shielding of the magnet

their radiation could still reach the detectors and appear in the spectra as

random coincidences with β events.

Furthermore, the βn decay path is known as a dominant channel in the

decay of 84Ga (the quoted branching ratio Pn varies between 47(10) % [60]

and 70(15) % [20]). Therefore, γ rays from transitions in 83Ge and its daugh-

ters must be present in the spectrum. As a matter of fact, the 306.3 keV line

in 83As and the 1238.2 keV line in 83Ge are visible. In addition, a peak close

to the energy of the 1
2

+
excited state in 83Ge at 280(20) keV, as observed in

the 82Ge(d,p) direct reaction, was expected to appear in the spectrum [18].

We assert the existence of a peak at 247.8 keV in our data, which was

previously reported in the decay of 83Ga and attributed to the 1
2

+ → 5
2

+

gs

transition in 83Ge [60].

The peak is among the most intense ones in our spectrum and its half-life



3.2. NUCLEAR STRUCTURE STUDIES AT ALTO 39

Figure 3.8: Gamma spectrum gated by β events obtained during the mea-
surement of the β decay of 83Ga.

was determined as 76(48) ms (see figure 3.10), which is consistent with the

previously measured 84Ga half-life of 85(10) ms. So for our experiment, this

allows us to attribute the 247.8-keV peak to the βn activity of 84Ga.

The list of the γ rays that are attributed to the decays of the 84Ga pop-

ulation and its β and βn daughter populations is reported in table 3.1. All

assignments are in good agreement with results obtained at other laborato-

ries with different production and identification techniques except the line at

1046.1 keV, for which we need to discuss in detail the γ activity balance.

Firstly, we start from the assumption that there is a unique β-decaying

state in 84Ga (see figure 3.11). From the observed intensity of the 247.8

keV transition in 83Ge and the Pn branching value from literature, we can

calculate the production φ of the 84Ga population. Based on the obtained

φ value, the expected intensity I242 of the 242.4 keV peak in 84As can be

computed. With Pn = 70(15) % [20] we find I242 = 5(2) and with Pn = 47(10)
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Figure 3.9: Upper part: β-gated γ spectrum recorded at mass 84. Peaks
marked with dots correspond to the decay of 89−96Rb stopped in the mass
separator. Lower part: Zoom of the spectrum for the 600-750 keV and 1200-
1350 keV energy ranges [44].
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Figure 3.10: Number of events in the 247.8-keV peak during the 1-s decay
time of the tape cycle. The solid line represents background from the focal
plane.

% [60], I242 = 13(6). The intensity extracted from our data is I242 = 92(7).

Furthermore, a clear unbalance in the γ intensities is observed in our spectra:

the intensity of the 624.3 keV line in 84Ge is rather weak but the intensities of

the 100.0 keV and 242.4 keV transitions in 84As and the 247.8 keV transition

in 83Ge are rather high, for instance I624/I248 = 38/100. In the data taken at

ISOLDE [40], the intensities of the 624.3 keV and 247.8 keV transitions are

equal. Also, in the A = 84 spectra from ISOLDE, an 866 keV transition is

clearly observed, which was attributed by the PARRNe collaboration to the
7
2

+ → 5
2

+

gs
transition in 83Ge [26].

The preceding arguments appear at odds. If 84Ga were of high spin then

it would feed, after neutron emission, the 5
2

+
ground state of 83Ge rather

than the 1
2

+
excited level. The absolute intensity of the 247.8 keV transition

would be small and if it were of the order of some percent one could explain
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Table 3.1: List of main γ lines observed in 84Ga β and βn decay in this
experiment.

Energy (keV) Rel. int. Attribution Notes
42.7(3) 81(3) 84Ge β ALTO
100.0(3) 79(5) 84Ge β
242.4(3) 92(7) 84Ge β
247.8(3) 100 84Ga βn
306.3(3) 78(6) 83Ge β
386.0(5) 53(5) 84Ge β ALTO
624.3(7) 38(5) 84Ga β
666.7(7) 50(6) 84As β
1046.1(7) 84Ga βn

42(6) 84Ga β ALTO
1238.2(7) 30(5) 84Ga βn
1455.3(7) 83(9) 84As β

the I242 intensity mismatch. The weak feeding of the 624.3 keV line, on the

other hand, points to a low-spin structure in 84Ga that would bypass the

2+ level in 84Ge and proceed directly to the ground state. Also the absence

of the 866 keV transition at ALTO would be natural if one puts forward a

low-spin β-decaying state.

To explain these facts it is proposed that there exist two β-decaying states

in 84Ga: one with low spin, dominant at ALTO, which would feed primarily

the 84Ge ground state, and a second, more intensely produced at ISOLDE, of

spin I ≥ 3 and contributing most of the intensity of the 624.3 keV 2+ → 0+
gs

transition in 84Ge (see figure 3.12).

Finally, in our experiment, we observe a weak 1046.1 keV transition with

about the same intensity as the 624.3 keV line. It is not observed at other

masses. We may assume four possible origins for it, these are:

1. β decay of the low-spin state in 84Ga;

2. β-n decay of the low-spin state in 84Ga;
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Figure 3.11: Decay paths for the hypothesis of a unique β-decaying state in
84Ga [44].

3. β decay of the high-spin state in 84Ga;

4. β-n decay of the high-spin state in 84Ga.

We evaluate the individual cases:

1. β decay of the low-spin state in 84Ga: The 1046.1 keV transition

would, for instance, de-excite a second 2+ state to the ground state in 84Ge.

However, unlike the 624.3 keV 2+ → 0+
gs transition, such a γ line was not

observed in the βn decay of 85Ga at ISOLDE.

2. β-n decay of the low-spin state in 84Ga: Considering that no

1046.1 keV peak was observed in a former 83Ge decay experiment at PARRNe

[26], the 1046.1 keV transition could instead connect a second 1
2

+
state to the

ground state in 83Ge. It would then have been seen in the A = 84 spectra

of the present experiment in the same way the 247.8 keV βn peak was seen.

We measure an intensity of the 1046.1 keV line that is a factor of two lower
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Figure 3.12: Decay paths for the hypothesis of two β-decaying states in 84Ga
[44].

than for the 247.8 keV line.

3. β decay of the high-spin state in 84Ga: The 1046.1 peak would

belong to the 84Ge level scheme. Since it shows the same relative intensity

as the 624.3 keV peak, we could propose to attribute it to the 4+ → 2+

transition in 84Ge.

4. β-n decay of the high-spin state in 84Ga: Again considering that

no 1046.1 keV peak was observed in the former 83Ge PARRNe experiment,

the 1046.1 keV transition could instead connect a high-spin state to the 5
2

+

ground state in 83Ge. It would possibly be connected to the 7
2

+
state at 866

keV in 83Ge.

If the 1046.1 keV transition would be fed by the high-spin state in 84Ge,

and since both the 1046.1 keV and 624.3 keV lines are seen rather weakly,

it would imply that the high-spin β-decaying state is much less produced at

ALTO than the low-spin state.



3.3. CONCLUSION 45

3.3 Conclusion

In this chapter we have shown that the available theoretical predictions as

well as the production yield measurements lead us to the conclusion that

photo-fission is a viable alternative to neutron-induced fission for the pro-

duction and study of neutron-rich isotopes. At ALTO, once the full nominal

current is reached (10 µA), we are able to obtain radioactive ion beam inten-

sities that are 100 times bigger than the ones achieved at PARRNe. So we

can stipulate that the arrival of the ALTO accelerator opens a new opportu-

nity to study exotic nuclei at Orsay. The exploratory experiment that took

place at a current of 1 µA demonstrates that the 82,83,84Ga isotopes can be

produced at ALTO by combining the photo-fission with a surface ion source.

From this experiment, we propose moreover the existence of two β-decaying

states in the nucleus 84Ga.
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Chapter 4

New Surface-Ionisation Source
at the ALTO Project

4.1 Theoretical basics

In order to study the nuclear structure of the neutron-rich germanium iso-

topes at ALTO via the β-decay of the neutron-rich gallium mother isotopes,

it is necessary to be able to produce a highly intense and pure gallium beam.

To obtain such a beam, we use the ISOL technique for fissioning 238U in a

thick UCx target (see section 2.2.1). In this approach, the ion source plays

a key role and for gallium isotopes the positive surface ion source is a good

candidate because the ionisation potential of the neighbouring elements is

sufficiently higher than its own one (see figure 2.6). Hence, for our case, the

surface ion source can provide us with high selectivity. The highest efficiency

will be obtained when refractory metals with a high work function are chosen

as ioniser cavity. High work function materials include [59]:

1. Oxygenated surfaces, e.g. WOx.

2. High work function faces of single crystals, e.g. the (110) face of W

reported as 7 or 8 eV.

47
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3. High work function metals, e.g. Re, Os, Ir, Pt.

However, oxygenated surfaces pose several problems. One of these is

the enhanced emission of inherent impurity ions from the ioniser surface,

especially alkalis. There may also be a chemical reaction between the oxygen

and the element being ionised, e.g. Al or Ga at the surface, resulting in the

gradual deposit of an oxide, e.g. Ga2O3, on the ioniser surface, provoking

the ultimate failure of the ioniser. Moreover, the oxygen may react in a

deleterious way with other components of the ion source.

On the other hand, single crystals pose the problem of obtaining sin-

gle crystal faces of large area and maintaining them at the high operating

temperatures that are needed for surface ionisation.

Because of the mentioned disadvantages, the use of high work function

metals is the most suitable solution. Among these, the highest work function

metal, Pt (φ = 5.65 eV), has too low a melting point (1768 ◦C) and it cannot

be used in the high-temperature environment of the ion source. The next

highest work function metal, Ir (φ = 5.27 eV), has a melting point of 2466 ◦C

and it can be used well if we limit the temperature to 2000 ◦C. The element

Re (φ = 4.96 eV) has a melting point of 3180 ◦C, which is well adapted to

the high temperatures of the ion source.

For gallium, the ground-state electron configuration is 2P1/2, hence the

statistical weights of the atomic ground and ionic states g0 and g+, which

count the number of spin states, are 2 and 1, respectively. Its ionisation

potential being I = 5.99 eV, the single surface ionisation efficiencies against

W, Re, and Ir surfaces depend on the surface temperature and they are

computed by using formula 2.2 and shown in figure 4.1. From the figure,

we can see that the ionisation efficiency for gallium is 140 times larger when

using rhenium rather than tungsten and this value grows to 875 when iridium

is used. Also, an iridium surface at 2000 ◦C can give us the same efficiency

as a rhenium surface at 2800 ◦C.
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Figure 4.1: Surface ionisation efficiencies of Ga for W, Re and Ir ionisers as
a function of cavity temperature.

In our off-line experiments, we shall test the surface ionisation efficiency of

gallium by using a cylindrical cavity that is made of rhenium with a coating of

10 µm of iridium. The coating was performed by chemical vapour deposition

(CVD, see appendix A). Some pictures of the coated surface of the Ir-Re

tube obtained by secondary electron emission as well as backscattering from

a scanning electron microscope are shown in figure 4.2.

4.2 Surface ionisation in a hot cavity

In a hot cavity where the area of the extraction orifice is small compared to

the inner surface of cavity, the observed ionisation efficiency is many orders of

magnitude higher than the prediction of the Saha-Langmuir equation. This

efficiency can be evaluated by the expression [41]
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Figure 4.2: Secondary electron (left) and backscattering (right) images of the
coated Ir-Re surface. Scales are indicated on the figure.

