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Introduction

“The true logic of this world is the calculus of probabilities”
— James Clerk Maxwell

Motivations and goal

Why is real-world visual object recognition hard? An interesting questituoPinto et al.
(2008 have tried to answer. At the core of this challenging question is |mage variatio
any given object can cast an infinite number of im- . :

ages, in which it has different sizes, orientations,
poses, lighting, etc.

The central challenge we are interested in is thdls
automatic extraction of specific objects from real-
world images. By ‘extraction’ is meant: ‘find the &
region R in the image domain that “contains” the
object’, where ‘contains’ means th&tis the projec- §
tion to the image domain of the volume occupied by ™5
the object in the real world. Particularly, our central§8
aim is network-like region extraction from very high
resolution (VHR) remote sensing images. Figdre s T
shows two multi-spectral VHR Quickbird images in E' o
which a road network (top) and a hydrographic net- '.;‘ gt
work (bottom) are present. These images show ma ;
difficulties if one is concerned to segment network-§
like regions. Firstly, the background and the networkss
region have many pixels with very similar radiome-
try leading to confounding zones which yield mis-
classification if one uses only local information d
rived from the image. Secondly, the visual networkg
in the image appears with many gaps and brokef. * .. &
edges due to occlusions and the presence of noise
(e.g.trees, bridges, shadows, cars, etc). Thus, théggure 1. Two multi-spectral
‘shape’ of the object in question is mandatory t&uickbird images showing (top)
distinguish between the object and the backgrour@.road network at full resolution
Methods and techniques which do not describe tff¢.61m), and (bottom) a hydro-
shape of a network are then completely unsuccessgiifphic network at /4 the original
in segmenting a network from this kind of image. resolution £.44m). (Original im-

Directed networkge.g. hydrographic networks ages ©DigitalGlobe, CNES pro-
in remote sensing imagery and vascular network€ssing, images acquired via OR-
in medical imagery) carry ‘flow’ through their FEO Accompaniment Program.)
branches. This family of networks have characteris-
tic geometric properties which are significantly differenttairected networkée.g.road
networks). For directed networks, branches tend not to end; différanches may have

-
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very different widths; width changes slowly along each branch; atijons, total incoming
width and total outgoing width tend to be similar. In other words, the flow is aqmately
conserved See figures for an example of an approximately conserved flow running in a
directed network. Of course we can find, but not frequently, roadar&s which satisfy
some of the geometric properties of directed netwaksthe road network in figurd
satisfies the property of flow conservation at some junctions and along lsanehes.
The specific geometric properties of the region of interest make the prablesh harder
because they need to be incorporated into the model in order to favduregions. In
addition to that, théopologyof a net-
work region is a serious difficulty be-
cause it is non-trivial and unknown
a priori. More concretely, network
topologies are very diverse dependin
on the number of connected components
and the number of handles (loops) for
each of them (see figuefor an exam-
ple of a loop).

To solve the problem of extraction,
prior knowledge about network region
need to be incorporated into mathemat-
ical models for automated techniques.
Grenander et a(199)) is the pioneer of
the idea that a Bayesian approach per-
mits the incorporation of prior knowl-
edge of the object into mathematic
models. Mathematically speaking, we
seek to construct tha posterioriprob-
ability distribution RR|I, K), wherel
is the image data anll represents prior
knowledge about the region of inter-
est R (e.g.network region in our case)
and the relation betweeR andI. As
usual, this can be written as the produc
of a likelihood RI|R, K'), and a prior
P(R|K) that incorporates knowledge o
region ‘shape’. We then infer the regiorFigure 2: An example of an approximately con-
R by maximuma posterioriMAP) es- served flow running in a directed network.
timate. (In practice, we will deal with
negative log-probabilities,e. a total energyF(R; I, K) that is the sum of a likelihood
term E;(I, R, K) and a prior termEp (R, K).)

In the literature, a huge number of papers propose the incorporatisiookpowledge
of the object to be extracted into mathematical models. One of the pioneeringsmode
to incorporate prior knowledge is the active contour (snake) model, initialipdaced
by Kass et al(1988. The snake model describes generic prior knowledge via shorerang
dependencies between contour points (see fi§utep), which guarantees smoothness of
the object boundary of the final solution. We also refer to the earlier wokeman

—
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and Gemanl1984 Ising, 1925 where generic shape knowledge is used. Aftass et al.
(1988, many successors were introduced in many application domains. Howexeare
all almost insufficient for automatic object segmentation because they oredepgyeneric
shape priors, mainly about boundary smoothing which says nothing étewatbject of
interest €.g.network-like objects in our case). Many recent works have then émtas
the incorporation of specific shape priors based on active con=
tours. The key idea for these methods is to seek an optimal re-
gion described by perturbation of reference region(s). In other
words, the topology of the object of interest is constrained to
be the same as the topology of the reference region(s). Thi j:
is not suitable for our problenmg. network region extraction,
because the topology of a network is non-trivial and unknown~
a priori. So, one has to construct specific shape prior models
without constraining the topology.

In Rochery et al(2006, a higher-order active contour
(HOAC) model was introduced to incorporate specific shap
priors without constraining the topology. The idea is to introt
duce long-range dependencies between the boundary poirn
of the region of interest (see figue bottom) which allow
to model network regions for some parameter ranges. Bl
the algorithm used to solve the minimization problem suffer
from serious difficulties: not enough ‘automatic’ topological
freedom (it is not possible to handle network loops) and fsgure 3:  Short-range
very slow due to the long-range dependencies. A new frangpendencies (top) and
work based on phase fields was then introduce®bghery |ong-range dependencies
et al.(2009 to remedy these problems. Moreover, it has beghottom) between contour
shown that the phase field model is approximately equivalgiints. The dashed curves
to the HOAC model for a given region of intere®dchery and edges define the inter-
etal, 2005. action range and the inter-

The undirected network model introduced Bypchery action between two points
et al. (2005 2006 works very well for road network extrac-respectively.
tion from medium resolution optical images of rural and semi-
rural areas where road width is approximately constant and
relatively small. But, it is not appropriate to satisfy the geometric propertids/difo-
graphic networks because it constrains severely the change of wid#twbérk branches.
High and very high resolution images bring with them new challenges andutiffis.Peng
et al.(2010 extended the earlier model iR¢chery et a].2005 in order to favour networks
where branches prefer to be long and straight. The model was apptieesstully for road
network extraction from high resolution images of urban areas, but @gaimot appro-
priate for hydrographic networks because the branch rigidity ancchnardth change are
tightly constrained.

The extraction of road and hydrographic networks is crucial in manjicaion do-
mains: cartographic data updating, intelligent navigation, environmental miogitalis-
aster management, hydrology, agriculture, planning and managemeifii\atted territo-
ries, water resource management, etc. Recently, the amount of availaBleptidal data
(QuickBird, Ikonos, and in the near future Pléiades) has become eneramal this brings
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new challenges. VHR images show road and hydrographic network3 esgions in the
image domain, as opposed to low and medium resolution images where theds algec
1D structures. VHR images provide much more information about netwoirtmegnd so
the extraction accuracy can potentially be much improved by using advéecetques.

In this thesis, we propose new variational models, based on HOACs asé [fiblds,
for network modelling in general and for hydrographic and road ndtwegtraction from
VHR remote sensing images in particular.

Firstly, we conduct a stability analysis of an undirected long bar undertthsefield
HOACSs introduced byRochery et al.2005 2006. This constrains the model parameters
to ranges producing stable networks. The result of the stability analysissgraited on
a ‘phase diagram’ which emphasizes the different stable phases of &dongdhus, one
can select parameter values from the phase diagram and use thendifected network
extraction from VHR remote sensing images.

Secondly, we propose a new family of phase fields for directed netwgdah directed
network branch has a ‘flow direction’, and each junction therefore‘inaeming’ and
‘outgoing’ branches. The existence of such a flow typically changegdbeetry of the
network, because often the flow is in some sarweservedThus branches tend not to end,
because this would involve the flow stopping, and junctions often consgnafi-width
incoming branches joining together to form larger-width outgoing brancheike-versa.
Our goal is hydrographic network extraction from remote sensing imagethe model is
probably relevant to other applications involving directed netwaoelg. yascular networks
in medical imagery). To model such networks, we extend the nonlocaédledd model
of undirected networks described Bpchery et al(2005 2006. In addition to a scalar
phase field representing a region by its smoothed characteristic functibmtanacting
nonlocally so as to favour network configurations, the proposed maahhins a vector
phase field representing the ‘flow’ through the network branches.

Organization of the manuscript

This manuscript is organized as follows:
Part 1: phase field HOACSs for undirected networks

Chapter 1: In the first part, we give a brief state-of-the-art for variational meshima
segmentation. We pay patrticular attention to active contours and shape pmar classes
of active contours are emphasizestige-base@dndregion-basednethods. In the second
part, we review some of the representative techniques for road amddgmgghic network
extraction from different types of images.

Chapter 2: Firstly, we briefly recall the HOAC model introduced Bpchery et al(2006),
and we show that this model favours two stable configurations, namely lm®rea and
circular structures, for different parameter values. Secondly, wedwa a stability anal-
ysis of a long bar via a Taylor series expansion up to second order éf@#¢C model
around a long bar. We then are able to constrain the parameter valueinmrdodel
networks. Geometric evolutions of a long bar using gradient desceshaven to validate
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the theoretical calculations. Finally, we Taylor-expand the prior HOAC rnogéo sec-
ond order around a circle in order to find the parameter ranges whickdetable circular
structures. The result of the stability analysis of both long bar and circle srélied on a
‘phase diagram’.

Chapter 3: Firstly, we briefly recall the phase field HOAC model of undirected netaork
introduced byRochery et al(2005 2006, we show the equivalence between phase field
modelling and standard active contours, and we show the equivalentte afonlocal
phase field term and the HOAC term. The result is that one can use pHdserfsead

of active contours. Secondly, we propose an inflection point long bdehto reduce the
number of free parameters lyand show the improvement produced by this model for
network extraction. Finally, we define the data energy term by testing twols)adenmely

a multivariate Gaussian and a multivariate mixture of two Gaussians, and timealdite
our primary overall model adapting ‘phase field HOACs’ to the problem @& tietwork
extraction from images; we study the robustness of the algorithm to the initiatizatio
despite the use of deterministic gradient descent.

Part 2: phase field HOACSs for directed networks

Chapter 4: Firstly, we extend the phase field HOAC model of undirected networks intro-
duced byRochery et al(2005, and analysed and improved in chapeWe incorporate
into the model a second phase field function, in addition to the scalar phiastifietion
representing a region by its smoothed characteristic function, which idaervistd repre-
senting the ‘flow’ through the network branches. The vector field is gtyoencouraged
to be zero outside, and of unit magnitude inside the region; to be smooth; daldo
zero divergence. This prolongs network branches; controls widthtian along a branch;
and produces asymmetric junctions for which total incoming branch widtroappately
equals total outgoing branch width. In conjunction with a new interactiontifmmgit also
allows a broad range of stable branch widths. We analyze the Turing stalbibiyth the
background and the foreground in order to constrain the parametesvaihd avoid some
undesirable configurations. Secondly, we show geometric evolutions toesiap the pur-
pose of the vector field and how it behaves in several situations and pi this new
model to the extraction of hydrographic networks from a synthetic imagerivkeaand
from a VHR remote sensing image.

Chapter 5: We analyse the stability of a network branch under the directed networkimode
We focus on zero-frequency perturbations of the region bounedrich correspond to
changes in the branch width: we compute the energy of each term of tlotedimetwork
model on a four-parameter family ahsatze®f a directed, straight, long bar. This places
constraints on the parameter values of the model so that a network brarsthtite to
branch width changes.

Chapter 6: Firstly, we confirm the theoretical analysis studied in chaptey numerical
experiments. We show geometric evolutions of a long bar and a randonguaiion that
evolve to stable network configurations where the width of their brancheguial to the
branch width predicted by theory. We also describe a major advantage oéthdirected
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network model to solve the problem of occlusions in the network entity to baczt, by
closing the gaps and the broken edges thanks to the flow conservatmerigrd&secondly,
we apply the model on the problem of road and hydrographic networkaidn from
multi-spectral VHR Quickbird images.

Contributions

The main contributions of this thesis are as follows:

1.

the analysis of the stability of a long bar under a HOAC model propos&bbliery
et al. (2009 (chapter 2),

the introduction of an inflection point long bar energy under a phakkeHi©@AC
model for undirected networks (chapter 3),

the application of the undirected network model on multi-spectral VHR @iri¢k
images for rural road network segmentation (chapter 3),

. the study of the robustness of the algorithm to initialization (chapter 3),

. the proposal of a new family of local prior phase fields for directedorks, and

Turing stability (chapter 4),

. the analysis of the stability of a directed, straight, long bar using a fatarpeter

family of ansatzegchapter 5),

. the application of the directed network model on multi-spectral VHR Quidkhir

ages for road and hydrographic network segmentation (chapter 6).



Résume en francais

“A little knowledge that acts is worth infinitely more than much knowledge thates id
— Gibran Khalil Gibran

Motivations et but

Pourquoi la reconnaissance d’objets visuels dans le monde réel egiffadie ? Une
guestion intéressante a laqueRinto et al.(2008 -
avait essayé de répondre. La variation au nivea e
de lI'image est au coeur de cette question difficile : =
chaque objet donné peut étre présent dans un nomt*
infini d’images, ou il apparait avec différentes tailles,
orientations, poses, illuminations, etc.

