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A mes parents.





Okay, brain. You don’t like me, and I don’t like you,
but let’s get through this thing and then I can continue killing you with beer.

Homer Simpson.

http://xkcd.com/628/





Résumé

Dans ce mémoire, nous présentons différentes méthodes d’apprentissage
statistique qui peuvent être utilisées pour comprendre le code neuronal des
fonctions cognitives, en se basant sur des données d’Imagerie par Résonance
Magnétique fonctionnelle du cerveau. Plus particulièrement, nous nous intéres-
sons à l’étude de la localisation spatiale des entités impliquées dans le codage,
et leur influence respective dans le processus cognitif. Dans cette étude, nous
nous focalisons principalement sur l’étude du cortex visuel.

Dans la première partie de ce mémoire, nous introduisons les notions d’archi-
tecture fonctionnelle cérébrale, de codage neuronal et d’imagerie fonctionnelle.
Nous étudions ensuite les limites de l’approche classique d’analyse des données
d’IRMf pour l’étude du codage neuronal, et les différents avantages apportés
par une méthode d’analyse récente, l’inférence inverse. Enfin, nous détaillons
les méthodes d’apprentissage statistique utilisées dans le cadre de l’inférence
inverse, et nous les évaluons sur un jeu de données réelles. Cette étude per-
met de mettre en évidence certaines limitations des approches classiquement
utilisées, que cette thèse vise à résoudre. En particulier, nous nous intéressons
à l’intégration de l’information sur la structure spatiale des données, au sein
d’approches d’apprentissage statistique.

Dans la seconde partie de ce mémoire, nous décrivons les trois principales
contributions de cette thèse. Tout d’abord, nous introduisons une approche
Bayésienne pour la régularisation parcimonieuse, qui généralise au sein d’un
même modèle plusieurs approches de références en régularisation Bayésienne.
Ensuite nous proposons un algorithme de coalescence supervisé (supervised
clustering) qui tient compte de l’information spatiale contenue dans les images
fonctionnelles. Les cartes de poids résultantes sont facilement interprétables,
et cette approche semble être bien adaptée au cas de l’inférence entre sujets.
La dernière contribution de cette thèse vise à inclure l’information spatiale au
sein d’un modèle de régularisation. Cette régularisation peut alors être uti-
lisée dans un cadre de régression et de classification, et permet d’extraire des
ensembles connexes de voxels prédictifs. Cette approche est particulièrement
bien adaptée à l’étude de la localisation spatiale du codage neuronal, abordée
durant cette thèse.
Mots clés :
codage neuronal, cortex visuel, neuroimagerie, Imagerie par Résonance Magné-
tique fonctionnelle (IRMf), inférence inverse, apprentissage statistique, infor-
mation spatiale, clustering, méthode Bayésienne, régularisation parcimonieuse,
Variation Totale.
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Abstract

In this thesis, we present different approaches for statistical learning that can
be used for studying the neural code of cognitive functions, based on brain
functional Magnetic Resonance Imaging (fMRI) data. In particular, we study
the spatial organization of the neural code, i.e. the spatial localization and the
respective weights of the different entities implied in the neural coding. In this
thesis, we focus on the visual cortex.

In the first part of this thesis, we introduce the notions of functional archi-
tecture, neural coding and functional imaging. Then, we study the limits of
the classical approach for the characterization of the neural code from fMRI
images, and the advantages of a recent method of analysis, namely inverse
inference. Finally, we detail the statistical learning approaches used for in-
verse inference, and we evaluate them on real data. This study highlights the
limitations of these approaches, that will be addressed during this thesis. In
particular, we focus on the use of spatial information within statistical learning
methods.

In a second part, we describe the three main contributions of this thesis.
First, we introduce a Bayesian framework for sparse regularization, that gen-
eralizes two reference approaches. Then, we propose a supervised clustering
method, that takes into account the spatial structure of the images. The result-
ing weighted maps are easily interpretable, and this approach seems partic-
ularly interesting in the case of inter-subjects inference. The last contribution
of this thesis aims at including the spatial information into the regularization
framework. This regularization is thus used in both regression and classifica-
tion settings, and extracts clusters of predictive voxels. This approach is well
suited for the decoding problem addressed in this thesis.
Keywords:
neural coding, visual cortex, neuroimaging, functional Magnetic Resonance
Imaging (fMRI), inverse inference, statistical learning, spatial information, clus-
tering, Bayesian approach, sparse regularization, Total Variation.
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Alexandre Gramfort and Gaël Varoquaux, who took the time to teach me a part
of their huge knowledge, and decreased (I hope this is convex...) my ignorance
in informatics, maths, and geek stuffs.

I also would like to acknowledge the ”INRIOS Guapos” of the Parietal
team for their support: Fabian ”Consuela” Pedregosa, Alan ”Graou” Tucholka,
Pierre ”Tonton” Fillard, Jean-Baptise Poline, Virgile Fritsch, Viviana Siless and
Lise Favre. Thanks to Régine Bricquet, Marie Domingues and Stéphanie Druetta,
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Résumé

Contexte de la thèse

Les neurosciences cognitives regroupent de nombreuses disciplines étudiant
différentes composantes de la cognition humaine, telles que le comportement
social, la mémoire ou les interactions sensorimotrices, en lien avec la struc-
ture et le fonctionnement du cerveau. Cette étude est particulièrement délicate,
étant donné la structure multi-échelle du système nerveux (des synapses –
connections entre neurones – 2 à 40 nm, au cerveau – 150 mm pour l’axe lon-
gitudinal), et son extrême complexité (jusqu’à 1015 connections). Les neuros-
ciences cognitives sont donc basées sur un large éventail de disciplines, et en
particulier la neuro-imagerie. Un des buts de la neuro-imagerie est de procurer
une cartographie des régions fonctionnelles du cerveau et de leur interactions
respectives. Cela inclut l’étude du codage neuronal, qui est la représentation in-
terne d’informations dans le cerveau.

Le codage neuronal peut être effectué selon un grand nombre de schémas
différents [Dayan 01], et sa caractérisation repose principalement sur les inter-
actions entre les différentes entités impliquées dans ce codage, appelées en-
tités de codage, et sur leur distribution spatiale. Les interactions entre entités de
codage peuvent être expliquées par deux schémas de codage principaux : le
codage parcimonieux, quand très peu d’entités sont impliquées (théoriquement
une seule), et le codage par populations, quand le codage est effectué par un
grand nombre d’entités de codage. Un autre aspect du codage neuronal est la
distribution spatiale des entités de codage, qui peuvent être groupées dans une
région bien localisée du cerveau, ou distribuées, i.e. éparpillées dans le volume
entier.

La neuro-imagerie procure une opportunité unique d’étudier l’architecture
fonctionnelle du cerveau (imagerie fonctionnelle) tout en étant minimalement
invasive. Cette technique est donc bien adaptée à l’étude du codage neuro-
nal. Différentes modalités existent, chacune ayant des résolutions spatiale et
temporelle bien spécifiques. Parmi elles, l’Imagerie par Résonance Magnétique
fonctionnelle (IRMf) [Ogawa 90b, Ogawa 90a] a émergé comme une modalité
fondamentale pour l’imagerie fonctionnelle cérébrale. Depuis une vingtaine
d’années, l’IRMf a été utilisée intensivement pour l’imagerie cérébrale, et est
devenue une modalité de référence, grâce à sa bonne résolution spatiale. L’IRMf
mesure par Résonance Magnétique Nucléaire une grandeur qui dépend, de manière
indirecte et encore mal connue, de l’oxygénation du sang. La mesure est ef-
fectuée en utilisant un contraste appelé contraste BOLD (Blood Oxygenation
Level-Dependent). Quand certaines populations neuronales sont actives, l’aug-
mentation du taux d’oxyhémoglobine augmente le contraste BOLD, et offre
donc un accès indirect à des images de l’activité cérébrale.

Les images d’IMRf sont ensuite pré-traitées, puis modélisées au travers
d’un Modèle Linéaire Général (GLM), qui considère les différentes conditions
expérimentales définies dans une matrice de dessin, ainsi que la dynamique de la
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réponse hémodynamique. Les paramètres du modèle peuvent être représentés
sous forme d’images, appelées cartes d’activations. Ces cartes représentent l’in-
fluence locale des différentes conditions expérimentales sur les signaux d’IRMf.
L’approche classique, et très largement utilisée, pour l’analyse des cartes d’ac-
tivations, est appelée inférence classique, et repose sur l’utilisation massive de
tests univariés (un test par voxel). On crée ainsi des cartes de statistique pa-
ramétrique (Statistical Parametric Maps (SPMs)) [Friston 95], qui ont beaucoup
d’intérêt en neurosciences, car elles permettent une localisation des voxels qui
sont significativement actifs pour une condition expérimentale, et sont donc
probablement impliqués dans le codage neuronal sous-jacent. Cependant cette
inférence classique a une puissance limitée par le problème de comparaisons
multiples, et ne tient pas compte de la structure multivariée des données d’IRMf.

Une approche récente, appelée inférence inverse (”brain-reading”) [Dehaene 98,
Cox 03], a été proposée pour tenir compte des limitations de l’inférence clas-
sique. L’inférence inverse repose sur une approche de reconnaissance de formes
(pattern recognition), et décode le codage neuronal en utilisant des méthodes
d’apprentissage statistique. De manière concise, l’inférence inverse construit une
fonction de prédiction, en utilisant les cartes d’activations, qui peut alors être
utilisée pour prédire une variable comportementale liée à une nouvelle image
d’activitation. La précision de la prédiction peut être vue comme une mesure
de la quantité d’information présente dans les voxels utilisés dans la fonction
de prédiction, en rapport avec la tâche cognitive. Cette approche est multi-
variée et permet de réaliser des analyses plus sensibles que la procédure basée
sur des cartes SPMs [Kamitani 05, Haynes 06]. De nombreuses méthodes d’ap-
prentissage statistique ont été testées pour la classification ou la régression (e.g.
analyse linéaire discriminante, machines à vecteurs de support, régression elas-
tic net). Cependant, dans le cas de l’analyse de données d’IRMf, la limitation
majeure reste la localisation et l’extraction des régions prédictives au sein du
volume cérébral. Nous avons de plus un problème de malédiction de la dimen-
sion, car le nombre d’attributs (voxels, régions) est beaucoup plus grand (∼ 105)
que le nombre d’échantillons (images) (∼ 102), et la méthode de prédiction
peut sur-apprendre les données d’apprentissage, et donc ne pas généraliser
correctement à de nouvelles images.

L’objectif général de cette thèse est le développement de méthodes
d’apprentissage statistique, utilisables en inférence inverse, qui tiennent
compte des spécificités des données d’IRMf. D’un point de
vue expérimental, nous nous focalisons particulièrement sur la
compréhension du cortex visuel humain.
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Organisation et contributions de cette thèse

Chapitre 1 - Accéder au codage neuronal

Dans ce premier chapitre, nous décrivons l’organisation fonctionnelle
du cerveau humain, et détaillons la notion de codage neuronal. Nous
nous focalisons sur les différentes distributions spatiales des entités
impliquées dans le codage, et détaillons l’Imagerie par Résonance
Magnétique fonctionnelle, une modalité d’imagerie bien adaptée à
l’étude de ce codage.

Organisation fonctionnelle du cerveau

Le cerveau humain peut être décomposé en différentes régions qui corres-
pondent à différentes étapes du traitement de l’information au sein du cer-
veau (voir Fig. i). Ces régions fonctionnelles correspondent grossièrement à
des régions anatomiques, et peuvent être classées en trois catégories : les aires
sensorielles (e.g. cortex visuel et cortex auditif) qui reçoivent et traitent les in-
formations en provenance des organes sensoriels, les aires motrices (e.g. cor-
tex moteur primaire, cortex pré-moteur) qui contrôlent les mouvements, et les
aires associatives (e.g. aire de Broca, complexe latéro-occipital – LOC – sillon
intra pariétal – IPS) qui traitent les informations relatives aux expériences per-
ceptuelles. Les expériences détaillées dans cette thèse sont effectuées dans le
cadre de l’étude de la reconnaissance des objets (cortex visuel et LOC), et du
traitement des nombres (cortex parietal et IPS).

Fig. i : Les principales régions fonctionnelles du cerveau humain (hémisphère
gauche), ainsi que les deux régions étudiées dans cette thèse (LOC et IPS).
Adapté de http://agaudi.files.wordpress.com/.
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Codage neuronal des processus mentaux

Le codage neuronal est la correspondance entre un stimulus et sa représen-
tation par une unique réponse neuronale ou un ensemble de réponses neuro-
nales. Accéder à l’organisation du codage neuronal est nécessaire pour com-
prendre les processus mentaux, et plus généralement la façon dont le cerveau
traite l’information. L’étude du codage neuronal peut être effectuée à différentes
échelles (du simple neurone aux grandes populations de neurones telles que
les colonnes corticales avec 104 neurones), et nous appellerons désormais les
structures impliquées dans le codage neuronal entités ou populations neuronales.
Le codage neuronal peut être étudié par décodage, lorsque l’on reconstruit le
stimulus (ou certains aspects de ce stimulus), à partir des signaux des entités
de codage. Dans cette thèse, nous nous focalisons sur la notion d’organisation
spatiale du codage neuronal, et nous abordons les deux problèmes suivants :
la question de la sélectivité des populations neuronales impliquées dans une
tâche cognitive (codage parcimonieux ou codage par populations), et la question de
la distribution spatiale de ces populations neuronales (codage groupé ou codage
distribué) au sein du cerveau (cortex cérébral, ganglions de la base, thalamus,
...). En général, le codage par populations semble une hypothèse plus plau-
sible que le codage parcimonieux, mais par contre, la supériorité d’un modèle
de distribution spatiale particulier reste plus sujet à controverse. Comprendre
ces différents schémas de codage (voir Fig. ii) est crucial pour les études cog-
nitives, et, dans cette thèse, nous proposons certains outils pour faciliter cette
compréhension, basée sur la neuro-imagerie fonctionnelle.

Population
 coding

Sparse
 coding

Clustered
 coding

Distributed
 coding

Fig. ii : Illustration des différents types
d’entités impliquées dans le codage neu-
ronal, et des différentes distributions spa-
tiales de ces entités. Chaque couleur cor-
respond à une condition, les neurones gnos-
tiques (i.e. qui codent pour une seule condi-
tion) sont représentés par des disques de
couleur uniforme, et les ensembles de neu-
rones non spécifiques sont représentés par
des disques de couleur mixte. Les deux
notions d’entités et de distribution spa-
tiale sont clairement distinctes. Dans le
cas du codage groupé, les entités sont re-
groupées en petits ensembles, alors que
dans le cas du codage distribué, les entités
sont éparpillées à travers tout le cerveau.
Le codage par population est basé sur des
motifs d’activation qui doivent être ana-
lysés comme tels, c’est à dire décodés, alors
que le codage parcimonieux repose sur très
peu de neurones actifs.
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Neuro-imagerie fonctionnelle et IRMf

La neuro-imagerie fonctionnelle vise à imager l’activité fonctionnelle du
cerveau, afin d’étudier l’organisation spatiale du codage neuronal. Différentes
approches peuvent être utilisées en neuro-imagerie, et nous donnons Fig. iii,
leurs résolutions temporelles et spatiales.
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Fig. iii : Résolutions spatiale et temporelle des différentes modalités couram-
ment utilisées pour l’imagerie fonctionnelle. Dans cette thèse, nous utilisons
l’IRMf.

L’Imagerie par Résonance Magnétique fonctionnelle (IRMf) est une modalité
couramment utilisée pour l’imagerie fonctionnelle cérébrale, car elle est non-
invasive, a une bonne résolution spatiale (1-3mm), et permet d’avoir accès,
même indirectement, à l’activité neuronale. De plus, dans le cadre standard
d’acquisition, l’IRMf permet d’imager le cerveau dans son entier, ce qui per-
met de ne pas restreindre le décodage aux couches superficielles du cortex ou
à des régions prédéfinies. L’IRMf est l’utilisation de l’IRM avec un contraste
spécifique, appelé contraste BOLD [Ogawa 90b, Ogawa 90a]. Cette modalité
mesure une fonction qui dépend du rapport entre les taux d’oxyhémoglobine
et de déoxyhémoglobine dans le sang. Quand certaines populations de neu-
rones sont actives, l’accroissement du taux de d’oxyhémoglobine dans le sang
est observé par contraste BOLD. Cependant, cet effet n’est pas directement relié
à l’activité neuronale et repose sur un chemin métabolique complexe et encore
mal connu. Le signal d’IRMf reflète ainsi une activité qui peut se situer loin des
neurones actifs. Cependant, malgré ces limitations, l’IRMf reste encore aujour-
d’hui la meilleure modalité pour l’étude de la distribution spatiale du codage
neuronal.
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Chapitre 2 - Des acquisitions IRMf au ”brain-reading”

Dans le second chapitre, nous détaillons les pré-traitements requis
pour l’analyse des données d’IRMf. Nous introduisons aussi le Modèle
Linéaire Général, qui construit un ensemble de cartes d’activations
depuis les données, en se basant sur la description du paradigme
expérimental et sur les bases physiologiques du signal BOLD. Les
cartes d’activations résultantes peuvent alors être utilisées pour une
analyse statistique, afin d’étudier le codage neuronal spécifique à cer-
taines taches cognitives. Nous détaillons dans ce chapitre les deux
méthodes d’inférence, l’inférence classique et l’inférence inverse.

Le Modèle Linéaire Général (GLM) a été introduit pour l’analyse de données
d’IRMf par Friston et al. [Friston 95]. Cette approche permet, au sein d’un
unique modèle statistique, de tenir compte de tous les facteurs qui peuvent
expliquer les décours temporels des signaux d’IRMf.

Inférence classique

L’inférence classique est une méthode couramment utilisée pour l’étude des
données d’IRMf. Cette approche, intimement liée au GLM, repose sur des sta-
tistiques calculées au niveau des voxels, et créé des cartes statistiques (Statisti-
cal Parametric Maps - SPMs) pour les effets considérés (voir Fig. iv). Ces cartes
permettent une bonne cartographie cérébrale. Cependant, en dépit de sa sim-
plicité et de ses performances, cette méthode souffre de certaines limitations :

– l’inférence classique analyse chaque voxel séparément et ne tient donc ra-
rement en compte des corrélations existantes entre les différentes régions
du cerveau (localement, on peut néanmoins considérer la co-activation
de voxels voisins par inférence cluster-level).

– la puissance statistique est limitée par un problème de comparaisons
multiples ; nous effectuons un test statistique pour chacun des voxels,
et nous devons donc corriger pour le grand nombre de tests effectués.

Anova −log10(pvalues)

L R

y=-74 x=-42

L R

z=0

3e+00 7e+00

Fig. iv : Représentation d’une carte de type SPM dans le cas de l’étude sur la
représentation mentale de la forme des objets. La carte est seuillée pour des p-
valeurs inférieures à 10−3. Nous pouvons remarquer que certaines régions du
cerveau sont clairement délimitées, comme certaines régions du lobe occipital,
connues pour être impliquées dans la reconnaissance visuelle.
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Inférence inverse

Afin de tenir comptes des limitations de l’inférence classique, l’approche
d’inférence inverse a été proposée [Dehaene 98, Cox 03]. Cette approche est basée
sur des méthodes d’apprentissage statistique, et peut être utilisée pour vérifier
l’implication de certaines zones cérébrales dans certains codes cognitifs. En
évaluant la justesse de la prédiction d’une variable d’intérêt (la cible), basée
sur les activations mesurées dans ces régions, il est possible de vérifier la per-
tinence des régions du cerveau étudiées. Cette approche a certains avantages,
comparée à l’inférence classique :

– Cette approche est multivariée [Cox 03, Norman 06], ce qui est consistant
avec l’hypothèse de codage par populations. En effet, dans le codage par
populations, plusieurs entités sont impliquées dans le codage, et il faut
donc les considérer ensemble afin de décoder le codage neuronal.

– Cette approche permet d’éviter le problème de comparaisons multiples,
car elle réalise un seul test statistique (sur la variable prédite). En ce
sens, l’inférence inverse permet de réaliser des analyses plus sensibles
que l’inférence classique [Kamitani 05].

– Cette approche permet de généraliser la prédiction à des stimuli pouvant
être inconnus [Mitchell 08, Knops 09], et ouvre la voie à une compréhension
plus poussée de l’organisation fonctionnelle du cerveau, ainsi qu’à une
possible reconstruction des stimuli [Thirion 06a, Kay 08].

La Fig. v représente les différentes étapes de l’analyse par inférence in-
verse. L’inférence inverse a cependant quelques défauts, comme la nécessité
de prendre en compte la grande dimension des données lors de l’apprentissage
de la fonction de prédiction. Nous détaillons aussi dans ce chapı̂tre certaines
questions éthiques qui peuvent être soulevées par cette ”lecture de pensées”
[Farah 04].

Finalement, nous nous sommes particulièrement intéressés durant cette thèse
à la généralisation de la prédiction à de nouveaux sujets. Cependant cette prédiction
entre sujets est très sensible à la variabilité inter-sujet, qui rend la localisa-
tion des régions fonctionnelles variables entre sujets [Tucholka 10]. Il est donc
particulièrement difficile de trouver un support spatial du codage neuronal
entre sujets. Nous proposons dans cette thèse certains algorithmes qui visent à
résoudre ce problème.

Chapitre 3 - Apprentissage statistique pour l’inférence inverse
en IRMf

Dans le troisième chapitre, nous présentons les différentes étapes de
l’inférence inverse : l’apprentissage de la fonction de prédiction, la
réduction de dimension, la sélection de modèle et la validation. Nous
détaillons aussi les différentes méthodes d’apprentissage statistique
qui ont été utilisées ces dernières années dans le cadre de l’inférence
inverse en IRMf.
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Fig. v : Illustration de l’inférence inverse. Étape 1 : le sujet réalise une tâche
cognitive, comme regarder des objets de différentes formes. Les images d’IRMf
sont acquises simultanément et pré-traitées. Étape 2 : un modèle prédictif est
appris, et les prédictions correspondantes à des données test sont réalisées,
puis comparées avec le vrai stimulus. Une réduction de dimension peut être
réalisée, avant l’apprentissage du modèle prédictif, afin de sélectionner les
zones du cerveau les plus pertinentes pour la prédiction ; cette étape peut être
cruciale afin d’éviter le sur-apprentissage. La gestion du sur-apprentissage sera
un des problèmes principaux abordés au cours de cette thèse.

L’inférence inverse cherche à décrypter le codage neuronal en trouvant des
régions prédictives au sein des données d’IRMf. Il faut donc définir et entraı̂ner
une fonction de prédiction. Cependant, il y a un large choix de fonctions de
prédiction, et nous détaillons dans ce chapitre les plus communément utilisées,
en illustrant leur comportement sur des données réelles.

Modèle linéaire prédictif

La fonction de prédiction peut être non linéaire (e.g. SVM non linéaire), mais
la supériorité d’une telle fonction non -linéaire dans le cadre de l’inférence in-
verse en IRMf n’a pas été montrée [Cox 03, LaConte 05]. Cependant, les raisons
de cette supériorité ne sont pas encore complètement élucidées. Elle peut être
expliquée par le fait que la sommation sur 105 neurones ayant une activité
non-linéaire, peut être approximativement linéaire. Elle peut aussi simplement
refléter le fait que les fonctions de prédictions non-linéaires utilisées sont in-
capables de capturer la non-linéarité réelle de cette relation. Dans cette thèse,
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nous nous focalisons sur des fonctions de prédiction linéaires :

y = f(X,w, b) = F (Xw + b) , (1)

où (w, b) sont les paramètres du modèle devant être estimés avec les données
d’apprentissage (b ∈ R est appelé l’ordonnée à l’origine). y est la variable com-
portementale à prédire (la cible), et les données d’IRMf sont représentées par
la matrice X ∈ Rn×p, chaque ligne étant un échantillon p-dimensionnel (i.e.
une carte d’activation). Nous avons n le nombre d’échantillons (images) et p le
nombre d’attributs (voxels).

Dans le cas de la régression, nous avons y ∈ Rn, avec f :

f(X,w, b) = Xw + b (2)

Dans le cas de la classification, nous avons y ∈ [1, . . . ,K]n, avec f :

f(X,w, b) = sign(Xw + b) , (3)

où “sign” est la fonction signe. Nous détaillons aussi dans ce chapitre différentes
heuristiques pour réaliser des classifications multi-classes.

Performances en prédiction

Les performances en prédictions peuvent être vues comme un test statis-
tique sur les régions utilisées dans le modèle prédictif. Si une fonction de préd-
iction linéaire a des performances significativement supérieures au niveau de
la chance, on peut considérer que le groupe de voxels utilisés dans la prédiction
contient de l’information sur la variable cible (voir [Kamitani 05]).

Dans le cas d’une fonction de prédiction linéaire, il peut être intéressant
de regarder les poids des voxels utilisés dans le modèle linéaire. Cependant,
ces poids dépendent fortement de la fonction de prédiction, et nous n’avons
aucune preuve que les voxels utilisés dans le modèle correspondent à la tota-
lité des entités impliquées dans le codage neuronal étudié [Cox 03]. Les cartes
obtenues ne peuvent donc pas être interprétées comme des cartes SPMs clas-
siques. Cependant, il est toujours possible d’utiliser les cartes des poids du
modèle pour interpréter certains aspects du codage neuronal. Nous nous at-
tendons en effet à ce que l’organisation spatiale du codage neuronal soit parci-
monieuse et possède une structure telle que les voxels de poids non-nuls soient
groupés en composantes connexes. Les cartes de poids montrant de telles ca-
ractéristiques sont dites interprétables, car elles reflètent nos hypothèses sur l’or-
ganisation spatiale du codage neuronal. Dans le cas d’un modèle de prédiction
non linéaire, la question de l’interprétation est plus complexe, et la non linéarité
du modèle rend difficile l’accès à des cartes de poids.

Sélection de modèle et validation

Afin de valider le fait que les voxels utilisés par le modèle appartiennent
effectivement au support du codage neuronal, nous devons évaluer la justesse
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de la prédiction, i.e. tester si les prédictions effectuées par le modèle sont cor-
rectes. Cependant, le fait d’apprendre la fonction de prédiction et de la tester
sur un même jeu de données, introduit un biais. Afin d’éviter ce biais de sur-
apprentissage, nous devons définir deux jeux de données différents : un jeu
d’apprentissage (Xl,yl), qui est utilisé pour l’apprentissage de la fonction de
prédiction, et un jeu de test (Xt,yt) , qui est utilisé pour tester la fonction de
prédiction. Afin de ne pas dépendre d’un certain choix de jeux d’apprentis-
sage et de test, et afin d’utiliser au mieux le nombre réduit d’échantillons dis-
ponibles, nous pouvons effectuer une validation croisée. Cette validation croisée
sépare les données en un certain nombre de couples de jeux d’apprentissage
et de test, le score final étant la moyenne des scores pour chacun des couples.
Les différentes étapes d’apprentissage statistique de l’inférence inverse sont
donc effectuées par validation croisée (voir Fig. vi). Une validation croisée
(dite interne) peut aussi être utilisée sur les données d’apprentissage afin de
sélectionner un modèle qui généralise optimalement.

Fig. vi : Schéma global de l’approche d’apprentissage statistique pour
l’inférence inverse, avec une sélection de modèle par validation croisée interne.

Réduction de dimension

Il a été montré [Hughes 68] qu’augmenter la complexité du modèle peut
d’abord augmenter les performances de prédiction jusqu’à ce qu’une valeur
optimale soit obtenue. Cependant, continuer à augmenter la complexité (i.e. la
dimension) des données va réduire les performances en prédiction. Cet effet
est appelé malédiction de la dimension, et est crucial dans l’analyse de données
en IRMf. En effet, dans le cas où le nombre d’attributs p est très grand devant
le nombre d’échantillons n (ce qui est le cas en IRMf, avec typiquement p ∼ 105

et n ∼ 102), il est toujours possible de trouver une fonction de prédiction
qui donne une prédiction parfaite sur les données d’apprentissage. Cepen-
dant, une telle fonction ne peut pas généraliser (i.e. donner une prédiction
correcte sur de nouveaux échantillons) car elle a appris des particularités non-
informatives du jeu d’apprentissage, ou du bruit. On dit qu’une telle fonction
sur-apprend les données d’apprentissage. Ce problème peut être évité en utili-
sant des méthodes de réduction de dimension, qui définissent un espace de petite
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dimension qui contient l’information prédictive, tout en réduisant la dimen-
sion du problème. Pour l’inférence inverse en IRMf, la réduction de dimensions
est menée avec deux objectifs différents, qui peuvent être remplis ou non : elle
doit permettre d’obtenir un bonne performance en prédiction (i.e. extraire de
l’information pertinente), et doit extraire des groupes de voxels interprétables
(e.g. en construisant un espace de petite dimension qui correspond à un nombre
réduit de régions cérébrales).

Pré-requis pour un algorithme d’apprentissage statistique en inférence in-
verse

Les différentes méthodes d’apprentissage statistique détaillées dans ce cha-
pitre ont souvent été utilisées sans tenir compte des spécificités des données
d’IRMf, et souffrent donc de certaines limitations. Les différentes études menées
dans ce chapitre nous permettent de définir les pré-requis suivant pour un al-
gorithme d’apprentissage statistique adapté à l’inférence inverse en IRMf :

1. Modèle multivarié : l’information d’intérêt peut être distribuée à tra-
vers des régions distantes du cerveau. L’algorithme d’apprentissage sta-
tistique doit donc tenir compte de la combinaison des signaux de ces
différentes régions cérébrales, et, en ce sens, doit être multivarié.

2. Tenir compte de la structure spatiale des données : A cause de la struc-
ture spatiale particulière des données d’IRMf, il y a une redondance lo-
cale de l’information utilisable pour la prédiction, qui doit être considérée
dans la fonction de prédiction, ou dans le processus de sélection d’attri-
buts (par exemple en remplaçant les signaux des voxels par des moyennes
locales).

3. Approche multi-échelle : Étant donné que les régions étudiées sont larges,
et que les zones informatives peuvent être relativement petites, nous de-
vons définir une approche qui peut se focaliser sur des petites sous-régions
du volume considéré. Une méthode multi-échelle semble donc adaptée
pour la recherche des régions prédictives. De plus, au contraire des ap-
proches purement géométriques, les procédures qui tiennent compte du
signal et de la tâche de prédiction peuvent mieux respecter la structure
multi-échelle sous-jacente des données.

Publications

Les méthodes présentées dans ce chapitre ont été utilisées pendant cette thèse
dans le cadre des analyses neuroscientifiques suivantes :

– M. Lebreton, S. Jorge, V. Michel, B. Thirion and M. Pessiglione. An auto-
matic valuation system in the human brain : evidence from functional neuroi-
maging. Neuron 64, 3, 2009.

– E. Eger, V. Michel, B. Thirion, A. Amadon, S. Dehaene and A. Kleinsch-
midt. Deciphering Cortical Number Coding from Human Brain Activity Pat-
tern. Current Biology. 2009, 19 :1608.
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– A. Knops, B. Thirion, E.M. Hubbard, V. Michel and S. Dehaene. Recruit-
ment of an area involved in eye movements during mental arithmetic. Science.
2009 Jun 19 ;324(5934) :1583-5.

– A. Bachrach, A. Gramfort, V. Michel, E. Cauvet, B. Thirion and C. Pallier.
Decoding of syntactic trees. In prep.

Des travaux méthodologiques ont aussi été présentés dans :

– V. Michel, C. Damon, and B. Thirion. Mutual information-based feature
selection enhances fMRI brain activity classification. In 5th Proc. IEEE
ISBI, pages 592-595, 2008.

– R. Genuer, V. Michel, E. Eger, and B. Thirion Random forests based fea-
ture selection for decoding fMRI data. In COMPSTAT 19th International
Conference on Computational Statistics, pages 372 , 2010.

Chapitre 4 - Régression Bayésienne Multi-classe Parcimonieuse

Dans ce chapitre, nous proposons un modèle pour effectuer une
régression adaptative, appelée MCBR (Multi-Class Sparse Bayesian Re-
gression). Nous groupons les attributs en Q classes différentes, et
régularisons ces classes différemment, ce qui permet d’obtenir une
régularisation stable et adaptative.

Les caractéristiques principales du modèle sont les suivantes :

– Généralisation d’approches classiques : la méthode proposée intègre
dans un même modèle les approches Bayesian Ridge Regression (BRR) et
Automatic Relevance Determination (ARD), qui sont les deux principales
approches de régression Bayésienne régularisée.

– Régularisation adaptative : en réalisant une régularisation différente pour
les attributs pertinents et non pertinents, cette approche permet de réaliser
conjointement une sélection d’attributs, et une estimation correcte des
poids du modèle. La méthode proposée peut adapter, au sein d’un cadre
Bayésien, le niveau de parcimonie aux données. La régularisation ef-
fectuée est ainsi aussi adaptative que l’ARD, mais est réalisée avec beau-
coup moins d’hyper-paramètres, et est donc moins sensible au sur-appren-
tissage dans l’espace des hyper-paramètres.

– Regroupement d’attributs : l’approche proposée permet d’obtenir, au
travers de la variable latente z d’appartenance aux classes, une informa-
tion intéressante pour l’inférence inverse en IRMf. En effet, le regroupe-
ment d’attributs intrinsèque de MCBR permet d’extraire des groupes de
voxels pertinents (voir Fig. vii).

Le modèle graphique de cette approche est donné Fig. viii. Ce modèle peut
être estimé par une approche Bayésienne variationelle, et est alors appelé VB-
MCBR, ou par une approche d’échantillonage de Gibbs, et est alors appelé
Gibbs-MCBR.

Des expériences sur des données simulées et des données réelles montrent
que notre approche est bien adaptée à la neuro-imagerie, car elle réalise des
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Fig. vii : Analyse inter-sujet de la représentation mentale de la taille des ob-
jets. Histogramme des poids obtenus par Gibbs-MCBR, et les classes corres-
pondantes (chaque couleur représente une classe différente du modèle). Nous
pouvons voir que l’approche Gibbs-MCBR crée des groupes d’attributs in-
formatifs et non-informatifs, et que les différentes classes sont régularisées
différemment, suivant la pertinence des attributs qui les composent.
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Fig. viii : Modèle graphique de la régression Bayésienne multi-classes parcimo-
nieuse.

prédictions correctes et stables, par rapport aux méthodes de l’état de l’art.
Parmi différentes possibilités de recherche, il peut être intéressant d’ajouter un
a-priori de Dirichlet au modèle MCBR. Cet a-priori peut permettre de régler
automatiquement le nombre de classes Q, et peut donc adapter la parcimonie
entre les deux extrêmes que sont Bayesian Ridge Regression (aucune parcimonie),
et Automatic Relevance Determination (forte parcimonie). Une autre direction de
recherche peut être d’implémenter un modèle spatial à l’approche proposée,
de manière à extraire des groupes de voxels connectés, par exemple ajouter un
a-priori Markovien sur les classes pour obtenir une consistance spatiale ( mais
une telle approche peut être coûteuse en temps de calcul).
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Publications

Les contributions développées dans ce chapitre ont été publiées dans :
– V. Michel, E. Eger, C. Keribin and B. Thirion. Adaptive multi-class bayesian

sparse regression - an application to brain activity classification. In MICCAI’09
Workshop on Analysis of Functional Medical Images, 2009.

– V. Michel, E. Eger, C. Keribin and B. Thirion. Multi-Class Sparse Baye-
sian Regression for Neuroimaging data analysis. Pages 50-57. In International
Workshop on Machine Learning in Medical Imaging (MLMI) In conjunc-
tion with MICCAI, 2010.

Chapitre 5 - Coalescence supervisée - ”Supervised clustering”

Un des défauts principaux des approches d’apprentissage statistique
en inférence inverse, est qu’elles ne tiennent pas compte de l’information
spatiale. En effet, à cause des processus métaboliques sous-jacents au
signal IRMf, il y a un filtrage local de l’information qui doit être pris en
compte. Ceci peut être fait par l’agglomération d’attributs, qui moyenne
le signal de voxels voisins, afin de créer des structures intermédiaires
appelées parcelles.

Dans ce chapitre, nous décrivons la seconde contribution de cette thèse,
qui est la coalescence supervisée (”supervised clustering”), et qui est détaillée Fig.
ix. Cette méthode introduit la structure des données par l’intermédiaire d’un
algorithme de coalescence hiérarchique contraint spatialement, qui créé une
parcellisation hierarchique ayant une structure d’arbre. Nous adaptons ensuite
l’algorithme au problème de prédiction, en choisissant la meilleure coupure
de l’arbre de parcellisation afin de maximiser la qualité de la prédiction. Une
propriété particulièrement importante de cette approche est sa possibilité de se
focaliser sur des régions relativement petites mais informatives, tout en laissant
de larges zones non informatives non segmentées. De plus, cette approche n’est
pas restreinte à une fonction de prédiction particulière, et peut être utilisée avec
de nombreuses méthodes de régression ou de classification.

Les résultats expérimentaux démontrent que cet algorithme est efficace pour
les analyses inter-sujet, car la moyenne spatiale du signal effectuée par la par-
cellisation est une manière efficace de résoudre le problème de la variabilité
inter-sujet (voir Fig. x). Finalement, les cartes créées par la méthode proposée
sont plus interprétables car elles présentent une structure spatiale simple, com-
parées aux approches basées sur les voxels (voir Fig. xi).

Publications

Les contributions développées dans ce chapitre ont été publiées dans :
– V. Michel, E. Eger, C. Keribin, J.-B. Poline and B. Thirion. A supervised

clustering approach for extracting predictive information from brain activation
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Fig. ix : Algorithme de coalescence supervisée. Étape ascendante de coales-
cence basée sur l’algorithme de Ward (Bottom-Up step - Ward clustering) : nous
construisons un arbre de parcellisation T des feuilles jusqu’à la racine, en te-
nant compte de contraintes de connectivité. Étape descendance d’exploration
de l’arbre (Top-Down step - Pruning of the tree) : l’arbre de Ward est divisé en
choisissant la meilleure coupure en fonction d’un score de prédiction ζ. Étape
de sélection de modèle (Model selection) : en utilisant les parcellisations créées

lors de l’étape d’exploration, nous sélectionnons le sous-arbre T̂ , qui donne la
meilleure valeur du score de prédiction ζ.

images. In IEEE Computer Society Workshop on Mathematical Methods
in Biomedical Image Analysis (MMBIA10) - IEEE Conference on Compu-
ter Vision and Pattern Recognition. 2010.

– V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin and B. Thirion.
A supervised clustering approach for fMRI-based inference of brain states. Sub-
mitted to Pattern Recognition - Special Issue on ’Brain Decoding’. 2010

Chapitre 6 - Régularisation par Variation Totale (TV)

Dans ce dernier chapitre, nous introduisons la régularisation par Va-
riation Totale, qui tient compte de l’information spatiale au sein de la
régularisation. Cette régularisation repose sur des concepts d’optimi-
sation convexe, et consiste à pénaliser l’estimation des poids du modèle
de prédiction par la norme ℓ1 de l’image du gradient des poids.

La régularisation par minimisation de la Variation Totale TV, i.e. de la norme
ℓ1 de l’image de gradient, a d’abord été utilisé pour le débruitage d’image
[Rudin 92, Chambolle 04]. La motivation de l’utilisation de la régularisation
TV pour l’imagerie cérébrale, vient du fait qu’elle permet de créer une carte de
poids avec une structure par blocs (i.e. elle créé des composantes connexes avec
des poids de valeurs identiques). Elle permet donc une bonne extraction des
régions cérébrales impliquées dans la tâche cognitive. Dans ce chapitre, nous
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Fig. x : Illustration de l’agglomération d’attributs, comme méthode pour te-
nir compte de la variabilité inter-individuelle. Les régions impliquées dans la
tâche cognitive sont représentées par des disques de différentes couleurs. Les
populations de neurones actifs ne sont pas exactement à la même position à
travers les sujets (haut), et le signal moyen à travers les sujets dans les voxels
informatifs (milieu) ne porte pas beaucoup d’information. Il est donc clair, dans
ce cas, que les approches de décodage utilisant les voxels vont avoir des per-
formances faibles. Cependant, la moyenne des voxels informatifs au sein de
chaque région à travers les sujets (bas) porte plus d’information, et permet
d’améliorer la prédiction inter-sujet.
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Fig. xi : Analyse inter-sujet de la représentation mentale de la taille des objets.
La carte des poids obtenue par l’algorithme de coalescence supervisé montre
des composantes connexes interprétables.

détaillons aussi la notion d’opérateur proximal qui permet le développement
de procédures itératives telles que ISTA et FISTA, permettant de résoudre des
problèmes d’optimisation convexe. Dans le cas spécifique de la régularisation
par Variation Totale, l’optimisation est effectuée par une double boucle ISTA et
FISTA. L’algorithme détaillé dans ce chapitre peut être utilisé pour la régression
ou la classification.

La régularisation TV peut être utilisée pour extraire de l’information de

24



données d’IRMf. La sélection d’attributs et l’estimation du modèle sont réalisées
conjointement. La méthode proposée capture l’information prédictive présente
dans les données de manière plus précise que les méthodes de référence. Une
propriété particulièrement importante de cette approche est sa tendance à créer
des régions cohérentes spatialement, et ayant des poids similaires, réalisant
ainsi des groupements d’attributs pertinents (voir Fig. xii). Les résultats expéri-
mentaux montrent que cet algorithme est performant sur des données réelles,
et qu’il est beaucoup plus précis que les méthodes de référence en analyse inter-
sujet. Nous montrons aussi que les régions extraites sont robustes à la variabi-
lité inter-individuelle. Ces observations démontrent que la régularisation TV
est un outil puissant pour la compréhension de l’activité cérébrale et la carto-
graphie des processus cognitifs. C’est de plus la première approche capable de
réaliser des cartes de poids similaires à l’approche standard SPM, au sein d’un
cadre d’inférence inverse.

Publications

Les contributions développées dans ce chapitre ont été publiées dans :

– V. Michel, A. Gramfort, G. Varoquaux and B. Thirion. Total Variation re-
gularization enhances regression-based brain activity prediction. In 1st ICPR
Workshop on Brain Decoding - Pattern recognition challenges in neuroi-
maging - 20th International Conference on Pattern Recognition. 2010.

– V. Michel, A. Gramfort, G. Varoquaux, E. Eger and B. Thirion. Total varia-
tion regularization for fMRI-based prediction of behavior. Submitted to IEEE
Transactions on Medical Imaging. 2010.

Appendices

Appendice A - Une courte introduction à l’Imagerie par Résonance Magnétique

Dans cet appendice, nous détaillons brièvement les bases physiques de
l’Imagerie par Résonance Magnétique (IRM).

Appendice B - Description des jeux de données

Dans cet appendice, nous décrivons les jeux de données simulées et réelles
qui ont été utilisés pendant cette thèse.

Appendice C - Scikit-learn pour l’inférence inverse en IRMf

Dans cet appendice, nous présentons l’utilisation du Scikit-learn pour l’inférence
inverse en IRMf et nous donnons les principales fonctions qui peuvent être uti-
lisées pour une telle analyse.
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Fig. xii : Analyse inter-sujet de la représentation mentale de la taille des ob-
jets. Cartes de poids trouvées par la régression TV pour différentes valeurs
du paramètre de régularisation. Quand la valeur de ce paramètre augmente,
la régression TV créé différents groupes de poids avec des valeurs constantes.
Ces groupes sont facilement interprétables.

Contributions logicielles

Au cours de cette thèse, nous avons contribué au Scikit-learn , une librairie
logicielle en Python.

http://scikit-learn.sourceforge.net/
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Conclusion

Dans cette thèse, nous avons présenté différentes contributions pour l’inférence
inverse en IRMf. Cette approche, qui repose sur le concept de reconnaissance
de formes, peut être utilisée pour décoder l’activité cérébrale, et plus précisément
retrouver l’organisation spatiale du codage neuronal, à partir d’images du cer-
veau.

