
HAL Id: tel-00550134
https://theses.hal.science/tel-00550134

Submitted on 23 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phase fields for network extraction from images.
Aymen El Ghoul

To cite this version:
Aymen El Ghoul. Phase fields for network extraction from images.. Human-Computer Interaction
[cs.HC]. Université Nice Sophia Antipolis, 2010. English. �NNT : �. �tel-00550134�

https://theses.hal.science/tel-00550134
https://hal.archives-ouvertes.fr


UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

DOCTORAL SCHOOL STIC
INFORMATION AND COMMUNICATION SCIENCES AND TECHNOLOGIES

T H E S I S
to fulfill the requirements for the degree of

Doctor of Philosophy in Computer Science
from the University of Nice - Sophia Antipolis

Specialized in CONTROL , SIGNAL AND I MAGE PROCESSING

by

Aymen EL GHOUL

Phase fields for network extraction from images

Supervised by Ian JERMYN and Josiane ZERUBIA

and prepared at INRIA Sophia Antipolis - Méditerranée in the ARIANA research team

Defended on 17 September 2010, in front of the committee composed of

Daniel CREMERS, Professor, Technical University of Munich - Reviewer
Amel BENAZZA-BENYAHIA , Professor, SUP’COM Tunis - Reviewer
Horst BISCHOF, Professor, Graz University of Technology - Examiner
Jordi INGLADA , Research-Engineer, CESBIO - Examiner
Albert BIJAOUI, Astronomer,1st class, OCA - President
Ian JERMYN, Senior Researcher, INRIA - Supervisor
Josiane ZERUBIA, Research Director, INRIA - Supervisor





Dedicated to my parents, sisters, wife and daughter.





Acknowledgements

“Seek knowledge from the cradle to the grave.”

— Prophet Mahomet

First, I would like to express my sincere gratitude to my supervisors Ian Jermyn and
Josiane Zerubia for giving me the chance to work with them since 2005. I was invited
several times as an intern, and then in October 2007 I started my Ph.D. in the ARIANA
research group directed by Josiane. Special thanks to Ian for his ad nauseam encourage-
ment and scientific guidance during my thesis, and also for checking the English in all my
scientific writing.

I would like to thank Jordi Inglada for his availability for meetings, and for hisconstruc-
tive discussions in the context of a collaboration with the French Space Agency (CNES).

I warmly thank the members of my Ph.D. committee, Professors Albert Bijaoui, Amel
Benazza-Benyahia, Daniel Cremers, Horst Bischof, and Doctor Jordi Inglada for evaluating
my manuscript.

I would like to thank CNES for providing the satellite images used in this thesis in the
context of the ORFEO Accompaniment program.

I would like to thank Marc Spigai and Frédéric Falzon, both working in Thales Alenia
Space, for their assistance in making this thesis exist, and the PACA Region which partially
funded my research work at INRIA.

Special thanks to my dear friends Praveen and Ahmed for their ad nauseam discussions
during the work, lunch and entertainment time. It is nothing but great and unforgotten
souvenirs. I would also like to thank them for their support and help duringthe day of my
defense.

I would like to thank my current and former colleagues at INRIA and its neighbour-
hood: Maria, Saima, Mikael, Athanasios, Sylvain, Aurélie, Vladimir, Giovanni, Marouene,
Ihsen, Gregoire, Adrien, Daniele, Csaba, Peter, Avik, Pierre, Alexandre, Olivier, Gabriel,
Alexis, Caroline, Raffaele, Ting, Marie, Nabil, Fatih, Ayoub, Guillaume, Dan, Saloua,
Vikram, Florent, Virginie, Antoine, Grégory, Nadia, Ameya, Shashank, Carlo, Sotiris,
Bayrem, Neismon, Amir, Amine, Mohamad, Imed, Mohamed, Corinne, Claire, Laurie,
Christine, Zoltan, Farzad, Gabriele, Adrian, Franz, Véronique, Anuj,Florent, Xavier,
Laure.

And now, last but not least, I owe a debt of gratitude to my parents, Najet and Ferjani,
and sisters, Imene and Ilhem, whom were always encouraging me to work for better and
better grades. I owe a debt of gratitude to my wife, Nadia, as well for her lovely time,
lovely advices and lovely observations. By the end of the day, I was able toget my Ph.D.
grade successfully, and more importantly we, me and Nadia, have a very lovely daughter,
Yomna.

Tunis, December 2010





Contents

Acknowledgements iii

List of Figures xiv

List of Tables xv

Introduction 1

Résumé en français 7

I Phase field HOACs for undirected networks 15

1 State-of-the-art 17
1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Edge-based deformable contours. . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Parametric deformable models. . . . . . . . . . . . . . . . . . . . 18
1.2.1.1 Active contours: snakes. . . . . . . . . . . . . . . . . . 18
1.2.1.2 Balloon snakes. . . . . . . . . . . . . . . . . . . . . . . 20
1.2.1.3 Topology adaptive snakes: T-Snakes. . . . . . . . . . . 20
1.2.1.4 Gradient vector flow snakes. . . . . . . . . . . . . . . . 20

1.2.2 Geometric deformable models. . . . . . . . . . . . . . . . . . . . 21
1.2.2.1 Curve evolution theory. . . . . . . . . . . . . . . . . . 21
1.2.2.2 Level set method. . . . . . . . . . . . . . . . . . . . . . 22
1.2.2.3 Geometric active contours. . . . . . . . . . . . . . . . . 23
1.2.2.4 Geodesic active contours. . . . . . . . . . . . . . . . . 23
1.2.2.5 Area and length active contours. . . . . . . . . . . . . . 24

1.3 Region-based deformable contours. . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Mumford-Shah functional model. . . . . . . . . . . . . . . . . . . 24
1.3.2 Region-based Bayesian inference. . . . . . . . . . . . . . . . . . 25

1.4 Shape priors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.1 Reference shape-based models. . . . . . . . . . . . . . . . . . . . 27
1.4.2 Higher-order active contours and phase fields. . . . . . . . . . . . 29

1.4.2.1 Higher-order active contours. . . . . . . . . . . . . . . 30
1.4.2.2 Phase fields. . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Line network extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.1 Road network extraction. . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1.1 Active contours. . . . . . . . . . . . . . . . . . . . . . 32
1.5.1.2 Markov random fields and marked point processes. . . . 33

1.5.2 Hydrographic network extraction. . . . . . . . . . . . . . . . . . 34
1.5.2.1 Geometry of river networks. . . . . . . . . . . . . . . . 34
1.5.2.2 Fractal geometry. . . . . . . . . . . . . . . . . . . . . . 34



vi Contents

1.5.2.3 Digital elevation models. . . . . . . . . . . . . . . . . . 34
1.5.2.4 Multiscale and multiresolution analysis. . . . . . . . . . 34

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Phase diagram of a HOAC model 37
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Higher order active contour (HOAC) model. . . . . . . . . . . . . 38
2.1.2 Problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.3 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.4 Dimensionless parameters. . . . . . . . . . . . . . . . . . . . . . 40

2.2 Stability analysis of a long bar. . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Stability conditions of a long bar. . . . . . . . . . . . . . . . . . . 43

2.2.2.1 Analysis ofe0 . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2.2 Analysis ofe1 . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2.3 Analysis ofe2 . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Stability analysis of a circle. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Stability conditions of a circle. . . . . . . . . . . . . . . . . . . . 50
2.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 A phase field HOAC model of undirected networks 59
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Phase fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.2 Phase fields as HOACs. . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Inflection point long bar model. . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.1 HOAC inflection point long bar model. . . . . . . . . . . . . . . . 61
3.2.2 Phase field inflection point long bar model. . . . . . . . . . . . . 62

3.3 Likelihood energy and energy minimization. . . . . . . . . . . . . . . . . 63
3.3.1 Histogram modelling. . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Data energy term. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2.1 Multivariate Gaussian model. . . . . . . . . . . . . . . 66
3.3.2.2 Multivariate mixture of two Gaussian model. . . . . . . 66

3.4 Experiments and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 MG model vs. MMG model. . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Inflection point long bar model. . . . . . . . . . . . . . . . . . . . 67
3.4.3 Robustness of the algorithm to initial conditions. . . . . . . . . . 67

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

II Phase field HOACs for directed networks 73

4 A phase field HOAC model of directed networks 75
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents vii

4.2 The proposed model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Turing stability analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Geometric evolutions ofv for fixed� . . . . . . . . . . . . . . . . 81
4.4.2 Geometric evolutions ofv and� . . . . . . . . . . . . . . . . . . . 83
4.4.3 Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Stability analysis of a long bar 91
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Energy of the bar. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1.1 Local energy of the bar. . . . . . . . . . . . . . . . . . 94
5.2.1.2 Nonlocal energy of the bar. . . . . . . . . . . . . . . . 95
5.2.1.3 Total energy of the bar. . . . . . . . . . . . . . . . . . . 96

5.2.2 Stability conditions for the bar. . . . . . . . . . . . . . . . . . . . 96
5.2.2.1 First order stability conditions. . . . . . . . . . . . . . . 96
5.2.2.2 Second order stability conditions. . . . . . . . . . . . . 99

5.3 Overall model and parameter settings. . . . . . . . . . . . . . . . . . . . 99
5.3.1 Overall energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 Optimization and parameter settings. . . . . . . . . . . . . . . . . 99

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Experimental results 103
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Geometric experimental results. . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Geometric evolutions of a long bar. . . . . . . . . . . . . . . . . . 104
6.2.2 Geometric evolutions of a random configuration. . . . . . . . . . 105
6.2.3 Geometric evolutions for gap closure. . . . . . . . . . . . . . . . 108

6.3 Experimental results on real images. . . . . . . . . . . . . . . . . . . . . 112
6.3.1 ML segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.2 MAP segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Conclusion and perspectives 129

A Stability calculations for a long bar under the undirected network HOAC
model 133
A.1 Length of the contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2 Area of the contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.3 The quadratic energyEQ(
) . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3.1 Inner product of tangent vectors. . . . . . . . . . . . . . . . . . . 135
A.3.2 Quadratic distance. . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3.3 Interaction function. . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3.4 Computation ofG(t�, t′�) . . . . . . . . . . . . . . . . . . . . . . 136



viii Contents

B Variational calculations for the directed network model 145
B.1 First derivatives of phase field terms. . . . . . . . . . . . . . . . . . . . . 145

B.1.1 Derivative of the term weighted byD . . . . . . . . . . . . . . . . 145
B.1.2 Derivative of the term weighted byDv . . . . . . . . . . . . . . . . 145
B.1.3 Derivative of the term weighted byLv . . . . . . . . . . . . . . . . 146
B.1.4 Derivative of the nonlocal term. . . . . . . . . . . . . . . . . . . . 146

B.2 Fourier transform of the linear derivatives. . . . . . . . . . . . . . . . . . 147

C Turing stability calculations for the directed network model 149
C.1 Stability of the background. . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.1.1 Particular case:Lv = 0 andΨ = K0 . . . . . . . . . . . . . . . . . 152
C.2 Stability of the foreground. . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.2.1 Particular case:Lv = 0 andΨ = K0 . . . . . . . . . . . . . . . . . 153

D Stability calculations for a long bar under the directed network HOAC model155
D.1 Energy of the long bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.1.1 Contribution of the local term. . . . . . . . . . . . . . . . . . . . 155
D.1.2 Contribution of the nonlocal term. . . . . . . . . . . . . . . . . . 158
D.1.3 Total bar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D.2 Stability constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
D.2.1 First order stability conditions. . . . . . . . . . . . . . . . . . . . 159
D.2.2 Second order stability conditions. . . . . . . . . . . . . . . . . . . 161
D.2.3 Derivatives of the functionK0 . . . . . . . . . . . . . . . . . . . . 163

E Publications and scientific activities of the author 165

Bibliography 178



List of Figures

1 Two multi-spectral Quickbird images showing (top) a road network at full
resolution (0.61m), and (bottom) a hydrographic network at1/4 the origi-
nal resolution (2.44m). (Original imagesc⃝DigitalGlobe, CNES process-
ing, images acquired via ORFEO Accompaniment Program.). . . . . . . . 1

2 An example of an approximately conserved flow running in a directed net-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Short-range dependencies (top) and long-range dependencies (bottom) be-
tween contour points. The dashed curves and edges define the interaction
range and the interaction between two points respectively.. . . . . . . . . . 3

4 Deux images Quickbird multi-spectrales montrant (haut) un réseau routier
à pleine résolution (0.61m), et (bas) un réseau hydrographique à1/4 de la
résolution originale (2.44 m). (Images originalesc⃝DigitalGlobe, traite-
ment CNES, images acquises via le programme d’Accompagnement OR-
FEO.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Un exemple de flux approximativement conservé dans un réseau directionnel. 8
6 Dépendances courte-portées (haut) et longue-portées (bas). Les courbes et

les liaisons en pointillées définissent respectivement la portée d’interaction
et l’interaction entre deux points. . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Behaviour of the interaction functionΨ. . . . . . . . . . . . . . . . . . . . 38
2.2 Evolution of an initial contour (rounded square) for different parameter

values of the HOAC model given by equation 2.1 using gradient descent
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Bar parametrization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Different behaviours of the energye0(w0) for different values of�C and�C. 43
2.5 Plot of extrema positions of the energye0(w0) against�C for �C = 1. The

solid and dashed curves correspond to minima and maxima respectively.. . 44
2.6 Perturbation behaviours in eigenvector basis.. . . . . . . . . . . . . . . . 45
2.7 (a): bar energye0(w0) plotted against the widthw0. �C = 0.8, and�C =

1.39 computed using equation (2.11) for a desired widthw0 = 1.2. (b):
eigenvalues�± plotted against the frequencym for the same parameter
values in (a).�± are indeed strictly positive for all frequenciesm ∈ ℤ. . . . 46

2.8 Plot of the four possible regions in the plane(w0, k) corresponding to the
sign change ofG+ etG−. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Lower and upper bounds of the parameter�C in red and blue respectively.. 47
2.10 Phase diagram of a bar (w0 ∈ (0.88, 2)). Blue and yellow zones refer to

positive and negative bar energy per unit length respectively.. . . . . . . . 48
2.11 Gradient descent evolutions of a long bar for different parametervalues

given by table 2.1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.12 Bar energies and their corresponding eigenvalues for the different evolu-

tions given by figure 2.11. The blue and red curves correspond to the in-
phase and out-of-phase eigenvalues,�+ and�−, respectively.. . . . . . . . 51



x List of Figures

2.13 Behaviours of the circle energy,e0(r0), for different values of�C and�C. . 53

2.14 Plot of extrema positions of the energye0(r0) against�C for �C = 1. The
solid and dashed curves correspond to minima and maxima respectively.. . 54

2.15 The blue and red curves shown by figures (a), (b) and (c) correspond to
frequencies0 and2 respectively. For figure (d), the red and blue curves
correspond to lower and upper bounds of�C respectively.. . . . . . . . . . 55

2.16 Phase diagram of a circle (r̂0 ∈]0.69,∞[). The blue and yellow zones
correspond to parameter values which give a stable circle with positive and
negative energy respectively.. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.17 Gradient descent evolutions of a circle for different parameter values given
in table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.18 Circle energye0(r0) and second order energye2(r∗0, k) corresponding to
evolutions given in figure 2.17.r∗0 is the radius of a circle at the energy
minimum if it exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.19 Phase diagram. Maroon, red, yellow, green, white, blue, pink, grey, ma-
genta correspond respectively to B+, C+, B+ C+, B+ C-, UB UC, B- C+,
B- C-, C- and B-; B, C, U, + and - refer respectively to bar, circle, unstable,
positive energy and negative energy.. . . . . . . . . . . . . . . . . . . . . 58

3.1 Behaviour of the ultralocal terms (� = 0.5 and� = 0.1). . . . . . . . . . . 60

3.2 3.2(a) and 3.2(b) plote0 against bar widthw0, with (�C, �C) = (0.8, 0.53)
and(0.7, 0.363) respectively, giving a minimum atw∗

0 = 1.2 and an inflec-
tion point atw∗

0 = 0.88. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Top row, from left to right: the R-G-B bands of a multi-spectral satellite
image; the G-R-IR bands of the same image; the corresponding manually
extracted road network mask. Second row: similar, for a second image.
Third row, from, left to right: histograms of the network (red) and back-
ground (blue) regions of the R, G, B, and IR bands of the image in the
top row; Fourth row: similar, for second image. (Imagesc⃝DigitalGlobe,
CNES processing, images acquired via ORFEO Accompaniment Program).64

3.4 From left to right: histograms of R, G, B and IR channels. From top to bot-
tom: histograms of the interior region of the first image, the exterior region
of the first image, the interior region of the second image and the exterior
region of the second image. Curves in blue, red and black correspond tothe
histograms, the Gaussian models and the mixture of two Gaussian models
respectively.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Segmentations of the two images in figure 3.3, from left to right in each
row: ML using MG, ML using MMG, MAP using MG, and MAP using
MMG. From 3rd to 4th column and from top to bottom:(w0, �̂, �C) =
(2, 0.7646, 15), (2, 0.8385, 5), (2, 0.8385, 20), and(2, 0.6169, 10). . . . . . 67

3.6 Left: segmentation result using parameter values selected from the ma-
roon zone,(w0, �̂, �C) = (4, 0.2013, 5). Right: segmentation result using
parameter values leading to an inflection point at the desired bar width,
(w0, �̂, �C) = (2, 0.7646, 15). . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Figures xi

3.7 Segmentations of the two images in figure 3.3 using different initializa-
tions. From top to bottom: NI, -1, +1, UR, ML, -ML, Scaled ML.1st im-
age:(w0, �̂, �C) = (3, 1.2578, 30) for the1st column and(3, 1.2578, 20)
for the2nd column. Second image:(2, 0.5924, 15) for the 3rd column and
(2, 0.8385, 20) for the 4th column. The MG data model was used with the
inflection point prior model. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Contour plot of the ultralocal termW . . . . . . . . . . . . . . . . . . . . . 79
4.2 3D plot of the ultralocal termW . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Geometric evolutions ofv keeping� fixed. First column: initial configu-

ration. Second column: intermediate configuration. Third column: final
configuration. From top to bottom: result with the divergence term using a
vertical initialization; result with the divergence term using a random ini-
tialization; result with the smoothing term; result with the smoothing and
divergence terms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Gradient descent evolutions using the undirected network modelEs
P. The

initial regions are shown in the leftmost column; time runs from left to right.84
4.5 Gradient descent evolutions using the new, directed network modelEP.

The initial regions are shown in the leftmost column; time runs from left to
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 A zoom on the bottom-left quarter of the final configuration in the fourth
experiment with the directed network model, shown in figure 4.5, showing
v as well as� (thresholded at�s). . . . . . . . . . . . . . . . . . . . . . . 86

4.7 From left to right, top to bottom: synthetic image with three grey levels and
added noise; ground truth; segmentation using undirected network model;
segmentation using directed network model. Note how the constraint on
branch width in the directed network model avoids including parts of the
background that have similar intensity to the ‘river’.. . . . . . . . . . . . . 87

4.8 A zoom on the central part of the result in figure 4.7, showingv as well as
� (thresholded at�s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 From left to right, top to bottom: real image; ground truth; segmenta-
tion using undirected network model; segmentation using directed network
model. Note how the constraint on junction widths in the directed network
model guarantees flow conservation. (Imagesc⃝DigitalGlobe, CNES pro-
cessing, images acquired via ORFEO Accompaniment Program).. . . . . . 88

4.10 A zoom on the upper part of the result in figure 4.9, showingv as well as
� (thresholded at�s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11 A streamline plot of the result in figure 4.9, showingv as well as� (thresh-
olded at�s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 First row: a stable network configuration (left) and a zoom on its central
part showing� andv (right). Second row: profiles of functions� (left)
and ∣v∣ (right) of the network shown on the right of the first row. Third
row: initial (left) and final (right) slices of� and∣v∣, given in blue, across
a network branch after gradient descent; the proposed approximationsof �
and∣v∣ are shown in black.. . . . . . . . . . . . . . . . . . . . . . . . . . 93



xii List of Figures

5.2 Directed baransatz, showing the parameterization in terms of the physical
parametersw0, w, �m andvm. . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Example of solutions of equation (5.5) for some values of�★ using Rochery
et al. (2005)’s interaction function (left) andK0 (right). Curves are labeled
by the values of�★. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Left: behaviour of�̂ using Rochery et al. (2005)’s interaction function.
Right: behaviour of�̂ usingK0. The light and dark surfaces show the
locations of maxima and minima respectively.. . . . . . . . . . . . . . . . 98

5.5 Bar energies againstw0 using Rochery et al. (2005)’s interaction function
(left) andK0 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Bar energyeP against the bar parameterŝw, ŵ0, �m and vm. Param-
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Introduction

“The true logic of this world is the calculus of probabilities.”

— James Clerk Maxwell

Motivations and goal

Why is real-world visual object recognition hard? An interesting question whichPinto et al.
(2008) have tried to answer. At the core of this challenging question is image variation:
any given object can cast an infinite number of im-

Figure 1: Two multi-spectral
Quickbird images showing (top)
a road network at full resolution
(0.61m), and (bottom) a hydro-
graphic network at1/4 the original
resolution (2.44m). (Original im-
ages c⃝DigitalGlobe, CNES pro-
cessing, images acquired via OR-
FEO Accompaniment Program.)

ages, in which it has different sizes, orientations,
poses, lighting, etc.

The central challenge we are interested in is the
automatic extraction of specific objects from real-
world images. By ‘extraction’ is meant: ‘find the
regionR in the image domain that “contains” the
object’, where ‘contains’ means thatR is the projec-
tion to the image domain of the volume occupied by
the object in the real world. Particularly, our central
aim is network-like region extraction from very high
resolution (VHR) remote sensing images. Figure4
shows two multi-spectral VHR Quickbird images in
which a road network (top) and a hydrographic net-
work (bottom) are present. These images show many
difficulties if one is concerned to segment network-
like regions. Firstly, the background and the network
region have many pixels with very similar radiome-
try leading to confounding zones which yield mis-
classification if one uses only local information de-
rived from the image. Secondly, the visual network
in the image appears with many gaps and broken
edges due to occlusions and the presence of noise
(e.g. trees, bridges, shadows, cars, etc). Thus, the
‘shape’ of the object in question is mandatory to
distinguish between the object and the background.
Methods and techniques which do not describe the
shape of a network are then completely unsuccessful
in segmenting a network from this kind of image.

Directed networks(e.g. hydrographic networks
in remote sensing imagery and vascular networks
in medical imagery) carry ‘flow’ through their
branches. This family of networks have characteris-
tic geometric properties which are significantly different toundirected networks(e.g.road
networks). For directed networks, branches tend not to end; different branches may have
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very different widths; width changes slowly along each branch; at junctions, total incoming
width and total outgoing width tend to be similar. In other words, the flow is approximately
conserved. See figure5 for an example of an approximately conserved flow running in a
directed network. Of course we can find, but not frequently, road networks which satisfy
some of the geometric properties of directed networkse.g. the road network in figure4
satisfies the property of flow conservation at some junctions and along somebranches.
The specific geometric properties of the region of interest make the problemmuch harder
because they need to be incorporated into the model in order to favour such regions. In
addition to that, thetopologyof a net-

Figure 2: An example of an approximately con-
served flow running in a directed network.

work region is a serious difficulty be-
cause it is non-trivial and unknown
a priori. More concretely, network
topologies are very diverse depending
on the number of connected components
and the number of handles (loops) for
each of them (see figure5 for an exam-
ple of a loop).

To solve the problem of extraction,
prior knowledge about network regions
need to be incorporated into mathemat-
ical models for automated techniques.
Grenander et al.(1991) is the pioneer of
the idea that a Bayesian approach per-
mits the incorporation of prior knowl-
edge of the object into mathematical
models. Mathematically speaking, we
seek to construct thea posterioriprob-
ability distribution P(R∣I,K), whereI
is the image data andK represents prior
knowledge about the region of inter-
estR (e.g.network region in our case)
and the relation betweenR and I. As
usual, this can be written as the product
of a likelihood P(I∣R,K), and a prior
P(R∣K) that incorporates knowledge of
region ‘shape’. We then infer the region
R by maximuma posteriori(MAP) es-
timate. (In practice, we will deal with
negative log-probabilities,i.e. a total energyE(R; I,K) that is the sum of a likelihood
termEI(I, R,K) and a prior termEP(R,K).)

In the literature, a huge number of papers propose the incorporation of prior knowledge
of the object to be extracted into mathematical models. One of the pioneering models
to incorporate prior knowledge is the active contour (snake) model, initially introduced
by Kass et al.(1988). The snake model describes generic prior knowledge via short-range
dependencies between contour points (see figure6, top), which guarantees smoothness of
the object boundary of the final solution. We also refer to the earlier workin (Geman
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and Geman, 1984; Ising, 1925) where generic shape knowledge is used. AfterKass et al.
(1988), many successors were introduced in many application domains. However, they are
all almost insufficient for automatic object segmentation because they incorporate generic
shape priors, mainly about boundary smoothing which says nothing aboutthe object of
interest (e.g.network-like objects in our case). Many recent works have then focused on
the incorporation of specific shape priors based on active con-

Figure 3: Short-range
dependencies (top) and
long-range dependencies
(bottom) between contour
points. The dashed curves
and edges define the inter-
action range and the inter-
action between two points
respectively.

tours. The key idea for these methods is to seek an optimal re-
gion described by perturbation of reference region(s). In other
words, the topology of the object of interest is constrained to
be the same as the topology of the reference region(s). This
is not suitable for our problem,i.e.network region extraction,
because the topology of a network is non-trivial and unknown
a priori. So, one has to construct specific shape prior models
without constraining the topology.

In Rochery et al.(2006), a higher-order active contour
(HOAC) model was introduced to incorporate specific shape
priors without constraining the topology. The idea is to intro-
duce long-range dependencies between the boundary points
of the region of interest (see figure6, bottom) which allow
to model network regions for some parameter ranges. But,
the algorithm used to solve the minimization problem suffers
from serious difficulties: not enough ‘automatic’ topological
freedom (it is not possible to handle network loops) and is
very slow due to the long-range dependencies. A new frame-
work based on phase fields was then introduced byRochery
et al.(2005) to remedy these problems. Moreover, it has been
shown that the phase field model is approximately equivalent
to the HOAC model for a given region of interest (Rochery
et al., 2005).

The undirected network model introduced byRochery
et al. (2005, 2006) works very well for road network extrac-
tion from medium resolution optical images of rural and semi-
rural areas where road width is approximately constant and
relatively small. But, it is not appropriate to satisfy the geometric properties ofhydro-
graphic networks because it constrains severely the change of width ofnetwork branches.
High and very high resolution images bring with them new challenges and difficulties.Peng
et al.(2010) extended the earlier model in (Rochery et al., 2005) in order to favour networks
where branches prefer to be long and straight. The model was applied successfully for road
network extraction from high resolution images of urban areas, but againit is not appro-
priate for hydrographic networks because the branch rigidity and branch width change are
tightly constrained.

The extraction of road and hydrographic networks is crucial in many application do-
mains: cartographic data updating, intelligent navigation, environmental monitoring, dis-
aster management, hydrology, agriculture, planning and management of cultivated territo-
ries, water resource management, etc. Recently, the amount of available VHR optical data
(QuickBird, Ikonos, and in the near future Pléiades) has become enormous and this brings
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new challenges. VHR images show road and hydrographic networks as 2D regions in the
image domain, as opposed to low and medium resolution images where these objects are
1D structures. VHR images provide much more information about network regions and so
the extraction accuracy can potentially be much improved by using advancedtechniques.

In this thesis, we propose new variational models, based on HOACs and phase fields,
for network modelling in general and for hydrographic and road network extraction from
VHR remote sensing images in particular.

Firstly, we conduct a stability analysis of an undirected long bar under the phase field
HOACs introduced by (Rochery et al., 2005, 2006). This constrains the model parameters
to ranges producing stable networks. The result of the stability analysis is illustrated on
a ‘phase diagram’ which emphasizes the different stable phases of a longbar. Thus, one
can select parameter values from the phase diagram and use them for undirected network
extraction from VHR remote sensing images.

Secondly, we propose a new family of phase fields for directed networks. Each directed
network branch has a ‘flow direction’, and each junction therefore has‘incoming’ and
‘outgoing’ branches. The existence of such a flow typically changes thegeometry of the
network, because often the flow is in some senseconserved. Thus branches tend not to end,
because this would involve the flow stopping, and junctions often consist ofsmall-width
incoming branches joining together to form larger-width outgoing branchesor vice-versa.
Our goal is hydrographic network extraction from remote sensing images,but the model is
probably relevant to other applications involving directed networks (e.g.vascular networks
in medical imagery). To model such networks, we extend the nonlocal phase field model
of undirected networks described byRochery et al.(2005, 2006). In addition to a scalar
phase field representing a region by its smoothed characteristic function and interacting
nonlocally so as to favour network configurations, the proposed model contains a vector
phase field representing the ‘flow’ through the network branches.

Organization of the manuscript

This manuscript is organized as follows:

Part 1: phase field HOACs for undirected networks

Chapter 1: In the first part, we give a brief state-of-the-art for variational methods for
segmentation. We pay particular attention to active contours and shape priors. Two classes
of active contours are emphasized:edge-basedandregion-basedmethods. In the second
part, we review some of the representative techniques for road and hydrographic network
extraction from different types of images.

Chapter 2: Firstly, we briefly recall the HOAC model introduced byRochery et al.(2006),
and we show that this model favours two stable configurations, namely line networks and
circular structures, for different parameter values. Secondly, we conduct a stability anal-
ysis of a long bar via a Taylor series expansion up to second order of theHOAC model
around a long bar. We then are able to constrain the parameter values in order to model
networks. Geometric evolutions of a long bar using gradient descent areshown to validate
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the theoretical calculations. Finally, we Taylor-expand the prior HOAC model up to sec-
ond order around a circle in order to find the parameter ranges which leadto stable circular
structures. The result of the stability analysis of both long bar and circle is illustrated on a
‘phase diagram’.

Chapter 3: Firstly, we briefly recall the phase field HOAC model of undirected networks
introduced byRochery et al.(2005, 2006), we show the equivalence between phase field
modelling and standard active contours, and we show the equivalence ofthe nonlocal
phase field term and the HOAC term. The result is that one can use phase fields instead
of active contours. Secondly, we propose an inflection point long bar model to reduce the
number of free parameters by1 and show the improvement produced by this model for
network extraction. Finally, we define the data energy term by testing two models, namely
a multivariate Gaussian and a multivariate mixture of two Gaussians, and then formulate
our primary overall model adapting ‘phase field HOACs’ to the problem of line network
extraction from images; we study the robustness of the algorithm to the initialization
despite the use of deterministic gradient descent.

Part 2: phase field HOACs for directed networks

Chapter 4: Firstly, we extend the phase field HOAC model of undirected networks intro-
duced byRochery et al.(2005), and analysed and improved in chapter2. We incorporate
into the model a second phase field function, in addition to the scalar phase field function
representing a region by its smoothed characteristic function, which is a vector field repre-
senting the ‘flow’ through the network branches. The vector field is strongly encouraged
to be zero outside, and of unit magnitude inside the region; to be smooth; and tohave
zero divergence. This prolongs network branches; controls width variation along a branch;
and produces asymmetric junctions for which total incoming branch width approximately
equals total outgoing branch width. In conjunction with a new interaction function, it also
allows a broad range of stable branch widths. We analyze the Turing stabilityof both the
background and the foreground in order to constrain the parameter values and avoid some
undesirable configurations. Secondly, we show geometric evolutions to emphasize the pur-
pose of the vector field and how it behaves in several situations and we apply this new
model to the extraction of hydrographic networks from a synthetic image of ariver and
from a VHR remote sensing image.

Chapter 5: We analyse the stability of a network branch under the directed network model.
We focus on zero-frequency perturbations of the region boundary,which correspond to
changes in the branch width: we compute the energy of each term of the directed network
model on a four-parameter family ofansatzesof a directed, straight, long bar. This places
constraints on the parameter values of the model so that a network branch be stable to
branch width changes.

Chapter 6: Firstly, we confirm the theoretical analysis studied in chapter5 by numerical
experiments. We show geometric evolutions of a long bar and a random configuration that
evolve to stable network configurations where the width of their branches isequal to the
branch width predicted by theory. We also describe a major advantage of the new directed
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network model to solve the problem of occlusions in the network entity to be extracted, by
closing the gaps and the broken edges thanks to the flow conservation property. Secondly,
we apply the model on the problem of road and hydrographic network extraction from
multi-spectral VHR Quickbird images.

Contributions

The main contributions of this thesis are as follows:

1. the analysis of the stability of a long bar under a HOAC model proposed byRochery
et al.(2006) (chapter 2),

2. the introduction of an inflection point long bar energy under a phase field HOAC
model for undirected networks (chapter 3),

3. the application of the undirected network model on multi-spectral VHR Quickbird
images for rural road network segmentation (chapter 3),

4. the study of the robustness of the algorithm to initialization (chapter 3),

5. the proposal of a new family of local prior phase fields for directed networks, and
Turing stability (chapter 4),

6. the analysis of the stability of a directed, straight, long bar using a four-parameter
family of ansatzes(chapter 5),

7. the application of the directed network model on multi-spectral VHR Quickbird im-
ages for road and hydrographic network segmentation (chapter 6).



Résumé en français

“A little knowledge that acts is worth infinitely more than much knowledge that is idle.”
— Gibran Khalil Gibran

Motivations et but

Pourquoi la reconnaissance d’objets visuels dans le monde réel est-elledifficile ? Une
question intéressante à laquellePinto et al.(2008)

Figure 4: Deux images Quickbird
multi-spectrales montrant (haut) un
réseau routier à pleine résolution
(0.61m), et (bas) un réseau hydro-
graphique à1/4 de la résolution
originale (2.44 m). (Images orig-
inales c⃝DigitalGlobe, traitement
CNES, images acquises via le pro-
gramme d’Accompagnement OR-
FEO.)

avait essayé de répondre. La variation au niveau
de l’image est au coeur de cette question difficile :
chaque objet donné peut être présent dans un nombre
infini d’images, où il apparaît avec différentes tailles,
orientations, poses, illuminations, etc.

Le défit principal auquel nous nous sommes in-
téressés est l’extraction automatique d’objets spéci-
fiques à partir d’images réelles. Dans ce contexte,
‘extraction’ signifie : ‘trouver la régionR dans le
domaine image qui “contient” l’objet’, où ‘contient’
signifie queR est la projection dans le domaine im-
age du volume occupé par l’objet dans le monde réel.
Notre intérêt principal est l’extraction de régions qui
forment des réseaux linéiques à partir d’images de
télédétection à très haute résolution (THR). La fig-
ure 4 montre deux images Quickbird THR multi-
spectrales qui contiennent un réseau routier (haut) et
un réseau hydrographique (bas). Ces images présen-
tent plusieurs difficultés qui rendent le problème
d’extraction très difficile. D’une part, les régions
représentant le fond et le réseau ont plusieurs pixels
qui ont des radiométries très similaires impliquant
des zones de confusion si nous n’utilisions que des
informations locales dérivant de l’image. D’autre
part, le réseau visuel dans l’image apparaît avec
plusieurs sauts dus aux occultations et à la présence
de bruit (e.g.arbres, ponts, ombres, véhicules, etc).
Par conséquent, la ‘forme’ de l’objet en question est
nécessaire afin de pouvoir discerner l’objet du fond.
Les méthodes et les techniques qui ne décrivent pas
la forme d’un réseau sont donc totalement incapables
de segmenter automatiquement un réseau à partir de
ce type d’images.

Les réseaux directionnels (e.g.réseaux hydrographiques en imagerie de télédétection
et réseaux vasculaires en imagerie médicale) possèdent un flux dans leurs branches. Cette
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famille de réseaux a des propriétés géométriques caractéristiques qui sont considérable-
ment différentes à celles des réseaux non-directionnels (e.g. réseaux routiers). Pour les
réseaux directionnels, les branches tendent à se prolonger ; des branches différentes peu-
vent avoir des largeurs très différentes ; la largeur change lentement tout au long chaque
branche ; aux jonctions, la somme des largeurs entrantes et celle des largeurs sortantes ten-
dent à être similaires. (cf. la figure5 pour un exemple de flux approximativement conservé
dans un réseau directionnel). Bien sûr, nous pouvons trouver, mais pas fréquemment, des
réseaux routiers qui satisfassent

Figure 5: Un exemple de flux approximative-
ment conservé dans un réseau directionnel.

quelques unes des propriétés
géométriques des réseaux directionnels,
e.g. le réseau routier dans la figure4
satisfait la propriété de conservation du
flux en quelques jonctions et branches.
Les propriétés géométriques spéci-
fiques de la région d’intérêt rendent le
problème plus difficile parce qu’elles
devront être incorporées dans un modèle
afin de favoriser de telles régions. De
plus, la topologie d’une région d’un
réseau est une difficulté majeure parce
qu’elle est non-triviale et inconnuea
priori . Concrètement, les topologies
des réseaux sont très diverses, elles
dépendent du nombre de composantes
connexes et du nombre de boucles pour
chacune d’elles (cf. la figure5 pour un
exemple de boucle).