η =
εsurfaceωK

1− εsurfaceK
(4.1)

In this equation, εsurface is the surface ionisation efficiency according to

the Saha-Langmuir equation, ω is the probability for the surface ionised

atoms to leave the cavity as ions, and K is the mean number of wall col-

lisions. However, for a given cavity, the values of ω and K are unknown.

Estimates exist: at GSI, the orifice diameter of the thermal ion source mea-

sures 0.8 mm and K reaches several hundreds, while for the ISOLDE surface

ion source, with a tube diameter of 3 mm, it is about 40. The parameter ω

has been deduced in an indirect way in a few cases only and typically fluctu-
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ates between 0.1 and 0.5 [41]. In order to calculate the ionisation efficiency

of the cavity to be used at ALTO and specify the optimised cavity geometry,

we have used a Monte-Carlo method.

4.3 Monte-Carlo simulation of the ioniser cav-

ity

4.3.1 Simulation algorithm

We know that for the ISOL technique, the intensities of the radioactive beams

depend on many parameters, among which the efficiency of the ion source

plays a key role. It is defined as follows:

ε(A
ZX→A

ZX+) =
N

(
A
ZX+

)
exit

N (A
ZX)input

(4.2)

Here, N
(

A
ZX

)
input

is the number of isotopes of interest coming into the ion

source and N
(

A
ZX+

)
exit

is the number of isotopes of interest that are ionised

and released from the ion source. The number ε(A
ZX→A

ZX+) can be calculated

by the Monte-Carlo method.

In the surface ion source, the fate of the atoms of interest flying through

the cavity can be described as follows. First of all, the neutral atoms effuse

and at some point they may hit the wall of the cavity. There is a probability

for the collision to lead to the ionisation of the atoms. The ionised atoms are

then transported towards the exit of the tube by an applied electric field that

may penetrate the tube, but thermal motion may also make them hit the

wall once more, with a finite probability that they recombine and neutralise.

The process is repeated until the atoms of interest escape from the cavity.

The position and velocity (direction and speed) of the atoms when they fly

through the cavity as well as after each collision can be sampled from the

calculated distributions.
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4.3.2 Determination of the initial position (x, y, z) and
velocity (v0, θ, φ) of the neutral atoms

In order to track particles in the ionisation tube, we define an initial co-

ordinate system as follows (see figure 4.3):

• The origin of the co-ordinate system is the centre of the input circle

• The XOY plane coincides with the input surface of the ion source

• The Z axis coincides with the tube axis.

Figure 4.3: The initial co-ordinate system.

The atoms of interest are released from the target and transported to the

ion-source cavity through a transfer line. Therefore their incident positions

(the initial positions of the neutral atoms) within the input surface are ran-

dom. For a cavity radius R = 1.5 mm, we obtain an initial beam spot as in

figure 4.4.
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Figure 4.4: Beam spot of the incident particles.

The initial direction of the velocity vector can be specified by polar and

azimuthal angles (θ, φ). Here, φ is a random number that obeys a uniform

distribution in the range (0, 2π).

The flux through the tube, which is the number of particles that passes

through the tube per unit of time, for a solid angle dΩ and defined by an

opening angle θ of a cone in the forward direction parallel to the axis of the

tube, is given by

N(θ)dΩ =
nvmeanAs

4π
cos θdΩ (4.3)

Here, n is the number of particles per unit of volume, vmean = (8kT/πM)1/2

the mean particle velocity for an ideal gas, k the Boltzmann constant, T the

absolute temperature in Kelvin, M the mass of the atom and As the cross
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Figure 4.5: Initial angles (θ and φ).

section of the tube. The angle θ is a random quantity in the range (0,π/2).

The distribution of initial angles (θ, φ) is shown in Fig. 4.5.

The initial conditions of the atoms of interest will be fully determined if

we also know their speed. The velocity distribution of the thermal motion of

the atoms is given by the Maxwell-Boltzmann distribution, that is:

DMB (v, M, T ) = 4π

(
M

2πkT

)3/2

v2e−
Mv2

2kT (4.4)

Here, v and M are the speed and the atomic mass respectively, T is the

temperature of the volume in which the atom is placed. The initial speed of

the atom is sampled from this distribution by an exclusive method. First,

we determine the value of vmax at which DMB reaches its maximum. For a

Maxwell-Boltzmann distribution vmax =
√

2kT/M . Next we calculate the

velocity, obeying a uniform distribution in the range (vmin, vmax):

v = vmin + (vmax − vmin) q1 (4.5)
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Here, q1 is a uniform random number. In the second step, we select a

uniform random number q2. If

q2 < DMB (v) /DMB (vmax)

then v is accepted. Assuming a temperature T = 2673 K, the speed

distribution of 84Ga sampled by the above algorithm is shown in figure 4.6.

Figure 4.6: Speed distribution of 84Ga at heating temperature T = 2673 K.

4.3.3 Effusion and collision model

The incoming atoms with their specific initial velocity and position can be

tracked with the assumption that the environment in the cavity is an absolute

vacuum. Hence, the atoms will effuse freely in the ionisation tube, hit the



56CHAPTER 4. NEW SURFACE-IONISATION SOURCE AT THE ALTO

wall and undergo a probability of ionisation. The velocity of the atoms

(speed and direction) after each collision can be described by the statistical

distributions from a Monte-Carlo approach.

Snell model

The Snell model of elastic reflection is known as mirror-like collision. In this

model, the kinetic energy of the atom is conserved and the outgoing angle is

the same as the incoming one (see figure 4.7).

Figure 4.7: Elastic reflection of an atom in the Snell model.

The Snell model can be applied when the atom of interest does not chem-

ically or otherwise interact with the cavity surface. This type of collision is

favored for light atoms and very hot and polished surfaces [48].



4.3. MONTE-CARLO SIMULATION OF THE IONISER CAVITY 57

Lambertian model

Figure 4.8: Specular cosine law of the collision in the Lambertian model.

The elastic reflection model of Snell is an ideal model and can be applied

for smooth surfaces. However, in practice, there is always some roughness in

the surface of the cavity. At the same time there may be some absorption of

energy in the tube walls so that the atoms lose the memory of the incoming

information. In this case, the collision of the atom with the wall can be

described by diffuse reflection, named the Lambertian model also known as

the cosine law [48]. The atoms are then emitted from the cavity walls (see

figure 4.8)under a polar angle θ with a probability as follows:

p (θ) = cos θ (4.6)
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Here, θ is in the range (0, π/2). The azimuthal angle φ is a random

quantity uniformly distributed from 0 to 2π. In our calculation, we sample

θ after every collision from distribution 4.6 until it fulfils the condition, for

a random number q in the range (0, 1),

q ≤ cos θ (4.7)

the result of which is presented in figure 4.9.

Figure 4.9: Distribution of the angle θ sampled by the Lambertian model.

Regarding the energy, we assume thermalisation of the atoms so the speed

of the outgoing atom is sampled from the Maxwell-Boltzmann distribution.

4.3.4 Particle tracking in the cavity

In the ionisation cavity, we track the particles by defining a directional vector

(u, v, w):
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u = sin θ cos φ

v = sin θ sin φ

w = cos θ

(4.8)

The angles θ and φ are defined with respect to the original co-ordinate

system. The particle co-ordinates (x, y, z) are given by:

x = x0 + v0udt

y = y0 + v0vdt

z = z0 + v0wdt

(4.9)

The above equation is valid for neutral atoms, which move in the cavity

with constant speed. For ionised ions we need to take into account the

acceleration a that is induced by the heating voltage that is applied to the

tube. This voltage will induce an electric force Fz along the z axis. Therefore,

we have:

ax = 0

ay = 0

az =
Fz

M
=

V q

LM

(4.10)

Here, V is the heating voltage, L the ioniser length, q and M are the

particle charge and mass, respectively. The (x, y, z) co-ordinates can be

calculated by:

x = x0 + v0udt

y = y0 + v0vdt

z = z0 + (v0w + azdt)dt

(4.11)

After a collision with the ioniser wall the direction of the particle is

changed. Thus, we define a local reference system that satisfies the con-

ditions that the origin of the system O’ is the collision point on the wall and
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the X’O’Y’ plane and the O’Z’ axis coincide with the tangential plane and

the normal to the tangential plane respectively. The local reference system

can be obtained from the original one through translation of the origin and

Euler rotation (counterclockwise) as follows:

1. Rotate an angle α around the z axis

2. Rotate an angle β around the new y axis

3. Rotate an angle γ around the new z axis

Figure 4.10: The local reference system relative to the original one.

To obtain the local co-ordinate system we use the Euler angles (α, β, γ) =

(ϕ,−π/2, 0) (see figure 4.10). Here, ϕ is the azimuthal angle of the collision

point in the original reference system.
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Figure 4.11: Projection of particle trajectories in the XOY plane. (a) Snell
model, (b) Lambertian model.

The Euler rotation matrix is given by the expression:

R = Rz,ϕRy,−π/2Rz,0

=

0 −sinϕ −cosϕ
0 cosϕ −sinϕ
1 0 0

 (4.12)

The projections of particle trajectories in the XOY plane corresponding

to the Snell and the Lambertian models are shown in figure 4.11.

4.3.5 Surface ionisation and recombination

For calculating the ionisation efficiency of the cavity by the Monte-Carlo

method, in a first step, we calculate the single ionisation efficiency of the

atom of interest against the cavity material at a given temperature by means

of formula 2.2. Every time an atom hits the wall, we sample a uniform

random number q and we consider the condition:
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if q ≤ εsurfacethen Nion = Nion + 1 (4.13)

Similarly, for ionised atoms, we perform the same algorithm to specify the

probability of recombination. Under the hypothesis of a chemical equilibrium

for the reaction X+ + e− 
 X, we assume that this value is equal to the

ionisation efficiency from the Saha-Langmuir equation.

4.3.6 Simulation results

Based on the above algorithm, a code in C++ was written to calculate the

surface ionisation efficiency of the ioniser tube made from the different ma-

terials Ir, Re and W. An operating temperature T = 2400◦ C was taken.

For the standard design of the ISOLDE surface ion source (made from W,

length and radius of the tube are 34 mm and 1.5 mm, respectively). Based on

the temperature calibration at ISOLDE [48], the heating current was 700 A

which corresponds to the heating voltage of 0.11 V. In addition, we have also

assumed that the heating current is 700 A for the Re and Ir tubes (with the

same dimension as the ISOLDE surface ion-source) which are corresponding

to heating voltages of 0.38 V and 0.10 V, respectively.

We have investigated the dependence of the surface ionisation efficiency

of gallium on the length and the radius of the ioniser. We have calculated

the efficiency for atoms with different ionisation potentials. For ISOLDE’s

surface ion source, we have performed a calculation of the collision number

as well as the flight time of the particles in the ioniser and the obtained

results were compared with previously published results. The calculations

were done with both the Snell and Lambertian models.

Results with the Snell model

In this section, the results of the calculations with the Snell model are pre-

sented. As mentioned before, this model relies on the hypothesis of mirror
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reflection, thus particles only move forward in the tube toward the exit hole

of the ioniser. In figure 4.12, the distributions for the number of collisions

and the flight time of gallium (84Ga)in the ISOLDE standard surface ion

source are shown.

