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Résumé

Dans cette theése, nous nous intéressons au probleme de l'extraction automatique
d’informations de contenu d’un signal audio de musique. La plupart des travaux existants
abordent ce probleme en considérant les attributs musicaux de maniére indépendante
les uns vis-a-vis des autres. Cependant les morceaux de musique sont extrémement
structurés du point de vue de ’harmonie et du rythme et leur estimation devrait se faire
en tenant compte du contexte musical, comme le fait un musicien lorsqu’il analyse un
morceau de musique.

Nous nous concentrons sur trois descripteurs musicaux liés aux structures harmoniques,
métriques et tonales d’un morceau de musique. Plus précisément, nous cherchons a en
estimer la progression des accords, les premiers temps et la tonalité. L’originalité de
notre travail consiste a construire un modele qui permet d’estimer de maniere conjointe
ces trois attributs musicaux. Notre objectif est de montrer que I'estimation des divers
descripteurs musicaux est meilleure si on tient compte de leurs dépendances mutuelles
que si on les estime de maniere indépendante. Nous proposons au cours de ce travail
un ensemble de protocoles de comparaison, de métriques de performances et de bases
de données de test afin de pouvoir évaluer les différentes méthodes étudiées. Afin de
valider notre approche, nous présentons également les résultats de nos participations a
des campagnes d’évaluation internationales.

Dans un premier temps, nous examinons plusieurs représentations typiques du signal
audio afin de choisir celle qui est la plus appropriée a l'analyse du contenu harmonique
d’un morceau de musique. Nous explorons plusieurs méthodes qui permettent d’extraire
un chromagram du signal et les comparons a travers un protocole d’évaluation original
et une nouvelle base de données que nous avons annotée. Nous détaillons et expliquons
les raisons qui nous ont amenés a choisir la représentation que nous utilisons dans notre
modele.

Dans notre modele, les accords sont considérés comme un attribut central autour
duquel les autres descripteurs musicaux s’organisent. Nous étudions le probleme de
I’estimation automatique de la suite des accords d’un morceau de musique audio en util-
isant les chromas comme observations du signal. Nous proposons plusieurs méthodes
basées sur les modeles de Markov cachés (hidden Markov models, HMM), qui permettent
de prendre en compte des éléments de la théorie musicale, le résultat d’expériences cogni-
tives sur la perception de la tonalité et I'effet des harmoniques des notes de musique. Les
différentes méthodes sont évaluées et comparées pour la premiere fois sur une grande base
de données composée de morceaux de musique populaire.

Nous présentons ensuite une nouvelle approche qui permet d’estimer de maniere si-
multanée la progression des accords et les premiers temps d’un signal audio de musique.
Pour cela, nous proposons une topologie spécifique de HMM qui nous permet de modéliser



la dépendance des accords par rapport a la structure métrique d’un morceau. Une impor-
tante contribution est que notre modele peut étre utilisé pour des structures métriques
complexes présentant par exemple l'insertion ou 'omission d’un temps, ou des change-
ments dans la signature rythmique. Le modele proposé est évalué sur un grand nombre
de morceaux de musique populaire qui présentent des structures métriques variées. Nous
comparons les résultats d’un modele semi-automatique, dans lequel nous utilisons les po-
sitions des temps annotées manuellement, avec ceux obtenus par un modele entierement
automatique ou la position des temps est estimée directement a partir du signal.

Enfin, nous nous penchons sur la question de la tonalité. Nous commencons par
nous intéresser au probleme de ’estimation de la tonalité principale d’un signal audio de
musique. Nous étendons le modele présenté ci-dessus a un modele qui permet d’estimer
simultanément la progression des accords, les premiers temps et la tonalité principale.
Les performances du modele sont évaluées a travers des exemples choisis dans la musique
populaire. Nous nous tournons ensuite vers le probleme plus complexe de ’estimation de
la tonalité locale d’un morceau de musique. Nous proposons d’aborder ce probleme en
combinant et en étendant plusieurs approches existantes pour I'estimation de la tonalité
principale. La spécificité de notre approche est que nous considérons la dépendance de
la tonalité locale par rapport aux structures harmoniques et métriques. Nous évaluons
les résultats de notre modele sur une base de données originale composée de morceaux de
musique classique que nous avons annotés.

L’estimation automatique des informations de contenu d’un signal audio de musique
est un probleme complexe. Nous espérons que ce travail est un pas en avant dans cette
direction, et qu’il ouvre de nouvelles perspectives.
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Abstract

This thesis is concerned with the problem of automatically extracting meaningful con-
tent information from music audio signals. Most of the previous works that address the
problem of estimating musical attributes from the audio signal have dealt with these el-
ements independently. However, musical elements are deeply related to each other and
should be analyzed considering the global musical context, as a musician does when he or
she analyzes a piece of music.

Our research concentrates on three musical descriptors related to the harmonic, the
metrical and the tonal structure. More specifically, we focus on three musical attributes:
the chord progression, the downbeats and the musical key. The scope of this work is to
develop a model that allows the joint estimation of the chords, the keys and the downbeats
from polyphonic music recordings. We intend to show that integrating knowledge of
mutual dependencies between several descriptors of musical content improves their estima-
tion. In our model, harmony is a core around which other musical attributes are organized.

We start by investigating several typical representations of the audio signal in order
to select the most appropriate one for the task of harmonic content analysis. We explore
several schemes for chromagram computation and investigate several issues related to
the use of each representation. We detail and explain the choice of the audio signal
representation we use as an input to our model.

We then concentrates on the problem of the automatic estimation of the chord progres-
sion, using chroma features as observation of the music signal. From the audio signal, a
set of chroma vectors representing the pitch content of the file over time is extracted. The
chord progression is then estimated from these observations using a hidden Markov model.
Several methods are proposed that allow taking into account music theory, perception of
key and presence of higher harmonics of pitch notes. They are evaluated and compared
to existing algorithms through a large-scale evaluation on popular music songs.

We then present a new technique for estimating simultaneously the chord progression
and the downbeats from an audio file. A specific topology of hidden Markov models that
enables modeling chord dependency on the metrical structure is proposed. This model
allows us to consider pieces with complex metrical structures such as beat insertion, beat
deletion or changes in the meter. The model is evaluated on a large set of popular music
songs that present various metrical structures. We compare a semi-automatic model, in
which the beat positions are annotated, with a fully automatic model in which a beat
tracker is used as a front-end of the system.

Finally, we focus on the problem of key estimation. In a first part, we concentrate
on the problem of estimating the main key of a piece. Relying on previous works on key
estimation, we extend the above-mentioned model to a model for simultaneous downbeat,
chord and key estimation from an audio signal. The model is evaluated on a set of
popular music pieces. We then draw our attention to local key finding. We propose to
address this problem by investigating the possible combination and extension of different



previous proposed global key estimation approaches. The specificity of our approach is
that we introduce key dependency on both the harmonic and the metrical structures. We
evaluate and analyze the results of our model on a new annotated database composed of
classical music pieces.

Building models for musical content estimation in which the interaction between mu-
sical attributes is encoded at the level musicians and trained human listeners do, when
they analyze a piece of music, is a very complex problem and one which is far from being
solved. However, we hope that our work is a step towards this direction.
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2 Introduction

1.1 Motivations

Within the last few years, the huge explosion of online music collections has become a
great source of attention. Specific demands, such as asking an online store to find a song
that fits his or her taste and musical expectation among millions of other tracks, became
common requirements to music listeners. In this context, techniques for interacting with
enormous digital music libraries at the song level are necessary. Content-based music
retrieval is therefore a very active and important field of research.

A piece of music can be characterized by a number of musical attributes such as
the melody, the chord progression, the instrumentation or the tempo. One of the most
important aspects of Music Information Retrieval (MIR) is the extraction and processing
of meaningful descriptors from the audio signal. This can be viewed as a subtask of the
more general task that is music transcription.

Manual annotation of the content of musical pieces is a very difficult and tedious
task that requires a huge amount of effort. It is thus essential to develop techniques for
automatically extracting musical elements from musical signals.

This is why there has been an increasing research interest within the last ten years in
using computers to analyze music as human beings can do. Humans are able to understand
music at different degrees, depending on their level of music training. Because we are
immersed with music, music understanding has become an inherent quality of human
beings.

Musicians or even non-trained persons are usually able to extract meaningful informa-
tion when listening to a piece of music. Some tasks, such as following the beats in a music
recording, are in general trivial, even for non-musicians, and do not require any particular
training.

More complex tasks need some musical training. For instance, identifying the key of a
music excerpt or describing music in terms of tonal and harmonic progression requires some
theoretical music knowledge. A person without a musical education is usually not able
to transcribe chords by ear from a recording whereas trained musicians can accurately
label chords from complex polyphonic recordings. This is a common exercise in music
academies. Even a non-trained musician can at least feel a change in harmony or in key
when listening to a piece of music.

Often regarded as an innate human ability, the automatic estimation of music content
information, however, proves to be a highly complex task.

1.2 Scope of the Thesis

This thesis is concerned with the problem of extracting meaningful content information
from music audio signals. Most of the previous works that address the problem of esti-
mating musical attributes from the audio signal deal with these elements independently.
However, when a musician analyzes a piece of music, his judgment is based on a global
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Relevant Music Theoretic Concepts and Terminology 3

musical context that encompasses various kinds of musical information. Musical elements
are deeply related to each other and are analyzed in context. For instance, the chord
progression is closely related to the metrical structure of a piece of music [Got01]: chords
will change more often on strong beats than on other beat positions in the measure. It is
also strongly related to the musical key: some chords are heard as more stable within an
established tonal context [Kru90].

We believe that exploiting the interrelationship between musical attributes for their
estimation should improve upon estimating them independently. This necessity has been
underlined in the past. In [Tem99], Temperley and Sleator observe that:

“[...] The idea, then, is to let the harmonic analysis influence the metrical analysis by
favoring strong beats at changes of harmony. This presents a serious chicken-and-egg
problem, however, since meter is crucial as input to harmony. One solution would be to
compute everything at once, optimizing over both the metrical and harmonic rules, but
we have not yet found an efficient way of doing this.”

Our research concentrates on three musical descriptors related to the harmonic, the
metrical and the tonal structure. More specifically, we focus on three musical attributes:
the chord progression, the downbeats and the musical key. All of them are some of the
most important attributes of Western tonal music.

The scope of this work is to develop a model that allows the joint estimation of the
chords, the keys and the downbeats from polyphonic music recordings. We intend to show
that integrating knowledge of mutual dependencies between several descriptors of musical
content improves their estimation.

1.3 Relevant Music Theoretic Concepts and Terminology

Before going any further, we briefly review some musical concepts that are central to our
thesis. This section aims at clarifying the music terminology that will be used in the
following chapters. All musical concepts are understood here in the context of Modern

Western music, i.e. after the 16" century.

1.3.1 Notes
When an instrument produces a note, the human listener perceives a pitch that is a
perceptual attribute of sound. In music, the term note is used to refer to the relative

duration and pitch of a given sound. More details about the pitch will be given in Chapter
3.

1.3.2 Key and Scales

In western tonal music, pitches are governed by structural principles. The system of
relationships between pitches corresponds to a key. A musical key implies a tonal center
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4 Introduction

that is the most stable pitch called the tonic and a mode (usually major or minor).

A musical scale is associated with each key. A scale is a series of notes arranged in
ascending or descending order. Two consecutive notes are separated either by a tone (7T),
a semitone (S). The harmonic minor scale comprises also a T'+ S interval. The position
of tones and semitones within a scale associated to a key characterizes its mode.

Figure 1.1 represents a C major scale and its relative A natural minor scale. There
are two common variations of the natural minor scale:

e the harmonic minor scale, in which the 7" degree, both ascending and descending
is raised a semitone (G# in Figure 1.1). We will consider this type of minor scale in
Chapter 6.

e the melodic minor scale, in which the 6t and the 7"

semitone( F'# and G# in Figure 1.1).

ascending degrees are raised a

D>

QéPO

i

Figure 1.1: Example of major and minor scales: C major, A minor. The accidentals
that characterize the harmonic and melodic minor scales are represented in grey.

In this work, we consider enharmonic equivalence, i.e. notes with different spelling but
sounding the same are considered the same (C# is equivalent to Db). In Western tonal
music, there are 12 pitches in an octave range. The major and minor scales and twelve
tonic give rise to a total of 24 possible keys.

In a musical scale, the tonic or first scale degree (I) is the first note and it is the
pitch upon which all other pitches of a piece are hierarchically referenced. The other scale
degree, in the ascending order are: the supertonic (II), the mediant (III), the subdominant
(IV), the dominant (V), the leading tone (VI) and the subtonic (VII). In the next chapters,
we will refer in particular to the third and the fifth scale degrees, the mediant and the
dominant, since the combination of these two notes plus the tonic corresponds to the triad
formed on the tonic note, which is the most significant chord in a given key.

1.3.3 Chords

Chords that are specific to a key can be constructed around its scale. In Western tonal
music, the chord progression determines the harmonic structure of a piece of music. It is
strongly related to the musical key of the piece.
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Relevant Music Theoretic Concepts and Terminology 5

In this dissertation, a chord is defined as a combination of three or four notes sounded
simultaneously. We include in this definition combinations of notes that sound nearly
simultaneously, such as the arpeggio, which corresponds to an indivisible group of notes
that are played one after the other. A succession of chords over time is called a chord
Progression.

Chords may be classified according to the number of notes they contain. Two-note
combinations are called dyads, three-note combination are called triads. A chord is com-
monly characterized by its root note and by the intervals it contains. Classical triads are
built from major and minor thirds, i.e. the distance between successive pairs of notes
are 3 or 4 semi-tones. The major, minor, augmented and diminished chords are the most
commonly used triads. Figure 1.2 illustrates the four basic triads based on the root-note
C. Table 1.1 gives the relative semitone values for each triad.

Table 1.1: Compositions of the four basic triads computed on a root-note corresponding
to a semitone value n.
chord major augmented minor diminished
root note n n n n
first third (major) n+ 4 | (major) nt+ 4 | (minor) n+ 3 | (minor) n+ 3
second third | (minor) n+7 | (major) n4+ 8 | (major) n+ 7 | (minor) n+ 6

A
)
4™} & N
© 3 — :
g & & %
CM Caug Cm Cdim

Figure 1.2: Example of common classical triads. From left to right: C major (C-E-G),
C augmented (C-E-G#), C minor (C-Eb-G), C diminished (C-Eb-Gb).

Harmony is here understood as the system of structural principles governing the com-
bination and the relationship between notes and chords.

In Western tonal music, the term tonality is often used to describe the relationships
of melodies and harmonies relative to the tonic.

1.3.4 Metrical Structure

The metrical structure of a piece of music is a hierarchical structure. The meter is “the
sense of strong and weak beats that arises from the interaction among hierarchical level
of sequences having nested periodic components” [PEBBO05].

e The most salient metrical level, called the tactus or beat level is a moderate level
that corresponds to the foot-tapping rate.

e The tatum level corresponds to the “shortest durational values in music that are
still more than accidentally encountered ” [KEAO06]. For instance, in Figure 1.3, the
tatum level corresponds to the sixteenth notes.
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6 Introduction

e Musical signals are divided into units of equal time value called measures or bars.

e The relationship between measures and tactus/tatum is defined by the meter, which
is usually indicated by a time signature, the number of units per measure.

e One important problem related to meter analysis is to find the position of the down-
beat or the first beat of each measure.

The various metrical levels are illustrated in Figure 1.3.
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Figure 1.3: [Illustration of the various metrical levels (extract of Schumann,
Kinderzenen).

1.4 Applications

Within the context of Music Information Retrieval, many applications based on content-
based indexing and retrieval have emerged, such as music classification, artist identifica-
tion, mood classification or structural audio segmentation. These applications are mostly
based on the use of musical descriptors that are extracted from the audio signal.

For instance, two different versions of the same underlying musical piece generally
share a similar harmonic structure. The detection of cover versions is thus frequently
based on the chord progression [SGHS08]. This can also be used for finding of plagiarisms
1. For instance the main theme of French nursery rhyme A wvous dirais-je Maman hag

been harmonized and used by several composers such as Mozart (piano Variations on A
vous dirais-je Maman K. 265) or Liszt (Années de Pélerinage).

The chord progression captures the characteristics of the accompaniment of musical
pieces and their character. The knowledge of chord progression can thus be used for mood
recognition, especially in popular music, for instance by measuring the ratio of major to
minor chords in a piece of music. Information about the key can be used as well.

The automatic extraction of the harmonic structure may also be very useful to musi-
cologists who can perform music analysis on large corpus of music pieces for which they

LA plagiarism is piece produced by a compositor by imitating another compositor’s music while pre-
senting it as one’s original work.
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Objectives 7

may not have the score but only the recordings. It can also be used for the purposes of
automatic composition.

Beat is fundamental to the perception of Western music. Beat/downbeat information
can provide structural information about a live musical performance that may be used
to make it interact with computer systems. Beat and downbeat tracking can be used
for synchronizing a musical performance with some electronic devices such as electronic
musical instruments or lights.

There are no limits to the range of possible applications of music content extraction.
We thus believe that it is important to pursue efforts towards building rich models that
can analyze music as musicians do.

1.5 Objectives

The objectives of this dissertation are listed bellow:

1. Review and analyze the previous approaches for chord progression, downbeat, global
and local key estimation.

2. Compute audio features that capture the harmonic content of the signal and that
will serve as an input to our model (without the need of an exact transcription).

3. Provide a reliable model for chord estimation that will serve as a baseline for studying
the interrelationship with other musical attributes.

4. Provide a model that allows the joint estimation of the chords, the keys and the
downbeats from polyphonic music recordings.

5. Consider complex cases of harmonic and metrical structure (variable meter, key
changes).

6. Provide an analysis of our models through an evaluation over a large database of
popular and classical music pieces.

7. Demonstrate that integrating knowledge of mutual dependencies between several
descriptors of musical content improves their estimation.

1.6 Overview of the Thesis

This thesis is organized as follows. Figure 1.4 shows an overview of the interactions
between musical attributes considered in the various chapters. In this dissertation, we
consider harmony as a core around which other musical attributes are organized.

Chapter 2 - Databases and Evaluation Measures Used in This Dissertation.
This chapter presents the evaluation methodology adopted along this thesis. In order to
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8 Introduction

avoid tedious repetitions of our evaluation methodology through the different chapters, we
give in this chapter an overview of our evaluation test-sets and rules.

Chapter 3 - Towards a Signal Representation for Harmonic Content Analysis.
This chapter investigates a number of typical representations of the audio signal in order
to select the most appropriate one for the task of harmonic content analysis. We detail
and explain the choice of the audio signal representation we use as an input to our model.

Chapter 4 - Chord Progression Estimation From an Audio File. This chapter
concentrates on the problem of the automatic estimation of the chord progression from an
audio file, using chroma features as observation of the music signal. From the audio signal,
a set of chroma vectors representing the pitch content of the file over time is extracted. The
chord progression is then estimated from these observations using hidden Markov models.
Several methods are proposed that allow taking into account music theory, perception of
key and presence of higher harmonics of pitch notes. They are evaluated and compared
to existing algorithms through a large-scale evaluation on popular music songs.

Chapter 5 - Joint Estimation of Chords and Downbeats. This chapter presents
a new technique for joint estimation of the chord progression and the downbeats from
an audio file. A specific topology of hidden Markov models that enables modeling chord
dependency on the metrical structure is proposed. This model allows us to consider pieces
with complex metrical structures such as beat insertion, beat deletion or changes in the
meter. The model is evaluated on a large set of popular music songs from the Beatles
that present various metrical structures. We compare a semi-automatic model in which
the beat positions are annotated, with a fully automatic model in which a beat tracker is
used as a front-end of the system.

Chapter 6 - Interaction Between Chords, Downbeats and Keys. This chapter is
concerned with the problem of key estimation. In a first part, we focus on the problem of
global key estimation. Relying on previous works on key estimation, we extend the model
presented in the previous chapter to a model for simultaneous downbeat, chord and key
estimation from an audio signal. The model is evaluated on a set of popular music pieces.
We then draw our attention to local key finding. We propose to address this problem by
investigating the possible combination and extension of various approaches that have been
previously proposed for global key estimation. The specificity of our approach is that we
introduce key dependency on both the harmonic and the metrical structures. We evaluate
and analyze our results on a new database composed of classical music pieces.

Chapter 7 -Conclusion. The last chapter of this dissertation summarizes the contri-
butions of the present PhD work and proposes some perspectives.

1.7 Main Thesis Contributions

The principal contributions provided in this thesis are:

1. Chapter 3: An analysis and evaluation of several signal features extraction methods
for harmonic content analysis of audio music.
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Main Thesis Contributions

Global Key

Chap 6.1

Signal Features
Chap 3

Chap 6.1

Figure 1.4: Interrelationships between chords, keys and downbeats considered in this

2. Chapter 4: A model for the estimation of chords that encodes musical context in-
formation, takes into account the problem of harmonics in the signal, and does not

need specific training.

3. Chapter 5: A model for the simultaneous estimation of chords and downbeats that
We focus in

Chord
Progression
Chap 4

Chap 6.2

Chap 5

Downbeats

dissertation.

Local Key

Chap 6.2

exploit the interrelationship between these two musical attributes.
particular on the problem of variable meter and imperfect beat tracking.

4. Chapter 6: A model for the simultaneous estimation of chords, main key and down-
beats that exploits the interrelationship between these three musical attributes and
an approach to local key estimation that is based on the harmonic and the metrical

structure.
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Chapter 2

Databases and Evaluation
Measures Used in This

Dissertation

This chapter presents the evaluation methodology adopted along this thesis. In the following
chapters, we evaluate the performances of various models. For this, we rely on some
evaluation measures and some test-sets that are common to all of the proposed systems.
In order to avoid tedious repetitions of our evaluation methodology through the different
chapters, we give in this chapter an overview of our evaluation test-sets and rules.

Contents
2.1 Introduction . . . . . . . .. . . @ i i i i i e e e e e e e e e e 12
2.2 About Evaluation . . ... ... ... ...ttt 12
2.3 Music Collections for Evaluation . .. ... .............. 12
2.4 Evaluation measures . . . . . . . . . i 0 i ittt e e e e e e e e 18
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12 Databases and Evaluation Measures Used in This Dissertation

2.1 Introduction

Evaluation is an essential aspect in all areas of computational music analysis. This chapter
is devoted to the evaluation methodology adopted along this thesis. In the following
chapters, we evaluate the performances of various models. For this, we rely on some
evaluation measures and some test-sets that are common to all of the proposed systems.
In order to avoid tedious repetitions of our evaluation methodology through the different
chapters, we give in this chapter an overview of our evaluation test-sets and rules.

Cross-references to this chapter will be made in the evaluation sections of the following
chapters. We would advise the reader to start by having only a quick look at this chapter
and come back when needed.

The chapter is divided into two main sections. Section 2.3 presents the various music
collections used in this thesis to evaluate our work. In Section 2.4, we present and explain
the evaluation measures used to measure the performances of our models on the test-sets.

2.2 About Evaluation

When designing a system that extracts some information from the audio signal, one must
carefully evaluate the performances and the quality of the proposed models. In this dis-
sertation, we are mainly concerned with two aspects of evaluation. On the one hand, we
want to compare with each other several methods developed for a given task, or we want to
measure whether certain changes in a given method lead to an improvement in the model
performances. For instance, in Chapter 3, we compare several feature extraction methods
and intend to select the best one among all. On the other hand, we are concerned with
measuring the performances of a given method and measure its retrieval relevance. For
instance, in Chapter 5, we aim to quantify the proportion of downbeat locations correctly
estimated by our model.

2.3 Music Collections for Evaluation

In this section, we detail the characteristics of the databases used for evaluation of the mod-
els proposed in this thesis. In chapter 3, we conduct some experiments on two databases
consisting of short excerpts of audio. In what follows, they are referred to as the Sig-
nal Experiment test-set. The rest of our work is mainly evaluated on two databases that
are referred to as the Beatles test-set and the Piano Mozart test-set. These databases
have been manually annotated in chords, keys, beats and downbeats either by previous
researchers working on the same field, or by trained musicians, or by the author. This is
described below.
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2.3.1 Signal Experiment Test-set

The Signal Experiment test-set consists of a number of short excerpts of about 20 seconds
extracted from audio recordings. It is divided into two subsets:

1. Non-percussive audio DATClas corresponds to audio excerpts of classical music with
various instruments: string quartet, solo piano and orchestra.

2. Percussive audio DATPop corresponds to audio excerpts of popular and rock music
that contains voices and drum sounds.

All the excerpts have been hand-labeled in chords by the author. The chords are
annotated against a time grid defined by the beats. The detail of the excerpts is given in
Table 2.1.

Table 2.1: Detail of the Signal Experiment test-set.

Composer | Title
Beethoven | String quartet Op. 127 1 extl
Beethoven | String quartet Op. 131 6 extract 1
Beethoven | String quartet Op. 131 6 extract 2
Mozart Piano sonata KV 283 2 Andante CM extract 1
Mozart Piano sonata KV 309 1 CM extract 1
Mozart Piano sonata KV 310 1 Am extract 1

DATClas .
Mozart Piano sonata KV 310 1 Am Kempff extract 1
Mozart Piano sonata KV 310 1 Am Perahia extract 1
Mozart Piano sonata KV 310 1 Am Richter extract 1
Beethoven | symphony no 5 extract 1
Beethoven | symphony no 5 extract 2
Beatles Misery
Beatles Love Me Do extract 1
Beatles I Should Have Known Better extract 1
Beatles I m a Loser extract 1
Beatles Yesterday extract 1
Beatles Yesterday extract 2

DATPop Enya Caribbean blue extract 1
Enya Caribbean blue extract 2
Queen Lazing on a Sunday afternoon extract 1
Queen Lazing on a Sunday afternoon extract 2
Shack Natalies Party extract 1
Shack Natalies Party extract 2

2.3.2 Popular Music: The Beatles Test-set

In the MIR community, works related to chord estimation have almost exclusively been
evaluated on the Beatles test-set since the chord labels annotations are freely available.
This test-set is composed of 180 songs divided into 13 albums. All the recordings are
polyphonic, multi-instrumental and contain drums and vocal parts. The list of the tracks
and the corresponding albums can be found in Annex 7.2.
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14 Databases and Evaluation Measures Used in This Dissertation

2.3.2.1 Chord Annotations

The chord annotations where kindly provided by C. Harte from the Queen Mary University
of London'. This annotated test-set is by far the largest one available today.

The chords are annotated according to a special grammar proposed for chord labeling
by Harte et al. in [HSAGO5]. The annotation style that is adopted intends to be simple
and intuitive to write and understand for musically trained individuals. The chords are
defined by three parameters, the root note of the chord, the quality (component intervals
that make up the chord relative to the root), and the inversion (degree of the chord played
as its bass note). For instance, a C major chord will be annotated by C : (3,5), which
reflects that it is a triad composed of a major third and a fifth, constructed on a root note
of C. Shorthand labels for common chords are also proposed.

The original chord annotations have been obtained either from listening to the audio
or from music scores and they correspond to the exact transcription of the chords that are
played. They thus present a large variety of chord labels including some complex chords
such as major and minor 6", 7t or 9",

We aim to compare the output of our algorithm with the ground-truth annotations.
Since our chord lexicon is composed only of major and minor triads, we have performed
a mapping from complex chords in the annotation to their root triads. This point is
important when analyzing the results. For instance, a Dm7 (D-F-A-C) chord is considered
as a Dm chord (D-F-A). The augmented chords, which include a major third, have been
mapped to major chords whereas the diminished chords, which include a minor third, were
mapped to minor chords.

Analysis of the complete set of the Beatles test-set has shown that most of the chords
correspond to major and minor triads. It was found in [MDHT07] that major chords
prevail, accounting for 76% of all chords, whereas the minor chords account for 24%.

2.3.2.2 Key Annotations

We select 55 Beatles songs from the first eight albums for which we assigned a global key.
We select songs that remain in the same key from the beginning to the end so that there
are no modulations. The list of the songs with the corresponding global keys is given in
Table 2.2. This subset of the complete Beatles test-set will be referred to as the Beatles
test-set_key in the following.

2.3.2.3 Metric Structure Annotation

The tactus, tatum and downbeat positions of the Beatles songs were manually annotated
by the author and checked by trained musicians.

It has been annotated using the Open Source tool Wavesurfer? placing on-the-fly

Lwww.elec.qmul.ac.uk/digitalmusic/
*www.speech kth.se/wavesurfer/
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Table 2.2: Beatles songs annotated in global key: Beatles test-set_key.

Album Title Key
01 - I Saw Her Standing There EM
03 - Anna (Go To Him) DM

04 - Chains A#M
05 - Boys EM
Please Please Me 06 - Ask Me Why EM
07 - Please Please Me EM
08 - Love Me Do GM
09 - P. S. T Love You DM
13 - There is A Place EM
01 - It Won t Be Long EM
02 - All I’ ve Got To Do EM
03 - All My Loving EM
05 - Little Child EM
. 06 - Till There Was You FM
With The Beatles 07 - Please Mister Postman AM
08 - Roll Over Beethoven DM
09 - Hold Me Tight FM
12 - Devil In Her Heart GM
13 - Not A Second Time GM
02 - I Should Have Known Better GM
03 - If T Fell DM
05 - And I Love Her EM
A Hard Days Night 06 - Tell Me Why DM
08 - Any Time At All DM
11 - When I Get Home AM
12 - You Can t Do That GM
01 - No Reply CM
02 - I am a Loser GM
04 - Rock and Roll Music AM
05 - I will Follow the Sun CM

06 - Mr. Moonlight F#M
Beatles For Sale 07 - Kansas City- Hey, Hey, Hey, Hey GM
08 - Eight Days a Week DM
09 - Words of Love AM
11 - Every Little Thing AM
13 - What You are Doing DM
02 - The Night Before DM
04 - I Need You AM
Help 08 - Act Naturally GM
09 - It s Only Love CM
10 - You Like Me Too Much GM
12 — I’ ve Just Seen a Face AM
01 - Drive My Car DM
05 - Think For Yourself GM
Rubber Soul 11 - In My Life AM
14 - Run For Your Life DM
08 - Good Day Sunshine BM
Revolver 09 - And Your Bird Can Sing EM
10 - For No One BM
13 - Got To Get You Into My Life GM
02 - With A Little Help From My Friends EM
04 - Getting Better CM
Sgt Peppers Lonely Hearts Club Band 05 - Fixing A Hole FM

09 - When I m Sixty-Four DbM
12 - Sgt. Pepper s Lonely Hearts Club Band (Reprise) | DM

markers while listening to the music. Markers have then been manually corrected in order

to correct the inherent software latency.

Meter information for each song was provided by the American musicologist Alan W.
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16 Databases and Evaluation Measures Used in This Dissertation

Pollack®. The original set comprises 180 songs of the Beatles. We reduced it to 165
songs removing songs having an overcomplicated metric structure and containing parts
where downbeats were perceptually ambiguous and were extremely difficult to predict
and annotate, even for a trained musician. For instance, the song Good Morning, Good
Morning was not analyzed because, according to A.W. Pollack, the meter is “4/4 in intro,
bridge and outro; anything but predictable in verse”. For this reason, those files were not
annotated.

The songs of the test-set can be classified according to their metric structure in the
following way:

e 8 songs are in 3/4 meter

e 9 songs have a variable meter (presenting at least one change in time signature, more
than two for most of them)

e 25 songs present some insertion or deletion of beats (insertion of a measure with
unexpected time-signature in a constant meter passage that does not musically cor-
respond to a change in the meter.)

e The rest of the songs have a constant 4/4 meter.

The detail of those songs is given in Table 7.4.

Table 2.3: Evaluated songs that have a particular metric structure.
Meter | Title (album/song number)

Baby’s In Black (4/3)

You’ve Got To Hide Your Love Away (5/3)
Norwegian Wood (This Bird Has Flown) (6/2)
She’s Leaving Home (8/6)

Long, Long, Long (11/7)

Oh! Darling (1/4)

Dig A Pony (13/2)

Dig It (13/5)

A Taste Of Honey (1/12)

Lucy In The Sky With Diamonds (8/3)

Being For The Benefit Of Mr. Kite (8/7)
Strawberry Fields Forever (9/8)

variable | All You Need Is Love (9/11)

Happiness Is A Warm Gun (10/8)

I Want You (She’s So Heavy) (12/6)

Two Of Us (13/1)

I Me Mine (13/4)

3/4

2.3.3 Classical Music: The Piano Mozart test-set

The Piano Mozart test-set was introduced for the purpose of evaluating the performances
of the local key algorithm. We are not aware of any available test-set that contains

3http://www.icce.rug.nl/~soundscapes/DATABASES/AWP /awp-notes_on.html
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pieces annotated in local keys. We decided to annotate some Mozart piano pieces for
two reasons. First they are interesting from the point of view of local key because they
contain many modulations. Secondly, it was easier to annotate these pieces than others
because the author is very familiar with them. The test-set consists of 5 movements of
Mozart piano sonatas listed in Table 2.4 corresponding to about 30 minutes of audio music.

Table 2.4: The Piano Mozart test-set

Reference of the piano sonata | movement
KV 283 1
KV 283 2
KV 309 1
KV 310 1
KV 311 2

The author and two other trained musicians from the Musikhorshule of Karlsruhe
(Germany) manually annotated the chord and key progression ground truth. First, a list
of the chords and keys with their duration in beats has been provided. Beat and downbeat
locations were annotated by hand with the help of the software Wavesurfer. Then, the list
was automatically mapped to the annotated beat locations resulting in the ground truth
we use. The pieces have been annotated in mostly by ear but also relying on the scores
when ambiguities were found.

It has to be noticed that it is very hard to label Mozart pieces in chords and mu-
sical keys, even for a well-trained musician because on the one hand, there are a lot of
ornamental notes (such as appoggiaturas, suspensions, passing notes etc.) and on the
other hand, harmony is frequently incomplete (some notes of the chord are missing). This
makes the choice of chord labels very difficult. Changes from one key to another are often
ambiguous, in particular when they are very short. Moreover, modulation is very often
a smooth process, it can take several bars to establish properly a tonal center. Segments
corresponding to transition from one key to another have been labeled as transition parts
and are ignored in the evaluation.

2.3.4 Databases Used for Evaluation in Each Chapter

e In Chapter 4, we compare and evaluate several chord estimation algorithms using
the first eight albums of the Beatles test-set. This corresponds to a total of 110
songs.

e In Chapter 5, we evaluate our chord/downbeat simultaneous estimation model using
a subset of 165 of the 180 songs of the Beatles test-set. The songs that have not been
used are referenced in Table 2.5.

e In Chapter 6, we evaluate the model for simultaneous chords, downbeats and global
key on the 55 Beatles songs annotated in global key and described above. We
evaluate our local key estimation algorithm on the Piano Mozart test-set.
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Table 2.5: Beatles songs not considered in the evaluation in Chapter 5.

Album Song number
7 87-91-97
8 105 - 107 - 108
10 124 - 127
11 140 - 141 - 142 - 150
12 158
13 171 - 180

2.4 Evaluation measures

In this section, we present the measures that have been used for evaluating the various
algorithms that we have implemented. The chord, key and downbeat results discussed
and analyzed in the next chapters (Chapters 4, 5 and 6) have been obtained relying on
these measures. For each musical attribute considered, we evaluate the performances of
our model by comparing the estimation (output of our algorithm) with the ground truth
(human manual annotations).

2.4.1 Beat and Downbeat Tracking Evaluation Measure

In Chapter 5, we evaluate the performances of our downbeat tracking model. We also
evaluate the performance of a beat tracker that is used as a front-end of our system. For
this, we compare the beat/downbeat times of our system output with the hand-labeled
beat/downbeat times that are considered as the correct beat/downbeat locations (see
Figure 2.1).

annotated downbeats:
[onset times]

estimated downbeats:
audio signal [onset times] :
downbeat evaluation

—_—

estimation model

Precision P Recall R F-measure F

Figure 2.1: Overview of the beat/downbeat evaluation measure.

It is important to notice that it is very difficult to annotate beat and downbeat locations
in an objective manner since it is a perceptual concept. Human experts may in particular
disagree on the downbeat locations when the structure of the music piece is complex. As
underlined above, this is one of the main reason why we do not use the entire Beatles
test-set for downbeat tracking evaluation.

A large number of evaluation measures for beat/downbeat tracking have been pro-
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posed in previous works. We refer the reader to [Dav07] for a detailed review. In this
work (chapter 5), the evaluation is performed using the standard Precision, Recall and
F-measure. This measure has been previously used by Dixon in [Dix06].

e Precision P is defined as the ratio of relevant retrieved beat/downbeat positions
from the total of retrieved ones.

e Recall R is defined as the ratio of relevant retrieved beat/downbeat positions from
the total of relevant positions.

e The F-measure F' combines the two using the ratio of their geometric to arithmetic

. [ — 2RP
mean: F' = yerw =R

An estimated beat position is considered as correct if it is within a given tolerance
window of the ground truth time.

Following [Pee09], the tolerance window w is defined as 10% of the minimum (over
time) distance between two successive beats in the track. It is centered on the estimated
beats when computing the Precision and centered on the annotated beats when computing
the Recall. The tolerance window depends on the local tempo (distance between two beat
markers) in order to avoid drawing misleading conclusions from the results. Indeed, a
fixed tolerance window of 0.166 s for instance would be very restrictive for slow tempi
(half-beat duration of 0.5 s at 60 bpm) but would mean accepting counter-beats as correct
for fast tempi (half-beat duration of 0.166 s at 180 bpm).

Let ¢ denote the number of correct beat/downbeat detections, f* the number of false
positive (unmatched reported beat times, i.e. beats estimated outside of any of the toler-
ance windows) and f~ the number of false negative (unmatched correct beat times, i.e.
misses), the Precision, Recall and F-measure can be expressed as following:

c
P=—
c+ ft
c
R:
c+ f~

The beat/downbeat evaluation measure is illustrated in Figure 2.2.

2.4.2 Chord Evaluation Measures

We aim at comparing the output of our chord estimation algorithm with the ground-truth
annotations. As stated above, since our chord lexicon is composed only of major and
minor triads, we have performed a mapping from complex chords in the annotation to
their root triads. We consider two aspects of chord estimation: the label accuracy i.e.
how the estimated chord is consistent with the ground truth (Chapters 4, 5 and 6) and
the segmentation accuracy i.e. how the detected chord changes are consistent with the
actual locations ( see Chapter 5). In Figure 2.3, we provide an overview of the chord
evaluation measure.
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Figure 2.2: Illustration of beat/downbeat evaluation measure. The ground-truth po-

sitions are indicated by solid lines and the estimated beat positions by dashed lines.

a_1,ak,ar,1: annotated beats, c: correct estimation, f1: false positive, f~: false nega-
tive, d: duration between two annotated beats.

annotated chord progression
(ground truth):
[onset time] [offset time] [label]

estimated chord progression:
[onset time] [offset time] [label]

audio signal

chord estimation evaluation
—_—
model
chord label chord label accuracy including chord segmentation
accuracy neighboring chords accuracy

Precision P Recall R F-measure F

Figure 2.3: Overview of the chord evaluation measure.

2.4.2.1 Label Accuracy

The chord label accuracy measure is illustrated in Figure 2.4 and is defined as follows.

For each song s of the test-set, let T4 = (ta1,tA2,-..,tan) denote time positions corre-
sponding to the annotated (ground truth) chord changes and let Tp = (tg1,tg2,...,tEN)
denote time positions corresponding to the estimated chord changes. We note T' = Ty UTE.
We note {Ty = [tk,tr+1]} the series of segments defined by this union. Each segment
[tk trt1] € T has a length di,. We note C, (Cy) the estimated (annotated) chord over Tj.
The chord estimation rate ug is computed as:
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Figure 2.4: Illustration of the chord label accuracy measure.

>
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In this dissertation, the chord estimation rate pus will be referred to as the chord label
accuracy. Note that in this study, we do not consider “non-existing chords”, noted “N” in
the annotation (denoting noise, silent parts or non-harmonic sounds). They are counted
as errors in the evaluation.

s = 100 x

(2.1)

The chord estimation results we give in the next chapters correspond to the average of
the values corresponding to the mean and standard deviation of correctly identified frames
per song, computed across all the songs belonging to the test-set.

2.4.2.2 Segmentation Accuracy

The chord segmentation accuracy is evaluated using a measure similar to the one chosen
for downbeat evaluation. We use the standard Precision P (ratio of detected chord changes
that are relevant), Recall R (ratio of relevant chord changes detected) and F-measure F,
using a tolerance window w of 30% of the minimum distance between two beats in the
track. w is chosen to be larger than the one used for downbeat evaluation but below the
tatum period.

2.4.2.3 Neighboring Chords Confusions

We will also refer to the chord estimation results considering neighboring triad confusions.
Harmonically close chords are in general neighbors on the circle of fifths (see Chapter 6).
The hierarchy between chords presents some similarities with the relationships within keys.
We thus follow for chord estimation the procedure adopted during the MIREX 2005 Key
estimation contest, where keys were considered as close if they had one of the following
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relationships: distance of fifth, relative minor and major and parallel i.e. having the same
tonic but different mode (major or minor). Chords are here considered as harmonically
close if they have one of the particular relationships described in Table 2.6.

Table 2.6: Example of particular relationships between a C major chord and other chords.
Weights attributed to neighboring chords in comparison with MIREX 2005 key estimation

task.
Reference chord | C major | weight chord | weight key (MIREX 2005)
Relative Am 1 0.3
Parallel Cm 1 0.2
Dominant GM 1 0.5
Subdominant FM 1 0.5

2.4.3 Keys
2.4.3.1 Main Key

In the first part of Chapter 6, the key estimation evaluation is performed using an 8-fold
cross-validation. The test-set is divided into eight parts according to the albums and each
part is evaluated using the seven remaining parts as training data. We indicate the rate
of correct estimation using two evaluation measures:

e EE (exact estimation) indicates the percentage of exactly estimated key,

e ME (MIREX estimation) gives the estimation rate according to the measure pro-
posed for the MIREX 2005 key estimation task. Neighboring keys are taken into
account (see Table 2.6) and the score is obtained using the following weights: 1
for correct key estimation, 0.5 for perfect fifth relationship between estimated and
ground-truth key, 0.3 if detection of relative major/minor key, 0.2 if detection of
parallel major/minor key.

For an overview of the main key evaluation measure, see Figure 2.5.

2.4.3.2 Local Keys

In the second part of Chapter 6 devoted to local key estimation, we consider, as in [CV05],
two aspects of the results: the key label accuracy i.e. how the estimated key is consis-
tent with the ground truth, and the key segmentation accuracy i.e. how the detected
modulation points are consistent with the actual locations. The local key label accuracy
evaluation measure is the same as the chord label accuracy evaluation measure used for
chord estimation.

The key segmentation accuracy is expressed with the Precision, Recall and F-measure.
Key changes are not abrupt and often last several bars. Two established keys are often
separated by a transition part where no key is firmly established. These parts, which have
been labeled as transition parts 7' in the ground truth, need to be taken into account in
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annotated global key

estimated global

key estimation key evaluation
—
model

Exact Key Mirex Key
Estimation EE Estimation ME

audio signal

Figure 2.5: Overview of the main key evaluation measure.

the evaluation of segmentation accuracy. The tolerance window chosen in the case of local
key estimation is thus larger than in the case of chord estimation: we present in Chapter
6 results with w corresponding to 1 or 2 bars.

2.4.4 About Statistical Significance Testing

During our experiments, we will use paired samples t-test (or dependent samples t-test) in
order to compare the various methods we propose. They will be used to measure whether
if the changes in the results from one method to another are statistically significant or
not. Paired samples t-test is a statistical technique that allows the comparison between
two population means when the two samples that are correlated.

2.4.5 About Evaluation of Algorithms Based on Training

In this dissertation, we evaluate some algorithms based on training: in Chapter 4, Sections
4.4.3.1 and 4.4.4.4, the chord model parameters are trained on a labeled database, as well
as the key-dependent chord transition matrix proposed in Chapter 6, Section 6.3. These
algorithms are evaluated on the Beatles test-set. Let k denote the number of albums
considered in the test-set. The algorithms are evaluated using a k-fold cross-validation.
The test-set is divided into k parts according to the albums and each part is evaluated
using the £ — 1 remaining parts as training data.

