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@ Introduction
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The Discrete Logarithm Problem

Exponentiation in a cyclic group
Let G = (g) be a cyclic group of order n. Define

_ exp, : Z/nZ — G,
G =(g) Py i 2/nE = G
, z— g°.
93.*\ ‘ g
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The Discrete Logarithm Problem

Exponentiation in a cyclic group
Let G = (g) be a cyclic group of order n. Define

G = <g> exp, : Z/nZ — G,
g3 z = g°.
g° Discrete logarithm
gt \'o‘/g’l_l exp, is an isomorphism. Its inverse is called the
g discrete logarithm.
3 Z/nZ log, : G = Z/nZ,
9° = z.
2
1 ’\T) 1
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The Discrete Logarithm Problem

G =(g)
g
e
1'\9.\;&/9%—1
2o | Z/nL
R
1’\T;</n'—1

Exponentiation in a cyclic group
Let G = (g) be a cyclic group of order n. Define
exp, : Z/nZ — G,

z— g*.

Discrete logarithm

exp, is an isomorphism. Its inverse is called the
discrete logarithm.

log, : G = Z/nZ,

9° = z.

Computing it is called the Discrete Logarithm
Problem (DLP) of G.
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Elliptic curve cryptography

Fast Algorithms for Towers of Finite Fields and Isogenies

Elliptic curve (Weierstrass form)

E:y’=z3+az+0;

The set of points of an elliptic curve is
endowed with a group law via the
chord-and-tangent law.

-
e

Hasse bound: #E(FF,) ~ g.

| Finite field crypto | Elliptic curve crypto
Group Fy E(F,)
Protocols | El Gamal, DSA, ... | ECDH, ECDSA, ECMQV, ...
Key sizes | 1024, 2048, 3072 160, 225, 256
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Group law and scalar multiplication

v =z4+az+b

P = (:EOryO)r Q = (xliyl)

)\:yl—yo
I — To
P+ Q= -z -z, (20— 22)A — %)

m times
Multiplication: [m|P =P+ P +---+ P
m-torsion: E[m] = {P € E(K)|[m]P = O} = (Z/mZ)*

_ (¥n(®,9) wn(zy)
[m](z,y) = <¢3n($,y) ’ ¢§n(m,y)>

Division polynomials: ¢,, can be computed with O(log m) polynomial
multiplications, deg ¢, = O(m?).
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Isogenies between elliptic curves

E—1-F

W

E
(Separable) isogeny: (separable) non-constant rational morphism preserving the
identity.
Properties
@ lsogeny = rational map + group morphism;
e Finite kernel, surjective (in K);
@ Dual isogeny theorem: they factor the multiplication map into two pieces.

V.

Multiplication
[m] : B(R) — E(K)
P [m]P

kerZ = E[m].
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Isogenies between elliptic curves

E—1-F

W

E
(Separable) isogeny: (separable) non-constant rational morphism preserving the
identity.
Properties
@ lsogeny = rational map + group morphism;
e Finite kernel, surjective (in K);
@ Dual isogeny theorem: they factor the multiplication map into two pieces.

V.

Frobenius endomorphism

¢ : B(K) —» E(K)
(z,9) = (=% y9)

ker ¢ = {O} (inseparable).
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Isogenies between elliptic curves

E—1-F

W

E
(Separable) isogeny: (separable) non-constant rational morphism preserving the
identity.
Properties
@ lsogeny = rational map + group morphism;
e Finite kernel, surjective (in K);
@ Dual isogeny theorem: they factor the multiplication map into two pieces.

V.

Separable isogeny (simplified Weierstrass model)

(o) - (25,00 (23)

h vanishes on the abscissas of kerZ. degZ = #kerZ.
@&
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Why compute (large) isogenies over finite fields?

SEA algorithm (Schoof 1985; Elkies 1992; Atkin 1988)

Hasse bound #E[F,)=q—-t+1;
Schoof Compute ¢t modulo small primes £ < compute the action of ¢,
on E[f] = (Z/L7Z)?;
Atkin Determine the order of the roots of X2 — tX + g by factoring the
£-th modular polynomial.