Contributions expérimentales - De nombreux algorithmes d’apprentissage
statistique peuvent être utilisés pour la prédiction et la réduction de dimen-
sions. Dans ce manuscrit, nous avons détaillé les algorithmes de l’état de l’art,
et nous les avons implémentés et testés sur des données réelles. Nous avons
de plus systématiquement étudié leurs performances dans le cas de leur utili-
sation sur des données d’IRMf. Cette étude rigoureuse nous a permis d’établir
les pré-requis pour des algorithmes d’apprentissage statistique efficaces dans
le cas d’utilisation qui nous intéresse.

Des études sur des données expérimentales ont aussi été réalisées en col-
laboration avec des neuroscientifiques, et nous avons obtenu des résultats de
prédiction significatifs, dans des domaines d’applications variés, tels que la
représentation mentale des quantités ou des préférences, ainsi que dans le cas
plus complexe du recyclage cortical des fonctions cognitives de bas niveaux.

Contributions méthodologiques - Nos recherches se sont focalisées sur des
méthodes améliorant l’interprétation des résultats d’inférence inverse :

– Une première contribution est une approche Bayésienne de régularisation
parcimonieuse, appelée Multi-Class Sparse Bayesian Regression – MCBR.
Cette approche est une généralisation des deux approches principales
que sont Bayesian Ridge Regression et Automatic Relevance Determination.

– Un second axe de recherche a été motivé par le fait que les données
d’IRMf ont une structure spatiale qui est rarement prise en compte dans
les différentes méthodes de l’état de l’art. Nous avons donc proposé une
approche, appelée coalescence supervisée (supervised clustering), qui inclut
l’information spatiale dans le modèle de prédiction, et permet d’obtenir
des cartes de poids ayant une structure en composantes connexes. Cette
méthode peut être utilisée avec n’importe quelle fonction de prédiction,
et pour des données de très grande dimension.

– Notre dernière contribution a visé à implémenter la parcimonie et l’infor-
mation spatiale au sein d’un même modèle. Nous avons proposé l’utilisa-
tion de la régularisation par Variation Totale pour des tâches de prédiction,
et nous avons montré les bonnes performances de cette approche pour
l’analyse de données d’IRMf.

Ces différentes approches ont été testées sur des données réelles, en rapport
avec l’étude de la représentation mentale des tailles et des formes des objets,
et permettent d’obtenir des cartes utilisables pour décoder certaines parties du
système visuel.
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Contributions logicielles - En plus des directions expérimentales et méthodo-
logiques que nous avons décrites dans cette thèse, nous nous sommes aussi
intéressé à l’implémentation des algorithmes étudiés et détaillés dans ce ma-
nuscrit. Une implémentation de bonne qualité est critique, à cause de la grande
dimension des données d’IRMf. Nous avons aussi contribué au Scikit-learn, une
librairie d’apprentissage statistique libre. Dans ces développements, nous nous
sommes plus spécifiquement impliqués dans les modèles génératifs (GNB),
les méthodes de réduction de dimension (sélection d’attributs univariée, RFE), les
méthodes de sélection de modèle, et les régularisations Bayésiennes.

Perspectives de recherche

Analyses intra-sujet et inter-sujet : le point de vue de l’apprentissage statis-
tique

Les performances en prédiction des méthodes de référence, ainsi que des
méthodes proposées dans cette thèse, sont données dans le tableau i pour une
analyse intra-sujet, et dans le tableau ii pour une analyse inter-sujet. Nous pou-
vons remarquer que les méthodes ont des niveaux de performance différents
pour les analyses intra ou inter sujet. Cette variabilité peut être expliquée par la
différence d’organisation spatiale du codage neuronal entre les deux expériences.
En effet, l’organisation spatiale peut être, au niveau d’un seul sujet, très parci-
monieuse et avec une organisation très fine, mais peut être très étendue dans le
cas d’analyses inter sujet, à cause de la variabilité entre individus. Ainsi, les ap-
proches qui favorisent la parcimonie semblent être mieux adaptées à l’analyse
intra-sujet, alors que les approches qui se basent sur des groupes de voxels
semblent être mieux adaptées aux analyses inter-sujet. En conclusion, il y a
beaucoup d’intérêt pour les méthodes qui peuvent adapter leur niveau de par-
cimonie aux données.

Extensions Une extension possible est l’addition d’une régularisation par norme
ℓ1 à la régularisation par Variation Totale, ce qui amène au problème de mini-
misation suivant :

ŵl = argmin
w,b

ℓ(w) + λ1‖w‖1 + λ2TV (w) , λ1 ≥ 0 , λ2 ≥ 0

En optimisant les deux paramètres λ1 et λ2 par validation croisée interne, nous
pouvons adapter le modèle entre une régularisation parcimonieuse (ℓ1) ou
une régularisation générant plutôt des groupes d’attributs connexes (TV) Le
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problème définie dans l’équation précédente est très similaire à celui du smooth
Lasso [Hebiri 10] qui est basé sur la norme ℓ2 du gradient. Cependant, la régula-
risation TV est plus adaptée pour l’extraction de groupes d’attributs, car elle
pénalise la norme ℓ1 du gradient. Une autre perspective intéressante serait de
considérer au sein d’une même approche l’information intra et inter sujet, en
utilisant des régularisations structurées se basant sur des normes mixtes (e.g.
group Lasso [Yuan 06, Bach 08]).

Méthodes Moyenne ζ Dév. strd. ζ max ζ min ζ p-val/VB-MCBR

SVR 0.82 0.07 0.9 0.67 0.0003 **
Elastic net 0.9 0.02 0.93 0.85 0.0002 **
BRR 0.92 0.02 0.96 0.88 0.0011 ***
ARD 0.89 0.03 0.95 0.85 0.0003 **
Gibbs-MCBR 0.93 0.01 0.95 0.92 0.0099 **
VB-MCBR 0.94 0.01 0.96 0.92 -
TV λ = 0.05 0.92 0.02 0.95 0.88 0.0002 **

Tab.i : Représentation mentale de la taille - Analyse intra-sujet. Variance ex-
pliquée ζ pour les différentes méthodes utilisées dans cette thèse. Les p-valeurs
sont calculées en utilisant un test t apparié.

Méthodes Moyenne ζ Dév. strd. ζ max ζ min ζ p-val/TV

SVR 0.77 0.11 0.97 0.58 0.0277 *
Elastic net 0.78 0.1 0.97 0.65 0.0405 *
BRR 0.72 0.1 0.94 0.6 0.0008 **
ARD 0.52 0.33 0.93 −0.28 0.0085 **
Gibbs-MCBR 0.79 0.1 0.97 0.62 0.0289 *
VB-MCBR 0.78 0.1 0.97 0.65 0.0151 *
SC - BRR 0.82 0.08 0.93 0.7 0.5816
TV λ = 0.05 0.84 0.07 0.97 0.72 -

Tab.ii : Représentation mentale de la taille - Analyse inter-sujet. Variance ex-
pliquée ζ pour les différentes méthodes utilisées dans cette thèse. Les p-valeurs
sont calculées en utilisant un test t apparié.

Approches Bayésiennes et approches discriminantes classiques

Les méthodes présentées dans cette thèse peuvent être grossièrement clas-
sifiées en deux groupes : les approches Bayésiennes (e.g. Bayesian Ridge Regres-
sion, Automatic Relevance Determination, Multi-Class Sparse Bayesian Regression)
et les approches discriminantes (e.g. Lasso, Elastic net, SVC, la régularisation par
Variation Totale). En terme de temps de calcul, les approches Bayésiennes ne
sont pas particulièrement efficaces, comparées aux approches discriminantes.
Bien que le cadre Bayésien permette d’adapter automatiquement les paramètres
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du modèle aux données, cela à un coût en termes de temps de calcul. Ce coût
est souvent plus élevé que celui d’une validation croisée interne permettant
d’optimiser les paramètres des approches discriminantes.

Une exception est la coalescence supervisée, où Bayesian Ridge Regression
est bien adaptée pour adapter la régularisation à la complexité variable du
problème lorsque l’on parcourt l’arbre. En effet, dans ce cas bien spécifique,
le niveau de parcimonie peut varier entre les différents niveaux de l’arbre, et
Bayesian Ridge Regression adapte finement la régularisation au niveau de parci-
monie spécifique lors de chaque coupe de l’arbre.

En terme de performance en prédiction, les deux types d’approches sont
similaires, avec un léger avantage pour les approches Bayésiennes dans le cas
des analyses intra-sujet. En effet, de telles approches peuvent plus précisément
adapter la régularisation à l’organisation spatiale très fine du codage neuronal
spécifique à un sujet. Dans le cas de l’analyse inter-sujet, les approches discri-
minantes sont légèrement meilleures, car le choix de leurs paramètres par va-
lidation croisée interne est moins sensible au sur-apprentissage d’un ensemble
particulier de sujets.

En conclusion, les approches discriminantes cherchent seulement à réaliser
une prédiction correcte, alors que les méthodes Bayésiennes peuvent être uti-
lisées pour construire des modèles plus interprétables qui tiennent compte de
différentes hypothèses sur les données d’IRMf. Les modèles Bayésiens qui sont
couramment utilisés ne sont pas spécifiques à l’analyse de données d’IRMf, et,
en ce sens, il peut être intéressant de tenir compte au sein du modèle de cer-
taines hypothèses sur le codage neuronal. Par exemple, dans le modèle MCBR,
nous faisons l’hypothèse d’un codage par populations (i.e. différents groupes
de voxels sont impliqués dans le codage) (voir aussi [Friston 08]). Donc, les ap-
proches Bayésiennes semblent prometteuses car elles peuvent plus facilement
tenir compte d’information a-priori sur les données d’IRMf, par rapport aux
approches discriminantes.

Extensions Les processus Gaussiens (GPs) [Rasmussen 05] ont été utilisés avec
succès en IRMf [Marquand 10], et permettent de tenir compte d’a-priori com-
plexes sur la moyenne et la covariance des poids. En particulier, ils peuvent
être utilisés pour introduire l’information spatiale dans les modèles Bayésiens,
d’une façon similaire à [Friston 08]. Une autre extension peut être de considérer
la construction des cartes d’activations et le modèle prédictif, au sein d’une
même approche. La méthode de détection-estimation conjointe développée dans
[Vincent 07] ou le modèle hiérarchique proposé dans [Lashkari 10] sont deux
alternatives intéressantes pour combiner l’identification des motifs fonction-
nels et leurs utilisation pour la prédiction. Afin de tenir compte de l’informa-
tion spatiale dans une approche purement Bayésienne, les Champs de Markov
aléatoires (MRFs) sont aussi une approche prometteuse (voir [Ou 10] pour un
exemple d’utilisation de l’information anatomique).
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Information spatiale et agglomération d’attributs

Dans cette thèse, nous développons la notion d’agglomération d’attributs,
et montrons qu’inclure l’information spatiale au sein d’une analyse au niveau
des voxels, comme avec la régularisation par Variation Totale, ou en créant des
structures intermédiaires telles que les parcelles, permet d’obtenir des résultats
à la fois précis et interprétables en inférence inverse. Il y a donc un grand intérêt
à utiliser l’information spatiale dans l’inférence inverse, et nous pensons que
c’est une piste intéressante pour le développement de l’apprentissage statis-
tique en neuro-imagerie.

Nous avons introduit la coalescence supervisée, qui est une approche par-
ticulièrement efficace dans les analyses inter-sujet, et qui est plus performante
que les approches de l’état de l’art. Plus généralement, cette méthode n’est pas
restreinte aux images cérébrales, et peut être utilisée avec n’importe quel jeux
de données où la structure spatiale multi-échelle est considérée comme per-
tinente (e.g. images médicales ou satellitaires). De plus, un tel algorithme est
bien adapté à la construction d’atlas anatomo-fonctionnel, car il considère de
manière conjointe l’information spatiale et l’information fonctionnelle.

Extensions Parmi plusieurs extensions possibles, il peut être intéressant de
développer une approche similaire aux Forets aléatoires [Breiman 01], en ag-
glomérant différents arbres de parcellisations créés par bootstrap sur l’ensemble
d’apprentissage. Les parcellisations résultantes sont combinées en moyennant
leurs poids ou leurs prédictions. Des études préliminaires ont montrées un ac-
croissement des performances en prédiction, mais certains travaux semblent
nécessaires afin de préserver la structure spatiale des parcelles. De plus, une
limitation majeure de l’algorithme de coalescence supervisée, est qu’il repose
sur une exploration gloutonne de l’arbre, et l’optimalité n’est pas assurée. Afin
d’améliorer cet aspect, il est possible d’introduire la structure hiérarchique de
l’arbre au sein d’un problème d’optimisation convexe, par exemple en s’inspi-
rant des travaux détaillés dans [Jenatton 10].
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Introduction

Context

Many research fields aim at understanding some components of the human
cognition, such as linguistic, social behavior, memory or sensory-motor inter-
actions, and are referred to as cognitive neurosciences. The multi-scale nature of
the nervous system (from the synapse – connection between neurons – 2 to 40
nm, to the brain – 150 mm for the longitudinal axis –), its extremely complex
structure (up to 1015 connections) and the difficulty of in-vivo imaging, render
this study very challenging. Cognitive neurosciences are thus based on a wide
range of tools such as psychophysics, computer modeling and neuroimaging.
One of the aims of neuroimaging is to provide a cartography of the functional
regions of the brain and their respective relationships. This includes the study
of the neural code, which is the internal representation of any given cognitive
parameter within the brain, and thus, understanding this coding, i.e. decoding
it, is particularly important in cognitive neurosciences.

The neural code is extremely rich and complex [Dayan 01], and its charac-
terization principally relies on interactions between the different entities im-
plied in this coding, called coding entities, and the spatial distribution of these
entities. Two major schemes of coding have been proposed for neural coding:
sparse coding, where very few coding entities are implied (theoretically only
one), and population coding, where coding is performed by many coding enti-
ties. Another aspect of neural coding is the spatial distribution of the coding
entities, that can be clustered when these coding entities are grouped together in
compact regions of the brain, or distributed, when the coding entities are spread
without any emerging structure.

Functional brain imaging (or Neuroimaging) provides a unique opportunity
to study brain functional architecture, while being minimally invasive, and
is thus well-suited for the challenging study of the spatial layout of neural
coding. Different modalities exist, each one having specific spatial and tem-
poral resolutions; among them Functional Magnetic Resonance Imaging (fMRI)
has emerged as a fundamental modality for brain imaging. Over the last two
decades, fMRI [Ogawa 90b, Ogawa 90a] has been widely used for brain imag-
ing, and has become a reference method for neuroscientific studies, due to its
good spatial resolution. fMRI consists in measuring the oxygenation of the
blood by Magnetic Resonance Imaging, using a specific contrast called Blood Oxy-
genation Level-Dependent (BOLD) contrast. When some neural populations are
active, the increase of deoxyhemoglobin ratio in the blood increases the BOLD
contrast, and thus provides access to images of brain activity.

fMRI images are pre-processed, and modeled through a General Linear Model,
that takes into account the different experimental conditions and the dynam-
ics of the hemodynamic response in the design matrix. The resulting model
parameters, a.k.a. activation maps, represent the influence of the different ex-
perimental conditions on local fMRI signals. The classical and widely used
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approach for analyzing these activation maps is called classical inference, and
relies on a mass-univariate statistical tests (one for each voxel), yielding the
so-called Statistical Parametric Maps (SPMs) [Friston 95]. Such maps are of par-
ticular interest in neurosciences, as they open the door to localizing the voxels
that are significantly active for any combination of experimental conditions,
and thus are probably implied in the underlying neural code of the cognitive
processes. However, this classical inference suffers from multiple comparisons
issues, and does not take into account the multivariate structure of the fMRI
data.

A recent approach, called inverse inference (or ”brain-reading”) [Dehaene 98,
Cox 03], has been proposed in order to cope with the limitations of the classical
inference. Inverse inference relies on a pattern recognition framework, and aims
at decoding the neural code by using statistical learning methods. Based on a set
of activation maps, inverse inference builds a prediction function that can be
used for predicting a behavioral target for a new set of images. The resulting
prediction accuracy is a measure of the quantity of information about the cog-
nitive task shared by the voxels. This approach is multivariate, and can provide
more sensitive analysis than standard statistical parametric mapping procedure
[Kamitani 05, Haynes 06]. Many methods have been tested for classification
or regression of activation images (Linear Discriminant Analysis, Support Vector
Machines, Lasso, Elastic net regression, and many others), but, in this problem, the
major bottleneck remains the localization of predictive regions within the brain
volume. Additionally, we have to deal with the curse of dimensionality, as the
number of features (voxels, regions) is much larger (∼ 105) than the numbers
of samples (images) (∼ 102), and thus the prediction method may overfit the
training set and thus not generalize well to new samples.

The overall aim of this thesis is the development of statistical learning meth-
ods that take into account the characteristics of fMRI data, and that can be used
for inverse inference. From an experimental point of view, we particularly focus
on the understanding of the human visual cortex, but the presented framework
can be used to study any brain system.

Organization and contributions of this thesis

Chapter 1 - Accessing the neural code

In the first chapter, we describe the functional organization of the human brain,
and detail the notion of neural code. We focus on the different spatial distribu-
tions of the entities implied in coding, and we detail the functional Magnetic
Resonance Imaging modality, that is well-suited for retrieving some large-scale
features of neural coding.

Chapter 2 - From fMRI acquisitions to ”Brain-Reading”

In the second chapter, we detail the different pre-processing steps required for
fMRI data analysis. We introduce the General Linear Model that constructs a
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Introduction

set of activations maps from the data, given a description of the experimental
paradigm and some physiological priors in the BOLD signal. Then, we develop
the classical approach for exploiting these activations maps, called classical in-
ference. This method relies on mass-univariate statistics within the whole brain,
and is thus fast and easy to implement, but suffers from important drawbacks
for decoding.

In a second part, we introduce the inverse inference framework, that is based
on a pattern recognition approach. We present some specific uses of inverse in-
ference in neurosciences, and how this approach can be used for decoding.

Chapter 3 - Statistical learning for fMRI inverse inference

In this chapter, we detail the key concepts of statistical learning that are used
in the inverse inference framework, and we explain the different bottlenecks
related to the characteristics of fMRI data, in particular the high dimensionality
of the data.

In a second section, we introduce ”historical” solutions based on Support
Vector Machine and Discriminant Analysis, and we explain why such methods
are not necessarily well-suited for the inverse inference framework. Then, we
detail another approach for dealing with the high dimensionality of fMRI data,
called regularization. We show that regularization-based methods perform well
in our case, and we detail Bayesian frameworks that tune automatically the
amount of regularization, based on the data. Finally, we discuss the role of
dimension reduction, that deals with the curse of dimensionality issue associated
with decoding problems by reducing the number of features before learning a
prediction function.

We conclude by giving the requirements of a good statistical learning ap-
proach for fMRI inverse inference: it should be multivariate, multi-scale, and
should take into account the spatial structure of the data.

Chapter 4 - Multi-Class Sparse Bayesian Regression

Bayesian regularizations are attractive for inverse inference but the classical
approaches have to be adapted to the characteristics of fMRI data. In this
chapter, we propose the first contribution of this thesis, a Bayesian framework
for sparse regularization, that generalizes previous Bayesian regularizations.
Based on a multi-class model, it creates a clustering of the features based on
their relevance in the prediction, yields an adaptive regularization, and effec-
tively copes with the limitations of other Bayesian regularization techniques.

Chapter 5 - Supervised clustering

A major drawback of state-of-the-art approaches in inverse inference is that they
do not use spatial information. Due to the metabolic processes underlying the
fMRI signal and the intrinsic structure of at least some neural codes, there is
a local filtering of information that should be taken into account. This can be
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done by feature agglomeration, that averages the signal in neighboring voxels to
create intermediate structure called parcels.

In this chapter we describe the second contribution of this thesis, namely
the supervised clustering approach. This method uses the image structure of
the data through a spatially constrained hierarchical clustering. Additionally,
we adapt this clustering to the predictive task. Thus the proposed approach
yields interpretable maps and outperforms reference methods in inter-subjects
analysis.

Chapter 6 - Total variation regularization

Based on previous studies and on the results obtained in this thesis, we con-
clude that both regularization and spatial information are important for improv-
ing both interpretability of the resulting maps and prediction accuracy. Based
on this information, one can extract a correct model of the neural code.

In this chapter, we describe the last contribution of this thesis, that intro-
duce spatial information into a generic regularization framework. We imple-
ment the Total Variation regularization (previously developed for image de-
noising) in a predictive framework, both in regression and classification set-
tings. This approach outperforms reference methods, while extracting few in-
terpretable clusters from the data.

Appendices

Appendix A - A short introduction to Magnetic Resonance Imaging

In this appendix, we briefly explain the physical basis of Magnetic Resonance
Imaging (MRI).

Appendix B - Description of the data sets

In this appendix, we describe the simulated and real data sets that are used in
this thesis.

Appendix C - Scikit-learn for fMRI inverse inference

In this appendix, we describe how one can use the Scikit-learn for fMRI inverse
inference and we give the principle functions that can be used for such analysis.

Software contributions

During this thesis, we have contributed to the Scikit-learn, a Python module
integrating mainstream machine learning algorithms with a uniform API. It is
open-source and aims at providing simple and efficient solutions to learning
problems.

http://scikit-learn.sourceforge.net/
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1
Accessing the neural code

In this thesis, we focus on retrieving the spatial layout of the neural

code, i.e. the specific tuning of the brain tissues implied in this coding,

and their spatial localization. In this chapter, we first give an overview

of the functional structure of the brain. Then, we give some definitions

about neural coding, and we describe the different possible distribu-

tions of the coding entities. More specifically, we focus on the notions

of Sparse coding and Population coding. Finally, we briefly describe

the principles and use of fMRI acquisitions, and how this modality can

be used for functional imaging.
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1.1 Brain functional architecture

In this section, we briefly introduce the neural basis of cognition, and the brain
functional architecture.

1.1.1 Overview of the human nervous system

Neural cells

The human brain has a volume of around 1200 cm3, and is roughly constituted
by two types of cells: neurons (about 1011) (see Fig. 1.1) that are responsible
for information processing, and glia cells (4 times more than neurons) that are
responsible for the structural and metabolic support of neurons. The informa-
tion is transmitted along the neuron by action potentials (also called spikes), that
are short-lasting electrical events in which the electrical membrane potential
of a cell rapidly rises and falls. Cells are connected through junctions called
synapses (up to 104 by neuron), which transmit information using a chemical
pathway (the release of neurotransmitter).

Figure 1.1: A neuron has a cell body
(called the soma), many regions for receiv-
ing information from other neural cells
(called dendrites), and often an axon (nerve
fiber) for transmitting information to other
cells (an axon can be longer than 1 me-
ter in humans) The information in the
axon is transmitted through an electri-
cal signal called action potential, which
is based on the electrical properties of
the neuronal membrane. Adapted from
http://commons.wikimedia.org/.

Human brain

The human brain is the center of the human nervous system, and is located in
the cranium, protected by three membranes called meninges. It is constituted
of different regions, in particular the two cerebral hemispheres (also called telen-
cephalon) which are widely studied in neuroimaging (see Fig. 1.2), as they are
responsible of the performance of a majority of the cognitive tasks. There are
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CHAPTER 1. ACCESSING THE NEURAL CODE

also two important circulatory systems in the brain: one for the cerebrospinal
fluid – CSF – (support and protection of neural cells), and one for the blood
(supply in oxygen).

Figure 1.2: Different parts of the human brain.

Figure 1.3: The four different lobes of the cerebral cortex. Adapted from
http://agaudi.files.wordpress.com/.

The two cerebral hemispheres are the largest part of the human brain which
can be decomposed in two parts: the white matter constituted by the nerve
fibers, and the gray matter constituted by the neural cell bodies. The surface
of the hemispheres is a highly circonvoluted 6-layered structure called neocor-
tex (or more simply cerebral cortex). A cortical fold is called sulcus, and the area
between two sulci is called a gyrus. The cerebral cortex can be decomposed in the
left and right hemispheres, which can themselves be decomposed in four dif-
ferent lobes: frontal lobe, parietal lobe, occipital lobe and temporal lobe (see Fig. 1.3).
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1.1.2 Functional regions of the human brain

The human brain can be decomposed in different functional regions which cor-
respond to different part of the information processing within the brain (see
Fig. 1.4). These functional regions roughly correspond to anatomical regions,
and can be categorized in three general categories: sensory areas (e.g. visual
cortex, auditory cortex) that receive and process information from sensory or-
gans, motors areas (e.g. primary motor cortex, premotor cortex) that control the
movements of the subject, and associative areas (e.g. Broca’s area, Lateral Occip-
ital Complex – LOC – or Intra Parietal Sulcus – IPS –) that process the high-level
information related to cognition. The experiments detailed in this thesis are
related to object recognition (visual cortex and LOC) and number processing
(parietal cortex and IPS).

Figure 1.4: The main functional regions of the human brain (left hemisphere),
and the two regions which are studied in this thesis (LOC and IPS). Adapted
from http://agaudi.files.wordpress.com/.

1.2 Neural coding of mental processes

The neural coding is the correspondence between a stimulus and its represen-
tation by individual or ensemble of neuronal responses. Accessing this neural
coding may be helpful for understanding the mental processes, and more gen-
erally, the way in which the brain processes information. As stated by Perkel
[Perkel 68], the problem of neural coding is to elucidate:

”[. . . ] the representation and transformation of information in the
nervous system. ”

The study of neural coding can be carried on different scales or structures
(from single neuron to large population of neurons such as cortical columns
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with about 104 neurons), and we refer to these structures as coding entities or
neuronal populations. Additionally, this study can be done by decoding. Decod-
ing refers to the reconstruction of a stimulus, or certain aspects of that stimulus,
from the signal it evokes in different coding entities.

In this thesis, we focus on the notion of spatial layout of neural coding, and
we address two fundamental questions; the question of the specific tuning of
the neuronal populations involved in a cognitive task (Sparse coding or Pop-
ulation coding); and the question of the spatial distribution (Distributed coding
or Clustered coding) [Dayan 01] of these neural populations within the whole
brain (cerebral cortex, basal ganglia, thalamus, . . .). Understanding these dif-
ferent coding schemes is crucial for cognitive studies, and is addressed in this
thesis using functional neuroimaging.

In this section, we introduce the different notions required for studying
some aspects of neural coding. After describing the difference between Sparse
coding and Population coding, we detail both Distributed coding and Clustered cod-
ing.

1.2.1 Sparse coding and Population coding

The first component of neural coding is the definition of the entities that are
involved in the coding. Two types of organization are usually observed in
neural activity: Sparse coding and Population coding.

Sparse coding

Sparse coding refers to the idea that the cognitive information is coded by sparsely
distributed neural populations, the majority of the remaining populations be-
ing inactive or having very low activity when the corresponding information is
presented. The extreme case is the well-known ”grandmother cell” (also called
gnostic neuron [Konorski 67]), where a single neuron is believed to code for a
very specific information (e.g. the notion of grandmother). Those gnostic neu-
rons are organized in some specific areas of the cortex called gnostic fields (e.g.
the extra-striate visual cortex for specific visual processings). An identical, but
more biologically plausible, model has been proposed by Barlow [Barlow 72],
with the notion of cardinal cells. Such cells carry all the relevant information on
a cognitive task, the remaining populations of neurons adding little additional
information. More details on the concept of gnostic cell can be found in the
review of Gross [Gross 02].

The justifications of the gnostic neurons model and sparse coding, as ex-
posed by Konorski [Konorski 67], are the following :

1. the increasing specificity of neurons towards V2 and V3 (regions of the
visual cortex) until some expected shape-specific neurons [Hubel 62].

2. preliminary results on the visual impairments in visual cognition created
by some lesions in monkeys [Ettlinger 68].
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3. the agnosias following cortical lesions in humans, e.g. prosopagnosia
linked with ventral temporal lesions.

4. the fact that the firing rate of a neuron coding for some information is
limited by the available energy. The limitation of resources within the
brain implies that only a few fractions of the whole neural population
will have a high firing rate, yielding sparsity in the coding.

Such sparse coding has been observed in some very specific cognitive sys-
tems, e.g. : the olfactory system of the insects, where each odor is individually
represented by very few neurons which responded by only two action poten-
tials [Perez-Orive 02]; a more debated result is the existence of individual spe-
cific recognition cells, which implies that some neurons respond specifically to
some representations of individuals [Quiroga 05].

Limitations of Sparse coding

The sparse coding yields a simple view of neural coding. It is easy to un-
derstand, easy to link a stimuli with a neuronal response, and easy to model.
However, more recent works have argued again the notion of gnostic cell. Gross
et al. [Gross 92] show that complex visual stimuli are encoded within a pattern
of responses over a population of neurons within the inferior temporal cortex,
rather than encoded in specific gnostic cells (see also [Desimone 91]). The cells
known to be gnostic respond, even weakly, to a variety of individual faces.
They are not narrowly selective for one and only one face (independently of
size, orientation and color). Thus, they violate the strict definition of sparse
coding as exposed by Barlow [Barlow 72]. Instead, each stimulus is encoded
in weakly selective neurons : e.g the notion of grandmother is ”encoded” in a
specialized population of neighboring cells.

One of the main argument against the assumption of sparse coding, is the
combinatorial cost of such a model. Indeed, there is a clear limit of sparse
coding: if each concept is coded by a single neuron, it is easy to see the com-
binatorial cost raised by the coding of all the stimuli encountered by a human
being during is life. This limitation is well illustrated by the concept of yellow
Volkswagen cell [Harris 80]. If the notion of yellow and the notion of Volkswa-
gen are encoded within two different gnostic neurons, is the notion of yellow
Volkswagen cell encoded within a third neuron ? Such a highly combinatorial
a approach is biologically very unlikely, and shows the limit of the concept of
gnostic cell.

Population coding

New explanations for neural coding have thus been developed following the
old theory of Ensemble Coding [Young 02] and is known as Population coding.
The main idea behind population coding is that information is encoded within
a large population of weakly selective neurons (i.e. which do not respond to
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only one stimulus), forming some patterns of activation. All the neurons in-
volved in the pattern have to be taken into account to decode the correspond-
ing neural information. This coding is based on a many-to-many relationship
between two types of representations (concepts and neurons) :

• each concept is represented by many neurons.

• each neuron participates in the representation of many concepts.

This coding is particularly robust to biological noise such as cellular death
and variability of the neuronal response (see illustration Fig.1.6), as explained
in [Pouget 00]. However, such type of functional organization implies that
one given neuron will activate for different stimuli [Treisman 96], and thus
the decoding of a stimulus from the neuronal coding requires more complex
approaches. Different cognitive processes exhibit a population coding, as the
regions specific to the recognition of faces in monkeys [Tsao 06], or the mo-
tor cortex, where movement direction is encoded by a population of neurons
[Georgopoulos 86].

Figure 1.5: Illustration of Sparse coding and
Population coding in a simple spatial discrimi-
nation experiment. The spatial position of the
two dots can be encoded in a single 15 × 15
array (sparse coding). Each dot has two co-
ordinates, and if one coordinate is wrong, the
spatial position of the dot cannot be well ap-
proximated (error along one axis). The spa-
tial combination can also be coded by three
different 5 × 5 arrays (population coding).
In this case, each dot has 2 × 3 coordinates,
but, if a coordinate is wrong, the spatial po-
sition of one dot can still be well approxi-
mated (the dot is still at the intersection of
the two others black arrays). Adapted from
http://www.cs.toronto.edu/h̃inton/.

1.2.2 Clustered coding and distributed coding.

Besides the notion of entities involved in the coding, it is useful to know how
those entities are spatially distributed across the cerebral cortex (see Fig.1.6).

Spatial distribution

Two different types of spatial distribution of the coding entities have been de-
fined :
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• Clustered coding: The coding entities can be grouped into small clusters
(e.g. cortical columns of the primary visual cortex). This is supported
by some considerations on the minimization of the cost of connexions
(such as axons, dendrites), which predicts that strongly interacting neu-
rons should be close to each other (see [Chklovskii 04]).

• Distributed coding: The coding entities can also be widely distributed
across the whole cortex. An example is given in [Haxby 01]: the shape
of an object is coded within V4 (visual cortex) and the posterior infer-
otemporal cortex, by a large population of neurons that only code for
simple shape features.

At the scale of a cortical region, clustered coding can be viewed as a sparse
coding, as the information is encoded within a specific region of the cortex. In
that case, the region involved in information coding is called a gnostic region, by
analogy with the gnostic neuron. Similarly, at the same scale, distributed coding
can be viewed as a population coding: the stimulus is encoded by a pattern of
active regions.

Example of the visual system

As one of the cognitive paradigm that has been used in this thesis deals with
visual object recognition, we briefly detail some notions of the coding process
in the visual system. This system has been widely studied for several decades,
but some aspects of its coding process still remain controversial. In particular,
the existence of gnostic regions is still highly debated. The main regions that
have been found within the brain (at the fMRI resolution) across several studies
are the following :

• Anterior Inferotemporal cortex : specificity to body parts (a.k.a Extrastriate
Body Area - EBA) [Downing 01]. The coordinates in the MNI space are
x = ±51 mm, y = −71 mm and z = −4 mm.

• Superior temporal sulcus : specificity to faces (a.k.a fusiform face area - FFA)
[Wada 01]. The coordinates in the MNI space are x = ±44 mm, y =
−50 mm and z = −20 mm.

• Human hippocampus : specificity to particular places (a.k.a Parahippocam-
pal Place Area - PPA) [Kreiman 00]. The coordinates in the MNI space are
x = ±30 mm, y = −44 mm and z = −14 mm.

• Left inferior temporal cortex : specificity to processing of letter strings (a.k.a
Visual Word Form Area - VWFA) [Cohen 00]. The coordinates in the MNI
space are x = −48 mm, y = −60 mm and z = −16 mm.

The coordinates are given in the MNI space, that is described in section 2.1.
The existence of the four gnostic regions can be explained by the familiarity
of the presented stimulus in the sensory world (see [Op de Beeck 05]). Yet
the existence of such specific regions involved in objects recognition is highly
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debated. It seems that even if there exists some discriminative information
for other visual categories outside the previously defined regions, this infor-
mation is not sufficient for a normal perceptual prediction. In particular, see
[Downing 06, Reddy 06] for studies showing the existence of gnostic regions,
and [Haxby 01] for a study arguing for distributed coding.

Population
 coding

Sparse
 coding

Clustered
 coding

Distributed
 coding

Figure 1.6: Illustration of the different types of entities involved in the neural
coding, and the different spatial distributions of these entities. Each color cor-
responds to a condition, gnostic neurons are represented as disks with uniform
color, and patterns of non-specific neurons are represented by disks with mixed
colors. The two notions of entities and spatial distribution are clearly distinct.
In the clustered coding case, coding entities are grouped into small clusters. In
the distributed coding case, coding entities are widely spread across the whole
cerebral cortex. Population coding defines a pattern of activation which has to
be decoded, while sparse coding relies on very few active neurons.

1.3 Functional neuroimaging and fMRI

Functional neuroimaging (a.k.a functional brain imaging) aims at revealing
brain physiological activity and its spatial distribution, and thus allow to study
the spatial layout of the neural code. Different approaches (see Fig.1.7) can
been used for functional neuroimaging. The aim of this section is to present the
common modalities for functional imaging, and their characteristics in terms
of spatial and temporal resolutions. Then, we detail Functional Magnetic Res-
onance Imaging- fMRI, which is the modality used in this thesis. Our focus on
fMRI is driven by the good spatial resolution of this approach, as we aim at
retrieving the spatial organization of the neural code.
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1.3.1 Functional neuroimaging modalities

Electroencephalography - EEG

Electroencephalography – EEG – is a widely used modality for in vivo functional
brain imaging. EEG measures the electrical activity of neurons, that can be
recorded on the scalp. EEG is particularly used for the diagnosis of epilepsy.
EEG signals are compared to the stimulus timing, and one can access fine tem-
poral patterns of activation. However, due to the ill-posed problem of volu-
metric data reconstruction from surface measurements, EEG has a poor spatial
resolution compared to other modalities such as fMRI.

Stereotactic electroencephalography - sEEG

Stereotactic electroencephalography – sEEG – is an invasive version of EEG, based
on intra-cranial recording. It measures the electrical currents within some re-
gions of the brain using deeply implanted electrodes, localized with a stereo-
tactic technique. This approach has the good temporal resolution of EEG and
enjoys an excellent spatial resolution. However, sEEG is very invasive and is
only performed for medical purpose (e.g epilepsy) and has a limited coverage
(only the regions with electrodes). A close approach is Electrocorticography –
ECog – that uses electrodes placed directly on the exposed surface of the brain.

Magnetoencephalography - MEG

Magnetoencephalography – MEG – measures the magnetic field induced by neu-
ral electrical activity. The synchronized currents in neurons create magnetic
fields (very weak, few hundreds of fT ) that can be detected using specific de-
vices (SQUIDs). As with EEG, the main challenge is to localize the sources
of electric activity in the brain, and MEG has spatial resolution of a few mil-
limeters to a few centimeters (a better precision can be obtained using fMRI).
With a temporal resolution on the order of milliseconds, MEG is well-suited
for recording the timing of the activity within the brain.

Positron emission tomography - PET

Positron emission tomography – PET – is an imaging modality based on the detec-
tion of a radioactive tracers introduced in the body of the subject. The tracers
(or radionuclide decay) emit a positron which can in turn emit, after recombina-
tion with an electron, a pair of photons that are detected simultaneously. PET
can be used for functional imaging, by choosing a specific tracer. In particu-
lar, the fluorodeoxyglucose (or FDG), is used for imaging the metabolic activity
of a tissue. PET has two major limitations: the tracers required for PET are
produced by cyclotrons (a type of particle accelerator), which implies an heavy
logistic, and the use of radio-tracers is not harmless for the health of the sub-
jects so that PET is now used for medical purpose only.
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Single photon emission computed tomography - SPECT

Single photon emission computed tomography – SPECT – is similar to PET. How-
ever, the measure in SPECT is the direct consequence of the tracer (the tracer
emits gamma radiation), where PET is based on an indirect consequence of
the tracer (positron then gamma radiation). The resolution is slightly worst
than PET. SPECT can be used for functional brain imaging, by using a specific
tracer which will be assimilated by the tissue in an amount proportional to the
cerebral blood flow.

Near-infrared spectroscopy - nIRS

Near-infrared spectroscopy – nIRS – is a recent modality for medical imaging.
nIRS is based on the fact that the absorption of the light in the near-infrared
domain contains information on the blood flow and blood oxygenation level.
It is non-ionizing (harmless), and the instruments are not too expensive. How-
ever, the spectra obtained by nIRS can be difficult to interpret, and this tech-
nique, which requires a complex calibration, measures signals only close to the
surface of the brain.
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Figure 1.7: Spatial and temporal resolutions of the different modalities com-
monly used for functional imaging. In this thesis, we use fMRI.

1.3.2 Functional Magnetic Resonance Imaging

Functional MRI – fMRI – is a widely used method for functional brain imaging,
because it is non-invasive, has a good spatial resolution (1mm), and provides
access, albeit indirectly, to the neural activity. Moreover, in standard acqui-
sitions, fMRI yields a full-brain coverage, which is useful for decoding, as it
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does not restrict the study to superficial layers or predefined regions of the cor-
tex and includes deep structures (e.g. basal ganglia) in the decoding. A short
description of Magnetic Resonance Imaging – or MRI – working principles can be
found in Appendix A. In this section, we recall the principle of fMRI, and we
address the following points:

• How MRI is used for functional imaging.

• The link between MRI measurements and neural activity.

• The spatial and temporal characteristics of the functional signal.

Blood oxygenation level-dependent – BOLD – contrast

Ogawa et al. performed in 1990 [Ogawa 90b] the seminal experiment that
would introduce the use of MRI as a functional imaging tool. The researchers
were studying magnetic resonance of the protons in the brain of living rats,
and noticed the existence of vertical rows, that correspond to some cerebral
veins. The contrast is more accentuated in the case of an anoxic brain (lack
of oxygen). This contrast is called blood oxygenation level-dependent (or BOLD),
because it depends of the level of oxygenation of the blood. The BOLD con-
trast is observed through a gradient-echo EPI (EchoPlanar Imaging) sequence
[Ogawa 90b, Ogawa 90a, Turner 91, Bandettini 92].

The BOLD contrast can be explained by considering a protein present in
the blood cells, called hemoglobin. Hemoglobin can bind with oxygen in or-
der to bring it into the different cells of the organism, this link being reversible
and unstable. Thus, it can be found in two different forms : oxyhemoglobin
(Hb−O2 - giving a bright red color to the blood), its oxygenated form, and de-
oxyhemoglobin (Hb - giving a blue-purple color to the blood), its deoxygenated
form. Oxyhemoglobin is diamagnetic (all its electrons are paired), and thus has
no magnetic property. This has been explained by the particular distribution
of electrons between oxygen and iron oxides (see [Pauling 36, Thulborn 82]).
When the oxyhemoglobin loses its oxygen atoms and becomes the deoxyhemoglobin,
it becomes paramagnetic (due to the iron oxides). The presence of deoxyhe-
moglobin in the blood modifies the RMN signal of the protons of the water
molecules surrounding the blood vessels. Indeed, the difference of magnetic
susceptibility between the blood vessel and the surrounding tissues, due to the
paramagnetism of the blood, creates microscopic inhomogeneities in the mag-
netic field [Ogawa 90b, Thulborn 82]. Thus, the BOLD signal increases with the
ratio oxyhemoglobin over deoxyhemoglobin.

BOLD contrast imaging

BOLD contrast relies on some physiological factors: it depends on the local
equilibrium between the oxygen provided by the blood vessels, and the con-
sumption of oxygen in brain tissue due to neural activity. In normal conditions,
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the arterial blood is fully oxygenated and does not contribute to the BOLD con-
trast, but veins create low contrast regions, that explain the results found by
Ogawa et al.

Based on these results, one can create an image of changes in BOLD con-
trast due to some given physiological events, and thus visualize, with a non-
invasive method, the changes in blood oxygenation. The variations of BOLD
contrast in the brain of a living rat during the inhalation of a gas that increases
the cerebral blood flow (CBF), and thus blood oxygenation, have been studied in
[Ogawa 90a] (see Fig. 1.8). These results show that BOLD contrast can be used
to image blood oxygenation.

Figure 1.8: Illustration of the effect of the CO2 on the BOLD contrast.
Left - Coronal slice showing the BOLD contrast of an anesthetized rat which
has breathed pure O2.
Right - Coronal slice of the same rat, showing the BOLD contrast after respi-
ration of a mixture of 90% of O2 and 10% of CO2 (this mixture increases the
oxygenation of the venous blood). The arrow shows the sagittal sinus, which
is one of the major veins of the brain. We can see a strong increase of intensity
in this vein, that illustrates that the variation of blood oxygenation is visible in
BOLD contrast. Adapted from [Ogawa 90a].

Functional MRI and hemodynamics

Some work has been done [Cooper 75, Frostig 90] to understand the correlation
between changes in venous blood and increases in neuronal activity. In partic-
ular, the changes in blood flow in response to an increase in electrical activity
has been studied (see [Frostig 90] among others). Using high resolution optical
imaging, the authors were able to measure a coupling between neuronal activ-
ity and micro-circulatory responses. Moreover, they showed that the observed
signal is probably linked to the supply in oxygen by the capillaries in response
to the stimulus. Additionally, in [Bandettini 92], the authors show that, during
a sensory stimulation, there is a local decoupling between the cerebral blood
flow, and the cerebral metabolic rate of oxygen. An oversupply of oxygenated
blood is delivered to the active region, which decreases the oxygen extraction
fraction. This decrease implies a local increase in the average blood oxygen
partial pressure, that can be observed using BOLD contrast.