Afin de résoudre le problème
d’extraction automatiquement, des
connaissancesa priori sur les ré-
gions des réseaux ont besoin d’être
incorporées dans des modèles mathé-
matiques.Grenander et al.(1991) est
le pionnier d’une approche bayésienne
permettant l’incorporation des con-
naissancesa priori de l’objet dans des
modèles mathématiques. Mathéma-
tiquement parlant, nous cherchons à construire une distribution de probabilité a posteriori
P(R∣I,K), oùI représente les données image etK contient les connaissancesa priori de
la région d’intérêtR (e.g. région d’un réseau dans notre cas) et la relation entreR et I.
Cette distribution peut s’écrire, comme toujours, comme un produit d’une vraisemblance
P(I∣R,K), et d’una priori P(R∣K) qui incorpore des connaissances sur la forme de la
région. Nous inférons donc la régionR par estimation au sens du maximuma posteriori
(MAP). (En pratique, nous manipulerons des log-probabilités négatives, i.e. une énergie
totaleE(R; I,K) qui est la somme d’un terme de vraisemblanceEI(I, R,K) et d’un
terme d’a priori EP(R,K).)
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Dans la littérature, beaucoup d’articles proposent l’incorporation des connaissancea
priori de l’objet à extraire dans des modèles mathématiques. Un des modèles pionniers
incorporant des connaissancesa priori est le modèle des contours actifs (ou “snakes”), ini-
tialement introduit parKass et al.(1988). Le modèle de snakes décrit des connaissances
a priori génériques via des dépendances à courte-portée (locales) (voir figure 6, haut), qui
assurent le lissage du contour de l’objet de la solution finale. Citons aussiles travaux
antérieurs publiés dans (Geman and Geman, 1984; Ising, 1925) qui utilisent des connais-
sances de forme génériques. AprèsKass et al.(1988), plusieurs travaux ont été introduits
dans plusieurs domaines applicatifs. Cependant, presque tous

Figure 6: Dépendances
courte-portées (haut) et
longue-portées (bas). Les
courbes et les liaisons
en pointillées définis-
sent respectivement la
portée d’interaction et
l’interaction entre deux
points.

sont insuffisants pour la segmentation automatique d’objets
parce qu’ils incorporent desa priori de forme génériques,
essentiellement sur le lissage du contour de l’objet qui nous
renseigne en rien sur l’objet d’intérêt (e.g. objets de forme
linéique dans notre cas). Beaucoup de travaux récents se
sont donc focalisés sur l’incorporation d’a priori de formes
spécifiques fondés sur les contours actifs. L’idée-clé de ces
méthodes est de déterminer une région optimale décrite par
des perturbations d’une ou plusieurs région(s) de référence.
Autrement dit, la topologie de l’objet d’intérêt est contrainte
d’être la même que celle des régions de référence. Cela ne
convient pas à notre problématique,i.e. l’extraction de régions
de réseaux linéiques, parce que la topologie d’un réseau est
non-triviale et inconnuea priori. En conséquence, nous nous
intéressons à la construction de modèles d’a priori de forme
sans contraindre la topologie.

Dans (Rochery et al., 2006), un modèle des contours actifs
d’ordre supérieur (CAOS) a été introduit afin d’incorporer des
a priori de forme spécifiques sans contraindre la topologie.
L’idée est d’introduire des dépendances à longue-portée entre
les points du contour de la région d’intérêt (voir figure6, bas)
qui permettent de modéliser des régions de forme linéiques
pour quelques valeurs des paramètres. Mais, l’algorithme util-
isé pour résoudre le problème de minimisation souffre des
difficultés majeures suivantes : liberté topologique ‘automa-
tique’ insuffisante (il n’est pas possible de créer et contrôler
les boucles d’un réseau), et l’algorithme est très lent du fait des dépendances à longue-
portée. Une nouvelle formulation fondée sur les champs de phase a été donc introduite
par Rochery et al.(2005) pour surmonter ces problèmes. De plus, il a été montré que le
modèle de champ de phase est approximativement équivalent au modèle des CAOSs pour
une région d’intérêt donnée (Rochery et al., 2005).

Le modèle de réseaux non-directionnels introduit parRochery et al.(2005, 2006) per-
met une bonne extraction des réseaux routiers à partir d’images optiques àmoyenne ré-
solution, de zones rurales et semi-rurales où la largeur des routes est approximativement
constante et relativement petite. Mais, il n’est pas adapté pour satisfaireles propriétés
géométriques des réseaux hydrographiques parce qu’il contraint fortement le changement
de largeur des branches du réseau. Les images à haute et très haute résolutions appor-
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tent de nouveaux défis et de nouvelles difficultés.Peng et al.(2010) ont étendu le modèle
de (Rochery et al., 2005, 2006) afin de favoriser les réseaux dont les branches tendent à être
longues et droites. Le modèle a été appliqué avec succès à l’extraction de réseaux routiers
à partir d’images haute résolution de zones urbaines, mais ce modèle n’est pas adapté aux
réseaux hydrographiques parce que la rigidité des branches et le changement de largeur des
branches sont fortement pénalisés.

L’extraction de réseaux routiers et hydrographiques est cruciale dans plusieurs do-
maines d’applications : mise à jour cartographique, navigation intelligente, gestion en-
vironnementale, gestion des désastres, hydrologie, agriculture, planification et gestion des
territoires cultivés, gestion des ressources en eau, etc. Récemment, la quantité de données
optiques THR disponibles (Quickbird, Ikonos, et dans le futur proche Pléiades) est devenu
énorme et cela apporte de nouveaux défis. Les images THR montrent des réseaux routiers
et hydrographiques sous forme de régions 2D dans le domaine image, contrairement aux
images à basse et moyenne résolution où ces objets apparaissent comme desstructures 1D.
Les images THR fournissent beaucoup plus d’information sur les régionsdes réseaux et
donc la précision d’extraction peut être nettement améliorée, en utilisant destechniques
avancées.

Dans cette thèse, nous proposons de nouveaux modèles variationnels, fondés sur les
CAOSs et les champs de phase, pour la modélisation de réseaux linéiques engénéral, et
pour l’extraction de réseaux routiers et hydrographiques à partir d’images de télédétection
THR en particulier.

En premier lieu, nous étudions l’analyse de la stabilité d’une barre longue non-
directionnelle pour le modèle des CAOSs des champs de phase introduit parRochery et al.
(2005, 2006). Cela contraint les paramètres du modèle à des gammes de valeurs produisant
des réseaux stables. Le résultat de l’analyse de stabilité est illustré par un‘diagramme de
phase’ qui met en évidence les différentes phases stables d’une longue barre. Par con-
séquent, nous pouvons choisir les valeurs des paramètres à partir du diagramme de phase
et nous les utilisons pour l’extraction de réseaux non-directionnels à partir d’images de
télédétection THR.

En second lieu, nous proposons une nouvelle famille de champs de phase pour des
réseaux directionnels. Chaque branche d’un réseau directionnel possède une ‘direction du
flux’, et en conséquence, chaque jonction possède des branches entrantes et des branches
sortantes. L’existence d’un tel flux change, typiquement, la géométrie du réseau, parce
que le flux est souventconservéen quelques sortes. Ainsi, les branches tendent à se
prolonger, parce que sinon cela impliquerait une perte brusque du flux, et les jonctions
se composent souvent de branches entrantes ayant de faibles largeurs qui se joignent en-
semble pour former des branches sortantes ayant des largeurs plus importantes, ou bien
vice-versa. Notre but est l’extraction de réseaux hydrographiquesà partir d’images de
télédétection THR, mais le modèle est probablement pertinent pour d’autres applications
impliquant des réseaux directionnels (e.g.réseaux vasculaires en imagerie médicale). Pour
modéliser de tels réseaux, nous étendons le modèle de champ de phase non-local de réseaux
non-directionnels deRochery et al.(2005, 2006). En plus d’un champ de phase scalaire
représentant une région par une version lisse de sa fonction caractéristique et interagissant
non-localement pour favoriser des configurations de réseau, le modèleproposé contient un
champ de phase vectoriel représentant le ‘flux’ dans les branches duréseau.
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Organisation du manuscrit

Ce manuscrit est organisé comme suit :

Partie 1 : CAOSs des champs de phase pour des réseaux non-directionnels

Chapitre 1 : En premier lieu, nous décrivons un bref état-de-l’art des méthodes variation-
nelles pour la segmentation d’images. Nous nous focalisons sur les contours actifs et lesa
priori de formes. Deux classes des contours actifs sont mises en évidence : lesméthodes
basées contours et basées régions. En second lieu, nous rappelonsles techniques les plus
représentatives pour l’extraction de réseaux routiers et hydrographiques à partir d’images
de différents types.

Chapitre 2 : Premièrement, nous rappelons brièvement le modèle des CAOSs introduit
parRochery et al.(2006), et nous montrons que ce modèle favorise deux configurations sta-
bles, à savoir des réseaux linéiques et des structures circulaires, pour différentes valeurs des
paramètres. Deuxièmement, nous établissons une analyse de stabilité d’une barre longue
via un développement en séries de Taylor jusqu’au second ordre du modèle des CAOSs au
voisinage d’une barre longue. Ainsi, nous pouvons contraindre les valeurs des paramètres
afin de modéliser des réseaux. Nous montrons des évolutions géométriquesd’une barre
longue en utilisant l’algorithme de descente de gradient pour valider l’analyse théorique.
Finalement, nous développons en séries de Taylor le modèle des CAOSs jusqu’au second
ordre au voisinage d’un cercle afin de trouver les gammes des valeurs deparamètres qui
guarantissent la stabilité des structures circulaires. Le résultat de l’analyse de stabilité aussi
bien d’une barre longue que d’un cercle est illustré par un ‘diagramme dephase’.

Chapitre 3 : Tout d’abord, nous rappelons brièvement le modèle des CAOSs des champs
de phase pour des réseaux non-directionnels introduit parRochery et al.(2005, 2006),
nous montrons l’équivalence entre les contours actifs classiques et les champs de phase
locaux, et nous montrons l’équivalence entre le terme des CAOSs et le termenon-local des
champs de phase. Le résultat est que nous pouvons utiliser les champs dephase au lieu des
contours actifs. Puis, nous proposons un modèle de point d’inflexion d’une barre longue
pour réduire le nombre de paramètres libres par1 et nous montrons l’amélioration de
l’extraction de réseaux assurée par ce modèle. Enfin, nous définissons le terme d’énergie
d’attache aux données en testant deux modèles, à savoir une gaussienne multivaluée
et un mélange de deux gaussiennes multivaluées, ensuite, nous formulonsle modèle
total primaire en adaptant les ‘champs de phase des CAOSs’ au problème d’extraction
de réseaux linéiques à partir d’images ; nous étudions la robustesse de l’algorithme à
l’initialisation bienque nous utilisions une descente de gradient.

Partie 2 : CAOSs des champs de phase pour des réseaux directionnels

Chapitre 4 : En premier lieu, nous étendons le modèle des CAOSs des champs de
phase pour des réseaux non-directionnels introduit parRochery et al.(2005), et analysé
et amélioré dans le chapitre2. Nous incorporons dans le modèle une seconde fonction
de champ de phase, en plus d’un champ de phase scalaire représentantune région par
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une version lisse de sa fonction caractéristique, qui est un champ vectoriel représentant le
‘flux’ dans les branches du réseau. Le champ vectoriel est fortementfavorisé afin d’être
zéro à l’extérieur et de magnitude unitaire à l’intérieur de la région ; d’être lisse ; et à
avoir une divergence nulle. Cela prolonge les branches du réseau ; contrôle les variations
de largeur tout au long d’une branche ; et forme des jonctions non-symétriques dont la
largeur entrante totale est approximativement égale à la largeur totale sortante. En con-
jonction avec une nouvelle fonction d’interaction, le modèle assure aussi une vaste gamme
de largeurs de branches stables. Nous analysons la stabilité de Turing del’extérieur et de
l’intérieur afin de contraindre les valeurs des paramètres et d’éviter quelques configura-
tions indésirables. En second lieu, nous montrons des évolutions géométriques pour mettre
en évidence l’apport du champ vectoriel et son comportement pour différentes situations
et nous appliquons ce nouveau modèle à l’extraction de réseaux hydrographiques à partir
d’une image synthétique d’une rivière et d’une image de télédétection THR.

Chapitre 5 : Nous analysons la stabilité d’une branche d’un réseau dans le cas du modèle
de réseaux directionnels. Nous nous focalisons sur les perturbations de fréquence zéro du
contour d’une région, ce qui correspond aux variations de la largeurd’une branche : nous
calculons l’énergie pour chaque terme du modèle de réseaux directionnelsen utilisant une
famille d’ansatzdéfinie par quatre paramètres d’une barre longue, droite et directionnelle.
Cela génère des contraintes sur les valeurs des paramètres du modèle pour qu’une branche
d’un réseau soit stable aux changement de largeur de celle-ci.

Chapitre 6 : Tout d’abord, nous validons l’analyse théorique étudiée au chapitre5 par
des expériences numériques. Nous montrons les évolutions géométriques d’une barre
longue et d’une configuration aléatoire vers des configurations de réseaux linéiques stables
dont la largeur moyenne des branches est égale à la largeur prédite parla théorie. Nous
décrivons aussi un avantage majeur du nouveau modèle de réseaux directionnels pour ré-
soudre le problème d’occultations dans l’entité du réseau à extraire, en fermant les sauts
grâce à la propriété de conservation du flux. Puis, nous appliquons le modèle au prob-
lème d’extraction de réseaux routiers et hydrographiques à partir d’images Quickbird THR
multi-spectrales.

Contributions

Les contributions principales de cette thèse sont les suivantes :

1. l’analyse de stabilité d’une barre longue pour un modèle de type CAOSs proposé
parRochery et al.(2006) (chapitre 2),

2. l’introduction d’une énergie d’une barre longue de point d’inflexionpour un modèle
des CAOSs des champs de phase pour des réseaux non-directionnels (chapitre 3),

3. l’application du modèle des réseaux non-directionnels sur des images Quickbird
THR multi-spectrales pour la segmentation des réseaux routiers ruraux (chapitre 3),

4. l’étude de la robustesse de l’algorithme à l’initialisation (chapitre 3),
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5. la proposition d’une nouvelle famille de champs de phase ayant una priori local
pour des réseaux directionnels, et l’analyse de Turing (chapitre 4),

6. l’analyse de stabilité d’une barre longue, droite et directionnelle en utilisant une
famille d’ansatzà quatre paramètres (chapitre 5),

7. l’application du modèle des réseaux directionnels sur des images Quickbird THR
multi-spectrales pour la segmentation des réseaux routiers et hydrographiques
(chapitre 6).
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CHAPTER 1

State-of-the-art

“Losers live in the past. Winners learn from the past and enjoy working in thepresent
toward the future.”

— Denis Waitley

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Edge-based deformable contours. . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Parametric deformable models. . . . . . . . . . . . . . . . . . . . 18

1.2.1.1 Active contours: snakes. . . . . . . . . . . . . . . . . . 18

1.2.1.2 Balloon snakes. . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1.3 Topology adaptive snakes: T-Snakes. . . . . . . . . . . 20

1.2.1.4 Gradient vector flow snakes. . . . . . . . . . . . . . . . 20

1.2.2 Geometric deformable models. . . . . . . . . . . . . . . . . . . . 21

1.2.2.1 Curve evolution theory. . . . . . . . . . . . . . . . . . 21

1.2.2.2 Level set method. . . . . . . . . . . . . . . . . . . . . . 22

1.2.2.3 Geometric active contours. . . . . . . . . . . . . . . . . 23

1.2.2.4 Geodesic active contours. . . . . . . . . . . . . . . . . 23

1.2.2.5 Area and length active contours. . . . . . . . . . . . . . 24

1.3 Region-based deformable contours. . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Mumford-Shah functional model. . . . . . . . . . . . . . . . . . . 24

1.3.2 Region-based Bayesian inference. . . . . . . . . . . . . . . . . . 25

1.4 Shape priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.1 Reference shape-based models. . . . . . . . . . . . . . . . . . . . 27

1.4.2 Higher-order active contours and phase fields. . . . . . . . . . . . 29

1.4.2.1 Higher-order active contours. . . . . . . . . . . . . . . 30

1.4.2.2 Phase fields. . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Line network extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.1 Road network extraction. . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1.1 Active contours. . . . . . . . . . . . . . . . . . . . . . 32

1.5.1.2 Markov random fields and marked point processes. . . . 33

1.5.2 Hydrographic network extraction. . . . . . . . . . . . . . . . . . 34

1.5.2.1 Geometry of river networks. . . . . . . . . . . . . . . . 34

1.5.2.2 Fractal geometry. . . . . . . . . . . . . . . . . . . . . . 34

1.5.2.3 Digital elevation models. . . . . . . . . . . . . . . . . . 34

1.5.2.4 Multiscale and multiresolution analysis. . . . . . . . . . 34

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



18 Chapter 1. State-of-the-art

This chapter gives a brief state-of-the-art for active contours, shape priors, and road and
hydrographic network extraction from images. These three fields have along history in the
literature and a huge number of papers were published dealing with these issues. Here, we
emphasize the most pioneering methods and techniques.

1.1 Introduction

Due to the insufficiency of low-level information, which uses only available features in
the image, to solve problems in the real-world applications, high level informationmust
be provided by users or experts in one way or another. High-level information abstracts
the global behaviour of the system as opposed to low-level information which describes
only local (individual) behaviour. Active contour-based methods are away to describe
high-level information and knowledge about the segmentation.

The framework of active contours aims to construct energy functionals which combine
different energy terms, where each describes specific high-level information about the sys-
tem and taken together they interact so as to satisfy global desiderata for the system. A
solution of the system minimizes, globally or locally, the energy functionals. Active con-
tours allow to segment an object from an image, and high-level information corresponds to
the knowledge we have about the object in question.

According to the literature, active contour methods can be categorized into two fami-
lies: edge-basedandregion-basedapproaches. These two approaches consider two fami-
lies of methods: one which describesgenerichigh-level information (without shape priors)
and the other which describesspecifichigh-level information (with shape priors).

In our work, we focus on road and hydrographic network extraction from remote sens-
ing images. We highlight very briefly some of the most representative techniques in the
literature which deal with these issues.

1.2 Edge-based deformable contours

Active contours are originally edge-based methods: the contour is pushed toward edges
or boundaries of the object. Two classes of methods are involved:parametric deformable
models andgeometric deformablemodels. The former constructs energy functionals which
depend on contour parametrization and while for the latter the functionals arenot dependent
(i.e. are invariant to re-parametrization). Geometric deformable methods have theadvan-
tage that they can be described implicitly via higher dimensional representations which we
detail later on.

1.2.1 Parametric deformable models

1.2.1.1 Active contours: snakes

The original active contour (or snake) model was initially introduced byKass et al.(1988).
A region of interestR ⊂ Ω, whereΩ is the image domain, is described by its boundary
∂R. The region boundary∂R is described by an embedding
 : S1 → Ω whereS1 is a
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circle. The key idea consists of constructing an energy functional to be minimized over the
set of curves parameterized by
. The total energy incorporates a prior (internal) energy
of the curve and a data (external) energy linking the curve to the image data:E(
) =
EP(
) + EI(
). The internal energy is

EP(
) =

∫

S1

ds �∣
̇(s)∣2 + �∣
̈(s)∣2 , (1.1)

where
̇ and
̈ are the first and second derivatives of
; � and� are the weights of the first
and second order terms respectively. The first order term controls thestretching (elasticity)
of the curve making it acting like a membrane; the second order term controls the bending
(rigidity) of the curve making it acting like a thin plate. The prior energyEP ensures the
smoothness of the region boundary∂R during the minimization process.

The role of the external energyEI is to attract the curve toward the desired object
boundaries as well as other features of interest. It is computed by integrating a potential
energy functionP along the contour
:

EI(
) =

∫

S1

ds P (
(s)) .

To find edges within an image, the external force is taken to beP (
) = −�∣∂I(
)∣2 where
I is the image and� is a positive parameter. So, ifE = EP + EI is minimized then the
smoothed curve
 is pushed toward object edges where the magnitude of the gradient of
the image,∣∂I∣, is high. One can also chooseP (
) = �I(
) which permits to push the
curve toward dark locations.

To find the minimizing curve of the energyE, the deformable contour is made dynamic
by treating
 as a function of time and we follow a Euler-Lagrange scheme (gradient de-
scent algorithm):


t(s, t) =
�E(
(s))

�
(s)

= �
̈(s)− �
∂2
̈(s)

∂s2
+ F (
(s)) . (1.2)

where
t = ∂
/∂t andF (
) = −∂P (
(s)) is the external force. The energyE is then
minimized by placing an initial contour on the image domain and then deforming it by
equation (1.2). The snake model has several advantages: the segmentation procedure uni-
fies the image data, smoothing priors and initial estimation; the snakes convergeto an
energy minimum if initialized properly; and the capture range around features of interest
can be relatively enlarged by the use of an external force incorporating a blurring effect of
the original image.

On the other hand, the snake model suffers mainly of three limitations. Firstly, the
external force vanishes rapidly around the features of interest whichimplies a very short
capture range of the original snake: the initial contour must be carefully initialized by the
user. Secondly, complex and noisy images produce features of interest(edges for example)
leading to attract the contour to a local minimum which does not corresponds tothe object
of interest. Thirdly, the parametric (explicit) representation of the snake does not allow an
automatic change of topology which is mandatory if the object of interest has,a priori, an
unknown topology.
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1.2.1.2 Balloon snakes

The internal force in the snake model tends to shrink the initial contour until it reaches
the features of interest. Without the presence of the external force, thecurve disappears.
To remedy these problems,Cohen(1991) introduced the so-called ‘balloon’ model. The
key idea is to add an inflation force which makes the curve behaves like a balloon. The
curve is stopped when it meets a strong edge and it passes through if the edge is weak
enough compared to the inflation force. The balloon model defines a modifiedexternal
forceF (
) = k1n̂ − k ∂P

∣∂P ∣ wheren̂ is the normal unit vector and weighted by the posi-
tive parameterk1. The parameterk1 controls the inflation/deflation of the snake during the
deformation process: it plays the same role as constraining of the area force of the snake in-
terior. An extra energy term can be then constructed asEarea = −k1Area(
) = −k1

∫
dA,

measuring the area inside the region delimited by the contour
. The balloon model en-
larges the capture range due to inflation/deflation force which implies less sensitivity to
initialization and less user guidance.

Cohen and Cohen(1993) improves the balloon model by defining an external force as
a distance function from each point to its closest edge points in the image. In this case,
the external force has large values everywhere in the image domain yieldingto an enlarged
capture range. A 3D generalization of the balloon model was introduced byCohen and
Cohen(1993), and solved the model by the use of the finite element method which speeds
up the convergence and gives better stability.

1.2.1.3 Topology adaptive snakes: T-Snakes

The snake model does not allow automatic change of topology during the optimization
process due to the explicit (parametric) representation of the contour.McInerney and Ter-
zopoulos(1995, 2000) constructed a set of rules for topology changes to be used during
balloon model deformation. The snakes are defined in terms of an affine cell image decom-
position (ACID). During the contour deformation under the influence of external and inter-
nal forces, the model is reparametrized by a new set of nodes and elements by efficiently
computing the intersection points of the contour with the ACID lattice. This method al-
lows to distinguish between the interior and exterior regions. By doing this, thesnake may
merge and split by connecting and disconnecting the contour.

1.2.1.4 Gradient vector flow snakes

The pressure (balloon) force (Cohen, 1991; Cohen and Cohen, 1993) permits to remedy
the problem of contour initialization by the enlarged capture range. However, the pressure
force is constrained to not be neither very strong nor very low as described so far. This
makes the balloon model not able to push the contour toward concave boundaries.Xu
and Prince(1997) introduced a new external force, called Gradient Vector Flow (GVF),to
solve relatively the issues of contour initialization and concave boundaries. The GVF is
computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived
from the image. The external forceF in (1.2) is replaced by the GVF. The GVF field is
defined to be the vector fieldv(x, y) = (u(x, y), v(x, y)), wherex andy are the Cartesian
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coordinates, that minimizes the energy functional

E(v) =

∫∫

dx dy �(u2x + u2y + v2x + v2y) + ∣∂f ∣2 ∣v − ∂f ∣2 , (1.3)

whereux, uy, vx andvy are the first derivatives of the vector fieldv which is constrained
to be smooth. If∣∂f ∣ is small, the energy is dominated by partial derivatives of the vector
field, yielding a smooth field. On the other hand, when∣∂f ∣ is large, the second term
dominates the integrand, and is minimized by settingv = ∂f . Equation (1.3) is minimized
following Euler-Lagrange scheme:

ut = �∂2u− (u− fx)∣∂f ∣2 ,
vt = �∂2v − (v − fy)∣∂f ∣2 ,

wherefx andfy are the first derivatives off . The converged GVF fieldv replaces then
the external forceF in equation (1.2). Other attempts based on GVF snakes were proposed
by (Cheng and Foo, 2006; Tang et al., 2004; Wei et al., 2004; Xu and Prince, 1998) to
enlarge the capture range for better object boundary detection.

Independently,Li and Acton(2008) provided a new method to automatically initial-
ize the active contour model by estimating the underlying external energy field using the
solution of Poisson’s equation. The proposed method selects an initial modelwith an asso-
ciated energy that approaches the minimum energy. This novel method accelerates active
contour model convergence and improves performance by initializing the active contour
model close to features of interest.

Bauer et al.(2009) proposed an automated approach for the segmentation of airways
in Computed Tomography (CT) datasets. The approach is based on GVF and consists of
two main processing steps. Initially, airway-like structures are identified andtheir cen-
terlines are extracted. These centerlines are used in a second step to initialize the actual
segmentation of the corresponding airways.

1.2.2 Geometric deformable models

Parametric deformable methods have a major limitation, due to the explicit representation
of contours, which is the automatic change of topology in an efficient and fast manner. To
overcome this problem, geometric deformable models are initially introduced by (Caselles
et al., 1993; Malladi et al., 1995) and provide an automatic method to handle topological
changes using the curve evolution theory (Alvarez et al., 1993; Sapiro, 2001; Sapiro and
Tannenbaum, 1993) and level set method (Osher and Sethian, 1988; Sethian, 1996, 1999).

1.2.2.1 Curve evolution theory

Parametric deformable methods describe curves by quantities which dependon parameters
such as the derivatives of an arbitrary parametrized curve. Curve evolution theory aims to
study curve deformations using only geometric quantities like the unit normal vector and
curvature. An example of such a deformation process is provided by the following system:


t = F (�)n̂ , (1.4)
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whereF (�) is the speed of curve evolution;� is the curvature computed at each contour
point; andn̂ is the inward unit normal of the curve. We give two examples of the speed
functionF , which are the most used in many application domains.

Firstly, the curvature deformation which is described by the so-called geometric heat
equation obtained by usingF = �� where� is a positive parameter. The evolution system
smooths the curve and shrinks it (Grayson, 1989). The curvature deformation has a sim-
ilar effect to the elastic internal force in the parametric deformable model. Secondly, the
constant deformation which is given by the use of a constant speed function F = F0. The
constant deformation plays the same role as the pressure force in the balloon model.

The implementation of geometric deformable models is made using level set methods
and a great amount of work has investigated the construction of the speedfunction in order
to solve a particular problem.

1.2.2.2 Level set method

Evolving curves using level sets was initially introduced byOsher and Sethian(1988). The
curve∂R (i.e. the region boundary) is described implicitly as a level set of a 2D scalar
function,�, (i.e. the level set function) defined in the image domainΩ: � : Ω → ℝ. The
curve is then defined by the set of points inΩ which have a zero level set:∂R = {x ∈
Ω∣�(x) = 0}. The curve deformation is controlled by the deformation of the level set
function�(x, t) during the timet.

Level set methods have many advantages: natural handling of topology changes (split-
ting and merging of contours), cusps, and corners as� evolves; using fast narrow band
adaptive techniques, the computational complexity is the same as other methods,with the
advantages of increased accuracy and robust modelling; higher-dimension level set func-
tions are reasonably easily treated.

On the other hand, level set methods have also some drawbacks: increasing the dimen-
sionality of the original curve induces greater computational complexity; the algorithm is
very slow because the level set function needs to be initialized and updatedto be a distance
function during the evolution process.

Now we represent, in the level set framework, the curve evolution equation (1.4)
of the curve∂R. Let �(x, t) being the zero-level set function of the contour
(s, t):
�(
(s, t), t) = 0. Differentiating the latter equation and using the chain rule, one can
get

�t + ∂� ⋅ 
t = 0 , (1.5)

where∂ is the gradient of a scalar 2D function. Assuming that� < 0 inside the zero-level
set and� > 0 outside, the inward unit normal vector to the level set curve isn̂ = − ∂�

∣∂�∣ .
Using equation (1.4), we can rewrite equation (1.5) as

�t = F (�)∣∂�∣ , (1.6)

where the curvature is given by

� = div

(
∂�

∣∂�∣

)

= ∂ ⋅ ∂�∣∂�∣ =
�11�

2
2 − 2�1�2�12 + �22�

2
1

(�21 + �22)
3/2

,

where�i and�ij are the first and second derivatives with respect to Cartesian coordinates
labeled byi, j ∈ {1, 2}. A common choice of the level set function� is the signed distance
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function from each point of the grid to the zero level set:�(x) = d(x, ∂R). That constraint
must be checked and satisfied for the initial curve, and at every few iterations during the
evolution process because it can be violated (Adalsteinsson and Sethian, 1999; Sethian,
1999).

1.2.2.3 Geometric active contours

Caselles et al.(1993) introduced a geometric active contour model based on the curve
evolution theory and level set method. The model takes the following form:

�t = g(∣∂I∣)(�+ F0)∣∂�∣ ,

whereg is a general edge detector,g : ℝ+ → ℝ
+ such thatg being a strictly decreasing

function andg(r) → 0 asr → ∞, which can take the form

g(∣∂I∣) = 1

1 + ∣∂(G ∗ I)∣ ,

whereG∗I is the convolution of the imageI with the GaussianG. If F0 > 0 then the curve
shrinks and ifF0 < 0 then the curve expands. The multiplicative termg(∣∂I∣) permits to
stop the curve evolution when edges,i.e. high gradients, are met. This model can work
well if g is very close to0, i.e. when objects have good contrast, which is not the case in
practice if one is dealing with complex images.

Kichenassamy et al.(1995) analyzed the geometric active contour model from a curve
evolution point of view and proposed some modifications based on gradientflows relative
to certain new feature-based Riemannian metrics. The feature of interest isconsidered to
lie at the bottom of a potential well which leads to a more efficient attraction of thecurve
to the desired feature.

1.2.2.4 Geodesic active contours

To remedy the problem of the geometric active contour model,Caselles et al.(1997) pro-
posed an extension of it called geodesic active contour model. The proposed approach is
based on the relation between active contours and the computation of geodesics or mini-
mal distance curves which lay in a Riemannian space whose metric is defined bythe image
content. It has been proved that the minimization of a simplified snake model without the
second order term is equivalent to the minimization of the length of the contour multiplied
by an edge detector. Previous models of geometric active contours are improved, allowing
stable boundary detection when their gradients suffer from large variations, including gaps.
The contour evolution equation is


t = g(∣∂I∣)(�+ F0) n̂− (∂g ⋅ n̂) n̂ ,

and the level set implementation is

�t = g(∣∂I∣)(�+ F0)∣∂�∣+ ∂g ⋅ ∂� ,

The constant velocityF0 pushes the curve inwards (or outward) and it is crucial in the
above model in order to allow convex initial curves to capture non-convexshapes. Often
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in real images, the functiong has different, non-zero values at different locations along
the boundaries. The second term allows to stop the curve to the boundariesof the objects
specially when gradient values include gaps. Other attempts to solve a similar problem
were studied by (Kichenassamy et al., 1996; Yezzi et al., 1997).

Paragios et al.(2004) combined the geodesic active contour flow and the gradient vec-
tor flow external force for snakes. The resulting motion equation is considered within a
level set formulation. The flow implementation exhibits robust behaviour and has fast con-
vergence rate.

Reinbacher et al.(2010) proposed an anisotropic weighted total variation energy with
an additional global volume constraint to segment thin and elongated structures like artic-
ular cartilage directly in 3D. This approach is an extension of the geodesic active contour
model. The volume constraint defines a minimum size for the resulting segmentation. The
segmentation model works interactively, allowing the user to incorporate prior knowledge
into the segmentation process and correct the segmentation results. The model is solved in
a globally optimal manner, and the algorithm is faster compared to manual segmentation
methods.

1.2.2.5 Area and length active contours

Siddiqi et al.(1998) used the geodesic active contour model and added to it a new area term
weighted by the edge detection function. The new weighted contour length and contour
interior area framework enforces and improves the attraction of the contour toward the
desired object boundary. The convergence of the new model is fasterthan the geodesic
active contour model. The level set implementation is (Siddiqi et al.(1998))

�t = � {g(∣∂I∣)�∣∂�∣+ ∂g ⋅ ∂�}+ 1

2
(∂ ⋅ (x�)) ∣∂�∣ ,

where� is a positive factor in order to make the units compatible;x� = (x1�, x2�) and
x = (x1, x2) ∈ Ω.

1.3 Region-based deformable contours

Edge-based deformable models described so far use local edge information to attract the
active contour toward the object boundaries. This approach describes the data near the
region boundary; and it fails to distinguish between the interior and the exterior of regions,
and thus spatial information about pixel is lost except when the pixels are close to an
edge or a boundary. Region-based models overcome these limitations by identifying each
region of interest by the use of certain global region features to guide themotion of the
active contour. The regions are described by statistical features suchas the intensity, color,
histogram, texture, or motion.

1.3.1 Mumford-Shah functional model

Mumford and Shah(1985, 1989) introduced an optimal approximation of an image as
a partition of regions of piecewise smooth intensities in order to solve the segmentation
problem. In a variational formulation, for a given imageI, the sought solution(u, ∂R) is
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defined such thatu is a piecewise smooth approximation of the imageI and the boundary
∂R is a 1D subset of edges. The energy functional takes the following form

E(u, ∂R) =

∫

Ω
(u(x)− I(x))2 dx+ �

∫

Ω∖∂R
∣∂u∣2 dx+ �L(∂R) ,

whereL(∂R) is the length of the region boundary∂R. The first term encouragesu to be
an approximation of the imageI; the second term makesu smooth within each disjoint
region; and the third term enforces the boundary∂R to have minimal length. Thus, the
minimizing functionu is a piecewise smooth approximation of the imageI. Two problems
are then combined within the same functional: image denoising and segmentation. In the
case of the latter, the boundary∂R defines a partition of the image domainΩ into disjoint
regionsΩi, i.e.Ω =

∪

iΩi, where each is approximated by a smooth functionui : Ωi → ℝ.
A cartoon model can be derived from the above functional by considering � → ∞

which leads to the functionu being a piecewise constant function (Mumford and Shah,
1989). The cartoon model takes the form

E(u, ∂R) =
∑

i

∫

Ωi

(ui − I(x))2 dx+ �L(∂R) ,

where in this caseui is a constant value. The spatially discrete form is related to Potts
model (Potts, 1952). In the case of a binary segmentation (i ∈ {1, 2}), the discrete version
was introduced by (Ising, 1925; Lenz, 1920) for modelling ferromagnetism.

Chan and Vese(2001a) proposed a binary segmentation deriving from the Mumford-
Shah model. In this case, the approximationu is reduced to two values measuring the
average ofI in the interior and exterior of the segmented region. The level set derivation
of the energy functional has this form

E(�, cin, cout) =

∫

Ω
dx

{

�∣∂H�(x)∣+ �in (I(x)− cin(�(x)))
2H(�(x))

+ �out (I(x)− cout(�(x)))
2 (1−H(�(x)))

}

,

whereH is the Heaviside function;cin andcout are the averages ofI inside and outside
the evolving contour. This formulation does not constrain the initial curve to be close to
object boundaries or edges as opposed to edge-based approachesbecause the evolution of
the curve depends on the statistics of the interior and exterior of the regionsand not just on
the object boundaries.

Chan and Vese(2001b) generalized the active contour model without edges in (Chan
and Vese, 2001a) by considering a piecewise smooth function instead of a constant func-
tion, allowing to model the intensity inside each region.Vese and Chan(2002) extended
the work in (Chan and Vese, 2001b) to a multiphase level set framework for image segmen-
tation. The key idea is to define different level set functions to represent the region bound-
aries. This formulation overcomes the problems of vacuum and overlap; it needs only
log2n level set functions forn phases in the piecewise constant case; complex topologies
are easily represented; and two level set functions are sufficient to describe any partition
using the Four-Color Theorem (Appel and Haken, 1996).
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1.3.2 Region-based Bayesian inference

The segmentation problem is in general very hard. Prior knowledgeK about the region of
interestR is then provided in one way or another to efficiently segment a given imageI. A
probabilistic approach can be adopted to deal with this problem.