Elkies Compute an ¢-isogeny Z and the action of ¢4 on
kerT = Z/Z C E[{;

Other cryptographic applications
@ Transfer DLPs between curves (Gaudry, Hess, and Smart 2002; Smith 2009);
@ Construct new cryptosystems (Teske 2006; Rostovtsev and Stolbunov 2006);
@ Construct hash functions (Charles, Lauter, and Goren 2009);
@ Compute modular polynomials (Broker, Lauter, and Sutherland 2010);
@ Compute the endomorphism ring (Kohel 1996; Sutherland 2010).

@)
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Outline

e Computing isogenies over finite fields
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Vélu’s formulas

Compute an isogeny with given kernel (Vélu 1971)
Given the kernel H, computes Z: E — E/H given by

I(Og) = Z(Og/H),

I(P) = (w(P)Jr Y. 2P+ Q) -2(Q)y(P)+ ) y(P+ Q)—y(Q)>-

QEH* QEH*

W

In practice, given h(z), of degree £ — 1, vanishing on H

- - 9(z) ,, R(z) h'(z)\’
y2 = f(:z), b1 = Q%[;* :E(Q), m =tz — P 7f (m)m B Zf(m) ( h(:l:) )

(9@ (9@’
)= (h(m)’y (55) )
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[sogeny computation

!
By Vélu’s formulas: Z(z, y) = <g(“’) Y (fﬁ;) >, hence

h(z)?
. 9@\ (9@ 9= .,
(z +az+b)<h($)) _<h(a:)) +ah(m)+b

Algorithms: Given E, E', £, compute Z : E — E'

Stark 1973: First algorithm in characteristic 0, using continued fractions.
Elkies 1992, 1998: Find a power series solution to the differential equation.

Couveignes 1994: (p small) Compute morphisms of formal groups, look for
one that corresponds to an isogeny.

Lercier 1996: (only for p = 2) solve a linear system.

Couveignes 1996: (p small) Interpolate over the p-torsion, look for a
polynomial that corresponds to an isogeny.

BMSS algorithm (Bostan, Morain, Salvy, and Schost 2008): Improve Elkies
1998 to run in quasi-linear time.

Lercier and Sirvent 2008: Lift E and E’ in the p-adics, then apply BMSS.
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Couveignes’ algorithm (Couveignes 1996)

Given E,E',£, compute Z : & — E'

Idea: Map E[p*] onto E'[p*]

e Compute the extensions U, /F, such that E[p"] is defined over Uj; O(¢2)
e Pick k large enough (k ~ log, 4¢);
e Compute P, a generator of E[p*]; O(¢2)
e Compute P’, a generator of E'[p*]; O(£?)
e Compute the polynomial T vanishing on E[p*]; O(¢2)
o Form € (Z/p*7)*
o Interpolate A : z(P) — z([m]P'); ela)
o Reconstruct a rational fraction ¢ = A mod T; O(M(¢))
Stop when { is an isogeny. £ times on average
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Couveignes’ algorithm (Couveignes 1996)

Given E,E',£, compute Z : & — E'

Idea: Map E[p*] onto E'[p*]

o Compute the extensions U; /F, such that E[p*] is defined over U;; O(M(¢))
e Pick k large enough (k ~ log, 4¢);
e Compute P, a generator of E[p*]; O(M(£))
e Compute P’, a generator of E'[p*]; O(M(2))
e Compute the polynomial T vanishing on E[p*]; O(M(¢))
o Form € (Z/p*7)*
o Interpolate A : z(P) — z([m]P'); (:)(M(l))
o Reconstruct a rational fraction ¢ = A mod T; O(M(¢))
Stop when { is an isogeny. £ times on average
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Couveignes’ algorithm (Couveignes 1996)

Given E,E',£, compute Z : & — E'

Idea: Map E[p*] onto E'[p*]

Compute the extensions U, /F, such that E[p‘] is defined over U;;

Pick k large enough (k ~ log, 44);
Compute P, a generator of E[p*];
Compute P’, a generator of E'[p*];
Compute the polynomial T vanishing on E[p*];
Form € (Z/p*7)"
o Interpolate A : z(P) — z([m]P’);

o Reconstruct a rational fraction 7 = A mod T;

Stop when { is an isogeny.
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How to recognize an isogeny?