Thus, BOLD contrast allows to visualize changes in hemodynamics that are
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related to neural activity, and it is possible to use BOLD contrast for functional
imaging. Indeed, it has been shown [Ogawa 92] that a visual stimulation cre-
ates an increase (easily detectable, 5 − 20%) in the intensity of the signal ob-
served by BOLD contrast in MRI (see Fig. 1.9). Thus, by using changes in the
oxyhemoglobin/deoxyhemoglobin ratio seen by BOLD contrast, it is possible
to indirectly observe neural activity. This approach is called fMRI (functional
MRI).

Some other approaches have been developed, using correlations between
hemodynamics and neuronal activity. They are based on the direct mapping
of changes in Cerebral Blood Flow – CBF [Kwong 92] (see [Fox 86] for correlation
between neuronal activity and CBF), or changes in Cerebral Blood Volume – CBV
[Mandeville 98]. However, approaches based on CBV require contrast agents
that remain in vascularization during a long time, and approaches based on
CBF have a limited covered volume. BOLD contrast, that relies on a complex
combinations of CBV and CBF, does not suffer from these drawbacks.

Figure 1.9: Illustration of the use of BOLD contrast for functional imaging. (a)
Sagittal slice of an anatomical image, showing the occipital cortex. (b) Gradient
echo image (i.e. BOLD contrast) for the same location. (c) Pseudo-color map of
the difference in signal intensity between the mean of eights images acquired
during visual (photic) stimulation, and eight images acquired in the dark. (d)
Time course of signal-intensity changes (arbitrary units) for regions indicated
by the three boxes in (b). Adapted from [Ogawa 92].
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1.3.3 fMRI and neural coding

Based on BOLD contrast, fMRI allows to image neural activity related to a cog-
nitive task, and thus, can be used to retrieve the spatial organization of a partic-
ular neural code. However, BOLD contrast is linked to neural activity through
a complex, and still not fully understood, metabolic pathway, which strongly
affects the conclusions that can be made from fMRI data. We detail here the
different aspects of fMRI which are related to our study of neural coding.

Link to neuronal activity

In some experiments in monkeys and humans, BOLD contrast has been found
to be more correlated with the input of neurons than with the output of neurons
[Logothetis 01]. In that sense, BOLD contrast seems to reflect the input to a
neuronal population as well as its intrinsic processing, not the outputs from
that population. Moreover, it is important to note that the correlation between
BOLD contrast and neuronal activity is not fully understood. Among other
issues, an increase in BOLD signal can be due to a large activity of few neurons,
or a small activity of a large population of neurons.

Moreover, one can not expect a better resolution than the millimeter (which
is the scale of the cortical columns – about 104 neurons), by using fMRI, even if
this modality has one of the highest spatial resolutions among imaging modal-
ities. This points to a strong hypothesis, which is that neurons coding for the
same cognitive task have to be grouped in the same region of the brain, with
sufficient density to yield an fMRI signal. However, the study of neural cod-
ing can still be carried on neuronal populations rather that on single neurons,
and fMRI is still the most well-suited functional neuroimaging modality for
decoding various neural codes. From now, the smallest coding entity to be
considered is the voxel (volumetric pixel, i.e. a ∼ 1.5mm × 1.5mm × 1.5mm
cube).

Spatial resolution of fMRI

fMRI images can be used to extract information on the localization of the neu-
ral activity. However, due to the complex link between BOLD contrast and
neural activity, fMRI suffers from some stringent limitations. In particular, it
is necessary to assess the spatial correspondence between regions with a high
BOLD contrast and regions of neural activity.

The spatial specificity of fMRI has been demonstrated by K. Ugurbil et al.
[Ugurbil 03]. The authors have shown that fMRI images can not be consid-
ered as an accurate depiction of neural activity, and the precision of such maps
depends on the spatial extension of the metabolic changes, and in particular:

• Blood flow and Vascularization: An increase in blood flow which is due
to a strong neuronal activity, may exceed the region that contains active
neurons. This create an intrinsic smoothing of the signal. The lack of
spatial specificity can also be due to the vascularization, that is detected
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by MRI. Indeed, large vessels have a larger contribution to MRI signal
than small vessels, as the relative decrease in deoxyhemoglobin is higher
in large vessels. As shown in [Iadecola 97], the dilatation of blood vessels
by neural activity can propagate to distant blood vessels.

• Neuronal communication: The communication (a.k.a. synaptic activity)
between neurons can be inhibitory, i.e. it can tend to shutdown neuronal
activity. Thus, even if there is communication between neurons, the fact
that this activity is inhibitory does not allow to see this neuronal process-
ing through BOLD contrast.

These limitations can be illustrated by a simple experiment (see Fig. 1.10).
fMRI images have been acquired in the visual area of a cat, using two differ-
ent stimuli: parallel lines of two different orientations. fMRI fails to depict
the expected columnar organization, as the spatial resolution of the map is be-
tween 3− 5mm. This can be explained by the fact that the changes in deoxyhe-
moglobin that coincide spatially with neuronal activity, do not remain confined
to active regions, but instead, propagate to the larger vessels. They will incor-
rectly be observed as activation, even far from the initial places of neuronal
activation. In this thesis, we study a specific framework for fMRI data analysis,
called inverse inference, that can retrieve information about neural coding, even
if the pattern of activation is smoothed by the spatial extent of fMRI signal, as
in the described experiment.

Figure 1.10: Illustration of the limited spatial resolution of fMRI images. (a) and
(b): Functional images acquired during two different stimuli corresponding to
two different orientations of parallel lines, on the visual area of the cat. fMRI
fails to depict the expected columnar organization. Adapted from [Ugurbil 03].

Temporal resolution of fMRI and Hemodynamic Response Function - HRF

The function representing fMRI signal across time, due to a temporal increase
of neural activity, is called Hemodynamic Response Function (or HRF). This func-
tion can be decomposed in different steps for a total duration of 20−25 seconds:

• 1− 6 seconds: increase of BOLD signal, due to a huge increase in deoxy-
genated blood (consumption by active neurons). It reaches a maximum
after 6s.
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• 6− 12 seconds: increase of oxygenated blood will be larger than increase
in deoxygenated blood. The decrease of the ratio of deoxyhemoglobin to
oxyhemoglobin in the blood induces a decrease of MRI signal intensity.

• 12− 20 seconds: slow return to the baseline, after a small undershoot.

As we can see, the dynamic of the HRF is much slower than the dynamic of
neural activity (on the order of few ms). Thus, fMRI has a poor temporal res-
olution [Horwitz 00]. This limitation can not be overcome, except by imaging
a more direct measure of the neural activity than the BOLD contrast which is
based on hemodynamics. However, in this thesis, we consider experiments for
which temporal information is not crucial, and thus, we do not focus on the
temporal precision of fMRI.

A model for HRF has been proposed [Glover 99], that has been successfully
used in many experiments. The HRF h can be approximated by the following
model :

h(t) = It>0

{(
t1
a1

)a1

exp

(
a1 −

t

b1

)
− c

(
t

a2b2

)a2

exp

(
a2 −

t2
b2

)}
(1.1)

with a1 = 6, a2 = 12, b1 = 0.9 b2 = 0.9 and c = 0.35. A simulation is given
Fig.1.11. It is interesting to notice that the proposed model for HRF can be seen
as a low-pass filter. It keeps the low-frequency components of the underly-
ing metabolic activity. Some more complicated models have been proposed to
better deal with the different underlying processes of the BOLD effect; Balloon
model [Buxton 98], and Joint detection estimation [Ciuciu 03]. In the last model,
the authors take into account the fact that the HRF can vary spatially across
different regions of the brain, and introduce an adaptive model of HRF.

Figure 1.11: Model of
the HRF, according to
(1.1). The proposed
model depicts the three
important steps of the
HRF: 1− 6s, increase of
signal, 6−12s, decrease
of signal, 12−20s return
to baseline with under-
shoot.

1.4 Conclusion - Accessing the neural code

This chapter has introduced the complex functional architecture of the brain.
In order to better assess cognitive hypothesis, it is necessary to extract reliable
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support of the functional areas of the brain. Thus, accessing the spatial organi-
zation of neural coding is necessary for understanding how the brain processes
information. This spatial organization can be characterized by two main fac-
tors: the entities involved in the code (Sparse coding or Population coding), and
the spatial distribution of these entities (Clustered coding and Distributed coding).
In general, population coding seems a more plausible hypothesis than sparse
coding, but the superiority of one of the two spatial models is more controver-
sial.

Among many different neuroimaging modalities, MRI has a good spatial
resolution which is crucial in many cognitive neuroscience experiments re-
ported in this thesis. MRI can be used with a specific contrast, called BOLD con-
trast, for functional neuroimaging (a.k.a. fMRI), and this modality measures a
function that depends on the rate of oxyhemoglobin versus deoxyhemoglobin
in the blood. When some neural populations are active, the increase of deoxy-
hemoglobin ratio in the blood increases the BOLD contrast. However, the ob-
served effect is not directly created by the neural activity (it relies on a complex
metabolic pathway), and thus, the fMRI signal may reflect activity far from the
activated neurons. Despite these limitations, fMRI is currently the best modal-
ity for accurate inference and for studying the neural coding.
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2
From fMRI acquisitions to

”Brain-Reading”

In the previous chapter, we have seen that functional MRI can be used

for functional imaging, and has a good spatial resolution for a whole

brain coverage modality. After preprocessings and modeling of fMRI

data, classical inference is the reference method for studying func-

tional images, but this approach suffers from some limitations that we

will discuss in this chapter. In the early 2000’s, a new methodology

for studying functional images has been developed, called inverse in-

ference [Dehaene 98, Haxby 01, Cox 03]. The main idea is to use the

functional images to predict a behavioral variable, based on statistical

learning methods. This approach can be used to decode the neural

population involved in a given cognitive function.

In this chapter, we first present the preprocessings and General Linear

Model used for the statistical modeling of fMRI data. Then, we intro-

duce classical inference, and finally, we explain the notion of inverse

inference and detail the corresponding framework and its benefits.
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2.1 Preprocessings and fMRI data modeling

In the previous chapter, we have presented functional MRI as a functional neu-
roimaging modality, based on BOLD contrast. During an fMRI experiment,
many successive scans (or volumes) are acquired and processed to retrieve the
spatial localization of brain activity. Next, some preprocessing and modeling
steps, detailed in this section, have to be performed in order to extract relevant
information.

2.1.1 Preprocessing of fMRI data

After the acquisition of fMRI data from an MRI scanner, some preprocessings
are required, as they allow to remove some variability of the signal that is not
related to the cognitive function under investigation, or account for specificities
of the acquisition. As these preprocessings are a crucial step in the analysis of
fMRI data, we describe them briefly. However, they will not be further studied
in this thesis.

Slice-timing correction

Each slice of the fMRI volume is acquired with a slightly different time than the
previous or the following one. The purpose of slice-timing correction is to cor-
rect this temporal shift within one fMRI volume, using temporal interpolation.
This is done by adding a shift to the phase of each component of the Fourier
transform of the signal, yielding a temporal interpolation of the signal while
preserving its spectrum. Slice-timing correction is particularly recommended
for event-related designs. It can be done before (but can be problematic if the
movements have too large amplitude) or after (but in this case, it can slide some
voxels between different layers, and thus it breaks the temporal coherency) re-
aligning volumes to a common space. Realignment and slice-timing should
ideally be performed simultaneously.

Motion correction - Spatial realignment

During an fMRI acquisition, hundreds of volumes are acquired, and motion
can decrease the sensitivity of a statistical analysis of the fMRI data. One of
the main hypothesis in intra-subject fMRI analysis is the voxel-to-voxel corre-
spondence: a voxel represents a specific region of the brain, and should repre-
sent the same region during the whole acquisition. Spatial realignment aims at
correcting the potential motion that occurs during the acquisition (head move-
ment, spatial drift due to the warming of the scanner gradient). Realignment
estimates the rigid transformation of every volumes with respect to a reference
volume using a mean-square metric.
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Coregistration of fMRI and anatomical Images

The coregistration is used to place two images of the same subject, but acquired
with different modalities, in the same space. This is most often used to overlay
functional images (e.g. fMRI,PET) onto structural images (e.g. MRI). This is
crucial to report the anatomical locations of brain regions found by functional
imaging.

In theory, this realignment should be easy, as the images are related to the
same subject and acquired in the same position. In practice, since the images
do not have the same contrasts, the square difference is not meaningful any-
more. Techniques for coregistration usually resort to mutual information and
try to optimize the probability of intensity of the first image knowing intensity
in the second image. The images are coregistrated when the joint entropy is
minimized, that is done by minimizing the dispersion of the joint histogram.

Spatial normalization

In a study including different subjects, anatomical images are not acquired in
the same position with respect to the scanner. Moreover, brains have differ-
ent size and shape across individuals, so that there is no obvious one to one
mapping between voxels of images from different subjects. A way to solve this
issue is to warp each brain, so that its main structures (large sulci, ventricles)
correspond with a reference brain, or template. This is called spatial normal-
ization. The aim of this preprocessing is to align brain images, with possible
changes in size, shape and orientation of the brain. This enables comparison
between individuals and but also between studies, and create a common refer-
ence space. The most widely used template is the MNI template (Montreal Neuro-
logical Institute) [Evans 93]. It has been constructed using MRI scans from 305
right handed healthy subjects. Spatial normalization can be linear (i.e. defined
by 12 transformation parameters) or non-linear (e.g. defined by a set of sinus
basis functions) (see among many others [Ashburner 99, Klein 09]).

Spatial smoothing

Spatial smoothing helps removing the high-frequency spatial noise, by strength-
ening the low spatial frequencies. In addition, this filter allows a better inter-
subject comparison by increasing the overlap of activations across the different
subjects. We typically choose a size of two or three times the size of one voxel,
that will optimize the detection of clusters that have this size during the statis-
tical analysis. However the spatial smoothing limits the spatial resolution, and
can bias the position of fine-grained activation foci.

2.1.2 Modeling fMRI data

One of the milestones of fMRI data analysis has been the introduction of the
general linear model (GLM) by Friston and al. [Friston 95]. This approach takes
into account, in one statistical model, all the factors (experimental paradigm,
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physiological effects, noise) that can explain the fMRI signal time series. The
weight of each of these factors is estimated for each voxel, yielding the so-called
activation maps (or β-maps), which can be used for statistical inference.

Design matrix

The design of an experiment will be reflected in the design matrix. The design
matrix X ∈ R

n×r represents the r temporal factors that we consider as relevant
for the modeling of the fMRI time series (one column by factor), during the n
scans. These factors can be in particular related to:

• the presence or not of an experimental factor (i.e. task-related, pharma-
ceutically induced).

• the modeling of nuisance events such as motion, session-dependent ef-
fects, physiological noise.

• low-frequency signals (sinusoids or low-order polynomials) that model
the drifts of the signal.

• a constant regressor.

• the time derivative of some regressors to take into account some errors in
the hrf response delay or shape.

The design matrix is finally obtained by the convolution of the relevant
regressor with an hemodynamic response function model (see chapter 1). An ex-
ample of design matrix is given Fig. 2.1.

The General Linear Model - GLM

Let us introduce some notations. We denote Y ∈ R
n×p the matrix of the scans

of fMRI data, where n is the number of scans, and p the number of voxels. An
image (i.e. a function of space, R

3 → R) is thus viewed as a vector in R
p. The

matrix β ∈ R
r×p is the parameters of the model to be estimated, with r the

number of regressors. The rows of β can be represented as images, called acti-
vation maps, reflecting the weights of the voxels for each regressor. The columns
of β represent the weights of a voxel for the different regressors.

The General linear model (GLM) can be written as:

Y = Xβ + E (2.1)

Following this model, the value yij of the jth voxel in the ith fMRI scan is
given by :

yij =

r∑

k=1

xikβkj + eij (2.2)

The residual error E of the model represents the fraction of the data which
is not explained by the design matrix X. In the case of fMRI data, the GLM
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Figure 2.1: Example of design matrix. We can notice the different experimental
conditions (damierH, clicGaudio, calculaudio, . . . ) and their derivatives. The last
columns of the design matrix represent the low-frequency drifts at different
frequencies and the constant regressor, that are added as confound regressors.

makes the hypothesis of a Gaussian auto-regressive process model for the noise
E. By hypothesis, at voxel j, we have ej ∼ N (0, σ2

jVj), where σ2
j is the noise

variance, and Vj is the normalized noise covariance matrix. The noise mag-
nitude and covariance are voxel-dependent, and we assume the noise to be
auto-regressive. We assume that the design matrix is full rank (rank(X) = r)
and that the covariance matrix Vj is known and full rank. Thus we can derive
the maximum likelihood estimation of the parameters β:

β̂j = (XT V−1
j X)−1XTV−1

j Yj (2.3)

The values of β are the parameters of the GLM and can be seen as the effect
of each regressor on each voxel time course. the

The noise variance is estimated as:

σ̂j
2 =

1

ν̂
(Yj

T V−1
j Yj −Yj

TV−1
j X(XTV−1

j X)−1XTV−1
j Yj) (2.4)

where ν̂ = n− r is the degrees of freedom of the model.
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2.2 Classical inference

In the previous chapter, we have seen that we can obtain brain functional im-
ages by using fMRI. After some preprocessings and fitting a GLM, we obtain a
set of activation images. These images can be used to make an inference and to
extract the spatial layout of the neural coding.

We describe here one approach for inference, called classical inference, which
has been widely used during the last fifteen years [Friston 95]. This inference
addresses the question of finding the regions of the brain which are more ac-
tive for one condition compared to another conditions. This is the most used
method in functional brain mapping and yields typical Statistical parametric
maps - SPMs. This method relies on the classical hypothesis testing statistical
framework. However, we will see that classical inference has important limita-
tions, and is not necessarily adapted to the complexity of neural coding.

2.2.1 Statistical analysis and SPMs

In neuroimaging, the previously described GLM (see Eq. 2.1) allows to make
statistical inference: one can test whether some variables of interest in the model
fit a significantly part of the data. Let us introduce the notion of contrast c, as a
linear combination of effects (i.e. experimental conditions) that are assumed to
be of particular interest.

Mass univariate analysis

It is often easier to perform a mass univariate analysis, i.e. to test the significance
of the effects of interest on all voxels considered separately. Apart from the fact
that such analysis does not require a specific subset of voxels, the main interest
of this method is that it gives a regional localization to the test. We have one
test by voxel, and thus one score by voxel, which enables the creation of brain
maps. This approach is often referred to as classical inference, the created maps
being called statistical parametric maps (SPMs). We can define the two following
hypotheses:

• Null hypothesis H0: the experimental conditions defined in the contrast c
do not have an effect on the weights β: H0 : cT β = 0

• Alternative hypothesis (Hypothesis of interest) H1: the experimental condi-
tions defined in the contrast c have a significant positive effect on the
weights β: H1 : cT β > 0

According to Neyman-Pearson lemma, the uniformly most powerful test to
decide which hypothesis is true under standard assumptions, is the likelihood
ratio test. We define the likelihood ratio as:

Λ =
LH1

(Y |β)

LH0(Y |β)
(2.5)
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with LH0(Y |β) the likelihood of the data for the null hypothesis, and LH1(Y |β)
the likelihood of the data for the hypothesis of interest.

Statistical tests

In order to perform a statistical test, we have to define the distribution PH0

followed by the test statistics if the null hypothesis is true. This distribution
allows us to compute a p-value p, which is the probability to observe under the
null hypothesis, a value of the test statistics Λ as extreme as the one observed
Λobs, i.e. p = PH0

(Λ > Λobs). A p-value can be calculated using the cumulative
distribution function, i.e. the integral of the probability density function of PH0 . It
can be seen as the percentage of the total are under the curve that is defined for
a given statistical value.

Given the test statistics Λ, the two hypothesis H0 and H1 and the distribu-
tion under the null hypothesis PH0 , we can define the rejection region as the set
of values of the test statistic for which H0 is rejected. For example, in a unilat-
eral test, we can choose to not reject the null hypothesis H0 if the observed value
Λobs of test statistic is under a given threshold Λα, i.e Λobs < Λα, and we can
reject H0 if Λobs > Λα. α denotes the significance, i.e. the specificity of the test,
and Λα is the corresponding statistics.

Classical tests for fMRI data: t test and F test

In the following analysis, we assume that the noise covariance matrix Vj at
each voxel j is known. It follows that Λ is a monotonous function of the ex-
haustive statistic t (signed test) or F (unsigned and multi-dimensional test).
When the noise covariance is unknown the equivalence between F -test and
likelihood ratio test does not hold anymore.

In a first analysis, we can test if a voxel yields a similar signal for two differ-
ent conditions, i.e. whether the means of the signal for the two different condi-
tions are different or not. This can be done by using a t-test, which assumes that
the distribution under the null hypothesis PH0

is a Student’s t distribution. We
introduce the contrast c as a linear combination of two or more conditions to
be studied (the coefficients of c sum to zero). For a given voxel j and a contrast
of two conditions, we have the following t-score:

tj =
cT β̂j

σ̂j

√
cT (XT

j V−1
j Xj)−1c

(2.6)

with σ̂j
2 the noise variance and Vj is the covariance of the residuals. The vari-

able tj follows a Student’s distribution with ν = n− r degrees of freedom.

In a second case, we can use a multi-dimensional contrast c, that yields a
F -test. We assume that the test statistic has an F distribution under the null
hypothesis. The value of the test statistic for a given voxel j (called F-score of

71



voxel j) is:

Fj =
Tr(cT β̂j β̂T

j c)

σ̂j
2Tr(cT (XT

j V−1
j Xj)−1c)

(2.7)

The variable Fj follows a Fisher’s distribution with n − r, r − rank(c) degrees
of freedom. For the two scores defined in Eq. 2.6 and Eq. 2.7, there is one value
for each voxel, which can thus be mapped on the brain, creating the statistical
parametric maps – SPMs – (see an example Fig.2.2).

F-statistic

L R

y=-31 x=-56

L R

z=12

Figure 2.2: Effect of mental representation of object shape - subject 1 (see Appendix
B.2). Representation of the F-statistic (i.e. mass univariate F-test) when we test
if the shape of the object significantly activates brain sites. We can notice that
some regions of the brain are outlined, such as the occipital lobe, which is a
region known to be implied in visual recognition.

2.2.2 Multiple comparisons issues

The previously described tests allow to visualize very useful maps for brain
mapping. However, classical inference suffers from a major drawback which
is the multiple comparisons issue. Due to the huge number of voxels (60.103

at (3mm)3 resolution), some tests can lead to a large amount of false positive
results (i.e. some voxels found to be significant, but that are actually not). Thus,
we have to take into account the fact that many tests have been performed.

Family-wise error correction can be performed instead, using the Bonfer-
roni correction. This approach simply consists in dividing the threshold α by
the number of tests p, which yields the new threshold αb = α/p. This cor-
rection is very severe, and results in very strict significance values. However,
this approach considers that all the tests performed are statistically indepen-
dent. This does not take into account the spatial structure of the data, and is
not appropriate for correlated data (as the effective number of tests may be re-
duced). To cope with these limitations, other approaches have been proposed
(see [Nichols 03, Hayasaka 04] among others), such as cluster-level thresholding,
false detection-rate threshold, or nonparametric methods can also be used, as per-
mutation test.
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In fMRI, multiple comparisons issues are crucial, as a high threshold yields
a good specificity (i.e. we limit the reported voxels falsely activated) but a poor
sensitivity (i.e. we miss truly activated voxels), and a low threshold yields a
good sensitivity, but poor specificity. The maps of voxels selected by threshold-
ing the p-values for the object recognition task (subject 1), are given in Fig.2.3,
for different threshold values (0.05, 0.01 and 0.05 corrected by Bonferroni). We
notice that Bonferroni correction is very severe, and that it keeps very few sig-
nificant voxels. In particular, we can observe that the voxels selected using the
0.05 corrected threshold are found in an region (LOC) known to be involved in
high-level visual processes.

p-value < 0.05

L R

y=-31 x=-56

L R

z=12

p-value < 0.001

L R

y=-31 x=-56

L R

z=12

p-value < 0.05 corrected

L R

y=-31 x=-56

L R

z=12

Figure 2.3: Mental representation of shape - subject 1 (see Appendix B.2). Vi-
sualization of the voxels selected by thresholding the p-values for the objects
recognition task for different thresholds (0.05, 0.01 and 0.05 corrected by Bon-
ferroni). The Bonferroni correction keeps very few voxels in the region of interest
(LOC), and removes isolated voxels (in particular in the frontal lobe).
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2.2.3 Other limitations of classical inference

The multivariate point of view

Another major drawback of classical inference is the fact that it is used to ana-
lyze each voxel separately. Thus, it does not take into account the correlations
between different voxels (see Fig.2.4 for an illustration). Multivariate analy-
sis is closely related to the notion of population coding explained previously.
Indeed, the information related to the cognitive state can be scattered across
several voxels. As explained in [O’Craven 00], it can be difficult to find a sin-
gle region (or voxel) which can be used to predict the behavioral data. Thus, a
classical univariate test may not be significant, while a multivariate decoding
approach could detect information.

The crucial point is exposed by [Haynes 06]: by pooling together informa-
tion from different locations within the whole brain, we can enhance the pre-
diction. Some methods have been used to take into account the multivariate
nature of the data. In the case of the classical inference approach and on a re-
duced set of voxels, multivariate tests can be made, such as Manova or Mancova
[Friston 96]. However, those approaches require a small subset of voxels (less
voxels than samples), and do not allow us to access the intrinsic organization
of the information within a group of voxels. Indeed, multivariate tests do not
extract the combination of voxels truly implied in the cognitive task, and do
not clarify their respective involvement in the neural coding.

Figure 2.4: Illustration of univariate and multivariate decoding approaches.
Left - This case can be handled with classical inference but might not be realis-
tic. Right - This case is more realistic and requires to consider the two voxels to-
gether in a multivariate approach, to retrieve the different conditions. Adapted
from [Cox 03].

74



CHAPTER 2. FROM FMRI ACQUISITIONS TO ”BRAIN-READING”

The baseline issue

Classical inference is based on the hypothesis that the global activity of the
brain is an additive combination of different activations (a.k.a pure insertion hy-
pothesis). It compares the images where one condition is assumed to have some
effect, with the ones where this condition is not present (which can be referred
as the baseline for this condition). This method is detailed in [Fox 91], where
each stimulus is compared to the control condition for each voxel separately.
The baseline is empirically defined as the signal level in the absence of stim-
ulation (control condition). The pure insertion hypothesis is questionable, as a
control condition is rarely a steady state of the brain activity, even in the case
of rest [Poeppel 08]. Neural populations activated in both the baseline and the
task under investigation (even for different cognitive processes), may not be
extracted by classical inference [Sidtis 03].

2.3 Inverse inference

In order to deal with the previously raised criticisms, a new approach, called
inverse inference (or brain-reading), has been introduced [Dehaene 98, Cox 03].
This method relies on statistical learning tools, and more precisely on pattern
recognition approaches. The main idea is to consider the fMRI analysis as a pat-
tern recognition problem, i.e. using a pattern of voxels to predict a behavioral,
perceptual or cognitive variable. In this approach, the accuracy of the predic-
tion can be used to validate (or invalidate) that the pattern of voxels used in the
predictive model is implied in the neural coding. In short, inverse inference is
an approach for decoding the neural coding. Interestingly, this idea had been
latent for a long time, as shown by this text of N. Tesla [Tesla 33] in 1933:

”[. . . ] I expect to photograph thoughts [. . . ] I became convinced
that a definite image formed in thought must, by reflex action, pro-
duce a corresponding image on the retina, which might possibly be
read by suitable apparatus [. . . ] ”

In the following, we describe the characteristics and advantages of inverse
inference, and how it copes with some limitations of classical inference. We
also detail the framework used for this analysis, and contexts in which it was
used, as well as the difficulties of decoding in inter-subject analysis.

Link with Brain Computer Interfaces - BCI

In BCI the predicted information is often extracted from functional imaging
and is used for controlling a device. In that sense, the inverse inference ap-
proach is closely related to BCI. Using machine learning methods to decode
the interaction between observed signals and a target has been done with EEG
data (e.g. using correlation [Wang 04], ICA [Vallabhaneni 04] or neural network
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[Phothisonothai 08]); or with neuronal recording data (e.g. using euclidean
distance-based classification [Tsao 06], or linear SVM [Hung 05]).

However, even if the methodology is relatively similar between BCI and
inverse inference, there is a major difference. BCI aims at a robust prediction
and can use any kind of information that is extracted from the data, without
always considering the neuroscientific meaning. On the other hand, inverse
inference tries to extract information that can clearly be related to the neuronal
population implied in the coding of the cognitive function, in order to confirm
or infirm a neuroscientific hypothesis. One can refer to the review [Signe 09]
for further applications of pattern recognition in neuroimaging.

2.3.1 Multivariate pattern analysis – MVPA

Multivariate analysis

The link between inverse inference and pattern analysis/machine learning has
been made early [Cox 03, Norman 06]. The conjunction of these two approaches
is called Multivariate Pattern Analysis or MVPA. The use of machine learning
techniques in fMRI data analysis has been justified as follows: while classical
inference seeks the voxels which have a significant response to an experimen-
tal condition, a voxel with a non-significant response to a given condition can
still carry some information about the presence or absence of this condition.
This information can be detected only by testing if the voxel is useful for the
prediction of the presence or absence of the condition by a pattern recognition
approach. Moreover, as explained by Haynes and al. [Haynes 06], if a region
responds to different cognitive processes with overlapping activities, it can be
difficult (or even impossible) to use the signal of this region for discriminat-
ing between the different tasks. However, a multivariate pattern of different
regions can be used to overcome this limitation.

This fact is illustrated by a simulation Fig. 2.5. A ring is divided in eight dif-
ferent sectors, and for each image, a sector is set to be active (this is the target to
be decoded). Only voxels from the ring are relevant for prediction, and, when
a sector is active, the neighboring sectors are also weakly active. We can see
that, in the case where regions of interest have overlapping activities, classical
inference (left, using F-test) is not able to retrieve the true spatial support of the
neural code. However, a decoding technique as inverse inference can retrieve
the true spatial organization by taking into account the multivariate structure
of the signal.

These considerations about univariate and multivariate analyzes are crucial
when seeking to extract the spatial layout of neural coding. In case of sparse
coding, classical inference is able to find the relevant voxels, as the information
is coded by only one (or few) voxel. However, in the more probable case of
population coding, where the information is encoded by a set of voxels, we
have to use inverse inference to access an accurate decoding.
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Classical inference
F-score thresholded at

p < 0.01

True substrate of the neural
coding (labels)

0e+00 8e-01

Inverse inference
Weights of the model

Figure 2.5: We simulate two dimensional images with gaussian signal, and cre-
ate a set of regions of interest by dividing a ring in 8 different sectors. For each
image, a sector is defined to be active. This information (which will be the tar-
get to be predicted) is encoded by the corresponding sector of the ring, and the
neighboring sectors (with decreasing weights). When there are overlapping
activities, we can see (left image - thresholded at p < 0.01) that classical infer-
ence can not retrieve the true pattern, while a decoding technique (right image
- weights of the predictive model) can retrieve the true substrate of the cod-
ing. The prediction accuracy is 28% (highly significant, with a p-value < 10−3

under permutations), with a chance at 12.5% (8 classes).

Validation and multiple comparisons issue

More interestingly, inverse inference avoids the multiple comparison issue, as
it performs only one statistical test (on the predicted behavioral variable). In
that sense, it can provide more sensitive analyzes than standard statistical para-
metric mapping procedures [Kamitani 05]. In inverse inference, the validation
relies on the comparison between the predicted label and the true target, and
thus, is performed on the target and not in the feature space. The result of this
comparison directly answers the question of the presence (or the absence) of
stimulus-related information within the fMRI data. Moreover, the validation
of the inverse inference procedure does not require a specific statistical struc-
ture, unlike classical inference (e.g. spatial correlation between voxels for the
statistical test). However, the multiple comparisons issue manifests itself as
curse of dimensionality in MVPA.

Spatial and local information

Despite its drawbacks, classical inference solves most of the questions in neuro-
science, as it allows a functional brain mapping. The SPMs have become a ref-
erence in neuroscience studies. Smoothing is sometimes applied to fMRI data
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in order to obtain a better signal-to-noise ratio (SNR) in univariate analysis.
More importantly, smoothing improves the overlap of active regions in voxel-
based inter-subjects studies. However, smoothing can erase the fine-grain in-
formation within a pattern of voxels, and thus hides some useful knowledge
for brain mapping, as explained in [Norman 06] and [Haynes 06]. Using pat-
tern recognition techniques, as in inverse inference, allows to access this infor-
mation by comparing relative changes of signal within a set of voxels. In partic-
ular, this approach is well-suited for decoding some specific neural codes such
as the distributed codes detailed previously, where information from different
regions of the brain have to be considered simultaneously.

Few methods have been proposed to study the spatial distribution of the
coding entities, within an inverse inference framework (see [Kriegeskorte 06]).
Using spatial information for improving the inverse inference approach is a
central subject of this thesis.

Overview of the experimental framework

Inverse inference framework is similar to the one commonly used in pattern
recognition. This is illustrated in Fig.2.6, and relies on a few steps that are
detailed here.

Step 1 - Acquisition and preprocessing of fMRI images In this step, fMRI
images are acquired, during the performance of a cognitive task by a subject,
and then processed to yield trial-by-trial activation maps. This initial step will
not be studied in this thesis and a brief description of the operations performed
as pre-processing can be found in the first section of this chapter.

Step 2 - Pattern recognition The important step of inverse inference frame-
work is the step of pattern recognition, which relies on the following settings:

• Prediction function: In order to test the relevance of the patterns consid-
ered, and thus test whether or not they are part of the spatial layout of
neural coding, we train a prediction function using these voxels. This
function should be able to predict the target for a new fMRI image. The
aim of this classifier is to give a prediction accuracy, which can be seen as
a measure of the quantity of information within the considered patterns.

• Dimension reduction: This step can be mandatory due to the high dimen-
sion of the data. Indeed, keeping all the features (i.e. the whole image)
can lead to overfit, which dramatically decreases the prediction accuracy:
this will be made explicit in chapter 3.

• Validation of the method: The last step of the pattern recognition framework,
is the computation of the prediction accuracy on a new set of images. One
can apply the dimension reduction, to extract the putatively relevant fea-
tures of the new images. The prediction function is used to predict the
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target variables that correspond to behavior-related labels and/or stim-
ulation parameters associated with new images, which are compared to
the true target variables. This procedure makes the computation of the
prediction accuracy possible, which is a measure of the quality of the
prediction. A significantly accurate prediction, means that information
about the different classes was indeed present within the considered fea-
tures.

Figure 2.6: Illustration of the inverse inference scheme. Step 1: the subject is in-
volved in a cognitive task, such as looking at objects of different shapes. fMRI
images are simultaneously acquired. Step 2: the prediction model is learned, and
the prediction corresponding to the test set is performed and compared to the
true stimulus, in order to evaluate the accuracy of the prediction model. A di-
mension reduction can be applied, before or within the learning of the prediction
function, in order to select the most relevant voxels; this step can be crucial to
avoid overfit, and will be one of the main problems addressed in this thesis.

2.3.2 Inverse inference in cognitive neurosciences

Specific uses of inverse inference

Inverse inference is a powerful tool for accessing the representation of the neu-
ral code from fMRI data. However, this method also allows to perform specific
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studies which were not possible with classical inference.
First, inverse inference can be used to make an inference on the cognitive

state of the subject, which is in principle similar to building a Brain Computer
Interface - BCI. Although fMRI is not well-suited for such a device, it promises
powerful applications such as the lie detector detailed in [Davatzikos 05]. How-
ever, some ethical questions can be raised, as we will see later in this section.

Inverse inference can also be used to estimate the cognitive state in a real-
time framework (more precisely, each image at a time). In [Mitchell 03], Mitchell
et al. show that it is possible to retrieve the temporal changes in the behav-
ior of a subject by using the prediction of a classifier. This is related with the
previously described BCI, and such an approach can not be done using clas-
sical inference, which does not give a prediction. Inverse inference allows to
help understanding the representation of unconscious stimuli: one can access
to the prediction of the stimuli and their temporal characteristics, even if the
subject is not conscious of them, in order to understand the conscious/uncon-
scious decoding performed by the subject. An example of such an experiment
is described in [Haynes 05a], on the prediction of unconscious visual stimuli.

Finally, inverse inference can provide access to fine grained patterns such
as low level perceptual features (orientation, direction of motion), using low
spatial resolution. In [Kamitani 05], Y. Kamitani et al. show that, by using a
pattern of activations in the visual cortex, they could retrieve the orientation of
visual stimuli. As the columns coding for orientation are too small for the fMRI
resolution, they use the fact that each fMRI voxel has nevertheless a little bias
for a specific orientation. Thus, by using redundancy of information across
visual field within a multivariate analysis, the authors could predict low level
sub-voxel visual features.

An ethical point of view

Inverse inference approach (based on fMRI, but also EEG, MEG) raises some very
fundamental ethical questions. Relating to the conscience and free will, this
method is, and must remain, subject to a significant ethical oversight. More
specifically, the ethical problems posed by this approach are the following, and
more details can be found in [Farah 04]:

• by revealing cognitive information in some given cerebral regions, and
thus by allowing the decoding the cognitive or emotional states of a sub-
ject, it allows to bypass the ”classical” lines of communication (voice and
sign language) which are under the voluntary control of subject, and thus
can access to the ”privacy” of the mind (e.g. lie detection [Davatzikos 05],
criminal justice [Farwell 01]). In 2008, an indian judge sentenced a sus-
pect to life in prison, using EEG-based inverse inference. 1 Inverse infer-
ence can also be used for commercial purpose. This is called neuromarket-
ing, and some details can be found in [Brammer 04], or in [McClure 04]

1http://www.nytimes.com/2008/09/15/world/asia/15brainscan.html? r=1&scp=1&sq=
Phansalkar-Joshi&st=cse.
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.

• by being used for social discrimination and allowing to make prediction
on the future behavior of a subject as it has already been done for crimi-
nality [Raine 98] and drugs [Childress 99].

The decoding approach outlined in this thesis can allow to access to a part
of the neural coding of thoughts. Thus, it seems that this approach can be used
to access unexpressed thoughts. However, inverse inference can at best be used
to determine a very crude measure of personality, and the previous described
approaches usually requires active participation/consent of the subject. The
crucial point is that the subject should be aware of the use of the data and what
it can reveal.

Generalization of inverse inference

Inverse inference seems to be a powerful approach for deciphering the neural
coding, and the question of it generalization to new paradigms arises naturally
[Cox 03]:

• One of the first possible generalization of inverse inference, it the general-
ization across time (i.e. using images acquired at different moments). An
example of such generalization is given in [Cox 03], where the authors
are able to predict a stimulus with a model learned a few days apart (see
also [Kay 08]). However, this aspect of inverse inference is still weakly
little developed, and should be considered as an additional validation
rather than a fundamental dimension of neural coding.

• Another generalization of inverse inference is the prediction to new stim-
uli. The extrapolation to new stimuli is probably the most challenging
problem. There is an infinity of possible cognitive states, and we have
access to a limited collection of examples (i.e. fMRI images). However,
this generalization is very interesting in order to find elements of neural
coding that are robust to changes in stimuli, and thus are implied in the
coding of abstract human thoughts. If activation patterns are ranked in a
parametric space, we can extrapolate to new cognitive states.

A more interesting solution is the construction of a prediction function
that can identify new stimulus in a large dataset, based on already seen
stimuli (as visual stimuli [Kay 08], or nouns associated to new images
[Mitchell 08]). The more challenging generalization of the prediction to
an unknown high level stimuli has been addressed in [Knops 09]. The
authors show that, using inverse inference, they are able to generalize
the prediction from ocular saccades to arithmetic tasks.

• Finally, the final goal of inverse inference can be the implicit reconstruc-
tion of the stimulus, as explained in [Thirion 06a] and [Miyawaki 08], in
the case of reconstruction of visual stimuli.
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2.3.3 Inter-subject inference

Among different possibilities of generalization of inverse inference, we focus
during this thesis on the particular generalization across subjects. The main
interest of this inter-subject prediction in the study of neural coding, is to pos-
sibly find predictive regions that are stable across subjects, and thus obtain a
population-level validation of cognitive hypothesis.

However, inter-subject predictions are plagued by the inter-subject variabil-
ity (lack of voxel-to-voxel correspondence) [Tahmasebi 10, Tucholka 10]. This
variability in the location of activation can arise from variability in anatomi-
cal structure or/and in functional organization. Spatial normalization (or inter-
subject registration), can be used to decrease anatomical variability, even if
there is still no accurate voxel-to-voxel correspondence between subjects. How-
ever, some variability remains in the localization of activations, even with an
accurate inter-subject registration, due to, among others effects, handedness
[Kim 93] or genetics [Blokland 08]. Moreover, this variability can also be ex-
plained by different cognitive strategies that yield different spatial layouts of
neural coding across subjects [Kirchhoff 06].

Thus, the localization of functional activity across subjects can vary and it is
challenging to find a common spatial layout of neural coding across different
subjects (see Fig. 2.7). Some approaches for inter-subject inverse inference that
have been developed in this thesis are detailed in chapter 5 and chapter 6.

Figure 2.7: Illustration of the effect of inter-subject variability in the study of
the neural coding. Regions implied in the neural coding are represented by
disks of different colors. We can notice than the populations of active neurons
are not at the same position across subjects (left), and thus, the intersection of
the support of neural coding (middle right) is empty. However, by considering
the union of the coding regions across subjects (right), we can notice that three
regions of the brain are clearly outlined.
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2.4 Conclusion - From fMRI acquisitions to ”Brain-

Reading”

After acquisition, raw fMRI data have to be preprocessed and modeled. The
modeling of fMRI data relies on the General Linear Model, that takes into account
the different parameters of the experiment defined in the design matrix. The
resulting activation maps can then be used for statistical analysis, in order to
study the neural code related to a specific cognitive parameter.

Classical inference is a widely used method to study fMRI data. This relies
on voxel-based statistics, yielding significance maps (a.k.a. Statistical Parametric
Maps - SPMs) for the effects under consideration. However, despite its sim-
plicity and the accuracy of the SPMs, classical inference suffers from a major
drawback: it analyzes each voxel separately and consequently cannot exploit
the correlations existing between different brain regions to improve the infer-
ence. Moreover, statistical power in the case of classical inference is limited
by the multiple comparison problem (one statistical test is performed for each
voxel and the number of comparisons has to be corrected for).

In order to deal with these limitations, inverse inference has been proposed.
Inverse inference is an approach for studying fMRI data based on machine
learning methods. It can be used to assess the specificity of several brain re-
gions for certain cognitive or perceptual functions, by evaluating the accuracy
of the prediction of a behavioral variable of interest – the target – based on
the activations measured in these regions. This inference relies on a predic-
tion function, the accuracy of which depends on whether it uses the relevant
variables, i.e., the correct brain regions. The major advantages of this approach
are:

• As multivariate approach, it is consistent with population coding models.
Indeed, the neural information, which can be encoded by different pop-
ulations of neurons, can be decoded using a pattern of voxels.

• It avoids the multiple comparison issue, as it performs only one statisti-
cal test (on the predicted behavioral variable). In that sense, it can pro-
vide more sensitive analyzes than standard statistical parametric map-
ping procedures.

• It addresses new challenges, in particular by allowing to identify a new
stimulus in a large dataset, based on already seen stimuli. Moreover, it
can be used for the more challenging generalization of prediction to un-
known high level stimuli, which opens the way of a deeper understand-
ing of brain functional organization.
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3
Statistical learning for fMRI inverse

inference

In this chapter, we describe the classical statistical learning frame-

work used in inverse inference studies. Then, we detail the different

methods of feature selection and prediction (classification or regres-

sion) that have been used in the literature for fMRI inverse inference.