This procedure is adopted in order to avoid the so called “album effect” [WFSO01]
[KWPO06]. A given album is generally recorded within a short time period and songs from
the same album are likely to share common spectral characteristics (choice of instrumen-
tation, audio post-production, etc.), whereas variation in the artist’s musical style over
the year may vary more between albums. This is why we use complete albums as training
while the others are used as testing.
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Chapter 3

Towards a Signal Representation
for Harmonic Content Analysis

This chapter investigates a number of typical representations of the audio signal in order to
select the most appropriate one for the task of harmonic content analysis. We explore sev-
eral schemes for chromagram computation and investigate several issues related to the use
of each representation. We detail and explain the choice of the audio signal representation
we use as an input to our model.
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3.1 Introduction

In this dissertation, we are interested in estimating various musical attributes that are
centered on the chord progression. We work directly on the audio signal. In computational
music analysis, the first step of any algorithm that works on audio is to extract a set of
feature vectors that represent the signal.

Harmonic analysis of a piece of music is a problem that has interested musicologists
for centuries. Harmonic analysis from a music score is a complex problem, but it is even
more complicated when working directly on the audio signal. Indeed, in addition to the
difficulties inherent to the musical syntax (grammar, language), the first difficulty is to
obtain information about the pitches of the notes that are present in the audio signal.

The aim of this chapter is to investigate a number of possible representations of the
audio signal in order to select the most appropriate one for the task of harmonic content
analysis. Our goal is to provide signal features that are suitable for the chord estimation
task. We do not attempt to propose a new signal feature extraction technique but we
justify the choice of the input representation we use in our system. Many chroma-based
signal representations that capture the harmonic content of an audio signal have been
proposed in the past. However, little time has been devoted to the comparison and the
evaluation of these approaches. In this chapter, we concentrate on this point. The major
contributions of this chapter are the following:

1. We review several methods for extracting chroma features from the audio signal.

2. We focus on the problem of evaluating and comparing the various representations
and propose new evaluation methods.

3. We annotated in chords a database consisting of a number of short excerpts of
classical and popular music.

4. We compare the various representations on this database providing statistical tests
to enhance our analysis.

5. We investigate the use of beat-synchronous chroma features for harmonic content
analysis.

Organization of the chapter:

This chapter is organized as follows. In Section 3.2, we review some basic concepts
of audio signal processing. We then introduce in Section 3.3 the notion of chroma and
propose several methods for chromagram computation in Section 3.4. We analyze two
problems related to the use of chroma features for harmonic content analysis in Section
3.5. The various methods are evaluated in Section 3.6. A conclusion closes this chapter.
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3.2 A Representation of Audio for Harmonic Content Anal-
ysis

3.2.1 Music Transcription-Based Approaches

Reproducing the human capability of analyzing tonal and harmonic structure of a piece
of music with computers is an ambitious challenge. The most straightforward way to
recreate the human process of music analysis is to start automatic analysis from a symbolic
representation. In the scope of harmonic and tonal analysis, some efforts have been initially
devoted to the analysis of chord and key sequences using MIDI representation of music
[TemO05] [T'S99]. In particular, some tools that allow tonal and harmonic analysis of music
in the symbolic domain, have been developed.

The Melisma Music Analyzer, developed by D. Temperley & D. Sleator is a system for
analyzing music and extracting information from it. The analyzer takes a piece represented
as an "event list” that is a list of notes, with pitch, on-time, and off-time (MIDI files
can be used as input as well). It extracts information about meter, phrase structure,
contrapuntal structure (the grouping of notes into melodic lines), harmony, pitch spelling
and key. The HARMONY program produces a harmonic analysis consisting of a series of
segments labeled with roots and a spelling assigned to each pitch-event. Finally, the KEY
program produces a key analysis, consisting of a series of sections labeled with keys and
(optionally) a Roman numeral analysis showing the function of each chord relative to the
current key. The main goal in this project has been to develop models of musical cognition.
The components of the Melisma system are all based on the concept of preference rules.

OpenMusic is a visual programming language based on CommonLisp / CLOS
developed at IRCAM. It provides classes and libraries that make it a very convenient
environment for music composition and analysis. Different representations of a musical
process are handled, among which common notation, midi piano-roll and sound signal. A
symbolic representation of a chord progression can be analyzed with OpenMusic, but it
requires information about the key signature and about chord segmentation. Chords are
treated as the combination of discrete tones and recognized from the result of polyphonic
analysis based on music theory.

3.2.2 Chroma Representation, an Alternative to Transcription

The work conducted in the symbolic domain could be applied to audio signals using a sym-
bolic transcription. However, the symbolic transcription (the score) of a piece of music is
not always available, especially in music where there is a large part devoted to improvisa-
tion such as jazz music. In addition to that, algorithms that extract a transcription from
an audio signal are still limited and costly.

A number of recent works have shown that it is possible to accurately extract a music
description of the signal without relying on a symbolic representation. An intermediate
between low-level signal features and symbolic representation can be used to extract some
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musical attributes such as the chord progression. Since their introduction in 1999, Pitch
Class Profile (PCP) [Fuj99] or chroma-based representations [Wak99] have become a com-
mon feature for estimating chords and musical keys from audio recordings, as well as for
conducting audio similarity retrieval tasks.

3.2.2.1 Definition

Shepard reported in the 1960s that our perception of pitch is two-dimensional and can
be modeled by a helix (see Figure 3.1). He noticed that the representation of pitch into
a helical curve is quite ancient since it had previously been proposed by Drobisch in
1846. This helix is characterized by two attributes: i) the Tone Height or over-all pitch
level (octave number), that corresponds to the vertical axis, and ii) the Chroma that
corresponds to the angle. By dividing the base of the helix into 12 equal parts, we can
obtain the 12 pitches of the equal-tempered chromatic scale.

Two notes a number of octaves apart (for instance the C1 and C2 notes) will share
the same rotation on the chroma circle represented at the base of the helix shown in Fig
3.1. In music theory, the term pitch class is rather used than chroma.

O Tone HeQ

Figure 3.1: Shepard’s helix of pitch perception, adapted from [BWO05].

Chroma/Pitch Class Profile features are traditionally 12-dimensional vectors, with
each dimension corresponding to the intensity associated with one of the 12 semitone
pitch classes (chroma) of the Western tonal music scale, regardless of octave.

In the rest of this dissertation, we will assume that the order of the pitch classes in a
PCP /chroma vector is: C,C#, D, ..., A#, B. We will often refer to each pitch class using
a number: 1 corresponds to C, 2 corresponds to C#, and so on until 12 that corresponds
to B.

The temporal sequence of chroma vectors over time is known as chromagram. Con-
ceptually, the chromagram is a frequency spectrum folded into a single octave. Chroma
features are closely related to the music signal and working with them is very convenient
when dealing with problems related to harmony or tonality. Pooling the spectrum into
twelve bins that correspond to the twelve pitch classes of the equal-tempered scale results
in a signal representation that allows identifying pitches by an octave. As emphasized
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in [EP07], the chroma features capture both melodic information (since the melody note
will typically dominate the feature) and harmonic accompaniment information (since
other notes in chords will result in secondary peaks in a given chroma/PCP vector). The
use of such a mid-level representation overcomes the problem of automatic transcription.

Before going into details in the chromagram representation, we review and compare
some classical time-frequency representations of the signal. They will serve as a basis for
chromagram computation.

3.2.3 Representation of Music Signals, Notations

We rely on the common assumption that the music signal is stationary (i.e., its statistical
properties do not vary with time) in a very short time duration and thus that we can
consider music sounds as nearly periodic signals. This means that the waveform repeats
itself, in a slightly modified version, at a regular time interval that is called the period. The
reciprocal of the period of the signal is called the fundamental frequency and denoted by fO.

When an instrument produces a sound, the human listener perceives a pitch that
is a perceptual attribute of the sound related to the fundamental frequency. The pitch
is a subjective quality of the sound often described as highness or lowness. Pitched
instruments also include certain percussion instruments, such as the marimba, the
vibraphone, the tubular bells or the timpani. Non-harmonic sounds for which the pitch
is undefined, such as the cymbals, the gongs, or the tam-tams make sounds rich in
inharmonic partials '. These sounds do not belong to the harmony progression of a piece
of music. Musicians associate music notes symbols to the pitches.

According to Fourier’s theory, a periodic signal can be approximated by a finite
sum of sinusoids whose frequencies are integer multiple of the fundamental frequency
and whose magnitude and phase can be uniquely determined to match the signal. The
frequency of each sinusoid is called harmonic. In general, the harmonics of music sounds
do not have frequencies that are exactly multiples of its f0. For this reason, they are
often called partials. In this thesis, we are interested in sounds of which the partials are
nearly harmonically related. They are called harmonic sounds.

Let us define some notations that will be used in the rest of the chapter. A music
signal s(t) will be understood as a superimposition of NN, individual notes n;,7 € [1 : N,]
produced by musical instruments. Each note is characterized by its perceived pitch of fre-
quency fo and a finite and small number K of partials of frequencies fr = kfo, k € [1 : K],
of amplitude aj. The spectral pattern composed of the series of partials characterizes the
sound perceived by the human listener. A quasi-periodic music signal n(t) corresponding

!The inharmonic partials correspond to partials that deviate from their expected position according to
the harmonic model described above. They can also be observed in the string instrument sounds such as
the piano.
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to a single note can thus be expressed as:

K
= Zak(t)cos(Qﬂfkt + Oy) with fr, = kfo (3.1)
k=0
where a;, and ®; correspond to the amplitude and phase of the various sinusoids that
approximate the signal.

A harmonic signal 5(¢) that is a superimposition of N,, individual notes can then be
expressed as:

N. K
Z Z Jeos(27k fo.nt + D) (3.2)
n=1k=0

Equations (3.1) and (3.2) give the expression of an ideal music signal composed of a
set of exactly harmonically related sinusoids. In practice, the observed signal s(t) contains
some components that are not explained by the sinusoids, for instance the background
noise or the inharmonic partials. It can be expressed as a sum of harmonic components
5(t) plus a residual €(¢) that comes from the unexplained components:

s(t) = 3(t) +e) (3.3)
N, K

= > ara(t)cos(@rkfont + Cpp) + €(t) (3.4)
n=1 k=0

The ratios between the first partials of a music sound and the fundamental frequency
approximately correspond to musical intervals. In Table 3.1, we represent the musical
intervals corresponding to the ratios between the 6 first partials and the fundamental
frequency of a C note.

Table 3.1: Intervals between the first 6 partials of a complex tone and its fundamental
frequency f0. Example for the partials of a C note.

Pitch class | Partial | Frequency | Approximate interval with fo
C 1 fo unison
C 2 2 x fo octave
G 3 3% fo octave + 5P
C 4 4% fo 2 octaves
E 5 5 * fo 2 octave + major 377
G 6 6 * fo 2 octave + 5P

3.2.4 About Acoustic Signal Representation
Algorithms for the automatic analysis of audio music signals rely in general on a spec-

tral representation of the signal. The discrete Short Time Fourier Transform (STFT) is
the most commonly used representation. Although it is very popular, a shortcoming of
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this representation is that the frequency components are equally spaced and thus have a
constant resolution, which implies that a global compromise between time and frequency
resolution has to be made. Multi-resolution approaches have been proposed as an alter-
native to the Fourier transform.

3.2.4.1 Fourier Transform
Since its introduction in the 18th century, the Fourier transform and its extensions have
become the most common signal representation used in signal processing.

In signal processing, we process finite extent signals. The Discrete Fourier Transform
(DFT) computes a discrete-frequency spectrum from a discrete-time signal of finite length:

N-1
X(k) =Y x(n)ei2mkn/N (3.5)

n=0
where x(n) denotes the input signal at time sample n, k = 0,1,..., N — 1 denotes the

frequency bin index and X (k) denotes the k" spectral sample.

The computation cost of a DFT can be very expensive. A much faster algorithm has
been developed by Cooley and Tukey in 1965 [CT65], called the Fast Fourier Transform
(FFT) and is used in general in signal processing.

In practical signal processing, a window w(n), that is, a weighting function, is applied
to data to reduce the undesirable effects related to spectral leakage associated with finite
observation intervals [Har78]. The Short Time Fourier Transform (STFT) represents the
frequency content of a short segment (of limited duration) of the signal. This segment of
limited duration is assumed to be stationary. The STFT of a discrete signal z(n) can be
calculated as:

N-1
X (k)= wn)a(n)e 7>/ (3.6)
n=0
where w(n) is the temporal window function and k£ = 0,1,..., N denotes the frequency

bin index.

The length of the window N determines the time and the frequency resolution. The
accuracy in the frequency domain will increase with the length of the window. However,
this occurs at the expense of the time resolution. Moreover, as the window length increases,
the assumption of the stationarity of the signal during the analysis segment becomes
weaker.

3.2.4.2 Frequency Resolution Versus Time Resolution

When analyzing music signals, the choice of the length of the analysis window is a key
consideration. It determines the trade-off of time versus frequency resolution which affects
the smoothness of the spectrum and the detectability of the sinusoidal components. On
the one hand, good temporal resolution and therefore a short window length are needed
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in order to detect fast changes in the signal (such as note onsets for instance). On the
other hand, a large analysis window is necessary to provide the required frequency res-
olution so that closely spaced sinusoids, corresponding to adjacent pitches, can be resolved.

Let us consider an audio music signal with two sinusoids of frequencies f; and fy that
correspond to adjacent pitches. We note Af = fo — f1. In a music signal, when two
sinusoids corresponding to adjacent pitches have nearby frequencies separated by A f Hz,
it is necessary that the window length N is large enough so that the spectrum exhibits
two peaks (see Figure 3.2).
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Figure 3.2: Spectral resolution of nearby peaks. From [Har78|. Left: non-resolvable
peaks. Right: resolvable peaks.

According to [Smi08], the lower bound for the minimum FFT length N is:

fs
>
N_KwAf

(3.7)

where K, is a constant that depends on the window function main-lobe width. Table
3.2 gives the main-lobe width in-bins, K,,, for various windows. The minimum resolving
window length can be determined using the sharper bound K}, empirically found [AS04].

Table 3.2: Main-lobe width in-bins K,, and minimum effective values K, for various
windows. From [Smi08].

Window Type | Ky | KJ
Rectangular 2 1.44
Hamming 4 2.22
Hann 4 2.36
Blackman 6 2.02

Because of the logarithmic scaling of the Western tonal music scale, pitch frequencies
are closer in lower frequencies. Two adjacent notes tuned in equal temperament form a
semitone and are separated by 6% of the frequency of the lowest note. Indeed, let f%
and fry1 denote respectively the frequency of the lowest and the highest notes. From the
construction of the Western tonal music scale, we have:
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% =2%0r fri1 ~ 1.059f (3.8)
k

For instance, a C1 note has a frequency of fo1 = 32.7Hz; the frequency of the next
note C#1 is: foy1 = 32.7 4 0.06 * 32.7 = 34.6Hz.

It is unlikely that two adjacent low-frequency notes will be played simultaneously in
Western tonal music, because this is generally unpleasant for the ears. However, chromatic
notes that are played successively often interfere in time and may be superimposed during
a lapse of time. This is for instance the case in most of Chopin piano music where the
extensive use of the sustain pedal results in mixtures of adjacent low-frequency notes. The
constraint regarding the minimum length of the analysis window needs thus to be taken
into account for low pitches.

The frequency components of the DFT are equally spaced and thus have a constant
frequency resolution. To discriminate adjacent pitches, particularly at low frequencies, a
sufficiently long window length is thus required whereas it is unnecessary when consid-
ering higher pitches. Multi-resolution approaches have been proposed as an alternative
to the conventional linear frequency and constant resolution of the DFT. In this disser-
tation, we focus on a multi-resolution approach commonly used in music audio analysis:
the Constant-Q transform (CQT). This representation has been used for chromagram
computation in many works related to chord or key estimation.

3.2.4.3 Constant-Q Transform

One common approach to solve the time/frequency resolution dilemma is to perform a
frequency-varying multi-resolution analysis. In this case, the frequency spectrum is split
into subbands and each one is processed independently from the others. This allows the
use of shorter analysis windows at higher frequencies while lower frequencies can still
have the required frequency resolution to separate closely spaced sinusoids. An interesting
approach was presented in 1991 by Brown [Bro91] who proposed to use the constant-
Q transform for music signal analysis. The constant-Q transform is a spectral analysis
where frequency domain channels are not linearly spaced, as in DFT-based analysis, but
geometrically spaced (the center frequency to resolution ratio Q = Aif remains constant),
thus tightly similar to the frequency resolution of the human ear. The CQT transform is
closely related to the Fourier transform but gives a better representation of spectral data
from a music signal. The center frequencies that are distributed geometrically follow the
equal tempered scale used in Western music. Note that the CQT was introduced earlier,
outside the musical context, see for instance [YBT78|.

In case of musical applications, the calculation of the CQT is based on the frequencies
of the equal tempered scale. The constant Q transform of a discrete signal x(n) can be
calculated as:

Joint Estimation of Musical Content Information From an Audio Signal



34 Towards a Signal Representation for Harmonic Content Analysis

where X (k) is the k" component of the constant-Q transform. For each value of k, the
window function w(n, k) varies proportionally to the center frequency fi. Let @ denote
the constant ratio of frequency to resolution, Q = Af—;ik, and let f; denote the sampling

rate. The length of the window w(n, k) in samples at frequency fi is N(k) = % N (k)
depends on the frequency and thus on the bin position k.

Figure 3.3 represents the window length N (in seconds) with respect to the frequency
(in Hertz), for a 3-tone spacing (Q = (2% —1)). For instance, a window of 0.5s (duration of
a beat at a tempo of 120 bpm) corresponds to a frequency value of 104Hz. The constant-Q
transform increases time resolution towards higher frequencies. The length of the window
w(n, k) decreases with frequency.

o
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frequency (Hz)

Figure 3.3: Length of the constant Q window in seconds with respect to the frequency
in Hertz.

[BP92] proposes an efficient algorithm of the CQT that takes advantage of the Fast
Fourier Transform (FFT) so that the computation cost are reduced as compared to the
direct evaluation of the CQT.

3.3 Chroma Representation, Background

Because they are a powerful compact representation of the tonal content information of the
signal, chroma features have been widely used as input features of music analysis models
based on the music harmonic content, such as chord or key finding, cover song detection or
structure estimation. Various approaches for chroma computation exist. Although they
present some variances in the implementation, they follow in general the same guideline
that consists of two main steps:

1. First, a semitone pitch class spectrum (SPS), that is a log-frequency representation
of the spectral content of the music audio signal, is constructed. It is expressed in
a MIDI-note scale and is either computed from the Fourier transform or from the
constant-Q transform. The center frequencies of the CQT can be chosen according to
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the frequencies of the equal-tempered scale. In such a case, the constant-Q spectrum
corresponds to a semitone pitch class spectrum.

2. Secondly, the semitone pitch spectrum is mapped to the chroma vectors. For this,
the semitones in octave distance are added up to pitch classes.

The chromagram computation may include some other steps such as a pre-processing
step that separates harmonic and noise components, a filtering step that smoothes
the chromagram or a post-processing normalization step that makes the chromagram
invariant to dynamics. We review in the following some chroma feature extraction
methods.

3.3.1 Chromagram Based on the Fourier Transform

In many approaches, the chromagram is generated using the Fourier transform. This
approach was first proposed by Fujishima in [Fuj99], where the input signal is transformed
from the time to the frequency domain using an FFT. Frequency bins corresponding to a
same semitone are summed up to form a semitone pitch spectrum, which is then folded
to pitch classes, resulting in a PCP vector.

This approach was followed by a large number of researchers with some variants.
In some approaches, the resolution of the chromagram is increased in order to improve
robustness against tuning and other frequency oscillations, such as in the work of Goto
[Got06], where a chromagram is computed so that there are 100 cents to a tempered
semitone. Some approaches introduce a filtering process to reduce transient and noise,
such as in the work of Peeters [Pee06b].

The FFT is particularly blurred at low frequencies. In order to identify strong tonal
components in the spectrum and to get a higher resolution estimate of the underlying
frequency, Ellis & Poliner [EP07] do not compute the chroma feature directly from the
FFT. They use the Instantaneous Frequency spectrum, which uses the phase derivative to
interpolate the frequency distribution.

3.3.2 Considering the Harmonics in the Pitch Class Profiles

Some methods for chroma computation take into account the higher harmonics of the
notes in the chroma features computation. For instance Gémez introduces in [G06a] an
extension of the PCP, the Harmonic Pitch Class Profiles (HPCPs). A weighting procedure
is proposed in order to make harmonics contribute to the pitch class of its fundamental
frequency, so that each peak frequency f; has a contribution to the frequencies having f;
as harmonic frequency (f; , % ) % ) % yeen).

Lee [Lee06a] proposes a feature vector called the Enhanced Pitch Class Profile (EPCP)
for the application of chord recognition from audio. The chromagram is computed from
the Harmonic Product Spectrum (HPS) instead of the DFT. The use of a HPS allows the

elimination of non-tonal signal components from the spectrum.
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Pauws [Pau04] computes the chromagram using an auditory perception inspired front-
end so that the perceptual pitch and the musical background are simultaneously taken
into account.

3.3.3 Constant-Q Profiles

Some approaches derive the chromagram from a CQT instead of the FFT. In [PBOO01],
Purwins et al. propose to compute CQ-profiles that are 12-dimensional vectors similar
to chroma vectors. The CQT filters are chosen so that they correspond to musical notes.
The Constant-QQ spectrum thus directly corresponds to a semitone pitch spectrum from
which 12-dimensional vectors (corresponding to the 12 pitch classes) can be computed.

This approach has been often adopted by other researchers, possibly with some vari-
ations. For instance, Harte & Sandler [HS05] propose a tuning algorithm for a CQ-based
chromagram. In [BP05], Bello & Pickens generate the chromagram using a constant-Q
transform. A resolution of 36 bins per octave is used. The chromagram is low-pass filtered
to eliminate sharp edges.

3.3.4 Chromagram Based on multi-fOs

Some approaches compute chroma features from a multi-pitch representation instead of a
spectral representation. For instance, Ryynénen & Klapuri [RK08b] compute a chroma-
gram from a pitch salience estimator. In [ZR07], Zenz & Rauber compute a multi-pitch
based chromagram using the Enhanced Autocorrelation (EAC) algorithm described by
Tolonen et al [TK00]. Varewyck et al. [VPMO08] also propose a chroma extraction method
based on multiple pitch tracking techniques.

3.3.5 Filter bank

In the context of audio matching, Miiller et al. [MKCO05] introduce a new kind of chroma-
based audio feature referred to as CENS features (Chroma Energy distribution Normalized
Statistics) that presents a high degree of robustness to variations in parameters such as
dynamics, timbre, articulation and local tempo deviations. In this approach, the chroma
features are computed by the use of a filterbank with fixed frequency bands. The audio
signal is decomposed into subbands corresponding to notes A0 to C8 (MIDI pitches 21 to
108). The short-time mean-square power is computed over each subband using a 200ms
with an overlap of half the size. The chroma vectors are obtained by adding up the
corresponding short-time mean-square power (STMSPs) of all pitches belonging to the
12 respective pitch class. The chroma vectors are normalized to be invariant to dynamic
variations and then quantized by applying energy thresholds in order to be insensitive to
noise components. In order to smooth local tempo deviations and slight variations in note
groups, such as trills or arpeggios, a much larger statistics window is then considered.
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3.3.6 Extension: the Tonal Centroid

Another feature devoted to harmonic analysis has recently been proposed. We give here
a brief overview of this feature since some recent works [LS08] [LB07] have shown that it
may be a powerful feature for harmonic analysis.

The Tonal Centroid was introduced in [HSGO6] as a new feature for detecting changes
in the harmonic content of musical audio signals. A harmonic Centroid transform is
applied to the chromagram decomposition so that the 12-dimensional chroma vectors are
mapped to a six-dimensional Hypertorus structure. The Tonal Centroid is derived from
an old planar representation of pitch relations called the Harmonic Network or Tonnetz.
In this representation, close harmonic relations such as fifths and thirds appear as small
Euclidian distances on the plane. Three circularities are considered: the circle of fifths,
the circle of minor thirds and the circle of major thirds.

When enharmonic equivalence (C# equivalent to Db) and octave equivalence (C1
equivalent to C2) are assumed, the Tonnetz, which is theoretically an infinite plane, can
be wrapped into a tube with the line of fifths becoming a helix on its surface. In the
Spiral Array model [Che02], the two ends of the tube are joint together, resulting into a
hypertorus with the circle of fifths wrapping around its surface three times. The Tonal
Centroid is a 6-dimensional interior space contained by the surface of the Hypertorus. The
6 dimensions can be visualized as a projection onto the circle of fifths, the circle of minor
thirds and the circle of major thirds and represented as three coordinate pairs (z1,yl),
(22,y2) and (23,y3) (see Figure 3.4).

Fifths Minor Thirds Major Thirds
Tyl T2 T y3

0,48 0,3,6.9

1,59 | 137,11

Xe

26,10

Figure 3.4: Graphical representation of the 6-dimensional Tonal Space as three circles.

From left to right: circle of fifths, circle of minor thirds and circle of major thirds. The

Tonal Centroid for chord A Major (pitch classes 9, 1 and 4) is shown at point A. Adapted
from [HSGO6).

Let ¢ denote a 12-dimensional chroma vector and let ® denote the transformation
matrix that represents the basis of the 6-dimensional space.

O = [Py, Do, P3, Dy, D5, D) (3.10)
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where the values rj, ro and r3 are the radii of the three circles. In [HSGO06], they are
set to 1, 1 and 0.5 respectively, ensuring that the distances between pitch classes in the
6-dimensional space correspond to our perception of harmonic relations between pitches.
The 6-dimensional Tonal Centroid vector & is obtained from the 12-dimensional chroma
vector ¢ according to the following equation:

£(d) = Hcl||1 21131 (dDe(l) 1<d<6 (3.12)

3.3.7 Why Using Chroma Features for Harmonic Content Analysis?

We have chosen to use the chroma representation because we think that it is a very intu-
itive and natural representation of the signal in terms of harmony. We find it particularly
convenient for chord analysis: the 12 bins of the chroma features correspond to the tra-
ditional pitch classes of the equal tempered scale. The chromagram can be followed as a
music score when listening to the music.

3.4 Derivation of Chroma Features

In what follows, we focus on the derivation of three chroma representation extraction
methods. The first two are based on the two above-mentioned spectral representations
of the signal (FFT and CQT), the third one is based on a multipitch tracking technique.
These approaches will be analyzed and compared in Section 3.6.

3.4.1 Chroma Based on a Spectral Representation

We review here two chromagram computation methods based on a spectral representation.
The first one is based on the conventional fixed resolution FFT and the second one is based
on the multi-resolution CQT. The two methods follow the same general schema represented
in Figure 3.5. We start by estimating the tuning of the piece. The chromagram is computed
in three steps after tuning estimation. First, the values of the DFT/CQT are mapped to
a semitone pitch spectrum. The corresponding channels are then smoothed over time.
Finally, the resulting semitone pitch spectrum is mapped to the semi-tone pitch classes.
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Audio signal s(t)

Tuning

FFT

CQT (36 bins per octave)

Semitone Pitch Spectrum
(36 bins per octave)

Smoothing (median filtering)

Reduction to 12 bins per
octave

Mapping to semitone pitch
classes

Normalization

12-dimensional chromagram

Figure 3.5: General flowchart of chromagram computation.

3.4.1.1 Tuning

The chroma values are obtained by mapping frequency values of the spectrogram to the
semitone pitch classes that are based on a standard reference frequency 1.y = 440Hz.
The energy peaks in the spectrogram will be mapped to the chroma vectors. It is therefore
important that the peak frequencies correspond as close as possible to usual pitch values
(262.6, 277.2, 293.7, ...Hz). Since the instruments may have been tuned according to a
reference pitch different from the standard A4 = 440Hz , it is necessary to estimate the
tuning of the track. After computing the precise tuning used in a given song, we center
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the semitone pitch spectrum filters accordingly so that they fall precisely in the middle
of a note. We now detail the tuning estimation method we use in this work.

In our approach, we estimate the reference frequency (or tuning) before mapping
frequency values to the pitch classes. Other works propose to first compute a chromagram
and then tune it according to a determined reference frequency. For instance [HSO05]
or [BP05] built a 36 bins-per octave resolution chromagram. They then compute the his-
togram of the chromagram peaks distribution across one semitone width (corresponding
to 3 bins). The maximum point in the histogram gives the semitone centre tuning value.

Here, the tuning is estimated using the method proposed by Peeters in [Pee06b]. We
assume that the tuning is constant over the music track duration. The amount of energy
of the spectrum explained by the frequencies corresponding to the semitones based on
each candidate tuning is measured. The candidate tuning that allows us to explain the
best the energy of the spectrum is selected as the tuning of the track.

Let us consider a set of tuning candidates between 427Hz and 452Hz, which correspond
to the quartertones below and above A4. The candidate tunings are successively tested
as following. For a given tuning test ¢ and a given signal frame m, we define the modeling
error €(t,m) as the ratio between the energy of the spectrum explained by the current
tuning ¢ and the total energy of the spectrum.

Zn A(ft,na m)

elbm) =1 =S om)

(3.13)

where A denotes the amplitude of the Fourier transform and f;, are the frequencies of
the semi-tones pitches n (in MIDI) based on the tuning ¢:

fin=t-2"7 te[427,... 452 (3.14)

The energy of the current tuning ¢ is computed as the sum of the energy at the
frequencies f; corresponding to the semi-tones pitches based on the tuning ¢. A low value
of € indicates that most of the peaks of the spectrum correspond to notes based on the
tested tuning. The estimated tuning is chosen as the value ¢ that minimizes the modeling
error over time. The estimated tuning 7).y is taken into account when computing the
chromagram, as explained below.

In practice, many audio files are not based on a tuning of A4 = 440Hz . As an
illustration, we represent in Figure 3.6 the histogram of the tunings estimated over the
widely used Beatles test-set for chord recognition (see Chapters 2, Section 2.3.2). It shows
that most of the songs are not based on a tuning of A4 = 440 Hz. The estimated tunings
of the tracks are comprised between 430 Hz and 444 Hz.

Note that we assume here a constant tuning over the whole duration of the piece. To
reduce the computation cost, it would be possible to compute the tuning of the piece on
a short extract (using only 30s of music for instance).
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Figure 3.6: Histogram of the estimated tunings over the Beatles test-set.

3.4.1.2 Frequency Region Selection for Chroma Computation

The chroma vector is obtained by converting the signal into the frequency domain, using an
FFT or a CQT, and mapping the calculated intensities in the frequency bins corresponding
to the music pitches. In the mapping, we do not consider all the frequencies of the spectrum
X (k) but the analysis is restricted in general to a frequency region that corresponds to
the most relevant frequency values for pitch distribution.

Let fin and fpq. respectively denote the minimum and maximum frequencies of X (f)
considered in the chroma computation. In what follows, and 7,,;, and n,,., denote the
midi notes corresponding to fin and fiee. Assuming a tuning of A4 = 440Hz, a midi
note n is related to its frequency f by the following equation:

n= 12109247‘10 +69 (3.15)

The various works that use chroma features as a representation of the harmonic content
of the signal do not consider the same frequency region for chromagram computation. For
instance, Bello & Pickens [BP05] compute the chromagram from 98Hz to 5250Hz whereas
Oudre et al. [OGF09b] limit the frequency range to the interval 73.42 —587.36Hz, although
both of them are used as input of a chord estimation algorithm evaluated on the Beatles
test-set.

The selection of the frequency region depends on many criteria. Different frequency
regions should be selected depending on the possible presence of noise or percussive
sounds in the signal, depending on whether the chroma extraction algorithm considers
the presence of higher harmonics or not, or depending on the instrumentation.

In our work, because of frequency resolution limits (the frequency distance between
adjacent semitone pitches becomes small in low frequencies), we only consider frequencies
above fin = 60Hz.

In our experiments on the Beatles test-set, we found that the best results were obtained
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considering only the frequencies below f,.. = 1000Hz. The upper limit is set to 1kHz
because the fundamentals and partials of the music notes in popular music are usually
stronger than the non-harmonic components up to 1kHz [Mad06]. This is illustrated in
Figure 3.7, in Section 3.5.1 of this Chapter. Our choice for f,,,, is also supported by the
fact that many of the higher partials, which are whole number multiples of the fundamental
frequency, are far from any note of the Western chromatic scale. This is especially true for
the 7** and the 11*" partials. We found that the best results on a classical music test-set,
the Mozart piano test-set are obtained using components up to 2kHz. Further experiments
should be devoted to better study the influence of the frequency region selection parameter.

Note that some approaches such as [MNDO09] or [RKO08b] use jointly several chroma-
grams instead of one, in order to distinguish between various registers. Each chromagram
is computed considering a different frequency region that may capture for instance to the
bass or the melody content.

3.4.1.3 Computation of a Semitone Pitch Spectrum

Semitone Pitch Spectrum from the FFT

We review here a method that was initially proposed in [Pee06a]. In our analysis, the
signal is down-sampled to 11025H z, converted to mono and converted to the frequency
domain by a FFT using a Blackman window of length N with 12.5% overlap. The value
of N will be discussed further, in part 3.6.4. The values of the FFT are mapped to a
semitone pitch spectrum according to the estimated tuning using the mapping function:

n(fr) =12 10g2(Tfkf

) +69,n € R (3.16)

where fj, are the frequencies of the notes in the Fourier transform and n corresponds to
the semitone pitch scale values expressed in a MIDI-note scale. For each MIDI note of
frequency fj of the semitone pitch spectrum, we consider the frequencies of the spectrum
that are contained in a window centered around f;. The contribution of the peaks of the
DFT bins comprised in the considered window is weighted using a set of filters described
below.

Let us define a set of filters H, centered on the semi-tone pitch frequencies n’ €

[Mmins Tmin + 1, -« ., Nmaz]. For instance, if we consider the notes comprised between the
frequencies 60Hz and 1000Hz (B1 to B5), the filters will be centered on the MIDI notes
n’ € [35,36,...,83]. Frequency resolution is a salient parameter in pitch class features

computation. Chroma features are in general represented as 12-dimensional vectors that
correspond to the 12 semitones of the equal tempered scale. Nevertheless, it may be
pertinent to increase the semitone resolution to improve robustness against tuning and
other frequency variations, such as the vibrato of an instrument. In this case, a semitone
is represented by several filters instead of one (typically 2 or 3). In order to increase the
semitone resolution, we define a factor R € R™ that sets the number of filters used to
represent one semitone. The center of the filters are now set on the MIDI notes n’ €

1 2
[nmina Nmin + R Nmin + Ry - 7nmax]-
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Each filter can be defined by the function

Hy (fx) = %tanh(ﬂ(l —2z)) + % (3.17)

where z is the relative distance between the center of the filter n’ and the frequencies of
the Fourier transform: =z = R|n’ — n(fi)|. The filters are equally spaced and symmetric
in the logarithmic semitone pitch scale, extend from n’ — 1 to n’ + 1 with a maximum
value at n’. The values of the semi-tone pitch spectrum Nppp(n') are then obtained by
multiplying the Fourier transform values A(f;) by the set of filters H, :

Nppr(n') = ZHn’(fk)A(fk) (3.18)
fr

Semitone Pitch Spectrum from the CQT

The CQT is closely related to a semitone pitch spectrum. Let § denote the number
of bins of the CQT per octave. Chroma features are usually represented in a 12-bin
histogram, each bin corresponding to one of the 12 semitones of the equal-tempered scale.
In the case of § = 12 (semitone spacing), the center frequencies directly correspond to
musical notes of the semitone pitch scale and the computation of the constant @) transform
leads to a semitone pitch spectrum Negr(n'). Very often, as in the case of the FFT-
based chroma feature computation, a higher resolution is used to get a finer pitch class
representation. We use here a 36-bins per octave resolution. When 3 = 36, each note in the
octave is mapped to 3 bins in the chroma and the computed CQT spectrum corresponds

1

to a g-tone pitch spectrum.

Let finin,440 be the minimum frequency considered in the signal feature computation
in the ideal case of a perfect tuning. The actual minimum frequency value fi;n is cho-
sen according to the estimated tuning of the track: fiim = fimina40 * ZZ&{ . The center
frequencies are geometrically spaced, according to the frequencies of the equal-tempered

scale:

As stated in Equation (3.9), the CQT time resolution increases towards higher frequen-
cies. The length of the analysis window decreases with the frequency. Here, the hopsize
is chosen to be equal to the smallest window length.

3.4.1.4 Smoothing

Transient reduction can be done during chromagram computation, as proposed in [Pee06a],
the semitone pitch spectrum Nppr(n') or Nogr(n'), simply denoted from now by N(n')
is computed for each frame m and is then smoothed over time using a median filtering.
This provides a reduction of transients and noise. Note that smoothing of the semitone
pitch spectrogram strengthens spectral envelope continuity, a physical property; while
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smoothing on the chromagram does not rely on any physical property. This is why the
filtering is performed on the notes rather than on the chroma vectors.

In general, when increasing resolution, only one filter per semitone is considered so
that the final chroma feature is 12-dimensional and can easily be compared with chord or
key profiles?. In our chroma feature implementation based on the FFT, for each semitone
n' € [Nmin, Nmin+1, - - ., Nmaz ], we select the filter centered on the exact pitch. For instance,
for a 36-bins per octave resolution, we only consider the filter centered on n’ = 69 for the
A4 note, not the ones centered on n’ = 68.666 and n’ = 69.333. This can be done because
the tuning is now guaranteed to be 440 Hz. This process also provides a reduction of the
influence of noise in the computation of the chroma features.

3.4.1.5 Chroma Spectrum

The mapping between the semitone pitches n and the semitone pitch classes (chroma) ¢
is defined as:
¢(n) = mod (n,12) (3.20)

All the semitones pitches corresponding to equivalent pitch classes are added so that
we obtain a sequence of 12-dimensional chroma feature vectors. Each of the 12 bins [ of
the chroma vector can be calculated from the semitone pitch spectrum N (n’)as:

c(l) = > N(n'), 1 €[1,12] (3.21)

n’ so that c(n’)=l

3.4.1.6 Post-processing: Normalization

The chromagram is in general normalized to provide robustness against variations of dy-
namics. This normalization post-processing step can be done so that the components of
each chroma vector sums to unity, as we do here. This choice is followed in many other
works [LB07] [RKO8b]. Other methods propose to normalize the chromagram for each
frame by its maximum value [GO6b] [CCO5a).

3.4.2 Chroma Based on multiple fOs

In the last few years, the problem of estimating the fundamental frequency, or f0, of the
signal is a task that has attracted the attention of a growing number of researchers. This
is because it is an extremely important descriptor of the signal. It is largely admitted that
f0 estimation is equivalent to pitch estimation. In the case of polyphonic music, several
musical notes are played simultaneously and the term multiple-f0 is used. The multiple-f0
algorithms allow retrieving the various pitches that have been produced.

The idea of deriving a chroma representation from the output of a multiple pitch
tracking technique comes out naturally. It has been already explored in [RK08b] and

2A key/chord profile is a 12-dimensional template that indicates the perceptual importance of each note
of the equal-tempered scale within a key or a chord. More details will be given in the next chapters.
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[VPMOS] for instance. Here, we are interested in comparing the approaches based on
spectral representation with an approach based on a multiple pitch tracking technique
for chroma features computation. For this, we rely on a multiple-f0 estimation algorithm
proposed by Yeh in [Yeh08] and [YRCO08]. We thank C. Yeh for providing his code.

Briefly, to estimate the pitches of the notes in the audio signal, we use the frame-
based f0 estimation algorithm proposed in [Yeh08]. It is based on a score function which
evaluates the plausibility of a set of fO hypotheses. It works in four stages.

1. First, an adaptive noise level is estimated in order to classify the spectral peaks into
sinusoids (above the noise level) and noise (below the noise level).

2. Secondly, a set of f0O candidates is iteratively extracted until all the significant sinu-
soidal components are explained.

3. Thirdly, a score function jointly evaluates all the combinations of f0 candidates.
It is based on four criteria: harmonicity (harmonic matching that estimates the
partial frequencies and amplitudes of the hypothetical sources), mean bandwidth
(envelope smoothness), spectral centroid (energy concentration in lower partials)
and synchronicity (synchronous amplitude evolution within a single source).

4. Finally, the best combination of f0 candidates is selected by a polyphony inference
algorithm.

The output of the multiple-f0 estimation algorithm can be seen as a semitone pitch
spectrum: for each frame, it gives an estimation of the pitch and salience of the notes
present in the signal. This semitone pitch spectrum covers several octaves. It is reduced
to one octave by adding each pitch’s intensity to the pitch class of its chroma. The resulting
feature is a 12-dimensional chroma vector.

3.5 Two Problems Related to the Chroma Features

3.5.1 Chroma Features and Harmonics

Let us consider a chroma feature extraction method based on a spectral representation
(FFT or CQT). As explained in part 3.2.3, a note generated by an instrument produces
a set of harmonics. In a spectral representation, we do not directly observe the various
pitches but a mixture of their harmonics that will result in a mixture of non-zero values in
the chroma vector. It is thus important to note that the chroma vector of a note played by
an instrument does not only contain the pitch classes corresponding to the fundamental
frequency f0 of the perceived pitch py (ignoring octave considerations) but also include a
mixture of their harmonics.

Figure 3.7 shows a chroma feature of a cello C1 note (65,4Hz) considering various
frequency intervals (from f,,;,, = 60Hz to various values of f,4,) for computation. We can
follow the apparition of the harmonics of the C: C-C-G-C-E-G and so on, as well as of some
other components related to the residual part expressed in Equation (3.3), especially when
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high frequencies are considered in the feature computation. The problem of harmonics in
the chroma features will be further discussed in Chapter 4 of this dissertation.

pitch class
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Figure 3.7: Chroma feature of a cello C1 note considering various frequency intervals
(from finin = 60HZ to fihee € [100,2000] Hz) for computation.

3.5.2 Beat-Synchronous Analysis

Most of the works that extract harmonic content information from audio signals rely on
chroma features. In some cases, it can be very useful and even necessary to perform
a beat-synchronous analysis, that is to compute one feature per beat. The computa-
tion of beat-synchronous chroma features has thus become quite common in harmonic
content analysis models. Beat-synchronous chroma features have been used in many
approaches that attempt to estimate the chord progression of an audio file, as for in-
stance [BP05], [RSNOS], [SIYT08], [YKKT04], [ZR07]. [BP05] argue that beat-synchronous
analysis frames help to overcome noise introduced by transient components in the sound
(drums and guitar strumming) and short ornamentations, thus minimizing the effect of lo-
cal variations. The use of beat-synchronous chroma features is convenient in music similar-
ity and cover song identification tasks [Mad06] [MKL06] [SW05] [BW01] [BWO05], especially
when comparing the chord progression of two songs, possibly at different tempo. Indeed,
this provides invariance to tempo changes [EN06] [EP07]. Beat-synchronous chroma fea-
tures may be useful for music segmentation and music structure detection, in particular
in approaches that combine harmonic and metrical information and need to work with
features related to the meter [PP08b] [Mad06].

In this section, we wish to underline several issues related to the use of beat-
synchronous chroma features. We shall conduct in Section 3.6.3 several experiments that
illustrate our purpose. In Chapter 5, we shall propose a model that takes into account
interaction between chords and downbeats. The proposed model requires features related
to the meter. We will use one single input vector per beat/tactus (or per half-beat/tatum).
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3.5.2.1 Towards a Beat-Synchronous Analysis

Beat-synchronous chroma features can be obtained in various manners.

In the case of a fixed resolution analysis (using a FFT), beat-synchronous chroma
vectors can be obtained from the frame-by-frame analysis in two ways.

1. We can either compute a frame-by-frame chromagram using a fix length of analysis
frame and then averaging the chromagram according to the tactus/tatum positions
(see Figure3.8, top). In what follows, we will refer to this approach as a beat-average
analysis denoted by B4y . This approach is adopted in [EPOT7].

2. Or we can perform a beat-synchronous analysis by using an adaptive window length
that is defined by the beat positions (see Figure 3.8, bottom). In this case, each
analysis frame corresponds to a beat and there is no overlap between successive
frames. In what follows, we will refer to this approach as a beat-adaptive analysis
denoted by Bap. This approach is adopted for instance in [ZR07].
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Figure 3.8: Two FFT-based beat-synchronous analysis: a) Bay, b) Bap. Dashed lines
correspond to the frames that are not taken into account in the computation of the beat-
synchronous chroma vector.

In the case of multi-resolution analysis, the length of the window is determined by the
frequency. The beat-synchronous chroma features can thus only be obtained by averaging
frames according to beat locations. This approach is adopted in [BP05].

