

Soutenance de thèse

VINCENT GUÉRIAUX

Contribution à l'étude expérimentale et théorique des photodétecteurs infrarouge à multipuits quantiques couvrant la bande spectrale 3 – 20 µm

Jury composé de :

M. Vincent Berger M. Jean-Michel Gérard M. Alain Manissadjian M. Alexandru Nedelcu M. Gilles Patriarche M. Roland Teissier M. Børge Vinter Directeur de thèse Rapporteur Examinateur Encadrant Examinateur Rapporteur Examinateur

mardi 12 octobre 2010

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Imagerie infrarouge

Infrarouge thermique

Camera QWIP

III-∨ lab

ALCATEL-THALES

Satellite géostationnaire METEOSAT (rotation de la Terre sur 5 jours)

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Pourquoi 3 – 20 µm ?

Corps noir

- Objets « chaud » et « froid »

et « froid » Réflexion/diffusion solaire Fransmission atmosphérique Mid-Wave 3 – 5 μm Long-Wave 8 – 12 μm Transmission atmosphérique

Emissivité

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Contraste et longueur d'onde

Impact de la longueur d'onde sur l'image

Domaines d'application

- Militaire
- Science
- Civil

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

QWIP : un élément de la chaine image

Chaine image

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Absorption intersousbandes

Puits quantique en Al_xGa_{1-x}As / GaAs

- Niveaux électroniques
- Dopage silicium

- Largeur à mi-hauteur de 90 cm⁻¹
- Règles de sélection

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Multipuits Quantiques

QWIP : Photodétecteur Infrarouge à Multipuits Quantiques

Transport unipolaire dans un système électronique à 2 et 3 dimensions

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Régimes de transport électronique

Régime tunnel

Régime de fort champ

- Régime thermique
- Régime optique (non représenté)

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Modélisation du transport

- Etats 2D
- Microscopique : règle d'or de Fermi
- Structure périodique

Photoemissif**

- Etats 3D
- Empirique : probabilité de capture
- Effets des contacts

12/10/2010
* V. Trinité et al., Modelling of electronic transport in quantum well infrared photodetectors, IPT, (2010)
** L. Thibaudeau et al., A self-consistent model for quantum well infrared photodetectors, JAP 79, 446 (1995)

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Technologie et couplage optique

- Epitaxie par jets moléculaires
- Technologie III-V
- Mesa-pixel avec une structure de couplage optique

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Sommaire

Étude structurale et chimique des hétérostructures AlGaAs/InGaAs

Epitaxie pseudomorphique ; limitation cinétique de la ségrégation ; spectroscopie à l'échelle du puits quantique

Transport électronique en régime tunnel séquentiel résonant

QWIPs large bande

Conclusion

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

QWIPs contraints à double barrière

Besoins opérationnels en bande [3,4 – 4,2 µm] et [4,3 – 5 µm]

Direction de croissance (Angström)

12/10/2010

Désorption et ségrégation

V. Guériaux et al., Double barrier strained quantum well infrared photodetectors for the 3–5 μm atmospheric window, JAP 105, 114515 (2009)

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Recherche de défauts

Microscopie électronique en transmission conventionnelle

Champ sombre g=020 (échelles explorées : 0,01-1 μm)

Absence de dislocations

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Epitaxie pseudomorphique

Microscopie électronique en transmission conventionnelle

Deux ondes g=000&020 (échelles explorées : 1-100 nm)

Analyses sur diverses zones, et sur plusieurs échantillons

Aucune observation de défauts ou dislocations

Epitaxie sans relaxation de contrainte pour des couches détectant à 4 µm

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Ségrégation des éléments III

Ségrégation :

- Echange vertical entre les couches de volume et la couche de surface
- Les atomes d'indium « restent » en surface
- Modification non désirée des propriétés électro-optiques du puits*

Croissance d'échantillons nominalement identiques, mais à trois températures de surface (T_s) différentes :

■ AIAs (5.4 Å) / GaAs (5 Å) / $\ln_{0.15}Ga_{0.85}As$ (40 Å) / GaAs (5 Å) / AIAs (5.4 Å) ■ T_S = 500°C & T_S = 450°C & T_S = 400°C

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Ségrégation dans l'Al_xIn_yGa_{1-X-Y}As

Modélisation de la ségrégation dans le quaternaire Al_xIn_yGa_{1-X-y}As

Comparaison des spectres d'absorption

- Simulés non-parabolicité et contrainte (E. Ouerghemmi)
- Mesurés multipassage à 77 K

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Déplacement de l'absorption

Blue-shift avec la réduction de la température de croissance

- Correctement pris en compte par la modélisation
- Mesure indirecte
- TEM à balayage (LPS/Orsay)
 - Imagerie champ sombre annulaire à grand angle (HAADF)
 - Spectroscopie de perte d'énergie des électrons (EELS)

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Blocage cinétique

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Barrière confinée dans 2 MCs

12/10/2010 O. L. Krivanek *et al.*, *An electron microscope for the aberration-corrected era*, Ultramicroscopy 108, 179 (2008).

