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Abstract

Exploring many-body physics with ultracold atoms

Lindsay Jane LeBlanc, Doctor of Philosophy, 2011

Graduate Department of Physics, University of Toronto

The emergence of many-body physical phenomena from the quantum mechanical prop-

erties of atoms can be studied using ultracold alkali gases. The ability to manipulate

both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer

potential energy landscapes, variable interaction strengths and out-of-equilibrium initial

conditions provides the opportunity to investigate collective behaviour under diverse con-

ditions.

With an appropriately chosen wavelength, optical standing waves provide a lattice po-

tential for one target species while ignoring another spectator species. A “tune-in” scheme

provides an especially strong potential for the target and works best for Li-Na, Li-K, and

K-Na mixtures, while a “tune-out” scheme zeros the potential for the spectator, and is pre-

ferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices pro-

vide unique environments for studying many-body behaviour by allowing for a phonon-like

background, providing for effective mass tuning, and presenting opportunities for increasing

the phase-space density of one species.

Ferromagnetism is manifest in a two-component DFG when the energetically preferred

many-body configuration segregates components. Within the local density approximation

(LDA), the characteristic energies and the three-body loss rate of the system all give an

observable signature of the crossover to this ferromagnetic state in a trapped DFG when

interactions are increased beyond kFa(0) = 1.84. Numerical simulations of an extension

ii



to the LDA that account for magnetization gradients show that a hedgehog spin texture

emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of

strong interactions in 40K constitute the first steps towards the realization of ferromagnetism

in a trapped 40K gas.

The many-body dynamics of a 87Rb BEC in a double well potential are driven by

spatial phase gradients and depend on the character of the junction. The amplitude and

frequency characteristics of the transport across a tunable barrier show a crossover between

two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers,

where transport is via tunnelling, while hydrodynamic behaviour dominates for lower bar-

riers. The phase dependence of the many-body dynamics is also evident in the observation

of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpre-

tation of system dynamics, but do not describe the observed damping.
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Chapter 1

Introduction

In pursuit of the unknown, physics finds itself exploring ever deeper into length and

energy scales extending away from those of human experience. As an understanding of the

behaviour of matter at these extremes is developed, it can be a challenge to connect the

principles responsible for behaviour on one scale with those on the next. These connections,

however, increase our understanding of the fundamental properties of the universe and bring

closer to human understanding those phenomena which seem to defy common sense.

The field of atomic physics has proven itself valuable in the exploration of physical

phenomena on many scales. In the infancy of this field, the emerging understanding of

atomic structure was coupled to the development of quantum mechanics, such that the

understanding of one informed the other, and principles such as the quantization of energy

and the existence of spin angular momentum emerged from the partnership. Measurements

of the distinct spectral features of an atom can be carried out for atoms over many length

scales – from exploring the details of atomic structure in the laboratory, to using absorption

characteristics of the Earth’s atmosphere to determine its composition, to ascertaining the

behaviour of astronomical objects through the shifts of well-known spectral features.

In recent years, atomic physics has proven itself an ideal venue in which to probe the

smallest known energy scales. Upon establishing techniques to render temperature-driven

motion negligible [3, 4], the quantum statistics and indistiguishability inherent to an atom

become evident as an ultracold gas attains quantum degeneracy as a Bose-Einstein conden-

sate (BEC) [5] or a degenerate Fermi gas (DFG) [6] for bosons or fermions, respectively.

With the freezing-out of thermal degrees of freedom, the direct and exchange interactions

of the atoms set the dominant energy scales, and the atoms no longer act as individuals. By

studying the transitions from individual to collective behaviour, these atomic systems re-
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veal connections between the quantum mechanics of individual particles and the many-body

behaviour of macroscopic systems.

The study of many-body physics provides insight into the emergence of macroscopic

phenomena ranging from familiar examples like the structure of solids and origins of mag-

netism, to more exotic examples like superconductivity. In general, the microscopic degrees

of freedom (the individual motions or state of atoms, for example) can be ignored and a

new macroscopic “order parameter” emerges as the important degree of freedom for the

problem. The identification of this order parameter can be made through experimental

observation of a system without knowledge of its microscopics, as is the case in systems

like high-temperature superconductors where superconductivity is clearly observed, but the

underlying macroscopic description of its origin remains an open question. While it is not

necessary to understand the origin of such behaviour before exploiting it as a technology, one

can imagine that identifying the required microscopic properties leading to this behaviour

would enable much broader applications of such technologies.

The precision and versatility of atomic experiments provide many advantages for study-

ing many-body phenomena. Well known internal transitions of the atom permit selective

addressability and detection, interactions with electromagnetic fields make possible designer

potential energy landscapes, Bose or Fermi statistics dictate their relationships with their

neighbours, tunable interactions allow an exploration of various coupling regimes, and weak

interactions with external decoherence mechanisms allow for long-lived quantum mechan-

ical integrity. Atoms can be used as a set of versatile building blocks, and experiments

can be designed to mimic other physical systems whose behaviour is governed by the same

fundamental principles.

A variety of analogues to condensed-matter systems have been explored by introducing

quantum degenerate gases into customized environments, including, for example, the Mott-

insulator transition [7], the Tonks-Giradeau gas [8], superfluidity of fermionic pairs [9, 10],

and Anderson localization [11]. By demonstrating a correspondence between atomic and

condensed matter systems, these experiments lay the foundations for the use of ultracold

gases to explore many-body physics. Increasing the complexity of the interactions and

environments experienced by the atoms will allow these experiments to approach a regime

in which the underlying physics is incalculable. In particular, systems of fermionic atoms

could be arranged to mimic systems in which Fermi statistics, and their requirement of

antisymmetrization of the wavefunction, render insufficient the computational resources

needed to model systems of reasonable particle number. The atomic system could then be
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thought of as a “quantum simulator” [12] – a calculating machine that comes to its results

by taking a quantum mechanical system, allowing it evolve in a controlled environment,

and reaping the results from measurements of the final state. Several proposals have been

developed suggesting models that could be implemented by ultracold gases as analogues

to condensed matter problems, including, for example, the emergence of high-temperature

d-wave superconductivity from a Fermi-Hubbard model [13] or exotic forms of magnetism

[14].

This thesis discusses three main advances in the development of the use of ultracold

gases for the study of many-body physics. First, a technique for creating customized and

selective potential energy landscapes for mixtures of two or more species of atom. This type

of potential would could provide a means to tune the effect mass of one species, provide a

phonon-like background to atoms trapped in an optical lattice, or allow a mechanism for

a isothermal phase-space increase. Second, a proposal for the study of itinerant ferromag-

netism among ultracold fermions is discussed, and the first steps towards its implementation

in fermionic 40K are described. The microscopic origins of this many-body behaviour are

not well understood, and these experiments may provide insight into this problem. Third,

the collective transport behaviour of bosonic 87Rb in a double well potential is explored.

The character of the transport is explored as a function of the coupling between wells, and

both perfect-fluid hydrodynamics and Josephson-junction behaviour are found, indicating

the limits in which the macroscopic description associated with each of these is appropriate

for the system.

Outline

� Chapter 2 describes the apparatus for which techniques are developed and on which

the experiments are performed. This versatile machine produces quantum degenerate

samples of both bosons and fermions using the efficiency and flexibility of an atom chip.

Two methods for manipulation the potential energy landscape are discussed. Optical

fields are used as external forces and confinement potentials, and radio-frequency fields

are used to manipulate the potential energy surfaces into double-well potentials through

internal state manipulations of the atoms.

�Chapter 3 describes a technique that allows for the creation of a lattice-like environment
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for one species of atom while inducing no external potential on another species. This

technique exploits the differences in atomic structure between species to customize an

environment in which to study the many-body properties of a mixture of atomic species.

This method could prove useful as a means to tune the effective mass of one species, to

provide a phonon background to atoms trapped in a lattice potential, or to implement

a mechanism for isothermal phase-space increase.

� Chapter 4 describes the emergence of many-body collective behaviour of ultracold

fermions under the influence of strong repulsive interactions, and how this behaviour

mimics itinerant ferromagnetism among electrons in metals. Mean-field calculations

suggest that measurements of the total energy will indicate the crossover to ferromag-

netism for trapped gases, and extensions to a local-density approximation indicate that

configurations displaying spin textures could reduce the total energy of the system. The

first steps towards the experimental realization of this system in 40K are reported here.

� Chapter 5 describes the quantum mechanical transport of a ultracold bosons in a

double well potential. Using a tunable barrier, the character of the transport is studied

as the density in the region connecting the wells is varied from finite to vanishingly small

values, where the classical density is zero and tunnelling is responsible for transport.

We study both the population and phase evolution of this system under various initial

conditions and find that the many-body behaviour can be described as hydrodynamic in

the strong-coupling limit and as a Josephson junction for weak coupling.



Chapter 2

A versatile BEC-DFG machine

One of the primary advantages to studying many-body physics in ultracold gases is the

versatility with which atomic systems can be controlled. Well established methods to ad-

dress an atom’s internal and external degrees of freedom are used to cool a system to the

quantum degenerate regime, to manipulate it upon arrival there, and to measure its final

state upon completion of an experiment.

The “Chip Experiment” apparatus at the University of Toronto Ultracold Atoms Lab

serves as either the real or presumed setting for the experimental and theoretical work

described in this thesis. This experimental apparatus was designed as general-purpose

BEC-DFG machine, using an atom chip for efficiently cooling 87Rb and 40K to quantum

degeneracy. It has been used to pursue a variety of scientific questions throughout its young

life, and will continue to do so as it matures.

This chapter describes the general operation of this machine in §2.1, deferring a recent

thesis [15] for most details. Sections 2.2 and 2.3 describe two of the newer tools used to

manipulate the ultracold gases created by this apparatus: optical traps and radio-frequency

dressed potentials, respectively. Details regarding the construction and operation of these

tools are discussed in those sections.

2.1 A versatile BEC-DFG machine: basic principles

The design of this apparatus was carefully planned to provide a versatile platform from

which to launch experiments using a 87Rb Bose-Einstein condensate (BEC), a 40K degen-

erate Fermi gas (DFG), or both. Using an atom chip for fast and efficient evaporation,

5
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Figure 2.1: Apparatus schematics. Left: Experimental apparatus from afar. Red MOT beams,
5 cm in diameter intersect in the middle of the glass-box vacuum chamber. Parallel external magnetic
coils provide the quadrupole field for MOT and magnetic trapping, while the large top coil is used
for magnetic transport of the atoms to the atom chip, seen inside the glass vacuum chamber. Right:
Close up of atom chip, inside vacuum chamber. Also shown is the crossed ODT, skimming the
surface of the atom chip. MOT beams have been turned off in this view.

this simple one-chamber experiment provides fast cycle times and reasonable atom num-

bers with a minimum of technical complication. Details of the operation of the apparatus

are presented elsewhere (see Refs. [16–18] and especially [15]), but a brief description of the

machine is given here.

The main elements of the apparatus are sketched in Fig. 2.1. A Pyrex box acts as the

single vacuum chamber, in which the six magneto-optical trap (MOT) beams intersect. The

atom chip is suspended by a copper scaffold 5 cm above the MOT beam intersection point.

External magnetic coils provide the magnetic field gradients needed for the MOT, magnetic

trap, and magnetic transport.

2.1.1 Generic sequence for BEC/DFG

The standard route to quantum degeneracy, either as a BEC of 87Rb or a DFG of 40K ,

proceeds as follows:

�MOT. The magneto-optical trap (MOT) is formed at the intersection of six counterprop-

agating beams, with 5 cm diameter and ≈ −26 MHz detuning from the |F = 2,mF =
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2〉 → |F ′ = 3,mF ′ = 3〉 and |F = 9/2,mF = 9/2〉 → |F ′ = 11/2,mF ′ = 11/2〉 cy-

cling transition resonances in 87Rb and 40K , respectively. For a 87Rb BEC alone, the

87Rb MOT time ranges from 1 to 5 s. For a DFG or a mixture, the 40K MOT is started

first, and is run for up to 20 s, after which the 87Rb MOT light is turned on together with

40K light, and the overlapping beams generate simultaneous MOTs. Due to excited-state

collisional loss, we minimize the time during which both MOTs run at the same time.

Typical atom numbers at the conclusion of this step are, for 87Rb and 40K respectively,

NRb,MOT = 2× 109 and NK,MOT = 4× 107.

�Optical molasses. An “optical molasses” step is used to further cool the 87Rb , exploiting

sub-Doppler cooling mechanisms in the absence of magnetic fields. The 87Rb temperature

is reduced from TRb,MOT ≈ 130 µK to TRb,molasses ≈ 30 µK.

� Optical pumping. To optimize the magnetic trapping in subsequent steps, the atoms

are spin-polarized into the low-field-seeking stretched states of the ground states |F =

2,mF = 2〉 for 87Rb and |F = 9/2,mF = 9/2〉 for 40K . We use σ+ polarized light on

the F = 2 → F ′ = 2 (F = 9/2 → F ′ = 9/2) transition for 87Rb (40K) to promote then

shelve the atoms in these dark states.

� Magnetic trapping and transfer. Using the same coils as were used for the MOT,

a quadrupole magnetic field is turned on suddenly with a gradient that will trap only

the stretched-state atoms against the force of gravity. After compressing the gas by

increasing the confinement of the trap, the magnetic field minimum is shifted 5 cm

vertically toward the chip surface by changing the current of the “transfer coil.” We find

a transfer efficiency to the magnetic trap (measured for 87Rb ) of NRb,Btrap/NRb,MOT &

40%.

� Atom chip trapping. Once the atoms are near the surface of the chip, the “chip trap”

is activated, by flowing current through both the “Z-wire” on the chip and external bias

coils providing uniform magnetic fields. The atoms are trapped in a highly elongated

cigar-shaped trap. The transfer efficiency from the magnetic trap to the chip trap is

NRb,chip/NRb,Btrap ∼ 4%. We believe that free evaporation is responsible for some of the

loss in this process, resulting in the colder atoms being preferentially transferred, which

is to our advantage. The compression of the chip trap increases the temperature, which

we estimate to be TRb, chip ≈ 300 µK.
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� Evaporative and sympathetic cooling. A radio-frequency (rf) current is fed through

an auxillary chip wire, parallel to the long axis of the cloud, providing near-field rf ra-

diation which couples adjacent mF states in the magnetic trap. Sweeping the frequency

from high to low, the hottest atoms 87Rb are ejected from the trap and those left behind

rethermalize to lower temperatures. If 40K is present, collisions between species bring

them to an equal temperature, allowing the 40K to be sympathetically cooled as 87Rb is

evaporated. With appropriate sweep rates, the phase space densities increase and quan-

tum degeneracy is achieved. Typical atom numbers are NRb,BEC = 2× 105 for a quasi-

pure 87Rb BEC (when produced alone), and NK,DFG = 4× 104 for TK/TF = 0.09± 0.04

for 40K DFGs, where TF is the Fermi temperature.

� Experiment. At this point in the sequence, either a BEC or DFG is available to be

manipulated in whatever way will answer the question of the day.

� Imaging. Absorption imaging is used to determine both the number and momentum

distribution of the cold atoms. Typically, the atoms are released from their trapping

potential and allowed some time of flight (TOF) before imaging. A 100 µs pulse of light

resonant to the cycling transition is incident on the atoms, whose intensity is chosen such

that the absorption of the light by the atoms remains in the low-saturation-parameter

limit (See Appendix B). The resulting shadow image is recorded on a CCD camera after

passing through imaging optics. After the atoms are removed from the field of view,

either by letting them fall farther or shelving them in a dark state, a second reference

image is recorded on the CCD. The amount of light absorbed and its position on the

camera give information about both the total number and momentum distribution of

the atom clouds.

A quantum gas for everyone

At the “Experiment” point in the sequence, either a BEC, DFG, or a mixture of the two

is available for study. In most cases, additional steps are taken to create a more interesting

or exotic environment for the quantum gas. In the work presented here, we consider a

number of situations: Chapter 3 considers (theoretically) the case of applying optical lattices

to a mixture of atomic species, taking into special consideration the 40K -87Rb mixture

available in this experiment; Chapter 4 considers transferring a DFG of 40K to an all-optical

trap, applying strong magnetic field to access a Feshbach resonance, where strong repulsive



2.2 Optical forces: traps and levitation 9

interactions can lead to collective behaviour; and Chapter 5 considers deformations of the

magnetic trap via rf dressing fields, to study the dynamics of a 87Rb BEC in a double well.

The apparatus is constructed to allow switching between these configurations with a change

of commands from the sequencing computer, lending it a high degree of versatility.

2.2 Optical forces: traps and levitation

The use of optical forces is a standard tool for the manipulation of ultracold atomic

gases [19]. Laser light whose intensity is spatially dependent, often as focussed beams or

standing waves, will create a potential energy surface for the gas. In addition to the unique

geometries these potentials make available, schemes using all-optical trapping permit the

trapping of weak-field seeking states and tunability of magnetic field, which are unavailable

in magnetic trapping schemes. With this freedom, the tunability of interaction strength

enters as an additional control parameter, as the Feshbach resonance [20] can be exploited.

In this apparatus, we combine the advantages of the atom chip technology with those

offered by all-optical traps. The potential energy for the far-detuned traps we use is dis-

cussed in §2.2.1, the limitations associated with combining an optical trap with an atom

chip are discussed in §2.2.2 and the application of this optical force as a levitation field is

discussed in §2.2.3.

2.2.1 Optical trapping potential

The origin of the optical forces we consider here is the ac-Stark shift, the second-order

perturbative energy shift due arising from the interaction of an oscillating electric field with

an atom, through the dipole operator. With spatially-varying optical fields, atoms will

experience spatially-dependent optical forces, which can be used to trap the atoms in what

are sometimes called optical dipole traps (ODTs). For optical frequencies far detuned from

any optical transitions, the far-off-resonant trap (FORT) provides a potential energy [19]

Vopt(r) ≈ 3πc2Γ

2ω3
0

(
1

∆
− 1

∆+

)
I(r), (2.1)

where Γ is the natural linewidth of the atomic transition, I(r) is the local intensity, ω0 =

2πc/λ is the frequency of the dominant transition, λ is the wavelength, ∆ = ωL − ω0 is

the detuning of the laser light from the dominant optical transition, ∆+ = ωL + ω0 is the
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counter-rotating term (which becomes important only at large detunings), and ωL is the

frequency of the optical field used for trapping.

In this work, we use single focussed beams to effect the optical potentials that manipulate

the atoms. With the assumption of Gaussian beam optics, we consider generic coordinates

r = (r1, r2, r3). We take the direction of propagation along r3 and assume cylindrical

symmetry where the radial coordinate %12 =
√
r21 + r22 is valid. In this case, the intensity

is Gaussian

I(%12, r3) =
2P

πw2(r3)
exp

(
−2(%12 − %012)2

w2
0

)
, (2.2)

where P is the total power in the beam, (%012, 0) is the location of the beam focus, w0 is

the beam waist at r3 = 0, where the waist is, in general, w(r3) = w0

√
1 + (r3/rR)2, and

rR = πw2
0/λ is the Rayleigh range of the beam. The combination of Eqs. 2.1 and 2.2 gives

a full expression for the potential in terms of measurable quantities P and w.

The Gaussian shape of the potential is approximately harmonic at the trap centre, and

effective trap frequencies can be related to the beam waist and power [19]. The two trap

frequencies are

ω12 =

√
4Vopt(0)

mw2
0

(2.3a)

ω3 =

√
2Vopt(0)

mr2R
. (2.3b)

The optical potentials used in this apparatus are generated from 1064 nm laser light,

from either the 500 mW solid state (Nd:YAG & Nd:YVO4) CrystaLaser (CL-1064-500) or a

10 W ytterbium fibre laser from IPG (YLR-10-1064-LP). At this wavelength, the detuning is

sufficiently far off-resonance to avoid large heating rates, and to make valid the far-detuned

approximations discussed above for both 87Rb (λ = 780 nm) and 40K (λ = 767 nm). Both

lasers pass through power-controlling AOMs before entering fibre optics that act both as

spatial filters and means to transport the light from one location to the next. The output

power from the fibre is actively stabilized via feedback to the AOM.

2.2.2 Crossed-beam optical trap near an atom chip

To bring a trapping beam near the surface of an atom chip, the size of the focus will be

limited by the clipping of the beam at the edges of the chip. For a beam of a given spot

size, w0, the distance from the chip surface, ztrap will be restricted depending on the width
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Figure 2.2: Optical trapping near a surface. The schematic shows the geometry of a focussed
beam skimming the surface of an atom chip. The beam waist w0 is limited by the distance from
the chip ztrap and the horizontal length from the edge of the trap to the trap position, xchip. The
plot shows a measurement of the waist size (light squares, left axis) and power throughput (dark
diamonds, right axis) for a 1064 nm beam focussed at various distances ztrap from the surface of a
16 mm long surface. The beam is degraded as the beam approaches closer than 200 µm to the chip.

of the chip, xchip. Figure 2.2 shows the geometry of this situation. A rough estimate for

the minimum distance from the chip, zmin
trap can be found by assuming that the beam must

at all times allow one beam waist to be transmitted past the edge of the chip. In this case,

ztrap ≥ zmin
trap = w0

(
1 +

(
λxchip
πw2

0

)2
)1/2

(2.4)

where λ is the wavelength of the trapping light. In this experiment, where λ = 1064 nm,

xchip = 8 mm, and w0 ≈ 16 µm, this expression gives ztrap ≥ 170 µm. Figure 2.2 shows a

measurement of the spot size and through-power of a beam focussed at various distances

from a 16 mm long surface. The spot size begins to increase at ztrap ≈ 200 µm from the chip,

which is close to the estimate. This degradation of the beam is due to the high-momentum

wavevectors being removed at the edge of the chip.

In this apparatus, we trap the atoms ∼ 200 µm from the surface of the chip. At this

distance, we can use beams with w0 & 16 µm. We use two focussed 1064 nm beams

to manipulate the atoms, alone or separately. These are shown schematically in Fig. 2.1

(inset); Fig. 2.3 shows the layout of the optical elements used to create these traps. The two

beams, known as “ODT1” and “ODT2” cross at the location of that atoms, ODT1 (along

y) with a waist of w0 ≈ 18 µm and ODT2 (along x) with w0 ≈ 35 µm.
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Figure 2.3: Crossed-beam ODT layout, including imaging axes (view from above). Blue box
shows vacuum cell, with yellow atom chip inside. Mirror (M), lenses (f), 1064 nm notch filters
(F), dichroic mirrors (D1: transmits 767/780 nm, reflects 1064 nm) and (D2: transmits 1064 nm,
reflects 767/780 nm), and beam dumps (black X) shown. Solid red lines show the two paths for
the ODTs: ODT1 is the more-tightly focussed beam, passing through the atoms in the y-direction;
ODT2 is the broader beam, passing through the atoms in the x-direction. Dashed black lines show
the paths of the imaging beams: “radial imaging” copropagating with ODT1 along the y-direction
and “axial imaging” counterpropagating with ODT2 along x. Note that the lens used for focussing
ODT2 (f = 75 mm, closest to vacuum cell) is also used for imaging.

Atoms can be transferred with near-unity efficiency from the magnetic trap to either

trap individually, or to a crossed ODT1+ODT2 trap. The general procedure for transfer is

to turn on the ODTs slowly (∼ 100 ms) while the magnetic trap is present, turning off the

magnetic traps with an equivalent time-scale once the ODT is fully on.

2.2.3 Optical levitation forces for cancelling gravity

In some circumstances, we find that the potential energy gradient due to gravity nega-

tively affects the shape of the trapping potential. While this is usually not a problem in
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the tightly-confined atom chip traps used in our experiments, we found that the shapes of

rf-dressed adiabatic potentials were more sensitive (see §2.3 for more details). To counteract

this effect, we position the weakly-focussed ODT2 above the location of the atoms, in order

to place the linear slope of the potential at the position of the atoms. By adjusting the

power of this beam, we can exactly cancel the effect of gravity.

To determine the positioning of the beam that will best cancel gravity, we employ a

procedure that exerts a pulsed force on the atoms. The position of greatest linearity in a

Gaussian beam, where %12−%012 = w0/2, is also the point of largest gradient in the potential.

Since the force exerted by this potential (F (r) = −∇V (r)) is greatest at this point, we seek

the position of the beam where we can exert the greatest force on the atoms. After creating

a small BEC in the atom chip trap, we turn off the magnetic trap and immediately pulse on

the optical beam ODT2 for a short time, before the atoms have moved significantly. The

position of ODT2 is scanned vertically (in z), and upon measuring the average distance

of the atoms after some time of flight, we can find the position of the ODT at which the

the atoms have fallen the least, corresponding to the position of greatest upward force.

Figure 2.4 shows one such measurement.

After calibrating the position, we position ODT2 at the optimal location, and determine

the minimum power required for levitation of the atoms upon release from the magnetic

trap. We employ ODT2 at this power and position to mitigate the effects of gravity.

2.3 Chip-based rf double-well potentials

The use of radio frequency (rf) radiation to deform magnetic potential energy surfaces

began in earnest as a tool for forced evaporative cooling. The effective potential seen by the

atoms is modified by the coupling between the oscillating rf magnetic fields and the static

potential of the magnetic trap, which can be used more generally to deform the geometry

of magnetic potentials [21, 22].

The proximity of the atoms to the rf antennae on a atom chip allows for strong coupling

between the rf radiation and the atoms, which, with polarization considerations, can be

used to create double well potentials [23]. Like the work described in Refs. [23–25], we use

this technique to deform a single well into a double well, carefully controlling the barrier

height and distance between the minima of the two wells with the frequency and amplitude

of the rf fields.
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Figure 2.4: Optical levitation calibration. The inset shows the force profile expected for a Gaussian
beam, with the grey region highlighting the regime for the data in this plot. Upon being released
from a trap, an atom cloud is subjected to a force from the optical beam, whose magnitude depends
on the position of the atoms in the beam. The magnitude of the force is scanned by moving the
beam through the cloud. After the force is applied, the position of the atom cloud is recorded after
some time of flight. The greater the upward force, the less the atoms fall. The minimum in the
atom cloud position indicates the levitation beam position which exerts a maximum force on the
atoms, corresponding to the position of greatest linearity in the optical potential. The zero in the
beam position is arbitrary, and increasing values of position move away from the chip.

The geometry of the atom chip used in this experiment, and the magnetic and rf-dressed

potentials available from it, are described extensively in Ref. [15]. Since the completion of

that thesis, we have worked to further modify the geometry of the traps through the use of

different antennae and optical forces. Section 2.3.1 gives an analytic form for the potetnials

used in this work, and §2.3.2 discusses the necessary corrections needed to compensate

for the approximations made. Section 2.3.3 discusses the details of the three-dimensional

geometry of the double well and describes modifications to the potential using the optical

forces described in §2.2.
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2.3.1 Rotating-wave approximation of potential

The double-well potential is created through a coupling between static and rf magnetic

fields. In the dressed state picture, these combine to form the effective potential [24]

VRWA(r) = m′F

√
[~ωrf − gFµBBS(r)]2 +

[
gFµBBrf,⊥(r)

2

]2
(2.5)

where m′F is the adiabatic magnetic quantum number, gF is the g-factor, µB is the Bohr

magneton, BS(r) is the static magnetic field, described by an Ioffe-Pritchard potential, and

Brf,⊥(r) = |BS(r)×Brf(r)|/|BS(r)| is the component of the oscillating magnetic field locally

perpendicular to the static field at each point, r.

The static magnetic trap arises a result of the combination of current flowing through

the “Z”-wire on the chip, an external bias field, and an external Ioffe field. In combination,

these create an Ioffe-Pritchard style trap, a static magnetic field BS = B1r̂1 +B2r̂2 +B3r̂3,

whose components are described by [26]

B1(r1, r3) = B′r1 −
B′′

2
r1r3 (2.6)

B2(r2, r3) = −B′r2 −
B′′

2
r2r3 (2.7)

B3(r1, r2, r3) = BS(0) +
B′′

2

(
r23 − 1

2(r21 + r22)
)

(2.8)

with a magnitude of

BS(r1, r2, r3) =
√
B2

1(r1, r3) +B2
2(r2, r3) +B2

3(r1, r2, r3). (2.9)

In the limit of a small cloud, the static potential is well-approximated by a harmonic trap,

characterized by radial and axial trapping frequencies ω12 and ω3. In terms of these mea-

surable values, the static trap-bottom term, the gradient term, and the curvature term are

given by

BS(0) =
2~ωTB

m′FgFµB
(2.10)

B′ =

√
mBS(0)

m′FgFµB

(
ω2
12 +

ω2
3

2

)
(2.11)

B′′ =
mω2

3

m′FgFµB
, (2.12)

respectively, where we define ωTB = µBgFBS(0)/~ as the “trap bottom” frequency. In the

coordinate system of this apparatus, r1 → x, r2 → z, and r3 → y such that ω12 = ωx,z and

ω3 = ωy.
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Figure 2.5: Geometry of the chip-based rf-dressed adiabatic double well potential. Purple clouds
represent the atom clouds, red beam shows the gravity-compensating levitation beam.

As discussed in §2.2.3, we can use an optical force to compensate for the effects of

gravity. This additionally compresses the trap along the weak, y. If we characterize this

force through an effective harmonic trapping frequency ωy,0, the total effective potential

becomes

VRWA(r) = m′F sgn(gF )~
√
δ(r)2 + Ω2

⊥(r) + 1
2mω

2
y,0y

2, (2.13)

where δ(r) = ωrf − |µBgFBS(r)/~| is the detuning, Ω⊥(r) = µBgFBrf,⊥(r)/2~ is the rf Rabi

frequency,

Typical values for the parameters in Eqs. 2.12 and 2.13 are: ω(r,y) = 2π× (1310, 10) Hz,

ωTB = 2π× 787 kHz, Brf,⊥ = 240 mG, ωy,0 = 2π× 95 Hz, and in the |F = 2,m′F = 2〉 state

of 87Rb we use, m′FgF = 1.

In Eq. 2.13, the first term under the square root defines a shell of resonance upon which

the potential is minimized. The second term indicates the effect of the polarization on the

coupling; the vertically (in the z-direction) polarized rf radiation used in this experiment

leads to symmetric absolute minima on the shell that are the minima of the double well

potential. Figure 2.6 shows the calculated potentials for various values of the detuning,

δ0 ≡ δ(r = 0). Figure 2.5a shows a schematic of the two elongated clouds below the surface

of the atom chip with the gravity-compensating laser beam.
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Figure 2.6: Calculated RWA potential energies. Top row shows contours in the x − z plane for
y = 0, with contours at ∆V (r)/~ = 2π × 1 kHz from 0 to 10 kHz, with one additional contour at
V (r)/~ = 2π×0.5 kHz. Bottom row shows cuts through potential at y = z = 0 for various detunings.
(a) δ0 = −2π × 5 kHz, (b) δ0 = 2π × 0 kHz, (c) δ0 = +2π × 5 kHz, and (d) δ0 = +2π × 10 kHz.

2.3.2 Beyond-rotating-wave corrections

In using Eq. 2.13 to calculate our adiabatically dressed potential, we invoke the rotating-

wave approximation (RWA). However, in this experiment, like others [25], the coupling

strength is sufficiently strong as to render the approximation invalid. To account for the

corrections to the RWA, we calculate the full potential and compare it to the RWA results.

We obtain a small correction factor used in all subsequent analyses.

The full expression for the energies of the dressed eigenstates for atoms in a magnetic

trap coupled to a strong rf field can be found be diagonalizing the full Hamiltonian describing

this system. Following Ref. [25], we consider atoms with total spin F in a static potential

BS(r) coupled to an oscillating field Brf(r) exp(iωrft), leading to the Hamiltonian

HBRWA(r) = gFµB|BS(r)|Fz + ~ωrfa
†a+ G

[
Brf,⊥(r)a† + h.c.

]
Fx

+G
[
Brf,||(r)a† + h.c.

]
Fz (2.14)

where G = gFµB/
√

2〈Nph〉, 〈Nph〉 is the average photon number in the rf field, a†(a) is the

creation (annihilation) operator of the rf field, and Brf,⊥(Brf,||) is the complex amplitude of
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the component of Brf(r) perpendicular (parallel) to the static field BS(r), for each spatial

point r, and h.c. denotes the hermitian conjugate.

To diagonalize the Hamiltonian, we use the basis states {|mF ; ∆Nph〉} for F = 2, and

we choose a large photon number basis, ∆Nph = Nph − 〈Nph〉 = −12, . . . , 12. We assume

〈Nph〉 � 1 such that
√
Nph + 1 ≈

√
Nph. We solve for the energies E(r) from H(r)ψ0 =

E(r)ψ0 and select the eigenvalue which connects to the |ψ0〉 = |Fz = 2,∆Nph = 0〉 state.

After subtracting off any offset at the trap minimum, we compare this potential energy

E(r) to the RWA calculation VRWA(r) for the same values of ωrf and BS(r).

To perform the comparison, we choose a single plane at y = 0. After calculating

E(x, 0, z) at some δ0, we perform a two-dimensional fit of V (x, 0, z), where δ0 → δ0 +

δshift, to this potential energy surface, using δshift as the fit parameter. In so doing, we

determine a systematic shift by which we adjust the RWA-calculated potentials to account

for the beyond-RWA effects. Figure 2.7(a) shows the differences between the two methods

of calculaton, while Fig. 2.7(b) shows the necessary shift as a function of the detuning

parameter, δ0.

2.3.3 Potential energy gradients and the double-well potential

As is discussed in Ref. [15] (§6.3.1), gradients in the rf field, Brf,⊥(r) can lead to the

“banana” effect, wherein the potential energy is minimized not at two points opposite each

other on the shell of resonance for which ~ωrf = gFµBBS(r), but along a “drooping” path

between these points. This can be mitigated by reducing the Ioffe bias field and increasing

the gradients of the static trap, BS(r), such that the relative gradient of the rf field is

smaller. However, we find these measures are not sufficient to completely eliminate banana

effects.

To reduce the effects of gradients in Brf,⊥(r), we move from antennae close to the atoms

to those farther away. Figure 2.8 shows the layout of the atom chip, and panel (b) shows the

main wires used in these configurations. The central blue ‘Z’-wire provides the main static

trapping gradients that lead to BS(r). The original rf adiabatic potentials implemented

the red ‘U’-shaped wires [15], which are only 100 µm from the centre of the trap (while

atoms are trapped ≈ 190 µm from the surface of the chip). The magnetic field gradients

of the rf field at the position of the atoms are reduced by using the green “end” wires, at

1580 µm from the trap position. The RWA potentials calculated for these two scenarios

are compared in Figs. 2.9(a) and (b), where (a) uses the former configuration and (b) the

latter. Two main differences are seen: first, the drooping “banana” effect is reduced, and
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Figure 2.7: Comparisons between RWA and full potential calculations. (a) Potential energy curve
through y = z = 0 with δ0/2π = 0, calculated using full expression Eq. 2.14 (blue dots), RWA
approximation Eq. 2.13 (red solid line), and RWA approximation with fitted shift of δshift/2π =
−1.85 kHz (black dashed line). Inset: difference between full potential and RWA potential with
shift over entire 2D plane at y = 0 used for fit. Color bar indicates in Hz the difference between
the corrected RWA potential and the full calculation. (b) Fitted detuning shift as a function of
detuning, i.e., the number one should add to the detuning in the RWA expression to obtain the best
estimate of the potential.

second and more drastically, the separation of the clouds looking along the z-axis (bottom

panel) is much improved with the far wires. The centres of the traps in the y direction are

much closer when the end wires are used.