The various investigated methods for chroma features computation are listed in Table
3.3.

A more detailed discussion about beat-synchronous chroma features with quantitative
evaluation follows in part 3.6.3.

3.5.2.2 Problem of Mixing Harmonies

Let us consider a simple case of chord progression with one chord change per beat. Let
c1,C3,c3,. .. denote the successive chroma features computed on overlapping frames. Let
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Table 3.3: Summary of the investigated methods for computing the chroma features.
FFT,/FFTg: frame-by frame FFT-based method using a long (0.5s)/short(0.125s) anal-
ysis window, CQT: CQT-based method, Bay: beat averaged analysis, Bap: beat adaptive

analysis.
FFT CQT
FFTy, 0.5s
FFTs 0.125s cer
FFTLBay
Beat-synchronous FFTsBay CQT Bay
FFTBap

Frame-by-frame

b, and b1 denote two successive beat positions and Ny denote the number of overlapping
chroma vectors that are comprised between b, and by .

A common approach used to obtain a beat-synchronous chroma feature Cj, is to com-
pute the average of the Ny overlapping frames that are comprised between two considered
beat positions by and b1 (see for instance [BP05], [PP08b], [Ser07]):

Cp = - > e (3.22)

R bp<n<bii

This is illustrated in Figure 3.9. This method will be referred to as Baymean method
or as B4y method when there is no ambiguity.

by brig

Figure 3.9: Computation of a beat-related feature by averaging overlapping frames be-

tween two successive beat positions by and bx.q. Solid lines correspond to the frames

that are taken into account in the computation of the beat-related chroma feature. The

grey areas correspond to information related to harmony that does not correspond to the
considered chord.

Another possible way of computing beat-synchronous chroma features from frame-
based features is to take the median (in the time direction) over all the chroma frames
falling between two consecutive beat positions [MNDO09]. This will be referred to as the
B Avmedian method. We will compare the two possibilities in part 3.6.3.

Ideally, the beat-synchronous chroma features should capture the harmonic content of
each single chord. However, some spectral information that comes from adjacent chords
is mixed with the spectral information of the considered chord, as represented in Figure
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3.9. The amount of spectral information coming from the adjacent chords increases with
the length of the analysis window. It would be thus desired to use small window lengths.
This is in conflict with the need of sufficiently large windows for resolution considerations.
We thus need to make a trade-off between considering low pitch frequencies and mixing
spectral information between adjacent chords.

Let us illustrate this on an example: Chopin’s Study op. 25 no 10 (Octaves). The
opening of this study, represented in Figure 3.10, consists of a series of eight-note-tuplets
octaves in cut time, played at a very fast tempo, Allegro. There is one chord per eight-note
and each chord corresponds to a single note played at four different octaves (in practice
adjacent chords may mixed up because of the use of the pedal).

[

q
*
.

Figure 3.10: Opening of the Chopin Study Octaves.

Figure 3.11 represents three variations of the FFT-based chromagram computed on
the considered music excerpt and averaged on the eighth notes.
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Figure 3.11: FFT-based chromagram computed on the beginning of the Chopin Study
Octaves. From left to right: FFT;Bay, FFIsBay, FFITBap. The blank“+” signs
represent the successive notes played at four different octaves, according to Figure 3.10.

It can be seen that the chord transitions are much clearer in the case of beat-adaptive
analysis than in case of beat-average analysis. However, if we look at the semitone pitch
spectrum, Figure 3.12, we can distinguish chromatic scales at 4 different octaves in case
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FFTr,Bay whereas some notes in the low frequencies are not correctly detected in cases
FFTBap and FFTgBy. This is because the analysis is done using a window that is
too short regarding the frequency resolution that is needed. A longer analysis window
would be required to detect precisely the low octaves notes.
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Figure 3.12: FFT-based semitone pitch spectrum computed on the beginning of the

Chopin Study Octaves. From left to right: FFT;Bay, FFIsBay, FFT Bap.

The problem of mixing the harmonic content of two different chords in one beat-
synchronous chroma vector occurs at the point where the harmony changes. The Chopin’s
study example is an extreme case. In general the harmony of a piece changes much slower,
especially in popular music where very often the chords have duration of a measure or
half a measure (even if this is not a rule). On the one hand, the longer the length of the
analysis window is, the more undesirable harmonic information from the adjacent chords
the beat-synchronous chroma feature will capture. On the other hand, a sufficiently long
window is required to detect precisely the low pitches notes. This trade-off should be kept
in mind when using beat-synchronous features.

3.5.2.3 Influence of the Position of an Adaptive Window

We now consider the case of a beat-adaptive analysis. The choice of the position of the
window according to the beat location is not trivial. In our view, the most logical solution
would be to center the analysis window exactly between two beats. In this case, the
problem of mixing several harmonies within the same beat does not exist.
experiments have shown that the best position of the adaptive window depends on the
music style (see Section 3.6.3.2).

However,
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3.6 Selecting a Feature Vector for Harmonic Analysis

In this Section, we evaluate and compare the three presented chroma representations. We
do not intend to compare the numerous chroma feature extraction methods proposed in
the literature but we intend to draw some general conclusions concerning the use of chroma
features extracted either from a fixed resolution analysis, a multi-resolution analysis or a
multi-f0 pitch tracking approach.

3.6.1 Defining a Measure to Compare Various Features

Selecting an input feature among others is a complex task. First of all, we need to
define the criteria that are relevant for comparison. The potential superiority of a feature
above another depends on their final use. The various presented features exhibit different
weaknesses and strengths. Choosing one input feature among the others is a result of a
compromise. We aim here at selecting the most appropriate chroma representation for the
harmony related tasks (key or chord recognition). The best candidate should provide the
most reliable information about the notes that comprise the played chord.

The problem of selecting the best front-end representation for a given task has already
been studied in some previous works. For instance [Dav07] compares the performances of a
downbeat tracker using three different spectral representations (a constant-Q spectrogram,
a 36-bin chromagram and a 12-bin chromagram), [MEKO09] compares the robustness to
timbre changes of a newly proposed chroma representation with some commonly used

chroma types including two freely available chroma representations 3.

However, we are not aware of any systematic analysis and comparison of the large
number of previously proposed chroma representations except two recent studies that
investigate the use of various chroma representations. [VPMOS8] investigate six formerly
proposed algorithms and proposes a new scheme based on multipitch tracking for chroma
vector computation. [SSGT09] analyzes and compares different methods for audio chroma
feature extraction. These two studies lead to different results concerning the performances
of the chroma features. For instance, in [SSGT09], the Enhanced Pitch Class Profiles
originally proposed in [Lee06a] are found to perform better than the Instantaneous Fre-
quency spectrum-based chroma vectors [EP07], whereas the opposite conclusion is claimed
in [VPMOS8]. This can be explained by the fact that different performance measures and
different evaluation test-sets are used in the two studies. This shows that comparison
between chroma features is not a trivial point.

We investigate here the three above-mentioned chroma-based representations (FFT,
CQT, f0) through the analysis of experimental results obtained on a number of music
audio excerpts.

3Ellis: “Chroma features analysis and synthesis,” http://www.ce.columbia.edu/dpwe/
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3.6.1.1 Previously proposed measures

In the literature, we can distinguish between two approaches for comparing front-end fea-
tures. On the one hand, the features are compared through the results of an application.
For instance, [DBSD04] compares the effects of using a fixed resolution spectral analysis
or a multi-resolution subband approach in the context of onset detection. To evaluate
and compare the two methods, a measure of onset detection accuracy is defined and com-
puted over a set of recordings. [NMO06] proposes a study that investigates the effects of
low-level digital signal processing parameters (such as the analysis window length) for an
HMM-based key estimation algorithm. One set of parameters is selected as a reference
setting. The effect of changing the other parameter values is measured by evaluating key
estimation performance of the algorithm on two different test-sets of real audio record-
ings (110 Beatles songs plus 48 piano recordings of all preludes and fugues from J.S.
Bach). [Dav07] investigates the use of three beat-synchronous spectral representations for
detecting bar boundaries based on harmonic changes ((i) a constant-Q spectrogram (ii), a
36 bin-chromagram; and (iii) a 12-bin chromagram). The comparison between the different
spectral front-ends is done through the downbeat tracking performance results.

The drawback of these approaches is that the features are compared through a complex
process in which, in general, not only the type of features used as front-end are evaluated
but also other parameters that have an impact on the result. It is thus difficult to analyze
the results and to distinguish between differences due to the type of the feature and
differences due to other parameters.

On the other hand, features can be compared using a specific evaluation measure that
is supposed to measure their quality. In [VPMO8], a large-scale experimental evaluation
is performed to compare a newly proposed chroma representation based on multiple pitch
tracking techniques with six other schemes. The experimental evaluation is performed by
measuring the similarity of the novel and the previous chroma representation with “ideal”
profiles retrieved from manually labeled chords on a data set consisting of 161 30s-length
real audio excerpts covering different tempi and genres. The goal of the experimentation is
to quantify the closeness between each computed chroma profile and the annotated chord
profile. It relies on the argument that the better the resemblance is, the more accurate
the chord detection will be. To quantify the similarity between the computed chroma
profiles and the annotated chord profiles, for each chord segment, the computed chroma
V. is compared to the annotated chroma vector V, consisting of 1 when the note belongs
to the chord and 0 otherwise using a cosine similarity distance S defined as

(ValVa)
SV, Vo) = o
OO AA

To measure the quality of the tested algorithm two measures are used: the mean cosine
similarity across all chord segments and the mean reciprocal rank (MRR) [EP07]. The
various chroma representations are ranked according to their mean cosine similarity.

[SSGT09] analyzes and compares different methods for audio chroma feature extraction
using 55 audio tracks synthesized from MIDI files. This database is built considering four
parameters: pitch, chord type, duration and attack. Evaluation of the chroma feature
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extraction methods is done through a set of measures that are related to the so-called
Chroma Precision (CP). For each computed feature vector V., the intensities of the pitch
classes corresponding to the tonal content of the input signal are added:

SR W) #s(i)
ORIV = =5 iy e

This evaluation measure is close to the one proposed in [VPMOS§] since the chroma is
considered all the more precise when it is close to a bit mask representing the tonal
content of the input signal.

We do not agree with the argument that “the better the resemblance is, the more
chance there is that the computed chroma profile can give rise to an accurate chord
detection and classification” [VPMOS]. Indeed, the goal of chord estimation is to select a
chord among a set of chord candidates. Resemblance with the annotated chord is thus only
important regarding resemblance with the other possible chords. A greater resemblance
with an annotated chord does not result automatically in an improved accuracy of chord
detection (see an example in Section 3.6.1.2, Figure 3.13. In other words, the discriminative
power of the chroma vectors must be taken into account in the evaluation measure.

To measure the quality of the various representations regarding chord estimation, we
should consider the following three conditions:

1. (i) First, the notes present in the chord should be clearly emphasized in the chroma
feature.

2. (ii) Secondly, the similarity between the computed chroma feature and the chord
templates that do not correspond to the annotated (ground-truth) chord should be
weak.

3. (iii) Finally, the similarity between the computed chroma feature and all possible
chord templates should be maximum with the template corresponding to the anno-
tated chord.

The best chroma feature should be thus selected as the one that gives the maximum
discriminative power.

The idea of measuring the performance of a feature extraction method in relation to
its discriminative power is presented in [MEKOQ09]. In this paper, a method for making
chroma features more robust to changes in timbre and instrumentation is presented. The
novel chroma feature is quantitatively compared with three commonly used chroma types
that serve as reference. Two types of experiments are conducted.

1. The first experiment is conducted on synthesized audio. A MIDI file containing
various chords is synthesized into 24 different ways using 8 different instruments
playing the file in 3 different octaves and considering two cases: the attack and the
sustain phase. A class composed of the 48 computed chroma vectors is formed for
each chord. The distance between two chroma vectors is computed using the cosine
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distance. Three measures are computed to quantify the degree of timbre invariance
of a given chroma type: the within-class distance p; (corresponding to the average
over the distances computed between any two chroma vectors that belong to the
same class) that measures the degree of timbre invariance and the between-class
distance po (corresponding to the average over the distances computed between
any two chroma vectors from different chord chroma classes) that measures the
discriminative power of the chroma representation. Finally, the inertia ratio p = %
expresses the across-class distance relative to the within-class distance.

2. The second set of experiments is conducted on real audio data. The newly proposed
chroma features are compared to the previously proposed ones by means of several
performance measures that allow comparing a query sequence with a given database
sequence.

3.6.1.2 Proposed Measure for Chroma Feature Comparison

To compare the different chroma feature extraction methods, we propose a measure that
quantifies the quality of a chroma vector in terms of representation of the harmonic content
of the signal.

From the previous observations, in order to measure the quality of the various pro-
posed features, we follow the approaches proposed in [SSGT09] and [VPMO08] and compare
each computed chroma feature with the input signal using a bit mask composed of zeros
and ones that represents the tonal content of the input signal (the ground-truth chord).
The chord template contains a 1 if the pitch class belongs to the chord and a 0 if it
does not. For instance, a C major chord template (C-E-G) has the following format:
[1,0,0,0,1,0,0,1,0,0,0,0]*.

We use a measure inspired from the one proposed in [MEKO09] to quantify the
resemblance between the computed and the theoretical chroma against the resemblance
between the computed chroma vector and the other possible chords. In our experiments,
we consider only the 24 major and minor triads. The chord templates are denoted by
T;,i € [1: 24]. Distances between the computed chroma vectors and the theoretical chord
templates are computed using a cosine similarity distance, as in [VPMO08]. We restrict
here our analysis to this commonly used distance measure but it is important to note
that the type of the distance used to compare two chroma features has an impact on the
results, as shown in [OGF09a]. We plan to pay more attention to this point in future works.

Let us consider a given input audio chord corresponding to an “ideal” template T; and
let C' denote a chroma vector computed on this audio signal. According to condition (i) the
chroma feature should match as closely as possible the theoretical template corresponding
to the chord. The correct-chord distance Do ¢ is computed as:

C.T;

DeclO) = ez (3.23)

4Note that for the sake of simplicity, we do not consider here the problem of harmonics evoked in
paragraph 3.2.2.1 and we do not consider harmonics in the theoretical templates that represent the input
signal. We will give more attention to this issue in the next chapter.
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We now consider condition (ii). We aim to find a measure that characterizes the
discriminative power of a chroma representation. Our first idea was to use a measure
similar to the between-class distance employed in [MEKOQ09]: the average distance over
any computed chroma vector C and any chord template that does not correspond to the
annotated chord:

Dunl(@) = =3 ”Ci (3.24)

However, this measure does not reflect the discriminative power of a chroma representation.
Indeed, the computed chroma vector might be even more similar to an other chord than
to the annotated chord although the value D, is small.

To illustrate this, consider Figure 3.13, which represents a multi-f0 based chroma
representation (top, left) and a CQT based chroma representation (bottom, left) of an F
major chord (F-A-C) extracted from the Beatles song Misery. Let us denote these two
vectors by C'yg and Cegr respectively. The right part of the figure represents the values
of the correct-chord distance computed between the extracted chroma and the 24 chord
templates.

It can be seen that the value Dcc(Cro) = 0.9120 is much larger than the value
Dcc(Cegr) = 0.6382. However, the amplitude of the A note in Cyg is very small (this
is probably due to the fact that the considered frame is disrupted by a drum sound that
makes multi-fO estimation difficult). As a result, the computed chroma vector is closer to
an Fm chord than to a FM chord (see the dashed circle in the right part of Figure 3.13,
top). On the contrary, the FM chord is well discriminated from the others in the case of
Ceqr-

Let us compute the distance D, for the two representations. For Cfo, we obtain a
value of 0.2212 and a ratio DCC = 4.1227. This is much larger than the value DCC = 2.7378
obtained in the case of Coqr, although the annotated chord is clearly better discriminated
using the constant-Q based approach. The poor discriminative power of C'to over Cogr
in the example is not represented using the average distance D, between the computed
chroma vector and any chord template that does not correspond to the annotated chord.

To take into account the discriminative power of the chroma features (condition (ii)),
we define the incorrect-chord distance D¢ as:
C.T;

Dico(C max 3.25
1(0) = max TEn T (3.25)

The ratio Doro = D—fg expresses the correct-chord distance relative to the incorrect-

chord distance. The mean value of the distances D¢ojc computed over all the frames of
the test database, denoted by Dcrc is used to measure the quality of a given chroma
representation. A good chroma representation should result in a large value of D¢ye.

Finally, to take condition (iii) into account, we also compute the rate of correctly
detected chords using a given chroma representation, which is given by the percentage
of chords for which the similarity between the computed chroma feature and the chord
templates is maximum for the template corresponding to the annotated chord. Note that
this is equivalent to the condition Doje > 1. In the following tables of results, this will
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Figure 3.13: Chroma representations of a AM chord and similarity with the chord tem-

plates using a multi-f0 based approach [top] and using a CQT based approach [bottom)].

The grey rectangles indicate the amplitude of the notes composing the FM chord. The
grey circles indicate the Do values.

be referred to as “% of correct chords”.

3.6.2 Database for Feature Selection

The various presented chroma feature extraction methods were analyzed and compared
through a database consisting of a number of short excerpts of about 20 seconds extracted
from audio recordings and hand-labeled in chords (major and minor triads) by the au-
thor. The chords are annotated against a time grid defined by the beats. The database is
divided into non-percussive audio (DAT'Clas) and percussive audio (DATPop). DATClas
corresponds to extracts of classical music with various instruments and DATPop corre-
sponds to audio excerpts of popular and rock music containing voices and drum sounds.
These two databases are described in details in Chapter 2, Section 2.3.1.

3.6.3 On the use of a Beat-Synchronous Analysis

In this section, we give a quantitative analysis of the use of beat-synchronous chroma
features. We first discuss the effect of using beat-synchronous chroma features instead of
frame-by-frame features in terms of capturing the harmonic content of a piece. We then
study the influence of the position of an adaptive window according to the beat positions.
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3.6.3.1 Beat-Synchronous Versus Frame-by-Frame Analysis

The results of comparison between frame-by-frame versus beat-synchronous analysis for
the various considered methods are given in Table 3.4. We give the mean value and the
standard deviation of the various evaluation measures computed over all the frames of the
test-set. The chord estimation results are illustrated in Figure 3.14.

Table 3.4: Similarity measure for comparing frame-by-frame versus beat-synchronous
(BS) analysis. DATPop: Popular music database, DATClas: Classical music database.
SS: Statistical significance.

DATPop

f0 fOBav FFTy FFTLBav| FFTs FFTsBay| CQT CQTBav
Dcc 0.6361 + | 0.6347 £+ | 0.4921 £ | 0.4928 + | 0.4423 £+ | 0.4416 £ | 0.5118 £ | 0.5133 +

0.0971 0.0968 0.0751 0.0757 0.0500 0.0501 0.0683 0.0679
Drc 0.8209 £+ | 0.6503 £ | 0.4872 £ | 04768 + | 0.4812 £ | 0.4622 £ | 0.5120 £ | 0.4922 +

0.0375 0.0776 0.0666 0.0634 0.0429 0.0384 0.0618 0.0550
Dcic 0.7835 £ | 0.9723 £ | 1.0078 £ | 1.0297 £ | 0.9269 =+ | 0.9590 £ | 0.9973 =+ | 1.0399 =+

0.0946 0.0767 0.0520 0.0493 0.0608 0.0609 0.0540 0.0455
% Cor- | 26.3954+ | 59.6364+ | 63.5549+ | 66.8039+ | 46.9668+ | 49.8616+ | 61.5483+ | 70.3990+
rect 8.6968 20.1500 11.2007 12.8174 14.4024 15.2406 11.8779 10.2607
SS yes yes yes yes

DATClas

70 f0Bav FFT;, FFT.Bay| FFTs FFTsBay| CQT CQTBay
Dcc 0.7349 £ | 0.7358 £ | 0.6030 £ | 0.6046 + | 0.5857 + | 0.5844 £ | 0.6159 =+ | 0.6185 =+

0.0584 0.0577 0.0893 0.0856 0.0755 0.0717 0.0768 0.0738
Dic 0.8075 £ | 0.7107 £ | 0.6037 £ | 0.5881 £ | 0.5969 =+ | 0.5750 £ | 0.6162 =+ | 0.5955 =+

0.0438 0.0343 0.0516 0.0504 0.0387 0.0346 0.0404 0.0431
Dcic 0.9280 + | 1.0435 £ | 1.0004 £ | 1.0300 £ | 0.9884 + | 1.0199 £ | 1.0045 £ | 1.0412 =+

0.1129 0.1220 0.0741 0.0771 0.0813 0.0862 0.0703 0.0722
% Cor- | 39.4648+ | 73.4211+ | 66.4417+ | 70.7845+ | 64.6579+ | 68.5439+ | 67.6692+ | 73.1704+
rect 21.5594 15.1892 12.7790 13.0598 15.0906 16.4696 12.6419 14.7149
SS yes yes yes yes

It can be seen that, for all the methods, the use of beat-synchronous features improves
the results. Using a paired sample t-test, we found the difference between the results of
the beat-synchronous and frame-by-frame analysis to be statistically significant at the
5% level®.

This corroborates the results obtained by Bello & Pickens in [BP05]: the use
of beat-synchronous analysis frames helps overcome noise introduced by transient
components in the sound, short ornamentations and passing notes. Averaging the
analysis windows between two beats results in some smoothing. Of course, we need
for this that the beat positions are correctly detected. This may not be the case in
real situations. In [Bel07], Bello compares beat-synchronous with frame-based chroma
features for the purpose of cover song retrieval. It is found that, due to errors in the beat

®The number of analysis frames is different between the beat-synchronous and the frame-by-frame
analysis. We thus computed a score for each audio excerpt and performed the t-test using each excerpt as
a sample.
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Figure 3.14: Chord estimation results on DATPop (left) and DATClas (right) for frame-
by-frame (black bars) versus beat-synchronous (Bay) analysis: BaAymean in dark grey,
BAVmedian in hght grey.

tracking, the frame-based analysis consistently outperforms the beat-synchronous analysis.

It can be seen that the use of long analysis windows (cases FFTy, and CQT for low
frequencies) leads to higher chord estimation results than when using a short analysis
window, even if more undesirable information from the adjacent chords is captured by
the beat-synchronous chroma vectors. This is probably due to the fact that we need
sufficiently long windows to capture the bass notes, which are in general the most
important information for chord estimation.

Figure 3.14 shows that the results are different according to whether the beat-
synchronous features are computed with method Baymeqn (mean) or with method
BAvmedian (median). However, the results are not statistically significant. Tests on a
larger database would be required to possibly decide which method is the best.

3.6.3.2 Influence of the Position of an Adaptive Window

In this section, we present some experiments that we conducted to study the influence of
the position of the beat-adaptive window according to the beat positions. The different
tested center positions are represented in Figure 3.15.

Figure 3.16 and Table 3.5 present the results obtained when centering the beat syn-
chronous window on different positions, using the proposed evaluation measures. Note
that the adaptive analysis window corresponding to a pair of successive beat positions by
and byg41 has a length of by — by.

In the case of popular music (DATPop), the best results are obtained when the
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bk bk+1

Figure 3.15: Different tested center positions of the beat-adaptive window: on the beat

(B), on the beat plus a é—beat duration shift, on the beat plus a %—beat duration shift

(solid lines), on the middle of the two beats (M), on the middle of the two beats plus a

%—beat duration shift, on the middle of the two beats plus a %—beat duration shift (dashed
lines).

Table 3.5: Similarity measure between extracted chroma features and chord templates

and percentage of chords that have been correctly detected for investigating the influence

of the position of beat adaptive windows. B: on the beat, M: between two beats (middle).
DATPop : Popular music database, DATClas: Classical music database.

DATPop
B B+ 1 B+ 1 M M + 2 M+ ;
Dco 0.4471 + [ 04815 =+ [ 04946 =+ | 0.5089 =+ | 0.4977 =+ [ 0.4911 =+
0.0759 0.0848 0.0821 0.0672 0.0713 0.0739
Dic 0.4603 + [ 04846 =+ | 04964 =+ | 0.5107 =+ | 0.5204 =+ | 05183 =+
0.0687 0.0715 0.0702 0.0604 0.0667 0.0684
Dcic 0.9710 + [ 0.9906 =+ [ 0.9942 =+ [ 0.9952 =+ [ 0.9535 =+ [ 0.9457 =+
0.0507 0.0596 0.0600 0.0454 0.0650 0.0718
% Correct | 53.6962 + | 58.1196 =+ | 60.1012 =+ | 61.8671 =+ | 53.4751 + | 52.4971 +
11.1792 11.8082 12.6013 10.5671 8.4631 8.5302
DATClas
B B+ 1 B+ 1 M M + £ M+ 1
Dcc 0.5478 & [ 06133 £ [ 0.6244 =+ | 0.6219 =+ | 0.6272 =+ | 0.6208 =+
0.0398 0.0482 0.0561 0.0893 0.0910 0.0909
Dic 0.5906 + [ 0.6221 + [ 0.6255 =+ | 0.6283 =+ | 0.6304 =+ | 0.6201 =+
0.0463 0.0282 0.0287 0.0400 0.0418 0.0443
Dcic 0.9413 & [ 0.9918 £ [ 1.0058 =+ [ 0.9939 =+ | 1.0027 =+ | 1.0083 =+
0.0587 0.0652 0.0809 0.0950 0.0843 0.0796
% Correct | 56.2206 + | 66.1654 & | 70.4536 + | 68.3559 =+ | 67.2632 + | 67.4561 +
6.5431 11.7777 14.6333 17.5472 13.3461 13.4273

window is centered exactly between two beats. Using a paired sample t-test, we found
the difference between window positions B and M to be statistically significant at the
5% level. Moreover, the more information from adjacent chords is taken into account, the
worst the results are. The huge increase in the results from position B to position B + %
may be due to the fact that, by placing the center of the window not exactly on the beat,
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Figure 3.16: Results of comparison of an adaptive window analysis. On the beat (B),

on the beat plus a %—beat duration shift, on the beat plus a %—beat duration shift, on the

middle of the two beats (M), on the middle of the two beats plus a %—beat duration shift,

on the middle of the two beats plus a %—beat duration shift. Black bars (left) correspond to

the results obtained on DATPop and grey bars (right) correspond to the results obtained
on DATClas.

we avoid taking into account part of the noise introduced by transient components in the
sound.

It is interesting to notice that the results are different in the case of classical music
(DATClas). In this case, the best results are not obtained when the window is centered
exactly between two beats. A deeper analysis shows that the best position of the adaptive
window depends on the music style.

In our test-set, we have 6 excerpts of piano Mozart sonatas. Each beat can be asso-
ciated with a chord. Notes composing the chord are played in general on the beat, and
ornamental notes, passing notes or scales that do not belong to the chord usually follow
them. As a result, the chroma features computed between two beat positions capture
some harmonic information that does not correspond to the underlying harmony.

For all of the other classical music pieces, the best results are obtained when the
window is centered exactly between two beats (case M). We can also notice that the worst
results are obtained when the center window is positioned on the beats B. This corre-
sponds to the case where the most information from adjacent chords is taken into account.

3.6.3.3 Conclusion on Beat-Synchronous Analysis
Many algorithms related to music content analysis rely on beat-synchronous features.

We have investigated the consequences of using beat-synchronous chroma features for
harmonic content analysis. We have shown that it increases the chord estimation results
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under the assumption of perfect beat tracking. Analysis and experiments show that it is
necessary to make a trade-off between having a satisfying frequency resolution and mixing
the harmonic content of two different chords in one beat-synchronous chroma vector. We
have also shown that in the case of a beat-adaptive analysis, the choice of the window
position depends on the music style.

3.6.4 Fixed versus Multi-resolution Analysis

The results of comparison between fixed versus multi-resolution chroma feature extraction
over databases DATClas DATPop are represented in Table 3.6, in which we give the
mean value and the standard deviation of the various distances computed over all the
beat-synchronous frames of the test-set. They are illustrated in Figure 3.17.

Table 3.6: Similarity measure between extracted chroma features and chord templates
and percentage of chords that have been correctly detected for comparing fixed versus
multi-resolution chroma feature extraction. From left to right: FFTrBay FFT using
a long analysis window (0.5s), FFTsBay FFT using a short analysis window (0.125s),
FFTBap beat-synchronous FET, CQT By CQT. SS: Statistical significance between the

considered FFT-based approach and the CQT-based approach.
DATPop

FFILBayv | FFTsBayv | FFTBap CQT Bav
Dcc 0.4928 + | 04416 4+ | 0.5089 4+ | 0.5133 =+
0.0757 0.0501 0.0672 0.0679
Dic 0.4768 + | 0.4622 + | 0.5107 =+ | 0.4922 +
0.0634 0.0384 0.0604 0.0550
Dcic 1.0297 + | 0.9590 + | 0.9952 + | 1.0399 =+
0.0493 0.0609 0.0454 0.0455
SS yes yes yes
% Cor- | 66.8039 4 | 49.8616 & | 61.8671 &£ | 70.3990 =+
rect 12.8174 15.2406 10.5671 10.2607
DATClas

FFTLBav | FFTsBay | FFTBap | CQTBav
Dcc 0.6046 =+ | 0.5844 £ | 0.6219 =£ | 0.6185 =+

0.0856 0.0717 0.0893 0.0738
Dic 0.5881 =+ | 0.5750 =+ | 0.6283 =+ | 0.5955 =+
0.0504 0.0346 0.0400 0.0431
Dcic 1.0300 £ | 1.0199 &£ | 0.9939 <+ | 1.0412 =+
0.0771 0.0862 0.0950 0.0722
SS yes yes yes
% Cor- | 70.7845 £ | 68.5439 + | 68.3559 + | 73.1704 +
rect 13.0598 16.4696 17.5472 14.7149

As explained above, a fixed-resolution analysis is the result of a trade-off between a
good temporal resolution (short analysis window length) and a good spectral resolution
(long analysis window length). The results presented in Table 3.6 show that the CQT-
based approach outperforms the FFT-based approach, especially in the case of percussive
music.
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Figure 3.17: Results of comparison between various chroma-based representations.
Black: DatPop, grey: DatClas.

We performed a paired sample t-test to determine whether there is a significant
difference between the results obtained with the two approaches. The null hypothesis
could be rejected at the 5% significance level, which indicates that the FFT based
features are outperformed by the CQT based features. The differences, although small,
are statistically significant.

We illustrate these results on an example. Let us consider the beginning of the Beatles
song Love Me Do. Figure 3.19 and 3.18 represent respectively the chromagram and the
semitone pitch spectrum of the first seconds of this song. The harmony is waving between
C major and G major chords. In the case of the CQT, all chord changes are correctly
detected whereas in the case of the FFT, the C major chords are considered as G major
chords.

If we listen to the music, we can hear that the harmony given by the accompaniment
is covered by the melody played by the harmonica. When C major (C-E-G) chords occur,
the bass (the C note) is hardly audible. The duration of the C2 midi note played by the
bass is very short.

e FFT long analysis window: We consider a chroma feature extraction based on a
FFT using a long analysis window length of 0.5s. We can see in the left part of Figure
3.19 that the C note of the first C major chord is not accurately discriminated from
the other pitch classes on the chromagram. Looking at the semitone pitch spectrum
(see left part of Figure 3.18), it can be seen that the semitone pitch-class spectrum
is blurred (due to the percussive sounds).

e FFT short analysis window: We consider the case where a smaller analysis
window is used. It is now set to 125ms. The semitone pitch-class spectrum and
the chromagram are respectively represented in the middle part of Figures 3.18 and
3.19. Tt can be seen that the C2 note is not detected anymore (see the 215! frame of
the chromagram). This is because the frequency resolution is too low.
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Figure 3.18: Pitch class spectrum of the first seconds of the song Love Me Do. From

left to right: FETBay, FFTsBay and CQTBay .

FFET,Bay FFTsBay CQTBav
BI B
At 1 Adtr
Al 1 ~HI1INHI Al
G#r 1 G# 1 G#r 1
S S Sl SRR BN S SRR SN R |
2 2 2
8 Py 1 B 1 S ]
5 | §F 1 1 §F
Er E I I E

o
3

D#r B D# I B
i [ 1 of Ml ] ' I 1
C#r 1 C# I 1 C#r 1
c B EN « BEEHRE «aF F F

5 10 15 20

5 10 15 20 5 10 15 20\
time (frames) time (frames) 21t frame

O

time (frames)

Figure 3.19: Chromagram of the first seconds of the song Love Me Do. From left to right:
FETBay, FFTsByy and CQT B4y . The horizontal lines correspond to the annotated

chords (ground truth).

e Constant-Q transform: The use of a constant-Q transform to compute the chro-
magram allows a better management of the time-frequency trade-off problem. The
use of long windows in low frequency allows detecting accurately the bass line (G-D-
C) whereas the use of short windows in higher frequencies allows reducing the effects
of percussive sounds. This is illustrated in the right part of Figure 3.19.

This example illustrates that the multi-resolution based approach can be an answer
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to the trade-off between the temporal and spectral resolution of the FFT. The constant-
Q based approach itself presents some drawbacks (for instance regarding the problem
of computing beat-adaptive related features, as explained below) but it seems a more
powerful chroma feature, especially for popular and rock music, that contains in general
lots of percussive sounds.

3.6.5 Multi-fOs Versus Spectral Representation

Table 3.7 presents the results obtained using a multi-fOs based approach for chromagram
computation and using a constant-Q based approach. See also Figure 3.17.

Table 3.7: Similarity measure between extracted chroma features and chord templates
and percentage of chords that have been correctly detected for comparing multi-fOs (left)
versus constant-Q based chroma feature extraction.

DATPop
multi-fOs cQT Statistical
signifi-
cance
Dco 0.6347 + [ 05133 =+
0.0968 0.0679
Dic 0.6503 =+ | 0.4922 +
0.0776 0.0550
Dcic 0.9723 + | 1.0399 =+
0.0767 0.0455
% Cor- | 59.6364 + | 70.3990 + | yes
rect 20.1500 10.2607
DATClas
multi-fOs cQT Statistical
signifi-
cance
Dcc 0.7358 =+ | 0.6185 =+
0.0577 0.0738
Dic 0.7107 =+ | 0.5955 =+
0.0343 0.0431
Dcic 1.0435 + | 1.0412 +
0.1220 0.0722
% Cor- | 73.4211 + | 73.1704 + | no
rect 15.1892 14.7149

It is difficult to decide which one of the chroma representations based on multi-fOs and
constant-Q transform is the best. Both have proved in previous works to give good results
as shown during the MIREX 2008 audio chord detection contest where a method using a
CQT-based chroma representation [BP05] and a method using a f0-based chroma repre-
sentation [RK08a] were among the three approaches that gave the best results. Note that
the multi-f0 based approach is more recent (probably because it follow the advances of
multi-fO estimation) and has been used in a smaller number of works than the CQT-based
approach. It can be seen in Table 3.7 than in the case of non-percussive audio, the two rep-
resentations yield close results. We performed a paired sample t-test to determine whether
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there is a significant difference between the results obtained with the two approaches. In
the case of classical music, the null hypothesis could not be rejected at the 5% signifi-
cance level, which indicates that the multi-fO based features are not outperformed by the
CQT-based features in the case of non-percussive music.

However, in the case of percussive audio (popular and rock music), the constant-Q-
based chroma features clearly outperform the multi-f0 based chroma features. A deeper
analysis of the results shows that multi-f0-based chroma features computed on the pieces
containing a lot of drum sounds give particularly low results as compared to the CQT.
This is because the estimation of the multi-fO is less accurate in case of percussive audio
containing transient and noise.

Regarding the results obtained in the case of non-percussive audio, we believe that
the multi-f0 approach is very promising. However, to be usable in the case of percussive
audio, the signal should be pre-processed before computation to reduce transients and
noise. A separation between the harmonic and drum parts would probably lead to a
successful use of multi-f0 based chroma features. This has been corroborated by some
preliminary experiments that we conducted on the popular music test database. We have
intended to reduce the transients in the signal using the IRCAM software AudioSculpt 6.
The results (for the fO-based and the CQT-based chroma features) are presented in Table
3.8 and illustrated in Figure 3.20. It can be seen that the performances of the chroma
features seem to be improved using this transient reduction pre-processing step. However,
the results are not statistically significant for the multi-f0 based method. The problem of
reducing transients and noise deserves a full attention and this is left for future works.

Table 3.8: Similarity measure between extracted chroma features and chord templates

on the popular music database for comparing CQT and multi — fO-based chroma features

using (TR) or not a transient reduction pre-processing step. SS indicates statistical sig-

nificance between the two cases. We also indicate the percentage of chords that have been
correctly detected.

cQT CQTrr SScor f0 fOrr SSro
Dcec 0.5133 =+ | 0.5634 =+ 0.6347 =+ | 0.6465 =+

0.0679 0.0600 0.0968 0.0804
Dic 0.4922 + | 0.5412 =+ 0.6503 =+ | 0.6567 =+

0.0550 0.0512 0.0776 0.0713
Dcic 1.0399 =+ | 1.0413 =+ 0.9723 =+ | 0.9864 =+

0.0455 0.0448 0.0767 0.0554
% Cor- | 70.3990 4 | 74.3661 =+ | yes 59.6364 £ | 62.9956 £ | no
rect 10.2607 8.2053 20.1500 17.5220

We have seen that in the case of percussive audio, the constant-QQ based chroma
features clearly outperform the multi-f0 based chroma features. In the rest of this PhD
thesis, we will thus work using constant-QQ based chroma features. Another argument
that motivated or choice is that the multi-fO estimation of a music track and thus the
chroma features based on the fOs is a very costly process in terms of computation time

S AudioSculpt is an application for the musical analysis and processing of sound files developed at
TRCAM since 1993.
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Figure 3.20: Performances in terms of correct chord recognition rate (in %) of chroma

features using a transient reduction pre-processing step in the case of a CQT-based analysis

(left) and an multi-fO-based analysis (right), for the popular music database. Black bars

correspond to the results obtained without a pre-processing step and grey bars correspond
to the results obtained in the case of a transient reduction pre-processing step.

compared to the computation of chroma features based on the CQT.

3.7 Summary and Conclusion

At the front-end of our models, we extract a chromagram, a representation of the signal
that captures its harmonic content. We explored several schemes for chromagram compu-
tation and investigated several issues related to the use of each representation (problem of
noise, beat-synchronous features). We conducted a number of experiments on short audio
excerpts and proposed some evaluation measures that allow the comparison between the
various representations.

We have shown that the use of a beat-synchronous analysis increases the chord estima-
tion results under the assumption of perfect beat tracking. Analysis and experiments show
that it is necessary to make a trade-off between having a satisfying frequency resolution
and mixing the harmonic content of two different chords in one beat-synchronous chroma
vector. We have also shown that in the case of a beat-adaptive analysis, the choice of the
window position depends on the music style.

The Constant-Q based chroma features were preferred to the FFT based chroma fea-
tures. They were found to reflect more accurately the harmonic content than the FFT-
based chroma features, especially for popular and rock music that contain lots of percussive
sounds: the use of long windows in low frequency allows detecting accurately the bass line,
which is very important for chord estimation, whereas the use of short windows in higher
frequencies allows reducing the effects of percussive sounds.

Tests on classical piano music showed that the use of multi-fO features seems to be a
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promising approach for harmonic content description. However, we did not find this rep-
resentation convenient for our system since we do not currently have any harmonic/noise
separation front-end and thus percussive sounds and noise disrupt the multi-fOs estima-
tion, especially in popular music. Moreover, the rest of our system is computationally
very efficient compared to the multi-f0 analysis (far less time-consuming). We thus did
not favor the use of multi-f0 based chroma features in the rest of our work.
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Chapter 4

Chord Progression Estimation
From an Audio File

In this chapter, we focus on the problem of the automatic estimation of the chord progres-
sion from an audio file using chroma features as observation of the music signal. From
the audio signal, a set of chroma wvectors representing the pitch content of the file over
time is extracted. The chord progression is then estimated from these observations using
hidden Markov models. Several methods are proposed that allow taking into account mu-
sic theory, perception of key and presence of higher harmonics of pitch notes. They are
evaluated and compared with existing algorithms through a large-scale evaluation on 110
hand-labeled songs from the Beatles.
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4.1 Introduction

This chapter is devoted to chord progression estimation. Chords are central to our
work. In the global model for musical attribute estimation presented in this disserta-
tion, we consider harmony as the core around which other musical attributes are organized.

In this chapter, we review and analyze several previous methods for estimating the
chord progression of a piece of music directly from audio signals of musical recordings.
The presented methods are based on chroma features and hidden Markov models (HMMs).
We then propose improvements of these methods to build our chord estimation algorithm
that will serve as a basis for investigating interaction between various musical attributes
in the next chapters. The presented work is based on the publication [PP07]. The major
contributions of this chapter are:

1. We provide a detailed review of the previous works in the area of chord estimation.
2. We compare and extend some previous proposed methods for chord estimation.

3. We propose a new method to take into account the problem of harmonics in the case
of chord estimation.

4. We compare several previously used state transition matrices with newly proposed
ones in the HMM.

5. We present a large-scale evaluation of the proposed chord estimation systems.

6. We provide a discussion of the obtained results and a criticism of the proposed model.

Organization of the chapter:

This chapter is organized as follows. In Section 5.2, we provide a detailed review
of the previous work on chord estimation. Relying on this review, we introduce our
point of view on the chord estimation problem in Section 4.3. We then study several
approaches to estimate the chords from the succession of chroma vectors over time using
HMM in Section 4.4. In particular, we describe various configurations of the observation
probabilities (Section 4.4.3) and transition probabilities (Section 4.4.4). In Section 4.5, we
evaluate and compare our approach to previous models. A conclusion closes this chapter.

4.2 Previous Work on Chord Estimation

In this section, we review a number of chord estimation methods. We distinguish between
approaches employing a probabilistic model (Section 4.2.2) and pattern-matching-based
approaches (Section 4.2.3). We also discern some recent approaches that are devoted to
real-time implementation (Section 4.2.4).
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4.2.1 Extraction of Signal Features That Describe the Harmonic Con-
tent

The first stage of a chord estimation system consists in extracting some low-dimensional
features from the audio signal that are appropriated to the task. Since their introduction
in 1999, Pitch Class Profiles (PCP) [Fuj99] or chroma-based representation [Wak99] have
become common features for estimating chords or musical keys from audio recordings.
PCP /chroma vectors are low-dimensional features that represent the intensity of the twelve
semitones of the pitch classes. Fujishima [Fuj99] uses the chroma representation to derive
a large set of chords using either a nearest-neighbor or a weighted sum pattern matching
method. 27 complex chords are considered. The system is successfully evaluated on
synthetic sounds from a YAHAMA PSR-520 electronic keyboard and on a real-audio
excerpt: the opening theme of Smetana’s Moldau. Because the chroma features emphasize
the harmonic content of the signal, most of the works on chord estimation are based on
this representation.

Recently, a new feature called the Tonal Centroid has been proposed by Harte et
al. [HSGO06]. This feature can be viewed somehow as an extension of the chromagram.
Lee [Lee08] uses this feature in the context of chord estimation and shows that his chord
estimation system performs better than when using chroma features.

It can be noticed that other features have been explored for the chord estimation
task. For instance, [Lee05] proposes a novel approach based on human perception for
automatic chord estimation from the raw audio data using the Summary Autocorrelation
Function as signal features. [Lee06a] introduces a feature vector called the Enhanced
Pitch Class Profile (EPCP) that is based on the Harmonic Product Spectrum. These
features have been investigated in order to take into account the overtones generated by
the chord tones. However, chroma features have almost been exclusively used as a front
end to existing chord estimation models.

4.2.2 Statistical Machine Learning Techniques for Chord Estimation
4.2.2.1 HMM-based Baseline Approaches

Raphael [Rap02] uses HMMs trained by the Expectation Maximization (EM) algorithm
to transcribe piano music in terms of chord labels. The final purpose of his work is a
piano MIDI transcription. The chord dictionary thus distinguishes between each different
combination of simultaneous notes, resulting in a very huge state space. The model is
trained on various Mozart piano sonata movements and evaluated on clean recordings of
solo piano music. Results on a performance of the 3rd movement of the Mozart piano
Sonata K. 570 are reported.