Letℛ, ℐ andK being the set of all possible regions, images and knowledge respectively.
Using the Bayes’ theorem, we can construct a posterior probability P(R∣I,K) as

P(R∣I,K) =
P(I∣R,K)P(R∣K)

P(I∣K)
,

where P(I∣R,K) is the likelihood probability of the image dataI givenR andK, and
P(R∣K) is thea priori probability of the region of interestR given the knowledgeK. The
former links the region to the image data. To solve the problem of segmentation, aloss
functionL : ℛ × ℛ → ℝ is then needed. In general we want to find the regionR̂ that
minimizes the value

< L(R̂) >=

∫

ℛ

dR L(R̂, R)P(R∣I,K) .

Apart from some special cases, where one can use special loss functions (Jermyn,
2000), in general in the absence of any information except the preconditions for proba-
bility theory, the delta function is the only

obvious loss function,L(R̂, R) = −�(R̂, R). So, the above equation becomes
< L(R̂) >= −P(R̂∣I,K), and minimizing the mean loss functionL is then equivalent
to maximizing thea posterioriprobability:

R̂ = argmax
R∈ℛ

P(R∣I,K) .

This is the so-called maximuma posteriori(MAP) estimate. In practice, we will deal with
negative log-probabilities,i.e.a total energyE(R; I,K) that is the sum of a likelihood term
EI(I, R,K) and a prior termEP(R,K). We then end up with an energy minimization
problem:

R̂ = argmin
R∈ℛ

E(R; I,K)

= argmin
R∈ℛ

EI(I, R,K) + EP(R,K) .

This probabilistic formulation of the region-based segmentation problem was adopted
in many papers (Ben Ayed et al., 2006; Besag, 1986; Geman and Geman, 1984; Ising, 1925;
Jehan-Besson et al., 2003; Leclerc, 1989; Paragios and Deriche, 2002a; Tsai et al., 2001).
We refer toCremers et al.(2007) for a more complete review of statistical approaches to
level set segmentation.

Zhu and Yuille(1996) described an equivalence between the Mumford-Shah func-
tional in the case of cartoon model and the Bayesian MAP estimate.Brox and Cremers
(2009) completed the study in (Zhu and Yuille, 1996) to the case of piecewise smooth ap-
proximations and showed that the Mumford-Shah functional can be interpreted as a first
order approximation of a specific MAP estimate, where pixel intensities are not, as usual,
identically distributed but where the distribution varies with the position in the image.
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(Paragios and Deriche, 2002a, b) introduced a new framework to deal with frame par-
tition problems in computer vision: geodesic active region model. The idea is to combine
an edge-based functional deriving from the geodesic active contourmodel (Caselles et al.,
1997) and a region-based Bayesian inference deriving from a MAP estimate.The mini-
mizing curves are constrained: to be regular and smooth; to be attracted by the boundary
points (edge-based information); and to create a partition that is optimal according to the
expected region properties of the different hypotheses (region-based information).Para-
gios and Deriche(2002a) made two assumptions to simplify the problem: the contours
are equiprobable; and there is no correlation between the regions labeling, and all the pix-
els within each region are identically and independently distributed. The geodesic active
region functional, to be minimized, is

E(∂R) = −
∫

Ωin

ln(Pin(I(x))) dx−
∫

Ωout

ln(Pout(I(x))) dx+ �L(∂R) ,

where Pin and Pout are the likelihood probabilities of the interior and exterior of the contour
∂R. The level set representation of the evolution equation takes the form

�t =

{

ln
Pout(I)

Pin(I)
+ ��

}

∣∂�∣ .

In (Paragios and Deriche, 2002a), the likelihood probabilities follow the normal dis-
tribution and their parameters are learnt in advance in a supervised way.Rousson(2004)
also used normal distributions to model the likelihoods, but the parameters aredynami-
cally calculated during contour evolution. Using the form of the Heaviside function in the
Chan-Vese model, the level set representation of the evolution equation is

�t =

{

−(I − cin(�))
2

2�2in(�)
+

(I − cout(�))
2

2�2out(�)
+

1

2
ln
�2out(�)

�2in(�)
+ ��

}

�(�) ,

where the parameterscin, cout, �2in and�2out are updated at each iteration using their explicit
expressions given in (Chan and Vese, 2001a; Rousson, 2004).

1.4 Shape priors

So far, we have reviewed the pioneering active contour methods, whether edge-based or
region-based, which drive curve evolution based on information (e.g.intensity, color, tex-
ture, motion) from the image, and having some regularization terms to ensure thesmooth-
ness of the region boundary during the evolution process. In real-world applications, the
image quality is often degraded by noise or partial occlusion; or the contrast between the
object and the background is low. This makes these methods unsuccessful because of the
lack of prior information they contain about the object to be segmented.Grenander et al.
(1991) is the pioneer of the idea that a Bayesian approach allows the incorporation of so-
phisticated and specific shape priors of the object into the model. As a result,there has
been a great deal of work on models incorporating more sophisticated shape knowledge or
information.
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1.4.1 Reference shape-based models

One category of shape priors is based on reference shapes. The key idea is to seek a region
which has a ‘similar’ shape to the reference region(s). Most of this workmodels an ensem-
ble of regions as perturbations of one or more reference region(s) (Chen et al., 2001, 2002;
Cohen and Cohen, 1996; Cootes and Taylor, 1992; Cremers, 2007, 2008; Cremers and
Soatto, 2003; Cremers et al., 2001, 2002, 2003, 2006; Foulonneau et al., 2003; Gastaud
et al., 2004; Klassen et al., 2004; Leventon et al., 2000; Riklin Raviv et al., 2004, 2007;
Rousson and Paragios, 2002; Srivastava et al., 2003; Staib and Duncan, 1992; Székely et al.,
1996; Tagare, 1997; Taron et al., 2009; Vaillant et al., 2004; Vinson et al., 2001; Yuille et al.,
1992). This is a very flexible approach, and it works well for many applications. We will
recall some of this work in the following.

Cohen and Cohen(1996) introduced a hybrid hyperquadric model by describing im-
plicitly some local features in a global shape model. It incorporates global and local prop-
erties of the shape by means of its parameters, independently of the resolution of the data.

Leventon et al.(2000) extended geodesic active contours (Caselles et al., 1997;
Kichenassamy et al., 1995) by incorporating shape information into the evolution process.
A statistical shape model over a training set of curves is firstly constructedby the use of
principal component analysis (PCA). PCA is applied to a set of shapes described by signed
distance functions. The result is then the derivation of the most significantmodes of shape
deformations. The segmentation procedure is performed in two steps: the active contour
is evolved both locally, based on image gradients and curvature, and globally to a MAP
estimate of shape and pose. The latter contains the influence of the shape information.

Chen et al.(2001, 2002) introduced a model which incorporates shape priors in geo-
metric active contour models. Their model differs from the model introduced by Leventon
et al. (2000) because they use a non-probabilistic approach. The key idea is to deform a
geometric active contour with a vector field that it derives from the shape prior. The shape
prior takes the form

EP(
, T ) =

∫

S1

d2 (T (
(s))) ∣
̇(s)∣ ds

whered(x) = d(
∗, x) measures the distance of the pointx to the shape template
∗ and
T is scale, translation and rotation transform. The model incorporates an edge-based data
term which makes it sensitive to initialization.

Cremers et al.(2001) introduced a model which incorporates statistical shape knowl-
edge based on the Mumford-Shah functional. The contour is described explicitly as a
closed spline curve. A set of training shapes is used to construct a priorshape model by de-
scribing the spline control point vectors by a Gaussian probability distribution. This shape
energy term is then added to the Mumford-Shah energy functional. The spline representa-
tion describes a shape efficiently but topology change is constrained.

Rousson and Paragios(2002) proposed a model that incorporates global/local shape
properties of the object of interest. Firstly, the model is constructed directlyin the level set
representation using a set of samples. The shape prior energy is defined, in the level set
formulation, as

EP(�, T, s) =

∫

Ω

{
(s�(x)− �M (T (x)))2

2�2M (T (x))
+ ln (�M (T (x)))

}

H(�(x)) dx ,
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�M (x) and�2M (x) are a representative shape and a confidence map respectively;T and
s are a transformation and a scalar factor. The first term minimizes the distancebetween
the evolving surface and the shape model, and the second term penalizes parts of the shape
with low confidence.

The work in (Rousson and Paragios, 2002) has the following drawbacks. Firstly, the
energy integral is restricted to the positive part of the level set function yielding a bias
toward small shapes. Secondly, the dissimilarity distance incorporated into themodel is
not symmetric. A symmetric distance was proposed byCremers and Soatto(2003) to
overcome these limitations:

EP(�, T ) =

∫

Ω
(�(x)−Ψ0(T (x)))

2

[
ℎ(�(x)) + ℎ( 0(T (x)))

2

]

dx ,

whereℎ is the normalized Heaviside function. This symmetric pseudo-distance measures
dissimilarities and averages the squared deviation of shapes over both areas �(x) and
Ψ0(T (x)); Ψ0 is the reference shape. The proposed distance measure has two advantages:
first it is symmetric and second it does not depend on object area due to thenormalization.

Riklin Raviv et al. (2004) proposed a new model which incorporates a single prior
image and developed a variational segmentation framework which is pose invariant. The
key idea is the special form of the shape prior and the integration of the projective trans-
formations via unleveled sections. Prior knowledge is represented by a generalized cone,
which is constructed based on the known instance of the object contour. The level set
function and the projective transformation parameters are estimated in alternation by mini-
mization of the energy functional. The proposed shape prior measures a distance between a
planar section of the generalized cone and the zero-crossing of the evolving level set func-
tion. Riklin Raviv et al.(2007) introduced an algorithm to generalize the previous work to
an eight-parameter projectivity model.

Rousson and Paragios(2007) introduced a 3D-wise probabilistic level set formulation
to account for prior knowledge and to address the problem of similarity invariant shape
constraint. The major difference between this work and (Rousson and Paragios, 2002) is
that the latter measures similarity between the evolving level set and the shape model, and
the former between the evolving level set and the image. The pose parameters are derived
guided only by the image data, which makes the algorithm much faster and allows robust
estimation of parameters.

The methods listed so far are static in time.Cremers(2006) introduced temporal sta-
tistical shape models. The authors constructed a shape probability, at a given time, which
depends on the shapes observed in the past. The dynamical shape modelis based on a
Bayesian formulation using level set representation. The governing equation deforms the
interface by utilizing both the radiometric information of the current image as wellas a dy-
namical shape prior which uses the segmentations obtained by the precedingframes. The
image energy term is taken to be

EI(���t, �t) =

∫ {(
(It − �1)

2

2�21
+ ln�1

)

H����t,�t

+

(
(It − �2)

2

2�22
+ ln�2

)

(1−H����t,�t)

}

dx ,
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where����t,�t ≜ �0(T�tx)+���
t
t (T�tx); T is a transformation;�0 denote the mean shape of

a temporal sequence of training shapes(�1, ..., �n);    = ( 1, ...,  n) is the set of the first
n eigenmodes obtained by PCA; and�t is the transformation parameters. The dynamical
shape model takes the form

EP(���t, �t) =
1

2
vvvtΣ−1vvv ,

wherevvv = ���t − ��� − A1�̂��t−1 − A2�̂��t−2: the shape vectors���t of a sequence of level
set functions are approximated by a Markov chain of second order.��� is the mean vector
of the noise andAi are the transition coefficients. (Cremers, 2007, 2008) extended the
work in (Cremers, 2006) and constructed a nonlinear dynamical shape prior. A mixture of
autoregressive models was used to approximate the temporal evolution of theeigenmodes
of the level set function.

1.4.2 Higher-order active contours and phase fields

The family of reference shape-based prior models referred in the previous section has
shown its success in efficiently segmenting objects from images and sequences of images
in many real-world application domains. Multi-component shapes are handlednaturally
by level set representations where splitting and merging are allowed duringthe evolution
process. This family of models constrains the topology of the region soughtto be similar
to that of the reference region(s).

However, in many real-world application domains, the region sought can have arbitrary
topology (e.g.if the entity consists of an unknown number of similar objects). In this case,
the sought region (or shape) cannot be described by perturbations around a finite number of
points in the space of regions. So, reference shape-based prior models are not appropriate
for this problem because they assume that the topology is knowna priori.

One particular problem that falls into this new category of objects (i.e. that have un-
known topology) is the extraction of ‘network’-shaped regions (i.e. regions composed of
branches that join together at junctions),e.g. road or hydrographic networks in remote
sensing images, or vascular networks in medical images. Such network regions may have
several connected components and may be multiply connected,i.e. may have many loops.
A second problem is tree crown extraction from images where the number oftrees is un-
knowna priori, which makes the topology of the region unknown too.

As a result, a new generation of active contours incorporating specific and sophisticated
shape priors is introduced: higher-order active contours (HOACs) embedded in a phase
field framework.

1.4.2.1 Higher-order active contours

HOACs were introduced byRochery et al.(2006) in order to incorporate sophisticated and
specific shape priors without constraining topology, as opposed to reference shape-based
models. This new generation of active contours incorporates non-trivial shape informa-
tion about the region being modelled via explicit long-range interactions between region
boundary points, thereby removing the need for reference regions. In addition to boundary
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smoothing terms, a long-range interaction term is added:

EP(R) = �L(R) + �A(R) − �

2

∫∫

(S1)2
ds ds′ 
̇(s) ⋅ 
̇(s′) Ψ

( ∣
(s)− 
(s′)∣
d

)

,

whereR is a region (i.e. shape) in the image domain;L is region boundary length;A is
region area;
 is an arbitrary parametrization of the boundary ofR; 
̇ is its derivative,
i.e. the tangent vector field;Ψ(z) defines the interaction between two boundary points
separated by a distancezd whered is the interaction range. The long-range interactions
described by the quadratic term (i.e. the third term) are responsible for the prior shape
information: they favour parallel (anti-parallel) tangent vectors when theinner product is
positive (negative). The presence of HOAC term penalizes a large number of false contour
configurations, and eliminates many local energy minima, thanks to the incorporation of
more sophisticated prior knowledge. HOACs are more robust to noise than conventional
active contours, do not require estimation of the pose of the shape, and permit a generic
initialization.

The HOAC prior energy defined byRochery et al.(2006) was used to model network-
shaped regions. However, it was soon discovered that it could be used to model other
families of regions too, notably a ‘gas of circles’ (regions composed of anarbitrary number
of approximate circles) introduced byHorvath et al.(2009), simply by varying the model
parameters.

The contour representation suffers from a number of drawbacks, both for classical ac-
tive contours in general, and for HOACs in particular:

∙ an initial region, as with other active contour approaches, is needed forthe gradient
descent algorithm. Although the inclusion of more specific prior knowledge means
that a generic, hence automatic initialization can be used, the final result still depends
on this choice;

∙ a level set representation is used to perform the gradient descent evolution, and this
does not enable the formation of handles (loops). Road networks, for instance, can
have a complex topology with many handles, and the choice of initialization affects
which of these are detected. This is a serious drawback in our work because we focus
on road and hydrographic network extraction from images;

∙ the quadratic term produces nonlocal forces, whose evaluation requires boundary
extraction and integration followed by velocity extension at each iteration of the
algorithm, and this is very time consuming.

To overcome these drawbacks,Rochery et al.(2005) reformulated HOACs as nonlocal
‘phase fields’ for network modelling. In chapter3, we will recall this model.

1.4.2.2 Phase fields

The phase field framework has a long history in physics for modelling many phenomena.
We refer to (Chen, 2002; Gonzalez-Cinca et al., 2003; Thornton et al., 2003) for reviews
of some of the phase field methods existing in the state-of-the-art. Suppose thefollowing
physical phenomenon: an interface moving with a velocity proportional to thegradient
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of some field (e.g. temperature, pressure...). This leads to a problem of non-equilibrium
pattern formation during the deformation. The interface evolves in time and space, making
the problem hard to solve analytically. Phase field models are an alternative solution. They
describe a moving boundary problem as a set of partial differential equations which are
significantly easier to manipulate.

The interface is then described by the different phases of the system: theboundaries
of the phases are the interface. A phase field function is built to describe the regions (i.e.
phases). It is a continuous function in space which maps each phase to a distinct value.
So the transition from one phase to another is represented by a change in the value of the
phase field function. An interface between phases is then produced, and the range of value
changes corresponds to the interface width. The whole domain is treated simultaneously,
and an implicit representation of regions, and so the interface, is described by the phase
field function. Describing the interface implicitly allows more topological freedom during
the evolution. During the last decade, the image processing and computer vision commu-
nities have been interested in the topic of phase fields in order to describe efficiently phase
transitions within the image domain.

Samson et al.(2000) introduced a model based on phase field models derived from the
phase transition theory in mechanics. The variational-based model was applied success-
fully on both synthetic and satellite images to segment images into homogeneous regions,
where each is described by a distinct value of the phase field function.

Grossauer and Scherzer(2003) introduced a phase field model for ‘restoration-
inpainting’. The authors used the complex Ginzburg-Landau equation which enables,
in a straightforward way, the efficient restoration of higher dimensional data, to improve
sparsely sampled volumetric data and to fill in fragmentary surfaces.

Beneš et al.(2004) proposed an algorithm for image segmentation based on the solution
of the Allen-Cahn equation. The model is seen as a regularization of the level set motion
by mean curvature, where a force is defined so that the initial level set is close to the object
of interest.

Aubert et al.(2005) introduced a novel model for detecting in an image singularities of
co-dimension greater than or equal to two. This is equivalent to detecting isolated points
in a 2D image or points and curves in a 3D image. The proposed model is basedon
Ginzburg-Landau functionals, and it uses a diffusion coefficient depending on the image
data in addition to a data term.

Here, we list the important advantages offered by the phase field framework:

∙ the space of phase field functions is linear, thus facilitating model building, learning,
and analysis;

∙ gradient descent uses only the partial differential equation resulting from an energy
functional, with no need for ad hoc regularization or reinitialization; numerical im-
plementation is simple;

∙ a completely neutral initialization for gradient descent is possible;

∙ components of a region can be created or destroyed anywhere in the imagedomain;
handles (i.e. loops) can be created and destroyed in the interior of existing regions
(this is mandatory for ‘complex’ network modelling);
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∙ HOAC terms require no boundary extraction, integration, or velocity extension; in-
deed prior terms are local (i.e. diagonalized) in the Fourier domain; the algorithm is
fast.

1.5 Line network extraction

Due to the continuous increase in the number and size of remote sensing images, the prob-
lem of road and hydrographic network extraction from images is continuously challenging.
The main reason new tools have to be developed to solve this problem is the resolution of
images. Each range of resolution needs different tools for efficient extraction. The second
difficulty is the huge number and size of images which, requires automatic, fast, robust and
efficient methods for network extraction.

(Fortier et al., 1999; Mena, 2003; Quackenbush, 2004) proposed an almost complete re-
view of the existing methods for road network extractions. They consider different image
resolutions (low, medium and high resolutions), and different image complexities (rural
area, semi-urban area, and urban area). Many types of sensors have also been consid-
ered: the image data includes panchromatic imagery, infra-red band, colorimagery (RGB),
multi-spectral imagery, hyper-spectral imagery (Hyperspectral Digital Imagery Collection
Experiment, HYDICE), synthetic aperture radar imagery (SAR), light detection and rang-
ing imagery (LIDAR), and so on. In the following, we will briefly review someof the
existing representative works for road and hydrographic network extraction from images.

1.5.1 Road network extraction

1.5.1.1 Active contours

Line networks have characteristic geometric properties which need strongand high-level
knowledge provided by a human being. Active contour-based models provide a very flexi-
ble way to incorporate either generic or specific prior knowledge about the object in ques-
tion.

(Laptev et al., 2000; Mayer et al., 1998) proposed a method which takes advantage
of the scale-space behaviour of roads in combination with geometrically constrained edge
extraction by the use of snakes. Firstly, the method starts by extracting lines incoarse
scale which are less precise but also less disturbed by cars, shadows,etc., than features
in fine scale. Secondly, these extracted lines initialize ribbon snakes in fine scale which
describe the roads as bright, more or less homogeneous elongated areas. The ribbons which
minimize the energy are with constant width and considered as salient roads.The model
closes gaps between adjacent ends of salient roads. However, this method is restricted to
the case of line networks where branch widths are approximately the same.

Peteri et al.(2003) introduced an algorithm for road extraction from high resolution
satellite images. A topologically correct graph of the road network is first extracted, and
roads are then extracted as surface elements. The extraction algorithm makes use of specific
active contours (snakes) combined with a multiresolution analysis for reducing geometric
noise. The extraction of roads is made by firstly extracting the road segmentsand then the
road intersections. However, this method fails to extract sharp edges of intersections partly



34 Chapter 1. State-of-the-art

due to their poor image definition, and the topology of the correct graph is critical to the
extraction.

Youn and Bethel(2004) assumed that the road network and block pattern in a city
have a semi-regular grid pattern. The image is then segmented according to dominant road
directions. The road lines are detected to construct initial approximations for the snake
refinement. Finally, road edges are refined by applying adaptive snakes.

Rochery et al.(2006) introduced a higher-order active contour (HOAC) model to ex-
tract road networks from medium resolution optical images. The model is described in
section1.4.2. Based on the HOAC family,Peng et al.(2008a, b, 2010) proposed new shape
priors for road network extraction from very high resolution (VHR) satellite images. The
model incorporates first a nonlinear nonlocal HOAC term, and then an additional linear
nonlocal HOAC term to improve the computational speed. Both terms allow separate con-
trol of branch width and branch curvature, and encourage network branches to elongate.
The linear term has several advantages: it is more efficient, and it is able tomodel multi-
ple widths simultaneously. This work solves the problem of urban road networks, but the
solution involves favouring long straight branches, which is not well adapted to non-urban
road and hydrographic networks.

1.5.1.2 Markov random fields and marked point processes

Markov random fields provide an appropriate way to model contextual dependencies be-
tween entities. MRF based models have been widely used to solve the problem of extrac-
tion of line (road) networks.

Stoica et al.(2004) assumed that roads form a thin network in the image leading to
approximate a network by connected line segments. The authors proposeda model based
on a point process able to simulate and detect thin networks. The model favours aligned
segments and penalizes superposition. The image data term is based on statistical hypoth-
esis tests. A simulated annealing algorithm, based on a Monte Carlo dynamics forfinite
point processes, is used to avoid local minima.

Lacoste et al.(2005) extended the work in (Stoica et al., 2004), and used an initial
segmentation by Markov random field as a seed from which to build a hierarchical model
of the network using a marked point process. This works well when the image is sufficiently
clean for the MRF segmentation to capture most of the network, and when the network has
a tree structure.

(Lacoste et al., 2004, 2010) models the network region using a marked point process of
polylines. The polylines can better fit sinuous line networks than models based on segments
through a relevant construction of the data term derived from the image. This model works
well when the network has constant width over significant distances, since each polyline
has a fixed width.

1.5.2 Hydrographic network extraction

1.5.2.1 Geometry of river networks

(Dodds and Rothman, 2000a, b, c) proposed a geometric representation for modelling hy-
drographic networks. The idea is to study geometric properties of a hydrographic network
such as scaling laws which describe the self-similarities between different sub-basins, the
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fluctuations and deviations of main and secondary streams of the basin, andfinally the
connectivity between different network channels. The authors defined different geometric
measures of the basin such as the length and the area of a drainage region. These mea-
sures are modelled by empirical probability densities obtained by statistical measures from
a training set of river networks.

1.5.2.2 Fractal geometry

(Cieplak et al., 1998; Rodríguez-Iturbe and Rinaldo, 1997; Tarboton, 1996) introduced
models of river networks based on fractal geometry. The structure andscaling of river net-
works characterized using fractal dimensions related to Horton’s laws (Horton, 1932, 1945)
is assessed. These papers have shown the importance of the fractal aspect of river networks.
Dimension estimates using the Hortonian scaling system are biased and do not admit space
filling. Tarboton(1996) solved this problem by characterizing the scaling and fractal prop-
erties of river networks.

1.5.2.3 Digital elevation models

(Coppola et al., 2007; Mantilla and Gupta, 2005; O’Callaghan and Mark, 1984) introduced
models based on the digital elevation model (DEM) for hydrographic network extraction
from remote sensing images. The key idea is to use the elevation information at each point
in the region occupied by the hydrographic network: the depth information allows the
determination of the direction of the flow running along the network branches. This family
of techniques is complementary to that based on radiometric information.

1.5.2.4 Multiscale and multiresolution analysis

Dillabaugh et al.(2002) introduced a method for semi-automatic extraction of rivers from
high-resolution images. A two stage, multi-resolution approach is employed. Firstly, a
line detector technique developed byFischler et al.(1981) is used to track rivers in lower
resolution data. Secondly, these initial river estimates are refined using theactive contour
model (Kass et al., 1988). This work uses an interesting multiscale approach, but relies on
user input to specify network endpoints, and is limited in the network topologiesthat it can
find.

Mason et al.(2006) described a semi-automatic technique developed to extract net-
works from high-resolution LiDAR data. The method is performed in a multi-level
knowledge-based approach. Firstly, low-level algorithms extract channel fragments based
mainly on image features. Secondly, a high-level processing step improvesthe network us-
ing domain knowledge. The approach adopted at low level uses multi-scale edge detection
to detect channel edges, then associates adjacent anti-parallel edgestogether to form chan-
nels. The segmentation algorithm works well on high-resolution LiDAR data. This method
is not appropriate for aerial photographs because they are not cleanenough compared to
the LiDAR data.Lohani et al.(2006) extended this work to the extraction of channels from
aerial photographs. These methods failed to extract some of the minor channels because
the spectral characteristics of channel and non-channel areas aresimilar.
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1.6 Conclusion

In this chapter, we have given a brief survey of active contours in segmentation as well
as techniques for road and hydrographic network extraction from images. Active contour
methods are categorized into two different classes: edge-based and region-based. The for-
mer has many limitations because it considers local information around the boundary of the
object in question. Between the two types of edge-based active contours, geometric active
contours have many advantages over parametric active contours, suchas computational
simplicity and the ability to change curve topology during evolution. The introduction of
region-based methods tends to give better segmentation results because they use global in-
formation about the object. The corresponding energy functionals tendsto have fewer local
minima which makes reasonable the use of local optimization algorithms. Moreover, we
have mentioned a family of active contour methods which incorporates specific knowledge
about the shape of the object: the so-called shape priors. Our interest fits this family of
methods because we aim to model network-like regions which have complex shapes and
need specific and sophisticated shape priors for automatic (or semi-automatic) solution of
the problem of extraction.

We also made a brief survey of techniques for the particular problem of road and hydro-
graphic network extraction from images. Due to the variety of the available data (particu-
larly VHR images) and the complexity they contain, the problem of line network extraction
is still very challenging and continues to attract the attention of computer vision community
and the remote sensing community.

None of the existing methods or techniques solve the particular problem we are dealing
with: extraction of hydrographic networks from VHR satellite images. The maindifficul-
ties are as follows: the network has an arbitrary topology unknowna priori; significant
change of branch widths at network junctions; different network branches may have signif-
icantly different widths; the background and the object may have many pixels with similar
local properties leading to many pixels from the background being classified as network
and vice-versa; the visual hydrographic network in the image appears with many gaps due
to the presence of noise (e.g. trees, bridges...). Our main aim is then the construction of
new shape priors which incorporate specific knowledge so that characteristic geometric
properties of hydrographic networks are favoured.
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Phase diagram of a HOAC model

“You can tell whether a man is clever by his answers. You can tell whethera man is wise
by his questions.”

— Naguib Mahfouz
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In this chapter, we briefly recall the HOAC model introduced byRochery et al.(2006),
and show that this model favours two stable configurations, namely line network and cir-
cular structures, for some parameter values. Firstly, we conduct a stabilityanalysis of a
long bar via a Taylor series expansion up to second order of the HOAC model around a
long bar. Secondly, we recall the stability calculations for a circle performed by (Horvath
et al., 2006a, b, 2009). The result of the stability analysis is illustrated on a ‘phase diagram’
leading to a good selection of parameter values giving stable circles and stable bars.
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2.1 Introduction

2.1.1 Higher order active contour (HOAC) model

The prior HOAC energy introduced byRochery et al.(2006) is

EC,P(R) = �CL(R) + �CA(R)

− �C
2

∫∫

(S1)2
dt dt′ 
̇(t) ⋅ 
̇(t′) Ψ
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whereR is a region in the image domain;L is region boundary length;A is region area;

is an embedding, and an element of the equivalence class[
] = {
� : � ∈ Diff(S1)} where
Diff(S1) is the set of diffeomorphisms ofS1, representing the region boundary and param-
eterized byt ∈ S1 whereS1 is a circle;
̇ is its derivative,i.e. the tangent vector field;Ψ(z)
defines the interaction between two boundary points separated by a distance zd; and�C,
�C, �C, andd are real parameters. The long-range interactions described by the quadratic
term (i.e. the third term in equation (2.1)) are responsible for the prior shape information:
they favour parallel (anti-parallel) tangent vectors when the inner product is positive (neg-
ative). We notice that the energy functional is invariant to Euclidean transformations (i.e.
translation and rotation). The length and the area are given by
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where∧ is the cross product and the interaction functionΨ(z) is (cf. Rochery et al.(2006))
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if 0 ≤ z < 2

0 if z ≥ 2 .
(2.2)

Figure2.1shows the profile ofΨ given by equation (2.2).
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Figure 2.1: Behaviour of the interaction functionΨ.
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Figure 2.2: Evolution of an initial contour (rounded square) for different parameter values
of the HOAC model given by equation2.1using gradient descent algorithm.

2.1.2 Problem statement

We use gradient descent algorithm to seek minima of the energy given by equation (2.1).
Figure2.2shows different behaviours observed during gradient descent. For the three ex-
periments, we use the same initial configuration: a rounded square. Each row corresponds
to different parameter values and time runs from left to right. The first rowshows that the
initial contour vanishes as in the case of a classical active contour model, (i.e. �C = 0),
because the quadratic term is weak enough compared to the length and areaterms. For the
second row, the stable configuration is made up of a set of arms, of approximately constant
width, joined at junctions. The third row shows that the stable configuration isa set of
circles of approximately constant radius.

Our goal in this chapter is to find the values of the parameters�C, �C, �C andd which
give a stable region (i.e. a preferred region which minimizes the energy) of the desired
type. As can be seen, at least two geometric configurations can be made energy minima
by manually tuning the parameter values, namely network shapes and regionscomposed
of circles, which are interesting for line network and tree crown extractionfrom remote
sensing images.

The problem now is how to find the model parameter values that give the desired stable
region. To do so, we introduce a stability analysis of the desired energy minimato constrain
the parameter values for network and circle modelling.

2.1.3 Methodology

The proposed methodology is to analyse the stability of a desired region whichis described
by its boundary, and the latter is described by
0. In this work, we focus on two desired
regions: a network and a circle. A circle is obviously parametrized in polar coordinate
system. Ideally, the stability of an arbitrary network shape should be analysed, but this
is an extremely complex problem. However, network shapes are essentially composed of
basic components: ‘arms’, which are relatively long and have low curvature on the scale of
their width, and ‘junctions’. The most important type of stability concerns the arms, since
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without arms there can be no network. A tractable and reasonable approximation therefore
seems to be to analyse the stability of a long, straight bar.

We first Taylor-expand the HOAC energy around a desired configuration,
0, to second
order. We then impose stability conditions: the first functional derivative should be zero
(
0 is an energy extremum) and the second functional derivative should be positive definite
(the extremum is a minimum). These conditions constrain the model parameter values.
The results can be summarized in a ‘phase diagram’ illustrating the zones in parameter
space leading to stable configurations which can be either bars or circles.The Taylor series
expansion of the energy to second order around
0 is given by
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where⟨⋅∣⋅⟩ is a metric defined over the space of embeddings, and�
 is a small perturbation
of 
0. The configuration
0 is stable if and only if�EC,P

�
 ∣
0 = 0, i.e. if 
0 is an extremum of

EC,P, and the Hessian matrix�
2EC,P

�
2 ∣
0 is positive definite,i.e.the extremum is a minimum.
Such stability analysis will become more important as region models become more

sophisticated, which is inevitable if automatic solutions to segmentation problems areto
be found. The interest of the calculation is thus not limited to the current model,or even to
HOAC models in general.

2.1.4 Dimensionless parameters

The geometric energyEC,P of the contour depends on4 parameters:�C, �C, �C andd. To
simplify the stability analysis, we notice that
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, �C, �C, �C, d) = ẼC,P(
̃, �̃, �̃, �̃, 1) ,

where�̃ = �Cd, �̃ = �Cd
2, �̃ = �Cd

2 and 
̃ = 

d . Since we can multiply the energy

EC,P by a constant while preserving the stability properties, it is sufficient to analyse the
functional

ÊC,P(
̂) = L(
̂) + �̂A(
̂)− �̂

2

∫∫

dt dt′ ˙̂
(t) ⋅ ˙̂
(t′) Ψ(∣
̂(t)− 
̂(t′)∣) , (2.4)

where�̂ = �̃/�̃, �̂ = �̃/�̃, ÊC,P = ẼC,P/�̃ and
̃ = 

d . The parameterŝ� and�̂ are di-

mensionless. The stability analysis of the geometric HOAC model given by equation (2.1)
is then equivalent to analysing the energyÊC,P given by equation (2.4). We can also think
of this as putting�C = d = 1 which is equivalent to using the parameterd as a unit length
and1/(�Cd) as an energy unit. Hereafter, this point is implicit: for example, the width of
the bar means the width divided byd and the radius of a circle means the radius divided
by d. If it is necessary, all the quantities can be multiplied by powers ofd and by�C to
restore the standard units. So, our aim is reduced to determining the phase diagram which
represents the regions of the plane(�C, �C) which satisfy the stability conditions, given in
section2.1.3, of the desired contour
0.
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Figure 2.3: Bar parametrization.

2.2 Stability analysis of a long bar

In this section, the contour
0 is a bar of lengthl and widthw0 ≪ l. Figure2.3shows the
ansatzfor the bar model. The bar parametrization
0 is


0,�(t�) =

{

x0,�(t�) = ±�lt� t� ∈ [−0.5, 0.5]

y0,�(t�) = ±�
w0

2

, (2.5)

where±� = 1 if � = 1 and−1 if � = 2. Both bar sides are parameterized separately by
two variablest1 andt2 and labeled by the parameter� as shown in figure2.3. Perturbations
of the bar are defined by tangential and normal changes:�
�(t�) = (�x�(t�), �y�(t�)).
A perturbation�x does not change the equivalence class of
0, and so it can be ignored:
�x� = 0. So, we focus only on normal perturbations of the bar.

2.2.1 Energy

The Taylor series expansion of the energyEC,P to second order is given by equation (2.3).
The second order term�2EC,P/�

2
 can be simplified if we can find a basis which diagonal-
izes it. This is possible due to the symmetry of the circleS1. Each term of the energyEC,P

is either a simple integral of a derivative of
 or a double integrals of a function ofs − s′

wheres is the curvilinear coordinate of the circle. Therefore, the operator�2EC,P/�
2
 is

a function ofs − s′, and not ofs + s′. So, this term can be diagonalized in the Fourier
basis of the tangent space at the point
0 of the contour space. Thus, the perturbations can
be expressed in terms of Fourier coefficients:�y�(t�) =

∑

k�
a�,k�e

ik�lt� wherea�,k�
is the Fourier component of frequencyk� relative to the side bar labeled by�. The spa-
tial wavelength is defined as�� = l

m�
wherem� ∈ ℤ and then the frequency becomes
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k� = 2�
��

=
2�m�

l . The perturbed contour
 is then defined as


�(t�) = 
0,�(t�) + �
�(t�)

=

{

x�(t�) = ±� l t�

y�(t�) = ±�
w0

2 +
∑

k�
a�,k�e

ik�lt� ,
(2.6)

and the Taylor series expansion to second order around the bar
0, given by equation (2.3),
can be expressed in terms of the Fourier coefficients as follows:

E
(2)
P (
) = E

(2)
P (
0 + �
)

= EC,P(
0) +
∑

�

∑

k�

a�,k�
�EC,P

�a�,k�
+

1

2

∑

�,�

∑

k�,k�

a�,k�a�,k�
�2EC,P

�a�,k��a�,k�
.

(2.7)

We will show explicitly that the matrix �2EC,P

�a�,k��a�,k�
is diagonal in the Fourier basis and

the vector�EC,P

�a�,k�
is equal to zero except fork� = 0.

