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Constant Symbol Value Unit

elementary charge e 1.602×10−19 C
electron volts eV 1.602×10−19 J

1.160×104 K
8.066×103 cm−1

2.418×1014 Hz
Planck constant h 6.623×10−34 Js

4.136×10−15 eVs
reduced Planck constant h̄ 1.054×10−34 Js

6.582×10−16 eVs
Boltzmann constant kB 1.381×10−23 J/K

8.617×10−5 eV/K
Bohr magneton µB = eh̄/2me 9.274×10−24 J/T

5.788×10−5 eV/T
flux quantum φ0 = h/2e 2.068×10−15 Vs
speed of light c 108 m/s
free electron g-factor gs 2.0023
electron mass me 9.109×10−31 kg

Table 1: Table of physical constants.

Symbol Value Unit

effective g-factor g∗

effective mass m∗

quantum lifetime τ s
mobility µ = eτ/m∗ m2/Vs
cyclotron frequency ωc = eB/m∗

cyclotron energy h̄ωc eV or J
charge carrier density n cm−3

quantum number N
Fermi energy EF eV or J
Fermi velocity vF m/s
fundamental frequency BF T
SWM-parameters γi, i = 0−6 eV

Table 2: Table of symbols used in this thesis.
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Résumé de la thèse

1. Introduction

Le carbone, qui est certainement un des éléments les plus fascinants, est à la base de toute la
chimie organique. Le nombre de ses composés chimiques différents dépasse celui de tous les
autres éléments. Le carbone élémentaire a beaucoup de variétés allotropiques différentes avec des
propriétés physiques et chimiques toutes aussi variées.

La variété allotropique du carbone élémentaire qui a le plus été étudié est le graphite monocristallin.
Les premières études radiographiques de sa structure cristalline réalisées en 1924 par Bernal [1],
montrent que le graphite est un matériaux feuilleté tridimensionnel. Les atomes de carbone dans
une couche forment un feuillet de réseau hexagonal. Le modèle de la structure de bande du
graphite a été élaboré dans les années cinquante par Slonczewski, Weiss et McClure [2, 3]. Leurs
calculs sont connus sous le nom de modèle SWM.

En 2004, la forme cristallographique bidimensionnelle du carbone – baptisée le graphène [4] – a
été découverte par Andre Geim et ses collègues à l’université de Manchester [5]. Jusqu’à cette
année, il était supposé que le graphène n’existait pas à l’état libre. Toutefois le graphène a été
étudié théoriquement depuis plus de soixante ans, car il constitue la base de tous les calculs de
structure de bandes des systèmes graphitiques. Les propriétés prometteuses du graphène telles
que sa conductivité électronique exceptionnelle et ses propriétés mécaniques remarquables ont
déclenché un intérêt grandissant dans le domaine des matériaux à base de carbone. Avec le succès
du graphène, sa contrepartie en trois dimensions, le graphite, a suscité un intérêt renouvelé. Du
point de vue du graphène, le graphite peut être considéré comme un système quasi bidimensionnel,
qui est composé de couches de graphène empilées. Néanmoins le couplage entre les couches mène
à une structure de bande strictement tridimensionnelle, c’est-à-dire que la relation de dispersion
dans le plan dépend de kz, où z est la direction verticale au plan.

Des informations sur la structure de bande du graphite peuvent être déduites par l’effet de Haas-
van Alphen et l’effet Shubnikov-de Haas. Les deux effets, prédits théoriquement par Landau en
1930 [6], mesurent la variation périodique de l’aimantation et la résistance électrique en fonction
du champ magnétique. Une description théorique détaillée de ces deux effets en trois dimensions
a été élaboré par Lifshitz et Kosevich pour l’effet de Haas-van Alphen et par Adams et Holstein
pour l’effet Shubnikov-de Haas [7, 8].

Pour la surface de Fermi du graphite, calculée dans le modèle SWM, la théorie de Lifshitz et Kose-
vich prévoit deux oscillations de porteurs majoritaires, c’est-à-dire des électrons massifs provenant
du point K (kz = 0) de la zone de Brillouin hexagonale et des trous massifs avec kz≈ 0.3 proches du
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point H (kz = 0.5) (Fig. 1). La validité du modèle SWM a été confirmée par diverses expériences
effectuées au cours des cinquantes dernières années, par exemple le magnétotransport [9–12],
l’effet de Haas-van Alphen [9,13], la magnétoréflexion [14,15], l’absorption de micro-ondes et la
résonance cyclotron [16, 17], et l’effet Nernst [18]. Néanmoins, grâce aux avancées des systèmes
de cryogénie et aux progrès informatiques de nos jours, il parait opportun de revisiter la physique
du graphite.

2. Théorie - Propriétés magnétiques du graphite

Le graphite est un matériau feuilleté, avec un espacement d’atomes dans une couche faible (1.42 Å)
comparé à l’espacement entre les couches (3.35 Å) [1, 19]. Une première approche vers la com-
préhension du graphite est donc l’analyse des propriétés d’une couche simple (graphène) et la prise
en compte du couplage entre les couches de graphite comme une perturbation. Cette approche a
été établie par Wallace en 1947 [20].

2.1 Le graphène

Dans le graphène, les atomes de carbone sont arrangés en nid d’abeille dans le plan. La première
zone de Brillouin est donc un hexagone régulier avec deux points caractéristiques K et K’ au bord
de l’hexagone. L’attrait du graphène est dû à sa structure de bande particulière: Aux points K
et K’ la bande de conduction et la bande de valence se touchent. Le graphène est donc un semi-
conducteur à gap nul. De plus, à proximité des points K et K’ la structure de bandes des électrons et
des trous est linéaire ce qui signifie que les porteurs de charge se comportent comme des fermions
relativistes sans masse avec une vitesse de Fermi de l’ordre de vF = 3γ0a0/2 ≈ 1× 106 m/s, où
γ0 est le paramètre de couplage entre deux atomes de carbone voisins (γ0 = 3.2 eV [21]) et a0 =

1.42 Å est la distance entre eux.

2.1 Le graphite

Dans le graphite les couches du graphène sont empilées verticalement par rapport au plan. L’Hamil-
tonien qui décrit les bandes d’énergie du graphite a été élaboré par Slonczewski, Weiss et McClure
dans les années 1950 [2,3]. Leurs calculs sont connus sous le nom de modèle SWM. Dans le mod-
èle SWM la structure de bande près de l’énergie de Fermi est décrite par sept paramètres, γ0–γ5 et
γ6 ≡ ∆, qui définissent l’interaction entre les différents atomes de carbone dans le graphite.

La structure de bande du graphite est représentée dans la Fig. 1 b). Les bandes d’énergie sont
données en fonction du vecteur d’onde dans la direction z, kz(‖ c), entre les points K et H de
la zone de Brillouin (Fig. 1 a)). Les quatre bandes sont dénommées E1, E2 et E3 (deux fois
dégénérée), respectivement. Le niveau de Fermi se trouve environ au milieu des bandes E3. De
plus, la structure de bande dans le plan est représentée. Au point H le couplage effectif entre les
plans est nul, ce qui mène à une structure de bande similaire à celle du graphène, où l’énergie de
bande est une fonction linéaire du vecteur d’onde. Au delà du point H, la structure de bande dans
le plan est parabolique comme pour des porteurs de charge massifs conventionnels.

La surface de Fermi du graphite le long du bord K-H avec la poche d’électrons au point K et la
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Fig. 1: a) Zone de Brillouin du graphite avec ses points caractéristiques Γ, K(K′) et
H(H ′). b) Structure de bandes du graphite en fonction du moment kz et du
moment dans le plan κ pour kz = 0, 0.3 et 0.5. Au point H l’énergie de bande
est une fonction linéaire de κ . c) Surface de Fermi du graphite avec ses trois
zones extrémales à kz = 0, 0.3 et 0.5.

poche de trous au point H est représentée dans la Fig. 1 c). Basées sur la surface de Fermi, les
propriétés magnétiques du graphite peuvent être qualitativement comprises plus simplement en
utilisant l’approximation semi classique, qui relie les zones extrémales de la surface de Fermi au
champ magnétique par

SN = πk2
⊥ = (N + γ)

2πeB
h̄

, (1)

avec le nombre quantique N et la phase γ . Les porteurs de charge associés aux sections transver-
sales de tailles maximales - dénommés électrons et trous majoritaires - ont des spectres d’énergie
paraboliques E = h̄2k2

⊥/2m∗ comme on peut le voir dans la Fig. 1 b). Par conséquent le spectre
d’énergie quantifiée en champ magnétique de ces porteurs de charge est donné par

E = h̄ωc(N + γ), (2)

avec la fréquence cyclotron ωc = eB/m∗. La phase γ dépend de la topologie de la structure de
bande. Elle a la valeur 1/2 pour les deux porteurs de charge majoritaires [22].

Le spectre d’énergie des porteurs de charge associés aux sections transversales de petite taille -
dénommés les trous minoritaires - dépend linéairement du vecteur d’onde, E = ±vF h̄ |κ| ce qui
signifie

E =±vF
√

2h̄eB(N + γ), (3)

avec γ = 0 pour les trous minoritaires [22].

Qualitativement la structure de bande du graphite en champ magnétique a été dérivée par McClure
[23] et Inoue [24] sur la base du modèle SWM. Pour un vecteur d’onde kz donné, l’Hamiltonien
dépendant du champ magnétique est de taille infinie, mais peut être réduit numériquement à une
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taille finie. Dans cette thèse la taille des matrices utilisées est 600× 600. L’énergie de bande est
modifiée quand le champ magnétique est varié et les extrema locaux des bandes croisent l’énergie
de Fermi les un après les autres. Le croisement des extrema locaux avec l’énergie de Fermi mène
à l’observation des effets quantiques tels que l’effet Shubnikov-de Haas et l’effet de Haas-van
Alphen.

3. Méthodes expérimentales

Deux types d’échantillons de graphite ont été étudiés dans cette thèse: Du graphite HOPG (Highly
Oriented Pyrolytic Graphite) et du graphite naturel. Les dimensions des échantillons de HOPG
sont de 9 mm × 2 mm × 0.5 mm, alors que les échantillons du graphite naturel ne dépassent pas
quelques millimètres. L’épaisseur de ces échantillons est dans la gamme submillimétrique. Pour
les mesures de magnétotransport des contacts ont été déposés sur ces échantillons en configuration
de type “barre de Hall”.

Pour les mesures deux systèmes d’aimants différents ont été employés: Deux aimants supracon-
ducteurs avec des champs magnétiques maximaux de B = 11 T et B = 16 T à la température de
l’hélium liquide (T = 4.2 K) et un aimant résistif de 20 MW, avec un champ magnétique maximum
de B = 28 T.

Les mesures ont été effectuées dans trois systèmes cryogéniques différents: Un “anti-cryostat” (ou
VTI = Variable Temperature Insert) avec une température de base de Tb ≈ 1.2 K, un cryostat 3He
avec Tb ≈ 300 mK et deux réfrigérateurs à dilution avec Tb ≈ 10 mK (aimant supraconducteur) et
Tb ≈ 30 mK (aimant résistif).

Pour les mesures de magnétotransport en configuration de barre de Hall (Fig. 2 a)) un courant
alternatif est injecté par les contacts de courants (1-2) aux extrémités de l’échantillon. Le courant
dans l’échantillon est limité par une grande résistance de série R1 (R1 = 10 kΩ – 1 MΩ) beau-
coup plus grande que la résistance de l’échantillon. Ceci assure que le courant dans l’échantillon
reste approximativement constant (typiquement I ≈ 1 µA) même si la résistance de l’échantillon
varie pendant les mesures. Les chutes de tension longitudinales et transverses Uxx et Uxy causées
par la résistivité de l’échantillon sont mesurées entre les contacts (3-4) et (4-5), respectivement.
Les deux signaux sont amplifiés d’un facteur 100 en utilisant des préamplificateurs. Les signaux
préamplifiés sont ensuite envoyés à la détection synchrone.

Les mesures de l’effet de Haas-van Alphen ont été effectuées en utilisant la méthode de couple.
Cette méthode est basée sur le fait que si un échantillon possède une aimantation M lorsqu’il est
exposé à un champ magnétique externe B, un couple τττ est créé dans la direction perpendiculaire à
M et à B,

τττ = M×B. (4)

Le couple sur l’échantillon a été mesuré en utilisant un couplemètre capacitif. Le montage ex-
périmental principal du couplemètre capacitif est représentée dans la Fig. 2 b). Le condensateur
est constitué d’une plaque circulaire avec un diamètre de 2.5 mm assemblée parallèlement à une
plaque de cuivre. L’échantillon est monté sur la plaque circulaire avec de la graisse à vide. La
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Fig. 2: Montages expérimentaux pour les mesures de a) magnétotransport (barre de
Hall) et b) l’effet de Haas-van Alphen (couplemètre capacitif).

plaque circulaire elle-même est reliée par un cantilever effilé à une plaque rectangulaire.

Lorsqu’un champ magnétique est appliqué et l’échantillon est soumis à un couple, le cantilever se
comporte comme un ressort. La déformation du ressort mène à un changement de la distance entre
le ressort et la plaque de cuivre et par conséquent à un changement de la capacité. La capacité
et donc le couple a été mesuré en utilisant un pont de capacité et une technique de détection
synchrone standard.

4. Résultats

4.1 Magnétotransport à bas champ - Effets orbitaux

Dans cette thèse nous présentons les premières mesures de magnétotransport du graphite effec-
tuées dans la gamme de température des mK (T ≈ 10 mK). Le spectre du magnétotransport du
graphite naturel mesuré à ces températures est extrêmement riche. Après l’extraction d’un large
fond de magnétorésistance (MR), deux séries d’oscillations quantiques superposées peuvent en-
core être observées à des champs magnétiques très bas (B0 ≈ 0.07 T) (voir Fig. 3). Le nombre
quantique pour les deux oscillations est proche de N = 100 ce qui est nettement plus grand que le
nombre N < 13 observé dans les expériences précédentes [9]. Le gap Zeeman est observé pour
dix structures (flèches), contre trois observés par Woollam [10].

La très grande qualité des données permet l’extraction précise de la phase et de la fréquence des
oscillations et la déduction d’informations détaillées sur la topologie de la surface de Fermi du
graphite. L’analyse de Fourier des oscillations donne BF = 4.75 T et BF = 6.58 T pour les deux
fréquences fondamentales. Dans le modèle SWM les deux fréquences sont assignées aux trous
et aux électrons majoritaires. Les valeurs de phase des deux oscillations sont très similaires, la
valeur de phase de γ (voir équations (2) et (3)) étant à chaque fois 1/2. Ces valeurs de phase pour
les deux groupes de porteurs sont prédites par le modèle SWM du graphite.

Nous avons confirmé la validité du modèle SWM par des calculs numériques détaillés de la struc-
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Fig. 3: a) Echelle droite: Rxx mesurée à T = 10 mK en fonction du champ magnétique.
Un fond de magnétorésistance (MR) et des oscillations quantiques sont super-
posés. Echelle gauche: Signal après l’extraction du fond de magnétorésistance,
∆Rxx. Les oscillations sont encore observables à très bas champ (B0 ≈ 0.07 T).
La séparation Zeeman est observée pour dix motifs (flèches). b) Bandes de
Landau en fonction du champ magnétique calculées en utilisant le modèle SMW.
L’accord entre les calculs et les données (lignes verticales) est remarquable.

ture de bande. Pour cela nous avons calculé la dépendance des extrema locaux des bandes de
Landau (dE/dkz) en fonction du champ magnétique. Les extrema locaux correspondent aux max-
ima dans la densité d’états. En conséquence, la conductivité étant proportionnelle à la densité
d’états (relation d’Einstein), des motifs dans le magnétotransport sont observés lorsque ces ban-
des croisent l’énergie de Fermi EF . Aux champs magnétiques B < 2 T, où l’énergie de Fermi peut
être considérée comme constante (h̄ωc� EF ), l’accord entre les calculs et les données (lignes ver-
ticales) est remarquable (Fig. 3 b)). Aux champs magnétiques plus élevés l’approximation d’une
énergie de Fermi constante n’est plus valable. Si l’énergie de Fermi constante est extrapolée aux
champs magnétiques B > 2 T, les valeurs du champ magnétique auxquelles les bandes croisent
l’énergie de Fermi diffèrent de manière significative de celles observées expérimentalement. Les
déviations peuvent être expliquées par un mouvement de l’énergie de Fermi quand on approche la
limite quantique. Le mouvement de l’énergie de Fermi a été calculé d’une manière auto-cohérente
en supposant que la somme des concentrations des électrons et des trous est constante. Le mouve-
ment de l’énergie de Fermi décale le croisement de l’énergie de Fermi avec les bandes de Landau
vers des champs magnétiques plus élevés. Cela est également observé expérimentalement et se
manifeste dans l’apériodicité des oscillations en 1/B aux champs magnétiques élevés. L’accord
entre les calculs et les données est de nouveau remarquable.

La recherche systématique des oscillations de porteurs minoritaires aux faibles champs magné-
tiques (B< 0.3 T) s’est avéré infructueuse. Même si une troisième série d’oscillations est observée
pour B < 0.3 T, elle ne peut pas être attribuée aux oscillations des porteurs minoritaires, car les
oscillations ne sont pas périodiques en 1/B. Leur origine reste incertaine.
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En ce qui concerne le fond de magnétorésistance nous avons effectué quelques mesures en fonction
de la température à champ magnétique fixe pour confirmer la transition métal-isolant récemment
découverte dans le graphite [25]. Pour des champs magnétiques très faibles (B≤ 8 mT), on observe
un comportement métallique (dR/dT > 0) en fonction de la température entre T = 1.5 K et T =

200 K. Quand le champ magnétique est augmenté, l’état métallique est supprimé et à B = 0.131 T,
Rxx(T ) se comporte comme un isolant (dR/dT < 0). Lorsque le champ magnétique est de nouveau
augmenté (B > 0.2 T), l’état métallique réapparaît. Rxx(T ) exhibe donc une transition métal-
isolant-métal en fonction du champ magnétique.

4.2 Magnétotransport à haut champ - Effet Zeeman

Nous avons effectué des mesures de magnétotransport sur le graphite en champ magnétique intense
incliné (0 < B < 28 T) pour étudier l’effet Zeeman. Puisque le mouvement orbital des porteurs
de charge ne dépend que de la composante perpendiculaire du champ magnétique B⊥, le champ
magnétique dans le plan peut être utilisé pour modifier l’énergie de Zeeman g∗µBB. g∗ est le
facteur de Landé effective, µB est le magnéton de Bohr et B= B⊥/cos(θ) est le champ magnétique
total où θ est l’angle entre le champ magnétique et l’axe normal à l’échantillon.

La séparation des motifs ∆B en fonction du champ magnétique est représentée dans la Fig. 4
b). ∆B(B) n’est pas une fonction quadratique attendue pour une énergie de Fermi constante. Il
s’agit donc d’une preuve expérimentale directe que l’énergie de Fermi n’est pas constante, mais
se déplace en fonction du champ magnétique. Le mouvement de l’énergie de Fermi a été discuté
précédemment pour expliquer les déviations des motifs orbitaux de la périodicité en 1/B aux
champs magnétiques B > 2 T. Ici nous employons les calculs du mouvement de l’énergie de Fermi
pour expliquer le comportement de ∆B(B). Avec le facteur de Landé effective g∗ comme seul
paramètre libre dans ce processus, les valeurs de g∗ ont pu être extraites pour chaque angle. Le
résultat est presenté dans l’encart de la Fig. 4 b). Nous trouvons la valeur g∗ = 2.5± 0.1 pour
1.5 ≤ B ≤ 22 T ce qui est plus grand que la valeur de g = 2.0023 pour des électrons libres. La
valeur nettement plus grande trouvée ici est attribuée aux interactions multi-corps (interaction
d’échange).

4.3 Magnétotransport à haut champ - Onde de densité de charge

Des mesures de magnétotransport du graphite en champ magnétique intense (0<B< 28 T) ont été
également employées pour étudier l’onde de densité de charge pour des températures différentes
entre T = 50 mK et T = 0.9 K. L’onde de densité de charge se révèle par une augmentation suivie
d’une réduction de la magnétorésistance aux champs magnétiques élevés [26, 27] (voir aussi Fig.
4 c) (flèche)). En accord avec la Réf. [27], le champ magnétique BCDW auquel l’onde de densité
de charge apparait diminue à température décroissante. BCDW et la température sont liés par une
équation de type Bardeen-Cooper-Schrieffer (BCS)

Tc(B) = T ∗exp
(
− B∗

BCDW

)
. (5)
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Fig. 4: a) Energie de la bande de Landau N = 1 (voir Fig. 3 b)) en fonction du champ
magnétique perpendiculaire au plan, B⊥, et de l’angle θ . L’angle θ permet de
modifier l’énergie de Zeeman g∗µBB avec g∗ = 2.5. Le mouvement de l’énergie
de Fermi a été calculé pour θ = 0 d’une manière auto-cohérente en supposant
que la somme des concentrations des électrons et des trous est constante. Pour
θ > 0, l’énergie de Fermi a été extrapolée aux champs magnétiques inférieurs.
b) Séparation des motifs ∆B en fonction du champ magnétique. La ligne pointil-
lée est attendu théoriquement si l’énergie de Fermi est une constante. La ligne
continue correspond aux calculs montrés en a). Encart : Facteur de Landé
pour chaque angle calculé dans le modèle SWM en utilisant les données ∆B(B).
g∗ = 2.5± 0.1. c) Rxx en fonction du champ magnétique pour des angles dif-
férents (T ≈ 300 mK). Le champ magnétique auquel l’onde de densité de charge
apparait est repéré par une flèche (θ = 0).

4.4 L’effet de Haas-van Alphen

Enfin nous avons étudié l’effet de Haas-van Alphen dans le graphite à T = 400 mK en utilisant
la méthode de couple. Par analogie avec des mesures de magnétotransport nous avons effectué
quelques mesures de Haas-van Alphen en haute résolution aux champs magnétiques faibles, ce
qui est presenté dans la Fig. 5 a) (dB/dt = 0.002 T/min, θ = 16◦). De même que les oscillations
Shubnikov-de Haas dans le magnétotransport, les oscillations de Haas-van Alphen peuvent être
mieux observées après l’enlèvement du fond de l’aimantation, ce qui est montre dans la Fig. 5
b) pour B = 0−0.21 T. Le champ magnétique auquel les oscillations quantiques commencent est
B0 = 66 mT ce qui correspond à B0 · cos(θ) ≈ 63 mT dans la configuration θ = 0◦. En ce qui
concerne les fréquences et les phases on trouve les valeurs BF,h = 4.62 T, ϕ0,h =−0.56±0.05 et
BF,e = 6.32 T, ϕ0,e =−0.48±0.05.

Nous avons également effectué des mesures en champs magnétiques inclinés (θ = 4◦− 56◦ et
−3 ≤ B ≤ 3 T) pour sonder la surface de Fermi. La limitation aux angles θ ≥ 4◦ résulte du
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Fig. 5: a) Effet de Haas-van Alphen dans le graphite naturel. b) Le signal après
l’extraction du fond d’aimantation est similaire à celui du magnétotransport. c)
L’intensité spectrale en fonction du champ magnétique et des différents angles
pour sonder la surface de Fermi. Le déplacement des motifs en 1/cos(θ) montre
que la surface de Fermi du graphite est quasi-bidimensionelle dans les régions
des électrons et trous majoritaires.

fait que le couple sur le cantilever τττ = M×B = MB · sin(θ) devient très faible pour des angles
petits. La limitation aux angles d’inclinaison θ ≤ 56◦ est liée à la construction du porte-échantillon
prototype, qui ne permettait pas de mesurer des angles plus grands au moment où les mesures ont
été effectuées.

La Fig. 5 montre l’intensité spectrale en fonction du champ magnétique pour différents angles.
L’augmentation de l’intensité spectrale pour θ < 30◦ est liée au fait que le signal de couple est une
fonction de sin(2θ). La série des trois motifs observés entre B = 3−12 T (trous, électrons et pre-
mière harmonique des motifs de trous) se déplace comme 1/cos(θ) vers des champs magnétiques
plus élevés (lignes continues dans le plan B−θ ). Le comportement quasi-bidimensionel peut être
expliqué par l’extrême anisotropie du graphite, le couplage dans le plan étant beaucoup plus grand
que le couplage entre les plans (ρc � ρab) [28]. Le comportement quasi-bidimensionnel est en
accord avec le modèle SWM, qui prédit des surfaces de Fermi quasi-cylindriques pour θ < 60◦

dans les régions des électrons et trous majoritaires. Pour des angles plus grands, des écarts à la
dépendance 1/cos(θ) sont attendus. Pour observer cet écart, des mesures de Haas-van Alphen à
des angles plus grands sont nécessaires.
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1 Introduction

Résume du chapitre

Le graphite est un matériaux feuilleté tridimensionnel. Les atomes de carbone dans une couche
forment un feuillet de réseau hexagonal. Le modèle de la structure de bande du graphite a été
élaboré dans les années cinquante par Slonczewski, Weiss et McClure [2, 3]. Leurs calculs sont
connus sous le nom de modèle SWM. Des informations sur la structure de bande du graphite peu-
vent être déduites par l’effet de Haas-van Alphen et l’effet Shubnikov-de Haas. Les deux effets
mesurent la variation périodique de l’aimantation et la résistance électrique en fonction du champ
magnétique. Une description théorique détaillée de ces deux effets en trois dimensions a été
élaboré par Lifshitz et Kosevich pour l’effet de Haas-van Alphen et par Adams et Holstein pour
l’effet Shubnikov-de Haas [7, 8].
Pour la surface de Fermi du graphite, calculée dans le modèle SWM, la théorie de Lifshitz et Kose-
vich prévoit deux oscillations de porteurs majoritaires, c’est-à-dire des électrons massifs provenant
du point K (kz = 0) de la zone de Brillouin hexagonale et des trous massifs avec kz ≈ 0.3 proches
du point H (kz = 0.5). La validité du modèle SWM a été confirmée par diverses expériences effec-
tuées au cours des cinquantes dernières années. Néanmoins, grâce aux avancées des systèmes de
cryogénie et aux progrès informatiques de nos jours, il parait opportun de revisiter la physique du
graphite.

Carbon, which is certainly one of the most fascinating elements known, forms the basis of all or-
ganic chemistry. Its number of different chemical compounds exceeds any other element. Elemen-
tary carbon appears as many different allotropes with often very different physical and chemical
properties. Graphite for example is soft, an electrical conductor and impervious to visible light
(gapless semi-metal), while diamond, the hardest material which exists, is an electrical insulator
and transparent to light (wide bandgap).

The allotrope of elementary carbon which has been the most widely studied is mono-crystalline
graphite (see Fig. 1.1). The first X–ray studies of the crystal structure were made in 1924 by
Bernal [1], who showed that graphite is a three-dimensional layered material, with a spacing of
atoms within the layer which is small (1.42 Å) compared to the spacing of the lattice planes
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CHAPTER 1. INTRODUCTION

(3.35 Å) [1, 19]. The carbon atoms within a layer are arranged in a planar, hexagonal lattice.
The band structure model of graphite was elaborated in the 1950s by Slonczewski, Weiss and
McClure [2, 3] on the basis of earlier work by Wallace [20] and is referred to as the SWM-model.

With the C60 molecule, the first so-called fullerene was discovered in 1985 [29]. Fullerenes are
molecules which are composed entirely of carbon and have the form of hollow spheres, ellipsoids,
or tubes. The C60 molecule can be viewed as a zero-dimensional structure. The discovery of
carbon nanotubes, i.e., one-dimensional fullerenes, was made by Iijima in 1991 [30].

In 2004, the two-dimensional crystallographic form of carbon – baptised graphene [4] – was dis-
covered by Andre Geim and co-workers at the university of Manchester [5]. Until that year, it was
assumed that graphene does not exist in the free state [31]. Theoretically, however, graphene has
been studied for over sixty years, as it is the basis for all band structure calculations of graphite-
like systems [20]. Apart from being the first two-dimensional crystal ever discovered, the fact
which makes graphene unique is that in the vicinity of the Fermi energy the energy-momentum
dispersion relation is linear. This implies a zero effective mass of its charge carriers1. Conse-
quently, the quasi particles in graphene are described by the relativistic Dirac equation rather than
the Schrödinger equation. The linear energy-momentum dispersion relation results in the unique
physical properties of graphene.

With the rise of graphene, its three-dimensional counterpart, graphite, has attracted renewed in-
terest. From the viewpoint of graphene, graphite can be considered as a quasi-two-dimensional
system consisting of stacked graphene layers. Nevertheless, the coupling between the layers leads
to a band structure of graphite with resolutely three-dimensional origins, i.e., it has a kz depen-

1 The general energy momentum relation E(q) = c
√

q2 +m2c2 becomes E(q) = cq for m = 0. c is the speed of light,
q and m are the momentum and the mass of the particle, respectively.