Le défit principal auquel nous nous sommes in
téressés est I'extraction automatique d’objets spéch
fiques a partir d'images réelles. Dans ce contexte; s
‘extraction’ signifie : ‘trouver la régionk dans le '
domaine image qui “contient” I'objet’, ou ‘contient’
signifie queR est la projection dans le domaine im- oy
age du volume occupé par 'objet dans le monde réeE."'-' ‘
Notre intérét principal est I'extraction de régions qui ‘.:‘ o '
forment des réseaux linéiques a partir d'images doEEllees
télédétection a trés haute résolution (THR). La fig-ila"
ure 4 montre deux images Quickbird THR multi- &8
spectrales qui contiennent un réseau routier (haut)
un réseau hydrographique (bas). Ces images prése
tent plusieurs difficultés qui rendent le probléme
d’extraction trés difficile. D’une part, les régions §
représentant le fond et le réseau ont plusieurs pixel8
qui ont des radiométries trés similaires impliquant
des zones de confusion si nous n'utilisions que detgure 4: Deux images Quickbird
informations locales dérivant de I''mage. D’autrénulti-spectrales montrant (haut) un
part, le réseau visuel dans I'image apparait avééseau routier a pleine résolution
plusieurs sauts dus aux occultations et a la préserf@é1m), et (bas) un réseau hydro-
de bruit g.g.arbres, ponts, ombres, véhicules, etcraphique al/4 de la résolution
Par conséquent, la ‘forme’ de I'objet en question estiginale .44 m). (Images orig-
nécessaire afin de pouvoir discerner I'objet du fonthales ©DigitalGlobe, traitement
Les méthodes et les techniques qui ne décrivent fabES, images acquises via le pro-
la forme d’un réseau sont donc totalement incapablggamme d’Accompagnement OR-
de segmenter automatiquement un réseau a partirdeO.)
ce type d'images.

Les réseaux directionnels.f.réseaux hydrographiques en imagerie de télédétection
et réseaux vasculaires en imagerie médicale) possedent un flux demisrenches. Cette

55
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famille de réseaux a des propriétés géométriques caractéristiques tjabasitérable-
ment différentes a celles des réseaux non-directionealsréseaux routiers). Pour les
réseaux directionnels, les branches tendent a se prolonger ; dehésalifférentes peu-
vent avoir des largeurs tres différentes ; la largeur change lentemeraudong chaque
branche ; aux jonctions, la somme des largeurs entrantes et celle desdageantes ten-
dent a étre similairescf, la figure5 pour un exemple de flux approximativement conservé
dans un réseau directionnel). Bien sdr, nous pouvons trouver, nsfigggaemment, des
réseaux routiers qui satisfassent
quelques unes des  propriétés
géométriques des réseaux directionnels,
e.g. le réseau routier dans la figuee
satisfait la propriété de conservation du
flux en quelques jonctions et branches.
Les propriétés géométriques spéc
fiques de la région d'intérét rendent lg
probleme plus difficile parce qu’elles
devront étre incorporées dans un modéle
afin de favoriser de telles régions. De
plus, la topologie d'une région d'un
réseau est une difficulté majeure parce
gu’elle est non-triviale et inconnua
priori. Concrétement, les topologieg
des réseaux sont trés diverses, elles
dépendent du nombre de composantes
connexes et du nhombre de boucles pour
chacune d’ellesdf. la figure 5 pour un
exemple de boucle).

Afin de résoudre le probleme
d’extraction automatiquement, des
connaissancesa priori sur les reé-
gions des réseaux ont besoin d'étre =
incorporées dans des modéles mathé- /
matiques.Grenander et al(1991) est 1
le pionnier d’'une approche bayésienne
permettant lincorporation des con-Figure 5: Un exemple de flux approximative-
naissances priori de I'objet dans des ment conservé dans un réseau directionnel.
modéles mathématiques.  Mathéma-
tiguement parlant, nous cherchons a construire une distribution delilittha posteriori
P(R|I, K), ouI représente les données imagdsetontient les connaissancagriori de
la région d’intérétRk (e.g.région d’'un réseau dans notre cas) et la relation eRtet /.
Cette distribution peut s’écrire, comme toujours, comme un produit d’'unsevmdlance
P(I|R, K), et d'una priori P(R|K) qui incorpore des connaissances sur la forme de la
région. Nous inférons donc la régidd par estimation au sens du maximanposteriori
(MAP). (En pratique, nous manipulerons des log-probabilités négatieesine énergie
totale E(R; I, K) qui est la somme d’'un terme de vraisemblada¢!, R, K) et d'un
terme da priori Ep(R, K).)
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Dans la littérature, beaucoup d’articles proposent I'incorporation desaissance

priori de I'objet a extraire dans des modéles mathématiques. Un des modeéles gionnier

incorporant des connaissaneegriori est le modele des contours actifs (ou “snakes”), ini-

tialement introduit paKass et al(1988. Le modeéle de snakes décrit des connaissances

a priori génériques via des dépendances a courte-portée (locales) (voir@jdnaut), qui
assurent le lissage du contour de 'objet de la solution finale. Citons ksssiavaux
antérieurs publiés dan&éman and Gemaid984 Ising, 1925 qui utilisent des connais-
sances de forme génériques. Apkass et al(1988), plusieurs travaux ont été introduits

dans plusieurs domaines applicatifs. Cependant, presque t
sont insuffisants pour la segmentation automatique d’obje
parce qu'ils incorporent dea priori de forme génériques,

essentiellement sur le lissage du contour de I'objet qui not

renseigne en rien sur I'objet d'intéré.§. objets de forme
linéigue dans notre cas). Beaucoup de travaux récents
sont donc focalisés sur I'incorporationadpriori de formes
spécifiques fondés sur les contours actifs. Lidée-clé de ¢

DS

méthodes est de déterminer une région optimale décrite
des perturbations d’'une ou plusieurs région(s) de référeng
Autrement dit, la topologie de I'objet d’'intérét est contrainte
d’étre la méme que celle des régions de référence. Cela
convient pas a notre problematique, I'extraction de régions
de réseaux linéiques, parce que la topologie d’'un réseau
non-triviale et inconnuea priori. En conséquence, nous nous
intéressons a la construction de modéles gtiori de forme

par
ce.

1)

sans contraindre la topologie.

Dans Rochery et al.2006, un modele des contours actif§-igure 6:

Dépendances

d’ordre supérieur (CAOS) a été introduit afin d’incorporer dgsurte-portees (haut) et
a priori de forme spécifiques sans contraindre la topologlengue-portées (bas). Les
L'idée est d'introduire des dépendances a longue-portée eg@arbes et les liaisons
les points du contour de la région d’intérét (voir figédas) €en

qui permettent de modéliser des régions de forme linéiqueemnt

pointillées  définis-
respectivement la

pour quelques valeurs des parametres. Mais, I'algorithme upibrtée  d’interaction et
isé pour résoudre le probléme de minimisation souffre désteraction entre deux

difficultés majeures suivantes : liberté topologique ‘autompeints.

tique’ insuffisante (il n’est pas possible de créer et contrbler

les boucles d’'un réseau), et I'algorithme est trés lent du fait des dépeas a longue-
portée. Une nouvelle formulation fondée sur les champs de phase a éténttoduite

par Rochery et al(2005 pour surmonter ces problemes. De plus, il a été montré que le

modéle de champ de phase est approximativement équivalent au modelaQ@i8s @our

une région d’intérét donné®6chery et al.2005.

Le modéle de réseaux non-directionnels introduitRachery et al(2005 2006 per-
met une bonne extraction des réseaux routiers a partir d'images optiqnegeane ré-
solution, de zones rurales et semi-rurales ou la largeur des routgspeskianativement
constante et relativement petite. Mais, il n'est pas adapté pour satikfaipgopriétés
géomeétriques des réseaux hydrographiques parce qu’il contraierient le changement
de largeur des branches du réseau. Les images a haute et trés baluttorés appor-
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tent de nouveaux défis et de nouvelles difficulfésng et al(2010 ont étendu le modéle

de (Rochery et al.2005 2006 afin de favoriser les réseaux dont les branches tendent a étre
longues et droites. Le modeéle a été appliqué avec succes a I'extractiésedeix routiers

a partir d'images haute résolution de zones urbaines, mais ce modéleasesigpté aux
réseaux hydrographiques parce que la rigidité des branches enlgechant de largeur des
branches sont fortement pénalisés.

L'extraction de réseaux routiers et hydrographiques est cruciale plusieurs do-
maines d'applications : mise a jour cartographique, navigation intelligentépigesn-
vironnementale, gestion des désastres, hydrologie, agriculture, @énifiet gestion des
territoires cultivés, gestion des ressources en eau, etc. Récemmernia&de données
optiques THR disponibles (Quickbird, Ikonos, et dans le futur prodéiades) est devenu
énorme et cela apporte de nouveaux défis. Les images THR montregsdasx routiers
et hydrographiques sous forme de régions 2D dans le domaine imag&imnent aux
images a basse et moyenne résolution ou ces objets apparaissent corsmectiges 1D.
Les images THR fournissent beaucoup plus d’'information sur les rédienséseaux et
donc la précision d’extraction peut étre nettement améliorée, en utilisatecasiques
avanceées.

Dans cette thése, nous proposons de nouveaux modéles variatioondis sur les
CAOSs et les champs de phase, pour la modélisation de réseaux linéiogéséeal, et
pour I'extraction de réseaux routiers et hydrographiques a partir gdésde télédétection
THR en particulier.

En premier lieu, nous étudions I'analyse de la stabilit¢é d’'une barre longoe no
directionnelle pour le modéle des CAOSs des champs de phase introdRitqlzery et al.
(2005 2006. Cela contraint les paramétres du modéle a des gammes de valeurs prioduisa
des réseaux stables. Le résultat de I'analyse de stabilité est illustré ghagramme de
phase’ qui met en évidence les différentes phases stables d’'uneslbage. Par con-
séquent, nous pouvons choisir les valeurs des parameétres a partigcanthae de phase
et nous les utilisons pour I'extraction de réseaux non-directionnelsté gamages de
télédétection THR.

En second lieu, nous proposons une nouvelle famille de champs de phasdes
réseaux directionnels. Chaque branche d'un réseau directiorssgmune ‘direction du
flux’, et en conséquence, chaque jonction possede des bramth@stes et des branches
sortantes. L'existence d’'un tel flux change, typiquement, la géométriéshau, parce
qgue le flux est souvertonservéen quelgues sortes. Ainsi, les branches tendent a se
prolonger, parce que sinon cela impliquerait une perte brusque du flles g@nctions
se composent souvent de branches entrantes ayant de faiblesdaygese joignent en-
semble pour former des branches sortantes ayant des largeurs plutaimtgs) ou bien
vice-versa. Notre but est I'extraction de réseaux hydrographigueartir d’'images de
télédétection THR, mais le modéle est probablement pertinent pour d’appksasions
impliquant des réseaux directionnedsg.réseaux vasculaires en imagerie médicale). Pour
modéliser de tels réseaux, nous étendons le modéle de champ de phasmhde+éseaux
non-directionnels d&ochery et al(2005 2006. En plus d’un champ de phase scalaire
représentant une région par une version lisse de sa fonction cetgiér et interagissant
non-localement pour favoriser des configurations de réseau, le nrd@lesé contient un
champ de phase vectoriel représentant le ‘flux’ dans les branchéseau.
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Organisation du manuscrit

Ce manuscrit est organisé comme sulit :
Partie 1 : CAOSs des champs de phase pour des réseaux non-directiels

Chapitre 1 : En premier lieu, nous décrivons un bref état-de-I'art des méthodegtioar
nelles pour la segmentation d’images. Nous nous focalisons sur les coatdifis et lesa
priori de formes. Deux classes des contours actifs sont mises en évidenceétihesles
basées contours et basées régions. En second lieu, nous rapeel@mthniques les plus
représentatives pour I'extraction de réseaux routiers et hydroigyags a partir d'images
de différents types.

Chapitre 2 : Premiérement, nous rappelons brievement le modéle des CAOSs introduit
parRochery et al(2006, et nous montrons que ce modeéle favorise deux configurations sta-
bles, a savoir des réseaux linéiques et des structures circulairesljffiénentes valeurs des
parametres. Deuxiemement, nous établissons une analyse de stabilité attnmibgue

via un développement en séries de Taylor jusqu’au second ordre cklerdes CAOSs au
voisinage d’une barre longue. Ainsi, nous pouvons contraindre leargades parametres
afin de modéliser des réseaux. Nous montrons des évolutions géométtignesdarre
longue en utilisant I'algorithme de descente de gradient pour valider I'smahgorique.
Finalement, nous développons en séries de Taylor le modéle des CAOSajjusegcond
ordre au voisinage d’'un cercle afin de trouver les gammes des valepezametres qui
guarantissent la stabilité des structures circulaires. Le résultat de karddystabilité aussi
bien d’une barre longue que d’un cercle est illustré par un ‘diagramrpbalee’.