® Degree:  with degg=1¢, degh={—-1; o(1)
o Square factor: h = []c . (X — 2(Q)) = f? if £ odd; O(M(2))
@ Group action: Test on random points: Z(P + Q) = Z(P) + Z(Q); o(0)

@ Factor of the /-division polynomial: Check ¢, = 0 mod h. O(M(2))
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How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

R.
AU;+ TV, = R; =N AEFZ_modT
(=11
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How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

R.
AU; + TV, = R; = AE#mOdT
(=11

deg R; deg U;
3141592653589793238462643 0
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How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

R.
AU+ TV; = R; & AEFZ_modT

(=11
deg R; deg U;
3141592653589793238462643 0
3141592653589793238462642 1
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How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

R.
AU+ TV; = R; & AEFZ_modT

=11
deg R; deg U;
3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2
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How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

R.
AU, +TV; =R, & AEFZ_modT

=11
deg R; deg U;
3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2
3141592653589793238462634 9
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How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

R.
AU, +TV; =R, & AEFZ_modT

=11
deg R; deg U;
3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2
3141592653589793238462634 9
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Fast Algorithms for Towers of Finite Fields and Isogenies

How to recognize an isogeny?

T vanishes on E[p¥], A interpolates z(P) — z(P’)

AU;+ TV; = R;

R;
& A= — daT
7, mo

(=11

deg R;
3141592653589793238462643
3141592653589793238462642
3141592653589793238462641

3141592653589793238462634

11

deg U;

10

3141592653589793238462633
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Isogenies of unknown degree

It costs only O(£)

e This pattern is extremely rare.

e It can be detected in quasi-linear time using a fast XGCD
algorithm (Khodadad and Monagan 2006).

e This is the only phase of Couveignes’ algorithm that depends
on {.
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Isogenies of unknown degree

It costs only O(£)

e This pattern is extremely rare.

e It can be detected in quasi-linear time using a fast XGCD
algorithm (Khodadad and Monagan 2006).

e This is the only phase of Couveignes’ algorithm that depends
on {.

Actually, it does not even depend on /£
e This just depends on the bound p*, not on the exact degree £.
e If £ is not known in advance, it is enough to look for a gap.

e Thus, any isogeny of degree < p* can be computed with one
single run of Couveignes’ algorithm.
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Comparison of isogeny algorithms

1.04858e+06

32768 R i
- 1024 + i
3
: ,,,,,,,,,,
S
E 2t 7
H i C2: Fy1023 —
C2: Fj650 -ooooee
LS: F365O 4444444444444
0.03125 | L | | ‘LS: P |
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
isogeny degree isogeny degree

Figure: Comparative timings for Couveignes 1996 (C2) and Lercier and Sirvent 2008 (LS)
over various curves. Plot in logarithmic scale.
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Isogenies of unknown degree

e This variant of Couveignes 1996 is currently the fastest
algorithm for this task (both in theory and in practice).

o We tested two curves over Fyie1, isogenous of unknown degree,
taken from Teske 2006: proven in 694 cpu-hours that no
isogeny of degree less than 212 exists.
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Outline

@ Artin-Schreier towers
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The field of definition of E[p*]

Us - - B[y
p

Us<- - Blp)
q

p-descent (Voloch 1990)
If P; = (z;,v:) generates E[p‘], the solution to

gp_ 7 _ ¥ viPr(z)

p—1 Hz
XP —I;
ye — Y

generates C[p'T!].
Then apply the isomorphism C = E.
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The field of definition of E[p*]