The first system evaluated on rich polyphonic music recordings (whole pieces of music
of commercial recordings) is presented by Sheh & Ellis in [SE03]. They show that chro-
magram features outperform cepstral coefficients for the purpose of chord estimation of
real-world musical recordings. Their system draws on the prior work of [Rap02]. However,
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rather than considering every possible note combination, they use a reduced set of 147
chords, having a single model for each chord type. The chord lexicon is composed of 7
chord families (maj, min, maj7, min7, dom7, aug, dim) and 21 roots (A, B, C, D, E, F,
G, Ab, Bb, ..., Gb, A#, B#, ..., G#). The sequence of chord names (without chord
boundaries) is used as an input to the model. Both the model parameters for chords and
for chord transitions are unsupervisedly learned from flat start initializations using the
forward-backward algorithm. The Viterbi algorithm is used for forced alignment or chord
label recognition. The system is trained and evaluated on a small collection of 20 early
Beatles songs. Considering the rather large number of chords and the small amount of
training data, the chord recognition accuracy is poor. However, this work initiated the
use of HMM-based approaches for the purpose of audio chord estimation. Since then, the
HMM approach for chord estimation has been followed by many other researchers.

In the context of automatic structure detection for popular music, Maddage et al.
[MXKS04] [Mad06] employ a similar learning method for chord estimation using a HMM.
However, the chord model is different from [SE03]: 48 HMMs are used to model 12 major,
12 minor, 12 diminished and 12 augmented triads. Each model has five states, including
entry, exit and three Gaussian mixtures (GM) for each hidden state. The mixture weights,
means and covariances of all GMMs, as well as the initial and transition state probabilities
are computed using the Baum-Welch algorithm. The Viterbi algorithm is then applied and
gives a first estimation of the chord progression. A post-processing step is incorporated to
correct possible misclassifications. Key determination is performed so that chords not in
the detected key are disallowed and replaced by other chords with high probability or with
the previous chord. Time alignment of the chords is corrected using heuristics derived from
popular music composition knowledge. The model is trained with real songs and additional
synthesized audio chord samples. Cross-validation experiments on 40 popular music songs
in [MXKS04] (50 in [Mad06]) show that the chord estimation results are improved thanks
to the music knowledge-based post-processing step.

Bello & Pickens [BP05] improve the approach proposed by [SE03] by encoding musical
knowledge into the model. The feature extraction part is ameliorated in one part by a
tuning stage [HS05] and in the other part by the use of beat (tactus)-synchronous features
that minimizes the effect of local variations and transients. Finally, the chord lexicon is
limited to the 24 major and minor triads since the purpose of the work is to achieve a
robust mid-level representation that describes the harmonic character of an input signal,
rather than an academic chord transcription from audio. The chroma features are used
as observations on a 24-state hidden Markov model, where each state corresponds to
one of the major and minor triads. The observation distribution is modeled by a single
Gaussian. The parameters of the model are initialized using simple musical knowledge
about the key distance in a circle of fifths. The model is then selectively trained in an
unsupervised fashion using the Expectation-Maximization (EM) algorithm, assuming that
a chord template or distribution is almost universal regardless of the type of music and thus
disallowing adjustment of distribution parameters. The chord progression is obtained by
decoding the model using the Viterbi algorithm. The model is tested on two early Beatles
albums, Please Please Me and Beatles For Sale. Experiments show that the use of musical
knowledge is crucial, that selective training introduces substantial gains into the approach
and that the use of a tactus-based feature set clearly outperforms the frame-by-frame

Joint Estimation of Musical Content Information From an Audio Signal



Previous Work on Chord Estimation 73

estimation.

This last result is also claimed by Maddage et al. [MKLO06] who propose a hierarchical
approach to model the tonal characteristics of musical audio. Major, minor, diminished
and augmented chords are considered. The usual pitch class profile (PCP) features are
compared to psycho-acoustical profile (PAP) features that are presented as the expansion
of PCP features. They consider effects of the notes in all the octaves individually. Eval-
uation on 40 English songs (10 Michael Learns To Rock, 10 Bryan Adams, 6 Beatles, 8
Westlife and 6 Backstreet Boys) shows that the effects of f0, sub-harmonic, and harmonic
of the notes which comprise a given chord, are important clues for chord detection. It
is found that the best features are the PCP where note effects (f0, sub-harmonic, har-
monic) are averaged across the octaves. It is also found that tonal characteristics are
better extracted using tempo proportional signal segmentation than using fixed length
segmentation.

Ryynénen & Klapuri [RK08b] present a method for chord estimation related to [BP05]
in the sense that it uses a chord HMM where the states correspond to the major and
minor triads. The proposed chord estimation method is only one part of a global model
that attempts to provide a useful representation of polyphonic popular music songs. The
purpose is the automatic transcription of the chord progression, the bass line and the key
signature of audio files. In the front end, the system extracts two frame-wise features:
a pitch-salience estimator and an accent estimator that indicates potential note onsets
based on signal energy. The chord transcription method uses a 24-state HMM where
the observation likelihoods are obtained by mapping the pitch salience into a pitch-class
representation, and comparing them with trained profiles for major and minor chords.
Two PCPs are used, one for low-register MIDI notes 26-49 and one for high-register MIDI
notes 50-73. Chord transition probabilities are estimated from training and the chord
progression is found using the Viterbi decoding algorithm. The method is evaluated using
a two-fold cross validation on 8 Beatles albums.

4.2.2.2 Simultaneous Estimation of Chords and Musical Context

Some HMM-based chord recognition systems use context information to improve the chord
progression. Additional musical attributes (such as key, meter or structure) may be mod-
eled simultaneously with the chords.

Lee & Slaney [LS08] follow an HMM-based approach for chord extraction similar to
[SE03] and [BPO05] in that the states in the HMM represent chord types and that the
most probable chord sequence is found in a maximum-likelihood sense. However, they
use the tonal centroid feature instead of the chroma feature. Moreover, the parameters
of the model are supervisedly learned without using an EM algorithm, but directly from
labeled training data. Symbolic data are used to automatically obtain a large set of
labeled training data, avoiding the tedious task of human annotation of chord names and
boundaries. The large amount of training data allows the building of key-specific HMMs,
which not only increase the chord estimation accuracy but also provide key information.
The model is evaluated on two pieces of classical music, Bach’s keyboard piece Prelude
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in C Major and Haydn’s string quartet Op.3, No.5: Andante measures 1-46, and on
two Beatles albums, Please Please Me and Beatles For Sale. Experimental results show
that the approach compares favorably to the state-of-the-art [BP05]. The tonal centroid
feature is found to outperform the conventional chroma feature. Chord accuracy results
are improved considering musical key information.

Burgoyne & Saul [BS05] also present an HMM-based model that tracks key simulta-
neously with chords. It is claimed that transitions between chords are dependent of their
tonal context. On the contrary to [LS08], they do not assume that music remains in a
single key from start to end. The model considers chord and key to be inseparable prop-
erties of any given harmony. The model is restricted to major and minor triads. Each
state of the HMM represents a chord in a possible key (C major in the key of A minor for
instance). Simplified rules of tonal harmony are encoded in the transition matrix. The
traditional Gaussian emission distribution is replaced with a Dirichlet distribution. The
model is unsupervisedly trained with the EM algorithm on five Mozart symphonies (K.
134, K. 162, K. 181, K.182 and K.183) and tested on the Minuet of Mozart symphony K.
550. The results reveal that a more advanced harmonic model is needed to improve the
results.

Papadopoulos & Peeters [PP08b| present a method for simultaneously estimating the
chord progression and the downbeats from an audio file. A specific topology of hidden
Markov models that enables to model chords dependency on metrical structure is proposed.
Each state is defined as an occurrence of a chord at a “position in the measure”. The model
relies on the idea that chords are more likely to change at the beginning of measures than
on other beat positions in the measure. In this model, the chord progression benefits from
the knowledge of the downbeats positions and conversely the downbeats are estimated
relying on the chord progression. The model is evaluated on a test-set of 66 popular music
songs from the Beatles and shows improvement over the state of the art. The model is
further extended in [PP10] to more complex cases that include pieces with complex metric
structures such as beat addition, beat deletion or changes in the meter.

The work of Mauch & Dixon [MD10] is also concerned with the simultaneous estimation
of chords and other musical attributes. A 6-layered dynamic Bayesian network models
jointly key, metric position, chord and bass pitch class. The most probable sequence is
inferred from the beat-synchronous bass and treble chromagrams of the whole song. The
model distinguishes between 109 different chords (7 chord classes in root position: mayj,
min, dim, aug, maj7, maj6, dom?7, plus 24 major chords in 1% and 2"¢ inversion, plus one
no chord “N” chords) and is evaluated on 176 audio tracks from the MIREX 2008 Chord
recognition test-set.

In [MDO08], Mauch & Dixon present a new approach for chord labeling in which a
chord is modeled as a mixture of different sonorities. A melody range and a bass range
chromagram are separately computed and simultaneously used as observations in a hidden
Markov model. A sophisticated state duration modeling is proposed, in which chord
durations are gamma-distributed. The system also includes a bass model. In this work,
6 chord classes are considered (major, minor, dominant, diminished, suspended, and no
chord). The model is evaluated using a five-fold cross-validation procedure on 175 Beatles
songs. It is shown that the new duration modeling retains the level of accuracy while it
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reduces fragmentation.

The work of Mauch et al. [MNDO09] also deals with the concept of unified music analysis.
The baseline is the chord estimation method proposed in [MD10]. They propose to improve
the chord progression estimation by exploiting the repetitive structure of songs. They rely
on the idea that the chord sequence is the same in all sections of the same type (such as
chorus or verse). They thus assign the same chord progression to repeated sections. Four
types of chords are considered: major, minor, diminished, dominant or no chord. The
evaluation of the method on 125 Beatles songs shows improvement in chord accuracy and
reveals that the chord transcription is more consistent with the repetitive structure of the
song.

4.2.2.3 Introducing Language Modeling, N-grams

Some approaches for chord estimation employ Language Modeling (LM) because sequences
of chord labels can be viewed as word sequences in natural language. The previously
presented HMM-based works make the Markovian assumption that each chord symbol
depends only on the preceding one, which is a simplifying assumption. Higher order prob-
abilistic N-grams are an interesting alternative to HMMs (that correspond to probabilistic
2-grams) because they can efficiently model the actual complexity of music.

Cheng et al. [CYL'08] claim that the information of two adjacent chords is insuffi-
cient for recognizing longer chord sequences. They thus propose to incorporate a N-gram
model that learns the common rule of chord progression into a HMM framework for chord
estimation. Applications to music classification and retrieval are investigated. Two new
chord features are proposed: the longest common chord subsequence and the histogram
statistics of chords. Experiments on the previously cited two early Beatles albums indicate
that the N-gram-based approach outperforms the typical HMM-based approach.

Scholz et al. [SVBO08] focus on two possible limitations of N-gram-based chord estima-
tion models: the problem of overfitting and the problem of using a single chord labeling
scheme. In order to overcome these limitations, they investigate several model smooth-
ing and selection techniques for modeling the chord sequence of a piece of music using
probabilistic N-grams. Several chord labeling schemes are considered. The various config-
urations of the model are tested on 180 Beatles songs. The results show that the accuracy
of N-grams is increased by the proposed techniques. They also show that it is possible to
accurately model more complex chord types than the usual minor/major chords.

The approach to chord estimation from audio proposed by Khadkevich & Omologo
in [KOO09] is based on a trained HMM combined with a Language Model. Pitch Class
Profile vectors are used as input to the model. The method differs from most existing
approaches in the sense that a chord is not represented as a hidden state in one ergodic
HMM, but a separate left-to-right HMM is created for each chord. For a given analyzed
song, the most likely chord sequence is obtained using the Viterbi decoding algorithm. The
resulting chord lattice is then rescored by applying a language model of high orders (3-
gram, 4-gram). The model is evaluated on 175 Beatles songs using a 5-fold cross-validation
procedure. Factored and standard language models are compared and it is found that the
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use of a factored LM results in a small increase in performance.

The work of Schuller et al. [SHARO09] is related to [KO09]. It shows that incorporating a
Musicological Model (MM) in an HMM-based approach for chord labeling allows improving
chord accuracy. Temporal harmonic structure is incorporated by using one “Chroma
Energy Distribution Normalized Statistics” (CENS) feature [MKCO5] per bar. The model
is trained on 19,025 chord lead sheets!. It is compared to a Cross-Correlation (CC)
with templates method and a Support Vector Machines (SVM) method. Experiments
on a database of 100 pieces of pop and rock music that have been annotated by trained
musicians® are conducted. The results indicate that data-driven approaches are superior
to template-based approaches and that language modeling improves chord estimation.

4.2.2.4 Other Statistical Modeling Approaches

Machine-learning-based methods for chord estimation also include approaches other than
HMMs. For instance Paiement et al. [PEBBO05] present a graphical probabilistic model
where contextual information related to the meter is used to model the chord progression
in order to generate chords. The graphical model uses probabilities of chord substitu-
tions that are derived from a continuous distributed representation for chords. In this
distribution, perceptually similar chords tend to be close in Euclidean distance. In the
graphical models, the parameters are learnt with the EM algorithm and the Junction Tree
algorithm is used for inference. The model is validated using 52 jazz standard excerpts
from Sher (1988) [She88] interpreted and recorded by one of the authors in MIDI format
on a Yamaha Disklavier piano. Experiments show that chord progression dependencies to
the meter can be better captured with a tree structure rather than with a HMM.

The use of HMMs is compared to the use of conditional random fields (CRFs) by
Burgoyne et al. [BPKFO07]. Audio is modeled with PCP features and various configura-
tions of HMMs and CRFs models are implemented. Cross-validation and comparison of
the systems is conducted on the same set of Beatles songs than Sheh & Ellis [SE03]. It
is demonstrated that the CRF-based method yields to results close to the ones obtained
with the best HMM-based method, while using much fewer model parameters.

Other statistically-based chord estimation approaches include hypothesis-search-based
methods. Yoshioka et al. [YKK™04] propose a method that concurrently recognizes chord
boundaries, chord symbols and keys. This approach allows taking into account the mutual
dependency of chord-boundary detection and chord-symbol identification as well as the
mutual dependency of chord-symbol identification and key identification. The core of
this algorithm is a hypothesis-search algorithm that evaluates tuples of chord symbols
and chord boundaries. Three criteria are taken into account: acoustic features, chord
progression patterns and bass sounds. Likely hypotheses are followed while highly unlikely
hypotheses are pruned after a while. At the end of the song, the most probable path is
chosen as the chord progression. The accuracy of the chord transcription, measured on one-

1 “The on-line guitar archive,” in http://www.olga.net, 2006.
2The list of the songs can be found at: “Songlist  chord  data-set,” in
http://www.mmk.ei.tum.de/sch/chord.txt, 2006.
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minute excerpts from seven songs of RWC-MDBP-2001 [GHNOO02] (No.14, 17, 40, 44, 45,
46, and 74), is improved considering chord progression patterns and bass sounds. However,
the correctness is not improved because the proposed method makes many insertion errors.

Although information about bass sounds is used in [YKK'04], it is not integrated
into a probabilistic framework. Errors in estimating bass tones tend to produce errors
in the chord estimation. Sumi et al. [SIYT08] improve the hypothesis-search-based
method proposed in [YKK™04] by probabilistically integrating bass pitch estimation into
the model to improve chord estimation. Evaluation of the proposed methods on 150
one-minute excerpts of Beatles songs shows that the baseline method has been improved.

4.2.3 Pattern Matching Approaches

Alternative to the machine learning approaches for chord estimation are the pattern match-
ing approaches. In such approaches, each feature vector computed from the audio signal
is correlated with a set of chord templates that indicate the perceptual importance of the
notes within a chord. The estimated chord is obtained by selecting the template that gives
the maximum correlation coefficient.

Harte & Sandler [HS05] estimate chords by comparing predefined chord templates that
are simple bit masks® to chroma features. The originality of their work is that it proposes
a tuning algorithm to accurately locate the boundaries between semitones. This allows
the calculation of a novel semitone-quantized chromagram. The model can distinguish
between 48 chords. The model is evaluated on two early Beatles albums, Please Please
Me and Beatles For Sale.

Oudre et al. [OGF09a] propose a chroma, template-based method for chord recog-
nition. They rely on the idea that in a given chroma vector corresponding to a chord,
the amplitudes of the notes that comprise the chord should be larger than the ones of
the non-played tones. They investigate the influence of several parameters in the model.
They examine several chord templates that take into account one or more harmonics for
the notes, as previously proposed in [PP07]. They compare the use of several measures of
fit between the chroma features and the chord templates. They also explore the influence
of the number and the types of the chords that are considered in the model. Performance
of the system is evaluated on 13 Beatles albums.

Some template-based approaches include post-processing steps to correct chord estima-
tion errors. Shenoy et al. [SMWO04] propose a symbolic inference-based chord estimation
method. Individual notes are identified from beat-synchronous chroma features by con-
sidering only the elements with the four highest values in the chroma vectors. Symbolic
inference is used to determine major and minor chords. The chord estimation accuracy is
not sufficient to provide a usable chord transcription. This method is improved by Shenoy
& Wang in [SWO05] where a post-processing step similar to the one in [Mad06] is proposed.
Three rule-based chord accuracy enhancement steps based on musical key and meter infor-

3A bit mask is a 12-dimensional vector corresponding to the 12 semitones of the pitch classes with 1
when the note belongs to the chord, 0 otherwise.
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mation are used. Firstly, chords that do not belong to the key of the song (assumed to be
constant over time) are eliminated. Secondly, the chord progression is smoothed so that
if a chord is different from two same adjacent chords, it is replaced to match the adjacent
chords. Finally, chord changes are favored at the beginning of the measures instead of
other half-note time. Experiments are performed on 30 popular English songs and show
that the chord estimation accuracy is spectacularly improved by the post-processing steps
based on music knowledge, increasing from a relatively low score of 48.13% to a score of
78.91%.

Reinhard et al. [RSNO8] also introduce an approach to improve chord estimation
accuracy. A post-processing step to chord estimation algorithms is proposed to correct
possible misclassifications caused for instance by the presence of percussive sounds
or harmonics. The method is based on musical harmony principles. It works with a
probability-based classifier that is solely based on the chromagram feature extracted
in the previous step and that exploits the knowledge about the distribution in the
neighborhood of a chord. The main assumption is that a chord is more likely to be
from a pool of chords in the neighborhood, than to be any other arbitrary chord. The
classifier does not only predict the most probable chord, but also returns a probability of
confidence for every possible chord considering the observed chromagram. Three different
classifiers (scalar product pattern matching, Mahalanobis distance classifier, Naive Bayes
classifier) are used in order to demonstrate that the proposed post-processing technique
can be used in combination with arbitrary classifiers.

As in machine learning approaches, some template-based approaches are also based
on music theory. For instance the purpose of Zenz & Rauber [ZR07] is to incorporate
music theoretical knowledge in a chord extraction algorithm without restricting the input
data to a narrow range of musical styles. The algorithm distinguishes between major,
minor and diminished chords. This work uses Pitch Class Profile features computed on
beat-synchronous frames using the Enhanced Autocorrelation (EAC) Algorithm [TKO00].
The generated PCPs are compared to a set of reference chord PCPs that are empirically
determined from one-minute excerpts of 5 popular songs. A single key is estimated for
each song and key information is used to refine the set of possible chords. The context of
each chord is analyzed for estimating the final chord progression. Evaluation is performed
on a set of 35 pieces of various music styles and indicates that music theory information
improves chord estimation accuracy.

4.2.4 Real-Time Implementation for Chord Estimation

Some recent works are concerned with real-time implementation of chord estimation meth-
ods. Cho & Bello [CB09] propose a real-time implementation of HMM-based chord es-
timation based on the model proposed in [BP05]. To overcome the limits of the online
processing (limited memory capabilities and no access to future observations), they pro-
pose a system of buffers. Modifications are introduced in the standard Viterbi decoding
algorithm to approximate offline results while minimizing the system’s latency. 12-fold
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cross evaluation on the MIREX 2008 169 Beatles songs show that the results of realtime
decoding converge towards the non-realtime decoding result.

Stark & Plumbley [SP09] propose a real-time chord recognition system using a classifi-
cation technique based on residual energy in the chromagram. They develop a chromagram
calculation method in which unwanted energy such as noise is discarded. Experiments
are carried on a set of 180 chord samples extracted from real-world guitar recordings.
108 different chords are considered (the 12 variations of major, minor, diminished, aug-
mented, suspended 2"?, suspended 4", major 7%, minor 7" and dominant 7" chords).
The proposed chroma computation method is shown to compare favorably with other
state-of-the-art methods [BP05] [SE03].

Konoki et al. [KM10] describe a system that estimates in real-time chord labels
from sounds generated by electric guitars. Two difficulties related to chord estimation
are addressed: “omitting”, “inversions” and “tension voicing” notes as well as enhar-
monic equivalence. The system starts by computing chroma vectors from which the
theoretically played notes are estimated. For this, the four highest strong pitch classes
that have an intensity above a threshold are selected. Possible chord labels are then
listed by using a “search tree”. The model is evaluated in real-time using guitar chords
generated by a guitar player. 16 chord types are considered. The chord types employed
in this study are the sixteen patterns frequently used in chord guitar performances
(maj, min, T, m7, M7, mMT7, aug, dim, 6", m6, sus4, Tsus4, 7(b5), aug7, dim7, andadd9).
Ambiguous cases (such as enharmonic equivalence) are resolved by comparing the possible
chord progressions obtained from the chord labels with some chord progression patterns
extracted from a “chord progression database”.

4.2.5 Summary of Chords Estimation Techniques
4.2.5.1 Summary of the Above-Presented Methods

Tables 4.1, 4.2 and 4.3 list the characteristic attributes of the above-presented chord
estimation methods. The systems are presented in the chronological order. The column
“Method” indicates the main techniques that are used for chord estimation. The column
“Input features” indicates the type of input that are processed. The column “Comments”
underlines some interesting specific strategies that are adopted. The column “Chord
lexicon” indicates the chords lexicon that can be handled by the systems. Finally, the
column “Evaluation material” indicates the musical material on which the systems have
been tested and possibly trained.

4.2.5.2 Summary of the MIREX Chord Recognition Systems

In this section, we present an overview of the chord estimation algorithms submitted to
the MIREX 2008 and 2009 contests.
e Introduction to MIREX Chord Recognition Task

The first audio chord detection task in Music Information Retrieval Evaluation eX-
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Table 4.1: Characteristics of some chord estimation methods 1999-2006.
Reference Method Input fea- | Comments Chord lexicon Evaluation material
tures
Fujishima Pattern PCP e nearest neighbor or a | 27 complex | e no training e testing
[Fuj99] Matching weighted sum method | chords on synthetic sounds +
e bit-mask chord tem- one real-audio excerpt
plates (50s)
Raphael HMM collection unsupervised training | chord consid- | e training on various
[Rap02] of features by EM ered as any | Mozart piano sonata
combination of | movements e testing on
simultaneous the 37¢ movement of
notes Mozart piano Sonata
18, K. 570.
Sheh & El- | HMM PCP e unsupervised learn- | 147 complex | e training on 18 early
lis [SE03] ing with EM e random | chords Beatles songs e testing
initialization e Viterbi on 2 Beatles songs
decoding for forced
alignment or chord
label recognition
Maddage HMM PCP e 48 HMMSs, one for | 48 (maj, min, | e training: real songs
et al. each chord, 3 states | dim aug) + synthesized audio
[IMXKS04], per chord e supervised chord samples e Cross-
[Mado6] training EM e post- validation on 40 popu-
processing step base on lar music songs
key and meter
Yoshioka hypothesis- | beat- e concurrent recogni- | 48 (maj, min, | e training: 2592 audio
et al. | search synchronous | tion chord boundaries, | dim, aug) samples of each chord
[YKKT04] algorithm PCP chord symbols and played on a MIDI tone
keys o generation of generator + 6 RWC
hypotheses about tu- songs (2-fold cross-
ples of chord symbols validation) e testing:
and chord boundaries one-minute  excerpts
e 3 criteria taken from seven songs of
into account: acoustic RWC (No.14, 17, 40,
features, chord pro- 44, 45, 46, and 74)
gression patterns and
bass sounds
Bello & | HMM beat- e musical knowledge | 24 (maj, min) 2  Beatles albums,
Pick- synchronous | encoded into the model Please Please Me and
ens [BP05] PCP e unsupervised selec- Beatles For Sale
tive training EM
Burgoyne HMM PCP e simultaneous keys | 24 (maj, min) e training: 5 Mozart
& Saul and chords estimatione symphonies (K. 134, K.
[BSO05] Simplified rules of 162, K. 181, K.182
tonal harmony en- and K.183) e testing:
coded in the transition Mozart Symphony K.
matrix e  Dirichlet 550, Minuet
distribution unsuper-
visedly trained with
EM
Harte template- PCP e quantized chroma- | 48 (maj, min, | ¢ no training e 2
& San- | matching gram e bit-mask chord | dim aug) Beatles albums, Please
dler [HS05] templates Please Me and Beatles
For Sale.
Paiement graphical MIDI e contextual informa- | any group of | 52 jazz standards ex-
et al. | model tion related to the | observed notes | cerpts
[PEBBO5] meter used to model | forming a chord
the chord progression e
comparison tree struc-
ture/HMM
Shenoy symbolic beat- e 3 rule-based chord | 24 (maj, min) e no training e test-
& Wang | inference synchronous | accuracy enhancement ing:30 popular English
[SW05] PCP steps based on musical song
key and meter informa-
tion
Maddage hierarchical| beat- incorporate the note | 48 (maj, min, | e synthetically gener-
et al. | model synchronous | effects (Fo, sub- | dim, aug) ated music chords e 40
[MKLO6] PCP/PAP harmonic, harmonic) English songs
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Table 4.2:

Characteristics of some chord estimation method

s 2007-2008.

Reference Method Input fea- | Comments Chord lexicon | Evaluation material
tures
Burgoyne CRF PCP Dirichlet for modeling | 48 (maj, min, | 10-fold cross validation
et al. PCP distribution dim, aug) on 20 Beatles songs (18
[BPKFO07] for training, 2 for test-
ing)
Lee & | key-specific | tonal cen- | e supervised training | 24 (maj, min) | e training: 765 clas-
Slaney HMM troid with EM e training files | or 36 (maj, | sical music files +158
[LS08] generated from symbolic | min, dim) Beatles songs e testing:
data Bach Prelude in CM
and Haydn string quar-
tet Op.3, No.5, mea-
sures 1-46 + 2 Beatles
albums, Please Please
Me and Beatles For
Sale.
Zenz & | template beat- e empirically-based ref- | 36 (maj, min, | e no training e testing:
Rauber matching synchronous | erence PCP from one- | dim) 35 pieces of various mu-
[ZRO7) PCP minute excerpts of 5 sic styles
popular songs e encode
music theoretical knowl-
edge about key
Cheng HMM + N- | PCP e Language Modeling | 24 (maj, min) | e training: 152 Beat-
et al. | grams e observation proba- les songs e testing: 2
[CYLT08] bilities based on chord Beatles albums, Please
templates e 2 new Please Me and Beatles
chord features: the For Sale
longest common chord
subsequence and the
histogram statistics of
chords
Mauch HMM melody e sophisticated state du- | 6 chord | 5-fold cross-
&  Dixon range + | ration modeling e bass | classes (maj, | validation,175 Beatles
[MD0g] bass range | model min, dom, | songs
chroma- dim, sus, no
gram chord)
Papadopoulog double- beat- e simultaneous esti- | 24 (maj, min) | e no training e testing:
& Peeters | states synchronous | mation  chords and 66 Beatles songs
[PPO8b] HMM PCP downbeats e observa-
tion probabilities based
on chord templates +
harmonics
Reinhard Classifier beat- post-processing step | 24 (maj, min) | e training: 2 Beatles
et al. | (Scalar synchronous | based on chord neigh- albums, Please Please
[RSNO8] product, PCP borhood Me and A Hard Day’s
Mabha- Night e testing: 2
lanobis Beatles albums, Please
distance, Please Me and Beatles
Naive For Sale
Bayes)
Ryynénen HMM multi-f0 e observation likelihoods | 24 (maj, min) | 2-fold cross-validation,
& Klapuri PCP obtained by comparison first 8 Beatles albums
[RK08D] with trained profiles e
2 chromagrams are used
(one for low and one for
high-register)
Scholz et | N-gram chord use model smoothing | various label- | 13-fold cross-validation
al. [SVBO08] labels and  selection  tech- | ing schemes: | on 13 Beatles albums
niques initially designed | e  Maj/min
for spoken language | e Short-
modeling hand types e
Harte’s with
enharmonic
equivalence
Sumi et al. | hypothesis- | beat- interrelationship be- | 48 (maj, min, | 5-fold cross-validation
[STY T+ 08] search synchronous | tween bass lines and | dim, aug) on 175 Beatles songs
PCP chords
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Table 4.3: Characteristics of some chord estimation methods 2009-2010.
Reference Method Input fea- | Comments Chord lexicon Evaluation material
tures
Cho & | HMM + | PCP e real-time processing | 24 (maj, min) 12-fold cross evaluation
Bello real-time e system of buffers e on the MIREX 2008
[CB09] decoding modified Viterbi de- 169 Beatles songs
coding for real-time
Khadkevich | HMM + | PCP e a separate left-to- | 24 (maj, min) 5-fold cross-validation
&  Omol- | LM (HMM), right HMM for each on 175 Beatles songs
ogo [KOO09] beat- chord
synchronous
chord sym-
bols (LM)
Mauch dynamic beat- e same chord progres- | 48 (maj, min, | 5-fold cross-validation
et al. | Bayesian synchronous | sion to repeated sec- | dim, dom) 4+ no | on 125 Beatles songs
[MNDO9] network treble and | tions chord.
+ musical | bass chro-
structure magrams
Oudre Pattern PCP e investigate various | 4 chord classes | e no training e testing:
et al. | Matching measures of fit e study | (maj, min, | 13 Beatles albums
[OGF09a] chord type influence dom7, min7)
Schuller HMM + | one CENS | e learn typical chord | e 24 (maj, | e training: 19,025
et al. | MM per bar successions with mu- | min)e 36 (maj, | chord lead sheets e
[SHARO9] sicological model e | min, and | testing: 100 pieces of
comparison data- “other”) pop and rock music
driven/template-based
approaches
Stark & | frame- PCP e classification based | 108 (maj, min, | e no training e testing:
Plumb- based upon chroma residual | dim, aug, sus2, | 180 chord guitar audio
ley [SP09] classi- energy e allows for in- | sus4, maj7, | samples
fier for harmonicity in signal min7, dom)
real-time
use
Konoki et | search PCP e ‘“omitting”, “inver- | 16 chord classes | e no training e testing:
al. [KM10] | tree sions” and “tension guitar sounds
voicing” notes ® enhar-
monic equivalence
Mauch dynamic bass and | e simultaneous estima- | 109 complex | e no training e testing:
&  Dixon | Bayesian treble chro- | tion chords and musi- | chords 176 Beatles songs.
[MD10] network magrams cal context
Papadopoulog double- beat- e simultaneous estima- | 24 (maj, min) e no training e testing:
& Peeters | state synchronous | tion chords and down- 169 Beatles songs
[PP10] HMM PCP beats in variable meter

Joint Estimation of Musical Content Information From an Audio Signal




Previous Work on Chord Estimation 83

change* was organized in 2008. The MIREX 2008 Audio Chord Detection task was divided
into two subtasks. In the first subtask the systems were pre-trained and tested against 176
Beatles songs. In the second subtask systems were trained on 2/3 of the Beatles test-set
and tested on 1/3. An overlap score was calculated as the ratio between the overlap of the
ground truth and detected chords and ground truth duration. Four songs were excluded
from the original Beatles test-set because of problems when aligning the ground truth
chords to the audio data.

The MIREX 2009 audio chord detection® task description is similar to the one proposed
in 2008 except that the score computation is slightly different. A first score is calculated
as the ratio between the overlap of the ground truth and detected chords and ground
truth duration, then a weighted average is computed across the songs by weighting each
score by the song duration. In 2009, the test-set also included 37 popular music songs. A
total number of 13 algorithms were submitted to the pre-trained systems subtask, and 5
algorithms were submitted to the trained systems subtask.

e Methods and Results

Tables 4.4 and 4.5 give a brief description of the various algorithms submitted to
MIREX 2008 and MIREX 2009 Audio Chord Detection task.

Figures 4.1 and 4.2 indicate the chord accuracy results obtained by the various algo-
rithms submitted to the MIREX 2008 and MIREX 2009 Audio Chord Detection task.
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Figure 4.1: MIREX 2008 Audio chord detection results (in %) for the pre-trained systems
(left) and for the trained systems (right).

“http://www.music-ir.org/mirex/2008/
®http://www.music-ir.org/mirex,/2009/
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Table 4.4: Summary of audio chord detection systems submitted to MIREX 2008.

Reference Method Input features Training | Comments
Bello & Pickens BP | HMM beat-synchronous yes tuning, music
CQT-PCP knowledge
Ellis DE HMM beat-synchronous yes tuning, uses 2 chro-
IF-PCP magrams (including
one to emphasize the
bass line)
Khadkevich & | HMM DFT-PCP yes one separate HMM
Omologo KO for each chord, 512
12-dimensional GM
Lee KL, KL1 & KL2 | HMM tonal centroid yes key-specific HMM
Mehnert et al. MM HMM chromagram yes Symmetry  Model
mapped to  cir- used as basis for
cular pitch spaces the chord analysis
(CPS) [GMABOS] system
Papadopoulos & | HMM DFT-PCP no tuning, music
Peeters PP knowledge and
chord templates
considering harmon-
ics
Pauwels et al. PVM | probabilistic frame- | multi-f0s PCP no simultaneous
work based on Ler- chords/keys
dahl’s tonal distance
metric
Ryynédnen & Kla- | HMM multi-f0s PCP yes 2 chromagrams (low
puri RK and high registers)
Uchiyama et al. | HMM PCP yes Harmonic/Percussive
UMS sound separation
front-end
Weil &  Durrieu | HMM CQT-tonal Centroid yes tuning, attenuation
WD1 & WD2 of the main melody
Zhang & Lash ZL HMM DFT-PCP yes pre-processing

step which detects
silences
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Table 4.5: Summary of audio chord detection systems submitted to MIREX 2009. IF:
Instantaneous Frequency, HPCP Harmonic Pitch Class Profile, HCDF Harmonic Change
Detection Function.

Reference Method Input features Training Comments
Ellis DE HMM beat-synchronous pre-trained | tuning, key-relative
IF-PCP transition matrix,
maximal gamma
values instead of
Viterbi path
Harte & Sandler | Template matching | CQT-HPCP no tuning, chord
CH boundaries  based
on an HCDF
Khadkevich & | HMM beat-synchronous pre-trained | separate models are

Omologo KO1 &

DFT-PCP

built for each chord

KO2 distinguished by the
system

Mauch et al. MD Bayesian network beat-synchronous no separate bass and

note salience repre- treble chroma-
sentation PCP grams, structure

repetitions used
to improve chord
estimation

Oudre et al. OGF1 | template matching CQT-PCP no systems 1 major &

& OGF2 minor chords and
2:  major, minor
and dominant 7
chords

Papadopoulos & | HMM beat-synchronous no tuning, si-

Peeters PP CQT-PCP multaneous
chords/downbeats
estimation

Pauwels et al. | probabilistic frame- | multi-f0s-PCP no simultaneous

PVMI1 work based on chords/keys

Lerdahl’s tonal
distance metric

Pauwels et al. | template matching multi-f0s-PCP no binary templates

PVM2

Reed et al. | HMM dynamic features of yes harmonic/percussion

RUSUSL chroma vectors source separation,
tuning, minimum
classification error
learning

Rocher et al. | note segment graph, rule-based, no interaction

RRHS1 RRHS2 dynamic program- chords/key

RRHS3 ming

Weller et al. WEJ1, | large margin struc- | beat-synchronous yes MaxGamma decod-

WEJ2, WEJ3 and
WEJ4

tured prediction
approach (SVM-
struct)

PCP

ing
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Chord accuracy results (%)
Chord accuracy results (%)

CH DE KOl KO2 MD OGFl OGF2 PP PVML PVM2 RRHS1RRHS2RRHS3 RUSUSLWEJL WEJ2 WEJ3 WEJ4
Pre-trained Algorithms (MIREX 2009) Trained Algorithms (MIREX 2009)

Figure 4.2: MIREX 2009 Audio chord detection results (in %) for the pre-trained systems
(left) and for the trained systems (right).

4.3 Proposed Approach for Chord Estimation

As in most of the previous methods, we have chosen to use the chroma features as signal
observations and represent the chord progression using a hidden Markov model. We
mainly rely on the above-mentioned approach [BP05] as we incorporate musical knowledge
in our model. Various ways of constructing the HMM are studied using either music
theory, results from cognitive studies, smoothed training, multivariate Gaussian models or
normalized-correlation. We also pay attention to the problem of taking into account the
overtones produced by the musical acoustic instruments in the model.

4.3.1 Hidden Markov Models

Since their introduction in the late 1960s, the hidden Markov models (HMMs) have been
widely used in many different research areas, including speech processing and more recently
music information retrieval. Real world is full of processes that we wish to understand
via observation. These processes produce observable outputs that can be characterized as
signals. Markov models are statistical models used to describe systems from which each
observation corresponds to a physical event, usually called state.

The hidden Markov models (HMMs) are an extension of the Markov models that are
used when the states cannot be directly observed (they are hidden), but can be observed
through another set of stochastic processes that produce the sequence of observations (the
observation is a probabilistic function of the state). For a tutorial on hidden Markov
models, we refer the reader to the work of Rabiner [Rab89].
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4.3.2 On the Use of HMM for Chord Estimation

According to [Rap02], there are two major advantages when modeling the chord progres-
sion using a HMM. First of all, the realization of a given state, for instance a C major
chord, depends on a wide range of parameters such as the instrumentation, the dynamics,
the room acoustics etc. The realization of two CM chords produced in different conditions
may result into extremely different signal observations. This variability of configuration
of the data can be handled using statistical machine learning approaches.

Secondly, the structure of musical data can be captured using a probabilistic frame-
work. The major reason why we use HMM for chord estimation relies on this second
argument. We can exploit the structure of musical data (interaction between keys,
chords and downbeats) using a HMM. It allows us to incorporate in a simple manner
some information related to the inherent structure of Western tonal music and build rich
models that are specific to music. In general, compositors take into account musical rules
to create a piece of music. The harmony is related to many other musical attributes and
is part of a global musical context. For instance, chord transitions follow some musical
rules that can be embedded in the state transition matrix of the HMM. We will also see
in Chapters 5 and 6 of this dissertation that the use of an HMM allows us to consider
interaction between harmony and other musical attributes such as the meter and the key.

4.3.3 The Problem of the Harmonics

We follow most of the previous works on chord estimation and use chroma features extrac-
tion as front-end of our system. Our observations thus consist of 12-dimensional vectors
that represent the intensity of the 12 semitones of the equal-tempered scale of Western
tonal music.

A weakness of most of the previously proposed methods is that they operate a
direct mapping between the PCP/chroma values and the pitch of a note, i.e. a C note
is represented by a single non-zero value in the chroma vector. In other words, the
assumption is made that what we observe in the spectrum is directly the pitch of the
notes. As underlined in Section 3.5.1 of Chapter 3, in a spectral representation, we do not
observe directly the various pitches but a mixture of their harmonics that will result in a
mixture of non-zero values in the chroma vector. Therefore, values at pitch classes other
than those of the notes will occur in the chroma vectors. For this reason, we propose to
consider the presence of the harmonics in the parameters of the model.

In [MKLO06], Maddage et al. experimentally show that the effects of f0, sub-harmonic
and harmonic of the notes, which comprise the chord, are important for chord estima-
tion. Some works related to chord or key estimation also focus on this problem. The
presence of harmonics is taken into account either when computing the chroma features
or in the model parameters. The first approach is followed for instance by Pauws [Pau04]
who computes the chromagram using an auditory perception inspired front-end so that
the perceptual pitch and the musical background are simultaneously taken into account.
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Zhu et al. [ZKGO05] extract from the constant-Q spectrum only the partials which are con-
sonant according to a diatonic scale, using a filtering method, called consonance filtering.
Peeters [Pee06a] proposes the use of a Harmonic Peak Subtraction function which reduces
the influence of the higher harmonics of each pitch. Lee [Lee06a] proposes a chroma
feature called the Enhanced Pitch Class Profile that takes into account the overtones gen-
erated by the chord tones. The chromagram is not directly computed from the DFT but
from the Harmonic Product Spectrum. The second approach is followed for instance by
Izmirli [Izm05] who measures the contribution of the harmonics on a piano database. The
contribution of the harmonics of a note is taken into account in Paiement et al. [PEBB05]
and Gdémez [GéGb] using a theoretical spectral envelope. It relies on the property that
the amplitude of the A*" harmonic f;, = hfy of a note of fundamental frequency f can be
modeled with geometric decaying p" , with 0 < p < 1.

We propose to take into account the presence of harmonics in our model for chord
estimation relying on the model presented in [GO6b]. This model extends the Pitch Class
Profiles (PCPs) to the Harmonic Pitch Class Profiles (HPCPs). For this, a theoretical
amplitude is attributed to each harmonic composing the spectrum of a note with an
empirical decay factor set to 0.6 in the experiments so that this contribution decreases with
the frequency. The contribution for the first 6 harmonics of a note is given in Table 4.6.
Therefore, higher harmonics contribute to the pitch class of their fundamental frequencies.
In spite of its over-simplicity, and even if this approach provides an extremely rough
approximation of the spectral envelope of musical instrument sounds, it has empirically
been proved to be robust in the case of key estimation. For instance [Pee06b] has compared
a template-based approach relying on the model proposed in [G(jﬁb] with an HMM-based
approach using a database consisting of 302 European baroque, classical and romantic
music extracts. It was found that the cognitive-based approach performed better than the
HMM-based approach. This is why we propose to use this approach for chord estimation
purpose.

Table 4.6: First 6 harmonics of a note and given amplitudes.

n 1 2 3 4 5 6
frequency f 2.f 3.f 4. 5.f 6.f
factor 1 S §2 s st s

4.4 Chord Estimation From the Chroma Vectors Using a
HMM

We describe here several methods to estimate the chord progression of an audio signal over
time. All these methods are based on the hidden Markov models (HMMs) [Rab89]. The
various methods differ in the way observation probabilities and transition probabilities are
computed.
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4.4.1 Model
4.4.1.1 Chord Lexicon

Following a large part of the previous works, we restrict our harmonic content analysis
to a limited set of chords composed of the I = 24 major and minor triads (C major, ...,
B major, C minor, ..., B minor). The notation for chord types will be the following:
CM, ..., BM, for major chords, Cm, ..., Bm for minor chords. We do not make any
distinction between enharmonic equivalent (C# /Db, E#/F, ...). We did not include other
chords, neither simpler such as dyads, more complex such as 7"
augmented chords (even if this last categories of chords was considered in several previous
works such as in [HS05]). We acknowledge that the harmonic progression of a piece of
music cannot be fully described according to music theory with such a limited chord
lexicon. However, we choose to limit our chord dictionary to the 24 major and minor
triads for the following reasons:

chords nor diminished or

e Firstly, we find it sufficient to describe the harmonic characteristics of a wide range
of music types. Previous works on music classification have shown that this reduced
set of chords is sufficient to describe the harmony content of music for similarity
applications such as cover version estimation®. See for instance [Lee06b] or [Bel07].

e Secondly, we think that, by limiting the number of chords in the lexicon, we can
avoid overfitting to a particular type of music during training.

e Moreover, a larger chord lexicon would require a larger amount of manually labeled
training data (in the case of supervised training), which is an extremely tedious task,
even for well-trained musicians.

e Finally, limiting our chord dictionary to the 24 major and minor triads allows us to
incorporate some theoretical and experimental music knowledge in our probabilistic
model. This music knowledge we rely on is specific to the 24 major and minor triads
and could not have been applied to a more complex chord lexicon.

4.4.1.2 Overview of the Proposed Model

We consider an ergodic 24-states HMM, each state representing a single chord of our chord
lexicon. The hidden states correspond to the different chords (CM, ..., BM, Cm, ...,
Bm). The observations correspond to each signal frame represented by a 12-dimensional
chroma vector. The chord progression is obtained by decoding the underlying sequence of
hidden chords from the sequence of observed chroma vectors using the Viterbi decoding
algorithm. Because we use an ergodic model, all possible chord transitions are allowed.
State transitions obey a first-order Markov property, ¢.e., the future is independent of the
past given the present state.