Fig. 1.1: Graphitic materials in order of their discovery: Graphite, C60 molecule (buck-
minsterfullerene), carbon nanotube and graphene. Graphene, a flat monolayer
of carbon atoms packed into a two-dimensional honeycomb lattice, is the basic
building block of the other graphitic materials. It can be wrapped up into zero-
dimensional fullerenes, rolled into one-dimensional nanotubes or stacked into
three-dimensional graphite.
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dent in-plane dispersion relation, with z being the direction perpendicular to the layers. The
previously introduced SWM-model predicts that at the K point (kz = 0) of the hexagonal Bril-
louin zone the inter-plane coupling has a maximum. The coupling results in a “conventional”
parabolic dispersion relation of massive charge carriers2. At the H point (kz = 0.5) the effective
inter-plane coupling is zero, which leads to a graphene-like linear dispersion relation (massless
Dirac fermions). A clear signature of Dirac fermions at the H point of graphite has been reported
for magnetoreflectance, far-infrared magnetoabsorption and angle-resolved photoemission spec-
troscopy measurements [15,32,33]. Such measurements probe optical transitions very close to the
H and K points.

Other methods to deduce information about the band structure of graphite are for example the
de Haas-van Alphen effect and the closely related Shubnikov-de Haas effect. In 1930 Landau
predicted that the magnetization of a metal should vary periodically in the inverse magnetic field
[6]. The physical principle of the periodic variation is that in the presence of a magnetic field
the electronic states of a solid are condensed onto Landau cylinders due to the quantized motion
of the charge carriers perpendicular to the magnetic field. When the magnetic field is increased,
the Landau cylinders in momentum space grow in diameter and successively cross the Fermi
surface, which leads to oscillations of the magnetic field dependent total energy of the electrons
and therefore to oscillations in the magnetization and the resistance. A few months after Landau’s
prediction the periodic behaviour of both the magnetization and the resistance as a function of the
inverse magnetic field was indeed observed in a study of bismuth single crystals [34, 35]. It took
more than 20 years until Onsager (1952) pointed out the relation between the observed periodicity
and the area of an extremal Fermi surface cross section perpendicular to the applied magnetic
field [36]. A few years later, in 1956, Lifshitz and Kosevich worked out a detailed theoretical
description for isotropic three-dimensional systems, which not only describes the frequency but
also the phase and the amplitude of the de Haas-van Alphen oscillations [7]. A similar theory was
established by Adams and Holstein (1959) for the Shubnikov-de Haas effect [8].

For the Fermi surface of graphite, calculated within the SWM-model, the Lifshitz Kosevich theory
predicts the occurrence of two majority carrier oscillations, i.e., massive electrons originating from
the K point (kz = 0) and massive holes originating from kz≈ 0.3 close to the H point (kz = 0.5). The
validity of the SWM-model has been confirmed in various experiments which have been performed
over the last fifty years, e.g. magnetotransport [9–12], de Haas–van Alphen oscillations [9, 13],
magneto reflection [14, 15], microwave absorption and cyclotron resonance [16, 17], and Nernst
effect [18]. The renewed interest in graphite, coupled with advances in cryogenics and computing
power, makes it timely to revisit this problem.

—————————————

This thesis is devoted to the investigation of the electronic properties of natural graphite and
Highly Oriented Pyrolytic Graphite (HOPG) by means of magnetotransport and de Haas-van
Alphen measurements. The outline of the thesis is as follows: In Chapter 2 the free electron gas in

2 For massive charge carriers with mc� q, the general energy dispersion relation becomes E(q) = q2/2m.
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magnetic field is discussed. Starting with the quantization of the electron movement in magnetic
field as the origin of the de Haas-van Alphen and the Shubnikov-de Haas effect, the most important
results of the Lifshitz Kosevich theory will be presented. In Chapter 3 the electronic and magnetic
properties of graphite are discussed. On the basis of the electronic properties of graphene, the in-
fluence of the coupling between the layers on the band structure, described by the SWM-model, is
given. From the SWM-model the magnetic properties of graphite can be derived. It will be shown
that the magnetotransport properties are dominated by two groups of carriers, electrons and holes.
In Chapter 4 the experimental methods used in this thesis are presented. The preparation of the
different graphite samples for magnetotransport measurements is explained. Then the experimen-
tal setup - magnets and cryogenics - are briefly discussed. Finally the measurement techniques
for magnetotransport and magnetisation measurements are presented. Chapter 5 deals with orbital
effects in low field magnetotransport. An essential part of this chapter is the phase/frequency anal-
ysis of high quality magnetotransport data measured at mK temperatures. Both parameters are
crucial for the understanding of the topology of the Fermi surface. It will be shown by comparing
theory and experiment that the SWM-model perfectly predicts the occurrence of the observed fea-
tures. Moreover, temperature dependent magnetotransport measurements are presented. Chapter 6
is devoted to spin splitting and the charge density wave (CDW) phase in high field magnetotrans-
port. Preliminary de Haas-van Alphen data measured with a capacitive torquemeter are presented
in Chapter 7. It is shown that this data can be used for high precision measurements of the Fermi
surface of graphite. In Chapter 8 a summary of the main results presented in this thesis is given.
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2 Theory - Electron gas in
magnetic field

Résume du chapitre

Dans ce chapitre, les propriétés d’un gaz d’électrons dans un champ magnétique sont discutées.
Ces propriétés sont à la base de la compréhension du comportement du graphite sous champ mag-
nétique, qui est discuté en détail dans le chapitre suivant. Le traitement en mécanique quantique du
gaz d’électrons bidimensionnel dans un champ magnétique montre que les électrons sont confinés
dans des niveaux de Landau avec des énergies discrètes. Si le spin des électrons est pris en compte,
les spins up et les spins down des électrons d’un niveau de Landau sont séparés énergétiquement.
Le spin splitting est décrit par l’énergie Zeeman et – selon le système – l’énergie de couplage
spin-orbite et de l’énergie d’échange. Dans un gaz d’électrons tridimensionnel, le mouvement des
électrons dans la direction selon kz n’est pas affecté par le champ magnétique B‖z et les électrons
se condensent sur des cylindres de Landau plutôt que sur des niveaux de Landau.
Une extension du modèle de gaz d’électrons libres aux électrons dans un cristal peut être réal-
isée par des équations quasi-classiques en utilisant la quantification de Bohr-Sommerfeld. Les
parties essentielles de ce chapitre sont les descriptions théoriques de l’effet de Haas-van Alphen
et de l’effet Shubnikov-de Haas données par Lifshitz et Kosevich et par Adams et Holstein, re-
spectivement [7,8]. Ces deux effets sondent la quantification des énergies des électrons en champ
magnétique et sont des outils efficaces pour obtenir des informations de la surface de Fermi d’un
cristal. À la fin du chapitre, l’effet Hall quantique est brièvement discuté.

In this chapter the properties of an electron gas in a magnetic field are discussed. These properties
form the basis for the understanding of the magnetic field behaviour of graphite, which is analysed
in the subsequent chapter. It is well known that the magnetic field forces charged particles to move
on circles (Lorentz force), whose radii diminish for increasing magnetic field. For high magnetic
fields1, i.e., small cyclotron radius of the charge carriers, the wave nature of the electrons has to

1 B� me/eτ with ωcτ � 1. τ is the quantum lifetime.
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be considered. A quantum mechanical treatment of the two-dimensional electron gas (2DEG) in
magnetic field shows that the electrons are confined in Landau levels with discrete energies. If
the spin of the electrons is taken into account, the spin up and spin down electrons of a given
Landau level are energetically separated. The spin splitting is described by the Zeeman energy
and – depending on the system – spin orbit coupling and exchange energy. In a three-dimensional
electron gas, the electron movement in kz-direction is not affected by the magnetic field B‖z and
the electrons condense onto Landau cylinders rather than Landau levels.
An expansion of the free electron gas model to crystal electrons can be made on the basis of quasi-
classical equations using the Bohr-Sommerfeld quantization.
Essential parts of this chapter are the theoretical descriptions of the de Haas-van Alphen and the
Shubnikov-de Haas effect given by Lifshitz and Kosevich, and Adams and Holstein, respectively
[7, 8]. Both effects probe the quantization of electron energies in magnetic field and are effective
tools to caliper the Fermi surface of a crystal.
At the end of the chapter, the quantum Hall effect is briefly discussed.

2.1 The two-dimensional free electron gas in magnetic field

We begin our discussion with the two-dimensional free electron gas (2DEG) in magnetic field.
When no magnetic field is applied, the electrons are equidistantly spaced in the planar k space,
separated by δkx = 2π/Lx and δky = 2π/Ly, as shown in Fig. 2.1 a). Lx and Ly are the sample
dimensions. If a magnetic field is applied, the stationary Schrödinger equation reads

1
2me

(
h̄
i
∇∇∇− eA

)2

ψ = Eψ , (2.1)

where h̄/i∇∇∇− eA is the operator of the canonical momentum. A is the magnetic vector potential,
which is A=Bx uy for a magnetic field in z-direction (Landau gauge) so that B=∇∇∇×A=(0,0,B).
uy is the unit vector in y-direction. In the Landau gauge, the Schrödinger equation reads

∂ 2

∂x2 ψ +

(
∂

∂y
+

ieB
h̄

x
)2

ψ +
2meE

h̄2 ψ = 0 . (2.2)

With the ansatz of the form ψ = ψ̃(x)e−ikyy the above equation is reduced to the one-dimensional
Schrödinger equation of a simple harmonic oscillator,

− h̄2

2me

∂ 2ψ̃

∂x′2
+

1
2

meω
2
c x′2ψ̃ = E ′ψ̃ ,

where the cyclotron frequency ωc and the centre of the harmonic oscillator x0 = x′− x are defined
as

x0 = h̄kyeB and ωc =
eB
me

. (2.3)

The eigen energies of the above equation are given by

EN = h̄ωc

(
N +

1
2

)
, (2.4)
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2.1. THE TWO-DIMENSIONAL FREE ELECTRON GAS IN MAGNETIC FIELD

Fig. 2.1: a) For B = 0 the electrons of a 2DEG are equidistantly spaced in k space, sepa-
rated by δkx = 2π/Lx and δky = 2π/Ly. Lx and Ly are the sample dimensions.
b) and c) For B 6= 0 the motion of two-dimensional charge carriers is confined to
discrete circles, which are referred to as Landau levels. The energies of the Lan-
dau levels are given by E = h̄ωc(N +1/2), with N being a non-negative integer
number. d) As the charge carriers condense onto Landau levels for B 6= 0, the
two-dimensional density of states is given by a series of delta functions.

with N = 0,1,2, . . . .

The calculations show that the parabolic band of free electrons (E = h̄2k2/2me) splits into sub-
bands for B 6= 0. The sub-bands are referred to as Landau levels. The electronic states are given by
the quantized energies of the circular movement normal to the magnetic field, EN = h̄ωc(N+1/2).
This is illustrated in the Figs. 2.1 b) and c). The energy eigenvalues differ by the cyclotron energy
∆ = h̄ωc. The Landau level with the smallest energy (N = 0) is referred to as the zero Landau
level.

The quantization of the electron movement in magnetic field leads to a considerable change of the
two-dimensional electronic density of states. While for B = 0, the density of states as a function
of the energy is a constant, me/π h̄2, it is completely quantized in magnetic field given by a series
of delta functions as depicted in Fig. 2.1 d).
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CHAPTER 2. THEORY - ELECTRON GAS IN MAGNETIC FIELD

2.1.1 Degeneracy of the Landau levels

The degeneracy of the Landau levels corresponds to the number of states per unit area, ζ , in each
Landau level. In a sample with the dimensions Lx and Ly the quantization of the wave vectors ki

due to the boundary conditions is given by δki = 2π/Li. The variable x (Eq. (2.3)) of the field
dependent Schrödinger equation has to fulfil the condition 0 < x(ky)< Lx. Under the assumption
that the centres of the Landau levels are far from the edges of the sample, ky is given by

ky ≤
eB
h̄

Lx =
meωc

h̄
Lx .

If we neglect spin splitting, each state is occupied by both a spin up and a spin down electron. The
number of states per unit area in a given Landau level equals

ζ = 2
1

LxLy

ky

δky
=

2eB
h

=
B

Φ0
, (2.5)

with the flux quantum Φ0 = h/2e. The degeneracy is a linear function of the magnetic field, i.e.,
the number of electrons in a given Landau level N increases linearly with the magnetic field.

2.1.2 Electron energy and Fermi energy movement of a two-dimensional system

With the linear magnetic field dependence of the number of states in a Landau level, ζ = 2eB/h,
all charge carriers are in the N = 0 Landau level at B > hn/2e, where n is the total number of
electrons in the system. At zero temperature the Fermi energy is therefore given by EF = h̄ωc/2.

When the magnetic field is decreased, the degeneracy of the zero Landau level decreases so that
the level is increasingly populated. At the magnetic field BF = hn/2e, the Landau level N = 0 is

Fig. 2.2: a) Landau level energies of a 2DEG in arbitrary units as a function of the mag-
netic field. Due to the degeneracy ζ = 2eB/h of the Landau levels the Fermi
energy jumps at BF/(N+1) from the level N to the level N+1. BF = hn/2e de-
pends on the total number of electrons n in the system. b) Total electron energy
U as a function of the inverse magnetic field.
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fully populated. When the magnetic field is further decreased, the Landau level N = 1 is filled and
the Fermi level jumps to EF = 3/2h̄ωc. This behaviour is repeated when going to lower and lower
magnetic fields, i.e., the Fermi energy jumps at BF/(N +1) with N = 0,1,2, . . . to the next level.
The diagrams in Fig. 2.2 a) (fan-chart) and b) show the evolution of the Fermi energy as a function
of the magnetic field and the inverse magnetic field, respectively. The jumps of the Fermi energy
are periodic in 1/B.

The linear dependence of the number of electrons in a Landau level on the magnetic field leads to
a periodic variation of the total electron energy U as demonstrated in the following. For B > BF

all electrons n are in the N = 0 Landau level so that the total electron energy is given by nh̄ωc/2.
For BF/2 < B < BF , ζ = 2eB/h electrons are in the N = 0 Landau level and n−ζ electrons are in
the N = 1 Landau level, i.e., U = ζ h̄ωc/2+(n−ζ )h̄ωc3/2. If this procedure is repeated for lower
magnetic fields, one finds

U = h̄ωc

[
ζ

M2

2
+(n−Mζ )(M+

1
2
)

]
, (2.6)

where M = bBF/Bc, with bBF/Bc being the floor function which rounds the element BF/B to the
nearest integer less than or equal to BF/B. Eq. (2.6) can be rewritten as

U = h̄ωc

[
n
(

M+
1
2

)
− eB

4h
M (M+1)

]
. (2.7)

The total electron energy U is periodic in 1/B, as shown in Fig. 2.2 b).

The oscillatory period ∆(1/B) can be linked to the Landau level surface SN in the kx-ky plane,
SN = πk2

⊥,N , where k2
⊥,N is the radius of the Landau levels. k2

⊥,N can be found by rewriting the
energies of the electron states as

E =
h̄2

2me
k2
⊥,N . (2.8)

For B 6= 0 this energy must be equal to the quantized electron energy, EN = h̄ωc(N +1/2), so that

k⊥,N =

√
2eB

h̄

(
N +

1
2

)
. (2.9)

The surface between two consecutive Landau levels is therefore

∆S = SN+1−SN = πk2
⊥,N+1−πk2

⊥,N =
2πeB

h̄
, (2.10)

i.e., for a given magnetic field ∆S is constant. As

∆
1
B
=

2πe
h̄S

, (2.11)

the cross section of the Landau level surface perpendicular to the applied magnetic field can be
mapped out by measuring the period ∆(1/B) of quantum oscillations.
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2.1.3 Spin effects

Until now the intrinsic angular momentum of the electrons, the spin, has been neglected as far as
the electron energy is concerned. Electrons with different spin quantum numbers S =±1/2 were
assumed to have identical energies. However, an external magnetic field leads to a lifting of the
spin degeneracy, as the spins interact with the external magnetic field. This effect is referred to
as the (normal) Zeeman effect. The energy corrections to the free electron Hamiltonian (2.1) are
given by the Zeeman terms

∆EZ,↓ =−
1
2

gsµBB and ∆EZ,↑ =
1
2

gsµBB

for electrons with spin S = −1/2 (↓) and S = +1/2 (↑), respectively. gs = 2.0023 is the free
electron g-factor, µB is the Bohr magneton and B is the external magnetic field.

In a crystal, the energy difference of two electrons with opposite spins can be different than the
free electron Zeeman energy ∆EZ = gsµBB. This difference can be explained by spin orbit and
exchange interaction effects.

Spin orbit coupling describes interaction of a particle’s spin with its motion. The interaction is
described by the spin orbit Hamiltonian,

HSO =
h̄

4m2
ec2 (∇V×p) ·σσσ ,

where σσσ are the Pauli matrices and L = h̄/4m2c2 (∇V×p) transforms as the angular momentum.
A proper derivation of the spin orbit Hamiltonian requires a relativistic treatment of the electron
motion. Qualitatively the spin orbit interaction can be explained in the following way. We consider
that an electron moves due to an external electric field in an environment containing electrostatic
charges. In a 2DEG, the electrostatic charges are the other electrons. In the referential of the
electron, the electron itself does not move but the charge carriers around it. The movement of the
charge carriers can be translated into an effective magnetic field, which interacts with the spin of
the electron. In graphite the spin orbit coupling is quite small, leading to a correction of the free
electron Zeeman energy of about 5% [37, 38].

A third correction to the spin splitting may arise from the repulsive Coulomb interaction between
electrons in a 2DEG. It was shown in Refs. [39] and [40] that if the numbers of electrons with spin
up n↑ and spin down n↓ are different from each other, the many body Coulomb interaction gives
rise to the following energy correction,

∆s =
n↑−n↓
n↑+n↓

e2

ε`B
. (2.12)

(n↑ − n↓)/(n↑ + n↓) is the spin polarization, `B =
√

h̄/eB is the magnetic length and ε is the
dielectric function.
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2.2. THE THREE-DIMENSIONAL FREE ELECTRON GAS IN MAGNETIC FIELD

Fig. 2.3: a) In a three-dimensional electron gas, the electrons are confined in Landau
cylinders for B 6= 0. Only states within the Fermi sphere are occupied. b) The
density of states of a three-dimensional electron gas in magnetic field is given
by a combination of delta functions (2DEG in the kx–ky-plane) with the 1/

√
E

dependence of a one-dimensional electron gas (kz-direction).

2.2 The three-dimensional free electron gas in magnetic field

2.2.1 Landau cylinders

We now discuss what happens when we add the third dimension, z, and go from a two-dimensional
to a three-dimensional electron gas. Adding the z-direction, the Hamiltonian (2.2) reads

∂ 2

∂x2 ψ +

(
∂

∂y
+

ieB
h̄

x
)2

ψ +
∂ 2

∂ z2 ψ +
2meE

h̄2 ψ = 0 .

With ψ = ψ̃(x)e−i[kyy+kzz], the additional term (∂ 2/∂ 2z)ψ leads to the modified eigen energy term

EN = h̄ωc

(
N +

1
2

)
+

h̄2

2me
k2

z . (2.13)

The electronic states are therefore given by the sum of the quantized energy of the circular move-
ment normal to the magnetic field, EN = h̄ωc(N + 1/2), and the translation energy of the free
electron movement in the direction of the field z, Ez = h̄2k2

z/2me. With the electron movement
in kz-direction not being affected by the magnetic field B‖z, the electrons condense onto Landau
cylinders, which is depicted in Fig. 2.3 a). Only states within the Fermi sphere are occupied.

2.2.2 Density of states

For B = 0, the densities of states of a one-dimensional, a two-dimensional and a three-dimensional
electron gas are proportional to 1/

√
E, constant and proportional to

√
E, respectively. The quanti-
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zation of the electron movement in magnetic field leads to a considerable change of the electronic
density of states. We have seen previously that the density of states of a 2DEG is completely
quantized in magnetic field, given by a series of delta functions, as depicted in Fig. 2.1 d). For a
three-dimensional electron gas, the movement of the electrons in the field direction has to be taken
into account. As shown in Fig. 2.3 b), the three-dimensional density of states in magnetic field is
given by the superposition of the quantized density of states of a two-dimensional system perpen-
dicular to the field direction with that of a one-dimensional system parallel to the field direction.
The density of states is therefore described by the combination of the delta function series of the
2DEG with the 1/

√
E dependence of a one-dimensional electron gas.
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2.3. CRYSTAL ELECTRONS

2.3 Crystal electrons

An expansion of the free electron gas model to the general case of electrons in a crystal would be
quite complicated as we would have to establish similar calculations to those discussed previously,
which additionally take into account the interaction of the electrons with the crystal ions. Onsager,
however, showed that the behaviour of crystal electrons can be described by quasi-classical equa-
tions, based on the Bohr-Sommerfeld quantization [36],∮

p ·dr = 2π h̄(N + γ), (2.14)

where N is a non-negative integer number. γ is a phase term, which has the value γ = 1/2 for the
harmonic oscillator. Integrating the canonical momentum p = h̄k+ eA, using the semi classical
equation

h̄
dk
dt

= e
dr
dt
×B,

one obtains the so-called Lifshitz-Onsager formula

SN =
2πeB

h̄
(N + γ) . (2.15)

This formula relates the surface, which is enclosed by the electron movement in k space, SN , to
the strength of the magnetic field B and the quantum number N. In a crystal SN corresponds to the
Fermi surface cross section area in the plane perpendicular to the magnetic field.

The difference between two consecutive surfaces is

∆S = SN+1−SN =
2πeB

h̄
. (2.16)

Concerning the quantization of the cross section surfaces SN , the same result as for free electrons
is obtained (Eq. (2.10)). The result, however, is not only valid for circular orbits as in the case
of free electrons, but as well for non circular Landau orbits. The effect of the magnetic field is

Fig. 2.4: Illustration of the Fermi surface extremal orbits which contribute to the oscillatory
behaviour of a signal. For the magnetic field directed along the kz-axis, (1) and
(2) are maximum extremal orbits and (3) is a minimum extremal orbit.
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that the electrons, which at B = 0 are equidistantly distributed in the Fermi body, now move on
concentric Landau orbits perpendicular to the direction of the magnetic field.

For a three-dimensional Fermi surface, there exists an infinite number of cross sections perpen-
dicular to the direction of the magnetic field. Those cross sections have different surface areas
and therefore lead to different periodicities. One can show, however, that only extremal orbits
contribute to the oscillatory behaviour of a signal [41]. This can be illustrated by the fact that for
non-extremal orbits the orbital period and therefore the phase factors of neighbouring orbits are
different so that their contributions to the signal are cancelled out by interference. Only in the
vicinity of extremal orbits, the orbital periods and the phase factors remain constant. An illustra-
tion of extremal orbits of a Fermi surface which contribute to the oscillatory behaviour of a signal
is given in Fig. 2.4.
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2.4 de Haas-van Alphen and Shubnikov-de Haas effect

The free electron picture allows a qualitative understanding of the Shubnikov-de Haas effect and
the de Haas-van Alphen effect, which describe the behaviour of the conductivity along the di-
rection of the current and the magnetization of a sample, respectively. A detailed theoretical
description for crystal electrons is given by Lifshitz and Kosevich [7] for the de Haas-van Alphen
effect and by Adams and Holstein [8] for the Shubnikov-de Haas effect.

2.4.1 de Haas-van Alphen effect

In Section 2.1.2 it was shown that the total energy U of a free electron gas is a periodic function
of the inverse magnetic field 1/B. The magnetization of a sample is given by

M =− 1
V

(
∂F
∂B

)
T,V

(2.17)

with the free energy F =U −T S, where S is the entropy. As F =U for T = 0, the magnetization
is as well a periodic function of 1/B. The oscillations of the magnetization as a function of the
(inverse) magnetic field are referred to as the de Haas-van Alphen effect.

A detailed theoretical description of the de Haas-van Alphen effect is given by Lifshitz and Ko-
sevich [7]. The starting point of the calculations is the thermodynamic potential Ω = F −N ·EF

rather than the free energy. The thermodynamic potential is linked to the magnetization by

M =− ∂Ω

∂B

∣∣∣∣
µ

, (2.18)

where the chemical potential µ (equal to the Fermi energy for T = 0) is kept constant.

For a system obeying the Fermi-Dirac statistic and having discrete states of energy EN , the ther-
modynamic potential gives the expression

Ω =−kBT ∑
N

ln
[

1+ exp
(

µ−EN

kBT

)]
. (2.19)

kB is the Boltzmann constant and T is the temperature of the system. To carry out the summation
of the thermodynamic potential, only a two-dimensional projection of the k space perpendicular to
the magnetic field is considered in a first step. The summation is performed taking the degeneracy
of the Landau levels into account. When going from two to three dimensions in k space, the states
in the out of plane direction have to be considered. As discussed in Section 2.3 only extremal
Fermi surface cross sections give rise to the measured signal, as the contributions of the other
parts of the Fermi surface interfere destructively and thus cancel each other. The oscillatory part
of the magnetization, known as the Lifshitz-Kosevich formula reads

M‖osc =−
√

e5

2π5h̄
BF
√

B

m∗me

√∣∣S′′extr
∣∣ ·

∞

∑
p=1

1
p3/2 RT (p)RD(p)Rs(p)sin

[
2π p

(
BF

B
− γ +δ

)]
(2.20)
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for the magnetization parallel to the magnetic field and

M⊥osc =−
1
F

dF
dθ
·M‖osc (2.21)

for the magnetization perpendicular to the magnetic field.

m∗ is the effective cyclotron mass, S
′′
extr is the second derivative of the Fermi surface cross section

with respect to the k component parallel to the magnetic field. p is an integer number. BF =∆(1/B)
is the fundamental frequency of the oscillations. The phase factor δ reflects the curvature of
the Fermi surface in z-direction. It has the value δ = ±1/8 for a three-dimensional corrugated
Fermi surface. The plus and minus signs correspond to minimum and maximum cross sections,
respectively (see Fig. 2.4). For a cylindrical Fermi surface it has the value δ = 0. The indexed
factors R are amplitude factors, which are briefly explained in the following.

The temperature factor RT takes the effect of a finite temperature into account. T 6= 0 leads to
a smearing out of the electronic energy distribution, described by the Fermi-Dirac distribution
function

f (E) =
1

1+ exp
(

E−µ

kBT

) .
The thermal broadening of the electronic distribution function gives rise to contributions, which
do not originate from electrons at the exact Fermi energy. The temperature factor reads

RT (p) =
α

m∗
me

T
B

sinh
(

α p m∗
me

T
B

) with α =
2π2kBme

h̄e
. (2.22)

The factors RD and RS are referred to as Dingle factor and spin factor, respectively. The Dingle
factor describes the effect of electron scattering, leading to a broadening of the otherwise sharp
Landau levels, which is described by the quantum lifetime τ . The Dingle factor reads

RD(p) = exp
(
−α p

m∗TD(τ)

meB

)
with TD =

h̄
2πkBτ

. (2.23)

TD has the dimension of a temperature and is referred to as Dingle temperature.

The spin factor describes the effect of Zeeman splitting, i.e., each Landau cylinder is split into two
sets of cylinders separated by the energy g∗µBB. Thus, instead of one Landau cylinder passing
through the Fermi surface, two sets of levels consecutively cross the Fermi surface. This gives rise
to an additional phase factor, which leads to the spin factor

RS(p) = cos
(

π

2
pg

m∗

me

)
. (2.24)

For a more detailed discussion of those factors, the reader is referred to Ref. [42].

The Lifshitz-Kosevich formula (2.20) has been remarkably successful in describing the observed
properties of normal metals and semimetals. Together with band structure calculations it allows
the reconstruction of the Fermi surface by investigating the phase/frequency spectrum as a function
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of the crystallographic orientation. The effective mass m∗ of the charge carriers can be extracted
from the temperature dependence of the oscillation amplitude at a given magnetic field by fitting
the data using the thermal damping factor. With the knowledge of m∗, a plot of

ln
[

A× sinh
(

α
m∗T

B

)
B−

1
2 T−1

]
(2.25)

vs. 1/B, with A being the amplitude of the oscillations, provides information about the Dingle
temperature TD and therefore the quantum lifetime τ . This kind of plot is referred to as Dingle
plot.