Us - - B[y
p

Us<- - Blp)
q

p-descent (Voloch 1990)
If P; = (z;,v:) generates E[p‘], the solution to

gp_ 7 _ ¥ viPr(z)

p—1 Hz
XP —I;
ye — Y

generates C[p'T!].
Then apply the isomorphism C = E.
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The field of definition of E[p*]

Us - - B[y
p

Us<- - Blp)
q

p-descent (Voloch 1990)
If P; = (z;,v:) generates E[p‘], the solution to

gp_ 7 _ ¥ viBr(z)

p—1 Hg
XP —I;
ye — Y

generates C[p'T!].
Then apply the isomorphism C = E.
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The field of definition of E[p*]

Us - - B[y
p

Us<- - Blp)
q

p-descent (Voloch 1990)
If P; = (z;,v:) generates E[p‘], the solution to

gp_ 7 _ ¥ viPr(z)

p—1 Hz
XP —I;
ye — Y

generates C[p'T!].
Then apply the isomorphism C = E.
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Artin-Schreier towers

Uy = %[ff_k]_ Artin-Schreier polynomials
k kT Q-1 . . .
Artin-Schreier polynomial:

p
XP—X -« with a € K
Uk—1
! Proposition
|
| XP — X — «a is either irreducible or splitin K.
|
|
| Artin-Schreier extensions
U, = JUO[—Xl] Defined by an irreducible Artin-Schreier polynomial
Xl —Xl—ao
= P_ X _
P L =K[X]/(X X — o)

ANY separable extension of degree p can be
Uo =F, = B[ Xo] expressed this way.
q Q(Xo)
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Arithmetic in towers of extensions

Multiplication
U. = Ug—1 [ Xi]
k= le—Xk—ak,1 M(UO) = O(M(d))
v M(U1) = O(p°M(d))
M(Uz) = O(p*M(d))
Uk—1
| :
| ~
| M(Ux) = O(p**M(d)) 2 O(p"*d)
|
| Even using Karatsuba or FFT multiplication, O(p*d)
! can’t be attained. )
Ul — :DUO[Xl]
Xi—X1—ao  Other operations
p @ Exponentiation, Inversion, GCD, all depend

upon M(Uy),
U_F_JFP[XO] Co
0 =9 = 3(x) @ The canonical injection U;—; — U, can be
0 computed in O(p*).
&
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One fast tower, many fast towers!

A Fast A-S tower
Ly
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One fast tower, many fast towers!

A Fast A-S tower
E[p*]- - = Uy L Uy < - - E'[p"]

!
Up1 —Lp 1 =—Up,
I

|
|
|
|
|
U, L, U

N7

Lo

Theorem (Couveignes 2000): There exist an isomorphism algorithm that runs in
O(k®M(LLy)) operations in Lo. (Remember that k = log, #Lz)
@
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A fast tower

— Ly [ X
Ly = XP—Xp—aj_;
P
Lx_1
I Idea: Convert to a uni-
: variate basis over F,
_ Lo[Xi]
Ll - le—Xl—ao
p
— — IE‘p[XO]
Lo =Fq = Gix,)
d
]Fp



A fast tower
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_ Ly—1[Xk] R
Lk_w Lk = QZ(YIC)
i ’
L1 Ly,
! ldea: Convert to a uni- [
: variate basis over F, :
_ Lo[Xy] R
L1 = % % L, = &8l
P :
_ _ Fu[Xo] B B (X
Lo=F, = QP(X;)) Lo=F, = QP(XO)
d d
F, F,
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A fast tower: the multivariate side

Lj_1[X]
L — k—1[Ak
k= XP_X—azP "
p Our construction (inspired by Cantor 1989)
L1 -
, PG
| :
l ' P 2p—1
Li = Lo[Xi] Xy —Xo2—X;
1= XP- X,z XP—X1—Xo

Q(Xo)