The length and the area of the contour are given to second order in terms of the Fourier
coefficients by (cf. appendixA)

L(
) =
∑

�

∫

□
�

∣
̇�(t�)∣ dt�

≃ l

{

2 +
1

2

∑

k

k2(∣a1,k∣2 + ∣a2,k∣2)
}

, (2.8)

A(
) =

∫

□
1

l(y1(t1)− y2(−t1)) dt1

= l[w0 + (a1,0 − a2,0)] , (2.9)

where□
� is the domain of the parametrization
�. Computing the quadratic term and

defining the quantitiesGij , the geometric energy per unit length of the contour
, e(2)P =

E
(2)
P /l, is given by (cf. appendixA)

e
(2)
P (
) = 2�C + �Cw0 − �CG00(w0)

︸ ︷︷ ︸

e0

+ [a1,0 − a2,0] [�C − �CG10(w0)]
︸ ︷︷ ︸

e1

+
1

2

∑

k

[
∣a1,k∣2 + ∣a2,k∣2

] [
k2 + �CG20(w0, k)

]

︸ ︷︷ ︸

e20

+ (a1,ka2,k + a1,−ka2,−k)�CG21(w0, k)
︸ ︷︷ ︸

e21

= e0 + e1 (a1,0 − a2,0) +
1

2

∑

k

a†k e2 ak , (2.10)
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Figure 2.4: Different behaviours of the energye0(w0) for different values of�C and�C.

whereak = (a∗1,k, a2,k); † and ∗ indicate respectively Hermitian and complex conju-
gates. e0(w0) is the energy per unit length of a long bar of widthw0, while e1(w0) =
∂e0(w0)/∂w0 is the change in energy due to a change in width (to first order, non-zero
Fourier frequencies do not contribute).e2(w0, k) is, for each frequencyk, a symmetric
2 × 2 matrix whose diagonal and off-diagonal terms,e20 ande21, express the self-energy
of perturbations of one side, and the interaction between perturbations ofopposite sides of
the bar respectively. We notice that ifl → ∞, the sum in the equation (2.10) becomes an in-
tegral overk. We keep the sum (i.e. l big but not infinity) because the positivity verification
of e2 requires a discretization of the Fourier domain.

2.2.2 Stability conditions of a long bar

Equation (2.10) gives the Taylor series expansion to second order of the geometric energy
per unit length of the contour
 around a long bar of widthw0. We aim to find the width
w0 which minimizes this energy: the widthw0 which satisfies the two stability conditions
(i.e.e1(w0) = 0 ande2(k, w0) is positive definite∀k).

2.2.2.1 Analysis ofe0

Figure2.4 shows different behaviours of the bar energye0(w0) against the bar widthw0

for different parameter values of�C and�C. Figures2.4(d)and2.4(e)show an inflection
point with zero and non-zero first derivatives, respectively, and then in these cases the
bar vanishes. Figure2.4(f) shows that, when�C < 0, the energye0(w0) diverges ifw0

increases. We then constrain�C > 0.
For the parameter values corresponding to figures2.4(a), 2.4(b)and2.4(c), the energy
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Figure 2.5: Plot of extrema positions of the energye0(w0) against�C for �C = 1. The
solid and dashed curves correspond to minima and maxima respectively.

e0(w0) has two extrema: a minimum and a maximum. The second order term of equa-
tion (2.10), the Hessian matrixe2, separates these two extrema: ife2 is positive definite
then the extremum corresponds to a minimum, and ife2 is negative definite then the ex-
tremum corresponds to a maximum.

The parameter values corresponding to figure2.4(c)give a positive minimum energy
per unit length of the bar. In this case, the minimizer shrinks the bar until the approxima-
tion of a long bar fails. As the bar becomes shorter, the contributions of bothextremities
become important compared to the contributions of the straight part of the bar, and then
both extremities interact with each other. At this point, the bar may evolve towards a stable
circle or vanish. In the case of figure2.4(a), the minimum energy of the bar is negative.
So, the minimizer lengthens the bar. This situation is not preferred.

2.2.2.2 Analysis ofe1

The first stability condition of a long bar (i.e. e1(w0) = 0) constrains the parameters of
the HOAC model. This condition ensures that the geometric energy of the bar have an
extremum. We then obtain the parameter constraint

�C(�C, w0) =
�C

G10(w0)
. (2.11)

Equation (2.11) shows that, for a fixed value of the bar widthw0, the curve of the
function�C(�C) is a straight line with gradient1/G10(w0). Figure2.5 showsw0 against
the parameter�C for a fixed value of�C. This curve has a particular point(�IC, w

I
0) which

corresponds to an inflection point ofe0. For�C < �IC, the energye0(w0) does not have
an extremum. The minimum cannot be located below the valuew0 = wI

0 since the solid
curve corresponds to the minimum while the dashed curve corresponds to the maximum.

2.2.2.3 Analysis ofe2

The second order stability condition of a long bar,i.e. that the Hessian matrixe2 be positive
definite, is ensured by constraining the eigenvalues ofe2 to be strictly positive so that the
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Figure 2.6: Perturbation behaviours in eigenvector basis.

extremum of the energy corresponds to a minimum. The eigenvalues ofe2 are�± =
e20 ± e21 and the eigenvectors arev± = (1,±1) respectively. So, equation (2.10) can be
written as a function of the eigenvalues as

e
(2)
P (
) = e0 + e1(a1,0 − a2,0) +

1

4

∑

k

�+∣a+k ∣2 + �−∣a−k ∣2 , (2.12)

wherea±k = a1,k ± a∗2,k. Figure2.6(a)shows the representation of the perturbationsa1,k
anda2,k corresponding to each side of the bar in the eigenvector basisv+ andv−. These
eigenmodes are illustrated in figure2.6: a+ describes in-phase perturbations of the two
sides, whilea− describes out-of-phase perturbations. For low frequencies, the former cost
less energy, as locally the sides of the shape are still parallel. For higher frequencies, the
difference is negligible.

Figure2.7shows that for fixed parameter values which give a minimum of the energy
e0, both eigenvalues�+ and�− are strictly positive for all frequencies. This positivity
condition allows us to constrain the parameter values to be bounded by upperand lower
limits.

To find these bounds, we express explicitly the eigenvalues�± and we then constrain
them to be strictly positive. Substitutinge20 ande21 by their expressions given by equa-
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Figure 2.7:(a): bar energye0(w0) plotted against the widthw0. �C = 0.8, and�C = 1.39
computed using equation (2.11) for a desired widthw0 = 1.2. (b): eigenvalues�± plotted
against the frequencym for the same parameter values in(a). �± are indeed strictly positive
for all frequenciesm ∈ ℤ.

tion (2.10), �± become

�±(�C, �C, w0, k) = k2 + �CG±(w0, k) ,

whereG±(w0, k) = G20(w0, k)±G21(w0, k); the parameters�C andd are fixed to1 with-
out loss of generality. Replacing�C by its expression given by the first stability condition
in equation (2.11), we obtain

�±(�C, w0, k) = k2 +
�C

G10(w0)
G±(w0, k) ,

and so the second order stability condition of a long bar becomes

k2 +
�C

G10(w0)
G±(w0, k) > 0 , ∀k ,

which is equivalent to

�CG±(w0, k) > −k2G10(w0) , ∀k , (2.13)

sinceG10(w0) > 0 because the interaction functionΨ is a decreasing function (cf. Ap-
pendixA). This inequality gives a lower bound on the parameter�C if G±(w0, k) > 0, so
the bound is always negative, and yet�C > 0: the lower bound of�C equals0.

Figure2.8 shows the regions of the(w0, k) plane corresponding to the sign change
of G±. The white, red, blue and black regions correspond toG+(w0, k) > 0 and
G−(w0, k) > 0,G+(w0, k) > 0 andG−(w0, k) < 0,G+(w0, k) < 0 andG−(w0, k) > 0,
andG+(w0, k) < 0 andG−(w0, k) < 0 respectively.

The bounds on the parameter�C are given by figure2.9. A long bar with a width
w0 ∈ (0, 2) is stable if the value of�C is bounded by a lower bound (the red curve), which
is equal to0, and by an upper bound (the blue curve). The three vertical lines correspond
to the singularity points of the functionsG±(w0, k) wherek ∈ K, K is the frequency
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Figure 2.9: Lower and upper bounds of the parameter�C in red and blue respectively.

set which contributes to the bounds on the parameter�C. Forw0 ∈ (0, 0.8802), where
�min = �max = 0, no stable bar exists. Ifw0 ∈ (1.33, 2), then a bar of widthw0 is stable
if the value of�C is below the blue curve given by figure2.9. Forw0 ∈ (1.03, 1.33), a bar
with widthw0 is stable if�C > 0 (the upper bound of�C is+∞ in this interval).

The goal of the stability analysis is to delineate the region(s) of the plane(�C, �C)
which give(s) a stable bar of widthw0. By analogy with a physical system, we call it ‘phase
diagram’. The stability conditions of first and second order studied previously, allow us to
find the phase diagram of a bar. Equation (2.11) shows that for each valuew0, the plot of
the function�C(�C, w0) is a line with slope1/G10(w0) and since�C is bounded, the set
of (�C, �C) becomes a segment for each valuew0. Plotting the set of lines with variable
slopes as a function ofw0 ∈ (0.88, 2), we obtain the phase diagram given in figure2.10.
The colored regions correspond to the set of points(�C, �C) which give stable bars. The
sign of the minimum energy plays an important role for contour evolutions usinggradient
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Figure 2.10: Phase diagram of a bar (w0 ∈ (0.88, 2)). Blue and yellow zones refer to
positive and negative bar energy per unit length respectively.

descent. The regions colored in blue and yellow in figure2.10give positive and negative
minimum energy respectively. The parameter values which belong to the yellowregion
lengthen the bar whereas the values from the blue region shorten the bar until it vanishes
or a stable circle is created. The white region corresponds to the set of parameter values
for which no stable bar exists.

2.2.3 Experiments

The stability analysis which we have done previously, allows us to select good values of
the parameters from the phase diagram. The phase diagram given by figure 2.10 gives
the ranges of the dimensionless parameters (cf. section2.1.4): �̂, �̂ and ŵ0. We then
compute the values of the real parameters for a given widthw0 as follows:�C = �̂�C/d,
�C = �̂�C/d andd = w0/ŵ0. �C is fixed to1 because it just scales the energy while
minima remain the same. Figure2.11 shows different evolutions of a long bar using a
gradient descent algorithm to minimize the HOAC energy given by equation (2.1). Each
pair of rows corresponds to the same point(�̂, �̂, ŵ0) selected from the phase diagram
given by figure2.10, and changing the value ofw0 we obtain the values given in table2.1
for each experiment.

For experiments 1–4, we choose 2 points of the phase diagram, given in figure 2.10,
which belong to the lower white region. These parameter values produce aninflection point
in the bar energy: the quadratic term is weak compared to the length and areaterms. So
for these values, the bar is unstable and it disappears: the bar width decreases to0. Figure
2.12shows, for the parameter values corresponding to evolutions 1–4, that the bar energy
has an inflection point and the minimum is then located atw0 = 0.

For experiments 5–10, the selected parameter values show also that the barshrinks.
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For these experiments, the parameter values were selected from the blue zone, of the phase
diagram, which gives a stable bar with a positive energy as shown in figure2.12 (5–10)
and their corresponding eigenvalues are strictly positive at the minimum. So theenergy of
the long bar,i.e.E0 ≈ le0, is positive and the gradient descent algorithm decreases the bar
lengthl to 0 while the width remains at its stable value.

For experiments 11–14, we choose parameter values which give a stable bar with posi-
tive energy but these same values give a stable circle. The corresponding plots 11–14 given
in figure 2.12show that the bar energy has a minimum atw0 and then the radius of the
stable circle will ber0 = w0/2.

For experiments 15–16, the parameter values are selected from the yellow region of the
phase diagram which give a stable bar with a negative energy as shown infigure2.12(15–
16). So the bar energy,i.e.E0 ≈ le0, is negative and it then lengthens making a “snake”
shape while the width remains at its stable value.

For experiments 17–22, we choose three points of the upper white region of the phase
diagram which gives an unstable bar. Figure2.12 shows that, for evolutions 17–22, the
bar energy has a minimum and then the out-of-phase eigenvalue,�−, is strictly positive
for zero frequency. For these evolutions, the bar is unstable to some non-zero frequencies
which give negative eigenvalues. These unstable frequencies split thebar into stripes with
widths approximated to the corresponding wavelengths.

2.3 Stability analysis of a circle

In this section, we focus on the stability analysis of a circle for circular structure modelling.
The result will be illustrated in the so-called ‘phase diagram’ of a circle. Thestability
calculations for a circle were performed byHorvath et al.(2006a, b, 2009). Since
0
parameterizes a circle, it is easier to express it in terms of polar coordinates(r, �) on Ω.
For a suitable choice of coordinate onS1, a circle of radiusr0 centred on the origin is then
given by
0(t) = (r0(t), �0(t)), wherer0(t) = r0, �(t) = t, andt ∈ [−�, �).

2.3.1 Energy

As we mentioned in section2.1.2, we first Taylor-expand the energyEC,P around a circle

0 of radiusr0. We are interested in the behaviour of small perturbations�
 = (�r, ��).
The first thing to notice is that the energyEC,P is defined on1-chains so tangential changes
in 
 do not affect its value. We then set�� = 0, and concentrate on�r. The terms of the
energyEC,P are either a simple integral overt or a double integral of a function oft − t′

so it is easier to express the perturbations�r in terms of Fourier coefficients because they
diagonalize the second order operator:�r(t) =

∑

k ake
ir0kt. The expansion of the energy

EC,P given by equation (2.1) in Taylor series to second order around a circle
0 is given by
(cf. Horvath et al.(2006a, b, 2009))

e
(2)
P (
) = e

(2)
P (
0 + �
) = e0(r0) + a0e1(r0) +

1

2

∑

k

∣ak∣2e2(k, r0) , (2.14)
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Figure 2.11: Gradient descent evolutions of a long bar for different parameter values given
by table2.1.

where

e0(r0) = 2��Cr0 + ��Cr
2
0 − ��CG00(r0) , (2.15)

e1(r0) = 2��C + 2��Cr0 − 2��CG10(r0) , (2.16)

e2(k, r0) = 2��Cr0k
2 + 2��C − 2��CG2(k, r0) , (2.17)

G2(k, r0) = 2G20(r0) +G21(k, r0)− 2ir0kG23(k, r0) + r20k
2G24(k, r0) , (2.18)

andGij =
∫ �
−� dp e

−ir0(1−�(j))kpFij(p).

2.3.2 Stability conditions of a circle

Figure 2.13 shows the energy of a circle of radiusr0 againstr0 for different values of
the parameters�C and�C. Figures2.13(a), 2.13(b)and2.13(c)show thate0(r0) has a
minimum and adjusting the values of�C and�C, the minimum energy can be positive or
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Figure 2.12: Bar energies and their corresponding eigenvalues for thedifferent evolutions
given by figure2.11. The blue and red curves correspond to the in-phase and out-of-phase
eigenvalues,�+ and�−, respectively.
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asinℎ(�̂) asinℎ(�̂) ŵ0 e0(ŵ0) w0 �C �C d

1 0.5 0.2 0 2 0 0.052 0.02 10
2 0.5 0.2 0 2 0 0.035 0.013 15
3 5 3 0 2 0 7.42 1 10
4 5 3 0 2 0 3.7 0.5 20

5 0.5 0.4 1.29 1.98 10 0.067 0.053 7.75
6 0.5 0.4 1.29 1.98 20 0.034 0.027 15.5
7 1 0.7 1.18 2.22 10 0.139 0.09 8.44
8 1 0.7 1.18 2.22 20 0.069 0.045 16.94
9 2 1.45 1.05 3.17 10 0.38 0.21 9.52
10 2 1.45 1.05 3.17 20 0.19 0.11 19

11 1 1.2 1.465 0.903 10 0.172 0.221 6.82
12 1 1.2 1.465 0.903 20 0.086 0.111 13.65
13 6 5.7 1.26 9.84 20 12.71 9.42 15.87
14 6 5.7 1.26 9.84 30 8.48 6.28 23.8

15 5.5 5.3 1.301 -9.28 10 16.32 13.13 7.63
16 5.5 5.3 1.301 -9.28 20 8.02 6.56 15.26

17 1 2 1.645 -3.19 10 0.193 0.597 6.08
18 2 2 1.645 -3.19 20 0.097 0.298 12.16
19 2 4 1.76 -45.9 10 0.638 4.8 5.68
20 2 4 1.76 -45.9 15 0.319 2.4 11.36
21 6 6.5 1.525 -325.3 20 15.38 25.37 13.11
22 6 6.5 1.525 -325.3 25 12.3 20.3 16.4

Table 2.1: Parameter values which correspond to the evolutions given by figure2.11.

negative. The number of stable circles decreases ife0(r0) > 0 and increases ife0(r0) < 0.
Figures2.13(d), 2.13(e)and 2.13(f) do not show energy minima for the corresponding
parameter values.

A circle of radiusr0 is a minimum of the energye0(r0) if and only if it satisfies the
stability conditions:e1(r0) = 0 ande2(r0, k) > 0, ∀k. The first order stability condition
implies the parameter constraint

�C(�C, �C, r0, d) =
�C + �Cr0
G10(r0, d)

. (2.19)

Figure2.14shows the positions of energy extrema against�C for a chosen value�C =
1 satisfying the parameter constraint (2.19). If �C < �IC then the energye0 does not have
extrema. If�C > �IC thene0 has both a maximum (dashed curve) and minimum (solid
curve). The second order stability condition is then necessary to find an energy minimum.
The expression fore2 is given by equation (2.17):

e2(�C, �C, �C, d, r0, k) = 2��Cr0k
2 + 2��C − 2��CG2(d, r0, k) .
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Figure 2.13: Behaviours of the circle energy,e0(r0), for different values of�C and�C.

A perturbation of frequencym = 1 (k = m
r0

= 1
r0

) of a circle corresponds to a translation
of it. EC,P is translation invariant, we then ignore the perturbation of frequency1 because
it does not have any effect in the energy. Then, the second stability condition becomes

e2(�C, �C, �C, d, r0, k) > 0 , ∀k ∕= 1

r0
.

Without loss of generality we set�C = d = 1 (cf. section2.1.4):

e2(�C, �C, r0, k) > 0 , ∀k ∕= 1

r0
,

and substituting�C by its expression given by equation (2.19), we then have

r0k
2 + �C − 1 + �Cr0

G10(r0)
G2(r0, k) > 0 , ∀k ∕= 1

r0
,

which can be rewritten, by defining the functionsa(r0, k) = 1−r0 G2(r0,k)
G10(r0,k)

andf(r0, k) =
G2(r0,k)
G10(r0,k)

− r0k
2, as

�C a(r0, k) > f(r0, k) , ∀k ∕= 1

r0
.
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Figure 2.14: Plot of extrema positions of the energye0(r0) against�C for �C = 1. The
solid and dashed curves correspond to minima and maxima respectively.

Depending on the sign ofa(r0, k), we obtain these two conditions:

if a(r0, k) > 0 then �C >
f(r0, k)

a(r0, k)
, ∀k ∕= 1

r0
so �C > �min

C = max
k

f(r0, k)

a(r0, k)
,

if a(r0, k) < 0 then �C <
f(r0, k)

a(r0, k)
, ∀k ∕= 1

r0
so �C < �max

C = min
k

f(r0, k)

a(r0, k)
.

Figures2.15(a), 2.15(b)and 2.15(c) show the behaviours of the functionsa(r0, k),
f(r0, k) and fa = f(r0,k)

a(r0,k)
, respectively, for the frequencies0 (blue curves) and2 (red

curves) which contribute to determine the lower and upper bounds of the parameter�C.
Figure2.15(d)shows the bounds of the parameter�C obtained by taking the maximum or
the minimum of the functions given by figure2.15(c)with respect to the sign ofa(r0, k).
The condition�C > 0 implies that there is no stable circle of radiusr0 < 0.69. If 0.69 <
r0 < 1.1 then the upper value of�C is+∞ and the lower bound is given by the red curve.
If r0 > 1.1 then the energy has a stable circle of radiusr0 for each value of�C which lies
between the red curve and the blue curve.

The parameter constraint given by equation (2.19) shows that for each radiusr0 of a
stable circle (i.e. r0 ∈ (0.69,+∞)), the parameter�C is expressed linearly as a function
of �C. The curve representing�C against�C for a given valuer0 is then a line of slope

r0
G10(r0)

. Figure (2.16) shows the phase diagram of a circle obtained by plotting the different
lines representing�C against�C for different values ofr0 ∈ (0.69,+∞). The blue and
yellow zones correspond to parameter values which give a stable circle withpositive and
negative energy respectively.

2.3.3 Experiments

In this section, we show geometric evolutions of a circle using gradient descent, given in
figure2.17, for different model parameter values given in table2.2. These parameter val-
ues were selected from different zones of the circle’s phase diagramgiven in figure2.16.
Figure2.18shows the energy behaviours of a circle and the second order energies corre-
sponding to the evolutions given in figure2.17.
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Figure 2.15: The blue and red curves shown by figures(a), (b) and(c) correspond to fre-
quencies0 and2 respectively. For figure(d), the red and blue curves correspond to lower
and upper bounds of�C respectively.

Evolutions 1 and 2 show that the initial circle shrinks until it disappears for the param-
eter values selected from the lower white zone of the phase diagram. The circle is then
unstable. At that zone the quadratic term is weak compared to the other terms,i.e. the
length and the area terms which constitute the classical active contour model.

Evolutions 3 and 4 show that the circle is stable for the selected parameter values from
the blue zone. Figure2.18shows that for these parameter values the circle energy has a
minimum and the second order energy is strictly positive for all frequenciesk.

Evolutions 5 and 6 show that the parameter values selected from the upper white zone
evolve the circle toward a complex shape due to some unstable frequencies. Figure 2.18
shows that for these parameter values, the second order energy evaluated at the desired
radius has some unstable frequencies which give negative second order energy.

2.4 Conclusion

In this chapter, we have analysed the stability of both a long bar and a circle under a HOAC
energy in order to produce stable line and circular structures. The latter were the aim
of other works for tree crown extraction from remote sensing images (cf. Horvath et al.
(2006a, b, 2009)). The former,i.e. line network modelling, is our focus.
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Figure 2.16: Phase diagram of a circle (r̂0 ∈]0.69,∞[). The blue and yellow zones cor-
respond to parameter values which give a stable circle with positive and negative energy
respectively.

asinℎ(�̂) asinℎ(�̂) r̂0 e0(r̂0) r0 �C �C d

1 0.5 0.2 - - - 0.104 0.04 5
2 0.5 0.2 - - - 0.052 0.02 10

3 1 1.2 0.94 2.371 5 0.221 0.284 5.319
4 1 1.2 0.94 2.371 15 0.074 0.095 15.96

5 1 2 2.34 -16.67 10 0.275 0.849 4.274
6 1 2 2.34 -16.67 15 0.183 0.566 6.41

Table 2.2: Parameter values which correspond to the evolutions given by figure2.17.

The stability analysis of both structures generates constraints and boundson the model
parameters which have led to the diagrams given in figures2.10and2.16. Combining both
studies, one can superimpose both diagrams to get a full phase diagram which is shown in
figure2.19. The phase diagram enables parameter values to be chosen to model a particular
situation. The sign ofe0 is important for both structures as we have mentioned.

In the case of a bar, ife0 < 0 then the bar lengthens to minimize the total energy, while
if e0 > 0 then the bar shrinks until it disappears. The first situation is undesirable because
gradient descent tends to create arbitrary network branches to minimize thetotal energy.
Suitable parameter values therefore lie in the maroon region of the phase diagram, which
gives a stable bar with positive energy per unit length and no stable circles.
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Figure 2.17: Gradient descent evolutions of a circle for different parameter values given in
table2.1.
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Figure 2.18: Circle energye0(r0) and second order energye2(r∗0, k) corresponding to evo-
lutions given in figure2.17. r∗0 is the radius of a circle at the energy minimum if it exists.
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CHAPTER 3

A phase field HOAC model of
undirected networks

“All the sciences came to exist in Arabic. The systematic works on them were written in
Arabic writing.”

— Ibn Khaldun
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In the previous chapter, we performed a stability analysis of a network branch which
led the determination of the phase diagram of the HOAC model, allowing a good selection
of parameter values for network modelling. Based on that, we describe, in this chapter, a
phase field HOAC inflection point long bar model and apply it to road networkextraction
from VHR remote sensing images of rural areas. We use the phase field framework to
reduce computational complexity.
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3.1 Introduction

3.1.1 Phase fields

In this section, we recall briefly the phase field HOAC model introduced byRochery et al.
(2005). A phase field� is a real-valued function on the image domainΩ. A phase field
determines a region by the map�z(�) = {x ∈ Ω : �(x) > z} wherez is a given threshold.
The basic, local phase field energy is

Es
0(�) =

∫

Ω
d2x

{
D

2
∂� ⋅ ∂�+ �

(
�4

4
− �2

2

)

+ �

(

�− �3

3

)}

. (3.1)

If (3.1) is minimized subject to�z(�) = R, i.e. for a fixed region, then away from
the boundary, the minimizing function�R assumes the value1 inside, and−1 outsideR
thanks to the ultralocal terms. Figure3.1 shows the behaviour of the ultralocal terms,i.e.
the terms weighted by� and�. To guarantee2 stable phases at−1 and1 of the system,
the inequality� > ∣�∣ must be satisfied. We choose� > 0 so that the energy at−1 is less
than at1. This will favor pixels belonging to the outside ofR rather than to the interior.
The derivative term ensures the smoothness of�R, producing a narrow interface around
the boundary∂R interpolating between−1 and+1. We denotew the interface width.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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φ

Figure 3.1: Behaviour of the ultralocal terms (� = 0.5 and� = 0.1).

To introduce prior shape information, a nonlocal term is then added to givea total
energyEs

P = Es
0 + ENL, where (Rochery et al., 2005)

ENL(�) = −�
2

∫∫

Ω2

d2x d2x′ ∂�(x) ⋅ ∂�(x′) Ψ
( ∣x− x′∣

d

)

, (3.2)

whered is the interaction range. This term creates long-range interactions betweenpoints
of ∂R (because∂�R is zero elsewhere) using an interaction function,Ψ, which decreases
as a function of the distance between the points. The interaction functionΨ is given by
equation (2.2).
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The first functional derivative of the local termEs
0, with respect to�, is

�Es
0(�)

��
= −D∂2�+ �

(
�3 − �

)
+ �

(
1− �2

)
, (3.3)

while the first functional derivative of the nonlocal termENL, with respect to�, is (cf.
AppendixB.1.4)

�ENL(�)

��
= �

∫

Ω
d2x′ ∂�(x′) ⋅ ∂Ψ

( ∣x− x′∣
d

)

. (3.4)

3.1.2 Phase fields as HOACs

The phase field local energy,Es
0, of �R is given approximately by a linear combination of

the length of∂R and the area ofR, and the nonlocal phase field term,ENL, is proportional
to the HOAC term (cf. Rochery et al.(2005)):

E0(�R) ≈ �CL(R) + �CA(R) ≜ EC,0(R) ,

ENL(�R) ∝ EC,Q(R) .

whereEC,Q(R) is the quadratic term in equation (2.1). The result is that one can use phase
fields instead of HOACs. The equations relating the phase field model parameters and the
HOAC model parameters are (cf. Rochery et al.(2005))

⎧

⎨

⎩

� = 3
4�C ,

� = 1
4�C ,

D = w
4 �C ,

� = �C
15
8w

{

1 +

√

1− 4
5w

2
(
�C

�C

)2
}

.

(3.5)

3.2 Inflection point long bar model

In chapter2, we described the stability analysis of a network branch abstracted as a long
bar under a HOAC model given by equation (2.1). The result is the phase diagram given
in figure2.19. We then are able to select parameter values which produce stable networks.
In Conclusion2.4, we argued that the maroon zone of the phase diagram gives suitable
parameter values for network modelling and will be our primary preferred zone.

3.2.1 HOAC inflection point long bar model

Figure3.2(a)shows the energy per unit lengthe0(w0) plotted against bar widthw0 for a
particular parameter setting from the maroon region with a stable widthŵ∗

0 = 1.2. Pa-
rameter settings that produce energy curves like figure3.2(a)have a disadvantage when
minimized using gradient descent. Imagine an area of background in the image, and a
network branch formed there by the vagaries of gradient descent. Because it lies in the
background, and assuming the data model is reasonable, there will be a force inwards on
the branch, tending to make it shrink and disappear. This is as it should be.However, if
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Figure 3.2:3.2(a)and3.2(b)plot e0 against bar widthw0, with (�C, �C) = (0.8, 0.53)
and (0.7, 0.363) respectively, giving a minimum atw∗

0 = 1.2 and an inflection point at
w∗
0 = 0.88.

the width of the branch lies in the basin of attraction of the stable width, there is a thresh-
old that the force has to surmount if it is to push the branch over the maximum shown in
figure3.2(a), and down to zero width. The result is the formation of ‘phantom roads’, false
positives that cannot disappear due to the stability of the network branch.

Global optimization algorithms are one way to avoid local minima, but unfortunately
our problem is NP-hard. We choose a slightly less ambitious approach: we change the
energy functional to avoid the creation of these local minima while preservingas much
prior knowledge as possible. This problem can be solved by constrainingthe parameters
so that the energy function has an inflection point at a desired widthw0 (i.e.�−(w0, 0) = 0)
rather than a minimum. Figure3.2(b)shows a plot of energy per unit length versus width
for a parameter setting that gives an inflection point. Such inflection points lie onthe lower
edge of the coloured area of the phase diagram, with�̂ values in the range[0, 0.9083]. The
value ofŵ0 = 0.88 all along this line, and this is the only value that allows an inflection
point.

3.2.2 Phase field inflection point long bar model

To model networks with the phase field model, we first select parameter values for the
contour using the phase diagram. In practice, this means fixingw0 (which is an application-
determined physical parameter), and then selecting values of�̂ and �̂ from the maroon
region of the phase diagram. These giveŵ0, which gives the requiredd, and hence�C/�C,
which is upper-bounded so that� is real. A choice of�C then gives the actual values of the
parameters inEC,P. These are then converted using equations given by (3.5). we choose1

w = 3.
Once we impose the inflection point condition,ŵ0 is fixed, and�̂ is sufficient to deter-

mine�̂ and hence all the other parameters except�C. However, the inflection point condi-
tion constrains the parameters to a co-dimension1 set in parameter space, so that a generic
change in the parameters, however small, will violate the condition. One can then wonder

1It cannot be too small, or a subpixel discretization will be needed for gradient descent, and it cannot be
too large or the phase field model will not be a good approximation to the HOAC model (cf. Rochery et al.
(2005)).
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how well this condition is preserved when the parameters are converted from contour to
phase field, especially since this conversion is based on a relatively crude approximation to
�R. In practice, numerical experiments show that the inflection point condition iswell pre-
served, with configurations at the inflection point remaining stationary to subpixel accuracy
over thousands of iterations of gradient descent.

3.3 Likelihood energy and energy minimization

So far we have spoken only of the prior energyEs
P. In this section, we focus on the

likelihood energyEI. Figure3.3shows two, 120cm resolution, multi-spectral test images
(red, green, blue and infrared channels), together with manually extracted road network
masks, and the histograms of the network and the background for each band.

3.3.1 Histogram modelling

We test two models: the multivariate Gaussian model (MG) (cf. Horvath(2007)) and the
mixture of two multivariate Gaussian model (MMG). The multivariate model describes
vectorial statistics, such as the mean and the covariance of the4 channels, combining all
channels. Multimodal statistics are well modeled using a mixture of two Gaussians.

Figure3.4shows the histograms of the four channels, the monovariate Gaussian model
and the mixture of two Gaussian models in blue, red and black respectively. The statistics
are computed for each channel independently of the others (the models aremonovariate
in this case). It is clear that the monovariate mixture of two Gaussian model fits better
the histograms than the monovariate Gaussian model, for both monomodal and bimodal
histograms.

3.3.2 Data energy term

We assume that P(I∣R,K) = P(IR∣R, �R,K)P(IR̄∣ R̄, �R̄,K), whereIR andIR̄ are the
restrictions of the image to the networkR and the background̄R respectively, and�R and
�R̄ are the corresponding model parameters (which previously were included in the generic
K). We further assume that the image values at different pixels are independent given these
parameters. Taking negative logarithms, and using�± = (1± �)/2 to restrict integrations
to the network or background respectively, gives the following likelihoodenergy:

EI(�) = −
∫

Ω
dx

{

ln(��R(I(x))) �+(x) + ln(��R̄(I(x))) �−(x)

}

= −
∫

Ω
dx

�(x)

2

{

ln(��R(I(x)))− ln(��R̄(I(x)))

}

+ k , (3.6)

where��R = P(IR∣R, �R,K) and��R̄ = P(IR̄∣R̄, �R̄) andk is a�-independent constant,
which we drop. The functional derivative of the data energy term with respect to� is

�EI(�)

��
= −1

2

{

ln(��R(I(x)))− ln(��R̄(I(x)))

}

. (3.7)
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Figure 3.3: Top row, from left to right: the R-G-B bands of a multi-spectralsatellite image;
the G-R-IR bands of the same image; the corresponding manually extracted road network
mask. Second row: similar, for a second image. Third row, from, left to right: histograms
of the network (red) and background (blue) regions of the R, G, B, and IR bands of the
image in the top row; Fourth row: similar, for second image. (Imagesc⃝DigitalGlobe,
CNES processing, images acquired via ORFEO Accompaniment Program).
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Figure 3.4: From left to right: histograms of R, G, B and IR channels. Fromtop to bottom:
histograms of the interior region of the first image, the exterior region of the first image,
the interior region of the second image and the exterior region of the secondimage. Curves
in blue, red and black correspond to the histograms, the Gaussian models andthe mixture
of two Gaussian models respectively.
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3.3.2.1 Multivariate Gaussian model

After simple calculations, the MG model can be written as

EI(�) =
1

4

∫

Ω
dx

{

(I(x)− �)TΣ−1(I(x)− �)

− (I(x)− �̄)T Σ̄−1(I(x)− �̄) + ln
∣Σ∣
∣Σ̄∣

}

�(x) , (3.8)

where� and�̄ are the mean vectors of the bands ofIR andIR̄ respectively;Σ andΣ̄ are
the covariance matrices ofIR andIR̄ respectively;t indicates transpose.� = (�, �̄,Σ, Σ̄)
is learnt from the original images and their masks using maximum likelihood.

3.3.2.2 Multivariate mixture of two Gaussian model

The MMG model is designed to take into account the heterogeneity in the appearance of
the network produced by occlusions. It takes the form

EI(�) = −1

2

∫

Ω
dx

{

ln
2∑

i=1

pi∣2�Σi∣−1/2e−
1

2
(I(x)−�i)

tΣ−1
i (I(x)−�i)

− ln
2∑

i=1

p̄i∣2�Σ̄i∣−1/2e−
1

2
(I(x)−�̄i)

tΣ̄−1
i (I(x)−�̄i)

}

�(x) . (3.9)

wherepi and p̄i weight the two Gaussian components forIR andIR̄ respectively;t indi-
cates transpose.� = (p1, p2, p̄1, p̄2, �1, �2, �̄1, �̄2,Σ1,Σ2, Σ̄1, Σ̄2) is learnt from the orig-
inal images and their masks using maximum likelihood combined with the EM algorithm
(cf. Dempster et al.(1977); Ingrassia and Rocci(2007); Moon (1996)).

3.4 Experiments and discussion

The total phase field energy to minimize isE(�; I) = Es
P(�) + EI(I, �). We use gradient

descent to seek energy minima (cf. Rochery et al.(2005)).

3.4.1 MG model vs. MMG model

We compare the segmentation performance of the MG and MMG data models. We begin
by looking at the performance of the two models using maximum likelihood classification,
i.e. with Es

P set to zero. Results on the two images in figure3.3are shown in the first two
columns of figure3.5. In this case, the MMG model performs worse than the MG model,
since it allows some parts of the background to be classified as network. Withthe addition
of the prior, however, the results using the MMG model are better than thoseof the MG
model on both images, as shown in the last two columns of figure3.5. See table3.1 for
quantitative evaluations.
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Figure 3.5: Segmentations of the two images in figure3.3, from left to right in each
row: ML using MG, ML using MMG, MAP using MG, and MAP using MMG. From
3rd to 4th column and from top to bottom:(w0, �̂, �C) = (2, 0.7646, 15), (2, 0.8385, 5),
(2, 0.8385, 20), and(2, 0.6169, 10).