2.4.2 Shubnikov-de Haas effect

The appearance of oscillatory effects in the electrical conductivity or resistivity due to Landau
level quantization is referred to as the Shubnikov-de Haas effect [35]. Contrary to the de Haas-van
Alphen effect, which is a pure thermodynamic effect, the Shubnikov-de Haas effect is a transport
property. It can be understood qualitatively by the following argument [43]. The probability for an
electron to be scattered is proportional to the number of states into which it can be scattered. The
number of accessible states varies with the magnetic field. It is given by the convolution of the
density of states as a function of the energy and the Fermi-Dirac distribution. Thus, the number
of states and therefore the scattering is greatly increased when a Landau band crosses the Fermi
surface. On the other hand, if there are no Landau states at the Fermi surface, the number of
available states for scattering is low.
As scattering is the main origin for electrical resistivity (or conductivity), it is affected by the
change of the scattering probability. With the scattering probability oscillating with a frequency
of BF in 1/B, the resistivity is expected to follow the same oscillatory behaviour.

A quantitative discussion of the scattering processes is given by Adams and Holstein [8]. The
total conductivity as a function of the magnetic field is given by the sum of the classical con-
ductivity σ0(B) and two quantum correction terms ∆σ1(B)σ0(B) and ∆σ2(B)σ0(B) containing the
oscillatory contributions,

σxx(B) = σ0(B) [1+∆σ1(B)+∆σ2(B)] . (2.26)

The term ∆σ1(B) describes scattering from the highest occupied Landau level at the Fermi surface
to levels above the Fermi surface, and is referred to as inter–level scattering. The term ∆σ2(B)
describes scattering within the highest occupied Landau level, so-called intra–level scattering. Far
away from the quantum limit BF/B� 1 the effect of the intra-level scattering term is much smaller
than the inter-level scattering term and is therefore usually neglected.

The oscillatory part of the conductivity can be written in a form analogous to the Lifshitz-Kosevich
formula (2.20),

∆σosc

σ0
=

5
2

√
πeh̄B

EFm∗
∣∣S′′extr

∣∣ · ∞

∑
p=1

1
p1/2 RT (p)RD(p)Rs(p)cos

[
2π p

(
BF

B
− γ +δ

)]
. (2.27)
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σ0 is the conductivity measured at zero magnetic field. Note the phase shift of π/2 between the
de Haas-van Alphen and the Shubnikov-de Haas oscillations.

2.5 The quantum Hall effect

The quantum Hall effect occurs in two-dimensional systems. It manifests itself by plateau like
features in the transverse resistance Rxy(B), i.e., the resistance perpendicular to the direction of
the current and the magnetic field (see Fig. 4.2). If spin splitting is not resolved, the quantized
resistivity of the plateaus is given by,

ρxy =
1

N +1
· h

e2 , N = 0,1,2, . . . (2.28)

which can be derived by replacing the charge carrier density n in the classical Hall resistivity
ρxy = B/ne (Eq. (A.3) in the Appendix) by n = (N +1)ξ = (N +1)eB/h (spin splitting resolved).
Contrary to the classical Hall resistance, which depends on the charge carrier density of the sample,
the quantized resistance is independent of the sample properties.

To understand the quantum Hall effect, we first discuss the electrostatic potential in y-direction,
V (y). Basic considerations show that at the centre of the sample, the electrostatic potential is nearly
constant. At the edges of the sample, however, the potential diverges, as the quantum mechanical
wave functions must vanish in this region [44]. Hence, a simple model of the electrostatic potential

Fig. 2.5: a) Landau level energies in a two-dimensional sample, which diverge at the
edges of the sample. This leads to the formation of ballistic edge current states.
b) Classically, the edge current states correspond to skipping orbits along the
edges of the sample, at which the electrons are reflected. c) The existence of
localized and delocalized states in the density of states (DOS) is crucial for the
explanation of the quantum Hall effect.
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is given by a quantum well,

V(y) =

{
0 y ∈ (−Ly/2,Ly/2)

+ ∞ else .

In this model, the energies of the Landau levels at the centre of the sample are given by EN =

h̄ωc(N+1/2). The confinement potential results in a divergence of the Landau level eigen energies
at the edges of the sample. Fig. 2.5 a) shows this behaviour as a function of the width of the sample.

Impurities in the sample lead to a broadening of the Landau levels, as charge carries can scat-
ter inelastically at these impurities. An inelastic scattering mechanism means that the Landau
quantization energy is not sharply defined, and the energies of the states can be different than
EN = h̄ωc(N +1/2). Aoki and Kamimura [45] proposed the existence of Anderson-localized and
delocalized states in the density of states, as displayed in Fig. 2.5 c). According to their theory,
the delocalized states are found in the vicinity of the Landau level quantization energy. The de-
localized states are unbound and can therefore contribute to the conductivity. The localized states
lie in the tails of the density of states. They do not contribute to the electronic transport.

As the Fermi energy for a given magnetic field is constant, there are for B < BF always some free
electron states at the edges of the sample, where the Landau levels cross the Fermi energy (circles
in Fig. 2.5 a)). These free electron states, called edge states, allow electronic transport even if
the Fermi energy does not lie in the centre of the Landau level. Classically, they correspond to
skipping orbits along the edges of the sample, at which the electrons are reflected (Fig. 2.5 b)).
Electrical conduction is therefore possible by electronic transport through these channels. The
number of the transport channels depends on the number of occupied Landau levels and therefore
on the magnetic field.

With the picture of the edge states, it is possible to describe the electrical transport within the
Landauer-Büttiker formalism, which supposes a ballistic transport mechanism in the transport
channels. In the Landauer Büttiker formalism, the electric current through transport channels is
given by

Ii =
2e
h

[
(Ni−Ri)µi−∑

j 6=i
Ti jµ j

]
. (2.29)

µi is the chemical potential of a contact, Ri the reflection coefficient of the channel i and Ti j is
the transmission coefficient from the channel i to the channel j. For ideal contacts, Ri is zero and
Ti j = 1. Applying this formalism to the Hall bar configuration (Fig. 4.2), the result of Eq. (2.28)
is obtained. The Landauer Büttiker formalism gives a possible explanation for the appearance of
the Landau plateaus. If the Fermi energy is in the localized states of the Landau levels, only the
transport channels contribute to the current. As the electronic transport through the transport chan-
nels is ballistic, the resistance remains constant when the magnetic field is changed. If the Fermi
energy equals the energy of the delocalised states of a Landau level, the delocalised charge carriers
contribute to the current. This is a diffusive transport mechanism and the resistance changes.
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3 Theory - Electronic and
magnetic properties of graphite

Résume du chapitre

Dans ce chapitre, les propriétés électroniques et magnétiques du graphite sont discutées. Le
graphite étant un matériau feuilleté très anisotrope, une première approche vers la compréhen-
sion du graphite est l’analyse des propriétés d’une couche simple (graphène) et la prise en compte
du couplage entre les couches de graphite comme une perturbation. Cette approche a été établie
par Wallace en 1947 [20]. L’Hamiltonien qui décrit les bandes d’énergie du graphite a été élaboré
par Slonczewski, Weiss et McClure dans les années 1950 [2,3]. Leurs calculs sont connus sous le
nom de modèle SWM. Le couplage entre les couches mène à une structure de bande strictement
tridimensionnelle, c’est-à-dire que la relation de dispersion dans le plan dépend de kz, où z est la
direction verticale au plan. Au point K (kz = 0) de la zone de Brillouin hexagonale la relation
de dispersion des électrons dans le plan est parabolique (fermions massifs), tandis qu’au point
H (kz = 0,5) la relation de dispersion des trous dans le plan est linéaire (fermions de Dirac sans
masse). Les propriétés magnétiques du graphite peuvent être dérivées du modèle SWM. On peut
montrer que les propriétés de magnétotransport et l’effet de Haas-van Alphen sont dominés par
deux groupes de porteurs, des électrons et des trous.

In this chapter the electronic and magnetic properties of graphite are discussed. Since graphite is
a highly anisotropic layered material, a first approach towards the understanding of graphite is the
analysis of the characteristics of a single layer treating the coupling between the graphite layers as
a perturbation [20].
The first part of this chapter deals with the electronic properties of graphene. Even though the
band structure of graphene has been known for a long time [20], it was only recently that it was
investigated experimentally [5,46]. In the second part of the chapter, the influence of the coupling
between the graphene layers on the band structure is discussed. The calculations are given by the
so-called Slonczewski, Weiss and McClure model (SWM-model). It will be shown that the in-
plane dispersion depends upon the momentum kz in the direction perpendicular to the layers. At
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the K point (kz = 0) the in-plane dispersion of the electrons is parabolic (massive fermions), while
at the H point (kz = 0.5) the in-plane dispersion of the holes is linear (massless Dirac fermions).
From the SWM-model the magnetic properties of graphite can be derived. It will be shown that
the magnetotransport properties and the de Haas-van Alphen effect are dominated by two groups
of carriers, electrons and holes.

3.1 The graphite lattice

3.1.1 Graphene

The structural features of the graphene lattice result from the character of the bonding between
carbon atoms. The neutral carbon atom contains six electrons with the ground state configuration
1s22s22p2. An excited state with the electron configuration 1s22s12p1

x2p1
y2p1

z is formed by the
transition of a single electron from the 2s to the 2p state. The energy required to form the excited
state is compensated by the formation of chemical bonds. In graphite the states of the 2px and 2py

electrons are mixed with the remaining 2s state (sp2 hybridization). The sp2 hybridization leads to
the formation of three equivalent bonds, which are referred to as σ bonds. The σ bonds, having
the shape of asymmetrical eights, lie in the x-y plane and form an angle of 120◦ (Fig. 3.1 b)). They
are the origin of the hexagonal structure of the graphene layer. The electron density distribution
of the forth electron, given by the 2pz state, has the form of a symmetric eight elongated in z-
direction. In case the spins of neighbouring carbon atoms are antiparallel, the pz electrons overlap
and give rise to so-called π bonds. The electrical properties of graphite, i.e., high mobility and
high conductivity, are associated with the π electrons, which are only very loosely bound.

Fig. 3.1: a) Graphene lattice. The non-equivalent carbon atoms, A and B, are arranged in
a two-dimensional hexagonal lattice. The unit cell of the lattice is described by
the two vectors a1 and a2. The distance between carbon atoms is a0 = 1.42 Å. b)
Atomic orbitals of the carbon atoms, hybridized in sp2 configuration. The orbitals
within the plane give rise to σ bonds. The pz orbitals build up the π bonds, which
requires the spins of the neighbouring carbon atoms to be antiparallel (arrows).
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Fig. 3.2: a) The graphene lattice in momentum space with its characteristic points Γ, K
and K’. b) π band energy spectrum of graphene, calculated with Matlab using the
tight-binding Hamiltonian of graphene [47]. The Fermi energy EF lies in-between
the upper and lower band. At the crossing points, the band energy depends
linearly on the momentum, which is characteristic for relativistic particles with
zero rest mass.

Fig. 3.1 a) shows the hexagonal lattice of graphene. There are two non-equivalent carbon atoms
per unit cell, labelled A and B. The unit cell of the lattice is described by two vectors

a1 =
a0

2

(√
3,1
)
, a2 =

a0

2

(√
3,−1

)
,

where a0 = 1.42 Å is the distance of neighbouring carbon atoms.

In Fig. 3.2 a), the first Brillouin zone of the graphene lattice is depicted, its characteristic points
being the centre Γ and the corner points K and K’, which are referred to as K points. For the
understanding of the electrical properties of the graphene layer, only the π bonds have to be con-
sidered, since the σ bonds form an insulating-type band structure with an energy gap of several
electron volts between the last completely filled and the first empty band [20]. Fig. 3.2 b) shows
the π-electron band structure, obtained from tight binding calculations taking nearest neighbour
(γ0) and next nearest neighbour hopping (γ ′0) into account [47]. The Fermi energy EF is found
at the touching points of the upper and lower π bands, i.e., at the points K and K’. To show the
situation in the vicinity of the degeneracy points, a zoom in on the band structure close to the K
points is given. Here the band structure depends linearly on the momentum q, which is measured
relatively to the K points,

E± ≈±vF |q|+O
[(q

k

)2
]
. (3.1)

vF is the Fermi velocity which is given by vF = 3γ0a/2≈ 1×106 m/s for γ0 = 3.2 eV [21].
The linear energy momentum dispersion relation in the vicinity of the Fermi energy is particular
for graphene. Bands which linearly depend on the momentum q describe massless quasi-particles.
This can be derived from the general energy momentum relation E(q) = c

√
q2 +m2c2, where c

is the speed of light and m is the mass of the particle. For massive charge carriers with mc� q
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the dispersion relation is parabolic, E(q) = q2/(2m), which is common for “conventional” two-
dimensional electron systems. Massless charge carriers on the other hand have a linear energy
momentum dispersion relation E(q) = cq. In quantum mechanics, relativistic particles are de-
scribed by the Dirac equation rather than the Schrödinger equation. The band structure in the
vicinity of the Fermi energy is therefore often referred to as Dirac cone and the K points as Dirac
points.

3.1.2 The three-dimensional graphite lattice

The lattice of graphite is built up of graphene sheets, which represent the structural units of
graphite. They are stacked in the out of plane direction along the c-axis. The distance between
two neighbouring layers is c0 = 3.35 Å. X-ray studies reveal that monocrystalline graphite has
most typically a hexagonal lattice, which is shown in Fig. 3.3 b) [1, 19]. In “hexagonal graphite”
a row of atoms in a given layer is placed exactly above and below the centres of the hexagons
of the neighbouring layers, i.e. consecutive layers are shifted relative to the preceding ones by
the vector a0 given in Fig. 3.1 a). Consequently there are two inequivalent lattice sites in each
layer, with atoms which have other atoms directly above and below them, and atoms which have
no atoms above and below them in neighbouring layers. “Hexagonal graphite” is either referred to
as AB stacked graphite, since the stacking order is repeated after every second layer, or to Bernal
stacked graphite, since Bernal was the first who proposed the lattice in 1924 [1]. In Bernal stacked
graphite, there are four atoms per unit cell.

The first Brioullin zone of the hexagonal graphite lattice is shown in Fig. 3.3 a). It represents a
regular hexadron. Its most characteristic points are the centre Γ, the centres of the edges K and K’
at kz = 0, and the corner points of the top and bottom faces H and H’ at kz =±0.5. Note that kz is
given in units of c0/2π .

3.1.3 The band structure of graphite

Since the bonding between carbon atoms in the plane of a graphite layer is much stronger than
the bonding between atoms in neighbouring layers, the behaviour of the electrons in graphite can
be treated as being two-dimensional, including the interaction between layers as a perturbation.
An early work by Wallace in 1947 [20] had shown that the charge carriers in AB stacked graphite
occupy only small fractions of the first Brillouin zone (which is schematically shown in Fig. 3.3 a))
and that only the π bands near the vertical edges of the zone are important for the determination of
the electronic properties of graphite. These facts were considered for the derivation of the effective
mass Hamiltonian by Slonczewski, Weiss and McClure in the 1950s [2, 3], which describes the
energy bands in the vicinity of the vertical edges, using the k ·p method.

In the SWM-model the band structure near the Fermi energy is described by including seven bind-
ing parameters: γ0–γ5 and γ6 ≡ ∆. These parameters, also referred to as SWM- or γ-parameters,
have the dimensions of energies. They define the interaction between various carbon atoms in the
graphite lattice. The correspondence between these SWM-parameters and the interaction between
the carbon atoms is shown in Figure 3.3 b). The parameter γ0 is the only parameter which de-
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Fig. 3.3: a) First Brillouin zone of graphite. It represents a regular hexadron. The charac-
teristic points are the centre Γ, the edge points K and K’, and the corner points H
and H’. Note that kz is given in units of c0/2π . The carriers occupy only a small
region along the H-K-H edge, which is schematically indicated by the pockets. b)
Bernal stacked graphite. Consecutive layers are shifted by the vector a0 given in
Fig. 3.1 a). The interaction between the carbon atoms are described by so-called
γ-parameters.

scribes the interaction of carbon atoms within a graphite layer. The remaining parameters describe
interactions between atoms in various layers. The parameter γ1 corresponds to the interaction of A
and B atoms stacked directly above each other. γ2 describes the interaction between B-type atoms
in second nearest lattices. γ3 and γ4 describe the interaction between B-A atoms and A-B atoms,
respectively, which are not stacked directly one above the other. γ5 determines the interaction be-
tween two second nearest A atoms. The parameter γ6 ≡ ∆ reflects the inequivalence between the
atoms A and B once the presence of neighbouring layers is taken into account. The values of the
γ-parameters used throughout this thesis are given in Table 5.1 (page 63).

Taking into account the symmetry of the graphite lattice and the coupling between the carbon
atoms, the SMW Hamiltonian is given by [2],

H =


ε0

1 0 H13 H∗13
0 ε0

2 H23 −H∗23
H∗13 H∗23 ε0

3 H33

H13 −H23 H∗33 ε0
3

 , (3.2)

where

ε
0
1 = ∆+ γ1Γ+

1
2

γ5Γ
2, ε

0
2 = ∆− γ1Γ+

1
2

γ5Γ
2, ε

0
3 =

1
2

γ2Γ
2

H13 =
1√
2
(−γ0 + γ4Γ)σeiα , H23 =

1√
2
(γ0 + γ4Γ)σeiα , H33 = γ3Γσeiα ,

(3.3)

25



CHAPTER 3. THEORY - ELECTRONIC AND MAGNETIC PROPERTIES OF GRAPHITE

Fig. 3.4: a) Band structure of graphite as a function of kz(‖c) obtained from diagonalizing
the SWM Hamiltonian (3.2) using Matlab. The parameters γ2 and ∆ have been
multiplied by a factor of four and seven, respectively, for illustration reasons. Two
of the bands, labelled E3 bands, are degenerate along the edge H-K-H. The
Fermi energy lies in the middle of those bands. b) For kz = 0, the in-plane dis-
persion relation (κ(⊥c) 6= 0) is given by two parabolas, which describe massive
charge carriers with an effective mass m∗. c) The in-plane band structure at the
H point resembles that of graphene, since at kz = 0.5 the intra-layer coupling is
zero (see Eqs. (3.3) and (3.4)).

with

Γ = 2cos(πkz), σ =
√

3a0κ/2 and κ =
√

k2
x + k2

y . (3.4)

α is the angle between the momentum κκκ and the ΓK direction (see Fig. 3.3 a)). a0 is the in-plane
lattice parameter. kx and ky are measured with respect to the H-K-H edge of the Brillouin zone.

The eigenvalues for the energy spectrum of graphite are found by diagonalizing the SMW Hamil-
tonian. The result of such a calculation is sketched in Fig. 3.4. The parameters γ2 and ∆ have been
multiplied by a factor of four and seven, respectively, for illustration reasons. In Fig. 3.4 a) the
band energies are given as a function of the momentum in z-direction, kz(‖ c), between the K and
H points. Two of the four solutions of the eigenvalue problem are nondegenerate at kz 6= 0.5. They
are referred to as E1 and E2 bands, respectively. The two other solutions are degenerate along the
H-K-H edge and are referred to as E3 bands. The band overlap of the E3 bands is 2 |γ2|. The Fermi
level is found to be approximately in the middle of these bands (EF ≈ −|γ2|) which comes from
the fact that in electrically neutral graphite the densities of electrons and holes are equal. The band
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structure reveals that graphite is a semimetal. The small carrier density is linked to the smallness
of the parameter γ2.

At the K point, the degeneracy of the E3 bands is lifted if one departs from the H-K-H edge
(κ(⊥c) 6= 0). This is shown on the left hand side of Fig. 3.4. The in-plane band structure for
kz = 0 is given by two parabolas which overlap at the K point1. The curvature of these bands
define the effective mass m∗ of the K point electrons2. At the H point, the bands E1 and E2 are
degenerate, separated from the two fold degenerate E3 bands by the energy ∆, which corresponds
to the γ-parameter γ6 ≡ ∆. This degeneracy persists for κ(⊥c) 6= 0. The in-plane dispersion at
kz = 0.5 resembles the band structure of graphene, with the energy having a linear dependence
on the momentum vector κκκ . This behaviour arises from the fact that the strength of the interlayer
coupling is zero at the H point, as the interlayer coupling parameters always enter the SWM
Hamiltonian in the combination γi · cos(πkz), which becomes zero for kz = 0.5 (see Eqs. (3.3)
and (3.4)). There are three major differences with respect to the graphene layer. First, the Fermi
energy is not found exactly between the two cones. Second, the two cones do not overlap, and
third, the two bands are twofold degenerate with respect to graphene, i.e., each graphene layer
state corresponds to two states in the three-dimensional graphite lattice.

The Fermi surface of graphite along the edge K-H with the electron pocket at the K point and the
hole pocket at the H point is depicted in Fig. 3.5. It was constructed by computing the crossing
points of the bands Ei(κ) with the Fermi energy for given values of kz. For illustration reasons,
the kx-ky-plane has been magnified by a factor of 5. The trigonal symmetry of the Fermi surface in
the kx-ky plane is due to the parameter γ3 which is therefore also often referred to as the trigonal
warping parameter. Trigonal warping is particularly distinct at the K points (kz = 0) at which
cos(πkz) = 1. If γ3 is neglected, the Fermi surface has a perfect cylindrical symmetry. Indeed,
cylindrical symmetry is observed at the H point, at which the effect of the inter-plane parameters
is zero, and the Fermi surface has a circular cross section.
At the H point, two hole surfaces overlap. The hole pocket with the larger cross section for kz < 0.5
is associated with the band E1, as shown in the upper inset of Fig. 3.5. The hole pocket with the
smaller cross section is due to the band E2. The charge carriers associated with the two bands are
referred to as majority and minority holes, respectively. A more detailed discussion is given in the
following section.
In the regions where the electron pocket is in contact with the hole pocket, the Fermi surface
has a complicated structure. Here, the SWM-model predicts so-called “outriggered pieces”, also
referred to as “leg” and “centre” pieces [48]. The “centre” and the three “leg” pieces have their
origin in the overlap of the E3 bands, as depicted in the lower inset of Fig. 3.5.

1 Triganol warping, discussed subsequently, is not seen for this set of parameters (γ2 multiplied by four, ∆ multiplied
by seven.)
2 m∗ = h̄2

∂ 2E/∂κ2
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Fig. 3.5: Fermi surface of graphite along the edge K-H with the electron pocket at the K
point and the hole pocket at the H point calculated using Matlab. It has a trigonal
symmetry, which is particularly distinct at the K point. The electron and hole
pockets are connected by so-called “centre” and “leg” pieces, which originate
from the overlap of the E3 bands (see lower inset). At the H point, an additional
hole pocket, which is associated with the E2 band, is found (see upper inset).
For illustration reasons the kz values have been divided by a factor of ≈ 5.

3.2 Magnetic properties of graphite

3.2.1 Semi classical approximation

A qualitative understanding of the magnetic field behaviour of charge carriers in graphite can
be found most simply using the semi classical approximation. In order to quantize the electron
spectrum, one can then make use of the Lifshitz-Onsager formula (Eq. (2.15)),

SN = πk2
⊥ = (N + γ)

2πeB
h̄

, (3.5)

where SN are the extremal cross section areas of the closed electron and hole orbits in k space
perpendicular to the direction of the magnetic field.

Fig. 3.6 a) shows the extremal orbits of the Fermi surface of graphite along the edge H-K-H, with
the magnetic field being applied in the direction of the kz-axis. For illustration reasons, the value
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of kz has been divided by a factor of 2.5. The extremal orbits at the K point (kz = 0) and at kz ≈ 0.3
close to the H point (kz = 0.5) are due to electrons and holes, respectively. Because of the extent
of their cross section areas SN , they are referred to as majority electrons and majority holes. Figs.
3.6 c) and d) show the parabolic in-plane (κ⊥c) dispersion relation for both kz values. At the H
point, where the in-plane dispersion relation is linear (see Fig. 3.6 b)) there exists an additional
small extremal orbit, referred to as minority holes. The additional hole pocket is shown in Fig.
3.7 a) in more detail. Directly at the H point the majority and the minority hole surfaces overlap.
This means that in principal minority holes can only be observed if the magnetic field is tilted with
respect to the H-K-H edge, since only in this case there exist extremal orbits. When spin orbit
coupling is included in the SWM Hamiltonian (Fig. 3.7 b)), the degeneracy of the surfaces at the
H point is lifted, and minority carriers should be observed even for magnetic fields perpendicular
to the sample plane. Theoretically, the “central” and “leg” levels give rise to additional groups of
minority carriers. However, due to their extremely small cross section areas, they have never been
observed experimentally [28].

With the knowledge of the kz positions of the extremal orbits of the Fermi surface of graphite, the
magnetic field properties of these carriers can be investigated. In Section 3.1.3 it was shown that
the topology of the band structure is fundamentally changed along the H-K-H axis of the Brillouin
zone. This has consequences for the magnetic field behaviour of the Landau bands.

The majority electrons at the K point and the majority holes at kz ≈ 0.3 have a parabolic energy-
momentum in-plane dispersion relation E = h̄2

κ2/2m∗ which leads with Eq. (3.5) to

E = h̄ωc(N + γ). (3.6)

This result was derived in Section 2.1 and it was shown that γ = 1/2 for free electrons. The phase
term, however, can as well depend on the topology of the Fermi surface, i.e., differ from the usual
value of γ = 1/2. This is taken into account by introducing the so-called geometrical or Berry
phase ΦB so that [22]

γ =
1
2
− ΦB

2π
.

From a topological point of view, a value of the Berry phase different than zero can be explained by
the occurrence of degenerate electron states at band-contact lines, with the Brillouin zone playing
the role of the parameter space [49].

At the H point of graphite, the location of the minority holes, the band energy depends linearly
on the momentum κ . If the energy gap ∆ between the two cones at the H point of graphite is
neglected, E =±vF h̄ |κ|, so that with the semi classical Eq. (3.5)

E =±vF
√

2h̄eB(N + γ). (3.7)

This means that in contrast to the usual Landau bands whose energy depends linearly on the
magnetic field and which are equally spaced for a given magnetic field, the energy of the Landau
bands at the H point of graphite has a square root dependence on the magnetic field and on the
quantum number N. Moreover, the Berry phase is ΦB = π , so that the phase term vanishes, i.e.,
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Fig. 3.6: a) Fermi surface of graphite along the edge H-K-H with its electron and hole
pockets. For illustration reasons the value of kz has been devided by a factor of
2.5. The extremal orbits at the K point (kz = 0) and at kz ≈ 0.3 close to the H
point (kz = 0.5) are due to majority electrons and holes, respectively. At the H
point an additional extremal orbit, referred to as minority holes, is observed. b)-
d) In-plane dispersion relation at kz = 0 (majority electrons), kz =±0.3 (majority
holes) and kz = ±0.5 (minority holes). While the in-plane dispersion relation is
parabolic for the majority carriers, it is linear for the minority holes.
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Fig. 3.7: a) Zoom in on the Fermi surface of graphite in the region of the H point (kz = 0.5).
An additional hole pocket is observed. Due to its small cross section, its carriers
are referred to as minority holes. In principle minority holes can only be observed
in tilted field configuration, due to the degeneracy of the bands directly at the H
point. b) If spin orbit coupling is included in the SWM model, the degeneracy in
the kz plane is lifted, and minority carriers should as well be observed for mag-
netic fields perpendicular to the sample plane.
The Fermi surfaces were calculated using Matlab. The SWM-Hamiltonian includ-
ing the spin orbit interaction was taken from Ref. [50].

γ = 0 [22]. In the next section it will be shown that this result can be directly derived from the
energy spectrum of the magnetic field Hamiltonian of graphite.

The energies of the Landau bands at the H point of graphite resemble the unusual energy spectrum
of the Landau levels in graphene as a function of the magnetic field, as shown in Fig. 3.8. In
graphene, the N = 0 Landau level is two times spin degenerate and two times so-called valley
degenerate, which comes from the fact that there are two inequivalent points K and K´ at the edges
of the hexagonal Brillouin zone. The N > 0 and N < 0 Landau levels are referred to as electron
and hole levels, respectively. Whereas for an undoped system the Fermi level is placed at the
crossing point of the two cones, it can be shifted to higher or lower energies by doping, which
adds or removes charge carriers. To illustrate the movement of the Fermi energy, it is assumed to
have an excess of electrons. The periodicity in 1/B of the Fermi energy jumps is the same as for
the free electron Landau levels.

3.2.2 The magnetic field Hamiltonian

On the basis of the SWM-model, the Hamiltonian defining the energy bands in magnetic field was
derived by McClure [23] and Inoue [24] assuming that the magnetic field is directed along the
c-axis, i.e., parallel to the direction of kz. In matrix form the Hamiltonian is given by
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Fig. 3.8: Energy dispersion relation of graphene as a function of the magnetic field. The
Fermi energy in graphene is governed by the degeneracy of the Landau levels
and jumps for magnetic fields BF/(N +1) to the next level. For the illustration of
the Fermi energy movement it is assumed to have an excess of electrons, i.e.,
the Fermi energy is found above the K point.