Theorem: Let z; be the class of X; in L; (and
LO — Fq — Fy[Xo] thusin L;yq,...). If Trp,/r,(20) # 0, each line

Q(Xo) contains an irreducible polynomial and z; generates
d L; over IFp.
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A fast tower: the univariate side

— Fp[yk]
Li = Qi(Yx)
p
Li_4 Univariate representation
: The minimal polynomials @; of z; over F, can
| be computed as follows.
L, = 5l ° Q=0Q;
(M) o Q1 = Qo(27 - 2).
D Let w bea (2p — 1)-th root of unity,

Fx  © %2 =12 Quw2),
Lo =Fq= TXOO) ° Qit1=gi+1(Z2*7 - 2).
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A fast tower: change of basis

Ly Two bases to represent Ly,
@ Univariate: Ly =Fp[Yi]/ Qu(Y%)
o Multivariate: Ly =Fp[Xo, X1,..., Xx]/(Q,...)
Lr—1  Afast change of basis is the key to fast arithmetic:
@ Multiplication is faster in univariate;

o Field embeddings are faster in multivariate.

Change of basis

Univariate — multivariate
p @ Recursively split input in p slices, recombine by Horner’s rule;
e Simple and fast: O(M(£) + £log® ¢)
0 . .
Multivariate — univariate
d o Trace formulas + duality + transposed algorithms;
Fp @ Same complexity: O(M(£) + £log? ¢)
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Example: univariate — multivariate

Fao = Fa[X1, Xp]/1 = F3[Y5]/Qu(Y2)

X2 - X, -1,
QR(2)=2°+2°+2*+2°-Z -1, (@um)=0,

I:{ X3 — X, — X?,

Let a be given in the univariate basis:
a=X3+X]+ X3+ X5+ Xp =
—_— =~
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Example: univariate — multivariate

Fao = Fa[X1, Xp]/1 = F3[Y5]/Qu(Y2)

X3-X; -1,
Q(2)=2°+25+2*+2°-Z2 -1, Quz)=0,

I:{ X2 — X, — X5,

Let a be given in the univariate basis:

a=X3+ XTI +X5+ X2+ Xy = XS(XZ+Xo+1)+ X3 X2)+ (X
2 2 2 2 2 2( 2 2 ) 2( 2) ( 2)
az a ao
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Example: univariate — multivariate

Fao = Fa[X1, Xp]/1 = F3[Y5]/Qu(Y2)

X2 - X, -1,
QR(2)=2°+2°+2*+2°-Z -1, (@um)=0,

I:{ X3 — X, — X?,

Let a be given in the univariate basis:

a=X3+ XTI +X5+ X2+ Xy = XS(XZ+Xo+1)+ X3(X2)+ (X
2 2 2 2 2 2( 2 2 ) 2( 2) ( 2)
az a ao

Then, a = (X2 + X?P) (3 + XP)az + a1) + ao
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Example: univariate — multivariate

Fao = Fa[X1, Xp]/1 = F3[Y5]/Qu(Y2)

X3-X; -1,
Q(2)=2°+25+2*+2°-Z2 -1, Quz)=0,

I:{ X2 — X, — X5,

Let a be given in the univariate basis:

a=X3+ XTI +X5+ X2+ Xy = XS(XZ+Xo+1)+ X3 X2)+ (X
2 2 2 2 2 2( 2 2 ) 2( 2) ( 2)
az a ao

Then, a = (X2 + X?) (X2 + XP)az + a1) + @ mod (X5 — X, — XP) =

(X2-X - 1)X2+ (X1 —1)Xo— X2 —X; -1
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Multivariate — univariate

Trace formulas (Rouillier 1999)

_ A2
- (2

mod Qy(Z)  where  A(T) = Qu(T) %

i>0

a(2)

@ Compute the trace form Tr,

o compute the form a - Tr: z — Tr az,

a-Trz,
o compute 3,4

o deduce a(Z).