6Cover versions consist of different performances of the same underlying piece of music performed with
variations in the style, the instrumentation, the tempo, etc.
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Figure 4.3 shows a simplified graph of the HMM we use for chord estimation. For
clarity, only three chords are represented in the figure (CM, C#M, DM). Each state
represents a chord. At each time step, the chord generates an observable chroma vector.
Any chord can move to any other chord or remain the same.

Figure 4.3: Simplified graph of the chord estimation hidden Markov model considered
in this dissertation. The hidden states correspond to the chords and the observations
correspond to the chroma vectors.

Each state in the model generates an observation vector, the chroma feature, with
some probability. This is defined by the observation probabilities. In part 4.4.3,
we study three approaches to define these probabilities. The first one (Method 1) learns
these probabilities by training a Gaussian model on chord-normalized chroma vectors. The
second one (Method 2) does not use the training set but defines probabilities based only
on music theory, considering the presence of higher harmonics (using the HPCPs). The
third one (Method 3) is close to Method 2 but defines probabilities based on a normalized-
correlation measure rather than a Gaussian model.

In music pieces, the transitions between chords result from musical rules that should
be reflected in the state transition matrix. This is one of the reasons why the problem
is modeled using a Markov model. In part 4.4.4, we study four approaches to define
the transition matrix. Method A is based on music theory: the closeness of chords in
the doubly-nested circle of fifths. Method B uses the results of cognitive experiments:
the closeness of chords using Krumhansl’s key profiles. Method C learns the transitions
probabilities from the HMM training. We finally propose a new method, D, which learns
the transitions from score transcriptions.

Figure 4.4 illustrates the general flowchart of the considered model and shows the
various studied configurations. In what follows, we denote by 7 and T, the initial state
distribution and state transition probability distribution. Given the observations, we
estimate the most likely chord sequence over time in a maximum likelihood sense. We now
describe in detail the characteristics of our HMM: initial state distribution, observation
probability distribution and state transition probability distribution.
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Audio signal
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Feature extraction : 12-
dimensional chroma vectors

State transition matrix

Method A:
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Initial state distribution using the doubly-
l nested circle of fifths
Method B:
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Method I: Method 2: Method 3: between key profiles
Training with a Multivariate HMM using chord
Multivariate Gaussian with Templates n -
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Viterbi decoding using the chord
transcription

Chord Progression

Figure 4.4: General flowchart of the studied models for chord progression estimation.

4.4.2 Initial State Distribution

The prior probability m; for each state is the prior probability that a specific chord ,4 €
[1,24] has been emitted. Since we do not know a priori which chord the piece begins with,
we initialize 7w at ﬁ for each of the 24 states. This choice was also taken in [BP05].

4.4.3 Observation Symbol Probability Distribution

4.4.3.1 Method 1: Modeling by a Multivariate Gaussian Trained on a Labeled
Test-set

In this method, the observation distribution is modeled by 24 (one for each state) 12-
dimensional single multivariate Gaussian distributions defined by their mean vectors pu;
and covariance matrices ¥;, with i denoting the i state, i € [1,24].

In [SE03], the model is trained using the standard expectation maximization (EM)
algorithm for HMM parameters estimation. The parameters 1 and 3 are initialized with
random values. According to [BP05], on the one hand, the template for a chord is almost
universal and should not change from song to song. On the other hand, it is unlikely
that every chord of the lexicon will be present in the training test-set. This is why it is
proposed to selectively train the model, disallowing adjustments of  and 3 while 7 and
T are updated. Experiments on 28 Beatles songs show that selective training results in a
large increase of chord accuracy. We also believe that any reasonably sized training set
will be insufficient to appropriately estimate the parameters of the model. Indeed, since
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the number of observations in the test-set will likely differ among the 24 possible chords,
training directly the model on the test-set may lead to overfit the model to a specific type
of music (that means learning the characteristics of the test-set).

In order to learn the observation distribution for each of the 24 possible chords, we
propose to first learn the model for the CM chord and the Cm chord and then map the two
trained models to all possible chords by circular permutation. This allows increasing the
training set of each chord type. A similar approach was proposed in [Pee06b] in the case
of key estimation and in [SEO03] in the case of chord estimation. We proceed as follows:

1. All the chroma vectors of the labeled training test-set are mapped to a root-note of
C using circular permutation.

2. The mean vector and the covariance matrix for the CM (Cm) chord are computed
from all CM (Cm) chroma vectors.

3. The mean vectors and covariance matrices for all chords are obtained from the two
trained models by circular permutation.

The mean vectors for the CM and Cm chords trained on the test-set presented in Section
4.5.1 are represented in the left part of Figure 4.5. Note that in this case we do not make
any assumption on the signal (instrumentation, harmonics, etc.) and we do not introduce
any musical knowledge. In what follows, we will call this method “Method 1”.

4.4.3.2 Method 2: Modeling by a Multivariate Gaussian Based on Music
Theory Considering the Presence of Higher Harmonics

In this case, the observation distribution does not rely on any training on a given test-
set. As in [BP05], the observation distribution relies directly on music theory; however a
major difference with [BP05] is that we consider the presence of the higher harmonics of the
theoretical notes in the construction of the multivariate Gaussian models (by modifying
the parameters p and X). This consideration allows us to significantly improve the results
over the method proposed in [BP05].

In [BPO05], the mean vectors and covariance matrices reflect musical knowledge. The
mean vectors are 12-dimensional vectors with 1 if the note belongs to the chord and
0 otherwise. For instance, if we consider a 12-dimensional mean vector 77 with (1)
corresponding to pitch C, 77 (2) corresponding to pitch C# and so on, the mean vector
corresponding to the CM chord (C-E-G) will be 100010010000 (see middle-left part of
Figure 4.5).

In the covariance matrices, pitches that comprise the triad are more correlated than
pitches that do not belong to the triad. The covariance between pitches that comprise the
triad is thus given a non-zero value. The value is attributed with respect to music theory
and empirical evidence from Krumhansl work [Kru90], that is to say that the dominant
(5th degree) is more important than the mediant (3rd degree) in characterizing the root
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of a triad 7.
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Figure 4.5: Mean chroma vectors for the C Major (upper part of each figure) and C

minor (lower part) chords using [from left to right]: Method 1 (trained using 7 CDs

of the Beatles), Method 2 without harmonic contribution, Method 2 with 4 harmonics

contribution, Method 3 with 6 harmonics contribution (in this case, the figures represent
the chroma templates instead of the mean vectors).

We now propose to take into account the contribution of the higher harmonics of the
theoretical notes into the Gaussian parameters. We do this in the following way.

Mean vectors: For each note of a chord, we add the contribution of the harmonics
in the mean vectors. The amplitude contribution of the A** harmonic of a note is similar
to the one proposed by [GO6b]: 0.6"~'. Table 4.7 indicates the considered harmonics
and the corresponding amplitudes for the CM and the Cm templates. We represent
the corresponding mean vectors for CM and Cm (in the case of 4 harmonics) in the
middle-right part of Figure 4.5.

Table 4.7: The first 6 harmonics and their amplitude for a CM (Cm) triad.

CM (Cm) chord
note harmonics
C C C G C E G
E(Eb) E(Eb) | E(Eb) | B(Bb) | E(Eb) | G#(G) | B(Bb)
G G G D G B D
amplitude 1 0.6 0.6° 0.63 0.6 0.6°

Covariance matrices: [BP05] only considers the correlation between the chroma
vectors corresponding to the pitch of the notes belonging to a given chord. In our method,
we also consider the correlation between the harmonics of each note. For example, for a
CM chord (C-E-G), D is the 3"¢ harmonic of G. Hence, we attribute a non-zero value to

"In [BPO5], the covariance of the tonic with the dominant and of the dominant with the mediant is
set to 0.8. The covariance of the tonic with the mediant is set to 0.6. Since we both use songs from the
Beatles to evaluate our system, we will use the same values when testing method [BP05].
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the covariance between D and G. As in [BP05], the values we use are heuristic but we still
respect the rule that the dominant is more important than the mediant in characterizing
the root of a triad 8. The covariance matrices we propose for a CM and a Cm chord
are represented in Figure 4.6 above the covariance matrices proposed in [BP05]. In what
follows, we will call this method “Method 2”.

1 1
cll [ | cHl | |

c# c#

D 0.8 D 0.8
D# D# | [ |

E H N 0.6 E 0.6
F F

F# Fi

Gl m Bu 0.4 ] [ 0.4
G# G#

A 0.2 A 0.2
A A

B 0 B 0

CC#DDHE F F#GG#AA#B CC#DDHE F F#GGH#AA#B

CC#DD#E FF#GG#AA#B CC#DDH#E FF#GG#AA#B

Figure 4.6: Covariance matrices for a CM (left) and a Cm (right) chord considering
the presence of 4 harmonics (upper part, (a) and (b)) and proposed covariance matrices
in [BP05] (bottom part, (c) and (d)).

4.4.3.3 Method 3: Probability Derived from Correlation with Chord Tem-
plates

In this method, the observation probabilities are not modeled by a multivariate Gaussian
distribution. They are obtained by computing the correlation between the observation
vectors and a set of chord templates.

8The covariance of the tonic with the dominant is set to 0.6; the covariance of the dominant with the
mediant is set to 0.5; the covariance of the tonic with the mediant is set to 0.3; the covariance of a note
with its second harmonic is set to 0.1; the other non-zero values are set to 0.05. The matrix needs to be
positive, semi-definite, so we set the non-triad diagonal members to 0.1.
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Chord templates:

The chord templates are the theoretical chroma vectors corresponding to the 24
Major and minor triads. A chord template is a 12-dimensional vector which contains
the theoretical amplitude values of the notes and their harmonics composing a chord.
We consider 24 chord templates corresponding to the 24 Major and minor triads. The
amplitude of a note in the template is non-zero if the note belongs to the considered chord
(fundamental or harmonic). As in the case of the mean vectors in Method 2, we attribute
an amplitude of 0.6"~! to the harmonic h. In Section 4.5, we will compare the system
results without considering any harmonic (nbh = 1), with 4 harmonics (nbh = 4) and
with 6 harmonics (nbh = 6). In the right part of Figure 4.5, the chord templates for
a CM and a Cm chord considering 6 harmonics in the model are represented. The first
six harmonics of the notes composing a CM and a Cm chord and their corresponding
amplitude are given in Table 4.7. It can be seen that higher harmonics contribute to the
pitch class of their fundamental frequencies. For instance, the amplitude of the G is very
high in the C major chord (C-E-G) because, besides being a note of the chord, G is a
strong harmonic of C. The chord templates for other chords (C#M, ..., BM, C#m, ...,
Bm) are obtained from the CM and Cm chords by circular permutation.

Observation probabilities: For each chroma vector, we compute the correlation
between the observation vector and each of the 24 chord templates. We obtain 24 values
P(c;), i € [1,24], normalized so that ), P(c;) = 1. We now have 24 “pseudo-probabilities”
which are used as observation probabilities in the HMM. In what follows, we will call this
method “Method 3”.

4.4.4 State Transition Probability Distribution

4.4.4.1 Method A: Theoretical Approach Using the Doubly-Nested Circle of
Fifths

This method was first proposed by [PC02] for describing the harmonic content of poly-
phonic music in the symbolic domain. It was then applied in the audio domain in [BP05].
In this approach, the transition probability between two chords is derived from musical
knowledge relying on their distance in the doubly-nested circle of fifths (see Figure 4.7).

The doubly-nested circle of fifths depicts relationships among the 12 equal-tempered
pitch classes comprising the chromatic scale. The 24 major and minor triads can be
represented as points on two overlapping “circles of fifths”, one for major triads, the other
for minor triads. The more consonant two chords are, the closer on the double circle of
fifths. For instance the CM chord (C-E-G) has two notes in common with the Em chord
(E-G-B). It also has two notes in common with the Am chord (A-C-E). The CM chord
is thus placed between the Am and the Em chords on the double circle of fifths.

The closer two triads are on the circle, the higher the corresponding chord transition
value is. Following [BP05], we give to the transition CM-CM a probability of 12, CM-Em =
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11, and then clockwise in a decreasing manner, until CM-FM# = 0. From this pair of
chord, the value of the corresponding chord transition probabilities starts increasing again,
starting with CM-Bbm = 1 until CM-Am = 11. These probabilities are normalized so
that they sum to unity.

Although we do not know which state is going to follow another, musical rules allow
us to make hypotheses that some chord transitions are more probable than others. For
instance, especially in popular Western music, an AM chord is more likely to be followed
by a F#m or DM chord than by a G#M chord. The corresponding state transition
matrix is represented in the left part of Figure 4.8.

CNCHVDNDAVEM

Figure 4.8: State transition matrix between the 12 major and the 12 minor chords. Dark

marks indicate high values in the transition matrix. Horizontal axis from left to right and

vertical axis from top to bottom: chords (CM, C#M, BM, ..., Cm, ..., Bm). From left
to right: method A, method B, and method D.

Joint Estimation of Musical Content Information From an Audio Signal



Chord Estimation From the Chroma Vectors Using a HMM 97

4.4.4.2 Method B: Cognitive Approach Using Correlation Between Key Pro-
files

In [Kru90], music-psychologist Krumhansl studies the proximity between the various musi-
cal keys using correlations between key profiles obtained from perceptual tests. The probe
tone ratings [KK82] represent the stability of each semitone pitch-class relative to a given
key (see also Chapter 6, Section 6.2.1.1). These probe-tones ratings are used to obtain a
quantitative measure of the distances between keys. Krumhansl & Kessler compute the
correlation between profiles for each possible pair of major and minor keys, relying on the
idea that two keys are close if they impose a similar pattern of relative stability on the
tones. Table 4.8 gives the numerical values corresponding to key profile correlations for
CM and Cm keys.

These key profile correlations are used in [NMO6] to derive a key transition matrix in
the context of local key estimation as described below. In order to have probabilities, all
the values are made positive by adding 1, and then normalized to sum to 1 for each key.
This results in 24-dimensional vectors that express how likely the music moves from a given
key to another at the next time step. The 24-dimensional vectors can be circularly shifted
to give the transition probabilities for keys other than CM and Cm. A key transition
matrix of size 24 x 24 is built from these 24-dimensional vectors.

In our experiments, we obtained good results for chord estimation using the key tran-
sition matrix from [NMO06] as a chord transition matrix. This matrix is represented in the
middle part of Figure 4.8.

4.4.4.3 Method C: Trained Approach Using the EM Algorithm

This approach uses the transition matrix provided by the training of the HMM using the
Expectation Maximization (EM) algorithm, i.e. the system is trained using on the one
side the succession of chroma vectors extracted from the audio signal and on the other
side the corresponding chord labels.

The expectation maximization algorithm [GM99a] is an efficient iterative procedure
for finding maximum likelihood estimates of parameters in statistical models, where the
model depends on unobserved (hidden) variables. Each iteration of the EM algorithm
consists of two processes: the E-step, and the M-step. In the expectation (E)-step, the
missing data @ (for us the unknown chord labels) are estimated given the observed data
O (the observed chroma vectors) and current estimate of the model parameters 6. In the
maximization-(M) step, the parameters are computed by maximizing the expected log-
likelihood found in the E-step. Equation (4.1) expresses the complete-data log likelihood
as a function of old and new parameters, 0,4 and 6. At each step the old parameters are
fixed and 6 is adjusted to maximize logP (O, Q|f) in expectation.

EllogP(0,Q16)] = ) P(Qlz,bu1a)log(P(0]Q, 0) P(Q6) (4.1)
Q
Convergence is assured since the algorithm is guaranteed to increase the likelihood at each

iteration. The specific application of EM to find maximum-likelihood parameter estimates
for a hidden Markov model is known as the Baum-Welch, or forward-backward algorithm.
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Table 4.8: Krumhansl’s correlations between key profiles for CM and Cm keys, from

[Kru90].
C major | C minor
CM 1.000 0.511
C#M -0.500 -0.158
DM 0.040 -0.402
D#M -0.105 0.651
EM -0.185 -0.508
FM 0.591 0.241
F#M -0.683 -0.369
GM 0.591 0.215
G#M -0.185 0.536
AM -0.105 -0.654
A#M 0.040 0.237
BM -0.500 -0.298
Cm 0.511 1.000
C#m -0.298 -0.394
Dm 0.237 -0.160
D#m -0.654 0.055
Em 0.536 -0.003
Fm 0.215 0.339
F#m -0.369 -0.673
Gm 0.241 0.339
G#m -0.508 -0.003
Am 0.651 0.055
A#m -0.402 -0.160
Bm -0.158 -0.394
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4.4.4.4 Method D: Trained Approach Using the Chord Transcription

As opposed to the previous method, this approach is only based on symbolic information,
i.e. the chord labels transcription of the training set. From the succession of transcribed
chord labels over time, we derive an “annotation” transition matrix which is, as in the
previous case, specific to the training set (in our case the Beatles corpus). We want to learn
from the training set the probabilities of transiting from one chord to another. We achieve
this by counting the number of occurrences of each chord transition in the training set.
Our goal is to construct a 24-dimensional matrix 7" that indexes all the chord transitions.
However, because the distribution of musical keys is not homogeneous in the training set,
we are likely to favor specific chord transitions”, and therefore the transition matrix will be
unbalanced. In order to face this problem, we only consider relative chord transitions
(GM — CM transition is considered as equivalent to CM — FM). We denote by T'(, )
the value of the transition matrix that represents the probability of transiting between
chord i at time ¢t — 1 to chord j at time ¢. The indexes 4,5 € [1,12] represent the Major
(M) chords, 7,7 € [13,24] the minor (m) chords. The matrix is therefore composed by
four sub-matrices that represent transitions between M to M, m to m, M to m and m to
M chords. These four cases are processed separately.

1. We first select from the training set all chord transitions belonging to a specific case
(MM, mm, Mm, mM).

2. For each chord belonging to a given subset, we then compute the relative chord
transitions. Each chord transition ¢ — j is characterized by the equivalent transition
from/to a root-note of C. We denote it by f(i, 7).

3. We then form a 12-dimensional vector 7(k) by counting the number of relative chord
transitions f(i,j) = k.

4. Using these vectors, we form the T'(1,k € [1,12]) (MM), T'(13,k € [13,24]) (mm),
T(1,k € [13,24]) (Mm), T(13,k € [1,12]) (mM).

5. The diagonal of the sub-matrices (self-transition) is processed in a separate way. We
set the diagonal values to 1.1 max(7(k)).

6. The rest of the sub-matrices are constructed by circular permutation.

7. We finally normalize the matrix 7" so that the sum of each row is equal to 1.

The resulting matrix trained on the test-set presented in Section 4.5.1 is represented in
the right part of Figure 4.8. It is interesting to observe the predominance (high transition
values in the matrix) of typical transitions in the matrix, such as the II/V/I (transition
between Dm, GM and CM) that seems usual in this set of Beatles albums. However, the
amount of transitions between Major and minor chords is much lower than the amount of
transitions between two Major chords in this training set. It can be noticed, for instance,
that the typical transition CM-Am, that frequently arises in songs in the C major key,

For instance, if 90% of the training set is in C Major we are more likely to observe a IT/V/I transition
in C Major, i.e. Dm/GM/CM, than a II/V/I transition in F#M, i.e. G#m/D#M/F#M.
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are not enhanced in this trained transition matrix. The consequence of that, is a lower
estimation rate for tracks with Major to minor chords.

4.4.5 Chord Progression Detection Over Time

In all cases (Method 1, 2, 3, A, B, C or D), the optimal succession of chords over time is
found using the Viterbi decoding algorithm [Rab89] which gives us the most likely path
trough the HMM states given our sequence of chroma observations.

4.5 Evaluation and Results

This study was initially published in [PP07]. It was the first large-scale evaluation of chord
estimation algorithms.

4.5.1 Test Set and Protocol

The system has been tested on a set of 110 hand-labeled files from the first eight albums
of the hand-labeled Beatles test-set presented in Chapter 2, Section 2.3.2. The chord label
accuracy is measured using the measure detailed in Section 2.4.2 of Chapter 2.

4.5.2 Results

The chord estimation results obtained with the various methods are indicated in Table
4.9 and illustrated in Figure 4.9. Note that we present here earlier results published
in [PP07]. They were obtained using a FFT-based chroma representation (and not using
a CQT-based chroma representation) and correspond to a frame-by-frame analysis (not
a beat-synchronous analysis). The purpose here is to compare the various proposed
configurations of the HMM!?.

In Table 4.9, we compare the various methods according to the nature of the observa-
tion distribution and to the number of harmonics (nbh)considered:

e (Method 1) Gaussian observation distribution with training. For this method, the
evaluation has been performed using a 8-folds cross-validation (each album was evaluated
using the seven remaining albums as training data).

e (Method 2, nbh = 1) Gaussian observation distribution with music theory as pro-
posed in [BPO05].

e (Method 2, nbh = 4) Our proposal: Gaussian observation distribution with music
theory considering the presence of four higher harmonics.

1075 introduce chord dependency to the meter, we have later used beat-synchronous chroma features.
In the next chapter, we will present more recent chord estimation results using beat-synchronous chroma
features.
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e (Method 3, nbh = 1,4,6) Our proposal: Observation distribution from correlation
with templates combined with music theory considering the presence of one, four or six
higher harmonics.

Note that we only present here the results obtained using method B for the transition
matrix (see explanations Section 4.5.3.2).

Table 4.9: Chord estimation rate (mean and standard deviation) using methods 1, 2 and
3 for the observation distribution and transition matrix B (theoretical transition matrix
based on correlation between key profiles). Rex: exact chord estimation rate. Ret: chord
estimation rate including close triads. nbh: number of harmonics considered in the model.

Method1 Method?2 Method3
nbh =1 nbh = 4 nbh =1 nbh = 4 nbh = 6
Rex | 69.95+14.90 | 61.57 £14.72 | 69.28 = 11.42 | 67.54 +£13.54 | 70.22 £17.01 | 70.96 + 19.23
Rct 84.08 +9.87 | 74.67 £10.47 | 81.82 +9.91 81.22 +9.64 82.57 +10.49 86.18 + 8.67
85} -
K80 i
g
575 .
g 70 -
5
65 -
M1 M2,nbh=1 M2,nbh=4 M3,nbh=1 M3,nbh=4 M3,nbh=6
Method

Figure 4.9: Histogram of chord estimation results obtained using the transition matrix

based on correlation between key profiles (method B) according to the various methods.

From left to right: method 1 (M1), method 2 considering 1 and 4 harmonics (M2, nbh =

1; M2, nbh = 4) and method 3 considering 1, 4 and 6 harmonics (M3, nbh = 1; M3, nbh

= 4; M3, nbh = 6). In black: exact chord estimation rate. In grey: chord estimation rate
including close triads.

Table 4.10: Statistical Significance (Stat. Sig.) of the difference between the results
obtained with several pairs of methods. nbh: number of harmonics considered in the

model.
Compared Methods Stat. Sig.
Method1 - Method2, nbh = 1 yes
Method1 - Method2, nbh = 4 no

Method1 - Method3, nbh = 6 yes
Method2, nbh = 4 - Method3, nbh = 6 yes
Method3, nbh = 4 - Method3, nbh = 6 yes
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4.5.3 Analysis of Results
4.5.3.1 Chord Estimation Method

The results obtained with the various methods are pretty close to each other. However,
we performed paired-sample t-tests at the 5% significance level and we found that the
difference between the results is statistically significant in most of the cases (see Table
4.10).

In our experiments, the best results were obtained with Method 3 (70.96%). Note
that there was no training of the observation distribution in this case. Despite the fact
that Method 1 uses training (and is therefore likely to fit very well to the characteristics
of the Beatles), Method 2 with nbh = 4 (which does not use training at all) gives very
close results!!. Note that the difference between the two methods is not statistically
significant.

4.5.3.2 Transition Matrix

The best results were obtained using the theoretical transition matrix based on correlation
between key profiles (Method B). The transition matrix based on the doubly-nested circle
of fifths (Method A) gives slightly lower results. We do not present the results obtained
with the two trained matrices (Methods C and D). Although method C is the usual
approach and the one used for example in [SE03] [BP05], it did not provide satisfactory
results in our evaluation. Method D did not perform well because, as explained in
Section 4.4.4.4 some typical transitions are not enhanced in this trained transition matrix.
In Chapter 6, we will show how this training method can be improved by taking into
account information related to the musical key.

4.5.3.3 Number of Harmonics

Considering the presence of higher harmonics in the model clearly improves the results.
For instance, for Method 3, considering 6 harmonics in the templates brings about 5%
relative improvement to Method 3 with nbh = 1. Note that the difference in the results
considering 4 and 6 harmonics, although small, is statistically significant (see Table
4.10). This is even clearer in the case of Method 2 where considering harmonics in the
parameters of the model brings about 12.5% relative improvement (compared to Method
2 with nbh = 1).

171t should be noted however that, although Method 1 and nbh = 1 is very close to the one presented
in [BP05], we did not recover the high results reported in [BP05].
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4.5.4 Discussion
4.5.4.1 Chord Confusions Due to Ambiguous Mapping

As it can be seen in Table 4.9, the standard deviation of the results is relatively high (up
to 19%) independently from the chosen method. A deeper analysis of the results shows
that the errors come from a subset of songs which possess specific characteristics described
below.

Concerning partial chords, we obtain for instance less than 3% of chords correctly
identified on the song Love You To from the Beatles album Revolver. Provided annotation
indicates that almost all the chords of this song but a few are Cmin(*b3) chords, i.e. a triad
without the third note (C-G). In such a case, it is difficult to make a decision between
major and minor chords in the absence of musical key information. For this song, our
system in fact recognized in all cases a CM chord instead of a Cm chord, resulting in a
low estimation rate.

As mentioned earlier, because of our limited chord dictionary, a mapping was
performed between complex chords and their root triad. The chord type distribution in
the test-set is unbalanced and, even if the majority of the songs in the evaluation test-set
are composed of triad chords, some of them contain many partial or complex (non-triads)
chords. The system sometimes recognizes other triads than the root triad of the complex
chord analyzed, which decreases the estimation rate. For instance, the Beatles song
Ask Me Why contains many G#min7 chords (G#-B-D#-F#). This complex chord
comprises a G#m chord (G#-B-D#) and a BM chord (B-D#-F#). The theoretically
correct answer depends on the tonal function of the chord in the harmonic progression.
Modeling chord sequences using longer dependencies between chords, using for instance
probabilistic N-grams, would help characterize the complexities of harmonic progressions
in Western tonal music.

4.5.4.2 Neighboring Triad Confusions

It can be noticed that most of the chord errors correspond to harmonically close triad
confusions:

Parallel Major/ minor chords (EM being confused with Em),

Relative chords (Am being confused with CM),
e Dominant chords (CM being confused with GM),

Subdominant chords (CM being confused with FM).

If the system does not recognize exactly a chord but makes such confusions, the result
can still be useful for higher-level structural analysis such as key estimation, harmony
progression or segmentation. Table 4.9 shows that if we consider close triads estimation
as correct, the estimation rate of method 3 reaches up to 86%. It also becomes now the
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method with the smallest standard deviation, 9%. This point will be further discussed in
the next chapter.

4.5.4.3 Passing or Missing Tones

In the Beatles song Tl There Was You, there is a repeating pattern beginning by an
FM chord that has a duration of two beats. The system estimates the following chords:
FM-Dm. If we listen to the music, we can hear that on the first two beats, the guitar
is playing a broken FM chord (F-A-C). On the second beat, the C note is not present
anymore. A musician would naturally label the two chords as a FM chord, ignoring the
fact that there are missing notes (because it is the same harmony). However, the signal
features only take into account notes that are present in the signal. As a result, the
estimated chords do not match exactly those of the ground truth. Conversely, non-chord
tones such as neighbor tones, anticipation, passing tones, suspension and escape tones
that occur in the melody and do not belong to the harmony may also confuse the harmony.
This example leads to the relevant question of how to evaluate the performances of a
chord estimation system. The ground truth is provided by trained musicians who not
only take into account the notes present in the signal but also the harmonic context to
label the chords, ignoring the addition or the deletion of some notes in their annotation.
This complicates the evaluation of the algorithm.

4.5.4.4 Limitation of the Chroma-Based Approach for Inharmonic Sounds

It is interesting to notice that we obtain much better results for the five first Beatles
albums than for the others (from the Norwegian Wood (This Bird Has Flown) on 1965’s
Rubber Soul album). The reason for this may come from the extended use of the Indian
sitar instrument!? and various percussive instruments such as bells, wood blocks or congas
that cause transients. Since the chroma-based approach strongly relies on the presence
of harmonic sounds, the use of chroma-based signal features would ideally require a
pre-processing step that effectively reduces transients and noise. We plan to concentrate

on this point in future work.

4.6 Conclusion

In this chapter we have proposed and compared several methods for the automatic esti-
mation of chord progression of an audio signal of music. All the methods are based on a
chroma representation of the audio signal and on modeling of the sequence of observation
using a hidden Markov model. The methods have been compared through a large-scale

2The sitar is a stringed instrument that uses sympathetic strings in addition to regular strings. This
produces a very lush sound with complex, competing harmonic components.
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evaluation. We have presented here the results that were originally published in [PP07].
To our knowledge, it was the first attempt to evaluate chord estimation algorithms on
such a large test-set. The best results are obtained with the modeling of the observation
probabilities using a normalized correlation with a set of extended chord templates and
a cognitive-based transition matrix. The templates are extended by considering the pres-
ence of higher harmonics of each pitch note of a chord. The transition matrix is derived
from cognitive experiments on the perception of musical key.

In our experiments, we have found that music knowledge-based parameters work at
least as well as trained parameters. However, we believe that the training could still
be exploited and yield to higher results. The best results for the chord estimation task
obtained in the Music Information Retrieval Evaluation eXchange (MIREX) contests were
obtained by trained systems. Moreover, the proposed music knowledge-based parameters
can only be used for a chord lexicon reduced to the 24 major and minor triads.

However, since we only consider these 24 triads, we will use in the rest of the present
work the HMM-based approach relying on chord templates since it gives satisfactory re-
sults without requiring any training data. We will use the transition matrix based on
Krumhans!l’s key profiles because we believe that this matrix, as well as the one based
on the circle of fifths, characterizes well harmonic relationships in a large part of Western
tonal music styles including classical and popular music, without requiring any training
data. This will allow us to work on other styles of music than popular music (see Chapter
6). It is important to note that the approaches that will be presented in the next chapters
can be extended to a larger chord lexicon and do not depend on the choice of the chord
estimation method or the choice of the chord transition matrix.

A limitation of the model comes from the confusion between the various interpretations
one can make about chords. A solution would be to integrate extra (context) information
such as musical key information. The integration of metrical information could also in-
crease the robustness of the system. This is the points we will focus on in the next chapters.
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Chapter 5

Joint Estimation of Chords and
Downbeats

In this chapter, we present a new technique for joint estimation of the chord progression
and the downbeats from an audio file. Musical signals are highly structured in terms of
harmony and rhythm. In this chapter, we intend to show that integrating knowledge of
mutual dependencies between chords and downbeats allows us to improve the estimation of
these musical attributes. For this, we propose a specific topology of hidden Markov models
that enables modeling chord dependency on the metrical structure. This model allows
constdering pieces with complex metrical structures such as beat insertion, beat deletion
or changes in the meter. It is evaluated on a large set of popular music songs from the
Beatles that present various metrical structures. We compare a semi-automatic model in
which the beat positions are annotated with a fully automatic model in which a beat tracker
is used as a front-end of the system. The results show that the downbeat positions of a
music piece can be estimated in terms of its harmonic structure and that, conversely, the
chord progression estimation benefits from considering the interaction between the metric
and the harmonic structures.
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5.1 Introduction

The previous chapter has been devoted to chord progression estimation. In this disserta-
tion, we are interested in understanding how various musical attributes may interact with
each other. In this chapter, we focus on the problem of estimating simultaneously two
musical attributes: the chord progression, which is related to the harmony, and the down-
beats, which are related to the metrical structure. A piece of music can be characterized
by its chord progression that determines the harmonic structure. The chord progression
is closely related to the metrical structure of the piece [Got01]. For example, chords will
change more often on strong beats than on other beat positions in the measure. Most of
the previous studies deal with various musical attributes independently. However, har-
mony and meter are deeply related to each other and their automatic estimation should
be improved by exploiting their interrelationship. In this chapter, we present a system
that allows the simultaneous estimation of the chord progression and the downbeats from
an audio file. Most of the previous works on downbeat detection have dealt with constant
meter pieces. A contribution of this chapter is that we consider the problem of complex
meter (e.g. changes in the meter, insertion or deletion of beats). We also consider the
problem of imperfect beat tracking. The model is evaluated on a large set of popular
music songs and gives very interesting results on pieces with complex metrical structure.
This chapter is based on publications [PP08b] and [PP10].

The major contributions of this chapter are the following:

1. We provide a detailed review of the previous works related to the problem of down-
beat estimation, including interaction between harmony and meter.

2. We present an approach to the chord progression and the downbeat tracking esti-
mation problems, which are jointly considered using a specific topology of hidden
Markov models.

3. The proposed model can be used for pieces containing changes in the meter.

4. The system can handle real situations, when using an imperfect beat tracking as a
front-end of the system.

5. We have annotated the beats and the downbeats of a large set of popular music
songs.

6. This allows us to provide a quantitative evaluation of our model considering various
cases of meter.

7. We provide a deep analysis of chords/downbeats interaction results.

8. We compare the newly proposed model with the state-of-the-art and show that it
presents improvements.

9. We provide a discussion of the proposed model.
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Organization of the chapter:

This chapter is organized as follows. First, in Section 5.2, we provide a review of
previous works related to the problem of downbeat tracking. We then introduce in Sec-
tion 5.4 a probabilistic model for simultaneous chord progression and downbeat position
estimation. This model encodes contextual information in the state transition matrix;
this is detailed in Section 5.4.5. In Section 6.3.3, we present our approach to estimate
the two considered musical attributes (chords and downbeats) using the Viterbi decoding
algorithm. In Section 5.6, the proposed model is evaluated on a set of hand-annotated
songs from the Beatles. A conclusion that underlines the advantages and the limits of the
proposed model closes the chapter.

5.2 Related Work

The problem of tracking beat and tempo in audio signals is addressed in a large number
of previous works. Even if it has drawn less attention than beat tracking, downbeat
detection is an interesting problem that deserves to be carefully studied and a number of
contributions dealing with various aspects of this problem have already been proposed.
This is not surprising since downbeat positions knowledge may be useful in various
applications within the context of music information retrieval. It may facilitate fully
automated rhythmic pattern analysis, as in the work of Ellis & Arroyo [EA04] where a
representation of the drum patterns is used as a space for genre classification. It can be
used for automated rhythmic transformation of musical audio, as in the work of Hockman
& Bello [HB08|] where a technique for automatic mixing and synchronization between
two musical signals in a disc jockey application is presented. It may serve to partition
the signal into segments of lengths that have a musical meaning in structural audio
segmentation, as in the work of Bartsch & Wakefield [BWO05]. It may also be used in
intelligent computer accompaniment, as in the work of Goto [Got01] where the downbeats
are used to produce an intelligent drum machine that can play drum patterns in time to
input musical audio signals without drum-sounds.

The downbeat tracking problem has first drawn the attention of researchers working
with MIDI format. For instance Temperley & Sleator [TS99] propose a computational
system for analyzing metrical and harmonic structure. The program takes as input a
symbolic representation of music. The metrical structure produced by the algorithm con-
sists of several levels of beats, including the downbeat positions. The approach is based
on preference rules. The inference of the metrical structure relies on three rules: the event
rule, the length rule, and the regularity rule. For a given piece, all possible analyses are
considered. The analysis that best satisfies the rules is selected among the others. The
performances of the model are illustrated on some examples.

In this dissertation, we are interested in working directly on the audio signal. The
first downbeat tracking system that works reasonably well on audio was presented by
Goto & Muraoka in [GM99b]. In this work, a complex agent-based model for detecting
a hierarchical beat structure in musical audio signals without drum-sounds is proposed.
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The system tracks beat structure at the quarter-note, the half-note and the measure levels,
and operates in real-time. The analysis is restricted to pieces having a 4/4 time-signature
and the tempo is assumed to be roughly constant within the range of 60 to 120 beats per
minute (bpm). The hierarchical beat structure is identified relying on musical knowledge.
The system is based on an architecture where multiple agents track alternative meter
hypotheses. The provisional beat times are a hypothesis at the quarter-note level and
are inferred by an analysis of onset times. Short-term spectral frames are peak-picked
and then “histogrammed” into beat length segments, where chord changes are used to
infer higher level metrical structure. In the same way that untrained music listeners, who
cannot identify chord names but are able to perceive harmony and chord changes, the chord
changes detection method does not require chord names to be identified. The approach
is tested on 40 popular music songs and estimates correctly the downbeat positions for
94.1% of the songs for which the quarter-note level and the half-note level have been
correctly estimated. The experiments show that both chord-change possibilities based on
the eighth-note-level knowledge and on the quarter-note-level knowledge are necessary for
determining the hierarchical beat structure. The method was further combined with a
previous beat-tracking system designed to process real-world audio signals with drums
[GM94] [GM96]. Musical knowledge of chord changes and musical knowledge of drum
patterns are selectively applied according to the presence or absence of drum-sounds.
This results in a single system that can recognize the hierarchical beat structure of music
with drums and music without drums by using three kinds of musical knowledge: onset
times, chord changes and drum patterns.

Previous works that specifically address the problem of downbeat tracking can be found
in the literature. Most of them rely on prior knowledge such as tempo, time-signature of
the piece or hand-annotated beat positions. Allan [All04] presents a model that uses an
autocorrelation technique to determine the downbeats in musical audio signals for which
beat positions are known. The system relies on the assumption that a piece of music
will contain repeated spectrally similar patterns. The boundaries of those patterns are
assumed to fall on metrical hierarchical boundaries (bars). Bar boundaries are identified
from the known beat positions by measuring the Euclidean distance between grouped beat
length spectral segments of varying lengths at incremental offsets. It has been tested on
42 different pieces of music at various metrical levels, in several genres. It achieves a
success rate of 81% for pieces in 4/4 time-signature and needs more testing on ternary
time-signatures.

Hand-annotated beat positions are not needed in the model proposed by Jehan in
[Jeh05]. This work proposes an unbiased and predictive approach for downbeat tracking
that combines psychoacoustic models of music listening with time-lag embedded segment
learning. The model is tempo independent and does not require beat tracking. It however
requires some fair amount of prior knowledge acquired through listening or learning during
a supervised training stage where downbeats are hand-labeled. The model has only been
applied to music in 4/4 meter. To demonstrate its performances, it is applied to two
complex musical cases for which the downbeat cannot be interpreted through harmonic
shift or a generic “template” pattern: a song characterized by its repetitive single chord
and syncopated rhythmic pattern and a rhythmically complex piece of Brazilian music.
However, the model is not quantitatively evaluated.
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A recent method that segments the audio according to the position of the bar lines
(downbeats) has been presented by Gainza et al. in [GBCO07]. The model does not depend
on the presence of percussive instruments and allows moderate tempo deviations. The
downbeat detection is based on three independent tasks: bar line detection, anacrusis
detection and bar line alignment. The bar length and the anacrusis beats are identified
using an audio similarity matrix. The bar length is determined by computing the length of
the most repeating segment within a range of bar length candidates, which are derived from
tempo and time signature ranges. A vector of anacrusis candidates is generated, on which
an anacrusis detection function is applied. The position of each bar line is then predicted
by using on the one hand prior information about the position of previous bar lines, and
on the other hand the estimated bar length. Finally, each bar line is estimated by aligning
the predicted bar line position to the most prominent value in an onset detection function
within a window centered at the predicted bar line. The approach is evaluated on a set
of 9 popular music excerpts from which the downbeats have been manually annotated. It
shows that the detection of the bar length is accurate but the detection of the anacrusis
is not. The model has the advantage that it does not require tempo estimation and that
the alignment of the bars allows moderate tempo deviation. However, it may be badly
affected by time signature or abrupt tempo changes.

Contrary to some previous mentioned methods such as [GM99b] [Jeh05], Klapuri et
al. [KEAO06] propose an approach that allows tempo deviation and is not restricted to
a particular time signature (typically 4/4 in the previous approaches). This work is not
restricted to downbeat tracking but analyzes the musical meter into three different metrical
levels: tatum, tactus and measure level. A probabilistic model that encodes prior musical
knowledge jointly estimates the period-length and phase of each level, by taking into
account the temporal dependencies between successive estimates. The downbeats are
identified by matching rhythmic pattern templates to a mid-level representation. The
proposed downbeat tracking approach is evaluated on a manually annotated database of
320 one-minute long excerpts of musical signals from various genres. It is noticed that
pitch analysis should be used to estimate more accurately the downbeats.

Ellis & Arroyo [EA04] also use a “template-based” approach in a drum-pattern clas-
sification and generation task. For this a collection of drum patterns is created. The
downbeat of an input drum pattern is defined as the beginning of a looping drum pattern.
To estimate this point, the input pattern is cross-correlated with reference patterns. The
method is evaluated on a corpus of 100 drum tracks from real pieces of different genres,
encoded as MIDI files. The algorithm estimates correctly the downbeat positions of half
of the tracks for which the tempo and the pattern length have been correctly estimated.
It is concluded that the downbeat detection would require a more sophisticated approach
such as training.

The above-mentioned rhythmic pattern approach [KEAQ06] is compared with an ap-
proach based on a spectral difference between band-limited beat-synchronous analysis
frames proposed by Davies & Plumbley in [DP06]. The sequence of beat positions of the
input signal is required and the time-signature is to be known a priori. The input sig-
nal is partitioned into band-limited beat length frames. Relying on the musical knowledge
that lower frequency bands are perceptually more important, information within the range
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0 — 1.4kHz is preserved. The Kullback-Leibler divergence between successive beat frames
is computed in order to form a spectral difference function. The beats that globally lead
to most spectral change are selected as downbeats. The model is evaluated against the
one presented in [KEA06] on a subset of the database originally presented in [Hai04], that
consists of 181 excerpts of six musical genres (rock, dance, jazz, folk, classical and choral).
It obtains an overall accuracy of 53% rising to 81% for cases where beat tracking is accu-
rate, comparing favorably with the state-of-the-art [KEAO06], which obtains respectively
40.8% and 69.9%. This downbeat extraction method is employed in [HBO8| for the pur-
pose of automatic mixing and synchronization between two musical signals. We consider
this approach to be the state-of-the art. One of the drawbacks of this approach is that any
omitted beat or change in tempo or time-signature causes errors from which the model
cannot recover. Moreover, it is limited to cases where the time-signature does not change
and the tempo is approximately constant.

The strong relationship between the chord progression and the metrical structure of
a musical piece has already been explored in previous works [TS99], [Mad06], [SWO05],
[PEBBO05] or [RS03].

In the work of Temperley & Sleator [T'S99], information about the metrical structure
is used during the analysis of the harmonic structure: the “strong-beat rule” stipends
that it is preferable to start chord spans on strong beat scores. In this model, there is
no complete interaction between the harmonic and the metrical information. Indeed, if
harmonic analysis uses metrical information, the metrical analysis process does not use
harmonic information. This is viewed as a drawback of the model.

Drawing on the prior idea of Goto [Got01], Shenoy & Wang [SWO05] present a framework
that provides the hierarchical rhythm structure representation of a piece of music at the
quarter-note, the half-note and the measure levels. The aim of this work is to determine
the key, chords and hierarchical rhythm structure of a music signal by combining low-level
features with high-level music knowledge in a rule-based approach. Harmonic and metric
information are estimated in a mutually informing manner. A first estimation of the chord
progression is provided using beat-length chroma features. The measures boundaries are
then estimated relying on the music knowledge that chords are more likely to change at
the beginning of a measure than at other beat positions [Got01]. Assuming a 4/4 time-
signature, all possible patterns of boundary locations that have integer relationships in
multiples of four are computed. The pattern with the highest count is selected as the
one corresponding to the pattern of actual measure boundaries. Finally, the measures
boundaries are used to correct possible chord errors relying on the rule that chord changes
are more likely to change at the beginning of the measures than other positions of half-note
times. The system works reasonably well on popular music assuming a constant 4/4 meter
and a fixed tempo constrained between 40 and 185 bpm. Tests on a set of 30 popular
English songs lead to an accuracy of 93% for the downbeat tracking. However, it is noted
that the model cannot be used to analyze music more rhythmically and tonally complex.
Moreover, possible beat detection errors are systematically propagated into the downbeat
tracking stage.