Despite the improvements seen in Fig. 2.9(b), two problems remain. The drooping

effect persists due to the potential gradient of gravity, and a significant twisting of the

potentials away from the y-axis arises from the ‘Z’-shaped geometry of the trapping wire.

The twisting separates the well centres along y to distances on the order of 50 µm. For

experiments hoping to study the coupling and tunnelling between BECs in the double well,

this prevents significant overlap of the condensate wavefunctions between the wells, and

reduces the chance of observing the effects related to that overlap.

To address both the twisting and the drooping, we apply an optical force to the atoms

in this trap to levitate and compress the atoms against gravity, as discussed in §2.2.3. We

use a focussed Gaussian beam, propagating along x and focussed above the atoms in z to

levitate the atoms. The auxillary effect of this optical force is a confinement along y, which
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Figure 2.8: Atom chip schematics. (a) Full layout of the Toronto atom chip. Refer to Ref. [15] for
detailed explanation of each wire. (b) Simplified schematic of atom chip, showing the wires relevant
to rf dressing in these experiments. Not to scale. Blue ’Z’-wire provides static field, and either the
red U-wires or green bar-wires act as rf antennae for the dressed potentials.

brings the trap centres to the same position in y, allowing for good wavefunction overlap.

This configuration is shown schematically Fig. 2.5 and the calculation of the RWA potetnial

is found in Fig. 2.9(c).

The optical levitation and compression were found to significantly improve the per-

formance of the double well potential for the applications discussed in Chapter 5. These

results show that all potential energy gradients must be accounted for when describing the

potential of chip-based adiabatic rf potentials.
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Figure 2.9: Effects of gravity on adiabatic double well potentials. Upper row are cuts at y = 0,
with a aspect ratio equal in both directions. Bottom row are cuts at z = zmin, that is, the vertical
position at which the potential is minimized. White arrows show the position of the plane for
the corresponding views. Dark regions show small potential energies, with regular spaced contours
indicating increasing potential energy. Aspect ratio in upper row is 1:1; horizontal dimensions are
equal in top and bottom rows, though the vertical scale is compressed, as indicated by the size bar
in (c). (a) Original configuration, U-wire rf source. (b) New configuration, end-wire rf source. (c)
New configuration, end-wire rf source, with optical levitation/compression



Chapter 3

Species-specific optical lattices

The ability to design the potential energy landscape for an ultracold gas permits the

study many-body phenomena in a variety of environments. Using the forces provided by

oscillating electromagnetic fields, optical potentials can be created in single or multiple well

configurations, the latter often realized as one-, two-, or three-dimensional lattices. The well-

known optical resonances characteristic of each atomic species can be exploited to create

differential optical forces for different atomic species or internal states by choosing carefully

the wavelength used for these potentials. Several such schemes have been implemented: a

“magic wavelength” scheme was used to cancel the differential energy shift between ground

and excited states [27], spin-dependent lattices have addressed individually two internal

states of an atom [28–31], and species specific dipole potential has been used to separately

address the species in a mixture [32].

This chapter discusses two techniques by which an optical trap can be used to selectively

address an atomic species while having little or no effect on a second species. The necessary

experimental parameters and several applications of this scheme are discussed. The back-

ground for this technique is discussed in §3.1 and the description of the effects of optical

fields on alkali atoms is found in §3.2. Quantitative measures for evaluating the feasibility of

a species-specific potential are defined in §3.3 and applied to two different techniques. These

two methods, the “tune-in” and “tune-out” methods are compared for various mixtures of

alkali atoms. Section 3.4 discusses the interactions between different atomic species in the

selective lattice, including the emergence of a mean-field potential and the thermalization

between species. Applications of a species specific lattice, including phase-space increase,

phonon inclusion in ultracold gases, and effective mass tuning are discussed in §3.5 before

concluding in §3.6.

22
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3.1 Background

As the field of ultracold atoms research enters its adolescence, experiments are increasingly

including more than one element or isotope. Dual-species experiments offer possibilities for

creating heteronuclear polar molecules [33], sympathetic cooling [34–37], and investigating

Bose-Fermi mixtures [35–38] which may provide opportunities for studying boson-mediated

superfluid states [39, 40]. More recently, experiments involving up to three atomic species

have been implemented for sympathetic cooling of two fermionic species [41, 42].

Dually degenerate experiments have so far used external trapping potentials common to

both atomic species. A species-specific trapping potential would add a degree of freedom

to improve sympathetic cooling [43], to tune effective mass, or to create a lattice for one

species in the presence of a background reservoir. Though careful selection of internal atomic

states can provide differential magnetic trapping, optical far-off resonant traps (FORTs) and

magnetostatic traps are not species-specific.

Species-selective adiabatic potentials have been proposed [44] and demonstrated [18]

in the case of 87Rb -40K, where the Landé factors |gF | are distinct. A radio-frequency

transverse field can be resonant with only one of the two species, selectively deforming its

dressed potential. Onofrio and co-workers [43, 45] propose using two overlapping FORTs

at frequency detunings far above and below the dominant ground state transitions of both

species in a two-species mixture. The confinement of each species can be chosen indepen-

dently by individually adjusting the intensity of the two beams used to create the trap.

Unfortunately, none of these schemes lends itself to a uniform three-dimensional lattice po-

tential for atoms: the radio-frequency scheme fails because it is limited to one-dimensional

periodic potentials and the two-frequency balancing because lattice periodicity depends on

wavelength. Recently, two schemes for two-dimensional lattices of fixed spacing with ar-

bitrary wavelength have been created using diffractive optics and high-resolution imaging

[46, 47].

In this chapter we discuss the generation and application of species-specific optical lat-

tice potentials. Our motivation is the strong analogy between atoms in optical lattices

and electrons in crystalline solids. Cold bosons in lattice potentials can be used to ex-

plore strongly interacting many-body physics, such as the superfluid-insulator transition

[7, 48]. At sufficiently low temperatures, cold fermions in lattices [49, 50] might be able to

address open questions about the ground state of the Hubbard Model [13]. Unlike crystal

lattices, optical lattices do not support the lattice vibrations responsible for many physical
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phenomena. However, phonon mediation between neutral atomic fermions could arise in

the presence of a condensed bosonic species capable of sustaining phonon-like excitations

[39, 40, 51, 52]. Although Bose-Fermi mixtures were recently loaded into optical lattices

[53, 54], the lattices confined bosons as well as fermions. Using a lattice to tune the effective

mass of the bosonic background allows a tailoring of the speed of sound in the condensate,

and with it, the spectrum of phonon excitations allowed. To couple phonons to the fermions

at the edge of the Fermi sea, for instance, requires that the speed of sound in the condensate

exceeds the Fermi velocity [55].

We discuss two approaches to species-specific optical potentials, both of which involve

only a single frequency of laser light. The first approach is to tune the laser wavelength close

to the atomic resonance of one species, making its induced dipole moment much stronger

than that of any other atomic species present. We refer to this strategy as the “tune-in”

(TI) scheme. A second approach exists for atoms, such as alkalis, with an excited-state fine

structure splitting. Between the resonances of the doublet, a wavelength can be chosen such

that the induced dipole moment is strictly zero. We refer to this strategy as the “tune-out”

(TO) scheme. Both approaches allow for the creation of a species-specific optical lattice

with a tunable relative potential strength between species.

In the following sections we consider the relative merits of the TI and TO schemes. We

focus our attention on Bose-Fermi combinations throughout, paying special attention to

mixtures including 87Rb [17, 49, 56–60].

3.2 Optical potentials for alkali atoms

We consider the light-atom interaction in the limit of a small excited-state fraction. An

electromagnetic field induces an electric dipole potential on a neutral atom, which can be

used as a trapping potential for ultracold atomic samples. We consider the residual effect

of spontaneous emission in §3.2.2.

3.2.1 Dipole potential

An atom in a ground state |g〉 will experience a potential shift due to coupling by the

light field to the excited states |e〉. We calculate the sum of these shifts on each state |g〉,
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including the counter-rotating term, using second-order perturbation theory:

Vg(r) =
1

2ε0c

∑
e

[ |〈e|d · ε̂|g〉|2
~(ωL − ωeg)

− |〈e|d · ε̂|g〉|
2

~(ωL + ωeg)

]
I(r), (3.1)

where ωL is the laser frequency, ~ωeg is the energy difference between |e〉 and |g〉, d is the

dipole operator, ε̂ is the polarization of the light, and I(r) is the spatially-dependent light

intensity. In the case of atoms in a weak magnetic field, we use the matrix elements defined

in the |F,mF 〉 basis, where F is the total angular momentum and mF is the magnetic

quantum number.

We will consider only alkali atoms, which have two dominant n s → n p transitions

due to the fine structure splitting. Using nomenclature established by Fraunhofer for the

32S1/2 → 32P1/2 and 32S1/2 → 32P3/2 transitions in sodium, we label the corresponding

lines in each of the alkalis D1 and D2, respectively. Spin-orbit coupling splits each excited

state by a frequency ∆FS = ωD2 − ωD1 , while each ground and excited state is further

split by the hyperfine interaction ∆HFS and ∆′HFS, respectively. The atomic data used for

Eq. (3.1) are the measured linewidths and line centres of the D1 and D2 lines, and the

ground and excited state hyperfine splittings [61–66].

Transitions to higher excited states n s→ (n+1) p are neglected by our treatment. When

detuned within ∆FS of the n s→ n p transition, the relative magnitude of the n s→ (n+1) p

shift is less than 2× 10−5 for Cs and 7× 10−8 for Li.

As Eq. (3.1) requires a sum over several states and knowledge of individual matrix

elements, it is useful to have an approximate but simpler expression for Vg. If the detunings

∆eg = ωL−ωeg are small compared to ∆FS, but large compared to the excited state hyperfine

splitting ∆′HFS, an approximate expression for the dipole shift is [19]

Vg(r) ≈ πc2Γ

2ω3
0

(
1−PgFmF

∆1
+

2 + PgFmF

∆2

)
I(r), (3.2)

where P = 0,±1 for π, σ± polarization, respectively, gF is the Landé factor, ∆1(2) is

the detuning from the D1(2) line, ω0 = (ωD1 + 2ωD2)/3 is the line centre weighted by

line strength, and Γ = (ΓD1 + ΓD2)/2 is the average of the D1 and D2 linewidths. Since

ΓD2/ΓD1 ≈ 1+3∆FS/ω0, one can expect an accuracy between ±7% for Cs and ±0.003% for

Li. At small detunings, we empirically find that Eq. (3.2) deviates from Eq. (3.1) by ≈1%

for detunings min{|∆1|, |∆2|}/2π . 1.5
√
m̃ GHz, where m̃ is the mass in atomic units.

As an approximate form, Eq. (3.2) neglects the counter-rotating terms. For |∆| <
∆FS, the strength of the counter-rotating contribution is at most ∆FS/2ωL relative to the
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contribution of one near-resonant dipole transition. Thus the neglected shift is at most -2%

for Cs, and -0.001% for Li for estimates of the TO wavelength. Scenarios involving larger

detunings require the full expression Eq. (3.1); for consistency, this expression is used in

the following sections unless otherwise specified.

3.2.2 Heating rates

Detuning and intensity of optical traps must be chosen with consideration of the inco-

herently scattered trapping light that heats the atoms. For each state |g〉, we quantify the

rate of scattering in the low saturation limit,

γsc =
I(r)

2ε0c

∑
e

Γe|〈e|d · ε̂|g〉|2
~2

[
1

(ωL − ωeg)2
+

1

(ωL + ωeg)2

]
(3.3)

where Γe is the natural linewidth of the g → e transition, and ∆eg = ωL − ωeg. The rate

of scattering of photons can be converted to an average heating rate, Hg = 2
3ERγsc, where

ER = ~2k2/2m is the recoil energy, k = ωL/c, and c is the speed of light. The factor of 2/3

arises due to the partition of energy E = 3
2kBT .

This estimate of the heating rate is derived from the product of the spontaneous decay

rate and the excited state population. In semiclassical treatments of the heating rate,

absorption and induced emission effects were also found to be important [1]. For a standing

wave potential, the three contributions to the heating rate are found to add in such a way

as to render the heating rate independent of position in the lattice, at a value that is given

by Hg(Imax), where Imax is the maximum intensity in the standing wave.

Recent calculations of heating in a lattice accounting for the quantum mechanical motion

of the atoms confirms this position independence, if atoms can access multiple bands within

the lattice [2]. The heating rate for the ground band is less than the above value, and

is smaller for blue-detuned lattices than for red. The heating rate, therefore, will depend

on the configuration used in a particular experiment, and must be adjusted accordingly.

For the purposes of the calculations in this chapter, we consider Hg(Imax), which can be

modified as the experimental consideration dictates according to some factor as found, for

example, in Ref. [2].
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3.3 Species selection

It is not surprising that optical traps can be species-specific given that optical resonances

are unique to atomic elements and isotopes. However, most species-specific optical traps,

such as magneto-optical traps, are tuned to within a few linewidths of resonance, which is

incompatible with quantum degenerate ensembles. At low temperatures and high density,

any gain in trap depth close to resonance must be balanced against the heating due to

unwanted light scattering (§3.2.2).

In the subsections below we consider two-species mixtures. The goal is to apply a dipole

force to the “target” species while inducing as little potential as possible on the second

species, which we will call the “spectator”. We define the “selectivity” as

S =

∣∣∣∣VtVs
∣∣∣∣ , (3.4)

where Vt,(s) is the potential induced on the target (spectator).

As discussed in §3.2, in the low saturation limit, both the induced dipole potential and

the heating rate are proportional to intensity. We define the intensity-independent ratio

s =
Vt

Ht +Hs
(3.5)

to be the “sustainability”, where Ht(s) is the heating rate of the target (spectator). The

absolute value of s sets the scale for possible trapping time1. The laser frequency will be

chosen to maximize both S and |s|.

3.3.1 Tune-out method: cancelling the Stark shift

The tune-out wavelength scheme exploits the characteristic doublet structure of the alkali

atoms. By choosing a wavelength that lies between the two strongest transitions, the large

negative energy shift of the D2 line is balanced against the large positive energy shift of

the D1 line (see Fig. 3.1). This atom becomes a spectator, while any other species feels the

shift induced by the laser and becomes a target. Since the potential shift on the spectator

can be zero, the selectivity of the tune-out approach is infinite.

The laser frequency, ωTO, at which Vs = 0, is determined numerically using Eq. (3.1)

with all |F,mF〉 excited states in the D1 and D2 manifolds. Table 3.1 shows the tune-out

1The sustainability, s, has units of seconds and gives the approximate time it would take to heat the
atoms out of the trap
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Figure 3.1: Energy shift as a function of wavelength for 87Rb in the |F,mF 〉 = |2, 2〉 state, under
linear polarization, for 1 mW/cm2. This general structure will arise for each of the alkali elements,
with the divergences located at the D1 and D2 lines. The tune-in scheme for a 87Rb target is
indicated by the diamond marker on the blue-detuned branch of the potential energy curve. The
round marker indicates the position of the tune-out wavelength, where the energy shift is zero. Here,
87Rb is the spectator.

wavelength for all 87Rb ground states with π, x, σ+, and σ− polarizations2. An approximate

expression for this wavelength can be derived from Eq. (3.2), giving

ωTO = ω0 −
1 + PgFmF

3
∆FS. (3.6)

For 87Rb , Eq. (3.6) predicts tune-out wavelengths of 785.10 nm, 787.54 nm, 790.01 nm,

and 792.49 nm for PgFmF = -1, -0.5, 0, and 0.5, respectively. Comparing these values to

the results of Table 3.1, we see the that approximations are accurate to 0.04 nm or better.

Equation (3.6) also gives ωTO = ωD1 for the case of PgFmF = 1, which is inconsistent with

the assumption that |∆1| � ∆HFS. In fact, since PgFmF = 1 corresponds to a dark state

with respect to the D1 excitation, there is no tune-out wavelength for this case.

We note that in Table 3.1 the tune-out wavelengths for linear (π and x) polarizations

are nearly independent of the choice of ground state, in contrast to σ+ or σ− polarizations.

Given this independence, we calculate the tune-out wavelengths using Eq. (3.1) for several

of the common alkali isotopes in their stretched ground states under x polarization (Table

3.2)3.

2By x polarization, we refer to an equal superposition of σ+, and σ− polarizations.
3Unlike for σ+, σ−, geometric considerations allow that linear (either x or π) polarization can be chosen

for all directions of a 3D optical lattice when a weak quantizing magnetic field is present along one of the
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Polarization |F,mF 〉 λTO γsc/I

(nm) (cm2/mJ)

|2,±2〉 790.04

|2,±1〉 790.04

π |2, 0〉 790.04 9.0×10−6

|1,±1〉 790.04

|1, 0〉 790.03

|2,±2〉 790.04

|2,±1〉 790.04

x |2, 0〉 790.03 9.1×10−6

|1,±1〉 790.03

|1, 0〉 790.04

|2, 2〉 785.13 9.1×10−6

|2, 1〉 787.58 8.1×10−6

|2, 0〉 790.03 9.1×10−6

σ− |2,−1〉 792.53 14.5×10−6

|2,−2〉 (none) -

|1, 1〉 792.51 14.5×10−6

|1, 0〉 790.03 9.1×10−6

|1,−1〉 787.57 8.1×10−6

|2, 2〉 (none) -

|2, 1〉 792.50 14.4×10−6

|2, 0〉 790.03 9.1×10−6

σ+ |2,−1〉 787.59 8.1×10−6

|2,−2〉 785.13 9.1×10−6

|1, 1〉 787.58 8.1×10−6

|1, 0〉 790.03 9.1×10−6

|1,−1〉 792.51 14.5×10−6

Table 3.1: Tune-out wavelengths and scattering rates in 87Rb, for select polarizations and all
ground states. Two states have no tune-out wavelength, because the D1 line has no F = 3 excited
state.

Tables 3.1 and 3.2 also give the scattering rates per unit intensity (scattering cross-

coordinate axes.
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Element |F,mF 〉 λTO (nm) γsc/I

Eq. (3.1) Eq. (3.2) (cm2/mJ)

6Li |32 , 32〉 670.99 670.99 2.8

7Li |2, 2〉 670.97 670.97 2.4

23Na |2, 2〉 589.56 589.56 2.0×10−3

39K |2, 2〉 768.95 768.95 1.4×10−4

40K |92 , 92〉 768.80 768.80 1.7×10−4

87Rb |2, 2〉 790.04 790.01 9.1×10−6

133Cs |4, 4〉 880.29 880.06 1.5×10−6

Table 3.2: Tune-out wavelengths and scattering rates for various elements. We have assumed
x-polarization and stretched states, and show a comparison of Eqs. (3.1) and (3.2).

section) for the spectator species at the tune-out wavelength. Due to the large dispersion of

fine splitting among the alkalis, scattering cross-sections vary by over 6 orders of magnitude.

To understand the implications for trapping, we need to consider the sustainability, s, of

various pairs of atomic species. Table 3.3 shows sTO in the same mixtures for which sTI is

calculated. Spectators with larger scattering cross-sections at λTO have lower sustainability.

In addition to these data, we note that the 133Cs-87Rb spectator-target combination gives

the highest possible sustainability among alkalis in the tune-out scheme: s = 34 s at a

tune-out wavelength of λTO = 880.29 nm (not shown in tables).

As an example, consider making a linearly-polarized lattice for 40K (|F = 9/2,mF =

9/2〉) only, leaving 87Rb (|F = 2,mF = 2〉) unaffected by the lattice and confined only by

a background magnetic trap or FORT. If we consider the mixture in a three-dimensional

lattice of arbitrary depth, the 40K potential shift is 1.54 × 10−5 µK×[I(mW/cm2)]; with

beams of 100 µm waist, the potential shift is 98 nK/mW. If we require the target to

experience a lattice that is 8ER deep4 where ER is the recoil energy, we find a 87Rb heating

rate of 210 nK/s.

3.3.2 Tune-in method: differential optical forces

The simplest selective potential is one in which the laser is tuned close to a resonance

of the target (see Fig. 3.1). Since scattering rate is inversely proportional to the square of

the detuning, we consider only heating of the target such that sTI → Vt/Ht. Considering

4In a 3-dimensional optical lattice, the first band is fully confined for lattice depths ≥ 7.4 ER.
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Target Spectator

S 7Li 23Na 39K 87Rb 133Cs

∞ 0.00134 7.77×10−4 -0.0381 -1.19 -8.26

6Li 100 1.37×10−8 0.217 0.290 0.332 0.601

10 2.70×10−6 2.03 3.11 3.55 6.42

∞ 4.28×10−7 5.77×10−4 0.188 -8.99 -25.4

40K 100 2.35 3.45 1.04×10−5 0.267 1.83

10 23.3 34.1 4.68×10−4 3.49 25.6

Table 3.3: Sustainabilities, s, of two-species mixtures for tune-out and tune-in schemes, in units
of seconds, using Eq. (3.5). The second column indicates the selectivity. Rows with S = ∞ are
calculated using the TO scheme while rows with S = 100 and S = 10 use the TI scheme. For the
lighter spectators, the TI scheme has higher |s|. The heaviest elements and isotope mixtures favor
the TO scheme.

Eq. (3.2) in the limit |∆t| � |∆s|, a simple estimate is

sTI ≈
(

3~
2ER,tΓt

)
∆t. (3.7)

The choice of detuning ∆t will depend upon the desired selectivity. Assuming the wave-

length is chosen near the D2 line of the target and the spectator is far-detuned, ∆s ≈
(ω0,t − ω0,s) and

STI ≈
(

2Γt

3Γs

ω3
0,s|ω0,t − ω0,s|

ω3
0,t

)
1

|∆t|
. (3.8)

Together, Eqs. (3.7) and (3.8) explicitly show the opposing dependence on ∆t and the

necessary trade-off between selectivity and sustainability.

Table 3.3 shows the sustainability for bosonic species as spectators and fermionic species

as targets, calculated using Eqs. (3.1) and (3.3) for tune-in selectivities of 100 and 10. The

inverse scaling predicted by Eqs. (3.7) and (3.8) is observed: sTI drops by approximately

a factor of ten when STI is increased by a factor of ten. The product of sTI and STI in

Table 3.3 varies between 22 s and 36 s for 6Li mixtures and between 26 s and 530 s for 40K

mixtures, whereas Eqs. (3.7) and (3.8) would predict a ranges of 8 s to 21 s and 64 s to

132 s, respectively, excluding isotope mixtures from the comparison. Finally, we note that

23Na-40K is the optimal tune-in mixture.
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3.3.3 Discussion: tune-in vs. tune-out

With the data of Table 3.3, we can evaluate the practicality of both the tune-in and

tune-out schemes for Bose-Fermi mixtures of neutral alkali atoms. Since the scattering rate

in the tune-out scheme can be smaller for elements with larger fine structure splittings, this

approach is better suited to more massive elements5. In particular, the tune-in scheme is

preferable for Li-Na, Li-K, and K-Na mixtures, and for applications requiring selectivity of

less than 10:1. The tune-out scheme is preferable for Li-Cs, K-Rb, and K-Cs mixtures when

the selectivity required is greater than 10:1, and for Li-Rb mixtures at selectivity of greater

than 20:1.

An isotope mixture of potassium could be compatible with the tune-out scheme, where

s > 100 ms. Isotope-specific manipulation within a lithium mixture is less practical due to

sustainabilities of 1 ms or less.

Other factors may also influence whether the tune-in or tune-out approach is preferred.

For experiments with time scales that are slow compared to the thermalization rate (dis-

cussed further in §3.4.2), it may be preferable to heat the minority species and allow for

sympathetic cooling. If the reservoir of spectator atoms is large, the tune-in scheme might

be preferred since extra energy due to near-resonant heating would be transferred to the

reservoir. For experiments on time scales fast compared to the thermalization rate, the

tune-out scheme might be preferred even if s is smaller, since spectator heating will not

affect the target.

Finally, we note that if a third species is included, it will play a spectator role in the

tune-in scheme and a target role in the tune-out scheme.

3.4 Interspecies interactions

3.4.1 Mean field interactions

Interactions between elements may couple the environment felt by the target to the

spectator, spoiling the species-specific potential shaping of both schemes. If target atoms are

trapped in a lattice in the presence of a background spectator species, a periodic interaction

potential could arise for the spectator due to its interaction with the periodically modulated

5The fine structure splitting increases approximately as the third power of mass.
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density of the target. A mean-field approach is used to make a simple estimate of the

magnitude of this effect. The interaction potential of the spectator due to the target is

given by

Vint,s =
4π~2|ast|nt

mst
, (3.9)

where ast is the scattering length between species, nt is the density of the target, and

mst = 2msmt/(ms +mt) is the reduced mass. For a lattice potential

Vt(x, y, z) = ηER cos2(4πx/λ) cos2(4πy/λ) cos2(4πz/λ), (3.10)

where η = V pk
t /ER, the trap is approximately harmonic near the centre of a lattice site

with a characteristic frequency ωlatt = (4π/λ)
√
ηER/mt. Assuming a single atom per site,

the standard harmonic oscillator ground state in such a trap gives a density

nt(0) =
(mtωlatt

π~

)3/2
. (3.11)

The minimum potential seen by the spectator atoms will be dominated by the interactions

with the target. The selectivity is limited to a maximum value

Smax ≡
∣∣∣∣ Vt
Vint,s

∣∣∣∣ =
~mstη

1/4

32π|ast|m3/2
t E

1/2
R

. (3.12)

In the case of the 6Li-87Rb stretched state target-spectator mixture, the interaction-

limited selectivity is Smax = 3.1η1/4 [60], while for the 40K-87Rb stretched-state target-

spectator mixture, it is Smax = 0.22η1/4. To be in a regime where interaction effects might

be ignored, we require Smax � 1 which gives η � 0.01 for 6Li-87Rb and η � 400 for 40K-

87Rb . While for the lithium target, this condition is quite reasonable, the large lattice

depths required for potassium would completely localize the atoms to individual sites and

prevent the exploration of interesting tunneling-driven physics. Overcoming this interaction

limitation and achieving the high selectivity discussed in §3.3 may be possible by tuning a

magnetic field to a value where aRbK ≈ 0 near a Feshbach resonance [67]. For instance, with

depth η = 8 and Smax ≥ 10, the scattering length between species is limited to |ast| ≤ 7.5a0,

where a0 is the Bohr radius.

Where species selectivity is not the goal, this interaction-induced periodic potential for

a second species could be used to generate alternative lattice potentials. Such potentials

are non-sinusoidal, do not involve a Stark shift, and may have a dynamic structure if target

atoms are mobile. The strength of this induced potential could be controlled through the

interaction strength, such as at a Feshbach resonance, as described above.
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3.4.2 Thermalization

An understanding of the thermalization between species is important when considering

heating or cooling in the trap. The rate at which energy is transferred between the species

will be relevant in setting the time scales on which adiabatic experiments can take place.

Thermometry is also possible if there is good thermalization between species; a high den-

sity target could be confined within a species-specific lattice while the spectator remains

extremely dilute and thus at lower quantum degeneracy, where temperature is more easily

measured. Conversely, thermal isolation could be useful in shielding one species from the

spontaneous heating in the other.

In the classical limit, the thermalization rate is proportional to the collision rate of the

atoms in the trap, given by γcoll = nσv, where n is the overlap density, σ the scattering cross-

section, and v the relative velocity between species. Random collisions act to equilibrate

the system and the rate of rethermalization is γtherm = Cγcoll, where C is a coefficient that

depends on the geometry of the system. For non-degenerate atoms in a three-dimensional

harmonic trap, C ≈ 1/2.7 [68], but may be modified by, for instance, Pauli blocking where

in one experiment C ≈ 1/0.75 [69], or by reducing the dimensionality, where, for instance,

thermalization is not completed after thousands of collisions [70].

For a degenerate mixture of bosons and fermions, the classical picture of scattering

breaks down and the rate of thermalization decreases as the fermionic system becomes more

degenerate. An estimate of the sympathetic cooling of a uniform system in the degenerate

regime using the quantum Boltzmann equations gives the rate of change in the degeneracy

[71]:

d

dt

(
T

TF

)
= −6ζ(3)

π2
γ′coll

(
T

TF

)2

, (3.13)

where γ′coll = (3/8)nBσvF is the collision rate between species, with the scattering cross-

section σ = 4πa2BF, Fermi velocity, vF = ~(6πnF)1/3/mF, ζ(3) ≈ 1.20206 is the Riemann

zeta function and TF is the Fermi temperature. Though other assumptions6 of this treatment

are not valid for the systems we consider in this paper, we use this expression to determine

an order of magnitude for the thermalization rate.

Taking boson density nB = 1 × 1014 cm−3, fermion density nF = 1 × 1013 cm−3, and

using the mass for 40K, we calculate that d/dt(T/TF) ≈ −350s−1(T/TF)2 using the three-

dimensional thermalization coefficient, which gives a temperature relaxation time of≈ 30 ms

6We assume that the species are of equal mass, that the system is highly degenerate (T/TF � 1), and
that the bosons are either in the condensate or removed immediately from the system when excited.
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at T = 0.1TF. This is an order of magnitude larger than the the classical expectation for

the rethermalization time of ≈ 2 ms for particles moving at the Fermi velocity. Thus for

rapid experiments in the deeply degenerate regime, thermal contact is essentially broken,

allowing, for instance, the target to be unaffected by the heating of the reservoir in the

tune-out scheme.

In addition to the reduction in thermalization due to Fermi statistics, recent experiments

[31] have found that thermalization between two spin states in a state-dependent lattice is

suppressed, indicating that the confinement of the lattice may also play a role.

3.5 Applications of species specificity

3.5.1 Isothermal phase space increase

Two-species mixtures can be used to realize various cooling schemes. For example, dark

state cooling by superfluid immersion is discussed in Ref. [72]. We present two simple cooling

scenarios in which the presence of an uncompressed spectator allows the target species to be

compressed with negligible temperature increase but significant improvement in phase space

density. In both cases, target atoms are first compressed isothermally, spectator atoms are

then removed from the trap, and finally, the target atoms are decompressed adiabatically.

We consider a species-selective single well dipole trap and a species-selective lattice. A

closed cycle is described for both scenarios with atoms beginning and ending in a FORT.

We assume that the heat capacity ratio between spectator and target is infinitely large and

that thermalization in the spectator and between the spectator and target species is faster

than any other time scale considered. The latter assumption may restrict fermion cooling

to the non-degenerate regime (see §3.4.2).

In the first scenario, schematically represented in Fig. 3.2, a single species-specific beam

crosses a FORT. Adiabatic cooling reduces temperature in proportion to the ratio of average

trapping frequencies, that is, Ti/Tf = ωi/ωf , where i, f indicate “initial” and “final”. As

an example, consider 40K-87Rb and 6Li-87Rb mixtures, confined by a 1064 nm, 500 mW

single-beam FORT with a 1/e2 radius of 20 µm and a corresponding trap-averaged harmonic

oscillator frequency ωi = 2π× 540 Hz for 40K and ωi = 2π× 950 Hz for 6Li. A 500 mW, 50

µm waist beam at λTO (see Table 3.2) is turned on perpendicular to the FORT to compress

the fermions in a trap with frequency ωf = 2π×3040 Hz for 40K and ωf = 2π×3810 Hz for
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Figure 3.2: A cooling procedure using species-specific trapping; one-dimensional trap shape repre-
sents three-dimensional trap-averaged shape. The solid line represents a FORT, the dashed line the
species-specific trap; open circles are the spectator species and closed circles are the target. (a) Two
species are trapped in a FORT; (b) the species-selective beam is turned on, compressing and heat-
ing the target species; (c) the target species rethermalizes with the spectator; (d) the spectator is
removed; (e) the target is adiabatically decompressed to a lower temperature and transferred to a
FORT.

lithium. After providing sympathetic cooling during the compression of the target atoms,

the rubidium is ejected from the trap by temporarily removing the FORT or by using a

resonant pulse of light. The species-specific trap is then adiabatically ramped down and

turned off, leaving the fermions in the FORT at a temperature approximately 5.7 (4.0) times

colder than when they began for potassium (lithium). Though this is a modest change in

temperature, the phase space density in a harmonic trap is proportional to the inverse cube

of the temperature, indicating a factor of 180 increase in phase space density for potassium

and a factor of 60 for lithium.

In the second scenario, we consider a 3D lattice created by the tune-out wavelength7.

The target-specific lattice is ramped on until peak lattice intensity is reached. The spectator

is evaporatively cooled and ejected by reducing the spectator trap depth. The lattice is then

ramped back down isentropically, leaving the target in the initial trap with an entropy and

71D and 2D lattices may be a way to increase confinement strength of the first scheme. Assuming high
per-site occupancy, the cooling attained will be governed by single-site physics.
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temperature limited by the “plateau entropy” discussed in [73]. As shown there, a target

of fermions with unity filling has an entropy plateau of zero, which would suggest no lower

limit to the achievable temperature.

An important limitation of these schemes will be the competition between adiabaticity

and heating. For an ideal gas, the condition of adiabaticity requires any changes to take

place in times longer than the inverse of the smallest trap frequency. Using the numbers

given in the 40K-87Rb example of the crossed dipole trap in the tune-out scheme, we find

that adiabaticity requires a relaxation time of 35 ms, at an intensity of 3.5×107 mW/cm2,

yielding a heating of 1.3 µK during this time, which sets a lower bound for the tempera-

ture attainable in this scheme. Another possible limitation of the cooling schemes is the

interspecies thermalization, which limits the speed of the isothermal step (see discussion in

§3.4.2).

3.5.2 Phonons

Unlike crystal lattices of solids, optical lattices do not support phonons. Since these quasi-

particles play a leading role in the physics of condensed matter, it is of interest to introduce

phonon-like excitations into a system of ultracold atoms in an optical lattice. The boson-

mediated interaction between fermions has been studied in both uniform [39, 40, 51, 52]

and lattice systems [55, 74, 75]. Little theoretical work has been done on a system in

which only the fermions are confined to the lattice [76]. Here, the background bosons are

free to interact with the fermions and with one another. If the bosons are degenerate, the

condensate can sustain phonon-like excitations and allow for boson-mediated interactions

between fermions on spatially separated lattice sites.

For the phonons in the condensate to play a role in mediating interactions, their spatial

extent must exceed the lattice spacing. The healing length of a uniform Bose condensate,

ξ = (8ρast)
−1/2 where ρ is the condensate density and ast is the scattering length between

species, sets the relevant length scale. Species-specific trapping allows the superfluid bosons

to remain at low density while fermions are tightly bound in the lattice, thereby maximizing

the range of the mediated interaction. A finite selectivity does not prevent mediation of

interactions, since the bosons remain superfluid at depths less than the Mott-insulator

superfluid transition [7], permitting both tune-in and tune-out schemes to be used for this

application.
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Figure 3.3: (a) The ratio of the effec-
tive mass to bare mass of the target species
is shown as a function of trap depth ηt,
for both q = 0 and qc = 0.5~k, as la-
beled. The tight binding approximation
(dashed line) approaches the exact calcu-
lation for ηt � 1. (b) The effective mass
ratio is shown for the case of a 6Li target
and a 133Cs spectator. Whether the ratio
increase or decreases depends on the selec-
tivity S of the lattice. The critical point
is when S = ms/mt (= 22.2 in this case),
as explained in the text. The tight binding
approximation of the effective mass ratio is
also shown (dashed line).