Figure 4.12: Calculated distributions for the number of collisions and the
flight time of gallium (84Ga)in a cavity with length of 34 mm and radius of
1.5 mm.

In our calculation, the run includes 50000 events and the obtained average

number of collisions Nb is 20.1278. Still with the standard design of the

surface ion source, the ionisation efficiencies calculated for different ionisation

potentials are shown in figure 4.13. Here, for simplicity, we keep the mass M

unchanged (M=84).

The simulation results indicate that the ionisation efficiency drops rapidly

when the ionisation potential reaches a specific threshold value Wth. These

values are approximately 4.4, 5.0 and 5.2 eV for W, Re and Ir, respectively.

The work functions for these materials are 4.55, 4.96 and 5.27 eV, so the
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Figure 4.13: Surface ionisation efficiency as function of ionisation potential.
The length of the ioniser is 34 mm and its radius is 1.5 mm.

results validate our Monte-Carlo algorithm. In figures 4.14 and 4.15, we

show the simulation results for the dependence of the ionisation efficiency of

gallium on the length and radius of the tube. From these figures, we can see

a clear tendency for the ionisation efficiency to increase with the length of the

ionisation tube and decrease with its radius. The result is easily explained by

the fact that increasing the length of the tube and decreasing its radius leads

to an increase of the mean number of collisions. The simulation results for

the Snell model show that the ionisation efficiency of the standard ISOLDE

ion source for gallium is 3.36 % while the measured value is 0.7 % [56]. It

means that the Snell model, which assumes a perfectly polished surface, is

not sufficiently realistic and overestimates the ionisation efficiency. This fact

motivates us to pursue the calculations based on the Lambertian model.
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Figure 4.14: Surface ionisation efficiency for gallium as function of ioniser
length.
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Figure 4.15: Surface ionisation efficiency for gallium as function of ioniser
radius.
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Figure 4.16: Distribution of the number of collisions in a cavity with length
of 34 mm and radius of 1.5 mm.

Results with the Lambertian model

For the Lambertian model, we have performed similar calculations as for

the Snell model. However, in the Lambertian model, the particle can be

backscattered after a wall collision. Therefore, we need to be careful in our

calculations whether we take into account all particles or only those that

exit from the tube in the forward direction. The resulting distributions for

the flight time and the number of collisions for gallium simulated with the

standard design of the ISOLDE surface ion source are shown in figures 4.16

and 4.17.

The calculation included 50000 events. The average total number of colli-

sions Nb, average number of collisions of forward particles Nbf , average num-

ber of collisions of backward particles Nbb and ionisation efficiency (taking

into account only the forward particles) are shown in table 4.1.

The dependence of the surface ionisation efficiency on the ionisation po-

tential is shown in figure 4.18. As can be seen, the efficiency drops rapidly
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Figure 4.17: Distribution of the flight time in a cavity with length of 34 mm
and radius of 1.5 mm.

Table 4.1: Number of wall collisions and ionisation efficiency for Ga in W,
Re and Ir ionisation tubes with length 34 mm and radius 1.5 mm.

Material Nb Nbf Nbb Ionisation Efficiency [%]
W 34 138 23 0.96
Re 34 125 27 7.73
Ir 36 136 22 9.26

when the ionisation potential reaches a specific value, being 4.2 eV, 4.5 eV

and 4.9 eV for W, Re and Ir tubes, respectively. These values are 0.2 to

0.5 eV lower than those obtained with the Snell model and they imply that

ionisation is more difficult in the Lambertian model.

In order to investigate the dependence of the surface ionisation efficiency

on the length and radius of the ionisation tube, we performed calculations for

different length and radius. The results are shown in figures 4.19 and 4.20.

Like for Snell model, the ionisation efficiency increases when the length of

the tube increases and its radius decreases. However, saturation is reached
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Figure 4.18: Surface ionisation efficiency as function of ionisation potential.
The length of the ioniser is 34 mm and its radius is 1.5 mm.

for lengths of 34 mm, 30 mm and 23 mm for W, Re and Ir, respectively.

Discussion of simulation results

From the simulation results of the Snell and Lambertian models, we can see

that the Lambertian model reproduces the experimental ionisation efficiency

better than the Snell model. However, there still is a discrepancy between the

simulated result (0.96 %for Ga in W) and the measured one (0.7 %). This

we may explain by the fact that the recombination efficiency put into the

calculation (equal to the single ionisation efficiency from the Saha-Langmuir

equation) may underestimate the real value and it is necessary to find a

better theory to describe the recombination phenomena.

The number of wall collisions calculated by the Lambertian model is 138

for ions that are extracted from the tube to the right, seven times larger than

for the Snell model (note that the relevant parameter to compare is indeed
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Figure 4.19: Surface ionisation efficiency for gallium as function of ioniser
length.
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Figure 4.20: Surface ionisation efficiency for gallium as function of ioniser
radius.
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Nbf and not Nb). This is a direct consequence of the inherent Lambert

cosine reflection law. The value given in [42] is 40. However, we need to

point out that in this reference, the author does not mention whether it is an

experimental or a calculated result. On the other hand, a calculation with

the fit formula described in [9]:

Nb =

[
−0.1019− 0.103

a

]
× l × ln(a) + 0.4207× l + 0.4253× l

a

+0.4148× a +
0.8

a
− 0.195 +

[
11.85 +

12

a

]
× l2.31 × 2.40× 10−5 (4.14)

in which l is the length of the ioniser and a is the radius of ioniser (this

formula is valid over a range of the ioniser dimension 5cm ≤ l ≤ 50cm,

0cm ≤ a ≤ 2cm), gives us a value of Nbf equal to 21. This fact indicates the

difficulty to determine the number of collisions accurately.

4.4 First test of a surface ion source efficiency

measurement at ALTO

A first test experiment was performed in December 2007, the purpose of

which was to measure the surface ionisation efficiency of an iridium-coated

rhenium ioniser for gallium as well as investigate the behaviour of the material

under extreme conditions like high temperature and chemical attack by other

materials that constitute the ion source.

4.4.1 Description of the surface ion source

Figure 4.21 shows the installation of the surface ion source at Orsay. In the

off-line test experiments, the element of interest is placed in an external boron

nitrite crucible or an internal graphite container. By heating the tantalum

oven to which the crucible is attached or in which the container is placed,
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the atoms will effuse, first through a tantalum transfer line and then into the

ioniser.

Figure 4.21: Surface ion source installation at Orsay.

The ioniser is a cylindrical tube with the same dimensions as the standard

surface ion source at ISOLDE, of which the length is 34 mm, the internal

diameter 3.1 mm and the external diameter 5 mm. The ioniser was made

from iridium-coated rhenium.

4.4.2 Principle of the off-line efficiency measurement

In order to measure the efficiency of the surface ion source, we put a given

amount of the element of interest (gallium) into the target container or the

attached crucible. By heating, the atoms effuse thermally into the ionisation

tube and there is a probability for them to be ionised into positively charged

1+ particles. The extracted current of the mass-separated ion beam is mea-

sured by a Faraday cup or a microchannel plate. After complete evaporation
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of the sample, the ionisation efficiency is given by the ratio between the in-

tegrated current and the number of atoms that were put in the container (or

attached crucible):

εsurface =

∫
Idt

nNAq
(4.15)

Here, I is the measured current, n is the molar quantity of the isotope of

interest, and q is the charge of the ion.

To avoid isobaric contamination in our method, we should use a sample

of high purity of the element of interest.

4.4.3 Evaporation properties of gallium

The electromagnetic mass separator only operates properly when its vacuum

pressure is below 10−5 mbar. It is therefore necessary to investigate the vapor

pressure of gallium as function of the temperature so we may calculate an

upper limit for the heating temperature we apply. The vapor pressure of

gallium as function of the temperature is shown in figure 4.22.

From the figure, we can see that the temperature of the container should

be kept below 740 ◦C.

4.4.4 Temperature calibration of the ion-source com-
ponents

In order to determine the temperature of the various ion-source components

(ionisation tube, tantalum oven and boron nitrite crucible), we performed

a temperature calibration as function of the heating current that is applied

to the ion source. The temperature measurements are done by tungsten-

rhenium thermocouples for high temperatures and iron-constantine thermo-

couples that have high sensitivity for low temperatures. Figure 4.23 shows

the relationship between the measured potential and the temperature for
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Figure 4.22: Vapor pressure of gallium as function of the temperature, data
are taken from [36].

tungsten-rhenium and iron-constantine. For the first thermocouple, the ap-

plication range is from 1650 ◦C to 2315 ◦C and for the second one, from 95
◦C to 760 ◦C.

Tantalum oven

In figure 4.24 we plot the temperature of the tantalum oven and the rhenium-

iridium ioniser tube as function of the power and current that is applied on

the oven. We can see that at a power of 3900 W (or a current of 650 A),

the temperatures of the oven and the ioniser tube reach values of 1700 ◦C

and 820 ◦C, respectively. We stress that in this measurement no current is

applied directly on the ioniser. Since the temperature of the ioniser never-

theless reaches quite a high value, it means that it is strongly affected in an
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Figure 4.23: Relationship between thermally induced potential and temper-
ature for (a) tungsten-rhenium thermocouple and (b) iron-constantine ther-
mocouple [1].

indirect way by the heating of the tantalum oven. This result tells us that

the temperature calibration of the ioniser as function of the current applied

on it, should be done at various temperatures of the oven, such that we may

evaluate the effect of the heating of the oven on the ioniser (see next section).

Rhenium-iridium ioniser tube

As mentioned above, in order to evaluate the effect of the heating of the

oven on the ioniser tube, we have fixed the current of the tantalum oven at

200 A (Toven = 650 ◦C) and then 500 A (Toven = 1485 ◦C). For each case we

measured the temperature of the ioniser as function of the power and current

applied on the ioniser. The experimental results are shown in figure 4.25.

From this figure we can see that at low temperature, the heating of the

oven affects strongly the temperature of the ioniser but when the temperature
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Figure 4.24: Temperature calibration of the tantalum oven and the ioniser
tube as function of power and current applied on the oven.

Figure 4.25: Temperature calibration of the rhenium-iridium ioniser tube as
function of power and current applied on it.
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of the ioniser reaches values above 1000 ◦C its temperature is quite the same

for both oven currents of 200 A and 500 A. This independent heating of the

oven and the ioniser at high temperature is confirmed when we look at the

evolution of the oven temperature as function of the current applied on the

ioniser, drawn in figure 4.26.

The calibration results also show that at the highest power applied to the

ioniser of 930 W (current of 350 A), its temperature is 1900 ◦C.

Figure 4.26: Temperature of the tantalum oven versus current of the ioniser.

Boron nitrite crucible

The boron nitrite crucible is heated indirectly in the ion source by thermal

interaction with the oven and ioniser tube. As such we fixed a current on the

tantalum oven of first 200 A and then 500 A, as was done for the calibration of
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the ioniser. The temperature calibration of the crucible was then performed

as function of the current applied on the ioniser. It is shown in figure 4.27.

Figure 4.27: Temperature calibration of the boron nitrite crucible versus
ioniser current

4.4.5 Results and present status

We put into the boron nitrite crucible 62 mg of high purity (99.99 %) stable

gallium, which includes the two isotopes 69Ga and 71Ga with natural abun-

dances of 60.11 % and 33.89 %, respectively. We increased the current of the

tube and the oven stepwise up to 200 A (Ttube ≈ 1000 ◦C and TBN ≈ 230 ◦C).