This is a typical drawback of rule-based approaches. One of the main drawbacks of
rule-based approaches is that errors are irreversibly propagated from one step to another.
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Statistical approaches, including graphical and Bayesian models, are more flexible than
rule-based approaches and offer large opportunities to explore the interaction between
low-level features with high-level music information. An example of such a work related to
the issues addressed in this chapter is the one presented by Paiement et al. in [PEBBO05].
It considers the interaction between the harmonic and the metrical structures using a
graphical (probabilistic) model where contextual information is used to model the chord
progression. It is related to our work in the sense that information related to the meter
is used for modeling the chord progressions. However, the approach is different. It is not
based on a HMM but the strong relationship between the chord progression and the meter
of the piece is embedded in a tree structure that captures the chord structure in a given
musical style. The main assumption behind the model is that conditional dependencies
between chords in a typical chord progression are strongly tied to the metrical structure
associated to it. In this model, a chord progression is seen as a two-dimensional
architecture. Each chord in the chord progression depends both on its position in the
chord structure (global dependencies) and on the surrounding chords (local dependencies).

The various presented methods for downbeat estimation from audio files are summa-
rized in Table 5.1.

Table 5.1: Summary of downbeat estimation methods.

Reference Method Meter Knowledge applied Evaluation Material
Goto & | agent-based constant 4/4 musical knowledge of | 40 popular music songs
Muraoka model chord changes and mu-
[GM99b)] sical knowledge of drum
patterns
Allan [AlI04] | autocorrelation | constant  4/4 | Euclidian distance be- | 42 different pieces in sev-
technique and 3/4 tween grouped beat length | eral genres
spectral segments
Ellis & Ar- | template-based finding the | cross-correlation with ref- | 100 drum tracks from real
royo [EA04] approach beginning of a | erence drum patterns pieces of different genres,
looping  drum encoded as MIDI files
pattern
Jehan unbiased and | constant 4/4 prior knowledge acquired | two complex musical songs
[Jeh05] predictive through listening or learn-
approach ing
Shenoy rule based constant 4/4 musical knowledge of | 30 popular English songs
& Wang chord changes
[SW05]
Klapuri et | probabilistic no restriction joint analysis at three dif- | 320 one-minute long ex-
al. [KEAO0G) model ferent time scales, encode | cerpts from various genres
musical knowledge
Davies & | spectral dif- | constant 3/4 or | musical knowledge that | 181 files from [Hai04]
Plumb- ference be- | 4/4 lower frequency bands are | database
ley [DP06] tween beat perceptually more impor-
synchronous tant
analysis frames
Gainza et al. | similarity ma- | constant exploit the self-similarity | 9 popular music excerpts
[GBCO07] trix nature of the structure of
music
Papadopoulos| double-state constant 4/4 simultaneous estimation | 66 Beatles songs
&  Peeters | HMM chords/downbeats
[PPO8b]
Papadopoulos| double-state no restriction, | simultaneous estimation | 169 Beatles songs
&  Peeters | HMM variable chords/downbeats
[PP10]
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5.3 Proposed Approach

The review of a number of previous works on downbeat estimation shows that the down-
beat positions are deeply related to the chord progression of a piece of music. Our purpose
is to show how information related to the metric and the harmony of a piece of music in-
teract and how this can be used in a mutually informing manner to improve both the
estimation of the chord progression and the downbeat positions.

There are several issues related to this problem that still need to be addressed. In
particular, most of the previous works assume constant tempo and/or time signature.
Any omitted beat or change in tempo or time-signature causes errors from the downbeat
extraction model cannot recover.

We describe a model that addresses these issues. In our model, the time signature is
not found at the beginning of the piece and then extrapolated metronomically through
the entire piece, but the downbeat positions are adjusted to the music. Our model allows
considering pieces with complex metrical structures including changes in the meter from
3/4 to 4/4 time-signature but also exceptional situations such as for instance the insertions
of a measure in 1/4 in a 4/4 meter passage. Figure 5.1 illustrates the various metrical
structure cases that we consider in our model:

e a) constant 4/4 meter

)
b) constant 3/4 meter

c) variable 4/4 meter with passages in 3/4 meter

d) variable 3/4 meter with passages in 4/4 meter

insertion of one measure in a different time-signature in a constant 3/4 or 4/4 meter
passage. This can be viewed as :

— e) either 1 or 2 inserted beats within a constant meter passage

— f) or 1 or 2 deleted beats within a constant meter passage.

Our model can also handle with errors in the beat tracking stage such as beat insertion
or beat deletion due in general to tempo deviation, e.g. music tempo speed up or slow
down that is not detected by the beat tracker (see Figure 5.2).

In the previous chapter, we have seen that the hidden Markov models have
often been used to model the chord progression of an audio file (see for exam-
ple [SE03], [BP05], [Lec08]). One of the reasons why the chord progression is modeled
by an HMM is that the observation of a given chord depends on the previous chord
according to musical composition rules which can be modeled in a transition matrix. In
this chapter, we extend the previous method for chord estimation and propose a specific
topology of HMM that allows us to extract simultaneously the chord progression and
the downbeats from an audio file. For this, we first extract a set of feature vectors that
describe the signal using a method presented in Chapter 3 of this dissertation. The
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Figure 5.1: Various cases of metrical structure considered in our model.
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Figure 5.2: Example of beat insertion in the estimated beats due to slow down of the
music tempo that is not detected by the beat tracker.

chroma vectors are averaged according to the tactus/tatum positions that have been
extracted using the method proposed in [Pee] and [Pee09]. The chord progression is
represented using a hidden Markov model that takes into account global dependence on
meter. We present a “double-states” HMM where a state is a combination of a chord type
and a position of the chord in the measure. Harmonic and metrical structure information
are encoded in the transition matrix. In order to take several cases of metrical structure
into account, two transition matrices are proposed. Using a Viterbi decoding algorithm,
the most appropriate matrix is selected. We then obtain simultaneously the most likely
chord sequence and downbeat positions path over time. The flowchart of the system is
represented in Figure 5.3.

5.4 Model

5.4.1 Extraction of Beat-Synchronous Chroma Features
The front-end of our system is based on the extraction of a set of feature vectors (chroma

vectors) that represent the audio signal. We refer the reader to Chapter 3 for more details
about chroma features extraction. The results presented at the end of this chapter have
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Figure 5.3: General flowchart of the proposed model for simultaneous chord progression
and downbeat estimation.

been obtained using beat synchronous, 12-dimensional constant-Q-based chroma features.

Many approaches related to chord estimation have used beat-synchronous chroma fea-
tures, as for instance [BP05], [RSNO8], [SIY108], [YKK'04], [ZR07] for chord estima-
tion, [Bel07], [ELlO7], [EPO7], [ECMOS8] for music similarity and cover song identification
or [Mad06], [MKLO06] [SW05],  BWO01], [BW05] for music segmentation and music structure
detection.

As seen in chapter 3, [BP05] argue that beat-synchronous analysis frames help over-
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come noise introduced by transients components in the sound (drums and guitar strum-
ming) and short ornamentations, thus minimizing the effect of local variations. Averaging
the analysis windows between two beats results in some smoothing. In music similarity
applications, the use of a beat-synchronous representation enables overcoming variability
in tempo between two music pieces [E107].

In our case, we want to study the relationship between the chords and the metrical
structure. We thus need some observation features that are related to the meter. The
frame by frame analysis does not fit our needs: we need to proceed to a beat synchronous
analysis. To this end, the chromagram is averaged so that we obtain one feature per
tactus/tatum®. In the present work, we use the beat tracker proposed in [Pee] and [Pee09]
as a front end of the system. Briefly, [Pee| proposes a method that aims at detecting tempo
at the tactus level for percussive and non-percussive audio. The front-end of the system
is based on a proposed reassigned spectral energy flux for the detection of musical events.
The dominant periodicities of this flux are estimated by a combination of discrete Fourier
transform and frequency-mapped autocorrelation function. The most likely meter, beat
and tatum positions over time are then estimated jointly using meter/beat subdivision
templates and a Viterbi decoding algorithm. The beat tracking is then performed using a
method adapted from a P-SOLA glottal closure instant detection using estimated tempo
and local maxima of the onset-energy function.

For each tactus/tatum position py, of the piece, we compute a chroma vector C. Each
bin Ck(1),1 = [1;12] is obtained by computing the average of the Ny chroma vector bins
Cy (1) over the considered tactus position and the following one:

ck(z)zNi S (5.1)

k P <N<pPri1
The feature extraction stage is represented in Figure 5.4.

In our study, we have considered two cases. The chromagram has been averaged with
respect to the beats or quarter notes (tactus) in the first case, and with respect to the
eighth notes (tatum) in the second case.

5.4.2 Overview of the Model

The proposed model for simultaneous estimation of chords and downbeats is an extension
of the chord estimation model proposed in the previous chapter. We consider an ergodic
I + K-states HMM where each state s;i is defined as an occurrence of a chord ¢;, i € [1; 1]
occurring at a “position in the measure” (position of a beat or tatum inside a measure)
pimyg, k € [1; K

sik = [ci, pimy].

In our experiments, our chord lexicon is still composed of I = 24 Major and minor
triads (C Major, ..., B Major, C minor, ..., B minor). We keep the notations introduced
in the previous chapter: CM, ..., BM for major chords, Cm, ..., Bm for minor chords.

IThe tactus /tatum positions are either considered as input to the system in the case of semi-automatic
analysis or obtained using a beat tracker as a front-end of the system in the case of fully-automatic analysis.
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Figure 5.4: Chroma features extraction.

In the proposed model, chord changes can only occur on beats or half beats, which cor-
responds respectively to the tactus and the tatum positions in the test set. In the rest of
the text, the positions in the measure where chord changes occur will be referred to as
“position in the measure” and denoted by pim. We consider here pieces predominantly
in 3/4 or predominantly in 4/4 meters. In both cases, the transition matrix will allow 4
beat positions in the measure. K = 4 if we consider the tactus-level and K = 8 if we
consider the tatum-level. Each state in the model generates with some probability an ob-
servation vector O(t,,) at time t,,. This is defined by the observation probabilities. Given
the observations, we estimate the most likely chord sequence over time and the downbeat
positions in a maximum likelihood sense.

We now describe in detail the characteristics of our HMM: initial state distribution,
observation probability distribution and state transition probability distribution.

5.4.3 Initial State Distribution =

The prior probability ;. for each state is the prior probability that a specific chord i
occurring on pimy has been emitted. Since we do not know a priori which chord the piece

begins with and which pim the piece starts with, we initialize m; at

I x K states.

1

TE for each of the
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5.4.4 QObservation Probabilities

The observation probabilities are computed in the following way. Let P(O(ty,)|sik(tm))
denote the probability that observation O has been emitted at time instant ¢,, given that
the model is in state s;;. Let P(O(ty,)|ci(tm)) denote the one that has been emitted by
chord ¢; and P(O(t,,)|pimg(ty)) the one that has been emitted given that the chord is
occurring on pimy. We now assume independence between chord type (CM, C#M, ...,
Cm, ..., Bm) and the position of the chord in the measure. For instance, we consider
that in any given song, even if we favor chord changes on pim = 1, we do not favor any
chord type: a D major chord is as likely to occur at the beginning of a measure as a C
major chord?. The observation probabilities are computed as:

P(O(tm)[sik(tm)) = P(O(tm)|ci(tm)) P(O(tm)|pimy(tm)) (5-2)

5.4.4.1 Observation pim Probability Distribution

Equation (5.2) gives the observation probability for state s;; depending on chord ¢; and
position in the measure pimy. Here, the pim probability distribution P(O(t,,)|pimyg (tm))
is considered as uniform (% for each pim in the measure). It is thus a constant
multiplication that has no effect on the observation probability for state s;;, which
actually depends only on the chord type. We acknowledge that by doing so, we disregard
signal information that could inform the downbeat tracking process. The system would
benefit from downbeat information extracted from the signal, for instance by combining

a rhythmic pattern approach with the proposed one.

5.4.4.2 Observation Chord Symbol Probability Distribution

The probabilities P(O(ty,)|ci(tm)) are obtained by computing at each time instant ¢,, the
cosine distance between the observation vectors (the chroma vectors) O(t,,) and each of the
24 chord templates CT;,¢ € [1,24], which are the theoretical chroma vectors corresponding
to the I = 24 major and minor triads.

O(t,,).CT;

For i=1...24, P(O(tn)lei(tm)) = 1575

(5.3)

The chord templates are constructed considering the presence of the higher harmonics
of the notes, relying on the model used in the context of key estimation in [GO6b]. The
reader is referred to the previous chapter for more details.

2This is not strictly correct: for example some chords are more likely to occur than others on strong
beats in the piece according to the musical key. We will not take into account these considerations here,
they are left for future work.
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The 24 values P(O(t,,)|ci(tm)) are normalized across components per template such
that their components sum to unity.

ZP(O(tm)|q(tm)) =1 (5.4)

5.4.5 State Transition Probability Distribution

In music pieces, the transitions between chords result from musical rules. Using a Markov
model, we can model these rules in the state transition matrix. In this part, we detail the
computation of the state transition matrix. We present in part 5.4.5.1 the main idea on
which our model relies on. In this chapter, we are interested in estimating the downbeats
of music pieces that may have a complex metrical structure. We first consider the sub-
problem of finding the downbeats in the case of a constant 4/4 or 3/4 meter. We detail the
corresponding transition matrix in part 5.4.5.2. We then extend the proposed transition
matrix to more complex metrical structure cases in part 5.4.5.3. The main notations
related to the state transition matrix used in this section are listed in Table 5.2.

Table 5.2: List of the main notations related to the state transition matrix.

Variable Length Description

T. I State transition matrix of the chord estimation model
presented in Chapter 4.

T/T5/Ts IxK State transition matrix of the chord/downbeat es-

timation model (takes into account both the chord
transitions and their respective positions in the mea-
sure).

Tpim [ Tspim /Tapim K Represents the probability to transit between two pim
and between two different chord types.

K Is used when transiting between two pim in the case
that the chord type does not change (self-transition
case).

T/

pim

5.4.5.1 On the Distribution of Chord Changes According to the Metrical
Structure

Let T denote the I x K-states transition matrix of the model for simultaneous estimation
of chords and downbeats. T takes into account both the chord transitions and their
respective positions in the measure. The structure of matrix 7' is illustrated in Figure 5.5
in the case that K = 4 pim and I = 24 chords. The matrix T is derived from an I-state
chord transition matrix denoted by T,.. Here we use the chord transition matrix based
on music-theoretical knowledge about key-relationships presented in the previous chapter
and used in [PP0O8b]. Note that the model is not restricted to this choice. Another chord
transition matrix could have been used.

That main idea of the present model is that we favor chord changes on the beginning
of the measures. In a piece of music, chord changes are in general related to the beats. As
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Figure 5.5: Structure of the I K-states transition matrix 7" used in our model that takes
into account both the chord transitions and their respective positions in the measure. Here
K =4 pim and I = 24 chords.

stated by Goto [Got01]:

1. Chords are more likely to change on beat times than on other positions.

2. Chords are more likely to change on half-note times? than on other positions of beat
times.

3. Chords are more likely to change at the beginnings of measures than at other posi-
tions of half-note times.

Analysis of the evaluation test-set has shown that our data support these assumptions.
Figure 5.6 shows the distribution of chord changes according to the position in the measure.
It can be seen that the three statements reported above are corroborated by the chord
annotations. In particular, it can be seen that about 90% of the chord transitions occur
on a beat position (for most of them on the strong beats) and 76% of the chord transitions
occur on a downbeat.

Because chords are more likely to change at the beginning of a measure than at other
pim, we give lower self-transition probabilities for chords occurring on the last beat of a
measure than on other pim. A self-transition is defined as a transition between two same
chord symbols. For instance CM-CM is a self transition whereas CM-DM is not. The
term self-transition here only refers to the spelling of the chord and is independent of its
position in the measure.

3In pieces in 4/4 meter, the half-note times correspond to temporal positions of strong beats. In other
words, a strong beat is either the first or the third quarter note in a measure; a weak beat is either the
second or the fourth quarter note in a measure.
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Figure 5.6: Distribution of the chord changes according to the pim computed on the
pieces in 4/4 of the Beatles evaluation test-set.

5.4.5.2 Transition Matrix for a Constant 4/4 Meter

Let us consider a simple metrical structure such that the meter is in 4/4 and is constant
(this case was first presented in [PP08b]). We also assume that the beat tracking is perfect:
there is no insertion or deletion of beats.

We note T,(i,i") the transition probability between the chords ¢ and /. This matrix is
represented in Figure 5.7 [left].

We also define a pim transition matrix 7}, which represents the probability to transit
from pim k to pim k’. Since we do not allow our present system to jump over a pim (i.e.
skip over or add one or several beats), only the values Ty, (k, k') for k' = k+1 (mod K)*
are non-zero. All non-zero values are set to the same value. In case that K = 4 (tactus),
only the transitions pimi-pims, pims-pims, pims-pimy, pimg-pim, are thus allowed. The
matrix Tpy, is represented in Figure 5.7 [right, bottom].

We need here to distinguish between two cases:

e the first case concerns transitions between two different chords (i’ # 1),

e the second case concerns self-transitions (i = i) and corresponds to the diagonal

blocks of T.

4where a = b (mod m) means that a and b have the same remainder for the Euclidian division by m.
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Figure 5.7: Chord transition matrix for a single-state HMM [left], transition matrices

for major to major chords in the case of double-states HMM considering a 4/4 constant

meter, without taking into account the pim of the chord in the measure [middle left] and

taking into account the pim of the chord [middle right], pim transition matrices [right].

In this figure, K = 4. In this figure, the darker the color, the higher the value in the
transition matrix.

Since we want to favor chord changes on downbeats, i.e. disfavor self-transition be-
tween the last pim of a measure and the first pim of the next measure, we need to define
a specific transition matrix for the self-transition case (i’ = 7). This specific matrix is
denoted by T IQ This matrix is represented in Figure 5.7 [right, top].

m*

As one can see Téim differs from T}, only in the value T’ 1;
Tpim(K,1). The consequence of this lower value is that 7, ,
identical chords (self-transition) at measure boundaries. In the opposite T}y, does not

favor any transition in particular.

From T, Ty and T, éim, we construct the global transition matrix 7' normalized so
that the sum of each row is equal to 1 (Figure 5.7 [middle]). Each block By (k, k") of this
matrix represents the transition from chord ¢ at pim k to chord i’ at pim k'

(K, 1) which is lower than
disfavors transition between

By (k, k') =T.(i,7) - Tpim(k, k') if i £ 7,
= T.(i,1) - Tzﬁim(k:, Ky ifi=14
In the case of a constant 3/4 meter, the transition matrix 7" can be constructed in the
same way except that only transitions pimi-pime, pimeo-pims, pims-pim; are allowed in
Tpim- The various matrices used for the construction of 7" are represented in Figure 5.8.

5.4.5.3 Transition Matrix for a Variable Meter

We now extend the model presented for constant 4/4 meter to the case of variable
meter. In the previous model, the meter was constrained to be constant and it was not
allowed to jump over a pim (i.e. skip over or insert one or several beats). Furthermore,
the problem of imperfect beat tracking was not considered.
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Figure 5.8: Chord transition matrix for a single-state HMM [left], transition matrices

for major to major chords in the case of double-states HMM considering a 3/4 constant

meter, without taking into account the pim of the chord in the measure [middle left] and

taking into account the pim of the chord [middle right], pim transition matrices [right].

In this figure, K = 4. In this figure, the darker the color, the higher the value in the
transition matrix.

We now consider the case of variable meter. We will present further in this chapter the
results of some experiments that we have carried out on a very large set of Beatles songs
presenting various metrical structures. Many of the songs belonging to the test-set do not
have a constant meter. Let us recall the several cases of metrical structure considered in
our model:

e constant 4/4 or 3/4 meter
e variable meter 4/4 with passages in 3/4 meter
e variable meter 3/4 with passages in 4/4 meter

e insertion of one measure in a different time-signature in a constant 3/4 or 4/4 meter
passage.

However, because most of the songs have a predominant meter (3/4 or 4/4), we have
chosen to simplify the problem considering two major cases. Two transition matrices, with
same form but different values, are proposed. They correspond to the state-transition
matrix T described above, in the case of constant 4/4 meter. The first one corresponds
to the case of songs in 4/4 meter with ternary passages and will be denoted as T}. In this
case, we favor measures of 4 beats but transitions to measures of 3 beats are allowed. The
second transition matrix corresponds to the case of songs in 3/4 meter with passages in
4/4 and will be denoted as T3. In this case, we favor measures of 3 beats but transitions
to measures of 4 beats are allowed. We do not allow the algorithm to skip over or add one
or several beats because this would reduce its robustness. Indeed insertion or deletion of
beats corresponds to exceptional situations that happen no more than a few times within
a song.
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In such a situation, the system will probably miss some downbeat positions but it is
supposed to catch them up after a few beats. For instance, according to the proposed
model, a succession of beats annotated in the ground truth as:

1234 12 1234 1234

will theoretically be detected as:

1234 123 123 1234

or as:
123 123 1234 1234
TC .7‘, 2 >
(1,17 ) J— i /\fﬁ,(k,k) .
L CM C#M T pim
K CM C#M
CM C#MDM T 234 1 41234 klﬂg
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Figure 5.9: In this figure, the darker the color, the higher the value in the transition
matrix. The figures indicate: the chord transition matrix for a single-state HMM [left],
the transition matrices for major to major chords in the case of double-states HMM,
without taking into account the pim of the chord in the measure [middle left] and taking
into account the pim of the chord [middle right] (lower value on transition pims-pims,
pimy-pimq) and the pim transition matrices [right]. Case of variable meter.

T3 and T4 can be seen as block matrices where each block corresponds to a specific
chord transition. They are derived from the I-state chord transition matrix T, presented
above. The transition probability between chord ¢ and chord ¢’ will be denoted as T¢(, 7).
This matrix is represented in the left part of Figure 5.9.

T3 and T} are related to both the metric and harmonic structures of a piece of music.
The construction of T3 and Ty follows three steps. The first two concern the problem of
the downbeats. The third step takes into account the chord type dimension.

Firstly two pim transition matrices T3pim, and Ty, are defined, which represent the
probability to transit from pimy to pimy in a song. According to our assumptions, only
values Tapim (K, k') /Tapim (k, k') such that &' = (k + 1) (mod 4)° are non-zero, as well as
Tspim (3,4) /Tupim (3,4) so that transitions between measures in 4/4 and measures in 3/4
are allowed:

Swhere a = b (mod m) means that a and b have the same remainder for the Euclidian division by m.
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T3pzm(1; 2) = 1 T4mm(1, 2) 1
T3pzm(2, 3) = 1 T4pzm(27 3) = 1
T3pzm(3, 4) = a3 Tapim (3,4)= ay (5.5)
Tgmm(ll, 1) = 1 Tapim (4,1) = 1
Tspim(3,1) = B Tapim(3,1) = fa

with a3 < oy and B3 > 4 so that measures in 3/4 are favored in the case of T3y, and
measures in 4/4 are favored in the case of Typim,. In our experiments, we used as = 0.6,
ag = 0.9, B3 = 1.05 and B4 = 0.85. These values were manually selected in small scale
simulations, starting from the value 1 and varying in a range of +0.05.

Secondly, we want to favor chord changes on downbeats, i.e. disfavor transition be-
tween identical chords at measure boundaries (between the last pim of a measure and
the first pim of the next measure). For this self-transition case (i’ = i), corresponding to
the diagonal blocks of T3 and Ty, we define a specific transition matrix, denoted by Tzﬁim.

]gim is the same in the case of T3 building and in the case of T4 building. To favor chord
changes on downbeats, we attribute a self-transition probability from beat 3 to beat 1
(3/4 time-signature) and from beat 4 to beat 1 (4/4 time-signature) lower than on other

pim transitions:

T;im(l,Q) = «
T;gim(273) = ﬁ
Tyim(3,4)= ~v st d<a,B,y (5.6)
Tim(d,1) = 6
T (31)= §

The values «, 8, v and § were again selected manually in small-scale simulations
starting from the value 1 and varying in a range of £0.05, testing values between 0.5 and
1.5.

It should be noted that, even if the model parameters were selected in part by hand
and have an impact on the results, the exact values of these parameters is not critical.
The same transition matrices with the same parameters have been used with success on
a set of classical music pieces [PP09], which suggest that the values are not critical to the
test-set. It should be possible to learn the parameters from the annotated files. However,
until now, our attempts to derive transition probabilities from the training set have given
less accurate results than those obtained using values selected in part by hand.

Finally, we construct the global transition matrix T3 from T, T3,:, and Téim, and
normalize it so that the sum of each row is equal to 1 (Figure 5.9 [middle]). Each block
B;;i(k, k") of this matrix represents the transition from chord i at pimy, to chord i’ at pimy:

P Ty (i, ') - Tapim (k, k) it i
B (k, g ) B { Tc(ia Z/) : T3pim(ka k/) ’ nglm(ka k/) if i=d (57)
The transition matrix T} is constructed in a similar way, using 7., Typ;m and Téim.
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5.4.6 Simultaneous Estimation of Chords and Downbeats

In order to find the optimal succession of states s;; over time, the Viterbi decoding algo-
rithm [GM99a] is used successively with the two chord transition matrices 75 and Ty. The
algorithm provides the most likely path Q through the HMM states given the sequence
of observations. The transitions matrix 7" which gives the greatest likelihood given the
observation sequence O according to Equation (5.8) is selected. We obtain simultaneously
the best sequence of chords over time and the downbeat positions.

T= argmaX(P(Oa Q|T3)a P(Oa Q|T4)) (58>

5.5 Evaluation Method

The proposed model is tested on a subset of 165 songs of the Beatles test-set. The test-set
includes pieces in 3/4, 4/4 and variable meter. We refer the reader to Chapter 2, sections
2.3.2 and 2.5 for more details about this test-set.

To assess the performance of the system, we use the evaluation measures described
in Chapter 2, sections 2.4. Beat and downbeat tracking are evaluated using the stan-
dard Precision, Recall and F-measure. We consider two aspects of chord estimation: the
label accuracy (how the estimated chord is consistent with the ground truth) and the
segmentation accuracy (how the detected chord changes are consistent with the actual
locations).

5.6 Analysis of the Results

We provide in this section a detailed analysis of the results. We illustrate it using
some examples that have been chosen for their relevance. Since the interrelationship
between musical attributes is the main purpose of this work, special attention is devoted
to this aspect. This section starts with a global presentation of the results. We then
analyze in detail the downbeat estimation results. We continue with a comparison
of the chord estimation results with other state-of-the-art chord detection systems
through the Music Information Retrieval Evaluation eXchange (MIREX) 2008 and
2009 results. This comparison is followed by a discussion about the influence of each
musical attribute on the estimation of the other. We finish with some case study examples.

5.6.1 Chords and Downbeats Interaction
The results are presented in Tables 5.3, and 6.5 and illustrated in Figure 5.10. A down-

beat tracking accuracy result up to 79% (EB-TAT) suggests that relying on the chord
structure of a piece is an appropriated approach for downbeat estimation. Conversely,
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Table 5.3: Chord label accuracy results (in %) considering several cases: not inte-
grating/integrating metrical structure information in the transition matrix of the model
(NM/WM), tactus or tatum synchronous analysis (TAC/TAT), using theoretical beat po-
sitions (TB) or automatically estimated beat positions (EB). Rel. Imp. and Stat. Sig.:
relative improvement and statistical significance between the cases NM and WM.
no meter (NM)
theoretical beats (TB) estimated beats (EB)
TAC TAT TAC TAT
69.6+139 | 71.2+13.1 | 68.5+14.0 | 71.2+£13.1

with meter (WM)

theoretical beats (TB) estimated beats (EB)
TAC TAT TAC TAT
71.5+13.3 | 729+13.3 | 704+ 14.2 | 72.8 £13.3
TAC TAT | TAC | TAT
Rel. Imp. WM/NM (%) | =288 =27 | 24 2.8 2.2
Stat. Sig. yes yes yes yes

Table 5.4: Downbeat position estimation results considering several cases: theoretical
or estimated beats (TB/EB), tactus/tatum-synchronous analysis (TAC/TAT). Precision
(Prec), Recall (Rec), F-measure (F-m).

theoretical beats (TB) estimated beats (EB)
TAC TAT TAC TAT
Prec | 0.89£0.20 | 0.84 £0.26 | 0.76 =0.30 | 0.80 +0.26
Rec | 0.90£0.20 | 0.86 £0.26 | 0.76 £0.31 | 0.79 £0.28
F-m | 0.89£0.20 | 0.85£0.26 | 0.76 £0.31 | 0.79 +0.27

Table 5.5: Beat position estimation results.

Precision

Recall

F-measure

0.91 +£0.22

0.88 £0.24

0.89 £0.23

taking into account the metrical structure allows us to improve the chord recognition
task by 2.8% relative improvement in the case of tactus-frame analysis and 2.2% relative
improvement in the case of tatum-frame analysis.

We performed a paired sample t-test to determine if there is a significant difference
between the chord estimation results obtained without considering interaction with the
metrical structure (NM) and with consideration of interaction with the metrical structure
(WM). For the various situations (TB, EB, TAC, TAT), the null hypothesis could be
rejected at the 5% significance level. We can conclude that there is a statistical differ-
ence on the chord estimation results when considering the metrical structure in the model.
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68 75
NM(TE) NM(ER) WM(TB) WM (EB) ™ downbeats

EB

Figure 5.10: Histogram of chord [left] and downbeat [right] estimation results (in %)
considering several cases: not integrating/integrating metrical structure information in
the model (NM/WM); using theoretical beat positions (TB) or automatically estimated
beat positions (EB). The results from the tactus-synchronous analysis are represented in
black, the results from the tatum-synchronous analysis are represented in grey.

5.6.2 Downbeat Position Estimation

In this section, we evaluate the performance of downbeat estimation comparing the output
of our algorithm to the ground truth downbeat times annotated by hand. Following
the approach proposed in [Dav07], we measure the performance of downbeat estimation
considering two cases. On the one hand, we evaluate the upper limit of the model by
estimating the downbeat positions using manual annotation of beat positions (referred to
as theoretical beat positions (TB) in Table 6.5). On the other hand, we measure the fully
automatic performances of the system by using a beat tracker [Pee| as a front end of the
system. The beat positions estimated with the beat tracker are referred to as estimated
beat positions (EB) in Table 6.5. With these two measures, we can distinguish between
errors due to poor beat position estimation and errors due to the model.

5.6.2.1 Semi-automatic Downbeat Position Estimation

The results presented in Table 6.5 show that the system leads to a good estimation of down-
beat positions. It achieves 89% of correct estimation in the case of tactus-synchronous
analysis and 85% in the case of tatum-synchronous analysis. The encouraging results ob-
tained in the case of tatum-synchronous analysis highlight the robustness of the presented
approach.

It can be remarked that the standard deviation is high. This can be explained by the
fact that the downbeat estimation score is null for some pieces, in particular when there
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are many half-measure chord changes in the song. In this case, the downbeat positions
may be located by the algorithm on the third instead of the first beats of the measures.

5.6.2.2 Using Estimated Beat Positions Versus Theoretical Beat Positions

The downbeats estimation relies on the knowledge of the beat positions. For real
applications of the system, we need to use automatically estimated beats. Errors in the
beat tracking will be carried forward into the downbeat tracking stage. Beat tracking
results evaluated on the test-set are presented in Table 5.5 and show that the beat
tracking is not perfect. We thus expect a lower downbeat tracking performance using
the estimated beats compared to downbeat tracking performance using the ground-truth
beats. However, the decrease in the results from semi-automatic to fully-automatic
analysis is lower in the case of tatum-frame analysis than in the case of tactus-frame
analysis because some common beat tracking errors do not affect downbeat estimation at
the tatum-level.

Some common errors in beat tracking algorithm are octave errors (e.g., halving or
doubling the beat positions). In case of halved beat positions, a maximum downbeat
tracking score recall of 0.5 using tactus-frame features can be expected, but a recall of 1
could be theoretically reached using tatum-frame features.

Off-beat errors (tapping at the annotated metrical on the off-beat positions) in addition
to a halved tempo estimation is another common beat tracking error. If such a beat
estimation error is constant throughout the analyzed piece, we expect to have a null score
for tactus-synchronous analysis but a score similar to the one obtained using the theoretical
beat position for tatum-synchronous analysis. This was corroborated in our experiments.

An interesting case of beat estimation errors concerns the insertion or deletion of
beats due to a tempo deviation (e.g., slowdown in the tempo). The presented system is
supposed to tackle this situation as it does when there is beat insertion or deletion within
the music (see below).

5.6.2.3 Comparison With the State-of-the-art

We compare the performance of our algorithm (WM-EB-TAT) against those obtained us-
ing M.E.P. Davies’s model [Dav07], which we refer to as MEPD. Many thanks to Matthew
E. P. Davies for making his source code available. In the MEPD approach, the downbeats
are estimated based on spectral difference between band-limited beat synchronous analysis
frames. The analysis is restricted to the cases where the time signature does not change.
The algorithm requires a sequence of beat times and the time-signature of the input signal
to be known a priori. For comparison with our system, we have used our beat tracker as
input to the MEPD downbeat estimation system. We computed i) the results across the
whole test-set, ii) the results across the songs for which the beat tracking was perfect, iii)
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the results across the songs for which the beat tracking was imperfect.

Table 5.6: Downbeat estimation results for proposed approach (PA), MEPD approach

(MEPD). Results across the whole test-set (Whole Data), results across songs with perfect

beat tracking (Perfect BT), results across songs with imperfect beat tracking (Imperfect
BT). Precision (Prec), Recall (Rec), F-measure (F-m).

Whole Data
MEPD PA
Precision 0.74 £0.36 | 0.81 £0.26
Recall 0.72 £0.37 | 0.79 £0.28
F-measure | 0.724+0.36 | 0.79 +0.27

Perfect BT Imperfect BT
MEPD PA MEPD PA
Prec | 0.90+0.24 | 0.86 £0.26 | 0.36 =0.30 | 0.71 £0.24
Rec | 0.90+0.24 | 0.87£0.26 | 0.30 £0.25 | 0.62 £0.25
F-m | 090+£0.24 | 0.86 £0.26 | 0.324+0.25 | 0.64 +0.23

Results reported in Table 5.6 show that our system is globally more successful than
the MEPD approach and thus compares favorably to the state-of-the-art. MEPD obtains
better results across songs with perfect beat tracking. Most of those songs have a constant
time-signature. For those files, The MEPD accuracy for each of those files will either be
0 or 100%, whereas our system may insert some additional downbeats. This highlights
a shortcoming of our system: we need to make a compromise between favoring constant
meter and allowing meter changes (see below). However, our system performs clearly
better across the songs on which the beat tracking was imperfect. Any added or omitted
beat in the beat tracking will irrecoverably degrade the MEPD downbeat tracking process
whereas our system can handle those situations. Our system thus shows improvements
over the state-of the-art.

5.6.2.4 Handling Variable Meter

Previous works on downbeat tracking have mostly focused on pieces with constant meter.
The present work proposes an approach that considers some cases of variable meter. The
results we obtain are encouraging. We obtain a score of 56% on tactus and tatum analysis
on the 9 variable meter pieces of the test-set. For each song, we can determine a predom-
inant meter. The transition matrix corresponding to the predominant meter of the piece
has been correctly chosen for all songs but one. Ideally, the system should remain in the
new meter when a change in meter occurs. However, the model is built in order to favor
constant meter within a music piece. For this reason, if the chord changes are not strongly
enough marked in the chromagram (high spectral difference between frames), the system
will not adapt to the meter change until there is a sufficiently clear chord change. In case
of a meter change from a predominant meter 3/4 to 4/4, the proposed algorithm inserts
measures in 4/4 so that most of the downbeat positions are correctly detected when the
predominant meter returns.
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Let us illustrate this on an example, Figure 5.11. The song I Me Mine has a 3/4
predominant meter with changes to 4/4 meter. Due to percussive sounds, the chromagram
is blurred and chord changes are not clear. Note that the beat positions are not perfectly
estimated by the beat tracker (see the dashed rectangle). It can be seen in Figure 5.11
that, during the 4/4 meter passage (from 33s to 55s), the system mostly remains in
3/4. However, measures in 4/4 are inserted (see the black circles) so that the downbeats
are correctly estimated when the 3/4 meter returns. Our model shows some adaptation
to meter changes even if it is not perfect. On the provided example, the 11 bars of
the 4/4 section cannot be divided into a whole number 3/4 bars. If the system had
constantly remained in 3/4, the rest of the downbeats until the end of the song wouldn’t
have been correctly detected. Note that, even for many human listeners, it is very difficult
to understand meter changes on this complex example. Experiments carried out by the
author on 6 trained musicians clapping their hands along with the music have shown that
listeners needed between 2 and 3 measures before synchronizing with the correct downbeat
positions of the 4/4 meter passage.

The last line in Figure 5.11 represents the downbeat tracking obtained by increasing
the value of o in Eq.(5.5), so that constant 3/4 meter is less favored by the model. With
this value, the algorithm shows more flexibility to the meter change. We plan to find
methods to reduce the trade-off between favoring constant meter and allowing meter
changes.
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Figure 5.11: Estimated downbeat positions of an excerpt of the song I Me Mine. Anno-
tated beat positions [top, a)], annotated downbeat positions [middle top, b)], estimated
downbeat positions [middle bottom, c)] with a3 = 0.6, estimated downbeat positions [mid-
dle bottom, d)] with a3 = 0.85. Measures in 4/4 inserted by the model are indicated by
the two black circles. Extra beats added by the Beatles at the end of the passage in 4/4
meter are indicated by the grey circle. The dashed rectangle shows a region with errors in
the beat tracking. The image has been obtained using the Open Source tool Wavesurfer.
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5.6.2.5 Handling Insertion or Deletion of Beats

It is possible that there is an insertion or an omission of beats within a constant-meter
part of a song, either due to the music itself or due to a beat tracking error. This is
illustrated in Figure 5.11: two extra beats have been added by the Beatles at the end
of the passage in 4/4 meter (see the grey circle). The estimated succession of beats is
123 123 123insteadof 1234 12 12 3. This corroborates our expectations
stated in part 5.4.5: the system synchronizes to the correct downbeat positions after a
few beats following the added or deleted beat.

5.6.3 Chord Estimation

In this section, we analyze the performances of chord label estimation comparing the
output of our algorithm to ground truth chord labels annotated by hand.

5.6.3.1 Comparison of the Results with MIREX 2008 “Audio Chord Detec-
tion”

We participated to the first chord detection task in Music Information Retrieval Evaluation
eXchange®. In the submitted system, the chords were estimated without considering
interaction with downbeats. To set the algorithm presented in this chapter among other
state-of-the-art chord detection algorithms, we first report and analyze the MIREX 2008
chord detection results.

The MIREX 2008 Audio Chord Detection task was divided into two subtasks. In the
first subtask the systems were pre-trained and tested against 176 Beatles songs. In the
second subtask systems were trained on 2/3 of the Beatles test-set and tested on 1/3. Our
system does not need any training, we thus participated to the first subtask. An overlap
score was calculated as the ratio between the overlap of the ground truth and detected
chords and ground truth duration. Four songs were excluded from the original Beatles
test-set because of problems aligning the ground truth chords to the audio data.

A total of 8 algorithms were submitted to the first subtask, and our algorithm
obtained the fourth place. The various results are reported in Figure 4.1, chapter 4.
Note that silent or no-chord segments were not estimated with our algorithm. The
differences in the results between the participants are rather small, probably because the
approaches are similar (using HMM). The four highest results were the following: Bello
and Pickens [BPO05] obtained 66% of correct detected chords, Mehnert [MGAZO08] 65%
correct, Ryynénen and Klapuri [RK08a] 64% correct, Papadopoulos and Peeters [PP08a]
63% correct. Our system compares favorably to the trained-systems. Indeed, 7 algorithms
were submitted to the second subtask. The approach proposed by Uchiyama, Miyamoto,
and Sagayama [UMOSO08] gave results that were significantly better than the other

Shttp://www.music-ir.org/mirex/2008/
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submitted algorithms (72% correct). Ellis obtained [Ell08] 66% correct results. All the
remaining algorithms gave results above 62%.

Using MIREX’s exact methodology (chord evaluation measure and test-set), we have
re-computed the score obtained with our MIREX 2008 algorithm and computed the score
obtained with the newly proposed algorithm (EB-WM-TAT) on the 162 Beatles songs of
our test-set. We obtained a statistically significant relative improvement of 2.4%.

Note that despite using MIREX methodology, we did not recover the results reported
by MIREX. We obtained 68.8% for our MIREX algorithm and 70.5% for the newly
proposed algorithm. A deeper analysis of MIREX’s results has shown that it is very
likely that there are some errors in the evaluation. For instance, all participants obtained
a score close to zero for songs number 23, 35, 76, 97 and 104.

5.6.3.2 Comparison of the Results With MIREX 2009 “Audio Chord Detec-
tion”

We submitted the present system to the second chord detection contest in Music Infor-
mation Retrieval Evaluation eXchange 20097. The MIREX 2009 audio chord detection
task description is similar to the one proposed in 2008 except that the score computation
is slightly different. A first score is calculated as the ratio between the overlap of the
ground truth and detected chords and ground truth duration, then a weighted average is
computed across the songs by weighting each score by the song duration. In 2009, the
test-set included also 37 popular music songs. A total number of 13 algorithms were sub-
mitted. The chord accuracy results are represented in Figure 4.2 in Chapter 4.2. They
vary between 53.8% and 71.2%. Our algorithm ranked 8 with a result of 63.2%.

It is interesting to note that that our algorithm (PP) and two other algorithms sub-
mitted to the MIREX contest, including the second best MIREX algorithm (OGF2), were
compared against each other in the framework of the QUAERO project®. The algorithms
were evaluated on a database of 20 popular music songs that did not include any Beatles
songs. The results are represented in Figure 5.12. The OGF2 evaluated for the QUAERO
project had been pre-trained on the Beatles test-set, as for MIREX 2009. Our algorithm
obtained a score of 73.18% (PP) and it outperformed (OGF1) which obtained a score of
72.55%, although (OGF1) had outperformed our algorithm in MIREX 2009.
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Chord accuracy results (%)

74

OGF1
Algorithms (QUAERO 2009)

Figure 5.12: QUAERO 2009 Audio chord detection Results: PP [Papadopoulos and

Peeters] - OGF1 [Oudre et al. 1 (majmin)] - OGF2 [Oudre et al. 2 (majmin)].

Table 5.7: Chord segmentation accuracy results (in %) considering several cases: not
integrating/integrating metrical structure information in the model (NM/WM), tactus
or tatum analysis (TAC/TAT), using theoretical beat positions (TB) or automatically
estimated beat positions (EB). Rel. Imp. (%) indicates the relative improvement between

the two approaches. Precision (Prec), Recall (Rec), F-measure (F-m).

no meter (NM)

theoretical beats (TB) estimated beats (EB)
TAC TAT TAC TAT
Prec | 61.6 £16.8 | 43.7£15.0 | 55.6 £21.4 | 43.6 = 15.1
Rec | 59.14+17.1 | 56.5£16.7 | 52.7+21.3 | 56.4 £ 16.6
F-m | 59.0£15.2 | 484£15.0 | 52.8 £19.8 | 48.2 +14.8
with meter (WM)
theoretical beats (TB) estimated beats (EB)
TAC TAT TAC TAT
Prec 68.3+17.7 | 57.4+18.0 | 61.3+23.2 | 56.8 £18.3
Rec 725+£17.1 | 73.5+£184 | 644+£23.8 | 7T1.1 £18.7
F-m 69.1+£15.8 | 63.3+£17.2 | 61.6 £22.1 | 62.0£17.2
Rel. Imp. 17.12 30.8 16.7 28.6
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5.6.3.3 Chord Segmentation

Table 5.7 presents the chord segmentation accuracy results. It can be seen that jointly
estimating the downbeats with the chords improves significantly the chord segmentation.
Chord estimation results presented in Table 5.3 may seem contradictory since, in the
TB case, tatum-based features result in better chord estimation whereas tactus-based
features result in better downbeat tracking. It is worth noting that chord estimation
is better on tatum-based results even without joint estimation of chords/downbeats.
This may be explained by the fact that tatum-based analysis takes chord changes on
off-beats into account, whereas tactus-frame analysis only allows chord changes on beats.
However, the improvement of the chord segmentation accuracy is a consequence of the
improvement of the downbeat estimation accuracy. For instance, downbeat estimation
based on the beat tracking is better on tatum-frame analysis than on tactus-frame
analysis and consequently, chord segmentation is slightly better on tatum-frame analysis
than on tactus-frame analysis.