3.5.3 Effective mass tuning

An optical lattice can be used to change the effective mass of the atoms in it, allowing

for the tuning of experimental parameters including interaction strength [77] and tunneling

rate [78], which can be used, for example, to explore different regimes of collective dynamics

[79]. The effective mass of a wave packet centered at quasi-momentum qc is

m∗(qc) =

[
d2E

dq2

]−1
qc

, (3.14)

where E(q) is the band energy. Figure 3.3(a) shows the effective mass for qc = 0 and

qc = 0.5~kL in a one-dimensional optical lattice potential Vlatt(x) = V pk
latt sin2(kLx).

For deep lattices, an approximate form for the qc = 0 case is m∗ = ~2k2/2π2J , where J

is the tunnelling energy [80], giving an effective mass enhancement

m∗

m
≈ e2

√
η

4π3/2η3/4
. (3.15)



3.6 Species selective conclusions 39

The ratio of effective masses for the target and spectator can be estimated from Eq. (3.15):

m∗t
m∗s
≈

exp
{

2
√
ηt

(
1−

√
ms/Smt

)}
S3/4

(
mt

ms

)1/4

. (3.16)

Figure 3.3(b) shows the effective mass ratio for the case of a 6Li target and a 133Cs spectator.

In particular, it is striking that for S = 10, the ratio decreases with lattice depth, while for

S = 100, the ratio increases with lattice depth. The critical selectivity is well predicted by

Eq. (3.16); at S = ms/mt, the effective mass ratio is independent of lattice depth.

Both the tune-out and tune-in schemes provide the means of choosing selectivity. Sev-

eral tune-in selectivities are shown in Table 3.3; the tune-out selectivity can be chosen

simply by choosing a wavelength slightly different from λTO. In the example used here,

the sustainability for S = 10 is better for the tune-in scheme, but tuning to m∗Li > m∗Cs

at moderate lattice depths requires a S = 100, for which the tune-out scheme has higher

sustainability.

3.6 Species selective conclusions

We have discussed how the choice of wavelength used to create an optical lattice can

tune its selectivity between elements or isotopes. This control should increase the range of

parameters that can be explored in multispecies ultracold atom experiments. The tune-out

wavelength scheme allows for the complete cancellation of the trapping potential for one

species while providing a confining or lattice potential for any other species in the system.

This scheme will work best using the heavier alkali atoms, Rb and Cs, as the spectator

elements, and is most successful for the 40K-133Cs fermion-boson mixture. The alternative

tune-in scheme uses a near-detuned optical potential, creating a much stronger potential

for one element than the others, without the ability to strictly cancel the potential for one

element. Mixtures involving the Li, Na, and K as spectators are most compatible with this

approach, where the 40K-23Na is the most promising fermion-boson mixture.

The power of species selection is in its use to engineer specific lattice environments for

the atoms, including adding a bosonic background to mimic the phonons present in solids,

and tuning the relative effective mass of two species. Applications for which experiments are

rapid compared to the sustainabilities calculated in §3.3 are especially promising. Species

selection enables cooling in a two-species mixture, and in the case of fermions trapped in a

lattice, reduces the temperature of fermions as they are loaded into a lattice, in contrast to
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current experimental realizations [73, 81]. Though questions regarding the thermalization

in a lattice remain open [2, 31, 82], species-specific lattices may help to resolve this issue

with their ability to differentially address the components of the system, whose path back

to equilibrium can be measured.



Chapter 4

Ultracold ferromagnetism

In the decade following the realization of the first ultracold degenerate Fermi gas [6],

much of the scientific focus in this field has been fixed on the physics of strong interactions

[83–86]. In this pursuit, the manipulation of the interactions between different components

of a cold Fermi gas became a standard technique, and most studies focussed on attractive

interactions between the fermionic constituents to induce BCS- and BEC-like superfluidity

[10, 87].

Despite the prevalence and success of experiments using strongly attractive interactions

between fermions, the equally-accessible repulsive interactions were not completely ignored.

Collective behaviours that emerge with attractive interactions do so as a consequence of

the pairing of fermions into molecular or Cooper pair bosons, and these statistics allow for

the condensation of the pairs. In the regime of strong repulsive interactions, the collective

response is more directly inherited from the fermionic statistics of the particles. The canon

of such behaviours is diverse and includes one of the most familiar and yet mysterious of

physical phenomena – magnetism.

This chapter begins by discussing the development of a quantum-mechanical under-

standing of magnetism in metals, and the subsequent realization of its possible emergence

in ultracold gases in §4.1. Section 4.2 establishes a mean-field description of a trapped

degenerate Fermi gas and applies this to the regime of strong repulsive interactions. The

emergence of spin segregation and the macroscopic energetic signatures of this crossover

are calculated. In an extension to the local density approximation, a term is added to the

previous approximation in §4.3 to account for the energetic cost of magnetization gradients,

and is used to calculate the optimal spin texture among trial ansatzes. Details of the nu-

merical calculations are given in §4.4 and recent developments related to these calculations

41
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are discussed in relation to these results in §4.5. Section 4.6 discusses the first steps towards

the realization of ultracold ferromagnetism in a 40K system, with explorations of the strong

interactions near a Feshbach resonance.

4.1 Ferromagnetism in metals and quantum gases

Magnetism in metals

One of the inherent characteristics of an atom or molecule is its magnetic moment –

the tendency to align itself with a magnetic field. At the microscopic level, this moment

originates from the intrinsic spin of the components of the atom or molecule and the orbital

motion of any charged particles within it. From a macroscopic point of view, magnetism

arises when these individual components cooperate to form an ordered arrangement, where

many or all of the magnetic moments are aligned.

A metal becomes ferromagnetic when the energy of the system is minimal in the con-

figuration where all or most magnetic moments are aligned in the same direction. Due to

their relative mobility in a metal compared to the other constituent particles, electrons acts

as the agents of magnetism, and their spins are the magnetic moments of interest. The

Pauli exclusion principle and its demand for antisymmetrized wavefunctions among these

fermions dictates the behaviour of the electron system. A ferromagnetic state will have

all magnetic moments in a symmetric spin state and requires a fully antisymmetric spatial

state. The increased separation of electrons in the antisymmetric spatial state results in a

reduction of Coulomb interactions, and this energy savings will, in some circumstances, be

sufficient to induce a ferromagnetic ground state.

It is perhaps surprising that the interactions driving the system towards ferromagnetic

order are not predominantly magnetic. The electrostatic Coulomb interaction between the

charged particles far exceeds the strength of magnetic dipole-dipole or spin-orbit interac-

tions between particles [88] and is responsible for the magnetism. The spatial wavefunction

dependence of the interactions can be described in terms of various possible exchange in-

teractions.

The nature of these exchange interactions can take different forms, which will in turn

affect the mechanisms behind a transition to magnetic ordering. “Direct exchange” de-

scribes independent magnetic moments localized to individual lattice sites coupled via the
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Coulomb interaction, which was used by Heisenberg to formulate one of the first models

of ferromagnetism [89]. Through a very different mechanism, Bloch developed a model for

ferromagnetism with “itinerant exchange” in which delocalized electrons interact in a con-

duction band [90]. Experimental evidence suggests that rare earth metal ferromagnetism is

better described by a localized model while that in the transition metals like iron, cobalt

and nickel is primarily itinerant [91].

Heisenberg’s direct exchange ferromagnetism arises from the minimization of total en-

ergy for the antisymmetric spatial state. For atoms at fixed separation, the antisymmetric

wavefunction will include nodes between the atoms, such that the wavefunction overlap, and

thus the Coulomb interaction, is reduced. The correspondence between this wavefunction

and the symmetric spin state leads to the system’s preference for ferromagnetism.

Itinerant ferromagnetism was initially proposed to account for the non-integral values

of the magnetic moment per atom found in nickel, cobalt, iron, and other metals [92], and

allowed for conductivity while the material was ferromagnetic. Assuming that antiparallel

spins may approach more closely that parallel, due to Pauli exclusion, the energetic cost of

the Coulomb repulsion is greater for the unmagnetized (antiparallel) configuration. If this

energetic cost exceeds the increase in kinetic energy due to filling the single-spin-state band

to higher energies, the parallel spin configuration is preferred and ferromagnetism emerges.

In an attempt to reconcile the two pictures, Hubbard introduced his now-famous model,

in part, to explain the origins of ferromagnetism [93]. Citing that the d-bands responsible for

ferromagnetism display both atomic- and band-like characteristics, he developed a model

to allow for correlations between electrons associated with separated atoms while main-

taining the band structure for the conduction electrons. For certain model wavefunctions,

ferromagnetism emerges in this model.

The spatial correlations between all electrons are an important consideration in these

models, especially for the itinerant-like cases. While parallel spins will avoid each other

due to Pauli exclusion, antiparallel spins also avoid each other due to Coulomb repulsion.

The subsequent reduction in the potential energy, known as correlation energy, needs to

be properly accounted for by a correct choice of many-body wavefunction. Gutzwiller

presented one among the first such solutions [94], where he constructed a wavefunction in

which opposite spins avoided existing on the same lattice sites. By doing so, he reduced the

large repulsive interaction term and was able, within his approximations, to eliminate the

ferromagnetic configuration as a ground state, though it was closest to his calculated state

for filling factors near one-half.
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While many models have been constructed to understand the basis of ferromagnetism,

it remains that many-body fermion problems are computationally challenging and calcu-

lable microscopic models can only begin to approximate reality. The examples discussed

here, along with many more throughout the literature, show that there is a strong model-

dependence to many of the conclusions.

Quantum gas magnetism

The realization of ultracold degenerate Fermi gases provided a new vehicle for studies

of collective behaviour among fermions. The discovery of Feshbach resonances for the

fermionic isotopes of the alkali metal atoms gave experimentalists the tool they needed

to arbitrarily control the interaction strength between fermions. While much excitement

centred on the attractive nature of the interactions and the ensuing superfluidity of these

systems, observations of repulsive interactions were more quietly reported.

In theoretical quarters, discussions of magnetism in these ultracold gases slowly emerged.

To mimic the binary spin degree of freedom of the electron, the study of magnetism in neu-

tral fermion gases considers a two-component mixture, where the “pseudospin” components

are, for example, two Zeeman sublevels within a ground-state hyperfine manifold of an atom.

Contact interactions between these pseudospin components play the role of the Coulomb

interaction. Early papers [95–97] describing the effects of interactions in a two-component

Fermi gas discuss the phase separation of these spin1 components for large particle numbers

or interaction strengths.

Sogo and Yabu [98] study the energetics of an interacting two-component harmonically

trapped Fermi gas, and develop analytic solutions for the density profiles as a function

of interaction strength and particle number. By increasing the number in one component

or spatially separating the two, the total interaction energy of the system decreases at

the expense of an increased total Fermi energy. Above a critical interaction strength, the

imbalanced and separated solutions are energetically favourable, and a transition from a

paramagnetic to a ferromagnetic state is recognized.

While electrons in a metal can flip their spins, through the spin-orbit interaction, there is

no energetically-allowed mechanism by which ultracold atoms can change their pseudospin

and flip from one to the other. In assuming that the particle number can be exchanged

between components, Sogo and Yabu’s results remain outside the realm of experimental

1In the remainder of this chapter, we generally refer to the “pseudospin” simply as “spin.”
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realization for alkali atoms. At the same time, they lend intuition to the analogy between

itinerant metallic magnetism and magnetic-like order in ultracold gases by recognizing the

competition between interaction and kinetic plus potential energy that allows for a transition

between magnetic and non-magnetic states.

In work more closely addressing experimental possibilities, Duine and MacDonald [99]

use a beyond-mean-field approach to explore possibilities for itinerant ferromagnetism in

ultracold Fermi gases. Due to the conservation of pseudospin required by experiment, they

propose initializing the system in a special ferromagnetic state, where each atom is in an

equal superposition of the two component states. There is no possibility of interactions

in this initial state given the Pauli exclusion principle and the indistinguishability of each

atom.

In this situation, two atoms might interact if they become distinguishable via dephasing,

which might, for example, arise due to a spatial dependence of the energetic splitting of

the two components in the superposition. If the two components, when in a mixed state,

are strongly interacting, this interaction will cost energy as the atoms dephase. Duine

and MacDonald’s results suggest that in the presence of sufficiently strong interactions,

the cost of the interaction energy would suppress the dephasing and the lifetime of the

ferromagnetic state would increase. The strength of the required interaction is mapped

out for various temperatures and a phase diagram shows regions of first and second order

transitions between magnetized and unmagnetized states. In this scheme, measures of

expansion energy reveal both the amount of interaction energy and the degree to which the

system is in a ferromagnetic state.

Further work was done by Berdnikov, Coleman and Simon exploring the ferromagnetic

transition of a quantum gas in a trap [100]. Using a Landau-Ginzberg free energy functional,

they studied various topological possibilities for the ground state of the system in both

two- and three-dimensions and found that geometries with gradual spatial variations in the

magnetization were preferred ground states.

Recent quantum Monte Carlo (QMC) studies have confirmed that a ferromagnetic state

exists in a gas of ultracold fermions [101]. In this work, the magnetic susceptibility is

calculated as a function of interaction strength, and is found to diverge for sufficiently

strong interaction strengths. Using these results, a phase diagram for the magnetization vs.

interaction strength is mapped out. These results demonstrate that a ferromagnetic state

does exist in these gases, and that further study in ascertaining its character is justified.

With particular inspiration from both Refs. [99] and [100], this chapter describes the
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critical transition strength for ferromagnetic-like behaviour in a trap and the experimentally

observable signatures of this behaviour. In a trapped environment, we use a modified local-

density approximation (LDA) to calculate the density profiles for the two components in

the system, and use an energy functional approach to calculate the energies of various

magnetization configurations.

4.2 Mean-field description of strongly interacting trapped

fermions

The initial goals of this theoretical work were to understand the density profiles of a two-

spin-component trapped ultracold Fermi gas and their dependence upon the interaction

strength between the two spin components. In maintaining the restriction that pseudospin

is conserved in this system, we aim to attain results in the vein of Sogo and Yabu [98] and

determine a criterion for phase separation and thus ferromagnetism.

We use standard mean-field techniques to accomplish this goal. Though we expect that

the local-density approximation (LDA) will break down for large interaction strengths, we

expect it will give a good qualitative picture of the phenomena at hand.

In this section, we discuss the density profiles emerging from such an analysis. We

examine the energetic signatures of this system and discuss how measurable quantities

might indicate the presence of ferromagnetism.

4.2.1 The interacting Fermi gas in the local-density approximation

In analogy to the electron system of a metallic magnet, we consider a two-component

Fermi gas, where the two internal states are, for instance, two hyperfine or Zeeman sublevels

of the atomic state. We label these levels | ↑〉 and | ↓〉 in analogy to the electron spins these

states emulate.

Uniform (untrapped) system

In the uniform (untrapped) system, the hamiltonian describing the two-component Fermi

gas is

ĤMF, uniform = V
∑
σ

∫
d3K

(2π)3
εKĉ

†
Kσ ĉKσ+g

∫
d3Rĉ†R↑ĉ

†
R↓ĉR↓ĉR↑, (4.1)
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Figure 4.1: Ferromagnetic transition in uniform Fermi gas. Energy vs. magnetization is shown for
various values of kFa. The minimum moves from M = 0 for values of kFa < π/2 to values |M | 6= 0
for kFa > π/2.

where g = 4π~2a/m quantifies the interaction, a is the s-wave two-body scattering length,

εK = ~2K2/2m is the kinetic energy, and V denotes the system volume. The operator

ĉ†Kσ(ĉKσ) creates (destroys) a fermion with spin state σ and momentum K, while the

operator ĉ†Rσ(ĉRσ) acts in position space to create (destroy) a fermion with spin σ at position

R.

The density of each component the uniform gas is ρσ = Nσ/V, where Nσ is the number

of particles in each spin state, σ. The total kinetic energy of the system is

Ekin =
3

5
V(EF↑ρ↑ + EF↓ρ↓), (4.2)

where EFσ = βρ
2/3
σ is the Fermi energy of the σ component, and β = (6π2)2/3~2/2m. The

total interaction energy of the system is

Eint = gVρ↑ρ↓. (4.3)

In the uniform system, we can find an analytic solution for the critical transition strength

in the crossover to a ferromagnetic state. If we assume that the system starts with locally

equal densities of ρ↑ = ρ↓ = ρ , we can write the energy of the system Euniform = Ekin +Eint

Euniform = EFρV
(

6

5
+

4kFa

3π

)
, (4.4)
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where kF = (6π2ρ)1/3, and EF = EF,↑ = EF,↓. If we imagine increasing the scattering

length, a, there may come a point at which the system would segregate into two or more

domains in which the magnetization, M = (ρ↑−ρ↓)/(ρ↑+ρ↓) is non-zero. The total energy

would become

Euniform(M) = EFρV
(

3

5

[
(1 +M)5/3 + (1−M)5/3

]
+

4kFa

3π
(1 +M)(1−M)

)
. (4.5)

We can minimize this energy with respect to the magnetization by studying the first and

second derivatives of Eq. (4.5), ∂Euniform(M)/∂M and ∂2Euniform(M)/∂M2. Visually, we

can see the change in the minimum energy configuration by plotting Euniform(M), as in

Fig. 4.1. For values of kFa < π/2, the energetic minimum is always at M = 0, and the

system remains unmagnetized. For M = π/2, the second derivative is zero at M = 0,

and there is an inflection in the curve, indicating a transition to a magnetized state. For

kFa > π/2, there exist energetic minima at |M | 6= 0, indicating the system’s preference for

a magnetized state.

Trapped system

To extend this treatment beyond the uniform gas, the LDA is employed. At each point,

the gas is treated as locally-uniform, with an extra potential energy V (R). Rewriting the

hamiltonian Eq. (4.1) with the potential energy term gives

ĤMF, trap =
∑
σ

[∫
d3K

(2π)3
εKĉ

†
Kσ ĉKσ+

∫
d3R V (R)ĉ†Rσ ĉRσ

]
+g

∫
d3R ĉ†R↑ĉ

†
R↓ĉR↓ĉR↑. (4.6)

To determine the position-dependent density of each component, and the energetics

associated with each, the ground state energy can be found by minimizing the energy

functional

E[{ρσ(R)}] =

∫
d3R

[
3

5
β
∑
σ

ρ5/3σ (R) + gρ↑(R)ρ↓(R)

+ V (R)
∑
σ

ρσ(R)−
∑
σ

EF,σρσ(R)

]
, (4.7)

where {ρσ(R)} = {ρ↑(R), ρ↓(R)} is the set of density profiles of spin species σ = ↑, ↓,
and EF,σ are Lagrange multipliers for each spin component, and are, as the nomenclature

suggests, equivalent to the Fermi energy of that spin species in this zero-temperature for-

mulation. These Lagrange multipliers impose the conservation of atom number of each spin

such that
∫
d3Rρσ(R) = Nσ. This separate constraint on each spin state is specific to the



4.2 Mean-field description of strongly interacting trapped fermions 49

atomic system, where the two components are far-separated in energy and spins cannot

spontaneously flip. In an analogous condensed matter system, the spin would not similarly

be conserved.

Scaling for an anisotropic harmonic trap

In this work, we consider the case of a harmonic trapping potential, which may be

anisotropic. The potential takes the form V (R) = 1
2m
∑

i ω
2
iR

2
i , where i runs over the three

dimensions and ωi characterises the trapping frequency in each dimension. The harmonic

trap can be be rescaled to an isotropic one by setting R̃i = Ri(ωi/ω), where ω = (ω1ω2ω3)
1/3

is the geometric mean of the trap frequencies. The energy functional 4.7 becomes

E[{ρσ(R̃)}] =

∫
d3R̃

[
3

5
β
∑
σ

ρ5/3σ (R̃) + gρ↑(R̃)ρ↓(R̃)

+
1

2
mω2R̃2

∑
σ

ρσ(R̃)−
∑
σ

EF,σρσ(R̃)

]
. (4.8)

Noninteracting unmagnetized gas

The average magnetization of the system is m ≡ (N↑ − N↓)/(N↑ + N↓). We consider

the case of equal populations in both spin states, N↑ = N↓ = N/2, where N is the total

atom number, such that m = 0. To determine the appropriate scaling for this system, we

consider the noninteracting case (g = 0). The noninteracting (NI) energy functional can be

written

ENI
Nσ[ρσ(R̃)] =

∑
σ

∫
d3R̃

[
3

5
βρ5/3σ (R̃)+

1

2
mω2R̃2ρσ(R̃)−EF,σρσ(R̃)

]
. (4.9)

The condition of zero magnetization lends a symmetry to the problem and sets EF,↑ =

EF,↓ = ENI
F . To minimize the energy of the system, we set δENI

F /δρσ = 0 and solve for the

density profiles to find

ρσ(R̃) = β−3/2
[
(ENI

F −
1

2
mω2R̃2)

]3/2
. (4.10)

In this LDA, there is a maximum radius of the system, beyond which the density is zero.

This maximum radius,

RNI
N =

√
2ENI

F

mω2 (4.11)
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can be used as the characteristic length scale for the system. With the rescaled position

variable, we use spherical symmetry to perform the integrations in Eq. (4.9) up to RNI
N and

find the characteristic variables of the noninteracting system. The new variables are:

ENI
F = ~ω(3N)1/3, (4.12a)

RNI
N =

√
2ENI

F

mω2 = aHO(24N)1/6, (4.12b)

ENI
N =

3

4
NENI

F =
~ω
4

(3N)4/3, (4.12c)

ρNI
N (0) =

4N

π2(RNI
N )3

=
1

a3HO

(
2N

3π4

)1/2

, (4.12d)

where aHO = (~/mω)1/2 is the harmonic oscillator length, µNI
N is the chemical potential

of the gas, ENI
N is the total energy of the gas, and ρNI

N (0) is the atom density at the trap

centre. The position-dependent density of the noninteracting unmagnetized Fermi gas is

labelled by ρNI
N (R̃).

Dimensionless variables for the interacting problem

For the calculations which follow, we convert our variables to dimensionless form, where

the scaling is with respect to the noninteracting unmagnetised system (Eqs. (4.12)). The

dimensionless variables are:

r =
R̃

RNI
N

, (4.13a)

nσ =
ρσ

ρNI
Nσ(0)

(4.13b)

ε = E/ENI
F , (4.13c)

εF,σ = EF,σ/E
NI
F , (4.13d)

k0Fa =
(
6π2ρNI

N (0)
)1/3

a (4.13e)

where r is our dimensionless position variable, nσ the density, ε the total energy, εF,σ the

chemical potential of the σ component, k0F the Fermi wavevector at the trap centre for the

unmagnetized noninteracting gas and k0Fa the dimensionless interaction parameter.

The energy functional Eq. (4.8) can be rewritten in terms of these dimensionless variables

ε[{nσ(r)}] =
16

3π2

∫
d3r

[
3

5

(
n
5/3
↑ (r) + n

5/3
↓ (r)

)
+

4k0Fa

3π
n↑(r)n↓(r)−

∑
σ

(εF,σ−r2)nσ(r)

]
,

(4.14)
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and assuming that the ground state solution will respect the spherical symmetry of the

rescaled trap, the integral can be written in a single radial dimension

ε[{nσ(r)}] =
64

3π

∫
dr r2

[
3

5

(
n
5/3
↑ (r) + n

5/3
↓ (r)

)
+

4k0Fa

3π
n↑(r)n↓(r)−

∑
σ

(εF,σ−r2)nσ(r)

]
.

(4.15)

Variational minimization sets δε/δnσ(r) = 0 and leads to the following two equations for

the two density components

n↑(r) =

[(
εF,↑ − r2 −

4k0Fa

3π
n↓(r)

)]3/2
, (4.16a)

n↓(r) =

[(
εF,↓ − r2 −

4k0Fa

3π
n↑(r)

)]3/2
, (4.16b)

subject to the constraints

4π

∫
dr r2nσ(r) =

π2

4

Nσ

N
. (4.17)

The coupled equations 4.16 can be solved iteratively and numerically to obtain the

densities for a given interaction strength and atom number for each species. Typically, we

are interested in the m = 0 configuration. The resulting densities n↑(r) and n↓(r) are used

to compute physical observables of the system.

Figure 4.2 shows the density profiles obtained for a variety of interaction strengths. We

see that for increasing interactions, the central density is reduced and the cloud is pushed

outside of its r = 1 noninteracting radius. The system is able to minimize its energy in

this way until a critical interaction strength is reached, at which point the system prefers

to segregate itself into domains of spin-↑ and spin-↓ in the high-density regions. As we find

later, this critical interaction strength is k0Fa ∼ 1.84, falling between parts (c) and (d) in

Fig. 4.2. The phase-separation begins at the trap centre, at which point we can determine

the local Fermi wavevector, kF (0) =
(
6π2ρ(0)

)1/3
= k0Fn

1/3
σ (0). We find at the transition

point that nσ(0) ≈ 0.64, such that kF (0)a ≈ π/2, as in the uniform case. This agreement

is expected in the LDA since the local properties should mimic the uniform system.

The expansion of the cloud below the critical interaction strength increases the potential

energy of the system and decreases the kinetic energy as the density in the centre is reduced.

For large interaction strengths, the system reduces its total energy by segregating into spin-

↑ and spin-↓ regions and avoiding all interaction energy. The local nature of the LDA is

evident in the sharp changes of the density profile, indicating shells of alternating spin. As

long-range correlations are completely ignored in the LDA, the system simply adopts the
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Figure 4.2: LDA density profiles for various interaction strengths. The numerical solutions of
n↑(r) (blue) and n↓(r) (green) are shown for increasing interactions, with equal populations in each
spin state (N↑ = N↓ = N/2; m = 0). Dashed black lines indicate the k0Fa = 0 noninteracting
solution; grey dashed lines indicate the non-interacting solution for all particles in the same spin
state (N↑ = N ; N↓ = 0). Interaction parameters indicated in panels.

non-interacting profile for a single spin state, with each spin occupying a particular region

alone. The relative widths of these shells are constrained by the conservation of each spin

state, while the number of shells is an artifact of the numerical solution, and changes with

initial conditions – there being no cost to the change of density, the ground state does not

prefer a specific number of shells.

The sharp changes in the density profiles are unphysical. The kinetic energy cost of

the density gradient must be accounted for in a proper treatment of the system (see §4.3).

Regardless, the existence of a critical k0Fa beyond which the system will tend to spin-

segregate should remain.
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Figure 4.3: Dimensionless mean-field energies
as a function of interaction strength. From top
to bottom: kinetic, potential, interaction and re-
lease energies. Solid lines indicate m = 0, while
dashed lines indicate m = 0.25, 0.50, 0.75, 0.99
with decreasing dash length. At k0Fa ≈ 1.84, there
is a kink in each of the energies we calculate,
which corresponds to the phase separation found
in Fig. 4.2. The energy per particle in physical
units may be obtained by multiplying these results
by 3E0

F /4 where E0
F = ~ω(3N)1/3. As discussed

later, going beyond the LDA leads to negligible
quantitative corrections to these results.

4.2.2 Characteristic energies and spin polarisation

With calculations of the density profiles in hand, the energetic characteristics of the

gas can be determined. We consider the energies of the entire gas, since it is these bulk

properties which might easily be measured. By identifying terms in the energy functional as

either kinetic, potential, or interaction, we can write each of these contributions separately

εkin =
64

3π

∫
dr r2

[
3

5

∑
σ

n5/3σ (r)

]
, (4.18)

εpot =
64

3π

∫
dr r2

[
r2(n↑(r) + n↓(r))

]
, (4.19)

εint =
64

3π

∫
dr r2

[
4k0Fa

3π
n↑(r)n↓(r)

]
, (4.20)

where εkin, εpot, and εint are the kinetic, potential and interaction energies, respectively.

To measure these energies experimentally, one option is to record the release energy, by

rapidly switching off the trapping potential and measuring the momentum distribution of
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the atoms after some time of flight. With an instantaneous switch-off process, all interaction

energy is converted into kinetic energy, and the release energy εkin measures the sum of the

interaction and kinetic components

εrel =
64

3π

∫
dr r2

[
3

5

∑
σ

n5/3σ (r)+
4k0Fa

3π
n↑(r)n↓(r)

]
. (4.21)

If interactions can be suddenly turned off (by, for example, jumping to a zero in a Feshbach

resonance), the kinetic energy alone can be measured with this technique.

Figure 4.3 shows the calculations of these four energies as a function of the interaction

parameter k0Fa. Paying special attention to the solid lines, which represent the m = 0

scenario, there is a clear transition at k0Fa ≈ 1.84. By looking carefully at the density

profiles in this region, we find this is the point of onset of phase separation. The kinetic

and potential energies both account for half of the total energy at k0Fa = 0, as expected in

a harmonic trap. Likewise, for very strong interactions, the kinetic and potential energies

are again equal, at the value expected for all atoms in a single spin state (N/2→ N ; EN →
21/3E0

N ; ε → 21/3ε0). This high-interaction limit indicates that the system is completely

polarised, and as discussed earlier, acts as though in a single spin state due to the lack of

“communication” between domains in the LDA.

We also see that the interaction energy is maximized at this same transition point.

Below the transition, an increasing interaction strength leads to an increasing interaction

energy. At the transition point, the cloud begins to phase-separate, and as a result, spin-↑
and spin-↓ atoms avoid each other. With increasing interaction energy, the system is further

polarized and the overlap of the densities n↑(r) and n↓(r) vanishes, leading to a decreasing

εint.

For non-zero magnetisations, Fig. 4.3 shows that the transition is less-sharp, and the

differences in energy for different interaction strengths are less pronounced, but still visible.

We identify the transition to the spin-polarised state as a crossover into ferromagnetism.

While these energetic signatures are an indication of the onset of ferromagnetic behaviour,

direct proof of ferromagnetism requires, for example, the observation of spin-polarised do-

mains. The actual behaviour of the gas likely depends on effects beyond the LDA, since a

ferromagnetic state demonstrates long-range order, which is completely absent in the local

approximation.
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4.2.3 Atom loss rate

On the repulsive side of a Feshbach resonance, there is a tendency for molecular formation

[84, 86, 102]. With large interaction strengths, the three-body collision rate can become

quite high, where two atom molecules form as a third atom carries away the excess binding

energy. All three atoms are lost from the sample – the molecule will not be detected, and may

not even be trapped, and the third atom will generally have enough excess energy to escape

the trap. In working with fermions, the molecular formation process is suppressed, since

non-identical fermions must be the constituents of the dimer, allowing for the experiments

we describe to be performed before significant loss of the sample.

Despite decreasing the time available for performing these experiments, the loss rate

can act as a signature of the ferromagnetic state we seek. As the system spin polarizes, it

becomes less likely that atoms of opposite spin will meet, and losses from the three-body

process described above will decrease. Study of the three-fermion problem [103] leads to a

model describing three-body loss,

γloss = γ0loss(k
0
Fa)6

∫
d3r n↑(r)n↓(r)(n↑(r) + n↓(r)), (4.22)

where γ0loss is an unknown prefactor.

Using the LDA density profiles calculated above, we can determine this loss rate up to

the unknown γ0loss, as shown in Fig. 4.4. Paying special attention to the solid m = 0 line,

we see a rapid increase in the loss rate below the transition point due to the (k0Fa)6 scaling.

The drop-off of the loss-rate beyond the transition point comes as the system spin polarises

and there is less overlap of the different spin states, suppressing the n↑(r)n↓(r) term in

the integrand of Eq. (4.22). The competition between these effects leads to a peak in the

loss rate, which occurs slightly beyond the k0Fa = 1.84 transition point we observed in the

energetic signatures, due to differences in the scaling of these quantities.

4.3 Beyond mean-field theory: gradient cost

In the preceding section, the properties of the gas were studied within the context of the

LDA. The density profiles for the interacting mixture within this approximation display very

large gradients at the boundaries between spin-polarized domains. The kinetic energy of

these gradients is neglected within the LDA, and because this energy cost may be significant
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Figure 4.4: Dimensionless atom loss rate, Γ/Γ0,
as a function of interaction strength. Solid lines
indicate m = 0, while dashed lines indicate
m = 0.25, 0.50, 0.75, 0.99 with decreasing dash
length.

in the physics of magnetism, we must consider it for a better description of the strongly-

interacting system.

Another characteristic of the LDA is that the interaction energy cost comes only from

atoms of different spins existing at the same point in space. The locality of the approxima-

tion neglects any cost of interactions between atoms of different spins at nearby locations,

and so the definition of “up” and “down” at each point in the cloud may be chosen at ran-

dom. In moving beyond the LDA, there exists an interaction energy for atoms at different

points in space, and there is, therefore, an energetic cost when neighbouring atoms are not

identical.

To extend the energy functional to account for these two effects, we promote the local

magnetization to a vector quantity such that the magnetization can point in different di-

rections on the Bloch sphere at different spatial locations, and add a surface tension term

to the energy functional to account for the density gradients. With these changes, we can

study various “spin textures” in this system and determine which geometry might lead to

the ground state of the system.

4.3.1 Energy functional in terms of magnetization

Instead of defining the densities individually, we consider a local total density and mag-

netisation

n(r) = n↑(r) + n↓(r) (4.23)

M(r) =
n↑(r)− n↓(r)

n(r)
. (4.24)
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If we expand the energy functional Eq. (4.15) in powers of M(r), keeping terms up to M6(r)

(though terminating the expansion at M4(r) would not qualitatively affect our results), we

find the expression can be written in two parts as

ε = εa[n(r)] + εb[n(r),M(r)], (4.25)

where

εa[n(r)] =
16

3π2

∫
d3r

[
6

5

(
n(r)

2

)5/3

+
k0Fa

3π
n2(r)− (εF − r2)n(r)

]
, (4.26)

εb[n(r),M(r)] =
16

3π2

∫
d3r
[
A2(r)m2(r) +A4(r)M4(r) +A6(r)M6(r)

− H n(r)M(r)] , (4.27)

where the new Lagrange multipliers in the energy functionals are εF = (εF,↑ + εF,↓)/2 and

H = (εF,↑ − εF,↓)/2. The first term, εa, depends only on the density profile. We assume

that this is equivalent to that calculated within the LDA, since it depends only on the

interaction k0Fa. Corrections to the LDA are small for the atom numbers we use in this

work, making this approximation valid. The coefficients of the magnetization-dependent

energy functional, εb, are

A2(r) =
n5/3(r)

22/33
− k0Fa

3π
n2(r), (4.28a)

A4(r) =
n5/3(r)

22/381
, (4.28b)

A6(r) =
7n5/3(r)

22/32187
. (4.28c)

The first coefficient, A2(r), depends on k0Fa explicitly. All of the coefficients A2,4,6 implicitly

depend on k0Fa through the density. This dependence was ignored in earlier phenomenolog-

ical work on trapped fermions in an optical lattice [104].