Chapitre 3 : Tout d’abord, nous rappelons brievement le modéle des CAOSs depsha
de phase pour des réseaux non-directionnels introduiRpahery et al(2005 2006,
nous montrons I'équivalence entre les contours actifs classiques didegps de phase
locaux, et nous montrons I'équivalence entre le terme des CAOSs et letenviecal des
champs de phase. Le résultat est que nous pouvons utiliser les chapiEsdeau lieu des
contours actifs. Puis, nous proposons un modéle de point d'inflexiomeddarre longue
pour réduire le nombre de parameétres libres pat nous montrons I'amélioration de
I'extraction de réseaux assurée par ce modele. Enfin, nous défimigstarme d’énergie
d’attache aux données en testant deux modéles, a savoir une gaassielivaluée
et un mélange de deux gaussiennes multivaluées, ensuite, nous forrfeuloriele
total primaire en adaptant les ‘champs de phase des CAOSs’ au problérisckion
de réseaux linéiques a partir d'images ; nous étudions la robustessdgieittene a
I'initialisation bienque nous utilisions une descente de gradient.

Partie 2 : CAOSs des champs de phase pour des réseaux directionnels

Chapitre 4 : En premier lieu, nous étendons le modele des CAOSs des champs de
phase pour des réseaux non-directionnels introduiRmahery et al(2005, et analysé

et amélioré dans le chapit2 Nous incorporons dans le modéle une seconde fonction
de champ de phase, en plus d'un champ de phase scalaire représ@etaagion par
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une version lisse de sa fonction caractéristique, qui est un champiekotprésentant le
‘flux’ dans les branches du réseau. Le champ vectoriel est forteiamemisé afin d'étre
zéro a l'extérieur et de magnitude unitaire a l'intérieur de la région ; d'étse liset a

avoir une divergence nulle. Cela prolonge les branches du réseatrle les variations
de largeur tout au long d'une branche ; et forme des jonctions nontsgoes dont la

largeur entrante totale est approximativement égale a la largeur totaletsorancon-

jonction avec une nouvelle fonction d’interaction, le modéle assure aussiaste gamme
de largeurs de branches stables. Nous analysons la stabilité de Tutiegtéieeur et de

l'intérieur afin de contraindre les valeurs des paramétres et d’'évitégupee configura-
tions indésirables. En second lieu, nous montrons des évolutions géoragpiur mettre
en évidence I'apport du champ vectoriel et son comportement pouratifis situations
et nous appliquons ce nouveau modéle a I'extraction de réseaux hgphagues a partir
d’'une image synthétique d’'une riviére et d’'une image de télédétection THR.

Chapitre 5 : Nous analysons la stabilité d’'une branche d’'un réseau dans le cas élemod
de réseaux directionnels. Nous nous focalisons sur les perturbatdrégdience zéro du
contour d’'une région, ce qui correspond aux variations de la ladjeoe branche : nous
calculons I'énergie pour chaque terme du modéle de réseaux directienngtisisant une
famille d’ansatzdéfinie par quatre paramétres d’une barre longue, droite et dirediienne
Cela génére des contraintes sur les valeurs des paramétres du modéje’poe branche
d’un réseau soit stable aux changement de largeur de celle-ci.

Chapitre 6 : Tout d’abord, nous validons I'analyse théorique étudiée au chapibar
des expériences numériques. Nous montrons les évolutions géométrigoeshdrre
longue et d'une configuration aléatoire vers des configurations daugdinéiques stables
dont la largeur moyenne des branches est égale a la largeur préditetpéorie. Nous
décrivons aussi un avantage majeur du nouveau modéle de résesatiodirels pour ré-
soudre le probleme d’occultations dans I'entité du réseau a extrairermarfeles sauts
grace a la propriété de conservation du flux. Puis, nous appliquons lelenad prob-
léeme d’extraction de réseaux routiers et hydrographiques a partir désr@gickbird THR
multi-spectrales.

Contributions

Les contributions principales de cette thése sont les suivantes :

1. l'analyse de stabilité d’'une barre longue pour un modéle de type CA@PogE
parRochery et al(2006 (chapitre 2),

2. l'introduction d’'une énergie d’une barre longue de point d’'inflexponr un modéle
des CAOSs des champs de phase pour des réseaux non-directichaplgé¢ 3),

3. l'application du modeéle des réseaux non-directionnels sur des imagekb@ai
THR multi-spectrales pour la segmentation des réseaux routiers ruraapittel),

4. I'étude de la robustesse de I'algorithme a l'initialisation (chapitre 3),
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5. la proposition d'une nouvelle famille de champs de phase ayaat prori local
pour des réseaux directionnels, et I'analyse de Turing (chapitre 4),

6. l'analyse de stabilité d'une barre longue, droite et directionnelle en utilizae
famille d'ansatza quatre paramétres (chapitre 5),

7. I'application du modéle des réseaux directionnels sur des images QdidkhR
multi-spectrales pour la segmentation des réseaux routiers et hydrigreph
(chapitre 6).
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State-of-the-art
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This chapter gives a brief state-of-the-art for active contour@espdors, and road and
hydrographic network extraction from images. These three fields hiaveydnistory in the
literature and a huge number of papers were published dealing with thess.istere, we
emphasize the most pioneering methods and techniques.

1.1 Introduction

Due to the insufficiency of low-level information, which uses only availaklatdres in
the image, to solve problems in the real-world applications, high level informatigst
be provided by users or experts in one way or another. High-leveintg#ton abstracts
the global behaviour of the system as opposed to low-level informationhwd@scribes
only local (individual) behaviour. Active contour-based methods avweaw to describe
high-level information and knowledge about the segmentation.

The framework of active contours aims to construct energy functionailshacombine
different energy terms, where each describes specific high-lewehiation about the sys-
tem and taken together they interact so as to satisfy global desiderata feystem. A
solution of the system minimizes, globally or locally, the energy functionals vAcon-
tours allow to segment an object from an image, and high-level informativesponds to
the knowledge we have about the object in question.

According to the literature, active contour methods can be categorized iottai-
lies: edge-basedndregion-basedapproaches. These two approaches consider two fami-
lies of methods: one which describgsnerichigh-level information (without shape priors)
and the other which describspecifichigh-level information (with shape priors).

In our work, we focus on road and hydrographic network extractiomfremote sens-
ing images. We highlight very briefly some of the most representative tactsiig the
literature which deal with these issues.

1.2 Edge-based deformable contours

Active contours are originally edge-based methods: the contour is gpishvard edges
or boundaries of the object. Two classes of methods are invope@metric deformable
models andjeometric deformableodels. The former constructs energy functionals which
depend on contour parametrization and while for the latter the functionaieedependent
(i.e. are invariant to re-parametrization). Geometric deformable methods haae\tha-
tage that they can be described implicitly via higher dimensional represestatiooh we
detail later on.

1.2.1 Parametric deformable models
1.2.1.1 Active contours: snakes

The original active contour (or snake) model was initially introduce&ags et al(1988.
A region of interestk C €2, where2 is the image domain, is described by its boundary
OR. The region boundarg R is described by an embedding: S' — Q whereS' is a
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circle. The key idea consists of constructing an energy functional to bienimd over the
set of curves parameterized by The total energy incorporates a prior (internal) energy
of the curve and a data (external) energy linking the curve to the image #atg: =
Ep(y) + Ei(v). The internal energy is

Br(n) = [ dsal(o)F + AR 1)

wheres and# are the first and second derivativesyolx and 5 are the weights of the first
and second order terms respectively. The first order term controdsrtehing (elasticity)
of the curve making it acting like a membrane; the second order term contedietiding
(rigidity) of the curve making it acting like a thin plate. The prior enefgy ensures the
smoothness of the region bound@i during the minimization process.

The role of the external energly; is to attract the curve toward the desired object
boundaries as well as other features of interest. It is computed by ititegeapotential
energy functionP along the contou:

Bi() = [ ds PG

To find edges within an image, the external force is taken tBog = —\|01(~y)|> where
I is the image and is a positive parameter. So, = Ep + Ejy is minimized then the
smoothed curve is pushed toward object edges where the magnitude of the gradient of
the image 01|, is high. One can also choo$&~) = AI(~) which permits to push the
curve toward dark locations.

To find the minimizing curve of the enerdy, the deformable contour is made dynamic
by treatingy as a function of time and we follow a Euler-Lagrange scheme (gradient de-
scent algorithm):

u(sit) = 0
= ai(s) ~ 821 1 pa(s)) 12)

wherey, = 0v/0t and F(y) = —0P(v(s)) is the external force. The enerdyis then
minimized by placing an initial contour on the image domain and then deforming it by
equation 1.2). The snake model has several advantages: the segmentation peogeidu
fies the image data, smoothing priors and initial estimation; the snakes corgeage
energy minimum if initialized properly; and the capture range around feabfrmterest

can be relatively enlarged by the use of an external force incorpgratoturring effect of

the original image.

On the other hand, the snake model suffers mainly of three limitations. Firs#ly, th
external force vanishes rapidly around the features of interest vifmiglies a very short
capture range of the original snake: the initial contour must be carefutiglined by the
user. Secondly, complex and noisy images produce features of ifexlgst for example)
leading to attract the contour to a local minimum which does not corresportiaks tdject
of interest. Thirdly, the parametric (explicit) representation of the sna&e dot allow an
automatic change of topology which is mandatory if the object of interesaha$ori, an
unknown topology.
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1.2.1.2 Balloon snakes

The internal force in the snake model tends to shrink the initial contour unghittres
the features of interest. Without the presence of the external forceuthie disappears.
To remedy these problem§ohen(1997]) introduced the so-called ‘balloon’ model. The
key idea is to add an inflation force which makes the curve behaves like ahallthe
curve is stopped when it meets a strong edge and it passes through ifginésedeak
enough compared to the inflation force. The balloon model defines a moditethal
force F(y) = kin — k‘g—]’;l wherei is the normal unit vector and weighted by the posi-
tive parametek,. The parametek; controls the inflation/deflation of the snake during the
deformation process: it plays the same role as constraining of the aceaofdhe snake in-
terior. An extra energy term can be then constructell.as, = —kiArea(y) = —k; [ dA,
measuring the area inside the region delimited by the contourhe balloon model en-
larges the capture range due to inflation/deflation force which implies lesgigién to
initialization and less user guidance.

Cohen and Cohefl993 improves the balloon model by defining an external force as
a distance function from each point to its closest edge points in the imageis loate,
the external force has large values everywhere in the image domain yigdangenlarged
capture range. A 3D generalization of the balloon model was introducécobgn and
Cohen(1993, and solved the model by the use of the finite element method which speeds
up the convergence and gives better stability.

1.2.1.3 Topology adaptive snakes: T-Snakes

The snake model does not allow automatic change of topology during the cgiioniz
process due to the explicit (parametric) representation of the coialmerney and Ter-
zopoulos(1995 2000 constructed a set of rules for topology changes to be used during
balloon model deformation. The snakes are defined in terms of an affiraage decom-
position (ACID). During the contour deformation under the influence téreral and inter-

nal forces, the model is reparametrized by a new set of nodes and ¢deoyesfficiently
computing the intersection points of the contour with the ACID lattice. This method al-
lows to distinguish between the interior and exterior regions. By doing thisnlke may
merge and split by connecting and disconnecting the contour.

1.2.1.4 Gradient vector flow snakes

The pressure (balloon) forc€6hen 1991, Cohen and Coherl993 permits to remedy
the problem of contour initialization by the enlarged capture range. Howtneepressure
force is constrained to not be neither very strong nor very low as itbesicso far. This
makes the balloon model not able to push the contour toward concave dry@snXu
and Princg1997) introduced a new external force, called Gradient Vector Flow (GY&-),
solve relatively the issues of contour initialization and concave boundaFies GVF is
computed as a diffusion of the gradient vectors of a gray-level or piedge map derived
from the image. The external forde in (1.2) is replaced by the GVF. The GVF field is
defined to be the vector field(z, y) = (u(z,y), v(z,y)), wherex andy are the Cartesian
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coordinates, that minimizes the energy functional

B) = [[dwdyuta 4+ o2y 0fP v -0fP . @)

whereu,, u,, v, andv, are the first derivatives of the vector fieldwhich is constrained

to be smooth. I1fof| is small, the energy is dominated by partial derivatives of the vector
field, yielding a smooth field. On the other hand, whérf| is large, the second term
dominates the integrand, and is minimized by setting 0f. Equation {.3) is minimized
following Euler-Lagrange scheme:

ue = pd*u — (u— fo)|0f
v = ,u(?ZU —(v— fy)‘af|2 )

where f, and f,, are the first derivatives of. The converged GVF fieldé replaces then

the external forcé” in equation {.2). Other attempts based on GVF snakes were proposed
by (Cheng and Fo02006 Tang et al. 2004 Wei et al, 2004 Xu and Prince 1998 to
enlarge the capture range for better object boundary detection.

IndependentlyLi and Acton (2008 provided a new method to automatically initial-
ize the active contour model by estimating the underlying external enetdyueng the
solution of Poisson’s equation. The proposed method selects an initial mibdein asso-
ciated energy that approaches the minimum energy. This novel methodratezective
contour model convergence and improves performance by initializing the aontour
model close to features of interest.

Bauer et al(2009 proposed an automated approach for the segmentation of airways
in Computed Tomography (CT) datasets. The approach is based on @\goasists of
two main processing steps. Initially, airway-like structures are identifiedttaeid cen-
terlines are extracted. These centerlines are used in a second step toertiialectual
segmentation of the corresponding airways.