We illustrate each method on a real fMRI data set and explain its ad-

vantages and drawbacks. This study allows us to define the essential

characteristics for an accurate statistical learning approach in the spe-

cific case of fMRI inverse inference.
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CHAPTER 3. STATISTICAL LEARNING FOR FMRI INVERSE INFERENCE

3.1 Inverse inference framework

After the acquisition, we apply some preprocessings and fit a GLM to fMRI
data. The resulting images of parameters (or activation maps), are then used to
decipher the neural coding, within an inverse inference framework. From now
and for the following chapters, X are the activation maps, and y is a behavioral
target related to each of these maps.

In this section, we describe the statistical learning framework that has been
used during this thesis for fMRI-based inverse inference. Especially, we de-
tail the specificities of this framework related to the nature of fMRI data. In
addition to the description of these concepts, the Python code used for imple-
menting them is given in appendix C.

The notations used in this chapter are given in Fig. 3.1, and the state of the
art of statistical learning in fMRI is summarized Tab. 3.1. We try to make this
list as complete as possible, but more information can be found in the following
review papers [Norman 06, Haynes 06, O’Toole 07, Spiers 07, Pereira 09].

Data
n ∈ N number of samples p number of features (voxels)
.l reference to the learning set .t reference to the test set
nl number of samples (learning set) nt number of samples (test set)
X ∈ R

n×p data (activation maps) Xj values of the jth feature

Xi ith image x
j
i jth feature of the ith image

Xl
∈ R

nl
×p data (learning set) Xt

∈ R
nt
×p data (test set)

Model

b ∈ R intercept wj weight of the jth feature
w ∈ Rp true weights of the model ŵ ∈ Rp estimated weights

Classification settings

y ∈ [1, . . . , K]n discrete target yi target of the ith image
ŷ ∈ [1, . . . , K]n predicted target K number of classes

yl
∈ [1, . . . , K]n

l
target (learning set) yt

∈ [1, . . . , K]n
t

target (test set)
ll
k

learning samples in the kth class lt
k

test samples in the kth class
Regression settings

y ∈ R
n continuous target yi target of the ith image

ŷ ∈ R
nt

predicted target

yl
∈ R

nl
target (learning set) yt

∈ R
nt

target (test set)

Figure 3.1: Notations used in the following chapters.

3.1.1 Data representation

We note y the true behavioral variable (or target). This is the variable that will
be inferred from the activation maps. In the case of a regression analysis, we
have y ∈ Rn, and y ∈ [1, . . . ,K]n for classification analysis.

The data can be represented by a matrix X ∈ Rn×p, each row being a p-
dimensional sample, i.e., an activation map. We have n the number of samples,
and p the number of features (voxels).

The data can be mapped into a high dimensional space, by using some
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functions φl(X) called basis functions (with 1 ≤ l ≤ L, L being the number
of basis functions). For example, these functions can be polynomial functions,
wavelets or even identity (φ(X) = X). Such functions allow to extend the use
of linear models, as a linear model applied to φi(X) can now be a non-linear
model of the data X. We call feature space mapping Φ(X), the transformation
from the initial space of the data to the space defined by the basis functions
(a.k.a. feature space). Thus, we can now define the design matrix Φ as the matrix
whose elements are given by Φil = φl(Xi). This matrix is the representation
of the data in the feature space, and can be used indifferently in a linear model.
In the experiments detail in this thesis, we use φ(X) = X (i.e. identity), as
we already suffer from a high dimensionality issue, and other basis functions
further increase the dimensionality of the design matrix. The design matrix is
thus equal to X, and, for more clarity, we now note X the design matrix.

Additional standard preprocessings can be applied to the data as centering
(each sample has a zero-mean) and variance normalization (each sample has an
unit-variance). Such preprocessings are required to have comparable activa-
tions maps. However, some preprocessings are more specific of fMRI data,
and are often required. Some physical (e.g. increase of the temperature of the
scanner), biological (e.g. fatigue and concentration of the subject) or behavioral
(habituation to the paradigm) noise sources can exist and may not be taken into
account in the GLM. Such noise sources have strong temporal correlations, and
can introduce a bias in the prediction. Indeed, they create a drift (called ses-
sion effects) that can be used by the prediction function to make an inference
unrelated to the cognitive task. Session effects can be removed by centering the
images within each different sessions of the experiment, and by using specific
cross-validation schemes (namely leave-one-session-out).

3.1.2 Decoding and prediction model

Inverse inference aims at deciphering the neural code by finding predictive
patterns within fMRI data. Thus, we have to define and train a prediction
function, and different types of prediction function can be used. As we aim at
extracting predictive patterns in order to decode the spatial layout of neural
coding, we principally focus in this thesis on algorithms that extract relevant,
but also interpretable, patterns of activation.

The prediction function can be non-linear (e.g. non-linear SVM), but the
superiority of such non-linear prediction function has not been shown in the
context of neuroimaging [Cox 03, LaConte 05]. In [Cox 03], a linear prediction
function (linear-SVM) performs better than a non-linear prediction function,
and similar results are reported in [Chu 10]: linear kernels performed better
than non-linear kernels in most of the experiments. However this superiority
is not yet fully understood. Indeed, it can be due to an intrinsic linear relation-
ship between the signal within the support of neural coding and the cognitive
target. Alternatively, it can simply reflect the fact that the non-linear prediction
functions used cannot capture the true non-linearity of this relationship. In this
thesis, we focus on linear prediction functions.
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Predictive linear model

Let us introduce the following predictive linear model:

y = f(X,w, b) = F (Xw + b) , (3.1)

where (w, b) are the parameters to be estimated on a learning set, and b ∈
R is called the intercept. Depending on whether the variable to be predicted
takes scalar or discrete values, the learning problem is either a regression or a
classification problem.

In a linear regression setting, f reads:

f(X,w, b) = Xw + b , (3.2)

In the case of a two-classes classification problem with a linear model, f is
defined as:

f(X,w, b) = sign(Xw + b) , (3.3)

where “sign” denotes the sign function and y ∈ {−1, 1}n. The use of the in-
tercept is fundamental in practice as it allows the separating hyperplane to be
offseted from 0. However for the sake of simplicity in the presentation of the
method, we will from now on consider b as an added coefficient in the vector
w. This is classically done by concatenating a column filled with 1 to the matrix
X. Multi-class classification problems are addressed using specific heuristics
that are detailed in the case of SVC in section 3.2.

Different methods have been used for prediction in fMRI-based inverse infer-
ence. Besides the approaches detailed in this chapter, other methods have been
tested as simple linear regression [Sidtis 03] or sign comparison [Dehaene 98],
hidden process model (HPM) [Hutchinson 09], projection pursuit [Demirci 08], Neu-
ral networks [Mørch 97, Haxby 01, Onut 04, Polyn 05, Rissman 10], CART/Random
Forests [Langlebe 05, Genuer 10, Langs 10], Adaboost/Boosting [Koltchinskii 04,
Martinez-Ramon 06], K-Nearest Neighbor (KNN) and Similarity-based classifier
[Mitchell 04, Sayres 06, Shinkareva 06, Williams 07, Mitchell 08]. These approa-
ches are not further detailed in this thesis, and we focus on methods based on
the model given in Eq. 3.1.

Generative and discriminative models

In classification settings (i.e. y ∈ {1, . . . ,K}), in order to predict the label cor-
responding to new data, one has to access to the probability p(y|X). This prob-
ability allows us to perform prediction, using the maximum a posteriori estimate
ŷ = arg maxk p(ŷ = k|X). Generally, two different approaches, discriminative
and generative, are possible for estimating the probability p(y|X):

• Discriminative approaches directly compute p(y|X), i.e. directly aim at
solving the classification problem y, using some assumptions on this
probability (e.g. Logistic Regression).
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• Generative approaches rely on the estimation of p(X|y = k), and create
a model which can be used to generate new data X, knowing the tar-
get y. In a predictive purpose, these approaches use the Bayes’ theorem
p(y = k|X) ∝ p(y = k)p(X|y = k) to obtain the probability p(y|X), by
estimating p(y = k) and p(X|y = k) from the learning data. The defi-
nition of a model can be avoided by using only some local estimation of
this probability, e.g. KNN.

Discriminative approaches yield predictive patterns that are not always easy
to interpret, as there is no underlying model of the data. However, as we aim
at deciphering some neural code by finding predictive regions, and as we mea-
sure the quality of the regions by computing a prediction accuracy, discrimi-
native approaches seem still well-suited for inverse inference. Indeed, it has
been shown [Ng 02] on many real data sets that discriminative methods have
a lower asymptotic error than generative methods.

Generative approaches yield more interpretable results, and can more eas-
ily integrate neuroscientific prior through different hypothesis on p(X|y = k),
as this probability represents the hypothesis on how the features encode the
stimuli. However, the estimation of the likelihood p(X|y = k) is not trivial and
require some assumptions about p(X|y) to simplify the computation. Some
very simple assumptions can be made, yielding classical statistical learning
approaches such as Linear Discriminant Analysis. A contrario, more complex as-
sumptions about p(X|y) reflecting our knowledge on fMRI data are extremely
difficult to make. Indeed, both the relationship between the stimuli and the
neural signal, and the underlying metabolic pathway between the neural sig-
nal and the observed signal, are complex and poorly understood. Thus, ”truly”
generative model are rarely used in practice [Schmah 08], and as they rely on
strong hypotheses, their use is limited to well-known systems, such as the vi-
sual system [Thirion 06a, van Gerven 10]. Such approaches will not be further
developed in this document.

In conclusion, we will focus in this thesis on discriminative approaches,
even if some classical machine learning generative methods will be detailed in
this chapter. These approaches are generative from a statistical point of view,
but rely on very general assumptions about p(X|y), and do not aim at model-
ing fMRI data.

3.1.3 Evaluation of the decoding

Different metrics can be used to assess the quality of a prediction, that is related
to the information contained in the patterns used in the predictive model. In
the case of regression analysis, the performance of the different models is eval-
uated using ζ, the ratio of explained variance (or R2 coefficient):

ζ(yt, ŷ) =
var(yt)− var

(
yt − ŷ

)

var(yt)
(3.4)
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This is the amount of variability in the response that can be explained by the
model. A perfect prediction yields ζ = 1, a constant prediction yields ζ = 0,
while ζ < 0 if prediction is random and not correlated to y. For classifica-
tion analysis, the performance of the different models is evaluated using the
classification score denoted κ , classically defined as:

κ(yt, ŷt) =

∑nt

i=1 δ(yt
i , ŷ

t
i)

nt
(3.5)

where nt is the number of samples in the test set.

Prediction accuracy Prediction accuracy can be seen as a statistical test on
the regions used in the predictive model. If a linear classifier has a prediction
accuracy significantly above chance level, one can consider that the pattern of
voxels shares information with the target, as explained in [Kamitani 05].

Interpretability of the resulting maps In the case of a linear prediction func-
tion, it can be interesting to directly look at the voxels weights used in the linear
model. However, these weights depend strongly on the prediction function,
and we have no proof that the features used in the model correspond to the
whole support of the neural code under investigation [Cox 03]. The resulting
maps cannot be interpreted as classical SPMs. However, one can still use these
weighted maps to interpret some aspect of the neural coding. We are expecting
(see chapter 2) that the spatial layout of neural coding is sparse and spatially
structured in the sense that non-zero weights are grouped into connected clus-
ters. Weighted maps showing such characteristics will be called interpretable,
as they reflect our hypothesis on the spatial layout of neural coding.

In the case of non-linear classifier, the question of the interpretation is more
difficult as we cannot access meaningful weighted maps due to the non-linearity.

3.1.4 Model selection and validation

In order to validate that the extracted patterns are part of the support of neural
coding, we have to evaluate the accuracy of the prediction, i.e. test whether the
predictions are correct. However, learning a prediction function and testing it
on the same data yields a methodological bias. To avoid over-fitting, we have
to define two different sets: a learning set (Xl,yl) which is used for learning
the prediction function (also called training set), and a test set (Xt,yt) which is
used for testing the prediction function.

However, by defining these two sets, we reduce the number of samples
that can be used for learning the model, which is a crucial issue in fMRI data
analysis. Moreover, the results can depend on a particular couple of learning
set and test set.

A solution is to split the whole data into different learning and test sets,
and to return the averaged value of the prediction scores obtained with the
different sets. Such a procedure is called cross-validation. This approach can
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be computationally expensive, but does not waste too much data (as it is the
case when fixing an arbitrary test set), which is a major advantage in problem
such as inverse inference, where the number of samples is very small. Among
others, we use the following cross-validation schemes:

• Leave-one-out: Leave-one-out (or LOO) is one of the simplest cross-validation
schemes. Each learning set is created by taking all the samples except
one, the test set being the left out sample. Thus, for n samples, we have n
different learning and test sets. This cross-validation procedure does not
waste much data as only one sample is removed from the learning set.

• K-fold: K-fold cross-validation divides the sample set into K disjoint groups
of samples, called folds (if K = n, we retrieve the LOO), of equal sizes (if
possible). The prediction function is learned using K − 1 folds, and the
left out fold is used for test.

• Leave-one-subject-out: Leave-one-subject-out (or LOSO) is a cross-validation
scheme that is more specific to the problem of fMRI inverse inference.
In inter-subject studies, it allows to test whether the prediction function
learned in a given cohort can be generalized to other subjects. Moreover,
it removes some subject-specific effects that can bias the prediction func-
tion, as there are some images from each subject in the learning set. It
simply removes one subject from the data as test set, all the other sub-
jects being the learning set.

It is important to note that both learning the prediction function and di-
mension reduction are performed within the cross-validation loop (see Fig. 3.2),
in order to avoid overfit (a.k.a. circular analysis [Kriegeskorte 09]). In the case
of extremely small sample size, an additional step can be the use of permu-
tation tests for estimating the significance of the resulting prediction accuracy
[Golland 03].

Figure 3.2: Global machine learning framework for inverse inference, with a
model selection by cross-validation.
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Internal cross-validation

The predictive model relies frequently on internal parameters, and thus dif-
ferent models can be used. We have to select the best model within a set of
different models. This is often done by selecting the model that yields the best
prediction accuracy. Thus, some cross-validation are also performed within the
previously described global cross-validation, in order to select the best set of
parameters. Such cross-validation is said to be internal or nested.

However, the choice of the best cross-validation scheme is difficult. The
optimal ratio of data in the learning set/test sets (e.g. the number of folds in K-
folds) is not the same if we want to have a consistent selection of the model, or
if we want to test the generalization ability of a model [Larsen 99]. Moreover,
the choice of cross-validation dramatically influences the computation time of
the inverse inference framework, and thus, has to be done wisely.

3.1.5 Dimension reduction

It has been shown [Hughes 68] that increasing the complexity of the data can
first increase the prediction accuracy until an optimal value is reached. Af-
ter that, further increasing in the dimensionality of the data will reduce the
prediction accuracy. This effect is called curse of dimensionality, and is crucial
in fMRI data analysis. Indeed, in the case p ≫ n (with fMRI, we have typi-
cally p ∼ 105 and n ∼ 102) it is always possible to find a prediction function
that yields a perfect prediction on the learning data. However, such function
can not generalize (i.e. provide accurate predictions on new samples) as it has
learned non-informative specificities of the learning set, or noise. Such a func-
tion is said to overfit the learning data. This problem can be overcome by using
dimension reduction methods, that define a low-dimensional space that contains
the predictive information while drastically reducing the dimensionality of the
problem.

In fMRI inverse inference, dimension reduction is carried out with two differ-
ent objectives, that may or may not be fulfilled. It has to yield good prediction
accuracy (i.e. extract relevant information), and it has to extract interpretable
patterns (e.g. constructing a low-dimensional space that corresponds to a re-
duced number of brain regions).
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Prediction
function /
Dimension
Reduction
scheme

Prior ROIs
Atlas selection

Univariate
feature
selection

Feature
Agglomeration

PCA RFE

Kernel
Machines
(Linear
kernels)

[Mitchell 04,
Kamitani 05, Ni 08,
Knops 09, Chu 10,
Rissman 10]

[Cox 03,
Mitchell 04,
Thirion 06a,
Grazia 08]

[Mitchell 04,
Fan 06,
Grazia 08]

[LaConte 05,
Mourao-Miranda 05,
Mourao-Miranda 07,
Wang 07, Sato 09,
Wang 09]

[Martino 08,
Hanson 08,
Ryali 10]

Kernel
Machines
(Other
kernels)

[Chu 10] [Cox 03,
Grazia 08]

[Davatzikos 05,
Grazia 08,
Koutsouleris 09]

Regularized
prediction

[Yamashita 08,
Rissman 10]

[Carroll 09]
[Ryali 10]

Bayesian
models

[Friston 08,
Ganesh 08, Ni 08,
Yamashita 08,
Chu 10]

Naive
Bayes

[Mitchell 04,
Palatucci 07,
Shinkareva 08]

[Mitchell 04,
Rustandi 06]

[Mitchell 04]

KNN
Similarity

[Mitchell 04,
Williams 07]

[Sayres 06,
Shinkareva 06,
Mitchell 04,
Mitchell 08]

[Mitchell 04]

Discriminant
analysis

[Haynes 05b] [Cox 03,
Haynes 05a]

[Davatzikos 05] [Strother 02,
Kjems 02,
LaConte 03,
Carlson 03,
Ford 03, Jiang 04,
Strother 04,
Mourao-Miranda 05,
Sato 09]

Other
methods

[Dehaene 98,
Haxby 01, Sidtis 03,
Koltchinskii 04,
Polyn 05,
Martinez-Ramon 06,
Rissman 10]

[Mørch 97,
Onut 04,
Langlebe 05,
Hutchinson 09,
Langs 10]

[Genuer 10] [Demirci 08] [Langs 10]

Table 3.1: State of the art of statistical learning in fMRI inverse inference.

94



CHAPTER 3. STATISTICAL LEARNING FOR FMRI INVERSE INFERENCE

3.2 Some historical approaches

In this section, we detail the two historical approaches that have been first used
in fMRI-based inverse inference, namely Support Vector Machine and Discrimi-
nant Analysis. These approaches have been first developed for other applica-
tions and are of course by no means limited to fMRI inverse problems.

3.2.1 Support Vector Classification – SVC

The first prediction function used in inverse inference [Cox 03] has been Sup-
port Vector Machine (SVM) [Cortes 95], and this approach, that is widely used,
has became the reference approach for fMRI inverse inference. Its success
comes from the fact that it can cope with relatively highly dimensional data,
and that it yields a good prediction accuracy with many datasets.

It has been used for fMRI inverse inference with linear kernels [Cox 03,
Mitchell 04, LaConte 05, Kamitani 05, Mourao-Miranda 05, Thirion 06a, Fan 06,
Mourao-Miranda 07, Wang 07, Grazia 08, Martino 08, Hanson 08, Sato 09, Wang 09,
Knops 09, Ryali 10, Rissman 10] or non-linear kernels (RBF, polynomial ker-
nels) [Cox 03, Davatzikos 05, Grazia 08, Koutsouleris 09]. We describe here the
SVM and illustrate it on real fMRI data. More details about the theory of ker-
nels machine can be found in [Shawe-Taylor 04], and the use of others kernel
approaches, such as Kernel ridge, can be found in [Ni 08, Chu 10].

Kernel trick

Some statistical learning algorithms can be solved using the dual formulation
that is based on the Lagrange dual problem. Interestingly, in the estimation of
this dual problem, the data enter only in the form of a scalar product K = XT X,
called Gram matrix. The algorithm is said to work in the dual space. As the
Gram matrix is a n × n matrix, this approach works in a very low-dimensional
representation of the data (when n ≪ p) compared to the feature space, and is
thus well-suited for dealing with the high dimensionality issue of fMRI data.

More generally, one can use a feature space mapping Φ(X) that can take into
account non-linear interactions between samples. The scalar product in the
Gram matrix is replaced by the kernel matrix K = Φ(X)T Φ(X), where K(Xi,Xj)
is a kernel. The mapping is often not explicit as we directly work on the com-
puted inner product. This is known as the kernel trick [Aizerman 64]. A kernel
must satisfy the Mercer’s condition, i.e. must be positive semi-definite, and the
most common kernels are:

{
Linear kernel K(Xi,Xj) = Xi

T Xj

Gaussian kernel K(Xi,Xj) = exp−γ‖Xi−Xj‖
2 (3.6)
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Dual quadratic optimization problem

For binary classification, in the case of a predictive linear model, we introduce
the following separating hyperplane:

wXi + b = 0 (3.7)

which corresponds to the decision function yi = sgn(wXi + b). We define the
size of the margin m = 1/‖w‖ as the distance of a sample to the separating
hyperplane. We can rescale the parameters w and b such that the points closest
to the hyperplane satisfy |wXi + b| = 1. For the sake of simplicity in the pre-
sentation of the method, we will from now on consider w and b as the rescaled
parameters. The hyperplane is thus chosen to separate the set of positive sam-
ples from the set of negative samples with maximum margin.

The conditions for classification without training error, a.k.a. hard-margin
constraints, are:

∀ 1 ≤ i ≤ nl , yl
i(wXl

i + b) ≥ 1 (3.8)

i.e. the predicted target and the true target have the same sign. Minimizing the
bound on the empirical risk and the complexity term can be done by minimiz-
ing ‖w‖2, which reads:

ŵ =
1

2
min
w,b
‖w‖2 (3.9)

subject to yl
i(wXl

i + b) ≥ 1 , for 1 ≤ i ≤ nl (3.10)

This constrained optimization problem is solved using Lagrange multipli-
ers α:

L(w, b, α) =
1

2
‖w‖2 −

nl∑

i=1

αi

(
yl

i(wXl
i + b)− 1

)
(3.11)

which yields the following equations at the optimum:

nl∑

i=1

αiy
l
i = 0 and ŵ =

nl∑

i=1

αiy
l
iX

l
i (3.12)

By using the kernel trick, and replacing Eq. 3.12 in Eq. 3.11, we obtain the dual
quadratic optimization problem:

max
α

nl∑

i=1

αi −
1

2

nl∑

i=1

nl∑

j=1

αiαjy
l
iy

l
jK(Xi,Xj) (3.13)

subject to αi ≥ 0, i = 1, . . . , nl and
nl∑

i=1

αiy
l
i = 0 (3.14)
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The couples {Xi, yi} with αi 6= 0 are called Support Vectors, and they define
the margin. They are the samples that determine the decision function:

ŷ = sgn




nl∑

i=1

αiyiK(X,Xi) + b



 (3.15)

The problem in Eq. 3.14 can be solved by different ways. A first approach
is the chunking algorithm [Vapnik 82] and is based on the fact that removing
rows and columns of the matrix with zero Lagrange multipliers do not change
the quadratic form. This allows to solve Eq. 3.14 by solving a series of small
QP problems. Another solution is given in [Osuna 97], and can be seen as
a generalization of the chunking algorithm. It consists in solving smaller QP
problems, with a constant size matrix. Finally, Sequential Minimal Optimization
[Platt 99], is based on the previous approach. It solves at each step the smallest
possible optimization problem, which involves only two Lagrange multipliers
in the standard SVM problem. This can be done analytically, and allows a quick
resolution of Eq. 3.14.

Slack variables and C-SVC

In order to relax the hard-margin constraints (null training error) if the data are
not linearly separable, one can introduce the slack variables [Cortes 95], which
yields the following conditions on the training set:

∀ 1 ≤ i ≤ nl , yl
i(wXl

i + b) ≥ 1− ξi , with ξi ≥ 0 (3.16)

These slack variables allow for some classification errors, and yields the follow-
ing minimization problem:

ŵ =
1

2
min
w,b
‖w‖2 + C

nl∑

i=1

ξi (3.17)

subject to yl
i(wXl

i + b) ≥ 1− ξi , for 1 ≤ i ≤ nl (3.18)

where C > 0 is a regularization parameter. One can see that the slack variables
allow some classification errors on the training set, the value ξi denotes the
amount by which the corresponding sample is misclassified. The minimization
problem defined in Eq.3.18 aims at minimizing the number of misclassified

samples C
∑nl

i=1 ξi, with a ℓ2 norm regularization ‖w‖2. This problem can be
also viewed as minimizing an Hinge loss with a ℓ2 norm regularization. The
Hinge loss is defined as:

ℓ(yl
i(wXl

i + b)) = (1− yl
i(wXl

i + b))+ = max(yl
i(wXl

i + b), 0) (3.19)

This approach is called C-SVC, and is usually solved through the dual quadratic

97



optimization problem:

max
α

nl∑

i=1

αi −
1

2

nl∑

i=1

nl∑

j=1

αiαjy
l
iy

l
jK(Xi,Xj) (3.20)

subject to 0 ≤ αi ≤ C, i = 1, . . . , nl and
nl∑

i=1

αiy
l
i = 0 (3.21)

ν-SVC

However, as increasing C decreases the regularization, it can be useful to re-
place C by another constant ν in order to have a more intuitive regularization:

max
α

−1

2

nl∑

i=1

nl∑

j=1

αiαjy
l
iy

l
jK(Xi,Xj) (3.22)

subject to 0 ≤ αi ≤ 1/nl, i = 1, . . . , nl and
nl∑

i=1

αiy
l
i = 0 (3.23)

nl∑

i=1

αi ≥ ν (3.24)

This approach is called ν-SVC [Schölkopf 00], and the parameter ν can be seen
as an lower bound on the number of support vectors, and an upper bound on
the number of samples that lie on the wrong side of the hyperplane. Interest-

ingly, the linear term
∑nl

i=1 αi does not appear in Eq. 3.22, compared to Eq. 3.20,
and the dual quadratic optimization problem is now quadratically homogeneous
in α.

Multi-class SVC

For multi-class SVC, we use some voting heuristics combined with the previ-
ously described binary SVC [Hsu 02]. These heuristics are combined with vot-
ing strategy, in order to make a decision from the different multi-class heuristics.
Two multi-class heuristics are commonly used:

• one-against-all [Bottou 94]: binary classifiers are constructed by pooling
together the data from all the classes except one, and the decision bound-
ary of this new data set is computed. The voting strategy takes the predic-

tion that yields the highest value of
∑nl

i=1 αiyiK(X,Xi) + b.

• one-against-one [Knerr 90, Friedman 96]: we construct a set of binary clas-
sifiers by considering all the possible pairs of classes. This approach
yields a total of K(K − 1)/2 classifiers, for a K classes problem. The
training time is shorter than for the one-against-all heuristic, and this is
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the heuristic used by LibSVM [Chang 01]. This heuristic is often com-
bined with a Max Wins voting strategy, that predict the class that yields
the highest number of prediction within all the different binary classi-
fiers.

These multi-class heuristics are not limited to SVC, and will be used in this
thesis for multi-class prediction (see chapter 6).

3.2.2 Support Vector Regression – SVR

Support Vector Machine can also be used for regression, yielding Support Vector
Regression – SVR [Smola 98, Gunn 98, Smola 04]. We introduce the ǫ-insensitive
loss function ℓǫ, that enables sparsity in the Support Vectors:

ℓǫ = 0 if ‖ŷ − y‖ < ǫ (3.25)

= ‖ŷ − y‖ − ǫ otherwise (3.26)

where ŷ = ŵXl
i + b̂ is the prediction. Adding slack variables ξi, ξ

∗
i as in Eq.3.18,

the minimization problem of SVR is:

ŵ =
1

2
min
w,b
‖w‖2 + C

nl∑

i=1

(ξi + ξ∗i ) (3.27)

subject to yl
i − (wXl

i + b) ≤ ǫ + ξi , for 1 ≤ i ≤ nl (3.28)

wXl
i + b− yl

i ≤ ǫ + ξ∗i , for 1 ≤ i ≤ nl (3.29)

This yields the dual problem:

max
α,α∗

−1

2

nl∑

i=1

nl∑

j=1

(α∗
i − αi)(α

∗
j − αj)K(Xi,Xj) (3.30)

−ǫ

nl∑

i=1

(αi + α∗
i ) +

nl∑

i=1

yl
i(αi − α∗

i ) (3.31)

subject to 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , nl and

nl∑

i=1

(αi − α∗
i ) = 0 (3.32)

The estimate ŵ of the weights is thus:

ŵ =

nl∑

i=1

(αi − α∗
i )Xi (3.33)

The choice of ǫ can be addressed using ν-SVR, where ν (in a similar way
as ν-SVC) is the upper bound on the fraction of error samples or the lower
bound on the fraction of samples inside the ǫ-insensitive tube [Schölkopf 00]. ǫ
becomes a variable in the optimization process.
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3.2.3 SVM for fMRI inverse inference

The large success of SVM in inverse inference is that it can handle high dimen-
sional data. We evaluate the performance of SVM on the ten subjects of the
mental representation of shape data set (see details in appendix B.2) The average
cross-validated classification score (4-fold) obtained for different numbers of
voxels and different values of C, is given Fig. 3.3 (left), the chance level being
at 25%. We can notice that, when increasing the number of selected voxels (and
thus increasing the proportion of possibly irrelevant features in the selected
voxels), the prediction remains relatively accurate. The prediction accuracy is
also stable for different number of features and different values of C.

Additionally, when dealing with fMRI datasets, it has been found that a lin-
ear kernel often gives better generalization performance than a polynomial ker-
nel [Cox 03, Chu 10]. In Fig. 3.3, we give the average cross-validated regression
score (4-fold) obtained for different numbers of voxels and different values of
C, the parameter γ of the RBF kernel being optimized within an internal cross-
validation. The RBF SVM is not stable and does not yield higher accuracy than
the linear SVM. Thus, we now only use a linear kernel for SVM.
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Figure 3.3: SVC - Average cross-validated classification score (4-fold) obtained
for different numbers of voxels and different values of C for a linear kernel (left)
and an RBF kernel (right).

SVM yields sparsity in the dual space, not in the features space, as can be
seen in Fig. 3.4, for 1000 voxels selected using F-score-based univariate feature
selection. It is thus more difficult to extract the spatial support of the neural
code, as all the weighs are non-zero. Different methods have been proposed
to have a more usable representation in the primal space: sensitivity maps (i.e.
relative changes in class prediction when a given voxel is modified) [Kjems 02];
correlation between each voxel with the paradigm while excluding the images
corresponding used to defined the margin (i.e. support vectors) [LaConte 05].
However, more generally, kernel machines do not provide interpretable maps.
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Figure 3.4: Dual and primal weights found by linear SVM (C = 0.5) for 1000
voxels. SVM yields sparsity in the dual space, which is not the case in the features
space.

3.2.4 Generative models

Classical generative models have been among the first approaches used for in-
verse inference, due to their simplicity. The assumptions of the models are very
general, and we detail here the models and the corresponding assumptions on
p(X|y).

Gaussian Naive Bayes – GNB

The Naive Bayes – NB – algorithm is based on an hypothesis of conditional in-
dependence on X, i.e. an hypothesis of independence between the different fea-
tures Xj:

p(X|y) =

p∏

j=1

p(Xj|y) (3.34)

and the Maximum a Posteriori estimates is:

ŷ = arg max
k

p(y = k)
∏p

j=1 p(Xj|y = k)
∑K

l=1 p(y = l)
∏p

j=1 p(Xj|y = l)
(3.35)

= arg max
k

p(y = k)

p∏

j=1

p(Xj|y = k) (3.36)

The simplest hypothesis that can be made for p(Xj|y = k) is a gaussian
hypothesis, i.e. :

p(Xj|y = k) = N (µj,k, σ2
j,k) (3.37)

This model is called Gaussian Naive Bayes – GNB, and the variance-covariance
matrix Σk (σ2

j,k is the jth element of the diagonal of Σk) is reduced to a simple
diagonal matrix. The different parameters are estimated by maximum likelihood
on the learning set, and we thus obtain ∀j ∈ [1..p]:






µ̂j,k =

P

i|yl
i
=k

(xj
i
)l

ll
k

σ̂2
j,k =

P

i|yl
i
=k

((xj
i
)l−µ̂j,k)((xj

i
)l−µ̂j,k)T

ll
k

(3.38)
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where llk is the number of samples in the kth class.
GNB has been used for inverse inference [Mitchell 04, Rustandi 06, Palatucci 07,

Shinkareva 08]. We evaluate the performance of GNB on the ten subjects of the
mental representation of shape data set (see details in appendix B.2). The aver-
age cross-validated classification score (4-fold) obtained for different numbers
of voxels is given Fig. 3.5, the chance level being at 25%. There is an optimal
number of voxels (250), and the prediction accuracy dramatically decreases
with larger numbers, due to the overfit issue of GNB. Thus GNB is often only
used on small regions of interest. Moreover, GNB does not take into account the
covariance between features, and thus may not be well-suited for complex clas-
sification task. Consequently, the optimal prediction accuracy (64%) is lower
than the one found by linear SVC (78%).
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Figure 3.5: Gaussian Naive Bayes - Average cross-validated classification score
(4-fold) obtained for different numbers of voxels. There is an optimal number
of voxels (250 voxels), and the prediction accuracy dramatically decreases for
larger number of voxels (overfit issue).

Linear Discriminant Analysis – LDA

In order to better take into account the multivariate structure of the data, one
can remove the conditional independence hypothesis of the GNB. In conjunction
with a Gaussian assumption, Linear Discriminant Analysis – LDA makes an ho-
moscedastic assumption, i.e. that the covariance matrices are identical for all
classes and have full rank:

p(X|y = k) = N (µk,Σk) with ∀k ∈ K : Σk = Σ (3.39)

This homoscedastic hypothesis is equivalent to assume that each class is shifted
from the others (same variance-covariance matrix, different means). For new
samples Xt in the test set, the decision rule is:

ŷ = arg max
k

d(Xt, k) (3.40)

where:
d(Xt, k) = 2 log p(yl = k)− (Xt − µk)T Σ−1 (Xt − µk) (3.41)
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is the discriminant function. Thus, the decision rule is simply based on a linear
combination of the samples:

d(Xt, k)−d(Xt, l) = 2 log
p(yl = k)

p(yl = l)
−XtΣ−1(µk−µl)−

1

2
µk

T Σ−1µk+
1

2
µl

T Σ−1µl

(3.42)
and the decision boundary between to classes is linear in X:

2 log
p(yl = k)

p(yl = l)
−XtΣ−1(µk − µl)−

1

2
µk

T Σ−1µk +
1

2
µl

T Σ−1µl = 0 (3.43)

The different parameters are estimated by maximum likelihood on the learn-
ing set:






µ̂k =

P

i|yl
i
=k

Xl
i

ll
k

Σ̂ =
∑K

k=1

P

i|yl
i
=k

(Xl
i−µ̂k)(Xl

i−µ̂k)T

nl−K

(3.44)

LDA has been used for inverse inference [Strother 02, Kjems 02, LaConte 03,
Ford 03, Cox 03, Carlson 03, Jiang 04, Strother 04, Haynes 05a, Davatzikos 05,
Mourao-Miranda 05, Haynes 05b, Sato 09]. We evaluate the performance of
LDA on the ten subjects of the mental representation of shape data set (see details
in appendix B.2). The average cross-validated classification score (4-fold) ob-
tained for different numbers of voxels is given Fig. 3.6, the chance level being at
25%. This scores raises an optimum (for 500 voxels), and then decreases when
the number of selected voxels increases. Compared to GNB (see Fig. 3.5), LDA
yields higher prediction accuracy, but is still subject to overfit for high number
of voxels.
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Figure 3.6: Linear Discriminant Analysis - Average cross-validated classification
score (4-fold) obtained for different numbers of voxels. LDA yields higher pre-
diction accuracy and is less subject to overfit for high number of voxels, than
GNB.

Quadratic Discriminant Analysis – QDA

One can generalize the LDA model by removing the homoscedastic assumption in
the LDA model, i.e. by making a heteroscedastic assumption. The resulting model
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is called Quadratic Discriminant Analysis – QDA, and the variance-covariance ma-
trices Σk are different for each class:

p(X|y = k) = N (µk,Σk) , ∀k ∈ [1, . . . ,K] (3.45)

In this case, the maximum a posteriori estimate yields:

ŷ = arg max
k

{
2 log p(y = k)− (X− µk)T Σk

−1 (X− µk)− log |Σk|
}

(3.46)

where (X−µk)T Σk
−1 (X−µk) is the Mahalanobis distance, and the discriminant

function is now d(X) = 2 log p(y = k)− (X− µk)T Σk
−1 (X− µk)− log |Σk|.

For a new sample Xt
i in the test set, the decision rule is the same as the LDA

(see Eq.3.40), but now is based on a quadratic combination of the samples in
the learning set.

The different parameters are thus obtain as :





µ̂k =

P

i|yl
i
=k

Xl
i

ll
k

Σ̂k =

P

i|yl
i
=k

(Xl
i−µ̂k)(Xl

i−µ̂k)T

ll
k
−1

(3.47)

QDA suffers from the fact that Σk is estimated with very few data points.

The estimate Σ̂k is thus very unstable, and dramatically depends on the train-
ing set. Thus, it has not been used for inverse inference.

Regularization of variance-covariance matrices for Discriminant Analysis

A solution is to regularize the covariance estimation. Such an approach has
not been used yet for inverse inference, but has emerged as an interesting
method in resting-state fMRI data analysis [Varoquaux 10], among other appli-
cations. We give here different ways for less variable estimation of the variance-
covariance matrices [Chen 10] based on shrinkage, and thus, allowing to use LDA
and QDA in ill-posed problem such as ours.

The classical estimator of Σk is defined as:

Σ̂k =

∑
i|yl

i
=k τi,kτT

i,k

llk − 1
(3.48)

with τi,k = Xl
i − µ̂k. This estimator is unbiased, but has a high variance and is

ill-posed for p ≫ n, which is the case in fMRI-based inverse inference. A most
well-conditioned estimate of Σk is given by:

Σ̃k =
Tr(Σ̂k)

p
I (3.49)

which has a lower variance but higher bias than Σ̂k. A trade-off between these
two estimates can be obtained using:

Σ̄k = (1− ρ)Σ̂k + ρΣ̃k (3.50)
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where 0 ≤ ρ ≤ 1 is the shrinkage coefficient. Thus, we can see that the esti-
mate given by Eq.3.50 is the classical estimator of Σk where the diagonal is
reduced, in order to have a lower variance. The Ledoit-Wolf estimation of ρ can
be obtained using [Ledoit 03]:

ρ̂ =

∑
i|yl

i
=k ‖τi,kτT

i,k − Σ̂k‖2

n2
(

Tr(Σ̂2
k)− Tr2(Σ̂k)/p

) (3.51)

By using this regularized estimate of the variance-covariance matrix, it seems
possible to used both LDA and QDA for inverse inference. We have not focused
on such approaches during this thesis, but we detail regularization approaches
for linear model in the next section.

3.3 Regularization

As previously stated, one of the main problem in inverse inference, is the huge
dimensionality of the fMRI data, as the problem of learning the prediction
function is plagued by the curse of dimensionality. A commonly used solu-
tion is the regularization of the weights used in the parametric prediction func-
tion, i.e. the values of the weights are constrained by some parameters. Such
approach can be used for estimating a variance-covariance matrix in the case
of very few samples (see section 3.2), and we detail here how regularization
can be used within a linear model for fMRI inverse inference. Additionally to
the regularization performed in approaches such as SVM, regularization of
linear model has recently been successfully used for fMRI-based prediction
[Carroll 09, Ryali 10, Rissman 10], both in regression and classification.

3.3.1 General form of regularization

Let us recall the following predictive linear model:

y = f(X,w, b) = F (Xw + b) (3.52)

This estimation can be done by minimizing the difference between the esti-
mated target ŷ and the true target y. This difference can be seen as a function
of the weights w, called loss function (or more simply loss) and noted ℓ(w).

Loss function

The loss function represents the cost associated with an error in the estimation
of y and it is usually chosen to be easily computed and convex. In regression
settings, we usually use the quadratic loss (or ℓ2 loss):

ℓ(w) =
1

2n
‖y −Xw‖2 (3.53)
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and the following logistic loss for classification settings:

ℓ(w) =
1

n

n∑

i=1

log
(
1 + exp−yi(Xi

T w)
)

(3.54)

Ordinary Least Squares

In regression settings, the easiest way to solve the linear problem defined in
Eq. 3.52 is to use the Ordinary Least Squares estimate (OLS), that minimizes
the ℓ2 loss without any constraints, i.e. ŵ = argminw ℓ(w). Assuming that
XT X is invertible, the resulting estimate of the weights is given by ŵols =
(XT X)−1XT y, and ŵols is a bias free estimate of w. This estimator is based on
the computation of (XT X)−1 and is thus very sensitive to the conditioning of
X. One small eigenvalue of XT X yields a very unstable OLS estimation. In the
case of ill-posed problem such as ours (n≪ p), XT X is not invertible, i.e. some
eigenvalues of XT X are 0.

Regularization ℓp

A common way to perform a better estimation ŵ, called regularization, is to
sacrifice some bias for reducing the estimator variance [Hoerl 70]. A standard
approach to perform the estimation of w with regularization uses penalization
of a maximum likelihood estimator. It leads to the following minimization
problem:

ŵ = argmin
w,b

ℓ(w) + λJ(w) , λ ≥ 0 (3.55)

where λJ(w) is the regularization term and ℓ(w) is the loss function. The pa-
rameter λ balances between the loss function ℓ(w) and the penalty J(w). Note
that the intercept b is not included in the regularization term. In the case of
regression where ℓ(w) = 1

2n‖y −Xw‖2, and with J(w) = ‖w‖γγ , the problem
defined in Eq. 3.55 is known as Bridge Regression [Frank 93]. Let us recall that:

‖w‖γ =

( p∑

j=1

|xj |γ
)1/γ

(3.56)

is the γ-norm, with the particular case of Euclidean norm for γ = 2, and infinity
norm (or maximum norm) for γ = ∞. An approach is sparse if some weights
are null, and in the case of ℓp norm penalization, sparsity is obtained for p ≤ 1
[Nikolova 00].

3.3.2 Ridge Regression - ℓ2 regularization

Ridge Regression is the special case of a ℓ2 norm regularization [Hoerl 70]. The
main idea is to penalize the OLS estimate by using (XT X + λI)−1 instead of
(XT X)−1, with λ ≥ 0. This is equivalent to the following minimization prob-
lem:

ŵr = argmin
w,b

ℓ(w) + λ‖w‖2 , λ ≥ 0 (3.57)
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Figure 3.7: Illustration of the Ridge regression (ℓ2 norm regularization) and Lasso
(ℓ1 norm regularization) estimations, in the case of two orthogonal regres-
sors. The estimate ŵ is found at the intersection between the isocontours of
the quadratic loss centered on the OLS estimate(red ellipsoids) and the con-
straint (gray region). With Ridge regression, the solution is not sparse, with two
non-null components for ŵr. With Lasso, the intersection is found on one axis,
yielding a sparse solution (one non-null component for ŵl).

The resulting estimation ŵr is more stable than ŵols, and we have the relation-
ship to the OLS solution:

ŵr =
(
I + λ(XT X)−

)−1
ŵols (3.58)

where (.)− is the Moore–Penrose pseudoinverse. The ℓ2 norm regularization is

equivalent to set a Gaussian prior on w, pλ(w) = Cλ exp−λ‖w‖2
2 , where Cλ is a

constant depending on λ.
If we note s(ŵr) the residual sum of squares for the estimation ŵr of w,

we have s(ŵr) = (y −Xŵr)T (y −Xŵr) = s(ŵols) + g(ŵr) with s(ŵols) the
residual sum of squares of the OLS estimation and g(ŵr) a quadratic form of
(ŵr − ŵols). The isocontours of s(ŵr) are hyper-ellipsoids centered on ŵols

(see an illustration Fig.3.7), ŵr being the intersection of those ellipsoids with
the ℓ2 constraint.