Vector magnetization

The magnetisation of our two-component system can be understood as a vector on a

Bloch sphere (Fig. 4.5), where the poles represent the pure states of each spin component

and points in between the superpositions of these. Importantly, fermions in any pure state

do not interact. The vector nature of the magnetization allows for partial interactions
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Figure 4.5: Bloch sphere representation of vector magnetization of two-component Fermi gas. (a)
Pure states, |m(r)| = 1. Each arrow represents a different magnetization of the system, all of whose
atoms are in the same state. We take r̂3 as the quantization axis of our two-state system. Blue:
m(r) = r̂3, corresponding to |ψ〉 = | ↑〉. Green: m(r) = −r̂3, corresponding to |ψ〉 = | ↓〉. Purple:
m(r) = x̂, corresponding to |ψ〉 = | ↑〉 + | ↓〉. Red: m(r) = ŷ, corresponding to |ψ〉 = | ↑〉 + i| ↓〉.
(b) Mixed states, |m(r)| < 1. Blue: m(r) = 0.5r̂3, corresponding to 75% of the atoms in |ψ〉 = | ↑〉
and 25% of the atoms in |ψ〉 = | ↓〉. Red: m(r) = 0.5ŷ, corresponding to 75% of the atoms in
|ψ〉 = | ↑〉+ i| ↓〉 and 25% of the atoms in |ψ〉 = | ↑〉 − i| ↓〉.

between two identical states on the sphere, the magnitude of which depends on the overlap

of states.

To account for the vectorial nature of the magnetization in the energy functional, we

promote the magnetization M and the Lagrange multiplier H to vectors M and H. The

value |H| = (εF,↑ − εF,↓)/2 gives the difference in local Fermi energies, and has the same

energetic form as would a local magnetic field, if the pseudospins were real.2 We also include

a surface tension term to account for gradients via a stiffness ζs(r), and obtain the energy

functional

εb[n(r),M(r)] =
16

3π2

∫
d3r

[
A2(r)|M(r)|2 +A4(r)|M(r)|4 +A6(r)|M(r)|6

+
1

2
ζs(r)λi (∇iMj(r))2 − n(r)H(r) ·M(r)

]
,

(4.29)

where λi = (ωi/ω)2 accounts for any anisotropy in the system. The stiffness ζs(r) depends

on r only through the density n(r), and it can be computed in the uniform Fermi gas

2In passing, we note that despite these states being merely “pseudospins,” a real magnetic field would
emerge in a polarized domain, since the states are defined (primarily) by their nuclear spins (see state
decompositions at relevant fields for 40K in Appendix A.3). Like in electron systems, the interaction energy
between states is much larger than the spin energy associated with these nuclei.
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assuming that the magnetization variation is slow on the scale of the interparticle spacing,

but fast on the length scale over which the total density varies, so that density variations

can be ignored in this computation. The Lagrange multiplier H(r) must be chosen to

satisfy global constraints on the magnetization, for instance,
∫
d3r n(r)Mi(r) = 0, for each

component i.

Computation of the stiffness ζs(r)

We determine the cost of density gradients by computing the stiffness ζs from the magnetic

susceptibility of the uniform Fermi gas. The excess energy in an applied field H(q) (point-

ing in any direction) is given by ∆E(q) = 1
2χ(q)hi(q)hi(−q) which defines the wavevector-

dependent magnetic susceptibility. The magnetization M̃(q) in this external field is sim-

ply M̃(q) = χ(q)h(q), so that we can set ∆E(q) = 1
2χ
−1(q)M̃i(q)M̃i(−q). Expanding

χ−1(q) = χ−10 (1 + bq2) then yields

∆E(q) =
1

2
χ−10 (1 + bq2)M̃i(q)M̃i(−q). (4.30)

The well-known result for a Fermi gas at T = 0 is that b = 1/12k2F , using which the energy

cost becomes, in real space,

∆E =
1

2χ0

∫
d3R

[
|M̃(R)|2 +

1

12k2F
(∇M̃i(R))2

]
, (4.31)

where

χ−10 =
π2~2

mkF
=
π2~2

m
(3π2ρ)−1/3. (4.32)

Rescaling distances for an isotropic harmonic trapping potential, and setting M̃i = ρ0Nσ(0)n(r)Mi(r),

with r = R/R0
N , we find

ζs(r) =
n−1/3(r)

22/33

1

6(3π2n(r))2/3

(
1

ρ0Nσ(R0
N )3

)2/3

=
1

72n(r)(3N)2/3
. (4.33)

For general values of the magnetization, higher order gradient terms might also become

important. We will focus here on the effects of this simplest gradient term in the energy

functional.

Simplified magnetization energy functional

To simplify the energy functional, we notice that n(r) varies over the length scale of

unity in our dimensionless units. The variations in magnetisation, by comparison, are
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expected to change over much shorter length scales for large atom numbers, where ζs(r) is

small (Eq. (4.33)). Within this assumption, ∇(n(r)Mi(r)) ≈ n(r)∇Mi(r), and the slightly

simplified energy functional is

εb =
16

3π2

∫
d3r

[
A2(r)|M(r)|2 +A4(r)|M(r)|4 +A6(r)|M(r)|6

− n(r)H(r) · ~M(r) +
n(r)

144(3N)2/3
λi(∇iMj(r))(∇iMj(r))

]
, (4.34)

where H(r) is chosen to satisfy ∫
d3r n(r)Mi(r) = 0, (4.35)

for each component i (for zero net magnetization). Sums over all i, j are assumed through-

out. Recall that λi = (ωi/ω)2, where ω = (ω1ω2ω3)
1/3 is the geometric mean of the trap

frequencies.

4.3.2 Spin textures

As one possibility for the system to lower its energy beyond the LDA result, we consider

alternate spin patterns. Using an energy functional that takes into account both the vector

nature of the spin and the energy cost of spin gradients, we study various spin textures in

a trapped Fermi gas.

To begin, we consider the isotropic harmonic trap and evaluate two possible spin tex-

tures: the hedgehog and domain wall configurations. Next, we study the effects of trap

anisotropy by deforming the trap into a cigar shape and evaluating the energetics. In all

cases, we construct an ansatz for the magnetization pattern, and numerically minimize the

energy functional within the constraints imposed by this ansatz.

By ensuring that the density and magnetization satisfy the constraints that the to-

tal atom number is fixed and the total magnetization is zero, we can drop the Lagrange

multipliers and express the total energy as a sum ε = ε1 + ε2 where

ε1 =
16

3π2

∫
d3r

[
6

5

(
n(r)

2

)5/3

+
k0Fa

3π
n2(r) + r2n(r)

]
, (4.36)

ε2 =
16

3π2

∫
d3r

[
A2(r)|M(r)|2 +A4(r)|M(r)|4

+A6(r)|M(r)|6+
n(r)

144(3N)2/3
λi(∇i ~mj(r))2

]
. (4.37)
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Figure 4.6: Spin texture ansatz schematics. Black arrows show direction and magnitude of M(r)
throughout the trap. (a) Isotropic hedgehog, (b) isotropic domain wall, and (c) anisotropic hedgehog.

4.3.3 Isotropic trap: Hedgehog state

One of the simplest spin textures we can consider is the hedgehog state in an isotropic

trap (Fig. 4.6(a)). Isotropy allows us to assume spherical symmetry, with equal trapping

frequencies in all directions. The hedgehog state is one in which the spins point out from the

origin at all points, in the r̂-direction. The energetic advantage of the hedgehog geometry

is that there are only ever small changes in the magnetisation point-to-point, and that

neighbouring spins interact with their neighbours only very slighty. Only at the origin does

the spin change drastically, and this is confined to a small volume.

Within spherical symmetry, we can write

εHH
1 =

64

3π

∫
dr r2

[
6

5

(
n(r)

2

)5/3

+
k0Fa

3π
n2(r)+r2n(r)

]
. (4.38)

In the magnetization-dependent energy functional, we set λi = 1 for the isotropic trap. The

hedgehog geometry dictates that we choose M(r) = M(r)r̂. This leads to

εHH
2 =

64

3π

∫
dr r2

[
A2(r)M

2(r) +A4(r)M
4(r) +A6(r)M

6(r)

+
n(r)

144(3N)2/3

{
2
M2(r)

r2
+

(
dM(r)

dr

)2
}]

. (4.39)

We need not keep track of the zero magnetization constraint, as it is guaranteed for any

choice of M(r) by the hedgehog ansatz symmetry. For particle numbers typical in exper-

iments, N ∼ 104 − 106, and ζs is small. Therefore, we assume that the average density
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Figure 4.7: Dimensionless total energy, ε1 + ε2, shown as a function of interaction strength,
k0Fa, for an isotropic harmonic trap. Solid line indicates the hedgehog solution, long dashes are
for the domain wall state at 106 atoms and short dashes for 104 atoms. Shortest dashes are the
non-optimized solution.

profile n(r) obtained from the LDA calculation remains unchanged. We need only consider

changes due to the gradient term.

Starting with some initial magnetization profile, we numerically vary M(r) through an

“annealing” process to find the profile that minimizes ε2. Figure 4.7 shows the total energy

εHH of the hedgehog state as a function of the interaction parameter. We find that above the

transition point, the energy can be made smaller than that found in the LDA by allowing

for the spin texture to emerge.

Figure 4.8(a) shows the calculated magnetization profile of the hedgehog state at two

interaction strengths. We find that the magnetization is suppressed in a small region around

the trap centre and vanishes at r = 0. The form of the magnetization profile near the trap

centre is understood by considering the last two terms in Eq. (4.39). By taking the functional

derivative with respect to M(r) and setting it to zero, one finds that M(r) ∼ r2 at small

r. Far from the centre, we expect the magnetization to be small, as is consistent with the

magnetization profiles shown in Fig. 4.8(a).

4.3.4 Isotropic trap: Domain wall state

Again considering the case of spherical symmetry, we are able to write down an alternate

ansatz. The domain wall ansatz is one in which there are two regions of the system – one
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with all of the atoms in one spin state, the second region with atoms in the opposite state

(Fig. 4.6(b)). The symmetry of the system implies a core and an outer shell, with some

shell-shaped domain wall between them. The advantage of the domain wall in terms of

energy is that there exist large volumes in which the interaction energy is strictly zero, with

all effects of the interactions localized to the domain wall.

As in the hedgehog ansatz, ε1 does not depend on the magnetization, so we find the

same expression as εDW
1 = εHH

1 . For the magnetization dependent energy functional, λi = 1

in the isotropic trap and we choose M(r) = M(r)r̂3 for the domain wall geometry, meaning

and atoms are either in M(r) = r̂3 or M(r) = −r̂3, and M(r) tracks the local population

difference between these states. We find

εDW
2 =

64

3π

∫
dr r2

[
A2(r)M

2(r)+A4(r)M
4(r) +A6(r)M

6(r)

+
n(r)

144(3N)2/3

(
dM(r)

dr

)2
]
, (4.40)

where, for N↑ = N↓, we must satisfy the constraint
∫

dr r2n(r)M(r) = 0.

Similar to the solution for the hedgehog ansatz, we minimize εDW by simulating an

anneal of the magnetization profile (§4.4.2) to find the optimal M(r), subject to the zero

magnetization constraint. Figure 4.7 shows the energy εDW of the domain wall state, in

comparison to the hedgehog and LDA states. Again, above the transition k0Fa, we find

the domain wall geometry is more favourable than an LDA state, though the hedgehog

geometry has a lower total energy. Figure 4.8(b) shows the magnetization profile of the

domain wall state. The magnetization is suppressed in a small region around the domain

wall but remains nonzero at the trap centre.

4.3.5 Anisotropic trap: distorted hedgehog

To extend this analysis nearer to experimental reality, we consider the effects of anisotropy

in the trapping geometry. In particular, we choose the cylindrically symmetric harmonic

trap, where two trapping directions are equal and strong (ω12 = ω1,2), and the third is

weak (ω3 < ω12). As mentioned earlier, the LDA results depend only on the mean trapping

frequency and are independent of the geometry – essentially, all dependence on the geometry

drops out in the rescaling of the coordinates. However, the gradient term (Eq. (4.33)) used

to account for the kinetic energy costs of changing magnetization retains a dependence on

the shape of the trap.
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Figure 4.8: (a) Magnetization profiles for the hedgehog state at k0Fa = 1.8 (solid), k0Fa = 1.9 (very
long dashes), k0Fa = 2.0 (dashes) and k0Fa = 2.5 (short dashes). (b) Magnetisation profiles for the
domain wall state for k0Fa as above. The profiles have been calculated for 104 atoms in an isotropic
trap. The hedgehog state has zero magnetization at the trap center while the domain wall state
magnetization is suppressed around the domain wall but remains nonzero at the trap center.

Given that the hedgehog configuration was found to be the lower energy state, we

consider this type of ansatz in the distorted geometry (Fig. 4.6(c)). We assume the magne-

tization adopts the cylindrical symmetry of the trap and assume an ansatz of the form

M(r) = M(%12, r3)

(
x

%12
sinϕ,

y

%12
sinϕ, cosϕ

)
, (4.41)

where %12 =
√
r21 + r22 and ϕ = arctan(%12/z) is the polar angle. In spherical symmetry,

this expression reduces to the form we found in §4.3.3, as the direction vector in Eq. (4.41)

reduces to r̂. As before, the direction of the magnetization is independent of the location

in real space.

With this ansatz, we have |M(r)|2 = M2(%12, r3), and

λi(∂iMj)(∂iMj) = λ12(∂12M)2+λ3(∂3M)2+λ12
M2

%212
sin2 ϕ

+M2
[
λ12(∂12ϕ)2 + λ3(∂3ϕ)2

]
, (4.42)
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so the integral
∫

d3r → 2π
∫

dz d%12 %12. We can assume that M is an even function of z

and that ϕ(%12,−z) = π − ϕ(%12, r3) (so that sin2 ϕ(%12,−z) = sin2 ϕ(%12, r3)) to restrict

the energy integration grid to z > 0, ensuring that the total magnetization integrates to

zero. The final expression for the energy can thus be recast, with r ≡
√
%212 + z2, as

ε1 =
64

3π

∫
dr r2

[
6

5

(
n(r)

2

)5/3

+
k0Fa

3π
n2(r) + r2n(r)

]
, (4.43)

ε2 =
64

3π

∫ Rmax

0
dz

∫ √r2max−r23

0
d%12 %12 F(%12, r3), (4.44)

F(%12, r3) = A2M
2 +A4M

4 +A6M
6+

n

144(3N)2/3

{
λ12

M2

%212
sin2 ϕ+ λ12(∂12M)2

+ λ3(∂3M)2 +M2
[
λ12(∂12ϕ)2 + λ3(∂3ϕ)2

]}
,

(4.45)

with ϕ(%12 = 0, r3) = 0 and ϕ(%12, r3 = 0) = π/2 by symmetry. For notational simplicity,

we have suppressed the coordinate labels on n,m,ϕ in the above functional.

Upon performing the numerics, we find that spin textures in the elongated trap differ

from the isotropic case only in the regime of very small atom numbers. In Fig. 4.9, we

plot the magnetization profile as a function of %12 and R3 for 100 atoms, and find that the

renormalized gradient of the magnetization is slightly greater in the elongated R3 direction.

Since the trapping force is less along this direction, the actual gradient in real coordinates

will be weaker and thus the system chooses to configure itself to take advantage of this.

4.3.6 Summary of numerical results

In §4.2, we saw that, within the LDA, a two-component trapped ultracold Fermi gas is

unstable to phase separation at an interaction strength k0Fa ∼ 1.84. The energetic signatures

of this crossover include a minimum of kinetic energy and a maximum in potential and

interaction energies near this interaction strength. We also predict a maximum loss rate

from three-body loss near this phase-separation point.

In this section, we moved beyond the LDA to add a term which accounts for the energetic

cost of density gradients in our system. In this system, we took into account various

topologies of the magnetization profile to determine the optimum configuration to minimize

these gradient costs. While the energetics of these spin textures were not significantly
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Figure 4.9: Two-dimensional mag-
netisation profile for the distorted
hedgehog showing breakdown of the
LDA for the magnetization density for
102 atoms in an anisotropic trap with
k0Fa = 2.4, and λ⊥ = 2, λz = 0.25
(ω12/ω3 ≈ 2.8). (a) Plot of the mag-
nitude of the magnetization M(%12, r3)
and equal-magnetization contours dis-
played in rescaled coordinates in which
the trap potential is spherically sym-
metric. Colorbar to the right indi-
cates the value of M(%12, r3). We see
that M(%12, r3) is larger in magnitude
for larger values of %12 than it is for
z, indicating that the surface tension
makes it easier to change its value in the
weak trapping direction. (b) ~M shown
as a quiver plot indicating the magni-
tude and direction of the magnetization
(plotted in coordinates where the trap
anisotropy is explicitly shown). Shaded
area indicates the region of the trap
where the atom density is nonzero.

different from the LDA results, there were small changes which indicate that a hedgehog-

like configuration of spin directions would be favoured.

As noted in the previous section, a direct observation of the spin profile would be

necessary to confirm the existence of these spin textures in such a system, especially since

the energy differences between them are very small. A technique like that used to study

spinor gases [105] might allow experimentalists to see these patterns.

While these results give a good qualitative understanding of the physics behind ferro-

magnetism in ultracold Fermi gases, there are many considerations beyond these approxi-

mations that may prove important to a better understanding of this system. Not unlike the

descriptions of ferromagnetism in metals, the existence and properties of the system likely

depend very strongly upon the assumptions and approximations made, and the evolution
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of our understanding of this system is bound to continue as better models are constructed.

The losses inherent to this system may be one of the most important features to be

brought back out from under the rug. Atoms on the repulsive side of the resonance do have

the tendency to form molecules and cause loss from the atom system, on the order of tens

of milliseconds for 40K [102], and hundreds of milliseconds for 6Li [84, 86]. This process,

which limits the time available for the experiments and may prevent an equilibrium from

ever being reached, is among the greatest challenges to experimental observation.

Other criticisms of the above treatment include the treatment of the interaction strength.

A better description would move beyond a simple one-parameter hard-sphere scattering

length to describe the interaction potential between components near the Feshbach res-

onance. Another improvement would be to consider the unitarity of scattering near the

Feshbach resonance and how this might impose a constraint on the maximum value the

scattering length may assume. These issues involve the many-body physics of the system

and require sophisticated techniques, many of which are discussed in §4.5.2.

4.4 Numerical calculation details

The calculations described in the previous sections were performed numerically. While

most were relatively straightforward, this section describes some of the techniques used to

reach these results. All calculations were performed using the C programming language.

The optimal density and magnetization profiles for the trapped ferromagnetic Fermi

gas were determinied using the energy functionals described in the above sections. In the

isotropic cases (§4.3.3 and §4.3.4), the optimization is done along a one-dimensional grid

(along r), generally with 200 points. In the anisotropic case, the optimization grid is taken

to be 100 × 100 points, one dimension representing r3 and the other %12.

The density profile is calculated in the LDA, and the initial magnetization profile is

attained using Eq. (4.24). The optimization of the magnetization profile proceeds on a

point-by-point basis, finding the value of the magnetization at each point which minimizes

the total energy of the system. The routine begins with the central point, works outwards

through the cloud, and repeats until convergence. The system is deemed to have converged

on a magnetization profile when the energy fractionally changes by less than 10−6 after a

full pass through the cloud.



4.4 Numerical calculation details 68

4.4.1 Derivatives

Determining the optimal magnetization profile relies on accurate calculations of the ener-

gies of each magnetization distribution. With the greatest differences between each ansatz

being the nature of the gradient of the magnetization, calculations of the derivative terms

(e.g., in Eq. (4.34)) must be performed correctly.

The point-by-point nature of the optimization can lead to rapid changes in the magne-

tization that may or may not be accounted for in simple renderings of the derivative terms.

These changes may be unphysical and simple numerical artifacts. To avoid such relics, the

data is smoothed for the calculation of the derivative using a “Savitzky-Golay smoothing

filter” [106].

The principle of the Savitzky-Golay smoothing filter is to approximate noisy data with

a least-squares polynomial fit over some window of points before and after the point of

interest. The value of the derivative of the fit at the central point is then taken as the

derivative of that point. The window then slides one point down, the fit redone, and the

new derivative calculated for that point. The primary advantage of this method is that the

higher-order moments are retained in the smoothing process by using the fits. The method

is computationally straightforward, given that least-squares fits can be performed by linear

matrix inversion.

The linearity of this problem simplifies the process of fitting to the multiplication of the

data by a series of pre-determined coefficients. Described at length in Ref. [106] (see §14.8

therein), these coefficients are available as a function in MATLAB3 – one set will return

the value of the data point itself, the next the value of the first derivative, the next the

second derivative, and so on. The size of the window and the degree of the polynomial to

which the data are fitted are the two parameters. For this work, we choose a window of 11

points - large enough that there is significant smoothing and small enough to retain local

characteristics of the data. We use polynomial fits of order 4.

4.4.2 Simulated annealing

Another potential snare in these numerical calculations is the existence of local minima

in energy as a function of overall magnetization profiles. We may be able to find a mag-

netization profile that gives the minimum energy for profiles similar to the initial state,

3We use the MATLAB function sgolay(4,11). In the context [b,g] = sgolay(4,11), we use the sec-
ond column of data to determine the derivative value for the sixth point in a series of eleven: x’(6) =

[g(1,2)*x(1) + g(2,2)*x(2) + g(3,2)*x(3) + . . . ], where x(n) are the data points.
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but there may be a condition quite different from the initial condition that gives an overall

lower energy. In an attempt to allow the numerical routine to find these globally minimizing

profiles, we employ an annealing procedure, in analogy to the annealing of metals where

heat induces increased random motion and allows a soild to cool into its energy-minimizing

cold-temperature structure.

In performing the numerical calculations described above, it was found that the an-

nealing procedure described below was necessary for the isotropic domain wall and the

anisotropic hedgehog ansatzes to reach absolute energetic minima. The parameters used in

the annealing procedure were checked over a wide range of initial conditions to ensure that

no further optimization could be done. For the domain wall case, the optimization proce-

dure described above was deemed unnecessary and only the annealing was used to perform

minimization. For the anisotropic hedgehog, “regular” optimization was performed first,

followed by an annealing sequence.

The analogy to annealing used in this procedure comes of using a Boltzmann-type factor

to determine the probability of accepting some random change to the distribution. For high

temperatures, the Boltzmann distribution is broad and many energies can be accounted

for with reasonable probability, while for lower temperatures, the distribution dictates that

only a narrow range of energies are acceptably probable.

As with the optimization, we perform the annealing procedure point-by-point. At the

initialization of the procedure, an initial artificial temperature is chosen to set the range

over which the magnetization values may vary. There are two basic steps to the annealing

process [107]. In the first step, the value of the magnetization profile is varied at a single

point, i. In this work, we assume that the magnetization values are distributed according

to a Gaussian distribution, that is the probability of finding a new magnetization value

m(ri)
new at a given temperature T is

pnew(i) =
1√
2πT̃

exp

(
−(m(ri)

new −m(ri)
old)2

2T̃ 2

)
(4.46)

when inverted, gives a value of the magnetization

m(ri)
new = m(ri)

old + T̃

√√√√2 ln

(
1√

2πT̃pnew(i)

)
(4.47)

for some randomly chosen probability pnew(i). To conserve magnetization, the equal and

opposite change is made to another randomly-selected nearby point, j. Both changes are

constrained to maintain |m(ri,j)
new| ≤ 1.
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The second step of the annealing process determines whether this new change to the

magnetization should be accepted. We calculate the change in total energy ∆E of the

system made by this change. If the energy is reduced, we accept the change outright.

If the energy is increased, we may choose to keep the value in our quest to escape local

minima. The choice to keep this new value is based upon the Boltzmann factor for the

energy difference

pBoltzmann =
1

kB′T
exp

(
− ∆E

kB′ T̃

)
(4.48)

where kB′ is an appropriately chosen constant analogous to the Boltzmann constant4. We

then use a random number generator to find a number pkeep equally likely to fall between

0 and 1/kB′ T̃ . If pBoltzmann > pkeep, we accept the change in magnetization and proceed

to the next point. If pBoltzmann < pkeep, we return to the first step and attempt a different

value for the magnetization.

This annealing procedure is repeated for every point in the distribution, and repeated

(typically) 10 times per temperature. As this concludes, a counter variable n is advanced

one unit and the temperature is then reduced according to the “schedule” T̃n = T̃0/2
n,

where T̃0 is the initial temperature. Typical calculations used T̃0 = 10 and nmax = 100.

4.5 Recent developments

4.5.1 Experimental evidence

In a bid to answer the question of whether a mixture of two fermionic components would

undergo a transition to a ferromagnetic state in a quantum gas, Jo et al. subjected two

hyperfine states of a 6Li gas to strong repulsive interactions near a Feshbach resonance [108].

Using measurements of lifetime, kinetic energy, and chemical potential as their probes, they

found signatures in these values consistent with a ferromagnetic state.

Though not in quantitative agreement with either the uniform model used in that paper

[108] or this work (§4.2.2, §4.2.3), the qualitative behaviour of the measured quantities is

in agreement with these models of itinerant ferromagnetism. In the measurement of the

loss rate (Fig. 4.10(a)), there is an interaction strength at which the three-body loss is

maximal, and a subsequent reduction in loss for yet stronger interactions, in qualitative

4The value of kB′ is initially chosen to be the total energy of the system divided by the initial temperature.
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(a)	


(b)	


(c)	


Figure 4.10: MIT results displaying evi-
dence for itinerant ferromagnetism in an ul-
tracold Fermi gas, reproduced from Jo et al.,
[108]. The results reproduced here are for
the lowest temperatures only, T/TF = 0.12.
The vertical grey band indicates the region
of crossover to the ferromagnetic state, show-
ing the range of possible critical interaction
strengths. (a) Loss rate as a function of in-
teraction parameter. Like Fig. 4.4, there is a
peak in the loss rate, such that losses are sup-
pressed for strong interactions. Black points
show T/TF = 0.12, which open circles are
T/TF = 0.22 and triangles are for T/TF =
0.55. The curves are guides to the eye. (b)
Kinetic energy vs. interaction parameter. A
clear dip in the interaction energy is seen near
the critical interaction strength, in qualitative
agreement with results in Fig. 4.3. (c) Chem-
ical potential and cloud size vs. interaction
parameter, which is analogous to the poten-
tial energy measurement. There is a slight
peak near the critical interaction strength, in
qualitative agreement with results in Fig. 4.3.

agreement with Fig. 4.4. The increase in loss rate with increasing interaction strength is

expected due to the dependence of the loss rate on the scattering cross-section. The decrease

in loss rate for higher interaction strengths is the indicator of ferromagnetism, indicating

that interactions are somehow suppressed at these large values, possibly due to a local

polarization of the components. The measured peak in loss rate is found for an interaction

parameter koFa larger than 2, and increases with temperature, while the zero temperature

calculation finds the peak at k0Fa ∼ 2.

Measurements of the energies show similar qualitative agreement. The experimental

kinetic energy measurements, performed by measuring the expansion energy after a rapid
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turn off of both the trap and the interaction strength, display minima at particular values

of the interaction parameter (Fig. 4.10(b)). The minimum exists because the large repulsive

interactions existing just before the onset of ferromagnetic-like behaviour expand the cloud

and reduce the kinetic energy. Beyond this transition point, the interactions have less effect

as the cloud segregates and returns to its former size. The same arguments apply to the

finding of a maxiumum in the chemical potential, which is directly related to the cloud

size (Fig. 4.10(c)). The locations and relative changes in the energies do not fall within

quantitative agreement of the results in Fig. 4.3, but the existence of the peaks and minima

qualitatively corroborate these results.

One possibly obfuscating aspect of this type of experiment is the tendency for the

formation of molecules on the repulsive side of the Feshbach resonance. The existence of a

low-energy bound state is inherent to the mechanism of the Feshbach resonance, and the

rate at which molecules form is characteristic of the atomic and molecular properties. As

a result, these experiments are performed as rapidly as possible, given the constraints on

magnetic field ramp times, but even so, up to 25% of the atoms exist as molecules in these

samples. Though checks were made to ensure the proportion of molecules in the system did

not affect the results, there may be more-complicated physics involving interactions that

include the molecular component.

4.5.2 Subsequent theoretical work

In the wake of these experimental results [108], interest in ferromagnetism in cold gases has

blossomed. Some of this work focusses on making better calculations of the ferromagnetic

transition point, particularly through quantum Monte Carlo (QMC) calculations [101, 109].

The QMC methods allow for more complicated and possibly many-body interactions to

replace the simple hard-sphere scattering approximations made in previous work. Both

studies [101, 109] find that the critical interaction parameter is reduced by considering

these scattering models.

The possible complications due to the presence of molecules in the sample are addressed

in another work [110], where the dynamics of the experiment are considered. Using a de-

scription for the scattering that accounts for both the energy dependence near the Feshbach

resonance and Pauli blocking, they study the rates of the pairing and ferromagnetic instabil-

ities and find that the pairing instability is always dominant. Additionally, they show that

a maximum in pairing rate occurs around kFa ∼ 2 and that there is a reduction in kinetic

energy of the unpaired electrons due the shrinking Fermi sea, in qualitative agreement with
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experimental results. These results suggest that pairing alone may account for some of the

effects attributed to ferromagnetism.

Another vein of work inspired by this experiment considers whether there is an explana-

tion for the non-monotonic behaviour of the energies that does not invoke ferromagnetism.

Zhai asks “whether spin polarization is the only way to reduce interaction energy” [111] and

answers with a calculation showing that a configuration including short-range correlations

renormalizes the interaction strength and leads to the same energetic signatures as were

seen in the experiment. The nature of the short-range correlations are similar to those in

the Gutzwiller projected wavefunction, where the probability of two opposite-spin fermions

existing at the same spatial location is suppressed without the emergence of long-range

order characteristic of a ferromagnet. In particular, a variational solution to the density

profile is introduced by assuming that the probability of opposite-spin fermions at the same

point is reduced from ρ2 to (1 − g̃)ρ2, where g̃ is the variational parameter and (1 − g̃)

reduces the interaction parameter for repulsive interactions (g̃ > 0).

He points out that without the direct observation of ferromagnetic domains, the short-

range correlated configuration cannot be distinguished from the ferromagnetic. In subse-

quent work [112], Zhai and Cui found that the there were regions of interaction strength

in which both ferromagnetic and short-range correlation fluctuations exist, and that the

ferromagnetic state was, indeed, dominant for sufficiently high interaction strengths. They

point out, however, that different correlation mechanisms may be sufficient to eliminate the

ferromagnetic tendencies.

In this evolution of theories, we see a trend not unlike that emerging from the original

models of ferromagnetism in metals. The existence of ferromagnetism seems to depend very

much on the approximations used to describe the system. Like many problems involving

fermions, calculations are difficult, and the question of the existence of ferromagnetism may

be best settled by an unambiguous experimental signature, such as a direct observation of

spin polarization.

4.6 Observations of strongly interacting 40K atoms

The original motivation for the theoretical work in ferromagnetism in trapped fermions

was in preparation for experiments with strongly interacting 40K. While these experiments

were delayed, and some of the results of the theory confirmed by the MIT experiment [108],
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plans to continue this work remain. Below is a description of the preparations made for

this experiment, completed before the December 2007 apparatus renewal and the new atom

chip that came with that.

The original plan for these experiments was in keeping with the suggestions put forth

in Ref. [99] – we planned to prepare a ferromagnetic state and observe its subsequent decay

as a function of the interaction strength between states. As such, one of the key ingredients

to experiments exploring ferromagnetism is the ability to manipulate the scattering length

between atoms. To do this, we plan to use an already-discovered Feshbach resonance ([113],

see §4.6.2). In general, these resonances occur only for atoms in specific hyperfine and Zee-

man states; in particular, high-field seeking states. These conditions stipulate that internal

state manipulation is important for preparation, and optical trapping is necessary for con-

finement. The resonance occurs at a specific value of the magnetic field, and control of this

value is important for control of the interactions between atoms. The following subsections

describe the progress made in readying the apparatus for ferromagnetism experiments.

4.6.1 Internal state preparation

The experimental sequence used to gather ultracold fermions relies upon magnetic trap-

ping, as described in §2.1.1. The sympathetic cooling done by the 87Rb yields a spin-

polarized DFG of 40K at the end of the cooling sequence. These atoms, in the low-field

seeking |F,mF 〉 = |9/2, 9/2〉 state must be transferred to an optical trap and their inter-

nal state must be manipulated to obtain the high-field seeking states we wish to use with

the Feshbach resonance. Either rf- or microwaves will induce transitions from the weak-

field seeking states to the high-field seeking states; both are shown ground state manifold

schematic in Fig. 4.11.

Calculating transition frequencies

The hyperfine structure of the 40K atom is discussed at length in Appendix A. The

frequency separations between ground states can be found from the Breit-Rabi formula,

which applies to ground state atoms with (J = 1
2) [62] and is an exact diagonalization of

Eq. (A.11)

E±/h = −Ahfs(I + 1
2)

2(2I + 1)
+ gIµBmB ±

Ahfs(I + 1
2)

2

(
1 +

4mX (B)

2I + 1
+ X 2(B)

)1/2

(4.49)



4.6 Observations of strongly interacting 40K atoms 75

-7/2	

-5/2	


-3/2	

-1/2	


1/2	

3/2	


5/2	

7/2	


7/2	

9/2	


5/2	

3/2	


1/2	

-1/2	


-3/2	

-5/2	


-7/2	

-9/2	


F = 7/2	


F = 9/2	


en
er

gy
 

Figure 4.11: Ground state manifold of 40K, in a magnetic field. Lower manifold corresponds to
the F = 9/2 hyperfine states; upper manifold corresponds to the F = 7/2 manifold. Small numbers
indicate mF quantum number, good at low magnetic fields. RF transitions within the hyperfine
manifold are schematically shown by blue curved arrows for the lower manifold, while the orange
straight arrows correspond to the microwave transitions between hyperfine manifolds.

where

X (B) =
(gJ − gI)µBB
Ahfs(I + 1

2)
, (4.50)

and Ahfs = −285.731 MHz [114], I = 4 [61], gJ = 2.00229421 [61], gI = 0.000176490 [61],

and m = mI ± 1
2 for all mI ∈ [−I, I]. Additionally, this formula can be used to calculate

the magnetic moments of each of the ground states as a function of magnetic field by taking

the derivative of this expression,

∂E±
∂B

= gIµBm±
(gJ − gI)µB

4

2X (B) + 4m
2I+1(

1 + 4mX (B)
2I+1 + X 2(B)

)1/2 . (4.51)

The energies and magnetic moments for 40K are shown in Fig. 4.12, and the transition

frequencies between states for those transitions allowed in the low-field limit are tabulated

in Tables 4.1 and 4.2 for the microwave and rf transitions, respectively.