1.2.2 Geometric deformable models

Parametric deformable methods have a major limitation, due to the explicit refaésen
of contours, which is the automatic change of topology in an efficient atdrfanner. To
overcome this problem, geometric deformable models are initially introduceddse(les

et al, 1993 Malladi et al, 1995 and provide an automatic method to handle topological
changes using the curve evolution theofwarez et al, 1993 Sapirq 2001, Sapiro and
Tannenbauml993 and level set method)sher and Sethian988 Sethian 1996 1999.

1.2.2.1 Curve evolution theory

Parametric deformable methods describe curves by quantities which depeadameters
such as the derivatives of an arbitrary parametrized curve. Cuolet®n theory aims to
study curve deformations using only geometric quantities like the unit nornctdvand
curvature. An example of such a deformation process is provided byltbe/iing system:

v = F(k)i, (1.4)
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whereF'(k) is the speed of curve evolutior;is the curvature computed at each contour
point; andn is the inward unit normal of the curve. We give two examples of the speed
function F', which are the most used in many application domains.

Firstly, the curvature deformation which is described by the so-called geicrheat
equation obtained by using = ax where« is a positive parameter. The evolution system
smooths the curve and shrinks @rayson 1989. The curvature deformation has a sim-
ilar effect to the elastic internal force in the parametric deformable model.n8bcdhe
constant deformation which is given by the use of a constant speetidiui¢ = Fy. The
constant deformation plays the same role as the pressure force in thenbatioe!.

The implementation of geometric deformable models is made using level set methods
and a great amount of work has investigated the construction of the &pestion in order
to solve a particular problem.

1.2.2.2 Level set method

Evolving curves using level sets was initially introduced®sher and Sethiaf1988. The
curve dR (i.e. the region boundary) is described implicitly as a level set of a 2D scalar
function, ¢, (i.e. the level set function) defined in the image dom@ing : 2 — R. The
curve is then defined by the set of points{inwhich have a zero level setiR = {x €
Q|¢(z) = 0}. The curve deformation is controlled by the deformation of the level set
function¢(x, t) during the timet.

Level set methods have many advantages: natural handling of topdlagges (split-
ting and merging of contours), cusps, and cornerg asolves; using fast narrow band
adaptive techniques, the computational complexity is the same as other mettibdbe
advantages of increased accuracy and robust modelling; higherslondavel set func-
tions are reasonably easily treated.

On the other hand, level set methods have also some drawbacks: ingrbasdimen-
sionality of the original curve induces greater computational complexity; traitig is
very slow because the level set function needs to be initialized and ugddiech distance
function during the evolution process.

Now we represent, in the level set framework, the curve evolution equétid)
of the curvedR. Let ¢(z,t) being the zero-level set function of the contoyls, t):
o(y(s,t),t) = 0. Differentiating the latter equation and using the chain rule, one can
get

pr+0¢ -7 =0, (1.5)

whered is the gradient of a scalar 2D function. Assuming that 0 inside the zero-level
set andp > 0 outside, the inward unit normal vector to the level set curve is _%-
Using equationX.4), we can rewrite equatiori(5) as

¢r = F(k)|0¢] , (1.6)
where the curvature is given by

(09 ., 0¢  dudh — 20102012 + d2adi
k=div| — | =0- = 5 373 ,
09| 09| (67 + ¢3)3/

whereg; andg;; are the first and second derivatives with respect to Cartesian catgsin
labeled byi, j € {1,2}. Acommon choice of the level set functigris the signed distance
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function from each point of the grid to the zero level sgtr) = d(z, OR). That constraint
must be checked and satisfied for the initial curve, and at every fewidesaduring the
evolution process because it can be violatdda|steinsson and Sethiah999 Sethian
1999.

1.2.2.3 Geometric active contours

Caselles et al(1993 introduced a geometric active contour model based on the curve
evolution theory and level set method. The model takes the following form:

¢ = 9(|011)(k + F0)|9¢| ,

whereg is a general edge detectgr, R™ — R™ such thaty being a strictly decreasing
function andg(r) — 0 asr — oo, which can take the form

1

901D = a6
whereG « I is the convolution of the imagkwith the Gaussiaty. If F;, > 0 then the curve
shrinks and ifF, < 0 then the curve expands. The multiplicative tefipI|) permits to
stop the curve evolution when edgés, high gradients, are met. This model can work
well if g is very close td), i.e. when objects have good contrast, which is not the case in
practice if one is dealing with complex images.

Kichenassamy et a{1995 analyzed the geometric active contour model from a curve
evolution point of view and proposed some modifications based on grdhiestrelative
to certain new feature-based Riemannian metrics. The feature of intecestsislered to
lie at the bottom of a potential well which leads to a more efficient attraction ofuhe
to the desired feature.

1.2.2.4 Geodesic active contours

To remedy the problem of the geometric active contour mdciaelles et al1997) pro-
posed an extension of it called geodesic active contour model. Thegeo@pproach is
based on the relation between active contours and the computation ofsgsodemini-
mal distance curves which lay in a Riemannian space whose metric is defitteelibyage
content. It has been proved that the minimization of a simplified snake modelutvitie
second order term is equivalent to the minimization of the length of the contdtipliedl
by an edge detector. Previous models of geometric active contours amvedpallowing
stable boundary detection when their gradients suffer from large vargafiecluding gaps.
The contour evolution equation is

Ye = g(|0I])(k + Fo) & — (Og -0) &,
and the level set implementation is
o1 = g(|0I)(k + F)|0¢| + 0g - 9¢ ,

The constant velocity, pushes the curve inwards (or outward) and it is crucial in the
above model in order to allow convex initial curves to capture non-coskiepes. Often
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in real images, the function has different, non-zero values at different locations along
the boundaries. The second term allows to stop the curve to the bounofaihesobjects
specially when gradient values include gaps. Other attempts to solve a sinaitdempr
were studied byKichenassamy et al1996 Yezzi et al, 1997).

Paragios et al2004 combined the geodesic active contour flow and the gradient vec-
tor flow external force for snakes. The resulting motion equation is cereidwithin a
level set formulation. The flow implementation exhibits robust behaviour asddst con-
vergence rate.

Reinbacher et al2010 proposed an anisotropic weighted total variation energy with
an additional global volume constraint to segment thin and elongated stsiditke artic-
ular cartilage directly in 3D. This approach is an extension of the geodetsie @ontour
model. The volume constraint defines a minimum size for the resulting segmeniiimn
segmentation model works interactively, allowing the user to incorporate lprawledge
into the segmentation process and correct the segmentation results. THésnsoted in
a globally optimal manner, and the algorithm is faster compared to manual segioen
methods.

1.2.2.5 Area and length active contours

Siddiqgi et al.(1998 used the geodesic active contour model and added to it a new area term
weighted by the edge detection function. The new weighted contour lendthaatour
interior area framework enforces and improves the attraction of the aotuward the
desired object boundary. The convergence of the new model is thsterthe geodesic
active contour model. The level set implementatiorSisi¢ligi et al.(1998)

60 = a{g(1011)s109] + g - 96) + 5 (0 (v6)) |99

wherea is a positive factor in order to make the units compatibié;= (216, x2¢) and
x = (x1,x2) € Q.

1.3 Region-based deformable contours

Edge-based deformable models described so far use local edge itiforneaattract the
active contour toward the object boundaries. This approach descdhibedata near the
region boundary; and it fails to distinguish between the interior and thei@extéregions,
and thus spatial information about pixel is lost except when the pixelslase ¢to an
edge or a boundary. Region-based models overcome these limitations bfyidgreach
region of interest by the use of certain global region features to guidmtiion of the
active contour. The regions are described by statistical featuressubk intensity, color,
histogram, texture, or motion.

1.3.1 Mumford-Shah functional model

Mumford and Shah1985 1989 introduced an optimal approximation of an image as
a partition of regions of piecewise smooth intensities in order to solve the ségfinan
problem. In a variational formulation, for a given imafethe sought solutiofu, OR) is
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defined such thai is a piecewise smooth approximation of the imdgend the boundary
OR is a 1D subset of edges. The energy functional takes the following form

B(u,OR) = /

(u(z) — I(z))? dm+)\/ |0u|? do + puL(OR) ,
Q

Q\OR

whereL(OR) is the length of the region boundafyz. The first term encouragesto be
an approximation of the imagk the second term makessmooth within each disjoint
region; and the third term enforces the bounda@fy to have minimal length. Thus, the
minimizing functionu is a piecewise smooth approximation of the imdég&wo problems
are then combined within the same functional: image denoising and segmentattba. |
case of the latter, the boundaiyr defines a partition of the image domédmminto disjoint
regions2;, i.e.Q2 = | J, €, where each is approximated by a smooth functipn2; — R.

A cartoon model can be derived from the above functional by conegler — oo
which leads to the functiom being a piecewise constant functiaddymford and Shah
1989. The cartoon model takes the form

B, o) = /Q(u _ I(2))* dx + pL(OR)

where in this case; is a constant value. The spatially discrete form is related to Potts
model Potts 1952). In the case of a binary segmentatiore({1, 2}), the discrete version
was introduced bylg§ing, 1925 Lenz 1920 for modelling ferromagnetism.

Chan and Ves€20013 proposed a binary segmentation deriving from the Mumford-
Shah model. In this case, the approximatioins reduced to two values measuring the
average ofl in the interior and exterior of the segmented region. The level set denvatio
of the energy functional has this form

E(¢, ¢in, Cout) = /le’{ulaﬂcﬁ(w)l + Ain (1(z) = cin(9(2)))* H(¢(x))
+ Aout (1) = cour(¢()))* (1 — H(¢($)))} :

where H is the Heaviside functiong, andc,,t are the averages dfinside and outside
the evolving contour. This formulation does not constrain the initial curvestoldse to
object boundaries or edges as opposed to edge-based approachease the evolution of
the curve depends on the statistics of the interior and exterior of the regidnsot just on
the object boundaries.

Chan and Ves€001h generalized the active contour model without edge<Cinah
and Vese20013 by considering a piecewise smooth function instead of a constant func-
tion, allowing to model the intensity inside each regidase and Cha2002 extended
the work in Chan and Ves&001Hh to a multiphase level set framework for image segmen-
tation. The key idea is to define different level set functions to reptésemegion bound-
aries. This formulation overcomes the problems of vacuum and overlaggedsnonly
logyn level set functions for. phases in the piecewise constant case; complex topologies
are easily represented; and two level set functions are sufficientstwible any partition
using the Four-Color TheorerAppel and Haken1996.
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1.3.2 Region-based Bayesian inference

The segmentation problem is in general very hard. Prior knowlédgbout the region of
interestR is then provided in one way or another to efficiently segment a given ithage
probabilistic approach can be adopted to deal with this problem.

LetR, JandX being the set of all possible regions, images and knowledge respectively
Using the Bayes’ theorem, we can construct a posterior probabili§jP K) as

I|R, K)P(R|K)
P(I|K) ’

P(R|I,K) = il

where RI|R, K) is the likelihood probability of the image dafagiven R and K, and
P(R|K) is thea priori probability of the region of interesR given the knowledgés’. The
former links the region to the image data. To solve the problem of segmentatioss a
functionL : R x R — R is then needed. In general we want to find the regibthat
minimizes the value

< L(R) >= / dR L(R, R)P(R|I, K) .
R
Apart from some special cases, where one can use special log®fisnfermyn
2000, in general in the absence of any information except the preconditmnsrdba-
bility theory, the delta function is the only

obvious loss functionL(R,R) = —6&(R,R). So, the above equation becomes
< L(R) >= —P(R|I, K), and minimizing the mean loss functidnis then equivalent
to maximizing thea posterioriprobability:

R =argmaxP(R|[,K) .
RER
This is the so-called maximumposteriori(MAP) estimate. In practice, we will deal with
negative log-probabilities.e. a total energy (R; I, K) that is the sum of a likelihood term
Ei(I, R, K) and a prior termEp (R, K). We then end up with an energy minimization
problem:

A~

R =argmin E(R; I, K)
ReR

=argmin F1(I,R,K) + Ep(R, K) .
ReR

This probabilistic formulation of the region-based segmentation problem deased
in many papersBen Ayed et al.2006 Besag1986 Geman and Gemath984 Ising, 1925
Jehan-Besson et a003 Leclerg 1989 Paragios and Derich@002a Tsai et al, 2007).

We refer toCremers et al(2007) for a more complete review of statistical approaches to
level set segmentation.

Zhu and Yuille(1996 described an equivalence between the Mumford-Shah func-
tional in the case of cartoon model and the Bayesian MAP estirBatx and Cremers
(2009 completed the study irzhu and Yuille 1996 to the case of piecewise smooth ap-
proximations and showed that the Mumford-Shah functional can be ietetpas a first
order approximation of a specific MAP estimate, where pixel intensities drasaisual,
identically distributed but where the distribution varies with the position in the image.
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(Paragios and Derich002a b) introduced a new framework to deal with frame par-
tition problems in computer vision: geodesic active region model. The idea isbine
an edge-based functional deriving from the geodesic active contodel Caselles et al.
1997 and a region-based Bayesian inference deriving from a MAP estinidte.mini-
mizing curves are constrained: to be regular and smooth; to be attracted bguhdary
points (edge-based information); and to create a partition that is optimaidangdo the
expected region properties of the different hypotheses (regicedbasormation).Para-
gios and Derichg¢20023 made two assumptions to simplify the problem: the contours
are equiprobable; and there is no correlation between the regions lalzaiihgll the pix-
els within each region are identically and independently distributed. Theeg&odctive
region functional, to be minimized, is

E(OR) = - /Q (P (1(x))) di - /Q 0 (Pows (1(2))) da + pL(OR) |

out

where B, and R; are the likelihood probabilities of the interior and exterior of the contour
OR. The level set representation of the evolution equation takes the form

Py = {mm + /m} |0¢] .