At this temperature, gallium is expected to effuse slowly into the ioniser

through the transfer tube and proceed to ionisation. The separator was cali-

brated to select 69Ga or 71Ga. Under these conditions we detected separated

ionised gallium with a current of several nA.

Subsequently the current of the ioniser tube was increased to 250 A

(Ttube ≈ 1500 ◦C and TBN ≈ 300 ◦C). The separated gallium current that was
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detected increased to about 100 nA. The rapid increase can be explained

by the fact that for higher heating temperatures, more gallium is evapo-

rated and effuses into the ioniser, while also the ionisation efficiency is bigger

for higher temperatures (Saha-Langmuir equation). Moreover, particles that

stick to the walls of the ion source will effuse out of it more easily at higher

temperatures.

Finally, the current of the ioniser was increased to 300 A (Ttube ≈ 1800◦C).

At this temperature, the ioniser tube suddenly melted (see figure 4.28).

Figure 4.28: The ioniser tube after heating by a 300 A current.

The failure of the tube was not understood, considering that the melting

point of iridium is at 2443 ◦C while for rhenium it is at 3180 ◦C. Contam-

ination of the tube material, however, could have led to the formation of

a compound with lower melting temperature, called a eutectic. A eutectic

point of iridium with carbon is reported in the literature at 2296 ◦C and for
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an Ir-Rh alloy with carbon at 1932 ◦C [39]. Contamination with silicon would

furthermore lower the eutectic point, in the case of Ir-C to 2150 ◦C. Tanta-

lum and rhenium are known to form a eutectic at 2690 ◦C. An RBS analysis

of the molten tube was carried out at the CSNSM laboratory in Orsay but

it did not show the presence of any element other than rhenium and iridium

(see figure 4.29). It is to be said that the RBS technique, unfortunately, was

not sensitive to carbon because of the low backscattering energy for carbon

and therefore the diagnosis is not conclusive.

Figure 4.29: RBS spectrum of the molten rhenium-iridium tube.

Another explanation could be that mechanical tensions created a gap

between the tube and the tantalum transfer line to which it was attached.

The current could then have arced across the gap and this melted the tube.



82CHAPTER 4. NEW SURFACE-IONISATION SOURCE AT THE ALTO



Chapter 5

Theoretical Study of an Ion
Guide for ALTO

In this chapter, we review the development and the characteristic proper-

ties of the IGISOL (Ion Guide Isotope Separator On-Line) technique and its

coupling to a laser ion source. Besides, we investigate the possibility to im-

plement a gas cell filled with argon noble gas for thermalisation of radioactive

ions at the ALTO facility at IPN Orsay and SPIRAL-2 at GANIL through a

GEANT-4 simulation. The calculation is dedicated to the design and devel-

opment of a future generation of ion sources for the ALTO and SPIRAL-2

projects. In order to validate the simulation by means of comparison with

published results and furthermore evaluate the rate of ionisation of the noble

gas by the primary beam, we also performed the calculation for the case of

an impinging proton beam.

5.1 The ion guide among the ISOL technique

5.1.1 Introduction

As mentioned in section 2.1, over 50 years ago, the development of the Isotope

Separator On-Line (ISOL) technique opened a major perspective for the

83
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study of short-lived and rare radioactive isotopes [11]. In an ISOL system,

the nuclear reaction products are stopped after production, then extracted,

accelerated (typically to an energy of a few tens of keV) and mass-separated.

Figure 5.1 illustrates a classification of different ISOL concepts according to

the way the reaction products are stopped.

Figure 5.1: A classification of different ISOL concepts according to the way
the reaction products are stopped [11].

If the target is much thicker than the recoil range of the reaction products,

most of these are stopped in the target. For thin targets, on the other hand,

most reaction products recoil out of the target and are stopped in a solid

or gaseous catcher. Reaction products that are stopped in solid material

(target or catcher) are released through diffusion and transported to an ion

source. Often, the target or catcher are an integral part of the ion source.

The technique in which one uses a thin target combined with a gas cell (filled
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with a noble gas, in particular helium or argon) for stopping and thermalising

the recoiling nuclear reaction products as well as transporting them by the

gas flow through a differential pumping system directly into the acceleration

stage of the mass separator, is called the Ion Guide Isotope Separator On-Line

(IGISOL) method. The losses of short-lived exotic ions due to the long delay

that is induced by the relatively slow gas flow can be reduced by applying

electrical DC or RF fields in the gas cell that guide the ions towards the exit

hole. This process can be made fast enough (of the order of 10 ms) for a

considerable fraction of the reaction products to survive as 1+ ions.

The IGISOL technique has been used to study short-lived (T1/2 > 0.1

ms) exotic isotopes for more than 20 years now. The first experiments on

the transport of radioactive ions in a gas flow were carried out with an α

recoil source [7] and soon after that, on-line with a 20 MeV proton beam at

the University of Jyväskylä in Finland [4]. These early experiments showed

that in order to achieve a reasonable transport efficiency a fast flow rate was

necessary and delay times of the ions in the gas cell less than 10 ms could

be reached. It was demonstrated that with this technique ion beams can

be produced of radionuclides of virtually all elements, including the most

refractory ones [5, 6].

A variant of the method is based on the selective laser ionisation of the

short-lived radioactive species that are thermalised in the buffer gas as neu-

tral atoms. This will be discussed in section 5.2.

5.1.2 Principle of the ion-guide method

In figure 5.2 we illustrate the IGISOL technique in its most basic form. The

idea of the ion guide is that the reaction products that are produced by the

interaction of the accelerator beam and the target recoil out of the target and

slow down and thermalise in the gas cell to a 1+ charge state. The buffer

gas is typically helium or argon. The ions are transported by the gas flow
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out of the cell and injected through a differentially pumped electrode system

into the high vacuum section of the isotope separator, where they are further

accelerated and mass-separated.

The electrode system can consist of a single conical skimmer with an

electrical field of the order of 500 V/cm or a drift electrode sequence at a

low voltage of some 10 V/cm, called a squeezer. Due to space-charge effects,

the skimmer electrode is suitable for the extraction of high-intensity beams,

whereas the low-voltage devices are better suited for weak ion beams [8].

Because of the energetic collisions with the buffer gas atoms near the exit

aperture of the gas cell at high electrical fields, the ion beams extracted

by the skimmer are associated with an energy spread that can be as large

as 10 to 100 eV. For this reason, other approaches employing linear radio-

frequency cooler devices have been proposed and developed at the University

of Louvain in Belgium [31].

Figure 5.2: Principle of the ion guide. Primary reaction products are ther-
malised as ions and are transported in the gas flow and by electrical fields
into the accelerating stage of the mass separator [8].
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The technique is limited to thin targets with a thickness equal to the

range of the recoil ion in the target, which is of the order of 1 mg/cm2 for

fusion-evaporation residues and 15 mg/cm2 for fission fragments [8].

The slowing down of the ion in the gas resets its charge state by means of

charge-exchange collisions that are determined by the velocity. If we assume

a 100 % pure stopping gas, the radioactive ions can reach a 2+ charge in

collisions with helium atoms because for most elements the second ionisation

potential is below the first ionisation potential of helium. In argon, a 1+

charge state can be reached for many elements. However, impurities such

as H2, O2 and H2O on a sub-ppm level can easily reduce the charge state

of an ion to 1+. Furthermore, the ionisation of the stopping gas by swift

recoil ions and primary-beam particles may lead to important three-body

recombination processes involving electrons, ions and neutral gas atoms. It

may also reduce the charge state to 1+ or even lead to neutralisation.

Next to the mentioned three-body recombination, a major mechanism for

the loss of ions is diffusion to the walls of the target chamber. Also, plasma

screening and space-charge effects could lead to a decrease of the evacuation

efficiency, especially at high ionisation rates in the gas cell. These problems

are discussed in section 5.1.3.

5.1.3 Problems of the IGISOL technique

Recombination losses

From the very beginning of the ion guide development, it was realised that

the ionisation of the stopping gas by the primary beam as well as by recoiling

reaction products results in a major important loss that is neutralisation due

to three-body recombination between the singly charged ions, free electrons

and the neutral buffer gas. Taking the case of ion-electron pairs that are cre-

ated in a gas cell filled with helium, the rate of the three-body ion-electron

recombination X+ + e− + He 
 X∗ + He depends on α, the recombina-
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tion coefficient (cm3s−1), and on Q, the number of ion-electron pairs created

(cm−3s−1). Due to the fact that most of the ions are buffer gas ions, the

recombination process is dominated by the recombination coefficient of the

buffer gas itself. If a beam of ionising radiation of constant intensity passes

through the gas cell, the three-body ion-electron recombination reaches an

equilibrium for the ion-electron density with a time constant t [37]

t =
1√
Qα

(5.1)

At saturation, the density n = nion = nelectron is then

n =
√

Q/α (5.2)

For an argon ion in 0.5 atm argon, the recombination coefficient α is 10−6

cm3s−1. For the case of the gas cell at Louvain filled with 500 mbar of argon

gas, the ion-electron pair production rate Q equals 2.77×1015 at an intensity

of 1 pµA of the 30 MeV proton projectile beam [23], leading to a saturation

time of 20 µs. It is thus clear that the ionising rate Q, the recombination

coefficient α and the residence time of ions and electrons in the stopping gas

will determine the recombination losses.

The presence of a high ionisation rate in the gas cell and the three-body

recombination that stems from it, is invoked in the literature to explain the

loss of ion-guide efficiency at high primary beam intensities. The dependence

of the ion-guide efficiency on the intensity of a 58Ni10+ primary beam was

investigated experimentally at Louvain-la-Neuve for an argon buffer gas cell

(see figure 5.3). For the case “laser off” (which corresponds to the extraction

of 58Ni1+ ions that are directly thermalised with the IGISOL technique), one

observes that the efficiency drops below 1 % when the current of the heavy-

ion beam reaches 105 pps. The value of Q is then equal to 1011 ion-electron

pairs cm−3s−1 [23].
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Figure 5.3: Dependence of the ion-guide efficiency at Louvain-la-Neuve for
extraction of 58Ni1+ with laser ionisation (squares) and direct thermalisation
(circles) on the 58Ni10+ primary beam intensity [23].

Space-charge effects

The extraction time of the ions from the gas cell in the IGISOL technique can

be reduced by applying electrical DC and RF fields in the cell that drag the

ions towards the exit hole and at the same time prevent them from diffusing

to the walls, thus reducing the decay losses of short-lived isotopes as well as

sticking losses. Such a gas cell shares the principle of the classical ionisation

chamber where the electrons are rapidly collected on the electrode, such that

we may reduce the losses due to three-body recombination. However, the

much higher velocity of the electrons compared to the ions could lead to the

accumulation of positive charges and hence the emergence of space charge in

the gap of the electrodes.

The main feature of space-charge is its density, which for an incoming
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pulsed beam depends on the time. This dependence disappears after a spe-

cific time period, which can be calculated for a plane parallel geometry by

the following expression [23]:

tsat =
ρ+

Q
' d0

2v+

(5.3)

Here, ρ+ is the average positive space-charge density in steady state con-

dition, d0 is the distance between the electrodes and v+ is the drift velocity

of the positive ions. After this time period, the positive space charge den-

sity reaches saturation, which means that the charge creation rate and the

charge collection rate are balanced. The potential which is induced by the

space charge and which screens the applied voltage is given by [37]:

Vind =

√
eQ

4ε0µ+

d2
0 (5.4)

Here, ε0 is the di-electric constant for vacuum and µ+ is the mobility of

the ions in the gas cell, which depends on the temperature and pressure of

the gas:

µ+ = µ0
T

p× 273
(5.5)

In this formula, p is the pressure in atmosphere, T is the temperature in

K and µ0 is the mobility of the ions in the gas at normal conditions (T = 0◦C

and p = 1 atm).