Properties of Ridge Regression for inverse inference

Ridge Regression exhibits groups of correlated features and works well when all
the features are equally relevant. However, when correlations between vari-
ables increase, Ridge Regression tends to yield equal coefficients in order to min-
imize their ℓ2 norm [Tibshirani 96]. This effect may be important in fMRI data
analysis, as the underlying metabolic effects can extend among wide regions.
Additionally, some consistency results for Ridge Regression in the case of n fixed
and p→∞, which is the case for fMRI studies, can be found in [Luo 09].
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Illustration of Ridge Regression on real data

We evaluate the performance of Ridge Regression on the ten subjects of the men-
tal representation of size data set (see details in appendix B.2). The average cross-
validated regression score (4-fold) obtained for different numbers of voxels and
different values of the regularization parameter λ, is given Fig. 3.8 (left). We
can see that the prediction accuracy is not too sensitive to the regularization
parameter λ, and slightly decreases for high number of voxels (104). The path
(i.e. the values of the weights in function of the regularization parameter) of
Ridge Regression is given Fig. 3.8 (right) for 11 different features of different rel-
evance (selected features have different ranks of F-scores). The weights are not
sparse, even if some voxels have zero weights. Additionally, we can notice the
grouping effect, i.e. the fact that similar features (in red) have a similar weights
when the regularization increases. Moreover, all the relevant features (red and
yellow) are extracted by Ridge Regression, even if they are correlated.
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Figure 3.8: Ridge Regression - Average cross-validated regression score (4-fold)
obtained for different numbers of voxels and different values of the regular-
ization parameter λ (left). The path of Ridge Regression (right) for 11 features,
shows the grouping effect (relevant features are in red, irrelevant ones in blue).

3.3.3 Lasso - ℓ1 Regularization

We now study the case of the ℓ1 regularization, also called Lasso for Least Ab-
solute Shrinkage and Selection Operator [Tibshirani 96]. Lasso tries to deal with
the weakness of Ridge Regression by forcing the uninformative features to have
zero weights, and yields a sparse model. Moreover, Lasso can also be seen as
a particular case of subset selection, but is less variable as it is not a discrete
process as other subset selection methods. Lasso corresponds to the following
minimization problem:

ŵl = argmin
w,b

ℓ(w) + λ‖w‖1 , λ ≥ 0 (3.59)
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Lasso is equivalent to a Laplacian prior on w, pλ(w) = Cλ exp−λ‖w‖1 , where Cλ

is a constant depending on λ.

In the same way as in Ridge Regression, isocontours of s(ŵl) are ellipsoids
centered on ŵols. The sparsity of Lasso comes from the fact that, while the con-
straint of Ridge regression is a p-dimensional sphere, the constraint of Lasso has
some singularities along the axes. The intersection is more likely to occur on
these corners, yielding the nullity of many coefficients. This is easily seen on a
simple case of two orthogonal regressors (Fig. 3.7). Lasso is also closely related
to the non-negative garrote [Breiman 95], that stronger penalizes the small coef-
ficients of OLS. By working on the initial OLS weights that are very sensitive
to the conditioning of X, the non-negative garrote is also sensitive to ill-posed
problems.

The minimization problem defined in Eq. 3.59 can be solved using Lars
(Least Angle Regression) [Trevor 02], coordinate descent [Friedman 07, Friedman 10]
or iterative procedures based on proximal operator [Daubechies 04, Combettes 05].

Properties of Lasso for inverse inference

One of the most important property of Lasso is that when n ≪ p, as in fMRI
data, the solution yielded by Lasso as at most n non-zero coefficients [Osborne 99].
Indeed, it has been shown experimentally [Tibshirani 96] that Lasso often does
not pick the correct model, and selects only one feature from a set of correlated
voxels. Thus, the resulting model can be difficult to interpret, as the selection
can be relatively unstable (i.e. the support of w can vary a lot). Moreover, Lasso
does not yield consistent model when λ is chosen to minimize the prediction er-
ror [Leng 06], i.e. does not choose the right model when the number of samples
tends to infinity. Yet, in the case of inverse inference, the best model is often
selected by minimizing the prediction error within an internal cross-validation,
and thus, the model yielded by Lasso should be interpreted carefully.

Illustration of Lasso on real data

We evaluate the performance of Lasso on the ten subjects of the mental represen-
tation of size data set (see details in appendix B.2). The average cross-validated
regression score (4-fold) obtained for different numbers of voxels and differ-
ent values of the regularization parameter λ, is given Fig. 3.9 (left). We can
see that the prediction accuracy is far more sensitive to the regularization pa-
rameter λ than Ridge Regression. Moreover, the optimal value of λ is different
for different number of features. The path of Lasso is given Fig. 3.9 (right) for
11 different features of different relevance. The weights are very sparse. We
can notice than the relevant features (red) are not selected at the same point
on the path. Contrariwise to Ridge Regression, slightly different regularization
parameter can yield very different models.
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Figure 3.9: Lasso - Average cross-validated regression score (4-fold) obtained
for different numbers of voxels and different values of the regularization pa-
rameter λ (left). The path of Lasso (right) for 11 features, shows that the weights
are sparse, but Lasso chooses only one features from a set of correlated voxels
(relevant features are in red, irrelevant ones in blue).

3.3.4 Elastic net and Sparse Multinomial Logistic Regression -
ℓ1 + ℓ2 Regularization

More recently, a new approach, called Elastic net, has been proposed [Zou 05].
Elastic net deals with the limitation of the two previous approaches, by using
a combined ℓ1 and ℓ2 penalization. Indeed, it is sparser than Ridge Regression
and yields more interpretable models by setting many weights to zeros. Elastic
net also allows to extract more features than samples and correlated features,
contrariwise to Lasso. Elastic net yields the following minimization problem:

ŵl = argmin
w,b

ℓ(w) + λ1‖w‖1 + λ2‖w‖22 , λ1 ≥ 0 , λ2 ≥ 0 (3.60)

Trivially, Elastic net admits Lasso (λ2 = 0) and Ridge regression (λ1 = 0) as
limit cases. Another parametrization of Elastic net can be used, where λ2 is
denoted λ and ρ = λ1

λ1+λ2
is the fraction of the ℓ1 norm in the total norm.

As Lasso, Elastic net can be solved using Lars [Trevor 02] or coordinate descent
[Friedman 07, Friedman 10]. An interesting result [De Mol 09] is the consis-
tency of Elastic net for both prediction and variable selection, which is impor-
tant when seeking for an interpretable model.

Illustration of Elastic Net on real data

We evaluate the performance of Elastic Net on the ten subjects of the mental
representation of size data set (see details in appendix B.2). The average cross-
validated regression score (4-fold) obtained for different values of the regular-
ization parameter λ1, and different values of the mixing parameter ρ, is given
in Fig. 3.10 (left), for 5000 voxels selected using F-score-based univariate feature
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selection (we fix the number of voxels in order to let both λ1 and ρ vary). The
prediction accuracy is high, and there is a correlation between the two param-
eters λ1 and ρ. The path of Elastic Net is given Fig. 3.10 (right) for 11 different
features of different relevance, and for ρ = 0.2. Elastic Net yields null weights
for irrelevant features (blue), and selects relevant features (red), even if they
are correlated. Elastic Net is thus a good compromise between Lasso and Ridge
regression. It seems an attractive approach for inverse inference, as we expect to
extract some groups of correlated features, while seeking for an interpretable
model (i.e. few selected groups). In practice, the parameters of Elastic Net are
selected by nested cross-validation.
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Figure 3.10: Elastic Net - Average cross-validated regression score (4-fold) ob-
tained for different values of the regularization parameter λ1, and different
values of the mixing parameter ρ, for 5000 voxels (left). The path of Elastic Net
(right, with ρ = 0.2) for 11 features, shares the properties of both Ridge Regres-
sion and Lasso (relevant features are in red, irrelevant ones in blue). Irrelevant
features have null weights, and relevant features are selected together, even if
they are correlated.

Sparse Multinomial Logistic Regression – SMLR

The previous combined ℓ1 and ℓ2 penalization can be used in classification set-
tings, and is called Sparse Multinomial Logistic Regression (SMLR) [Krishnapuram 05].
This algorithm is based on a logistic loss, defined in Eq. 3.54 (see [Hastie 03] for
more details). We now give the mathematical formulation for the binary case
with y ∈ {−1, 1}n. The logistic regression model defines the conditional proba-
bility of yi given the data Xi as:

p(yi|Xi,w) =
1

1 + exp−yi(Xi
T w)

(3.61)

The corresponding loss and the loss gradient read:
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ℓ(w) = 1

n

∑n
i=1 log

(
1 + exp−yi(Xi

T w)
)

∇ℓ(w) = − 1
n

∑n
i=1

yiXi

1+expyi(Xi
T w)

(3.62)

This approach will not be further detailed in this thesis, but will be used for
comparison purpose in our experiments.

3.4 Bayesian regularization

Regularization, presented in the previous section, is of great interest as it can
deal with the high dimensionality within the prediction function. However,
this regularization can be very sensitive to the regularization parameter (e.g.
Lasso). Bayesian methods can be used to tune the regularization to the data, and
thus avoid an optimization of the regularization parameter in a nested cross-
validation. However, these approaches are often computationally expensive.
Bayesian regularization have been used for inverse inference in [Friston 08,
Ganesh 08, Ni 08, Yamashita 08, Chu 10].

3.4.1 Priors

We note F(θ) a prediction function, parametrized by a set of parameters θ.
Learning the prediction function is equivalent to estimating the set of param-

eters θ̂ that best fits the data. In the estimation of the model, one may want to
introduce some prior knowledge on the parameters. We call prior this infor-
mation introduced as a distribution over some parameters, e.g. p(θ1) for the
parameter θ1. This distribution is set before processing the data. The param-
eters of a prior distribution are called hyper-parameters. This description is
based on the following Bayes’ theorem:

p(θ|{X,y}) =
p({X,y}|θ)p(θ)

p({X,y}) (3.63)

With:

• p({X,y}|θ) the likelihood: it expresses how probable it is to observe {X,y}
given θ.

• p({X,y}) =
∫

p({X,y}|θ)p(θ)dθ the marginal probability of the data: it is
used as a normalizing constant.

• p(θ) the prior over the parameters: it expresses the knowledge that we
can have about θ before processing the data.

• p(θ|{X,y}) the conditional probability (or posterior probability): it expresses
the uncertainty on θ after observing the data.
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An estimate of the parameters, called Maximum a Posteriori (MAP), can be
found by maximizing the posterior probability:

θ̂MAP = argmax
θ

L{X,y}(θ)p(θ) = argmax
θ

{
log L{X,y}(θ) + log p(θ)

}
(3.64)

In the case of an uninformative prior, we simply find the maximum likelihood
estimate. The maximum-likelihood approach does not use any additional infor-
mation and only needs the specification of a modelM. A contrario, the maxi-
mum a posteriori approach needs the definition of priors on the parameters. This
choice of priors can yield a better estimation but bad priors can dramatically
decrease the performance of the estimator.

Informative and non-informative priors

Distributions used as priors can be informative or non-informative. Informative
priors add strong information on the parameters, and are difficult to set up, be-
cause they do not take into account the data and can strongly influence the esti-
mation of the model. However, when we have little information or hypothesis
about the data, it is often useful to introduce a prior that has only a small (or
no) influence on the posterior estimate. Such a prior is called non-informative.
Additionally, the choice of a prior is unfortunately often constrained by practi-
cal considerations. It is often interesting to choose some particular prior which
gives a posterior distribution of the same form as the prior distribution. Such
a prior is called a conjugate prior.

3.4.2 Bayesian Ridge Regression – BRR

Gaussian Bayesian regression is based on the following Gaussian assumption:

p(y|X,w, α) =
n∏

i=1

N (yi|Xiw, α−1) (3.65)

We assume that the noise ǫ is Gaussian with a precision (inverse of the vari-
ance) α, i.e. p(ǫ|α) = N (0, α−1In). For regularization purpose, one can add the
following prior on w:

p(w|λ) =

√
λ√
2π

exp−
λ‖w‖2

2 = N (w|0, λ−1Ip) (3.66)

The resulting model is called Bayesian Ridge Regression –BRR. As explained pre-
viously, λ is an hyper-parameter and the prior performs a shrinkage or regular-
ization, by constraining the values of the weights to be small. Indeed, with a
large value of λ, the Gaussian is narrowed around zero which does not allow
large values of w; with low value of λ, the Gaussian is flattened, which allows
higher values for w. We have:

p(w|X,y, α, λ) ∝ p(y|X,w, α)p(w|λ) (3.67)

= N (w|µ,Σ) , (3.68)
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where:
{

µ = αΣXT y

Σ = (λIp + αXT X)−1 (3.69)

By choosing λ = 0, we have an uniform (uninformative) prior and we re-
trieve the maximum-likelihood estimate. We have the log likelihood:

ln p(y|α, λ) =
p

2
lnλ +

n

2
lnα− α

2

n∑

i=1

(yi−Xiµ)2− λ

2
µT µ− 1

2
ln |Σ−1| − n

2
ln 2π

(3.70)
and the parameters α and λ can be estimated by maximizing Eq. 3.70:

{
λ̂ = γ

µT µ

α̂ = n−γ
P

n
i=1(yi−Xiµ)2 ,

(3.71)

where:

γ =

p∑

i=1

αsi

λ + αsi
, (3.72)

where si are the eigenvalues of XT X.
In order to have a full Bayesian framework and to avoid degenerate models,

one can add classical Γ priors on α and λ:

Γ(α;α1, α2) = αα1
2 xα1−1 exp−xα2

Γ(α1)
and Γ(λ;λ1, λ2) = λλ1

2 xλ1−1 exp−xλ2

Γ(λ1)
(3.73)

and the parameters update now reads:

{
λ̂ = γ+2λ1

µT µ+2λ2

α̂ = n−γ+2α1
P

n
i=1(yi−Xiµ)2+2α2

,
(3.74)

In the experiments detailed in this thesis, we choose λ1 = λ2 = α1 = α2 =
10−6, i.e. weakly informative priors. Bayesian Ridge Regression is solved using
an iterative algorithm. Starting with α = 1

var(yt) and λ = 1, we iteratively

evaluate µ and Σ using Eq. 3.69, and use these values to estimate γ, λ̂ and α̂,
using Eq. 3.72 and Eq. 3.74. The convergence of the algorithm is monitored by
the convergence of w, and the algorithm is stopped if ‖ws+1 − ws‖1 < 10−3,
where ws and ws+1 are the values of w in two consecutive steps.

We evaluate the performance of Bayesian Ridge Regression on the ten subjects
of the mental representation of size data set (see details in appendix B.2). The av-
erage cross-validated regression score (4-fold) obtained for different numbers
of voxels is given Fig. 3.11. We can see that when increasing the number of se-
lected voxels (and thus increase the proportion of possibly irrelevant features
in the selected voxels), the prediction accuracy is stable, as the regularization
allows to deal with high dimensional data.
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Figure 3.11: Bayesian Ridge Regression - Average cross-validated regression score
(4-fold) obtained for different numbers of voxels.

Bayesian Ridge Regression is related to Ridge Regression, as it performs a reg-
ularization equals to Ridge Regression with a regularization parameter of λ/α.
However, the Bayesian framework has the advantage to determine the parame-
ters α and λ through the direct maximization of the marginal likelihood. By con-
trast, Ridge Regression tunes the parameters using a cross-validation on a grid,
and thus requires to define a range and a step for the values of the parame-
ters to be tested. We give in Fig. 3.12 the cross-validated regression score (4-
fold) obtained for different numbers of voxels, for Bayesian Ridge (red), and the
minimum (blue) and maximum (green) values obtained by the classical Ridge
among the different values of the regularization parameter. We can notice that
Bayesian Ridge is similar to the maximum value found by Ridge. Indeed, it au-
tomatically adapts the regularization parameter to the data, and similar results
should be found by optimizing the regularization parameter of Ridge by inter-
nal cross-validation.
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Figure 3.12: Cross-validated regression score (4-fold) obtained for different
numbers of voxels, for Bayesian Ridge (red), and the minimum (blue) and maxi-
mum (green) values obtained by the classical Ridge among the different values
of the regularization parameter (see Fig. 3.8).
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3.4.3 Automatic Relevance Determination – ARD

We introduce here a more complex prior for w, namely the Automatic Rele-
vance Determination – ARD – [MacKay 92, Neal 96], where we assume that each
weight wi is drawn in a Gaussian distribution, centered on zero and with a
precision λi (λi 6= λj if i 6= j). ARD yields sparse model by this choice of
hyper-parameters, a contrario to Lasso that deals with sparsity directly in the
features space. We have:

p(w|λ) = N (0,A−1) with diag (A) = Λ = {λ1, ..., λp} (3.75)

As for Bayesian Ridge Regression, we find that:

p(w|X,y, α, λ) = N (w|µ,Σ) with

{
µ = αΣXT y

Σ = (A + αXT X)−1 (3.76)

and the parameters α and λ are again estimated by maximizing ln p(y|α, λ):

{
λ̂ = γ

µT µ

α̂ = n−γ
P

n
i=1(yi−Xiµ)2

(3.77)

with γ = 1 − λiΣii, and Σii is the ith diagonal component of Σ. One can add
priors on α and γ as in Bayesian Ridge Regression:

{
λ̂ = γ+2λ1

µT µ+2λ2

α̂ = n−γ+2α1
P

n
i=1(yi−Xiµ)2+2α2

(3.78)

and ARD is evaluated through a similar iterative procedure as Bayesian Ridge
Regression.

ARD suffers from some convergence issues that are discussed in more de-
tails in chapter 4.

ARD for inverse inference

We evaluate the performance of Automatic Relevance Determination on the ten
subjects of the mental representation of size data set (see details in appendix
B.2). The average cross-validated regression score (4-fold) obtained for dif-
ferent numbers of voxels is given Fig. 3.13. The prediction accuracy increases
while increasing the number of voxels in the model. This is due to the more
adaptive regularization performed by ARD. The weights found by ARD for
one subject, and 5000 selected voxels, are compared to the weights found by
Bayesian Ridge Regression in Fig. 3.14. The weights are very sparse, and, due to
the high adaptability of ARD, some voxels have higher weights than in Bayesian
Ridge Regression, while more voxels have zero weights.
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Figure 3.13: Automatic Relevance Determination - Average cross-validated regres-
sion score (4-fold) obtained for different number of voxels.
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Figure 3.14: Weights found by Bayesian Ridge Regression and ARD for one sub-
ject, and 5000 selected voxels.

Relevance Vector Machine – RVM

Relevance Vector Machine – RVM [Tipping 00, Tipping 01] is an approach that
combines a Bayesian framework with an ARD prior, and the kernel trick. By us-
ing the ARD prior, RVM allows to keep very few Vector Machines. For classifica-
tion, RVM are combined with a logistic function. We do not give here example
of use of RVM for fMRI inverse inference, as the approach is very similar to
ARD.

3.5 Dimension reduction

One of the main difficulties in fMRI analysis is the high dimensionality of the
data, especially in view of the low number of samples (a few tens). Among
other solutions, dimension reduction has been widely used.

The most frequently used approach is features selection. This method sim-
ply consists in removing non-relevant features from the features space, based
on different criteria. The features finally used in the predictive model are thus
a subset of the initial features, there is no creation of new features. The fea-
tures selection approaches can be based on regions of interest (they do not take
into account the target to be predicted), univariate (they deal with each voxel

117



independently), or multivariate (they consider different voxels together).

3.5.1 Regions of interest

The most simple feature selection consists in selecting few Regions Of Interest
(or ROIs) in the brain, and to keep only the voxels that belong to these ROIs.
This selection is often performed using an anatomical atlas, or by perform-
ing a localizer scan. It allows to make explicit inference on the involvement
of particular regions in information encoding. However, one major draw-
back of this approach is that it depends on a strong prior knowledge on the
(supposed) relevant regions of the brain, and can thus miss unknown or un-
expected relevant regions. This very simple and basic approach will not be
further detailed, and has been used for fMRI inverse inference, in (among oth-
ers) [Dehaene 98, Haxby 01, Sidtis 03, Hanson 04, Mitchell 04, Koltchinskii 04,
Kamitani 05, Polyn 05, Haynes 05b, Martinez-Ramon 06, Williams 07, Palatucci 07,
Friston 08, Ganesh 08, Yamashita 08, Knops 09, Rissman 10].

3.5.2 Univariate feature selection

In the case of univariate feature selection, the features are selected independently
from each other, based on the computation of a score gi = g(xi) for each fea-
ture (e.g. F-score, correlation-based score, activation-based score, significance
values). The selection is performed by thresholding this score to a given value,
by keeping the k best scores, or by using a p-value on this score. Among others,
it has been used in [Mørch 97, Cox 03, Mitchell 04, Onut 04, Ji 04, Haynes 05a,
Langlebe 05, Shinkareva 06, Rustandi 06, Thirion 06a, Sayres 06, Shinkareva 08,
Grazia 08, Mitchell 08, Martino 08, Carroll 09, Hutchinson 09, Langs 10, Ryali 10].

These methods are quick and easy to implement. However, they suffer
from two major drawbacks. First, they cannot avoid the redundancy of infor-
mation. Indeed, two features with redundant information will have a similar
score g and will be both selected. Additionally, such univariate approach tends
to select voxels with high SNR, and can miss relevant voxels that are implied
in a multivariate coding of the target and have a weaker SNR. A set of features
selected jointly should be more informative than a group of features selected
independently.

Classification settings

The standard score for univariate feature selection in fMRI relies on a F-statistic,
which reads:

Fj =
n−K

K − 1

∑K
k=1 llk(µk

j − µj)
2

∑K
k=1

∑
i|yi=k(xj

i − µk
j )

=
n−K

K − 1

(σb)2

(σw)2
(3.79)

where µk
j is the average of the jth feature for the samples in the class k, µj is

the average of the jth feature for all the images, and lk is the number of samples
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in the kth class. This can also be written with the between class variance (σb)2 =∑K
k=1 llk(µk

j −µj)
2 and the within class variance (σb)2 =

∑K
k=1

∑
xi|yi=k(xj

i −µk
j ).

This approach is also called Analysis of Variance – Anova.

Regression settings

For regression analysis, we introduce the following linear model:

ŷj
i = ˆw1,jx

j
i + ˆw0,j (3.80)

The null hypothesis is that knowing Xj does not provide extra information
about y, i.e. H0 : w1,j = 0, and the alternative hypothesis is H1 : w1,j 6= 0.
The resulting F-statistic reads:

Fj = n− 2

∑n
i=1(ŷ

j
i − ȳ)2

∑n
i=1(ŷ

j
i − yi)2

(3.81)

where ȳ is the mean value of y,
∑n

i=1(ŷ
j
i − ȳ)2 is the variance of the regression

model defined in Eq.3.80, and
∑n

i=1(ŷ
j
i − yi)

2 is the residual variance. This
analysis is closely related to the GLM used for creating the activation maps (see
chapter 2), but is adapted here to the notations of this chapter. The F-statistic
defined Eq.3.81 follows the F distribution F1,n−2.

Univariate feature selection for inverse inference

In fMRI inverse inference, univariate feature selection is widely used due to its
speed and its simplicity. We evaluate the performance of univariate feature se-
lection on the ten subjects of the mental representation of shape data set (see details
in appendix B.2). In this section, we fix the prediction function (SV C, C = 1)
and study the influence of the number of voxels. The average cross-validated
classification score (4-fold) obtained for different numbers of voxels, is given
Fig. 3.15 (bottom). There is an optimal number of selected voxels (500) which
yields the highest prediction accuracy. For higher number of voxels (5000), we
keep too much irrelevant features and the classifier (SVM) overfits the learn-
ing set. Thus, a crucial step is to choose the optimal number of features to be
selected (this is often done by internal cross-validation).

We can see for one subject (top) that even a simple univariate feature selec-
tion can be used to retrieve the relevant regions of interest (occipital lobe). The
voxels are selected by regions, due to the information redundancy in neigh-
boring voxels. However such an approach is not able to take into account the
multivariate structure of the data.

3.5.3 Multivariate feature selection

Alternatively, in the case of a multivariate feature selection, the features are se-
lected by taking into account the fact that they can share information. In this
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Figure 3.15: Univariate feature selection - shapes recognition data set. Top - Repre-
sentation of the voxels selected by univariate feature selection using an F-score as
ranking criterion, for 2000, 500 and 100 voxels. As it is univariate, the feature
selection does not extract a fine predictive pattern, and selects possibly redun-
dant information. Bottom - Average cross-validated regression score (4-fold)
obtained for different number of voxels, with SV C (C = 1).

case, the score g is computed using a group of features g(xi, . . . , xj). This kind
of selection is believed to perform better than most classical univariate methods,
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CHAPTER 3. STATISTICAL LEARNING FOR FMRI INVERSE INFERENCE

as they better respect the hypothesis of population coding and extract features
by taking into account the correlation between them. However, they suffer
from a combinatorial complexity and are thus not often used in fMRI inverse
inference. Indeed, for an exhaustive search, we have to consider all the pos-
sible subsets of features of all possible sizes, which can be impossible to do
when p is large enough (which is the case in fMRI studies). Different strate-
gies can be used (see [Kohavi 97]) to overcome this combinatorial limitation,
such as Forward (starting from an empty subset of features, and then adding
iteratively features to this subset), Backward (starting from a set containing all
the features, then removing iteratively features from this subset) and Stepwise
– Forward-Backward (starting from an empty subset of features, add iteratively
features to this subset, while allowing to remove features from the subset at
each step). An example of such stepwise strategy for fMRI inverse inference can
be found in [Michel 08].

Recursive feature elimination – RFE

Recursive feature elimination – RFE – is a recent Backward strategy for multivariate
feature selection that has been first introduced for genetic analysis [Guyon 02],
and is related to backward feature elimination. It consists in iteratively re-
moving irrelevant features based on some characteristics of a prediction func-
tion. RFE has been successfully used in fMRI inverse inference [Hanson 08,
Martino 08, Ryali 10].

We define the active subset of features S, as the set of features that are con-
sidered in the model. At each step, RFE removes from the active subset a given
number of features (or a percentage γ of the active subset) with the smallest
rank, until the number of voxels in S is smaller than a given number s. The
removed features are kept ranked in a subset R. The ranking is based on the
weights of a classifier wi (the weights of the prediction model). The output of
RFE are nested subsets of features, and thus, an additional step of model se-
lection is thereby required. The original approach, called SVM-RFE, used the
weights obtained by SVM, but any other predictive model might be used.

We evaluate the performance of SVM-RFE on the ten subjects of the men-
tal representation of shape data set (see details in appendix B.2). The average
cross-validated classification score (4-fold) obtained for different numbers of
voxels, with SV C (C = 1), is given Fig. 3.16 (bottom). The prediction accuracy
globally increases as we remove irrelevant features, and an optimal pattern of
about 700 voxels is found. If we remove more voxels, the prediction accuracy
decreases. The prediction accuracy is very unstable across the different sub-
jects, and a computationally expensive selection of the relevant model should
be done within a cross-validation framework. Moreover the SVM-RFE heuris-
tic may not be optimal.

The resulting predictive patterns for two subjects (top) show that SVM-RFE
might extract very sparse patterns of voxels in the regions of interest (visual
cortex). However, these resulting predictive patterns are difficult to interpret
due to their extreme sparsity, and are unstable across subjects.
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Figure 3.16: Recursive feature elimination - shapes recognition data set. Top - Rep-
resentation of the voxels selected by SVM-RFE for two different subjects. The
multivariate patterns are sparse but are unstable across subjects. Bottom - Av-
erage cross-validated regression score (4-fold) obtained for different number of
voxels, with SV C (C = 1).

3.5.4 Features agglomeration

Feature agglomeration is a less common dimension reduction method, but it
seems well-suited for fMRI data [Mitchell 04, Ji 04, Davatzikos 05, Fan 06, Grazia 08,
Genuer 10]. The principle is to group features together, using a given criterion,
and to create a single feature from all the features within a group (e.g. by aver-
aging). Such methods can be used to take into account the spatial structure of
the data as a prior. A contribution of this thesis has been to develop a method
for introducing information about the target to be predicted in the clustering
process (see chapter 5).
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3.5.5 Principal component analysis – PCA

Principal Component Analysis – PCA is a method for extracting the components
of higher variance in data. These components are called principal components,
the r first components will usually be kept (in the case of fMRI data, each com-
ponent can be viewed as an image). Thus, the decomposition of each sample
of X on these r components can be used to reduce the dimensionality of the
data in Xr ∈ R

n×r. This method has been used within an fMRI inverse in-
ference framework in [Strother 02, Kjems 02, Carlson 03, LaConte 03, Jiang 04,
Strother 04, LaConte 05, Mourao-Miranda 05, Wang 07, Mourao-Miranda 07,
Demirci 08, Wang 09, Sato 09, Koutsouleris 09].

PCA is an unsupervised dimension reduction approach, i.e. it does not take
into account the target y. Prior to the PCA, it is required to remove the mean
of the data matrix X. Then, we perform a Singular Value Decomposition – SVD –
on the matrix X:

X = UΣVT (3.82)

The r first principal components Pr can be found by taking the r first rows of
VT , and we have the reduced matrix Xr = XPr

T .
We evaluate the performance of Principal Component Analysis on the ten sub-

jects of the mental representation of shape data set (see details in appendix B.2).
The average cross-validated classification score (4-fold) obtained for different
numbers of voxels, with SV C (C = 1), is given Fig. 3.17 (bottom). The pre-
diction accuracy raises an optimum for a number of principal components of 50,
and then remains relatively stable. However, the optimal prediction accuracy
is lower than the one found using an F-score-based univariate feature selection.
We represent the three first principal components (top) and we can see that these
maps are not easy to interpret from a neuroscientific point of view, even if the
third principal component shows an important amount of variability in the vi-
sual cortex.

3.5.6 Built-in feature selection

Let us mention here that sparsity inducing regularizations such as Lasso or SMLR
include a built-in feature selection. By setting many features to have zero
weights, such approaches extract predictive patterns from the data, while train-
ing the prediction function. This is illustrated in the chapter 4, based on a
Multi-class Sparse Bayesian Regression.

3.6 Conclusion - Statistical learning for fMRI in-

verse inference

In this chapter we have seen that the prediction accuracy of predictive models
quantifies the information carried by the features used in the predictive model,
and thus allows to assess whether these features (i.e. voxel-based signal) be-
long to the spatial support of the neural coding. Many methods have been used
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Figure 3.17: Principal component analysis - shapes recognition data set. Top -
Representation of the three first principal components: the resulting maps are
not easy to interpret from a neuroscientific point of view. Bottom - Average
cross-validated regression score (4-fold) obtained for different number of vox-
els, with SV C (C = 1).

for few years, and most of them have a good predictive ability. However, these
machine learning methods have most often been used without considering the
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characteristics of fMRI data, and thus, they suffer from some major limitations.
First, they do not take into account the image structure of fMRI data: consid-
ering the spatial structure of the data can increase the prediction accuracy and
extract a more plausible spatial layout of a given neural code. Secondly, the re-
sulting models are often difficult to interpret, as the weights can be too sparse
(few voxels within the whole brain). Thus, the weighted maps do not allow a
clear interpretation of the spatial organization of the neural coding, especially
compared to classical SPMs. Finally, dimension reduction is often only used to
increase the prediction accuracy without aiming at creating useful maps for
neuroscientific studies.

Based on these considerations, we can define the following requirements
for a good statistical learning algorithm for extracting information from fMRI
data:

1. A multivariate model: The information of interest can be distributed
over distant brain regions. The statistical learning algorithm should be
able to account for combinations of signals over these different brain
sites, hence it should be a multivariate approach. Indeed, multivariate
pattern analysis is crucial to make accurate predictions.

2. Taking into account the spatial structure of the data: Due to the spatial
structure of fMRI data, there is a local redundancy of the predictive infor-
mation, which should be considered in the feature building procedure,
e.g. by replacing voxel-based signals by local averages.

3. A multi-scale approach: Given that the investigated regions are wide if
there is little prior information, while the truly informative regions can be
relatively tiny, we need an approach that focuses on compact sub-regions
of the search volume: a multi-scale approach might thus be useful to
optimize the definition of predictive regions. Unlike purely geometrical
clustering approaches, procedures that use the signal for clustering might
better respect the underlying data structure.

In the following chapters, we present the three major contributions of this
thesis, that try to implement these requirements. In the chapter 4, we detail a
Bayesian Regularization, that regularizes groups of voxels differently, and thus
yields an adaptive regularization. A Supervised Clustering approach, that cre-
ates clusters of voxels informed by the predictive task, is presented in chapter
5. Finally, in chapter 6, we expose the Total Variation regularization, that intro-
duces the spatial structure of the data within a regularization-based approach.

Publications

The methods presented in this chapter have been used during this thesis in the
following neuroscientific studies:

• M. Lebreton, S. Jorge, V. Michel, B. Thirion and M. Pessiglione. An au-
tomatic valuation system in the human brain : evidence from functional neu-
roimaging. Neuron 64, 3, 2009.
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• E. Eger, V. Michel, B. Thirion, A. Amadon, S. Dehaene and A. Klein-
schmidt. Deciphering Cortical Number Coding from Human Brain Activity
Pattern. Current Biology. 2009, 19:1608.

• A. Knops, B. Thirion, E.M. Hubbard, V. Michel and S. Dehaene. Recruit-
ment of an area involved in eye movements during mental arithmetic. Science.
2009 Jun 19;324(5934):1583-5.

• A. Bachrach, A. Gramfort, V. Michel, E. Cauvet, B. Thirion and C. Pallier.
Decoding of syntactic trees. In prep.

Some methodological works have been presented in:

• V. Michel, C. Damon, and B. Thirion. Mutual information-based feature
selection enhances fMRI brain activity classification. In 5th Proc. IEEE
ISBI, pages 592-595, 2008.

• R. Genuer, V. Michel, E. Eger, and B. Thirion Random forests based fea-
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4
Multi-Class Sparse Bayesian

Regression

In this chapter, we detail a novel Bayesian regularization approach

based on a multi-class organization of the features, with the aim

of adapting the amount of regularization to the informative content

of each feature class. This approach is called Multi-Class Sparse

Bayesian Regression (MCBR). After detailing the priors of the MCBR,

we propose two different estimation frameworks and we illustrate

MCBR on both simulated and real data.
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4.1 Priors for Multi-Class Sparse Bayesian Regres-

sion

In this section, we detail a model developed during this thesis for Bayesian Re-
gression. We group the features into Q different classes, and regularize these
classes differently. Regularization is performed in each class separately, lead-
ing to a stable and adaptive regularization. This approach, called Multi-Class
Sparse Bayesian Regression (MCBR), is thus an intermediate between Bayesian
Ridge Regression (BRR) and Automatic Relevance Determination (ARD). It reduces
the number of parameters estimated by ARD, and is far more adaptive than
Bayesian Ridge Regression. One another great asset of the proposed approach
in fMRI inverse inference is that it creates a clustering of the features, and thus
yields useful maps for brain mapping.

Sparse bayesian regularizations have been used in few studies for fMRI in-
verse inference. Indeed, these approaches can be computationally expensive
on high dimensional data, and thus are often abandoned in favor of more eas-
ily optimized regularization methods such as Lasso or Elastic net. Most of the
approaches used state of the art sparse bayesian regularizations and classical spar-
sity promoting priors such as ARD [Yamashita 08, Ni 08, Chu 10]. These stud-
ies used sparsity as built-in feature selection, and do not aim at introducing
sparsity based on neuroscientific assumptions. A more interesting approach is
the Bayesian regression detailed in [Friston 08], that is the closest work to our ap-
proach. The weights of the model are defined by w = Uη, where U is a matrix
defining as set of spatial patterns (one pattern by column), and η is the decom-
position of w in the basis defined by U . The sparsity is introduced within the
covariance of η, that is assumed to be diagonal with only m possible different
values cov(η) = exp(λ1)I

(1) + . . .+exp(λm)I(m). The matrices I(i) are diagonal
and defined subsets of columns of U sharing similar variance exp(λi). Due to is
class-based model, this approach is similar to the one proposed in this chapter,
but the construction of I relies on ad hoc voxel selection steps, so that there is
no proof that the solution is correct.

4.1.1 Model and priors

We recall the linear model for regression:

y = f(X,w, b) = Xw + b , (4.1)

and now detail the priors and parameters of the model. The complete genera-
tive model is summarized in Fig.4.1.
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with diag (A) = {λz1 , ..., λzp
}

λq ∼ Γ(λq;λ1,q, λ2,q)

Figure 4.1: Graphical model of Multi-Class Sparse Bayesian Regression – MCBR.

Priors on the noise

We use classical priors for regression, (see chapter 3), and we model the noise
as an i.i.d. Gaussian variable:

ǫ ∼ N (0, α−1In) (4.2)

α ∼ Γ(α;α1, α2) (4.3)

where α is the precision parameter, and Γ stands for the gamma density with
two hyper-parameters α1, α2:

Γ(x;α1, α2) = αα1
2 xα1−1 exp−xα2

Γ(α1)
(4.4)

Priors on the class assignment

In order to combine the sparsity of ARD with the stability of BRR, we introduce
an intermediate representation, in which each feature j belongs to one class
among Q indexed by a discrete variable zj (z = {z1, . . . , zm}). All the features
within a class q ∈ {1, .., Q} share the same precision parameter λq, and we use
the following prior on z:

z ∼
p∏

j=1

Q∏

q=1

πδjq
q (4.5)

where δ is Kronecker’s δ, defined as:

{
δjq = 0 if j 6= q
δjq = 1 if j = q

(4.6)

129



We finally introduce an additional Dirichlet prior on π:

π ∼ Dir(η) (4.7)

with an hyper-parameter η. By updating at each step the probability πk of each
class, it is possible to prune classes. This model has no spatial constraints, and
thus is not spatially regularized.

Priors on the weights

As in ARD, we make use of an independent Gaussian prior for the weights:

w ∼ N (0,A−1) with diag (A) = {λz1
, ..., λzp

} (4.8)

where λzj
is the precision parameter of the jth feature, with zj ∈ {1, . . . , Q}.

We introduce the following prior on λq:

λq ∼ Γ(λq;λ1,q, λ2,q) (4.9)

with hyper-parameters λ1,q, λ2,q .

4.1.2 Link with other Bayesian regularization

In the chapter 3, we have introduced the classical models of Bayesian Ridge Re-
gression and Automatic Relevance Determination for Bayesian regression. The link
between the proposed MCBR model and these other regularization methods is
obvious:

• with Q = 1, i.e. λz1
= . . . = λzp

, we retrieve the BRR model.

• with Q = p, i.e. λzi
6= λzj

if i 6= j, and assigning each feature to a
singleton class (i.e. zj = j), we retrieve the ARD model.

Moreover, the proposed approach is related to the one developed in [George 93].
In this paper, the authors proposed for the distribution of the weights of the
features, a binary mixture of Gaussians with small and large precisions. This
model is used for variable selection, and estimated by Gibb’s sampling. Our
work can be viewed as a generalization of this model to a number of classes
Q ≥ 2.

4.1.3 Issues of ARD

ARD suffers from some drawbacks that are explained here. We also detail how
MCBR can cope with these different issues.

One of the main issues of ARD is convergence. The method detailed in
chapter 3 for estimating the parameters, is not guaranteed to converge to a lo-
cal maximum of the marginal log likelihood [Wipf 08]. In [Wipf 08], the authors
proposed an estimation of ARD based on iterative Lasso procedures, that allows
to avoid the convergence issue of ARD, even if p ≫ n. There is no theoretical
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guarantee on convergence, but Wipf’s method performs well in practice. This
issue is avoided in the estimation of MCBR by using Gibb’s sampling, but the es-
timation based on another approach, called Variational Bayes, still suffers from
convergence issue (see below).

Another issue of ARD comes from the fact that, among different models that
classify the data equally well, ARD choose the simplest one (i.e. the most sparse
one), that can be seen as a kind of underfitting [Qi 04]: as ARD is estimated by
maximizing evidence, models with less selected features are preferred, as the
integration is done on less dimensions, and thus the evidence is higher. This
underfitting, which happens in the hyper-parameters space, does not directly
fit noise (as ”classical” overfitting), but merely corresponds to an underfitting
in model selection (i.e. on the features to be pruned). A solution is to esti-
mate ARD based on the optimization of the predictive performance within an
internal cross-validation [Qi 04]. A contrario, MCBR requires far less hyper-
parameters (2×Q, with Q≪ p), and thus the underfit in the hyper-parameters
space might have less dramatic impact on feature selection.

Finally, a full Bayesian framework for estimating ARD requires to set some
priors on the hyper-parameters. In the case of the widely used Gamma hyper-
prior parametrized by α1 and α2, we have to define 2 × p hyper-parameters.
As these values α1 and α2 are feature-specific, ARD may be sensible to specific
choice of these hyper-parameters. A solution is to use an internal cross-validation
for optimizing these parameters, but this approach can be computationally ex-
pensive. In the case of MCBR, the distributions of the hyper-parameters are
specific to a class and not to a specific feature, and thus, the proposed approach
is less sensible to the choice of α1 and α2. Indeed, the choice of good hyper-
parameters for the features are dealt with at the level of the class in which
features belong to.

4.2 Model inference

For models with latent variables, such as MCBR, some singularities can exist.
For instance in a mixture of components, a singularity is a component with
one single sample and thus zero variance. In such cases, maximizing the log
likelihood yields flawed solutions, and one can use the posterior distribution of
the latent variables p(z|X,y) for this maximization. However, the posterior
distribution of the latent variables given the data has not always a closed-form
expression, and some specific methods can be used as Variational Bayes or Gibbs
Sampling.

We propose two different algorithms for inferring the parameters of the
MCBR model. We first estimate the model by Variational Bayes, the resulting
algorithm is thus called VB-MCBR. We also detail an algorithm, called Gibbs-
MCBR, based on a Gibbs Sampling procedure.
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4.2.1 Estimation by Variational Bayes – VB-MCBR

Variational Bayes

The Variational Bayes (or VB) approach provides an approximation q(Θ) of p(Θ|y),
where q(Θ) is taken in a given family of distributions, and Θ = [w, λ, α, z, π].
Additionally, the Variational Bayes approach often uses the following mean field
approximation, that allows the factorization between the approximate distribu-
tion of the latent variables and the approximate distributions of the parameters:

q(Θ,X) = q(w)q(λ)q(α)q(z)q(π) (4.10)

We introduce the Kullback-Leibler divergenceD(q(Θ,X)) that measures the sim-
ilarity between the true posterior p(Θ,X|y) and the variational approximation
q(Θ,X). One can decompose the marginal log-likelihood log p(y) as:

log p(y|Θ) =

∫
dXdΘq(Θ,X) log

p(X,y,Θ)

q(Θ,X)
(4.11)

+

∫
dXdΘq(Θ,X) log

q(Θ,X)

p(X,Θ|y)
(4.12)

log p(y|Θ) = F(q(Θ,X)) +D(q(Θ,X)) (4.13)

whereF(q(Θ,X)) is called free energy, and can be seen as measure of the quality
of the model. As D(q(Θ,X)) ≥ 0, the free energy is a lower bound on log p(y)
with equality iff q(Θ,X) = p(Θ,X|y). So, inferring the density q(Θ,X) of the
parameters corresponds to maximizing F , on all the free distribution q(Θ).

In practice, the VB approach consists in maximizing the free energy F it-
eratively with respect to the approximate distribution q(z) of the latent vari-
ables, and with respect to the approximate distributions of the parameters of
the model q(w), q(λ), q(α) and q(π).