In (Paragios and Derich€0023, the likelihood probabilities follow the normal dis-
tribution and their parameters are learnt in advance in a supervisedReagson2004)
also used normal distributions to model the likelihoods, but the parametedyaeni-
cally calculated during contour evolution. Using the form of the Heavisidetfan in the
Chan-Vese model, the level set representation of the evolution equation is

N (I — Cin(¢))2 (I - Cout(¢))2 1 Ugut(ﬁzs)
= {_ 207,(¢) N 2004 (0) Tl i (9)

+w<a}5(¢) :

where the parameters,, cout, 02, ando?,, are updated at each iteration using their explicit
expressions given irdhan and Ves€001a Rousson2004).

1.4 Shape priors

So far, we have reviewed the pioneering active contour methods, whexte-based or
region-based, which drive curve evolution based on informatog ibtensity, color, tex-
ture, motion) from the image, and having some regularization terms to enswgmduth-
ness of the region boundary during the evolution process. In redthapplications, the
image quality is often degraded by noise or partial occlusion; or the cobeaseen the
object and the background is low. This makes these methods unsutbtessfuse of the
lack of prior information they contain about the object to be segmer@@ednander et al.
(1991)) is the pioneer of the idea that a Bayesian approach allows the incorpoodtio-
phisticated and specific shape priors of the object into the model. As a réhsutt, has
been a great deal of work on models incorporating more sophisticatpd khawledge or
information.
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1.4.1 Reference shape-based models

One category of shape priors is based on reference shapes. ylide#és to seek a region
which has a ‘similar’ shape to the reference region(s). Most of this waritels an ensem-
ble of regions as perturbations of one or more reference regid@if@n(et al.2001, 2002
Cohen and Coherll996 Cootes and Taylorl992 Cremers 2007, 2008 Cremers and
Soattg 2003 Cremers et aJ.2001, 2002 2003 2006 Foulonneau et gl2003 Gastaud
et al, 2004 Klassen et a).2004 Leventon et a].200Q Riklin Raviv et al, 2004 2007,
Rousson and Paragid002 Srivastava et al2003 Staib and Duncari992 Székely et al.
1996 Tagare 1997 Taron et al.2009 Vaillant et al, 2004 Vinson et al, 200Z; Yuille et al,,
1992. This is a very flexible approach, and it works well for many applicatioe will
recall some of this work in the following.

Cohen and Cohe(11996 introduced a hybrid hyperquadric model by describing im-
plicitly some local features in a global shape model. It incorporates gloldbaal prop-
erties of the shape by means of its parameters, independently of the resofutie data.

Leventon et al.(2000 extended geodesic active contoufSaéelles et al.1997
Kichenassamy et al1995 by incorporating shape information into the evolution process.
A statistical shape model over a training set of curves is firstly constrinstede use of
principal component analysis (PCA). PCA is applied to a set of shapesiled by signed
distance functions. The result is then the derivation of the most significadés of shape
deformations. The segmentation procedure is performed in two steps: tivee @mntour
is evolved both locally, based on image gradients and curvature, andlglttba MAP
estimate of shape and pose. The latter contains the influence of the slapeaiidn.

Chen et al(2001, 2002 introduced a model which incorporates shape priors in geo-
metric active contour models. Their model differs from the model introdugddeisenton
et al. (2000 because they use a non-probabilistic approach. The key idea is tondafo
geometric active contour with a vector field that it derives from the shape ghe shape
prior takes the form

Br(1.7) = [ @ (TG(9) )] ds
whered(z) = d(v*, z) measures the distance of the pointo the shape templatg* and

T is scale, translation and rotation transform. The model incorporates arbedgd data
term which makes it sensitive to initialization.

Cremers et al(200]) introduced a model which incorporates statistical shape knowl-
edge based on the Mumford-Shah functional. The contour is descriipdidity as a
closed spline curve. A set of training shapes is used to construct sshepe model by de-
scribing the spline control point vectors by a Gaussian probability distribulibis shape
energy term is then added to the Mumford-Shah energy functional. Tine sppresenta-
tion describes a shape efficiently but topology change is constrained.

Rousson and Paragi@2002 proposed a model that incorporates global/local shape
properties of the object of interest. Firstly, the model is constructed diredthe level set
representation using a set of samples. The shape prior energy isddéfiribe level set
formulation, as

[ [ (58(@) — on(T(x)))*
Ep(,T,s) = / { 203, (T ()

Q

fin <oM<T<x>>>}H<¢<x>> dz
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o (x) ando?,(x) are a representative shape and a confidence map respeciivahyd
s are a transformation and a scalar factor. The first term minimizes the didietween
the evolving surface and the shape model, and the second term penalizasfphe shape
with low confidence.

The work in Rousson and Paragid?002 has the following drawbacks. Firstly, the
energy integral is restricted to the positive part of the level set functieldigig a bias
toward small shapes. Secondly, the dissimilarity distance incorporated intodtiel is
not symmetric. A symmetric distance was proposeddsgmers and Soatt2003 to
overcome these limitations:

Ep(qu):/ (6(x) — Wo(T(x)))? h(¢(x)>+’;(¢o(T(w))) "

Q

whereh is the normalized Heaviside function. This symmetric pseudo-distance mgasure
dissimilarities and averages the squared deviation of shapes over batyérg and

Uy (T'(x)); Yo is the reference shape. The proposed distance measure has twiagdsan
first it is symmetric and second it does not depend on object area duertorthalization.

Riklin Raviv et al. (2004 proposed a nhew model which incorporates a single prior
image and developed a variational segmentation framework which is pos&inval he
key idea is the special form of the shape prior and the integration of thecpve trans-
formations via unleveled sections. Prior knowledge is represented biyesiadiged cone,
which is constructed based on the known instance of the object contdwr.leVel set
function and the projective transformation parameters are estimated in atierogmini-
mization of the energy functional. The proposed shape prior measuigsiace between a
planar section of the generalized cone and the zero-crossing of thvingMevel set func-
tion. Riklin Raviv et al.(2007) introduced an algorithm to generalize the previous work to
an eight-parameter projectivity model.

Rousson and Paragi¢2007) introduced a 3D-wise probabilistic level set formulation
to account for prior knowledge and to address the problem of similarityrianvashape
constraint. The major difference between this work a@rdusson and Paragia2002) is
that the latter measures similarity between the evolving level set and the shdpk amal
the former between the evolving level set and the image. The pose parsuaretelerived
guided only by the image data, which makes the algorithm much faster and atibust r
estimation of parameters.

The methods listed so far are static in tin¥remers(2006 introduced temporal sta-
tistical shape models. The authors constructed a shape probability,varatigne, which
depends on the shapes observed in the past. The dynamical shapeisrmaksd on a
Bayesian formulation using level set representation. The governirgtieguleforms the
interface by utilizing both the radiometric information of the current image asagadldy-
namical shape prior which uses the segmentations obtained by the pretradieg. The
image energy term is taken to be

RY
Bi(oy, 0;) = /{ (Ut‘“) + ln01> Hog, s,

207

I — 2

+ <(t’l;2) —|—an2> (1— H¢at79t)}dm )
205



30 Chapter 1. State-of-the-art

wheregg, g, = ¢o(Tp, ) +aly(Ty,x); T is a transformationp, denote the mean shape of
a temporal sequence of training shapes, ..., ¢,); ¥ = (¢1, ..., ¥y,) is the set of the first

n eigenmodes obtained by PCA,; af\dis the transformation parameters. The dynamical
shape model takes the form

1
Ep(ay,0y) = i'vtE_lv ,

wherev = a; — u — Ao, 1 — Asay_o: the shape vectora; of a sequence of level
set functions are approximated by a Markov chain of second opderthe mean vector

of the noise and4; are the transition coefficientsCfemers 2007, 2008 extended the
work in (Cremers2006 and constructed a nonlinear dynamical shape prior. A mixture of
autoregressive models was used to approximate the temporal evolutioneidé&menodes

of the level set function.

1.4.2 Higher-order active contours and phase fields

The family of reference shape-based prior models referred in theopsegection has
shown its success in efficiently segmenting objects from images and segusrimages
in many real-world application domains. Multi-component shapes are handtedally
by level set representations where splitting and merging are allowed dhengyolution
process. This family of models constrains the topology of the region saeodi® similar
to that of the reference region(s).

However, in many real-world application domains, the region sought candraitrary
topology €.g.if the entity consists of an unknown number of similar objects). In this case,
the sought region (or shape) cannot be described by perturbatmmsdea finite number of
points in the space of regions. So, reference shape-based priolsracel@ot appropriate
for this problem because they assume that the topology is kagoviori.

One particular problem that falls into this new category of objeicésthat have un-
known topology) is the extraction of ‘network’-shaped regioins. (egions composed of
branches that join together at junctions)g. road or hydrographic networks in remote
sensing images, or vascular networks in medical images. Such netwahksegay have
several connected components and may be multiply conneéaehay have many loops.
A second problem is tree crown extraction from images where the numbezesfis un-
knowna priori, which makes the topology of the region unknown too.

As aresult, a new generation of active contours incorporating speedis@phisticated
shape priors is introduced: higher-order active contours (HOA@®)eelded in a phase
field framework.

1.4.2.1 Higher-order active contours

HOACSs were introduced birochery et al(2006 in order to incorporate sophisticated and
specific shape priors without constraining topology, as opposed tenefe shape-based
models. This new generation of active contours incorporates nontsivégpe informa-
tion about the region being modelled via explicit long-range interactions leetnegion
boundary points, thereby removing the need for reference regiomsldition to boundary
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smoothing terms, a long-range interaction term is added:

Ep(R) = AL(R) + 0 A(R) — g//(sw ds ds' 4(s) - 4(s) W <|V(3>;’Y(S/>‘> ’

where R is a region {.e. shape) in the image domait; is region boundary length4 is
region area;y is an arbitrary parametrization of the boundaryRyf < is its derivative,
i.e. the tangent vector fieldy¥'(z) defines the interaction between two boundary points
separated by a distaned whered is the interaction range. The long-range interactions
described by the quadratic terme( the third term) are responsible for the prior shape
information: they favour parallel (anti-parallel) tangent vectors wherirther product is
positive (negative). The presence of HOAC term penalizes a largeenwhbalse contour
configurations, and eliminates many local energy minima, thanks to the inatiqgpoof
more sophisticated prior knowledge. HOACs are more robust to noise tmwerttional
active contours, do not require estimation of the pose of the shape,eamit @ generic
initialization.

The HOAC prior energy defined Byochery et al(2006 was used to model network-
shaped regions. However, it was soon discovered that it could lmktasmodel other
families of regions too, notably a ‘gas of circles’ (regions composed afbitrary number
of approximate circles) introduced Iorvath et al.(2009, simply by varying the model
parameters.

The contour representation suffers from a number of drawbackis ftwoclassical ac-
tive contours in general, and for HOACs in particular:

e an initial region, as with other active contour approaches, is neededdgradient
descent algorithm. Although the inclusion of more specific prior knowledganse
that a generic, hence automatic initialization can be used, the final result géhhde
on this choice;

e alevel set representation is used to perform the gradient descéuti@vpand this
does not enable the formation of handles (loops). Road networks,stamice, can
have a complex topology with many handles, and the choice of initializationtgffec
which of these are detected. This is a serious drawback in our workigewsa focus
on road and hydrographic network extraction from images;

e the quadratic term produces nonlocal forces, whose evaluation reduotendary
extraction and integration followed by velocity extension at each iterationef th
algorithm, and this is very time consuming.

To overcome these drawback&chery et al(2005 reformulated HOACs as nonlocal
‘phase fields’ for network modelling. In chapt&rwe will recall this model.

1.4.2.2 Phase fields

The phase field framework has a long history in physics for modelling maeggrhena.
We refer to Chen 2002 Gonzalez-Cinca et al2003 Thornton et al.2003 for reviews
of some of the phase field methods existing in the state-of-the-art. Suppdsddiéng

physical phenomenon: an interface moving with a velocity proportional t@thdient
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of some field €.g.temperature, pressure...). This leads to a problem of non-equilibrium
pattern formation during the deformation. The interface evolves in time arme speking

the problem hard to solve analytically. Phase field models are an alterratiti®s. They
describe a moving boundary problem as a set of partial differentiati®ms which are
significantly easier to manipulate.

The interface is then described by the different phases of the systerhotnelaries
of the phases are the interface. A phase field function is built to desceledgions i(e.
phases). It is a continuous function in space which maps each phasastinat dalue.