In addition to determining the appropriate transition frequencies for state preparation

given a magnetic field, an alternate use of these data is for calibration of a magnetic field.
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Magnetic field

|F,mF 〉 ↔ |F ′,m′F 〉 20.00 G 202.10 G 224.21 G

|9/2, 9/2〉 ↔ |7/2, 7/2〉 1236.4 820.2 775.6

|9/2, 7/2〉 ↔ |7/2, 7/2〉 1242.9 918.2 890.5

|9/2, 7/2〉 ↔ |7/2, 5/2〉 1249.3 998.8 981.6

|9/2, 5/2〉 ↔ |7/2, 7/2〉 1249.2 998.9 981.7

|9/2, 5/2〉 ↔ |7/2, 5/2〉 1255.6 1079.6 1072.8

|9/2, 5/2〉 ↔ |7/2, 3/2〉 1261.9 1149.7 1150.4

|9/2, 3/2〉 ↔ |7/2, 5/2〉 1262.0 1149.7 1150.5

|9/2, 3/2〉 ↔ |7/2, 3/2〉 1268.3 1219.8 1228.2

|9/2, 3/2〉 ↔ |7/2, 1/2〉 1274.5 1282.6 1297.1

|9/2, 1/2〉 ↔ |7/2, 3/2〉 1274.5 1282.7 1297.2

|9/2, 1/2〉 ↔ |7/2, 1/2〉 1280.8 1345.5 1366.1

|9/2, 1/2〉 ↔ |7/2,−1/2〉 1287.0 1402.9 1428.8

|9/2,−1/2〉 ↔ |7/2, 1/2〉 1287.0 1403.0 1428.8

|9/2,−1/2〉 ↔ |7/2,−1/2〉 1293.2 1460.4 1491.3

|9/2,−1/2〉 ↔ |7/2,−3/2〉 1299.3 1513.6 1549.0

|9/2,−3/2〉 ↔ |7/2,−1/2〉 1299.3 1513.7 1549.0

|9/2,−3/2〉 ↔ |7/2,−3/2〉 1305.5 1566.9 1606.7

|9/2,−3/2〉 ↔ |7/2,−5/2〉 1311.5 1616.8 1660.6

|9/2,−5/2〉 ↔ |7/2,−3/2〉 1311.5 1616.9 1660.7

|9/2,−5/2〉 ↔ |7/2,−5/2〉 1317.6 1666.7 1714.5

|9/2,−5/2〉 ↔ |7/2,−7/2〉 1323.7 1713.7 1765.1

|9/2,−7/2〉 ↔ |7/2,−5/2〉 1323.7 1713.8 1765.2

|9/2,−7/2〉 ↔ |7/2,−7/2〉 1329.7 1760.7 1815.8

|9/2,−9/2〉 ↔ |7/2,−7/2〉 1335.6 1805.1 1863.4

Table 4.1: Microwave transitions between 40K ground states. All values in MHz.
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Figure 4.12: Top row: Hyperfine energies vs. magnetic field for low (left) and all (right) fields.
Solid (dashed) lines indicate E+(−). For low fields, only the lower manifold is shown. Bottom row:
magnetic moments for low (left) and all (right) magnetic field values. As above, solid (dashed) lines
show ∂E+(−)/∂B. The quantum numbers for the states shown are (in the right panels) from top to
bottom: mF = {−7/2, · · · , 7/2, 9/2, · · · ,−9/2}, or mI = {−4, · · · , 4, 4, · · · ,−4} with mS = 1/2 for
the solid lines and −1/2 for dashed lines.

By spectroscopically determining some transition frequency between well-known states, the

magnetic field can be measured precisely.

Demonstrating state control

In order to prepare atoms for the demonstration of the Feshbach resonance, we need to

manipulate the internal state to prepare the appropriate combinations for the resonance we

choose. In the magnetic trap, where sympathetic cooling has brought them near degeneracy,

the atoms are in the magnetically trappable |9/2, 9/2〉 stretched state. These are transferred

to a purely optical trap. Here, we wish to make a mixture of atoms in the |9/2,−9/2〉 and
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Magnetic field

|F,mF 〉 ↔ |F ′,m′F 〉 20.00 G 202.10 G 224.21 G

|9/2, 9/2〉 ↔ |9/2, 7/2〉 6.4572 98.3764 115.427

|9/2, 7/2〉 ↔ |9/2, 5/2〉 6.3909 80.7533 91.1601

|9/2, 5/2〉 ↔ |9/2, 3/2〉 6.3266 70.1665 77.7900

|9/2, 3/2〉 ↔ |9/2, 1/2〉 6.2642 62.8980 69.0000

|9/2, 1/2〉 ↔ |9/2,−1/2〉 6.2036 57.5078 62.6522

|9/2,−1/2〉 ↔ |9/2,−3/2〉 6.1447 53.3060 57.7896

|9/2,−3/2〉 ↔ |9/2,−5/2〉 6.0875 49.9094 53.9100

|9/2,−5/2〉 ↔ |9/2,−7/2〉 6.0319 47.0902 50.7211

|9/2,−7/2〉 ↔ |9/2,−9/2〉 5.9383 44.3032 47.5979

Table 4.2: RF transitions in ground state 40K, F = 9/2 manifold. All values in MHz.

|9/2,−7/2〉 states, that we might address the 202 G resonance (See §4.6.2).

First, we transfer the atoms from the weak-field seeking part of the manifold to the high-

field seeking. Using adiabatic rapid passage, we can sweep an rf field through the resonances

between adjacent states to complete a transfer from the weak-field seeking stretched state to

the high-field seeking one. We turn on the rf field far above resonance at 11.0 MHz, so as not

to induce any spurious transitions at turn on. With a quantization field of 19.8 G, we ramp

the rf frequency to a value above the resonance for the first rf transition in the ladder, 6.55

MHz (See first column of Table 4.2). In 30 ms, we linearly ramp the rf frequency from 6.55

MHz to 5.70 MHz, which is below the frequency for the lowest transition on the ladder. The

rf frequency is then ramped down to 1.50 MHz in 5 ms and turned off. Using Stern-Gerlach

imaging, we separately image the different mF states and optimise these parameters for

transfer into the mF = −9/2 state.

To create a mixture of |9/2,−9/2〉 and |9/2,−7/2〉 , we add a step before ramping the

frequency to 1.50 MHz. At this point, we ramp the frequency back up to the resonance

position (in 5 ms) between these two states, which we experimentally determine is 5.90 MHz,

by balancing the populations of the two components. The field is then suddenly turned off.

That this is a mixture instead of a pure state arises due to the dephasing inherent in this

experiment. Long wait times allow the atoms to sample the different magnetic fields (due

to imperfect uniformity of the fields) and the phase relationship in the superposition is

randomized atom-to-atom.
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Figure 4.13: Microwave transfer in
magnetic trap, with 19.8 G Ioffe field.
A mixture of atoms in |9/2,−9/2〉 and
|9/2,−7/2〉 is prepared. Shown is a mea-
sure of atom number in the |9/2,−9/2〉
after microwave sweep. The Lorentzian
fit gives the transition centre at 1336.228
± 0.003 MHz and width of 0.09 ± 0.01
MHz.

We also show that microwaves can manipulate the state of the atom. With a mixture

created as above in a magnetic field of 19.8 G (very near the 20.00 G tabulated in Table

4.2), we transfer atoms from the |9/2,−9/2〉 to the |7/2,−7/2〉 state. We measure the atom

number in the mF = −9/2 state and see a loss around the expected value in Fig. 4.13.

4.6.2 Feshbach resonance in 40K

The interactions between two particular internal states of an 40K atom can be controlled

by varying the magnetic field in the vicinity of a Feshbach resonance. Using the results

of Refs. [9, 113], the scattering length between the |9/2,−9/2〉 and |9/2,−7/2〉 states as a

function of magnetic field

a79(B) = 174a0

(
1− 7.8

B − 202.10 G

)
, (4.52)

where 174a0 is the background scattering length, B is the magnetic field, 202.10 ± 0.07 G

is the experimentally measured centre of the resonance between these states, and 7.8 ±
0.6 G its width. A resonance between the |9/2,−9/2〉 and |9/2,−5/2〉 states has also been

observed, at a magnetic field of 224.21± 0.05 G with a width of 9.7± 0.6 G [115].

To identify the position of the resonance, we rely upon the enhanced three-body loss

associated with the large scattering length near the resonance. Since the loss rate is pro-

portional to the sixth power of the scattering length [103], changes in the scattering length,

a, will be mirrored by dramatic changes in the loss rate.

We create a mixture of atoms in the |9/2,−9/2〉 and |9/2,−7/2〉 states in an optical

trap and turn on the magnetic field smoothly in 20 ms to values near 202.10 G. This field

is held for 500 ms, after which it is smoothly turned off in 100 ms. Figure 4.14 shows the
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Figure 4.14: Experimental evidence of Feshbach resonance in 40K. Round and square points
represent two different data sets, obtained in that order within 1 hour. The magnetic field was
calibrated with Zeeman transition frequencies in 87Rb . The dashed line is a Lorentzian fit to all of
the data, with centre at 201.3 ± 0.2 G and width 8.10 ± 0.02 G.

total atom number as a function of the final field value. There is a clear loss feature around

201.3 ± 0.2 G, with a width of 8.10 ± 0.02 G. This centre value is in good agreement with

the accepted value.

4.6.3 Magnetic field stability

Stability criteria

As discussed in the theoretical sections of this chapter, the relevant control parameter is

the interaction parameter, which is k0Fa = k0F (0)a. To determine the precision with which

we must control the magnetic field, we relate it to this interaction parameter. The scattering

length varies with magnetic field as Eq. (4.52) and the Fermi wavevector depends on the

density, and thus the number of atoms and trap parameters. As an estimate, we assume

that we will use ∼ 104 atoms and harmonic trap parameters ω = 2π × (1000, 1000, 50) Hz,

and find

k0F =

√
mω

~
(48N)1/6 = 1.1× 107m−1. (4.53)

The region in which the interesting physics exists is that of strong interactions, which

we will define as k0Fa > 1. Using the parameters above, this amounts to a magnetic field
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range from 201.22 G to 202.10 G, or a region of 880 mG width. As a comparison, if

ω = 2π × (200, 200, 50) Hz, the values of magnetic field at which k0Fa > 1 are 201.61 G to

202.10 G, yielding a range of 490 mG of strong repulsive interactions.

As a minimal requirement for field stability, we might assume that we need to control the

magnetic field to within 10% of the field range over which interesting interaction parameters

exist, meaning ∼ 50 mG stability for the weaker trap. In a ∼ 200 G field, this requires 1

part in 4× 103 stability.

For a more stringent requirement on field stability, we consider a demanding measure-

ment technique. One means of determining the existence of interactions (and thus a demag-

netized state) in this system is to measure the transition frequency to an auxillary Zeeman

state [115, 116]. The interactions will shift these transitions by an amount known as the

clock shift, the frequency of which is

∆ν =
2~
m
ρ7(a79 − a57) (4.54)

where we are considering the specific case of atoms in |F = 9/2,mF = −9/2〉 and |9/2,−7/2〉,
and an auxillary state |9/2,−5/2〉, where ρ7 is the density of the |9/2,−7/2〉 atoms, a79

is the scattering length between the two states which depend on the magnetic field in the

regime of this experiment, and a57 = 174a0 is the background scattering length, since they

are far from that resonance.

One possibility for the stability criterion is to demand a stability with which one can

distinguish between the absence and presence of interactions to a precision equal to the

background scattering length. If we assume a density ρ7 = 1× 1013 cm−3, then ∆ν = 913

Hz. Translating this frequency into a magnetic field, we consider the magnetic moment

differences at 202.10 G:

µ−7/2 − µ−9/2 = 154 kHz/G (4.55)

µ−5/2 − µ−7/2 = 170 kHz/G, (4.56)

where the subscripts refer to mF . Using the first of these, this implies that a stability of

913 Hz leads to a field stability of ∼ 6 mG. In fractional terms, 6 mG/202.10 G ∼ 3× 10−5

– a few parts in 104.

Comparing this number to the Jin experiment, C. Regal’s thesis [117] (p112) cites a

stability of 7 mG, and they can measure up to a 1 kHz precision on the | − 5/2〉 → |− 7/2〉
transition, which is similar to the demand of our estimate.
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Figure 4.15: Schematic of Feshbach control circuit. Magnetic coil current (blue line) is controlled
by high power IGBT (yellow), with feedback from a precision current transducer, Danfysik Ultrastab
867-200 I (red). The current output (green line) of the transducer is measured by a high-precision 10
Ω (1 ppm) resistor (blue highlight) and compared to the set voltage. The set voltage is determined
by a voltage divider with similar precision resistors and powered by a precision voltage source (green
highlight). The set point input allows for small changes on the set voltage.

Magnetic field stability

To gain access to the tunability of the interaction strength available at a Feshbach res-

onance, we must, in addition to trapping the atoms optically, stabilize the magnetic fields

about the resonance feature. The precision of the magnetic field reflects that available for

the interaction strength values. The same coils are used for this high magnetic field as to

create the gradient for the MOT (see §2.1, [15]), but instead of anti-Helmholtz, they will be

switched to a Helmholtz configuration. The existing magnetic field control was implemented

via the power supply current-limit mode.
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To improve upon this set up, we control the current external to a low-noise power supply

using a feedback loop between a precision current probe and a high-power transistor. We

use the low-noise power supply, Agilent 6684A (40 V / 128 A, noise 1.0 mVrms, 10 mVpp).

We measure the current with Danfysik’s Ultrastab 867-200I current sensor (temperature

stability and temporal drift characteristics are < 1 ppm/K, < 1ppm/month). The control

scheme is outlined schematically in Fig. 4.15. The basic principle is to measure the output

of the current sensor across a precision resistor (Vishay VH102K series, 1 ppm) and compare

this to a set point voltage, which we implement in this first version of the circuit through a

precision voltage reference (Thaler VRE3025, 0.6 ppm/◦C) divided down to the appropriate

input value through a resistor-divider network. The resultant error signal is provided as the

gate voltage on a high-power IGBT (Advanced Power Technologies APT200GN60J, 600V,

280A) such that it controls the coil current running between the collector and emitter.

To test the stability of the magnetic field control, we study the width of an atomic

transition with various field control schemes. We use a transition in 87Rb, loading atoms

in the |F = 2,mF = 2〉 internal state into an optical trap. We tune the magnetic field to a

value we presume is near the 202 G necessary for the Feshbach control of the 40K atoms.

We transfer the Rb atoms to the |2, 1〉 state using an rf frequency near 128 MHz. The rf is

turned on suddenly, and left on for 50 ms, and turned off suddenly. As the transform-limited

width associated with this pulse is ∼ 20 Hz, widths greater than these would indicate an

instability in the magnetic field, whose variations broaden the value of the transition. We

assume the magnetic field noise is the dominant broadening mechanism in these ultracold

(but not degenerate) clouds.

These transitions are shown for various configurations of field control in Fig. 4.16.

Fig. 4.16(a) shows the transition for the original magnetic control scheme, and yields the

widest transition. Fig. 4.16(b) shows the transition for the new magnetic control scheme,

in what is called “Configuration I” – a configuration using a switching power supply in

the control circuit. The transitions for “Configuration II” are shown in Figs. 4.16(c) and

4.16(d). Here, the switching power supply in the control was replaced by an HP E3611A

linear power supply, which is much better at filtering line noise. With widths as small as 6

kHz on a transition of 128 000 kHz, this initial test showed a reduction of a factor of 10 in

the noise, to the level of one part in 2× 104.

Improvements to this circuit (§4.6.3) need to be made to allow fast switching over a

∼ 10 G range, in order to access the zero of the Feshbach resonance and turn off interactions.

Changes to the input signal set-point should allow for this.
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Figure 4.16: Magnetic field stability measurements, made by looking at the width of rf transitions
between 87Rb states |2, 2〉 and |2, 1〉. Horizontal scales are not equal. Dashed curves are Gaussian
fits to the data, to approximate a width of the transition. (a) With original magnetic field control,
σ = 70 ± 6 kHz, (b) With new magnetic field control, Configuration I, σ = 20 ± 5 kHz, (c) With
new magnetic field control, Configuration II, σ = 6.1± 0.3 kHz, (d) Same conditions as (c) with an
increased sampling frequency, σ = 5.4± 0.2 kHz.

4.6.4 Looking forward

Before experiments probing ferromagnetism are ready, a few challenges remain.

The fermions need to be degenerate in the optical trap, at temperatures at or below

0.2TF . To date in our laboratory, these temperatures have only been reached in the magnetic

trap via sympathetic cooling with 87Rb . The most likely route towards this is to stop the

sympathetic cooling at some optimized point (before the onset of strong K-Rb losses) during

the cooling process, remove all Rb from the magnetic trap, and load fermions into the optical

trap. Here, a spin mixture could be made, which would then allow for thermalization during

a subsequent all-optical evaporation process. A Feshbach-enhanced scattering length could
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be used to optimise the procedure. At high enough magnetic fields, these states can be

isolated spectroscopically and one could be removed from the trap. At this point, the

desired state could be initialized through appropriate rf or microwave transitions.

Once cold fermions have been produced in the optical trap, and the magnetic field

stability is deemed sufficient for the experiment, one issue facing this experiment is the loss

rate to molecular production. There have been some measurements of this loss [113], but

it should be measured at the densities and trap configurations we will be using. These

measurements will set a time scale in which the experiments looking for ferromagnetism

must to completed and may insist on more stringent requirements of timing control than

are currently available.

One of the first and most straightforward experiments to perform would be that on

which we originally planned – the proposal of Duine and MacDonald [99]. Using the tools

developed above, atoms in an identical superposition state of the two Zeeman levels affected

by the Feshbach resonance would be put in the region of strong interactions. By measuring

the timescale for which the atoms remain in the ferromagnetically ordered identical states,

we could observe how the preservation of a ferromagnetic state depends on the strength

of the interactions. Using a trimming gradient coil, we could change the magnetic field

gradients seen by the sample and measure how the dephasing induced by the different

energy environment across the cloud affects the preservation of this ferromagnetism.



Chapter 5

BEC dynamics in a tunable double well

The condensation of bosons into a single ground-state wavefunction is a well understood

example of individual quantum mechanical objects transitioning into a many-body state.

The emergence of a single phase parameter attests to the quantum mechanical nature of

this mesoscopic object. The first measurements of this phase came of probing the phase

difference between two separated condensates [118], circumventing the restriction forbidding

the measurement of a single phase. When there exists some wavefunction overlap between

nearby condensates, the phase difference across the barrier can be well-defined and will, as

first described by Josephson for superconductors [119], drive transport across the junction.

Recent double well BEC experiments have exploited these properties to realize tunnelling

transport [120] and to generate exotic quantum mechanical states [121].

Dynamical studies can reveal properties of the underlying hamiltonian governing the

general behaviour of system. In a BEC, quantum mechanical transport is driven by spatial

gradients in the phase. In the double well system, the character of the transport between

the wells in particularly sensitive to the spatial phase gradients in and across the barrier

region. By tuning the height of the barrier, and thus the density and healing length of the

BEC at the point connecting the wells, the character of the macroscopic transport changes,

revealing the many-body properties of the system.

In this chapter, a BEC is introduced to a tunable magnetic double well potential, where

all barrier heights from zero to effectively-infinite are explored. This chapter studies the

quantum transport of the BEC across the barrier for various out-of-equilibrium initial con-

ditions at variable barrier heights. By studying both mass transport and phase evolution,

we find the system behaves as a single “perfect” – inviscid, irrotational – fluid for low bar-

riers and strong coupling between the wells, and as a Josephson junction for large barriers

86
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or large initial imbalances where tunnelling is the dominant mechanism of transport.

This chapter begins in §5.1 by establishing the context for these experiments in terms

of work done in similar systems both in the condensed-matter and quantum-gas worlds. A

description of the underlying equations of motion in the strong and weak-coupling regimes

follows in §5.2, and the experimental tools specific to this chapter are described in §5.3.

For small initial imbalances, mass-transport behaviours are described in §5.4, revealing

a crossover between superfluid hydrodynamics and Josephson transport. Observations of

Josephson-like behaviour in the mass transport for large initial imbalances is reported in

§5.5. In §5.6, the decay of population imbalance is studied. Phase signatures of quantum

transport are discussed in §5.7 and the implications of this work are considered in §5.8.

5.1 Background and context for double well experiments

Long before the idea of a double well was applied to dilute-gas BECs, it was studied

within the context of other many-body systems. The interesting properties of double-

well physics emerged as technological advances provided better superconducting materials,

and effects like tunnelling could be measured. Brian Josephson was the first to describe

a set of behaviours characteristic of a tunnelling junction between two superconducting

systems, each of which is described by its own wavefunction. These Josephson effects

were discovered in a variety of systems, including superfluid helium. In the era of the

ultracold gas, these quantum fluids have also been studied in double well environments,

with motivations including precision interferometry and exotic quantum state manufacture.

Josephson junctions in condensed matter physics

In the early 1960’s, fabrication techniques, especially thin-film deposition, were developed

to the point where superconducting materials could be manipulated into a variety of struc-

tures. Observations of tunnelling between superconducting layers separated by an insulator

[122, 123] indicated that the electron wavefunction extended beyond the classical bounds

of the superconducting material.

Brian Josepshon, in thinking about the nature of the superconducting order parameter,

realized that the quantum mechanical phase difference between two nearby but insulated

superconducting regions would be well-defined and observable if the system could satisfy

the number-phase uncertainty relationship by allowing electrons to tunnel between the
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regions [124]. His calculations showed that a superconducting current would travel across

the insulating barrier and predicted two effects [119]: first, for external currents less than

some critical value, there would exist a supercurrent flowing across the junction with zero

voltage drop; second, for external currents above the critical value, a sinusoidally varying

supercurrent flows across the junction, with a frequency that depends on the potential

energy difference between the regions. These stationary “dc” and oscillatory “ac” effects

are defining characteristics of the Josephson junction. In the ac case, the evolution of the

phase depends on the potential energy difference between the two regions in a simple way:

φ̇ = ∆E/~, where φ is the difference in the phase across the junction, and ∆E is a generic

energy difference between them, which is this particular case takes the form ∆E = 2eV ,

where e is the electric charge and V is the voltage difference across the junction. Evidence

for these effects was seen very soon after their prediction in superconducting-insulating-

superconducting sandwich geometries [125–127].

Though tunnel junctions were conceived as the original infrastructure upon which Joseph-

son junctions were based, these devices do not hold a monopoly on Josephson-type phe-

nomena. Similar behaviour has been found across weak links [128, 129], in which the

superconducting regions are physically, but weakly, connected. The criterion establishing

this weakness dictates that the effective length of the link be much smaller than the co-

herence length of the superconducting order parameter in the connecting region [129], such

that the non-local quantum-mechanical nature of the system is important, even if tunnelling

is not present. These devices typically exhibit a 2π-periodic (though not necessarily sinu-

soidal) current-phase relationship. The simpler manufacture and small capacitance of these

weak links are two practical advantages leading to their frequent use in Josephson junction

devices.

More recently, Josephson effects have been explored in superfluid helium weak-link sys-

tems. Two reservoirs of either 3He [130, 131] or 4He [132] are connected through the small

holes in a microaperture array, in which the size of the holes was comparable to the super-

fluid healing length. Using a sensitive pressure detector1 to measure small differences in

pressure, superfluid flow between reservoirs was shown to exhibit both the stationary dc-

and oscillatory ac-Josephson effects.

In superfluid helium, the healing length can be tuned via temperature due to its diverging

behaviour near the lambda point. The nature of the current-phase relationship is explored

1This detector, fittingly, relies upon a SQUID, based on the Josephson effect, to sensitively measure small
displacements.
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in the transition between the large healing length regime, where transport between the

reservoirs must rely on tunnelling, and the small healing length regime, where superfluid

flow is allowed through the aperture [133]. A linear current-phase relationship is found in

the small healing length regime, characteristic of hydrodynamics, while the relationship is

sinusoidal for large healing lengths, consistent with Josephson-like behaviour.

Double-well BECs and Josephson junctions

Before the first dilute-gas BEC was realized, the possibility of using two of them to create

a Josephson junction was discussed [134], drawing an analogy between the two supercon-

ducting reservoirs of a Josephson junction and close-but-separated condensates. The first

explorations of nearby condensates demonstrated the measurable phase difference between

wells through matter-wave interference [118]. These observations inspired many theoretical

discussions of Josephson effects in double well BEC systems [135–139]. In general, these

proposals exploit the two-mode model (TMM) to garner their results, assigning independent

wavefunctions and phases to each side of the double-well junction with a well-defined phase

difference between the wells.

The first experiments to observe Josephson physics with cold atoms were done in optical

lattices [140, 141]. In that work, a one-dimensional lattice of many wells was used, with

tunnelling between neighbouring sites determining the oscillatory behaviour measured. In

the first experiment [140], analogies are made between the observed Bloch oscillations and

the ac-Josephson effect, in that the frequency of oscillation depends on the potential differ-

ence between neighbouring sites. In the second experiment [141], periodic mass transport

across adjacent wells is established as a consequence of the exchange between kinetic and

potential (interaction) energies, establishing a “plasma-like” oscillation, in analogy to the

exchange of energy between the electric field and the tunnelling energies in a solid-state

Josephson junction [127].

The first direct observation of Josephson dynamics in a true double well was in Ref. [120].

With in situ imaging, population differences between two wells could be measured, while

the phase information was obtained from matter-wave interference patterns. Plasma os-

cillations were observed and the current-phase relationship plotted. Some beyond-TMM

characterisation of this system was required to predict the frequency of these dynamics

[142]. In subsequent work [143], both the dc- and the ac-Josephson effects were observed in

an atomic gas system. In the ac-effect, often called “macroscopic quantum self-trapping”

(MQST), the frequency of the population oscillations depends on the chemical potential
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difference between the wells.

Unique to the quantum gas implementations of the double-well system is the ability to

dynamically transform the shape of the potential, from, for instance, a single to a double

well. Adiabatic deformations of this type can be used to generate number squeezed states

[121, 144, 145]. This squeezing manifests itself as a reduction in the fluctuations in the atom

number of each well upon repetition of the splitting process, which arises due to an energetic

advantage if the fluctuations are sub-Poissonian. The number-squeezing parameter ξN =

σN/σ
0
N ≈

√
kBT/µ [121], where σN is the standard deviation of the number measurements,

σ0N =
√
N is the standard deviation for Poissonian statistics, T is the system temperature

and µ its chemical potential. Esteve et al. show that their results are consistent with thermal

equilibrium and find ξN ≈ 1/
√

2 [121]. In contrast, the work of Jo et al. [144, 145] cites

a squeezing factor as small as ξN ≈ 1/25, though the temperature is twice the chemical

potential. The mystery surrounding these results may lie in the difference in geometry

between these experiments, the former set in nearly spherical traps, while the latter is

an elongated geometry. Phase fluctuations in the elongated trap [146–148] may suggest

these experiments were out-of-equilibrium and indicate that the dynamics of the system are

important to the generation of squeezed states.

Further to the initial squeezing experiments, Ref. [149] demonstrates both squeezing and

antisqueezing, the former at the lowest temperatures, and the latter at intermediate tem-

peratures, where bosonic bunching dominates. Entanglement of the two separated BECs

was also demonstrated in the Ref. [121] through number and phase measurements. The use

of these squeezed and entangled states is especially attractive in the context of atom inter-

ferometry [23, 150, 151], where one might be able to make use of the reduced fluctuations

to improve the sensitivity of precision measurements.

The adiabatic transformation from a single to a double well used in many previous

experiments traverses the crossover from the regime where hydrodynamics are valid to the

regime where a TMM accurately describes the system. While previous dynamical studies

of the Josephson junction [120, 143] have discussed the results in the context of a TMM,

the barrier was not clearly greater than the chemical potential, and the assumption of weak

coupling may not have been valid.

By characterizing the dynamics throughout the crossover in this work, the qualitative

character of the transport between the wells is established and the regions in which a certain

description is valid can be identified. Such an understanding of the many-body transport is

required to choose appropriate rates of change for adiabatic deformation and to fully exploit
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the potential for creating exotic quantum mechanical states.

5.2 Theoretical descriptions of a BEC in double well

Calculations involving BECs are greatly simplified, compared to microscopic descriptions

of fermions or Boltzmann particles, by the existence of the macroscopic many-body ground

state wavefunction that defines the system. In the non-interacting system, this wavefunction

would simply be the many-body product of the single particle ground state wavefunctions.

The existence of the s-wave contact interaction complicates this description to some degree,

though the solutions to a modified Schrödinger equation, known as the Gross-Pitaevskii

equation (GPE) do very well to describe the BEC in many situations. Though for compli-

cated potentials, the GPE must be solved numerically to obtain exact results, there exist

several regimes of approximation in which simpler models allow for a better intuitive under-

standing of the system. In the single- to double-well transition, two of these approximations

are the hydrodynamic description, and the two-mode model (TMM).

5.2.1 Gross-Pitaevskii equation

The dynamics of a BEC are often well-described by the nonlinear Schrödinger equation

known as the Gross-Pitaevskii equation (GPE) [152, 153], where the nonlinear mean-field

term accounts for interactions between particles. This description is valid for low energies,

when the interactions are local (the scattering length a is less than the interparticle spacing)

and the particle number N is much greater than unity. The evolution of the condensate

wavefunction, Ψ(r, t), obeys this T = 0 GPE

i~
∂Ψ(r, t)

∂t
= − ~2

2m
∇2Ψ(r, t) +

(
Vext(r) + g|Ψ(r, t)|2

)
Ψ(r, t) (5.1)

where Vext(r) describes the external potential and g = 4π~2a/m is the interaction param-

eter, and m is the particle mass. The time-independent version of this equation gives an

energy eigenvalue equivalent to the chemical potential, µ, through

µΨ(r) = − ~2

2m
∇2Ψ(r) +

(
Vext(r) + g|Ψ(r)|2

)
Ψ(r), (5.2)

and implies a time-dependence to the wavefunction such that Ψ(r, t) ∝ exp(−iµt/~).

By examining Eq. (5.2) we can evaluate the typical length scale over which the conden-

sate wavefunction varies. Ignoring the effect of the external potential V (r) and defining the
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local density of the condensate ρ(r) = |Ψ(r)|2, we can define a local healing length, ξ(r),

as the length scale of variation where the kinetic energy term is equal to the interaction

energy term, ~2/2mξ(r) = gρ(r), such that

ξ(r) =

√
~2

2mgρ(r)
. (5.3)

In the context of the double well system, the value of ξ in the barrier region is important

when considering transport between the two halves of the system. For low barriers, the

density ρ(r) is relatively high and ξ small, leading to hydrodynamic behaviour. When the

barrier is high and depletes the density in the barrier region, ξ grows and quantum transport

phenomena become important.

The GPE describes a broad range of phenomena in BECs, including studies of disorder

and localization [154], soliton dynamics [155–157], vortices [158, 159], and BKT physics

[160, 161]. As in these systems, we expect the GPE to capture the low-energy excitations

we study. For the specific potentials used in this work, the GPE can by simplified to

show limiting behaviours – on one end of our continuum, we expect hydrodynamics to rule,

while at the other, a two-mode model (TMM). Both of the these simplifications are derived

from the GPE, but better reveal the origins of the physics in their austerity. These limits

represent two of the canonical regimes of superfluidity, and are explained in detail in the

subsections to follow.

5.2.2 Hydrodynamics

An interacting BEC exhibits the properties of a superfluid. The GPE equation can be

rendered to reveal these characteristics through a set of hydrodynamic equations describing

perfect irrotational and inviscid fluid behaviour.

To reveal the hydrodynamics2 of a BEC, we write the condensate wavefunction in terms

of its density and phase, Ψ(r, t) =
√
ρ(r, t) exp(−iφ(r, t)), where ρ(r, t) = |Ψ(r, t)|2 is the

density and φ(r, t) = µ(r)t/~ is the phase. Just as with the linear Schrödinger equation,

the probability flux for the wavefunction is given by [162]

j(r, t) = −
(
i~
2m

)
[Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)] , (5.4)

2Here and throughout this chapter, we use the term “hydrodynamic” to refer to superfluid hydrodynamics,
in contrast to collisional hydrodynamics which describes a different regime.
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from which we can define a local superfluid velocity vs(r, t) = j(r, t)/ρ(r, t). This velocity

depends on the gradient of the phase,

vs(r, t) =
~
m
∇φ(r, t) (5.5)

and because ∇ × vs = (~/m)∇ × ∇φ(r, t) = 0, the condensate is irrotational, a defining

characteristic of superfluidity.

Using this definition for superfluid velocity, we can rewrite the GPE in terms of the

ρ(r, t) and vs(r, t):

∂ρ(r, t)

∂t
+∇ · [vs(r, t)ρ(r, t)] = 0 (5.6)

m
∂vs(r, t)

∂t
+∇

[
µ̃(r) + 1

2mv2
s (r, t)

]
= 0 (5.7)

where

µ̃(r, t) = Vext(r) + gρ(r, t)− ~2

2m
√
ρ(r, t)

∇2
√
ρ(r, t). (5.8)

Equation 5.6 is the continuity equation, describing the local conservation of mass flow in the

condensate. Equation 5.7 is the equation of motion for the velocity, and ensures conservation

of momentum. The second term describes the force – the gradient of the energy – which

drives fluid flow. The driving terms in the square brackets represent the local chemical

potential, µ̃(r), and the kinetic energy of the superfluid flow.

The first two terms in the expression for the local chemical potential (Eq. (5.8)) give

the contribution from the Thomas-Fermi approximation, while the last term, the only place

in these formulae where ~ appears, is called the “quantum pressure” term. This kinetic

energy term arises from to the zero-point motion of the particles, and does not give rise to

particle currents [153]. If we define a characteristic length scale over which the condensate

wavefunction and density change, d, the magnitude of the quantum pressure is ∼ ~2/2md2 =

(ξ2/d2)gρ(r, t). The quantum pressure can therefore be neglected in comparison to the

interaction term when changes in the condensate wavefunction occur on a length scale less

than the healing length, ξ < d. In the double-well system, d is of the order of the distance

between the well minimum and the centre of the barrier. The neglect of the quantum

pressure term must be justified, in particular, in the barrier region where the density is

lowest.
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Hydrodynamic approximation of population dynamics

To predict the character of the dynamics in the hydrodynamic regime, we take an ap-

proach which treats the system as a harmonic oscillator, whose frequency corresponds to

the frequency of population transfer across the system. Using the continuity equation and

equation of motion for the condensate in the hydrodynamic regime (Eqs. (5.6) and 5.7), and

neglecting the quantum pressure term (by assuming ~→ 0), we can formulate the problem.

In essence, we use the equation of motion to determine the force an imbalanced population

exerts on the system, which we associate with a “spring force,” as we expect the force to

depend on the initial population difference. The spring constant associated with this force

will be associated with the frequency of motion, much as a simple harmonic oscillator of

mass m displaced by a distance x experiences the force F = −kx = −mω2x.

The oscillating variable in this system would be the population difference, Z = (NR −
NL)/N , where NR(L) is the number of atoms in the right (left) well, and N = NR + NL is

the total atom number. We seek a harmonic solution of the form

Z̈ = −ω2
HDZ (5.9)

where ωHD is the frequency of motion in this hydrodynamic regime. The first time derivative

of Z is

Ż =
ṄR − ṄL

N
=

2ṄR

N
(5.10)

where we use the fact that N is constant in time. The time dependence on one side of the

well can be written

ṄR =

∫
VR

ρ̇ d3r = −
∫
VR

∇ · (ρvs) d3r

=−
∫
S
n̂ · (ρvs) dS (5.11)

where VR is the volume of the right well, S is the area of the plane separating the two wells,

and n̂ is the unit normal vector for this plane. The continuity equation (Eq. (5.6)), and

the Gauss’s theorem are used in this expression, and ρ will be evaluated on the surface, S.