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Mesure quantitative du profil

Spectroscopie de perte d'énergie des électrons : spectre image*

Cartographie chimique

Analyse quantitative à poursuivre et à perfectionner sur les QWIPs

12/10/2010 C. Jeanguillaume et al., Spectrum-image: The next step in EELS digital acquisition processing, Ultramicroscopy 28, 252 (1989)

Etude structurale et chimique Transport en régime tunnel QWIPs large bande Conclusion

Principaux résultats

- Absence de relaxation de la contrainte dans les épitaxies à forte teneur en indium (25 %)
 - Couches validées pour abaisser la longueur d'onde
- Confirmation du blocage cinétique de la ségrégation des éléments III en dessous de 450°C
 - Décalage du spectre d'absorption vers les courtes longueurs d'onde

Accroissement des capacités de simulation

Optimisation de l'empilement du puits quantique pour détecter en dessous de 4,1 µm*

Etude structurale et chimique des hétérostructures AlGaAs/InGaAs

Régime tunnel séquentiel résonant

Régime de transport à basse température

- Plateau de courant
- Hystérésis
- Dents de scie

Résistance différentielle négative

Domaines de champ

Modélisation du courant résonant

Approche du type Kazarinov et Suris*

12/10/2010 R. F. Kazarinov and R. Suris, *Electric and electromagnetic properties of semiconductors with superlattice*, Sov. Phys. Semiconductors 6, 120 (1972).

Dépendance en dopage

Evolution de J_{max} avec le dopage

- Linéaire à « faible » dopage
- Indépendant à « fort » dopage

ALCATEL-THALES

Le courant de vallée est non résonant

- IV locale : disparition de la RDN
- IV globale : disparition des dents de scie

Conclusion

Evaluation quantitative du plateau

 Maximum du courant tunnel résonant versus
Plateau tunnel expérimental*

Incertitude sur la couche et sur le niveau du plateau

17 échantillons

- Gamme spectrale de 3 à 20 µm
- 8 ordres de grandeur en courant
- Facteur 20 en dopage

^{12/10/2010} V. Guériaux *et al.*, *Resonant tunnelling in QWIPs: comparison between experience and theory,* article à paraitre (2010).

Introduction Etude structurale et chimique

Transport en régime tunnel QWIPs large bande

Conclusion

Réponse mesurée en régime tunnel

- Augmentation de la réponse après chaque discontinuité
- Baisse de la réponse au sein d'une dent de scie
- « Chute » de réponse à chaque discontinuité

Introduction Etude structurale et chimique

Transport en régime tunnel

QWIPs large bande Conclusion

Comportement atypique de la réponse

Réponse spectrale autour d'une discontinuité

Inversion des zones de champ

Distribution inhomogène du champ EM et niveaux d'impuretés

- Baisse de la réponse au pic
- Diminution de la FWHM

Principaux résultats

Etude du transport tunnel séquentiel résonant dans les QWIPs

 A basse température, ce transport domine malgré des énergies de couplage (Ω₁₂) de quelques nano-eV

Modélisation du courant tunnel résonant

• Outil prédictif et quantitatif pour calculer le niveau de courant du plateau

Etude expérimentale de l'impact du régime tunnel séquentiel résonant sur la réponse

Mise en évidence de comportements atypiques dans la réponse spectrale

Conclusion

Etude structurale et chimique des hétérostructures AlGaAs/InGaAs

Transport électronique en régime tunnel séquentiel résonant

Conclusion

QWIPs large bande

Réponse bande étroite (90 cm⁻¹)

Augmentation du contraste

Réponse large bande

- Spectroscopie
- Détection multispectrale

Structure interdigitée

34

Conclusion

Effet de la température

► A basse température (T<T_{BLIP}) :

Double pic

Simple pic

A haute température (T>T_{BLIP}) :

Redistribution des porteurs à 0V

Conclusion

Conservation du courant

Second design

- Compenser la redistribution des porteurs par un dopage inhomogène
- Effet similaire
- Conséquence de la loi de conservation du courant

12/10/2010

Conclusion

Modification du régime de courant

Modèle photoémissif : conservation du courant

Equilibre entre les flux entrant et sortant des puits

Introduction Etude structurale et chimique Transport en régime tunnel

QWIPs large bande

Conclusion

Distribution non uniforme du champ

Simulation avec le modèle photoémissif

- J_{OPTIQUE} semblables pour les deux puits => Champ uniforme
- J_{THERMIQUE} très différents => Champ non uniforme = Transfert de charge