3.4.2 Inflection point long bar model

We compare the segmentation performance of the previous, energy minimum model
(EMM) and the new energy inflection point model (EIPM). The first is obtained using
parameter values from the maroon region of the phase diagram given by figure2.19, and
gives an energy per unit length as a function of width as shown in figure3.2(a), while the
second uses the parameter constraints detailed in section3.2.2to create an inflection point
model, with an energy per unit length as a function of width as shown in figure3.2(b).
The idea is to avoid false positives in the background by rendering a network configuration
only marginally stable in the absence of supporting image data. The results areshown in
figure3.6: the false positives are indeed eliminated without creating false negatives.See
table3.1for quantitative evaluations.

3.4.3 Robustness of the algorithm to initial conditions

Initialization dependence of the final result,i.e.becoming trapped in a local minimum, is a
drawback of deterministic descent algorithms. However, it might be hoped that with suffi-
cient prior knowledge built into the model, the entropy of the probability distribution would
be reduced enough to eliminate most, if not all local minima, and thereby reduceor remove
initialization dependence. To test this, we examine the convergence of the algorithm using
different initializations for the phase field�:

∙ to the constant value�0 = �/�, which corresponds to the maximum of the ultralocal
terms shown by figure3.1, which is the thresholdz, and hence to all ofΩ being
boundary (the neutral initialization, NI);
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Completeness =
TP / (TP+FN)

Correctness =
TP / (TP+FP)

Quality = TP /
(TP+FP+FN)

ML
MG 0.7343 0.4923 0.4179
MGM 0.8152 0.3467 0.3214

MAP
MG 0.5962 0.7955 0.5170
MGM 0.5982 0.8028 0.5216

ML
MG 0.6839 0.3754 0.3199
MGM 0.7370 0.3338 0.2983

MAP
MG 0.3275 0.9405 0.3208
MGM 0.4730 0.9282 0.4563

EMM MMG 0.7591 0.5798 0.4897
EIPM MMG 0.5982 0.8028 0.5216

Table 3.1: Quantitative evaluations of the experiments. T, F, P, and N correspond to true,
false, positive, and negative respectively.

∙ to the constant value−1, corresponding to all ofΩ being background;

∙ to the constant value+1, corresponding to all ofΩ being foreground;

∙ when values of� are sampled independently from a uniform distribution on[−1, 1]
(UR);

∙ to the ML result;

∙ to 1− the ML result;

∙ to the ML result scaled linearly towards�0.

NI -1 +1 UR ML -ML ScML

NI 1 0.994 0.035 0.997 1 0.994 1
-1 0.994 1 0.029 0.996 0.994 1 0.994
+1 0.035 0.029 1 0.031 0.035 0.029 0.035
UR 0.997 0.996 0.031 1 0.997 0.996 0.997
ML 1 0.994 0.035 0.997 1 0.994 1
-ML 0.994 1 0.029 0.996 0.994 1 0.994

ScML 1 0.994 0.035 0.997 1 0.994 1

Table 3.2: Similarity measures of the segmentations given by the first column of figure3.7.

Figure3.7shows segmentations of the two images in figure3.3, each with two different
parameter settings, and using the above initializations. We observe that for the first and
fourth parameter settings, which correspond to the first and fourth columns of figure3.7,
only the initialization of� at1 does not converge toward�R which characterizes the region
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NI -1 +1 UR ML -ML ScML

NI 1 0.998 0.997 0.999 0.999 0.998 0.999
-1 0.998 1 0.994 0.999 0.998 1 0.999
+1 0.997 0.994 1 0.996 0.997 0.994 0.997
UR 0.999 0.999 0.996 1 0.999 0.999 0.999
ML 0.999 0.998 0.997 0.999 1 0.998 1
-ML 0.998 1 0.994 0.999 0.998 1 0.999

ScML 0.999 0.998 0.997 0.999 1 0.999 1

Table 3.3: Similarity measures of the segmentations given by the second column of fig-
ure3.7.

×106 NI -1 +1 UR ML -ML ScML

ERE 0.8267 0.8267 0.8267 0.8267 0.8267 0.8267 0.8267
Es

P 0.3283 0.3061 3.1089 0.3212 0.3284 0.3062 0.3283
EI 0.4234 0.4479 0.6081 0.4303 0.4233 0.4479 0.4234
E 0.7517 0.7540 3.7169 0.7514 0.7517 0.7541 0.7517

Table 3.4: Values of energy terms, at the convergence, which correspond to the parameter
values of the first column of figure3.7. ERE refers to Empty Region Energy.

×105 NI -1 +1 UR ML -ML ScML

ERE 8.2675 8.2675 8.2675 8.2675 8.2675 8.2675 8.2675
Es

P 1.3098 1.2540 1.3718 1.2910 1.3095 1.2535 1.3092
EI 3.8859 3.9447 3.8850 3.9029 3.8860 3.9447 3.8862
E 5.1957 5.1987 5.2568 5.1938 5.1954 5.1982 5.1953

Table 3.5: Values of energy terms, at the convergence, which correspond to the parameter
values of the second column of figure3.7. ERE refers to Empty Region Energy.
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Figure 3.6: Left: segmentation result using parameter values selected fromthe maroon
zone,(w0, �̂, �C) = (4, 0.2013, 5). Right: segmentation result using parameter values
leading to an inflection point at the desired bar width,(w0, �̂, �C) = (2, 0.7646, 15).

of interestR which is the region occupied by the network, and the rest of segmentations
agreed within 0.99 pixel similarity for both images. Tables3.2 and3.3 show quantitative
similarity measures of segmentations given by the first and second columns offigure 3.7
respectively.

Tables3.4and3.5give the values of the prior energy, the data energy, the total energy,
and the total energy of the empty region (i.e.�(x) = −1 ∀x ∈ Ω) at the converged solution.
In the case of�(x) = 1 ∀x ∈ Ω, table3.4 shows that the prior energy (3.1089 × 106)
dominates with comparison to the data energy (0.6081 × 106). This explains why the
solution gets stuck at�(x) = 1 ∀x ∈ Ω and does not evolve toward−1 because the latter
phase costs energy. The rest of the experiments show that the total energy of the solution is
always less than that of the empty region, which proves that a network branch is produced
if the total energy is decreased.

The neutral initialization is located at the maximum of the ultralocal terms everywhere
in Ω for which the prior gradient term disappears. At the maximum, the force of the
ultralocal terms is0 and so the prior force is0 at this starting point�0. So only the data
term allows the evolution of�0 at the first iteration.�0 then evolves to the ML segmentation
and thus the gain will be only one iteration, if the starting point is the ML segmentation
itself. This is negligible with respect to the number of iterations at convergence, which is of
order of5000 iterations. Later on, we use the neutral initialization because the prior does
not favor, at the first iteration, either the interior (� = 1) or the exterior (� = −1) of the
regionR.

3.5 Conclusion

We have described a phase field HOAC model for road network extractionfrom VHR satel-
lite images of rural areas. The contributions of this model are: the use of inflection point
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Figure 3.7: Segmentations of the two images in figure3.3 using different initializations.
From top to bottom: NI, -1, +1, UR, ML, -ML, Scaled ML.1st image: (w0, �̂, �C) =
(3, 1.2578, 30) for the1st column and(3, 1.2578, 20) for the2nd column. Second image:
(2, 0.5924, 15) for the 3rd column and(2, 0.8385, 20) for the 4th column. The MG data
model was used with the inflection point prior model.
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parameter values, which we show both reduces the number of free prior parameters and
eliminates false positives; the use of multivariate mixture of two Gaussian models for fore-
ground and background, which we show outperforms the maximum-likelihood-preferred
multivariate Gaussian models when coupled with our prior model; and initialization inde-
pendence despite the use of deterministic gradient descent, as shown by experiments.

In contrast, the proposed undirected network model has two main limitations. Firstly,
the model favours network regions where branches have approximatelythe same width.
Secondly, the model does not close gaps in the network as shown in the segmentation
results. In the second part of this thesis, we will introduce a new family of phase field
models of directed networks to remedy these two problems.



Part II

Phase field HOACs for directed
networks





CHAPTER 4

A phase field HOAC model of
directed networks

“A new idea comes suddenly and in a rather intuitive way. But intuition is nothingbut the
outcome of earlier intellectual experience.”

— Albert Einstein
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In the first part of this thesis, we studied the phase field higher-order active contour
(HOAC) model introduced by (Rochery et al., 2005, 2006) and conducted a stability analy-
sis of a network branch leading to a phase diagram which enables us to select good param-
eter values to model undirected networks (i.e. the flow in them proceeds in both directions
like road networks). Many of the networks that appear in applications (e.g. hydrographic
networks in remote sensing, vascular networks in medical imaging) are, however, directed.
In this chapter, we introduce a phase field HOAC model of directed networks for hydro-
graphic network extraction from very high resolution (VHR) remote sensing images.

4.1 Introduction

Unlike the road networks previously modelled, hydrographic networks are directed: each
network branch has a ‘flow direction’, and each junction therefore has‘incoming’ and
‘outgoing’ branches. The existence of such a flow typically changes thegeometry of the
network, because often the flow is in some sense conserved, and suggests that different
models are needed. Mathematically speaking, the problem is formulated probabilistically
by constructing densities incorporating prior knowledgeK about the regionR occupied by
the entity in the image domainΩ, i.e.geometrical, or shape, information. More specifically,
we would like a prior model P(R∣K) that incorporates typical directed network properties
by satisfying the following desiderata:
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1. network shapes, in a general sense, should be favoured,i.e. high probability regions
should take the form of a ‘fattened graph’;

2. a large range of branch widths should be possible, but

3. changes of width should be slow, except

4. at junctions, where the branch widths should be (softly) constrained so that
∑

iwi =
0, where the widthswi are negative for incoming flow and positive for outgoing
flow. Note that this includes the fact that branches should not end,i.e. they should be
prolonged, since these can be viewed as junctions with only incoming flow.1

To construct such a model, we start from the phase field higher-order active contour
model used byRochery et al.(2005) and described in section3.1.1, and extend it. The
phase field function� still represents the regionR corresponding to the network, and still
interacts nonlocally so as to favour network configurations. In addition there is a vector
field v representing the ‘flow’ through the network branches. The vector fieldis coupled
to � in such a way that it is strongly encouraged: to be zero outsideR; to have unit mag-
nitude insideR; to have zero divergence; to be smooth; and to be parallel to the region
boundary∂R (i.e. to run ‘along’ the network, not ‘across’ it). The idea is that smooth-
ness and parallelism, coupled with the constraint on the magnitude, will aid prolongation
of network branches, and allow a larger range of stable widths, while stabilizing rate of
change of width; while divergencelessness will produce asymmetric junctions for which
total incoming branch width equals total outgoing branch width.

We describe a stability analysis of the background (i.e. exterior ofR) and the fore-
ground (i.e. interior ofR) under the model that provides some constraints on the model
parameters (more will appear when we examine stability of a network branch inthe next
chapter), and then the results of preliminary geometric experiments that showthe utility of
the above constraints.

4.2 The proposed model

Directed networks by definition possess a sense of direction in each branch, usually due
to a unidirectional flow through a channel represented by the branch. Conservation of
flow then leads to geometric constraints on the network, particularly at junctions, meaning
that directed networks possess different characteristic geometric properties to undirected
networks. To model such networks, we introduce a phase field prior,EP(�, v), that in
addition to�, is a functional of a tangent vector phase fieldv which ‘represents’ the flow
through the network. We note immediately thatv is not supposed to be equal to the physical
flow through the network. This would require a much more complicated model than the one
we are proposing. Rather,v is an auxiliary quantity (probabilistically speaking, a hidden

1Such a linear constraint arises if ‘flow volume’ is proportional to branchwidth in the image. This will be
true if flow speed is roughly constant, and if ‘channel volume’ is proportional to branch width in the image,
which is true for river networks if channel depth is roughly constant. Onthe other hand, for tubular networks
in three dimensions, one would rather expect the sum of the (appropriately signed) squares of the widths to be
zero. In any case, our aim is not to model the detailed physics of each situation, but to model networks that
possess certain qualitative geometric properties.
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variable) that introduces interactions that constrain the geometry of the network. We will
see, however, that in many ways it does behave like a physical flow.

Sincev is zero outside the network, we design the ultralocal term of the model to have
only two local minima: the background, where(�(x), ∣v(x)∣) = (−1, 0); and the fore-
ground where(�(x), ∣v(x)∣) = (1, 1). This control of the magnitude ofv is in one sense
unphysical: for example, the channel may widen while the flow speed decreases, thereby
conserving the flow. However, in another sense, it represents real physical effects. Often
rigidity in the physical nature of the channel (e.g.stiffness of the channel wall, resistance to
widening in the substrate in which the channel is embedded) means that such widening is
not possible. Some rigidity is already built into the model via�, but control of the magni-
tude ofv, coupled with the divergence term to be described in a moment, reinforces this: it
will control the rapidity of width variations. Control of the magnitude ofv also represents
the fact that in directed networks there is a force that pushes the flow through the network
(e.g.gravity, pressure), which, in conjunction with viscosity and frictional forces, produces
a preferred speed. Again, we do not pretend to be modelling the physics indetail: the
constraint on the magnitude ofv is a stand-in for these effects, designed to realize certain
constraints on the geometry.

In addition to the ultralocal term, we introduce a term that penalizes the divergence of
v. This represents a soft version of flow conservation, but the parameter multiplying this
term will be large so that in general the divergence will be small. We also adda small
overall smoothing term onv, since constraining the divergence is not sufficient to ensure
smoothness. Because of the transition from∣v∣ = 1 to ∣v∣ = 0 across the boundary of
the region, the divergence term tends to makev parallel to the boundary,i.e. the flow is
along the channel. Coupled with the constraint on∣v∣ inside the channel, this means that
width variations are constrained to be slow along a channel, while at junctions, it tends to
produce configurations where total incoming flow is approximately equal to total outgoing
flow, which translates to the sum of the incoming widths being approximately equal to the
sum of the outgoing widths.

The total prior energy,EP(�, v), is then the sum of a local termE0 and the nonlocal
termENL given by equation (3.2). E0 is

E0(�, v) =

∫

Ω
d2x

{
D

2
∂� ⋅ ∂�+

Dv

2
(∂ ⋅ v)2 + Lv

2
∂v : ∂v +W (�, v)

}

. (4.1)

The third term is the smoothing term:∂v : ∂v =
∑

m,n(∂mv
n)2, wherem,n ∈ {1, 2}

label the two Euclidean coordinates.W (�, v) is an ultralocal term which defines the stable
phases(�, ∣v∣) = (−1, 0) and(�, ∣v∣) = (1, 1). The generic form ofW we use is a fourth
order polynomial in� and∣v∣, constrained to be differentiable:

W (�, v) =
∣v∣4
4

+ (�22
�2

2
+ �21�+ �20)

∣v∣2
2

+ �04
�4

4
+ �03

�3

3
+ �02

�2

2
+ �01� . (4.2)

Just as in the case of the undirected network model, we expect thatEP has local minima
corresponding to network shapes. This was directly verified for the undirected network
model via a stability analysis of a long bar in chapter2. In the next chapters, we perform



78 Chapter 4. A phase field HOAC model of directed networks

such an analysis for the current model. In addition, numerical experimentsshow that such
an expectation is indeed correct.

4.3 Turing stability analysis

In this section, we detail the Turing stability analysis (cf. Turing (1952)) for the model
EP = E0 + ENL. In the case of the reaction-diffusion system incorporating at least two
scalar phase field functions, it has been shown that the presence of diffusion terms, which
play the role of smoothing and stabilizing, may form spatial patterns from a uniform phase
which is a solution of the reaction terms of the system. So, there are conditions under which
a spatially uniform phase is stable in the absence of diffusion but can become unstable to
non-uniform perturbations. Here, we study this phenomenon in the case of our modelEP.
In our case, the reaction part of the model is the part where all gradientterms are suppressed
(i.e. their weight are set to0) and onlyW remains. Let(�(x), v(x)) = (�0, v0) ∀x ∈ Ω
be a uniform phase of the system. We assume that the uniform phase is stablewhich sets
the first order variations ofW evaluated at(�0, v0) to 0 and the Hessian matrix ofW to
be positive definite at(�0, v0). Now, we study the overall model by analysing the effect
of the gradient terms (i.e. terms which are weighted by the parametersD, �, Lv andDv)
to the stable uniform solution(�0, v0). The question is then if the uniform phase(�0, v0)
remains stable by adding an arbitrary infinitesimal perturbation(��, �v) to it, or it evolves
toward other phases showing spatial patterns which we want to avoid. Mathematically,
a uniform phase(�0, v0) is stable to small changes�� and �v if the Hessian matrix of
EP(�, v) evaluated at(�0, v0) is positive definite. As mentioned before, we would like the
modelEP to have two stable uniform phases: the background (i.e. the exterior ofR) and the
foreground (i.e. the interior ofR) described by(�0, v0) = (−1, 0) and(1, 1) respectively.2

So, we require that the phases(−1, 0) and(1, 1) be stable to small changes.
In the first stage, we ensure the uniform phases(−1, 0) and(1, 1) are minima ofW .

This sets the first order variations ofW evaluated at(−1, 0) and(1, 1) equal to zero; and
constrains the Hessian matrix ofW evaluated at(−1, 0) and(1, 1) to be positive definite.
This allows us to express some of the parameters ofW as a function of the others:�20 =
−1 − �22/2 − �21, �01 = −�22/4 − �21/4 − �03 and�02 = −�22/4 − �21/4 − �04;
and lower and upper bounds on parameter values ofW are generated to satisfy the positive
definiteness condition. We also constrain the free parameters(�04, �03, �22, �21) of W
so that the phases(−1, 0) and(1, 1) are the only two minima ofW by requiring thatW
be bounded below, and require that the energy of the foreground is greater than of the
background,i.e.W (1, 1) > W (−1, 0). Figures4.1and4.2show a contour plot and a 3D
plot, respectively, ofW satisfying these requirements, and showing local minima at the
desired points(−1, 0) and(1, 1). The saddle point(�s, vs) between the two minima plays
an important role in initializing the gradient descent algorithm: the ‘neutral’ initialization
is given by(�, ∣v∣) = (�s, vs), the direction ofv being random.

In the second stage, Turing analysis leads to a study of the second ordervariations of
the modelEP in order to constrain the effect of the gradient terms. The components of the
Hessian matrixH ofEP(�, v) are (see AppendixB.1 for more details about the first partial

2The notation(�0, v0) = (1, 1) means that the vector fieldv0 is of unit magnitude.
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derivatives)

H11 =
�2EP(�, v)

��′��

=

[

D□+ �22
∣v∣2
2

+ 3�04�
2 + 2�03�+ �02

]

�(x, x′)− �□Ψ(x, x′) ,

H22 =
�2W (�, v)

�v′�v

=

[

Lv�ij□−Dv∂i∂j + (∣v∣2 + �22
�2

2
+ �21�+ �20)�ij + 2vivj

]

�(x, x′) ,

H12 =
�2EP(�, v)

�v′��
=
�2EP(�, v)

��′�v

= (�22�+ �21)v�(x, x
′) ,

where primed and unprimed quantities are evaluated atx andx′ respectively;�ij is the Kro-
necker delta andi, j ∈ {1, 2} label the Cartesian coordinates;□ is the negative Laplacian
operatori.e.□ = −∂2; �(x, x′) is the Dirac delta;∂i∂j is the second-order tensor operator
defined as

(
∂21 ∂1∂2
∂2∂1 ∂22

)

,

and we then notice that:H11 is a scalar,H12 is a vector andH22 is a2 × 2 matrix. The
Hessian matrixH can then be written as

H =

⎛

⎝

H11 H1
12 H2

12

H1
12 H11

22 H12
22

H2
12 H12

22 H22
22

⎞

⎠ .

As we mentioned, our aim is to analyse the stability of a given configuration(�0, v0)
corresponding to uniform phase field functions:(�(x), v(x)) = (�0, v0), ∀x ∈ Ω. We then
need to evaluate the Hessian matrix at the uniform fields(�0, v0). The components ofH
depend on: 1) the Dirac delta function which is diagonal in the space domain and in the
Fourier domain as well and 2) the shift invariant functionΨ which can be diagonalized in
the Fourier domain. Hence, the Fourier domain diagonalizes the matrixH in the sense of
reducing the two spatial variablesx andx′ to one Fourier variablek instead ofk andk′.
This is due to the shift invariance of the operators in the spatial domain. The functionsHij

evaluated at(�0, v0) in the Fourier domain can then be written as (see AppendixB.2 for
some examples of Fourier transform calculations)

Ĥ11 = [D − �Ψ̂(k)]k2 + �22
∣v0∣2
2

+ 3�04�
2
0 + 2�03�0 + �02

︸ ︷︷ ︸

F11

,

Ĥ22 = Dvkikj + 2vi0v
j
0 + Lvk

2�ij + (∣v0∣2 + �22
�20
2

+ �21�0 + �20)
︸ ︷︷ ︸

F22

�ij ,

Ĥ12 = Ĥ21 = (�22�0 + �21)
︸ ︷︷ ︸

F12

v0 ,
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and thenĤ becomes

Ĥ =

⎛

⎝

Ĥ11 F12v
1
0 F12v

2
0

F12v
1
0 Lvk

2 +Dvk
2
1 + 2(v10)

2 + F22 Dvk1k2 + 2v10v
2
0

F12v
2
0 Dvk1k2 + 2v10v

2
0 Lvk

2 +Dvk
2
2 + 2(v20)

2 + F22

⎞

⎠ .

(4.3)

We then constrain̂H to be positive definite, for all frequenciesk, at(�0, v0) = (−1, 0),
i.e. the background, and(�0, v0) = (1, 1), i.e. the foreground. This is equivalent to con-
straining the3 eigenvalues of̂H to be strictly positive∀k. In other words, a configuration
(�0, v0) is stable if it is stable to everyk-frequency small change. For example, the0-
frequency perturbation corresponds to adding a small constant value to(�0, v0).

Replacing(�0, v0) in Ĥ and simplifying the positivity conditions of its eigenvalues,
we constrain the parameter values by lower and upper bounds in addition to the parame-
ter constraints obtained by putting the first order variations equal to zero.Thus, we select
parameter values which ensure the positivity of the eigenvalues for all frequenciesk. This
guarantees Turing stability. AppendixC details the stability calculations for the back-
ground and the foreground.

4.4 Experiments

In section4.4.1, we study gradient descent evolutions usingEP for fixed�. In section4.4.2,
we study gradient descent evolutions usingEs

P andEP. In section4.4.3, we show a seg-
mentation result on a synthetic image of a ‘river configuration’ and on a real satellite im-
age. The interaction functionΨ will be taken to be either the interaction function described
by Rochery et al.(2005, 2006), and given by equation (2.2), or the modified Bessel function
of the second kind of order0,K0.

We employ a forward Euler scheme for gradient descent evolutions. In the next chapter,
we detail the governing equations for gradient descent algorithm and how parameter values
are selected in practice.

4.4.1 Geometric evolutions ofv for fixed �

Figure4.3 shows gradient descent evolutions ofv with � fixed to a ‘junction’ configura-
tion.3 The first experiment uses the divergence term but no smoothing. Initialized with
constantv = (0,−vs), it shows the effects of the divergence term and the potential, which
align the field with the network while conserving the flow. In the second experiment, the
initial v was given a random direction at each point. In this case, the divergence of v is
small andv is parallel to the boundary near the boundary, but it is not smooth. The condi-
tion of small divergence still allows a great deal of freedom: we can add tov anyu with
∂ ⋅ u = 0 that preserves the magnitude. The third experiment uses the smoothing term
instead of the divergence term. The result is a smooth field, but the field does not run along
the network. The fourth experiment uses both divergence and smoothingterms. The vector
field evolves from an initially random configuration towards a smooth and divergence-free
configuration that runs along the network.

3The parameter values were(�04, �03, �22, �21) = (2.275, −0.467, 1.34,−3) for all evolutions, while
from top to bottom:(Lv, Dv) = (0, 0.1); (0, 0.1); (0.1, 0) and(0.1, 0.1).
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Figure 4.3: Geometric evolutions ofv keeping� fixed. First column: initial configuration.
Second column: intermediate configuration. Third column: final configuration. From top
to bottom: result with the divergence term using a vertical initialization; result with the
divergence term using a random initialization; result with the smoothing term; result with
the smoothing and divergence terms.
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4.4.2 Geometric evolutions ofv and �

Figure 4.5 shows gradient descent evolutions using the new energyEP.4 For compari-
son, figure4.4shows gradient descent evolutions using the undirected network phasefield
modelEs

P.5 The initial regions are shown in the leftmost column; time runs from left to
right. The binary images are obtained by thresholding� at�s. The initial configuration for
v had(0,−vs) everywhere, while� had the value−1 outside the region and�s inside.

Both models produce stable network configurations, but it is illuminating to examine
the differences in detail. The first two experiments in each set used the interaction func-
tion introduced byRochery et al.(2005, 2006). This interaction function constrains the
possible stable widths quite severely. This renders moot desiderata2 and4 described in
the introduction of this chapter, and as a result, in these four experiments, the widths of
the branches are all more or less the same. The directed network model, though, tends
to produce straighter branches with even less width variation than those in theundirected
case. This corresponds to desideratum3.

The last two experiments in each group useK0 as the interaction function. This con-
strains the stable width far less severely, and as a result we see a large range of widths in
both groups. We have thus satisfied desideratum2 for our directed network model. How-
ever, the spatial distribution of this range is very different in the undirected and the directed
cases. In the undirected case, each branch varies in width along its length, tending to ‘bulge
out’ away from junctions. In the directed case, in contrast, each branchtends to preserve
the same width, although the extent to which it does this depends on the value ofthe diver-
gence term. This can be seen by comparing the last two experiments in the directed case.
The parameterDv was20 in the third experiment and240 in the fourth. As a result, there
are some width variations along each branch in the third experiment, whereasin the fourth,
they are absent. This satisfies desideratum3. In addition, the fourth experiment produces
long straight branches, while at junctions the sum of incoming and outgoing widths tend
to be similar. This can be seen in figure4.5, but it is more clearly illustrated in figure4.6,
which shows a zoom on the bottom-left quarter of the final configuration in thefourth
experiment with the directed network model.6 Thus desideratum4 is satisfied too.

4.4.3 Segmentation

Figure4.7 shows an experiment using a synthetic image of a ‘river’, consisting of three
regions each with a different (constant) intensity value, plus added Gaussian noise. The
highest intensityI1 corresponds to the ‘river’, while the lowestI−1 and intermediate
I0 = (I−1 + I1)/2 intensities correspond to the background. The zone with intensity
I0 is designed to resemble a network, but one that does not respect ‘flow’conservation.

4From top to bottom, parameter values were:(�04, �03, �22, �21, D, �, d, Lv, Dv) = (3.13,−0.99,
0.131,−2, 0.7, 0.4, 4, 7, 240) ; (3.13,−0.99, 0.131,−2, 1, 2, 4, 7, 240); (1, 0.072, 0.207,−1, 1, 2, 3, 2, 20)
and(1.25,−0.325, 0.368,−1, 1, 2, 3, 7, 240).

5From top to bottom, parameter values were:(�, �,D, �, d) = (1.24, 0.038, 0.75, 0.137, 4);
(1.24, 0.056, 0.75, 0.125, 4); (1.23, 0.076, 0.75, 0.83, 5.65) and(1.23, 0.076, 0.75, 0.917, 5.65).

6Although not shown here, the evolution of the vector field in this experimentshowed an interesting be-
haviour. At a certain point, it ran from right to left across the short, narrow, horizontal branch (call it B) in
figure4.6. The branch joining B from the lower left widened during the gradient descent, and the flow in B
gradually reversed to accommodate the extra flow. This in turn increasedthe width of the wide, vertical branch
flowing down from the right-hand end of B.
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Figure 4.4: Gradient descent evolutions using the undirected network model Es
P. The

initial regions are shown in the leftmost column; time runs from left to right.

The likelihood P(I∣R,K) is a product of Gaussian distributions for the intensity at each
pixel, with meansI1 for points inR andI−1 for points in its complement̄R. The variances
for R andR̄ are the same. Maximum likelihood classification is thus unable to classify
points with intensityI0; the prior that decides whether such points are part of the estimated
river region or not.

As can be seen in the bottom row of figure4.7, the undirected network model, although
it finds a network-shaped region, includes a significant amount of the confounding region
with intensityI0. The directed network model on the other hand, is considerably more
accurate because of the geometric constraints arising from ‘flow’ conservation.7 Figure4.8
shows a zoom on the central part of the bottom-right result in figure4.7, showingv as well
as�.

Figure4.9 shows a segmentation result on a real image of rivers. It shows that the di-
rected network model improves the segmentation result. This is particularly trueat network
junctions where the divergence-free property of the vector field constrains the geometry in
such a way that the flow through them is conserved. Figure4.10and4.11show clearly how

7The parameters used for the undirected and directed network models were: (�, �,D, �, d) =
(25, 0.053, 15, 0.01) and (�04, �03, �22, �21, D, �, d, Lv, Dv) = (1.025,−0.211, 0.564,−1.5, 0.2, 0.2, 5,
8, 1000).
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Figure 4.5: Gradient descent evolutions using the new, directed networkmodelEP. The
initial regions are shown in the leftmost column; time runs from left to right.

the vector field behaves along network branches.

4.5 Conclusion

We have introduced a nonlocal phase field model for directed network-shaped regions. The
model contains two field variables: a scalar field that describes the region by its smoothed
characteristic function, with a long-range interaction that tends to producenetwork-shaped
regions, and a vector field that represents the ‘flow’ through the network. The vector field
is strongly encouraged to be divergence-free, and of unit magnitude inside and zero mag-
nitude outside the region. This forces the field in the region to be parallel to theregion
boundary, and to conserve flow. This results in slow width variations alonga network
branch, except at junctions, where total incoming flow/width is encouraged to be equal to
total outgoing flow/width. We have confirmed the expected behaviour of the model via
gradient descent evolutions, and via an extraction experiment on a synthetic image repre-
senting part of a hydrographic network and on a real image as well, showing that the new
model can avoid errors that arise if the undirected network model is used.

The proposed directed network model has some difficulties involving parameter tun-
ing. The prior modelEP has many free unphysical parameters, which are the weights of
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Figure 4.6: A zoom on the bottom-left quarter of the final configuration in thefourth ex-
periment with the directed network model, shown in figure4.5, showingv as well as�
(thresholded at�s).

energy terms, making parameter setting very difficult. In the next chapter, we will focus
on constraining the parameter values for network modelling. A second issueis that the
weight of the divergence term must be very large to obtain very low divergence of the vec-
tor field. This enforces the gradient descent step to be very small so thatthe algorithm does
not diverge, and consequently the execution time is very large. So, we apply the model on
relatively small real images (about256× 256).
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Figure 4.7: From left to right, top to bottom: synthetic image with three grey levels and
added noise; ground truth; segmentation using undirected network model; segmentation
using directed network model. Note how the constraint on branch width in the directed
network model avoids including parts of the background that have similar intensity to the
‘river’.
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Figure 4.8: A zoom on the central part of the result in figure4.7, showingv as well as�
(thresholded at�s).

Figure 4.9: From left to right, top to bottom: real image; ground truth; segmentation using
undirected network model; segmentation using directed network model. Note how the
constraint on junction widths in the directed network model guarantees flow conservation.
(Imagesc⃝DigitalGlobe, CNES processing, images acquired via ORFEO Accompaniment
Program).
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Figure 4.10: A zoom on the upper part of the result in figure4.9, showingv as well as�
(thresholded at�s).

Figure 4.11: A streamline plot of the result in figure4.9, showingv as well as� (thresh-
olded at�s).





CHAPTER 5

Stability analysis of a long bar

“Geometry enlightens the intellect and sets one’s mind right. All of its proofs are very
clear and orderly. It is hardly possible for errors to enter into geometrical reasoning,

because it is well arranged and orderly. Thus, the mind that constantly applies itself to
geometry is not likely to fall into error. In this convenient way, the person who knows

geometry acquires intelligence.”

— Ibn Khaldun
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In this chapter, we analyse the stability of a network branch under the directed network
model introduced in chapter4. We focus on zero-frequency perturbations of the region
boundary, which correspond to changes in the branch width. The resulting constraints nec-
essary to produce stable networks eliminate some parameters, replace others by physical
parameters such as network branch width, and place lower and upper bounds on the values
of the rest. In the next chapter, we will validate the theoretical analysis via numerical ex-
periments, and then will apply the model to the problem of road and hydrographic network
extraction from multi-spectral VHR satellite images.

5.1 Introduction

A network-shaped region can be thought of as a set of branches joiningat junctions. As
with the undirected network model, we will assume that network branches arelong enough
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and straight enough that their stability can be analysed by considering the limitof a long,
straight bar. Ideally, the analysis should proceed by first finding the energy minimizing
�RBar

andvRBar
for the bar region, and then expanding around these values. In practice,

there are two obstacles. First,�RBar
and vRBar

cannot be found exactly. Second, it is
not possible to diagonalize exactly the second derivative operator, andthus hard to impose
positive definiteness for stability. Approximate results are therefore necessary.

Figure5.1shows how the phase field functions behave for a stable network configura-
tion which is obtained by running gradient descent to minimize the prior phase field energy
EP. The first row shows a stable network configuration (left) and a zoom onits central part
showing� andv (right). The latter shows the preferred vector field configuration along net-
work branches. The second row shows the profiles of the functions� (left) and∣v∣ (right),
which minimize the energy of the network configuration shown on the right of the first row.
The third row shows initial (left) and final (right) slices of� and∣v∣, given in blue, across
a network branch; the proposed approximations of� and ∣v∣ are shown in black. In this
chapter, we define a four-parameter family ofansatzesfor �RBar

andvRBar
, and analyse the

stability of this family. More sophisticated approaches are possible by expanding �RBar
,

vRBar
, and the second derivative operator in some small parameter.

5.2 Stability analysis

In this section, we detail the stability analysis of a four-parameter family ofansatzesfor
�RBar

andvRBar
. Figure5.2shows theansatzfor a directed bar. Two phase field variables

are involved: the scalar field�RBar
and the vector fieldvRBar

. The configuration is defined
as follows: a scalar field�RBar

which varies linearly from−1 to �m across a region in-
terface of widthw, otherwise being−1 outside and�m inside the bar, which has width
w0; and a divergence-free vector fieldvRBar

whose magnitude varies linearly from0 to
vm across the region interface, otherwise being0 outside andvm inside the bar. The four
physical parametersw0,w, �m andvm define the four-parameter family ofansatzesfor the
bar.

5.2.1 Energy of the bar

In this section, we calculate the energy of the baransatz. To compute the energy, we split
the image domain into3 regions: the internal regionR, the external region̄R and the
interfaceRC . The bar has two interfaces: a top interfaceRCT and a bottom interfaceRCB.
Theansatzesfor the scalar phase field and the magnitude of the vector phase field are, as
has been described, given by

�RBar
(x) =

⎧

⎨

⎩

�m+1
w x2 − 1 if 0 < x2 < w,

�m if w < x2 < w0,
�m+1

w (w0 − x2) + 1 if w0 < x2 < w0 + w,

−1 else.

(5.1)
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Figure 5.1: First row: a stable network configuration (left) and a zoom onits central part
showing� andv (right). Second row: profiles of functions� (left) and ∣v∣ (right) of the
network shown on the right of the first row. Third row: initial (left) and final (right) slices
of � and ∣v∣, given in blue, across a network branch after gradient descent; the proposed
approximations of� and∣v∣ are shown in black.
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Figure 5.2: Directed baransatz, showing the parameterization in terms of the physical
parametersw0, w, �m andvm.

and

∣vRBar
(x)∣ =

⎧

⎨

⎩

vm
w x2 if 0 < x2 < w,

vm if w < x2 < w0,
vm
w (w0 − x2) + 1 if w0 < x2 < w0 + w,

0 else.

(5.2)

5.2.1.1 Local energy of the bar

The local phase field energy is

E0(�, v) =

∫

Ω
d2x

{
D

2
∂� ⋅ ∂�+ W̃ (�, v) +

Dv

2
(∂ ⋅ v)2 + Lv

2
∂v : ∂v

}

, (5.3)

whereW̃ (�, v) =W (�, v)−W (−1, 0). W is the ultralocal term given by equation (4.2).
(This ensures that the energy of the background is zero,W̃ (−1, 0) = 0, which facilitates
the stability calculations.) Shifting the values ofW by a constant valueW (−1, 0) does not
change the minimizing functions ofE0.
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Substituting the baransatzesby their expressions given by equations (5.1) and (5.2),
the total local bar energy becomes (cf. AppendixD.1)

E0(�RBar
, vRBar

) = E0,R + E0,R̄ + E0,RC

= Lw0�(�m, vm) + Lw�(�m, vm) + L
D(�m + 1)2 + Lvv

2
m

w
,

where we define the total local bar energy per unit length ase0 = E0/L. The functions
�(�m, vm) and�(�m, vm) are

�(�m, vm) = −3v4m
20

+
v2m
2

(
�22
10

(�m + 1)(−3�m + 2)

+
�21
6

(−3�m + 1) +
1

3

)

+
�04
60

(�m + 1)2(−9�2m + 12�m + 1)

+
�03
6

(�m + 1)2(−�m + 1)

+
1

24
(�22 + �21)(�m + 1)2 ,

�(�m, vm) =W (�m, vm)−W (−1, 0)

=
v4m
4

+
v2m
2

(
�22
2

(�2m − 1) + �21(�m − 1)− 1

)

+
�04
4

(�2m − 1)2 +
�03
3

(�m + 1)2(�m − 2)

− 1

8
(�22 + �21)(�m + 1)2 .