Substituting this into the expression for Z and taking the second derivative,

Z̈ =− 2

N

d

dt

∫
S
n̂ · (ρvs) dS

=− 2

N

∫
S
n̂ · (ρ̇vs + ρv̇s) dS. (5.12)
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To evaluate the frequency, ωHD, we assume that the system begins at rest, such that

vs(t = 0) = 0, and the first term goes to zero. The time derivative of vs is given by

the hydrodynamic equation of motion, Eq. (5.7), and

Z̈
∣∣∣
t=0
≈ 2

mN

∫
S
ρ n̂ · ~∇ (Vext(r) + gρ) dS. (5.13)

The geometry of this double well system is such that the normal vector n̂ = x̂, such that

the only component of the gradient which contributes is the x-component. Assuming some

initial imbalance, Z(t = 0) = Z0,

ω2
HD = −Z̈Z ≈ −

2

mNZ0

∫ ∫
S
ρ
∂

∂x
(Vext(r) + gρ) dy dz. (5.14)

We neglect the quantum pressure term in this analysis, such that the Thomas-Fermi

solutions for the density are appropriate. For the initially imbalanced system, we consider

in addition to the double well potential Vext a simple linear gradient across the barrier giving

a potential Vext,grad = Gx. The density profile will be found from the combined potential,

Vext + Gx. At t = 0, the gradient is removed suddenly, leaving the density profile in a

non-equilibrium initial condition. We calculate this initial density profile in the tilted trap

using the Thomas-Fermi approach, where

gρTF(r) = µ− (Vext(r) +Gx), (5.15)

where ρTF is the density profile at t = 0. The gradient term in Eq. (5.14) is

∂

∂x
(Vext(r) + gρTF(r)) =

∂

∂x
(Vext(r) + µ− Vext(r)−Gx)

= −G. (5.16)

This approximation simplifies the expression for the characteristic frequency,

ω2
HD =

2G

mNZ0

∫ ∫
S
ρTF dy dz, (5.17)

which indicates that the frequency can be found by simply evaluating the density at the

surface between the two wells and integrating over the region by which the two halves are

connected. From this expression, we see that the ω2
HD decreases as the area connecting the

wells decreases, and falls to zero when the barrier surpasses the chemical potential.

Using the parameters for our double well potential, the hydrodynamic approximation

for the frequency of population oscillation is shown in Fig. 5.1. As expected, the frequency

decreases as the density in the barrier region is reduced, and it becomes strictly zero when

the µTF ≤ Vb. This calculation is compared to the data in Fig. 5.9.
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Figure 5.1: Hydrodynamic approximation for population oscillation in the double well potential,
using a Thomas-Fermi density profile.

5.2.3 Two-mode model

In contrast to the low-barrier hydrodynamic regime of double well systems, the high-

barrier regime is characterised by a vanishing density in the barrier region. The large healing

length found here requires the inclusion of the quantum pressure term in the equations of

motion, and quantum transport and tunnelling become important to the system’s dynamics.

When the density in the barrier region is sufficiently low, the condensate wavefunction can

be described separately for each of the wells, giving rise to the two-mode model (TMM)

often used to describe separated superfluid and superconducting junctions of this type.

The basic assumption of the TMM is that there are two well-defined spatially-separated

wavefunctions with a perturbative tunnelling connection between them. In the time-independent

GPE (Eq. (5.2)), we need only consider the two lowest eigenstates – the symmetric and an-

tisymmetric ground states, which are nearly degenerate. The eigenvalues for the symmetric

and antisymmetric eigenstates ψs(r) and ψa(r) are

µs,a =

∫
ψ∗s,a(r)

(
− ~2

2m
∇2 + Vext(r) + gN |ψs,a(r)|2

)
ψs,a(r) dr, (5.18)

where we have chosen a normalization such that
∫
|ψs,a(r)|2 dr = 1, where N is the total

number of atoms.

Following the formalism of Ref. [163], we begin with the many-body Hamiltonian

Ĥ =

∫
drΨ̂

(
− ~2

2m
Ψ̂†∇2Ψ̂ + Ψ̂†V (r)Ψ̂ +

g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)
(5.19)
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where the condensate wavefunction is written as a field operator, and using the creation

operators for the two eigenstates described above, â†s,a, is rewritten as

Ψ̂ = ψsâ
†
s + ψaâ

†
a. (5.20)

With a change of basis from symmetric and antisymmetric states to states localized in the

right and left wells, our two modes are then described by the right and left operators

â†R = 1√
2

(
â†s + â†a

)
â†L = 1√

2

(
â†s − â†a

)
. (5.21)

Using this new basis, a two-mode Hamiltonian can be written [163]

ĤTMM,full =
EC

8
(â†RâR − â

†
LâL)2 − EJ

N
(â†RâL + â†LâR) +

δEC

4
(â†RâL + â†LâR)2 (5.22)

where

EC = 4g

∫
|ψs|2|ψa|2 dr (5.23a)

EJ =
N

2
(µa − µs)−

g

2

N(N + 1)

2

∫
|ψa|2|ψa|2 − |ψs|2|ψs|2 dr (5.23b)

δEC =
g

8

∫
|ψs|2|ψs|2 + |ψa|2|ψa|2 − 2|ψs|2|ψa|2 dr (5.23c)

The first term of the hamiltonian ĤTMM,full describes the charging energy of the system,

which depends on the interaction parameter, g, through the charging energy EC. The

second term in the hamiltonian describes the tunnelling in the system, with EJ quantifying

the energy splitting between the two lowest eigenstates, the mixing of which leads to the

dynamics between the wells. The last term in Eq. (5.22) is negligible3, and so we ignore it

from this point forth.

The dynamics of this Hamiltonian can be most easily determined in the Heisenberg

picture. We introduce two new operators

Ẑ ≡ â†RâR − â
†
LâL

N
; α̂ ≡ â†RâL + â†LâR

N
, (5.24)

rewrite the Hamiltonian

ĤTMM =
ECN

2

8
Ẑ2 − EJα̂, (5.25)

3At δ0 = 0, the ratio δEC/EC ≈ 10−3, and is smaller for larger δ0, where the validity of this TMM is
better justified, as shown in §5.4.
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and use the commutation relation for the operators [Ẑ, α̂] = 2(â†RâL − â
†
LâR)/N2 to work

out the time dependence of the operators. Using the general Heisenberg equation of motion

for a generic operate α̂, i~α̇ = [α̂, Ĥ], the equations of motion for the operators are

dẐ
dt

= − J
(
â†RâL − â

†
LâR

iN

)
(5.26a)

dα̂

dt
= U Ẑ

(
â†LâR − â

†
RâL

iN

)
, (5.26b)

where

U =
ECN

2~
and J =

2EJ

~N
. (5.27)

Replacing the quantum mechanical operators by complex numbers ĉ†R → ΨR, where

ΨR(L) =
√
NR(L)e

iθR(L) , (5.28)

NR(L) is the number of atoms, and θR(L) describes the macroscopic phase of the condensate

on the right (left) side of the double well, the new variables can be expressed as

Z =
NR −NL

NR +NL
; θ = θL − θR, (5.29)

the TMM Hamiltonian can be written as

HTMM =
N~
2

(
U

2
Z2 − J

√
1−Z2 cos θ

)
, (5.30)

and the equations of motion in terms of Z and φ are

dZ
dt

= − J
√

1−Z2 sinφ (5.31a)

dφ

dt
= J

Z√
1−Z2

cosφ+ UZ. (5.31b)

In this formalism, the variable Z describes the population difference between the two wells,

and φ describes the quantum mechanical phase difference between them. The evolution of

the populations depends sinusoidally on φ, which is characteristic of a Josephson junction.

The evolution of the phase depends primarily on the second term in the right-hand-side

of Eq. (5.31b), which describes the chemical potential difference between the wells. When

Z 6= 0, and the wells are well-separated such that J � U , the difference in chemical

potential ∆µ/~ = UZ between the wells provides the energy difference ∆E that drives the

evolution of φ.
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Figure 5.2: Population and phase dynamics in the TMM. Using J = 2π × 10 Hz and U =

2π × 1000 Hz, the evolution of the population imbalance Z and phase difference φ are calculated.

Blue curve shows Z(t = 0) = 0.25, undergoing MQST, while red curve shows Z(t = 0) = 0.05,

undergoing plasma oscillations. Both calculations use φ(t = 0) = 0. In this case, ZC = 0.199.

A close analogy between these equations of motion and those describing a rotating

pendulum provide a picture for the dynamics. The pendulum described by Eqs. (5.31) has

an angular momentum Z, rotation angle φ, and length proportional to
√

1−Z2. For the

pendulum, a small initial momentum will result in the pendulum’s swinging back and forth

about the bottom of its trajectory, the momentum and phase oscillating sinusoidally. This

motion is analogous to the stationary dc-Josephson effect, also known as plasma oscillations.

For large initial momenta, the pendulum will swing up above its maximum and continue

to swing in the same direction, its phase angle ever increasing. This motion corresponds

to the oscillatory ac-Josephson effects , which in the context of cold atoms is referred to as

macroscopic quantum self-trapping (MQST).
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Plasma oscillations

In the limit of small amplitude perturbations about Z = 0 and φ = 0, we can rewrite

Eq. (5.31) to second order in Z and φ as

dZ
dt

= − Jφ (5.32a)

dφ

dt
= (J + U)Z, (5.32b)

such that

d2Z
dt2

= − J (J + U)Z. (5.33)

These equations describe harmonic motion, where Z(t) ∝ exp(iωpt) and the plasma fre-

quency is

ωp =
√
J (J + U). (5.34)

The red lines in Fig. 5.2 show the dynamics in this limit.

In this regime, the population difference Z and phase φ oscillate sinusoidally about zero.

In the absence of interactions (U → 0), the plasma frequency ωp → J , where the tunnelling

rate simply corresponds to the energetic splitting between the symmetric and antisymmetric

state of our ansatz. The presence of interactions increases the rate of transport between the

two wells. The “plasma” nomenclature stems from the analogous effect in superconduct-

ing Josephson junctions, where energy is periodically transferred between the electric field

and the junction coupling energy [127], the type of collective longitudinal oscillation of an

electron gas that is called a plasmon [164].

Using the same small Z, φ approximation, the Hamiltonian can be written as

HTMM,harmonic =
~N
2

(
U + J

2
Z2 +

J

2
φ2
)

(5.35)

which is recognized as a harmonic oscillator hamiltonian, where the variables Z and φ are

canonically conjugate variables, with commutation relation (to the same order in Z and

φ) [Z, φ] = −2i/N . This small amplitude approximation to the Hamiltonian is relevant in

many situations where the double well system is adiabatically deformed from a single well,

maintaining the ground state wavefunction.

Macroscopic quantum self-trapping

Foregoing the small Z and φ approximation, the equations of motion Eqs. (5.31) lead to

ac-Josephson type effects and macroscopic quantum self-trapping (MQST). In connection to
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the earlier pendulum analogy, these effects parallel the pendulum swinging around its pivot

always in the same direction. For initial population imbalances Z or phases φ greater than

some critical value, the population difference becomes trapped, with more atoms always on

one side of the double well. Assuming zero initial phase difference between the wells, the

population difference between the wells becomes trapped when the phase difference winds

to φ(t) = π before Z changes sign, and the subsequent evolution of the phase drives the

population Z back towards its initial value. This critical value is

ZC =
2

U

√
J(U − J). (5.36)

The “ac” terminology in this regime is due to the regular sinusoidal phase evolution.

The population difference Z will oscillate about a non-zero value, and this establishes a

mean non-zero chemical potential difference between the wells, which dictates a nearly-

linear always-increasing value of the phase difference φ, which, modulo-2π, looks like phase-

winding. The blue lines in Fig. 5.2 show these effects.

5.3 Experimental implementation

Using the adiabatic rf double well potentials described in §2.3, we can explore the dynam-

ics of a 87Rb BEC. In this section, the relevant TMM parameters for this trap are calculated,

the characterization of the potential is discussed, and the experimental procedures specific

to double well experiments are explained.

As described in §2.3,, the double well potential arises as the result of rf coupling between

Zeeman levels of the 87Rb atoms in a magnetic chip trap. The height of the barrier and

the separation of the wells are varied with the frequency of the rf radiation, ωrf , which we

reference to the static “trap bottom” magnetic field BS(0) through the detuning parameter

δ0 = ωrf − |µBgFBS(0)/~|. As we increase the detuning, the barrier height and the well

separation both increase.

5.3.1 TMM parameters

Given a description of the trapping potential and total atom number, various character-

istic energies of the system can be calculated. In particular, we are interested in the value

of the barrier height Vb, the symmetric ground state chemical potential, µs, and the TMM

parameters U , J , and ωp.
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Figure 5.3: Parameters of our potential. (a) Barrier height (long dashes) and chemical potential
(short dashes) for N = 8000. (b) TMM parameters U/2π (short dashes), J/2π (long dashes) and
ωp/2π (solid line) for N = 8000 and the potential described in this section. The uniform beyond-
RWA shift (see §2.3.2) has been applied in all cases.

.

To find the barrier height, only information about the geometry of the system is needed.

The barrier height, Vb, is defined as the difference between the minimum value of the

potential along x along y = z = 0 and the value of the potential at x = y = z = 0.

The remaining values depend on the atom number and require a solution to the GPE. We

solve for the ground state wavefunctions, given the potential at some detuning δ0 and atom

number N . From these, the values of µ = µs, U , and J are calculated using Eqs. (5.18),

5.23, and 5.27.

In general, Fig. 5.3(a) shows that the chemical potential, µ, is roughly constant for the

range of detunings used, and the barrier height increases with δ0. The TMM parameters,

shown in Fig. 5.3(b), reveal that µ/h ∼ U/2π, as expected. The tunnelling parameters J

decreases roughly linearly until µ ≈ Vb, at which point the decrease is exponential. The

plasma frequency, ωp, falls between these two values, and because of the J dependence on

δ0, also falls off linearly, then exponentially, with δ0.

Tunnelling parameter approximation

The calculation of the tunnelling parameter, due to its rapid decay for large barriers, is

very sensitive to the form of the wavefunction used in the calculation. While we expect the

GPE to provide an accurate result for this parameter, we can also use an analytic approx-
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imation to confirm and interpret the results. For sufficiently high barriers, the tunnelling

parameter can be found using a WKB-like approximation of the BEC wavefunction [135].

Expressions for the wavefunction and corresponding probability current in the barrier re-

gion allow for calculation of the dynamics across the junction, which can be compared to

the GPE results.

To simplify the calculation, a one-dimensional approximation is used. A fit to the three-

dimensional potential along x can be expressed as

Vext,1D = Vb

(
1−

(
x

x0

)2
)2

(5.37)

where ±x0 are the positions of the well minima and Vb is the barrier height. Making a

TMM-type approximation, we assume a total wavefunction for the system ψ(x) = ψR(x) +

eiφψL(x), where φ = (µR − µL)t/~. The WKB approximation for the wavefunction centred

to the right of the barrier is [135]

ψR(x) =

(
~(x0 − xb)2

16πD3a

)1/2
A

2m [Vext,1D(x)− µ]1/4
×

exp

(
−
(

2m

~2

)1/2 ∫ x

xb

dx′2m
[
Vext,1D(x′)− µ

]1/2)
(5.38)

where xb is the half-width of the barrier (as shown in the inset of Fig. 5.4), A = 0.397 is found

by matching solutions inside and outside the potential, and D is the boundary thickness,

which sets the distance near the classical turning point over which a Thomas-Fermi wave-

function is not valid, which in this potential is D = [(8m/~2x0)((µVb(1−
√
µ/Vb))1/2]−1/3.

The wavefunction in the left well is found in a similar manner.

Assuming equal populations between the wells (NR = NL = N/2; µR = µL = µ) and

finding the probability current in the barrier, the population transport can be expressed as

dNR/ dt = −I0 sinφ where

I0 =
A2(x0 − xb)2

2π~ax0
Vb

xb
x0

√
µ

Vb
×

exp

−2x0

(
2mVb
~2

)1/2 ∫ xb/x0

0
dx′

(1− x′2)2 −
(

1−
(
xb
x0

)2
)2
1/2

 . (5.39)

By comparing this dynamical equation with Eq. (5.31a), we find that JWKB = 2I0/Ntot.

In Fig. 5.4, we show the calculations for the tunnelling parameter. The result from

the GPE (solid line, as calculated for Fig. 5.3) is shown along with the above calculation

(dash-dotted line). Though these solutions are not identical, the scaling is similar.
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Figure 5.4: WKB approximation of tunnelling parameter. The solid line is the full GPE result,
J/2π, shown in Fig. 5.3, the dash-dot line shows the tunnelling parameter JWKB/2π for a 1D
potential whose characteristics are those along the path in x between well centres, and the dashed
line is the tunnelling parameter for a 1D system with a potential as seen along the shell of resonance
in the x − y plane. Upper inset shows a contour plot of the full potential at y = 0, along with the
two paths indicated. The lower inset gives a schematic of the one-dimensional double well and the
parameters used in the calculation of JWKB.

To better understand the tunnelling parameter in our experiments, we consider the

details of our potential. As discussed in §2.3.1, there is a shell of resonance along which the

minimum of the potential would fall if polarization effects were absent. When accounting

for the polarization, there remains some “stretching” of the potential minima along this

path, and for barriers δ0 & 4 kHz (for our typical parameters), there is an inflection in the

shape of the potential along the x = y = 0 line, such that a pair of local minima emerge

at z 6= 0. The path through this point provides a lower barrier connecting the two wells

than the path of the shortest distance between them. The upper inset of Fig. 5.4 shows a

contour plot of the potential at y = 0 and the two paths considered: the dash-dotted line

is the original path, and the dashed line is the one just described.

We repeat the same calculation of the tunnelling parameter for this second path, using a

barrier height given by the height of the potential at this new minimum along the x = y = 0

line, with x0 being the length of the elliptical arc connecting the absolute minimum to this

new point. This tunnelling parameter is shown as the dash-dotted line in Fig. 5.4. The

barrier height increases less rapidly along this path than across the centre of the potential,
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and results in stronger tunnelling.

If the strongest tunnelling path is chosen, the one-dimensional approximation should

give an upper limit for the tunnelling parameter, since all other tunnelling pathways will

be weaker. The curved path in this analysis always gives a tunnelling parameter greater

than the one calculated with the full 3D GPE. Qualitatively, these results show roughly

the same trend and scaling of the tunnelling parameter with respect to detuning. These

results highlight the importance of using a full three-dimensional simulations to determine

the tunnelling characteristics. For the low-barrier work in this thesis, the longer path is

irrelevant, though the stronger connection along the shell may have implications for the

high barrier work discussed in §5.6.1.

5.3.2 Characterising the double-well

In addition to calculating the dependence of the system parameters on the experimentally

controlled detuning δ0, some trap characteristics can be measured directly. While we do

not have sufficient imaging resolution to measure the distance between the wells in situ, an

interference experiment can provide information about the spacing between wells.

We begin by considering a single BEC that has been split in two, such that the halves

remain phase coherent. With the centres of the split BECs separated by a distance d, the

condensates are released from their traps and allowed to fall under the influence of gravity.

Assuming the traps are harmonic, the condensate wavefunctions are Gaussian. For initial

wavefunctions

ψR(L) =
eiφR(L)

(πR2
0)3/4

exp

[
−(r± d/2)2

2R2
0

]
(5.40)

where R0 is the Gaussian width of the wavepacket and φR(L) is the initial phase of the right

(left) condensate, the time evolution, according to the Schrödinger equation, gives [153]

ψR(L)(t) =
ei(φR(L)+φ(t))

(πR2
t )

3/4
exp

[
−(r± d/2)2(1− i~t/mR2

0)

2R2
t

]
(5.41)

where eiφ(t) = [R0 − i~t/mR0]
3/2, and the width after some time is

R2
t = R2

0 +

(
~t
mR0

)2

. (5.42)

In considering the full density distribution ρ(r, t) = |ψ(r, t)|2 = |√NRψR(r, t)+
√
NLψL(r, t)|2,

there will be an interference term

2
√
NRNLRe [ψR(r, t)ψ∗L(r, t)] ∼ A cos

(
r · d
R2

0R
2
t

ht

m
− φR + φL

)
(5.43)
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where A collects all of the time-independent terms. In our geometry, d = dx̂, so the fringes

we observe should be perpendicular to the x-direction. The spacing between fringes, ∆x, is

the distance between adjacent maxima in the density distribution, such that

∆x = 2π
mR2

tR
2
0

~td
≈ 2π~t

md
(5.44)

where the long-time-of-flight approximation has been made in the last step, where Rt ≈
~t/mR0. The density distribution is integrated along y after some time of flight t, from

which ∆x can be measured (see §5.3.3). Inverting Eq. (5.44) for d gives the separation

between the wells.

The assumption of the absence of interactions is not valid in our system of 87Rb atoms,

and the wavefunctions are not Gaussian. Using a similar derivation, the initial wavefunctions

and their time evolution are calculated from the GPE. In these calculations, the momentum

distribution at early times gives the density distribution in long time of flight.

Figure 5.5 shows the fringe and well spacing for the double well potential as a function of

rf detuning, δ0. The inset gives an example of an averaged interference pattern at δ0/2π =

14 kHz. We see good agreement between the calculation and the measurement in shape,

though a shift of the theory line δ0 → δ0 +2.1 kHz is required to attain absolute agreement.

The necessity of this shift is likely due to the systematic uncertainties in measuring BS(0),

which are on the order of ±1 kHz.

5.3.3 Initiating and measuring dynamics

To study a BEC in a double well trap, we begin by preparing a 87Rb condensate in the

usual way (§2.1.1). We modify the final steps of the cooling to eliminate any unwanted

collective excitations by creating the BEC in a partially split trap. Dynamics are initiated

by preparing an out-of-equilibrium distribution and allowing its evolution. The population

distribution between the wells is measured using standard absorption imaging.

Preparing a BEC for double-well experiments

The general sequence for the preparation of a BEC in §2.1.1 is slightly modified for the

following double-well experiments. In the “Evaporative cooling” step, we proceed as usual

until the atoms are just above degeneracy. At this point in time, we introduce the adiabatic

rf dressing to gradually deform the potential and complete the forced rf evaporation in a

dressed trap.
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Figure 5.5: Interference pattern mea-
surements for determination of well spac-
ing. Top: measured fringe spacing as a
function of rf detuning, δ0. Inset: example
of fringe measurement at δ0/2π = 14 kHz,
after t = 20.3 ms time-of-flght, averaged
over 5 images. Bottom: Calculated well-
spacing from fringe spacing measurement
(points), d, from Eq. (5.44), with GPE cal-
culation prediction (dashed line). A shift
in δ0 of 2.1 kHz is applied to the theoreti-
cal data, as discussed in the text.

We choose trap parameters for the evaporative cooling such that the trap is flattened

at the centre, with zero barrier. With a typical static trap bottom ωTB = 2π× 787 kHz, we

linearly ramp on the rf dressing power Brf from 0 to 240 mG at a frequency δ0 = δprep =

2π × (−22 kHz) in 100 ms. Simultaneously, we raise the frequency of the rf evaporation

knife, as the effective potential is now additionally separated from the adjacent mF state

by the Rabi frequency Ωrf = m′FgFµBBrf/~. The evaporative cooling is finished in this trap

with a single 100 ms linear ramp of the rf knife to a final value that produces a quasi-pure

BEC with the desired atom number, N .

Biasing and initiating dynamics

We bias the system to create out-of-equilibrium population distributions by introducing

an optical force to the system, as described in §2.2. By weakly focussing a 1064 nm “bias

beam,” (which is a misaligned and expanded ODT1) with beam waist w ≈ 65µm and power

Pbias propagating in the the y-direction at a point in the x-z plane off-centre from the

barrier, we can provide a roughly linear optical potential across the junction. When we

choose to prepare a biased sample, we ramp on the power of this beam in 100 ms before

the BEC is created (see Fig. 5.6(a)).
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Figure 5.6: Biasing the double well. (a) The BEC is prepared in a biased double well, where the
tilt potential originates from an ODT focussed off-centre from the double well (in this case, at large
x.) The focus is much larger than the size of the system, such that the potential is roughly linear
across the wells. (b) The bias potential is removed to initiate the dynamics. By suddenly removing
it, the systems is left in an out-of-equilibrium distribution, with a higher chemical potential (and
more atoms) on one side than the other.

To split the clouds, we leave the bias beam on and increase ωrf (and thus δ0) to the

desired value δ0 = δhold in 20 ms. We have checked that this ramp is adiabatic – slow

enough so as not to change the final results. The bias beam power, Pbias, is ramped off in

0.5 ms, which leaves a population imbalance in a symmetric potential (Fig. 5.6(b)). We

allow for dynamical evolution of the system for a time t, after which we freeze dynamics by

rapidly increasing both Brf and ωrf to separate the clouds and raise the barrier. The steps

listed in this paragraph are illustrated in Fig. 5.7.

Measuring double-well populations

To determine the changing population imbalance, we use absorption imaging to count

the numbers of atoms in the right and left wells, NR and NL, respectively. The dynamics

are frozen after thold by raising the barrier and separating the well minima diabatically via

rapid changes in both rf frequency and amplitude. The initial stage of this ramp eliminates

the tunnelling between wells, leaving two completely separated samples. Because only the

relative atom number between these samples is important, the heating associated with

the rapid changes in the potential after separation is inconsequential, so long as the atom

number does not change in the process. The clouds are then separated to ∼ 70 µm, at

which point the imaging resolution is more than sufficient to image the left and right clouds

independently.

All magnetic and rf traps are turned off suddenly. After 1.3 ms time-of-flight (TOF)
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Figure 5.7: Timing sequence for double-well dynamics. Top: power in bias beam, where P1 is
adjusted to create the desired imbalance at t = 0. Bottom: detuning, δ0, of rf frequency. BEC is
prepared with δprep < 0, then ramped up adiabatically in 20 ms to the desired value δhold. At the
completion of thold, δ0 is rapidly increased.

.

(for all magnetic fields to off completely), an absorption image is recorded. The absorption

probe is directed along the y-axis so that the image is taken along the long axes of the

clouds and two round clouds are seen. A detailed discussion of the imaging system and

techniques can be found in Ref. [15].

Phase analysis

As previously discussed, the phase difference between opposite sides of the double well

is determined from the interference of the matter waves after release from the trap and

long time-of-flight. Reference [15] (§7.1.1) discusses in depth the fitting procedure used to

extract the phase of the fringe pattern. In short, the two-dimensional absorption images of

momentum space distributions are summed along a direction perpendicular to the line con-

necting the centres of the original two clouds. A Gaussian envelope encloses the sinusoidal

fringe pattern, and we fit to the function

f(x) = exp

(
−(x− x0)2

2σ2x

)[
1 + V cos

(
2π(x− x0)

∆x
+ φfr

)]
, (5.45)

where x is the distance along the direction connecting the cloud centres, σx and x0 are the

size and centre of the Gaussian envelope, V is the visibility of the fringes, ∆x is the fringe

spacing, and φfr is the phase we wish to measure.
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To find the average of a large number of measurements of phase, as is needed in the

repeated measurements made in the following experiments, we must take care in describing

the phase because of its being measured modulo 2π. To find the average phase angle,

phasors are constructed F(φfr) = exp(iφfr) and averaged in the vector sense, to give a mean

phasor length, R = 1/N × |∑nFn(φfr)|. The angle of this averaged phasor then extracted,

φfr = ∠(
∑

nFn(φfr)). For a well-defined phase, the phasors will add in the same direction

and R will fall close to unity. For random phases, the phasors will add destructively and R
will tend to zero.

5.4 Hydrodynamic to Josephson transition:

small imbalance population dynamics

The study of transport across a barrier reveals important properties about the many-body

physics governing the system. When the healing length in a superfluid is small, the local

velocity and density are well-defined and the flow is hydrodynamic. The introduction of a

barrier in this superfluid creates a region of low density and large healing length, such that

the transport through the this region will depend on long-range properties of the system.

When the density in the barrier region classically vanishes, phenomena like tunnelling are

significant and Josephson effects emerge.

Using the tunability of the barrier height, we study the system’s dynamical response

to small population imbalances as a function of the barrier height, and characterize the

transport as a function of the coupling between the wells. GPE calculations are compared

with these results, and facilitate an interpretation of the transport. In the low-barrier strong-

coupling regime, a hydrodynamic description of the system is valid, while when the barrier is

higher than the chemical potential, a TMM is sufficient and Josephson behaviours emerge.

In this work, we see a gradual crossover between these behaviours through intermediate

barrier heights.

5.4.1 Population oscillation measurements

We use the population difference between the wells as a function of time, Z(t), to char-

acterize the dynamics of the system.

The system is prepared as described in §5.3.3 with initial imbalances Z(0) = 0.05 to
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0.10, and allowed to evolve as described in §5.3.3. The population distribution Z(t) is

measured after a hold time t. A new sample is prepared for each measurement, with 4 to 6

measurements made per hold time. In general, we sample dynamics for hold times between

15 and 30 ms with sampling rates ranging between 100 and 400 Hz.

An example time series is shown in Fig. 5.8(a). We see a clear indication of the popu-

lation oscillating back and forth between the wells, in the presence of a decay bringing the

population towards Z = 0 over a longer time scale. This decay will ignored for the present

analyses and further discussed in §5.6. A close examination of the data reveals that the

behaviour is more than a simple damped sinusoid: a Fourier transform (FT) of these data

reveal two distinct frequencies rising above the noise floor (Fig. 5.8(b)).

We repeat these measurements at many values of δ0. In the data presented here, the

total atom number is NR +NL = 6800± 400 ± 1700 where the first error bar is statistical

(variations in NR + NL run-to-run) and the second systematic (absolute atom number

calibration uncertainty, see Appendix C). Using our description of the potential and the

atom number, we use the Thomas-Fermi approximation to determine the chemical potential

µ at each δ0, and Eq. (2.13) (in addition to the corrections as described in §2.3.2) to

determine Vb.

Frequency analysis

To prepare the data for Fourier analysis, we eliminate any small offset from the asymptotic

value of Z by subtracting from each point the mean value of Z(t) across the entire time

series, where the mean might be non-zero due to a small equilibrium imbalance in the

system. To smooth the transformed data, the time series is padded with zeros to a total of

1024 points. When identifying peaks in Fourier space, we ignore points below the frequency

given by 1/ttot, where ttot is the longest hold time, which would be artifacts of the windowing

introduced by the finite period of measurement. The two peaks with the greatest heights

are identified and used as the data points in Fig. 5.9. The colour map behind these data is

an interpolation between the Fourier spectra (which run along vertical lines) at each data

point.

The uncertainty in the frequency measurement is found by simulating data with the

same level of noise as the original time series. The quantity of noise is determined by fitting

the time series to a 2-frequency decaying exponential function

Z(t) = e−t/τ [a1 sin(2πν1(t− t01)) + a2 sin(2πν2(t− t02))] , (5.46)
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Figure 5.8: (a) Population imbalance, z, vs. time for δ0 = 2π× 0.1 kHz, Ntot = 5900. The dashed
line is a decaying two-frequency sinusoidal fit to the data, using fixed frequencies from (b). Each
point represents 6 BECs, error bars statistical. (b) Fourier transform amplitude spectrum of data
showing two distinct peaks at 268± 6 and 151± 13 Hz rising above the noise floor (grey).

.

where τ is a time constant for decay, a1(2) is the amplitude of the first (second) frequency

component, and ν1(2) is the first (second) frequency component, and t01(02) is the constant

accounting for the phase shift of the first (second) component. The standard deviation

of the residuals from this fit gives the noise level. We simulate 100 sets of data with the

same parameters as those given by the fit, with the same total time and density of points,

but with different randomized instances of Gaussian noise whose standard deviation is the

same as that measured. Taking the frequency measurements from each of these trials, we

determine the smallest range inside of which 68% of the measurements lie. This confidence

interval is used as the uncertainty in the frequency measurement.

The noise floor in the Fourier transform is established in a similar fashion. Using the

result for the noise level from the time series, we simulate Gaussian noise and take the

Fourier transform of this. The noise floor shown in Fig. 5.8(b) is the mean plus one standard

deviation of the maximum peak amplitudes found in 100 such simulations.

Figure 5.9 shows the population oscillation frequencies as a function of Vb/µ and δ0. For

small values of barrier height, two frequency components are evident in the data, and both

are plotted. For higher barriers, only one frequency component can reliably be extracted

from the Fourier spectrum, and this alone is plotted.
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Figure 5.9: Frequencies of small-imbalance double well population dynamics vs. rf detuning (mea-
sured) and barrier height (calculated). Experimental points (white circles) represent the two highest
Fourier components at each detuning; error bars are statistical. Dashed lines represent calculated
(3D GPE) frequencies for N = 8000 and Z(0) = 0.075. The solid line indicates the plasma oscillation
frequency predicted by the TMM. The white dashed line is the hydrodynamic frequency, ωHD/2π,
as calculated and discussed in §5.2.2. The colour map is map of the spectral weight of each of the
measurements shown, interpolated numerically between points, as a guide to the eye of the strength
of each component. White bars at Vb/µ ∼ 0.1 indicate the bounds of the GPE simulation corre-
sponding to the systematic plus statistical uncertainty in atom number. The statistical uncertainty
in δ0 is ±(2π × 0.5) kHz (not shown).

Amplitude analysis

In addition to information about the frequencies of population oscillation, data such as

that in Fig. 5.8 yields information about the relative amplitudes of the modes excited by

the initial population imbalance. From the fits to the data (Eq. (5.46)), the amplitudes the

two analyzed modes are given by a1 and a2. The fractional dominance of the lower mode

can be quantified as R1 = a1/(a1 + a2). The uncertainties in these values are determined

in a similar way to those in the frequencies; we use the noise level in the residuals of the

fit, simulate and fit 100 sets of data with similar parameters, and use the 68% confidence

interval of these results to represent our uncertainty.
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Figure 5.10: Fraction of low-frequency mode in population dynamics. Dashed line shows the GPE
simulation for 8000 atoms with initial imbalance Z(0) = 0.075. The grey shaded area represents the
variation of the GPE calculations over the range of Z(0) = 0.05 to 0.10. The vertical error bars are
statistical; the statistical uncertainty in δ0 is 2π × 0.5 kHz (not shown). The GPE calculation gives
R1 = 1 when Vb/µ ' 1.1.

This fraction is plotted as a function of δ0 and Vb/µ in Fig. 5.10 for barrier heights at

which two frequencies could be reliably measured.

5.4.2 GPE calculations

Given the broad applicability of the GPE to BEC systems, we sought to use the fully

time-dependent three-dimensional GPE to simulate the dynamics we observe in our tunable

double well. We compare our experimental results to these simulations to determine the

origin and explain the changing amplitude of the frequency components in the population

oscillations.

The calculations presented here use Eq. (5.1) to determine the condensate wavefunc-

tion in the RWA potential (Eq. (2.13)). Corrections to account for beyond-RWA effects

accounted for, as discussed in §2.3.2, with a shift of the detuning, δ0. All GPE calculations

in this work were performed with N = 8000, which is the atom number for which the best

agreement was found in the results shown in Fig. 5.10. The initial imbalance for the calcu-

lations is Z(0) = 0.075, which is turned off suddenly. As in the experiment, we extract a

value of Z(t), counting the number of atoms on each side of the well after a variable hold

time, t. Unlike in the experiments, the full density distribution is available and can be

studied to determine the nature of the motion in all dimensions.

Figure 5.11 shows one time series simulation, with experimental data superimposed. The
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Figure 5.11: Direct comparison of data to the GPE calculation, for δ0 = 2π × 0 kHz. Blue line
represents the GPE calculation result, black points are the experimental data from Fig. 5.8(a). The
two panels show the same data for (a) 24 ms and (b) 64 ms. Calculation data were shifted back in
time by 0.5 ms to account for the experimental ramp-down time of the bias field.

dynamics which emerge from the GPE calculation are similar to those in the experiment in

that two frequency components are evident, though the experimentally observed decay is

absent. We extract frequency and amplitude information from the GPE calculations using

the same FT and fit methods as are used on the experimental data.