So the transition from one phase to another is represented by a changevaiub of the
phase field function. An interface between phases is then produattherange of value
changes corresponds to the interface width. The whole domain is treatelthsieausly,
and an implicit representation of regions, and so the interface, is deddnbthe phase
field function. Describing the interface implicitly allows more topological freadiuring
the evolution. During the last decade, the image processing and compigercasnmu-
nities have been interested in the topic of phase fields in order to desdrdiently phase
transitions within the image domain.

Samson et al2000 introduced a model based on phase field models derived from the
phase transition theory in mechanics. The variational-based model wkedagyccess-
fully on both synthetic and satellite images to segment images into homogenemns feg
where each is described by a distinct value of the phase field function.

Grossauer and Scherz¢2003 introduced a phase field model for ‘restoration-
inpainting’. The authors used the complex Ginzburg-Landau equationhvéniables,
in a straightforward way, the efficient restoration of higher dimensioatd,do improve
sparsely sampled volumetric data and to fill in fragmentary surfaces.

Benes et al(2004 proposed an algorithm for image segmentation based on the solution
of the Allen-Cahn equation. The model is seen as a regularization of tHesktv@otion
by mean curvature, where a force is defined so that the initial level desis © the object
of interest.

Aubert et al (2005 introduced a novel model for detecting in an image singularities of
co-dimension greater than or equal to two. This is equivalent to detectilagad@oints
in a 2D image or points and curves in a 3D image. The proposed model is based
Ginzburg-Landau functionals, and it uses a diffusion coefficieneddmg on the image
data in addition to a data term.

Here, we list the important advantages offered by the phase field frartkiewo

e the space of phase field functions is linear, thus facilitating model buildingniten
and analysis;

e gradient descent uses only the partial differential equation resulting &n energy
functional, with no need for ad hoc regularization or reinitialization; numenica
plementation is simple;

e a completely neutral initialization for gradient descent is possible;

e components of a region can be created or destroyed anywhere in thedorage;
handles i(e. loops) can be created and destroyed in the interior of existing regions
(this is mandatory for ‘complex’ network modelling);
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e HOAC terms require no boundary extraction, integration, or velocity eidiens-
deed prior terms are local€. diagonalized) in the Fourier domain; the algorithm is
fast.

1.5 Line network extraction

Due to the continuous increase in the number and size of remote sensing,ithagesb-
lem of road and hydrographic network extraction from images is contsiyahallenging.
The main reason new tools have to be developed to solve this problem is ehéicesof
images. Each range of resolution needs different tools for efficidraaion. The second
difficulty is the huge number and size of images which, requires automatic,daast and
efficient methods for network extraction.

(Fortier et al, 1999 Mena 2003 Quackenbust2004) proposed an almost complete re-
view of the existing methods for road network extractions. They consiffereht image
resolutions (low, medium and high resolutions), and different image coitipexrural
area, semi-urban area, and urban area). Many types of senserslsa been consid-
ered: the image data includes panchromatic imagery, infra-red bandjroaigery (RGB),
multi-spectral imagery, hyper-spectral imagery (Hyperspectral Digitablery Collection
Experiment, HYDICE), synthetic aperture radar imagery (SAR), light dieteand rang-
ing imagery (LIDAR), and so on. In the following, we will briefly review soroéthe
existing representative works for road and hydrographic netwdrl&ion from images.

1.5.1 Road network extraction
1.5.1.1 Active contours

Line networks have characteristic geometric properties which need sarahgigh-level
knowledge provided by a human being. Active contour-based model&ipra very flexi-
ble way to incorporate either generic or specific prior knowledge abeutlfect in ques-
tion.

(Laptev et al. 2000 Mayer et al, 1999 proposed a method which takes advantage
of the scale-space behaviour of roads in combination with geometricallyraoresd edge
extraction by the use of snakes. Firstly, the method starts by extracting lireemise
scale which are less precise but also less disturbed by cars, shatowshan features
in fine scale. Secondly, these extracted lines initialize ribbon snakes incfite which
describe the roads as bright, more or less homogeneous elongatedaegbbons which
minimize the energy are with constant width and considered as salient roesnodel
closes gaps between adjacent ends of salient roads. However, thisdneetlstricted to
the case of line networks where branch widths are approximately the same.

Peteri et al(2003 introduced an algorithm for road extraction from high resolution
satellite images. A topologically correct graph of the road network is fitsaeted, and
roads are then extracted as surface elements. The extraction algorittes msalof specific
active contours (snakes) combined with a multiresolution analysis for ireglgeometric
noise. The extraction of roads is made by firstly extracting the road segarmhtien the
road intersections. However, this method fails to extract sharp edge®ifantions partly
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due to their poor image definition, and the topology of the correct graplitisatto the
extraction.

Youn and Bethe(2004) assumed that the road network and block pattern in a city
have a semi-regular grid pattern. The image is then segmented accordingitmdbroad
directions. The road lines are detected to construct initial approximatiorthdosnake
refinement. Finally, road edges are refined by applying adaptive shake

Rochery et al(2006 introduced a higher-order active contour (HOAC) model to ex-
tract road networks from medium resolution optical images. The model igibleddn
sectionl.4.2 Based on the HOAC familfpeng et al(2008ab, 2010 proposed new shape
priors for road network extraction from very high resolution (VHR) Bié¢eimages. The
model incorporates first a nonlinear nonlocal HOAC term, and then amiadd linear
nonlocal HOAC term to improve the computational speed. Both terms allowatep=im-
trol of branch width and branch curvature, and encourage netwarikches to elongate.
The linear term has several advantages: it is more efficient, and it is alledel multi-
ple widths simultaneously. This work solves the problem of urban road nietwout the
solution involves favouring long straight branches, which is not welptethto non-urban
road and hydrographic networks.

1.5.1.2 Markov random fields and marked point processes

Markov random fields provide an appropriate way to model contextysriiencies be-
tween entities. MRF based models have been widely used to solve the prdtdeirac-
tion of line (road) networks.

Stoica et al(2004 assumed that roads form a thin network in the image leading to
approximate a network by connected line segments. The authors praposedel based
on a point process able to simulate and detect thin networks. The modatdaalagned
segments and penalizes superposition. The image data term is based onadtayistith-
esis tests. A simulated annealing algorithm, based on a Monte Carlo dynamfastéor
point processes, is used to avoid local minima.

Lacoste et al(2005 extended the work inStoica et al. 2004, and used an initial
segmentation by Markov random field as a seed from which to build a hiécatenodel
of the network using a marked point process. This works well when theaisayfficiently
clean for the MRF segmentation to capture most of the network, and wheetiherik has
a tree structure.

(Lacoste et a).2004 2010 models the network region using a marked point process of
polylines. The polylines can better fit sinuous line networks than modeld bassegments
through a relevant construction of the data term derived from the imdge model works
well when the network has constant width over significant distances siach polyline
has a fixed width.

1.5.2 Hydrographic network extraction

1.5.2.1 Geometry of river networks

(Dodds and Rothmar2000a b, c) proposed a geometric representation for modelling hy-
drographic networks. The idea is to study geometric properties of a gsarhic network
such as scaling laws which describe the self-similarities between diffarbsiasins, the
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fluctuations and deviations of main and secondary streams of the basifinalhg the
connectivity between different network channels. The authors dkflifferent geometric
measures of the basin such as the length and the area of a drainage Huygse mea-
sures are modelled by empirical probability densities obtained by statisticalireedsom
a training set of river networks.

1.5.2.2 Fractal geometry

(Cieplak et al. 1998 Rodriguez-lturbe and Rinaldd997 Tarboton 1996 introduced
models of river networks based on fractal geometry. The structureaalithg of river net-
works characterized using fractal dimensions related to Horton’s lHaddn, 1932 1945

is assessed. These papers have shown the importance of the fraetalkdsiver networks.
Dimension estimates using the Hortonian scaling system are biased and donitctzace
filling. Tarboton(1996 solved this problem by characterizing the scaling and fractal prop-
erties of river networks.

1.5.2.3 Digital elevation models

(Coppola et al.2007 Mantilla and Gupta2005 O’Callaghan and MarkL984) introduced
models based on the digital elevation model (DEM) for hydrographic n&textraction
from remote sensing images. The key idea is to use the elevation informatiachgp@nt
in the region occupied by the hydrographic network: the depth informatiowsthe
determination of the direction of the flow running along the network branckas family
of techniques is complementary to that based on radiometric information.

1.5.2.4 Multiscale and multiresolution analysis

Dillabaugh et al(2002 introduced a method for semi-automatic extraction of rivers from
high-resolution images. A two stage, multi-resolution approach is employedtlyFia

line detector technique developed Bigchler et al(1981) is used to track rivers in lower
resolution data. Secondly, these initial river estimates are refined usirgtitie contour
model Kass et al.1988. This work uses an interesting multiscale approach, but relies on
user input to specify network endpoints, and is limited in the network topoldiggeét can

find.

Mason et al(2006 described a semi-automatic technique developed to extract net-
works from high-resolution LIDAR data. The method is performed in a multitleve
knowledge-based approach. Firstly, low-level algorithms extractr@idragments based
mainly on image features. Secondly, a high-level processing step imghaastwork us-
ing domain knowledge. The approach adopted at low level uses multi-sigdedetection
to detect channel edges, then associates adjacent anti-parallet@gigfber to form chan-
nels. The segmentation algorithm works well on high-resolution LiDAR ddt& method
is not appropriate for aerial photographs because they are noteheagh compared to
the LiDAR data.Lohani et al (2006 extended this work to the extraction of channels from
aerial photographs. These methods failed to extract some of the minaretbdnecause
the spectral characteristics of channel and non-channel aresisrélee.
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1.6 Conclusion

In this chapter, we have given a brief survey of active contours imseetgation as well
as techniques for road and hydrographic network extraction from isnalyetive contour
methods are categorized into two different classes: edge-basedgmatbased. The for-
mer has many limitations because it considers local information around thddrywof the
object in question. Between the two types of edge-based active congeorsetric active
contours have many advantages over parametric active contoursaswdmputational
simplicity and the ability to change curve topology during evolution. The intrbdoof
region-based methods tends to give better segmentation results becgussetgobal in-
formation about the object. The corresponding energy functionals tem@dse fewer local
minima which makes reasonable the use of local optimization algorithms. Moreower
have mentioned a family of active contour methods which incorporates sgauifiviedge
about the shape of the object: the so-called shape priors. Our intéseiigifamily of
methods because we aim to model network-like regions which have comp@Epershnd
need specific and sophisticated shape priors for automatic (or semi-aujosodiiton of
the problem of extraction.

We also made a brief survey of techniques for the particular problenadfand hydro-
graphic network extraction from images. Due to the variety of the availaltiée(garticu-
larly VHR images) and the complexity they contain, the problem of line netwdrketion
is still very challenging and continues to attract the attention of computer vislamainity
and the remote sensing community.

None of the existing methods or techniques solve the particular problenevdealing
with: extraction of hydrographic networks from VHR satellite images. The rddiicul-
ties are as follows: the network has an arbitrary topology unknavpniori; significant
change of branch widths at network junctions; different networkdiras may have signif-
icantly different widths; the background and the object may have manispisth similar
local properties leading to many pixels from the background being claksifisnetwork
and vice-versa; the visual hydrographic network in the image appeétrsnany gaps due
to the presence of noise.{.trees, bridges...). Our main aim is then the construction of
new shape priors which incorporate specific knowledge so that dbastic geometric
properties of hydrographic networks are favoured.
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Phase diagram of a HOAC model

“You can tell whether a man is clever by his answers. You can tell whathe&n is wise
by his questions”

— Naguib Mahfouz
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In this chapter, we briefly recall the HOAC model introducedRmchery et al(2006),
and show that this model favours two stable configurations, namely line rieamd cir-
cular structures, for some parameter values. Firstly, we conduct a staiifitysis of a
long bar via a Taylor series expansion up to second order of the HOA@Imnaoound a
long bar. Secondly, we recall the stability calculations for a circle perfdribye(Horvath
et al, 2006ab, 2009. The result of the stability analysis is illustrated on a ‘phase diagram’
leading to a good selection of parameter values giving stable circles amel lstab.
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2.1 Introduction

2.1.1 Higher order active contour (HOAC) model

The prior HOAC energy introduced Bochery et al(2006 is

EQP(R) = )\cL(R) + OéCA(R
p

)
_20//(51)2 dt dt’ () - A (t) U (W) , (2.1)

whereR is a region in the image domaii;is region boundary length is region areay

is an embedding, and an element of the equivalence lass {ve : € € Diff(S')} where
Diff (S1) is the set of diffeomorphisms &f!, representing the region boundary and param-
eterized byt € S' whereS! is a circle;y is its derivativej.e. the tangent vector fieldy(z)
defines the interaction between two boundary points separated by a distarand A\c,

ac, Bc, andd are real parameters. The long-range interactions described by tietica
term (.e. the third term in equatior2(1)) are responsible for the prior shape information:
they favour parallel (anti-parallel) tangent vectors when the inneryatdd positive (neg-
ative). We notice that the energy functional is invariant to Euclideanftvemstions {.e.
translation and rotation). The length and the area are given by

umzéy@ﬁ,

mmziﬁy@Awwm,

whereA is the cross product and the interaction functiofr) is (cf. Rochery et al(2006)

(2.2)

1o __ 1 g i
¥(z) = 2(2 z+7r51n7rz) !f0§z<2
0 if z>2.

Figure2.1shows the profile oft given by equationZ.2).