H =


ε0

1 0
√

ξ

2 (1−ν)
√

N +1 −
√
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√

N
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2

√
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√
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√

ξ
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√
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√
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√
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√
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√

N ε0
3 γ3Γ

√
ξ a

−
√

ξ

2 (1−ν)
√

N −
√

ξ

2 (1+ν)
√

N γ3Γ
√

ξ a† ε0
3

 ,

where
ξ = ξ

′B = 3a2
0γ

2
0

( e
2h̄

)
B and ν =

γ4Γ

γ0
. (3.8)

N is an integer number with N ≥−1. Γ = 2cos(πkz) has been defined in Eq. (3.4). a and a† in the
γ3 terms are ladder operators with

aΨN =
√

N ΨN−1 and a†
ΨN =

√
N +1ΨN .

For γ3 = 0 the basis vectors of the Hamiltonian are |ΨN >, |ΨN >, |ΨN+1 >, |ΨN−1 >. In this
basis γ3 6= 0 would couple the matrix elements

< ΨN+1|H33|ΨN−1 > ∝ < ΨN+1|ΨN−2 > and

< ΨN−1|H∗33|ΨN+1 > ∝ < ΨN−1|ΨN+2 > ,
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i.e., terms with quantum numbers N would be coupled to those with quantum numbers N → N±3,
which breaks the dipole selection rules N → N± 1 [51]. The basis has therefore to be changed.
The Hamiltonian taking the parameter γ3 into account is of infinite size.

Choosing the basis χ = (χ(−1), χ(0), χ(1), χ(2), . . .), with χ(N) = (Ψ(N), Ψ(N), Ψ(N +1),
Ψ(N−1)), the Hamiltonian can be rewritten as [52]

H =



D0(−1) 0 0 D1−1 0 · · ·
0 D0(0) 0 0 D1(0) · · ·
0 0 D0(1) 0 0 · · ·

D+
1 (−1) 0 0 D0(2) 0 . . .

0 D+
1 (0) 0 0 D0(3) · · ·

...
...

...
...

...
. . .


,

where the submatrix D0(N) is the matrix (3.8), with γ3 = 0. D1(N) contains the γ3 parameter and
is given by

D1(N) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 γ3Γ

√
b
√

N +2 0

 ,

The matrixes D0(−1) and D0(0) have special forms, which are obtained from the matrix (3.8) by
eliminating terms with negative quantum numbers.

Even though the SWM Hamiltonian in magnetic field has infinite dimensions, its eigenvalues can
be obtained by truncating the infinite matrix into a finite one as the energies of the levels converge
for large quantum numbers N. In this thesis we have used matrixes with 600× 600 elements.
The size of the matrixes was found to be sufficient since for higher order matrixes no noticeable
differences in the eigenvalue spectra were observed. To simplify the discussion at this point,
however, the parameter γ3 is neglected and the eigenvalue problem is reduced to a four by four
matrix. A detailed discussion of the implementation of the magnetic field SWM Hamiltonian in
Matlab is given in the Appendix A.3.

Fig. 3.9 a) shows the evolution of the bands as a function of the wave vector kz between the points
K and H for B = 8 T (γ-parameters in Table 5.1 with γ3 = 0). The bands E1, E2 and E3 are split
into Landau sub-bands with quantum numbers N = −1,0,1,2, . . . . The Fermi energy crosses the
bands N = 0 and N =−1 approximately in the middle.

The Landau bands at the K point at low energies are quite accurately described by linear functions
of the magnetic field, as illustrated in Fig. 3.9 b). According to Eq. (3.6), the linear magnetic field
dependence of the Landau bands is expected, since the in-plane dispersion relation at the K point
is to a first approximation parabolic (see Fig. 3.4). The simplest model describing the magnetic
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Fig. 3.9: a) Evolution of the bands as a function of the wave vector kz between the points K
and H for B = 8 T (γ parameters in Table 5.1 with γ3 = 0). The bands E1, E2 and
E3 are split into Landau sub-bands with quantum numbers N = −1,0,1,2, . . . .
The Fermi energy lies approximately in the middle of the levels N = −1 and
N = 0. b) Evolution of the bands at the K point as a function of the magnetic
field. The Landau band energies are to a good approximation linear functions
of the magnetic field, as expected for a parabolic potential (see Fig. 3.4). The
Fermi energy as a function of the magnetic field is constant. c) Square root of B
dependence of the energy bands at the H point, at which the inter-layer coupling
is zero.
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field dispersion relation at the K point is given by a graphene bilayer with an effective interlayer
coupling 2γ1 [21].

At the H point of the hexagonal Brillouin zone of graphite, the effect of the inter layer coupling
parameters is zero, as they enter the Hamiltonian in the combination Γγi (i = 1, . . . ,6), with Γ = 0
for kz = 0.5. The band structure of graphite corresponds therefore to a good approximation to
that of a graphene layer. Neglecting all the inter layer coupling parameters, the magnetic field
Hamiltonian (3.8) is radically simplified. The energy eigenvalues as a function of the magnetic
field are given by

E =
∆

2
±
√

∆2

4
+(N,N +1)ξ ′B,

where (N,N+1) is N or (N+1), i.e., the counting of the quantum number N starts either at N = 0
or N =−1. The phase γ in the Lifshitz-Onsager relation (2.16) is zero. This means that the Berry
phase is either ΦB = π or ΦB =−π . Both values are equivalent. The square root of B dependence
of the Landau bands at the H point is depicted in Fig. 3.9 c).

For ∆ = 0, the Landau band dispersion is the same as predicted by the Onsager quantization con-
dition for a graphene layer with γ = 0 (see Eq. (3.7)). Several differences between the charge
carriers in graphene and those at the H point of graphite for B = 0 T have been mentioned previ-
ously. The most striking difference in magnetic field concerns the position of the Fermi energy.
While in three-dimensional graphite it remains to a good approximation constant when the mag-
netic field is changed, the Fermi energy in graphene is governed by the degeneracy of the Landau
levels and jumps at the magnetic field BF/(N +1) to the level N +1 (see Fig. 3.8).

Finally the evolution of the kz dependent Landau bands in magnetic field is illustrated in Fig. 3.10.
The energies of the Landau bands are given as a function magnetic field in the range B = 2.5 -
8 T and the wave vector kz along the K-H edge. For the calculation, the full Hamiltonian has been
taken into account (parameters in Table 5.1). Spin splitting has been neglected. The Fermi level
is given by the plane, which crosses the bands N = −1 and N = 0 roughly in the middle. In the
magnetic field range depicted here, the value of the Fermi energy is not constant, but varies as a
function of the magnetic field due to a considerable electron hole cross talk. A detailed discussion
of the Fermi energy movement, crucial for the understanding of orbital and spin effects, will be
given in Chapter 5.4. When the magnetic field is decreased, the energy of the bands N = 1−,2−, . . .
increases, while the energy of the bands N = 1+,2+, . . . decreases. The notation N+ and N− labels
the two different E3 bands, which are doubly degenerate at B = 0 T. Local extrema of the bands
N = 1+,2+, . . . and N = 1−,2−, . . . successively cross the Fermi energy at the K point (kz = 0)
and at kz ≈ 0.3, respectively. Those extrema correspond to the extremal cross sections of majority
electrons and holes which were discussed previously. We will see in Chapter 5.4 that the crossing
of the local extrema translates to maxima in the density of states at the Fermi energy. The maxima
in the density of states can be probed directly by measuring either the resistivity ρxx as a function of
the magnetic field (Shubnikov-de Haas oscillations) or the magnetic field dependent magnetization
(de Haas-van Alphen effect).
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Fig. 3.10: Landau band energies as a function of the magnetic field in the range B = 2.5
- 8 T and the wave vector kz along the K-H edge calculated with the full Hamil-
tonian (parameters in Table 5.1). Spin-splitting was neglected. The Fermi level
EF is given by the plane which crosses the bands N = −1 and N = 0 at high
magnetic fields. Local extrema of the bands N = 1+,2+, . . . and N = 1−,2−, . . .
successively cross the Fermi energy at the K point and at kz ≈ 0.3, when the
magnetic field is decreased.
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4 Experimental Methods

Résume du chapitre

Deux types d’échantillons de graphite ont été étudiés dans cette thèse: du graphite HOPG (Highly
Oriented Pyrolytic Graphite) et du graphite naturel. Pour les mesures de magnétotransport des
contacts ont été déposés sur ces échantillons en configuration de type “barre de Hall”. Les mesures
de l’effet de Haas-van Alphen ont été effectuées en utilisant la méthode de couple. Pour les
mesures deux systèmes d’aimants différents ont été employés: deux aimants supraconducteurs
avec des champs magnétiques maximaux de B = 11 T et B = 16 T à la température de l’hélium
liquide (T = 4.2 K) et un aimant résistif de 20 MW, avec un champ magnétique maximum de
B = 28 T. Les mesures ont été effectuées dans trois systèmes cryogéniques différents: Un “anti-
cryostat” (ou VTI = Variable Temperature Insert) avec une température de base de Tb ≈ 1.2 K,
un cryostat 3He avec Tb ≈ 300 mK et deux réfrigérateurs à dilution avec Tb ≈ 10 mK (aimant
supraconducteur) et Tb ≈ 30 mK (aimant résistif).

The present chapter is devoted to the experimental methods. To start with, the preparation of
the different graphite samples for magnetotransport measurements is explained. Then the exper-
imental setup - magnets and cryogenics - is briefly discussed. Finally the techniques to measure
magnetotransport and the de Haas-van Alphen effect are presented.

4.1 The Graphite samples

Two types of graphite samples were studied in this work: Highly Oriented Pyrolytic Graphite
(HOPG) and natural graphite (NG). HOPG is a synthetic form of graphite manufactured by de-
composition of hydrocarbon gas at high temperature (T ≈ 3000 K) and under high pressure. This
treatment leads to a very pure material with well oriented horizontal planes. The HOPG material
was bought commercially.

Natural graphite samples are single crystals showing a very high crystalline perfection with iden-
tically stacked planes. The samples studied in this work were provided through collaboration with
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Fig. 4.1: a) HOPG sample, cleaved from a larger piece of a bulk. The contacts for magne-
totransport were soldered with indium in Hall bar configuration. b) Schematic of a
natural graphite sample on an eight-pin socket. Four contacts for measurements
of the longitudinal resistance Rxx are glued on the sample with silver paint.

another research group, who also investigated this material [53].

Fig. 4.1 a) shows the HOPG sample used for the magnetotransport measurements in Hall-bar
configuration. It was cleaved from a larger piece of a bulk HOPG. The cleavage process explains
the non planar surface of the sample. Its dimensions are about 9 mm × 2 mm × 0.5 mm
(length×width×height). The sample was first glued on an insulating support, which was then
glued on an eight-pin socket for magnetotransport measurements. The connection between the
soldering posts of the eight-pin socket and the surface were made under a microscope with thin
gold coated copper wires. The wires were soldered with indium on the surface of the HOPG
sample. For the natural graphite samples we applied contacts both in Hall-bar and in four-point
configuration using the same gold coated copper wires and silver paint. A schematic representation
of the natural graphite sample with contacts in four-point configuration mounted on an eight-pin
socket is given in Fig. 4.1 b). The samples were quite small, their width and length not exceeding
a few millimetres. The thickness of the sample was in the submillimetre range.

4.2 Magnets

For the measurements presented in this thesis, two kinds of magnet systems were used: Two
superconducting magnets with maximum magnetic fields at liquid helium temperature (T = 4.2 K)
of B = 11 T and B = 16 T, respectively, and a 20 MW resistive magnet with a maximum magnetic
field of B = 28 T.

4.2.1 Superconducting magnet

The main advantage of a superconducting magnet is that only small amounts of electrical power are
required to create relatively high magnetic fields. The maximum field is given by the critical field
Hc2 of the coil material. At Hc2 the superconducting state is destroyed and the normal conducting
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state is restored. The coil becomes resistive and dissipates power. To prevent this, the field of the
magnet has to be kept below Hc2. Nowadays superconducting magnets with maximum fields up
to B = 22 T are available.

Due to the high stability of the current in the coil which has a large induction, the coil provides
a very good spatial and temporal homogeneity of the field. The absence of water cooling (which
causes vibrations) leads to a much lower noise compared to resistive magnets.

Superconducting magnets are therefore suitable for experiments requiring high standards for the
signal to noise ratio and the homogeneity of the field, without demanding too high magnetic fields.
There is, however, the need for cryogenics at temperatures of liquid helium (≤ 4.2 K) to maintain
the superconducting state of the coil.

4.2.2 Resistive magnets

The advantage of resistive magnets compared to superconducting ones are the higher magnetic
fields which can be obtained using this technique. Limitations of the maximum magnetic field are
mainly given by cooling and by mechanical stresses due to Lorentz forces in the magnet. Resistive
magnets have the disadvantage of producing large amounts of heat at high magnetic fields due to
the dissipation of power in the coils. An efficient water cooling has therefore to be employed.
Resistive magnets are suitable for experiments which require high magnetic fields without having
too high demands for the field homogeneity and the noise level, which is for the most parts induced
by vibrations caused by the water cooling of the magnets.

At Grenoble High Magnetic Field Laboratory, two different kinds of coils are used, so-called Bitter
coils and polyhelix coils. The Bitter coil was invented by F. Bitter [54]. It consists of copper discs
which are stacked one above the other. Insulating sheets between the copper discs are arranged
in such a manner that the electrical current passes on a helical path through the coil. For the
water cooling of the coil, holes are drilled vertically through the whole construction. While Bitter
magnets are mechanically stable, relatively easy to build and easy to cool efficiently, they are
restricted by their design to a specific geometry. This disadvantage is overcome by the polyhelix
coil [55], which is constructed by removing material of a copper tube along a helicoidal line by
spark erosion. As this technique allows variations of the conductor thickness, the polyhelix coil
allows to produce considerably higher magnetic fields than the Bitter coil for the same electric
power and magnet volume. However, they are much more difficult to be designed and constructed
than Bitter coils.

For the high field experiments described in this work (Chapter 6), we used a resistive magnet of
the Grenoble High Magnetic Field Laboratory. The magnet consists of an outer Bitter magnet with
a polyhelix insert. It produces a maximum field of B = 28 T, which is well above the state-of-the-
art technology for superconducting magnets (B≈ 22 T). The nominal power consumption of this
magnet at full field is 20 MW. Further technical information about this magnet can be found in
Ref. [56].
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4.3 Cryogenics

Measurements were performed in three different cryogenic systems: First, a variable temperature
insert (VTI) with a base temperature of Tb ≈ 1.2 K. Second, a 3He cryostat with Tb ≈ 300 mK.
Third, two dilution fridges with Tb ≈ 10 mK (superconducting magnet) and Tb ≈ 30 mK (resistive
magnet). A detailed discussion of the cryogenic systems is given in the Appendix A.2.

4.4 Magnetotransport measurements

A schematic sketch of the magnetotransport circuit is depicted in Fig. 4.2. The contacts are po-
sitioned in a Hall-bar configuration. An ac-current is passed through the current contacts (1 - 2)
at each end of the sample. The current is generated using the oscillator of the lock-in amplifier.
We typically used a voltage of V = 0.1-1 V with a frequency f ≈ 10 Hz, which was also used
as reference frequency for the phase sensitive detection of the signal. The current flow through
the sample is controlled by a large-ohmic series-resistor R1 (R1 = 10 kΩ-1 MΩ), with R1 being
much bigger than the resistance of the sample. This assures that even if the magnetoresistance
of the sample is changed considerably during the measurements, the current through the sample
(typically I ≈ 1 µA) does not change noticeably.
The longitudinal and transverse voltage drops Uxx and Uxy caused by the resistivity of the sample
are measured between the contacts (3-4) and (4-5), respectively. Both signals are amplified by a
factor of 100 using pre-amplifiers placed close to the top of the probe. The pre-amplified signals
are then sent to the lock-in amplifier. The phase sensitive detection employed in the lock-in am-
plifier processes only signals with the reference frequency and a given phase θ (θ = 0 for resistive
signals and θ =±π/2 for inductive or capacitive signals), i.e., noise signals which typically have
different frequencies and phases are rejected. The lock-in signals are then read by the computer
and converted to resistances.

Fig. 4.2: Schematic of the electrical setup used to measure magnetotransport.
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4.5 de Haas-van Alphen effect measurements

The de Haas-van Alphen effect measurements were carried out using the so-called torque method.
The torque method is based on the fact that if a sample exhibits a magnetization M when exposed
to an external magnetic field B, a torque τττ is created in the direction perpendicular to M and B,

τττ = M×B. (4.1)

The dependence of the torque on the cross product of the magnetization and the magnetic field
implies that the torque method requires a component of M, which is perpendicular to the magnetic
field. Otherwise the torque τττ is zero.

With the oscillatory magnetization perpendicular to the magnetic field given by the Lifshitz-
Kosevich formula (2.21) the absolute value of the torque τ = M⊥B (τ = M‖B = 0) reads

τ =− 1
BF

dBF

dθ
M‖B, (4.2)

with BF being the fundamental frequency related to an extremal cross section of the Fermi surface.
Eq. (4.2) implies that the detection of de Haas-van Alphen oscillations by means of the torque
technique requires a non-spherical Fermi surface with dBF/dθ 6= 0. As discussed in Chapter 3.1.3
this condition is fulfilled by the Fermi surface of graphite.

Fig. 4.3: Sketch of the capacitive torquemeter. The graphite sample is mounted on the
circular plate with vacuum grease. Changes of the magnetization of the sample
lead to variations of the torque on the cantilever and therefore to changes of the
distance between the spring and the ground plate. The induced variations of the
capacitance are detected by a capacitance bridge (Fig. 4.4).
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Fig. 4.4: Schematic sketch of the electrical circuit used to measure the capacitance of
the capacitive torquemeter, Ct . At zero magnetic field the capacitance bridge is
balanced by changing the capacitance Cs until M = 0 V. The voltage induced in
the circuit due to changes of the magnetization of the sample is sent to a lock-in
amplifier.

The torque of the sample was measured by using a capacitive torquemeter. The principal ex-
perimental setup is sketched in Fig. 4.3. The capacitor consists of a copper ground plate and a
plane-parallel circular plate made of copper-beryllium with a diameter of 2.5 mm. The graphite
sample is mounted on the circular plate with vacuum grease. The circular plate itself is connected
by a narrow cantilever beam to the rectangular plate. Two different cantilevers with the dimen-
sions (length×width×thickness) 5 mm × 125 µm × 125 µm (cantilever A) and 5 mm × 125 µm
× 50 µm of (cantilever B) were used. The rectangular plate is fixed to the sample holder which is
separated from the ground plate by a distance plate with a thickness of d = 50 µm.

When a magnetic field is applied and the sample is subject to a torque, the cantilever acts as a
spring. The deformation of the spring leads to a change of the distance between the spring and
the ground plate and hence to a change of the capacitance. For small excitations of the spring,
the variation of the capacitance is proportional to the torque. The amplitude of the deformation
depends on the dimensions of the cantilevers. With the cantilever A being more rigid, it is also
less sensitive to small changes of the magnetization of the sample.

The capacitance and therefore the torque was measured using a precision capacitance bridge and
standard lock-in technique. The setup is depicted in Fig. 4.4. A 5.27 kHz excitation voltage with
an amplitude of 40 V generated by an oscillator is coupled to a circuit with the capacitance of the
torquemeter Ct connected in series with a tunable capacitance Cs of the capacitance bridge. At the
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beginning of each measurement at B= 0 T the bridge is balanced until a zero reading is seen on the
meter M (R1Cs = R2Ct). In a magnetic field sweep the variations of the torquemeter capacitance
are detected by measuring the amplitude of the voltage induced in the circuit. The induced voltage
is sent to a lock-in amplifier, with the reference signal coming from the oscillator.

For the de Haas-van Alphen measurements in tilted field configuration, the torquemeter was
mounted in a dilution fridge onto a rotation holder.
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5 Low field magnetotransport:
Orbital effects

Résume du chapitre

Dans cette thèse nous présentons les premières mesures de magnétotransport du graphite effec-
tuées dans la gamme de température des millikelvin (T ≈ 10 mK). Le spectre du magnétotransport
du graphite naturel mesuré à ces températures est extrêmement riche. Après l’extraction d’un large
fond de magnétorésistance, deux séries d’oscillations quantiques superposées peuvent encore être
observées à des champs magnétiques très bas (B0 ≈ 0.07 T). L’analyse de Fourier des oscillations
donne BF = 4.75 T et BF = 6.58 T pour les deux fréquences fondamentales. Dans le modèle SWM
les deux fréquences sont assignées aux trous et aux électrons majoritaires. Les valeurs de phase
des deux oscillations correspondent aux valeurs prédites par le modèle SWM du graphite. Nous
avons confirmé la validité du modèle SWM par des calculs numériques détaillés de la structure
de bande. Le mouvement de l’énergie de Fermi a été calculé d’une manière auto-cohérente en
supposant que la somme des concentrations des électrons et des trous est constante.
La recherche systématique des oscillations de porteurs minoritaires aux faibles champs magné-
tiques (B < 0.3 T) s’est avéré infructueuse. En ce qui concerne le fond de magnétorésistance, nous
avons effectué quelques mesures en fonction de la température à champ magnétique fixe pour
confirmer la transition métal-isolant récemment découverte dans le graphite [25].

In this chapter we report on low field magnetotransport studies of graphite measured at various
temperatures. To begin with, we present measurements on HOPG at T ≈ 1.2 K, which are com-
parable to previously published data [9–11,57,58]. We then show that magnetotransport measure-
ments performed at mK temperatures (T = 10 mK) reveal much richer magnetotransport spectra
both for HOPG and natural graphite. The extremely high quality of the mK magnetotransport data
of natural graphite allows a precise phase/frequency analysis and therefore the extraction of de-
tailed information about the Fermi surface of graphite. By performing band structure calculations
we demonstrate that the quantum oscillations can be consistently interpreted with the presence of
majority electron and hole pockets within the three-dimensional SWM band structure model for
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Fig. 5.1: a) The longitudinal (Rxx) and transverse (Rxy) resistances of HOPG as a function
of the magnetic field (T = 1.2 K). In the signal Rxx(B) a large magnetoresistance
background and small quantum oscillations (arrows) are superimposed. The
similarity of Rxy(B) and Rxx(B) can be explained by a strong mixing of the Hall
resistance RHall(B) with Rxx(B). b) (Upper curve) Background removed signal of
Rxx, ∆Rxx. Two series of quantum oscillations are superimposed. (Lower curve)
Hall resistance RHall with plateau like features at low magnetic field.

graphite. The observed significant deviations of the quantum oscillations from the 1/B periodicity
at high magnetic fields (B > 2 T) are explained by a movement of the Fermi energy as the quantum
limit is approached. This seriously questions the validity of using the high field data to extract the
phase of the Shubnikov-de Haas oscillations and hence the nature of the charge carriers [59]. At
the end of the chapter the appearance of a possible minority carrier related series of features at low
magnetic fields is discussed.
Some of the results presented in this chapter are published in [J. M. Schneider et al., Phys. Rev.
Lett., 102, 166403 (2009)] and [J. M. Schneider et al., Phys. Rev. Lett., 104, 119702 (2010)].

5.1 Magnetoresistance measurements

5.1.1 Magnetotransport of HOPG at T =1.2 K

Fig. 5.1 a) shows typical magnetotransport data of the longitudinal (Rxx) and transverse (Rxy)
resistances of HOPG measured at T = 1.2 K in the magnetic field range B = 0−11 T (sweep rate
dB/dt = 1 T/min). The magnetic field was oriented perpendicular to the a-b plane (B ||c).

Having a small value at B = 0 T, Rxx(B) (blue curve) strongly increases with the magnetic field. At
B = 11 T, the magnetoresistance is about two orders of magnitude larger than the zero-field value.
The origin of the large magnetoresistance in graphite remains unclear and is subject of an ongoing
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Fig. 5.2: Spectral intensity of the Fourier transform |F(B)| of the background removed
data ∆Rxx(1/B). The two types of oscillations, ascribed to holes and electrons,
have the frequency values BF,h = 4.75±0.1 T and BF,e = 6.58±0.1 T.

debate [60–63].

For magnetic fields B> 0.5 T, small quantum oscillations are superimposed on the signal (arrows).
In order to analyze these oscillations, the large magnetoresistance-background has to be removed.
The background can be removed either by subtracting a smoothed (moving window average) data
curve or by numerically calculating the second derivative d2R/dB2. Both techniques give similar
results, and here we use averaging to remove the background. The background-removed resistance
∆Rxx is displayed in Fig. 5.1 b) (blue curve). At low magnetic fields, pronounced Shubnikov-de
Haas oscillations are observed. At higher magnetic fields, a second series of smaller oscillations
is found. The Shubnikov-de Haas oscillations are periodic as a function of the inverse magnetic
field so that the fundamental frequencies of these oscillations can be obtained by making a Fourier
transformation of ∆Rxx(1/B). The result is displayed in Fig. 5.2. It shows the spectral intensity of
the Fourier transform |F(B)| as a function of the magnetic field. The frequencies of the oscillations
are given in units of the magnetic field, the intensity is given in arbitrary units. Two main features
are observed. The feature with the larger amplitude is found at BF = 4.75± 0.01 T. The second
feature with a much smaller amplitude (dotted line: multiplied by a factor of 50 for illustration
reasons) is found at BF = 6.58±0.01 T. In the SWM-model, the two frequencies at BF = 4.75 T
and BF = 6.58 T are assigned to majority holes and electrons, respectively.

The transverse resistance in Fig. 5.1 b), Rxy (red curve), shows a similar behaviour as Rxx, i.e.,
it reveals a large magnetoresistance on which quantum oscillations are superimposed. The Hall
resistance RHall

1 is mixed with Rxx due to the imperfect geometry of the contacts. This could
mean that the contacts are not positioned in an exact Hall-bar geometry, as the indium dots are
simply placed at the edges of the graphite sample. When the Hall contacts are slightly shifted in
x-direction, there is always a contribution of Rxx in the measured Hall resistance. This is especially

1 The Hall resistance is referred to as RHall , whereas the measured transverse resistance is called Rxy.
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true in graphite, since Rxx� RHall as shown in the following.

Nevertheless, since the resistance Rxx is an even function of the magnetic field and RHall is an odd
function of the magnetic field (Appendix A.1), the contribution of Rxx to the Hall resistance can in
principle be removed by subtracting the Rxy data measured for the two different polarizations of
the magnetic field,

RHall =
1
2
(Rxy(B+)−Rxy(B−)) . (5.1)

The Hall-resistance RHall (red curve) is plotted in Fig. 5.1 b) as a function of the magnetic field
for B = 0− 10 T. Oscillatory features are observed which for B < 2 T resemble quantum Hall
plateaus. Indeed in Refs. [59, 64] these features were – in our opinion incorrectly – interpreted as
quantum Hall plateaus. This interpretation follows from the “two-dimensional model” of graphite,
i.e., graphite is considered to consist of uncoupled graphene layers. However it is in contradiction
with the three-dimensional SWM-model, as for the observation of plateau like features a gap in
the density of states is required which does not occur in three-dimensional systems. The “Hall
plateaus” are probably a remaining artefact of oscillations observed in Rxx.
The fact that a Hall resistance is observed in graphite, leads to the conclusion that there is a
difference in the charge carrier densities of electrons and holes. In the extreme quantum limit
(µe,hB� 1) the non-diagonal component of the magnetic conductivity tensor is given by (see Eq.
(A.6) in the Appendix)

ρxy =
B

e(nh−ne)
. (5.2)

The value of ρxy/B is therefore determined only by the difference of the electron and hole concen-
trations, i.e., the magnitude of the imbalance ∆n = nh−ne. Considering that in a perfect graphite
crystal the electron and hole concentrations are equal, the imbalance occurs from ionized donor
(n+s ) and acceptor (n−s ) scattering centres due to defects in the graphite lattice. However, there is
no straightforward way to extract the density ∆n from the Hall resistance in graphite [28].