Update equations

The Variational Bayes approach yields the following variational distributions:

• q(w) ∼ N (w|µ,Σ) with:

A = diag(l1, . . . , lp) with lp =

Q∑

q=1

q(zj = q)
l1,q

l2,q
(4.14)

Σ = (
a1

a2
XT X + A)−1 (4.15)

µ =
a1

a2
ΣXT y (4.16)
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• q(λq) ∼ Γ(l1,q, l2,q) with:

l1,q = λ1,q +
1

2

p∑

j=1

q(zj = q) (4.17)

l2,q = λ2,q +
1

2

p∑

j=1

(µ2
jj + Σjj)q(zj = q) (4.18)

• q(α) ∼ Γ(a1, a2) with:

a1 = α1 +
n

2
(4.19)

a2 = α2 +
1

2
(y −Xµ)T (y −Xµ) +

1

2
Tr(ΣXT X) (4.20)

• q(zj = q) ∼ exp(ρjq) with:

ρjq = −1

2
(µ2

j + Σjj)
l1,q

l2,q
+ ln(πq) +

1

2
(Ψ(l1,q)− log(l2,q)) (4.21)

πq = exp{Ψ(dq)−Ψ(
Pq=Q

q=1 dq)} (4.22)

dq = ηq +

p∑

j=1

q(zj = q) (4.23)

where Ψ is the digamma function Ψ(x) = Γ′(x)
Γ(x) .

The pseudo-code of the VB-MCBR algorithm is provided in Table 1. It max-
imizes the free energy F . In practice, iterations are performed until conver-
gence to a local maximum of F . With an ARD prior (i.e. Q = p and fixing
zj = j), we retrieve the same formulas than the ones found for Variational ARD
[Tipping 00]. Moreover, the free energy F reads:

F = LY + LZ −Dkl(w)−Dkl(λ)−Dkl(α)−Dkl(π) (4.24)

with the likelihood terms:

LY =
n

2
(Ψ(a1)− log(a2)− 2π)− 1

2

a1

a2

{
yT y − 2yT Xµ + Tr(ΣXT X) + µT XT Xµ

}

LZ =

j=p∑

j=1

q=Q∑

q=1

q(zj = q) log πq −
j=p∑

j=1

q=Q∑

q=1

q(zj = q) log q(zj = q)
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and the Kullback-Leibler divergence terms:

Dkl(w) = −p

2
− log(|Σ|)

2
− 1

2

j=p∑

j=1

q=Q∑

q=1

q(zj = q) {Ψ(l1,q)− log(l2,q)}

+
1

2

j=p∑

j=1

{
(µ2

j + Σjj)

q=Q∑

q=1

q(zj = q)
l1,q

l2,q

}

Dkl(λ) =

q=Q∑

q=1

log Γ(λ1,q)− log Γ(l1,q) + l1,q log l2,q − λ1,q log λ2,q

−(λ1,q − l1,q)(Ψ(l1,q)− log l2,q)− l1,q
λ2,q − l2,q

l2,q

and:

Dkl(α) = log Γ(a1)− log Γ(α1) + a1 log a2 − α1 log α2

−(α1 − a1)(Ψ(a1)− log a2)− a1
α2 − a2

a2

Dkl(π) = ln Γ(

q=Q∑

q=1

dq)− ln Γ(

q=Q∑

q=1

ηq)

−
q=Q∑

q=1

(− ln Γ(ηq) + ln Γ(dq)− (dq − ηq)Ψ(dq − ηq))

Algorithm 1: VB-MCBR algorithm

Initialize a1 = α1, a2 = α2, l1 = λ1, l2 = λ2 and dq = ηq

Randomly initialize q(zj = q)
Set a number of iterations max steps
repeat

Compute A using Eq. 4.14, Σ using Eq. 4.15 and µ using Eq. 4.16.
Compute l1 using Eq. 4.17 and l2 using Eq. 4.18.
Compute a1 using Eq. 4.19 and a2 using Eq. 4.20.
Compute ρjq using Eq. 4.21.
Compute πq using Eq. 4.22 and dq using Eq. 4.23.

until max steps ;
return µ

4.2.2 Estimation by Gibbs Sampling – Gibbs-MCBR

We develop here an estimation of the model MCBR using Gibbs Sampling. The
resulting algorithm is called Gibbs-MCBR, and the pseudo-code of the algo-
rithm is provided in Table 2.
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Gibbs Sampling

The Gibbs Sampling algorithm [Geman 87] is a particular case of the Metropolis-
Hastings where the acceptance probability is always equal to 1. It is used for
generating a sequence of samples from the joint distribution to approximate
marginal distributions. Suppose we want to compute both marginals p(θ1) and
p(θ2) from a complex distribution p(θ1, θ2). The main idea is to use conditional
distributions p(θ1|θ2) and p(θ2|θ1), that should be known and possibly easy to
sample from, instead of directly computing the marginals from the joint law
by integration (the joint law may not be known or hard to sample from). The
sampling is done iteratively between the different parameters.

The final estimation of the parameters is obtained by averaging the values
of the different parameters across the different iterations. One may not con-
sider the first iterations, this is called the burn in.

Candidate distributions

With Θ = [w, λ, α, z, π], we have the following candidate distributions (i.e. the
distributions used for the sampling of the different parameters):

• p(w|Θ− {w}) ∝ N (w|µ,Σ) with:

Σ = (XT Xα + A)−1 with A = diag(λz1 , ..., λzp
) (4.25)

µ = ΣαXT y (4.26)

• p(λ|Θ− {λ}) ∝ ΠQ
q=1Γ(λq|l1,q, l2,q) with:

l1,q = λ1,q +
1

2

p∑

j=1

δ(zj = q) (4.27)

l2,q = λ2,q +
1

2

p∑

j=1

δ(zj = q)w2
j (4.28)

• p(α|Θ− {α}) ∝ Γ(a1, a2) with:

a1 = α1 +
n

2
(4.29)

a2 = α2 +
1

2
(y −Xµ)T (y −Xµ) (4.30)

• p(zj |Θ− {z}) ∝ mult(exp ρj,1, ..., exp ρj,Q) with:

ρjq = −1

2
w2

j λq + ln(πq) +
1

2
log λq (4.31)

• p(πq|Θ− {π}) ∝ Dir(dq) with:

dq = ηq +

p∑

j=1

δ(zj = q) (4.32)
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Algorithm 2: Gibbs-MCBR algorithm

Initialize α1, α2, λ1, λ2 and ηq

Randomly initialize z
Set a number of iterations burn number for burn-in
Set a number of iterations max steps
repeat

Compute Σ using Eq. 4.25 and µ using Eq. 4.26.
Sample w in N (w|µ,Σ).
Compute l1 using Eq. 4.27 and l2 using Eq. 4.28.

Sample λ in Πq=Q
q=1 Γ(λq|l1,q, l2,q).

Compute a1 using Eq. 4.29 and a2 using Eq. 4.30.
Sample α in Γ(a1, a2).
Compute ρjq using Eq. 4.31.
Sample z in mult(exp ρj,1, ..., exp ρj,Q).
Compute dq using Eq. 4.32.
Sample πq in Dir(dq).

until max steps ;
return Average value of w after burn number iterations.

4.2.3 Initialization and priors on the model parameters

Our model needs few hyper-parameters; we choose here to use slightly infor-
mative and class-specific hyper-parameters in order to reflect a wide range of
possible behaviors for the weights distribution. This choice of priors is equiva-
lent to setting heavy-tailed centered Student distributions with variance at dif-
ferent scales as priors on the weights parameters. We set Q = 9, with weakly
informative priors λ1,q = 10q−4, q ∈ [1, .., Q] and λ2,q = 10−2 , q ∈ [1, .., Q].
Moreover, we set α1 = α2 = 1. Starting with a given number of classes and
letting the model automatically prune the classes, can be seen as a means to
avoid costly model selection procedures. The choice of class-specific priors
is also useful to avoid label switching issues and thus speeds up convergence.
Crucially, the priors used here can be used in any regression problem, provided
that the target data is approximately scaled to the range of values used in our
experiments. In that sense, the present choice of priors can be considered as
”universal”. We also randomly initialize q(z) (or z for Gibbs-MCBR).
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4.3 Illustration on simulated data

We now evaluate and illustrate MCBR on two different sets of simulated data.

4.3.1 Simulated regression data

Details on simulated regression data

We first test MCBR on a simulated data set, designed for the study of ill-posed
regression problem, i.e. n≪ p. Data are simulated as follows:

X ∼ N (0, 1) with ǫ ∼ N (0, 1)

y = 2 (X1 + X2 −X3 −X4) + 0.5 (X5 + X6 −X7 −X8) + ǫ

We have p = 200 features, nl = 50 images for the training set and nt = 50 im-
ages for the test set. We compare MCBR with Elastic net, SVR, Bayesian Ridge Re-
gression and Automatic Relevance Determination. Elastic net is optimized with a 5-

folds cross-validation within the training set, with λ1 ∈ {0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃}
(λ̃ = ‖XT y‖∞), and λ2 ∈ {0.1, 0.5, 1., 10., 100.}. SVR is used with a linear ker-
nel and the C parameter is optimized by a 5-folds cross-validation in the range
10−3 to 101 in multiplicative steps of 10.

Results on simulated regression data

We average the results of 15 different trials, and the average explained vari-
ance is shown Tab.4.1. Gibbs-MCBR outperforms the other approaches, yield-
ing higher prediction accuracy than the reference methods Elastic net and ARD.
The prediction accuracy is also more stable than the other methods. VB-MCBR
falls into local maximum of F and does not yield an accurate prediction.

Methods mean ζ std ζ max ζ min ζ p-value to Gibbs-MCBR

SVR 0.11 0.1 0.32 −0.03 0.0 **
Elastic net 0.77 0.11 0.92 0.49 0.0004 **
BRR 0.19 0.14 0.49 −0.04 0.0 **
ARD 0.79 0.06 0.89 0.65 0.0 **
Gibbs-MCBR 0.89 0.04 0.94 0.81 -
VB-MCBR 0.04 0.05 0.13 −0.02 0.0 **

Table 4.1: Simulated regression data. Explained variance ζ for different methods
(average of 15 different trials). The p-values are computed using a paired t-test.

In Fig.4.2, we represent the probability density function of the distributions
of the weights obtained with BRR (a), Gibbs-MCBR (b) and ARD (c). With BRR,
the weights are grouped in a mono-modal density. ARD is far more adaptive
and sets lots of weights to zero. The Gibbs-MCBR algorithm creates a multi-
modal distribution, lots of weights being highly regularized (pink distribu-
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tions), and the informative features are allowed to have higher weights (blue
distributions).

With MCBR, the weights are clustered in different groups, depending on
their predictive power, which is interesting in application such as fMRI inverse
inference, as it can yields more interpretable models. Indeed, the class where
the features with higher weights ({X1, X2, X3, X4}) belong to, is small (av-
erage size of 6 features) but has a high purity (percentage of relevant features
in the class) of 74%.
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Figure 4.2: Results on simulated regression data. Probability density function
of the weights distributions obtained with BRR (a), Gibbs-MCBR (b) and ARD
(c). Each color represents a different component of the mixture model.

Comparison VB-MCBR and Gibbs-MCBR

We now look at the values of w1 and w2 for the different steps of the two al-
gorithms (see Fig.4.3). We can see that VB-MCBR (b) quickly falls into a local
maximum, as Gibbs-MCBR (a) is able to visit the space in order to find the cor-
rect set of parameters (red dot). VB-MCBR is not optimal in this case.

Figure 4.3: Results on simulated re-
gression data. Weights of the first two
features found for the different steps
of Gibbs-MCBR (a) and VB-MCBR (b).
The red dot represents the ground
truth of both weights, and the green
dot represents the final state found
by the two algorithms. VB-MCBR is
stuck in a local maximum, and Gibbs-
MCBR finds the correct weights.

In order to avoid taking posterior means of the parameters and obtain a
point estimate of the maximum a posteriori, we can combine the two estima-
tion frameworks. In a first step, we launch Gibbs-MCBR and we then launch
VB-MCBR, using the output of the first step as initialization. However, this ap-
proach does not yield higher prediction accuracy than Gibbs-MCBR alone, and
thus has not been further developed in this work.
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4.3.2 Simulated neuroimaging data

The simulated neuroimaging data are detailed in Appendix B.1. We compare
VB-MCBR and Gibbs-MCBR with the different competing algorithms detailed
in B.1, and with Bayesian Ridge Regression and Automatic Relevance Determina-
tion. The resulting images of weights are given Fig. 4.4, with the true weights
(a) and resulting Anova F-scores (b). The reference methods can detect the truly
informative regions (ROIs), but Elastic net (f) and ARD (h) only retrieve part of
the support of the weights. Moreover, Elastic net yields an overly sparse solu-
tion. BRR (g) also retrieves the ROIs, but does not yield a sparse solution, as all
the features are regularized in the same way. We note that the weights in the
feature space estimated by SVR (e) are non-zero everywhere and do not outline
the support of the ground truth. VB-MCBR (c) converges to a local maximum
similar as BRR (g), i.e. creates only one non-empty class, and thus regularizes
all the feature similarly. We can thus clearly see that, in this model, the Vari-
ational Bayes approach is very sensitive to the initialization, and can fall into
non-optimal local maximum, for very sparse support of the weights. Finally,
Gibbs-MCBR (d) retrieves the largest part of the whole support of the weights
by performing an adapted regularization.

-3e-01 3e-01

(a) True weights

0e+00 3e+01

(b) F-scores

-2e-02 2e-02

(c) VB-MCBR

-9e-02 9e-02

(d) Gibbs-MCBR

-9e-02 9e-02

(e) C.v. SVR

-1e-01 1e-01

(f) C.v. Elastic net

-2e-02 2e-02

(g) BRR

-6e-01 6e-01

(h) ARD

Figure 4.4: Two-dimensional slices of the three-dimensional volume of sim-
ulated data. Weights found by different methods, the true target (a), and F-
score (b). The Gibbs-MCBR method (d) retrieves almost the whole support of
weights. The sparsity-promoting reference methods Elastic net (f) and ARD (h)
find an overly sparse support of the weights. VB-MCBR (c) converges to a local
maximum similar to BRR(g) , and thus does not yield a sparse solution. SVR
(e) yields smooth maps that are not similar to the ground truth.
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4.4 MCBR for fMRI-based inverse inference

In this section, we assess the performance of MCBR in an experiment on the
mental representation of size, where the aim is to predict the size of an object seen
by the subject during the experiment (see Appendix B.2), in both intra-subject
and inter-subject cases. We compare MCBR to Elastic Net and SVR (see B.2), as
well as Bayesian Ridge Regression – BRR and Automatic Relevance Determination
– ARD.

All these methods are used after an Anova-based feature selection, as this
maximizes their performance. This selection is performed on the training set
of each fold in an internal cross-validation loop, and the optimal number of
voxels is selected within the range {50, 100, 250, 500}, for SVR, Elastic net, BRR
and ARD. For VB-MCBR and Gibbs-MCBR, in order to avoid a costly internal
cross-validation, we select 500 voxels, and this selection is performed on the
training set. The number of iterations used is fixed to 5000 (burn in of 4000
iterations) for Gibbs-MCBR and 500 for VB-MCBR. As previously, we set Q = 9.

4.4.1 Intra-subject regression analysis

The results obtained by the different methods are given in Table. 4.2. The p-
values are computed using a paired t-test across subjects. VB-MCBR outper-
forms the other methods. Compared to the results on simulated data, VB-
MCBR still falls in a local maximum similar to Bayesian Ridge Regression that
performs well in this experiment. Moreover, both Gibbs-MCBR and VB-MCBR
are more stable than the reference methods.

Methods mean ζ std ζ max ζ min ζ p-value to VB-MCBR

SVR 0.82 0.07 0.9 0.67 0.0003 **
Elastic net 0.9 0.02 0.93 0.85 0.0002 **
BRR 0.92 0.02 0.96 0.88 0.0011 **
ARD 0.89 0.03 0.95 0.85 0.0003 **
Gibbs-MCBR 0.93 0.01 0.95 0.92 0.0099 **
VB-MCBR 0.94 0.01 0.96 0.92 -

Table 4.2: Regression - Mental representation of size - Intra-subject analysis. Ex-
plained variance ζ for the three different methods. The p-values are computed
using a paired t-test. VB-MCBR yields the best prediction accuracy, while being
more stable than the reference methods.

4.4.2 Inter-subject regression analysis

The results obtained with the different methods are given in Table. 4.3. As
in the intra-subject analysis, both MCBR approaches outperform the reference
methods SVR, Bayesian Ridge and ARD. However, the prediction accuracy is
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similar to Elastic net. In this case, Gibbs-MCBR performs slightly better than
VB-MCBR, but the difference is not significant.

Methods mean ζ std ζ max ζ min ζ p-value to Gibbs-MCBR

SVR 0.77 0.11 0.97 0.58 0.1356
Elastic net 0.78 0.1 0.97 0.65 0.7504
BRR 0.72 0.1 0.94 0.6 0.0094 **
ARD 0.52 0.33 0.93 −0.28 0.0189 *
Gibbs-MCBR 0.79 0.1 0.97 0.62 -
VB-MCBR 0.78 0.1 0.97 0.65 0.3845

Table 4.3: Regression - Mental representation of size - Inter-subject analysis. Ex-
plained variance ζ for the different methods. The p-values are computed using
a paired t-test. MCBR yields highest prediction accuracy than the two other
Bayesian framework BRR and ARD.

The maps of weights found by the different methods are detailed in Fig. 4.6.
The methods are used combined with an Anova-based univariate feature selection
(2500 voxels selected, in order to have a good support of the weights). As
Elastic net, Gibbs-MCBR yields a sparse solution, but extracts a few more voxels.
The map found by Elastic net is not easy to interpret, with very few informative
voxels scattered in the whole occipital cortex. The map found by SVR is not
sparse in the feature space and is thus difficult to interpret, as the spatial layout
of the neural code is not clearly extracted. VB-MCBR does not yield a sparse
map either, all the features having non-null weights.
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Figure 4.5: Mental representation of size -
Inter-subject analysis. Histogram of the
weights found by Gibbs-MCBR, and corre-
sponding z values (each color of dots repre-
sents a different class), for the inter-subject
analyzes on the mental representation of size.
We can see that Gibbs-MCBR creates clusters
of informative and non informative voxels,
and that the different classes are regularized
differently, according to the relevance of the
features within them.

One major asset of MCBR (and more particularly Gibbs-MCBR, as VB-MCBR
often falls into a one-class local maximum) is that it creates a clustering of the
features, based on the relevance of the features in the predictive model. This
clustering can be accessed using the variable z, that is implied in the regular-
ization performed on the different features. In Fig.4.5, we give the histogram of
the weights of Gibbs-MCBR for the inter-subject analyzes on the mental represen-
tation of size. We keep the weights and the values of z of the last iteration, the
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different classes are represented as dots of different colors, and are superim-
posed on the histogram. We can notice than the pink distribution represented
at the bottom of the histogram corresponds to relevant features. This cluster
is very small (19 voxels), compared to the two blue classes represented at the
top of the histogram that contain many voxels (746 voxels) which are highly
regularized, as they are non informative.

4.4.3 Discussion

Regularization of voxels loadings significantly increases the generalization abil-
ity of the predictive model. However, this regularization has to be adapted to
each particular dataset. In place of costly cross-validation procedures, we cast
regularization in a Bayesian framework and treat the regularization weights
as hyper-parameters. The proposed approach yields an adaptive and efficient
regularization, and can be seen as a compromise between a global regulariza-
tion (Bayesian Ridge Regression) which does not take into account the sparse
or focal distribution of the information, and Automatic Relevance determination,
that may be subject to overfit in high-dimensional feature spaces.

On simulated data, our approach performs better than other classical meth-
ods such as SVR, BRR, ARD and Elastic net and yields a more stable prediction
accuracy. Additionally, MCBR creates a clustering of the features based on their
relevance, and thus explicitly extracts groups of informative features. More-
over, as seen on simulated neuroimaging data, by adapting the regularization
to different groups of voxels, MCBR retrieves the true support of the weights,
and recovers a sparse solution.

Results on real data show that MCBR yields more accurate predictions than
other regularization methods. As it yields less sparse solution than Elastic net,
it gives access to more plausible loading maps which are necessary for under-
standing the spatial organization of brain activity, i.e. retrieving the spatial
layout of the neural coding. The explicit clustering of Gibbs-MCBR is also an
interesting aspect of the model, as it can extract few groups of relevant features
from many voxels.

In some experiments, the Variational Bayes algorithm yields less accurate
predictions than the Gibbs sampling approach, which can be explained by the
difficulty of initializing the different variables (especially z) when the support
of the weight is overly sparse.

The question of model selection (i.e. the number of classes Q) has not been
addressed in this thesis. One can use the free energy in order to select the best
model, but due to the instability of VB-MCBR, this approach does not seem
promising. A more interesting method is the one detailed in [Chib 01], which
can be used with Gibbs sampling algorithm. Here, model selection is performed
implicitly by emptying classes that do not fit the data well. In that respect,
the choice of heterogeneous priors for different classes is crucial: replacing our
priors with class-independent priors (i.e. λ1,q = 10−2 , q ∈ [1, .., Q]) in the inter-
subject analysis on sizes prediction, leads Gibbs-MCBR to a local maximum
similar to VB-MCBR.

142



CHAPTER 4. MULTI-CLASS SPARSE BAYESIAN REGRESSION

Elastic net

L R

y=-94 x=-28

L R

z=-6

-3e-02 0e+00 3e-02

SVR

L R

y=-94 x=-28

L R

z=-6

-4e-03 0e+00 4e-03

GIBBS-MCBR

L R

y=-94 x=-28

L R

z=-6

-4e-02 0e+00 4e-02

VB-MCBR

L R

y=-94 x=-28

L R

z=-6

-3e-03 0e+00 3e-03

Figure 4.6: Regression - Mental representation of size - Inter-subject analysis. Maps
of weights found by the different methods on the 2500 most relevant features
by Anova. The map found by Elastic net is difficult to interpret as the very
few relevant features are scattered within the whole brain. SVR and VB-MCBR
do not yield a sparse solution. Gibbs-MCBR, by performing an adaptive reg-
ularization, draws a compromise between the other approaches, and yields a
sparse solution, but also extract small groups of relevant features.
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4.5 Conclusion - Multi-Class Sparse Bayesian Re-

gression

In this chapter, we have proposed a model for adaptive regression, called MCBR.
The main characteristics of the model are the following:

• Generalization of classical approaches: the proposed method integrates
in the same framework BRR and ARD.

• Adaptive regularization: by performing a different regularization for rel-
evant and irrelevant features, it enables both a subset selection, and an
accurate estimation of the weights of the model. It can tune the regular-
ization, within a bayesian framework, to the different level of sparsity of
fMRI data. The regularization is as adaptive as ARD, but is performed
will far less hyper-parameters, and thus is less subject to overfit in the
hyper-parameters space. Indeed, MCBR does not have the convergence
issue of ARD, and thus does not pick up the ”simplest” model among
different models with similar prediction accuracy.

• Features clustering: the proposed approach yields an interesting infor-
mation for fMRI inverse inference, i.e. the z variable (latent class variable).
Indeed, the intrinsic clustering of MCBR allows to extract clusters of rel-
evant features.

Experiments on both simulated and real data show that our approach is
well-suited for neuroimaging, as it yields accurate and stable predictions com-
pared to state of the art methods. Among different research directions, it can
be interesting to add Dirichlet prior to the MCBR method. This prior tunes the
number of classes Q automatically, and thus can adapt the sparsity between
the two extremal cases of Bayesian Ridge Regression (no sparsity), and Automatic
Relevance Determination (high sparsity). Another direction can be to implement
a spatial model in this framework, in order to extract groups of connected vox-
els. For instance, one can add a spatial Markovian prior on the labels for spatial
consistency, but such an approach may be computationally prohibitive.
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5
Supervised clustering

In this chapter, we propose an original contribution, called supervised

clustering for feature agglomeration in fMRI inverse inference, that

handles both the spatial structure of the images, and the multivariate

nature of the signal.

We first detail how spatial information can be used in inverse inference

and then, we introduce the supervised clustering framework. Finally,

we illustrate this approach on simulated data, and compare it to refer-

ence methods on real data.

Contents
5.1 Spatial information and Supervised Clus-

tering . . . . . . . . . . . . . . . . . . . . . . 146

5.1.1 Introducing the spatial information
in inverse inference . . . . . . . . . . . 146

5.1.2 Supervised clustering . . . . . . . . . 148

5.1.3 Algorithmic considerations . . . . . . 150

5.2 Illustration of Supervised clustering on
simulated data . . . . . . . . . . . . . . . . . 151

5.2.1 Illustration on simulated 1-
dimensional data . . . . . . . . . . . 151

5.2.2 Illustration on simulated neu-
roimaging data . . . . . . . . . . . . 152

5.2.3 Results on 1-dimensional simulated
data . . . . . . . . . . . . . . . . . . . 153

5.2.4 Results on simulated neuroimaging
data . . . . . . . . . . . . . . . . . . . 153

5.3 Supervised clustering for fMRI-based in-
verse inference . . . . . . . . . . . . . . . . . 154

5.3.1 Details on real data . . . . . . . . . . 154

5.3.2 Results on real data . . . . . . . . . . 156

5.3.3 Discussion . . . . . . . . . . . . . . . 159

5.4 Conclusion - Supervised clustering . . . . . 162

145



5.1 Spatial information and Supervised Clustering

We have seen in chapter 3 the different methods of dimension reduction and reg-
ularization that can be used to deal with the high dimensionality of the data. To
date, the most widely used method for feature selection is voxel-based Anova
(Analysis of Variance), that evaluates each brain voxel independently. The se-
lected features can be redundant, and are not constrained by spatial informa-
tion, and thus can be spread in large regions within the whole brain. The
resulting feature maps are difficult to interpret, especially compared to stan-
dard brain mapping techniques such as SPMs (see chapter 2). Constructing
spatially-informed predictive features gives access to meaningful maps (e.g.
by constructing informative and anatomically coherent regions [Cordes 02])
within the decoding framework of inverse inference.

In this section, we first detail how spatial information is classically used in
inverse inference. Then, we introduce the supervised clustering approach.

5.1.1 Introducing the spatial information in inverse inference

Spatial information and voxel-based analysis

A first solution is to introduce the spatial information within a voxel-based
analysis, e.g. by adding region-based priors [Palatucci 07] or by keeping only
the neighboring voxels for the predictive model, such as in searchlight approach
[Kriegeskorte 06] (but such an approach cannot handle long-range interactions
in the information coding). Another contribution of this thesis is the use of a
spatially-informed regularization, and is detailed in chapter 6.

Features agglomeration and parcels

A more natural way for using the spatial information is called feature agglom-
eration, and consist of replacing voxel-based signals by local averages (a.k.a.
parcels) [Flandin 02, Flandin 04, Mitchell 04, Fan 06, Thirion 06b]. This is mo-
tivated by the fact that fMRI signal has a very strong spatial coherence due
to the spatial extension of the underlying metabolic changes and of the neu-
ral code, and there is a local redundancy of the predictive information. Using
these parcel-based averages of fMRI signals to fit the target naturally reduces
the number of features (from ∼ 105 voxels to ∼ 102 parcels).

We define a parcel P as a group of connected voxels, a parcellation P being a
partition of the whole set of features in a set of parcels:

∀j ∈ [1, . . . , p] , ∃k ∈ [1, . . . , δ] | vj ∈ P k (5.1)

with
∀k, k′ ∈ [1, . . . , p] , P k ∩ P k′

= ∅ (5.2)

where δ is the number of parcels, P k the kth parcel and we note vj the jth voxel.
The parcel-based signal P is the average of the voxels within each parcel (other
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representation can be considered, e.g. median values of each parcel), and the
kth row of P is noted Pk:

Pk =

∑
j|vj∈P k Xj

δk
(5.3)

where δk is the number of voxels in the parcel P k.

These parcels can be created using only spatial information, in purely geo-
metrical approach [Kontos 04], or using atlases [Tzourio-Mazoyer 02, Keller 09].
In order to take into account both spatial information and functional data, clus-
tering approaches have also been proposed, e.g. spectral clustering [Thirion 06b],
Gaussian mixture models [Thyreau 06], K-means [Ghebreab 08] or fuzzy clus-
tering [He 08]. The optimal number of clusters may be hard to find [Thyreau 06,
Filzmoser 99], but probabilistic clustering provides a solution [Tucholka 08].
Moreover, such spatial averages can lose the fine-grained information, which is
crucial for an accurate decoding of fMRI data [Cox 03, Haynes 06, Haynes 05a],
and different resolutions of information should be considered [Golland 07].

Searchlight

The searchlight [Kriegeskorte 06] is a widely used approach for the study of the
fine-grained patterns of information in fMRI analysis. Its principle is relatively
simple: a small group of neighboring features is extracted from the data, and
the prediction function is instantiated on these features only. The resulting
prediction accuracy is thus associated with all the features within the group, or
only with the feature on the center. This yields a map of local fine-grained in-
formation, that can be used for assessing hypothesis on the local spatial layout
of the neural code under investigation.

The interest of such a method is to avoid the use of feature selection, and sim-
ply performs an extraction of the neighboring features. However, the search-
light has important drawbacks. First, it requires unsmoothed data to be fully
optimal, and is very sensitive to voxel-to-voxel correspondence, across images
or across sessions, because it relies on fine-grained patterns. It is thus difficult
to use for inter-subject inference. Moreover, the searchlight does not perform
a multivariate analysis within the whole brain, and thus can not extract long
range interactions. Additionally, in a similar way as Statistical Parametric Maps,
the searchlight only returns maps of local prediction score, and can not be di-
rectly used for prediction on a dataset. It can be used on the training set to
extract relevant features, but this is difficult in practice, due to the high com-
putational cost of this approach. Finally, the searchlight also suffers from multi-
ple comparisons issue, because it performs as many statistical tests as classical
inference approach.

Any prediction function can be used, but it is classically used jointly with
SVM. Similarly, any kinds of neighborhood systems can be used, but a spheri-
cal spatial neighborhood is used in [Kriegeskorte 06].
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5.1.2 Supervised clustering

We now present the supervised clustering algorithm, that considers the target to
be predicted as early as in the clustering procedure and yields an adaptive seg-
mentation into both large regions and fine-grained information, and can thus
be considered as multi-scale. The proposed approach can be used with any
type of prediction functions, in both classification and regression settings. The
flowchart of the proposed approach is given in Fig. 5.1, and the corresponding
pseudo-code in Algo. 3.

We first construct a hierarchical subdivision of the search domain using
Ward hierarchical clustering algorithm [Ward 63]. The resulting nested parcels
constructed from the functional data is isomorphic to a tree. By construction,
there is a one-to-one mapping between cuts of this tree and parcellations of the
domain. Given a parcellation, the signal can be represented by parcel-based av-
erages, thus providing a low dimensional representation of the data (i.e. feature
agglomeration). The method proposed in this contribution is a greedy approach
that optimizes the cut in order to maximize the prediction accuracy, based on
parcel-based averages. By doing so, a parcellation of the domain is estimated
in a supervised learning setting, hence the name supervised clustering. We now
detail the different steps of the procedure.

Figure 5.1: Flowchart of the supervised clustering approach. Bottom-Up step
(Ward clustering) - step 1: the tree T is constructed from the leaves (the vox-
els in the gray box) to the unique root (i.e. the full brain volume), following
spatial connectivity constraints. Top-Down step (Pruning of the tree) - step 2: the
Ward’s tree is cut recursively into smaller sub-trees, each one corresponding to
a parcellation, in order to maximize a prediction accuracy ζ. Model selection -
step 3: given the set of nested parcellations obtained by the pruning step, we

select the optimal sub-tree T̂ , i.e. the one that yields the optimal value for ζ.
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Bottom-Up step: hierarchical clustering

At this stage, we ignore the target information – i.e. the behavior variable to
be predicted – and use a hierarchical agglomerative clustering. We add connec-
tivity constraints to this algorithm (only adjacent clusters can be merged to-
gether) so that only spatially connected clusters, i.e. parcels, are created. This
approach creates a hierarchy of clusters represented as a tree T (or dendro-
gram) [Johnson 67]. The root of the tree is the unique cluster that gathers all
the voxels, the leaves being the clusters with only one voxel. As the resulting
nested parcel sets is isomorphic to the tree T , we identify any tree cut with
a given parcellation of the domain. Any cut of the tree into δ sub-trees cor-
responds to a unique parcellation Pδ , through which the data can be reduced
to δ parcels-based averages. Among different hierarchical agglomerative cluster-
ing, we use the variance-minimizing approach of Ward algorithm [Ward 63] in
order to ensure that parcel-based averages provide a fair representation of the
signal within each parcel. At each step, we merge together the two parcels so
that the resulting parcellation minimizes the sum of squared differences within
all parcels (inertia criterion).

Top-Down step: pruning of the tree T

We now detail how the tree T can be pruned to create a reduced set of parcella-
tions. Because the hierarchical subdivision of the brain volume (by successive
inclusions) is naturally identified as a tree T , choosing a parcellation adapted
to the prediction problem means optimizing a cut of the tree. Each sub-tree cre-
ated by the cut represents a region whose average signal is used for prediction.
As no optimal solution is currently available to solve this problem, we consider
two approaches to perform such a cut (see Fig. 5.2). In order to have ∆ parcels,
these two methods start from the root of the tree T (one unique parcel for the
whole brain), and iteratively refine the parcellation:

• The first solution consists in using the inertia criterion from Ward algo-
rithm: the cut consists of a subdivision of the Ward’s tree into its ∆ main
branches. As this does not take into account the target information y, we
call it unsupervised cut (UC).

• The second solution consists in initializing the cut at the highest level
of the hierarchy and then successively finding the new sub-tree cut that
maximizes a prediction score ζ (e.g. explained variance), while using a pre-
diction function F (e.g. SVM) instantiated with the parcels-based signal
averages at the current step. As in a greedy approach, successive cuts it-
eratively create a finer parcellation of the search volume, yielding the set
of parcellations P1, . . . ,P∆. More specifically, one parcel is split at each
step, where the choice of the split is driven by the prediction problem.
After δ such steps of exploration, the brain is divided into δ + 1 parcels.
This procedure, called supervised cut (SC), is detailed in algorithm 3.
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Figure 5.2: Top-Down step (Pruning of the tree). In the unsupervised cut approach,
(left) Ward’s tree is divided into 6 parcels through a horizontal cut (blue). In
the supervised cut approach (right), by choosing the best cut (red) of the tree
given a score function ζe, we focus on some specific regions of the tree that are
more informative.

Let us recall the following prediction scores. In the case of regression anal-
ysis, one can use the explained variance ζ :

ζ(yt, ŷ) =
var(yt)− var

(
yt − ŷ

)

var(yt)
(5.4)

For classification analysis, one can use the classification score κ:

κ(yt, ŷt) =

∑nt

i=1 δ(yt
i , ŷ

t
i)

nt
(5.5)

where nt is the number of samples in the test set.

Model Selection step: optimal sub-tree T̂
In both cases, a set of nested parcellations P1, . . . ,P∆ is produced, and the
optimal model among the available cuts still has to be chosen. We select the

sub-tree T̂ that yields the optimal prediction score ζ̂. The corresponding op-
timal parcellation is then used to create parcels on both training and test sets.
Finally, a prediction accuracy is computed using these parcels.

5.1.3 Algorithmic considerations

Internal cross-validations

The pruning of the tree and the model selection step are included in an inter-
nal cross-validation procedure within the training set. However, this internal
cross-validation scheme rises different issues. First, it is very time consuming
to include the two steps within a complete internal cross-validation. A second,
and more crucial issue, is that performing an internal cross-validation over the
two steps yields many sub-trees (one by fold). However, it is not easy to com-
bine these different sub-trees in order to obtain a average sub-tree that can be
used for prediction on the test set [Oliver 95]. Moreover, the different optimal

150



CHAPTER 5. SUPERVISED CLUSTERING

sub-trees are not constructed using all the training set, and thus can be subject
to specific choice of the internal cross-validation. Consequently, we choose an
empirical, and potentially biased, heuristic that consists of using sequentially
two separate cross-validation schemes Ce and Cs for the pruning of the tree and
the model selection step.

Computational considerations

Our algorithm can be used to search informative regions in very high-dimen-
sional data, where other algorithms do not scale well. Indeed, the highest num-
ber of features considered by our approach is ∆, and we can use any given pre-
diction function F , even if this function is not well-suited for high dimensional
data. The computational complexity of the proposed supervised clustering al-
gorithm depends thus on the complexity of the prediction function F , and on
the two cross-validation schemes Ce and Cs. At the current iteration δ ∈ [1,∆],
δ + 1 possible features are considered in the regression model, and the regres-
sion function is fit n(δ+1) times (in the case of a leave-one-out cross-validation
with n samples). Assuming the cost of fitting the prediction functionF isO(δα)
at step δ, the overall cost complexity of the procedure is O(n∆(2+α)). In gen-
eral ∆≪ p, and the cost remains affordable as long as ∆ < 103, which was the
case in all our experiments. Higher values for ∆ might also be used, but the
complexity of F has to be lower.

The benefits of parcellation come at a cost regarding CPU time, the con-
struction of the tree raising CPU time to 207 seconds and the parcels definition
raising CPU time (Intel(R) Xeon(R), 2.83GHz) to 215 seconds on a subject of the
dataset on the mental representation of size (with a non optimized Python im-
plementation though) . Nevertheless, all this remains perfectly affordable for
standard neuroimaging data analyzes.

5.2 Illustration of Supervised clustering on simu-

lated data

In this section, we illustrate the Supervised clustering on simulated data. We
compare the proposed approach to the unsupervised cut, and to the reference
methods.

5.2.1 Illustration on simulated 1-dimensional data

We illustrate the supervised clustering on a simple simulated data set. Data are
simulated as follows, where the informative features have a block structure:

X ∼ N (0, 1) with ǫ ∼ N (0, 1)

y =

p∑

i=0

wXi + ǫ
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Algorithm 3: Pseudo-code for supervised cut

Set a number of exploration steps ∆, a score function ζ, a prediction
function F , and two cross-validation schemes Ce and Cs.
Let Pδ be the parcellation defined at the current iteration δ and Pδ the
corresponding parcel-based averages.
Construct T using Ward algorithm.
Start from the root of the tree T , i.e. P0 = {P0} has only one parcel P0

that contains all the voxels.
Pruning of the tree T
for δ ← 1 to ∆ do

foreach Pi ∈ Pδ−1 do
- Split Pi → {Pi

1, Pi
2} according to T .

- Set Pδ,i = {Pδ−1\Pi} ∪ {Pi
1, Pi

2}.
- Compute the corresponding parcel-based signal averages Pδ,i.
- Compute the cross-validated score ζe,i(F) with the
cross-validation scheme Ce.

- Perform the split i⋆ that yields the highest score ζe,i⋆(F).
- Keep the corresponding parcellation Pδ and sub-tree Tδ .

Selection of the optimal sub-tree T̂
for δ ← 1 to ∆ do

- Compute the cross-validated score ζs,δ(F) with the cross-validation
scheme Cs, using the parcellation Pδ .

Return the sub-tree T̂δ⋆ and corresponding parcellation P̂δ⋆ , that yields
the highest score ζs,δ⋆(F).

and w is defined as:

wi ∼ U1.25
0.75 for 20 ≤ i ≤ 30

wi ∼ U−0.75
−1.25 for 50 ≤ i ≤ 60

wi = 0 elsewhere

where Ub
a is the uniform distribution between a and b. We have p = 200 features

and n = 150 images. The supervised cut is used with ∆ = 50, Bayesian Ridge
Regression (BRR) as prediction function F , and procedures Ce and Cs are set to
4-fold cross-validation.

5.2.2 Illustration on simulated neuroimaging data

We compare the supervised clustering approach with the unsupervised cluster-
ing and the two reference algorithms, Elastic net and SVR. The two reference
methods are optimized by 4-fold cross-validation within the training set in the
range described in Appendix B.1. We also compare the methods to a searchlight
approach [Kriegeskorte 06] (radius of 2 and 3 voxels, combined with a SVR
approach (C = 1)), which has emerged as a reference approach for decoding
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local fine-grained information within the brain. Both supervised cut and unsu-
pervised cut algorithms are used with ∆ = 50, Bayesian Ridge Regression (BRR) as
prediction function F , and optimized with an internal 4-fold cross-validation.

5.2.3 Results on 1-dimensional simulated data

The results of the supervised clustering algorithm are given Fig. 5.3. On the top,
we give the tree T , where the parcels found by the supervised clustering are
represented by red squares, and the bottom row are the input features. The
features of interest are represented by green dots. We note that the algorithm
focuses the parcellation on two sub-regions, while leaving other parts of the
tree unsegmented. The weights found by the prediction function based on the
optimal parcellation (bottom) clearly outlines the two simulated informative
regions. The predicted weights are normalized by the number of voxels in
each parcel.

Tree - Supervised clustering

0 50 100 150 200
Features
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0.5
0.0
0.5
1.0
1.5

W
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ts

Estimated weights
Ground truth

Figure 5.3: Illustration of the
supervised clustering algorithm
on a simple simulated data
set. The cut of the tree (top,
red line) focuses on the re-
gions of interest (top, green
dots), which allows the pre-
diction function to correctly
weight the informative fea-
tures (bottom).

5.2.4 Results on simulated neuroimaging data

We compare different methods on the simulated data, see Fig.5.4. The pre-
dicted weights of the two parcel-based approaches are normalized by the num-
ber of voxels in each parcel. Only the supervised clustering (e) extracts the sim-
ulated discriminative regions. The unsupervised clustering (f) does not retrieve
the whole support of the weights, as the created parcels are constructed based
only on the signal and spatial information, and thus do not consider the target
to be predicted. Elastic net (h) only retrieves part of the support of the weights,
and yields an overly sparse solution which is not easy to interpret. SVR (g)
approach yields weights in the primal space that are dependent on the smooth-
ness of the images. The searchlight approach (c,d), which is a commonly used
brain mapping techniques, shows here its limits: it does not cope with the long
range multivariate structure of the weights, and yields very blurred informa-
tive maps, because this method naturally degrades data resolution.
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Figure 5.4: Comparisons of the weights given by the different procedures (b-h)
with the true weights (a). Only the supervised cut algorithm (e) retrieves the
regions of interest. For the searchlight approach (c, f), the images show the
explained variance obtained using the voxels within a sphere centered on each
voxel.

5.3 Supervised clustering for fMRI-based inverse

inference

We compare the supervised clustering to reference methods on different inter-
subject data sets, as the method is well-suited for such analyzes. Indeed, the
voxel-to-voxel correspondence is usually not problematic in intra-subject anal-
ysis, so that averaging neighboring voxels does not increase prediction accu-
racy compared to voxel-based analyzes. Similar results as voxel-based ana-
lyzes can be found using the supervised clustering combined with a sparsity
promoting prediction function as Lasso. However, the extracted parcels are
small and sparse, and there is no interest in such an approach compared to
voxel-based analyzes. Thus, we do not further detail intra-subject analysis.

5.3.1 Details on real data

Details on real data - mental processing of size

In this experiment, we assess the performance of supervised clustering in the
inter-subject regression analysis on the mental representation of size (see Ap-
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pendix B.2)
The supervised clustering and unsupervised clustering are used with Bayesian

Ridge Regression (BRR) (as described in section 3.3 in [Bishop 07]) as prediction
function F . Internally, a leave-one-subject-out cross-validation is used, and we
set ∆ = 75. A major asset of BRR is that it adapts the regularization to the
data at hand, and thus can cope with the different dimensions of the problem:
in the first steps of the supervised clustering algorithm, we have more samples
than features, and for the last steps, we have more features than samples.

Details on real data - mental processing of shape

In this experiment, we assess the performance of supervised clustering in the
inter-subject classification analysis on the mental representation of shape (see
Appendix B.2).

In this experiment, the supervised clustering and unsupervised cut are used
with Support Vector Classification (SVC) (C = 0.01) as prediction function F .
Such value of C yields a good regularization of the weights in the proposed
approach, and the results are not too sensitive to this parameter (68.3% for
C = 0.001 and 67.5% for C = 10).