Example: Let a = zy, then

AT) = QuT) (T -T2 -T°+0(T ) =T°-T,
T3 — 2

6 4 3 2
a=—2—"2 —gftat-ad+ai+m+1
Bl 2tE o mtE
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Multivariate — univariate

Trace formulas (Rouillier 1999)

_ A2
- (2

mod Qy(Z)  where  A(T) = Qu(T) %

i>0

a(2)

@ Compute the trace form Tr,

o compute the form a - Tr: z — Tr az,

a-Trz;
@ compute Ez‘zo =

o deduce a(Z).

Example: Let a = zy, then

AT) = QuT) (T -T*-T°+0(T ) =T°-T,
T3 — 2

6 4 3 2
a=—2—"2 —gftat-ad+ai+m+1
Bl 2tE o mtE
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Duality (Shoup 1995, 1999; Bostan, Salvy, and Schost

2003)
Power projection: (K/k)* — k[T]* ~ k[[1/ T1]

Polynomial
evaluation: k[Z] — K/k i
L~ Z Z(U.)
; T
g= g(a) 1>0

Univariate — multivariate = Polynomial evaluation

If Z — z (with z € U written in the multivariate basis):

a(Z):adZd+---+a1Z+00 — adx,f+---+a1$k+ao=a($k):a-

Transposed univariate — multivariate = Power projection

Tr - ZTI:B
120

Tr
a-Tr — Z azk‘
12>0
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The transposition principle

Theorem

Let P be an arbitrary set. To any R-algebraic algorithm A
computing a family of linear functions (f, : M — N)pep
corresponds an R-algebraic algorithm A* computing the dual
family (fy : N* — M?*),ep. The algebraic time and space
complexities of A* are bounded by the time complexity of A.




Luca De Feo (LIX & INRIA Saclay) Fast Algorithms for Towers of Finite Fields and Isogenies ey

Change of basis

Univariate — multivariate
@ Recursively split input in p slices, recombine by Horner’s rule;
@ Simple and fast: O(M(£) + £log? ¢)

v

Multivariate — univariate O(M(£) + £1og? £)
By trace formulas (Rouillier 1999):
A(Z) Tr az}
a(Z) = 0l(2) mod Qx(Z) where A(T) = Qe(T) Tz—+1k

>0
@ Compute the trace form Tr and the form a - Tr: z — Tr az;

Tr z? . . q . .
e compute Y., “m using a transposed univariate — multivariate;
o deduce a(Z).
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Implementations

Automatic transposition

@ Algorithms are hard to transpose, transposed algorithms are hard or
impossible to understand;

@ How can we be confident that a transposed algorithm is well implemented if
no one understands it?

@ When proving programs with a proof assistant, why should we do the work
twice?

http://transalpyne.gforge.inria.fr/

A Python-like ad-hoc language for automatic transposition, compiled/interpreted
in Python.

Artin-Schreier towers and isogenies

@ FAAST (Fast Arithmetic in Artin-Schreier towers): C++ with NTL
implementation released under GPL:

http://www.lix.polytechnique.fr/~defeo/FAAST/

@ With F. Morain and E. Schost, writing a C++ library for isogenies over finite
fields.

@)



http://transalpyne.gforge.inria.fr/
http://www.lix.polytechnique.fr/~defeo/FAAST/
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Perspectives

The future of transalpyne
@ Finish the implementation, add more output languages.
@ Integration in a Computer Algebra System (Sage? Mathemagix?).
@ Development in a dependently typed system (Coq? Agda?).

Perspectives on isogenies
@ All known algorithms to compute isogenies have suboptimal complexity
Q(e?).
o Are there models, where algorithms a la BMSS and Lercier and Sirvent 2008
may be faster?

@ Couveignes' first isogeny algorithm (Couveignes 1994) is very similar to
Couveignes 1996 and may be modified in the same way. There is some
hope that it may be faster in practice, because of the simpler arithmetic
operations needed.

@ Generalize Couveignes’ algorithms to genus 22




Thank you all for coming. ..
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