At low (non-quantizing) magnetic fields (µe,hB� 1) the transverse resistivity is given by (Eq.
(A.7) in the Appendix)

ρxy =
B
en

µh−µe

µh +µe
. (5.3)

Extracting the slope from ρxy = RHall ·wt/l of the B < 0.5 T data in Fig. 5.1 b), with w, t and l
being the sample dimensions (see Section 4.1), yields ρxy/B≈ 0.85 µΩm/T , which is comparable
to the value obtained in Ref. [65]. With the carrier density of n = 3×1018 cm−3 [66], we obtain
µh ≈ 2µe. The higher hole mobility explains the larger amplitude of the hole spectral intensity in
Fig. 5.2.
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5.1.2 Temperature dependence of quantum oscillations

Fig. 5.3 shows the result of temperature dependent magnetotransport measurements performed on
HOPG. In Fig. 5.3 a) the background removed signal ∆Rxx is given as a function of the magnetic
field from B = 0.6− 1.8 T for different temperatures in the range T = 1.17− 10.1 K. For each
curve the background was removed as previously by subtracting a smoothed data curve, using
every time the same number of points for the moving window averaging. The amplitudes of ∆Rxx

are significantly larger for low temperatures than for high temperatures. The features which are
further analyzed are labelled f1, f2 and f3. The temperature dependence of the amplitudes of these
three features is displayed in Fig. 5.3 b).

If the temperature dependence of the quantum lifetime τ is neglected, the temperature dependence
of the quantum oscillations is given by the temperature factor RT (T ) in the Lifshitz-Kosevich
formula

RT (T ) =
α

m∗
me

T
B

sinh
(

α
m∗
me

T
B

) with α =
2π2kBme

h̄e
, (5.4)

which arises from the smearing out of the Fermi Dirac distribution at finite temperature. The dotted
lines in Fig. 5.3 show that the temperature dependence of the amplitudes can be well reproduced
with RT (T ) alone, confirming our a priori neglect of the temperature dependence of the quantum
lifetime τ . The values of m∗ obtained from the fitting procedure, given in the inset of Fig. 5.3
b), are m∗f 1 = 0.051±0.002, m∗f 2 = 0.050±0.002 and m∗f 1 = 0.053±0.005. Within experimental

Fig. 5.3: a) ∆Rxx as a function of the magnetic field in the range B = 0.6− 1.8 T for dif-
ferent temperatures between T = 1.17 K and 10.1 K. The absolute values of the
amplitudes of the quantum oscillations decrease with increasing temperatures.
b) The amplitudes ∆Rxx of the features f1, f2 and f3 as a function of the temper-
ature. The dotted curves correspond to fits with the temperature factor RT (T ) of
the Lifshitz-Kosevich formula. The fitting parameter effective mass has the value
m∗ ≈ 0.05.
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Fig. 5.4: a) ∆Rxx measured at T = 1.17 K for B = 0.4− 2.5 T. The features which are
further analyzed are marked by arrows. b) Dingle plot using the effective mass
of holes m∗ = 0.039 [28]. The linear fit yields the Dingle temperature TD,h =

2.34± 0.1 K and the quantum lifetime τh = 0.52± 0.1 ps. The mobility value
µh = 2.52± 0.3 m2/V s is similar to mK mobilities reported recently on HOPG
[65].

error these values are almost identical to the accepted value of m∗ = 0.054 for electrons found
by means of cyclotron resonance measurements [51]. The spectral intensity plot of the Fourier
transform (Fig. 5.2), however, suggests that the investigated features are due to holes. Their
effective mass is m∗ = 0.039 [28], which is about 25% smaller than the value found here.

With the value of the effective mass m∗, the quantum lifetime τ can be extracted from the field
dependence of the Shubnikov-de Haas oscillations. In Fig. 5.4 a) we show ∆Rxx, which was
measured at T = 1.17 K. The features which are further analyzed are marked by arrows. In
Fig. 5.4 b) we plot ln

[
A× sinh(αm∗T/B)T−1B−1/2

]
vs. 1/B, with A being the amplitudes of

the oscillations. According to the Lifshitz Kosevich behaviour, the slope a = −αm∗TD yields
the Dingle temperature TD = h̄/(2πkBτ) and is a measure of the quantum lifetime τ . Here we
have used the accepted mass m∗ = 0.039 for holes. The Dingle temperature and the quantum
lifetime are TD,h = 2.34± 0.1 K and τh = 0.52± 0.4 ps. If we assume that the value of τ is
the same as the momentum relaxation time, we can extract the hole mobility µh = eτ/m∗h. The
value µh = 2.52± 0.3 m2/V s is similar to the mK mobilities reported recently on HOPG [65].
Moreover, knowing that the oscillations start at B0 ≈ 0.4 T the mobility can be estimated using
ωcτ = µB0 = 1, which is the condition for the oscillations to be observed. µ = 2.5 m2/V s is
nearly identical with the value extracted from the Dingle plot.

5.1.3 Temperature dependence of the magnetoresistance

For the sake of completeness, the temperature dependence of the large background magnetoresis-
tance is presented in this section. In 1999 the magnetic field induced metal-insulator-transition
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(MIT) was discovered in the magnetoresistance of graphite [25], i.e., the longitudinal resistance
Rxx as a function of the temperature shows a transition from a metal-like behaviour (dR/dT > 0)
at low magnetic fields to an insulator-like behaviour (dR/dT < 0) at higher magnetic fields. If the
magnetic field is further increased, the metallic state reappears (reentrant metallic behaviour) [67].

The existence of the reentrant metallic behaviour of graphite is already observed in the raw data of
the temperature dependence of the quantum oscillations (previous section). Fig. 5.5 a) shows the
resistance Rxx of HOPG as a function of the magnetic field (B = 0−10 T) for temperatures from
T = 1.17 K (blue curve) to T = 14.15 K (red curve). The insets show details of the temperature
dependence at B = 10 T, B = 5 T and B = 0.2 T (marked by the vertical dotted lines). At these
magnetic fields, no quantum oscillations are observed.

In Fig. 5.5 b) the amplitudes of Rxx for the magnetic fields B = 10 T, B = 5 T and B = 0.2 T are
plotted as a function of the temperature. The temperature dependence of the B = 10 T features is
given by open squares (2), that of the B = 5 T features (multiplied by a factor of 1.56) by triangles
(4) and that of the B = 0.2 T features (multiplied by a factor of 15.6) is given by circles (◦).

For low magnetic fields (B = 0.2 T), a pure insulator-like temperature dependence is observed
(dR/dT < 0). For higher fields (B = 5 T and B = 10 T), the resistance increases (dR/dT > 0) and
then decreases (dR/dT < 0) with increasing temperature, i.e., graphite reveals a reentrant metallic
behaviour.

Fig. 5.5: a) Rxx as a function of the magnetic field for temperatures from T = 1.17 K
to 14.15 K. The magnetic fields, at which the temperature dependence of the
magnetoresistance is further analyzed, are marked by vertical dotted lines (B =

10 T, B = 5 T and B = 0.2 T). Details of their temperature dependence are given
in the insets. b) Temperature dependence of Rxx for given magnetic fields. The
data of the B = 0.2 T and B = 5 T data points are multiplied by a factor of 15.6
and 1.56, respectively. For the high field features, Rxx(T ) reveals a reentrant
metallic behaviour.
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Fig. 5.6: Longitudinal resistance Rxx (log-scale) as a function of the temperature (T =

1.5− 200 K) measured for given magnetic fields. The metallic behaviour ob-
served for low magnetic fields (B = 8 mT) is suppressed when the magnetic field
is increased and for B = 0.131 T Rxx(T ) behaves like an insulator, i.e., between
these two magnetic field values, graphite undergoes a metal-insulator-transition.
For B > 0.2 T, Rxx(T ) reveals a reentrant metallic behaviour.

The metal-insulator-transition is studied in detail for natural graphite at low magnetic field in the
temperature range T = 1.5 - 200 K . The result is shown in Fig. 5.6. The resistance Rxx (note the
log-scale) as a function of the temperature is plotted for given magnetic fields from B = 8 mT to
B = 0.645 T. For B = 8 mT, Rxx(T ) reveals a pure metallic behaviour. When the magnetic field is
increased, the metallic state is continuously suppressed and at B = 0.131 T, Rxx(T ) behaves like
an insulator, i.e., between these two magnetic field values, graphite undergoes a metal-insulator-
transition. When the magnetic field is further increased (B > 0.2 T), the metallic state reappears
(indicated by dots (•) and the dotted line in Fig. 5.6).

The appearance of the metal-insulator-transition in graphite is poorly understood. According to Du
et al. [62] the unusual temperature dependence can be described qualitatively by a two band model.
Detailed theoretical discussions of the metal-insulator transition in graphite can be found in the
literature and include the creation of a dynamical mass due to interactions between Dirac fermions,
which can manifest itself as a metal-insulator-transition [68, 69], superconducting correlations in
the quantum limit [70], and a field induced Luttinger liquid [71].
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5.2 Ultra low temperature magnetotransport measurements

Before discussing the mK magnetotransport data, we show that the quality of the magnetotransport
spectrum is considerably improved when cooling the sample from T = 1 K to mK temperatures.
Fig. 5.7 a) shows Rxx of a natural graphite sample as a function of the magnetic field for different
temperatures between T = 10 mK and T = 1 K. The different curves have been offset by ∆R = 1 Ω

for clarity. The amplitudes of the quantum oscillations diminish with increasing temperature. This
is clearly seen for the spin split features in the magnetic field range B = 6− 8 T (marked by
an arrow). The temperature dependence of the quantum oscillations can again be studied more
systematically in the background removed data ∆Rxx, which is shown in Fig. 5.7 b). For illustration
reasons the magnetic field region is limited to B ≈ 0.6− 0.8 T. In the inset the amplitudes of
the 0.7 T features (marked by a vertical line) are shown for the different temperatures, with the
absolute value of the amplitude increasing by more than 40% when cooling down from T = 1 K
to T = 10 mK.

Fig. 5.8 shows the magnetotransport data of a second natural graphite sample measured at T ≈
10 mK. The raw data of Rxx(B) for B = 0−10 T are shown in Fig. 5.8 a). As for HOPG at higher
temperatures, Rxx(B) increases roughly linearly with the magnetic field, and, at B = 10 T, it is
about three orders of magnitude larger than the zero-field value. The quantum oscillations which
are superimposed on the large magnetoresistance can clearly be distinguished.

Fig. 5.7: a) Low temperature dependence of Rxx(B) between T = 10 mK and T = 1 K.
The amplitudes of the quantum oscillations, superimposed on the large mag-
netoresistance, decrease with increasing temperature (arrow). b) Background
removed signal ∆Rxx(B) for the different temperatures. The amplitudes of the
quantum oscillations of the B = 0.7 T features (arrow) as a function of the tem-
perature is shown in the inset. The absolute value of the amplitude increases by
more than 40% when cooling down from T = 1 K to T = 10 mK.
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The extremely high quality of the data is revealed in the plots of the background removed data
∆Rxx (mΩ) (Figs. 5.8 a) - c)), for successively slower sweeps in order to reveal the quantum oscil-
lations in the different magnetic field regions (dB/dt = 0.05, 0.01 and 0.001 T/min, respectively).
As the oscillations are periodic in 1/B, the optimal number of points used in the averaging de-
pends upon the magnetic field region. For this reason, the amplitudes of the oscillations in Figs.
5.8 a) - c) should not be compared, as different averaging was used to remove the background. The
oscillations start at B0 ≈ 0.067 T. Using again the condition ωcτ = µB0 = 1 to extract the mobility
and the quantum lifetimes, we find µ = 15 m2/Vs and τe = 4.6 ps, τh = 3.3 ps for electrons and
holes, respectively (m∗e = 0.054 me [51] and m∗h = 0.039 me [28]).

In the ∆Rxx(B) data two series of oscillations can clearly be distinguished. Spin splitting of the
features (indicated by arrows) is observed for magnetic fields Bz > 1 T, which is considerably

Fig. 5.8: a) Right axis: Resistance Rxx vs. B measured at T = 10 mK for natural graphite.
a-c) Left axis: Background removed data ∆Rxx over different magnetic field re-
gions. The high field electron (e) and hole (h) features are indicated. The vertical
arrows indicate spin split electron and hole features. Oscillations are observed
for B0 > 0.07 T.
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Fig. 5.9: a) Right axis: Resistance Rxx vs. B measured at T = 10 mK for HOPG. Rxx

increases linearly with the magnetic field, with the superimposed quantum os-
cillations being more distinct than in the higher temperature data (Fig. 5.1). a)
and b) Left axis: Background removed data ∆Rxx showing quantum oscillations
measured over different magnetic field regions with different sweep rates.

lower than the magnetic field Bz > 2 T at which spin splitting was observed at higher temperatures
(T = 1.2 K). The spin splitting of the features will be discussed in detail in Chapter 6 (see also
Ref. [72]).

To compare natural graphite with HOPG, Fig. 5.9 shows the T ≈ 10 mK magnetotransport data of
HOPG. The raw data of Rxx(B) for B = 0−10 T are shown in Fig. 5.9 a) (right axis). 5.9 a) and
b) (left axis) show the background removed resistance ∆Rxx for different regions of the magnetic
field (dB/dt = 0.05 and 0.01 T/min, respectively). The oscillations start at B0 ≈ 0.25 T, which
corresponds to a mobility µ = 4 m2/Vs and the quantum lifetimes τe = 1.2 ps, τh = 0.9 ps. The
positions of the features in magnetic field both of natural graphite and HOPG are essentially the
same, which implies that HOPG and natural graphite have almost identical Fermi surfaces. This
is in agreement with magneto-optical studies [33].

Nevertheless the quality of the natural graphite data is higher than that of HOPG. This can be
seen when comparing the data of Fig. 5.8 b) and Fig. 5.9 b) for natural graphite and HOPG,
respectively. Both data sets have been measured under the same conditions (sweep rate dB/dt =
0.01 T/min, T = 10 mK). In natural graphite the oscillations start at lower magnetic field (B0 ≈
0.16 T in natural graphite vs. B0 ≈ 0.22 T in HOPG). Moreover, spin splitting is observed in
natural graphite for more features. The better quality of the natural graphite data compared to the
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Fig. 5.10: Spectral intensity of the Fourier transform |F(B)| of the background removed
data ∆Rxx(1/B) measured at mK temperature for a) natural graphite and b)
HOPG. The frequencies of the electron and hole oscillations are very similar:
BF,h ≈ 4.45± 0.05 T and BF,e ≈ 6.15± 0.05 T. The smaller broadening of the
natural graphite peaks (Full width at half maximum (FWHM) indicated) results
from the better quality of the data.

HOPG data implies that natural graphite has less crystal defects than HOPG, as less crystal defects
lead to a longer quantum lifetime τ and therefore to a reduced broadening Γ = h̄/τ of the Landau
bands. The reduced overlap of the Landau bands results in a lower onset magnetic field of the
quantum oscillations.

Fig. 5.10 shows the spectral intensity of the Fourier transformation both for natural graphite and
HOPG. Both types of bulk graphite show two distinct features with very similar frequencies. Note
that at mK temperatures the hole and electron peaks have comparable amplitudes, in contrast to
the T = 1.2 K data for which the electron peak is two orders of magnitude smaller. The better
quality of the natural graphite data compared to the HOPG data reveals itself by “sharper” features
(smaller broadening) and a higher intensity of the electron peak compared to the hole peak.
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5.3 Phase/Frequency analysis of mK magnetotransport data

The large number of oscillations observed in the magnetotransport data for natural graphite at mK
temperature can be exploited to make a detailed phase/frequency analysis of the quantum oscilla-
tions. Both parameters are crucial for the understanding of the topology of the Fermi surface.

The extraction of the phase and the frequency of the oscillations is based on the principle that
when shifting a function from f (B) to f (B−B0), a phase factor e−iϕ0 is added to the Fourier trans-
form, F̃(B) = F(B−B0) = F(B)e−iϕ0 . Introducing the so-called phase shift function K(ϕ,B) =
ℜ
[
eiϕ F̃(B)

]
= cos(ϕ−ϕ0)F(B), both the frequency BF and the phase ϕ0 can be detected simulta-

neously as the position of the maximum in the ϕ−B plane [73]. K(ϕ,B) is plotted in Figs. 5.11 b)
and c) in the regions of the fundamental frequencies of the electrons and holes. From the maxima
the determined frequencies and phases in units of 2π are BF,h = 4.51±0.1 T, ϕ0,h =−0.43±0.1
and BF,e = 6.14±0.05 T, ϕ0,e =−0.28±0.1 for holes and electrons, respectively.

With the oscillatory part of the magnetization given by

Mosc ∝ cos
[

2π

(
BF

B
− γ±δ

)]
, (5.5)

with γ = 1/2 for massive charge carriers and γ = 0 or 1 for massless Dirac like carriers. The phase
term δ reflects the curvature of the Fermi surface in the z-direction. It has the value δ = 0 for a
two-dimensional cylindrical Fermi surface. For a three-dimensional corrugated Fermi surface it

Fig. 5.11: a) Spectral intensity of the Fourier transform |F(B)| of the background removed
data ∆Rxx(1/B) of natural graphite measured at mK temperature (Section 5.2).
The electron and hole oscillations have frequencies of BF,h = 4.51± 0.1 T and
BF,e = 6.58±0.1 T. b) and c) Phase shift function K(ϕ,B) in the ϕ−B plane in
the regions of the hole and electron features. The frequencies and phases of the
oscillations are given by the maxima. BF,h = 4.51±0.1 T, ϕ0,h =−0.43±0.1 and
BF,e = 6.14±0.05 T, ϕ0,e =−0.28±0.1 for holes and electrons, respectively.
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Fig. 5.12: Orbital quantum number N as a function of the inverse magnetic field position
of the minima in ∆Rxx(B) for a) N < 100 and b) N ≤ 5. The solid lines are the
expected linear dependence for the value BF and the phase ϕ extracted from
the phase shift function, giving a nearly perfect fit to the data. A clear deviation
from the 1/B periodicity is seen in b) for the N ≤ 2 features.

has the value δ =±1/8, where the plus and minus sign correspond to minima and maxima cross
sections, respectively. Note, however, that defining the phase values with respect to de Haas-van
Alphen oscillations adds an additional phase term of +π/2 which can be incorporated in the value
of δ . It has therefore the value δ = +1/8 for maxima cross sections of the Fermi surface probed
by Shubnikov-de Haas oscillations.

For the majority electrons and majority holes, the SWM-model predicts the phase values ϕ =

−γ + δ = −0.375. The phase values obtained from the phase shift function both for electrons
and holes are in reasonable agreement with the phase values theoretically expected for massive
three-dimensional charge carriers described in the SWM-model.

Another way of illustrating the frequency and phase values of the oscillations is the so-called N vs.
1/B plot. In graphite, we have experimentally ρxx� ρxy (see Fig. 5.1 b)) so that the tensor relation
for the conductivity (Eq. (A.4) in the Appendix) simplifies to give

σxx =
ρxx

ρ2
xx +ρ2

xy
∝

1
ρxx

. (5.6)

Therefore, conductivity maxima which occur at coincidences of Landau bands and the Fermi
energy EF , correspond to minima in ∆Rxx(B) [8]. In Fig. 5.12 we show the positions of the
minima in inverse magnetic field as a function of the orbital quantum number N, assigned to the
electron and hole minima of ∆Rxx(B). For N < 25 the magnetic field positions of each series of
oscillations can be determined directly from ∆Rxx(B). For N > 25, pass band frequency domain
filtering was used to separate the superimposed electron and hole features. For both electron and
hole features angular quantum numbers in the range 1 < N < 90 (to almost N = 100 for electrons)
are observed.
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The solid lines in Fig. 5.12 correspond to N = BF/B+ ϕ (with ϕ = −γ + δ ) with BF and ϕ

obtained from the phase shift function. They give a nearly perfect fit to the data at low magnetic
fields, i.e., high quantum numbers N. However, for high magnetic fields (low quantum numbers N)
there is a strong deviation from the 1/B periodicity, as shown in Fig. 5.12 b) for 1≤ N ≤ 5. This
deviation from the 1/B periodicity is due to an electron-hole cross talk, leading to a considerable
movement of the Fermi energy as the quantum limit is approached [74]. The observed deviations
from the 1/B periodicity at high magnetic fields means that the T = 1.2 K data with a very limited
number of quantum oscillations cannot be used to extract the phase of the quantum oscillations.
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5.4 SWM-model and the interpretation of quantum oscillations

In this section we demonstrate that the magnetotransport data of graphite can be fully understood
within the frame work of the Slonczewski, Weiss and McClure (SWM) model. Before going into
the details of the discussion, it is expedient to summarize the essential results of this model. Fig.
5.13 shows the Fermi surface calculated within the SWM-model. Note that the kz-axis has been
divided by a factor of about 5 for illustration reasons. The Fermi surface has two pockets: one
hole pocket and one electron pocket, corresponding to the two types of oscillations observed in
graphite. The frequency of the quantum oscillations in magnetic field is linked to the extremal
cross section areas S of the Fermi surface perpendicular to the applied magnetic field (Eq. (2.11)),

∆
1
B
=

2πe
h̄S

.

Consequently BF = h̄∆S/2πe. As the electron cross section (kz = 0) is bigger than the hole cross
section (kz ≈ 0.3), Se > Sh (see Fig. 5.13 a)), the oscillations with the higher fundamental fre-
quency observed in the magnetotransport data are ascribed to electrons, whereas the oscillations
with the smaller fundamental frequency are ascribed to holes.

For a more detailed analysis of the oscillations the band structure of graphite in a magnetic field
has to be discussed. In Fig. 5.13 b) the calculated band structure for B = 1.75 T is shown (γ3 =

Fig. 5.13: a) Fermi surface of graphite calculated within the SWM-model. The two oscilla-
tions observed in the magnetotransport data are due to electrons at the K point
and holes close to the H point. The fundamental frequencies are linked to the
extremal cross sections by BF = h̄∆S/2πe, i.e., the oscillations with the higher
frequency are due to electrons and the oscillations with the smaller frequency
are due to holes, as Se > Sh. b) Band structure of graphite at B = 1.75 T as
a function of kz. The local extrema corresponding to maxima in the density of
states are marked by dots (•).
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0). The bands are split into Landau bands. The energies of the electron bands decrease with
decreasing magnetic field, while the energies of the hole bands increase with decreasing magnetic
field. Consequently as the magnetic field is varied both the electron and hole bands cross the Fermi
energy. Minima in ∆Rxx are observed when local minima or maxima of the bands, corresponding
to the extremal cross sections of the Fermi surface (marked by dots (•) in Fig. 5.13 b)), cross the
Fermi energy. This can be derived from the Einstein relation of the conductivity [75], which reads

σxx = e2DOS(EF)D, (5.7)

with the conductivity being directly proportional to the diffusion constant D and the density of
states at the Fermi energy DOS(EF). The density of states of a band N is given by [41]

DOSN =
∫

SN(E)

dS
4π3

1
|∇EN(k)|

, (5.8)

with SN being the surface of the Landau band and ∇EN(k) being the k–gradient of the Landau
band energy EN(k). To obtain the density of states at the Fermi energy, the gradient of the bands
at the Fermi energy has to be calculated for a given magnetic field. In graphite this calculation is
radically simplified, as the band structure becomes quasi-one-dimensional, depending only on the
wave vector in z-direction, kz. The density of states has therefore singularities at

dEN

dkz
(B) = 0, (5.9)

that is for local maxima and minima of the bands. Consequently maxima in the conductivity are
observed when local extrema of the bands cross the Fermi energy. With σxx ∝ 1/ρxx (Eq. (5.6)) in
graphite, maxima in the conductivity translate to minima in the resistivity. This means that minima
in the longitudinal resistance Rxx due to electrons and holes are observed when local minima of
the electron bands at the K point (kz = 0) and local maxima of the hole bands with kz ≈ 0.3 close
to the H point (kz = 0.5) cross the Fermi energy.

For a quantitative agreement, the magnetotransport data has to be fitted to the full SWM-model
(γ3 6= 0). This means that the magnetic field values of the minima in ∆Rxx have to coincide with
the magnetic field values at the crossing of the local extrema with the Fermi energy in the band
structure model. The starting point of the fitting procedure are the values of the SWM γ-parameters
and the value of the Fermi energy taken from previous experiments and summarized in Ref. [28]
(see Table 5.1). Initially we restrict ourselves to the magnetic field region B < 2 T. In this region
it is a good approximation that the Fermi energy is constant, as many Landau bands are below the
Fermi energy and the Fermi energy is stabilized (h̄ωc� EF ). We come back to the problem of the
Fermi energy movement when we look at the calculations performed at higher magnetic fields. The
eight parameters (γ-parameters and Fermi energy) given in Ref. [28] where stepwise refined until
a good agreement between the measured data points and the SWM fit was obtained. Even with
the large desktop computing power available nowadays for numerically diagonalizing the SWM
Hamiltonian, the procedure of finding a reasonable fit was time consuming (more than two weeks),
due to the large parameter space and the large size of the magnetic field SWM Hamiltonian.
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Fig. 5.14: a) Spin split electron (increasing with B) and hole (decreasing with B) bands,
which correspond to maxima in the density of states (dE/dkz = 0), as a func-
tion of the magnetic field calculated from the SWM-model for 0.4 ≤ B ≤ 2 T.
The crossing of the electron and hole bands with the constant Fermi energy is
in nearly perfect agreement with the measured magnetic field values of the elec-
tron features (dotted lines) and hole features (dashed lines), shown in b). The
parameters for the calculations are given in Table 5.1.
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Parameters This work Ref. [28]

γ0 (eV) 3.37±0.02 3.16±0.05
γ1 (eV) 0.363±0.05 0.39±0.01
γ2 (eV) −0.0243±0.001 −0.02±0.002
γ3 (eV) 0.31±0.05 0.315±0.015
γ4 (eV) 0.07±0.01 0.044±0.024
γ5 (eV) 0.05±0.01 0.038±0.005
γ6 = ∆ (eV) −0.007±0.001 −0.008±0.002
EF (eV) −0.0287±0.001 −0.024±0.002
gs 2.4±0.1 –
n0 (cm−3) −(2.4±0.4)×1017 –

Table 5.1: Summary of the SWM parameters found in this work and compared to the values given
in Ref. [28].

Fig. 5.14 a) represents the result of the fitting procedure at low magnetic field with a constant
Fermi energy. The band energy plotted as a function of the magnetic field corresponds to local
extrema of the bands (see Fig. 5.13). Contrary to the schematic picture of Fig. 5.13 b), spin
splitting has been taken into account. The bands with increasing energy for increasing magnetic
field are electron bands. The bands with decreasing energy for increasing magnetic field are hole
bands. The Fermi energy is at EF ≈ −29 meV. The crossing of the electron and hole bands with
the Fermi energy is in nearly perfect agreement with the measured magnetic field positions of the
minima features of the electron (dotted lines) and hole (dashed lines) oscillations (Fig. 5.14 b)).

The parameters found by the fitting procedure are given in Table 5.1. While we are unable to
fit our data with exactly the same tight binding parameters as in Ref. [28], the values we find
are nevertheless not significantly different. Moreover, the theoretically predicted [76] effective
electron mass m∗ = 4h̄2

γ1/3a2
0γ2

0 = 0.054me, where a0 = 0.246 nm is the in-plane lattice constant,
calculated using our values for γ0 and γ1, is in good agreement with the accepted value of m∗ =
0.054me found by means of cyclotron resonance measurements [51].

If we assume a constant Fermi energy for magnetic fields B > 2 T, the magnetic field values at
which the Fermi energy crosses the bands differ significantly from those observed experimentally.
This is shown in Fig. 5.16 a). The dashed line corresponds to the constant Fermi energy. The
crossing points of the constant Fermi energy with the bands are marked by arrows. The experi-
mental magnetic field values are given by the vertical dashed and dotted lines, respectively. The
differences of the magnetic field values reveal themselves in the deviation of the 1/B periodicity in
the 1/B vs. quantum number N plot of Fig. 5.12. The deviations can be explained by a movement
of the Fermi energy as the quantum limit is approached [74]. Qualitatively this can be understood
considering that at high magnetic fields fewer bands are located in the vicinity of the Fermi energy,
i.e., when the magnetic field is changed, electrons and holes are transferred between the electron
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Fig. 5.15: a) Band structure for B = 6 T (γ3 = 0) to illustrate the self-consistent calculation
of the Fermi energy. The electron and hole concentrations are given by ne =

B · (ke,0 + ke,1) and nh = B · (kh,0), respectively. b) At low magnetic field (B =

1.75 T), many more bands are found below (electrons) and above (holes) the
Fermi energy and the movement of the Fermi energy can be neglected.

and hole puddles in order to keep the difference of the electron and hole concentration constant,

ne−nh = n0. (5.10)

In a perfect graphite lattice with no defects, the density of the electrons, ne, equals the density of
the holes, nh [28]. However, the real lattice is doped with impurities. Those impurities - ionized
donors (n+) and acceptors (n−) - result in an imbalance of the electron and hole concentration.
The difference of the electron and hole concentration is given by n0 = ne−nh = n+−n−. n0 gives
rise to the Hall signal ρxy = B/e(nh−ne) (Eq. (5.2)) shown in Fig. 5.1 b).