Figure 2.1: Behaviour of the interaction functign
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Figure 2.2: Evolution of an initial contour (rounded square) for diffiéarameter values
of the HOAC model given by equatidhl using gradient descent algorithm.

2.1.2 Problem statement

We use gradient descent algorithm to seek minima of the energy giverubyi@n @.1).
Figure2.2 shows different behaviours observed during gradient descenth&adhree ex-
periments, we use the same initial configuration: a rounded square. &acormresponds
to different parameter values and time runs from left to right. The firstalosws that the
initial contour vanishes as in the case of a classical active contour madeli{ = 0),
because the quadratic term is weak enough compared to the length atetarga-or the
second row, the stable configuration is made up of a set of arms, obamaitely constant
width, joined at junctions. The third row shows that the stable configurati@nsist of
circles of approximately constant radius.

Our goal in this chapter is to find the values of the parametgrs.c, 8¢ andd which
give a stable regioni.e. a preferred region which minimizes the energy) of the desired
type. As can be seen, at least two geometric configurations can be mexdg erinima
by manually tuning the parameter values, namely network shapes and regrapssed
of circles, which are interesting for line network and tree crown extradtimm remote
sensing images.

The problem now is how to find the model parameter values that give thedssable
region. To do so, we introduce a stability analysis of the desired energy mioicoastrain
the parameter values for network and circle modelling.

2.1.3 Methodology

The proposed methodology is to analyse the stability of a desired region isliebcribed
by its boundary, and the latter is described+gy In this work, we focus on two desired
regions: a network and a circle. A circle is obviously parametrized in paardinate
system. Ideally, the stability of an arbitrary network shape should be athlysit this
is an extremely complex problem. However, network shapes are essentigposed of
basic components: ‘arms’, which are relatively long and have low cuwatuthe scale of
their width, and ‘junctions’. The most important type of stability concerns thesasince
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without arms there can be no network. A tractable and reasonable apptmn therefore
seems to be to analyse the stability of a long, straight bar.

We first Taylor-expand the HOAC energy around a desired contigaray,, to second
order. We then impose stability conditions: the first functional derivatiaikl be zero
(v0 is an energy extremum) and the second functional derivative shoulodité/p definite
(the extremum is a minimum). These conditions constrain the model parametes.value
The results can be summarized in a ‘phase diagram’ illustrating the zonesaimextar
space leading to stable configurations which can be either bars or cifble§aylor series
expansion of the energy to second order arounid given by

EP(y) = EY (v0 + 6v)

dEcp 1 §*Ecp

Y0 70

£ Ecp(10) + (67]

where(-|-) is a metric defined over the space of embeddings/arig a small perturbation
of 7p. The configurationy, is stable if and only i%m =0, i.e.if 5 is an extremum of
2
Ec p, and the Hessian matr&% o IS positive definitei.e.the extremum is a minimum.
Such stability analysis will become more important as region models become more
sophisticated, which is inevitable if automatic solutions to segmentation problenis are

be found. The interest of the calculation is thus not limited to the current madelen to
HOAC models in general.

2.1.4 Dimensionless parameters

The geometric energic p of the contour depends arparametersic, ac, B¢ andd. To
simplify the stability analysis, we notice that

EC,P(’% )\Cv ac, /8C7 d) - EH’C,P(%@ Xa da 57 1) )
whereX = \cd, @ = acd?, B = Bcd? andy = 2. Since we can multiply the energy

Ec p by a constant while preserving the stability properties, it is sufficient ttysedhe
functional

@, (24
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whered = @/X, 3 = B/), Ecp = Ecp/) andy = J. The parameteré and are di-
mensionless. The stability analysis of the geometric HOAC model given byieqya. 1)

is then equivalent to analysing the ener@y,p given by equation.4). We can also think

of this as putting\c = d = 1 which is equivalent to using the paramedieas a unit length
and1l/(Acd) as an energy unit. Hereafter, this point is implicit: for example, the width of
the bar means the width divided klyand the radius of a circle means the radius divided
by d. If it is necessary, all the quantities can be multiplied by powersé ahd by\c to
restore the standard units. So, our aim is reduced to determining the pagssendwhich
represents the regions of the pldie:, Sc) which satisfy the stability conditions, given in
section2.1.3 of the desired contouyp.
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-1\2 1\2

Figure 2.3: Bar parametrization.

2.2 Stability analysis of a long bar

In this section, the contouy, is a bar of length and widthwy < . Figure2.3shows the
ansatzfor the bar model. The bar parametrizatignis

2ou(ty) = £ult, t, € [<0.5,0.5]

" , (2.5)
Yo,u(ty) = .3

Y0, (t) = {

wheret, = 1if uy = 1and—-1if u = 2. Both bar sides are parameterized separately by
two variableg; andt, and labeled by the paramejeas shown in figur@.3. Perturbations

of the bar are defined by tangential and normal changes(t,) = (dz.(t.), 6y.(t.)).

A perturbationéz does not change the equivalence classgfand so it can be ignored:
oz, = 0. So, we focus only on normal perturbations of the bar.

2.2.1 Energy

The Taylor series expansion of the enefgyp to second order is given by equatidh3).

The second order terié? E¢ p /6%~ can be simplified if we can find a basis which diagonal-
izes it. This is possible due to the symmetry of the ci§le Each term of the energyc p

is either a simple integral of a derivative ¢for a double integrals of a function ef— s’
wheres is the curvilinear coordinate of the circle. Therefore, the oper&thi: p/5%y is

a function ofs — &/, and not ofs + s’. So, this term can be diagonalized in the Fourier
basis of the tangent space at the painbf the contour space. Thus, the perturbations can
be expressed in terms of Fourier coefficients; (t,) = > . ap e, €*nlin whereay, i,

is the Fourier component of frequengy relative to the side bar labeled by The spa-
tial wavelength is defined as, = % wherem,, € Z and then the frequency becomes
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k, = i—: = 27”[’“‘. The perturbed contouy is then defined as

— Ty (t,u) = :l:ﬂ ! t# ‘ (26)
Yulty) = £ 5+ 2, ap i, €0

and the Taylor series expansion to second order around thg bgiven by equationd.3),
can be expressed in terms of the Fourier coefficients as follows:

EP(y) = EY (q0 + 6v)

5Ec7p 1 (52Ec7p
= Ec,p(0) + Z Z Apisko 50—~ + b Z Z B
ok [ oV Ky ke ok Ok,

2.7)

2
We will show explicitly that the matrix— ing — is diagonal in the Fourier basis and
MR v,ky

the vectorgfc*P is equal to zero except fdr, = 0.
.k

The Iengfh and the area of the contour are given to second order in tetihesFeurier
coefficients by ¢f. appendixA)

L= /D ()|
po e

gz{2+;§:k2(ya1,k\2+ \amy?)} , 2.8)
k
A() = /D U (t2) — ya(—1)) iy
Y1
= lwo + (a1,0 — az0)] , (2.9

wherelly, is the domain of the parametrizationy. Computing the quadratic term and
defining the quantitie&r;;, the geometric energy per unit length of the COﬂt@Uég) =
Eg)/l, is given by €f. appendixA)

ef) (7) = 2A¢ + acwo — BcGoo(wo)
€0
+ [a1,0 — a2, [ac — BcGio(wo)]

s
€1

2] [kz + BcGao(wo, k)}

-~

€20

1
+ 5 ; Ualjk\Q -+ |a27k

+ (a1 gag i + a1,—kaz —i) BcGar (wo, k)
—_——

€21

1
=e9+e1 (al’(] — CL270) + 5 ; CL}; €9 aj , (210)



2.2. Stability analysis of a long bar 43

@) ac =1,0c =234 (b) ac =1,8c =1.84 (€) ac =1, Bc = 0.66

(d) ac =1, Bc = 0.52 e)ac =1,8c =0.35 f ac=—-1, Bc = —0.66
Figure 2.4: Different behaviours of the energywy) for different values ofvc andgc.

wherea, = (aj.a2); T and« indicate respectively Hermitian and complex conju-
gates. ep(wy) is the energy per unit length of a long bar of widtly, while e;(wy) =
deo(wp) /0wy is the change in energy due to a change in width (to first order, non-zero
Fourier frequencies do not contribute)s (wy, k) is, for each frequency, a symmetric

2 x 2 matrix whose diagonal and off-diagonal terms;, andes;, express the self-energy

of perturbations of one side, and the interaction between perturbatiamposite sides of

the bar respectively. We notice that -+ oo, the sum in the equatio (10 becomes an in-
tegral overk. We keep the sumi.g. [ big but not infinity) because the positivity verification

of e; requires a discretization of the Fourier domain.

2.2.2 Stability conditions of a long bar

Equation 2.10 gives the Taylor series expansion to second order of the geometrigyene
per unit length of the contouy around a long bar of widtlyy. We aim to find the width
wo Which minimizes this energy: the widthy which satisfies the two stability conditions
(i.e.e1(wo) = 0 andea(k, wy) is positive definiterk).

2.2.2.1 Analysis ok

Figure2.4 shows different behaviours of the bar eneegyw,) against the bar widthy
for different parameter values of~ and5c. Figures2.4(d)and2.4(e)show an inflection
point with zero and non-zero first derivatives, respectively, ama tin these cases the
bar vanishes. Figur2.4(f) shows that, whemc < 0, the energyey(wy) diverges ifwy
increases. We then constraig, > 0.

For the parameter values corresponding to figrdéa) 2.4(b)and2.4(c) the energy
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Figure 2.5: Plot of extrema positions of the eneegyw,) againstsc for ac = 1. The
solid and dashed curves correspond to minima and maxima respectively.

eo(wp) has two extrema: a minimum and a maximum. The second order term of equa-
tion (2.10), the Hessian matrix,, separates these two extremaedfis positive definite

then the extremum corresponds to a minimum, and i negative definite then the ex-
tremum corresponds to a maximum.

The parameter values corresponding to fig2#g(c) give a positive minimum energy
per unit length of the bar. In this case, the minimizer shrinks the bar until {p@=pa-
tion of a long bar fails. As the bar becomes shorter, the contributions ofdxttemities
become important compared to the contributions of the straight part of tharmthen
both extremities interact with each other. At this point, the bar may evolve tevessthble
circle or vanish. In the case of figuBe4(a) the minimum energy of the bar is negative.
So, the minimizer lengthens the bar. This situation is not preferred.

2.2.2.2 Analysis ok,

The first stability condition of a long bar.€. e; (wyg) = 0) constrains the parameters of
the HOAC model. This condition ensures that the geometric energy of theabardm
extremum. We then obtain the parameter constraint

ag

Belac, wo) Gro(wo) (2.11)
Equation 2.11) shows that, for a fixed value of the bar widtly, the curve of the
function 5 () is a straight line with gradient/G1(wy). Figure2.5showsw, against

the parametes for a fixed value ofvc. This curve has a particular poiftl, w() which
corresponds to an inflection point ef. For ¢ < Bé, the energyey(wp) does not have
an extremum. The minimum cannot be located below the valye- w/ since the solid

curve corresponds to the minimum while the dashed curve correspondsr@imum.

2.2.2.3 Analysis ok,

The second order stability condition of a long hag,that the Hessian matrix, be positive
definite, is ensured by constraining the eigenvalues @b be strictly positive so that the
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2k

(a) Representation of the perturbations in eigenvector ba-
sis.
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(b) Contribution of\ .. (c) Contribution of\_.

Figure 2.6: Perturbation behaviours in eigenvector basis.

extremum of the energy corresponds to a minimum. The eigenvalues afe A\ =
e90 £ €21 and the eigenvectors are = (1, +1) respectively. So, equatio2..0 can be
written as a function of the eigenvalues as

1 _
eg)('y) = e+ 61(a170 — CL270) + Z Z )\+]a2|2 + )\,|ak |2 , (2.12)
k

whereaf = a1 £ a3, Figure2.6(a)shows the representation of the perturbations
andas ;, corresponding to each side of the bar in the eigenvector basidv_. These
eigenmodes are illustrated in figue6. a. describes in-phase perturbations of the two
sides, whilex_ describes out-of-phase perturbations. For low frequencies, thefeose
less energy, as locally the sides of the shape are still parallel. For higlygrehcies, the
difference is negligible.

Figure2.7 shows that for fixed parameter values which give a minimum of the energy
eo, both eigenvalues; and \_ are strictly positive for all frequencies. This positivity
condition allows us to constrain the parameter values to be bounded by ampbéower
limits.

To find these bounds, we express explicitly the eigenvalueand we then constrain
them to be strictly positive. Substitutingy andes; by their expressions given by equa-
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Figure 2.7:(a): bar energy(wy) plotted against the widthyy. ac = 0.8, andc = 1.39
computed using equatioR.(L]) for a desired widthuy = 1.2. (b): eigenvalues\.. plotted
against the frequeney: for the same parameter valuega). A1 are indeed strictly positive
for all frequenciesn € Z.

tion (2.10, A+ become
Ai(ac, Bo, wo, k) = K + BoG(wo, k)

whereG 1 (wo, k) = Gao(wo, k) £Ga1(wo, k); the parametersc andd are fixed tol with-
out loss of generality. Replacing- by its expression given by the first stability condition
in equation 2.11), we obtain

ac

G'1o(wo)

and so the second order stability condition of a long bar becomes

)\i(ac,wo,k) = k? + Gi(wo,/f) ,

K4+ —2C Gy (wo, k) > 0,V
G1o(wo) +(wo, k)
which is equivalent to
acG(wo, k) > —k*Gio(wo) ,Vk , (2.13)

sinceG1o(wg) > 0 because the interaction functidnis a decreasing functiorcf, Ap-
pendixA). This inequality gives a lower bound on the parametgiif G (wo, k) > 0, SO
the bound is always negative, and yf > 0: the lower bound ofvc equals.