Details on real data - mental processing of dot sets cardinalities

We use a part of a real dataset on the mental processing of quantities (see
[Eger 09]. During the experiment, ten healthy volunteers (6 males and 4 fe-
males, mean age 21.2 +/- 3.0 years) viewed dot patterns with different num-
bers of dots (Y = 2, 4, 6 and 8) with 4 repetitions of each stimulus in each one
of 8 sessions : so that we have a total of Np = 32 images per subject. We aimed
at predicting the values of Y from the fMRI data through regression. Func-
tional images were acquired on a 3 Tesla MR system with 12-channel head coil
(Siemens Trio TIM) as T2* weighted echo-planar image (EPI) volumes using
a high-resolution EPI-sequence. 26 oblique-transverse slices covering parietal
and superior parts of frontal lobes were obtained in interleaved acquisition or-
der with a TR of 2.5 s (FOV 192 mm, fat suppression, TE 30 ms, flip angle 78◦

, 1.5 × 1.5 × 1.5 mm voxels). Standard pre-processings and the fit of the gen-
eral linear model were performed with the SPM5 software. We used images of
parameter estimates, one per condition and repetition.

We run the different methods in an inter-subjects analysis. For each sub-
ject, we first compute a fixed-effects activation image that represents the aver-
age effect of each stimulus, one for each condition (then, we have 4 images by
subjects in 10 subjects). We evaluate the performance of the method by cross-
validation (leave-one-subject-out), which yields an average rate of explained
variance across subjects. This analysis in launched on the intersection of the
masks of all the subjects, which roughly corresponds to the whole brain vol-
ume.

In this experiment, the supervised clustering and unsupervised cut are used

with Elastic net, parametrized by λ1 = 0.05λ̃ (λ̃ = ‖PT
δ y‖∞ is computed at each
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step δ of the algorithm) and λ2 = 1, as prediction function F . We choose Elastic
net as we are expecting a spatial layout more sparse than the one obtained in the
study of the mental processing of size, as the processing of dot sets cardinalities
is a more high-level cognitive process. The parameters of Elastic net are choose
in the middle of the range used for voxel-based Elastic net.

We give in Fig.5.5 the results of a sensitivity studied performed on the first
subject of the dataset. We can see that the prediction accuracy is sensitive to
this choice of parameters. One should performed an internal cross-validation
to optimize these parameters, but this can be computationally costly. Another
solution should be to used an oracle to choose the parameters of Elastic net,
e.g. by performing an internal cross-validation every 10 or 20 steps, in order to
adapt the amount and relative sparsity of the regularization to the data.
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Figure 5.5: Mental representation of
dot sets cardinalities. Sensitivity
study performed on the first sub-
ject of the dataset. The prediction
accuracy is sensitive to this choice
of parameters for Elastic net.

5.3.2 Results on real data

Results for the mental representation of size

The results of the inter-subjects analysis are given in Tab.5.1. Both parcel-based
methods perform better than voxel-based reference methods. Parcels can be
seen as an accurate method for compressing information without loss of pre-
diction performance. Fig. 5.6 gives the weights found for the supervised cut,
the two reference methods and the searchlight (SV R with C = 1 and a radius
of 2 voxels), using the whole data set. For the supervised clustering approach,
the predicted weights are normalized by the number of voxels in each parcel.
As one can see, the proposed algorithm yields clustered loadings map, com-
pared to the maps yielded by the voxel-based methods, which are very sparse
and difficult to represent. Compared to searchlight, the supervised clustering al-
gorithm creates more clusters that are also easier to interpret as they are well
separated. Moreover, the proposed approach also yields a prediction accuracy
for the whole brain analysis, a contrario to the searchlight that only gives a
local measure of information.
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The parcels are found within the occipital cortex. The majority of informa-
tive parcel are located in the posterior part of the occipital cortex, most likely
corresponding to primary visual cortex, with few additional slightly more an-
terior parcels in posterior lateral occipital cortex. This is consistent with the
previous findings [Eger 08] where a gradient of sensitivity to size was observed
across object selective lateral occipital ROIs, while the most accurate discrimi-
nation of sizes is obtained in primary visual cortex.

Methods mean ζ std ζ max ζ min ζ p-value to UC

SVR 0.77 0.11 0.97 0.58 0.0817
Elastic net 0.78 0.1 0.97 0.65 0.0992
UC - BRR 0.83 0.08 0.97 0.73 -
SC - BRR 0.82 0.08 0.93 0.7 0.8184

Table 5.1: Explained variance ζ for the different methods in the Size prediction
experiment. The p-values are computed using a paired t-test. The unsupervised
cut (UC) algorithm yields the best prediction accuracy in leave-one-subject-out
cross-validation. The supervised cut (SC) yields similar results as UC (the differ-
ence is not significant). The two voxel-based approaches yield lower prediction
accuracy than the parcel-based approaches.

Results for the mental representation of shape

The results of the inter-subjects analysis are given in Tab.5.2. The supervised
cut method outperforms the other approaches. In particular, the classifica-
tion score is 21% higher than with voxel-based SVC and 27% higher than with
voxel-based SMLR. Both parcel-based approaches are significantly more accu-
rate and more stable than the voxel-based approaches.

Methods mean κ std κ max κ min κ p-value to SC

SVC 48.33 15.72 75.0 25.0 0.0063 **
SMLR 42.5 9.46 58.33 33.33 0.0008 **
UC - SVC 65.0 8.98 75.0 50.0 0.1405
SC - SVC 70.0 10.67 83.33 50.0 -

Table 5.2: Classification performance κ for the different methods in the Object
prediction experiment. The p-values are computed using a paired t-test. The
supervised cut (SC) algorithm yields the best prediction accuracy in leave-one-
subject-out cross-validation. Both parcels-based approaches are significantly
more accurate and more stable than the voxel-based approaches.
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Figure 5.6: Mental representation of size. Maps of weights found by supervised cut
and the two reference voxel-based methods and the searchlight. The proposed
algorithm creates very interpretable clusters, compared to the reference meth-
ods, which is related to the fact that they do not consider the spatial structure of
the image. Moreover, the supervised clustering yields similar maps as searchlight,
but also retrieves some additional clusters.

Results on real data - mental representation of dot sets cardinalities

The results of the inter-subjects analysis are given in Tab. 5.3. The fact that a
significant proportion of the stimulus variance can be fit using brain activa-
tion across subjects was not expected. However, this results is probably re-
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lated to the fact that for small numbers of dots as used here (but not for larger
cardinalities or symbolic numbers [Eger 09]) parametric activity increases can
be observed in relatively extended and contiguous parietal regions. Whether
these reflect special mechanisms for processing small numbers of objects, or
secondary factors not related to numerical representation per se (e.g., increased
effort when attempting to count), is currently not clear. However, even if these
data have a particular confound that is not clearly representative of the mental
representation of dot sets cardinalities, the supervised clustering approach still
yields a good prediction and interpretable maps (Fig. 5.7) compared to refer-
ence methods.

Methods mean ζ std ζ max ζ min ζ p-value to SC

SVR 0.55 0.2 0.87 0.09 0.3741
Elastic net 0.53 0.2 0.88 0.14 0.3208
UC - Elastic Net 0.56 0.26 0.91 0.08 0.3957
SC - Elastic Net 0.61 0.29 0.95 0.04 -

Table 5.3: Explained variance ζ for the different methods in the dot sets cardi-
nalities prediction experiment. The p-values are computed using a paired t-test.
The two parcels-based methods yield the best prediction accuracy in leave-one-
subject-out cross-validation.

5.3.3 Discussion

In this chapter, we have presented a new method for enhancing brain activity
prediction from fMRI brain images. The proposed approach constructs parcels
(groups of connected voxels) within the whole brain, and allows to take into
account both the spatial structure and the multivariate information within the
whole brain.

Given that an fMRI brain image has typically 104 to 105 voxels, it is per-
fectly reasonable to use intermediate structures such as parcels (i.e. feature ag-
glomeration) for reducing the dimensionality of the data. We also confirmed by
different experiments that parcels are a good way to tackle the spatial variabil-
ity problem in inter-subjects studies [Tahmasebi 10, Tucholka 10]. Thus feature
agglomeration is an accurate approach for the challenging inter-subject general-
ization of brain-reading [Norman 06, Haynes 06]. This can be explained by the
fact that considering parcels allows to localize functional activities across sub-
jects and thus find a common support of neural codes of interest (see Fig. 5.8).
On the contrary, voxel-based methods suffer from the inter-subject spatial vari-
ability and their performances are relatively lower.

The results for the dot sets cardinalities prediction experiment confirm the
intuition that massive activity correlates with small dot sets cardinality in some
parietal regions. It remains to be decided whether a population code can be
defined, i.e. whether there is a spatial gradient between regions activating for
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Figure 5.7: dot sets cardinalities prediction experiment. Maps of weights found by
supervised cut and the two reference voxels-based methods. For SVR (top) and
Elastic net (middle) (both used on 500 voxels selected by Anova), the voxels are
spread all over the brain, without any emerging coherence. In comparison, the
supervised cut approach extract very few parcels starting from a whole-brain
analysis, and thus creates more interpretable map.

large versus low quantities. This is hard to conclude given the resolution and
SNR limits of the data, but our parcellation scheme may help in that respect.

Our approach entails the technical difficulty of optimizing the parcellation
with respect to the spatial organization of the information within the image.
To break the combinatorial complexity of the problem, we have defined a re-
cursive parcellation of the volume using Ward algorithm, which is furthermore
constrained to yield spatially connected clusters. Note that it is important to
define the parcellation on the training database to avoid data overfit. The sets
of possible volume parcellations is then reduced to a tree, and the problem
reduces to finding the optimal cut of the tree. We propose a supervised cut ap-
proach that attempts to optimize the cut with respect to the prediction task.
Although finding an optimal solution is infeasible, we adopt a greedy strategy
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CHAPTER 5. SUPERVISED CLUSTERING

Figure 5.8: Illustration of feature agglomeration to cope with inter-subject vari-
ability. The regions implied in the cognitive task are represented by disks of
different colors. The populations of active neurons are not exactly at the same
position across subjects (top), and the across subjects mean signal in informa-
tive voxels (bottom) carries very weak information. Thus, it is clear that, in this
case, voxel-based decoding approaches will perform poorly. However, the mean
of informative voxels within each region across subjects (bottom) carries more
information and should yield an accurate inter-subject prediction.

that recursively finds the splits that most improve the prediction score. How-
ever, there is still no guarantee that the optimal cut might be reached with this
strategy. Model selection is then performed a posteriori by considering the
best generalizing parcellation among the available models. Additionally, our
method is tractable on real data and runs in a very reasonable of time (a few
minutes).

In terms of prediction accuracy, the proposed methods yield better results
for the inter-subjects study on the different experiments, compared to state of
the art approaches (SVR, Elastic net, SVC and SMLR). The supervised cut yields
similar or higher prediction accuracy than the unsupervised cut. On the experi-
ment on mental representation of size, the information is not very fine-grained
(a contrario to the experiment on mental representation of shape), and thus the
simple heuristic of unsupervised cut yields a good prediction accuracy.

In terms of interpretability, we have shown on simulations and real data
that this approach has the particular capability to highlight regions of interest,
while leaving uninformative regions unsegmented, and it can be viewed as a
multi-scale segmentation scheme [Michel 10]. The proposed scheme is further
useful to accurately locate contiguous predictive regions and to create inter-
pretable maps, and thus can be viewed as an intermediate approach between
brain mapping and inverse inference. Moreover, compared to a state of the
art approach for fine-grained decoding, namely the searchlight, the proposed
method yields similar maps, but additionally, takes into account non-local in-
formation and yields only one prediction score corresponding to whole brain
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analysis. From a neuroscientific point of view, a proposed approach retrieves
well-known results, i.e. that processings of visual information about sizes are
performed in early occipital cortex, with some extent in more parietal regions.

5.4 Conclusion - Supervised clustering

In conclusion, we propose a new feature building method for extracting in-
formation from brain images. Contrarily to classic methods, the supervised
clustering we propose builds relevant features by agglomeration rather than
simple selection. The method is validated in the context of inter-subject infer-
ence. A particularly important property of this approach is its ability to focus
on relatively small but informative regions while leaving vast but uninforma-
tive areas unsegmented. Additional, this approach is not restricted to a given
prediction function and can be used with many different classification/regres-
sion methods. Experimental results demonstrate that this algorithm performs
well for inter-subjects analysis where the accuracy of the prediction is tested
on new subjects. Indeed, the spatial averaging of the signal induced by the
parcellation appears as a powerful way to deal with inter-subject variability.
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6
Total variation regularization

In the previous chapters, we have seen that regularization schemes

(see chapter 4) and using spatial information (see chapter 5) can im-

prove the prediction accuracy. In this chapter, we develop an approach

combining these two results, in order to obtain more informative and

interpretable results. We propose to use the ℓ1 norm of the image

gradient, a.k.a. its Total Variation (or TV ), as regularization.

After introducing some notions on convex optimization, we give the

mathematical and implementation details of TV regression/classifica-

tion. As far as we know, the present contribution is the first one that

uses TV in the context of image classification, which we find to be a

novel and powerful tool for image-based machine learning. In a third

part, we apply both TV regression and TV classification to the fMRI

paradigm on a real data set.
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6.1 Convex optimization for regularized regression

In this section we introduce some generic notions on convex optimization.
We recall the following predictive linear model, which has already been

systematically used in the previous chapters:

y = f(X,w, b) , (6.1)

where y represents the behavioral variable and (w, b) are the parameters to be
estimated on a learning set. The matrix X ∈ R

n×p is the design matrix. Each
row is a p-dimensional sample, i.e., an activation map related to the observa-
tion. A vector w ∈ R

p can be seen as an image; p is the number of features (or
voxels) and b ∈ R is called the intercept.

As described in previous chapters (see chapters 3 and 4), a standard ap-
proach to performing the estimation of w with regularization uses penaliza-
tion of a maximum likelihood estimator. It leads to the following minimization
problem:

ŵ = argmin
w,b

ℓ(y, f(Xw + b)) + λJ(w) , λ ≥ 0 (6.2)

where λJ(w) is the regularization term and ℓ(y, f(Xw+b)) is the loss function.
The parameter λ balances the loss function and the penalty J(w). Note that the
intercept b is not included in the regularization term.

Here we focus on convex functions for ℓ and J , in order to make problem
6.2 well posed, with unique solution. Next, we detail how large scale convex
problems can be solved.

6.1.1 Convexity and duality

Definition 6.1 (Convex set). Let a set C be a collection of elements from a vector
space. If, for each pair of points in a set C, every point of the line segment between the
two points is also within C, the set C is said to be a convex set, i.e.:

∀ (x1, x2) ∈ C, ∀ θ ∈ [0, 1] , θx1 + (1− θ)x2 ∈ C (6.3)

The empty set and the singleton sets are convex sets, and the intersection of any two
convex sets is a convex set.

Definition 6.2 (Convex function). A function f : R
n → R is convex on a convex

set C if:

∀ (x, y) ∈ C, ∀ θ ∈ [0, 1] , f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) (6.4)

The function f is strictly convex if:

∀ (x, y) ∈ C, x 6= y, ∀ θ ∈ ]0, 1[ , f(θx + (1− θ)y) < θf(x) + (1− θ)f(y) (6.5)

Additionally, f is concave if −f is convex.
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For example, power functions (xα, α ≥ 1), exponential functions (expax, a ∈
R), and norm functions are convex functions. The composition with an affine
function preserves the convexity and f(Ax+ b) is convex if f is convex (in par-
ticular, for any norm ‖.‖, f(x) = ‖Ax + b‖ is a convex function). We will note
dom f the domain of a function f .

Definition 6.3 (Conjugate function). The conjugate of a function f is:

f∗(y) = sup
x∈ dom f

(yT x− f(x)) , y ∈ R
n (6.6)

f∗ is convex (even if f is not). See illustration Fig.6.1.

Figure 6.1: Example of function and its conjugate. Adapted from
http://www.ece.ucsb.edu/∼roy/

Definition 6.4 (Dual norms). Let ‖ · ‖ be a norm on V . The associated dual norm
‖‖∗ is defined as:

‖y‖∗ = sup{yT x | ‖x‖ ≤ 1} , y ∈ R
n (6.7)

which yields the inequality: yT x ≤ ‖x‖‖y‖∗. The dual of the dual norm is the original
norm.

Lets introduce the ℓp norms as:

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

for p ≥ 1 (6.8)

with the particular case ‖x‖∞ = maxk|xk|. By using the Hölder’s inequality,
we can prove that the dual of ℓp is ℓq, with 1/p + 1/q = 1, so that p and q are
said to be Hölder conjugates.

Definition 6.5 (Conjugate function of a norm). Let ‖ · ‖ be a norm on V , and let f
be the function f(x) = ‖x‖, the conjugate function of f is defined as:

f∗(y) = χ‖·‖∗≤1(y) =

{
0 if ‖y‖∗ ≤ 1
∞ otherwise

(6.9)
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where χ is the indicator function, and ‖ · ‖∗ the dual norm of ‖ · ‖.
Thus, the conjugate of a norm is the indicator function of the unit ball for the dual
norm.

Sketch of the proof. Let ‖ · ‖ be a norm on V , with the associated dual norm
‖ · ‖∗, and let f be the function f(x) = ‖x‖. We search the associated conjugate
function f∗(y).

• If ‖y‖∗ > 1, using def. 6.4, there exists z ∈ V such that ‖z‖ ≤ 1 and
yT z > 1. Taking x = tz and letting t→∞, we have:

yT x− ‖x‖ = t(yT z − ‖z‖)→∞ (6.10)

and thus, f∗(y) =∞.

• If ‖y‖∗ ≤ 1, we have ∀x ∈ V , yT x ≤ ‖x‖‖y‖∗, and thus, yT x − ‖x‖ ≤ 0.
The maximum of yT x− ‖x‖ is 0, and is obtained for x = 0.

We have the particular case that the dual of ℓ1 is ℓ∞:

f(x) = ‖x‖1 ⇒ f∗(y) = χ‖·‖∞≤1(y) (6.11)

6.1.2 Proximity operator

Lets us recall the minimization problem that we want to solve:

ŵ = argmin
w,b

ℓ(y, f(Xw + b)) + λJ(w) , λ ≥ 0 (6.12)

When J(w) is non-smooth (i.e. not differentiable), an analytical solution
does not exist and the optimization can not be performed with simple algo-
rithms such as Gradient descent or Newton method. This is for example the
case with J(w) = ‖w‖1 (ℓ1 norm a.k.a. Lasso penalty) which requires ad-
vanced optimization strategies. A recently studied strategy [Daubechies 04,
Combettes 05, Nesterov 07, Beck 09a] is based on iterative procedures involv-
ing the computation of proximity operators [Moreau 65]. Such approaches are
adapted to composite problems with both a smooth term and a non-smooth
term as it is the case here (see [Tseng 09] for a recent review). In the context
of neuroimaging, such optimization schemes have been proposed recently in
order to solve the inverse problem of magneto- and electro-encephalography
(collectively M/EEG) when considering non ℓ2 priors [Gramfort 09b, Gramfort 09a].

Definition 6.6 (Proximity operator). Let J : R
p → R be a convex function. The

proximity operator associated with J and λ ∈ R+ denoted by proxλJ : R
p → R

p is
given by:

proxλJ(w) = argmin
v∈Rp

(
1

2
‖v −w‖22 + λJ(v)

)
(6.13)
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For J(w) = ‖w‖1 ( Lasso penalty), we have the proximal operator:

proxλ‖·‖1
(w) = argmin

v∈Rp

1

2
‖v −w‖22 + λ‖v‖1 (6.14)

which yields the solution v∗ (also known as soft thresholding) for the ith coordi-
nate of v:

v∗
i = wi

(
1− λ

|wi|

)+

= wi max

(
1− λ

|wi|
, 0

)
(6.15)

6.1.3 Iterative procedures

We detail two iterative procedures for convex optimization.

Iterative Shrinkage-Thresholding Algorithm (ISTA)

The iterative procedure known as ISTA (Iterative Shrinkage-Thresholding Algo-
rithm, a.k.a Forward-Backward iterations) [Daubechies 04, Combettes 05], is based
on the alternate minimization of the loss term ℓ(w), by gradient descent, and
the penalty J(w), by computing a proximity operator. One can show (a sketch of
the proof is given below), that this can be done in one single step by iterating:

w(k+1) = proxλJ/L

(
w(k) − 1

L
∇ℓ(w(k))

)
, (6.16)

where 1
L∇ℓ(w(k)) is the gradient descent term with a stepsize 1

L , proxλJ/L is

the proximity operator of the penalty and the scalar L is an upper bound on the
Lipschitz constant L of the gradient of the loss function. The Lipschitz constant L
is a positive constant, such that , for a Lipschitz continuous function f :

∀x1, x2 , |f(x1)− f(x2)| ≤ L|x1 − x2| (6.17)

The pseudo code of the ISTA procedure is given in Algo. 4.

Algorithm 4: ISTA procedure

Compute the Lipschitz constant L of the operator ∇ℓ.
Initialize w(0) ∈ R

p

repeat

w(k+1) = proxλJ/L

(
w(k) − 1

L∇ℓ(w(k))
)

with L > L
until convergence ;
return w

Sketch of the proof. We give the sketch of proof of Eq. 6.16. The loss ℓ(w) being
differentiable, the second-order linearization of ℓ(w) reads:

ℓ(w) ≈ ℓ(w(k)) + (w −w(k))T∇ℓ(w(k)) +
1

2
(w −w(k))T∇2ℓ(w(k))(w −w(k))

(6.18)
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Let L be the Lipschitz constant of ∇ℓ, i.e.:

‖∇ℓ(w)−∇ℓ(w(k))‖ ≤ L‖w −w(k)‖ (6.19)

Let L be an upper bound on the Lipschitz constant L. As in [Ortega 00], Eq. 6.16
yields:

w(k+1) = argmin
w

ℓ(w(k)) +
L

2
‖w −w(k)‖2 + (w −w(k))T∇ℓ(w(k)) + λJ(w)

(6.20)
Ignoring constant terms, this can be rewritten as [Daubechies 04]:

w(k+1) = argmin
w

1

2
‖w − (w(k) − 1

L
∇ℓ(w(k)))‖2 +

1

L
λJ(w), (6.21)

Finally, using definition Eq. 6.6 of the proximity operator for J(w), we obtain
the result of Eq. 6.16:

w(k+1) = proxλJ/L

(
w(k) − 1

L
∇ℓ(w(k))

)
(6.22)

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

Inspired by previous findings [Nesterov 07], the FISTA (Fast Iterative Shrinkage-
Thresholding Algorithm) procedure [Beck 09a, Beck 09b] has been developed to
speed up the convergence of ISTA. While ISTA converges in O(1/K), FISTA
is proved to converge in O(1/K2), where K is the number of iterations. The
pseudo code of the FISTA procedure is given in Algo. 5. The main improve-
ment in FISTA is to compute the next descent direction using the previous one.
Such an idea is also present in the well known conjugate gradient algorithm
that uses all previous iterates to compute the next descent direction.

Algorithm 5: FISTA procedure

Compute the Lipschitz constant L of the operator ∇ℓ.
Initialize w(0) ∈ R

p, v(1) = w(0) and t1 = 1.
repeat

w(k) = proxλJ/L

(
v(k) − 1

L
∇ℓ(v(k))

)

tk+1 =
1 +

√
1 + 4t2k
2

v(k+1) = w(k) +

(
tk − 1

tk+1

)
(w(k) −w(k−1))

until convergence ;
return w
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6.2 Total Variation regularization

We first detail the notations of the problem. We then develop the TV regular-
ization framework. Finally, we detail the algorithm used for regression and
classification.

6.2.1 Spatial structure and TV

We have already described (see Chapter 3) some reference methods for reg-
ularized regression: Elastic net, Lasso and Ridge. However, the associated pe-
nalizations do not take into account the underlying structure of w, i.e., a 3-
dimensional grid in the case of brain images. As previously stated (see Chapter
5), spatial information can be used to yield more accurate prediction.

TV regularization

In this section, we develop an approach for regularized prediction based on
Total Variation (TV), J(w) = TV (w). TV, mathematically defined as the ℓ1 norm
of the image gradient, has been primarily used for image denoising [Rudin 92,
Chambolle 04] as it preserves edges. The motivation for using TV for brain
imaging is that it promotes estimates ŵ of w with a block structure, therefore
outlining the brain regions involved in the target behavioral variable.

Let us define Ω ⊂ R
3 the 3D image domain. In a continuous formulation,

the coefficients w define a function from Ω to R, i.e., w : Ω→ R. Its TV reads:

TV (w) =

∫

ω∈Ω

‖∇w‖(ω)dω (6.23)

=

∫

ω∈Ω

√
∇xw(ω)2 +∇yw(ω)2 +∇zw(ω)2dω (6.24)

Gradient and divergence

An issue specific to fMRI data is the computation of the gradient and diver-
gence over a mask of the brain with correct border conditions. We denote M
the mask of the brain, which is a pi × pj × pk three dimensional grid, with:

{
Mi,j,k = 1 if the voxel is in the mask

Mi,j,k = 0 if the voxel is not in the mask

with
∑

i,j,k Mi,j,k = p. Additionally, we define grad : R(Ω)→ R
3(Ω) a gradient

operator and div : R
3(Ω) → R(Ω) the associated adjoint divergence operator.

Let K the convex set defined by:

K = {g : Ω→ R
3 | ∀ω ∈ Ω, ‖g(ω)‖ ω ≤ 1} (6.25)
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and ΠK the projection operator onto the set K:

{
ΠK(g)(ω) = g(ω) if ‖g(ω)‖ ≤ 1

ΠK(g)(ω) = g(ω)/‖g(ω)‖ otherwise.

With I ∈ R
pi×pj×pk an image, the gradient operator is defined by:

(grad I)i,j,k
x =

{
Ii+1,j,k − Ii,j,k if Mi,j,k = Mi+1,j,k = 1

0 otherwise

(grad I)i,j,k
y =

{
Ii,j+1,k − Ii,j,k if Mi,j,k = Mi,j+1,k = 1

0 otherwise

(grad I)i,j,k
z =

{
Ii,j,k+1 − Ii,j,k if Mi,j,k = Mi,j,k+1 = 1

0 otherwise

The divergence operator for a gradient p is defined by:

(div p)i,j,k =






px
i,j,k − px

i−1,j,k if Mi,j,k = Mi−1,j,k = 1

px
i,j,k if Mi,j,k 6= Mi−1,j,k = 0

−px
i−1,j,k if Mi,j,k 6= Mi−1,j,k = 1

+






py
i,j,k − py

i,j−1,k if Mi,j,k = Mi,j−1,k = 1

py
i,j,k if Mi,j,k 6= Mi,j−1,k = 0

−py
i,j−1,k if Mi,j,k 6= Mi,j−1,k = 1

+






pz
i,j,k − pz

i,j,k−1 if Mi,j,k = Mi,j,k−1 = 1

pz
i,j,k if Mi,j,k 6= Mi,j,k−1 = 0

−pz
i,j,k−1 if Mi,j,k 6= Mi,j,k−1 = 1

6.2.2 Convex optimization of Total Variation

Proximity operator of the Total Variation

We now give some details in the particular case of the proximity operator
proxλTV known as the ROF (Rudin Osher Fatemi) problem in the image pro-
cessing literature [Rudin 92]. The computation of proxλTV and the associated
duality gap requires the derivation of a Lagrange dual problem [Boyd 04].

Proposition 6.7 (proxλTV Dual problem). A dual problem associated with proxλTV
is given by

z∗ = argmax
z∈K
−‖div z + w/λ‖22 , (6.26)

where z is the dual variable that satisfies v = w + λ div z.

This result is adapted from [Chambolle 04] (see a sketch of the proof below).
The problem Eq. 6.26 consist in maximizing a smooth concave function over a
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convex set. As shown in [Beck 09b], it can be solved with the FISTA iterative
procedure. The resolution of the ROF problem is therefore achieved by solving
the dual problem. Once z∗ is obtained, v∗ = proxλTV (w) is given by v∗ =
w + λ div z∗.

Duality gap of the Total Variation

Let us introduce now the notion of duality gap. The duality gap is a natural
stopping condition for iterative convex optimization solvers, such as ISTA and
FISTA. In practice, if the duality gap is below a value ǫ > 0, it guarantees that the
solution obtained is ǫ-optimal, i.e., that the value of the cost-function reached
by the algorithm is not greater than ǫ more the globally optimal value. A com-
prehensive presentation of this notion [Boyd 04] is beyond the scope of this
chapter, and we give some details in the particular case of the ROF problem.
The latter result also gives an estimates of the duality gap (see a sketch of the
proof below).

Proposition 6.8 (Duality gap). The duality gap δgap associated with the ROF prob-
lem is given by:

δgap(v) =
1

2
‖w − v‖22 + λTV (v)− 1

2
(‖w‖22 − ‖v‖22) ≥ 0 , (6.27)

where the primal variable v is obtained during the iterative procedure from the current
estimate of the dual variable z with v = w + λ div z.

This duality gap will be used as a stopping criterion for the FISTA procedure
solving the ROF problem. At each iteration of the FISTA procedure, we stop
the iterative loop if the duality gap is below a given threshold ǫ. In practice, ǫ is
set to 10−4 × ‖w‖22 to be invariant to the scaling of the data.

Sketch of the proof. We give the sketch of proofs of propositions 6.7 and 6.8.
We recall [Boyd 04] that the duality between the ℓ1 norm and the ℓ∞ norm
yields:

TV (v) = ‖∇v‖1 = max
‖z‖∞≤1

〈∇v, z〉 (6.28)

and that the adjoint relation between the gradient and the divergence operator
reads:

〈∇v, z〉 = −〈v, div z〉 (6.29)

Using Eq. 6.28 and Eq. 6.29, we minimize:

min
v

(
1

2
‖w − v‖22 + λTV (v)

)
= λ min

v

(
1

2λ
‖w − v‖22 + max

‖z‖∞≤1
〈∇v, z〉

)

= λ max
‖z‖∞≤1

(
min
v

(
1

2λ
‖w − v‖22 + 〈∇v, z〉

))

= λ max
‖z‖∞≤1

(
min
v

(
1

2λ
‖w − v‖22 − 〈v, div z〉

))
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The computation of the minimum and the maximum above can be exchanged
because the optimization over v is convex and the optimization over z is con-
cave [Boyd 04].
By setting the derivative with respect to v to 0 one gets the resulting solution
of the minimization problem over v:

min
v

(
1

2λ
‖w − v‖22 − 〈v, div z〉

)
⇒ v∗ = w + λdiv z (6.30)

Replacing v by v∗ in the previous expression leads to:

min
v

(
1

2
‖w − v‖22 + λTV (v)

)
= λ max

‖z‖∞≤1

(
λ

2
‖div z‖22 − 〈w, div z〉 − λ‖div z‖22

)

= λ max
‖z‖∞≤1

(
−λ

2
‖div z‖22 − 〈w, div z〉

)

=
1

2
max

‖z‖∞≤1

(
−λ2‖div z‖22 − 2λ〈w, div z〉

)

=
1

2
max

‖z‖∞≤1

(
‖w‖22 − ‖λdiv z + w‖22

)

This gives the proof of Prop. 6.7. Also, given a variable z satisfying ‖z‖∞ ≤ 1
and an associated w such that v = w + λdiv z, one can guarantee that

1

2
‖w − v‖22 + λTV (v) ≥ 1

2
(‖w‖22 − ‖v‖22) (6.31)

The strict convexity of the problem guarantees that, at the optimum, the equal-
ity holds. This last derivation proves the proposition 6.8.

6.2.3 Prediction framework

For J(w) = TV (w), the global algorithm for solving the minimization prob-
lem defined in Eq. 6.12 consists in a FISTA procedure (resolution of the ROF
problem) nested inside an ISTA procedure (resolution of the main minimiza-
tion problem). The FISTA procedure is performed at each step of ISTA with a
warm restart on the dual variable z. We do not use FISTA for solving the main
minimization problem, as this procedure requires an exact proximity operator.
The resolution of the ROF problem only leads to an ǫ-optimal solution. The
pseudo-code of the global algorithm for the TV regularization is provided in Ta-

ble 6. Moreover, the upper bound L̃ for the Lipschitz constant of the FISTA pro-
cedure also needs to be estimated on each input data. To do this we use a power
method that is classically used to estimate the spectral norm of a linear opera-
tor, here equal to the Laplacian ∆ : Ω→ Ω defined by ∆(ω) = div(grad(ω)).
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Algorithm 6: TV regularization solver

Set maximum number of iterations K (ISTA).
Set the threshold ǫ on the dual gap (FISTA).
Set L = 1.1Lwhere L is the Lipschitz constant of ∇ℓ.

Set L̃ = 1.1L̃where L̃ is the Lipschitz constant of the Laplacian operator
∆ : w ∈ R(Ω)→ div(grad(w)).
Initialize z ∈ R(Ω3) with zeros.
### ISTA loop ###
for k = 1 . . . K do

v = w − 1
L∇ℓ(w)

### FISTA loop ###
Initialize zaux = z, t = 1
repeat

zold = z

z = ΠK

(
zaux − 1

λL̃
grad(Lv − λdiv(zaux))

)

told = t
t = (1 +

√
1 + 4t2)/2

zaux = z + told−1
t (z− zold)

until δgap(a) ≤ ǫ ;
w = v − λdiv(z)

return w

TV regression

The regression version of the TV is called TV regression. In this case, we use the
least-squares loss:

{
ℓ(w) = 1

2n‖y −Xw‖2
∇ℓ(w) = − 1

nXT (y −Xw)
(6.32)

The Lipschitz constant L of the operator ∇ℓ is L = ‖|XT X|‖/n, where ‖|.|‖
stands for the spectral norm equal to largest singular value. The constant L is
set in practice to L = 1.1L.

TV classification

The classification version of the TV is called TV classification, and is based on a
logistic loss (see Chapter 3). The corresponding loss and the loss gradient read:





ℓ(w) = 1

n

∑n
i=1 log

(
1 + exp−yi(Xi

T w)
)

∇ℓ(w) = − 1
n

∑n
i=1

yiXi

1+expyi(Xi
T w)

(6.33)

The Lipschitz constant L of the operator ∇ℓ is L = 1/(4n). The classifica-
tion framework developed in this chapter treats the binary case with a logistic
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model, a.k.a., binomial model. In our analysis, we expand this framework to
multi-class classification using a one-versus-one voting heuristic. The number
of classifiers used is (k − 1)× (k − 2)/2, where k is the number of classes. The
predicted class is then selected as the class which yields the highest probability
across the predictions of all of the classifiers, as defined by the logistic regres-
sion.

6.3 TV for fMRI-based inverse inference

We first illustrate Total Variation on simulated data. Then, we give the results
obtained on a real fMRI dataset, in both regression and classification settings.

6.3.1 Illustration on simulated neuroimaging data

We create a set of simulated neuroimaging data, as described in Appendix
B.1. We compare TV regression with a value of λ cross-validated in the range
{0.01, 0.05, 0.1, }, with the two reference algorithms, Elastic net and SVR. All
three methods are optimized by 4-folds cross-validation within the training set
as described in Appendix B.1.

We compare the different methods on the simulated data: see the results in
Fig. 6.3. The true weights (a) and resulting Anova F-scores (b) are shown. Only
TV regression (e) extracts the simulated discriminative regions. The reference
methods also find the ROIs, but Elastic net (d) only retrieves part of the support
of the weights, and yields an overly sparse solution. We note that the weights
in the primal space estimated by SVR (c) are non-zero everywhere and do not
retrieve the support of the ground truth.

6.3.2 Sensitivity study on real data

Before any further analysis on real data, we have performed a sensitivity anal-
ysis of our model, with regards to the parameter λ. In the inter-subject analysis
on the mental representation of size, we compute the cross-validated prediction
accuracy for twelve different values of λ between 10−4 and 0.95. The results
are detailed in Fig. 6.2, and are extremely stable in a wide range of values
[10−4, 10−1]. Based on these results, we set the parameter λ = 0.05 for the
following analyzes.

6.3.3 Results for regression analysis

In a first set of analyzes, we assess the performance of TV regression in both
intra-subject and inter-subject cases, where the aim is to predict the size of an
object seen by the subject during the experiment (see Appendix B.2).
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Figure 6.2: Explained variance ζ for different values of λ, in the inter-subjects
regression analysis. The accuracy is very stable regarding to λ in the range
[10−4, 10−1].
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(d) C.v. Elastic net
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Figure 6.3: Two-dimensional slices of the three-
dimensional volume of simulated data (top), and
weights found on the diagonal (green squares) of the
first two-dimensional slice (bottom). Comparisons of the
weights found by different methods, with the true target
(a), and the F-score found by Anova (b). The TV method
(e) retrieves the true weights. The reference methods ((c),
(d)) yield less accurate maps. Indeed, the support of the
weights found by Elastic net is too sparse and does not
yield convex regions. SVR yields smooth maps that do
not look like the ground truth.
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Intra-subject analysis

The results obtained by the three methods are given in Table. 6.1. TV regression
outperforms the two alternative methods, yielding an average explained vari-
ance of 0.92 across the subjects. The difference with SVR is significant, but not
with Elastic net. Moreover, the results of the regularized methods (TV, Elastic
net) are more stable (standard deviation three times smaller) across subjects,
than the results of the SVR.

Methods mean ζ std ζ max ζ min ζ p-value to TV

SVR 0.82 0.07 0.9 0.67 0.0015 **
Elastic net 0.9 0.02 0.93 0.85 0.0672 *
TV α = 0.05 0.92 0.02 0.95 0.88 -

Table 6.1: Regression - Mental representation of size - Intra-subject analysis. Ex-
plained variance ζ for the three different methods. The p-values are computed
using a paired t-test. TV regression yields the best prediction accuracy, while be-
ing more stable than the two reference methods (standard deviation of ζ three
times smaller than SVR).

Inter-subject analysis

The results obtained with the three methods are given in Table. 6.2. As in the
intra-subject analysis, TV regression outperforms the two alternative methods,
yielding an average explained variance of 84%, and also more stable predic-
tions. Such stability can be illustrated on the subject 3, where both reference
methods yield poor results, while TV regression yields an explained variance
0.2 higher.

Methods mean ζ std ζ max ζ min ζ p-value to TV

SVR 0.77 0.11 0.97 0.58 0.0277 **
Elastic net 0.78 0.1 0.97 0.65 0.0405 **
TV λ = 0.01 0.83 0.07 0.98 0.69 0.236
TV λ = 0.05 0.84 0.07 0.97 0.72 -
TV λ = 0.1 0.84 0.07 0.97 0.73 0.5544

Table 6.2: Regression - Mental representation of size - Inter-subject analysis. Ex-
plained variance ζ for the three different methods. The p-values are computed
using a paired t-test. TV regression still yields the best prediction accuracy, with
an explained variance 0.06 higher than the best reference method (elastic net).

The average positions and the sizes of the three main clusters found by
the TV algorithm, using all the subjects, are given Table. 6.3. TV regression
adapts the regularization to tiny regions, yielding ROIs from 25 to 193 voxels.
The clusters are found within the occipital cortex. The majority of informa-
tive voxels are located in the posterior part of the occipital cortex (y ≤ −90
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mm), most likely corresponding to primary visual cortex, with one additional
slightly more anterior cluster in posterior lateral occipital cortex. This is con-
sistent with the previous findings [Eger 08] where a gradient of sensitivity to
size was observed across object selective lateral occipital ROIs, and the most
accurate discrimination of sizes in primary visual cortex.

x (mm) y (mm) z (mm) Sizes (voxels)

24 -92 -16 25
-26 -96 -10 103
16 -96 12 193

Table 6.3: Mental representa-
tion of size - Inter-subject anal-
ysis: positions and sizes of
the three main clusters for
the TV regression method.

The maps of weights found by different values of the regularization pa-
rameter are detailed in Fig. 6.5. One can notice that, as λ increases, the spatial
support of these maps tends to be aggregated in a few clusters within the oc-
cipital cortex, and that the maps have a nearly constant value on these clusters.
By contrast, both reference methods yield uninterpretable (i.e. more complex)
maps (see Fig. 6.4), with a few informative voxels scattered in the whole occip-
ital cortex.

SVR

L R

y=-95 x=13

L R

z=13

-1e-02 0e+00 1e-02

Elastic net

L R

y=-95 x=13

L R

z=13

-5e-02 0e+00 5e-02

Figure 6.4: Regression - Mental representation of size - Inter-subject analysis. Maps
of weights found by the SVR (up) and elastic net (bottom) methods. The optimal
number of voxels selected by Anova is 500, but Elastic net further reduces this
set to 21 voxels.
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Figure 6.5: Regression - Mental representation of size - Inter-subject analysis. Maps
of weights found by TV regression for various values of the regularization pa-
rameter λ. When λ decreases, the TV regression algorithm creates different clus-
ters of weights with constant values. These clusters are easily interpretable,
compared to voxel-based maps (see below). The TV regression algorithm is
very stable for different values of λ, has shown by the explained variance ζ.

6.3.4 Results for classification analysis

In a second analysis, we study the TV classification method in an intra-subject
and inter-subject classification analysis, in which the aim is to predict which
object among 4 is seen by the subject (see Appendix B.2).

Intra-subject analysis

The results found by the three methods are given in Table 6.4. The highest pre-
diction accuracy is obtained with the SVC approach. The proposed approach
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yields prediction accuracy higher than chance, but is not as good as the ref-
erence methods. This can be explained by the fact that the information used
for objects discrimination is a relatively high level cognitive information: the
discriminative information might be encoded in a more finer grain activation
pattern (see [Haxby 01]) than the information on the sizes (sparse coding). Thus,
within a subject, the voxel-to-voxel correspondence between different volumes
of a same acquisition is not problematic, and voxel-based approach such as
SVC performs well. By contrast, our approach, that seeks clusters of activa-
tions, can loose a part of the fine grain information, and thus does not perform
as well as SVC in this particular context.

Methods mean κ std κ max κ min κ p-value to SVC

SVC 92.22 5.7 98.61 79.17 -
SMLR 86.81 7.64 94.44 70.83 0.0171 *
TV λ = 0.05 63.75 12.19 87.5 45.83 0.0001 **

Table 6.4: Classification - Mental representation of shape - Intra-subject analysis.
Classification score κ for the three different methods. The p-values are com-
puted using a paired t-test. SVC yields the best prediction accuracy.

Inter-subject analysis

The results (averaged across the two categories) found by the three methods
are given in Table. 6.5. As in the inter-subject regression analysis, the TV-based
method outperforms the SMLR method. Moreover, it yields an average clas-
sification score similar to the SVC while being more stable. Compared to the
intra-subject analysis, the TV-based method performs better, due to the fact
there is no longer a voxel-to-voxel correspondence. Seeking clusters of activa-
tion thus seems a reasonable way to cope with inter-subject variability.

Methods mean κ std κ max κ min κ p-value to SVC

SVC 48.33 15.72 75.0 25.0 -
SMLR 42.5 9.46 58.33 33.33 0.2419
TV λ = 0.05 45.83 14.55 66.67 25.0 0.7128

Table 6.5: Classification - Mental representation of shape - Inter-subject analysis.
Classification score κ for the three different methods. The p-values are com-
puted using a paired t-test. SVC yields the best prediction accuracy.

The maps of weights found by TV classification for different binaries classi-
fiers, averaged across the two categories of objects, are given Fig. 6.6. We can
notice that TV extracts predictive patterns in the primary visual cortex, but also
in a more lateral and anterior part of the cortex, as expected [Eger 08].