The space charge limit is reached when complete screening of the applied

electrical field by the induced field occurs, such that the net electrical field at

the anode equals zero, the collection of charges in its vicinity stops and three-

body recombination is taking over in this region. If the ionisation rate Q is

further increased, a field-free zone will develop and charges created in this

zone will freely recombine. For a given parallel plate chamber, the Q value
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corresponding to the space charge limit can thus be calculated by formula

5.4.

Instead of a plane parallel geometry, the cross-section view of a realistic

design used in Louvain-la-Neuve is drawn in figure 5.4. Because the metallic

walls of the gas cell are grounded on all sides, it can be shown that the

electrical field in this geometry can be described by an equivalent cylindrical

geometry. Calculations carried out by Facina et al. [23] indicate that for the

field map of figure 5.4, space charge starts developing at ionisation rates of

Q = 1010 cm−3s−1.

Figure 5.4: Cross-section view of the electrode geometry at Louvain-la-Neuve
(left) and equivalent cylindrical geometry (right) [23].

A high ionisation rate of the stopping gas could lead to the formation of

an ionised plasma. The high density of electrons will then lead to a high

recombination rate and the efficiency for storing and transporting ions will

decrease. A consequence of plasma formation is the appearance of collective

effects and in particular ambipolar diffusion where the ions and electrons
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move with the same velocity velectron ≈ v+. Moreover, the plasma will shield

the electrical field over a screening distance which is the Debye length, given

by the expression [37]:

λD = 69

√
Te

ne

(5.6)

with Te the electron temperature in K and ne the electron density in

cm−3. In the gas cell, a necessary condition for plasma formation is that the

Debye length of the plasma is smaller than the dimensions of the cell. For

the case of the ion guide at Louvain-la-Neuve, a 40 MeV He++ projectile

beam of 15 pµA transfers a sufficient amount of energy to the electrons so

their temperature can be as high as 4600 K. The Debye length is then equal

to 1.4× 10−3 mm [33].

A second effect that emerges with the plasma effect is that the plasma

shields itself from external fields through the formation of a plasma sheath. It

also leads to a distortion of the electrical field, which may become worrisome

in the extraction region of the ion guide. While the Debye length is a measure

for the penetration of external fields in the plasma, a necessary condition for

the plasma sheath to exist is that the number of charges in the plasma sheath

region ND is much larger than 1. This number is given by [37]

ND = 1380
T

3/2
e

n
1/2
e

(5.7)

Taking the same conditions as above, ND is about 125 particles. The pres-

ence of local plasma pockets in the gas cell is therefore likely at high primary

beam intensities. The importance of this plasma should not be overesti-

mated, however, since the collision frequency with neutral particles remains

high (it is already of the order of 109 s−1 in argon at normal conditions).

This effectively dilutes the plasma [33].
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Diffusion to the chamber walls

Beside the losses mentioned above, the diffusion of recoil ions to the chamber

walls also causes losses because of neutralisation or the particles may simply

stick to the wall. Diffusion is slower at higher gas pressures and for heavier

stopping gasses. Obviously, diffusion losses are also reduced by reducing the

evacuation time of the gas cell.

In situations where the plasma effect is small, the diffusion of ions to the

cell walls becomes the main loss mechanism of recoils. This is confirmed

by measurements when an α-decay recoil source is put into the gas cell. For

optimum conditions, almost 100 % of the α-decay recoils should leave the ion

guide as singly charged ions [11]. However, because of diffusion and sticking

to the walls the measured efficiency of recoils leaving the ion guide was only

20 %. This means that 80 % of the recoil ions diffused and stuck to the

walls of the chamber. Other experiments have put an upper limit of 60 %

on diffusion losses. It is clear that the precise value depends strongly on

the geometry of the gas chamber and the gas flow. In many measurements,

the efficiency increases with the pressure of the stopping gas. The losses are

further reduced by increasing the flow rate or using a heavier stopping gas.

The efficiency that is obtained by the IGISOL approach depends on many

parameters, which involve the gas cell design, the beam properties, the purity

of the gas and the extraction conditions. In addition, the conditions in

which the ions are slowed down vary greatly for different reactions. It is

therefore difficult to compare the results obtained by different laboratories

or even within the same laboratory if the above mentioned parameters are not

controlled within a reproducible way. For every ion guide, it is thus necessary

to investigate its design in detail and eventually simulate it to estimate or

understand its performance. Before doing so, we first discuss in the next

section the empirical ways in which the gas cell can be adapted for different

reactions.
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5.1.4 Ion-guide design for different reaction types

Light-ion induced fusion-evaporation reactions

The first ion-guide systems were designed for reaction products from light-ion

induced fusion-evaporation reactions. Because the products of these reactions

recoil in the forward direction, the primary beam generally penetrates into

the stopping chamber and ionises the buffer gas. If we do not require the

suppression of the primary beam, an ion guide for this type of reactions is

very simple: it is basically a cylinder with a target at one end and an exit hole

in one of the sides. Typical efficiencies between 1-10 % have been achieved

in this case for proton-induced reactions [11].

Heavy-ion induced fusion-evaporation reactions

For this type of reactions, the efficiencies are considerably smaller than those

that are observed for light-ion induced reactions. This is due to the less effi-

cient stopping of more energetic recoils and also to ionisation of the buffer gas

by the heavier primary beam. The effect is witnessed already for α- induced

reactions [8, 11]. The ionisation of the buffer gas leads to the neutralisation

through recombination of the radioactive ions of interest during their trans-

port in the gas as well as the distortion of the electrical field that may be

applied in the extraction region of the ion guide, as discussed in section 5.1.3.

Without suppression of the accelerator beam, the efficiency of the ion guide

drops to about 0.01 % (for helium buffer gas) [11].

Two solutions have been employed to overcome the effect of the strongly

ionising beam. The first one was applied at INS Tokyo [51] and then RIKEN,

Japan [21, 27]. The evaporation residues were separated in-flight from the

primary beam in a gas-filled dipole magnet and then stopped in a gas cell.

The first experiments reached efficiencies above 10%. A similar setup, op-

erating at Argonne National Laboratory, USA, was reported to reach an
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efficiency of 40% [8].

A second way to overcome the effect of the ionisation of the buffer gas

was applied originally at the SARA facility at Grenoble, France. Called the

shadow method, the primary beam is separated from the evaporation residue

by the difference in their angular divergence along the beam axis. In this way,

an overall efficiency of nearly 1 % was achieved.

Besides these two methods, we can use selective laser ionisation to re-

ionise the atom cloud that is stored in the gas cell after its complete neutral-

isation by three-body recombination has taken place. This approach will be

presented in section 5.2.

Fission reactions

Fission fragments recoil out of the fissile target isotropically and with high

energy. This allows to separate the stopping volume from the target zone

by a thin foil. In this way, the accelerator beam does not pass through the

stopping volume and ionisation of the buffer gas is avoided. A schematic

drawing of the fission ion guide operating at Jyväskylä is shown in figure 5.5.

In this design the 15 mg/cm2 uranium target is tilted by 7 degrees with

respect to the beam direction, yielding an effective thickness that is as high

as 120 mg/cm2. Employing a 30 MeV proton beam the fission rate in the

target is about 3 × 109 fissions /sµC. A quantitative measurement of the

yield for the 112Rh fission product gives a total efficiency of 0.02 % at a beam

intensity of 10 µA. This corresponds to a yield of about 105 ions /s. It has

been observed in recent experiments at higher beam intensities that the yield

does not scale linearly, but rather with the square root of the beam intensity.

The reason for this is not fully understood, but it is likely that ionisation of

the gas generated by the fission fragments themselves passing through the

stopping volume is responsible for this effect.

Finally, we would like to emphasise that the application of the ion-guide
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Figure 5.5: The ion guide used for fission reactions at Jyväskylä [11].

technique to the production of radioactive beams in the case of photo-fission

has never been investigated before. One of the purposes of this thesis is to

study the possibility to use the ion guide for the ALTO project on the basis

of fission reactions induced by bremsstrahlung. The results obtained from

the calculations that we shall present later on (see section 5.3.2) will give us

information on the design of a future photo-fission ion guide.

5.2 The laser ion-guide

5.2.1 Principle of the laser ion guide

Most experiments at on-line mass separators are limited by isobaric contam-

ination of the final beam. When fission reactions are used as the primary

production mechanism, the production of exotic neutron-rich isotopes is over-

whelmed by more stable isobars. Also beams of extremely neutron-deficient
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isotopes produced by heavy-ion induced reactions, suffer from the same prob-

lem. It is therefore imperative to purify the beam as much as possible, which

means first of all, being selective in the production process. The issue can

be overcome to a significant extent by relying on resonance ionisation with

lasers.

On the other hand, to study short-lived nuclei that lie far from the β-

stability line, a fast extraction of the reaction products is required. In this

respect, the ion-guide technique is well suited because of the advantageous

extraction times of ions that are as fast as 10 to 100 ms. However, its

application may seem rather limited because of the low efficiency, partly due

to neutralisation of the ions in the buffer gas (see section 5.1).

An attractive solution is offered when the neutral atoms are re-ionised

by resonant photo-ionisation with lasers, as done in the resonance ionisation

laser ion source (see section 2.2.1). The technique that combines the ion-

guide and the resonance ionisation laser ion source is called the laser ion

guide. When moreover a mass separator is coupled to the laser ion guide,

one can deliver in principle isotopically and isobarically pure ions. Depending

on the characteristics of the laser system, it is possible to obtain an ionisation

efficiency that is near unity for about 80 % of all elements, i.e. every atom

that is irradiated by the lasers will be ionised [53].

Figure 5.6 schematically shows the different pathways for a two-step two-

color ionisation. The atoms, which are thermalised in the ground state, are

excited by the first-step laser λ1 to an intermediate level. Then three ways are

possible. The second-step laser λ2 lifts the excited atoms into an auto-ionising

state (a discrete multi-particle state in the continuum that rapidly decays by

emitting an electron) or directly into the continuum. The atom may also be

excited in a high-lying Rydberg state, from where collisions with the buffer

gas atoms result in ionisation. Of the three pathways, ionisation through

Rydberg or auto-ionising states is preferable since the photo-ionisation cross
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section for these states is 10 to 100 times larger than for excitation to the

continuum [30].

Figure 5.6: Different pathways for resonant laser ionisation [30].

In order to obtain high ionisation efficiencies, a relatively high laser power

is needed. In practice, for this reason pulsed lasers are used. These lasers

have one major drawback, namely their low duty cycle (10−4 − 10−7). Since

the production of radioactive ions at many isotope separators is continuous,

the maximum overall efficiency will not exceed 10−4. However, the laser ion

guide method solves this problem since it allows us to store atoms as well as

1+ ions in the buffer gas for long enough times between the laser pulses and

extract them out of the gas almost at will by means of an electrical field.