Healing length calculation

From the density distributions found in the GPE calculations, the trap-centre healing

length can be found by calculating ξ(r = 0) (Eq. (5.3)). Assigning a characteristic length

scale of the system, d, to be the distance from the minimum of the well to the middle of the

barrier, the ratio of healing length to system size can be determined. As noted in §5.2.2,

the size of healing length relative to the system size dictates whether the neglect of the

quantum pressure term is valid. Figure 5.12 shows that the trap-centre healing length is

smaller than the system size until the barrier surpasses the chemical potential (Vb > µ),

indicating a hydrodynamic description of the system is not longer valid in this high barrier

regime.
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Figure 5.12: Healing length as a function of double-well coupling. The characteristic system size,
d, is the distance between the well minimum and the barrier maximum. Courtesy of F. Piazza.

5.4.3 Interpretations of small amplitude transport

Frequency characteristics

The experimental frequency data are compared to the GPE simulations (solid lines) in

Fig. 5.9, with very good agreement in the shape and slope of the frequency vs. detuning

characteristic. As in the experimental data, multiple frequency components are evident

in the simulation for low barriers. To compensate for a systematic unknown in BS(0),

we perform a single-parameter fit of the data to the GPE results and find that a shift of

δTB
shift = 2π × (5.1± 0.1) kHz aligns the data to the theory (Fig. 5.9).

Also plotted in Fig. 5.9 is the prediction of the TMM for the system parameters. Though

it drastically diverges from the data in the low-barrier limit, it lies close to both the exper-

imental points and the GPE simulation in the high barrier limit, indicating that this lower

mode transforms into the plasma mode as the barrier is raised.

In the opposite limit, the healing length is much smaller than the characteristic system

size and hydrodynamics dominate the system behaviour. Rich dynamics are observed in

this regime, where Vb < µ. The appearance of more than one population oscillation mode

arises as a consequence of trap anharmonicity, interactions, and trap anisotropy. If our trap

were harmonic, a linear bias would excite only a single dipole mode. The barrier breaks

harmonicity along the splitting direction and allows the linear perturbation (` = 1,m = 0,

where x is the azimuthal axis) to excite multiple modes [165]. These x excitations are

coupled to transverse (y,z) motion through the nonlinear atom-atom interaction term in

the GPE.
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In axial symmetry, only the m = 0 mode would result in population differences between

the wells. The anisotropy of the trap in the y-z plane leads to the mixing of this mode

with higher order modes which contain transverse (y,z) character, and the resulting mixed

modes, with some m = 0 character, both result in population transfer.

The leading character of the two modes we measure can be identified through an analysis

of the time-dependent density distributions. If our trap were smoothly deformed to a

spherical harmonic potential, the two lowest modes connect to odd-parity modes [166, 167]:

the lower mode connects to the lowest m = 0 mode (coming from the ` = 1 mode at

spherical symmetry), while the higher mode originates from the lowest m = 2 mode (` = 3

at spherical symmetry). This was checked numerically with the GPE by deforming the trap

into a fully harmonic axially symmetric trap, and following the mode frequencies throughout

this process.

Away from the hydrodynamic regime, the predicted frequency of the plasma mode from

the TMM is also plotted in Fig. 5.9. While the dynamics we observe at weak couplings

fall outside of the TMM, the lower frequency mode approaches the TMM value for barriers

Vb & 1.1µ. In keeping with the behaviour of the healing length, the TMM, which relies

on quantum transport, is valid only in the regime where the quantum pressure term in the

GPE cannot be neglected.

Amplitude characteristics

The amplitudes of the population oscillations from the simulations are compared with

experimental measurements in Fig. 5.10. As the barrier height increases, the lower frequency

dipole-like mode increasingly dominates. The fractional contribution of this mode nears

unity as the frequency of this mode approaches that predicted by the TMM, indicating that

this lower mode attains the character of the Josephson plasma mode as the barrier is raised.

When the barrier is raised from zero, the higher mode is at first more easily excited

due to an increased anharmonicity along x as the trap bottom becomes flatter. By further

increasing the barrier, the higher frequency mode disappears from the population oscillation

spectrum due to the vanishing excitation of transverse modes. As the wavefunctions in each

individual well are increasingly localized to the effectively harmonic minima, the linear bias

no longer excites intra-well transverse motion. Furthermore, in the linear perturbation

regime, the inter-well Josephson plasma oscillation, like all Bogoliubov modes, cannot itself

trigger any other collective mode.
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5.4.4 Implications of small-amplitude population oscillation results

In the experiments described in this section, we describe the first measurements exploring

the transition from hydrodynamic to Josephson tunnelling regimes in a double well system.

We find rich dynamics in the strongly-coupled low-barrier hydrodynamic regime, where the

calculated healing length in the barrier region is small. These dynamics transition towards

a single low-frequency mode of population transfer between the wells, consistent with a

dc-Josephson-type effect and a healing length in the barrier region larger than the system

size.

Experiments using an adiabatic deformation of a trap from a single to a double well

cross through this transition on their way to the creation of various interesting quantum

states [121, 144, 149–151]. An understanding of the dynamics throughout this regime is

important if the criteria for adiabaticity are to be maintained throughout. In the high-

barrier regime, this criterion can be calculated with the TMM [168], but as we observe, the

lowest frequency mode falls below the TMM prediction for barrier heights just less than the

chemical potential.

These results highlight the importance of a quantitative understanding of the double

well system. Though we observe population oscillations that, at first glance, resemble the

plasma oscillations of a Josephson junction, the system may be in the hydrodynamic limit

and the TMM will not apply. If the physics in question rely on a tunnelling connection,

as in experiments that purport squeezed states, this distinction is important. However, the

observation that “Josephson-like” behaviour exists outside the TMM, as it does in the weak-

link condensed matter systems, demonstrates the generality of these phenomena and the

continuity of the many-body behaviour throughout the crossover into a tunnelling regime.

5.5 Population dynamics of large imbalances

As discussed in §5.2.3, a BEC in a double well will become self-trapped for sufficiently

large initial population imbalances. The phase difference between the wells, driven by the

large chemical potential difference between them, winds quickly. The direction of popula-

tion transport between the wells depends on the value of the phase, and its speed by the

tunnelling parameter. If the population transfer is slow enough, it does not cross the Z = 0

point before the change in phase implores the atoms to repopulate the side of the potential
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with more atoms in it. In the TMM, the dynamics cross over into this MQST regime when

the tunnelling parameter J is small, restricting the flow of population across the wells, and

the chemical potential, µ, is large, driving the rapid phase winding. We find this behaviour

emerging for barrier heights slightly below the chemical potential, where the TMM was

unable to predict the plasma oscillation frequency in §5.4 and cannot be an accurate model

for the system.

5.5.1 Onset of MQST

Given a set of trap parameters, and thus a value of J , the onset of MQST can be measured

by observing the initial at which the population difference Z no longer crosses through

Z = 0. Systems with large initial imbalances are prepared by increasing the power of

the biasing beam Pbias, to values that give imbalances up to Z(t = 0) = 0.4, using the

techniques described in §5.3.3 and §5.3.3. A series of Z(t) values is obtained for many

hold times at several values of the initial imbalance, over times much longer than the

characteristic dynamics of the system and on the order of typical decay times. For each

initial imbalance, all measurements of Z(t) are averaged. If the system remains in the

regime of plasma oscillations, the averaged imbalance 〈Z〉 is expected to be zero, while for

a system undergoing MQST, 〈Z〉 6= 0

Figure 5.13(a) shows that the average imbalance 〈Z〉 remains near zero for small initial

imbalances, and becomes non-zero above some larger initial imbalance. We are able to

determine a point of onset of MQST with a simple two-piece linear fit, where the first fit

has zero-slope, the second slope is free, and the meeting of these lines indicates the transition

to non-zero population imbalances for long hold times and the onset of MQST.

These measurements are somewhat obscured by the presence of decay in this system.

While both a TMM and the GPE predict the self-trapping will exist forever, we find that the

population imbalance exhibits some decay and tends towards Z(0) = 0 after a characteristic

time that depends on the barrier height (see §5.6). For this reason, the slope of the second

piece of the line is not unity, as might be expected. In addition, the decay inherent to this

system erases the jump in 〈Z〉 that would be expected at Z(0) = ZC. This effect of the

decay can be simulated by adding to the equation of motion Eq. (5.31a) an Ohmic damping

term (§5.6.1, [171]), and is shown in Fig. 5.13(b). The effect of the decay on both the slope

and the absence of the jump are confirmed. Despite the obfuscating properties of the decay,

we are able to conclude that there is a qualitative change in dynamics as a function of

initial imbalance in these measurements which corresponds to the observation of the onset
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Figure 5.13: Onset of MQST. (a) Average value of imbalance vs. initial imbalance, Vb/µ = 0.75
(δ = 2π× 3.1 kHz, N = 5500). As initial imbalance is increased, the average value of Z crosses over
from its equilibrium value near 0.03 to some larger value. The relationship is not one-to-one due
to decay of the self-trapped state for low-barriers. The solid line is a guide to the eye, showing the
transition to the self-trapped state beginning at Z(t = 0) = 0.18. (b) Calculated average imbalance
vs. initial imbalance in the presence of decay. Parameters used are N = 5000, U = 2π × 750 Hz,
J = 2π× 0.88 Hz, with a decay time τ ≈ 75 ms. (c) Calculated ZC vs. barrier height (black circles,
courtesy of F. Piazza) and value extracted from data in (a) (diamond).

of self-trapping.

GPE calculations similar to those done for the small-amplitude oscillations, show that

self-trapping emerges within the GPE, even in the strong-coupling regime. Fig. 5.13(c)

shows the results of these calculations, as well as the result from Fig. 5.13(a). Clearly, the

calculation does not adequately describe these dynamics, and it is likely that the decay of

the population imbalance contributes to the discrepancy. However, it should be noted that

the example we show here demonstrates that MQST occurs for µ > Vb, where there remains
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a significant coupling between the wells.

5.5.2 MQST population oscillations

The population dynamics of MQST can be directly observed by measuring the time de-

pendence of Z(t). Using the same preparation method as described in §5.5.1, the population

dynamics are measured with a finer time resolution. Figure 5.14 shows an oscillating popu-

lation imbalance about a non-zero and decaying value of Z. In the TMM, these oscillations

are attributed to the sinusoidal current-phase relationship characteristic of the Josephson

junction (Eq. (5.31b)), and indicate that the phase difference across the wells is well-defined

and drives the population across the junction as it evolves. In this case, where Vb/µ = 0.8

and the TMM is not expected to apply, there exist indications of a phase-driven population

in the oscillatory behaviour of Z(t).

These observations of Josephson-like behaviour in the intermediate coupling regime,

where the results of §5.4 would indicate that the TMM is not a valid description of the

system, indicate that “Josephson”-like effects exist in regimes where there remains a di-

rect connection between wells. As demonstrated by the calculation of the healing length

(Fig. 5.12), the system’s properties are increasingly non-local as the barrier is raised, and

extend across the barrier region even before the physical connection between the wells is clas-

sically broken when µ = Vb. The Josephson behaviour is associated with the non-locality of

the relevant quantities describing the system – as the local hydrodynamic description fails,

the long-range parameters like phase and number difference across the wells become good

parameters of the system. Like the condensed matter weak-link junctions described in §5.1,

Josephson effects emerge when the long-range properties are important, even if tunnelling

transport is not yet the only connection between the regions.

5.6 Decay of population imbalance

Throughout our exploration of the tunable double well, we find an unavoidable decay in

the population imbalance, as displayed in both Figs. 5.8(a) and 5.14. The origin of this

decay remains an open question. In attempts to understand its origin, we have measured

the characteristic times for the population imbalance to reach zero as a function of various

system parameters, including barrier height and temperature.
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Figure 5.14: MQST population oscillations for Vb/µ = 0.8, N = 8300 ± 200. Dashed line is
intended as a guide to the eye; using a sinusoidal + linear fit, we find the frequency of population
oscillations is ν = 266± 4 Hz.

5.6.1 Theoretical treatment of decay

The phenomenon of population decay, whether of the plasma oscillations or MQST, is

not often treated in theoretical descriptions of BEC double-well dynamics. Though the

zero-temperature GPE model described in §5.4.2 very well describes the frequencies and

amplitudes of the dynamics we observe, it does not display any indication of the decay

of the population oscillation signal over its 64 ms time span, as seen in Fig. 5.11. The

absence of decay in the GPE calculations eliminates the possibility that this is due to some

dephasing from higher-frequency modes that might have been excited alongside those we

measured.

One theoretical treatment considering decay in the double well system attributes it

to finite temperature. Zapata, Leggett and Sols [169] consider the transfer of the non-

condensed atoms across the barrier in both high and low barrier configurations. They find

within their assumptions that the dissipation is “Ohmic,” that is, it the current dZ/dt ∝
−GZ. They find that in both the high-barrier limit that G ∼ T 2 exp (−Vb/kBT ) while in

the low-barrier limit G ∼ T 2. Other theoretical treatments [170, 171], in reference to [169]

add a “phenomenological” decay term with an Ohmic dependence.
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Figure 5.15: Decay of small amplitude population oscillations. (a) Decay time, τ , for small
imbalance population oscillation data. (b) Reduced decay time τ/T1, or small imbalance population
oscillation data, where we normalize by the period of the low-frequency oscillation. For both (a)
and (b), two points fall above the top edge of this plot, likely the result of fitting difficulties.

5.6.2 Observations of decay

Decay of plasma oscillations

The analysis in §5.4 ignored the presence of decay in the system. To quantify this damping

for the small-amplitude perturbations, we use the decaying two-frequency fit (Eq. (5.46))

to determine the characteristic time for decay. Figure 5.15(a) shows the value of τ as a

function of the detuning δ0, and Fig. 5.15(b) shows the same data normalized by the period

of the lower frequency oscillation, T1 = 1/ν1. We find that the decay time is roughly two

oscillation periods, for the data discussed in §5.4. The error bars obtained for this data are

quite large, due to the difficulty of extracting a characteristic decay time from a time series

whose total length is approximately equal to the decay time.

We can evaluate the effect that this decay will have on the frequency of population

oscillation by assuming the system is a simple harmonic oscillator. In the presence of decay,

the frequency of motion ωd = 2πν (Eq. (5.46)) is modified as ωd =
√
ω2
0 − γ2, where ω0 is

the natural frequency of the system, and γ = 1/τ is the decay constant. To estimate this

frequency shift in our system, we use γ = 1/2T1 = ωdecay/4π. In this case, ωd ≈ 0.997ω0,

which is much smaller than the uncertainties in the measurement.
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Decay of MQST

The decay of Z is also evident in experiments with larger initial population imbalances,

where the system undergoes MQST. In this case, we measure the decay by fitting the data

Z(t) to a simple exponential decay and extracting the 1/e decay time, τ . Figure 5.16(a)

displays two such curves for different values of barrier height. The rate of decay is slower

for the higher barrier, as might be expected. To further quantify this, we calculate the

tunnelling parameter J (§5.2.3) for each set of experimental parameters, and plot the rate

of decay, 1/τ as a function of J . There is a weak power-law dependence, which we extract

by fitting the data to a linear function on a log-log plot (Fig. 5.16(b)). We find that the

decay rate depends on the tunnelling parameter as 1/τ ∝ J0.22.

Temperature dependence

As a means to better understand the origin of this population decay, we also study the

decay rate as a function of the system temperature. To quantify temperature, the conden-

sate fraction is used as a measure. The experiments are performed by alternately measuring

the characteristic time for decay, τ (as in Fig. 5.16(a)) and condensate fraction, NC/N , for

identical preparations. The condensate fraction measurements are performed immediately

before the splitting process (after the “preparation” step in Fig. 5.7), by releasing the atoms

from the trap and recording a momentum distribution along the y axis after 13 ms time

of flight (see Appendix C for details of the fitting procedure that determines condensate

fraction).

Because the change in temperature is effected through evaporation, the number, N , is

not constant. To account for the change in tunnelling parameter J caused by the change in

number, we normalize the decay rate to the tunnelling rate, through the power-law fit found

at constant temperature in Fig. 5.16(b). Using the condensate fraction as the parameter

indicating temperature, we plot the normalized decay rate to find no significant dependence

of the decay rate on temperature.

The non-dependence of the decay time upon temperature is surprising, and may indi-

cate that the origin of the decay is technical. A more expansive study of the decay, over

broader ranges of tunnelling parameters and temperatures, is needed to better understand

the phenomenon. In addition, the finite-temperature modelling of this system may lend

insight into the source of this dissipation, using, for example, “ZNG” [172] techniques to

simulate the dynamics of the system.
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Figure 5.16: Decay of large amplitude population oscillations. (a) With large initial imbalances,

decay curves for δ̃0 = 2π × 12 kHz (squares) and δ̃0 = 2π × 27 kHz (circles) with 1/e decay times
τ = 110 and 720 ms, respectively. (b) Rate of decay (1/τ) vs. tunnelling parameter, J at constant
temperature and N = 9100 ± 700. The dashed line is a fit giving a power law relationship that
gives the relationship 1/τ ∝ J0.215±0.008. The tunnelling rate is varied by changing the height of
the barrier, with detunings ranging from δ0 ≈ 5 to 13 kHz. (c) We measure the decay rate as a
function of condensate fraction by varying the condensed fraction and number. The decay rate is
normalized to the tunnelling parameter for each set of experimental conditions using the power-law
relationship found in (b). Given a value of J for each experimental point, the normalized decay rate
is the measured rate divided by the rate given by the fit in (b) at this value of J .

5.7 Phase signatures

While the experimental work discussed to this point interrogates the population differ-

ences between wells, the phase difference between the condensates in each well can also be

measured. As discussed in §5.3.2, if the clouds from the two wells are allowed to overlap

after some time of flight, interference fringes will be visible along the direction connect-
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ing the centres of the clouds. The phase of these fringes, with respect to the envelope, is

representative of the quantum mechanical phase difference between the clouds. Using this

information, we have an additional tool for probing the understanding of the double-well

system.

A direct comparison of these data to that presented in previous sections is hampered by

a change in the apparatus between the taking of the data in this section to those in previous

sections. The phase data presented here were collected before a “proper” technique was

developed for compensating gravitational forces, and so there existed in these double well

traps the “banana” deformation that changes the tunnelling pathways ([15], §2.3.3). As

a result, though every attempt has been made to match the calibrations from this older

configuration with the newer results of previous sections, the correspondence between values

of δ0 between sections is not direct. To emphasize this difference to the reader, the detuning

values in this section will be denoted as δ̃0.

5.7.1 Coherence time measurements

To establish the feasibility of using phase dynamics to reveal the behaviour of the double

well system, we studied the repeatability of phase measurements over many realizations of

a BEC in the double well potential. Starting with a single well, the trap is deformed into

a double well configuration. If the BEC is subject to the same process for each repetition

of the experiment, the phase difference between the wells should evolve in the same way,

and the phase measured in the momentum distribution should remain constant. If these

phase measurement are repeatable, we know that the experiment is well controlled, and

that reliable measurements of the phase can be obtained.

Early results are discussed in Ref. [15] (§7.1.2). In the present work, the coherence of the

relative phase between the wells is measured as a function of a hold time after the splitting

process. Many phase measurements are repeated at each hold time, and the degree of

repeatabiity is quantified as the degree of coherence as measured by the quantity R, which

is defined in §5.3.3.

Figure 5.17 shows one such measurement. The usual splitting procedure is performed

with no initial imbalance, and the atoms are held in the split trap for some variable time. We

see that the mean phasor length decreases with time, though the fall off is quite slow in this

well-connected configuration. Also shown are three examples of the individual measurement

results in Fig. 5.17(b,c,d) and the measure of R and φfr.

These results are encouraging, suggesting that well-resolved phase measurements can be
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Figure 5.17: Coherence time measurements, δ̃0 = 6.5 kHz (a) Mean phasor length, R, vs time.
(b,c,d) Individual phase measurements (black diamonds) plotted at angle φfr and radius correspond-
ing to the visibility, V. Red line indicates the calculated value of length R at angle φfr. Phases
measured at (b) 10 ms, (c) 75 ms, and (d) 400 ms hold time.

made even after relatively long hold times.

5.7.2 Josephson dynamics

In earlier sections, the population dynamics of both small (§5.4) and large imbalances

(§5.5) were studied in detail. In compliment to these measurements, the phase signatures

of these dynamics can also be measured. Though these were not studied in the same detail,

this section presents proof-of-principle demonstrations of both dc- and ac-Josephson effect

behaviour.

Plasma oscillations in phase

For small initial population imbalances, §5.2.3 describes a harmonic oscillator hamilto-

nian (Eq. (5.35)), in which Z and φ are conjugate variables. In this description, as in a
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Figure 5.18: Plasma oscillations in pop-
ulation and phase. System parameters are
δ̃0 ≈ 2π × 16 kHz and N = 6000. Data
are fit with single-frequency undamped si-
nusoids to determine the frequencies of os-
cillation (dashed lines) (a) Population im-
balance vs. time, ωp = 2π × (115± 1) Hz,
(b) Phase vs. time, ωp = 2π×(117±2) Hz.
The phase relationship between the pop-
ulation and phase oscillations is obscured
by the measurement method (see text).

simple harmonic oscillator, energy is periodically transferred between the interaction and

the tunnelling energies, in analogy to the transfer between potential and kinetic energy of

the oscillating pendulum.

Using the same techniques described in §5.3.3 to initiate population dynamics in the

small amplitude regime, we measure both the population imbalance oscillations and the

conjugate oscillations in phase. Figure 5.19 demonstrates the oscillatory behaviour of both

Z and φ for identical experimental conditions. The measured oscillation frequencies from

these sets of data agree with one another at ωp = 2π × (115 ± 1) Hz for the population

oscillations and ωp = 2π × (117± 2) Hz for the phase.

Phase winding in MQST

The phase evolution for the large population imbalances, as suggested by the oscillating

population dynamics observed in §5.5.2, is responsible for MQST. As shown in Fig. 5.2, the

phase should always increase in this regime, unlike the oscillatory behaviour observed for

plasma oscillations. In the limit of small change in populations (J � U ; Z(t) = const),

the Josephson equation holds, and the phase evolves linearly in time, as φ(t) = UZt. The

frequency of these phase oscillations is ωMQST = UZ, which is just the chemical potential
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Figure 5.19: Phase winding and MQST. After preparing an initial imbalance of Z(0) = 0.06±0.01
at δ̃0 ≈ 2π× 24 kHz with N = 7000, the system is allowed to evolve for some hold time, after which
the phase is measured. Solid black points show the average phase as a function of hold time, where
the open points represent the results of individual measurements. Dashed grey line indicates a fit
to the data assuming 2π-periodic linear phase winding, giving a frequency ωMQST ≈ 2π × 220 Hz.

difference between the wells.

While we were never able to capture both the population oscillations for the same

parameters (and on the same day) as the phase winding dynamics, they have been observed

separately. By creating a large initial population imbalance as described in §5.5, the MQST

dynamics were initiated. Fig. 5.19 shows the evolution of the phase over across one period.

The fit to these data yields a frequency of ωMQST ≈ 2π × 220 Hz, where the approximate

equality is because of the uncertainty in fitting to only one period of oscillation.

The method of phase imprinting could be used as an alternate means to engineer an

out-of-equilibrium initial condition, with which the dynamics could be initiated.

5.7.3 Phase imprinting

Just as the when there exists a number difference Z 6= 0, the phase difference between the

wells will evolve if a chemical potential difference is established with an external potential.

Through precise control of such an external potential, the phase difference between the

wells could be controlled and the method could be used as a tool to “write” a specific phase

difference into the system.
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Figure 5.20: Phase imprinting with δ̃0 = 2π×8 kHz, N = 8000, and balanced populations. Optical
power, in arbitrary units, was applied for 0.5 ms and the phase observed. The solid points are the
average of 10 measurements, which are shown individually as the open circles. The rate of phase
difference accumulation is determine from the dashed grey line fit and gives dφ/ dt = −0.90π rad
per unit optical power.

Using the same laser beam (ODT1) that biases the wells for initiating population dy-

namics, a potential energy difference is established for the Z = 0 populations. The BEC

is released from the double well potential and the momentum distribution is analyzed to

determine the relative phase between the wells as a function of the strength of this potential

difference.

Figure 5.20 shows a measurement of the phase imprinting. Unlike in previous sections,

we prepare a balanced population in the double well system. For 0.5 ms, we apply a pulse

of light whose focus is to the outside of both wells, such that the intensity incident on one

well is greater than the other. As a function of the power of this beam, we measure the

phase difference between the wells and find that it has a roughly linear dependence on this

power. A linear-modulo-2π fit shows that the phase winds with a rate dφ/ dt = −0.90π rad

per unit optical power4. Assuming the atom number is perfectly balanced, the chemical

potential difference will be entirely due to the potential energy difference between the two

wells, the difference between the two wells is Vbias/~ = 2π × 450 Hz.

4The optical power for this experiment was not calibrated, though it is known that this scale is linear in
real optical power.
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5.8 Lessons from a tunable double well

One of the great advantages of studying many-body problems with a quantum gas is the

ability to precisely control an atomic system’s parameters. Through the combination of

magnetic trapping and rf-induced internal state manipulation, we exploit this advantage to

create a tunable double well potential for a BEC, where we can transform the environment

from a single to a double well. The particular focus of the work presented in this chapter

is the study of dynamical properties as a function of the barrier height.

The major result of this work is the observation of the transition between a hydro-

dynamic regime of superfluid dynamics at low barrier heights and a Josephson tunnelling

regime at barriers higher than the BEC chemical potential. We see a low-lying mode of the

hydrodynamic system transform into the Josephson plasma mode as the barrier is raised,

indicating the continuity of the physics between these regimes. The presence of an un-

avoidable higher-lying mode in the hydrodynamic regime indicates that the geometry of

the system is an important consideration in the design of devices that require a transition

between these regimes to perform the splitting of a condensate.

While the TMM describes the frequencies of these dynamics for high barriers, its di-

vergence from the experimental results at barrier heights lower than the chemical potential

warns against using this model too freely when establishing criteria for adiabaticity in split-

ting processes. However, in our measurements of MQST, we find that this TMM-derived

Josephson-effect remains in the intermediate regime of barrier heights and is predicted by

the GPE. These results establish that the domain of Josephson-type effects in this BEC

system extends beyond the regime of validity of the TMM.

These results both indicate the regimes in which the hydrodynamic and TMM approxi-

mations of the GPE are valid, and confirm that the full GPE is an accurate predictor of the

frequencies and amplitudes of the dynamics in all regimes we consider. The observation not

accounted for by the GPE is the damping of the population dynamics, which remains the

most striking open question in this system. Our measurements seem to indicate that the

damping of these dynamics is independent of temperature, and that the time for damping

depends only very weakly on the tunnelling parameter, J . While further work may be re-

quired to eliminate the possibility that the source of this noise is technical, calculations that

include temperature and other non-GPE excitations may shed insight into this problem.

This work, which began in an attempt to understand the parameters U and J and their

role in the dynamical splitting process on the path to squeezed state generation [15], has
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demonstrated that the geometry of the system is important, and that the full three dimen-

sions of the system must be included in any analysis. We have found that though dynamical

signatures qualitatively resemble those predicted by the TMM, the parameters of these dy-

namics do not necessarily provide a direct measure of the TMM parameters. Instead, we

see a continuous transformation of the dynamics from a regime where hydrodynamics are

valid to one where a TMM is valid. These results should better inform future experiments

employing dynamical splitting processes to perform interferometry [23, 150, 151] or to create

unconventional quantum states [121, 149].



Chapter 6

Conclusions and outlook

The foundation on which this thesis is built is an experimental apparatus designed and

built to produce ultracold 87Rb BECs and 40K DFGs, atomic ensembles in which thermal

motion is negligible and interactions between particles dominate the energetics. The avail-

ability of these quantum degenerate samples inspired theoretical and experimental studies of

ultracold Bose and Fermi gases in configurations designed to expose particular many-body

effects, including ferromagnetism, hydrodynamics, and Josephson tunnelling.

Three principal contributions are presented in this thesis. First, a technique using

the spectroscopic distinguishability between atomic species to selectively manipulate one

species in a mixture is developed, and the applications of this tool are discussed. Second,

the signatures of a ferromagnetic state in a trapped two-component Fermi gas are predicted

and the foundations for the experimental realization of this transition in an ultracold gas

of 40K are laid. Third, the many-body dynamics of a 87Rb BEC in a tunable double well

system are explored, with a focus on the crossover behaviour between hydrodynamic and

tunnelling transport between the wells. These topics are summarized below, with reflections

on the prospects for further study.

Species selectivity

Chapter 3 describes a new technique for manipulating a species mixture of ultracold

alkali atoms. Using the differences in the spectroscopic character between atomic species,

the effect of an optical field on each species can be tailored through choice of wavelength.

We show that when this wavelength is chosen to fall between the two strong transitions

in the alkali atom, there will be zero potential energy shift for a reservoir species, while

there remains a shift for a target species. Similarly, the wavelength can be chosen near
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the strong transition for the target species, rendering negligible, by comparison, the shift

on the reservoir. Upon evaluating the potential energies and losses associated with these

schemes in mixtures of alkali atoms, we find that both are experimentally feasible: the

tune-in scheme is better suited to heavier elements while the tune-out scheme should work

well for mixtures of the lighter elements.

With an increasing number of ultracold gas experiments using two or more atomic

species [35, 56, 58–60, 173, 174], techniques like this species selectivity make possible the

exploration new many-body systems. As a tool to reach colder temperatures, selective

addressability has been used to transfer entropy from a target species to a reservoir species

[32], providing additional cooling to reach lower energy scales and new regimes of many-

body physics. If the optical field is established as a standing wave, a lattice potential

can be imposed upon one species, leaving the other delocalized from the lattice sites. For

shallow lattices, this technique could tune the effective mass of the target species [77] to

create a more favourable ratio of masses between species. In mixtures of fermions and

bosons, a bosonic background species could mediate interactions between identical fermions

on separated lattice sites, through, for example, phonon excitations [51–53, 175]. In general,

species specificity provides access to at least one additional degree of freedom in the system,

which can be used to implement an increasingly detailed environment for the atoms, which

might prompt the discovery of new many-body phenomena.

Ultracold ferromagnetism

Chapter 4 discusses the signatures of itinerant ferromagnetism in trapped ultracold

fermions subject to strong repulsive interactions. At the crossover to the ferromagnetic

state, mean-field, local-density calculations predict observable discontinuous features in the

bulk energies of the system, which were confirmed by an experiment [108]. Further calcula-

tions show that the energetic costs associated with magnetization gradients give a preference

to the three-dimensional magnetization configuration that distributes the gradients across

the entire system, in a hedgehog geometry.

To access the regime of strong interactions with 40K , the experimental apparatus was

adapted to include optical traps and stabilized magnetic fields. Using a two-state mixture

of 40K , strong interactions were observed as a loss feature near the Feshbach resonance.

While questions remain regarding its three-body loss rates in the repulsively interacting

regime, 40K offers advantages over 6Li: its greater mass allows for quieter imaging, and

its narrower Feshbach resonance implies that smaller, and therefore faster, magnetic field
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changes are required to change the interaction strength.

The apparatus is well-poised to continue exploring ferromagnetism in a trapped Fermi

gas, both to confirm the results observed in 6Li [108] and to complement these results

by distinguishing between the ferromagnetic state discussed here and other possible effects

displaying similar energetic signatures [110, 111]. To determine unambiguously if the system

is ferromagnetic, a direct measure of magnetic properties is required – the observation of

domains or a measurement of the magenetic susceptibility [176] may help to clarify the state

or the system.

Exact calculations for strongly interacting fermion systems are beyond the capabilities

of modern computational methods. A thorough experimental understanding of the ground

state of this system would constitute one of the first realizations of a cold-atom quantum

simulator, and could answer questions about the minimal set of conditions required for a

system to undergo a magnetic transition. By establishing the experimental techniques in

this system and demonstrating the feasibility of using ultracold gases as quantum simulators,

increasingly complicated simulations could be performed by, for example, adding a lattice

potential to the trapping geometry [13, 177–179].

Double well BEC dynamics

Chapter 5 explores the many-body dynamics of a double-well BEC system over a wide

range of barrier heights. A crossover between two standard paradigms of superfluidity is ob-

served as the system crosses over from hydrodynamic to tunnelling behaviour as the barrier

is varied and the BEC density in the region connecting the wells disappears. For Vb & 1.1µ,

we make the first direct observation of tunnelling transport through a magnetic barrier and

find that the dynamics here are predicted by the two-mode model. Further experiments

show that the macroscopic quantum self-trapping behaviour expected in the regime of tun-

nelling dynamics is found at some barrier heights less than the chemical potentials, as low

as Vb ≈ 0.8µ.

An awareness of the appropriate description of a double-well BEC system is important

when determining the parameters of an experiment. Transformations from a single to

a double-well are often required [23, 121, 149–151], and the hydrodynamic to tunnelling

crossover is traversed. For the split BEC to remain in the many-body ground state, this

transformation must be adiabatic. The lowest excitation energies of the system in the

hydrodynamic regime are smaller than in the tunnelling model, indicating that a more-

stringent limitation is placed on the limits of adiabaticity than might be assumed in by
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two-mode model [168]. Our observations that qualitative Josephson-style behaviour exists

outside the regime of validity of the TMM indicate that the observation of such effects is

not a sufficient condition for the application of the TMM. We show that a thorough study of

the system’s dynamics can be used to characterize the regimes of validity of various models.

Double well BEC systems, especially as implemented with an atom chip technology

as described in this thesis, may prove useful as interferometers [23, 150, 151]. By further

developing the understanding of the many-body physics in this system, squeezing [121, 149]

could be improved to increase the precision of these measurements.

Closing remarks

The relationships between the interaction properties of individual quantum mechanical

objects and the many-body effects they encourage provide insight into the connection be-

tween the quantum mechanical and classical worlds. Using what are distinctly individual

quantum objects – 87Rb and 40K atoms – we find that we are able to measure the collective

parameters of system composed of these objects, such as, for example, their phase, mass

transport or magnetization. Though the specific origins of the many-body effects discussed

in this thesis depend on the details of the constituent particles and their environments, a

common property emerges: a system can often lower its energy by having its constituent

particles act communally.

In the context of ultracold atoms, the diversity of many-body phenomena predicted in

the literature is vast. By continuing to reduce the energetic scales characterizing these

systems, the dominant interactions driving the collective response may expose new classes

of behaviour. Exploring this variety of many-body phenomena will lead to new questions

about the quantum mechanical world, while simultaneously increasing our understanding

of its manifestations in the classical world with which we are more familiar.



Appendix A

40K hyperfine structure and transition

matrix elements

The contents of this appendix are largely the reproduction of a report prepared as a final

project for PHY2206S (Atomic and Molecular Physics) in the spring semester of 2006, with

the more detailed derivations omitted. In the spirit of similar reports prepared by Daniel

Steck for some of the other alkali metals [62–64, 180], this collection of data is intended to

be a useful resource for those working with 40K.

This appendix includes a brief discussion of the fine structure splitting in 40K in §A.1.

The hyperfine structure is discussed for the ground and first excited states in §A.2, and

is calculated over a wide range of magnetic fields in §A.3, in extension of the Breit-Rabi

calculations done in §4.6.1. The transition matrix elements for the electric dipole transition

are found and tabulated in §A.4.