Porteurs et probabilité d'émission

Conclusion

Changements de réponse : porteurs & probabilité d'émission

Dopage de 2.10¹¹ cm⁻² pour chaque puits

Conclusion

Règles de design

Spectromètre (Agence Spatiale Européenne)*

- Bande spectrale : $11 15 \mu m (\Delta \sigma \approx 250 \text{ cm}^{-1})$
- 4 puits avec des sur-barrières

Energie d'activation identique pour tous les puits

 Compenser les différences de niveaux fondamentaux par les niveaux de Fermi

Absorption équivalente à toutes les longueurs d'onde

Produit nombre de puits par quantité de dopants constant

12/10/2010 A. Nedelcu et al., Enhanced quantum well infrared photodetector focal plane arrays for space applications, IPT 52, 412 (2009)

Introduction Etude structurale et chimique Transport en régime tunnel

QWIPs large bande

Conclusion

Réponse spectrale large bande

Lambda (µm)	14.7	14.7	14.7	14.7	14.7	13.7	13.7	13.7	12.5	11.5	11.5	<i>12.5</i>	<i>12.5</i>	13.7	13.7	14.7	14.7	14.7	14.7	14.7
Doping (1.10 ¹¹ cm ⁻²)	2.1	2.1	2.1	2.1	2.1	3.1	3.1	3.1	6.2	9	9	6.2	6.2	3.1	3.1	2.1	2.1	2.1	2.1	2.1

Conclusion

Gabarit indépendant des conditions

Gabarit quasi-indépendant de la température et de la tension

Pixels sans structure de couplage optique (A. Berurier)

Introduction Etude structurale et chimique Transport en régime tunnel

QWIPs large bande

Conclusion

12/10/2010

QWIP à puits couplés

ALCATEL-THALES

Réponse expérimentale large bande [10,5 – 15,5 µm]

Indépendante de la température

Evolution de la probabilité d'émission

Conclusion

 Gabarit spectral dépendant de la tension

Maintien des niveaux alignés

Changement de la barrière d'émission avec la tension

Conclusion

Principaux résultats

Effet de la température sur les QWIPs interdigités standard

- A haute température, la réponse correspondant aux puits de plus faible énergie d'activation disparait
- Comportement prédictible avec un modèle photoémissif

QWIPs interdigités optimisés

- Règles de design (énergie d'activation et absorption identique à toutes les longueurs d'onde)
- Gabarit quasi-indépendant de la température et de la tension

QWIPs à puits couplés

- Gabarit indépendant de la température, mais dépendant de la tension
- Comportement simulable avec METIS

Sommaire

Etude structurale et chimique des hétérostructures AlGaAs/InGaAs

Transport électronique en régime tunnel séquentiel résonant

QWIPs large bande

Conclusion - Perspectives

Etude structurale et chimique

- Limitations intrinsèques des puits contraints à double barrière : ségrégation et contrainte
- Prise en compte et validation de ces effets dans nos simulations
 - → Optimiser les structures pour abaisser la longueur d'onde
 - → Répondre aux besoins de détecteurs bi-spectraux MW / LW

Transport en régime tunnel

- Mise en place d'un modèle pour le courant tunnel résonant : accord quantitatif sur l'ensemble de nos échantillons
 - → Réduire le niveau de courant tunnel
 - Proposer des imageurs hautes performances pour des applications faibles flux

Conclusion - Perspectives

QWIP large bande

- Model photoémissif : outil d'optimisation des composants
 - Réduire le courant d'obscurité en utilisant des couches à gradient de dopage et/ou d'épaisseur de barrière
- Conception et réalisation de QWIPs large bande en utilisant des puits couplés
- Etablissement et validation des règles de design pour obtenir une réponse large bande indépendante des conditions opérationnelles avec des structures interdigitées
- Réalisation de QWIPs dans la gamme [10,5 12,3 µm] pour l'agence spatiale américaine (mission LANDSAT) et [10,5 – 15,5 µm] pour l'agence spatiale européenne
 - → Nécessité de développer des structures de couplage large bande

Remerciements

Collaborations extérieures

- Groupe STEM (LPS/Paris 11), Equipe DON (MPQ/Paris 7), E. Lhuillier (ONERA)
- Les unités Thales : TR6 et TOSA

VINCENT GUÉRIAUX

Contribution à l'étude expérimentale et théorique des photodétecteurs infrarouge à multipuits quantiques couvrant la bande spectrale 3 – 20 µm