From these facts, we can conclude that the laser ion guide technique

satisfies the three main requirements of an ISOL facility that are efficiency,

selectivity and rapidity.
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5.2.2 Implementation of the laser ion guide

A schematic layout of the laser ion guide is shown in figure 5.7. The opera-

tional principle is based on the selective laser resonance ionisation of nuclear

reaction products stopped in a high-pressure noble gas [30, 53, 25]. The ac-

celerated beam hits a thin target that is located in a chamber filled with noble

gas. The recoil products from a fusion-evaporation or fission reaction are ini-

tially thermalised as neutrals or 1+ ions. After a few milliseconds, however,

all ions are neutralised due to the recombination with free electrons that are

created by the primary beam [12]. If we make the transport time from the

target area to the laser ionisation zone longer than the survival time, all the

reaction products will be effectively neutralised by the time they arrive in

the ionisation area. The atoms of interest are then selectively ionised by the

laser light, while the other atoms remain essentially unaffected. The ions

are subsequently transported by the gas flow through the exit hole, behind

which most of the noble gas is removed by differential pumping. The ions

are meanwhile accelerated towards the analyzing magnet of the separator.

The procedure results ideally in a pure beam that is free of unwanted

isotopes and isobars. Note that if the primary beam does not pass the ion-

isation area, this region will be mostly free of secondary electrons and the

ion-survival time against recombination will surpass the evacuation time of

the ion from the gas cell [55].

By choosing the volume of the ionisation chamber and the exit-hole di-

ameter in such a way that the evacuation time τevac of the ionisation region

equals at least the time between two laser pulses τrep = ν−1
laser and that τevac

is smaller than the ion-survival time τion, one obtains an optimal system:

τion ≥ τe ≥ τrep (5.8)

In this case every atom is irradiated at least once by the laser and every
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Figure 5.7: Schematic layout of the laser ion guide at Louvain, Belgium.

ion that is created will survive its transport to the exit hole. In order to

stop recoil products from heavy-ion fusion-evaporation reactions and obey

the time relations above, pressures in the target chamber Ptarget of at least

500 mbar have to be used. This is a factor of five higher than in conventional

ion-guide systems without laser ionisation [53]. The volume of the ionisation

region Vion (in cm3) is determined by the laser repetition rate [53]:

Vion = τrep
Qmax

Ptarget

× 1000 (5.9)

Here Qmax is the maximum gas load of the separator (typically 100 mbar

l/s).

The processes that cause a reduction of the efficiency of the laser ion

guide are the same as for the ion guide (see 5.1.3). In addition, when a recoil

atom thermalises in a metastable state while the laser wavelength is tuned to

ionise the ground state of the atoms, it will be unaffected by the laser light.
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For example, in the reaction 54Fe(3He,2n)55Ni with a 25 MeV 3He beam and

helium buffer gas at 500 mbar, it was experimentally observed that only 70

% of the radioactive 55Ni atoms were thermalised in the ground state [30].

5.3 Simulation of buffer-gas ionisation

With the arrival of the ALTO accelerator, a programme for studying the

nuclear structure of refractory elements can be opened at IPN Orsay. These

elements, for example cobalt and nickel, which have atomic numbers Z = 27

and 28, respectively (the latter being a magic number), are very interesting

candidates for nuclear structure research. However, refractory elements are

in general difficult to produce due to their high melting point, leading to the

need for high temperatures to make them volatile and release them from a

thick target. An extraction method that is based on a thin target is needed

and among the thin-target techniques, the laser ion guide seems a promising

approach for producing the intensive and selective beams that evoke our

interest (see section 5.2).

At ALTO, we have undertaken preliminary design studies for a laser ion

guide. Simulations were carried out with the GEAN-4 code [22] to investigate

several of its parameters. In this section, we focus on the calculation of the

energy deposit from the 50 MeV incident electron beam at ALTO in a gas

cell, as well as from fission fragments. We evaluate the ion-electron pair

production rate in the buffer gas it results in. Consequently we shall be able

to estimate the performance of the ion guide for a photo-fission scenario.

Simulations for the gas cell at Louvain-la-Neuve, Belgium, with a 30 MeV

primary proton beam were done for comparison. In addition, in order to move

towards the SPIRAL-2 project at GANIL, in which fission will be induced

by fast neutrons generated from the break-up of deuterons in a thick target,

we also performed a simulation for that case.
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5.3.1 Primary proton beam: the gas cell at Louvain-
la-Neuve

Geometry

Figure 5.8: Drawing of the laser ion guide at Louvain-la-Neuve. Parts (a)
and (b) show the cell used for fission, (c) for fusion reactions [31].

The parts (a) and (b) of figure 5.8 show the design of the laser ion guide at

Louvain as it is used for fission reactions. Its volume is around 92 cm3. The

gas cell is filled with 500 mbar argon gas. Two 10 mg/cm2 natural uranium

foils are placed in it, tilted at an angle of 20◦ relative to the primary proton

beam. The visualisation of the gas cell in GEANT-4 is shown in figure 5.9.

Energy deposit of 30 MeV protons in the gas cell

In order to calculate the energy deposit in the gas cell, the GEANT-4 physics

processes for protons (multiple scattering, ionisation and energy loss of a
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Figure 5.9: Visualisation of the Louvain-la-Neuve gas cell in GEANT-4.

charged hadron, hadron elastic and inelastic processes) are activated. The

standard electromagnetic (EM) processes are assigned to the secondary charged

particles that are produced by the interaction between the proton beam and

the argon buffer gas or the uranium target. Table 5.1 shows the mean energy

loss dE/dx and the ion-electron pair production rate Q in the proton beam

path at a gas pressure of 500 mbar and a proton beam intensity of 1 µA/cm2

for two different physics cases: EM interaction only and EM plus hadron

elastic and inelastic processes for the proton. We used an average ionisation

energy for the argon gas of 26.4 eV [54]. For the case of the EM interaction

Table 5.1: Mean energy loss dE/dx and ionisation rate Q in the gas cell of
Louvain-la-Neuve for 30 MeV proton.

Physics case dE/dx (keV/cm) Q (pairs/cm3s)
EM interaction only 11.16 2.64 ×1015

EM interaction plus others 10.79 2.55 ×1015
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only, the results for the mean energy loss dE/dx and the ionisation rate Q

are in good agreement with those of Ref.[23] calculated with the SRIM code,

quoted as 11.7 keV/cm and 2.77 × 1015, respectively. However, the calcu-

lation that does not take into account the hadronic processes of the proton

will slightly overestimate the energy loss and the Q value in the buffer gas.

Indeed, the proton may lose part of its energy in the uranium targets instead,

which the EM calculation does not consider. Figure 5.10 shows the spectra

for the energy deposit and for the energy of the secondary charged particles

produced in the gas cell.

Figure 5.10: (a) Energy deposit spectrum for 30 MeV proton in the gas cell.
(b) Energy spectrum of secondary charged particles produced in the gas cell.
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5.3.2 Primary electron beam: the future gas cell for
ALTO

Geometry

On the basis of the gas cell at Louvain-la-Neuve, we consider a geometry the

total volume of which is of the same order. The proposed dimensions of the

main rectangular body are 25× 40× 40 mm3, the volume of the rectangular

extension where the gas flow enters measures 11×40×40 mm3 and the height

of the pyramidal exit section equals 36 mm with a base of 40× 40 mm2. In

this volume, we would place natural uranium plates and their fission would

be induced by the bremsstrahlung generated by the interaction between the

50 MeV primary electron beam and a tungsten converter that is inserted in

front of these targets (see Fig.5.13). The quantity and the position of the

fission targets is selected on the basis of an optimised yield calculation by O.

Bajeat at IPN Orsay [35]. The calculation indicates that the highest yield

is obtained for a close geometry and a focused electron beam. Figure 5.11

shows the photo-fission yields for a vertical and a horizontal target placed at

5, 15 and 25 mm from the converter as function of the radius of the electron

beam (a thickness of 8 mm is chosen for the tungsten converter such that

the electron beam is stopped in it).

However, if we put the target too close to the converter, half of the fission

fragments produced in the target will diffuse into the converter and will be

lost. For this reason, we propose a minimum distance of 5 mm between the

converter and the first vertical target, named V1. The calculated efficiencies

for stopping a typical fission fragment of 100 MeV energy produced in a 15

mg/cm2 uranium target are 23 % in 5 mm, 31 % in 10 mm and 40 % in 20

mm of 500 mbar argon gas. For thicker targets, the product of the target

thickness and the percentage of recoils stopped in the gas does not increase

any longer (see table 5.2) [35]. For our gas-cell prototype, we decide to place
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Figure 5.11: Fission yields for a vertical and horizontal target placed at
different distances from an 8 mm tungsten converter as function of the radius
of the electron beam.

4 vertical targets at successive intervals of 10 mm. The fourth target is thus

positioned at 35 mm from the converter.

For a photon beam with an opening angle of 15◦ (which comprises most

of the bremsstrahlung intensity) and a radius for the electron beam of 2 mm,

the area of the fourth target irradiated by the photons is circumscribed by

a circle with a diameter of 23 mm. We therefore limit the dimensions of the

vertical targets to 25 × 25 mm2. In order not to lose the fission fragments

that recoil out of the last target, we leave a space of 5 mm between this

target and the wall of the gas cell, so the depth of the cell becomes 40 mm.

Due to the focus of the electron beam, only one horizontal target that

is placed in the beam axis can be efficient. The calculated fission yields for
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Table 5.2: Stopping efficiency in 500 mbar argon gas of a 100 MeV fission
fragment produced in the middle of a uranium target, for different gas and
target thicknesses.

Uran target 10 mm Ar 20 mm Ar
10 mg/cm2 34 % 49 %
15 mg/cm2 31 % 40 %
20 mg/cm2 23 %
25 mg/cm2 19 %

a horizontal target at different heights above the beam axis as function of

the radius of the electron beam are plotted in figure 5.12. The calculation

corresponds to an electron current of 1 µA, the target dimensions are 25×40

mm2 and it is placed parallel to the beam axis at a height of 0, 10 and 20

mm and 5 mm away from the 8 mm tungsten converter [35]. Based on this

result, we plan to place one horizontal target of 25×40 mm2 along the beam

axis in the gas cell.

A drawing of the proposed gas cell for ALTO is presented in figure 5.13.

The thickness of each of the five uranium targets is 15 mg/cm2. The visual-

isation of the geometry of the cell in GEANT-4 is shown in figure 5.14.

So far the thickness of the converter was put at 8 mm to ensure that all

electrons are stopped in it. In a next step we calculated the photo-fission yield

by means of the Ficel code [24] and we found a maximum for the converter

thickness at 3 mm (see figure 5.15, this particular calculation was done for

five vertical targets of 40× 40 mm2). Indeed, for this thickness there is less

photo-absorption in the tungsten slab. For the geometry described above

with four vertical and one horizontal targets, a 3 mm tungsten converter and

a 1 µA electron beam of 2 mm radius, we finally calculated a total photo-

fission yield of 6.7× 107 fissions /µC. In the first vertical target alone there

are then 8.4× 106 fissions /µC produced.

However, as mentioned in section 5.1.3, the ion-electron pair production
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Figure 5.12: Fission yields for a horizontal target placed parallel to the beam
axis at different heights as function of the radius of the electron beam.