A.1 Fine structure

To good approximation, the alkali metals are “hydrogen-like” in that they have a single

electron in the s-state orbitting a charged core. For hydrogen, the core is just the nucleus,

while for the higher atomic numbers it is the nucleus surrounded by closed shell electron

orbitals. The Coulomb interaction of this electron with the core, together with the inter-

action between the angular momenta of the electron’s orbit and its spin, gives rise to the

discretization of energy levels for the electron known as the fine structure.

For an electron orbitting a charged core, we consider an angular momentum, L, associ-
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Property Value Ref.

Atomic number (Z) 19

Total nucleons (Z +N) 40

Relative natural abundance 0.011 7(1) % [181]

Atomic mass (m) 39.963 998 48(21) amu [181]

Nuclear spin (I) 4 [181]

D1 Transition Wavelength (2S1/2 → 2P1/2) 770.10929 nm

12 985.170 cm−1 [182]

D2 Transition Wavelength (2S1/2 → 2P3/2) 766.70207 nm

13 042.876 cm−1 [182]

Table A.1: General properties of 40K

ated with the orbital angular momentum, and an intrinsic angular momentum, S, due to

the spin of the electron. These are coupled through the spin-orbit interaction [162]. Adding

these contributions, we obtain a value for the total angular momentum of the electron,

J = L + S. The value of J follows the triangle rule (i.e., |L− S| ≤ J ≤ L+ S).

In this work, we consider the two lowest lying transitions. Since, by selection rules, L

must change by one, the lowest lying transition is from the L = 0 ground state is to the

L = 1 state. This level is doubly-degenerate, due to the two possible values of the spin,

S = ±1/2. These two lines are known as the D1 and the D2 lines, and have total angular

momenta J = 1
2 and J = 3

2 respectively.

The fine structure splitting is most accurately determined experimentally, and measured

values will be used. Table A.1 gives the transition wavelengths for the D1 and D2 lines,

which are separated by 3 nm in 40K.

A.2 Hyperfine structure

The next degree of precision in determining the energy levels of an alkali atom is to

consider the effect of the nucleus. There will be two main contributions to the Hamiltonian

which describes the energy of the atom: one due to the effective magnetic field arising from

the spin of the nucleus, I, the other from the finite extent of the charge distribution of the

nucleus and the associated higher-order electric multipole moments.
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A.2.1 Effects of nuclear spin

In the fine structure calculations, nuclear spin is neglected because of the large mass of

the nucleus in comparison to the electron. Moving beyond these approximations, it is one

of the primary considerations. The energy shifts arise due to the interaction of the nuclear

spin with the effective magnetic field of either the orbital electron or an external magnetic

field.

Internal effects

As with the electron spin, S, we can associate with the nucleus an intrinsic angular

momentum, or spin, called I. This spin is the result of the addition of the spins of each of

the constituent particles in the nucleus, and is determined experimentally. The spin of the

40K nucleus is I = 4 [181].

In the absence of an external magnetic field, the term in the Hamiltonian that accounts

for the energy of the nuclear spin in the magnetic field of the orbitting electron is

HB,el = −µI
~
·BJ, (A.1)

where µI is the magnetic moment of the nucleus, BJ is the effective magnetic field due

to the orbitting electron, defined by its angular momentum and J. Whereas with the fine

structure, we considered LS coupling, here, we consider IJ coupling. Separate electron

energy levels are well-defined by the angular momentum J, and are much more closely-

spaced than the fine structure energy levels. In this approximation I and J are both good

quantum numbers. We can then assume the nuclear magnetic moment is proportional to

its angular momentum

µI = gIµNI, (A.2)

where gI is the effective g-factor for the nucleus, µN = (me/mN )µB, is the nuclear magneton,

µB = ~e/2me is the Bohr magneton, and me and mN are the electronic and nuclear masses.

In writing Eq. (A.1), we assume that BJ acts only in the electronic (and not the nuclear)

subspace and can it is proportional to J. In this case, the hamiltonian can be written as a

product of two operators, each acting on their own subspace

HB,el = AhfsI · J, (A.3)

where Ahfs depends on details of the atomic structure and can be calculated (see, for exam-

ple, Ref. [183]). For the purposes of this Appendix, we use an experimentally determined

value, which is more accurate than the calculations (See Table A.2).
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External effects

In addition to the effects within the atom, the nuclear and electronic spins can also

interact with external magnetic fields, which is known as the Zeeman effect. The term in

the hamiltonian arising from the external magnetic field is

HB,ext =
1

~
(µJ ·B + µI ·B) (A.4)

where the terms µJ = gJµBJ and µI = gIµBI define the g-factors. By invoking the

projection theorem, expressions for the gJ factors can be obtained:

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(A.5)

where gL and gS are experimentally determined values (the Landé g-factors) for the mag-

netic dipole moments of the electron orbital angular momentum and electron spin, quoted

in Table A.2, along with the measured values of gJ , where available.

Expressions for the strong and the weak field limits of HB are common in quantum

mechanics or atomic physics textbooks (see, e.g. [184]). In the weak field, the sum of

electron and nuclear angular momentum F = I + J provides a new set of good quantum

numbers F and mF . The |F,mF 〉 states are the eigenstates of the system and the external

field Hamiltonian can be written

Hweak
B,ext =

µB
~
gFF ·B. (A.6)

where

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
. (A.7)

In the high field limit, the effects of the magnetic field on the electron are far greater

than those on the nucleus, rendering the coupling between them negligible. Here (and,

indeed, everywhere), the eigenstates can be defined by |J,mJ , I,mI〉 and the hamiltonian

becomes

Hstrong
B,ext =

µB
~

(gJJ + gII) ·B. (A.8)

In this work, all magnetic fields are considered and the |J,mJ , I,mI〉 states are used

throughout to calculate the energy of the hyperfine interactions, due to the magnetic fields

being diagonal in this basis. Taking into account all effects due to the nuclear spin, we find

a hamiltonian

HB = AhfsI · J +
µB
~

(gJJ + gII) ·B. (A.9)
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A.2.2 The electric quadrupole moment

For a complete description of the interaction between the angular momenta of the electron

and the nucleus, a multipole expansion of the charge distributions of both the nucleus

and the electron is required. The derivation of Eq. A.3, in which we assume both that

the magnetic moment of the nucleus and the field created by the orbiting electron are

proportional to their angular momenta, is equivalent to using only the monopole moments

for both distributions. For electron spins J > 1/2, higher order moments may be important.

Parity considerations restrict the nucleus from having odd multipole moments, and so the

quadrupole moment is the next correction to these results [185].

Details of this calculation can be found, for example, in Refs. [185, 186]. The hamiltonian

containing the quadrupole contribution to the hyperfine splitting is

HQ =
Bhfs

2I(2I − 1)J(2J − 1)

[
3(I · J)2 +

3

2
(I · J)− I2J2

]
. (A.10)

The coefficient Bhfs has been measured for the D2 line in 40K (see Table A.2). This

quadrupole term is relevant only to the D2 line as both the ground state and D1 lines

have J = 1/2, whose symmetry prevents a quadrupole term from entering the expansion.

A.3 Calculating the hyperfine splitting for all magnetic

fields

Taking into account both the effects of the nuclear spin and the electric quadrupole

moment (the latter only for the D2 line), the hyperfine Hamiltonian can be written,

Hhfs = AhfsI · J +Bhfs
3(I · J)2 + 3

2I · J− I2 · J2

2I(2I − 1)J(J − 1)
+
µB
~

(gJmJ + gImI)B (A.11)

where all terms have been defined in §A.2. Experimental values for Ahfs, Bhfs, and the

g-factors are given in Table A.2.

The hyperfine splitting can be easily calculated in either the low magnetic field or the

high magnetic field situations. In the first, the magnetic field dependent effects are treated

as a perturbation and the good quantum numbers are given by |F,mF 〉. In the latter, the

electric quadrupole term is treated perturbatively, and the states |J,mJ , I,mI〉 define the

good eigenstates. However, neither approach gives a complete description of the magnetic
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Ground (2S1/2) D1 (2P1/2) D2 (2P3/2)

Ahfs (MHz) -285.731(16) [187] -34.49(11) [188] -7.48(6) [188]

Bhfs (MHz) n/a n/a -3.23(50) [188]

Isotope shift, ∆ν (MHz) 125.58(26) [188] n/a n/a

(relative to 39K)

gJ 2.00229421(24) [61] 0.665885† 1.334102228†

gI 0.000176490(34) [61]

gS -2.002 319 304 3622(15) [189]

gL 0.99998627(25)* (from [189])

Table A.2: Electronic and magnetic parameters for 40K. All values are determined experimentally

unless otherwise noted. † Calculated using gS , gL with Eq. (A.5); * Calculated using gL = 1 −
me/mnuc.

field dependence of the hyperfine splitting. To determine the energies at all values of the

magnetic field, Eq. (A.11) must be numerically diagonalised1.

To perform such a calculation, it is necessary to choose a set of states under which to

write the original Hamiltonian. The |J,mJ , I,mI〉 states are a good choice, as expressions

for the matrix elements necessary for the calculation can be found. In particular, if we can

determine the matrix elements with respect to the nuclear spin term of the Hamiltonian by

considering the operator

I · J = IzJz +
1

2
(I+J− + I−J+), (A.12)

using

〈I,mI ± 1|I±|I,mI〉 =
√

(I ∓mI)(I ±mI + 1), (A.13)

and writing down the non-zero matrix elements for the operator (A.12). The relevant matrix

1An analytic solution does exist for the J = 1/2 case, and is known as the Breit-Rabi formula. This is
the description for the ground state hyperfine characteristics used in §4.6.1. In this Appendix, all values
are calculated using the numerical method, though, of course, this gives the same results as the Breit-Rabi
formula for J = 1/2.
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F’ = 5/2   [54.51(25) MHz]	

F’ = 7/2   [30.55(10) MHz]	


F’ = 9/2   [-2.33(22) MHz]	


F’ = 11/2  [-45.69(38) MHz]	


F’ = 7/2   [86.23(28) MHz]	


F’ = 9/2   [68.98(22) MHz]	


F =7/2   [714.328(40) MHz]	


F = 9/2   [-571.462(32)MHz]	


1285.790(72) MHz	


770.109 29 nm	

12 985.170 cm-1	


766.702 07 nm	

13 042.876 cm-1	


125.58(26) MHz	


              2S1/2
	


2P1/2 
	


2P3/2 
	


“D1” 	  “D2” 	  

Figure A.1: Level diagram for 40K; calculated at zero magnetic field. All values derived from
constants in Table A.2.

elements can be expressed:

〈J,mJ , I,mI |I · J|J,mJ , I,mI〉 = mJmI

〈J,mJ , I,mI |I · J|J,mJ + 1, I,mI − 1〉 =
1

2

√
(J +mJ)(J −mJ + 1)

×
√

(I −mI)(I +mI + 1)

〈J,mJ , I,mI |I · J|J,mJ − 1, I,mI + 1〉 =
1

2

√
(J −mJ)(J +mJ + 1)

×
√

(I +mI)(I −mI + 1).

(A.14)
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Figure A.2: Hyperfine energy shift for the ground state (2S1/2) of 40K as a function of magnetic
field. The highlighted curve is used in the calculation in §.
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Figure A.3: Hyperfine energy shift for the D1 manifold (2P1/2) of 40K as a function of magnetic
field

Similarly, for the electric quadrupole term, it is useful to consider the operator

f = 3(I · J)2 +
3

2
I · J− I2 · J2 (A.15)

and determine the matrix elements with respect to it. These can be found in Appendix C
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Figure A.4: Hyperfine energy shift for the D2 manifold (2P3/2) of 40K as a function of magnetic
field. The highlighted curve is used in the calculation in §.

of Ref. [185] are are expressed:

〈mJ ,mI |f |mJ ,mI〉 =
1

2

[
3m2

I − I(I + 1)
] [

3m2
J − J(J + 1)

]

〈mJ ,mI |f |mJ − 1,mI + 1〉 =
3

4
(2mJ − 1)(2mI + 1)

× [(J +mJ)(J −mJ + 1)(I −mI)(I +mI + 1)]
1
2

〈mJ ,mI |f |mJ + 1,mI − 1〉 =
3

4
(2mJ + 1)(2mI − 1)

× [(J −mJ)(J +mJ + 1)(I +mI)(I −mI + 1)]
1
2

〈mJ ,mI |f |mJ − 2,mI + 2〉 =
3

4

[
(J +mJ)(J +mJ + 1)(J −mJ + 1)(J −mJ + 2)

× (I −mI)(I −mI − 1)(I +mI + 1)(I +mI + 2)
] 1
2

〈mJ ,mI |f |mJ + 2,mI − 2〉 =
3

4

[
(J −mJ)(J −mJ − 1)(J +mJ + 1)(J +mJ + 2)

× (I +mI)(I +mI − 1)(I −mI + 1)(I −mI + 2)
] 1
2

(A.16)
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Finally, the term involving the magnetic field is diagonal in the |J,mJ , I,mI〉 basis,

which makes the calculation of the relevant matrix elements relatively simple.

The actual calculation of the energies can be performed numerically, and was done

using MATLAB. For each of the three manifolds considered, a vector containing each of the

possible states was created, i.e. for the 2S1/2 (ground) state, there are 18 substates defined

all possible combinations of mJ and mI where −1
2 ≤ mJ ≤ 1

2 and −4 ≤ mI ≤ 4. The

Hamiltonian matrix is constructed by calculating each element individually. For example,

if the state vector is defined as (using an |mJ ,mI〉 notation)

ΨmJ ,mI =


|1/2, 4〉
|1/2, 3〉
|1/2, 2〉

...


then we may define an 18 × 18 Hamiltonian matrix as

Hhfs =


〈1/2, 4|Hhfs|1/2, 4〉 〈1/2, 4|Hhfs|1/2, 3〉 〈1/2, 4|Hhfs|1/2, 2〉 · · ·
〈1/2, 3|Hhfs|1/2, 4〉 〈1/2, 3|Hhfs|1/2, 3〉 〈1/2, 3|Hhfs|1/2, 2〉 · · ·
〈1/2, 2|Hhfs|1/2, 4〉 〈1/2, 2|Hhfs|1/2, 3〉 〈1/2, 2|Hhfs|1/2, 2〉 · · ·

...
...

...
. . .

 .

This matrix is then calculated for a value of magnetic field, B, and numerically diag-

onalised. The energy eigenvalues are stored, and this process is repeated for 10 000 small

increments in magnetic field. By plotting the energy eigenvalues for all magnetic field val-

ues, we find that the low field eigenstates gradually merge into the high-field eigenstates.

A schematic of the zero-field structure is shown in Fig. (A.1). The results of the full calcu-

lations, shown in Figs. (A.2), (A.3), and (A.4) for the ground (2S1/2), D1 (2P1/2), and D2

(2P3/2) levels, demonstrate the gradual transformation from |F,mF 〉 states to the |mJ ,mI〉
states.

State selectivity

In the high field, the ground state splitting can be larger than the natural linewidth of a

transition between the ground and excited states. This allows for the selective imaging of

one ground state, since the other will be far off-resonance.

As a practical example, consider the the states that connect to low-field |9/2, -9/2〉 and

|9/2, -7/2〉 states, which have a Feshbach resonance at 202.10 G. Assuming σ− imaging on
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the D2 line, we consider the energetics of three transitions: (1) |F = 9/2,mF = −9/2〉 →
|F = 9/2,mF = −11/2〉, and (2) |F = 9/2,mF = −9/2〉 → |F = 9/2,mF = −11/2〉.

The energetic difference between these transitions is shown in Fig. A.5. At 202.10 G,

the difference in energy between transitions is ∆E = 2π× 34 MHz, which, with a linewidth

of ΓD2 = 2π × 6.01 MHz, are ensure that one can image on one transition while remaining

several linewidths away from the other.

At this magnetic field, the ground states used in the Feshbach resonance are, written

in terms of the |mI ,mJ〉 basis, can be found from the numerical diagonalization, and are

(|F,mF 〉 → |mI ,mJ〉):

|9/2,−9/2〉 → | − 4,−1/2〉 (A.17)

|9/2,−7/2〉 → −0.2359| − 4, 1/2〉 − 0.9718| − 3,−1/2〉. (A.18)

Likewise, for the excited states (|F ′,m′F 〉 → |m′I ,m′J〉),

|11/2,−11/2〉 → | − 4,−3/2〉 (A.19)

|11/2,−9/2〉 → −0.0485| − 4,−1/2〉 − 0.9988| − 3,−3/2〉. (A.20)

A.4 Transition matrix elements

The charged particles that make up an atom can be manipulated with electromagnetic

fields. Light at optical frequencies strongly couples energy levels with adjacent values orbital

angular momentum, L.

A.4.1 The reduced matrix element

When considering the interaction of atoms and electromagnetic fields, the electric dipole

term is the largest perturbation to the atomic energy levels [190]. This operator, defined by

HE1 = d ·E(0, t) = −er ·E(0, t) (A.21)

where E(0, t) is the time-dependent electric field at the origin, r is the position operator

at the origin, and d is dipole operator, can be treated using time-dependent perturbation

theory. Assuming that all transitions will be made with near-resonant light, the rotating
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Figure A.5: State selectivity for imaging 40K at various magnetic fields. The transitions considered
are indicated to the right, for the D2 transition. The differences in these transiton frequencies are
plotted as a function of magnetic field: the solid line indicates the difference between the transitions
|F = 9/2,mF = −9/2〉 → |F = 9/2,mF = −11/2〉 (1) and |F = 9/2,mF = −7/2〉 → |F =
9/2,mF = −9/2〉 (2). The natural linewidth of this transition is ΓD2 = 2π × 6.01 MHz. Near the
Feshbach resonance, the transitions are both well distinguished: at 202 G, the difference between
(1) and (2) is 34 MHz.

wave approximation (RWA) is justified, and the dipole matrix elements can be expressed

in terms of the dipole matrix elements, (see, for example, Ref. [191])

Aif =
1

τlife
=
ω2
0|〈i|d|f〉|2
3πε0~c3

, (A.22)

where τlife is the radiative lifetime, ω0 is the angular frequency of the electromagnetic field, i

and f stand for the initial and final states, respectively, and Aif is the rate of decay between

these states.

To evaluate the matrix element in Eq. A.22, we begin by expressing the dipole operator

as

d = −e
1∑

q=−1
r(1)q eq (A.23)

where the e is the electric charge, r
(1)
q are first-rank spherical tensors, and the eq are the

unit direction vectors for each r
(1)
q . Each of these vectors represents a specific polarization

of the light field: e±1 represent circularly polarized light (σ±), while e0 is π-polarized; these

vectors form a complete basis in polarization space. The dipole matrix element between

an initial state (defined by the angular momentum Pi and projection mi) and a final state
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(with Pf and projection mf ) can be expressed using the Wigner-Eckart theorem2

〈i|d|f〉 = (−1)2Pf−mf+Pi+1〈i||er(1)||f〉
∑
q

(
Pi
mi

1

q

Pf
−mf

)
eq (A.24)

where 〈i||er(1)||f〉 is the reduced matrix element, which is independent of mi.f and q and the

term in round brackets is the Wigner 3-j symbol, which is related to the Clebsch-Gordan

coefficient and provides the sum of the three angular momenta. The rate of this transition,

from Eq. A.22 is

Aif =
ω3
0

3πε0~c3
|〈i||er(1)||f〉|2

[∑
q

(
Pi
mi

1

q

Pf
−mf

)2
]

(A.25)

where the orthogonality of the eq gives only the elements diagonal in q.

In general, the lifetime between specific initial and final states is not resolved; instead,

a total decay from one excited level to the ground level, Atot
if =

∑
mi
Aif is measured. By

summing Aif over all possible initial states,

∑
mi

Aif =
ω3
0

3πε0~c3
|〈i||er(1)||f〉|2

[∑
q,mi

(
Pi
mi

1

q

Pf
−mf

)2
]

=
ω3
0

3πε0~c3
|〈i||er(1)||f〉|2

(2Pf + 1)
, (A.26)

where we have used the normalization condition for the 3-j symbols to obtain the (2Pf + 1)

factor.

The reduced matrix element can be expressed in terms of Atot
if = 1/τ totlife ,

|〈i||er(1)||f〉| =
[

3πε0~c3(2Pf + 1)Atot
if

ω3
0

]1/2
=
√

2Pf + 1 µif (A.27)

where µif is the dipole matrix element described for a two-level system. Using this expres-

sion with Eq. A.24, the amplitude of any transition can be expressed in terms of the reduced

matrix element and a 3-j symbol. Using the lifetimes for transitions between J manifolds,

the |〈J ||er(1)||J ′〉| can be found, and are shown in Table A.3.

A.4.2 Reducing the dipole operator

In small magnetic fields, where many atomic physics experiments are performed, the

eigenstates |F,mF 〉 are good. To express the dipole matrix elements between states in this

basis, Eq. (A.24) is used

〈F,mF |er(1)q |F ′,m′F 〉 = (−1)2F
′−mF+F+1〈F ||er(1)q ||F ′〉

(
F

mF

1

q

F ′

−m′F

)
. (A.28)

2All sign and normalization conventions follow Ref. [192], which are also followed by Mathematica.
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D1 (2P1/2) D2 (2P3/2) Ref.

τ totlife 26.79(7) ns 26.45(7) ns [193]

〈J ||er(1)||J ′〉 4.102(5) e · a0 5.811(7) e · a0 -

µJ,J ′ 2.906(4) e · a0 2.901(4) e · a0 -

Table A.3: Lifetimes of D1 and D2 levels and associated reduced matrix elements for 40K, where

e is the elementary charge and a0 is the Bohr radius.

The selection rules in the low-field regime dictate ∆F = 0,±1, ∆MF = 0,±1, and F =

0 → F ′ = 0 transitions are not allowed [194]. The reduced matrix element in this basis is

not directly accessible. To connect this basis to the J basis, in which the reduced matrix

element is known, we consider the addition of angular momenta defining the states in the F

basis. Since F = I + J, we can use the Wigner 6-j symbols to write 〈F ||er(1)q ||F ′〉 in terms

of 〈J ||er(1)q ||J ′〉 [192]. The reduced matrix elements is found to be

〈F ||er(1)||F ′〉 = (−1)F
′+I+J+1

√
(2F + 1)(2F ′ + 1)

{
J ′

F

J

F ′
1

I

}
〈J ||er(1)q ||J ′〉 (A.29)

where the term in the curly brackets is the 6-j symbol.

To determine the overall transition matrix element for the |F,mF 〉 states, we substitute

Eq. (A.29) into Eq. (A.28) and by collect all coefficients (including 3-j and 6-j symbols)

into one, to obtain the expressions, using two different conventions

〈F,mF |er(1)q |F ′,m′F 〉 = C1(J, J ′, F,mF , F
′,m′F , q) 〈J ′||er(1)||J〉 (A.30)

= C2(J, J ′, F,mF , F
′,m′F , q) µJ,J ′ (A.31)

where µJ,J ′ = C1(J, J ′, F,mF , F
′,m′F , q)/

√
2J ′ + 1 and the coefficients are

C1(J, J
′, F,mF , F

′,m′F , q) = (−1)3F
′+J+F

√
(2F + 1)(2F ′ + 1)

{
J ′

F

J

F ′
1

I

}(
F

mF

1

q

F ′

−m′F

)
(A.32)

C2(J, J
′, F,mF , F

′,m′F , q) =
√

(2J ′ + 1) C1(J, J
′, F,mF , F

′,m′F ) (A.33)

depending on total angular momentum, F , hyperfine substate, mF , total orbital angular

momentum, J , and the polarization of the excitation, q. These coefficients were calculated

with the help of Mathematica with the functions “ThreeJSymbol” and “SixJSymbol.” The

coefficients C2 are calculated in Mathematica using

C2[F_, mF_, Fp_, mFp_, J_, Jp_,q_] :=
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(-1)^(3 Fp + J + F - mFp) Sqrt[(2 Jp + 1) (2 F + 1) (2 Fp + 1)]

ThreeJSymbol[{F, mF}, {1, q}, {Fp , -mFp}]

SixJSymbol[{J, 1 , Jp}, {Fp, 4, F}];

where the variables with “p” stand for the primed equivalents. These coefficients are listed

for the F = 9/2 → J ′ = 3/2 transition (D2 line) in Table A.4.; the remaining three

transitions can be calculated in a similar fashion.

A.4.3 High-field transition matrix elements

In strong magnetic fields, the states defined by quantum numbers |J,mJ , I,mI〉 are good

eigenstates, as was seen in earlier discussion. The selection rules are ∆J = 0,±1, ∆L = ±1,

∆mJ = 0,±1 and ∆mI = 0 [194]. We can see this by writing the Wigner-Eckhart equation

for these states, Eq. (A.24)

〈J,mJ , I,mI |er(1)q |J ′,m′J , I,m′I〉 = (−1)2J
′−mJ+J+1〈J ||er(1)q ||J ′〉

(
J

mJ

1

q

J ′

−m′J

)
〈I,mI |I ′,m′I〉

(A.34)

where the final matrix element enforces the selection rule mI = m′I , since the nuclear part

is unaffected by the dipole field. The 3-j coefficients give the mJ selection rule.
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Appendix B

Intensity dependence of optical density

B.1 Optical density for resonant light: calculations

B.1.1 Atoms at rest

To obtain quantitative results from absorption imaging, we measure the amount and

spatial distribution of light scattered from an incoming near-resonant beam. We compare

the intensity for beams with and without atoms and define the quantity, “optical density”

(OD) for a beam travelling in the r3 direction

OD(r1, r2) = − ln

(
I(r1, r2)

I0(r1, r2)

)
, (B.1)

where I0(r1, r2) is the intensity of the incident beam recorded when no atoms are present,

and I(r1, r2) is the intensity measured after the light has been scattered by the atoms.

The rate at which the atoms scatter light from the incoming beam depends on the

natural linewidth and the excited state fraction, which can be expressed as

γsc =
Γ

2

I/Isat
1 + I/Isat

, (B.2)

where I is the intensity of the incoming light, Isat = πhcΓ/3λ3 is the saturation intensity,

λ is the resonant wavelength and Γ is the natural linewidth of the transition.

As a beam travels in the r3 direction, the loss in its intensity as a function of distance

is equivalent to the power scattered from the beam, given by

dI

dr3
= ~ωLγscρ = −σsc ρ

(
I

1 + I/Isat

)
, (B.3)

153
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where ωL is the transition frequency of the transition used for imaging, ρ is the density

of the atoms, and σsc = 3λ2/2π is the resonant scattering cross section. Integrating this

equation we find the implicit expression for I (because OD(r1, r2) depends on I and I0)

OD(r1, r2) = OD0(r1, r2) +
I(r1, r2)− I0(r1, r2)

Isat
, (B.4)

where OD0(r1, r2) = −σsc
∫
ρ(r1, r2, r3) dr3 is the zero-intensity limit of the OD. When the

absorption is small, |I − I0| � Isat and the second term can be neglected. The lines in

Figs B.1 (a,b) show the solutions to this equation for three values of OD0.

B.1.2 Recoil-induced Doppler shift

A second consideration in quantifying the optical density is the recoil of the atoms caused

by the absorption and reemission of photons in the imaging process. The Doppler shift

associated with this motion will put the atoms out of resonance, modifying the absorption

characteristics. If we assume that the atom’s velocity increases, on average, by one recoil

velocity, vr, every scattering lifetime, 1/γsc, then the velocity as a function of time is

v(t) = vrγsct. The Doppler shift from the resonance frequency is ωD(t) = kv(t), where k

is the wavevector of the incident light. Assuming that laser is set to being on resonance,

ωD(t) is the time-dependent detuning for these recoiling atoms. The Doppler-modified,

time-dependent scattering rate is

γsc,D(t) =
Γ

2

I/Isat

1 + I/Isat +
[
2π
λ

I/Isat
(1+I/Isat)

vrt
]2 . (B.5)

Using the same method of integrating the expression for the scattered power Eq. B.3,

this time replacing γsc by γsc,D, we come to

OD(t) = OD0 +
I − I0
Isat

+ (kvrt)
2

[
Isat

I + Isat
− Isat
I0 + Isat

+ ln

(
I + Isat
I0 + Isat

)]
(B.6)

where, for clarity, we suppress the (r1, r2) dependence of I and I0. Taking the time average

of this expression, 〈OD〉 = 1
ttot

∫
ttot

OD dt, where ttot is the total imaging time,

〈OD〉 = OD0 +
I − I0
Isat

+
(kvrttot)

2

3

[
Isat

I + Isat
− Isat
I0 + Isat

+ ln

(
I + Isat
I0 + Isat

)]
. (B.7)

The lines in Figs. B.1(c,d) show the solutions to this equation for three OD0.
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Figure B.1: Optical density intensity dependence. Measured optical density OD vs. normalized
intensity, I0/Isat. Data is identical in all plots, theory lines neglect Doppler shift, as in from Eq. for
(a) and (b); theory lines include Doppler shift for (c) and (d). Theory lines are for OD0 = 0.08 (dash-
dot), 0.06 (solid) and 0.04 (dashed). Left plots are on a linear scale, right plots have a logarithmic
I0/Isat scale.

B.2 Optical density measurements

We measured the intensity dependence of the optical density by taking repeated images

of an ultracold cloud of 87Rb atoms. We assume that all clouds are prepared with the same

density characteristics, and thus a constant OD0. We use ttot = 100 µs pulses, vary the

incident intensity I0, and measure OD as a function of I0. The results are plotted with

the curves that both neglect (Figs. B.1(a,b)) and include (Figs. B.1(c,d)) the Doppler shift.

We see the data clearly requires the consideration of the Doppler shift to account for the

reduction in OD observed as a function of intensity.

To avoid the effects of the Doppler shift, we perform all of our experiments in the
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small I0/Isat regime, specifically, I0/Isat ≈ 0.1, which as can be seen in the logarithmic

plot Fig. B.1(d), the point after which the intensity dependence of the imaging becomes

important.



Appendix C

Atom number calibration

It is often important to know as precisely as possible the number of atoms in various

experiments. While the use of absorption imaging on the cycling transition should properly

account for the number, magnetic fields may slightly point in the wrong direction, and the

polarization of the imaging light may be imperfect. To calibrate the atom number, we

use the transition point for BEC and its dependence upon N . Both temperature and this

transition point can be determined with better accuracy than N .

C.1 Condensate fraction measurements

As part of the method to calibrate the atom number, we must determine the conden-

sate fraction as a function of temperature, in order to find the temperature at which the

condensate appears. In a partially condensed cloud, there is both a thermal and conden-

sate component. Because the condensate occupies only the ground state, its momentum

distribution is much narrower than that of the thermal cloud, which occupies many higher

momentum states.

We prepare 87Rb BECs in a well defined trapping potential, and measure their mo-

mentum distributions by turning off the potential and observing the expanding cloud after

some time of flight. The momentum distribution is bimodal – there is a broad thermal

distribution with a narrow peak in the centre corresponding to the BEC. Two pieces of

information are available from this measurement: the number of atoms in each component,

and the temperature of the thermal cloud.

To analyze the data, we fit a Bose-Einstein distribution function to the thermal wings
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of the momentum distribution. The optical density distribution gives yields the two-

dimensional integrated-density profile, OD = − ln(I/I0) = σres
∫
ρ(r) dr3, where σres is

the scattering cross-section. Figure C.1(a) shows an optical density profile for a cloud of

87Rb after 8 ms time of flight. The bimodal structure is evident in the left image. To

analyze the thermal part of the distribution, the central region, containing the information

about the condensate, is masked out, as in the right image.

A two-dimenstional function describing the thermal Bose cloud is fit to thermal part of

the OD distribution, the fitting function for which is

ODth(r1, r2) = ODpk
th × g2

(
z exp

(
−(r1 − r2,c)2

2σ21
− (r2 − r2,c)2

2σ22

))
+m1r1 +m2r2 + ODbkgd

(C.1)

where ODpk
th×g2(z) is the peak OD, z = exp(µ/kBT ) is the fugacity, (r1,c, r2,c) is the centre of

the cloud, (m1,m2) account for any slope in the background, and ODbkgd is the background

OD value. The function, g2 is the Bose-Einstein function, which we approximate near the

transition point as

g2(z) = (1− z) log(1− z) + 1.98z− 0.16z2 − 0.17z3. (C.2)

Profiles of this two-dimensional fit are shown in Figs. C.1(b) and (c), where the image and

fits have been summed along the perpendicular direction. The red curves show the function

ODth(r1, r2), while the blue fit is to the entire bimodal distribution. The area under the

red curves indicate the thermal atom number and their widths give the temperature.

The temperature of the cloud can be determined from the widths as kBTi = mω2
i σ

2
i /(1+

ω2
i t

2), where ωi is the trapping frequency in the r̂i direction. The number of thermal atoms

can be found by integrating over the part of the ODth distribution that is due to the atomic

signal

Nth =
1

σres

∫ ∫
dr1 dr2 ODpk

th × g2
(
z exp

(
−(r1 − r2,c)2

2σ21
− (r2 − r2,c)2

2σ22

))
. (C.3)

The total atom number, N , is obtained by numerically integrating over the entire OD

profile, after subtracting from the data the background slopes and offset from the fit. Using

this, the condensate fraction NC/N and temperature are both available.
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Figure C.1: Condensate fraction measurement.

C.2 Finding the transition temperature

To determine the transition temperature to BEC, we make BECs at a number of tem-

peratures above and below the transition point, which we can find roughly by looking for

the visual onset of bimodality in the cloud. The condensate fraction NC/N , temperature,

T , and total number N are extracted from each image as described above. Figure C.2 (top

panel) shows the condensate fraction as a function of temperature. The bottom panel shows

the total number of atoms at each temperature point, corresponding to the above data.

We determine the condensation temperature by finding the onset of BEC using the

intersection of two linear fits near the transition. Taking into account both finite-size and

interaction effects [195], the condensate temperature, TC for a gas of bosons in a harmonic
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Figure C.2: Number calibration us-
ing BEC transition temperature. Top:
Condensate fraction vs. temperature.
Linear fits to the coloured points (red
above TC, blue below) cross at TC.
Large green point indicates the loca-
tion of the crossing of the fits, TC =
640 ± 40 nK. Bottom: Atom number
as a function of temperature (due to
evaporation). Large green point indi-
cates TC, where N = 21000 ± 3000
atoms.

trap is

TC =T 0
C

(
1− 1.326

a

aHO
N1/6

)
− 0.6842

~ωar

kB
(C.4)

T 0
C =

~ω̄
kB

(
N

ζ(3)

)1/3

, (C.5)

where T 0
C is the critical temperature in the ideal case, ω̄ is the geometric mean of the trap

frequencies and ωar = (ωx+ωy +ωz)/3 is the arithmetic mean, kB is Boltzmann’s constant,

ζ(n) is the Riemann-zeta function, a is the s-wave scattering length, aHO = (~/mω̄)1/2 is

the harmonic oscillator length of the trap, and N is the number of atoms.

Given this relationship between temperature and number, we translate the measured

condensation temperature (TC = 640 ± 40 nK) into a corresponding atom number and

compare that to the one measured (in the bottom panel). Propagating these numbers

and their uncertainties, we arrive at a calibration factor Nactual = Nmeasured × (1.3 ± 0.3),

which accounts for the systematic uncertainty in our atom number, which is, for example,

N = 6600± 1700 in §5.4.
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