5.2.1.2 Nonlocal energy of the bar

The contribution of the nonlocal phase field term given by equation (3.2) appears only
along the boundary occupied by the regionRC . The nonlocal energy of the bar is (cf.
AppendixD.1)

ENL(�RBar
) = −Ld�(�m + 1)2G00(ŵ0, ŵ) ,

whereŵ = w/d, ŵ0 = w0/d and

G00(ŵ0, ŵ) =
2

ŵ2

∫ +∞

0

∫ ŵ

0
dz dx2

∫ ŵ−x2

−x2

dt

{

Ψ

(
√

z2 + t2
)

−Ψ

(
√

z2 + (ŵ0 + t)2
)}

.

We define the nonlocal energy per unit length aseNL = ENL/L.
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5.2.1.3 Total energy of the bar

The total energy per unit length of the bar,e0 + eNL, is

eP(ŵ0, ŵ, �m, vm) = ŵ0�(�m, vm) + ŵ�(�m, vm)

− �(�m + 1)2G00(ŵ0, ŵ) +
D̂(�m + 1)2 + L̂vv

2
m

ŵ
, (5.4)

whereŵ = w/d, ŵ0 = w0/d, D̂ = D/d2 andL̂v = Lv/d
2 are the dimensionless parame-

ters.
The stability analysis of a network branch under the undirected network model de-

scribed in section3.1.1was performed byPeng et al.(2008b). They found a bar energy
similar to that in equation (5.4). We notice that the parameters� and� play the same roles
as� and� given in equation (3.1) respectively. The energy gap between the foreground
and the background is equal to2� in the case of the undirected network model and� in
the case of the directed network model. The parameter� must be strictly positive to favour
pixels belonging to the background: this effect is similar to the area force which tends to
minimize the area of the region. The parameter� controls the contribution ofW across the
region interface of widthw: it has an effect similar to the parameter�.

5.2.2 Stability conditions for the bar

The energy of a network branch is given byeP. A network branch is stable in the four-
parameter family ofansatzesif it minimizes eP(ŵ0, ŵ, �m, vm) with respect to varia-
tions of ŵ0, ŵ, �m and vm. This is equivalent to setting the first order variations of
eP(ŵ0, ŵ, �m, vm) equal to zero and requiring its Hessian matrix to be positive definite.
The desired value of(�m, vm) is (1, 1) to describe the interior of the regionR. These
stability conditions produce parameter constraints.

5.2.2.1 First order stability conditions

The first order variations ofeP with respect toŵ0, ŵ, �m andvm are (cf. AppendixD.2)

∂eP(ŵ0, ŵ, �m, vm)

∂ŵ0
= �(�m, vm)− �(�m + 1)2G10(ŵ0, ŵ) ,

∂eP(ŵ0, ŵ, �m, vm)

∂ŵ
= �(�m, vm)− D̂(�m + 1)2 + L̂vv

2
m

ŵ2

− �(�m + 1)2G11(ŵ0, ŵ) ,

∂eP(ŵ0, ŵ, �m, vm)

∂�m
= ŵ0��(�m, vm) + ŵ��(�m, vm)− 2�(�m + 1)G00(ŵ0, ŵ)

+ 2
D̂(�m + 1)

ŵ
,

∂eP(ŵ0, ŵ, �m, vm)

∂vm
= ŵ0�v(�m, vm) + ŵ�v(�m, vm) + 2

L̂vvm
ŵ

,

where �� = ∂�/∂�m, �� = ∂�/∂�m, �v = ∂�/∂vm, �v = ∂�/∂vm, G10 =
∂G00/∂ŵ0 andG11 = ∂G00/∂ŵ. Setting the first order variations ofeP, evaluated at
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Figure 5.3: Example of solutions of equation (5.5) for some values of�★ usingRochery
et al.(2005)’s interaction function (left) andK0 (right). Curves are labeled by the values
of �★.

(ŵ0, ŵ, �m, vm) = (ŵ0, ŵ, 1, 1), equal to zero, and after some mathematical manipula-
tions, one can write the parameter constraints as

�★ −G(ŵ0, ŵ) = 0 , (5.5)

� =
�★

4G10(ŵ0, ŵ)
, (5.6)

D̂ =
ŵ

2

[
�★G00(ŵ0, ŵ)

2G10(ŵ0, ŵ)
− ŵ�★�

]

, (5.7)

L̂v = − ŵ
2�★v
2

, (5.8)

whereG(ŵ0, ŵ) = [G00(ŵ0, ŵ)/ŵ +G11(ŵ0, ŵ)] /G10(ŵ0, ŵ), �★ = [�★ + �★� +
�★v/2]/�

★, �★ = �(1, 1), �★ = �(1, 1), �★� = ��(1, 1) and�★v = �v(1, 1). ��(1, 1)
and�v(1, 1) are equal to0 because(1, 1) is a minimum ofW . The starred parameters
depend only on the4 free potential parameters�� = (�22, �21, �04, �03). The parameter
positivity conditionsD̂ > 0 andL̂v > 0 generate lower and upper bounds onŵ0, ŵ and
��. Equation (5.5) shows that, for fixed�� i.e.�★ is determined, the set of solutions in the
plane(ŵ0, ŵ) is the intersection of the surface representing the functionG and the plane
located at�★. The result is then a set of curves in the plane(ŵ0, ŵ) where each corresponds
to a value of�★. Figure5.3shows an example of solutions of equation (5.5) for some values
of �★ usingRochery et al.(2005)’s interaction function (left) andK0 (right).

Equation (5.6) shows that stability depends mainly on the scaled parameter�̂ = �/�★.
Figure5.4plots the behaviour of̂� against the scaled bar widtĥw0 and the scaled interface
width ŵ. The left-hand graph shows the behaviour of�̂ when the interaction functionΨ is
that introduced byRochery et al.(2005). The right-hand graph shows the behaviour of�̂
whenΨ isK0. For both graphs, we have plotted the surfaces as two half-surfaces:one is
lighter (right-hand half-surface, smaller̂w0) than the other (left-hand half-surface, bigger
ŵ0). The valley between both half-surfaces corresponds to the minimum valueof �̂ for
each value of̂w.
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Figure 5.4: Left: behaviour of̂� usingRochery et al.(2005)’s interaction function. Right:
behaviour of�̂ usingK0. The light and dark surfaces show the locations of maxima and
minima respectively.

Both graphs show that: for each valuê� < �̂min = inf(1/4G10(ŵ0, ŵ)) where
�̂min = 0.1302 (left) and0.0879 (right), there are no possible values of(ŵ0, ŵ) which sat-
isfy the constraints and so the bar energy does not have minima; for each value�̂ > �̂min

and for some chosen values ofŵ, there are two possible values ofŵ0 which satisfy the
constraints: the smaller width (left-hand half-surface) corresponds to an energy maximum
and the bigger width (right-hand half-surface) corresponds to an energy minimum.

Figure5.5shows plots of bar energies against bar width usingRochery et al.(2005)’s
interaction function (left) andK0 (right). The latter has a flatter basin around the desired
energy minimum than the former which constrains the range of widths more severely: this
implies a larger range of stable widths when usingK0.
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Figure 5.5: Bar energies againstw0 usingRochery et al.(2005)’s interaction function (left)
andK0 (right).
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5.2.2.2 Second order stability conditions

The Hessian matrixHBar is

HBar =

⎛

⎜
⎜
⎜
⎜
⎝

∂2eP
∂ŵ2

0

∂2eP
∂w∂ŵ0

∂2eP
∂�m∂ŵ0

∂2eP
∂vm∂ŵ0

∂2eP
∂w∂ŵ0

∂2eP
∂w2

∂2eP
∂�m∂w

∂2eP
∂vm∂w

∂2eP
∂�m∂ŵ0

∂2eP
∂�m∂w

∂2eP
∂�2

m

∂2eP
∂vm∂�m

∂2eP
∂vm∂ŵ0

∂2eP
∂vm∂w

∂2eP
∂vm∂�m

∂2eP
∂v2m

⎞

⎟
⎟
⎟
⎟
⎠

,

whereHBar must be positive definite at(ŵ0, ŵ, 1, 1). This generates upper and lower
bounds on the parameter values. This condition is tested numerically becausewe cannot
compute the eigenvalues ofHBar explicitly.

Figure5.6 shows bar energies,eP, against the physical parameters of the bar�B =
(ŵ0, ŵ, �m, vm). The desired energy minimum was chosen at�★B = (1.36, 0.67, 1, 1).1

We first choose��, and then computeD, � andLv using the parameter constraints given in
the previous section. The first and second rows show 1D plot of bar energies, which have
a minimum at the desired value�★B. The third row shows 2D contour plots of bar energies
illustrating the location of the desired energy minimum.

5.3 Overall model and parameter settings

In this section, we define the overall model to be applied to real images, and describe the
optimization process and how the parameter values are selected in practice.

5.3.1 Overall energy

To apply the model to real images, a likelihood energyEI linking the regionR to the
dataI is needed in addition to the prior termEP. The problem we are dealing with is
the extraction of road and hydrographic networks from multi-spectral VHR Quickbird im-
ages.EI is studied in detail in section3.3.2. The total energy to be minimized is then
E(�, v; I) = EI(I, �) + �EP(�, v) where� > 0 is a parameter which balances the two
energy terms.

5.3.2 Optimization and parameter settings

In this work, we use gradient descent to seek energy minima. To do this, weneed to
compute the forces�EP/�� and�EP/�v (cf. AppendixB.1). The force of the data term,
�EI/��, is given by equation (3.7). In practice, we implement the linear terms of the gov-

1The parameter values were(�04, �03, �22, �21, D, �, d, Lv, Dv) = (0.05, 0.025, 0.013,−0.6,
0.0007, 0.003, 1, 0.208, 0).
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erning equations in the Fourier domain, which speeds up the algorithm (cf. AppendixB.2):

∂�

∂t
=

1

2
ln
��R
��R̄

− �

{

ℱ
−1

(

(D − �d2Ψ̂(k))k2�̂(k)
)

+ (�22�+ �21)
∣v∣2
2

+ �04�
3 + �03�

2 + �02�+ �01

}

, (5.9)

∂v

∂t
= −�

{

ℱ
−1

(
Lvk

2v̂(k) +Dvk(k ⋅ v̂(k))
)

+ (∣v∣2 + �22
�2

2
+ �21�+ �20)v

}

, (5.10)

wherê andℱ−1 are the Fourier transform of a function and the inverse Fourier transform
respectively.

The unphysical free parameters of the prior modelEP are 9:
(�04, �03, �22, �21, D, �, d, Lv, Dv). Via the stability analysis for network modelling
studied in section5.2, the free parameters are reduced to7: (�04, �03, �22, �21, ŵ0, ŵ,Dv)
whereŵ0 andŵ are2 physical parameters of the baransatz. The predicted bar widthw0 is
an application-determined physical parameter. As described so far, the interaction function
Ψ is chosen to beK0 in order to allow a larger range of stable branch widths. To model
networks, we fix the parameter values as follows:

1. fix the desired bar widthw0 depending of the application and constrain the interface
width to have a reasonable value2 < w < 4,2

2. choose the4 free parameter values�� to give the preferred profile ofW ,

3. compute�★, �★, �★�, �★v and then�★, and solve (5.5) which gives the values of the
scaled widthŝw0 andŵ satisfying the condition̂w < ŵ0,

4. compute�, D̂ andL̂v using the parameter constraints given by (5.6), (5.7) and (5.8),
and then computeD = d2D̂ andLv = d2L̂v whered = w0/ŵ0,

5. check numerically the positive definiteness of the Hessian matrixHBar studied in
section5.2.2.2,

6. choose the free parameterDv,

7. check numerically the Turing stability of the background and the foreground (i.e.
positiveness of the3 eigenvalues of the Hessian matrix̂H) studied in section4.3,

8. choose the remaining free parameter�.

2The bar widthw0 and the interface widthw must satisfy the conditionw0 > w otherwise the bar model
defined here fails.
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5.4 Conclusion

In this chapter, we have conducted a theoretical study of a phase field HOAC model of
directed networks in order to ascertain parameter ranges for which stablenetworks exist.
This was done via a stability analysis of a long, straight bar that enabled somemodel
parameters to be fixed in terms of the rest, others to be replaced by physicallymeaningful
parameters, and lower and upper bounds to be placed on the remainder.

In the next chapter, we will validate the theoretical analysis via numerical experiments,
and will apply the model to the problem of road and hydrographic network extraction from
multi-spectral VHR satellite images.



CHAPTER 6

Experimental results

“All life is an experiment. The more experiments you make the better.”

— Ralph Waldo Emerson

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Geometric experimental results. . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Geometric evolutions of a long bar. . . . . . . . . . . . . . . . . . 104

6.2.2 Geometric evolutions of a random configuration. . . . . . . . . . 105

6.2.3 Geometric evolutions for gap closure. . . . . . . . . . . . . . . . 108

6.3 Experimental results on real images. . . . . . . . . . . . . . . . . . . . 112

6.3.1 ML segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.2 MAP segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

In chapter5, we conducted a theoretical analysis of the directed network model to
constrain the parameter values in order to produce stable directed networks. In this chapter,
we confirm the theoretical analysis by numerical experiments, and apply themodel to the
problem of road and hydrographic network extraction from multi-spectral VHR satellite
images.

6.1 Introduction

In the first part of this thesis, we introduced a phase field higher-orderactive contour
(HOAC) model for undirected networks via a stability analysis studied in chapter2. Based
on that, we introduced a phase field inflection point long bar model described in chapter3
to improve parameter tuning and the results of segmentation of road networks from VHR
satellite images.

To model directed networks, we have proposed a new directed network phase field
HOAC model described in chapter4. The new model is an extension of the undirected
network model. Due to the amount of shape information needed to be incorporated into
the model in order to describe efficiently the characteristic geometric properties of directed
networks, the model possesses many free unphysical parameters whichweight the different
energy terms. This makes parameter tuning difficult. Chapter5 conducted a theoretical
analysis of the directed network model which facilitates significantly parametertuning.

In this chapter, we describe two kinds of experiments. Firstly, we describe, in sec-
tion 6.2, geometric experiments (i.e. only the prior term is used) to validate the theoretical
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analysis in chapter5: we show that the model favours directed networks with the predicted
stable network branch width; and we also show that the directed network model closes gaps
in the network thanks to the flow conservation property of the vector field. Secondly, we
describe, in section6.3, experiments on road and hydrographic network extraction from
multi-spectral VHR satellite images using the overall directed network model defined in
section5.3.1; and we compare the results to those obtained using the undirected network
model.

To minimize the energy, we use gradient descent. Section5.3.2describes the governing
equations (5.9) and (5.10) for gradient descent and how we set the parameter values in
practice to favour stable directed networks.

6.2 Geometric experimental results

In this section, we describe geometric evolutions: the prior modelEP is used without the
presence of the data term and the parameter� is fixed to 1 in the governing equations
studied in section5.3.2. In sections6.2.1and6.2.2, we show numerical experiments to
confirm the theoretical study described in section5.2. In section6.2.3, we describe a major
advantage of the new directed network model for closing gaps in networks.

6.2.1 Geometric evolutions of a long bar

As a first test of the theoretical analysis, we show that straight bars evolve under gradient
descent towards straight bars of the stable width predicted by theory. Figure6.1shows such
evolutions using the directed network phase field modelEP and the interaction functionΨ
is the one introduced inRochery et al.(2005) for the first three rows andK0 for the last
three rows.1

In all evolutions, we fixedDv = 0, because the divergence term does not destabilize
the bar when initialized as a constant vector field everywhere in the image domain. The
width of the initial straight bar is10. The first and fourth rows show that the bars evolve
until they disappear becausê� < �̂min, where the bar energy does not have a minimum for
ŵ0 ∕= 0. The first column of figure6.2shows that the bar energyeP given by equation (5.4),
corresponding to the fourth evolution, has a minimum in the directionsŵ, �m and vm
whereas in the direction̂w0, it does not have a minimum.

On the other hand, the second and third rows show that straight bars evolve toward
straight bars with the desired stable widthsw0 = 6 and14, respectively, when̂� > �̂min.
The final widths increase or decrease as a function of the desired stablewidth: in this case,
the stable widths are6 and14. Bars that have widths less than14 widen until reaching the
stable width14, while bars that have widths greater than6 shrink until reaching the stable
width 6.

The final two rows show the same kind of evolutions as in rows 2 and 3 except that
the stable widths are3 and6, and usingK0. The corresponding bar energies are given

1From top to bottom, parameter values were:(�04, �03, �22, �21, D, �, d, Lv, Dv) = (0.1, 0.143,
−0.303,−0.6, 0.046, 0.001, 4.76, 0.024, 0), (0.1, 0.143,−0.303,−0.6, 0.046, 0.002, 4.76, 0.024, 0), (0.25,
0.0367,−0.018,−0.6, 0.193, 0.0027, 9.9, 0.4506, 0), (0.1,−0.064, 0.232,−0.6, 0.065, 0.0027, 3.66,
0.5524, 0), (0.112, 0.019,−0.051,−0.6, 0.055, 0.011, 2.78, 0.115, 0) and (0.1,−0.064, 0.232,−0.6,
0.065, 0.0077, 3.66, 0.5524, 0).
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in second and third columns of figure6.2 respectively; the bar energyeP has indeed a
minimum in all the directionŝw0, ŵ, �m andvm.

Figure 6.1: Geometric evolutions of bars using the directed network phase field model
EP. Time runs from left to right. For the first three rows we useRochery et al.(2005)’s
interaction function andK0 for the last three rows. First column: initial configuration
which consists of a set of straight bar of width10. The function� is−1 in the background
and�s in the foreground, and the initial vector field is(1, 0). 1st and4tℎ rows: when
�̂ < �̂min, the initial bars vanish;2nd, 3rd, 5tℎ and6tℎ rows: when�̂ > �̂min, the bars
evolve toward bars which have the predicted stable widthsw0 = 6, 14, 3 and6 respectively.
The regions are obtained by thresholding the function� at0.

6.2.2 Geometric evolutions of a random configuration

As a second test of the theoretical analysis, we present experiments thatshow that starting
from a random configuration of� andv, the region evolves under gradient descent to a
network of the predicted width.

Figure6.3 shows such geometric evolutions of a uniformly random initial configura-
tion.2 At each point of the image domain, the pair(�, ∣v∣) was initialized randomly to be
either(−1, 0) or (1, 1). The orientation ofv was chosen uniformly on the circle. Time
runs from left to right. We useRochery et al.(2005)’s interaction function for the first
four evolutions andK0 for the last four. Evolutions1 − 2 and5 − 6 use parameter values
computed using the parameter constraints where the desired stable width isw0 = 5, while
evolutions3 − 4 and7 − 8 use the desired stable widthw0 = 8. All evolutions show that
the initial configuration evolves to a stable network-like region with an approximately con-
stant branch width equal to the desired stable width. This validates the stability analysis
calculations of the directed long bar studied in section5.2.

As explained in section5.2.1.3, the parameter�★ = �(1, 1), where we set(�m, vm) =
(1, 1) which corresponds to the stable state, measures the gap of the ultralocal energyW

2From top to bottom, parameter values were:(�04, �03, �22, �21, D, �, d, Lv, Dv) = (0.4, 0.029, 0.121,
−0.8, 0.239, 0.0135, 3.51, 0.077, 10), (0.4, 0.01, 0.13,−0.8, 0.285, 0.016, 3.7, 0.096, 10), (0.25, 0.062,
0.093,−0.8, 0.194, 0.005, 5.85, 0.082, 10), (0.4, 0.029, 0.121,−0.8, 0.237, 0.007, 8, 0.092, 10), (0.4,
0.029, 0.121,−0.8, 0.273, 0.013, 3.97, 0.079, 10), (0.4, 0.01, 0.132,−0.8, 0.274, 0.01, 8.06, 0.091, 10),
(0.4,−0.122, 0.725,−1, 0.707, 0.017, 5.3, 0.584, 1) and (0.4,−0.202, 0.699,−0.8, 0.547, 0.012, 10.81,
1.055, 1).
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Figure 6.2: From top to bottom, the bar energieseP against the bar parameterŝw, ŵ0,
�m andvm; from left to right, the columns correspond to the last three bar evolutions in
figure6.1from top to bottom respectively.
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Figure 6.3: Geometric evolutions of a random initial configuration. Time runs from left to
right. For the first four rows we useRochery et al.(2005)’s interaction function whileK0 is
used for the last four rows. Parameter values were chosen as a function of the desired stable
width. The latter isw0 = 5 for evolutions1− 2 and5− 6, andw0 = 8 for evolutions3− 4
and7−8. All evolutions show that the initial configuration evolves towards a line network-
like region where branches have approximately a constant width equal to the desired stable
width.
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between the foreground and the background. It is taken to be positive tofavour pixels
belonging to the background. It controls the area of the regionR (the network). The
energy gap�★i = {(0.05, 0.07), (0.02, 0.05), (0.05, 0.07), (0.05, 0.07)} wherei = 1..8 is
the evolution number from top to bottom. For each pair of evolutions, it is clear that when
�★ increases, the area occupied by the network decreases.

The experiments in figure6.3use parameter settings where the weight of the divergence
term is not large (Dv = 1 or 10). Figure6.4shows the same kind of experiments but with
large values ofDv to highlight the contribution of the divergence term.3 The evolutions in
the first two rows have predicted stable widthw0 = 5, while the one in the third row has
predicted stable widthw0 = 8. In all cases, the initial configuration evolves to a stable
network region with branch widths equal to the predicted value, except near junctions,
where branch width changes slowly to accommodate flow conservation. Theeffect of large
values ofDv is to enforce the divergence ofv to be0 everywhere in the image domain
leading to flow/width conservation along branches and at junctions. Figure6.5 shows the
scalar phase field� (left) and the vector field magnitude∣v∣ (right) corresponding to the
converged configuration of the third experiment in figure6.4. It shows that indeed(�, ∣v∣)
assigns approximately(−1, 0) outside the network region and(1, 1) inside; the transition
of both functions from the exterior to interior is smooth.

Figure6.6 shows, in the top-right, the vector field of the central two junctions of the
converged configuration of the second evolution in figure6.4. Figure6.6 shows, in the
bottom, the vector field of the converged configuration of the third evolution infigure6.4.
Both configurations show that the vector field is indeed: smooth; running along network
branches (parallel to the boundaries of the network branches); approximately0 outside
the network region, of unit magnitude inside, and its magnitude varies smoothly from 0
to 1 across the network branch boundaries; approximately conserved everywhere where
along branches the width changes slowly and at junctions, total incoming widthequals total
outgoing width. In the top-left in figure6.6, we show a zoom on the top-right quadrant of
the converged configuration of the first evolution in figure6.4. It shows that the vector field
converges to a configuration with a rotational effect. That configurationis still divergence-
free but the smoothing term is not strong enough to remedy it.

6.2.3 Geometric evolutions for gap closure

As mentioned in the introduction of this thesis, the problem of occlusions is present in the
images we are dealing with. This leads to gaps in the network entity to be extractedfrom
the image. This problem can be solved by the contribution of the divergenceterm in the
prior directed network modelEP. The undirected network model described in section3.1.1
does not close gaps because the extremities of two separated branches repel, due to the
nonlocal term, and there are no forces attracting one extremity to the other. In the case of
the directed network model, the flow conservation property of the vector field encourages
branch extremities to not end but to elongate, and then to join and thus close gaps.

Figure6.7 shows, from left to right, three geometric evolutions of an initial config-
uration of two separated branches using the modelEP. Time runs from top to bottom.

3From top to bottom, the parameter values were:(�04, �03, �22, �21, D, �, d, Lv, Dv) = (0.25, 0.0625,
0.0932,−0.8, 0.1045, 0.0054, 4, 0.0391, 100), (0.25, 0.0625, 0.0932,−0.8, 0.111, 0.0061, 3.65, 0.0412, 50)
and(0.4,−0.1217, 0.7246,−1, 0.4566, 0.0083, 10.8, 0.4334, 100).
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Figure 6.4: Geometric evolutions starting from a random initial configuration.Time runs
from left to right. Parameter values were chosen as a function of the predicted stable width,
which was5 for the first and second rows and8 for the third row. The regions are obtained
by thresholding the function� at0.
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Figure 6.5: The phase field function� (left) and the magnitude of the vector phase field
function∣v∣ (right) of the converged configuration of the third experiment in figure6.4.
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Figure 6.6: The final configuration ofv and� (thresholded at0): (top-left) a zoom on
the top-right quadrant, (top-right) a zoom on the central two junctions, and (bottom) a
zoom of the converged configurations of the first, second and third evolutions in figure6.4
respectively.
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Figure 6.7: Geometric evolutions of branches using the prior directed network modelEP.
Time runs from top to bottom.� is initialized to be−1 outside the branches and1 inside,
andv is initialized to be0 outside and of unit magnitude inside, and running along the
branches. Parameter values are the same for the three experiments except the divergence
weightDv is 1, 10 and100 from left to right. The initial width of branches is18 and
the stable width is fixed to10. From left to right: branches shrink until they disappear;
branch extremities join each other to form a single branch, and then the latter shrinks until
it disappears; branch extremities join each other to form a single branch, and the latter
lengthens. Regions are obtained by thresholding� at0.

Figure 6.8: Configurations ofv and� (thresholded at0) of a zoom on the central gap
corresponding to the third experiment in figure6.7. Time runs from left to right, and from
top to bottom.
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Figure 6.9: Three multi-spectral Quickbird images showing road networks,and their refer-
ence segmentations extracted manually. The resolution of images1 and2 is1/4 the original
resolution (2.44m); image3 is at full resolution (0.61m). Images1, 2 and3: RGB channels
of the images. (Original imagesc⃝DigitalGlobe, CNES processing, images acquired via
ORFEO Accompaniment Program.)

Parameter values were the same for the three evolutions4 except that the parameterDv is,
from left to right, 1, 10 and100. The stable branch width is chosen to be10. The first
evolution shows that the initial branches shrink until they disappear because the divergence
term weighted byDv = 1 is weak compared to the other terms, so that the directed net-
work model behaves similarly to the undirected network model. The second evolution,
whereDv = 10, shows that the central gap is closed but still the resulting branch shrinks
until it disappears. This means that forDv = 10 the force is not strong enough to elongate
branch extremities when the gap is relatively large. The third evolution, whereDv = 100,
shows that the model is able to close the central gap and elongate the resultingbranch until
all gaps are closed. Figure6.8 shows an evolution of the vector field configuration of a
zoom on the central gap corresponding to the third column of figure6.7.

6.3 Experimental results on real images

In this section, we apply the model to multi-spectral VHR satellite images for road and
hydrographic network segmentation. The channels are red, green, blue and infra-red. Fig-
ures6.9 and6.10show examples of images of road networks and hydrographic networks

4The parameter values were:(�04, �03, �22, �21, D, �, d, Lv) = (0.1, 0.0387,−0.0192,−0.6, 0.0351,
0.001, 20.41, 0.2964).
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respectively, and their reference segmentations extracted manually. In section6.3.1, we
describe segmentations of the real images using a Maximum Likelihood (ML) estimate
and compare different data models. In section6.3.2, we describe segmentations using a
maximuma posteriori(MAP) estimate and compare the undirected and directed network
models.

6.3.1 ML segmentation

In section3.4, the road network segmentation performance of a phase field HOAC model
for undirected networks was tested using two classes of likelihoods (the same class was
used for bothR andR̄): a multivariate Gaussian (MG) and a mixture of two multivariate
Gaussians (MMG). In maximum likelihood segmentations, the performance wasmixed,
but when combined with the prior energy, the MMG model was found to outperform the
MG model, with the improvement being most significant when the image was very het-
erogeneous. Here, we test the maximum likelihood performance of these twolikelihood
classes on the real images, and compare them to segmentations obtained usingthe nor-
malized difference vegetation index (NDV I = (I − R)/(I + R)) (Rouse et al., 1973;
Tucker, 1979) and the normalized difference water index (NDWI = −(I − G)/(I +
G)) (McFeeters, 1996). We apply the former to images of road networks in which the
background is mostly vegetation, and the latter to images of hydrographic networks.

The second, third, and fourth rows of figure6.11 show maximum likelihood (ML)
segmentation results for road networks using NDVI, MG, and MMG respectively. The
second, third, and fourth rows of figures6.12and6.13show ML segmentation results for
hydrographic networks using NDWI, MG, and MMG respectively.

Table6.1shows quantitative evaluations of the quality of the ML segmentations using
NDVI, MG, and MMG. The bold numbers show the best ML segmentation method. In
all experiments in figure6.11, the NDVI results show lower performance, according to the
quality measure, than the MG and MMG results. The NDVI results on the first and second
images show that most of the hidden parts of the network are not retrieved because they
resemble vegetation more than road network.

Table6.2shows quantitative evaluations of the quality of the ML segmentations using
NDWI, MG, and MMG. The NDWI results on the second and third images in figure 6.12
and the second image in figure6.13 show better performance, according to the quality
measure, than the MG and MMG results. On the other hand, as in the case of NDVI results
for road networks, the NDWI results on these images show that most of the hidden parts of
the network are not retrieved because they resemble background more than hydrographic
network.

The result is the presence of many lengthy gaps in the ML segmentation using
NDVI/NDWI. Because these gaps are so long, it is very unlikely that the prior term would
close them. In contrast, the MG and MMG segmentations include most of the network, but
also many points of the background, which the prior model should be able to eliminate.
When coupled with the results in section3.4 showing that MMG outperforms MG, these
results lead us to choose the MMG model to construct the likelihood energyEI. In the case
of the MMG model,EI is given by equation (3.9).
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Figure 6.10: Five multi-spectral Quickbird images showing hydrographic networks, and
their reference segmentations extracted manually. The resolution of images1 and3 is 1/4
the original resolution (2.44m); the resolution of image2 is 1/16 the original resolution
(9.76m); the resolution of image4 is 1/2 the original resolution (1.22m); image5 is at
full resolution (0.61m). Images2, 3, 4 and5: RGB channels of the images. Image1:
GBI (mapped to RGB) channels of the image. (Original imagesc⃝DigitalGlobe, CNES
processing, images acquired via ORFEO Accompaniment Program.)
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Figure 6.11: From top to bottom: original images of road networks; segmentations ob-
tained using NDVI and optimal thresholding; ML segmentations using the MG model; ML
segmentations using the MMG model.
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Figure 6.12: From top to bottom: original images of hydrographic networks;segmentations
obtained using NDWI and optimal thresholding; ML segmentations using the MG model;
ML segmentations using the MMG model.
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Figure 6.13: From top to bottom: original images of hydrographic networks;segmentations
obtained using NDWI and optimal thresholding; ML segmentations using the MG model;
ML segmentations using the MMG model.
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Image Method Completeness Correctness Quality

1
NDVI 0.4296 0.3965 0.2598
MG 0.6920 0.3423 0.2970
MMG 0.7510 0.3000 0.2728

2
NDVI 0.4745 0.6536 0.3791
MG 0.7166 0.4958 0.4145
MMG 0.7983 0.3521 0.3233

3
NDVI 0.6776 0.4517 0.3718
MG 0.9060 0.4099 0.3932
MMG 0.8634 0.4641 0.4323

Table 6.1: Quantitative evaluations of the ML segmentations given in figure6.11. The
numbers1, 2, and3 correspond to the three images in figure6.11, from left to right. Com-
pleteness= TP/(TP + FN), correctness= TP/(TP + FP) and quality = TP/(TP+ FP + FN). T,
F, P, and N correspond to true, false, positive, and negative respectively.

Image Method Completeness Correctness Quality

1
NDWI 0.6280 0.9446 0.6057
MG 0.7835 0.8468 0.6862
MMG 0.8485 0.7424 0.6555

2
NDWI 0.6574 0.8352 0.5819
MG 0.8109 0.2189 0.2082
MMG 0.8312 0.2414 0.2301

3
NDWI 0.3588 0.3363 0.2102
MG 0.7924 0.1378 0.1338
MMG 0.7846 0.1816 0.1730

4
NDWI 0.7692 0.6105 0.5160
MG 0.9127 0.4765 0.4557
MMG 0.9361 0.5381 0.5190

5
NDWI 0.7995 0.8477 0.6990
MG 0.9067 0.7140 0.6651
MMG 0.9445 0.6233 0.6012

Table 6.2: Quantitative evaluations of the ML segmentations given in figures6.12and6.13.
The numbers 1, 2 and 3 (4 and 5) correspond to the images in figure6.12(6.13), from left
to right. Completeness= TP/(TP + FN), correctness= TP/(TP + FP) and quality = TP/(TP
+ FP + FN). T, F, P, and N correspond to true, false, positive, and negative respectively.
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6.3.2 MAP segmentation

Figure 6.14 shows the MAP segmentation results for road networks obtained using the
undirected network model (first column),5 Es

P, and the directed network model (second
column),6 EP. Figures6.15 and 6.16 show the MAP segmentation results for hydro-
graphic networks obtained using the undirected network model (first column),7 Es

P, and
the directed network model (second column),8 EP.

The undirected network model favours network structures in which all branches have
the same width. Consequently, network branches which have widths significantly different
from the average are not extracted. The result on the third image in figure6.15 shows
clearly the false negative in the central part of the network branch, where the width is about
half the average width. Similarly, the results on the third image in figure6.14and on the
second image in figure6.15show a false positive at the central two loops of the network and
at the bottom of the central loop of the network respectively, where the true branch width
is small. The result on the first image in figure6.15 again shows a small false negative
piece in the network junction at the bottom. The two images in figure6.16show also false
positive in the central loop in each image, and in the horizontal branch in the first image
where the branch width of the segmentation changes significantly along the branch.

The directed network model remedies these problems. The first and second images in
figure6.14and the third image in figure6.15show many gaps in the road network and hy-
drographic network, respectively, due mainly to the presence of trees.These gaps cannot be
closed using the undirected network model. The directed network model canclose these
gaps because flow conservation tends to prolong network branches. Tables6.3 and 6.4
show that, in all experiments, the directed network model outperforms the undirected net-
work model.

In all experiments obtained using the directed network model, the role of the divergence
term at junctions is clear. The divergence-free property of the vectorfield favours junctions
where total incoming branch width equals total outgoing branch width. Figure6.17shows
streamline plots of the final vector field configuration superimposed on the thresholded�
corresponding to the third result in figure6.14and the first result in figure6.15. The vector
field is indeed of constant (unit) magnitude inside the network, parallel to the network
boundaries, and smooth; the flow is approximately conserved along network branches and
in particular at junctions, where the total incoming flow is approximately equal tototal
outgoing flow. Similarly, figure6.18shows the final vector field configurations of some
zoomed parts of the segmentations given in figures6.15and6.16.

5The parameter values were, from top to bottom:(�, �,D, �, d) = (5.6, 0.851, 3.75, 0.1472, 3.41),
(4.88, 0.3486, 3, 0.0603, 2.27) and(24.54, 1.5, 15, 0.2592, 9.09).

6The parameter values were, from top to bottom:(�04, �03, �22, �21, D, �, d, Lv, Dv, �) = (0.3375,
−0.1767, 0.2712,−0.6, 0.2645, 0.0629, 1.68, 0.2649, 100, 33.33), (0.1, 0.0164, 0.1162,−0.8, 0.0512,
0.0205, 1.45, 0.0227, 200, 100) and(0.4,−0.018, 0.15,−0.8, 0.548, 0.0316, 3.45, 0.150, 50, 25).

7The parameter values were, from top to bottom and from figure6.15 to figure6.16: (�, �,D, �, d) =
(18.74, 0.0775, 11.25, 0.0134, 34.1), (4.88, 0.3327, 3, 0.0575, 4.54), (19.88, 0.6654, 12, 0.1151, 9.1),
(12.01, 1.0804, 7.5, 0.1869, 5.68) and(14.27, 1.439, 9, 0.2489, 5.68).

8The parameter values were, from top to bottom and from figure6.15to figure6.16: (�04, �03, �22, �21,

D, �, d, Lv, Dv, �) = (0.412,−0.0008, 0.0022,−0.6, 0.257, 0.0083, 8.33, 0.275, 50, 25), (0.2650,
−0.1659, 0.5023,−0.8, 0.1926, 0.0387, 2.027, 0.2023, 100, 16.66), (0.4525,−0.2629, 0.6611,−0.8,
0.3585, 0.0289, 5.12, 0.4224, 10, 22.22), (0.4625,−0.2918, 0.778,−1, 0.8786, 0.105, 2.228, 0.3536, 100,
25) and(0.4375,−0.2557, 0.6818,−0.8, 0.3597, 0.0329, 3.81, 0.432, 10, 15) .
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Figure6.19shows the segmentation of a hydrographic network from a colour optical
image.9 The likelihood model used was the same, but with one less band. The flow conser-
vation property and its geometric consequences enable the algorithm to avoidconfounding
factors in the background and segment the network to a good accuracy.