Figure 5.13: Proposed gas cell for ALTO at Orsay.
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Figure 5.14: Visualisation of the proposed ALTO gas cell in GEANT-4.

rate (the ionisation rate of the buffer gas) plays a very important role in

the efficiency of the laser ion guide. Therefore, it is necessary to perform

further calculations to estimate this ionisation rate and achieve a compro-

mise between the ionisation rate and the photo-fission yield. Besides, the

Ficel code does not consider the creation of secondary particles nor does it

take into account the contribution to the fission yield that is induced by

neutrons produced from the photo-nuclear reactions (γ, n) or (γ, 2n). Thus,

an independent calculation of the photo-fission yield in GEANT-4 is most

relevant.

Bremsstrahlung distribution

In order to calculate the photo-fission yield, we first need to simulate the

angular and energy distribution of the bremsstrahlung produced by the in-

teraction between the 50 MeV electron beam and the tungsten converter.
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Figure 5.15: Fission yield in the gas cell as function of tungsten converter
thickness.
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In our calculation, the standard EM interaction processes of GEANT-4 are

called and the beam radius is fixed at 2 mm. In figure 5.16, the energy

spectrum and the angular distribution of the bremsstrahlung are presented.

Figure 5.16: Energy and angular distribution of the bremsstrahlung produced
by interaction between a 50 MeV electron beam and an 8 mm tungsten
converter.

As can be seen, the bremsstrahlung with energies around the Giant Dipole

Resonance of 238U (which is near 15 MeV) is almost exclusively emitted

under small forward angles. The full width at half maximum (FWHM) of

the angular distribution is about 4◦. The incident position of the photon on

the first vertical target is shown in figure 5.17.
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Figure 5.17: Incident point of the bremsstrahlung on the first vertical target.

Photo-fission, photo-neutron and neutron-induced fission yields

Unfortunately, the photo-fission process is not available in GEANT-4. There-

fore, we have implemented a class, G4PhotoFission, which inherits from the

GEANT-4 class G4HadronInelasticProcess to handle this physics process

[43]. We specify a data set for this process through the G4CrossSectionDataStore

class. The data for the photo-fission cross section of 238U are taken from [16]

and parameterised by a function that is the sum of two Lorentz-shaped func-

tions:

σ (γ, F ) =
2∑

i=1

 σm(i)

1 +
[E2

γ−E2
m(i)]

2

E2
γΓ2(i)

 (5.10)
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The data set, the fitting curve and its parameters are shown in figure

5.18.

Figure 5.18: Data set and fitting curve for the photo-fission cross section.

Similarly, for the photo-nuclear reactions (γ,n) and (γ,2n), we have im-

plemented appropriate classes to handle the processes and introduced the

data sets for these reactions. The fitting curves of the cross-section data for

these reactions on 238U are presented in figure 5.19 [16].

We ran our calculation for 3 million events. The photo-fission yields of

the four vertical and one horizontal targets in the gas-cell geometry of section

5.3.2 for different converter thicknesses dW are listed in table 5.3. We observe

that the yield of 8.3× 106 fissions per second in the first vertical target, for

a converter thickness of 3 mm, is in very good agreement with the result
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Figure 5.19: Data sets and fitting curves for the (γ,n) (a) and (γ,2n) (b)
reaction cross sections.



5.3. SIMULATION OF BUFFER-GAS IONISATION 115

from the Ficel calculation discussed in section 5.3.2. However, contrary to

our earlier conclusions, the photo-fission yield of the targets placed farther

away from the converter is higher with up to a factor two and the total yield

equals 1.3×108 fissions /µC (even 1.5×108 for a tungsten thickness of 4 mm),

instead of the 6.7 × 107 fissions /µC calculated with Ficel. This increase in

yield clearly illustrates the importance of the secondary effects.

Table 5.3: Photo-fission yields of four vertical and one horizontal targets in
the gas cell for different converter thicknesses dW .

dW (mm) Photo-fission yield
V1 V2 V3 V4 H Total

1 2.08 106 8.32 106 4.16 106 4.16 106 6.45 107 8.32 107

2 4.16 106 6.24 106 8.32 106 8.32 106 7.48 107 1.02 108

3 8.32 106 1.25 107 1.46 107 6.24 106 8.53 107 1.27 108

4 8.32 106 2.08 107 1.25 107 1.25 107 9.36 107 1.48 108

5 2.28 107 1.04 107 1.04 107 1.25 107 8.94 107 1.45 108

6 1.46 107 1.04 107 8.32 106 1.04 107 6.86 107 1.12 108

8 8.32 106 1.25 107 1.25 107 8.32 106 6.03 107 1.02 108

In figure 5.20, we present the total photo-fission yield in the gas cell as

function of the converter thickness. From this figure, we see that the photo-

fission yield reaches a maximum at dW ≈ 4 mm. The yield of neutrons

produced by the photo-nuclear reactions (γ, n) and (γ, 2n) is shown in figure

5.21.

However, as mentioned earlier, the total energy deposit in the gas cell will

have a strong influence on the efficiency of the ion guide. Therefore, in order

to select the optimal converter thickness we also need to evaluate this energy

deposit as function of the thickness of the converter. This work is discussed

in the next section.
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Figure 5.20: Photo-fission yield in the gas cell as function of converter thick-
ness.

Energy deposit and ionisation rate

For the simulation of the energy deposit in the gas cell in Geant-4, we have

chosen the standard electromagnetic interaction for the primary electron

beam and included the creation of bremsstrahlung and secondary charged

particles in the converter and the gas cell. The calculated energy deposit per

electron in the converter and in the gas cell for different thicknesses of the

converter is shown in figure 5.22.

The figure demonstrates that the range of the 50 MeV electron beam in

tungsten is around 8 mm. As the electrons lose their energy in the converter,

the energy deposit in the gas cell is smaller. The number of ion-electron

pairs that are created by the beam could thus be reduced by incrementing

the converter thickness, if we disregard for the time being the effect on the
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Figure 5.21: Yield of neutrons produced by photo-nuclear reactions (a) (γ,
n) reaction and (b) (γ, 2n) reaction

production yield. For the case of the ALTO project, where the electron beam

intensity is 10 µA, this behaviour is plotted in figure 5.23. At a converter

thickness of 4 mm, we obtain an ionising rate of 1.20×1015 ion-electron pairs

/cm3s.

On the other hand, the number of secondary particles that would be

generated in a thicker converter would also increase (see figure 5.24). Still,

nearly all of the secondary charged particles produced in the tungsten con-

verter would in turn be absorbed in it. This can be explained by the low

energy of the secondary particles (see figure 5.25). At the same time, the

high-energy γ-rays can travel through the gas cell almost without depositing

any energy. Taken together, these reasons lead to an energy deposit in the

gas cell of some keV per electron (see figure 5.26).

We note that the energy deposit of the photo-fission fragments them-
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Figure 5.22: Energy deposit in the tungsten converter and in the gas cell per
incident 50 MeV electron as function of the tungsten thickness. The mean
energy of the electron as function of the depth is denoted by Ee.

selves also should be taken into account. Assuming that we use a 4 mm

tungsten converter, we would produce 1.5 × 108 fissions (see table 5.3). By

extrapolating the simulation result for the SPIRAL-2 gas cell of 7.7 × 1013

ion-electron pairs /cm3s for 1.9× 1011 fissions, presented in the next section

5.3.3, we obtain an ion-electron pair production rate from the photo-fission

fragments equal to 6.1× 1010 ion-electron pairs /cm3s. This number is much

smaller than the ionising rate provoked by the primary electron beam and

its secondary particles (see figure 5.23) and therefore it can be ignored.

5.3.3 Primary deuteron beam: a gas cell for SPIRAL-2

In the SPIRAL-2 project, the use of energetic neutrons to induce fission of

natural uranium for the production of neutron-rich nuclei is proposed. The

high-energy neutrons in the range between 1 and 40 MeV will be generated by
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Figure 5.23: Number of ion-electron pairs created by the electron beam in
the gas cell as function of tungsten converter thickness.

the break-up of 40 MeV deuterons, which are delivered by a linear accelerator,

in a thick graphite target, the so-called converter. The main goal of the

study presented in this section is to provide quantitative estimates of the

ion-electron pair production rate induced by the neutron beam in a gas cell

similar to the one proposed for ALTO (see section 5.3.2). The geometry of

the projected SPIRAL-2 gas cell from the GEANT-4 visualisation is shown

in figure 5.27.

The ionisation of the buffer gas might be induced by the primary deuteron

beam, secondary charged particles produced by the interation between the

deuterons and the graphite converter as well as fission fragments. We start

by simulating the neutron production rates and then the yield of the neutron-

induced fission.
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Figure 5.24: Number of secondary particles as function of tungsten converter
thickness.

Figure 5.25: Energy spectrum of charged secondaries at their creation point
for a 4 mm thick tungsten converter.



5.3. SIMULATION OF BUFFER-GAS IONISATION 121

Figure 5.26: Spectrum of deposited energy in the gas cell for a 4 mm thick
tungsten converter.

Figure 5.27: Visualisation of the SPIRAL-2 gas cell in GEANT-4.
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Neutron production

The production of the high-energy neutrons in the carbon converter via

the C(d,n) reaction is simulated through the GEANT-4 built-in code. The

Quark-Gluon String Precompound, Binary Cascade and High Precision stan-

dard physics lists of Geant-4 were used (QGSP-BIC-HP). The processes taken

into account break down for deuterons and neutrons as follows:

For deuterons: multiple scattering and ionisation processes are consid-

ered. The binary light ion cascade is used to model the inelastic interaction

of ions with matter up to a few GeV /nucleon.

For neutrons: elastic and inelastic scattering (within the binary cascade

model), capture and neutron-induced fission are considered. The physics list

uses the data-driven high-precision neutron package Neutron-HP to transport

neutrons below 20 MeV down to thermal energies.

In our calculation, a 40 MeV primary deuteron beam of 5 mA/cm2 hits

a thick graphite converter. The mean energy loss of the deuterons in the

graphite dE/dx is equal to 39.88 MeV/cm. A converter thickness of 10 cm is

taken such that the deuterons are stopped in it. The calculated yield of the

neutrons emitted from the converter is 0.021 neutrons per incident deuteron.

The MCNPX code gives a comparable value of 0.025 neutrons per deuteron

[47].

The angular distribution and the energy distributions at different angular

ranges are shown in figures 5.28 and 5.29. These distributions are in qualita-

tive agreement with the calculations based on the Serber model as well as the

experimental data cited in [52]. In particular, the GEANT-4 results show a

peak at low energy that is not present in the spectra of the Serber model but

the existence of which is experimentally established. However, the maximum

of the energy distributions (not taking into account the low energy peak) is

systematically higher than both in the Serber model and in the data, where
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it is situated just below half the energy of the incident beam.

Figure 5.28: Simulated angular distribution of neutrons produced in C(d,n)
reaction for 40 MeV deuteron beam.

The simulated fission yield that we obtain for the eventual Spiral-2 gas

cell is 6 × 10−6 fissions per deuteron. For a 5 mA deuteron beam, the total

fission yield becomes 1.9× 1011 per second.

Energy deposit and ionisation rate

Besides the physics processes for deuterons and neutrons, we now also en-

able the standard electromagnetic physics processes for secondary charged

particles, which are produced by the interaction of the deuterons in the con-

verter. In addition, we include the ionisation of and the energy loss in the

material by ions or fission fragments. The calculated total energy deposit per

deuteron and the ion-electron pair production rate Q for a deuteron beam
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Figure 5.29: Simulated energy distribution of neutrons produced at different
angles in C(d,n) reaction for 40 MeV deuteron beam.
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of 5 mA in the gas cell, with and without considering the contribution from

fission fragments, are presented in table 5.4. These figures are considerably

less than what we obtained for the Leuven and the ALTO gas cells, because

neutrons interact much less in the gas than protons or photons. Moreover,

it appears that the fission fragments are responsible for a major share of 88

% in the total ionisation rate.