The electron and hole concentration and therefore the movement of the Fermi energy can be cal-
culated self-consistently within the SWM-model. The electron and hole concentrations of a given
band N, nN , are proportional to the magnetic field B multiplied by the energy integral of the density
of states,

nN ∝ B ·
∫

E
DOS(k)dE. (5.11)

The magnetic field dependence of the electron concentration arises from the degeneracy of the
Landau bands ξ ∝ eB/h. In Eqs. (5.8) and (5.9) we have shown that the density of states in
graphite reduces to a quasi-one-dimensional density of states. Consequently Eq. (5.11) gives

n ∝ B ·
∫

E
DOS(k)dE = B ·

∫ 1(
dE
dkz

)dE = B ·
∫

dkz ≈ B ·∑∆kz. (5.12)

Fig. 5.15 a) demonstrates the calculation of the Fermi energy at high magnetic field (B = 6 T,
γ3 = 0). In this magnetic field region we only have to consider the bands N = 0 and N = 1+ for
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the electron concentration and the band N = −1 for the hole concentration. With Eq. (5.11) the
electron and hole concentrations are given by

ne = B · (ke,0 + ke,1) and nh = B · (kh,0) .

When the magnetic field is decreased, the energy of the electron band N = 1+ decreases while the
band energy of the N = 0 band stays to a good approximation constant. If the Fermi energy was
constant, the electron concentration would increase due to the increasing value of ke,0. However,
this is forbidden by the “neutrality” condition ne−nh = n0. Consequently the Fermi energy has to
decrease, which reduces the value of ke,0 and increases the value of kh,0. Numerically the value of
the Fermi energy was found by incrementally changing its value until the condition ne− nh = n0

was fulfilled.

At lower magnetic fields, many more bands are below (electrons) and above (holes) the Fermi
energy. This is illustrated in Fig. 5.15 b) for B = 1.75 T. ne and nh are given by

ne = B ·∑
i

ke,i and nh = B ·∑
j

kh, j.

It is evident that due to the large number of bands the Fermi energy is stabilized at low magnetic
fields, i.e., adding electrons or holes due to changes of the magnetic field does not require signifi-
cant changes of the Fermi energy to fulfill ne−nh = n0 and the movement of the Fermi energy can
be neglected.

Fig. 5.16 shows the electron and hole bands as a function of the magnetic field from B= 0.5−10 T.
The Fermi energy was calculated self-consistently with the above described method. The impurity
concentration was assumed to be low, i.e., about 1.5% of the electron and hole concentration. The
agreement between the magnetic field values at which the Fermi energy crosses the bands and
those observed experimentally (dashed and dotted lines) is once again remarkable.
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Fig. 5.16: Electron and hole bands for 0.4 ≤ B ≤ 10 T. The Fermi energy is calculated
self-consistently, keeping the difference of the electron and hole concentration
constant, i.e., ne− nh = n0. The agreement with the magnetic field positions of
the electron features (dotted lines) and hole features (dashed lines) extracted
from the magnetotransport data b) is remarkable. The arrows mark the mag-
netic field positions at which the features should occur if the Fermi energy was
constant.

5.5 Majority Dirac carriers in magnetotransport of graphite?

In 2004, the authors of Ref. [73], Luk’yanchuk and Kopelevich, claimed that a macroscopic con-
centration of massless charge carriers with linear energy spectrum exists in graphite and governs
its electronic transport properties. Their findings are based on the phase analysis of quantum os-
cillations in magnetotransport and de Haas-van Alphen oscillations. They claimed that one type
of oscillations observed in graphite has a phase of γ = 1/2 as predicted by the SMW-model, while
the other type of oscillations has a phase of γ = 0 in contradiction to the SMW-model (see discus-
sion in Chapter 3.2). In subsequent papers they suggested that due to the fact that these carriers
have the same nature as Dirac fermions observed in graphene, graphite consists of graphene lay-
ers which are electronically almost independent [59, 77]. They came to the conclusion that the
classical SWM-model has to be revised.

The view point that graphite is a system of independent mono and multi carbon layers is in
strong contradiction to our work, in which we demonstrated that the results of magnetotransport
in graphite can be fully understood within the frame work of the SWM-model [78]. The question
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in which model graphite should be described became subject of an ongoing debate [79,80]. In this
section we put forward some explanations which are aimed at correcting the controversy.

In Ref. [59] Luk’yanchuk and Kopelevich extract the phase values of the quantum oscillations
from a 1/B vs. N plot of magnetotransport data. In Fig. 5.12 we showed such a plot for our low
temperature data. As N = B0/B− γ + δ , the phase can in principle be extracted by plotting the
quantum number N as a function of the positions of the features in inverse magnetic field 1/B
followed by a linear fit of N(1/B) which is extrapolated to N(1/B → 0). At N(1/B → 0) the
phase term is given by ϕ = N(1/B = 0) =−γ +δ .

Fig. 5.17 a) shows the 1/B vs. N plot of magnetotransport data presented in the paper of
Luk’yanchuk and Kopelevich of 2006 [59]. Note that they only observed Shubnikov-de Haas
oscillations at B > 1 T, i.e., 1 ≤ N ≤ 5. They assigned both minima (◦) of the oscillations (inte-
ger quantum numbers N) and maxima (×) of the oscillations (half integer numbers N). Our low
temperature data shows that the assignment of maxima features to half integer quantum numbers
is questionable, as features clearly reveal themselves as minima in the magnetotransport raw data
(Fig. 5.8 a)). A linear fit through the data gives BF,low = 4.62 T, ϕlow =−0.6 for the low frequency
oscillations and BF,high = 6.16 T, ϕhigh = 0 for the high frequency oscillations. This would imply
that the charge carriers giving rise to the high frequency oscillations are of Dirac like nature.

However, a direct comparison between our low temperature data and the data of Luk’yanchuk
and Kopelevich [59], presented in Fig. 5.17 b) explains the discrepancy. Note that even though

Fig. 5.17: a) 1/B vs. N plot extracted from Ref. [59]. The data points “◦” and “×” corre-
spond to maxima and minima positions of Shubnikov-de Haas oscillations, re-
spectively. A linear extrapolation of the data to 1/B = 0 (solid lines) allows to
extract the phase factor ϕ . The phase ϕ = 0 (γ = 0, δ = 0) is characteristic
for two-dimensional Dirac fermions. b) Comparison of the data from Ref. [59] to
our low temperature data. The extrapolation of a phase from data which is non
periodic in 1/B is questionable.
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the positions of the features are similar, our low temperature data reveal a strong deviation from
the low magnetic field behaviour, given by the solid line (with the frequencies and the phases
extracted from the Fourier transform (see Fig. 5.12)). The deviation from the 1/B periodicity is
due to the electron hole cross talk, which leads to a considerable movement of the Fermi energy.
The extrapolation of a phase term from data which is not periodic in 1/B is at the very least highly
questionable.

Remark: In Ref. [73] Luk’yanchuk and Kopelevich, in order to assign the γ = 0 series to holes
at the H point, are obliged to invert the well-established assignment of the high frequency series
to electrons at the K point and the low frequency series to holes close to the H point [14]. If
correct, this reassignment would have far reaching consequences, changing the position of the
Fermi energy and modifying some of the SWM parameters. A number of problems with Ref.
[73] have already been pointed out, notably concerning the validity of this reassignment [22].
Moreover, the sign of the de Haas-van Alphen signal, invoked by Luk’yanchuk and Kopelevich to
lend support to the reassignment, cannot be used to determine the nature of the charge carriers [22].

5.6 Minority carriers in graphite?

In Section 3.2 it was shown that apart from the two types of majority charge carriers (electrons and
holes), the SWM-model predicts a third kind of charge carriers located at the H point of graphite
(see Fig. 3.6). Due to their small Fermi surface extremal cross section, the carriers at the H points
are referred to as minority holes. Oscillations with a much smaller fundamental frequency were
first discovered by Soule (de Haas-van Alphen studies) [81] and further investigated by Williamson
et al. (de Haas-van Alphen) [13], Anderson et al. (de Haas-van Alphen) [82] and Woollam
(thermoelectric power and magnetotransport studies) [83]. According to those publications the
existence of at least one additional minority group appears to be beyond doubt. Its fundamental
frequency was determined to be BF,m ≈ 0.3 T.

Despite the high quality of the mK magnetotransport data obtained for natural graphite (see Sec-
tion 5.2), a third series of oscillations is neither seen in the background removed data at low
magnetic field (Fig. 5.8 c)), nor in the spectral intensity of the Fourier transformed signal of
∆Rxx(1/B). This is surprising, since the quantum oscillations already start at B0 ≈ 0.07 T, and at
least four minority features should be observed in this magnetic field region (BF,m/4 = 0.075 T).
A possible explanation for not observing minority carrier oscillations in the mK magnetotransport
data is that the minority carrier oscillations are hidden by the majority carrier oscillations in this
magnetic field region. The problem can be overcome when the magnetic field is swept faster. This
results in a lower resolution in magnetic field, i.e. the rapidly oscillating majority features at very
low magnetic field are not resolved. A faster sweep shifts therefore the onset magnetic field of the
majority quantum oscillations B0 to higher magnetic fields.

Fig. 5.18 shows Rxx and the background removed resistance ∆Rxx measured at mK temperatures
with a magnetic field sweep rate of dB/dt = 0.05 T/min (instead of dB/dt = 0.001 T/min in
Section 5.2) in the magnetic field range −0.6 ≤ B ≤ 0.6 T. For this sweep rate, the majority
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Fig. 5.18: a) Rxx and ∆Rxx of natural graphite measured at mK temperature with a sweep
rate of dB/dt = 0.05 T/min (instead of dB/dt = 0.001 T/min in Fig. 5.8 c)) in
the magnetic field range−0.6≤ B≤ 0.6 T. A third series of features is observed
at low magnetic fields. b) Zoom in on the low magnetic field features at pos-
itive polarization of the magnetic field. The presumed third series of quantum
oscillations is marked by arrows. Inset: N vs. 1/B plot. The features at higher
magnetic field are periodic in BF,m/B with BF,m ≈ 0.3.The features at lower field
have rather a fundamental frequency of BF,m ≈ 0.05 T.

quantum oscillations start at higher magnetic field (B0≈ 0.12 T instead of B0≈ 0.07 T). In addition
to the majority quantum oscillations, a third series of features appears at very low magnetic field.
Fig. 5.18 b) provides a closer look on these features for positive polarization of the magnetic
field (0 ≤ B ≤ 0.35 T). The features are marked by arrows, assuming the fundamental frequency
BF,m ≈ 0.3 T of minority hole oscillations is correct and that the N = 1 feature should therefore
be observed at B ≈ 0.3 T. However, the N vs. 1/B plot does not reveal the expected simple linear
dependence (inset of Fig. 5.18 b)). While the oscillations for B > 0.1 T with a fundamental field
BF,m ≈ 0.3 T are periodic in BF,m/B (solid line) the features at lower magnetic field do not fit to
this series. They could be consistent with another minority carrier series with BF,m ≈ 0.05 T but
the very few data points do not allow a definitive assignment. Further studies, notably de Haas-van
Alphen experiments using a low-frequency field modulation technique as in Ref. [13] are needed.
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5.7 Conclusion

Based on our results of low temperature magnetotransport data, we come to the conclusion that the
charge carriers in graphite are perfectly described by the SWM-model. Not only the frequencies
and phases extracted from the mK magnetotransport data are in agreement with what is predicted
by the SWM Fermi surface of graphite, but detailed SWM calculations in magnetic field show that
the observed features in magnetotransport can be reproduced nearly perfectly by the crossing of
the Landau bands with the Fermi energy. The deviations of the features form the 1/B periodicity
at high magnetic fields can be explained by a movement of the Fermi energy due to a consider-
able electron hole cross talk. Our findings are in agreement with a great number of experiments
performed so far, e.g. magnetotransport [9–12], de Haas-van Alphen oscillations [9, 13], mag-
neto reflection [14,15], microwave absorption and cyclotron resonance [16,17], and very recently
Nernst effect [18].
Minority carrier oscillations in magnetotransport are probably observed but further measurements
are required to clarify this point.
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6 High field magnetotransport:
Spin splitting and CDW phase

Résume du chapitre

Nous avons effectué des mesures de magnétotransport sur le graphite sous champ magnétique
intense incliné (0 < B < 28 T) pour étudier l’effet Zeeman. Puisque le mouvement orbital des
porteurs de charge ne dépend que de la composante perpendiculaire du champ magnétique B⊥, le
champ magnétique dans le plan peut être utilisé pour modifier l’énergie de Zeeman g∗µBB. Nous
avons obtenu la valeur g∗ = 2.5± 0.1 pour 1.5 ≤ B ≤ 22 T ce qui est supérieur à la valeur de
g = 2.0023 pour des électrons libres. La valeur nettement plus grande trouvée ici est attribuée aux
interactions multi-corps (interaction d’échange).
Des mesures de magnétotransport du graphite sous champ magnétique intense (0 < B < 28 T) ont
été également employées pour étudier l’onde de densité de charge pour différentes températures
entre T = 50 mK et T = 0.9 K. L’onde de densité de charge se caractérise par une augmentation
suivie d’une réduction de la magnétorésistance aux champs magnétiques élevés [26,27]. En accord
avec la Réf. [27], le champ magnétique BCDW auquel l’onde de densité de charge apparait diminue
à température décroissante. BCDW et la température sont liés par une équation de type Bardeen-
Cooper-Schrieffer (BCS).

The present chapter focuses on high field magnetotransport of natural graphite and HOPG in the
magnetic field range 0 ≤ B ≤ 28 T performed on a 20 MW resistive magnet. It is divided into
two parts: The study of the spin splitting of magnetotransport features in tilted field configuration
and the observation of a charge density wave (CDW) phase for different temperatures with the
magnetic field applied normal to the sample plane.

Spin splitting: In the first part of the chapter we focus on spin split features observed in the
magnetotransport data of ∆Rxx(B). While orbital effects have been extensively used to caliper
the Fermi surface [9–11, 59, 73, 83], the more subtle spin effects have received less attention.
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This is perhaps because the well documented movement of the Fermi energy in magnetic field
seriously complicates the extraction of the spin splitting (g-factor) from the magnetotransport
data (see previous chapter). Recent advances in experimental techniques, in particular the vastly
increased desktop computing power available for diagonalizing the SWM Hamiltonian, makes it
timely to revisit this problem, extending previous measurements to higher magnetic fields and
lower temperatures.

The g-factor of graphite has been precisely measured using electron spin resonance. It is slightly
anisotropic and close to the free electron value [37,38,84,85] due to the small spin orbit coupling
of carbon [50]. However, in accordance with Larmor’s theorem, electron spin resonance is insen-
sitive to many body effects, and measures the undressed spin splitting corresponding to neutral
excitations [86]. Transport techniques on the other hand probe charged spin excitations which
include the exchange interaction due to many body effects. The difference between the electron
spin resonance and the transport spin splitting is therefore a measure of the importance of many
body effects in graphite.

Here, we extend our previous low temperature investigation of natural graphite using tilted mag-
netic fields up to B= 28 T in order to probe the spin splitting of the orbital features in the magneto-
transport. Since the orbital motion of the carriers depends only on the perpendicular component of
the magnetic field, the in-plane magnetic field in the tilted field configuration can be used to tune
the Zeeman energy. The magnetic field splitting, ∆B, of the orbital features due to the spin degree
of freedom, does not show the expected quadratic increase as a function of the total magnetic field
(see Section 6.1.3). This is direct experimental evidence that the Fermi energy is not constant but
rather moves in the magnetic field. The magnetotransport data in tilted magnetic fields has been
analyzed using the SWM-model, including a self-consistent calculation of the Fermi level move-
ment, to extract the spin splitting, and hence the g-factor, g∗ = 2.5± 0.1 for both electrons and
holes. The usual simple model which calculates the magnetic field position for the spin Landau
bands crossing the Fermi energy can explain the observed ∆B versus total magnetic field depen-
dence provided the movement of the Fermi level, taken from the SWM-model, is included. Within
experimental error, we find no evidence for an anisotropy of the magnetotransport g-factor.

The results of this part of the chapter have been published in [J. M. Schneider et al., Phys. Rev. B,
81, 195204 (2010)].

Charge density wave (CDW) phase: In Ref. [26] it was reported for the first time that the mag-
netoresistance in graphite increases abruptly at high magnetic fields and low temperatures. Since
then, a number of experiments has been performed in order to explain the nature of this mag-
netic field induced phase [12, 27, 58, 87–90]. The fact that the critical field, at which the resis-
tance increases sharply, has a strong temperature dependence suggests that this phenomenon can
be interpreted by an electronic phase transition involving many–body effects [87]. Whereas the
real nature the magnetic field induced phase remains still to be found, Yoshioka and Fukuyama
showed that it can be discussed theoretically in terms of the formation of a charge density wave
phase associated with a one-dimensional energy spectrum [91]. In this chapter we extend temper-
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ature dependent measurements of the charge density wave phase presented recently in Ref. [27]
(T ≥ 1.1 K) to lower temperatures (T ≤ 1.0 K). Our data agrees with the findings that the critical
temperature, at which the sharp increase of the resistance is observed, is linked to the applied field
by a Bardeen-Cooper-Schrieffer (BCS)-type formula [92].

73



CHAPTER 6. HIGH FIELD MAGNETOTRANSPORT: SPIN SPLITTING AND CDW PHASE

6.1 Spin splitting

6.1.1 Experiment

For the measurements we used the same mm-size pieces of natural graphite as discussed in the
previous chapter. The silver paint contacts were made in an approximate Hall-bar configuration
with the current flowing in the ab plane. The measurements were performed using a 28 T re-
sistive magnet and a 3He cryostat (T ≈ 300 mK), equipped with an in situ rotation stage. The
longitudinal resistance Rxx(B) was measured using conventional phase sensitive detection with a
current of 10 µA at 10.7 Hz. The exact orientation of the rotation stage corresponding to B‖ab was
determined experimentally by minimizing the magnetoresistance Rxx(B) at low magnetic field [9].

6.1.2 Angular dependence of the quantum oscillations

The longitudinal resistance Rxx as a function of the magnetic field from B = 0−28 T for various
orientations of the magnetic field between θ = 0◦ (B⊥ab) and θ = 90◦ (B‖ab) is shown in Fig. 6.1
a). In perpendicular magnetic field (θ = 0◦), Rxx(B) increases by three orders of magnitude be-
tween B = 0 T and B = 21 T. Above 21 T the resistance decreases signalling the onset of a charge
density wave state [12,27,58,87–90]. In the magnetic field range 0 < B < 8 T, small quantum os-
cillations due to the majority electrons and holes are superimposed on the large magnetoresistance
background [10, 11, 59, 73, 78, 83]. When the sample is tilted away from B⊥ab, the magnetore-
sistance is strongly suppressed, which is a clear signature of the highly anisotropic nature of the
carrier transport in graphite. Nevertheless, the magnetoresistance for θ = 90◦ remains consider-
able. It is only one order of magnitude smaller than for θ = 0◦. However, this could be attributed
to a small residual B⊥ab component of the magnetic field if the sample was slightly misaligned
on the rotation stage preventing the θ = 90◦ condition ever being reached. Comparing the θ = 0◦

and the θ = 90◦ data curves, we estimate that an experimentally plausible misalignment of ' 2.7◦

would be sufficient to explain the observed magnetoresistance. Additionally, the lack of crystal
perfection, e.g. the possible misalignment of layers within the sample, should be considered [93].

For increasing tilt angles the quantum oscillations are shifted to higher (total) magnetic field. The
quantum oscillations are better seen in the background removed data ∆Rxx. Here the large mag-
netoresistance background is again removed by subtracting a smoothed (moving window average)
data curve. A Fourier transformation of the ∆Rxx vs. 1/B data with the magnetic field applied per-
pendicular to the sample plane, gives fundamental frequencies of BF = 6.15 T and BF = 4.50 T for
electrons and holes, respectively. In Fig. 6.1 c) ∆Rxx is shown as a function of the perpendicular
magnetic field B⊥ = Bcos(θ). Plotted in this way there is no shift of the magnetic field position
of the quantum oscillations with the tilt angle showing that their position depends only on the per-
pendicular component of the magnetic field. Thus, the orbital motion of the carriers is effectively
confined within the ab plane (each graphene sheet) due to the extremely anisotropic conductivity
in graphite [28].

This quasi-two-dimensional behaviour is confirmed in Fig. 6.2 where we plot the ratio of the “fun-
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damental” frequencies for the holes and the electrons BF(0)/BF(θ) as a function of the tilt angle
θ . For the holes the fundamental frequency is obtained from the Fourier transformation at each
angle of the corresponding ∆Rxx vs. 1/B curve. For the electrons we use rather the position of the
N = 1 feature since the smaller amplitude of the electron oscillations at high tilt angles makes the
Fourier transform unreliable. For both electrons and holes, for angles up to θ = 70◦, BF(0)/BF(θ)

shows a nearly perfect cos(θ) dependence, indicated by the solid line. The quasi-two-dimensional
behaviour can be explained by the extreme anisotropy of graphite, i.e., the in-plane coupling is
much bigger than the out of plane coupling (ρc� ρab) [28]. This means that the carrier motion is
confined to the plane so that the cyclotron energy depends only on the perpendicular component

Fig. 6.1: a) Rxx(B) for various orientations of the magnetic field (0◦ ≤ θ ≤ 90◦) showing
the rapid decrease in the amplitude of the magnetoresistance for increasing tilt
angles. Quantum oscillations are superimposed on the large magnetoresistance
background. b)-c) Background removed signal ∆Rxx as a function of b) the total
magnetic field and c) the perpendicular magnetic field B⊥ = Bcos(θ). In c) the
N = 1, 2 electron and N = 1 hole features are indicated by vertical solid lines
showing that they depend only on the B⊥ component of the magnetic field.

75



CHAPTER 6. HIGH FIELD MAGNETOTRANSPORT: SPIN SPLITTING AND CDW PHASE

Fig. 6.2: Normalized “fundamental” magnetic field BF(θ = 0)/BF(θ) as a function of the
angle for the electron and hole oscillations. Both electrons and holes show a
nearly perfect cos(θ)-dependence (solid line), revealing the large anisotropy of
graphite.

of the magnetic field B⊥. Nevertheless, the system is not strictly two-dimensional and the weak
coupling between the layers gives rise to Landau bands rather than Landau levels. The oscillations
in Rxx(B) appear when the Landau bands “cross” the Fermi energy (when there is a maximum
in the density of states at EF ). Whereas the angle dependence of quantum oscillations has been
extensively studied [9, 11, 13, 94], there has been, to the best of our knowledge, no detailed study
of the spin splitting of the Landau bands.

6.1.3 Spin splitting

At very low temperatures T ' 10 mK, both the electron and hole features are spin split for mag-
netic fields B⊥ > 1 T [78]. At the higher temperatures used here (T ≈ 300 mK) spin splitting is
resolved only for the high magnetic field N = 1 electron and hole features. Rotating the sample
in field can be used to extract the g-factor since the spin splitting depends on the total magnetic
field, while the energy of the Landau bands depends only on the perpendicular component of the
magnetic field. The experimentally observed splitting ∆B = B↓−B↑, where B↑ and B↓ are the
magnetic field positions of the spin up and spin down features, is plotted as a function of the mean
total magnetic field position Bm = (B↓+B↑)/2 for the N = 1 electron and hole features in Fig. 6.3
a). The magnetic field splitting of the N = 1 electron and N = 1 hole features were obtained from
the tilted field measurements in Fig. 6.1 b). For the N = 1 electron feature ∆B departs significantly
from a quadratic behaviour ∆B ∝ B2

m as indicated by the dashed line in Fig. 6.3 a).

The failure of ∆B to follow a simple quadratic behaviour (see discussion below) is an experimental
signature that the movement of the Fermi energy must be taken into account when extracting the
g-factor. A simple expression can be derived from the crossing points of a given spin up and spin
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Fig. 6.3: a) Magnetic field splitting ∆B as a function of the total magnetic field Bm. The
broken line is the ∆B ∝ B2

m dependence (fitted to the low field data) expected if
the Fermi energy was constant. The solid line is calculated for the N = 1 electron
Landau band using Eq. (6.5) which takes into account the movement of the Fermi
energy using g∗ = 2.53 (discussion in Section 6.1.5). b) Crossing of the N = 1
electron Landau band with EF in the θ = 0 configuration calculated using the
SWM-model with g∗ = 2.53 as described in the text. The movement of EF (solid
line), is calculated assuming a constant total electron and hole concentration.
The dashed lines indicate the slope SN of the N = 1 electron Landau band and
a linear approximation for SF .

down Landau band and the Fermi energy,

∆B =
g∗µBBm

(SN−SF)cos(θ)
=

αBm

cos(θ)
, (6.1)

where SN = ∆EN/∆B⊥ is the slope of the Nth Landau band and SF = ∆EF/∆B⊥ is the slope of the
Fermi energy in the Nth Landau band obtained from the two crossing points as illustrated for the
θ = 0 configuration in Fig. 6.3 b). The angle θ can be taken from experiment, however, a simple
expression can also be derived,

cos(θ) =
BN
⊥+

g∗µB∆B
4(SN−SF )

Bm
=

BN
⊥+

α

4 ∆B
Bm

, (6.2)

where BN
⊥ is the perpendicular magnetic field position for the crossing of the (non spin split)

Nth Landau band and the Fermi energy (see Fig. 6.3 b)). For both equations we have a single
independent dimensionless fitting parameter α = g∗µB/(SN−SF). Thus, to extract the g-factor it
is necessary to know both SN and SF . Neglecting the movement of the Fermi energy, the model
predicts ∆B ∝ B2

m in contradiction with experiment. The dashed line in Fig. 6.3 a) is fitted to the
θ = 0 data point assuming ∆B ∝ B2

m. It does not well reproduce the data set and also requires, if
we assume SF = 0, an unrealistically large g-factor (g∗ ≈ 6.5).
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Eliminating cos(θ) from Eqs. (6.1) and (6.2) gives,

∆B =
αB2

m

BN
⊥+

α

4 ∆B
≈ αB2

m

BN
⊥

(6.3)

since α� 1, so that to a good approximation BN
⊥�

α

4 ∆B. Eq. (6.2) shows that the experimentally
accessible Bm has some physical significance since Bm cos(θ) ' BN

⊥ to a good approximation.
This also implies that Eq. (6.2) should not be used to extract the g-factor since the shift in the
perpendicular magnetic field value of the spin split features ( α

4 ∆B) is too small to be reliably
determined from experiment.

The fact that for a given total magnetic field the splitting ∆B of the (N = 1) hole and electron Lan-
dau bands are the same is at first sight surprising since the effective mass for electrons (0.054 me)
and holes (0.039 me) are fundamentally different [28, 76]. However, we will see that this is fully
consistent with the predictions of the Slonczewski, Weiss and McClure band structure calculations
when the movement of the Fermi energy is included.

6.1.4 Slonczewski, Weiss and McClure model

In order to extract the g-factor, we use the SWM band structure model [2, 23] with its seven cou-
pling parameters γ0, . . . ,γ6 as described in the previous chapter. For γ3 6= 0, the magnetic field
Hamiltonian has infinite order, which was numerically reduced to a 600×600 matrix for the exact
diagonalization procedure. Since the orbital motion of the carriers depends only on the perpendic-
ular component of the magnetic field, the effect of the in-plane magnetic field can be incorporated
into the SWM-model through an effective spin splitting ∆s = geffµBB⊥ where the real g-factor
g∗ = geff cos(θ). In graphite, EF moves with the applied perpendicular magnetic field as carriers
are transferred between the electron and hole pockets [9]. The Fermi level has to be calculated self-
consistently assuming that the sum of the electron and hole concentrations is constant, n− p = n0.
As in the previous chapter, we have used n0 = −2.4× 1017 cm−3. At each angle, the effective
spin splitting is found for which the SWM-model gives the correct magnetic field position for the
crossing of the spin up and spin down Landau band with the Fermi energy. Fitting to the spin split
high magnetic field data requires a slight refinement of the SWM parameters. The values used are
given in Table 6.1. Compared to the values in Table 5.1 (page 63) found from the low magnetic
field (B⊥) magnetotransport data the changes are small, with the parameters γ1 and γ2 changing by
only 3−4%.