Image Method Completeness Correctness Quality

1
UNM 0.5997 0.6411 0.4490
DNM 0.6084 0.7906 0.5240

2
UNM 0.6799 0.6919 0.5219
DNM 0.6231 0.7978 0.6779

3
UNM 0.7118 0.6840 0.4957
DNM 0.5894 0.7051 0.5435

Table 6.3: Quantitative evaluations of experiments of the three images given infigure6.14.
T, F, P, N, UNM and DNM correspond to true, false, positive, negative, undirected network
model and directed network model respectively.

Image Method Completeness Correctness Quality

1
UNM 0.8439 0.9168 0.7739
DNM 0.8202 0.9489 0.7924

2
UNM 0.9094 0.6999 0.6043
DNM 0.8484 0.7856 0.6889

3
UNM 0.5421 0.6411 0.4158
DNM 0.7702 0.6251 0.6513

4
UNM 0.8916 0.8757 0.7914
DNM 0.7067 0.9394 0.8722

5
UNM 0.8649 0.8724 0.7678
DNM 0.8766 0.8881 0.7894

Table 6.4: Quantitative evaluations of experiments of the three images given infigure6.15
(1, 2 and 3) and of the two images given in figure6.16 (4 and 5). T, F, P, N, UNM and
DNM correspond to true, false, positive, negative, undirected network model and directed
network model respectively.

6.4 Conclusion

In this chapter, we validated the theoretical analysis of the directed networkmodel, studied
in chapter5, via numerical experiments and we described a major advantage of the model:
closing gaps in the network. We then added a likelihood energy and tested themodel on
the problem of road and hydrographic network extraction from multi-spectral VHR satel-
lite images, showing that the directed network model outperforms the undirected network
model.

9Parameter values were:(�04, �03, �22, �21, D, �, d, Lv, Dv, �) = (0.25, 0.0323, 0.1138,−0.8,
0.1903, 0.0176, 2.56, 0.0644, 100, 0.07).
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On the other hand, the directed network model has difficulties compared to theundi-
rected network model. Firstly, the number of free parameters, after performing the stability
analysis, is large (7 parameters). This makes parameter learning hard. Secondly, in our
work, we have used a local optimizer (gradient descent algorithm) to seekenergy minima,
which renders parameter tuning harder in the sense that a parameter settingwhich gives
a local minimum corresponding to a bad segmentation, may give a global minimum cor-
responding to a good segmentation, and vice-versa. Thirdly, the weight of the divergence
term,Dv, must be large in order to have a very low divergence of the vector field.This
implies a very small time step in the gradient descent algorithm and thus slow convergence.
In addition to that, we have two governing equations (one for the scalar fieldand the other
for the vector field) to compute at each iteration which consumes time.

Thus important future directions are estimation of the parameter values of the new
model and reduction of the execution time needed to find a good segmentation.
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Figure 6.14: Road network segmentations using the undirected network model (first col-
umn) and the directed network model (second column). Regions are obtained by thresh-
olding� at0.
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Figure 6.15: Hydrographic network segmentations using the undirected network model
(first column) and the directed network model (second column). Regions are obtained by
thresholding� at0.
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Figure 6.16: Hydrographic network segmentations using the undirected network model
(first column) and the directed network model (second column). Regions are obtained by
thresholding� at0.
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Figure 6.17: The final configuration ofv and� (thresholded at0) corresponding to the
third segmentation in figure6.14and first segmentation in figure6.15. The vector field is
indeed zero outside the network and of constant (unit) magnitude inside, smooth, parallel
to branch boundaries, and conserved along network branches and at junctions.
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Figure 6.18: The final configuration ofv and� (thresholded at0): (top-left) zoom on
the left part of the network of the second image and (bottom-left) on the central loop of
the network of the third image in figure6.15; (top-right) zoom on the central loop of the
network of the first image and (bottom-right) the second image in figure6.16.



6.4. Conclusion 127

Figure 6.19: Hydrographic network segmentation from a colour image usingthe directed
network model. Flow conservation is satisfied at junctions, illustrated by a significant
change of width, and along branches, as illustrated by a slow change of width. ( c⃝2010
Google - Imageryc⃝2010 TerraMetrics, Map datac⃝2010 Tele Atlas.)





Conclusion and perspectives

“The important thing is not to stop questioning. Curiosity has its own reason for
existing.”

— Albert Einstein

Summary

The purpose of this work was to build variational models for network modellingfor road
and hydrographic network extraction from multi-spectral VHR Quickbird images. More
concretely, we focused on developing specific and sophisticated shapepriors for undirected
and directed network modelling.

We first improved the HOAC model for undirected network modelling. We conducted
a stability analysis of a long bar under the HOAC model which aims to constrain thepa-
rameter values to obtain stable networks with a predicted stable branch width. Due to the
topological complexity of a network,i.e.a network may have many loops, a phase field for-
malism is used to allow full topological freedom, a neutral initialization for the algorithm,
and reduced execution time. An equivalence was shown between the explicit, i.e. HOAC,
and the implicit,i.e.nonlocal phase field, representation of the region of interest. The result
is that one can use nonlocal phase fields instead of HOACs. Based on that, we studied the
inflection point energy under undirected network phase field HOACs, and we showed that
it outperforms the non-inflection point energy for road network extraction from Quickbird
images.

Hydrographic networks have different geometric properties to road networks. There
is an orientation to the ‘flow’ they carry through their branches. This has an effect on the
geometric properties of the network. We introduced a new family of phase field HOACs
that incorporates, in addition to the standard scalar field function, a vectorfield describing
the ‘flow’ through the network branches. The vector field is enforced tobe zero outside
the network and of unit magnitude inside, smooth, parallel to the region boundary and
divergence-free. The vector field is strongly encouraged to be divergence-free so that the
proposed directed network model favours geometric structures which preserve the ‘flow’
in some sense: along branches, the width changes slowly; and at junctions, total incoming
branch width approximately equals total outgoing branch width. A stability analysis of
a directed straight, long bar was conducted to constrain the parameter values and express
some parameters as a function of the others. We were able to express some of the model
parameters as a function of the physical parameters of the bar which some of them are
the predicted branch network width and the interface width. We applied our directed net-
work phase field HOAC model to the extraction of hydrographic and road networks from
Quickbird images. The results showed that the directed network model outperforms the
undirected network model for hydrographic network extractions from images. The pro-
posed model allowed: to close the gaps of networks present in real imagesthanks to the
‘flow’ conservation property which allows to prolong network branches; to extract net-
work branches which have significantly different widths thanks to the suitable choice of
the interaction function.
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Phase fields and Markov random fields

In general, Bayesian inference-based segmentation methods involve parametric models. In
this case, the solution of the problem depends strongly on the values of the model param-
eters. In this thesis, the parameter values, of both the undirected and directed network
models, were fixed manually. A more ambitious way to solve the problem of parameter
tuning is to estimate them.

Parameter estimation requires a probabilistic formulation of the model and in particu-
lar the normalizing constants of the Gibbs distribution corresponding to the model energy.
As described in the first chapter, the phase field HOAC model introduced by(Rochery
et al., 2005, 2006) was also used to detect circular shapes, via a stability analysis con-
ducted by (Horvath et al., 2009), in addition to network structures.Blaskovics et al.(2009)
proposed a new Markov Random Field (MRF) model incorporating a strong shape prior to
detect circular shapes. The authors used the phase field formulation of the ‘gas of circles’
model to construct the new MRF model. The continuous phase field function isdiscretized
and assigns the two labels±1. The MRF model uses the discretized function and defines
long-range interactions to favour circular shapes. The authors were able to approximate
the parameters of the MRF model as a function of those of the phase field model which
uses a continuous function. Performing this equivalence between the discrete and con-
tinuous models, new ways will be opened to solve the challenging problem of parameter
estimation.

Active contours and marked point processes

Marked Point Processes (MPP) have a long history applied to the problemof object extrac-
tion from images. Particularly, MPPs were used for the extraction of road networks (La-
coste et al., 2004, 2005, 2010), buildings (Ortner et al., 2007), and trees (Perrin et al., 2005).
These works represent the objects by simplified shapese.g.ellipses, discs or rectangles.

Kulikova et al. (2010) proposed a new MPP model which incorporates strong prior
shape information for the extraction of multiple, arbitrarily-shaped objects. The authors
constructed, first, a single-object model which combines a data term and a prior term. The
prior term incorporates, in addition to a smoothing term, a HOAC term which describes
specific shapes of the object. Secondly, a multiple-object model is built based on sampling
from a Gibbs distribution, and each object evolves with respect to the single-object model.
A birth-and-death algorithm was used to speed up the convergence.

The incorporation of active contours into a MPP framework has severaladvantages:
possible overlap between objects; the topology of the object changes automatically, and
efficient computation thanks to birth-and-death dynamics. This opens new directions to
describe arbitrarily-shaped objects in scenes of high complexity containingoverlapping
objects. In the case of road or hydrographic networks, a challenging problem appears if
two or more network branches overlape.g.a bridge crossing a river or road, which produces
an overlapping in the observed image: one way to handle this is through MPP.
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Perspectives

To improve the model, we list a few perspectives:

1. Some of the results obtained using the directed network model still have false posi-
tives. The main reason is that the gradient descent algorithm becomes locally stuck
in a local minimum, so that some of the background remains classified as network
even if this is globally energetically unfavourable. So, one may think to use a global
minimization algorithm to seek global minimae.g.simulated annealing.

2. Some of the results obtained using the directed network model still have false neg-
atives. The main reason are long gaps in the visible network caused by occlusions.
More investigations on parameter tuning will help to understand why gap closure
may fail for some parts of the network and may succeed for other parts.

3. Our data model is taken to be either a multivariate Gaussian or a multivariate mix-
ture of two Gaussians. They gave very encouraging results for road and hydrographic
network extraction. Many other possibilities may be useful to outperform theseg-
mentation results: one can incorporate multiscale features,e.g.wavelets, or texture
features. This will help in the case of VHR remote sensing images where the network
branches are very large.

4. One can think to accelerate the algorithm convergence. In our work weused gradient
descent to seek minima. Many other algorithms may help to speed up the conver-
gencee.g.conjugate gradient descent, implicit methods...

5. The stability analysis performed in this work allowed us to express some of the model
parameters as a function of the others so as to favor stable networks. Nevertheless,
the model still has several free parameters. Parameter estimation techniquescould be
used to estimate these parameters rather than fixing them manually. Implementing
this is very difficult task, however, due to the complexity of the model, and the lack
of knowledge of the normalizing constant of the Gibbs distribution defined bythe
model energy.
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In this appendix, we detail the stability calculations of each term of the total geometric
energy given by equation (2.1). We Taylor-expand these terms to second order around a
long bar of widthw0.

A.1 Length of the contour

The derivative of the contour
 given by equation (2.6) is


̇�(t�) =

{

ẋ�(t�) = ±� l

ẏ�(t�) = �̇y�(t�)

=

{

ẋ�(t�) = ±� l

ẏ�(t�) =
∑

k�
ik�l a�,k�e

ik�lt� .

The length of the contour is defined as

L(
) =
∑

�

∫

□
�

∣
̇�(t�)∣ dt� ,

where the tangent vector is given by

∣
̇�(t�)∣ = l

⎡

⎣1−
∑

k�,k′�

a�,k�a�,k′�k�k
′
�e

i(k�+k′�)lt�

⎤

⎦

1

2
. (A.1)
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Expanding equationA.1 in a Taylor series to second order and using the fact that
∫

□
�

eiklt�dt� = �(k) , (A.2)

and
√
1 + x ≃ 1 +

1

2
x ,

we obtain

∫

□
�

∣
̇�(t�)∣ dt� ≃ l

⎡

⎣1 +
1

2

∑

k�

∣a�,k� ∣2∣k�∣2
⎤

⎦ .

Then the length of the contour becomes to second order

L(
) ≃ l

⎡

⎣2 +
1

2

∑

�

∑

k�

∣a�,k� ∣2∣k�∣2
⎤

⎦

= l

[

2 +
1

2

∑

k

k2(∣a1,k∣2 + ∣a2,k∣2)
]

. (A.3)

A.2 Area of the contour

The area of the contour
 is defined as

A(
) =

∫

□
1

l(y1(t1)− y2(−t1)) dt1

=

∫

□
1

l(w0 + �y1(t1)− �y2(−t1)) dt1 ,

and using the expression for the perturbations expressed in terms of Fourier coefficients,
and the integral value given by equation (A.2), we obtain

A(
) = l[w0 + (a1,0 − a2,0)]

= l[w0 +
∑

�

±�a�,0] . (A.4)

A.3 The quadratic energyEQ(
)

The general expression for the quadratic energyEQ(
) can be written as

EQ(
) =
∑

�,�

∫∫

(□
�,□
�)
dt� dt

′
� G(t�, t

′
�) , (A.5a)

whereG is the energy interaction of a pair of pointst� andt′� , which can be defined as

G(t�, t
′
�) = 
̇�(t�) 
̇�(t

′
�)Ψ(∣
�(t�)− 
�(t

′
�)∣) . (A.5b)
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A.3.1 Inner product of tangent vectors

The inner product of the tangent vectors
̇�(t�) and
̇�(t′�) is given by


̇�(t�) 
̇�(t
′
�) = ẋ�(t�) ẋ�(t

′
�) + ẏ�(t�) ẏ�(t

′
�)

= ±� ±� l
2 + �̇y�(t�) �̇y�(t

′
�) . (A.6)

A.3.2 Quadratic distance

Using the expression for the contour given by equation (2.6), we can compute the squared
distance between two contour points:

∣
�(t�)− 
�(t
′
�)∣2 = (x�(t�)− x�(t

′
�))

2 + (y�(t�)− y�(t
′
�))

2

= [±� lt� −±� lt
′
� ]

2 + [
w0

2
(±� −±�) + �y�(t�)− �y�(t

′
�)]

2 .

LetΔ2
�,� = (±� lt� −±� lt

′
�)

2 andX2
0 = Δ2

�,� +
w2

0

2 (1−±�±�). We then obtain

∣
�(t�)− 
�(t
′
�)∣2 = X2

0 + (�y�(t�))
2 + (�y�(t

′
�))

2 + w0(±� −±�)�y�(t�)

− w0(±� −±�)�y�(t
′
�)− 2�y�(t�)�y�(t

′
�) ,

which, after expansion in a Taylor series to second order aroundX0, becomes

∣
�(t�)− 
�(t
′
�)∣ ≃ X0 +

1

2X0
w0(±� −±�)�y�(t�)−

1

2X0
w0(±� −±�)�y�(t

′
�)

+
4X2

0 − w2
0(±� −±�)

2

8X3
0

(�y�(t�))
2 +

4X2
0 − w2

0(±� −±�)
2

8X3
0

(�y�(t
′
�))

2

− 2
4X2

0 − w2
0(±� −±�)

2

8X3
0

�y�(t�)�y�(t
′
�) .

To simplify the last expression, we defineX1 =
1

2X0
w0(±� −±�),X2 =

1

2X0
(1−X2

1 )

andΔ�y�,� = �y�(t�)− �y�(t
′
�):

∣
�(t�)− 
�(t
′
�)∣ ≃ X0 +X1Δ�y�,� +X2(Δ�y�,�)

2 .

A.3.3 Interaction function

Expanding the interaction function in a Taylor series to second order aroundX0, we obtain

Φ(∣
�(t�)− 
�(t
′
�)∣) ≃ Ψ(X0) +

[
X1Δ�y�,� +X2(Δ�y�,�)

2
]
Ψ′(X0)

+
Ψ′′(X0)

2
X2

1 (Δ�y�,�)
2

= Ψ(X0) +X1Ψ
′(X0)Δ�y�,�

+

[

X2Ψ
′(X0) +

X2
1

2
Ψ′′(X0)

]

(Δ�y�,�)
2 . (A.7)
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A.3.4 Computation ofG(t�, t
′
�)

Substituting the expressions given by equationsA.6 andA.7 in A.5b, we find

G(t�, t
′
�) =

{

Ψ(X0) +X1Ψ
′(X0)Δ�y�,� +

[

X2Ψ
′(X0) +

X2
1

2
Ψ′′(X0)

]

(Δ�y�,�)
2

}

∗
{

±� ±� l
2 + �̇y�(t�) �̇y�(t

′
�)
}

= ±� ±� l
2 Ψ(X0)

︸ ︷︷ ︸

F00

+±� ±� l
2 X1Ψ

′(X0)
︸ ︷︷ ︸

F10

Δ�y�,�

+±� ±� l
2

[

X2Ψ
′(X0) +

X2
1

2
Ψ′′(X0)

]

︸ ︷︷ ︸

F20

(Δ�y�,�)
2

+Ψ(X0)
︸ ︷︷ ︸

F21

�̇y�(t�) �̇y�(t
′
�) ,

and so, the total quadratic energy becomes

∑

�,�

∫


�

∫


�

G(t�, t
′
�) dt� dt

′
� =

∑

�,�

∫

□
�

∫

□
�

F00(t�, t
′
�) dt� dt

′
�

+
∑

�,�

∫

□
�

∫

□
�

F10(t�, t
′
�)Δ�y�,� dt� dt

′
�

+
∑

�,�

∫

□
�

∫

□
�

F20(t�, t
′
�)(Δ�y�,�)

2 dt� dt
′
�

+
∑

�,�

∫

□
�

∫

□
�

F21(t�, t
′
�)�̇y�(t�) �̇y�(t

′
�) dt� dt

′
� .

(A.8)

To compute these integrals, we make a change of variables to simplify the calculations.
These integrals can be written as

∫

□
�

∫

□
�

f(t�, t
′
�) dt� dt

′
� , (A.9)

wheref(t�, t′�) is a function which depends on±�lt� and±� lt
′
� . Making a first change of

variables,s� = lt� ands′� = lt′� , equationA.9 becomes

∫ 1

2

−1

2

∫ 1

2

−1

2

f(t�, t
′
�) dt� dt

′
� =

1

l2

∫ l
2

−l
2

∫ l
2

−l
2

f(s�, s
′
�) � ds

′
� .

The functionsFij depend on(±�s�−±�s
′
�), so a second change of variables can be made:

x = ±�s� − ±�s
′
� andy = ±�s� + ±�s

′
� which gives� = ±�

y+x
2 ands′� = ±�

y−x
2 .
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The variabless� ands′� lie between−l
2 and l

2 , so the new integration domain is defined as:
{(x, y)∣ − l ≤ x ≤ l,−l + ∣x∣ ≤ y ≤ l − ∣x∣}. We obtain

∫ 1

2

−1

2

∫ 1

2

−1

2

f(t�, t
′
�) dt� dt

′
� =

1

2l2

∫ l

−l
dx

∫ l−∣x∣

−l+∣x∣
f(x, y) dy .

The expression forf(x, y) can always be written as a product of two functions: the first
function depends on the interaction functionΨ given by equation2.2 and its derivatives,
embedded in the expressions forFij , which are equal to zero for a distancex greater that
a given threshold which characterizes the interaction range ofΨ; the second function is
written as an exponential function describing the contribution of the Fourierperturbations.
Then, we can approximate the integration domain by{(x, y)∣ − l ≤ x ≤ l,−l ≤ y ≤ l}.
After these simple mathematical manipulations, we obtain

∫ 1

2

−1

2

∫ 1

2

−1

2

f(t�, t
′
�) dt� dt

′
� =

1

2l2

∫ l

−l

∫ l

−l
f(x, y)dx dy . (A.10)

We now compute the different double integrals in equation (A.8) using the equality
given by equationA.10.

∫

□
�

∫

□
�

F00(t�, t
′
�) dt� dt

′
� = ±� ±� l

∫ l

−l
Ψ(X0(x)) dx ;

∫

□
�

∫

□
�

F10(t�, t
′
�)Δ�y�,� dt� dt

′
� =

∫

□
�

∫

□
�

F10(t�, t
′
�)(

∑

k�

a�,k�e
ik�lt� −

∑

k�

a�,k�e
ik� lt′� ) dt� dt

′
�

=
1

2l2

{∫ l

−l

∫ l

−l
F10(x)

∑

k�

a�,k�e
±�ik�

y+x
2 dx dy

−
∫ l

−l

∫ l

−l
F10(x)

∑

k�

a�,k�e
±� ik�

y−x
2 dx dy

}

=
1

2l2

{
∑

k�

a�,k�

∫ l

−l
F10(x)e

±�ik�
x
2 (

∫ l

−l
e±�ik�

y
2 dy)

︸ ︷︷ ︸

2l�(k�)

dx

−
∑

k�

a�,k�

∫ l

−l
F10(x)e

−±� ik�
x
2 (

∫ l

−l
e−±� ik�

y
2 dy) dx

}

= ±� ±� l(a�,0 − a�,0)

∫ l

−l
X1(x)Ψ

′(X0(x)) dx ;
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∫

□
�

∫

□
�

F20(t�, t
′
�)(Δ�y�,�)

2 dt� dt
′
� =

∫

□
�

∫

□
�

F20(t�, t
′
�) (�y�(t�))

2 dt� dt
′
�

︸ ︷︷ ︸

I1

+

∫

□
�

∫

□
�

F20(t�, t
′
�) (�y�(t

′
�))

2 dt� dt
′
�

︸ ︷︷ ︸

I2

− 2

∫

□
�

∫

□
�

F20(t�, t
′
�) �y�(t�)�y�(t

′
�) dt� dt

′
�

︸ ︷︷ ︸

I3

;

(A.11)

I1 =

∫

□
�

∫

□
�

F20(t�, t
′
�)

∑

k�,k′�

a�,k�a�,k′�e
i(k�+k′�)lt�dt� dt

′
�

=
1

2l2

∑

k�,k′�

a�,k�a�,k′�

∫ l

−l
F20(x)e

±�i(k�+k′�)
x
2 dx

∫ l

−l
e±�i(k�+k′�)

y
2 dy
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2l�(k�+k′�)

=
1

l

∑
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∣a�,k� ∣2
∫ l

−l
F20(x) dx

=
1

l

∑

k

∣a�,k∣2
∫ l

−l
F20(x) dx ,

and due to the symmetry of� and� in the expressions forI1 andI2, we find

I2 =
1

l

∑

k

∣a�,k∣2
∫ l

−l
F20(x) dx ,

and finally

I3 =

∫

□
�

∫

□
�

F20(t�, t
′
�)

∑

k�,k�

a�,k�a�,k�e
ik�lt�eik� lt

′

�dt� dt
′
�

=
1

2l2

∑

k�,k�

a�,k�a�,k�

∫ l

−l
F20(x)e

i(±�k�−±�k�)
x
2 dx

∫ l

−l
ei(±�k�+±�k�)

y
2 dy

︸ ︷︷ ︸

2l�(±�k�+±�k�)

=
1

l

∑

k

a�,ka�,−±�±�k

∫ l

−l
F20(x)e

±�ikx dx .
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Substituting the expressions forI1, I2 andI3 in equationA.11, one has

∫

□
�

∫

□
�

F20(t�, t
′
�)(Δ�y�,�)

2 dt� dt
′
� =

1

l

∑

k

∣a�,k∣2
∫ l

−l
F20(x) dx

+
1

l

∑

k

∣a�,k∣2
∫ l

−l
F20(x) dx− 2

1

l

∑

k

a�,ka�,−±�±�k

∫ l

−l
F20(x)e

±�ikx dx

=
1

l

∑

k

{

(∣a�,k∣2 + ∣a�,k∣2)
∫ l

−l
F20(x) dx− 2a�,ka�,−±�±�k

∫ l

−l
F20(x)e

±�ikx dx

}

;

∫

□
�

∫

□
�

F21(t�, t
′
�)�̇y�(t�) �̇y�(t

′
�) dt� dt

′
� =

∫

□
�

∫

□
�

F21(t�, t
′
�)

∑

k�,k�

a�,k�a�,k� i
2l2k�k�e

ik�lt�eik� lt
′

� dt� dt
′
�

= − 1

2l2

∑

k�,k�

a�,k�a�,k� l
2k�k�

∫ l

−l
F21(x)e

i(±�k�−±�k�)
x
2 dx

∫ l

−l
ei(±�k�+±�k�)

y
2 dy

︸ ︷︷ ︸

2l�(±�k�+±�k�)

= l
∑

k

k2a�,ka�,−±�±�k

∫ l

−l
Ψ(X0(x))e

±�ikx dx ;

Substituting the double integrals in equation (A.8) by their expressions computed pre-
viously, we obtain

∑

�,�

∫

□
�

∫

□
�

G(t�, t
′
�) dt� dt

′
� =

∑

�,�

±� ±� l

∫ l

−l
Ψ(X0(x)) dx

+
∑

�,�

±� ±� l(a�,0 − a�,0)

∫ l

−l
X1(x)Ψ

′(X0(x)) dx

+
∑

�,�

∑

k

±� ±� l(∣a�,k∣2 + ∣a�,k∣2)
∫ l

−l

[

X2(x)Ψ
′(X0(x)) +

X2
1

2
Ψ′′(X0(x))

]

dx

+
∑

�,�

∑

k

−2±� ±� l a�,ka�,−±�±�k

∫ l

−l

[

X2(x)Ψ
′(X0(x)) +

X2
1

2
Ψ′′(X0(x))

]

e±�ikx dx

+
∑

�,�

∑

k

±� ±� lk2a�,ka�,−±�±�k

∫ l

−l
Ψ(X0(x))e

±�ikx dx .
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To compute the total quadratic energyEQ, we separate two cases:
First case:±�±� = 1, which givesX0(x) = ∣x∣, X1(x) = 0 andX2(x) =

1
2∣x∣ . We

then get

E
±�±�=1
Q (
) = EQ(
1, 
1) + EQ(
2, 
2)

=
∑

±�±�=1

±� ±� l

∫ l

−l
Ψ(X0(x)) dx

+
∑

±�±�=1

∑

k

±� ±� l(∣a�,k∣2 + ∣a�,k∣2)
∫ l

−l

1

2∣x∣Ψ
′(∣x∣) dx

+
∑

±�±�=1

∑

k

−2±� ±� l a�,ka�,−±�±�k

∫ l

−l

1

2∣x∣Ψ
′(∣x∣)e±�ikx dx

+
∑

±�±�=1

∑

k

±� ±� lk2a�,ka�,−±�±�k

∫ l

−l
Ψ(∣x∣)e±�ikx dx

= 2l

∫ l

−l
Ψ(∣x∣) dx

+ 2l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

1

2∣x∣Ψ
′(∣x∣) dx

− 2l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

1

2∣x∣Ψ
′(∣x∣)eikxdx

+ l
∑

k

k2(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l
Ψ(∣x∣)eikx dx

= 2l

∫ l

−l
Ψ(∣x∣) dx

+ l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

1

∣x∣Ψ
′(∣x∣)− 1

∣x∣Ψ
′(∣x∣)eikx + k2Ψ(∣x∣)eikx dx .
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Second case:±�±� = −1, which gives X0(x) =
√

x2 + w2
0, X1(x) =

±�
w0

√

x2 + w2
0

andX2(x) =
x2

2(x2 + w2
0)

3

2

. We then get

E
±�±�=−1
Q (
) = EQ(
1, 
2) + EQ(
2, 
1)

=
∑

±�±�=−1

−l
∫ l

−l
Ψ(X0(x)) dx

+
∑

±�±�=−1

−l(a�,0 − a�,0)

∫ l

−l
±�

w0
√

x2 + w2
0

Ψ′(
√

x2 + w2
0) dx

+
∑

±�±�=−1

∑

k

−l(∣a�,k∣2 + ∣a�,k∣2)
∫ l

−l

{
x2

2(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)

+
w2
0

2(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

}

dx

+
∑

±�±�=−1

∑

k

2l a�,ka�,k

∫ l

−l

{
x2

2(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)

+
w2
0

2(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

}

e±�ikxdx

+
∑

±�±�=−1

∑

k

−l k2a�,ka�,k
∫ l

−l
Ψ(

√

x2 + w2
0)e

±�ikxdx

= −2l

∫ l

−l
Ψ(

√

x2 + w2
0) dx− 2l(a1,0 − a2,0)

∫ l

−l

w0
√

x2 + w2
0

Ψ′(
√

x2 + w2
0) dx

− 2l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

x2

2(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0) +

w2
0

2(x2 + w2
0)
Ψ′′(

√

x2 + w2
0) dx

+ 2l
∑

k

(a1,ka2,k + a1,−ka2,−k)

∫ l

−l

{
x2

2(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)

+
w2
0

2(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

}

eikx dx

− l
∑

k

(a1,ka2,k + a1,−ka2,−k)

∫ l

−l
k2Ψ(

√

x2 + w2
0)e

ikxdx .
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The total quadratic energy of the contour
 is then given by

EQ(
) = E
±�±�=1
Q (
) + E

±�±�=−1
Q (
)

= 2l

∫ l

−l
Ψ(∣x∣) dx− 2l

∫ l

−l
Ψ(

√

x2 + w2
0) dx

− 2l(a1,0 − a2,0)

∫ l

−l

w0
√

x2 + w2
0

Ψ′(
√

x2 + w2
0) dx

+ l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

1

∣x∣Ψ
′(∣x∣)− 1

∣x∣Ψ
′(∣x∣)eikx + k2Ψ(∣x∣)eikx dx

− l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

{
x2

(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)

+
w2
0

x2 + w2
0

Ψ′′(
√

x2 + w2
0)

}

dx

+ l
∑

k

(a1,ka2,k + a1,−ka2,−k)

∫ l

−l

{
x2

(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)

+
w2
0

(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

}

eikx dx

− l
∑

k

(a1,ka2,k + a1,−ka2,−k)

∫ l

−l
k2Ψ(

√

x2 + w2
0)e

ikxdx .

(A.12)
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Substituting the length, the area and the quadratic terms by their expressions given by
equations (A.3), (A.4) and (A.12) in the expression for the geometric energyEP of the
contour
 given by equation (2.1), we find

E
(2)
P (
) = �C l

[

2 +
1

2

∑

k

k2(∣a1,k∣2 + ∣a2,k∣2)
]

+ �C l[w + (a1,0 − a2,0)]

− �C
2

2l

∫ l

−l
Ψ(∣x∣)−Ψ(

√

x2 + w2
0) dx

+
�C
2

2l(a1,0 − a2,0)

∫ l

−l

w0
√

x2 + w2
0

Ψ′(
√

x2 + w2
0) dx

− �C
2
l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

1

∣x∣Ψ
′(∣x∣)− 1

∣x∣Ψ
′(∣x∣)eikx + k2Ψ(∣x∣)eikx dx

+
�C
2
l
∑

k

(∣a1,k∣2 + ∣a2,k∣2)
∫ l

−l

x2

(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0) +

w2
0

x2 + w2
0

Ψ′′(
√

x2 + w2
0) dx

− �C
2
l
∑

k

(a1,ka2,k + a1,−ka2,−k)

∫ l

−l

[
x2

(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)

+
w2
0

(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

]

eikx dx

+
�C
2
l
∑

k

(a1,ka2,k + a1,−ka2,−k)

∫ l

−l
k2Ψ(

√

x2 + w2
0)e

ikxdx .

The bar length,l, is very big compared to the bar width,w0, in order that we can ignore
the effect of both bar extremities, and we will take thel → +∞ limit. To simplify the
expression for the energy, we define

G00(w0) =

∫ +∞

−∞
Ψ(∣x∣)−Ψ(

√

x2 + w2
0) dx ,

G10(w0) =

∫ +∞

−∞

−w0
√

x2 + w2
0

Ψ′(
√

x2 + w2
0) dx ,

G20(w0, k) =

∫ +∞

−∞

{
x2

(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0) +

w2
0

(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

− 1

∣x∣Ψ
′(∣x∣)(1− eikx)− k2Ψ(∣x∣)eikx

}

dx ,

G21(w0, k) =

∫ +∞

−∞

{

− x2

(x2 + w2
0)

3

2

Ψ′(
√

x2 + w2
0)−

w2
0

(x2 + w2
0)
Ψ′′(

√

x2 + w2
0)

+ k2Ψ(
√

x2 + w2
0)

}

eikxdx .
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Here we detail the variational calculations for the phase field energy given by equa-
tion (4.1). For each energy term, we compute the energy of�+ �� andv + �v and we try
to express it as the following:E(� + ��, v + �v) = E(�, v) + ⟨E1(�, v)∣�(�, v)⟩. The
derivative is thenE1(�, v).

B.1 First derivatives of phase field terms

B.1.1 Derivative of the term weighted byD

E(�+ ��) =
1

2

∫

∂(�+ ��) ⋅ ∂(�+ ��) =
1

2

∫

∂� ⋅ ∂�+ 2∂� ⋅ ∂��

= E(�)−
∫

(∂ ⋅ ∂�)�� ,

and so

�

��

∫
1

2
∂� ⋅ ∂� = −∂2� .

B.1.2 Derivative of the term weighted byDv

E(v + �v) =
1

2

∫

(∂ ⋅ (v + �v))2 =
1

2

∫

(∂ ⋅ v + ∂ ⋅ �v)2

=
1

2

∫

(∂ ⋅ v)2 + 2(∂ ⋅ v)(∂ ⋅ �v) = E(v)−
∫

∂(∂ ⋅ v) ⋅ �v ,
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and so

�

�v

∫
1

2
(∂ ⋅ v)2 = −∂(∂ ⋅ v) .

B.1.3 Derivative of the term weighted byLv

E(v + �v) =
1

2

∫

(∂m(vn + �vn))2 =
1

2

∫

(∂mv
n + ∂m�v

n)2

=
1

2

∫

(∂mv
n)2 + 2(∂mv

n)(∂m�v
n) = E(v)−

∫

∂m(∂mv
n)�vn ,

and so

�

�v

∫
1

2
(∂mv

n)2 = −∂2v .

B.1.4 Derivative of the nonlocal term

E(�+ ��) = −1

2

∫∫

∂(�+ ��) ⋅ ∂(�′ + ��′)Ψ

= E(�)− 1

2

∫∫

∂� ⋅ ∂��′Ψ− 1

2

∫∫

∂�� ⋅ ∂�′Ψ

= E(�)−
∫∫

∂�′ ⋅ ∂��Ψ

= E(�) +

∫∫
(
∂ ⋅ (∂�′Ψ)

)
��

= E(�) +

∫∫

∂�′ ⋅ ∂Ψ �� ,

and so

�

��

{

−1

2

∫∫

Ω2

d2x′ ∂�(x) ⋅ ∂�(x′) Ψ(x− x′)

}

=

∫

Ω
d2x′ ∂�(x′) ⋅ ∂Ψ(x− x′)

= −
∫

Ω
d2x′ �(x′)∂′∂Ψ(x− x′)

=

∫

Ω
d2x′ �(x′)∂2Ψ(x− x′)

= �(x) ∗ ∂2Ψ(x) .
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B.2 Fourier transform of the linear derivatives

Let �̂ the Fourier transform of� and□ = −∂2 the negative Laplacian. The Fourier
transform of the negative Laplacian of� is

ℱ(□�) =

∫
d2x

2�
e−ik⋅x □� =

∫
d2x

2�
e−ik⋅x(−∂ ⋅ ∂�)

=

∫
d2x

2�
(−ik)e−ik⋅x∂� =

∫
d2x

2�
k2e−ik⋅x� = k2�̂(k) ,

where we made two integrations by parts.
The Fourier transform of the derivative of the nonlocal term,i.e. the convolution prod-

uct−□Ψ ∗ �, is

ℱ(−□Ψ ∗ �) = −k2Ψ̂(k)�̂(k) .

The Fourier transform of the divergence derivative−∂(∂ ⋅ v) is

ℱ(−∂m(∂nv
n)) =

∫
d2x

2�
e−ik⋅x (−∂m(∂nv

n)) =

∫
d2x

2�
(−ikm) e−ik⋅x ∂nv

n

=

∫
d2x

2�
kmkne

−ik⋅x vn = kmknv̂
n = km(k ⋅ v̂(k)) .

The Fourier transform of the derivative of the smoothing term−∂2v is

ℱ(−∂m(∂mv
n)) =

∫
d2x

2�
e−ik⋅x (−∂m(∂mv

n)) =

∫
d2x

2�
(−ikm) e−ik⋅x ∂mv

n

=

∫
d2x

2�
kmkme

−ik⋅x vn = k2v̂n(k) .
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In this appendix, we detail the stability analysis of the background and the foreground
under the total phase field HOAC model,EP = E0 + ENL, whereE0 is

E0(�, v) =

∫

Ω
d2x

{
D

2
∂� ⋅ ∂�+

Dv

2
(∂ ⋅ v)2 + Lv

2
∂v : ∂v

+
Av

2
(∂� ⋅ v)2 +W (�, v)

}

. (C.1)

The local phase field model given by equation (4.1) is obtained by settingAv = 0.
We study, firstly, the first order stability conditions and, secondly, the positivity conditions
for the eigenvalues of the Hessian matrix̂H expressed in the Fourier domain and eval-
uated at the desired stable configurations (i.e. the background and the foreground). The
Hessian matrixĤ is given by equation (4.3). This will generate constraints on the model
parameters.