Table 5.4: Energy deposit per deuteron ∆E and ionisation rate Q in the
SPIRAL-2 gas cell.

∆E /deuteron (eV) Q (cm−3s−1)
Without fission 0.371 1.09 ×1013

With fission 2.96 8.76 ×1013

5.3.4 Conclusion

In table 5.5 we summarise the ion-electron pair production rate Q in a gas cell

of typical volume for the cases of the 1 µA 30 MeV proton beam at Louvain-

la-Neuve, 10 µA 50 MeV electron beam at ALTO and 5 mA 40 MeV deuteron

beam at Spiral-2. As can be seen, the Q value of the Louvain-la-Neuve gas

cell is the highest, while for the deuteron beam it is more than an order of

magnitude lower.

Table 5.5: Ionisation rates Q for the gas cell at Louvain-la-Neuve, ALTO and
SPIRAL-2

Q (cm−3s−1)
Louvain-la-Neuve 2.55 ×1015

ALTO 1.2 ×1015

SPIRAL-2 8.76 ×1013

In the past, the ion-guide technique has been applied successfully at

Louvain-la-Neuve. Therefore, it should, in principle be possible to use it

for future ion sources at ALTO and the SPIRAL-2 project.
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In practice, however, the target area of SPIRAL-2 will be a hostile high-

radiation environment where access will be severely limited. An ion guide for

SPIRAL-2 should be much more robust than the designs that currently exist.

For instance, neutron activation of the buffer gas would need to be taken into

account and proper procedures for remote monitoring and handling would

need to be developed.

The many constraints that are imposed by the target area of SPIRAL-2

have led to a newer proposal instead to install a gas cell behind the Super

Spectrometer Separator S3 (see Fig. 5.30) [10]. This separator is presently

being designed at GANIL and will offer competitive conditions for the study

of nuclei produced in high-intensity heavy-ion reactions. The beam irradi-

ating the buffer gas would then be composed of low-energy heavy reaction

residues rather than deuterons, the feasibility of which has already been

proven at Louvain-la-Neuve [30]. Through these heavy-ion reactions, in par-

ticular exotic refractory isotopes could be aimed at that then could be in-

jected into the different experimental areas of SPIRAL-2, opening a wide

field of interest at the border of our current knowledge.
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Figure 5.30: Layout of the SPIRAL-2 project setup.
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Chapter 6

Conclusions and perspectives

In the year 2000, after the viability of photo-fission was successfully demon-

strated through an experiment at CERN, the ALTO project at IPN Orsay

was initiated. Six years later, the first radioactive beams were extracted from

the UCx fission target and the measured production rates indicated that once

the nominal current of the ALTO electron beam of 10 µA will be reached,

the in-target production rate will be 1011 fissions per second.

I started my thesis at IPN Orsay in December 2005 and I focused on the

following tasks:

• research and development of a new surface ion source for the ALTO

facility in order to produce selectively neutron-rich gallium isotopes for

nuclear structure studies of their β decay;

• study of the possibility to use the laser ion guide ion source at ALTO

as well as at SPIRAL-2.

Based on the Saha-Langmuir theory and other requirements for a surface

ion source, rhenium and iridium were selected as materials for the ionisation

cavity. In my work, I dedicated efforts to develop this ion source and perform

the experiment to measure the surface ionisation efficiency at the off-line

separator SIHL at Orsay. For optimising the dimensions of the cavity, I

129
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built a C++ code on the basis of a Monte-Carlo simulation for the ionisation

efficiency in different cavities. The code was applied to the ISOLDE surface

ion source and reproduced reasonably well the experimental data. The code

can therefore be instrumental for designing future developments of the surface

ion source.

As to the practical work, a surface ion source with an iridium-coated

rhenium cavity of the same dimensions as the cavity at ISOLDE was installed

at the SIHL separator. In order to measure the ionisation efficiency for

gallium, a quantity of stable gallium was put inside and the ensemble was

heated to a temperature T ≈ 1800◦C. A separated gallium current was then

detected by a Faraday cup. However, soon after the tube melted for a reason

that was not understood clearly. The failure of the test experiment warns us

that it is perhaps impossible to use an ionisation cavity made entirely from

rhenium. However, a surface ion source with a tungsten or tantalum tube

the inner surface of which is covered by a thin rhenium foil could be a better

solution [14].

To calculate the ion-electron pair production rate in a possible laser ion

guide ion source at ALTO, the photo-fission (γ,f) and photo-nuclear (γ,n)

and (γ,2n) reactions were implemented in GEANT-4. This allowed me to

evaluate the photo-fission and photo-nuclear reaction yields together with

the additional fission yield that is induced by the neutrons produced in the

photo-nuclear reactions. Consequently, the ionisation rate of the ion guide

buffer gas by the primary electron beam as well as by the fission fragments

was determined and the latter was shown to be negligible.

In view of the SPIRAL-2 project, where fission will be induced by neu-

trons from the C(d,xn) reaction, a code based on Geant-4 was written to

simulate the neutron production, neutron-induced fission as well as ionisa-

tion in a buffer gas. The results for the neutron distribution show that

GEANT-4 can reproduce well the data, including those at low energy where



131

the Serber model is deficient [52].

Finally, the calculated ionisation rates in a prospective gas cell for both

ALTO and SPIRAL-2 indicate that the ion-guide technique can in principle

be used for them. While organisational and technical issues (for instance,

accessibility in a high-radiation environment) may presently not converge to

a speedy implementation, current developments may be favourable instead

for a gas cell at the Super Separator Spectrometer at SPIRAL-2. Heavy ions

produced in a primary target at the entrance of the spectrometer would be

stopped in a buffer gas at the exit of the spectrometer, where they would

be measured in their own right or fed into the other experimental areas of

SPIRAL-2. It is hoped that the present thesis may provide some of the

groundwork for this.
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Appendix A

Iridium-Coated Rhenium by
Chemical Vapor Deposit
(CVD)

As mentioned in chapter 3, iridium is one of three metal with highest working

function (φ = 5.27eV ). Besides, it has a very high melting temperature

(2440◦ C). Therefore, it would seem to be suitable for making a surface ion

source. However, iridium is a very hard metal and therefore it is very brittle,

impossible to draw and very difficult to machine to have the cylinderical

shape of a typical ionisation cavity. In order to be still able to use this metal

in surface ion source, coating the iridium on the surface of a substrate of

a refractory metal might be a good solution. Among the refractory metals,

rhenium is a possible candidate due to its advantageous properties following:

• The very high melting temperature: 3180◦C.

• The high temperature strength and thermal shock resistance of rhe-

nium, which surpass those of all other elements and almost all alloy

systems.

• The high working function (φ = 4.96eV), hence the surface ionisation

efficiency isn’t reduced significantly at the area of bad coating.
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• Iridium bonds to, but does not form a eutectic with, rhenium.

• Rhenium’s thermal expansion is very close to that of iridium.

• Rhenium lacks oxidation resistance at high temperature but this can

be provided by a coating of iridium which has chemical inertness at

high temperature.

• Last but not least, rhenium is also hard but it is still possible to machine

into the shape of an ionisation cavity.

A.1 Fabrication

CVD is a method of plating which relies on the chemical reaction of a vapor

at a surface to form solid structural deposits. The CVD process utilizes a

gaseous compound of the element to be deposited, which is flowed over a

heated substrate, resulting in thermal decomposition of the material onto

the substrate. The first layer forms at nucleation sites; after the substrate is

fully covered, growth continues on the crystal faces of the deposit.

Successful CVD-dense, adherent coatings depend on experimentally de-

termining the optimal deposition parameters. These parameters include the

gaseous compound of the material to be deposited, substrate temperature,

gas concentration, flow, pressure and geometry within the reaction cham-

ber, coating thickness, and substrate material. For the coating to have high

integrity and adhesion to the substrate, the substrate must either have a

similar coefficient of expansion to that of the deposited material, or form a

strong chemical or metallurgical bond with it.

The essential requirements of a CVD facility are that the substrate must

be maintained at the correct temperature and the plating gases to be supplied

in the correct ratio and at the correct pressure. The substrate is typically

heated resistively, inductively, or in a hot wall furnace. The composition of
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the plating gases is determined by the type of reaction to be used. The same

materials may be deposited using different compounds and different reactions

at different temperatures, with each producing good coatings but different

crystal structures. The procedure for depositing iridium uses iridium pen-

taneddionate as the precursor compound. This organometallic compound is

also known as iridium acetylacetonate (Ir ac-ac in brief), with the structural

formula Ir(CH3COCHCOCH3)3. The schematic of a typical CVD appara-

tus for depositing iridium is shown in figure A.1. Ir ac-ac is heated resistively

in horizontal arm of the glass chamber. The carrier/reaction gases sweep the

sublimed Ir ac-ac vapor past the area to be coated, which is heated by a 450

kHz magnetic field; iridium deposits on the needed area, while the reaction

products are exhausted [17].

Figure A.1: CVD apparatus for coating Ir onto Re.
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[28] U. Köster et al., Nucl. Instr. Meth. Phys. Res. B 204 (2003), 347.



BIBLIOGRAPHY 139

[29] V. Fedosseev et al., Nucl. Instr. Meth. Phys. Res. B 204 (2003), 353.

[30] Y. Kudryavtsev et al., Nucl. Instr. Meth. Phys. Res. B 114 (1996), 350–

365.

[31] Y.Kudryavtsev et al., Nucl. Instr. Meth. Phys. Res. B 204 (2003), 336–

342.

[32] Yu. Ts. Oganessian et al., Nucl. Phys. A 701 (2002), 87.

[33] M. Facina, A gas catcher for the selective production of radioactive beams

through laser ionization, Ph.D. thesis, Leuven University, 2004.

[34] F.Ibrahim, Lecture on Production of RIB: ISOL Method, Lecture Notes,

XIVth Euro Summer School on Exotic Beam, Houlgate, Frace, 2007.

[35] S. Franchoo, Cahier des charges aligre, Private Communication.

[36] http://en.wikipedia.org/wiki/Gallium.

[37] M. Huyse, M. Facina, Y. Kudryavtsev, and P. Van Duppen, Nucl. Instr.

Meth. Phys. Res. B 187 (2002), 535–547.

[38] F. Ibrahim, Physics of Atomic Nuclei 66 (2003), 1399–1406.

[39] R. Kent, Los Alamos scientific laboratory, LA-5202-MS informal report

(1973).
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BIBLIOGRAPHY 141

[53] Z. Qamhieh, E. Vandeweert, and R. E. Silverans, Nucl. Instr. Meth.

Phys. Res. B 70 (1992), 131–136.

[54] F. Sauli, in: Experimental Techniques in High-energy Nuclear and Par-

ticle Physics, T. ferbel (ed.), (World Scientific) (1991).

[55] P. Taskinen, H. Pentilla, J. Äystö, P. Dendooven, P. Jauho, A. Jokinen,

and M. Yoshii, Nucl. Instr. Meth. A 281 (1989), 539.
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