5.6.3.4 Analysis of Chord Detection Errors

In this part, we focus only on chord estimation results and analyze chord detection errors.
The results indicated in Table 5.3 show that we obtain up to 72.8% of correctly identified
chords on our test-set. As can be seen, the standard deviation of the results is relatively
high (around 13%). Analysis of the chord estimation errors leads to similar conclusions
than the ones obtained in Chapter 4. The most common errors correspond to neighboring
triad confusion and are confusions due to ambiguous chord lexicon mapping, passing
tones or missing notes.

Table 5.8: Proportion (in%) of chord errors corresponding to harmonically related chords.

Relative | Dominant | Sub-dominant || Parallel
10% 13% 34% 13%

Table 5.8 shows that a large portion of chord errors (about 57%) corresponds to har-
monically close triad confusion: relative chords (Am being confused with CM); dominant
chords (CM being confused with GM) or subdominant chords (CM being confused with
FM). Parallel major/minor chords (EM being confused with Em) account for 13%. The
distribution of the type of errors is similar for all the configurations of the system (TAC,
TAT, TB, EB). Note that there is a notable predominance of sub-dominant errors in the
results. This may be due to the high value given to transitions between subdominant
chords in the cognitive-based transition matrix. We have found that diminishing this

"http://www.music-ir.org/mirex /2009 /

8Quaero is a collaborative research and development program focusing on the areas of automatic ex-
traction of information, analysis, classification and usage of digital multimedia content for professionals
and consumers. IRCAM is in charge of the coordination of audio/music indexing research and of develop-
ment of music-audio indexing technology. A specificity of the project is the creation of a large-music-audio
corpus in order to train and validate all the algorithms developed during the project.
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value decreases the sub-dominant errors rate. However, this also decreases the global re-
sults. This shows some limitations of our approach that is not based on training but on
theoretical and cognitive-based music knowledge. If the system does not recognize exactly
a chord but makes such confusions, the result can still be useful for higher-level structural
analysis such as key estimation, harmony progression or segmentation. The results ob-
tained by the system when taking into account these harmonically close chords are quite

high (80%).

The harmonically close chord errors do not have all the same qualitative weight.
Parallel errors, for instance, may badly affect key recognition. However, the most
common harmonically close errors are dominant and sub-dominant chords (having a
perfect fifth relationship between the estimated and ground-truth chord), which should
not affect key estimation. Neighboring triad confusion may not be critical to downbeat
estimation. A relevant example of this assessment here concerns the detection of
metrical structure. We obtain a score of 57% of correctly detected chords on the song
Don’t Bother Me, which is rather low compared to the other songs. However, most
of the errors correspond to neighboring chords and the harmonic structure has been
well-preserved (chord changes occur according to the measures), as illustrated in Fig-
ure 5.13. For that reason, the downbeat positions of the song have been correctly detected.

DM
CM

1 1 1 1 1
90 95 100 105 110 115
time (s)

Figure 5.13: Estimated chord progression of an excerpt of the song Don’t Bother Me [a)]
and ground truth [b)]. The downbeat positions are represented by the vertical lines.

5.6.3.5 Tactus-synchronous Versus Tactum-synchronous Analysis

Table 5.3 indicates that the tatum-frame analysis performs slightly better in general than
the tactus-frame one. This may be due to the fact that tatum-based analysis takes chord
changes on off-beats into account, whereas tactus-frame analysis only allows chord changes
on beats.
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5.6.4 Case Study Examples

In this part, we present some examples that illustrate some important advantages when
estimating simultaneously the chords and the downbeat positions.

5.6.4.1 Boundary Errors

Taking into account the position of the downbeats when estimating the chord progression
allows us to improve the accuracy of the estimation. Indeed, when this information is
not considered, the chord change may be detected a beat before or after its theoretical
position, because of the smoothness of chord transition. This is illustrated in Figure 5.14.
When the chords are estimated independently of downbeat positions, errors often occur
around pim. When the downbeat positions are taken into account, chord changes on the
correct position are favored (see line [b]).

a) G\'; /
oM
M——— — —
b) B
oM S S S
s el
CMﬁ 1 k k 1 1 1 1 1
2 4 6 8 1( 12
time (s

Figure 5.14: Chord progression of the first few seconds of the song Love Me Do without

taking into account the downbeat positions [a] and taking into account the downbeat

positions [b]. Ground truth [c]. The downbeat positions are represented by the vertical
lines.

5.6.4.2 Chord Changes

The example in Figure 5.15 clearly shows how the chord progression estimation task can
benefit from modeling chord dependencies to the metrical structure. This piece is in CM
key and it changes between CM and GM chords about every two measures [ground-truth
line ¢)]. Without taking into account global dependencies [line a)], chord transitions are
badly detected and the estimated chord progression remains almost all the time on the GM
chord instead of transiting between GM and CM. The knowledge of downbeat positions
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[line b)] allows us to better detect transitions.

GM

CM

GM

CM

GM

CM

1 1 1
124 126 1p8 130 132 134 136

Figure 5.15: Chord progression of the last few seconds of the song Love Me Do without

taking into account the downbeat positions [a] and taking into account the downbeat

positions [b]. Ground truth [c]. The downbeat positions are represented by the vertical
lines.

5.7 Conclusion

In this chapter, we have presented a model that allows the simultaneous estimation of the
chord progression and the downbeat positions of an audio file. The key idea behind our
approach is that the harmonic structure is closely related to the metrical structure of a
piece of music. Relying on this idea, we have built a specific topology of HMM where
each state is a combination of an occurrence of a chord and a position of the chord in
the measure. Each state is thus related on the one hand to the harmonic structure and
on the other hand to the metrical structure of the piece. Harmonic structure information
and metrical structure information are encoded in the state transition matrix. The chord
progression and the downbeats are estimated jointly based on the assumption that chords
are more likely to change at the beginning of a measure than on other positions. We
consider that an important contribution of our work is that we treat the case of pieces
with varying time-signatures.

The system has been evaluated and compared to the state-of-the-art on a large set of
hand-labeled files. We have demonstrated that considering the interaction between the
two musical attributes allows their simultaneous estimation and that the robustness and
the chord estimation accuracy is higher when estimated jointly with downbeats.

We have provided a detailed analysis of the results illustrated by case studies that
suggest that some points need further improvement such as a pre-processing step that
removes transients and noise and the use of longer dependencies between chords (using,
for instance, probabilistic N-grams).
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We have considered the problem of using imperfect beat positions obtained from beat
tracking. Results show that using a tatum-synchronous analysis instead of a tactus-
synchronous one might temper the effects of imperfect beat tracking on downbeat tracking.
The model allows us to take into account pieces with complex metrical structure. The
downbeat tracking results for pieces in variable meter are encouraging even if they need
further improvement. For the moment, the system is built so that it remains in general
in a single predominant meter along the analyzed track. It would be highly desirable that
the system shows more flexibility to the meter changes. Future work will concentrate on
this point.

For the moment, the model has mainly been tested on popular music. We plan to
incorporate a larger test database to explore the performances of the system on various
types of music genres. We also plan to quantify the downbeat performances of the system
with more elaborated measures.

It should be noticed that, for some reasons explained in the previous chapter, we have
restricted our chord lexicon to the 24 major and minor triads. We think that the proposed
model for joint estimation of chords and downbeats could be directly extended to a larger
chord lexicon. However, we do not have performed experiments to corroborate this claim
and we left this point for future works.

An analysis of the results shows that the harmonic structure of a piece is an important
clue for determining the downbeat positions. However, it has been noticed that in
some cases (such as when chords change every two beats), the relationship between
chord changes and downbeats is ambiguous. This model would benefit from a more
complete functional chord analysis. Combining the present system, which is based on
harmony, with a rhythmic pattern approach would probably also allow improvement of
the downbeat tracking process.
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Chapter 6

Interaction Between Chords,
Downbeats and Keys

In this chapter, we present our model for simultaneous downbeat, chord and key estimation
from an audio signal. Because the musical key is deeply related to the chord progression
and the metrical structure, their automatic estimation should be improved by exploiting
their interrelationship.

We first focus on the problem of global key estimation. Relying on previous works on key
estimation, we extend the model presented in the previous chapter by integrating global key
information and considering interaction between chords, downbeats and the musical key.
We then draw our attention to the problem of local key finding. We propose to address
the problem of local key finding by investigating the possible combination and extension
of different previous proposed global key estimation approaches. The specificity of our
approach is that we introduce key dependency on the harmonic and the metrical structures.
A contribution of our work is that we address the problem of finding a good analysis window
length for local key estimation by introducing information related to the metrical structure
i our model. Key estimation is not performed on empirical-chosen segment length but
on segments that are adapted to the analyzed piece and that are expressed in relationship
with the tempo period. We evaluate and analyze our results on a new database composed
of classical music pieces.
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6.1 Introduction

In the previous chapter, we have focused on two important musical attributes, the chord
progression and the downbeats. The elements of the melody and the harmony of a
musical fragment are related to each other by the musical key. Because the musical key
is deeply related to the chord progression and the metrical structure, their automatic
estimation should be improved by exploiting their interrelationship. In this chapter,
we are interested in understanding how the musical key may interact with the musical
attributes that we have considered in the previous chapters.

In the first part of this chapter, we focus on the problem of global key estimation,
that is finding the main key of a piece of music. We extend the model presented in
the previous chapter by integrating global key information and considering interaction
between chords, downbeats and the musical key. Relying on previous works on key
estimation [Pee06b] [LS08|, we study the influence of these three musical attributes on
each other. Note that we do not present a new technique for simultaneous estimation
of key and chords from a HMM. However, we do present an original analysis about the
interaction of musical attributes that shows how they can be estimated in a mutually
informing manner.

In the second part of this chapter, we draw our attention to the problem of local key
estimation. Various approaches have been proposed in previous works for estimating the
global key of a piece of music. Finding the main key of a piece of music is only one part of
tonality analysis. Indeed, even if a piece of music generally starts and ends in a particular
key referred to as the main or global key of the piece, it is common that the composer
moves between keys, sometimes without definitely establish them. A change in the musical
key is called a modulation. The problem of local key estimation is quite more complex:
we aim at segmenting the music piece according to the key changes and finding the key of
each segment. Little work has been conducted on this topic. We propose to address the
problem of local key finding by investigating the possible combination and extension of
different previous proposed global key estimation approaches introducing key dependency
on the harmonic and the metrical structures. We show that our model for simultaneous
estimation of chords and meter structure can be used to detect the key progression of a
music audio file.

Although the idea to use chords to find the key of a musical excerpt has already been
explored [NS07], to our knowledge, no precise study about the relationship between the
two attributes has been conducted, in particular in the case of local key estimation. This
partly comes from a lack of databases labeled in chords and local keys. One contribution
of this work is to present such a study on classical music pieces labeled in chords and
keys containing many modulations. The problem of finding a good analysis window
length for local key estimation has been evoked in the past, without any satisfying
answer. Another contribution of our work is that we address this problem by introducing
information related to the metrical structure in our model. Key estimation is not per-
formed on empirical-chosen segment length but on segments that are adapted to each piece.
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The major contributions presented in this chapter are listed below.

1. We provide a detailed review of previous works about musical key estimation from
audio including the problem of local key estimation and the problem of interaction
between key and other musical attributes.

2. We integrate global key information in our previous chords/downbeats HMM relying
on previous works on key finding.

3. We improve the method proposed in Chapter 4 for training the chord transition
matrix and underline the importance of taking into account key information.

4. We propose an analysis of the interaction between the various considered musical
attributes using 55 Beatles songs for which we have annotated the key

5. We investigate the possible combination and extension of previously proposed meth-
ods for global key estimation to the case of local key estimation.

6. We study the problem of finding an appropriate analysis window length for local key
estimation and address this problem by introducing key dependency on the meter.

7. We annotated a novel set of classical music in chords, local key, beats and downbeats.

8. We carefully study the relationship between chords, metrical structure and local
key relying on experimental results obtained on the above-mentioned classical music
database.

6.1.1 Organization of the chapter:

The structure of the chapter is as follows. First, in Section 6.2, we review some previous
works on global and local key estimation. We then investigate the problem of integrating
global key information in our model in Section 6.3. In Section 6.3.4, the model is evaluated
on a set of popular music pieces. We present in Section 6.4 our model for local key
estimation, which relies on the previously proposed probabilistic model for simultaneous
chord progression and downbeat locations estimation. The local key estimation is based
on the harmonic and metrical structures of the piece. In Section 6.4.5, the proposed model
is evaluated on a set classical music pieces. A conclusions section closes the chapter.

6.2 Related work

In this section, we review some previous works related to the problem of the automatic
estimation of musical key of a piece of music. We distinguish between works that address
the problem of finding the main key (global key) and works that address the problem of
key modulations in music pieces.
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6.2.1 Global Key

Most of the algorithms that extract key form audio start by computing a set of features
that represent the signal (typically chroma features or Pitch Class Profile features), which
are then used as an input to a tonality induction model. The problem of automatically
estimating the key of a piece of music has first been addressed in the context of symbolic
music (e.g. MIDI format). In what follows, we will review two of the most popular
techniques that have been extended later to the case of audio music. For a detailed review
of key finding in symbolic music and more generally on tonality induction, we refer the
reader to [Che00] or [G06al.

6.2.1.1 Template-Based Key-finding Models (Krumhansl & Schmuckler Al-
gorithm)

A large part of audio global key finding systems is based on the use of key pro-
files/templates. Pitch Class Profiles of Chroma features are extracted from the signal
and then compared to theoretical templates that represent the perceptual importance of
notes or chords within a key. This idea was first proposed by Krumhansl and Schmuckler
in [Kru90]. This algorithm, known as the Krumhansl & Schmuckler (K-S) algorithm, com-
putes the correlation between a vector of pitch-class durations obtained from a musical
passage and a set of major and (harmonic) minor key-profiles corresponding to each key.
The key profile that provides the maximum correlation is taken as the most probable key
of the musical excerpt.

The key profiles, known as the Krumhansl-Kessler (K-K) profiles, were originally proposed
by Krumhansl and Kessler in [KK82]. They represent the stability of each semitone
pitch-class relative to each key. Relying on the idea that some tones are more central
than others in a given tonal context, the probe-tone experiments aim at quantifying the
hierarchy of stability of the tones within a musical context. The so-called Krumhansl’s
probe tone ratings were obtained by asking subjects to listen to a musical excerpt that
establish a particular key (such as a cadence) and to rate how well each of the 12 semitones
of the chromatic scale “fit” the given tonal context. Temperley proposed a modified
version of the K-K profiles in [Tem99]. For instance, he adjusted the weights of some
pitches in order to give the major and minor profile the same mean. This removed the
inherent preference for the minor profile. More details can be found in [Tem01]. He also
proposed some modifications to the K-S algorithm by ignoring note durations by using
a flat input/weighted key profile approach and by using a matching formula instead of
correlation. The Krumhansl and Temperley major and minor key profiles are represented
in Figures 6.1 and 6.2.

Various template-based key-finding approaches that rely on the Krumhansl &
Schmuckler’s approach have been proposed. They differ from each other in either the
way audio features are extracted, key templates are chosen or final selection criteria are
used.

Go6mez & Herrera [GHO4] compare a cognitive-based approach with several machine
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Figure 6.1: Krumhansl (in black) and Temperley (in grey) key profiles for major [top]
and minor [bottom] keys.
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Figure 6.2: Krumhansl (in black) and Temperley (in grey) key profiles for major [top]
and minor [bottom| keys normalized by their maximum value.
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learning approaches for computing the tonality from polyphonic audio files. A set of Har-
monic Pitch Class Profile (HPCP) features is extracted from the signal. In the cognitive-
based method, they are used as an input to the Krumhansl & Schmuckler’s algorithm that
is extended to the case of polyphonic audio by considering the profile value for a given
pitch class to represent also the hierarchy of a chord in a given key. The polyphonic profiles
for the 24 different keys are built considering only the three main triads of the keys (tonic,
subdominant and dominant). This cognition-inspired method is compared with several
machine-learning techniques where the key is modeled by analyzing a training annotated
collection. Three sub-problems are addressed : mode induction, key note induction and
combined key note and mode induction. The methodologies are evaluated over a large
audio database, achieving a 64% of correct overall tonality (mode and key-note) estima-
tion. The results on 878 excerpts of classical music (661 for training and 217 for testing)
show that combining the two approaches allows improving the key estimation results since
both generate different error patterns. It is also found that the use of machine-learning
algorithms result in very little improvements over the cognitive-based technique. It is
underlined that the considered tonal descriptors do not capture any musical structure, as
for instance the position of the chords in the rhythmic or the harmonic structure and that
this point needs further investigations.

Pauws [Pau04] also uses the maximum-key profile correlation algorithm to extract the
key from the audio signal. For this he correlates chroma features averaged over variable-
length fragments at various locations in the piece (beginning, middle, end) with the 24
major/minor Krumhansl and Kessler key-profile vectors. Evaluation on 237 pieces of
classical piano sonatas shows that the position and the length of the segments chosen to
estimate the main key of the piece is an important parameter. Firstly, a sufficiently long
segment is needed to estimate the key. Secondly, the beginning of the piece gives the best
information about the key whereas the middle corresponds to a modulation in general and
thus leads to an incorrect key estimation. The best results are obtained by analyzing the
complete audio file. Some weaknesses of the algorithm are outlined: it does not take into
account some parameters that are important for the perception of key such as the position
of the pitches in a metrical organization or theoretical and compositional music rules.

Izmirli [Izm05] introduces a template-based correlational model for key finding from
audio and compares two methods that implement this model. The first one uses a pure
spectral representation and the second uses a chroma-based representation. Key templates
are created from monophonic piano audio samples weighted by profiles representing tonal
hierarchies in Western music. Three different profiles and their combination are used in this
study to approximate the pitch distributions: the Krumhansl’s probe tone ratings [Kru90],
the Temperley’s profiles [Tem01] and a flat diatonic profile (12-dimensional vector contain-
ing 1 at pith classes that are comprised in the considered diatonic scale, 0 elsewhere). For
each analyzed piece, a spectral or a chroma summary vector is calculated in a similar way
than the templates. The key is obtained by computing the correlation between the spec-
tral summary information obtained from audio input and the pre-computed templates.
Evaluation is conducted on 85 classical music pieces. The best results are obtained using
Temperley’s profile combined with a flat diatonic profile.

Izmirli improves this method in [Izm06] where he proposes to use a confidence weighted

Joint Estimation of Musical Content Information From an Audio Signal



Related work 147

correlation to find the most probable key. Although the method is related to the one
presented in [GHO4] and [G06b], the criteria for key selection is different. In [GO6b], the
key is estimated by selecting the key-profiles that has the highest correlation coefficient
with a global averaged chroma vector. In [Izm06], a summary chroma vector is obtained
by averaging the chroma vectors in a window of fixed length, considering different lengths.
All windows start from the beginning of the piece and their length is comprised between
one frame and 30 seconds. For each window, a key is chosen according to the key profile
that has the highest correlation with the summary chroma vector. The global key is then
estimated from the individual keys determined on the various window sizes. The model
is evaluated using an audio collection consisting of 152 classical pieces.

If most of the template-based key-finding approaches are based on chroma features,
some others use different input features. Zhu & Kankanhalli [ZKGO05] [ZKO06] investigate
the use of novel pitch profile features for key detection in musical audio based on the
standard probe tone rating method [Kru90]. The novel pitch profiles features address the
issues of pitch mistuning and interference of the noisy percussive sounds in the audio.
The note partials are precisely extracted from the spectrum using a tuning detection
algorithm. A consonance filtering technique is used to select only the note partials that are
likely related to the tonality of the music so that peaks corresponding to noisy percussive
sounds are filtered out. The advantage of the newly proposed pitch profile feature over
the chroma feature is that it is insensitive to temporal variations or dynamics variations
in the signal. The proposed system is evaluated on classical and popular music (60 pop
songs and 12 classical pieces in [ZKGO05], 64 pop songs and 185 15s to 30s-length excerpts
of classical music [ZKO06]). It is reported that the proposed system performs better using
the newly proposed pitch profile features than using the chroma features.

Some works propose to use trained key profiles from either symbolic or audio data
instead of using pre-defined key-profiles. This idea was already proposed in [Kru90] where
pitch classes distributions were obtained from the melodic line of classical music pieces by
counting the number of times that each note appears. It was found that these distributions
were closely correlated with the K-K profiles. Temperley proposes in [Tem05] to derive
major and minor key profile from the Kostka and Payne corpus [KP95]. Purwins &
Blankertz [PB05] use constant-Q profiles trained on audio.

The method proposed in [Pau04] is extended by van de Par et al. in [vdPMRO6] who
propose a similar template-based key-finding approach using trained key-profiles instead
of pre-defined key-profiles. For this, frame-by-frame chromagrams are extracted from
training audio files and averaged across the duration of the song considering three different
weighted functions. The three chromagrams are correlated with the key profiles, yielding
to three correlation values with various temporal emphasis (uniform weighting, emphasis
on the beginning of the song, emphasis on the ending of the song). The key is determined
by computing a weighted score based on the three values. The method is evaluated on the
same database as in [Pau04].

Most of the previously presented template-based approaches for key-finding follow the
K-S algorithm and are based on the computation of the correlation between pitch class
distributions and key-templates. This method does not take into account the temporal
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order of the notes although this information may be useful for key-finding. Relying on
this observation, Madsen & Widmer [MWO07] propose to use distributions of intervals,
which is an extension of the pitch class profiles that takes into account the order of the
notes. The interval profiles are learned from annotated MIDI data. The key of a given
piece is determined by first computing a count table from its pitches and then computing
the correlation of this table with each of the major and minor trained profiles. The
performance of the model is evaluated on The Finnish Folk Song Database! and 384
chorales and 30 inventions by J. S. Bach. The obtained results favorably compare against
methods relying on pitch class profiles. It is concluded that the results could be improved
by combining the two methods.

6.2.1.2 Key-finding Models Based on HMMs

HMM-based methods have also been proposed as an alternative to template-based methods
for key finding. Peeters [Pee06a] investigates the different processes on which template-
based key finding approaches rely on. The conclusions of these investigations are presented
through the results of key estimation on a database of 302 baroque, classical and romantic
music tracks. A Harmonic Peak Subtraction algorithm is proposed as a front-end for
the spectral representation of the signal that allows reducing the influence of the higher
harmonics of each pitch. Various combinations of key-chroma profiles and key decision
methods inspired from [Izm05] and [GO6b] are tested. The cognitive-based approach is
compared with a HMM-based method for key estimation proposed in [Pee06b].

In the work of Peeters [Pee06b], two hidden Markov models are trained using the
Baum-Welsh algorithm on a labeled database in order to learn the characteristics of the
major and minor modes. For this, the chroma-vectors of the whole training set are all
mapped to a root-note of C and used to train the CM and the Cm key models. The
24 hidden Markov models corresponding to the various major and minor keys are then
derived from the two previously trained models by circular permutation. The key of the
audio file is obtained by computing the likelihood of its chroma sequence given each HMM
and selecting the one that gives the highest value. Note that, in this work, the states
in the HMMs have no musical meaning. It is found that the cognitive-based method
outperforms the HMM-based approach. It is underlined that the HMM results however
show that a system without any a priori musical knowledge can learn the characteristics
of the keys from a labeled database. It is mentioned that the results strongly depend
on the music genre. Note that these results are similar to the conclusions obtained
in [GHO4] where it was found that very small improvement is achieved by only using
machine learning algorithms. The use of HMM-based methods for key finding has been
extended in other works that consider more complex tasks such as the problem of local
key finding or the problem of interaction between the key and other musical attributes.
We will review these works in the next section.

! Available: http://www.jyu.fi/musica/sks/
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6.2.1.3 Key-finding Models Based on the Spiral Array Model

Although the K-S model is perhaps the most popular key-finding model, the Spiral Array
Model proposed by Chew [Che00] [Che01], originally designed for symbolic key-finding,
has also successfully been extended to the case of audio. It is a 3-dimensional model that
represents pitches, intervals, chords and keys in the same three-dimensional space. This
model is illustrated in Figure 6.3. It can be seen that pitches are represented as points
on a helix, adjacent pitches are related by intervals of perfect fifths and vertical neighbors
are related by major thirds. The tonal objects are represented as a weighted sum of their
lower level components by the center of effect (CE). For instance, the right part of Figure
6.4 represents the CE of the pitches E, F and A weighted by their pitch strengths. Each
chord and key is thus given a characteristic point in the space. The key of a musical
passage can be estimated using the Center of Effect Generator (CEG) algorithm [Che02].
Pitch and duration information is used to generate the CE of all tonal events in the space.
It is compared with the different keys in the spiral array. The closest one is selected as
the key of the musical excerpt.

LEGEND :

perfect Sth
— major 3rd
-===%» minor 3rd

Figure 6.3: Representation of intervals in the Spiral Array model. Adapted from [Che00)]
and [G06a].

Figure 6.4: Mapping of the pitch strengths of notes E, F and A onto Spiral Array model
[middle] and corresponding Center of Effect (CE) [right]. Adapted from [CCO05a].

Chuan & Chew [CCO05b] propose a key-finding algorithm from polyphonic audio music
by extending the Spiral Array CEG algorithm to the case of audio. Pitch class and pitch
strength information is extracted from a standard FFT based on a heuristic peak selection
algorithm. This information is used as an input of three algorithms for key estimation
that are compared: the CEG algorithm, the Krumhansl & Schmuckler’s probe tone profile
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method and the Temperley’s modified version of the K-S method. The performances of the
algorithms are compared through a set of 61 audio files of Mozart symphonies synthesized
from MIDI. The results show that the CEG algorithm performs better than the Krumhansl
and the Temperley methods.

The weak points of this method have been investigated and improved later: Chuan &
Chew [CCO0ba] examine several sources of errors in pitch class determination for audio key
finding and propose a fuzzy analysis method to reduce errors in pitch class determination.
This method enables to correct noisy detection of lower pitches and to refine the biased
raw frequency data. The key is determined by applying the CEG algorithm. The newly
proposed method is compared with the previous one that uses peak detection [CCO5b]
and to a symbolic key finding method. The three algorithms are compared on audio files
synthesized from MIDI. Results on the first 15 seconds of a larger and more varied corpus
of music than the previous one, composed of 410 pieces of classical music ranging from
the Baroque period to the Contemporary period, show that the fuzzy analysis technique
performs better than a simple peak detection policy and gives results that are close to the
one obtained using symbolic information for pitch detection.

6.2.2 Local Key

In comparison to the problem of global key estimation, little work has been conducted
on the problem of local key estimation. However, various approaches have already been
proposed for this task.

The above-mentioned Spiral Array model [Che02] is a geometric tonality model that
incorporates simultaneously pitch, interval, chord and key relations. It enables determin-
ing points of modulation (key changes) in a piece of music in the symbolic domain. This
method is extended to the audio case by Chuan & Chew in [CC]. In this work, a basic sys-
tem that generates pitch-class information using a fuzzy analysis and calculates key results
using the CEG algorithm is introduced. Three key determination policies are investigated
(nearest-neighbor (NN), relative distance (RD), and average distance (AD)). Experiments
are conducted on 410 classical music pieces by various composers across different time and
stylistic periods (from Baroque to Contemporary). It is found that the AD policy gives
the best main key estimation results (79%). Three extensions to the basic key finding
system are then proposed (the modified spiral array (mSA), fundamental frequency (f0)
identification, and post-weight balancing (PWB)) and evaluated on Chopin’s 24 Préludes.
Quantitative evaluation of main key estimation is proposed. The problem of local key
finding is only considered on some examples.

Another geometric tonality model describing relationship between keys has recently
been proposed in [GMGBO07]. It is derived from the cognition-based model proposed
in [KK82]. Tones are organized so that tonal symmetries within Western tonal music
become apparent.

Some approaches rely on a frame-by-frame analysis or use a sliding analysis window.

Purwins et al. [PBO00] present an approach to derive an appropriate representation of
tone centers based on the audio signal using constant-Q profiles. The constant-Q profiles
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are 12-dimensional vectors where each component refers to a pitch class. They are derived
from sampled cadential chord progressions and small pieces of music. Tonal centers of a
music piece are tracked by computing CQ-profiles of the piece and matching every given
CQ-profile with a profile of the reference set using a fuzzy distance. The performances of
the model are demonstrated over a Chopin’s Préludes (op.28 no 20), with profiles trained
on the 24 Chopin Préludes.

Zhu & Kankanhalli [ZK04] present an approach for detecting multiple keys and locating
the key boundaries in the melody of popular songs in MIDI format. Overlapping segments
are first extracted form the melody using a diatonic scale model, each one corresponding
to a single mode. A modality (key style) analysis then determines the center mode of the
melody of each segment. Segments of unrelated modes are eliminated. Key labels and
boundaries are determined by grouping the remaining segments. The effectiveness of the
method is qualitatively measured by analyzing the output of the model while listening
to 50 popular songs including English, Japanese and Chinese songs. The ground truth is
unknown but it is claimed that the change of the keys can well be perceived.

In order to study the instantaneous evolution of the tonality of a piece of music, Gémez
and Bonnada [GBO05] present a tool to visualize the tonal content of polyphonic audio
signals. The tonal content of an audio file of music is represented by the instantaneous
evolution of the tonality and its strength. The tool enables in particular to measure the
effect of the length of the sliding window used for key tracking.

Harte et al. [HSGO6] propose a method for detecting changes in the harmonic content
of musical audio signals. A new model for equal tempered tonal space is introduced.
Segmentation of audio signal and preprocessing stage for chord recognition and harmonic
classification algorithms using HMMs are the main potential applications.

In some other approaches, the segmentation stage (segmentation of the analyzed piece
into segment that correspond to a unique key) is more elaborated.

Temperley [Tem05] proposes a Bayesian key-finding model. The analyzed piece is
divided into short segments. The model then searches for the most probable “key struc-
ture”, where a key structure is a labeling of each segment with a key. Each segment can
be expressed as a series of pitch-class sets. The fit of a key of each segment to the pitch-
classes in the segment is measured using “key-profiles” derived from the Kostka and Payne
corpus [KP95]. The model searches for the most probable key structure using dynamic
programming, favoring minimum key changes between segments.

Chai & Vercoe [CV05] propose a HMM-based method to segment musical signals ac-
cording to the key changes and to identify the key of each segment. The front-end of the
system is based on the calculation of a chromagram. The key detection task is divided into
two steps: first the key root is estimated without considering the mode because diatonic
scales are assumed and relative modes share the same diatonic scale. The mode (major
or minor) is then estimated. Classical piano music is employed to test the performances
of the proposed method using three measures: recall, precision and label accuracy.

Izmirli [Izm07] proposes an interesting new model for detecting modulations and
labeling local keys using a non-negative matrix factorization method for segmentation. To
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identify sections that are candidates for unique local keys, groups of contiguous chroma
vectors are used as input in the segmentation stage. The length of the window is chosen
empirically. The local keys are then found using a correlation model. The method is
evaluated on three different data sets: pop songs, classical music and Kosta and Payne
corpus [KP95].

6.2.3 Key Estimation Methods Based on Chord Progression

In the last few years, there has been an increasing interest in modeling high-level infor-
mation with low-level signal features in the context of music analysis. Because chords
and keys are musical attributes closely related to each other in Western tonal music, the
idea to use the chord progression of a piece of music to find the keys comes out naturally.
As in the case of simultaneous estimation of chords and downbeats, two paths have been
explored for simultaneous estimation of chords and keys.

On the one hand, hierarchical frameworks based on rule-based approaches have been
proposed. For instance, Shenoy et al. [SMWO04] present a rule-based approach for deter-
mining the key of acoustic musical signals from the chord progression. The succession of
chords is estimated from beat-synchronous chroma features, on which symbolic inference is
applied. Only major and minor chords are considered. The chords, detected across all the
frames, are then populated into a single 24-dimensional vector. For each key, a reference
24-dimensional reference vector that corresponds to the theoretical distribution of major
and minor chords within the considered key is constructed. For instance, the major and
minor chords that can be constructed around the CM scale using the notes of this scale
are respectively CM, FM, GM and Dm, Em, Am. The pattern that returns the highest
rank is selected as the one being the key of the song. It is found that analysis over 16 bars
(64 beats) of audio is sufficient to determine the key of the song. The results obtained on
a set of 20 popular English songs spanning 4 decades of music lead to a key estimation
accuracy of 90%. However, chord recognition accuracy is not sufficient to provide usable
chord transcription.

On the other hand, statistical frameworks have been proposed. Raphael & Stod-
dard [RS03] [RS04] present an approach to functional harmonic analysis based on pitch
and rhythm relying on symbolic data. A MIDI representation of a music composition is
partitioned into sequences of one-measure length. The goal of this work is to associate a
label composed of three variables to each period: the tonic (e.g. C, C#) and the mode
(major or minor) that give the musical key, and the chord characterized by its harmonic
function (scale degree, e.g. tonic, dominant). The functional analysis of the chord pro-
gression is supposed to guide the choice of the key when it is ambiguous. The analysis is
performed with a hidden Markov model that allows the simultaneous estimation of chord
and key. The success of the model is demonstrated over some examples but a quantitative
evaluation is not presented.

In the framework of global key estimation, several HMM-based works that estimate
the chords and keys have been proposed. Lee & Slaney [KS07] [LS08] propose key-
dependent chord HMMs trained on synthesized audio for chord recognition and global
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key estimation. In these approaches, 24 key-dependent HMMSs, one for each major and
minor keys are built. Key estimation and chord recognition are performed simultaneously
selecting the model whose likelihood is the highest. It is observed that the proposed
method is similar to [Pee06b] but, whereas in [Pee06b] the states in the HMMs have
no musical meanings, in [KS07], hidden states are treated as chords, which also allows
identifying the chord sequence.

Some works that address simultaneously the problem of chords and local key using
HMMs have also been proposed. As seen in Chapter 4, Burgoyne & Saul [BS05] present
a HMM-based model that tracks key simultaneously with chords.

A recent work by Catteau et al. [CMLO07] proposes a probabilistic framework for simul-
taneously estimating keys and chords. Novel observation likelihood models and chord /key
transition models are proposed that are derived from the music theory of Lerdahl [LJ83].
Parameter tuning and system evaluation is performed using four databases: some cadences
and modulation, a set of 10 polyphonic audio fragments of a duration of 60s and a set of
96 MIDI-to-wave synthesized fragments: from the MIREX 2005 key detection contest.

Noland & Sandler [NMO06] present a HMM technique for estimating the predominant
key in a symbolic musical excerpt. The hidden states are the 24 major and minor keys
and the observations are pairs of consecutive chords. Human expectation of harmonic
relationships is encoded in the model using results from perceptual tests. The parameters
of the HMM are trained using hand-annotated chord symbols. This work is extended to
the audio case in [NSO7]. Although this model has only been evaluated on the case of
global key estimation, it could be used for local key estimation. Note that in this case,
there is no complete interaction between chords and keys since the key information is not
used to estimate the chords.

6.2.4 Summary of the Works on Key Estimation

The various works on audio global and local key estimation are summarized in Tables 6.1
and 6.2 respectively.

6.3 Interaction between Chords, Meter and Global Key

In this part, we are interested in understanding how the musical key may interact with
the chord progression and the downbeat locations. For this, we rely on two previous
works proposed for global key estimation from audio that we have presented above: key-
dependent chord HMMs proposed in [KS07] inspired from [Pee06b]. In these works, 24
key-dependent HMMs, one for each major and minor keys are built. Key estimation and/or
chord estimation are performed by selecting the model whose likelihood is the highest. We
propose two modifications of these works. Firstly, we define a specific training approach of
the key-specific chord transition matrices that is based on counting the chord transitions
from score transcriptions. Secondly, we propose a simple post-processing step that allows
correcting some key estimation errors that occur frequently.
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Table 6.1: Summary of works on global fey finding.
Reference Approach Input Features Computation Key selec- | Evaluation Material
tion criteria
Goémez & | K-S algorithm | Harmonic Pitch | highest correlation with | 878 excerpts of classical mu-
Herrera (correlation) Class Profile (K-K) profiles extended to | sic (64%)
[GHO4] polyphonic audio
Pauws K-S algorithm | chroma maximum-key profile cor- | 237 pieces of classical piano
[Pau04] (correlation) relation with (K-K) pro- | sonatas (75.1%)
files
Shenoy correlation with | chord sequence maximum correlation with | 20 popular English songs
et al. | templates theoretical distribution of | (90%)
[SMWO04] major and minor chords
within a key
Chuan CEG algorithm fuzzy analy- | Nearest key (Euclidian dis- | 410 classical music pieces
& Chew sis technique | tance) at stopping point (ranging from Baroque to
[CCO05a] for pitch class Contemporary) (75.25%)
determination
Izmirli K-S algorithm | spectral and | correlation between spec- | 85 classical music pieces
[Izm05] (correlation) chroma repre- | tral summary information | (86%)
sentation and weighted KS-T tem-
plates
Purwins & | correlation with | CQT PCP maximum correlation of | MIREX 2005 test-set
Blankertz templates long-term profiles (15s)
[PBO05] with trained profiles
van de | K-S algorithm | chroma maximum-key profile cor- | 237 pieces of classical piano
Par et al. | (correlation) relation with trained key | sonatas (98%)
[vdPMRO6] profiles with various tem-
poral emphasis
Peeters HMM chroma highest likelihood of the | 302 FEuropean baroque,
[Pee06b] chroma sequence given | classical and romantic
each trained 24 HMM | music extracts (81%)
corresponding to each key
Izmirli K-S algorithm | spectral and | correlation between sum- | 152 classical pieces (85.5%)
[Izm06) (confidence chroma repre- | mary chroma vector and
weighted corre- | sentation weighted KS-T templates
lation)
Zhu & | K-S algorithm | Precise  Pitch | maximum-key profile cor- | 64 pop songs and 185 15s to
Kankan- (Pearson corre- | Profiles relation with (K-K) pro- | 30s excerpts of classical mu-
halli lation) files sic (53% for classical pieces
[ZK06] and 83% for popular pieces)
Lee & | HMM tonal centroid selection of one key- | e Classic: Bach Prelude in
Slaney dependent HMM for chord | CM and Haydn string quar-
[KS07] estimation among 24 tet Op.3, No.5, measures
[LS08] 1-46 e 2 Beatles albums,
Please Please Me and Bea-
tles For Sale (97%.)
Madsen & | correlation with | interval profiles | maximum-key profile cor- | The Finnish Folk Song
Widmer interval profiles (count table | relation with trained inter- | Database + 384 chorales
[MWO7] from pitches) val profiles and 30 inventions by J. S.
Bach (around 80% (78.7%
for Folk song))

6.3.1 Overview of the Model

We start from the “double-states” HMM presented in the previous chapter for simultaneous
chords/downbeats estimation. As in [KS07], musical key information is taken into account
by using a trained transition matrix (TM) specific to each key. The main key of an
analyzed piece of music is found by selecting one chord transition matrix among several
trained transition matrices that are described in the next part.
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Table 6.2: Summary of works on local fey finding.

Reference Approach Input Features Computation Evaluation Material
Purwins frame-by-frame CQ-profiles closest fuzzy distance be- | training on the 24 Chopin
et al. | correlation with tween input profile and | Préludes, evaluation on
[PBOO00] profiles trained profile Chopin’s Préludes op.28 no
20
Zhu & | Melody modal- | MIDI melody segmentation of the | qualitative evaluation 50
Kankan- ity analysis melody using a diatonic | popular songs
halli scale model
[ZK04]
Burgoyne HMM PCP e simultaneous chords | e 5 Mozart symphonies (K.
& Saul and keys e Dirichlet dis- | 134, K. 162, K. 181, K.182
[BSO05] tribution unsupervisedly | and K.183) for training e
trained with EM e Simpli- | Mozart Symphony K. 550,
fied rules of tonal harmony | Minuet for testing
encoded in the transition
matrix
Chai HMM chromagram key detection divided into | 10 Classical Mozart piano
& Ver- two steps: root and mode sonatas
coe [CVO05]
Temperley Bayesian ap- | MIDI e uses key profiles @ favors | main key estimation on
[TemO05] proach minimum key changes be- | 1252 excerpts from classical
tween segments pieces (91.4%)
Catteau probabilistic e simultaneous estimation | 10 polyphonic audio frag-
et al. | framework of keys and chords. e | ments (60 seconds) and
[CMLO07] chord/key transition mod- | 96 MIDI-to-wave synthe-
els derived from music the- | sized fragments
ory of Lerdahl
Chuan CEG algorithm Pitch-class . investigates three | o410 classical music pieces
& Chew key-finding algorithms | (ranging from Baroque to
in [CC] (modified spiral array | Contemporary) e Chopin’s
(mSA), fundamental fre- | 24 Préludes
quency identification (FO0),
and post-weight balancing
(PWB)) e investigates
three key determination
policies (nearest-neighbor
(NN), relative distance
(RD), and average dis-
tance (AD))
Izmirli non-negative groups of con- | key estimation for each | Kosta and Payne corpus
[Izm07) matrix fac- | tiguous chroma | segment using [IzmO05] cor-
torization vectors relation model
method for
segmentation +
correlation with
templates
Noland HMM pairs of consec- | encode human expectation | 110 Beatles songs (91%)
& San- utive chords of harmonic relationships
dler [NS07]

The flowchart of the investigated system is presented in Figure 6.5. The previous
system is represented in the left part of the figure. In this case, the chord estimation is
performed using the cognitive-based transition matrix. For the sake of simplicity, we have
not represented the 3/4 or 4/4 meter selection stage described in the previous chapter.
The right part of Figure 6.5 represents the same model when key information is taken into
account by using a trained transition matrix specific to each key.
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Figure 6.5: General flowchart of the proposed model for simultaneous estimation of the
chord progression, the global key and the downbeat locations of an audio file.

6.3.2 Integrating Musical Key Information in the Chord Transition Ma-
trix

We propose here a new method for training the chord transition matrix based on symbolic
information, i.e. the chord labels transcription of the training set. The probabilities of
transiting from one chord to another are learnt by counting the number of occurrences of
each chord transition in the training set. This method is very close to the training method
of the chord transition matrix, method D, presented in chapter 4, Section 4.4.4.4. The
difference is that we introduce here chord transitions dependencies on key in the model.
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We build 24 key-specific transition matrices, one for each of the 24 major and minor
keys. In order to learn the transition matrices for each of the 24 possible keys, we follow
the method proposed in [Pee06b]. We first learn the model for the CM key and the Cm
key before mapping the two trained models to all possible keys by circular permutation.
The training process is summarized in Figure 6.6 and detailed below:

1. We first assign a global key to each training track (we consider that a training track
has a single constant key)?.

2. We separate the training transcription tracks into two classes according to their
mode (major or minor). The two modes are trained separately. We present the
training for major mode, the process is exactly the same for minor mode.

3. According to the key of a training track k, we map all its theoretical chords to a
reference CM key. This is done by circular permutation of the theoretical chords
(transition CM—FM in F major key becomes GM—CM in the reference C major

key).

4. For each training segment, we construct a (I,I)-dimensional matrix M) where
My (i,j) = My(i,7) + 1 when the transition from chord i to j occurs in the CM-
mapped annotations.

5. The diagonal of the matrix is processed in a separated way and its elements are
set to an empirical value. The diagonal values have been empirically set to 0.45 for
tatum-frame analysis and 0.4 for tactus-frame analysis in our experiments.

6. All matrices trained on CM-mapped annotations are then averaged and we obtain a
single (I,I)-dimensional matrix, denoted by K DC; (Key-Dependent Chord matrix).

7. In order to avoid zero-probability chord transitions, we take the exponential of the
matrix so that all zero values become non-zero values®. The transition matrix is

normalized to sum to 1 for each key.

8. The transition matrices for all keys, KDC ... KDCyy, are obtained from the two
trained models by circular permutation.

Using a test-set composed of 55 Beatles songs described below, we obtain a chord
transition matrix K DC; for the CM key that is presented in the left part of Figure 6.7.
In what follows, we will refer to this matrix as a Key-Dependent Chord (KDC) transition
matrix.

We have also represented in the right part of Figure 6.7 the trained transition matrix
obtained in Chapter 4 with a similar training method based on counting but ignoring key
information (method D). We call this matrix Key-Independent Chord (KIC) transition

2The global key assignment is done manually for training.
3Note that other choices could have been made to make all the transition matrix values positive. For
instance, we could have added 1 to all of the values before normalization.
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Figure 6.6: Key-dependent chord transition matrices training.

matrix. The training approach allows us to take into account some typical transitions
of the test-set. For instance, it can be seen that the transition between a CM chord
(predominant chord in general in the key of CM) and a Am chord (relative minor chord of
CM) is favored in the KDC matrix, which is not the case in the KIC matrix. It can also
be observed that typical transitions in the matrix, such as the II/V/I (transition between
Dm, GM and CM) that seems usual in this set of Beatles albums, are predominant in the
key-based trained chord transition matrix.