The average number of selections of each voxel within one of the three
larger clusters for each one-versus-one map are given Fig. 6.7. The informa-
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Figure 6.6: Classification - Mental representation of shape - Inter-subject analysis.
Maps of weights found by TV classification for different binaries classifiers, av-
eraged across the two categories of objects. Some predictive voxels are found
in a more lateral and anterior part of the cortex, as expected [Eger 08].

tive clusters are more anterior and more ventral than the ones found within
the sizes prediction paradigm. We thus confirm the results found by classi-
cal brain mapping approach, such as Anova (see results in Appendix B), while
providing a classification score based on cross-validation on independent data
which allows to check the actual implication of these regions in the cognitive
process.

6.3.5 Discussion

In this chapter, we present the first use of TV regularization for brain decoding.
This method outperforms the reference methods with regards to prediction ac-
curacy, and yields sparse brain maps with clear informative foci. Moreover, in
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Figure 6.7: Mental representations of shape and size - Inter-subject analysis. Top -
voxels selected within one of the three main clusters by TV regression, for the
Sizes prediction experiment. Bottom - voxels selected at least one time within
one of the three main clusters for each of the one-vs-one TV classification, for
the Objects prediction experiment. Some clusters found in the Object prediction
experiment are more anterior (their center of mass are at [50,−72,−2] mm and
[46,−80,−2] mm) than the ones found for the Size prediction experiment (center
of mass at [16,−96, 10] mm and [−26,−96,−10] mm). This is coherent with the
hypothesis that the processing of shapes is done at a higher level in the pro-
cessing of visual information, and thus the implied regions are found further
in the ventral pathway [Eger 08].

classification settings, we integrate TV in a logistic regression framework. This
approach which, to our knowledge, has not been used before, yields high pre-
diction accuracy, is a promising method for machine learning problems beyond
the scope of neuroimaging.

One major benefit of the proposed method is that, in the case of a multi-
subject studies, the use of regions with a spatial extent compensates for spatial
misalignment, hence it generalizes better than voxel-based methods. As shown
on both inter-subject analyzes, the proposed TV approach yields significantly
higher prediction accuracy than reference voxel-based methods. In addition,
as the proposed approach takes into account the spatial neighborhood of the
images, it yields weight maps very similar to the maps obtained by a classi-
cal brain mapping approach (such as Anova). We note that the solution found
by our method is sparse but sufficient for good prediction accuracy, which ex-
plains the fact that the regions observed may be more localized than the ones
with Anova. Thus, the TV approach benefits from the power of a predictive
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framework, while leading to accurate brain maps similar to classical SPMs.
Moreover, TV regression allows to consider the whole brain in the analysis,

without requiring any prior feature selection. As many accurate dimension
reduction approaches such as Recursive Feature Elimination [Guyon 02] can be
extremely costly in computational time, avoiding this step is a major asset. An
important feature of our implementation is thus that it reduces computation
time to a reasonable amount, so that it is not significantly more costly than SVR
or elastic net in practical settings (i.e., including the cross-validation loops).
In the inter-subject regression analysis, the average computational time is 185
seconds for TV regression, 131 seconds for Anova + SVR and 121 seconds for
Anova + Elastic net, on a Intel(R) Xeon(R) CPU at 2.83GHz.

Regularization of the voxel weights significantly increases the generaliza-
tion ability in regression problems, because it performs feature selection and
training of the prediction function jointly. However, to date, regularization
has most often been performed without using the spatial structure of the im-
ages. By applying a penalization on the gradient of the weight and thus tak-
ing into account the spatial structure of the image-based information, our ap-
proach performs an adaptive and efficient regularization, while creating sparse
weight maps with regions of quasi constant weights. TV regularization method
fulfills thus the two requirements that make it suitable for neuroimaging brain
mapping: a good prediction accuracy (better than the reference methods for re-
gression experiments, and equal for classification, with the exception of intra-
subject classification), and a set of interpretable features, made of clusters of
similarly-tuned voxels. In that sense, it can be seen as the first method for
performing multivariate brain mapping.

From a neuroscientific point of view, the regions extracted from the whole
brain analysis in the size discrimination task are concentrated in the early vi-
sual cortex. This is consistent with the fact that early visual cortex yields highly
reliable signals that are discriminative of feature/shape differences between
object exemplars, which holds as long as no high-level generalization across
images is required (see e.g. [Cox 03] and [Eger 08]). This is expected, given the
small receptive fields of neurons in these regions that will reliably detect dif-
ferences in the spatial envelop or other low-level structure of the images. Most
importantly, the predictive spatial pattern is stable enough across individuals
to make reliable predictions in new subjects. In fact our method compares best
with regards to the state of the art in the inter-subjects setting, as it selects pre-
dictive regions that are not very sensitive to anatomo-functional variability. In
the object discrimination task, the clusters found by our approach are also in
the visual cortex, but including more anterior ones (probably corresponding
to lateral occipital region) compared to size discrimination, which is consistent
with the fact that shape discrimination requires intermediate/higher level vi-
sual areas. The finding that large parts of early visual cortex are also discrim-
inative is explained by the fact that we do not perform generalization across
viewing condition and classification can therefore be driven by lower-level fea-
tures. Even if similar maps as the ones found by our method can be obtained
using Anova, these do not provide a measure of the quantity of information
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(i.e. prediction score) shared by these regions, and thus a measure of their im-
plication in the neural coding of the cognitive process. A further advantage of
our approach is that the regions obtained in this approach are more spatially
coherent and therefore provide a simpler description of the data.

6.4 Conclusion - Total variation regularization

In this chapter, we have introduced some concepts for convex optimization. In
particular, the notion of proximity operator allows to develop some iterative pro-
cedures such as ISTA and FISTA, in order to solve convex minimization prob-
lems. In the specific case of Total Variation regularization, this optimization is
done within a double loop of ISTA and FISTA procedures. The algorithm de-
tailed here can be used for both regression and classification.

TV regularization can be used for extracting information from brain images,
both in regression or classification settings. Feature selection and model esti-
mation are performed jointly and capture the predictive information present
in the data better than alternative methods. A particularly important property
of this approach is its ability to create spatially coherent regions with similar
weights, yielding simplified and informative sets of features. Experimental
results show that this algorithm performs well on real data, and is far more ac-
curate than voxel-based reference methods for multi-subject analysis. In partic-
ular, the segmented regions are robust to inter-subject variability. These obser-
vations demonstrate that TV regularization is a powerful tool for understanding
brain activity and spatial mapping of cognitive process, and is the first method
that derives meaningful statistical weight maps, as in the standard SPM ap-
proach, within the inverse inference framework.
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Conclusion

In this thesis, we have presented contributions to the inverse inference frame-
work for fMRI analysis, which relies on a pattern recognition approach. It can be
used for decoding brain activity, and more precisely, learning the spatial layout
of the neural coding, from brain images.

Experimental contributions - Many statistical learning algorithms can be used
for prediction and dimension reduction in the pattern recognition step. We have
presented state of the art algorithms, and implemented and evaluated them
on real data. We have systematically investigated their performance in the
challenging context of fMRI data, and highlighted the required properties for
machine learning algorithm to be well-suited to fMRI-based inverse inference.
Studies on experimental data were performed in collaboration with neurosci-
entists and yielded significant prediction results in fields such as mental repre-
sentations of quantities or preferences, as well as result on the more challenging
aspect of cortical recycling in high-level cognitive functions.

Methodological contributions - Our research is focused on methods that can
increase the interpretability of the resulting maps:

• A first contribution is a Bayesian framework for sparsity-inducing regu-
larization, called Multi-Class Sparse Bayesian Regression – MCBR. This ap-
proach is a generalization of the two principal Bayesian regularizations,
Bayesian Ridge Regression and Automatic Relevance Determination.

• A second axis of our research was motivated by the fact that fMRI data
have a spatial structure that has rarely been taken into account within
the different state of the art approaches. Thus, we proposed an approach,
called supervised clustering, that includes spatial information in the pre-
diction framework, and yields clustered weighted maps. It can be used
with any prediction functions for highly dimensional data.

• Our last contribution aims at implementing both sparsity and spatially-
informed regularization within the same framework. We proposed a gen-
eralization of the Total Variation regularization for prediction task, and we
showed its good performance in the case of fMRI data analysis.

These different approaches have been tested on real data on the mental rep-
resentations of size and shape of objects, and yield accurate maps for decoding
specific parts of the visual system.

Software contributions - In addition to the methodological directions that
we have described in this thesis, we have also focused on the implementation
of the algorithms studied an detailed in this thesis. A high-quality implemen-
tation is critical as the high dimensionality of fMRI data can be challenging.
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We have also contributed to Scikit-learn, an open-source library for statistical
learning. In these developments, we were more specifically implied in genera-
tive models (GNB), dimension reduction methods (univariate feature selection, RFE),
model selection schemes, and we were the referent developer for Bayesian regu-
larizations.

Research Perspectives

Intra-subject and inter-subject analyzes: a statistical learning point of view

The prediction accuracy of the reference methods, as well as the prediction ac-
curacy of the methods developed in this thesis, are given for intra-subject anal-
ysis in Tab. 7.6, and for inter-subject analysis in Tab. 7.7. We can see that the
methods perform differently on intra-subject and inter-subject analyzes. This
variability can be explained by the difference of spatial layout of neural cod-
ing in intra and inter-subject settings. Indeed, this spatial layout can be very
sparse and fine-grained at the single subject level, but has a larger spatial ex-
tent in inter-subject analysis, due to the lack of voxel-to-voxel correspondence.
Thus, sparsity-promoting approaches are likely to perform well in intra-subject
analysis, where clusters-promoting approaches are likely to perform well in
inter-subject analysis. There is thus a great interest in methods that can adapt
their level of sparsity to the data.

Extensions A possible extension is the addition of a ℓ1 norm regularization to
Total Variation regularization, thus yielding the following minimization prob-
lem:

ŵl = argmin
w,b

ℓ(w) + λ1‖w‖1 + λ2TV (w) , λ1 ≥ 0 , λ2 ≥ 0 (7.34)

By optimizing the two parameters λ1 and λ2 by internal cross-validation, we can
adapt the model between sparsity promoting or clusters promoting regulariza-
tions. The problem defined in Eq. 7.34 is very similar to smooth Lasso [Hebiri 10]
that is based on the ℓ2 norm of the gradient. However, TV regularization is
more adapted for extracting clusters, by penalizing instead the ℓ1 norm of the
gradient. Another promising prospect should be to consider within the same
framework both intra and inter-subject information, using structured regular-
izations based on mixed norms (e.g. group Lasso [Yuan 06, Bach 08]).

Bayesian versus classical discriminative approaches

The methods presented in this thesis can be roughly classified in two groups:
Bayesian approaches (e.g. Bayesian Ridge Regression, Automatic Relevance Determi-
nation or Multi-Class Sparse Bayesian Regression) and Discriminative approaches
(e.g. Lasso, Elastic net, SVC or Total Variation framework).

In term of computation time, Bayesian approaches are not very efficient
compared to discriminative approaches. Although the bayesian framework
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Methods mean ζ std ζ max ζ min ζ p-val to VB-MCBR

SVR 0.82 0.07 0.9 0.67 0.0003 **
Elastic net 0.9 0.02 0.93 0.85 0.0002 **
BRR 0.92 0.02 0.96 0.88 0.0011 ***
ARD 0.89 0.03 0.95 0.85 0.0003 **
Gibbs-MCBR 0.93 0.01 0.95 0.92 0.0099 **
VB-MCBR 0.94 0.01 0.96 0.92 -
TV λ = 0.05 0.92 0.02 0.95 0.88 0.0002 **

Table 7.6: Mental representation of size - Intra-subject analysis. Explained vari-
ance ζ for the different methods used in this thesis. The p-values are computed
using a paired t-test.

Methods mean ζ std ζ max ζ min ζ p-value to TV

SVR 0.77 0.11 0.97 0.58 0.0277 *
Elastic net 0.78 0.1 0.97 0.65 0.0405 *
BRR 0.72 0.1 0.94 0.6 0.0008 **
ARD 0.52 0.33 0.93 −0.28 0.0085 **
Gibbs-MCBR 0.79 0.1 0.97 0.62 0.0289 *
VB-MCBR 0.78 0.1 0.97 0.65 0.0151 *
SC - BRR 0.82 0.08 0.93 0.7 0.5816
TV λ = 0.05 0.84 0.07 0.97 0.72 -

Table 7.7: Mental representation of size - Inter-subject analysis. Explained vari-
ance ζ for the different methods used in this thesis. The p-values are computed
using a paired t-test.

automatically adapts the parameters of the model to the data, it comes at a
computational cost, that is often more expensive than an internal cross-validation
over the parameters of a discriminative approaches. An exception is the super-
vised clustering, where Bayesian Ridge Regression is a well-suited approach for
adapting the regularization to the variable complexity of the problem when
pruning the tree. In this specific case, the degree of sparsity can vary between
the high and low levels of the tree, and Bayesian Ridge Regression tunes precisely
the regularization to the specific sparsity of each cut of the tree.

In term of prediction accuracy, the two types of approaches performed simi-
larly, with a slight advantage of the bayesian methods in the intra-subject anal-
ysis. Indeed, such approaches can more finely tune the regularization to the
fine-grained spatial layout of the neural coding specific to the subject. In the
inter-subject analysis, discriminative approaches perform slightly better, be-
cause, by tuning their parameters by internal cross-validation, they are less
prone to overfit a particular training set of subjects.

In conclusion, discriminative approaches only aim at performing an accu-
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rate prediction, whereas bayesian methods can be used to construct a more
interpretable models that consider different hypothesis on fMRI data. The
bayesian models currently used are not dedicated to fMRI data analysis, and,
in that sense, it is interesting to take into account some hypothesis about neu-
ral coding in the model, as in MCBR where we assume a population coding
hypothesis (i.e. different groups of voxels are implied in the coding) (see also
[Friston 08]). Thus, Bayesian approaches seem promising as they can more
easily use priors on fMRI data than discriminative approaches.

Extensions Gaussian processes (GPs) [Rasmussen 05] models have been suc-
cessfully used in fMRI [Marquand 10], and implement complex priors over
the mean and the covariance of the weights. In particular, they can be used
to introduce the spatial information in bayesian models, in a similar way as
[Friston 08].

Another extension can be to consider the construction of activation maps
and the predictive model within a same framework. The joint detection-estimation
framework developed in [Vincent 07] or the hierarchical model proposed in
[Lashkari 10] are both interesting alternative for combining the identification of
functional pattern in the brain and using them for prediction. In order to take
into account the spatial information in a whole Bayesian framework, Markov
Random Field (MRF) is also as a promising approach (see [Ou 10] for an exam-
ple of use of anatomical information).

Spatial information and feature agglomeration

In this thesis, we relied on the notion of feature agglomeration, and demonstrated
that including spatial information, within voxel-based analysis with Total Vari-
ation regularization, or by creating intermediate structure as parcels, yields both
accurate and interpretable results for inverse inference. Thus, there is a great in-
terest in using spatial information in inverse inference, and we believe that it is
a promising prospect for statistical learning frameworks in neuroimaging.

We have introduced the supervised clustering approach in chapter 5, that
yields accurate prediction in inter-subject analysis, and outperforms state-of-
the-art approaches. More generally, this method is not restricted to brain im-
ages, and might be used in any dataset where multi-scale structure is consid-
ered as important (e.g. medical or satellite images). Additionally, such clus-
tering is well-suited for constructing an anatomo-functional atlas, as it jointly
considers both spatial and functional information.

Extensions Among other research extension, one can develop a approach
similar to Random Forests [Breiman 01], by aggregating different tree of parcel-
lations created by bootstrap on the training set. The resulting weighted parcel-
lations are thus combined by averaging the weights. Preliminary works show
some increase in prediction accuracy, but additional work have to be done to
preserve the spatial structure of the parcels.
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Conclusion

Moreover, one major limitation of the proposed supervised clustering algo-
rithm is that it relies on a greedy exploration of the tree, and optimality is
not ensured. Thus, one can introduce the hierarchical structure of the tree
within convex optimization problem, following for example the work detailed
in [Jenatton 10].
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A
A short introduction to Magnetic

Resonance Imaging

In this appendix, we briefly explain the physical basis of Magnetic Resonance
Imaging (MRI). To keep the presentation as simple and tight as possible, we do
no detail the mathematical and physical expressions. We focus our explana-
tions on the hydrogen atom H1, that is the most studied element in MRI, due
to its very high abundance in the human body (63% of the atoms [Foster 84]).

A.1 Notions of magnetism

Spin and energy

MRI is based on an intrinsic and fundamental magnetic property of the par-
ticles called the spin s (positive or negative multiple of − 1

2 , and thus possibly
integer), a proton having a spin s = 1

2 . A particle with a spin has a spin magnetic
moment ~µ. This moment has a random orientation in the absence of magnetic

field. However, when a population of spins is placed in a magnetic field ~B0

(assumed to be aligned with the z axis), few spins have a moment ~µ aligned

in the field direction, and many of them precess (i.e. rotate) around ~B0. This
precession is performed with a frequency ν0, called Larmor’s frequency, which is
typically in the radio-frequency domain (ν0 = γB0, where γ = 42.576 MHz/T
for the proton, is the gyro-magnetic ratio).

A proton in a magnetic field ~B0 has two possible states and associated en-
ergy levels:

• a low-energy state, in which ~µ is parallel to ~B0, with: E = −~µ. ~B0

• a high-energy state, in which ~µ is anti-parallel to ~B0, with: E = +~µ. ~B0

A transition, called state transition, is possible between the two states, by emit-
ting or receiving an energy ∆E proportional to ν0.
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Packets of spins and net magnetization

In the context of MRI, it is more meaningful to represent the spins by packets,
each packet being a group of neighboring spins experiencing the same mag-

netic field. We define the net magnetization ~M as the sum of all the individu-
als magnetic moments of spins in both states. Due to the fact that the protons
in a given packet can be parallel or anti-parallel to the magnetic field, some

contributions will vanish. Thus, ~M is proportional to the difference between
the populations of those two states (given by the Boltzmann’s statistics), and

to the magnetic field. As for a single proton, ~M precesses around ~B0, and has

two components. The first component is a longitudinal component ~Mz that
is aligned with the magnetic field and increases with the concentration of pro-

tons in the volume. The second component is a transverse component ~Mxy that
usually vanishes by averaging (see Fig. A.1).

B0

Packet of spins
& net magnetization

Mz

Mxy

Figure A.1: Illustration of the effect of a magnetic field ~B0 on a population of

spins. All the spins are aligned with ~B0, a majority of them having the same
direction. One can represent the population of spins at the mesoscopic scale

using packets of spins, each of them having a net magnetization ~M which can

be decomposed in the two components ~Mz and ~Mxy .

A.2 Nuclear Magnetic Resonance - NMR

Nuclear Magnetic Resonance allows to access some information about the com-
position of the sample by measuring Mz that is proportional to the concentra-

tion of protons in the sample. However, as ~M is parallel to the strong magnetic

field ~B0, we have to excite the system (i.e., to perturb ~M ) to access Mz . The
main idea is to use an oscillating magnetic field, called a Radio Frequency – RF

– pulse (noted ~B1), with a frequency at the Larmor’s frequency of the proton.

RF pulse and Relaxation

The RF pulse ~B1 is applied perpendicularly to ~B0 (say along the x axis), and
rotates M around the x axis. The rotation angle depends on the duration τ of
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IMAGING

the application of the RF pulse ~B1. A pulse of 90◦ will rotate ~M by 90◦ around

x and a pulse of 180◦ will rotate ~M by 180◦ around x (this is called a population
inversion: Mz = −Mz0, where Mz0 is the initial value of Mz). Moreover, due to
the resonance phenomenon at Larmor’s frequency, the field ~B1 re-phases all the
spins together, and thus, creates a non null transverse component Mxy (non

null average of the magnetic moments µ). When the field ~B1 is stopped, ~M has

a given angle (called flip angle) with ~B0, and still precesses around the z axis.
The net magnetization returns progressively to the equilibrium, i.e. its initial
state (see Fig.A.2):

• For the longitudinal component, this return to equilibrium is due to the

readjustment of the spin population that has changed due to the ~B1 field.

This realignment with ~B0 has a time constant T1.

• For the transverse component, this return to equilibrium is due to the fact

that each spin packet experiences a slightly different magnetic field ~B0

( ~B0 is not homogeneous in the sample), and thus has a different Larmor’s
frequency. The transverse component vanishes with a time constant T2.
We always have T1 ≥ T2. Moreover, one can define a combined time
constant T ∗

2 ≤ T2, that also takes into account the effect of the molecular
interactions, and T ∗

2 is subject to additional losses above the normal T2

decay.

These time constants are related to the nature of the tissue that has received
the RF pulse, and thus can be used to characterize the sample.

B0

Mz Mxy

Mz

Mxy

Mz

Mxy

t 1 t 2

Mz

Mxy

t initial t final

Time

Signal

Time

Signal

Time

Signal

RF
pulse

Figure A.2: Illustration of the effect of a RF pulse of 90◦. After the application

of the pulse, the two components of the net magnetization, ~Mxy (green) and ~Mz

(red), return to equilibrium, each of them with a time constant depending of
the tissue surrounding the protons.

The T1-weighted scans provide a good gray matter/white matter contrast.
The T2-weighted scans are sensitive to water content. The T ∗

2 -weighted scans can
increase contrast for certain types of tissue, such as venous blood, and thus, are
well-suited for functional Magnetic Resonance Imaging.
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Free Induction Decay – FID

During the relaxation, the transverse component Mxy creates an electromag-
netic induction in a coil (a.k.a receiver coil) that is placed around the sample.
This current is a signal that represents the fundamental magnetic resonance
data: at a given time t, the voltage in the coil is proportional to the sum of all
the transverse components Mxy that are precessing in the sample. This current
is a sinusoid with an amplitude that decreases exponentially with time, and
is called FID (Free Induction Decay) [Farrar 71]. The Fourier Transform (FT ) of
the FID will give different peaks corresponding to the different frequencies of
resonance of the protons in the sample (multiple frequencies due to the inho-

mogeneities in ~B0). It is thus possible to obtain a signal carrying information
about the tissues in the sample, using NMR. However, this signal is a unique
response that contains the contributions of all the spins within the whole sam-
ple (e.g. for the whole brain). A spatial encoding is thus needed to produce
localized signals, hence images of the sample, and is called Magnetic Resonance
Imaging – MRI.

A.3 Magnetic Resonance Imaging – MRI

In order to create an image reflecting the spatially varying structure of the sam-
ple, we have to separate the different contributions of the different regions of
the sample in the FID. The main idea is to use magnetic gradients to encode
position in the Larmor’s frequency.

Slice selection

First, we use a gradient of magnetic field ~bz along the z axis. The magnetic field
is not uniform, and each spin packet along this axis will be subject to a different
static magnetic field, and thus will have different Larmor’s frequencies. By using
the relationship between frequency and position along the z axis, we can select
a slice in the volume, as only the slice with a Larmor’s frequency equal to the
RF pulse’s frequency will be excited by the pulse (see Fig.A.3). The imaging
process of the whole sample is thus done slice by slice.

Phase and frequency codings

One the slice is selected during the excitation process, the previous gradient is
turned off, and we use a frequency and phase combination to encode a specific
region of the previously selected slice (see Fig.A.3).

A gradient of magnetic field is applied along another direction (e.g. x),
that make the spins precess around this axis with different frequencies. When
this gradient is stopped, all the spins in the given slice experience the same
static magnetic field, and thus precess with the same frequency again. But,
due to the difference of frequency during the application of the gradient, they
have acquired a different phase: this is the phase encoding. During the read-out
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IMAGING

Figure A.3: Illustration of the different steps of MRI. The gradient ~bz along the
z axis selects a given slice with an RF pulse of a given frequency ν0. By com-
bining a phase-encoding and a frequency-encoding gradients, each position in
the x, y space is encoded by an unique combination of phase and frequency.

(acquisition of the MRI signal), we apply a gradient to encode the last axis (e.g.
y) in term of frequency. On a given slice, this gradient makes the spins precess
with different frequencies along y: this is the frequency encoding.

The temporal scheme defining the starting times and durations of each gra-
dient RF pulse is called a sequence, and the time between the repetitions of the
sequence is called the repetition time (TR). Through the use of these gradients,
MRI data is acquired directly in the k-space (i.e. the frequency-phase space).
We need to have one phase-encoding gradient step for each location in the
phase-encoding gradient direction. Thus, if we wish to resolve 256 locations in
the phase encoding direction we need 256 different magnitudes of the phase-
encoding gradient and record 256 different FID signals. One can use a Fourier
transform on the data (FID) to retrieve the contribution of each location in the
FID. By taking the magnitude and converting them to pixels intensities, an im-
age can be constructed.
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B
Description of the data sets

B.1 Details on simulated data sets

The simulated data set X consists of n = 100 images (size 12× 12× 12 voxels)
with a set of four square Regions of Interest (ROIs) (size 2 × 2 × 2). We call R
the support of the ROIs (i.e. the 32 resulting voxels of interest). Each of the four
ROIs has a fixed weight in {−0.5, 0.5,−0.5, 0.5}. We call wi,j,k the weight of the
(i, j, k) voxel. The resulting images are smoothed with a Gaussian kernel with
a standard deviation of 2 voxels, to mimic the correlation structure observed
in real fMRI data. To simulate the spatial variability between images (inter-
subject variability, movement artifacts in intra-subject variability), we define a

new support of the ROIs, called R̃ such as, for each image lth, 50% (randomly

chosen) of the weights w are set to zero. Thus, we have R̃ ⊂ R. We simulate
the target y for the lth image as:

yl =
∑

(i,j,k)∈R̃

wi,j,kXi,j,k,l + ǫl (B.1)

with the signal in the (i, j, k) voxel of the lth image simulated as:

Xi,j,k,l ∼ N (0, 1) (B.2)

and ǫl ∼ N (0, γ) is a Gaussian noise with standard deviation γ > 0. We choose
γ in order to have a signal-to-noise ratio of 5 dB.

Competing methods

In our experiments, different methods are compared to state of the art methods.
For regression settings:

• Elastic net regression. A cross-validation procedure within the training

set is used to optimize the parameters. We use λ1 ∈ {0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃},
with λ̃ = ‖XT y‖∞, and λ2 ∈ {0.1, 0.5, 1., 10., 100.}.

• SVR with a linear kernel.The C parameter is optimized by cross-validation
in the range 10−3 to 101 in multiplicative steps of 10.
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For classification settings:

• SMLR classification. A cross-validation procedure within the training set

is used to optimize the parameters. We use λ1 ∈ {0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃},
where λ̃ = ‖XT y‖∞, and λ2 ∈ {0.1, 0.5, 1., 10., 100.}.

• SVC with a linear kernel. The C parameter is optimized by cross-validation
in the range 10−3 to 101 in multiplicative steps of 10.

B.2 Data set on mental representations of size and

shape of objects

This real fMRI dataset is related to an experiment studying the representation
of objects. It has been acquired by Evelyn Eger (Neurospin/Unicog), and more
details can be found in [Eger 08].

Data description

Participants and data acquisition

Ten healthy volunteers (1 left-handed) with normal or corrected vision (3 men
and 9 women; mean age, 25.4 ± 3.2 yr) gave written informed consent. Func-
tional images were acquired at the Brain Imaging Center of Frankfurt Univer-
sity, Frankfurt, Germany, on a 3-T MR system with eight-channel head coil
(Siemens Trio, Erlangen, Germany) as T2*-weighted echo-planar image (EPI).
Twenty transverse slices were obtained with a repetition time of 2 s (echo time,
30 ms; flip angle, 70◦; 2× 2× 2-mm voxels; 0.5-mm gap).

Stimuli and design

Subjects were presented visual stimuli representing objects. Object stimuli
(2 categories, 4 chairs and 4 teapots) were the same as the ones described in
[Eger 08]. For each object, three sizes were created with size 2 corresponding
along each axis to 150% of size 1 and size 3 to 150% of size 2 (or size 2 to 225%
of the area of size 1 and size 3 to 225% of the area of size 2), yielding a total of
12 experimental conditions (4 exemplars × 3 sizes).

Experimental protocol and task

Stimuli were back-projected onto a translucent screen above the subjects’ head
and viewed via a mirror on the head coil. Pictures subtended ∼ 3.3, ∼ 5,
and ∼ 7.5◦ of visual angle for the three sizes. Objects were presented in short
blocks of four identical (in exemplar and size) pictures each (1-s stimulus, 0.5-s
blank), followed by a fixation baseline of 4 s, with pseudo-randomized order
of conditions. Each stimulus randomly appeared in a red or green hue, and
participants reported the color of each stimulus via keypad. This task was
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performed in six experimental sessions of 8.2-min length each, encompassing
24 blocks altogether per experimental condition.

An additional scanning session of ∼ 5-min length mapped object respon-
sive areas for each participant using a standard LOC localizer, comparing pic-
tures of various common objects to mosaic-scrambled versions of the same im-
ages (20 × 20 fragments). Objects and scrambled images were alternated in
blocks with 500 ms per picture every 1 s and block length of 12 s (6-s fixation
baseline).

Image processing and data analysis

The initial analysis of the imaging data used SPM5 (http://www.fil.ion.ucl.ac.

uk/spm/software/spm5). After motion correction and normalization to an EPI-
template in MNI space, the unsmoothed EPI images were entered into a gen-
eral linear model, modeling separately the effect of each of the 12 conditions
convolved with a standard hemodynamic response function, while accounting
for serial autocorrelation with an AR(1) model and removing low-frequency
drift terms by a high-pass filter with a cut-off of 128 s. This analysis yielded six
independent estimates of fMRI signal change (corresponding to the 6 sessions),
which were subsequently used for pattern recognition analysis.

Experiments

We used the resulting session-wise parameter estimate images for different
analysis, and all the analysis are performed on the whole volume.

Regression experiments

First, we perform an intra-subject regression analysis. The four different shapes
of objects (for the two categories) were pooled across for each one of the three
sizes, and we are interested in finding discriminative information between
sizes. This reduces to a regression problem, in which our goal is to predict
a simple scalar factor (size of an object) (see Fig. B.1). Each subject is evaluated
independently, in a 12-fold cross-validation. The dimensions of the real data
set for one subject are p ∼ 7 × 104 and n = 72 (divided in 3 different sizes,
24 images per size). We evaluate the performance of the method by cross-
validation (leave-one-condition-out, i.e., leave-6-images-out). The parameters
of the reference methods are optimized with a nested leave-one-condition-out
cross-validation within the training set, in the ranges given before.

Additionally, we perform an inter-subject regression analysis on the sizes.
The inter-subject analysis relies on subject-specific fixed-effects activations, i.e.
for each condition, the 6 activation maps corresponding to the 6 sessions are
averaged together. This yields a total of 12 images per subject, one for each
experimental condition. The dimensions of the real data set are p ∼ 7 × 104

and n = 120 (divided in 3 different sizes). We evaluate the performance of
the method by cross-validation (leave-one-subject-out). The parameters of the
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Figure B.1: Experiment paradigm for the classification of object in each of the
category (left) and regression (right) experiments. Each color represents the
stimuli which are pooled together in one of the three experiments (classification
category 1, classification category 2 and regression).

reference methods are optimized with a nested leave-one-subject-out cross-
validation within the training set, in the ranges given before.

Classification experiments

We evaluate the performance on a second type of discrimination task which is
object classification (see Fig. B.1). In that case, we collapse the conditions across
the three sizes and are interested in discriminating between individual object
exemplars/shapes. For each of the two categories, this can be handled as a
classification problem, where we aim at predicting the shape of an object cor-
responding to a new fMRI scan. The inter-subject analysis is performed in the
same way as described for the regression study, except that now, we perform
two analyzes corresponding to the two categories used, each one including 5
subjects.

There is also a difference in the validation procedure: in the intra-subject
analysis, in order to have balanced classes, we evaluate the performance of the
method using a leave-one-session-out cross-validation, which boils down to
a 6-fold cross-validation. The parameters of the reference methods are opti-
mized with a leave-one-session-out cross-validation within the training set, in
the ranges given before.
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Statistical Parametric Maps

For comparison purposes, the corresponding maps of Anova (F-score), or SPMs,
for the inter-subject analysis are given Fig. B.2, for the discrimination of sizes
(top) and discrimination of objects for the two categories (middle and bottom).
As expected, the sizes are most significantly discriminated in primary visual
cortex, while for objects, discrimination at lower significance levels is observed
in additional lateral occipital regions (LOC) [Eger 08].

Anova F−score
L R

y=-83 x=0

L R

z=-4

2e+01 2e+02

Anova F−score
L R

y=-74 x=-42

L R

z=0

4e+00 2e+01

Anova F−score
L R

y=-92 x=-11

L R

z=0

4e+00 1e+01

Figure B.2: Mental representations of size and shape - Inter-subject analysis - Maps
of Anova (F-score) for the sizes prediction experiment (up) and the objects iden-
tifications for category 1 (middle) and category 2 (bottom).

Competing methods

In our experiments, different methods are compared to state of the art methods.
For regression settings:

• Elastic net regression. A cross-validation procedure within the training
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set is used to optimize the parameters. We use λ1 ∈ {0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃},
with λ̃ = ‖XT y‖∞, and λ2 ∈ {0.1, 0.5, 1., 10., 100.}.

• SVR with a linear kernel.The C parameter is optimized by cross-validation
in the range 10−3 to 101 in multiplicative steps of 10.

For classification settings:

• SMLR classification. A cross-validation procedure within the training set

is used to optimize the parameters. We use λ1 ∈ {0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃},
where λ̃ = ‖XT y‖∞, and λ2 ∈ {0.1, 0.5, 1., 10., 100.}.

• SVC with a linear kernel. The C parameter is optimized by cross-validation
in the range 10−3 to 101 in multiplicative steps of 10.

All these methods are used after an Anova-based feature selection, as this maxi-
mizes their performance. This selection is performed on the training set of each
fold in an internal cross-validation loop, and the optimal number of voxels is
selected within the range {50, 100, 250, 500}.

The implementation of Elastic net is based on coordinate descent [Friedman 10],
while SVR and SVC are based on LibSVM [Chang 01]. Methods are used from
Python via the Scikit-learn open source package [sci 10].
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C
Scikit-learn for fMRI inverse inference

In this appendix, we detail another aspect of our contribution, which are devel-
opments in the Scikit-learn . The Scikit-learn (http://scikit-learn.sourceforge.net/)
is a Python module integrating classic machine learning algorithms in a well-
designed API, as it yields algorithm-like formulations. It is open-source and
aims at providing simple and efficient solutions to learning problems. It can
be easily used for fMRI inverse inference and we give here the principle func-
tions that can be used in such case. The description of the functions follows the
organization of the chapter 3.

C.1 Global framework

Evaluation of the decoding

Explained variance can be computed with the Scikit-learn , using the Listing. C.1.

Listing C.1: Evaluation by explained variance

>>> from s c i k i t s . l e a rn . metr i cs import expla ined var iance
>>> ### y t e s t i s t h e t r u e t a r g e t , y p r e d i s t h e p r e d i c t e d t a r g e t
>>> score = expla ined var iance ( y t , y pred )

Classification score can be computed using the Listing. C.2.

Listing C.2: Evaluation by classification score

>>> from s c i k i t s . l e a rn . metr i cs import zero one
>>> ### y t e s t i s t h e t r u e t a r g e t , y p r e d i s t h e p r e d i c t e d t a r g e t
>>> c l a s s i f r a t e = 100 ∗ zero one ( y t , y pred ) / y t . shape [ 0 ]
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Model selection and validation

Leave-one-out cross-validation can be done with the Scikit-learn , using the List-
ing. C.3.

Listing C.3: Leave-one-out cross-validation

>>> from s c i k i t s . l e a rn import c r o s s v a l
>>> loo = c r o s s v a l . LeaveOneOut (X . shape [ 0 ] )
>>> for t r a i n i n d e x , t e s t i n d e x in loo :
>>> X tra in , y t r a i n = X[ t r a i n ] , y [ t r a i n ]
>>> X t e s t , y t e s t = X[ t e s t ] , y [ t e s t ]

K-fold cross-validation can be done with the Scikit-learn , using the List-
ing. C.4.

Listing C.4: 4-fold cross-validation

>>> from s c i k i t s . l e a rn import c r o s s v a l
>>> kfold = c r o s s v a l . KFold (X . shape [ 0 ] , k=4)
>>> for t r a i n i n d e x , t e s t i n d e x in kfold :
>>> X tra in , y t r a i n = X[ t r a i n ] , y [ t r a i n ]
>>> X t e s t , y t e s t = X[ t e s t ] , y [ t e s t ]

Leave-one-subject-out cross-validation can be done with the Scikit-learn , us-
ing the Listing. C.5.

Listing C.5: Leave-one-subject-out cross-validation

>>> from s c i k i t s . l e a rn import c r o s s v a l
>>> ### A l l t h e s u b j e c t s a r e c o n c a t e n a t e d in a s i n g l e s e t (X, y )
>>> loso = c r o s s v a l . LeaveOneLabelOut ( s u b j e c t s )
>>> for t r a i n i n d e x , t e s t i n d e x in loso :
>>> X tra in , y t r a i n = X[ t r a i n ] , y [ t r a i n ]
>>> X t e s t , y t e s t = X[ t e s t ] , y [ t e s t ]

C.2 The historical approaches

Support Vector Classification – SVC

Prediction using SVC can be done with the Scikit-learn , using the Listing. C.6.

Listing C.6: Classification using Support Vector Machine

from s c i k i t s . l e a rn . svm import SVC
c l f = SVC( kernel= ’ l i n e a r ’ ,C=1)
c l f . f i t ( Xl , y l )
ypred = c l f . p r e d i c t ( Xt )

Support Vector Regression – SVR

Prediction using SVC can be done with the Scikit-learn , using the Listing. C.6.
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Listing C.7: Regression using Support Vector Machine

from s c i k i t s . l e a rn . svm import SVR
c l f = SVR( kernel= ’ l i n e a r ’ ,C=1)
c l f . f i t ( Xl , y l )
ypred = c l f . p r e d i c t ( Xt )

Generative models

Prediction using Gaussian Naive Bayes can be done with the Scikit-learn , using
the Listing. C.8.

Listing C.8: Prediction using Gaussian Naive Bayes

>>> from s c i k i t s . l e a rn . naive bayes import GNB
>>> c l f = GNB( )
>>> c l f . f i t ( X tra in , y t r a i n )
>>> y pred = c l f . p r e d i c t ( X t e s t )

Prediction using LDA can be done with the Scikit-learn , using the List-
ing. C.9.

Listing C.9: Prediction using Linear Discriminant Analysis

>>> from s c i k i t s . l e a rn . lda import LDA
>>> c l f = LDA( p r i o r s =None , use svd=True )
>>> c l f . f i t ( X tra in , y t r a i n )
>>> y pred = c l f . p r e d i c t ( X t e s t )

Prediction using QDA can be done with the Scikit-learn , using the List-
ing. C.10.

Listing C.10: Prediction using Quadratic Discriminant Analysis

>>> from s c i k i t s . l e a rn . qda import QDA
>>> c l f = QDA( p r i o r s =None )
>>> c l f . f i t ( X tra in , y t r a i n )
>>> y pred = c l f . p r e d i c t ( X t e s t )

C.3 Regularization

Ridge Regression - ℓ2 regularization

Prediction using Ridge Regression can be done with the Scikit-learn , using the
Listing. C.11.

Listing C.11: Prediction using Ridge Regression

>>> from s c i k i t s . l e a rn import glm
>>> r idge = glm . Ridge ( alpha = 1 . 0 )
>>> r idge . f i t ( X tra in , y t r a i n )
>>> pred = ridge . p r e d i c t ( X t e s t )
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Lasso - ℓ1 Regularization

Prediction using Lasso, based on coordinate descent [Friedman 07], can be done
with the Scikit-learn , using the Listing. C.12.

Listing C.12: Prediction using Lasso

>>> from s c i k i t s . l e a rn import glm
>>> l a s s o = glm . Lasso ( alpha = 0 . 1 )
>>> l a s s o . f i t ( X tra in , y t r a i n )
>>> pred = l a s s o . p r e d i c t ( X t e s t )

Elastic net - ℓ1 + ℓ2 Regularization

Prediction using Elastic net, based on coordinate descent [Friedman 07], can be
done with the Scikit-learn , using the Listing. C.13.

Listing C.13: Prediction using Elastic net

>>> from s c i k i t s . l e a rn import glm
>>> c l f = glm . E l a s t i c N e t ( alpha = 0 . 1 , rho = 0 . 5 )
>>> c l f . f i t ( X tra in , y t r a i n )
>>> pred = c l f . p r e d i c t ( X t e s t )

C.4 Bayesian regularization

Bayesian Ridge Regression – BRR

Prediction using Bayesian Ridge Regression can be done with Scikit-learn , using
the Listing. C.14.

Listing C.14: Prediction using Bayesian Ridge Regression

>>> from s c i k i t s . l e a rn . glm import BayesianRidge
>>> c l f = BayesianRidge ( )
>>> c l f . f i t ( X tra in , y t r a i n )
>>> y pred = c l f . p r e d i c t ( X t e s t )

Automatic Relevance Determination – ARD

Prediction using Automatic Relevance Determination can be done with the Scikit-
learn , using the Listing. C.15.

Listing C.15: Prediction using Automatic Relevance Determination

>>> from s c i k i t s . l e a rn . glm import ARDRegression
>>> c l f = ARDRegression ( )
>>> c l f . f i t ( X tra in , y t r a i n )
>>> y pred = c l f . p r e d i c t ( X t e s t )
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C.5 Dimension reduction

Univariate feature selection

Based on Scikit-learn , we give in Listing. C.16 an example of univariate feature
selection for classification settings.

Listing C.16: Univariate feature selection for classification - 500 features

>>> from s c i k i t s . l e a rn . f e a t u r e s e l e c t i o n import SelectKBest , f c l a s s i f
>>> u n i v a r i a t e f i l t e r = Se lec tKBes t ( f c l a s s i f , k=500)
>>> ### X r a r e t h e r e d u c e d d a t a .
>>> X r = u n i v a r i a t e f i l t e r . f i t ( X tra in , y t r a i n ) . transform ( X t r a i n )
>>> s e l e c t e d v o x e l s = u n i v a r i a t e f i l t e r . get support ( )

We give in Listing. C.17 an example of univariate feature selection for regres-
sion settings.

Listing C.17: Univariate feature selection for regression - 500 features

>>> from s c i k i t s . l e a rn . f e a t u r e s e l e c t i o n import SelectKBest , f r e g r e s s i o n
>>> u n i v a r i a t e f i l t e r = Se lec tKBes t ( f r e g r e s s i o n , k=500)
>>> ### X r a r e t h e r e d u c e d d a t a .
>>> X r = u n i v a r i a t e f i l t e r . f i t ( X tra in , y t r a i n ) . transform ( X t r a i n )
>>> s e l e c t e d v o x e l s = u n i v a r i a t e f i l t e r . get support ( )

Recursive feature elimination – RFE

We give an example of SVM-RFE with model selection by cross-validation in
the Listing. C.18, based on Scikit-learn .

Listing C.18: SVM - RFE with model selection by 4-folds cross-validation

>>> from s c i k i t s . l e a rn . svm import SVC
>>> from s c i k i t s . l e a rn . f e a t u r e s e l e c t i o n . r f e import RFECV
>>> from s c i k i t s . l e a rn . c r o s s v a l import KFold
>>> from s c i k i t s . l e a rn . metr i cs import zero one
>>> svc = SVC( kernel= ’ l i n e a r ’ , C=1)
>>> r f e c v = RFECV( es t imator=svc , n f e a t u r e s =5 ,

percentage =0 .05 , l o s s f u n c =zero one )
>>> r f e c v . f i t ( X tra in , y t r a i n , cv=KFold ( y l . shape [ 0 ] , 4 ) )
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dividuelle dans les études d’IRM fonctionnelle. PhD thesis,
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