Fig. 6.4 a) shows the result for the spin splitting ∆s extracted from the SWM calculations as a
function of the total magnetic field for the N = 1 hole and the N = 1− 4 electron Landau bands.
The data for the N > 1 electron features, taken from Fig. 5.8, was measured only for the θ = 0
configuration at T = 10 mK. The spin splitting is similar for both the electron and hole Landau
bands at a given total magnetic field. ∆s increases linearly with magnetic field and a linear fit to
∆s = g∗µBBm (solid line) for both electron and hole Landau bands gives gs = 2.5± 0.1. While
the value of g∗ found here is similar to the value published by Woollam for the N = 1 electron
feature in θ = 0 configuration, a comparison is not really meaningful since in Ref. [10] the SWM
parameter γ3 was neglected.
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Fig. 6.4: a) Spin splitting ∆s for the electron and hole Landau bands, obtained by fitting
the SWM-model to the data in Fig. 6.3 a), as a function of the magnetic field.
The solid line is a linear fit to the data giving g∗ = 2.53. The dashed line cor-
responds to the free electron value of gs = 2. b) The SWM g-factor for each
data point in a). The thick dashed line corresponds to g∗ = 2.53 while the thin
dashed lines correspond to the anisotropic electron spin resonance g-factor. c)
SWM-calculation of the slope SN of the electron and hole Landau bands where
they cross the Fermi energy as a function of the perpendicular magnetic field
component.

Alternatively, the g-factor calculated from each data point is plotted in Fig. 6.4 b). Within experi-
mental error there is no magnetic field (angular) dependence of the g-factor, which is also consis-
tent with the linearity of ∆s vs. Bm, and justifies a posteriori our neglect the g-factor anisotropy in
the analysis. Anisotropy can be included in our analysis simply by writing ∆s = geffµBB⊥ where
geff = gc + gab tan(θ). However, the scatter in the data (see Fig. 6.4 b)) is comparable to the
anisotropy observed in electron spin resonance measurements. Thus, the anisotropy is too small to
be observed in the magnetotransport data. A value of g∗= 2.5±0.1 is also consistent with the very
simple estimation made from the magnetic field at which spin splitting occurs, (Bz ∼ 1 T), and at
which the Shubnikov-de Haas oscillations start (B0 ∼ 0.07 T) in the perpendicular configuration

Parameters Parameters
γ0 (eV) 3.37±0.02 γ4 (eV) 0.07±0.01
γ1 (eV) 3.377±0.05 γ5 (eV) 0.05±0.01
γ2 (eV) −0.025±0.001 γ6 (eV) −0.007±0.001
γ3 (eV) 3.2±0.05 EF (eV) −0.0287±0.001

Table 6.1: Summary of the SWM parameters used in this chapter.
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and at T = 10 mK [78]. Assuming the Landau level broadening to be independent of the magnetic
field we can write g∗µBBz = h̄eB0/m∗ where m∗ = 0.054me is the effective electron mass [76] so
that g∗ ≈ h̄eB0/m∗µBBz ≈ 2.5.

Electron spin resonance measurements in graphite give a low temperature anisotropic g-factor of
gab = 2.003 for B ‖ab and gc = 2.15 for B ‖c [37, 38]. These values are close to the free electron
value of gab = 2.0023 as expected for carbon with its small spin orbit coupling parameter Λ [50].
In accordance with Larmor’s theorem, optical techniques measure the splitting corresponding to
neutral (k = 0) transitions and are therefore insensitive to many body corrections. Magnetotrans-
port measurements, on the other hand, are sensitive to long wavelength charged excitations which
include the many body (Coulomb) contribution to the spin splitting. The significantly larger value
of g∗ = 2.5± 0.1 found here in transport measurements is therefore attributed to the many body
(exchange) enhancement of the spin splitting. In two dimensions, the enhanced spin gap can be
written [40]

∆s = gµBBm +
n↑−n↓
n↑+n↓

e2

ε`B
, (6.4)

where g differs from the free electron g-factor due to the spin orbit coupling in graphite and the
magnetic length depends only on the perpendicular component of magnetic field. This implies
that for a given Landau band crossing EF , the Coulomb energy e2/ε`B is constant. Therefore,
to reproduce the observed linear dependence of ∆s(Bm) a linear increase in the spin polarization
(n↑− n↓)/(n↑+ n↓) as a function of Bm is required. To verify this a self-consistent calculation
of the spin polarization is necessary since the spin splitting depends on the polarization and vice-
versa.

6.1.5 Spin splitting including the movement of the Fermi energy

In this section we present a simple model which allows to illustrate the Fermi energy movement
SF and therefore the magnetic field dependence of the parameter α(Bm), which is required to
reproduce the non quadratic behaviour of the magnetic field splitting ∆B as a function of the total
magnetic field Bm (see Fig. 6.3 a)). The movement of the Fermi energy within the N = 1 electron
band, shown in Fig. 6.3 b), can be fitted nearly perfectly by a second order polynomial. From
the SWM calculations, we know that the slope of EF at B↓ is to a good approximation constant,
i.e., independent of the spin splitting (angle). Using this fact, the Fermi energy movement for a
given angle can be approximated by shifting the θ = 0 second order polynomial (equivalent to
writing the polynomial with coordinates (B−B↓)) and extrapolating the behaviour of EF to lower
magnetic fields. The result of those calculations is shown in Fig. 6.5 a) for various angles. The
calculated slope of the Fermi energy movement within the N = 1 electron Landau band is given in
Fig. 6.5 b).

With the Fermi energy movement within the N = 1 electron Landau band, the magnetic field
(angular) dependence of the dimensionless parameter α can be extracted. The result is depicted
in Fig. 6.5 c), where the calculated value of α is plotted versus the inverse magnetic field for the
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Fig. 6.5: a) Simple model, described in the text, which allows to illustrate the Fermi energy
movement SF and therefore the parameter α(Bm), required to reproduce the
non quadratic behaviour of the magnetic field splitting ∆B as a function of the
total magnetic field Bm. b) Magnetic field dependence of SF obtained from the
SWM calculations presented in a). c) Calculated dependence of the parameter
α = g∗µB/(SN−SF) as a function of 1/Bm with g∗ = 2.53. The solid line is fitted
using a second order polynomial.

N = 1 electron Landau band. Here, α = g∗µBB/(SN − SF) is calculated using g∗ = 2.5, SN =

3.576 meV/T and SF(Bm), extracted from Fig. 6.5 b). α(1/Bm) is well approximated by a second
order polynomial (solid line) with the coefficients shown in Fig. 6.5 c). Substituting the second
order polynomial for α in Eq. (6.3) gives,

∆B≈ 1
BN
⊥
(α2B2

m +α1Bm−α0). (6.5)

The predicted variation of ∆B versus Bm for the N = 1 electron Landau band, calculated using
the coefficients α0, α1 and α2 given in Fig. 6.5 c) is indicated by the solid line in Fig. 6.3 a).
The agreement between the data and the simple model is remarkable confirming our hypothesis
that the observed deviation from the simple ∆B ∝ B2

m dependence is due to the movement of the
Fermi energy SF which in turn leads to a magnetic field (angular) dependence of the dimensionless
parameter α .

6.1.6 Conclusion

Magnetotransport measurements have been analyzed using the full Slonczewski, Weiss and Mc-
Clure band structure calculations for graphite in a magnetic field. Using tilted magnetic fields
to tune the Zeeman energy, we extract an effective g-factor g∗ = 2.5± 0.1 for both the electron
and hole Landau bands. This is significantly larger than the g-factor obtained using electron spin
resonance showing the importance of many body effects in graphite.
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6.2 Charge density wave (CDW) phase

In the second part of this chapter the charge density wave phase observed in the magnetoresistance
of graphite at high magnetic fields and at low temperatures is discussed. The charge density wave
phase manifests itself in a sharp increase of the magnetoresistance at high magnetic fields [26].
Here we extend temperature dependent measurements of the charge density wave phase presented
recently by Yoshioka and Fukuyama in Ref. [27] for temperatures T ≥ 1.1 K to lower temperatures
(T ≤ 1.0 K).

6.2.1 Results and discussions

Fig. 6.6 a) shows the transverse magnetoresistance ρxx of Kish graphite at different temperatures
between T = 1.1 K and T = 10 K measured by Yoshioka and Fukuyama in pulsed magnetic fields
up to B = 55 T [27]. Kish graphite, which is artificially grown by precipitation from carbon
saturated molten iron or nickel [95], has a lower crystal ordering than HOPG [96], but exhibits
more distinct features associated to the charge density wave transition [87]. The reason for this
remains to be explained. In the magnetic field range 3 ≤ B ≤ 7 T the well documented quantum
oscillations are observed [10,11,59,73,78,83]. For temperatures below T = 10 K a sharp resistance
increase, attributed to the electronic phase transition of the field induced density wave state, is
clearly seen (marked by arrows). Both the onset magnetic fields and the resistance jumps in
the very vicinity of the onset magnetic fields decrease with the temperature. The complicated
behaviour of the resistance at higher magnetic fields is not discussed at this point.

For a comparison, Fig. 6.6 b) shows our data of HOPG. The measurements were performed using a
28 T resistive magnet and a 3He/4He dilution fridge with a base temperature of about Tb ≈ 30 mK.
The magnetoresistance Rxx in the magnetic field range B = 0−28 T is given for different temper-
atures between T = 50 mK and 900 mK. For illustration reasons the offset between the magne-
toresistance curves is R = 1.4 Ω. The temperature values are not exact values as the temperature
of the mixing chamber slowly increased during the sweep. However, knowing the temperatures
before and after the sweep (0→ 28→ 0 T), the exact temperatures for given magnetic fields can
be estimated by linear interpolation. The onset magnetic field for the charge density wave state is
marked by arrows. The increase of the resistance is only very weak. As mentioned before, this is
in agreement with Ref. [87], in which it is stated that the increase of the resistance associated to
charge density wave transition are less distinct in HOPG than in Kish graphite. Moreover in the
vicinity of the onset magnetic fields the resistance jumps decrease with temperature (Fig. 6.6 a)).

To study the phase transition in more detail, Fig. 6.7 a)-c) shows a zoom in on Rxx(B) in the
magnetic field region of the charge density wave onset magnetic field. As the onset magnetic
fields are not very distinct in the raw data (left axis), we also show the first derivative dRxx/dB
(right axis). The onset magnetic fields, marked by arrows, reveal themselves as maxima in the first
derivative.

The phase diagram of Fig. 6.7 d) shows for the different temperatures the onset magnetic fields
both for our data (HOPG, T ≤ 1 K) and the data of Yaguchi and Singleton (Kish graphite, T ≥
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Fig. 6.6: a) Magnetoresistance data of Yoshioka and Fukuyama [27] performed on Kish
graphite in pulsed magnetic fields up to B = 55 T for temperatures between
T = 1.1 K and 10 K. The temperature dependent onset magnetic field of the
charge density wave phase is marked by arrows. b) Our data of HOPG obtained
using a 28T resistive magnet and a 3He/4He dilution fridge. The magnetic fields
of the electronic phase transition for the different temperature sweeps are marked
by arrows. The increases of the resistance associated to the charge density
wave transition are less distinct in HOPG than in Kish graphite, in accordance
with Ref. [87].

1.1 K, [27]). Our data seems to follow the same temperature-magnetic field dependence. The solid
curve employed through the data indicates the phase boundary between the normal state and the
charge density wave state and is empirically expressed by the formula

Tc(B) = T ∗exp
(
− B∗

BCDW

)
, (6.6)

where T ∗ and B∗ are adjustable parameters. We find T ∗ = 113± 1 K and B∗ = 113± 0.5 T,
which is comparable to what was found in previous studies [87–89]. Eq. (6.6) has the same form
as the Bardeen-Cooper-Schrieffer (BCS)-type formula which describes the transition temperature
between the normal conducting state and the superconducting state [92].
A detailed explanation of the charge density wave state is beyond the scope of this thesis. Here
we limit ourselves to summarize the most important results. The description of the high magnetic
field phase as a charge density wave was proposed by Yoshioka and Fukuyama [91], considering
the quasi-one-dimensionality of the energy spectrum caused by the Landau level quantization.
We have seen in the previous chapter that for high magnetic fields B > 8 T graphite is in its
quantum limit, with only the lowest electron (N = 0) and hole (N =−1) sub-band being populated.
Electron phonon coupling, which acts as a perturbation, opens a gap ∆ at the Fermi energy (Peierls
transition) [97]. If kBT � ∆, the electrons can easily overcome the gap and graphite is found in its
normal state. Lowering the temperature a point is reached at which the electrons cannot overcome
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Fig. 6.7: a)-c) Zoom in on the magnetic field regions at which the onset of the charge
density wave state is observed for the different temperatures. While the transition
to the charge density wave state is difficult to see in the raw data Rxx (left axis),
it manifests itself clearly in dRxx/dB (right axis). d) Phase diagram of graphite in
the B-T plane showing the transition from the normal phase to the charge density
wave phase. Our data (•) follow the same behaviour as the data of Yoshioka and
Fukuyama [27] (◦), i.e., the phase transition can be described by a BCS-type
formula (6.6).

the gap anymore and a collective mode is formed by electron and hole pairs.

6.2.2 Conclusion

Our data of HOPG is consistent with the findings of Ref. [27] that the critical temperature at which
the sharp increase of the resistance is observed is linked to the applied field by a Bardeen-Cooper-
Schrieffer (BCS)-type formula.
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7 de Haas-van Alphen effect

Résume du chapitre

Nous avons étudié l’effet de Haas-van Alphen dans le graphite à T = 400 mK en utilisant la méth-
ode de couple. Par analogie avec des mesures de magnétotransport nous avons effectué quelques
mesures de Haas-van Alphen en haute résolution aux champs magnétiques faibles. Le champ
magnétique auquel les oscillations quantiques commencent est B0 = 63 mT. En ce qui concerne les
fréquences et les phases on trouve les valeurs BF,h = 4.62 T, ϕ0,h =−0.56±0.05 et BF,e = 6.32 T,
ϕ0,e =−0.48±0.05. Ces valeurs sont très similaires à celles obtenues en magnétotransport.
Nous avons également effectué des mesures en champs magnétiques inclinés pour sonder la sur-
face de Fermi. Les fréquences en fonction du champ magnétique se déplacent comme 1/cos(θ)
vers des champs magnétiques plus élevés. Le comportement quasi-bidimensionel peut être ex-
pliqué par l’extrême anisotropie du graphite, le couplage dans le plan étant beaucoup plus grand
que le couplage entre les plans (ρc � ρab) [28]. Le comportement quasi-bidimensionnel est en
accord avec le modèle SWM, qui prédit des surfaces de Fermi quasi-cylindriques pour θ < 60◦

dans les régions des électrons et trous majoritaires.

In this chapter magnetization measurements of graphite using a capacitive torquemeter are pre-
sented. Even though the measurements were performed at T = 0.4 K (due to limitations of the
experimental setup that time), the data of the quantum oscillations are comparable or even better
than the mK magnetotransport data. A phase/frequency analysis of the background removed data
gives the same result as for magnetotransport. Preliminary tilted field measurements show that the
capacitive torquemeter method is an ideal tool to map out the Fermi surface of graphite.

7.1 Experiment

For the magnetization measurements we used the same mm-size pieces of natural graphite as
discussed in the previous chapters. The graphite samples were mounted on the circular plate of
the capacitive torquemeter with vacuum grease (see Chapter 4.5). Two different cantilevers with
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the dimensions 5 mm × 125 µm × 125 µm (length×width×hight) and 5 mm 125 µm × 50 µm
were used. These cantilevers are referred to as cantilever A and cantilever B, respectively. Whereas
the more rigid cantilever A was used for magnetization measurements in the magnetic field range
−3 ≤ B ≤ 3 T, the more flexible cantilever B was used for high sensitive measurements at low
magnetic field (B < 0.21 T). The measurements were performed using a 16 T superconduction
magnet and a dilution fridge, equipped with an in situ rotation stage. The temperature was T ≈
0.4 K. This quite high temperature was a result of the high thermal conductivity of the coaxial
cables in the prototype version of the probe, which resulted in a heat transfer to the mixing chamber
of the dilution fridge, preventing the base temperature of the dilution fridge (Tb ≈ 10 mK) ever
being reached. The torque signal was measured with a lock-in amplifier using conventional phase
sensitive detection at 5.3 Hz (Fig. 4.4).

7.2 Results and discussion

7.2.1 Magnetization of graphite

The torque signal in units of 10−4 V as a function of the magnetic field in the range −3≤ B≤ 3 T
for various orientations between θ = 4◦ and θ = 56◦ (with θ = 0◦ for (B⊥ab)) is shown in Fig. 7.1
a). The measurements were performed using the more rigid cantilever A. The restriction to angles
θ ≥ 4◦ results from the fact that the torque on the cantilever τττ = M×B = MB · sin(θ) becomes
zero for small angles. The limitation to tilt angles θ ≤ 56◦ is due to the construction of the

Fig. 7.1: a) Torque voltage V as a function of the magnetic field in the range−3≤ B≤ 3 T
for various orientations between θ = 4◦ and θ = 56◦. b) −τ/B as a function
of the magnetic field for selected tilt angles (4◦, 12◦, 56◦). −τ/B, which is
proportional to the magnetization M, is a linear function of the magnetic field
(indicated by the linear fits of the data).
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sample holder, which did not allow to measure higher angles at the time the measurements were
performed. Having a small value at B = 0 T, the absolute value of the torque voltage V strongly
increases with the strength of the magnetic field. The curves have a nearly perfect dependence on
B2, which is a result of the linear dependence of the magnetization on the magnetic field (discussed
subsequently). Note that the sign of the torque voltage reflects the fact that the cantilever bends
towards the ground plate of the capacitance bridge. The small quantum oscillations superimposed
on the large magnetization background are discussed later on in this chapter.

In Chapter 4.5 it was discussed that the torque voltage is linked to the out-of-plane magnetization
M‖ by the torque equation (4.2)

τ =− 1
BF

dBF

dθ
M‖B, (7.1)

where BF is the angle dependent fundamental frequency of the oscillations. For a given angle θ ,
the magnetization is therefore proportional to −τ/B. M ∝ −τ/B as a function of the magnetic
field (|B| < 3 T) is shown in Fig. 7.1 b) for three different angles (4◦, 12◦, 56◦). Neglecting
the superimposed quantum oscillations, −τ/B(θ) are linear functions of the magnetic field as
indicated by the linear fits of the data. This result is confirmed e.g. in Refs. [98, 99]. The linearity
of −τ/B as a function of the magnetic field results in τ ∝ B2 which is observed in Fig. 7.1 a).

Graphite has the largest value of diamagnetism among all known materials (B‖c) [28]. Qual-
itatively the large diamagnetism of graphite can be explained in the following way: When the
magnetic field is turned on, groups of states, which were originally distributed in energy, conden-
sate on Landau bands with discrete energies. This raises the total energy of the electrons [100]
which leads, considering the definition of the magnetization,

M =− 1
V

∂E
∂B

,

to the diamagnetism of the material. The band energy of graphite varies in a first approximation as
EN = h̄ωc(N+1/2), with ωc = h̄B/e being the cyclotron frequency. The extremely small effective
mass of m∗ ≈ 0.05 for electrons and m∗ ≈ 0.039 for holes [16, 57, 76, 101, 102] results in a strong
variation of the band energies with the magnetic field and therefore in a large diamagnetism. A
qualitative explanation of the high diamagnetism of graphite is given by McClure, both on the basis
of a simple two-dimensional energy spectrum (graphene) and the full SWM-model [23, 103].
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7.2.2 Quantum oscillations

In this section the quantum oscillations superimposed on the large magnetization background are
discussed. Fig. 7.2 a) shows the torque voltage V measured with the more flexible cantilever B
between B = 0− 0.21 T at T ≈ 400 mK with a sweep rate of dB/dt = 0.002 T/min. The angle
between the sample plane and the magnetic field was θ = 16◦. In this region of the tilt angle,
the signal due to the quantum oscillations is strongly enhanced, as discussed subsequently. The
quantum oscillations can be observed in the raw data for B > 0.08 T (see inset).

As for the Shubnikov-de Haas oscillations in magnetotransport, the de Haas-van Alphen oscilla-
tions can be better observed in the background removed data. Here we use again the method of
removing the background by subtracting a smoothed (moving window average) data curve. Fig.
7.2 b) shows ∆V between B = 0− 0.21 T. The onset magnetic field of the quantum oscillations
is B0 = 66 mT (θ = 16◦) which translates to B0 · cos(θ) ≈ 63 mT in the θ = 0◦ configuration.
The features observed at lower magnetic field are probably due to noise. The onset magnetic field
of the quantum oscillations is lower than that of B0 = 70 mT of the magnetotransport data mea-
sured at mK temperatures (Chapter 5.2). Considering the much higher temperature at which the
de Haas-van Alphen measurements were performed, it can be concluded that the torque method
is more sensitive to quantum oscillations than magnetotransport measurements. Compared to the
de Haas-van Alphen measurements, which probe pure thermodynamics, the magnetotransport is
influenced by scattering processes at the Fermi energy, which reduce the signal of the oscillations.

Fig. 7.2: a) Torque voltage as a function of the magnetic field between B = 0− 0.21 T
measured at T ≈ 400 mK for θ = 16◦ with an extremely slow sweep rate of
dB/dt = 0.002 T/min. (Inset:) The quantum oscillations can be observed in the
raw data at B0 > 0.08 T. b) Background removed data ∆V (B). The small value of
the onset magnetic field of the quantum oscillations (B0 = 66 mT) indicates the
high quality of the de Haas-van Alphen measurements using the torque method.
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7.2.3 Phase/frequency analysis of quantum oscillations

The same method as for Shubnikov-de Haas oscillations to extract the phase and the frequency was
used for the analysis of the de Haas-van Alphen oscillations of Fig. 7.2 b). As discussed before, the
method is based on the phase shift function K(ϕ,B) = ℜ

[
eiϕ F̃(B)

]
= cos(ϕ−ϕ0)F(B), where the

fundamental frequency BF and the phase ϕ0 reveal themselves as maxima in the ϕ−B plane [73].
To begin with, Fig. 7.3 a) shows the spectral intensity of the Fourier transformation. Both, the
electron and hole features, are very distinct. No additional feature is observed at B≈ 0.3 T, which
is the magnetic field at which minority carriers are expected (not shown, see discussion in Chapter
5.6). The frequency values of BF,h = 4.62 T and BF,e = 6.32 T for electrons and holes, respectively,
have to be corrected by the tilt angle θ = 16◦. One obtains BF,h = 4.44 T and BF,e = 6.08 T. These
values are very similar to those obtained for the mK magnetotransport data (BF,h = 4.51 T and
BF,e = 6.14 T, see Chapter 5.3). The phase shift function K(ϕ,B) is plotted in Figs. 7.3 b) and c) in
the regions of the hole and electron features, which are known from the Fourier analysis. The phase
values in units of 2π obtained from the maxima are ϕ0,h =−0.56±0.05 and ϕ0,e =−0.48±0.05
for holes and electrons, respectively. These values are as well very similar to ϕ0,h =−0.43±0.05
and ϕ0,e = −0.28± 0.05 of the mK magnetotransport data. This is at first sight surprising, since
according to Eqs. (2.27) and (2.20) Adams and Holstein predict a phase shift of π/2 between
Shubnikov-de Haas and de Haas-van Alphen oscillations. Note, however, that this phase shift is
compensated by the −π/2 phase shift of the impedance of the capacitor.

Fig. 7.3: a) Spectral intensity of the de Haas-van Alphen data ∆V (B) of Fig. 7.2. The
frequency values corrected by the tilt angle θ = 16◦ are BF,e = 6.08 T and
BF,h = 4.44 T for electrons and holes, respectively. These values are very sim-
ilar to those obtained for the mK magnetotransport data (BF,h = 4.51 T and
BF,e = 6.14 T, see Chapter 5.3). b) and c) Phase shift function in the ϕ −B
plane. The phase values ϕ0,h =−0.56±0.05 and ϕ0,e =−0.48±0.05 for holes
and electrons, respectively, are as well very similar to those of the mK magneto-
transport data.
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7.2.4 Mapping out of the Fermi surface of graphite

The high quality of the de Haas-van Alphen data allows to precisely map out the Fermi surface.
It was shown before in Fig. 6.2 and for example in Refs. [11, 13] that for angles up to θ =

70◦, BF(0)/BF(θ) for electrons and holes can be described to a good approximation by a cos(θ)
dependence. The quasi-two-dimensional behaviour can be explained by the extreme anisotropy of
graphite, i.e., the in–plane coupling is much bigger than the out of plane coupling (ρc� ρab) [28].
The quasi-two-dimensional behaviour is consistent with the SWM-model, which predicts for θ <

60◦ quasi-cylindrical Fermi surfaces in the regions of the majority electron and hole pockets. For
higher angles, deviations from the cos(θ) dependence are expected. Those deviations, however,
could not be observed in our magnetotransport data (Fig. 6.2) and previous publications [11, 13]
due to the scatter in the data.

Fig. 7.4 shows the spectral intensity as a function of the magnetic field for various angles. The
spectral intensity was obtained from the Fourier transform of the data presented in Fig. 7.1 a) after
removing the background. The series of all three features observed in the magnetic field region
between B = 3−12 T (holes, electrons and first harmonic of the hole features) shift as a function
of 1/cos(θ) to higher magnetic fields (solid lines in the B−θ -plane). The spectral intensities as
a function of the tilt angle increase at first and reach their maximum values for angles between
θ = 20◦ and θ = 30◦. This increase can be explained with the torque equation (7.1). Knowing

Fig. 7.4: Spectral intensity of the Fourier transform obtained from the background re-
moved data ∆V (B) as a function of the magnetic field for various angles between
θ = 4◦ and θ = 56◦. The series of all three features observed in the magnetic
field region between B = 3−12 T (holes, electrons and first harmonic of the hole
features) shift as a function of 1/cos(θ) to higher magnetic fields (solid lines in
the B− θ -plane). The features have their maximum values between θ = 20◦

and θ = 30◦.
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Fig. 7.5: Torque voltage as a function of the angle for given magnetic fields between
B = 0.2 T and B = 0.5 T, which corresponds to the magnetic field region in which
the quantum oscillations are much smaller than the large background magneti-
zation. The data can be explained nearly perfectly by the function A · sin(2θ),
a results which can be derived from the torque equation (7.1) knowing that the
fundamental frequency of the oscillations as a function of θ is BF(0)/cos(θ).

that BF(0)/BF(θ)≈ cos(θ) and M = α ·B (see Fig. 7.1 b)), the torque equation (7.1) becomes

τ =−cos(θ)
BF(0)

−sin(θ)BF(0)
cos2(θ)

αB2
0cos2(θ) =

αB2
0

2
sin(2θ), (7.2)

i.e., the torque signal increases with sin(2θ). This behaviour is confirmed in Fig. 7.5 in which we
plot the torque voltage as a function of the angle for given magnetic fields between B = 0.2 T and
B = 0.5 T. In this magnetic field region the quantum oscillations are much smaller than the large
background magnetization. The solid lines represent a curve of the form A · sin(2θ), which fit the
data nearly perfectly.

With the increasing torque signal for increasing angles θ , the signal of the quantum oscillations
increases as well. This explains the increase of the spectral intensity. For angles θ > 30◦, the
features of the spectral intensity decrease. This can be explained by the fact that the quantum
oscillations are increasingly hidden by the large background magnetization. Moreover, fewer
quantum oscillations are observed in the magnetic field region −3≤ B≤ 3 T for high angles.

Fig. 7.6 shows the top view of the spectral intensity plot after interpolating the various curves
for different angles. The solid lines represent the curves BF(0) · cos(θ). They nearly perfectly
fit the data for angles θ < 40◦. For higher angles deviations of the spectral intensity peaks from
the cos(θ) behaviour towards lower magnetic fields are observed. The dotted lines represent the
curves BF(0)/cos(θ−1◦), which consider a misalignment of the sample by θ = 1◦ on the rotation
stage. The corrected curves give better fits to the high angle data, but fit the data θ < 40◦ less
perfectly. We are unable to determine if the failure of the BF(0)/cos(θ) curve to fit the data over
the whole range in the θ -B-plane should be ascribed either to deviations from the cylindrical Fermi
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Fig. 7.6: Top view of the spectral intensity plot after interpolating the various curves
for different angles. The solid lines represent the curves BF(0)/cos(θ) with
BF,e(0) = 4.55 T and BF,h(0) = 6.2 T for the electron and hole features, respec-
tively. The deviations from the 1/cos(θ) behaviour for θ > 40◦ could either be
explained by a misalignment of the sample by an angle of θ ≈ 1◦ or deviations
from the cylindrical Fermi surface predicted by the SWM-model for high angles.

surface at high angles, which is predicted by the SWM-model, or to a misalignment of the sample.
To answer this question de Haas-van Alphen measurements at higher angles are required.