6.3.3 Simultaneous estimation of key, chords and downbeats
6.3.3.1 Key Selection

The system estimates at the same time the key of the track, the chord progression and the
downbeats using the Viterbi decoding algorithm [Rab89]. Using successively each trained
transition matrix, we obtain simultaneously the best sequence of chords over time and the
downbeat positions given the considered key. The musical key of each track is found using a
method similar to the one proposed in [KS07]. We select among the 24 possible transitions
matrices the one that gives the highest likelihood given the observation sequence O (i.e.
the chroma vectors) and the optimal state path Q (i.e. the most probable chord sequence),
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Figure 6.7: From left to right: KDC state transition matrix trained on 55 Beatles songs
including key information for a piece in CM key [left]. KIC trained transition matrix
obtained without key information based on method D presented in Chapter 4 [middle].
MCC cognitive-based state transition matrix from method B presented in Chapter 4 [right].
Dark marks indicate high values in the transition matrices. Horizontal axis from left to
right and vertical axis from top to bottom: chords (CM, C#M, BM, ..., Cm, ..., Bm).

according to Equation (6.1). The estimated key of the track is the one corresponding to
the selected transition matrix K DC;.

key = argmax P(O,Q|KDC;),i € [1,24]. (6.1)

6.3.3.2 Post-processing Key Estimation Step

In our experiments, we have found that in many cases, the selected transition matrix
corresponds to a key harmonically close to the one of the ground truth. For instance, if
the piece is in CM, since G is the dominant of C, it is very likely that many CM — GM
and GM — CM chord transitions will be observed. These transitions are predominant in
the transition matrix corresponding to a CM key but also in the one corresponding to a
GM key because C is the sub-dominant of G. Therefore, confusions between C major and
G major keys are very likely to occur.

To overcome this problem, we propose a post-processing step. We pick up the key
transition matrices corresponding to the K, K € [1,24] highest likelihood and we compute
the proportion of each type of chord detected using each matrix. In practice, K is small
and we obtained satisfying results using K = 4 in our experiments. It can reasonably be
stated that, given a key, the proportion of chords whose root has the same spelling than
the considered key is in general the highest. For instance, in a C major piece, there will
be a lot of C major chords. We select the transition matrix among the K which gives
the chord progression with most of the chords having the same root than the key. In this
method, there is an interaction between chords and keys: the key is estimated from the
chord transitions and the chord progression is selected among 24 possibilities according
to the key.
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We thus obtain for each track the chord progression, the downbeats and the main key.

6.3.4 Test-Set and Evaluation Measure

The model has been tested on 55 songs from the first 8 albums of the hand-labeled Beatles
test-set presented in Chapter 2, Section 2.3.2.

Note that all of the selected songs are in major key. This is because the Beatles test-set
is very unbalanced in terms of mode: most of the songs have a major main key. Since all
the songs have a major global key, we did not have enough songs in minor key for training.
We thus evaluate the model considering 12 major key-independent HMMs instead of 24.

Note also that all the selected songs are built on four-beat meter with constant time
signature. Moreover, the automatic beat tracking was completely correct for all of them.
These characteristics result in a high downbeat detection rate.

For chord evaluation measure, see Section 2.4.2 of Chapter 2. The key estimation
evaluation has been performed using a 8-fold cross-validation. We will indicate the rate
of correct estimation using two evaluation measures : EE (exact estimation) indicates the
percentage of exactly estimated key, ME (MIREX estimation) corresponds MIREX 2005
key estimation measure. For more details, see Chapter 2, Section 2.4.3.1.

6.3.5 Overall Results

The results are indicated in Tables 6.3, 6.4 and 6.5. According to the following list, we
investigate the importance of the metrical structure information by taking into account or
not the downbeat locations information in the model (With Meter, WM/No Meter, NM).
We also investigate the importance of the key information by comparing the results ob-
tained using key-dependent transition matrices (Key-Dependent Chord transition matrix,
KDC) with the results obtained using the cognitive-based transition presented in Chapter
4, method B (Music-Cognitive Chord transition matrix, MCC).

Table 6.3: Chords estimation results considering several cases: not integrat-
ing/integrating metrical structure information in the model (NM/WM), not integrat-
ing/integrating musical key information in the model (MCC/KDC), tactus or tatum-based
analysis (TAC/TAT). Stat. Sign. : Statistical significance.
NM WM Stat. Sign.
TAC TAT TAC TAT
MCC 744117 | 75.5+£12.2 | Tr.5+£12.2 | 78.8£11.3
KDC 75.8+13.3 | 75.8 £13.4 | 79.3 £ 134 | 78.6 £13.5
Stat. Sign. yes

yes
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Table 6.4: Key estimation results not integrating/integrating metrical information in the
model (NM/WM), tactus or tatum-based analysis (TAC/TAT), exact or MIREX score
TAC TAT
EE ME EE ME
NM | 83.8 | 87.5 | 85.7 | 92.0
WM | 929 | 96.4 | 89.3 | 93.8

Table 6.5: Downbeat positions estimation results obtained by the system not integrat-

ing/integrating key information in the model (MCC/KDC), tactus or tatum analysis
(TAC/TAT).

TAC | TAT

MCC | 98.2 | 85.7
KDC | 96.4 | 85.7

6.3.6 Analysis of the Results

The results presented in Tables 6.3, 6.4 and 6.5 are briefly summarized in Table 6.6. The
downbeat positions and the musical key have been both estimated relying on the chord
progression. Conversely, the chord estimation benefits from the knowledge of the key and
the downbeat positions. As in the previous chapter, we performed paired sample t-tests
at the 5% significance level that has revealed that there is a statistical difference between
the chord estimation results obtained with and without considering interaction with the
two others musical attributes. In general, taking into account the interaction between the
three musical attributes increases their estimation. A detailed analysis follows below.

Table 6.6: Influence of musical context on musical attributes estimation. “Tatum vs.
tactus”: using a tatum-based analysis rather than a tactus-based analysis.

Chord Key Downbeats

Influence of meter | improvement | improvement

little no
Influence of key ) .
improvement improvement
Tatum vs. Tactus | improvement ImprevEment
or not

Importance of the Knowledge of the Downbeat Positions

The results obtained in this chapter corroborate the ones obtained in the previous
chapter: integrating chords dependency to the meter allows us to increase the chord
recognition rate.

The estimation of the global key of the track is better when taking into account the
meter. This comes from the fact that the chord detection accuracy is better.
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Importance of the Knowledge of Musical Key Information:

With the proposed model, we obtain up to 92% correctly estimated keys on our evalua-
tion test-set. An analysis of the results shows that most of the errors can be explained and
that they correspond to neighboring key confusions (perfect fifth relationship between esti-
mated and ground-truth key). The corresponding MIREX score which takes into account
the neighboring keys is up to 96%.

The results in Table 6.3 show that, in most cases, the use of key-specific transition
matrices slightly improves the estimation of the chord progression obtained using the
cognitive-based matrix (MCC).

It is shown in Table 6.3 that the estimation of the downbeat positions is not improved
when taking into account musical key context, probably because the chord estimation is
only a little better. Note that the decrease in the results in the case of KDC/tactus-based
analysis comes from the fact that for one of the songs, all the downbeats have been
estimated on the third beat instead of the first beat of the measures.

6.4 Interaction between Chords, Meter and Local Key

As stated before, the problem of local key finding has been given little attention in the
past. We believe that our model can be useful to this task. This is why we now focus on the
problem of local key finding in polyphonic audio files. For this, we propose to combine and
extend methods proposed for global key finding to the case of local key finding. We rely
on the above-mentioned method for global key estimation [GH04| based on key reference
profiles, which are correlated with input pitch class profiles. The underlying idea of this
work is that in case of polyphonic music, the chords can be used to estimate the musical
key. However, in the work of [GHO04], as in [Pee06b], there is no estimation of the chords
and no investigation of their relationship to keys. We study this relationship in the present
work. To integrate the concept of key modulating over time, we propose to use a HMM
where the hidden states are the keys which are observed through the chords. The use of
the HMM allows us to integrate some musical information about key changes, as proposed
in [NMOG6].

6.4.1 The Problem of the Analysis Window length

As underlined in Section 6.2, HMMs have already been used for local key estimation
[NS07], [CV05]. However, this was done using a frame-by-frame analysis. A contribution
of the present work is that we introduce information related to the metrical structure of
the audio file in order to make the local key estimation robust. One of the problems when
segmenting a piece of music into sections with different keys is to accurately choose the
length of the analysis window used for key estimation.

In the case of global key estimation, only the first seconds of the piece are used to
estimate the key in general. Several studies have shown that the choice of the duration
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of the analyzed excerpt has a significant impact on the key estimation results (see for
instance [Izm05] or [CC]).

Concerning local key estimation, the length of the analysis window was found empir-
ically in previous works. After computing chroma vectors on short overlapping frames,
[CV05] or [PBO00] perform a frame-by-frame musical key analysis. An interesting alterna-
tive to sliding window key center tracking techniques has been proposed by [Izm07] where
a segmentation stage (whose goal is to identify sections that are candidates for unique local
keys) is performed prior to local key estimation. Groups of contiguous chroma vectors are
used as input. Heavily overlapped groups of chroma vectors are averaged over a span of
o seconds. The value of the parameter o is found empirically (7.4s) after testing several
window sizes.

The question of optimal segment length remains an open problem. A too small window
size would focus the chromagram on individual chords more than on keys whereas the use of
a too large window size would lead to segments containing several keys and key modulation
points would become ambiguous. The drawback of using an empirically chosen window
size is that key changes may be ignored by the algorithm for pieces with a fast tempo and
that, for pieces with a slow tempo, chords may be estimated rather than keys. Ideally, the
window length should be related to the tempo of the piece. We get around this difficulty
here by segmenting the piece according to the metrical structure. We perform a beat-
synchronous analysis. For local key estimation, the temporal unity, which is used here for
key analysis, is the musical bar. The analysis window length has thus a musical meaning.

6.4.2 Model

In this section we present a model that allows estimating the local keys of a musical excerpt
using the underlying chord progression, which characterizes the harmonic structure, and
the downbeat locations, which characterize the metrical structure. The chords and the
downbeats are estimated simultaneously from the sequence of observed chroma vectors
using the “double-states” HMM, where a state is a combination of a chord type and a
position of the chord in the measure, presented in Chapter 5 of this dissertation. Again,
we consider here a chord lexicon composed of the I = 24 major and minor triads (CM,
..., BM, Cm, ..., Bm).

The local key estimation model is close to the chord estimation model. Figure 6.8
shows a graph of the HMM we use for local key estimation.

The 24-key space is modeled by an ergodic 24-states HMM, where each state represents
one of the 24 major and minor keys. The emission probability of each state (each key) is a
24-dimensional vector representing the probability to observe each of the 24 chords in this
specific key. Given the observations, we estimate the most likely key sequence over time
in a maximum likelihood sense. The flowchart of the system is represented in Figure 6.9.
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hidden: local key hidden: local key

observed: chord or chord observed: chord or chord
probabilities probabilities

Figure 6.8: Local key estimation hidden Markov model considered in this dissertation.
The hidden states correspond to the local keys and the sequence of observations corre-
sponds either to the chord progression or to the instantaneous chord probabilities.

6.4.3 Extraction of Key Observation Vectors

We define the chordgram as the succession over time of the 24-dimensional vectors repre-
senting the probability to observe each of the 24 chords at each tactus/tatum-frame. These
instantaneous chord probabilities correspond to the observation probabilities detailed in
the previous chapter (see Section 5.4.4.2, Chapter 5).

In the evaluation part, we will compare two methods for local key estimation. They
differ from each other in the way the key observation vectors Oyey are derived from the
chords.

1. Method 1: The key observation vectors are built from the chordgram using the in-
stantaneous chord probabilities P(O|c;), where O corresponds to the chroma vector
and ¢;, 1 € [1,24] correspond to the chords.

Okey (i) = P(O|c;) (6.2)

2. Method 2: In the second case, the key observation vectors are built directly from
the estimated chord progression.

{ Okey(i) =1, if ¢; =argmax P(O|c;),i € [1,24], 63)

=0 otherwise

In general, the musical key of a music piece changes much less often that the chords and
remains the same during several bars. We segment the piece into overlapping segments
whose length is related to the measures delimited by the downbeats. The local key is
thus estimated on segments that have a musical meaning. Because musical phrase have
often length duration of 8 or 444 bars, we have chosen to segment the pieces into 2-bars
segments with 1-bar overlap. Because key changes occur in general on the first beat of a
measure it is important that the analysis starts on a downbeat (see Figure 6.12, case OD).

In our experiments we have tested the algorithm using other window analysis length
and found that the local key estimation results accuracy decreases with longer windows.
This is discussed below in Section 6.4.5.2. The key observation vectors are 24-dimensional
vectors obtained by averaging the chordgram or the estimated chord progression along the
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Figure 6.9: Flowchart of the local key estimation system.

overlapping 2-bars length segments. These 24-dimensional vectors represent the probabil-
ity to observe each of the 24 chords in a specific key.
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6.4.4 Key Estimation From Chords Using Hidden Markov Models

From the key observation vectors, we estimate the succession of keys in the track. The
method is very similar to the one we proposed for chord estimation.

6.4.4.1 Initial State Distribution

The initial state distribution of keys is uniform (ﬁ for each of the 24 states) since we
have no reason to prefer a key above another.

6.4.4.2 Observation Probabilities of Keys

The observation key probabilities P(k;|Ogey) are obtained by computing the cosine dis-
tance between the key observation vectors and a set of pre-defined key profiles that rep-
resent the importance of each triad within a given key. The pre-defined key templates
are 24-dimensional vectors with each bin corresponding to one of the 24 major and minor
triads. We have tested our model using four key templates as described below.

The first three of them are derived from the knowledge that the most important triads
in a given key are those built on the tonic, the subdominant and the dominant [Kru90]
[GHO4]. For instance, for a CM key, this chords correspond to CM (C-E-G), FM (F-A-C)
and GM (G-B-D).

1. In the first pre-defined key template, we attribute a value of 1 to each of the three
main triads. It will be referred to as “main chords” (MC) key template in the
following.

2. The second key template is similar to the first one, except that we attribute a higher
value k£ > 1 to the chord corresponding to the tonic of the key. In our experiments,
we used k = 3. It will be referred to as “weighted main chords” (WMC) key template
in the following.

3. The third key template is similar to the second one, except that we attribute a value
of one to the chord relative to the one built on the tonic (for instance Am chord
in a C major key). We consider this case because we have seen that this chord is
important in a given key. For instance, the transition CM-Am has a high value in
the key-dependent chord transition matrix proposed in the previous section, as it
can be seen in Figure 6.7. This key template will be referred to as “weighted main
chords relative” (WMCR) in the following.

These three key templates corresponding to the C major (top) and C minor (bottom) keys
are represented in Figure 6.10.
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Figure 6.10: Pre-defined 24-dimensional key templates based on the three main triads.
Dark grey: “main chords” (MC), black: “weighted main chords” (WMC), light grey:
“weighted main chords relative” (WMCR).

The 4*" pre-defined key-template is built relying on a cognitive experiment conducted
by Krumhansl [Kru90] that gives values corresponding to the rating of chords in harmonic-
hierarchy experiments. In this experiment, the perceived relative structural significance
of chords in tonal context is measured. For this, several trials consisting of a strong key-
defining context followed by a single chord are presented to listeners. The listeners are
asked to rate how well the final chord fit with the preceding key-defining context. In
the experiments, three types of chords are considered: major, minor and diminished (see
Table 6.7). However, since we consider only major and minor chords in our model, the
diminished chords were ignored. The cognitive-based key templates corresponding to the
C major (top) and C minor (bottom) keys are represented in Figure 6.11.

The templates corresponding to the various major and minor keys are obtained by
circular permutation from the one corresponding to the C major and C minor keys.

Let T;,i € [1,24] denote a key template. The observation key probabilities
P(Oxey (tm)|ki(tm)) are obtained according to Equation (6.4):

, Ouey (tm). T;
For i=1...24, P(Oyey(tm)|ki(tm)) = ”Ok“ ?t( ST (6.4)
ey\t!m]/||- [

They are normalized so that:

> P(Ouey (1)l Filtm)) = 1.
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Table 6.7: Krumhansl’s rating of chords in harmonic hierarchy experiments, [Kru90|

p-171.
Context
Chord C Major Key | C Minor Key
C major 6.66 5.30
C+#/Db major 4.71 4.11
D major 4.60 3.83
D#/Eb major 4.31 4.14
E major 4.64 3.99
F major 5.59 4.41
F#/Gb major 4.36 3.92
G major 5.33 4.38
G#/Ab major 5.01 4.45
A major 4.64 3.69
A#/Bb major 4.73 4.22
B major 4.67 3.85
C minor 3.75 5.90
C+#/Db minor 2.59 3.08
D minor 3.12 3.25
D#/Eb minor 2.18 3.50
E minor 2.76 3.33
F minor 3.19 4.60
F#/Gb minor 2.13 2.98
G minor 2.68 3.48
G#/ADb minor 2.61 3.53
A minor 3.62 3.78
A#/Bb minor 2.56 3.13
B minor 2.76 3.14
C Dim 3.27 3.93
C+# /Db Dim 2.70 2.84
D minor 2.59 3.43
D#/Eb Dim 2.79 3.42
E Dim 2.64 3.51
F Dim 2.54 3.41
F#/Gb Dim 3.25 3.91
G Dim 2.58 3.16
G#/Ab Dim 2.36 3.17
A Dim 3.35 4.10
A#/Bb Dim 2.38 3.10
B Dim 2.64 3.18

6.4.4.3 State Transition Probability Distribution

Key modulations in a music piece follow musical rules that can be reflected in the state
transition matrix. To integrate musical knowledge in key transition, we adopt the key tran-
sition matrix proposed in [NMO6] already used as a chord transition matrix (see Chapter
4, transition matrix method B)*.

4Chords and key are musical attributes related to the harmonic structure and can be modeled in a
similar way.
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Figure 6.11: Pre-defined 24-dimensional cognitive-based key templates based on
Krumhans!’s rating of chords in harmonic hierarchy experiments, [Kru90] p.171. Top:
C major context. Bottom: C minor context.

6.4.4.4 Local Key Estimation
The optimal succession of states over time is found using the Viterbi decoding algorithm

that gives us the best sequence of keys over time. The music piece is thus segmented into
segments that are labeled by a key.

6.4.5 Evaluation

6.4.5.1 Test-set and evaluation measures

The proposed model is tested on the Piano Mozart test-set presented in Chapter 2. We
refer the reader to Section 2.3.3 of this chapter for more details on the Piano Mozart test-

set. To assess the performance of the system, we use the evaluation measures described
in Chapter 2, sections 2.4.

6.4.5.2 Results and discussion
We have carried out several experiments to evaluate the impact of various parameters
on the local key estimation results: choice of the key templates, choice of the length of

the analysis window, key estimation from the chordgram or from the estimated chord
progression, influence of the tolerance window.

6.4.5.3 Relationship Between Chords and Local Key
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Table 6.8: Chords and local keys label accuracy results using a 2-bars length window and
the newly proposed key template WMC. Rex: exact chord estimation rate. Rct: chord
estimation rate including close triads. Method 1: based on the chordgram. Method 2:

based on the chord progression.
keys method 1 | keys method 2 | chords Rex
80.21 £ 13.56 74.11 £18.92 61.43 £ 5.50

chords Rct
80.65 + 8.36

label accuracy (%)

Table 6.9: Local keys segmentation accuracy (SA) results using a 2-bars length window
and the WMC proposed templates. Method 1: based on the chordgram. Method 2: based
on the chord progression. The tolerance windows is w = 1 bar.

keys method 1 | keys method 2
SA precision 0.5723 0.4489
SA recall 0.4730 0.7131
SA f-measure 0.5170 0.5451

We have evaluated the two proposed methods for local key estimation. Recall that:

1. In the first case (method 1), the probability of each chord at a given time instant is
used to estimate the key.

2. In the second case (method 2), the chords are first estimated using a hidden Markov
model and the local key is derived from the estimated chord progression.

Label and segmentation accuracy results are respectively presented in Tables 6.8 and
Table 6.9. Note that we present the results obtained using a window length of 2 measures
and using the WMC key templates because we found that these choice of parameters
outperformed the others (see below, Sections 6.4.5.5 and 6.4.5.6).

It is difficult to select the best between the two presented methods. Indeed, the best
key label results are obtained with method 1, but it can be seen that method 2 slightly
outperforms method 2 concerning local key segmentation.

A paired sample t-test at the 5% significance level shows that the difference between
the key estimation results obtained with the two methods is not statistically significant.
Tests on a larger database would be needed to clearly select the best method.

The analysis of the results piece by piece shows that there is a correlation between
the estimation of the chords and the estimation of the key. We expected that a good
estimation of the chords would lead to a good estimation of the keys. This was corrob-
orated when evaluating method 2. A good estimation of the chords resulted in a good
estimation of the local keys whereas a poor estimation of the chords resulted in a poor
estimation of the local keys. A deeper analysis showed that if the chord estimation errors
consisted of confusions with harmonically close chords (such as dominant or subdominant
chords), the key was nevertheless correctly estimated.
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6.4.5.4 Importance of the Metrical Structure

Table 6.10: Local keys results using a 2-bars length window and the WMC templates,

when the key analysis windows are set according to the downbeat locations (OD, on

downbeats) and when the starting point is not a downbeat (ND, no downbeats). The
tolerance window is w = 1 bar.

OD ND

label accuracy (%) 80.21 | 76.43

method 1 segmentation f-measure | 0.52 0.50
label accuracy (%) 74.11 | 74.80

method 2 segmentation f-measure | 0.55 0.52

In Table 6.10, we present the label accuracy results when the key analysis windows are
set according to the downbeat locations and when the starting point is not a downbeat. To
investigate the hypothesis of the importance of the downbeats on the local key estimation,
the key analysis windows have been forced to start on a second beat in case of ND (no
downbeats) instead of on a downbeat, as illustrated in Figure 6.12.

Metrical |||||||I‘l||\|l||||‘|||‘||||||||
structure ‘I\IIIIIJJII’I\I||||’\II‘||I|III|
I time (5)
i L
- I D B — OD: on downbeats
Position of the i i %
key analysis | | |
window | | i
'<“““:‘<'_‘_‘_'_‘_'_>i______> ND: on the second beat
ol

Figure 6.12: Position of the local key analysis window considered for investigating the
relationship between the local key and the downbeats. Example for a piece in 4/4 meter.

It can be seen that the label accuracy results are better when the starting point is
a downbeat for method 1. This is because key changes occur in general on downbeats.
Positioning the starting point of the key analysis window on downbeats helps to avoid
mixing some passages with different local keys. Positioning the analysis window on down-
beats does not improve the results in the case of method 2. However, the results are not
statistically significant.

For both methods, key segmentation results are better when the starting point is a
downbeat. However, the difference in the results is slight. This is probably due to the
smoothness of the modulations (see below).

Considering the metrical structure seems to improve the key estimation results but tests
on a larger database are required to investigate the influence of the metrical structure on
the local key estimation.
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6.4.5.5 Effect of the Length of the Analysis Window
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Figure 6.13: Key estimation results in case of method 1 and 2 according to the length
of the key analysis window.

In classical music, musical phrases have in general a length of 4 or 8 bars. This is
particularly true for Mozart’s piano sonatas. Usually, the musical key remains constant
within a phrase or at least within half of the phrase (whereas the harmony changes
several times). This is why we chose to estimate the local key on segments of length
corresponding to musical phrases. We have evaluated the algorithm with different window
lengths: 1, 2, 4, 8 and 16 bars. Results are provided in Figure 6.13. A 1-bar analysis
window length is too short because it captures the harmony (the chords) rather than the
local key. The best results were obtained using a 2-bar length analysis window. This
may be due to the fact that, especially in slow movements, some modulations occur after
only 2 bars. Passages with different local keys are very likely to be mixed when a longer
analysis window is used. The accuracy of the results decreases with the length of the
analysis window.

6.4.5.6 Effect of the Choice of the Key Templates

Table 6.11: Local key accuracy results using a 2-bar length window comparing various

key templates.
Key template WMC MC WMCR Krumhansl
Label accuracy (%) methl | 80.21 £13.56 | 79.13 £9.01 80.71 £11.76 | 50.02 £21.12
Label accuracy (%) meth2 | 74.11 +18.92 | 71.34 +18.42 | 73.45+19.12 | 75.69 +19.91

We evaluated the algorithm with 4 types of templates. As illustrated in Table 6.11,
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the best results are obtained with the weighted main chords WMC templates for method
1. In the case of method 2, the cognitive-based templates slightly outperform the WMC
templates. However, statistical tests indicate that in the case of method 2, the difference
in the results obtained with the WMC and the cognitive-based templates is note statis-
tically significant. We should perform the evaluation on a larger database to obtain reliable

6.4.5.7 Smooth Modulations:

The key segmentation accuracy results are presented in Table 6.12 in which we consider
two tolerance windows: w = 1 bar and w = 2 bars. It can be seen that the segmentation
accuracy results significantly increase when we use a 2-bar tolerance window. This can be
explained by the fact that key change is a very smooth process that often takes several bars.
It is thus difficult to estimate the precise local key boundaries. It would be interesting to
formulate and add a “local key transition” state in the model. This is left for future works.

Table 6.12: Local key segmentation accuracy (SA) results using a 2-bar length window
and the proposed WMC templates. Method 1: based on the chordgram. Method 2: based
on the chord progression. Two tolerance windows: w = 1 bar and w = 2 bars.
keys method 1 keys method 2
w=1|lw=2|w=1|w=2
SA precision | 0.5723 | 0.8196 | 0.4489 | 0.6805

SA recall 0.4730 | 0.6874 | 0.7131 | 0.8691
SA f-measure | 0.5170 | 0.7327 | 0.5451 | 0.7514

6.5 Conclusion of the Chapter

In this chapter, we have presented some developments of our model for simultaneous
estimation of chords and downbeats by integrating a new musical attribute: the musical
key. We have first focused on the problem of global key finding and shown that these three
attributes can be estimated in a mutually informing manner that results in some improve-
ments. We have then turned our attention to the problem of local key finding and shown
that the local key progression could be estimated relying on the harmonic and the metrical
structure of the piece. We have investigated several issues related to this task such as the
problem of finding a suitable length of the analysis window or the problem of smooth
key changes. Our study has been limited by the little number of annotated pieces we have.

We have presented a local key finding model that segments an audio file in sections
labeled with local keys. The method combines and extends several previous methods
proposed for global key estimation. The local key progression over time is modeled
according to the harmonic and the metrical structures. The local key segmentation
has a musical meaning and depends on the tempo of the piece. Encouraging results
are obtained on a set of classical pieces with complex harmony structure and show
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that the key progression is clearly related to the harmonic and the metrical structures.
Analysis of the results shows that additional improvement of key segmentation may
be achieved in the future using a more complex model that would include key transi-
tion states. Functional chord analysis should also improve the local key estimation [RS04].
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7.1 Thesis Contributions

In this dissertation, we have addressed the problem of estimating content information
from music audio signal. The originality of our work is that we estimate simultaneously
several musical attributes. Our purpose was to show that a unified music analysis may
improve the estimation of individual musical attributes. To that purpose, we have built
models that allow the joint estimation of the chords, the keys and the downbeats from
polyphonic music recordings. We have demonstrated that integrating knowledge of mutual
dependencies between several descriptors of musical content improves their estimation.
Part of this PhD work has been devoted to manually annotate some audio databases,
which are essential elements of our research.

Building models in which the interaction between musical attributes is encoded at the
level musicians and trained human listeners do, when they analyze a piece of music, is a
very complex problem and one which is far from being solved. However, we hope that our
work is a step towards this direction.

We now summarize the main contributions of the work presented in this thesis.

7.1.1 Features

At the front-end of our models, we extract a chromagram, a representation of the signal
that captures its harmonic content. We explored several schemes for chromagram compu-
tation and investigated several issues related to the use of each representation (problem of
harmonics, noise, beat-synchronous features). We conducted a number of experiments on
short audio excerpts and proposed some evaluation measures that allow the comparison
between the various representations.

The Constant-Q-based chroma features were preferred to the FFT-based ones. They
were found to reflect more accurately the harmonic content, especially for popular and rock
music that contains lots of percussive sounds: the use of long windows for low frequency
allows detecting accurately the bass line, which is very important for chord estimation,
whereas the use of short windows for higher frequencies allows reducing the effects of
percussive sounds.

Tests on classical piano music showed that the use of multi-fO features seems to be a
promising approach for harmonic content description. However, we did not find this rep-
resentation convenient for our system since we do not currently have any harmonic/noise
separation front-end and thus percussive sounds and noise disrupt the multi-fOs estima-
tion, especially in popular music. Moreover, the rest of our system is computationally very
efficient as compared to the multi-f0 analysis. We thus did not favor the use of multi-fO
based chroma features in the rest of our work.

7.1.2 Chords

In our model for joint estimation of musical content descriptors, harmony is considered
as a core around which other musical attributes are organized. We thus built a chord
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estimation model that serves as a basis for our global model.

We compared several methods based on chroma features and hidden Markov models for
the automatic estimation of the chord progression of a music piece. The various methods
were compared on a large-scale evaluation on popular music. The best chord estimation
results were obtained with the modeling of the observation probabilities using a normalized
correlation with a set of extended chord templates and a cognitive-based transition matrix.
The templates are extended by considering the presence of higher harmonics of each pitch
note of a chord. The transition matrix is derived from cognitive experiments on the
perception of musical key.

In our experiments, we found that music knowledge-based models work at least as
efficiently as trained models. However, the music knowledge-based transition matrix we
propose can only be used for a chord lexicon reduced to the 24 major and minor triads.
Probabilistic learning seems to be a solution to extrapolate the proposed model to a larger
dictionary. We believe that probabilistic learning could still be exploited and yield to even
higher results.

However, since we currently consider a chord lexicon of only 24 triads, we used the
HMM-based approach relying on chord templates. This approach gives satisfactory results
without requiring any training data. Since this approach does not require training, it allows
us to work on various styles of music with the same model.

We used the transition matrix based on Krumhansl’s key profiles because we found
that this matrix, as well as the one based on the circle of fifths, well characterizes harmonic
relationships in a large part of classical and popular music.

7.1.3 Downbeat

The chord estimation model was then modified to integrate information on the metrical
structure. We proposed a specific topology of HMM that allowed us to extract simultane-
ously the chord progression and the downbeats from an audio file.

To that purpose, we first extracted a beat-synchronous chromagram so that the ob-
servations capture the harmonic content and are related to the metrical structure. We
presented a “double-states” HMM where a state is a combination of a chord type and a
position of the chord in the measure. Harmonic and metrical structure information are
both encoded in the transition matrix. The chord progression and the downbeats are
estimated jointly based on the assumption that chords are more likely to change on the
beginning of a measure than on other positions. In order to take into account several cases
of metrical structure, two different transition matrices are built. Using a Viterbi decod-
ing algorithm, the most appropriate transition matrix is selected (by selecting the model
with highest likelihood). We obtain simultaneously the most likely chord progression and
downbeat positions.

An important contribution of our work is that we consider pieces with varying time-
signatures and imperfect beat tracking. Most of the previous works assume constant tempo
and/or time signature. Any omitted beat or change in tempo or time-signature causes
errors from which the downbeat extraction model cannot recover. Our model allows us
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to consider pieces with complex metrical structures including changes in the meter from
3/4 to 4/4 time-signature but also various exceptional situations such as the insertions of
a measure in 1/4 in a 4/4 meter passage. Our model also allows us to handle errors in
the beat tracking stage such as beat insertion or beat deletion due in general to tempo
deviation (e.g. music tempo speed up or slow down) not detected by the beat tracker.

The system was evaluated and compared to the state-of-the-art on a large set of hand-
labeled files. On the one hand, we evaluated its upper limits by estimating the downbeat
positions using manual annotation of beat positions. On the other hand, we measured its
fully automatic performances by using a beat tracker as a front end. The semi-automatic
evaluation has assessed the validity of our model. The fully-automatic evaluation has
shown that our model can be applied to real situations in which the beat positions are
unknown. By doing so, we have considered the problem of using imperfect beat tracking.
Results showed that using a tatum-synchronous analysis instead of a tactus-synchronous
analysis might temper the effects of imperfect beat tracking on downbeat tracking.

Comparison with a state-of-the-art downbeat tracking algorithm [DP06] showed that
our system, although not perfect, is fairly successful in estimating the downbeats of pieces
with complex metrical structure. We demonstrated that considering the interaction be-
tween the chord progression and the downbeats allows their simultaneous estimation. We
also showed that the chord label accuracy and the chord segmentation accuracy are both
improved when estimated jointly with the downbeats.

7.1.4 Key

We have further extended the model to integrate musical key information. We first
focused on the problem of finding the main key of a piece of music. For this, the
chords/downbeats model was extended by integrating and extending previous works on
key estimation [Pee06b] [LS08]. Key information was introduced in the model by using
key-dependent chord transitions matrices. We proposed a specific training approach for
the key-dependent matrices, from chord labels. We also proposed a simple post-processing
step that allows correcting some typical key estimation errors. Analysis on a set of popular
music songs has shown that the three musical attributes can be estimated in a mutually
informing manner and that each additional musical attribute improves in general the es-
timation of the others. This has corroborated the idea that a joint estimation of musical
parameters improves their estimation.

We then turned our attention to the problem of local key estimation. We proposed
to address this problem (segmenting an audio file in sections labeled with local keys)
by investigating the possible combination and extension of different previous proposed
approaches for global key estimation. The local key progression over time was modeled
according to the harmonic and the metrical structure. We investigated several issues
related to this task such as the problem of finding a suitable length of the analysis window
or the problem of handling smooth key changes. A contribution of our work is that the
local key segmentation is based on musical knowledge and depends on the tempo of the
analyzed piece. We have shown that our model for simultaneous estimation of chords and
downbeats can be used to estimate the key progression of a music audio file. A contribution
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of this work is to present a study of the relationships between chords and local keys on an
original hand-labeled database of classical music pieces that contain many modulations.

7.2 Future Works

The work proposed in this thesis is a step towards a unified analysis of music. How-
ever, there are many issues that still need to be addressed and many potential areas for
improvement. We present here some points that we wish to develop in future works.

Concerning the feature extraction part, our experiments show that a pre-processing
step that removes transients and noise should be included in our system. This would
allow us to improve the chord accuracy. It would also allow us to investigate properly the
use of chroma features based on multi-fOs.

We currently use a first-order HMM to model the chord progression. By doing so,
we only take into account transitions between consecutive chords. In music pieces, chord
sequences exhibit long-term dependencies that should be taken into account in order to
model music complexity more accurately. The analysis of chord errors showed that there
are ambiguous situations in which the chord estimation would benefit from the knowledge
of the tonal function of the chords in the harmonic progression. Modeling chord sequences
using longer dependencies between chords, using for instance probabilistic N-grams, would
help characterize the complexity of harmonic progressions in Western tonal music [SVBO0S|.

We currently restrict our chord lexicon to the 24 major and minor triads. We think
that the proposed model for joint estimation of musical attributes could be directly
extended to a larger chord lexicon. However, we did not perform any experiments to
corroborate this claim and we let this point for future works.

The downbeat tracking results for pieces in variable meter are encouraging but further
improvements are needed. At the present time, the system is built so that it remains
in general in a single predominant meter along the analyzed track (although it adjusts
to meter changes by inserting measures of different time-signature). It would be highly
desirable that the system shows more flexibility to the meter changes. Future work will
concentrate on this point. An interesting direction would be to use an observation pim
distribution that is not uniform (where pim corresponds to the position of a beat inside
a measure). A possible solution could be to find a way to learn the pim distribution from
the chord labels.

An analysis of the results shows that the harmonic structure of a piece is an important
clue for determining the downbeat positions. However, it was noticed that in some cases
(such as when chords change every two beats), the relationship between chord changes
and downbeats is ambiguous. This model would benefit from a more complete functional
chord analysis. Combining the present system, which is based on harmony, with a rhyth-
mic pattern approach would probably also allow improvement of the downbeat tracking
process.
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Concerning the problem of local key estimation, the analysis of the results showed that
additional improvement of key segmentation may be achieved in the future using a more
complex model that would include key transition parts. Functional chord analysis should
also improve local keys estimation [RS04].

It must be noticed that the three musical attributes considered (key, chords, down-
beats) do not completely interact in the proposed model for local key estimation. Indeed,
if the local key is estimated relying on the chord progression and the metrical structure,
the estimation of these two elements does not depend on the local key. We plan to
consider this point in future works. We believe that the subject of key estimation and
particularly local key estimation deserves more attention and that there is place for a
wide range of investigations in this area. However, the prior results that we obtained
with our current model may be already useful to some music-content applications such as
music mood detection for instance.

At the present time, our models have mainly been tested on popular and classical
music. It would be interesting to explore their performances on various other music styles
in order to see if our hypothesis can be generalize to a wider range of music types.

In this thesis, we have mainly focused on the interaction between three musical at-
tributes. We wish to extend our approach for automatic music content analysis towards
a richer model that would integrate other musical attributes, such as the music structure,
the melody and, more generally, any element of musical context that has a place in music
understanding.
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List of the tracks and the corresponding albums for the Beatles test-set.
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Table 7.1: List of the Beatles songs (I).

Album Number | Title
1 01 I Saw Her Standing There
2 02 Misery
3 03 Anna (Go To Him)
4 04 Chains
5 05 Boys
6 06 Ask Me Why
7 07 Please Please Me
01 Please Please Me 8 08 Love Me Do
9 09 P. S. I Love You
10 10 Baby It s You
11 11 Do You Want To Know A Secret
12 12 A Taste Of Honey
13 13 There s A Place
14 14 Twist And Shout
15 01 It Won t Be Long
16 02 All I ve Got To Do
17 03 All My Loving
18 04 Don t Bother Me
19 05 Little Child
20 06 Till There Was You
. 21 07 Please Mister Postman
02 With The Beatles 22 08 Roll Over Beethoven
23 09 Hold Me Tight
24 10 You Really Got A Hold On Me
25 11 T Wanna Be Your Man
26 12 Devil In Her Heart
27 13 Not A Second Time
28 14 Money
29 01 A Hard Day s Night
30 02 I Should Have Known Better
31 03 If T Fell
32 04 I m Happy Just To Dance With You
33 05 And I Love Her
34 06 Tell Me Why
03 A Hard Days Night 35 07 Can t Buy Me Love
36 08 Any Time At All
37 09 I 1l Cry Instead
38 10 Things We Said Today
39 11 When I Get Home
40 12 You Can t Do That
41 13 T 11 Be Back
42 01 No Reply
43 02 I m a Loser
44 03 Baby s In Black
45 04 Rock and Roll Music
46 05 I 1l Follow the Sun
47 06 Mr. Moonlight
48 07 Kansas City- Hey, Hey, Hey, Hey
04 Beatles For Sale 49 08 Eight Days a Week
50 09 Words of Love
51 10 Honey Don t
52 11 Every Little Thing
53 12 I Don t Want to Spoil the Party
54 13 What You re Doing
55 14 Everybody s Trying to Be My Baby
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Table 7.2: List of the Beatles songs (II).

Album Number | Title
56 01 Help!
57 02 The Night Before
58 03 You ve Got To Hide Your Love Away
59 04 T Need You
60 05 Another Girl
61 06 You re Going to Lose That Girl
62 07 Ticket To Ride
05 Help 63 08 Act Naturally
64 09 It s Only Love
65 10 You Like Me Too Much
66 11 Tell Me What You See
67 12 T ve Just Seen a Face
68 13 Yesterday
69 14 Dizzy Miss Lizzie
70 01 Drive My Car
71 02 Norwegian Wood (This Bird Has Flown)
72 03 You Won t See Me
73 04 Nowhere Man
74 05 Think For Yourself
75 06 The Word
76 07 Michelle
06 Rubber Soul 7 08 What Goes On
78 09 Girl
79 10 I m Looking Through You
80 11 In My Life
81 12 Wait
82 13 If I Needed Someone
83 14 Run For Your Life
84 01 Taxman
85 02 Eleanor Rigby
86 03 I m Only Sleeping
87 04 Love You To
88 05 Here, There And Everywhere
89 06 Yellow Submarine
07 Revolver 90 07 She Said She Said
91 08 Good Day Sunshine
92 09 And Your Bird Can Sing
93 10 For No One
94 11 Doctor Robert
95 12 T Want To Tell You
96 13 Got To Get You Into My Life
97 14 Tomorrow Never Knows
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Table 7.3: List of the Beatles songs (III).

Album Number | Title
98 01 Sgt. Pepper s Lonely Hearts Club Band
99 02 With A Little Help From My Friends
100 03 Lucy In The Sky With Diamonds
101 04 Getting Better
102 05 Fixing A Hole
103 06 She s Leaving Home

08 Sgt Peppers Lonely Hearts Club Band 104 07 Being For The Benefit Of Mr. Kite!
105 08 Within You Without You
106 09 When I m Sixty-Four
107 10 Lovely Rita
108 11 Good Morning Good Morning
109 12 Sgt. Pepper s Lonely Hearts Club Band

(Reprise)

110 13 A Day In The Life
111 01 Magical Mystery Tour
112 02 The Fool On The Hill
113 03 Flying
114 04 Blue Jay Way
115 05 Your Mother Should Know

09 Magical Mystery Tour 116 06 I Am The Walrus
117 07 Hello Goodbye
118 08 Strawberry Fields Forever
119 09 Penny Lane
120 10 Baby You re A Rich Man
121 11 All You Need Is Love
122 CD1 01 Back in the USSR
123 CD1 02 Dear Prudence
124 CD1 03 Glass Onion
125 CD1 04 Ob-La-Di, Ob-La-Da
126 CD1 05 Wild Honey Pie
127 CD1 06 -The Continuing Story of Bungalow Bill
128 CD1 07 While My Guitar Gently Weeps
129 CD1 08 Happiness is a Warm Gun

10 CD1 The Beatles 130 CD1 09 Martha My Dear
131 CD1 10 I m So Tired
132 CD1 11 Black Bird
133 CD1 12 Piggies
134 CD1 13 Rocky Raccoon
135 CD1 14 Don t Pass Me By
136 CD1 15 Why Don t We Do It In The Road
137 CD1 16 I Will
138 CD1 17 Julia
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Table 7.4: List of the Beatles songs (IV).

139 | CD2 01 Birthday

140 | CD2 02 Yer Blues

141 | CD2 03 Mother Nature s Son
142 | CD2 04 Everybody s Got Something To Hide Ex-
cept Me and M

143 | CD2 05 Sexy Sadie

11 CD2 The Beatles 144 | CD2 06 Helter Skelter

145 | CD2 07 Long Long Long

146 | CD2 08 Revolution 1

147 | CD2 09 Honey Pie

148 | CD2 10 Savoy Truffle

149 | CD2 11 Cry Baby Cry

150 | CD2 12 Revolution 9

151 CD2 13 Good Night

152 | 01 Come Together

153 | 02 Something

154 | 03 Maxwell s Silver Hammer
155 | 04 Oh! Darling

156 | 05 Octopus s Garden

157 | 06 I Want You

158 | 07 Here Comes The Sun

159 | 08 Because

12 Abbey Road 160 | 09 You Never Give Me Your Money
161 | 10 Sun King

162 | 11 Mean Mr Mustard

163 | 12 Polythene Pam

164 | 13 She Came In Through The Bathroom Window
165 | 14 Golden Slumbers

166 | 15 Carry That Weight

167 | 16 The End

168 | 17 Her Majesty

169 | 01 Two of Us

170 | 02 Dig a Pony

171 | 03 Across the Universe

172 | 04 I Me Mine

173 | 05 Dig It

174 | 06 Let It Be

175 | 07 Maggie Mae

176 | 08 I ve Got A Feeling

177 | 09 One After 909

178 | 10 The Long and Winding Road
179 | 11 For You Blue

180 | 12 Get Back

13 Let It Be
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List of publications by the author related to this thesis:
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Processing.

e H. Papadopoulos and G. Peeters: Local Key Estimation Based on Harmonic and
Metric Structures. In Dafx 2009.
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