The first order stability conditions,i.e. that the first order variations of the energy be
equal to zero, of the background and the foreground constrain the parameters of the poten-
tial W as the follows:

�20 = −1− �22
2

− �21 , (C.2)

�01 = −�22
4

− �21
4

− �03 , (C.3)

�02 = −�22
4

− �21
4

− �04 . (C.4)

Thus the number of free parameters of the potentialW is reduced from7 to 4.
The second order stability conditions, that the Hessian matrix be positive definite at the

desired local minima, give upper and lower bounds for the parameter values. The Hessian
matrix is given by equation (4.3). Ĥ is positive definite iff its eigenvalues are strictly
positives for all frequenciesk . It is simpler to study the three invariants ofĤ given below
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instead of the eigenvalues. The positivity conditions of the eigenvalues areequivalent to
those of the invariants. A state(�0, v0) is stable iff the 3 invariants of̂H evaluated at this
point are strictly positive for all frequenciesk. The 3 invariants of̂H are

I1 = tr(Ĥ) = Av(k ⋅ v0)2 +Dvk
2 + 2Lvk

2 + 2v20 + [D − �Ĝ(k)]k2 + F11 + 2F22 ,

I2 =
1

2

(

tr(Ĥ)2 − tr(Ĥ2)
)

= (Dvk
2 + 2Lvk

2 + 2F22 + 2v20
︸ ︷︷ ︸

Y

)

⎛

⎝Av(k ⋅ v0)2 + [D − �Ĝ(k)]k2 + F11
︸ ︷︷ ︸

X

+Lvk
2 + F22

⎞

⎠

− (Lvk
2 + F22)

2 − F 2
12v

2
0 + 2Dv(k × v0)

2 ,

I3 = det(Ĥ)

=
(

Av(k ⋅ v0)2 + [D − �Ĝ(k)]k2 + F11

)(

(F22 + Lvk
2)(Dvk

2 + 2Lvk
2 + 2F22 + 2v20)

− (F22 + Lvk
2)2 + 2Dv(k × v0)

2

)

− F 2
12[(F22 + Lvk

2)v20 +Dv(k × v0)
2] ,

where tr anddet are the trace and the determinant of a matrix respectively;× is the cross
product between two vectors. The invariants can be written as

I1 = X + Y > 0 ∀k ,
I2 = Y (X + Lvk

2 + F22) + 2Dv(k × v0)
2 − (F22 + Lvk

2)2 − F 2
12v

2
0 > 0 ∀k ,

I3 = X[(F22 + Lvk
2)Y − (F22 + Lvk

2)2 + 2Dv(k × v0)
2]− F 2

12[(F22 + Lvk
2)v20

+Dv(k × v0)
2] > 0 ∀k .

First, we study the case ofk = 0. The eigenvalues of̂H are

�1 = F22 ,

�2 =
1

2

(

F + F11 −
√

(F − F11)2 + 4F 2
12v

2
0

)

,

�2 =
1

2

(

F + F11 +
√

(F − F11)2 + 4F 2
12v

2
0

)

,

whereF = F22 + 2v20. The stability conditions require that, first,F11 > 0 and, second,
0 < �2 (because�2 < �3) which givesF + F11 > 0 andFF11 − F 2

12 > 0, the latter gives
F11 > 0 becauseF > 0. Then, the inequality systemS0, which corresponds tok = 0, is

S0 =

⎧

⎨

⎩

F11 > 0 ,

F22 > 0 ,

F11(F22 + 2v20)− F 2
12v

2
0 > 0 .



C.1. Stability of the background 151

The positivity conditions of the3 invariants are then summarized as

S =

⎧

⎨

⎩

X + Y > 0 ∀k ,
Y (X + Lvk

2 + F22) + 2Dv(k × v0)
2 > 0 ∀k ,

Y (X + Lvk
2 + F22) + 2Dv(k × v0)

2 − (F22 + Lvk
2)2 − F 2

12v
2
0 > 0 ∀k ,

X[(F22 + Lvk
2)Y − (F22 + Lvk

2)2 + 2Dv(k × v0)
2] > 0 ∀k ,

X[(F22 + Lvk
2)Y − (F22 + Lvk

2)2 + 2Dv(k × v0)
2]

−F 2
12[(F22 + Lvk

2)v20 +Dv(k × v0)
2] > 0 ∀k .

The fourth inequality is satisfied ifX > 0 becauseF22(Y − F22) > 0. And due toY > 0,
we get

S =

⎧

⎨

⎩

X > 0 ∀k ,
Y (X + Lvk

2 + F22) + 2Dv(k × v0)
2 − (F22 + Lvk

2)2 − F 2
12v

2
0 > 0 ∀k ,

X[(F22 + Lvk
2)Y − (F22 + Lvk

2)2 + 2Dv(k × v0)
2]

−F 2
12[(F22 + Lvk

2)v20 +Dv(k × v0)
2] > 0 ∀k .

(C.5)

To conclude, the point(�0, v0) is stable iffS is satisfied. The zero frequency con-
straints,i.e. the systemS0, involve only terms coming from theW . A way to solve the
constraints given by the systemS (i.e. the formf(k) > 0 ∀k) can be treated in 2 steps: 1)
prove thatf is bounded below atk = k★ and 2)f(k★) > 0. A way to prove that a function
f is bounded below is to prove thatf has a minimum atk★.

C.1 Stability of the background

When(�0, v0) = (−1, 0), i.e. (�0, v10, v
2
0) = (−1, 0, 0), the functionsFij become

F b
11 = 3�04 − 2�03 + �02 ,

F b
22 =

�22
2

− �21 + �20 ,

and replacing the parameters�02 and �20 by their expressions given by (D.2), (D.3)
and (D.4), one can get

F b
11 = 2�04 − 2�03 −

�22
4

− �21
4

,

F b
22 = −2�21 − 1 .

The systemsS0 andS are reduced to

Sb =

⎧

⎨

⎩

F b
11 > 0 ,

F b
22 > 0 ,

Xb > 0 .

(C.6)
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C.1.1 Particular case:Lv = 0 andΨ = K0

Here, we restrict the stability calculations to the case in whichLv = 0 and the interaction
functionΨ = K0 whereK0 corresponds to a modified Bessel function of the second kind
of order0. Its Fourier transform is given bŷΨ(k) = 1/(m2+k2) wherem is an interaction
range parameter in the Fourier domain like the parameterd in the spatial domain given in
equation (3.2). ReplacingΨ̂ by its expression, one can write

Xb(k) =
Dk4 + (Dm2 − �)k2

m2 + k2
+ F b

11 ,

and its derivative with respect tok, while introducing the variablew = k2, is ∂Xb(k)
∂k =

2k ∂Xb(w)
∂w where

∂Xb(w)

∂w
=
Dw2 + 2Dm2w − (� −Dm2)m2

(m2 + w)2
= 0 ,

which has one solutionw★ = (−Dm2 +m
√
D�)/D if � > Dm2, andXb(w★) = F b

11 −
(
√
� −m

√
D)2 < Xb(0) = F b

11 . So the constraintXb(k) > 0 ∀k becomes:

⎧

⎨

⎩

if � ≤ Dm2 thenXb(0) = F b
11 > 0

if Dm2 < � < (m
√
D +

√

F b
11)

2 thenXb(w★) > 0

if � ≥ (m
√
D +

√

F b
11)

2 thenXb(w★) < 0 ,

(C.7)

and so the conclusion is:Xb(k) > 0 ∀k is satisfied if0 < � < (m
√
D +

√

F b
11)

2.

C.2 Stability of the foreground

When(�0, v0) = (1, 1), i.e. (�0, ∣v0∣) = (�0,
√

(v10)
2 + (v20)

2) = (1, 1), the functionsFij

become

F f
11 =

�22
2

+ 3�04 + 2�03 + �02 ,

F f
22 = 1 +

�22
2

+ �21 + �20 ,

F f
12 = (�22 + �21) ,

and replacing the parameters�02 and�20 by their expressions given by (D.4) and (D.2),
one can get

F f
11 = 2�04 + 2�03 +

�22
4

− �21
4

,

F f
22 = 0 ,

F f
12 = (�22 + �21) .
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Due to the Euclidean invariance ofv0, we putv0 = (1, 0) and so(k ⋅ v0)2 = k21 = w1

and(k × v0)
2 = k22 = w2 wherew1 + w2 = w. The systemsS0 andS are reduced to

Sf =

⎧

⎨

⎩

F f
11 > 0

2F f
11 − (F f

12)
2 > 0

Xf > 0 ∀k
Zf = 2Xf − (F f

12)
2 > 0 ∀k ,

(C.8)

becauseY fXf + 2Dv(k × v0)
2 > 2Xf . Of course, the fourth constraint implies the third

one.

C.2.1 Particular case:Lv = 0 andΨ = K0

The minima ofZf are the same as those ofXf ; so we seek the minima ofXf . After simple
calculations, one can write

Xf (k1, k2) = Xf (w1, w) =
D̃w2 +Avw1w +Avm

2w1 + (Dm2 − �)w

m2 + w
+ F f

11 .

The partial derivatives ofXf can be computed as

∂Xf (k1, k2)

∂ki
= 2ki

∂Xf (w1, w)

∂wi
, (C.9)

wherei = 1, 2 andD̃ = D +Dv. After calculations, we obtain

∂Xf (w1, w)

∂w1
=

(Av + D̃)w2 + 2(Av + D̃)m2w + (Avm
2 +Dm2 − �)m2

(m2 + w)2
= 0

∂Xf (w2, w)

∂w2
=
D̃w2 + 2D̃m2w + (Dm2 − �)m2

(m2 + w)2
= 0 ,

which are equivalent to
{

(w +m2)2 = 0

D̃w2 + 2D̃m2w + (Dm2 − �)m2 = 0 ,

where only the second equation has, when� > Dm2, a solutionw★ = −m2 +

m
√

(� +Dvm2)/D̃ becausew = k2 ≥ 0. Then, the solutions of the equations given
by (C.9) are as follows:

{

if � ≤ Dm2 then(k★1, k
★
2) = (0, 0) > 0

if Dm2 > � then(k★1, k
★
2) = (0,

√
w★ − w★

1) = (0,
√
w★) > 0 .

The constraintZf (k1, k2) > 0, ∀k1, k2 is then equivalent toZf (w★) = −2D̃(m − Γ)2 +

2F f
11 − (F f

12)
2 > 0 whereΓ =

√

(� +Dvm2)/D̃. We then get
⎧

⎨

⎩

if � ≤ Dm2 thenZf (0) = 2F f
11 − (F f

12)
2 > 0

if Dm2 < � < D̃

(

m+

√

(2F f
11 − (F f

12)
2)/(2D̃)

)2

−Dvm
2 thenZf (w★) > 0

if � ≥ D̃

(

m+

√

(2F f
11 − (F f

12)
2)/(2D̃)

)2

−Dvm
2 thenZf (w★) < 0 ,
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and so the conclusion is:

Zf (k) > 0, ∀k ⇔ 0 < � < D̃

(

m+

√

(2F f
11 − (F f

12)
2)/(2D̃)

)2

−Dvm
2.
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In this appendix, we detail the stability calculations for the directed long bar studied in
chapter5.

D.1 Energy of the long bar

D.1.1 Contribution of the local term

The local phase field model is

EP,0 =

∫

Ω
d2x

{
D

2
∂� ⋅ ∂�+ W̃ (�, v) +

Dv

2
(∂ ⋅ v)2 + Lv

2
∂v : ∂v

}

, (D.1)

whereW̃ (�, v) = W (�, v) −W (−1, 0), where the generic form ofW (�, v) is given by
equation (4.2). The first order stability conditions,i.e. that the first order variations of the
energy equal zero, of the background and the foreground constrain the parameters ofW as
the follows (cf. AppendixC):

�20 = −1− �22
2

− �21 , (D.2)

�01 = −�22
4

− �21
4

− �03 , (D.3)

�02 = −�22
4

− �21
4

− �04 . (D.4)
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The local energy contributions ofR andR̄ are

E0,R =

∫ +∞

−∞

∫ w0

w
dx1dx2 W̃ (�m, vm) = L(w0 − w)(W (�m, vm)−W (−1, 0)) ,

E0,R̄ =

∫ +∞

−∞

∫

R̄
dx1dx2 W̃ (−1, 0) = 0 ,

and due to the symmetry of the bar, the contributions ofRCB andRCT are equal:

E0,RCB
=

∫ +∞

−∞

∫ w

0
dx1 dx2

D

2

−(�m + 1)

w

−(�m + 1)

w
+
Lv

2

−vm
w

−vm
w

+ W̃ (�RBar
, vRBar

)

= L
D

2

(�m + 1)2

w
+ L

Lv

2

v2m
w

− LwW (−1, 0) +

∫ +∞

−∞

∫ w

0
dx1 dx2 W (�RBar

, vRBar
) ,

where
∫ +∞

−∞

∫ w

0
dx1dx2W (�RBar

, vRBar
) =

∫ +∞

−∞

∫ w

0
dx1dx2

{
v4mx

4
2

4w4
+

[
�22
2

(
�m + 1

w
x2 − 1

)2

+ �21

(
�m + 1

w
x2 − 1

)

+ �20

]
v2mx

2
2

2w2
+
�04
4

(
�m + 1

w
x2 − 1

)4

+
�03
3

(
�m + 1

w
x2 − 1

)3

+
�02
2

(
�m + 1

w
x2 − 1

)2

+ �01

(
�m + 1

w
x2 − 1

)}

=

∫ +∞

−∞

∫ w

0
dx1dx2

{
v4mx

4
2

4w4
+

[
�22
2

(
(�m + 1)2

w2
x42 −

2(�m + 1)

w
x32 + x22

)

+ �21

(
�m + 1

w
x32 − x22

)

+ �20x
2
2

]
v2m
2w2

+
�04
4

(
�m + 1

w
x2 − 1

)4

+
�03
3

(
�m + 1

w
x2 − 1

)3

+
�02
2

(
�m + 1

w
x2 − 1

)2

+ �01

(
�m + 1

w
x2 − 1

)}

= L

{
v4mx

5
2

20w4
+

[
�22
2

(
(�m + 1)2

5w2
x52 −

(�m + 1)x42
2w

+
x32
3

)

+ �21

(
(�m + 1)x42

4w
− x32

3

)

+ �20
x32
3

]
v2m
2w2

+
�04
20

w

�m + 1

(
�m + 1

w
x2 − 1

)5

+
�03
12

w

�m + 1

(
�m + 1

w
x2 − 1

)4

+
�02
6

w

�m + 1

(
�m + 1

w
x2 − 1

)3

+
�01
2

w

�m + 1

(
�m + 1

w
x2 − 1

)2}w

0

=
Lw

2

[
v4m
10

+
v2m
2

(

�22(
�2m
5

− �m
10

+
1

30
) + �21(

�m
2

− 1

6
) +

2�20
3

)

+
�04
10

(�4m − �3m + �2m − �m + 1) +
�03
6

(�m − 1)(�2m + 1)

+
�02
3

(�2m − �m + 1) + �01(�m − 1)

]

=
Lw

2
C(�m, vm) ,
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and the total contribution ofRCB andRCT is then

E0,RC
= 2ERCB ,0

= LwC(�m, vm)− 2LwW (−1, 0) + L
D(�m + 1)2 + Lvv

2
m

w
,

Combining the local term contributions, the total local bar energy becomes

E0(�RBar
, vRBar

) = E0,R + E0,R̄ + E0,RC

= Lw0 (W (�m, vm)−W (−1, 0))

+ Lw (C(�m, vm)−W (�m, vm)−W (−1, 0))

+ L
D(�m + 1)2 + Lvv

2
m

w
,

where we define the total local bar energy per unit lengthe0(w,w0) = E0/L, which can
be written as

e0(w,w0) = w0 (W (�m, vm)−W (−1, 0))
︸ ︷︷ ︸

�(�m,vm)

+ w (C(�m, vm)−W (�m, vm)−W (−1, 0))
︸ ︷︷ ︸

�(�m,vm)

+
D(�m + 1)2 + Lvv

2
m

w
,

where

W (−1, 0) =
�04
4

− �03
3

+
�02
2

− �01

= −�04
4

+
2�03
3

+
�22
8

+
�21
8

;

W (1, 1) =
1

4
+
�22
4

+
�21
2

+
�20
2

+
�04
4

+
�03
3

+
�02
2

+ �01

= −1

4
− �04

4
− 2�03

3
− 3�22

8
− 3�21

8
;

�(�m, vm) = −3v4m
20

+
v2m
2

(
�22
10

(�m + 1)(−3�m + 2) +
�21
6

(−3�m + 1) +
1

3

)

+
�04
60

(�m + 1)2(−9�2m + 12�m + 1)

+
�03
6

(�m + 1)2(−�m + 1)

+
1

24
(�22 + �21)(�m + 1)2 ;

�(�m, vm) =
v4m
4

+
v2m
2

(
�22
2

(�2m − 1) + �21(�m − 1)− 1

)

+
�04
4

(�2m − 1)2 +
�03
3

(�m + 1)2(�m − 2)

− 1

8
(�22 + �21)(�m + 1)2 ;
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D.1.2 Contribution of the nonlocal term

The contribution of the nonlocal phase field term given by equation (3.2) appears only
along the boundary occupied by the regionRC :

ENL(�RBar
) = −�

2

∫∫

Ω2

d2x d2x′
(�m + 1)2

w2
n̂(x) ⋅ n̂(x′) Ψ

( ∣x− x′∣
d

)

= −�(�m + 1)2

w2

[∫∫

RCB×RCB

d2x d2x′ Ψ

( ∣x− x′∣
d

)

−
∫∫

RCB×RCT

d2x d2x′ Ψ

( ∣x− x′∣
d

)]

= −�(�m + 1)2

w2

[∫ +∞

−∞

∫ +∞

−∞

∫ w

0
dx1 dx

′
1 dx2

{∫ w

0
dx′2 Ψ

(√

(x1 − x′1)
2 + (x2 − x′2)

2

d

)

−
∫ w0+w

w0

dx′2 Ψ

(√

(x1 − x′1)
2 + (x2 − x′2)

2

d

)}]

= −�(�m + 1)2

w2

∫ +∞

−∞

∫ +∞

−∞

∫ w

0

∫ w

0
dx1 dx

′
1 dx2 dx

′
2

{

Ψ

(√

(x1 − x′1)
2 + (x2 − x′2)

2

d

)

−Ψ

(√

(x1 − x′1)
2 + (w0 + x′2 − x2)2

d

)}

,

where(x1, x2) and(x′1, x
′
2) are the coordinates ofx andx′ respectively and̂n is the normal

unit vector. Making the change of variablesz = (x1 − x′1)/d andt = (x′2 − x2)/d, one
has

ENL(�RBar
) = −Ld�(�m + 1)2G00(ŵ0, ŵ) ,

where ŵ = w/d, ŵ0 = w0/d, G00(ŵ0, ŵ) = 2
ŵ2 I00(ŵ0, ŵ), I00(ŵ0, ŵ) =

∫ +∞
0 dz I(ŵ0, ŵ, z) and

I(ŵ0, ŵ, z) =

∫ ŵ

0
dx2

∫ ŵ−x2

−x2

dt

{

Ψ

(
√

z2 + t2
)

−Ψ

(
√

z2 + (ŵ0 + t)2
)}

.

We define the nonlocal energy per unit length aseNL = ENL/L.

D.1.3 Total bar energy

The total phase field energy per unit length of the bar is

eP(ŵ0, ŵ, �m, vm) = e0 + eNL

= dŵ0�(�m, vm) + dŵ�(�m, vm) + d
D̂(�m + 1)2 + L̂vv

2
m

ŵ
− d�(�m + 1)2G00(ŵ0, ŵ) ,
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whereŵ0 = w0/d, D̂ = D/d2, L̂v = Lv/d
2. The interaction ranged appears as a

multiplicative term in the bar energy and does not change the energy minima. Weput it
equal to1 for better readability.

D.2 Stability constraints

D.2.1 First order stability conditions

The first order stability conditions consist of putting the first partial derivatives of the bar
energy equal to zero. The first partial derivatives are:

∂eP(ŵ0, ŵ, �m, vm)

∂ŵ0
= �(�m, vm)− �(�m + 1)2G10(ŵ0, ŵ) ,

∂eP(ŵ0, ŵ, �m, vm)

∂ŵ
= �(�m, vm)− D̂(�m + 1)2 + L̂vv

2
m

ŵ2
− �(�m + 1)2G11(ŵ0, ŵ) ,

∂eP(ŵ0, ŵ, �m, vm)

∂�m
= ŵ0��(�m, vm) + ŵ��(�m, vm)− 2�(�m + 1)G00(ŵ0, ŵ)

+ 2
D̂(�m + 1)

ŵ
,

∂eP(ŵ0, ŵ, �m, vm)

∂vm
= ŵ0�v(�m, vm) + ŵ�v(�m, vm) + 2

L̂vvm
ŵ

,

where

��(�m, vm) =
∂�(�m, vm)

∂�m

=
v2m
2

(

�22(−
3�m
5

− 1

10
)− �21

2

)

+
�04
30

(−18�3m − 9�2m + 16�m + 7) +
�03
6

(−3�2m − 2�m + 1)

+
1

12
(�22 + �21)(�m + 1) ;

�v(�m, vm) =
∂�(�m, vm)

∂vm

= −3v3m
5

+ vm

(

�22(−
3�2m
10

− �m
10

+
1

5
) + �21(−

�m
2

+
1

6
) +

1

3

)

;

��(�m, vm) =
∂�(�m, vm)

∂�m

=
v2m
2

(�22�m + �21) + �04(�
3
m − �m) + �03(�

2
m − 1)

− 1

4
(�22 + �21)(�m + 1) ;

�v(�m, vm) =
∂�(�m, vm)

∂vm

= v3m + vm

(
�22
2

(�2m − 1) + �21(�m − 1)− 1

)

;
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G10(ŵ0, ŵ) =
∂G00(ŵ0, ŵ)

∂ŵ0
= − 2

ŵ2

∫ +∞

0

∫ ŵ

0

∫ ŵ

0
dz dx2 dx

′
2

{
ŵ0 + x′2 − x2

√

z2 + (ŵ0 + x′2 − x2)2
Ψ′

(√

z2 + (ŵ0 + x′2 − x2)2
)}

;

G11(ŵ0, ŵ) =
∂G00(ŵ0, ŵ)

∂ŵ

= − 4

ŵ3
I00(ŵ0, ŵ) +

2

ŵ2

∂I00(ŵ0, ŵ)

∂ŵ
= − 2

ŵ
G00(ŵ0, ŵ) +

2

ŵ2
I11(ŵ0, ŵ) ,

whereI11 =
∂I00
∂ŵ0

=
∫ +∞
0 dz ∂I(ŵ0,ŵ,z)

∂ŵ0
and

∂I

∂ŵ
=

∂

∂ŵ

{∫ ŵ

0

∫ ŵ

0
dx2 dx

′
2 Ψ

(√

z2 + (x′2 − x2)2
)

−Ψ

(√

z2 + (ŵ0 + x′2 − x2)2
)}

=

[∫ ŵ

0
dx′2 Ψ

(√

z2 + (x′2 − x2)2
)

−Ψ

(√

z2 + (ŵ0 + x′2 − x2)2
)]

x2=ŵ

+

∫ ŵ

0
dx2

∂

∂ŵ

∫ ŵ

0
dx′2 Ψ

(√

z2 + (x′2 − x2)2
)

−Ψ

(√

z2 + (ŵ0 + x′2 − x2)2
)

=

∫ ŵ

0
dx′2 Ψ

(√

z2 + (x′2 − ŵ)2
)

−Ψ

(√

z2 + (ŵ0 + x′2 − ŵ)2
)

+

∫ ŵ

0
dx2 Ψ

(
√

z2 + (ŵ − x2)2
)

−Ψ

(
√

z2 + (ŵ0 + ŵ − x2)2
)

= 2

∫ ŵ

0
dx2 Ψ

(
√

z2 + (x2 − ŵ)2
)

−
∫ ŵ

0
dx2 Ψ

(
√

z2 + (ŵ0 + x2 − ŵ)2
)

−
∫ ŵ

0
dx2 Ψ

(
√

z2 + (ŵ0 + ŵ − x2)2
)

= 2

∫ ŵ

0
dt Ψ

(
√

z2 + t2
)

−
∫ ŵ0+ŵ

ŵ0−ŵ
dt Ψ

(
√

z2 + t2
)

.

Putting the first partial derivatives of the bar energy equal to zero, and after some math-
ematical manipulations, one finds the4 parameter constraints:

ŵ

[

�(�m, vm) +
�m + 1

2
��(�m, vm) +

vm
2
�v(�m, vm)

]

+ ŵ0

[
�m + 1

2
��(�m, vm) +

vm
2
�v(�m, vm)

]

− �(�m, vm)

G10(ŵ0, ŵ)
[G00(ŵ0, ŵ) + ŵG10(ŵ0, ŵ)] = 0 ; (D.5)

� =
�(�m, vm)

(�m + 1)2G10(ŵ0, ŵ)
; (D.6)

D̂ =
ŵ

�m + 1

[
�(�m, vm)G00(ŵ0, ŵ)

(�m + 1)G10(ŵ0, ŵ)
− ŵ0��(�m, vm)− ŵ��(�m, vm)

]

; (D.7)

L̂v = − ŵ

2vm
[ŵ0�v(�m, vm) + ŵ�v(�m, vm)] ; (D.8)
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D.2.2 Second order stability conditions

The second order stability condition says that the Hessian matrixHBar, evaluated at the
desired physical parameters(ŵ0, ŵ, �m, vm) = (ŵ0, ŵ, 1, 1), must be positive definite.
HBar is given by

HBar =

⎛

⎜
⎜
⎜
⎜
⎝

∂2eP
∂ŵ2

0

∂2eP
∂w∂ŵ0

∂2eP
∂�m∂ŵ0

∂2eP
∂vm∂ŵ0

∂2eP
∂w∂ŵ0

∂2eP
∂w2

∂2eP
∂�m∂w

∂2eP
∂vm∂w

∂2eP
∂�m∂ŵ0

∂2eP
∂�m∂w

∂2eP
∂�2

m

∂2eP
∂vm∂�m

∂2eP
∂vm∂ŵ0

∂2eP
∂vm∂w

∂2eP
∂vm∂�m

∂2eP
∂v2m

⎞

⎟
⎟
⎟
⎟
⎠

.

The second order variations of the bar energy are

∂2eP(ŵ0, ŵ, �m, vm)

∂ŵ2
0

= �(�m + 1)2G20(ŵ0, ŵ) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂ŵ∂ŵ0
= �(�m + 1)2G21(ŵ0, ŵ) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂�m∂ŵ0
= ��(�m, vm)− 2�(�m + 1)G10(ŵ0, ŵ) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂vm∂ŵ0
= �v(�m, vm) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂ŵ2
= 2

D̂(�m + 1)2 + L̂vv
2
m

ŵ3
− �(�m + 1)2G22(ŵ0, ŵ) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂�m∂ŵ
= ��(�m, vm)− 2D̂

�m + 1

ŵ2
− 2�(�m + 1)G11(ŵ0, ŵ) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂vm∂ŵ
= �v(�m, vm)− 2L̂v

vm
ŵ2

,

∂2eP(ŵ0, ŵ, �m, vm)

∂�2m
= ŵ0���(�m, vm)− 2�G00(ŵ0, ŵ) + ŵ���(�m, vm) + 2

D̂

ŵ
,

∂2eP(ŵ0, ŵ, �m, vm)

∂vm∂�m
= ŵ0�v�(�m, vm) + ŵ�v�(�m, vm) ,

∂2eP(ŵ0, ŵ, �m, vm)

∂v2m
= ŵ0�vv(�m, vm) + ŵ�vv(�m, vm) + 2

L̂v

ŵ
,

where

���(�m, vm) =
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∂�2m

= − 3

10
�22v

2
m +

�04
15

(−27�2m − 9�m + 8)− �03
3
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+
1

12
(�22 + �21) ;

�vv(�m, vm) =
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∂v2m

= −9v2m
5

+ �22(−
3�2m
10

− �m
10

+
1

5
) + �21(−

�m
2

+
1

6
) +

1

3
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model

�v�(�m, vm) =
∂2�(�m, vm)

∂vm∂�m

= vm

(

�22(−
3�m
5

− 1

10
)− �21

2

)

;

���(�m, vm) =
∂2�(�m, vm)

∂�2m

= �22
v2m
2

+ �04(3�
2
m − 1) + 2�03�m − 1

4
(�22 + �21) ;

�vv(�m, vm) =
∂2�(�m, vm)
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= 3v2m +
�22
2

(�2m − 1) + �21(�m − 1)− 1 ;

�v�(�m, vm) =
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= vm(�22�m + �21) ;
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D.2.3 Derivatives of the functionK0

To compute the derivatives of the modified Bessel function of the second kind of order�
denotedK�(z), we use these formulae:

∂K0(z)

∂z
= −K1(z) ,

∂K�(z)

∂z
= −1

2
(K�−1(z) +K�+1(z)) .

We denote on′ the derivative with respect toz. Using the above formulae, one can
compute the first three derivatives ofK0(z):

K ′
0(z) = −K1(z) ,

K ′′
0 (z) =

1

2
(K0(z) +K2(z)) ,

K ′′′
0 (z) = −1

4
(K1(z) +K3(z)) .
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1. A. El Ghoul, I. H. Jermyn and J. Zerubia. On directed network modelling. IEEE
Transaction on PAMI. Under review.

Conference papers

2010

1. A. El Ghoul, I. H. Jermyn and J. Zerubia. A theoretical and numericalstudy of a
phase field higher-order active contour model of directed networks.ACCV, Asian
Conference on Computer Vision. Queenstown, New Zealand, November 2010.

2. A. El Ghoul, I. H. Jermyn and J. Zerubia. Segmentation of networks from VHR
remote sensing images using a directed phase field HOAC model.ISPRS Technical
Commission III Symposium on Photogrammetry Computer Vision and Image Analy-
sis. Paris, September 2010.

2009

1. A. El Ghoul, I. H. Jermyn and J. Zerubia. A phase field higher-order active contour
model of directed networks.In 2nd IEEE Workshop on Non-Rigid Shape Analysis
and Deformable Image Alignment, at ICCV. Kyoto, Japan, September 2009.

2. A. El Ghoul, I. H. Jermyn and J. Zerubia. Inflection point model underphase field
higher-order active contours for network extraction from VHR satellite images.EU-
SIPCO, European Signal Processing Conference. Glasgow, Scotland, August 2009.

2008

1. A. El Ghoul, I. H. Jermyn and J. Zerubia. Phase diagram of a long bar under a
higher-order active contour energy: application to hydrographic network extraction
from VHR satellite images.ICPR, International Conference on Pattern Recognition.
Tampa, Florida, USA, December 2008.

2. A. El Ghoul, I. H. Jermyn and J. Zerubia. Diagramme de phase d’une énergie de type
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1. Phase fields for network extraction from images. 24 August 2010, Tunis (Tunisia).
Invited by Professor Amel Benazza at URISA (Sup’Com).

2. Phase fields for network extraction from images. 19 May 2010, SophiaAntipolis
(France). SHAPE Working Group meeting at INRIA Sophia Antipolis.

3. A phase field higher-order active contour model of directed networks. 22 April 2010,
Sophia Antipolis (France). ADSTIC Seminar at I3S.

2009

1. Shape modelling via phase field higher-order active contours. 29 May2009, INRIA
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2. Shape modelling via Higher-Order Active Contours and Phase Fields: Application to
hydrographic network extraction. 6 April 2009, Tunis (Tunisia). Invited by Professor
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3. Shape modelling via Higher-Order Active Contours and Phase Fields. 9January
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2. Shape modelling via Phase Field Higher-Order Active Contours: Stability analysis
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3. Shape modelling via Phase Field Higher-Order Active Contours: Stability analysis
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CNES Workshop on Information Extraction and Scene Understanding forMeter
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4. Phase diagram of a higher-order active contour energy. 11 March 2008, Sophia
Antipolis (France). ADSTIC Seminar at I3S.

5. Phase Field Higher-Order Active Contours For Object Extraction from Remote Sens-
ing Images. 4-6 March 2008, ESRIN, Frascati (Rome). ESA-EUSC 2008: Image
Information Mining: pursuing automation of geospatial intelligence for environment
and security.

6. Tree detection and road network extraction using higher order activecontours. 10-11
January 2008, CNES Paris. ORFEO Methodology Meeting.
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ABSTRACT

This thesis describes the construction of an undirected network (e.g.road network) model, based on the
recently developed higher-order active contours (HOACs) and phase fields, and introduces a new family of
phase field HOACs for directed networks (e.g.hydrographic networks in remote sensing imagery, vascular
networks in medical imagery). In the first part of this thesis, we focus on the stability analysis of a HOAC
energy leading to a ‘phase diagram’. The results, which are confirmedby numerical experiments, enable the
selection of parameter values for the modelling of undirected networks.

Hydrographic networks, unlike road networks, are directed,i.e. they carry a unidirectional flow in each
branch. This leads to specific geometric properties of the branches andparticularly of the junctions, that it is
useful to capture in a model, for network extraction purposes. We thus develop a nonlocal phase field model
of directed networks, which, in addition to a scalar field representing a region by its smoothed characteristic
function, and interacting nonlocally so as to favour network configurations, contains a vector field representing
the ‘flow’ through the network branches. The vector field is strongly encouraged to be zero outside, and of unit
magnitude inside the network; and to have zero divergence. This prolongs network branches; controls width
variation along a branch; and produces asymmetric junctions for which total incoming branch width approxi-
mately equals total outgoing branch width. In conjunction with a new interactionfunction for the scalar field,
it also allows a broad range of stable branch widths. The new proposed model is applied to the problem of
hydrographic network extraction from VHR satellite images, and it outperforms the undirected network model.

Keywords: Shape priors, higher order active contours, phase diagram, phasefields, undirected networks,
directed networks, road networks, hydrographic networks, remote sensing.

RÉSUMÉ

Cette thèse décrit la construction d’un modèle de réseaux non-directionnels (e.g. réseaux routiers), fondé
sur les contours actifs d’ordre supérieur (CAOSs) et les champs de phase développés récemment, et introduit
une nouvelle famille des CAOSs des champs de phase pour des réseauxdirectionnels (e.g. réseaux hydro-
graphiques en imagerie de télédétection, vaisseaux sanguins en imageriemédicale). Dans la première partie
de cette thèse, nous nous intéressons à l’analyse de stabilité d’une énergie de type CAOSs aboutissant à un ‘di-
agramme de phase’. Les résultats, qui sont confirmés par des expériences numériques, permettent une bonne
sélection des valeurs des paramètres pour la modélisation de réseaux non-directionnels.

Au contraire des réseaux routiers, les réseaux hydrographiques sont directionnels, i.e. ils contiennent
un ‘flux’ monodimensionnel circulant dans chaque branche. Cela implique des propriétés géométriques
spécifiques des branches et particulièrement des jonctions, propriétés qu’il est utile de traduire dans un
modèle, pour l’extraction de réseaux. Nous développons donc un modèle de champ de phase non-local
de réseaux directionnels, qui, en plus du champ de phase scalaire décrivant une région par une fonction
caractéristique lisse et qui interagit non-localement afin que des configurations de réseaux linéiques soient
favorisées, introduit un champ vectoriel représentant le ‘flux’ dansles branches du réseau. Ce champ vectoriel
est contraint d’être nul à l’extérieur, et de magnitude égale à 1 à l’intérieur du réseau ; circulant dans le sens
longitudinal des branches du réseau ; et de divergence très faible. Cela prolonge les branches du réseau ;
contrôle la variation de largeur tout au long une branche ; et forme des jonctions non-symétriques telles que la
somme des largeurs entrantes soit approximativement égale à celle deslargeurs sortantes. En conjonction avec
une nouvelle fonction d’interaction pour le champ de phase scalaire, le modèle assure aussi une vaste gamme
de valeurs des largeurs stables des branches. Ce nouveau modèle a été appliqué au problème d’extraction de
réseaux hydrographiques à partir d’images satellitaires très haute résolution.

Mots clefs: A priori de forme, contours actifs d’ordre supérieur, diagramme dephase, champs de phase,
réseaux non-directionnels, réseaux directionnels, réseaux routiers, réseaux hydrographiques, télédétection.