7.3 Summary and Conclusion

In this chapter de Haas-van Alphen measurements of natural graphite using a capacitive torqueme-
ter were presented. The quality of the data measured at T ≈ 0.4 K with the cantilever A is com-
parable to or even better than the magnetotransport data of natural graphite measured at mK tem-
peratures. The big advantage of the de Haas-van Alphen measurements concerns the mapping of
the Fermi surface. The fact that the torque signal follows a A · sin(2θ) behaviour, i.e., the sig-
nal of the spectral intensity first increases with increasing tilt angle, results in an increase of the
amplitude of the quantum oscillations when the magnetic field is tilted away from the c-axis of
graphite. For higher tilt angles the signal increases as the quantum oscillations are hidden by the
large background magnetization. However, in the region where the background magnetization has
its maximum value (at θ ≈ 45◦), the quantum oscillations are still clearly visible. It is expected
that for higher tilt angles, the spectral intensity of the features increases again, as the magnetiza-
tion background, which superimposes the quantum oscillations, decreases for θ > 45◦ (see Fig.
7.5). We can therefore expect that the Fermi surface can be mapped out with high precision up to
θ > 80◦. Moreover, we expect that measurements at mK temperatures considerably improve the
signal. This has not only been observed for our magnetotransport data, but also recently for de
Haas-van Alphen measurements of graphite using the torque method [104].
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8 Summary

Résume du chapitre

Dans cette thèse le magnétotransport à basse température (T ≈ 10 mK) et l’effet de Haas-van
Alphen (T ≈ 0.4 K) ont été examinés pour le graphite naturel et le graphite HOPG. Dans la
première partie, le magnétotransport pour des champs magnétiques allant jusqu’à B = 11 T est
présenté. Une analyse de Fourier de ∆Rxx (signal après soustraction du fond de magnétorésis-
tance) montre que le transport électrique dans le graphite est dominé par deux types de porteurs
avec des fréquences et des phases en accord avec le modèle SWM. Nous avons confirmé la validité
du modèle SWM par des calculs détaillés de la structure de bande sous champ magnétique. Le
mouvement de l’énergie de Fermi pour B > 2 T a été calculée d’une manière auto-cohérente en
supposant que la somme des concentrations des électrons et des trous est constante. En outre nous
avons confirmé la transition métal isolant découverte dans le graphite récemment. Une recherche
systématique des oscillations de porteurs minoritaires à bas champ magnétique (B < 0.3 T) s’est
avérée infructueuse.
Des mesures sous champs magnétiques intenses (0 ≤ B ≤ 28 T) ont été employées pour étudier
l’effet Zeeman et la phase de l’onde de densité de charge. En ce qui concerne l’effet Zeeman,
les calculs SWM incluant le mouvement de l’énergie de Fermi nécessitent un facteur de Lande
g∗ = 2.5± 0.1 pour reproduire la séparation de spin observée dans les données. Les mesures de
l’onde de densité de charge ont confirmés que le champ magnétique auquel celle-ci apparait est lié
à la température par une formule de type Bardeen-Cooper-Schrieffer (BCS). Les mesures de l’effet
de Haas-van Alphen ont confirmé les résultats obtenus par de magnétotransport à bas champ.

Interest in graphite has been renewed by the recent investigation of graphene, which shows re-
markable physical properties due to the presence of Dirac like charge carriers with a zero rest
mass. Historically, graphene forms the starting point for the Slonczewski, Weiss and McClure
(SWM) band structure calculations of graphite [2, 3]. In graphite, the Bernal stacked graphene
layers are weakly coupled with the form of the in-plane dispersion depending upon the momen-
tum kz in the direction perpendicular to the layers. The carriers occupy a small region along the
H-K-H edge of the hexagonal Brillouin zone. At the K point (kz = 0), the in-plane dispersion of
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the electron pocket is parabolic (massive fermions), while at the H point (kz = 0.5) the dispersion
of the hole pocket is linear (massless Dirac fermions). The Fermi surface along the edge H-K-H is
made up of one electron pocket and four hole pockets. Two of the latter are placed directly at the
H points. Techniques such as magnetotransport and de Haas-van Alphen measurements, which
probe the density of states at the Fermi energy, are linked to extremal cross sections of the Fermi
surface. Two types of majority carriers are expected: Majority electrons at the K point (kz = 0)
and majority holes with kz ≈ 0.3 close to the H point (kz = 0.5). Both charge carriers are mas-
sive, having a parabolic in-plane energy spectrum. The additional hole pockets at the H points
(kz = 0.5) with a small cross section give rise to groups of massless minority holes with a linear
in-plane dispersion relation, similar to the charge carriers in graphene.

In this thesis, low-temperature magnetotransport and the de Haas-van Alphen effect of both natural
graphite and highly oriented pyrolytic graphite (HOPG) have been examined. In the first part, low
field magnetotransport up to B = 11 T was discussed.

Preliminary magnetotransport measurements on HOPG at T = 1.2 K reveal small quantum oscil-
lations which are superimposed on a large magnetoresistance background. A Fourier analysis of
the background removed signal ∆Rxx shows that the electrical transport in graphite is governed by
two types of charge carriers with fundamental frequencies of B≈ 4.5 T and B≈ 6.2 T, ascribed to
majority electrons and holes, respectively. The same kind of measurements of HOPG and natural
graphite were repeated at mK temperatures in a dilution fridge. Natural graphite reveals an ex-
tremely rich magnetotransport spectrum, for which orbital quantum numbers up to almost N = 100
are observed (features start at a magnetic field of B0 = 0.07 T). Spin splitting is observed for mag-
netic fields Bz > 1 T. HOPG has a similar spectrum, i.e., the positions of the features in magnetic
field are essentially the same as for natural graphite. This implies that both types of bulk graphite
are very similar and are described by the same physics. Nevertheless, the quality of the natural
graphite data is higher than that of HOPG, which can be explained by a higher crystal quality of
natural graphite.

The high quality of the magnetotransport data of natural graphite measured at mK temperatures
allowed an accurate phase analysis of the quantum oscillations. It was shown that electrons and
holes have a so-called Berry phase of ΦB = 0, which implies that both charge carriers are massive
charge carriers.

The effective mass m∗ of the holes was extracted from the temperature dependence of quantum
oscillations, which is described by the temperature factor RT (2.22) of the Lifshitz-Kosevich equa-
tion. The value of m∗ ≈ 0.05 is similar to the accepted value of me = 0.039me [28]. Temperature
dependent measurements were furthermore used to confirm the existence of the metal-insulator-
transition in graphite, which reveals itself in the longitudinal resistance as a function of the tem-
perature for increasing magnetic fields.

We then demonstrated that the quantum oscillations can be consistently interpreted with the pres-
ence of majority electron and hole pockets within the three-dimensional SWM band structure
model for graphite. The observed significant deviations of the quantum oscillations from the 1/B
periodicity at high magnetic fields (B > 2 T) are explained by a movement of the Fermi energy as
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the quantum limit is approached. The movement of the Fermi energy in magnetic field was calcu-
lated self-consistently assuming that the sum of the electron and hole concentrations is constant.
The deviations of the quantum oscillations from the 1/B periodicity seriously question the validity
of using the high field data to extract the phase of the Shubnikov-de Haas oscillations and hence
the nature of the charge carriers as it was done by the authors of Ref. [59]. The appearance of a
third series of features at low magnetic fields was discussed. Those features are not periodic in
1/B and therefore cannot be ascribed to the expected minority carrier oscillations at low magnetic
field.

The second part of the thesis dealt with high field magnetotransport of natural graphite in the
magnetic field range 0≤ B≤ 28 T. Both spin splitting of magnetotransport features in tilted field
configuration and the onset of the charge density wave (CDW) phase for different temperatures
with the magnetic field applied normal to the sample plane were discussed. Concerning the charge
density wave phase investigation, we extended temperature dependent measurements of the charge
density wave onset magnetic field by Yaguchi and Singleton [27] to lower temperatures. Our data
follows the same temperature-magnetic field dependence as Yaguchi and Singleton’s data, and can
be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula, which characterizes the transi-
tion temperature between the normal conducting state and the superconducting state.
Concerning the investigation of the spin splitting in graphite, high field magnetotransport in tilted
field configuration was used. The splitting of the magnetotransport features for various magnetic
fields and angles was reproduced by SWM calculations including the movement of the Fermi en-
ergy. The fact that the Fermi energy movement has to be included in the calculations is derived
from the fact that the spin splitting ∆B as a function of the magnetic field is not a parabolic func-
tion of the magnetic field. We found a g-factor of g∗ = 2.5± 0.1 for both electrons and holes.
The enhancement of this value with respect to the free electron g-factor of gs = 2 is tentatively
attributed to many body effects.

Finally we have examined the magnetization of graphite as a function of the magnetic field using a
capacitive torquemeter. Even though having been measured at T = 0.4 K, the data of the quantum
oscillations is comparable to or even better than the mK magnetotransport data. A phase/frequency
analysis of the background removed data gives the same result as magnetotransport. Preliminary
tilted field measurements show that the capacitive torquemeter method is an ideal tool to map out
the Fermi surface of graphite.

—————————————
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A Appendix

A.1 Classical transport theory

The classical description of electronic transport is given by the Drude theory, which applies the
theory of a classical Boltzmann gas to the charge carriers in a sample. The charge carriers are
assumed to be subject to collisions with impurity atoms or defects. The crucial terms in the Drude
theory are therefore the Lorentz force and a nonlinear damping term, depending on the mean time
τ between collisions. The equation of the drift acceleration dv/dt is given by

dv
dt

=− e
m∗

(E+vd×B)− vd

τ
, (A.1)

where E is the electric field. In the stationary regime dv/dt = 0, the system of linear equations
reads

−eEx−ωcm∗vy−
m∗vx

τ
= 0

−eEy−ωcm∗vx−
m∗vy

τ
= 0.

(A.2)

The expressions for the resistivities are found using E = ρ̄xy · j, where ρ̄ is the resistivity tensor
and j = nev (n is the charge carrier density). With(

Ex

Ey

)
=− m∗

ne2τ

(
1 ωcτ

−ωcτ 1

)
≡

(
ρxx ρxy

ρyx ρyy

)(
jx
jy

)
,

we find
ρxx = ρyy =−

m∗

ne2τ
and ρxy =−ρyx =−

B
ne

. (A.3)

While ρxx is independent of the magnetic field, ρxy is a linear function of B. Both resistivities
depend on the carrier density n of the material.

Expressions for the conductivity are found with j = σ̄xy ·E, so that(
jx
jy

)
=−ne2τ

m∗

(
1

1+ω2
c τ2 − ωcτ

1+ω2
c τ2

ωcτ

1+ω2
c τ2

1
1+ω2

c τ2

)
≡

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
.
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The link between the resistivities and the conductivities ρxx and σxx is therefore given by the tensor
relations

σxx =
ρxx

ρ2
xx +ρ2

xy
and σxy =

ρxy

ρ2
xx +ρ2

xy
. (A.4)

Under the assumption that the electronic transport is governed by two types of charge carriers,
electrons and holes, σxx and σxy are given by [41]

σxx =
neeµe

1+µ2
e B2 +

nheµh

1+µ2
h B2 and σxy =−

neeµ2
e B

1+µ2
e B2 +

nheµ2
h B

1+µ2
h B2 , (A.5)

where µe and µh are the charge carrier mobilities. In the extreme quantum limit (µe,hB� 1), the
transverse resistivity is determined by the carrier density imbalance,

ρxy =
σxy

σ2
xx +σ2

xy
≈ B

e(nh−ne)
. (A.6)

For low (non-quantizing) magnetic fields (µe,hB� 1) we can make use of the fact that in a perfect
graphite crystal the carrier densities are compensated, ne ≈ nh ≡ n so that

ρxy ≈
B
en

µh−µe

µh +µe
. (A.7)
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A.2. CRYOGENICS

A.2 Cryogenics

In the following the three different cryogenic systems presented in Chapter 4.3 are discussed.

Before presenting schematically the design of the cryostats, some properties of helium are dis-
cussed. Helium comes in two isotopes, the boson 4He and the fermion 3He. The phase diagram of
4He is shown in Fig. A.1 a). It liquefies under atmospheric pressure at T = 4.2 K. The vapour pres-
sure drops approximately exponentially when liquid 4He is cooled down and reaches p = 1 mbar
at T = 1.2 K. At T = 2.17 K (p = 1 bar) the so-called λ line is crossed. For T > 2.17 K, 4He
behaves like an ordinary liquid and is referred to as HeI. For T < 2.17 K, it undergoes a phase
transition and behaves like a superfluid. The superfluid phase is referred to as HeII.
The phase diagram of 3He is sketched in Fig. A.1 b). Under atmospheric pressure the boiling
point of 3He is at T = 3.18 K, which is about 1 K below that of 4He and can be explained by the
lighter mass and therefore a higher average velocity of 3He. Consequently the vapour pressure of
3He is also higher at identical temperatures. At T = 270 mK it is p = 10−3 bar. As 3He atoms are
fermions, the liquid can be treated as a Fermi gas.

A.2.1 4He cryostat with variable temperature insert - VTI

A schematic sketch of the 4He cryostat with variable temperature insert (VTI) is shown in Fig. A.2
a). As 4He has a small latent heat, i.e., boils off easily, the liquid He cryostat has to be thermally
decoupled from the environment. This is achieved by

• separating the helium vessel from the environment by a vacuum, which suppresses heating
via thermal convection

• making the liquid helium container of stainless steel, a material with poor thermal conduc-
tivity, which reduces the heat load from the top

Fig. A.1: a) Phase diagram of 4He and b) 3He.
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Fig. A.2: a) Schematic sketch of a 4He cryostat with variable temperature insert (VTI). b)
Sketch of a 3He cryostat.

• shielding the thermal radiation from the environment by surrounding the liquid He vessel
with liquid nitrogen, which reduces the temperature of the radiation entering the helium
dewar.

As mentioned above, the temperature of liquid helium at atmospheric pressure is T = 4.2 K.
However, the liquid helium, which enters the thermally decoupled sample chamber via the needle
valve, can be pumped. This causes liquid helium to evaporate and therefore cools the liquid. The
lowest possible temperature of our 4He cryostat was Tb ≈ 1.2 K. At this temperature the vapour
pressure of 4He is p = 1 mbar. If temperatures above 4.2 K are required, the temperature of the
helium gas, which enters the sample chamber, can be adjusted by controlling the power applied to
a heater of the gas. The maximal temperature in our 4He cryostat without excessively boiling off
helium from the main bath was about 200 K.

A.2.2 3He cryostat

As the vapour pressure of 3He at temperatures below T = 1 K is much higher than that of 4He,
3He cryostats have a lower base temperature than 4He cryostats (Tb ≈ 300 mK). In a 3He cryostat,
the 3He is isolated from the 4He precooling stage by an inner vacuum chamber (Fig. A.2 b)). The
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Fig. A.3: a) Phase diagram of the 3He/4He mixture as a function of the 3He concentration
x and the temperature T . The λ line separates the two phases of 4He, i.e., HeI
(normal fluid) and HeII (Bose condensate). The tricritical point is at x = 0.67
and T = 0.86 K. At lower temperatures, the mixture separates into a so-called
concentrated phase C (3He-rich phase) and a diluted phase D (3He-poor phase).
b) Schematic sketch of a 3He/4He dilution refrigerator.

3He is kept in a closed cycle. The pumped 3He gas is condensed in a pumped 4He pot, which is
connected to the 4He bath via a needle valve. The temperature of the 4He pot is kept below 3.18 K,
which is the condensation temperature of 3He.

A.2.3 3He/4He dilution refrigerator

3He/4He dilution refrigerators make use of the unique properties of the 3He/4He mixture. The
phase diagram of this mixture is shown in Fig. A.3 a), with the λ line separating the two phases
of 4He, i.e. HeI (normal fluid) and HeII (Bose condensate). Below the λ line at T > 860 mK,
3He is dissolved in HeII as an additional component of the normal fluid HeII. For T < 860 mK the
mixture undergoes a phase separation into the so-called diluted phase D (3He–poor phase) and the
concentrated phase C (3He–rich phase). The D phase can be described as the 3He vapour of the C
phase, which has a significant vapour pressure even at very low temperature. As the C phase has a
smaller density, the “liquid” (D) floats on top of the “gas” (C).
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The essential parts of a 3He/4He cryostat are presented in Fig. A.3 b). The 3He/4He mixture rests
in the mixing chamber. The D phase is connected via a tube to the still, which is heated to about
600 mK. At this temperature the vapour pressure of 3He is much higher than that of 4He, i.e. the
3He is effectively distilled from the D phase. The missing 3He in the D phase is delivered by
“evaporation” of 3He from the C phase, which leads to a cooling of the mixture in the mixing
chamber. The evaporated 3He is recondensed into the mixing chamber by a pot filled with 4He
which is pumped to temperatures below the condensation temperature of 3He (1 K pot).
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A.3 The SMW Hamiltonian in MATLAB

1 function EV

2

3 % by Johannes Schneider

4 % program to calculate the eigenvalues of the magnetic field SWM Hamiltonian

5 % see [Nakao, J. Phys. Soc. Japan, 40, 761 (1976)] for further details

6

7 % Implementation of parameters

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 B = 5; % Magnetic field value in T

10 gs = 2.5; % value for g factor

11 sz = 50; % the size of the SWM Hamiltonian corresponds to "sz*12"

12 % factor 3: submatrix n; factor 4: each matrix D has the

13 % size 4x4;

14 % "sz = 50" corresponds to a 600x600 matrix

15

16 % Gamma parameters of SWM model in eV

17 g0 = 3.37;

18 g1 = 0.363;

19 g2 = −0.0243;
20 g3 = 0.31;

21 g4 = 0.07;

22 g5 = 0.05;

23 Delta = −0.007;
24

25 % kz values in units of c0/2Pi (at K point kz = 0; at H point kz = 0.5)

26 kmin = 0;

27 kmax = 0.5;

28 Deltak = 0.005; % step size of kz values

29

30

31 % kz values in units of c0/2Pi (at K point kz = 0; at H point kz = 0.5)

32 v = 30; % total number of eigenvalues for given submatrix n

33 nv = 10; % number of Landau bands for a given submatrix n

34 % the values of "v" and "nv" have to be increased for

35 % B < 1.5 T

36 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37

38

39 % Constants

40 a0=2.46e−10; % distance between carbon atoms in single graphite lattice

41 e=1.6e−19; % elementary charge

42 h=1.055e−34; % Planck constant

43 muB=5.789e−5; % Bohr magneton

44 mu=muB/2*gs;

45 s=2*e*B/h;

46

47
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48 % Implementation of the SWM−Hamiltonian
49 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50

51 for n = −1:1:1 % n = −1 connects Landau bands (−1,2,5,8,...) etc.

52 % selection rule n −> n+/−3
53 dummyn = n; % dummy variable for n

54 dummyk = 0; % dummy variable for k

55

56 for k = kmin:Deltak:kmax % kz

57 dummyk = dummyk + 1;

58 n = dummyn;

59

60 l = 1; m = 1; % Initialise SWM matrix: l = line, m = column

61

62 % SWM variables depending on kz value

63 Gamma = 2*cos(pi*k);

64 gplus = −(g0+g4*Gamma);
65 gmin = −(g0−g4*Gamma);
66 E1 = Delta + g1*Gamma + 0.5*g5*Gamma^2;

67 E2 = Delta − g1*Gamma + 0.5*g5*Gamma^2;

68 E3 = 0.5*g2*Gamma^2;

69 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 for j = 1:1:sz % i und j are parameters in submatrix notation

71 for i = 1:1:sz % they correspond to lines and columns

72

73 % Diagonal matrix elements: case for submatrices D0(n)

74 if i == j

75 if n == 0 % D0(0)

76 E(l,m) = E1;

77 E(l+1,m+1) = E2;

78 E(l+3,m+3) = E3;

79

80 E(l,m+3) = sqrt(6)/4*a0*gmin*sqrt((n+1)*s);

81 E(l+1,m+3) = sqrt(6)/4*a0*gplus*sqrt((n+1)*s);

82 E(l+3,m) = sqrt(6)/4*a0*gmin*sqrt((n+1)*s);

83 E(l+3,m+1) = sqrt(6)/4*a0*gplus*sqrt((n+1)*s);

84

85

86 m = m+4; % column jump to the next submatrix

87

88 elseif n == −1 % D0(−1)
89 E(l+3,m+3) = E3;

90 m = m+4;

91

92 else % D0(n) with n ≥ 1

93 E(l,m) = E1;

94 E(l+1,m+1) = E2;

95 E(l,m+2) = sqrt(6)/4*a0*gmin*sqrt(n*s);

96 E(l+1,m+2) = −sqrt(6)/4*a0*gplus*sqrt(n*s);
97 E(l,m+3) = sqrt(6)/4*a0*gmin*sqrt((n+1)*s);

98 E(l+1,m+3) = sqrt(6)/4*a0*gplus*sqrt((n+1)*s);

VIII



A.3. THE SMW HAMILTONIAN IN MATLAB

99

100 E(l+2,m) = sqrt(6)/4*a0*gmin*sqrt(n*s);

101 E(l+3,m) = sqrt(6)/4*a0*gmin*sqrt((n+1)*s);

102 E(l+2,m+1) = −sqrt(6)/4*a0*gplus*sqrt(n*s);
103 E(l+3,m+1) = sqrt(6)/4*a0*gplus*sqrt((n+1)*s);

104 E(l+2,m+2) = E3;

105 E(l+3,m+3) = E3;

106

107 m = m+4; % column jump to the next submatrix

108

109 end % end "if n = −1,0 or 1"

110

111

112 % Off−diagonal matrix elements: case for D1(n) and D1+(n)

113 elseif i == j+1 % D1(n)

114 E(l+3,m+2) = sqrt(3)/2*a0*g3*Gamma*sqrt((n+2)*s);

115

116 m = m+4; % column jump to the next submatrix

117

118 elseif i == j−1 % D1+(n)

119 E(l+2,m+3) = sqrt(3)/2*a0*g3*Gamma*sqrt((n+2)*s);

120

121 m = m+4; % column jump to the next submatrix

122 n = n+3; % Initialisation of n finished; jump to n = n+3

123

124 else % other matrix elements are zero

125

126 m = m+4; % column jump to the next submatrix

127

128 end % end "if i = j"

129 end % end "for i = 1:1:20"

130

131 m = 1; l = l+4; % line jump to the next submatrix

132

133 end % end "for i = 1:1:20"

134

135 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136

137 % CALCULATION of the eigenvalues

138 p = 0.01; % eigenvalues calculated at around this energy

139

140 [D]= eigs(E,v,p); % v eigenvalues of spare matrix in the vicinity

141 % of the value p

142

143

144 % SORT eigenvalues in such a way that they are assigned

145 % to a given Landau band N

146

147 % 1) Sort eigenvalue vector so that norm(D(1)) ≤ norm(D(2)) ...,

148 % i.e., D(v)=0;

149
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150 for i = 1:v

151 for j = i+1:v

152 if norm(D(i)) < norm(D(j))

153 dummysort = D(j);

154 D(j) = D(i);

155 D(i) = dummysort;

156 end

157 end

158 end

159

160 % for submatrix n, the "vv" last eigenvalues of the sorted

161 % eigenvector are zero and have therefore to be removed

162 if dummyn == −1
163 vv = 3; end

164 if dummyn == 0

165 vv = 1; end

166 if dummyn == 1

167 vv = 0; end

168

169 % 2) Assign eigenvalue to Landau bands

170 for tt = 1:1:nv+1 % tt is dummy variable

171

172 for ii = 1:1:v−vv % get rid of the eigenvalues "0"

173 y(ii,dummyk) = D(ii); % new eigenvector y

174 end

175

176 for i = 1:v−3 % sort in ascending order

177 for j = i+1:v−vv
178 if y(i,dummyk) < y(j,dummyk)

179 dummysort = y(j,dummyk);

180 y(j,dummyk) = y(i,dummyk);

181 y(i,dummyk) = dummysort;

182 end

183 end

184 end

185

186

187 % eigenvalue vector at K point (kz = 0)

188 if dummyk == 1

189 nn = 0; % eigenvalue number

190 for jj = 1:v−vv
191 if y(jj,dummyk) ≤ 0 && nn ≤ nv

192 nn = nn + 1;

193

194 if dummyn == −1
195 LLm1(nn,dummyk) = y(jj,dummyk);

196 end

197

198 if dummyn == 0

199 LL0(nn,dummyk) = y(jj,dummyk);

200 end
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201

202 if dummyn == 1

203 LL1(nn,dummyk) = y(jj,dummyk);

204 end

205

206 end

207 end

208 end

209

210 % eigenvalue vector away from K point (kz neq 0)

211 if dummyk > 1

212 diff = 5; % eigenvalue number is found through

213 for jj = 1:v−vv % smallest energy difference

214

215 if dummyn == −1
216 difftest = norm(LLm1(tt,dummyk−1) − y(jj,dummyk));

217 if difftest < diff

218 diff = difftest;

219 LLm1(tt,dummyk) = y(jj,dummyk);

220 end

221 end

222

223 if dummyn == 0

224 difftest = norm(LL0(tt,dummyk−1) − y(jj,dummyk));

225 if difftest < diff

226 diff = difftest;

227 LL0(tt,dummyk) = y(jj,dummyk);

228 end

229 end

230

231 if dummyn == 1

232 difftest = norm(LL1(tt,dummyk−1) − y(jj,dummyk));

233 if difftest < diff

234 diff = difftest;

235 LL1(tt,dummyk) = y(jj,dummyk);

236 end

237 end

238

239 end

240 end

241 end

242

243 end % end "for k = kmin:Deltak:kmax+Deltak"

244 end % end "for n = −1:1:1"
245

246

247

248 % PLOT eigenvalues in meV including spin splitting

249 k = kmin:Deltak:kmax;

250 plot(k,(LLm1(:,:)+mu*B)*1000,'−r')
251 hold on
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252 plot(k,(LLm1(:,:)−mu*B)*1000,'−r')
253 hold on

254

255 plot(k,(LL0(:,:)+mu*B)*1000,'−g')
256 hold on

257 plot(k,(LL0(:,:)−mu*B)*1000,'−g')
258 hold on

259

260 plot(k,(LL1(:,:)+mu*B)*1000,'−b')
261 hold on

262 plot(k,(LL1(:,:)−mu*B)*1000,'−b')
263 hold on

264

265 set(gcf,'color','white')

266 xlabel('k_z')

267 ylabel('E (meV)')

268 axis([0,0.5,−55,3])
269 hold off;

270

271 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Abstract

In this thesis, low-temperature magnetotransport (T ≈ 10 mK) and the de Haas-van Alphen effect
of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the
first part, low field magnetotransport up to B = 11 T is discussed. A Fourier analysis of the
background removed signal shows that the electric transport in graphite is governed by two types
of charge carriers, electrons and holes. Their phase and frequency values are in agreement with
the predictions of the SWM-model. The SWM-model is confirmed by detailed bandstructure
calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B >

2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is
constant.
The second part of the thesis deals with high field magnetotransport of natural graphite in the
magnetic field range 0≤ B≤ 28 T. Both spin splitting of magnetotransport features in tilted field
configuration and the onset of the charge density wave (CDW) phase for different temperatures
with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman
effect, the SWM calculations including the Fermi energy movement require a g-factor of g∗ =
2.5±0.1 to reproduce the spin spilt features. The measurements of the charge density wave state
confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type
formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of
the magnetotransport measurements at low field.

Key words: graphite, magnetotransport, SdH effect, dHvA effect, SWM-model

Résumé

Dans cette thèse, le magnétotransport à basse température (T ≈ 10 mK) et l’effet de Haas-van
Alphen sont examinés pour le graphite naturel et le graphite HOPG. Dans la première partie,
le magnétotransport pour des champs magnétiques allant jusqu’à B = 11 T est présenté. Une
analyse de Fourier de ∆Rxx (signal après soustraction du fond de magnétorésistance) montre que
le transport électrique dans le graphite est dominé par deux types de porteurs avec des fréquences
et des phases en accord avec le modèle SWM. Nous confirmons la validité du modèle SWM par
des calculs détaillés de la structure de bande sous champ magnétique. Le mouvement de l’énergie
de Fermi pour B > 2 T est calculé d’une manière auto-cohérente en supposant que la somme des
concentrations des électrons et des trous est constante.
Des mesures sous champs magnétiques intenses (0≤B≤ 28 T) sont employées pour étudier l’effet
Zeeman et la phase de l’onde de densité de charge. En ce qui concerne l’effet Zeeman, les calculs
SWM incluant le mouvement de l’énergie de Fermi nécessitent un facteur de Lande g∗ = 2.5±0.1
pour reproduire la séparation de spin observée dans les données. Les mesures de l’onde de densité
de charge confirment que le champ magnétique auquel celle-ci apparait est lié à la température
par une formule de type Bardeen-Cooper-Schrieffer (BCS). Les mesures de l’effet de Haas-van
Alphen sont en accord avec les résultats obtenus par de magnétotransport à bas champ.

Mots clés: graphite, magnétotransport, effet SdH, effet dHvA, modèle SWM
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