Figure 2.8 shows the regions of thewg, k) plane corresponding to the sign change
of GL. The white, red, blue and black regions correspond=to(wg, k) > 0 and
G_(wo, k) >0, G4+ (wp, k) > 0andG_(wo, k) < 0, G4 (wo, k) < 0andG_(wo, k) > 0,
andG (wg, k) < 0 andG_(wp, k) < 0 respectively.

The bounds on the parameteg are given by figure2.9. A long bar with a width
wp € (0,2) is stable if the value ofic is bounded by a lower bound (the red curve), which
is equal to0, and by an upper bound (the blue curve). The three vertical linessymnd
to the singularity points of the functions. (wo, k) wherek € K, K is the frequency
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15 2

Figure 2.8: Plot of the four possible regions in the pléneg, k) corresponding to the sign
change of7, etG_.

Figure 2.9: Lower and upper bounds of the parametem red and blue respectively.

set which contributes to the bounds on the parameter For wy € (0,0.8802), where
Qmin = amaz = 0, NO stable bar exists. thy € (1.33,2), then a bar of widthy, is stable
if the value ofa is below the blue curve given by figuge9. Forw, € (1.03,1.33), a bar
with width wy is stable ifac > 0 (the upper bound afi is +oo in this interval).

The goal of the stability analysis is to delineate the region(s) of the pglanes:)
which give(s) a stable bar of width,. By analogy with a physical system, we call it ‘phase
diagram’. The stability conditions of first and second order studied pusiyipallow us to
find the phase diagram of a bar. Equati@ril{) shows that for each value,, the plot of
the functionfc(ac, wo) is a line with slopel /G1o(wg) and sincexc is bounded, the set
of (ac, Bc) becomes a segment for each valug Plotting the set of lines with variable
slopes as a function af, € (0.88,2), we obtain the phase diagram given in fig@r&Q
The colored regions correspond to the set of pojnis, 5c) which give stable bars. The
sign of the minimum energy plays an important role for contour evolutions wgenjent
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asinh(8.)

asinh(a.)

Figure 2.10: Phase diagram of a bar (<€ (0.88,2)). Blue and yellow zones refer to
positive and negative bar energy per unit length respectively.

descent. The regions colored in blue and yellow in figiO give positive and negative
minimum energy respectively. The parameter values which belong to the yedigian
lengthen the bar whereas the values from the blue region shorten thatldrwanishes
or a stable circle is created. The white region corresponds to the setavhgi@r values
for which no stable bar exists.

2.2.3 Experiments

The stability analysis which we have done previously, allows us to select galoes of
the parameters from the phase diagram. The phase diagram given ey ZigQ gives
the ranges of the dimensionless parametefssection2.1.4: &, 3 andd,. We then
compute the values of the real parameters for a given wigths follows:ac = aA¢/d,
Bco = B)\C/d andd = wq/wg. Ac is fixed tol because it just scales the energy while
minima remain the same. Figu&11 shows different evolutions of a long bar using a
gradient descent algorithm to minimize the HOAC energy given by equa2idh (Each
pair of rows corresponds to the same pdiat 3, @) selected from the phase diagram
given by figure2.10 and changing the value afy we obtain the values given in takiel
for each experiment.

For experiments 1-4, we choose 2 points of the phase diagram, givemiia Zid.Q
which belong to the lower white region. These parameter values produc#estion point
in the bar energy: the quadratic term is weak compared to the length anttaresa So
for these values, the bar is unstable and it disappears: the bar widdadesitd®. Figure
2.12shows, for the parameter values corresponding to evolutions 1-4, ¢hbatrenergy
has an inflection point and the minimum is then located@at= 0.

For experiments 5-10, the selected parameter values show also that sigibks.
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For these experiments, the parameter values were selected from ther@yeizie phase
diagram, which gives a stable bar with a positive energy as shown in f&jlipg5-10)

and their corresponding eigenvalues are strictly positive at the minimum. Soéngy of

the long barj.e. Ey = le, is positive and the gradient descent algorithm decreases the bar
length/ to 0 while the width remains at its stable value.

For experiments 11-14, we choose parameter values which give a stablétbposi-
tive energy but these same values give a stable circle. The corresgpmhoks 11-14 given
in figure 2.12 show that the bar energy has a minimunugtand then the radius of the
stable circle will bery = wy/2.

For experiments 15-16, the parameter values are selected from the yeiow of the
phase diagram which give a stable bar with a negative energy as shdware?.12 (15—
16). So the bar energie. Ey ~ leg, is negative and it then lengthens making a “snake”
shape while the width remains at its stable value.

For experiments 17—-22, we choose three points of the upper white refgios phase
diagram which gives an unstable bar. Fig@r&2 shows that, for evolutions 17-22, the
bar energy has a minimum and then the out-of-phase eigenvalyes strictly positive
for zero frequency. For these evolutions, the bar is unstable to soreemorirequencies
which give negative eigenvalues. These unstable frequencies spdatleto stripes with
widths approximated to the corresponding wavelengths.

2.3 Stability analysis of a circle

In this section, we focus on the stability analysis of a circle for circular siraenodelling.
The result will be illustrated in the so-called ‘phase diagram’ of a circle. Sthbility
calculations for a circle were performed biorvath et al.(2006a b, 2009. Since~q
parameterizes a circle, it is easier to express it in terms of polar coordipatgson .
For a suitable choice of coordinate 6, a circle of radius:, centred on the origin is then
given by~o(t) = (ro(t), 0o(t)), wherery(t) = 1o, 0(t) = t, andt € [—m, 7).

2.3.1 Energy

As we mentioned in sectioR.1.2 we first Taylor-expand the enerdy p around a circle
~o of radiusry. We are interested in the behaviour of small perturbations= (o, 66).
The first thing to notice is that the energy: p is defined ori-chains so tangential changes
in v do not affect its value. We then s&t = 0, and concentrate obr. The terms of the
energyEc p are either a simple integral oveor a double integral of a function of— ¢’

S0 it is easier to express the perturbationsn terms of Fourier coefficients because they
diagonalize the second order operatort) = >, are’™*t . The expansion of the energy
Ec p given by equationZ.1) in Taylor series to second order around a cirglés given by
(cf. Horvath et al(2006a b, 2009)

1
el (1) = el (0 + 87) = eolro) + aver(ro) + 5 Y laxPea(kro) . (2.14)
k
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Figure 2.11: Gradient descent evolutions of a long bar for differardgmpeter values given
by table2.1
where

eo(ro) = 2mAcro + 7['0[(37“8 — BcGoo(ro) ,
e1(ro) = 2w ¢ + 2macry — 2w cGio(ro)
62(]{,7’0) = 27T)xc?°o/€2 + 2rac — 27T6@G2(k,?“0) R

Go(k,r0) = 2Ga0(ro) + Ga1(k,70) — 2irokGaz(k, 7o) + rak*Goa(k, 0) ,

andG;; = [™_dp e o000k ().

2.3.2 Stability conditions of a circle

(2.15)
(2.16)
(2.17)
(2.18)

Figure 2.13 shows the energy of a circle of radiug againstr, for different values of
the parametersac and fc. Figures2.13(a) 2.13(b)and 2.13(c)show thatey(ro) has a
minimum and adjusting the values @f and 5¢, the minimum energy can be positive or
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Figure 2.12: Bar energies and their corresponding eigenvalues fdifteeent evolutions
given by figure2.11 The blue and red curves correspond to the in-phase and out-sépha
eigenvalues) . and)_, respectively.
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’ H asinh(&) ‘ asinh(p) ‘ Wy ‘ eo(wp) H wo ‘ ac ‘ Bc ‘ d ‘
1 0.5 0.2 0 2 0 [ 0.052| 0.02 | 10
2 0.5 0.2 0 2 0 | 0.035| 0.013] 15
3 5 3 0 2 0| 742 1 10
4 5 3 0 2 0| 37 0.5 20
5 0.5 0.4 1.29 | 198 | 10| 0.067| 0.053| 7.75
6 0.5 0.4 1.29 | 198 | 20| 0.034| 0.027| 155
7 1 0.7 1.18 | 2.22 10 | 0.139| 0.09 | 8.44
8 1 0.7 1.18 | 2.22 | 20 | 0.069| 0.045| 16.94
9 2 1.45 1.05| 3.17 | 10| 0.38 | 0.21 | 9.52
10 2 1.45 1.05 | 3.17 20| 0.19 | 0.11 19
11 1 1.2 1.465| 0.903 || 10 | 0.172| 0.221| 6.82
12 1 1.2 1.465| 0.903 || 20 | 0.086| 0.111| 13.65
13 6 5.7 1.26 | 9.84 | 20 | 12.71| 9.42 | 15.87
14 6 5.7 1.26 | 9.84 | 30| 8.48 | 6.28 | 23.8
15 55 5.3 1.301| -9.28 || 10 | 16.32| 13.13| 7.63
16 55 5.3 1.301| -9.28 || 20 | 8.02 | 6.56 | 15.26
17 1 2 1.645| -3.19 || 10 | 0.193| 0.597 | 6.08
18 2 2 1.645| -3.19 || 20 | 0.097| 0.298 | 12.16
19 2 4 1.76 | -45.9 || 10 | 0.638| 4.8 | 5.68
20 2 4 1.76 | -459 | 15| 0.319| 24 | 11.36
21 6 6.5 1.525| -325.3 || 20 | 15.38| 25.37| 13.11
22 6 6.5 1.525| -325.3 || 25| 123 | 20.3 | 16.4

Table 2.1: Parameter values which correspond to the evolutions givegurg2i.11

negative. The number of stable circles decreasegif)) > 0 and increases ify(ry) < 0.
Figures2.13(d) 2.13(e)and 2.13(f) do not show energy minima for the corresponding
parameter values.

A circle of radiusrg is a minimum of the energy,(ro) if and only if it satisfies the
stability conditions:e; (rg) = 0 andez(ro, k) > 0,Vk. The first order stability condition
implies the parameter constraint

_Ac +acro

~ Go(ro,d) (2:49)

BC(ACa ac,To, d)

Figure2.14shows the positions of energy extrema agaiisfor a chosen valuac =
1 satisfying the parameter constrai@t19. If 3¢ < B, then the energy, does not have
extrema. Ifgc > Bé theney has both a maximum (dashed curve) and minimum (solid
curve). The second order stability condition is then necessary to findexgyeminimum.
The expression fogs is given by equation.17):

62(/\(],04(3, ﬂc, d,ro, k) = 27r)\c7”0k2 + 27 — 27(50(;2(61, T0, k) .
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(@) ac=1,8c =154 (b) ac =1, c =1.84 (€) ac =1, Bc = 2.03

(d) ac =1, 8c =1.10 (e) ac =1,8c =0.88 f ac=-1,6c=1
Figure 2.13: Behaviours of the circle energy,r), for different values ofvc andgc.

A perturbation of frequencyr = 1 (k = % = %) of a circle corresponds to a translation
of it. Ec p is translation invariant, we then ignore the perturbation of frequérmscause
it does not have any effect in the energy. Then, the second stabilithitmmbecomes

1
62()‘C7aCa 507 d>r07 k) >0, vk ?é 7 .
0
Without loss of generality we seic = d = 1 (cf. section2.1.4:

1
62(05075077“07 k) >0,k ?é % ,

and substitutinggc by its expression given by equatio2. 19, we then have

1+ acrg

k2 -
ok~ + ac Cro (7“0)

1
GQ(TO,k‘)>O,Vk§£7,
0

which can be rewritten, by defining the functians, k) = 1 —ro% andf(ro, k) =

Ga(ro,k)

o 2
Gro(ro.) rok*, as

ac a(ro, k) > f(ro, k), Vk # :0 .
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)
.

Figure 2.14: Plot of extrema positions of the eneegiry) againstsc for ac = 1. The
solid and dashed curves correspond to minima and maxima respectively.

Depending on the sign af(r, k), we obtain these two conditions:

f(ro, k) , Vk # l SO ac > ad™ = max s J(ro, %) ,
a(r()v ) a(T07k)
f(?“o, ) mazx f(r07 k)
a(ro. k) , Vk 75 - SO ac < ag mkln a(ro. k)

Figures2.15(a) 2.15(b) and 2.15(c) show the behaviours of the functionsrg, k),
flro,k) and fa = f:g:g’,g respectively, for the frequenci@s(blue curves) an@ (red
curves) which contribute to determine the lower and upper bounds of thenpterac.
Figure2.15(d)shows the bounds of the parametgr obtained by taking the maximum or
the minimum of the functions given by figuB15(c)with respect to the sign af(rg, k).

The conditionac > 0 implies that there is no stable circle of raditgs< 0.69. If 0.69 <

ro < 1.1 then the upper value @i¢ is +oco and the lower bound is given by the red curve.
If ro > 1.1 then the energy has a stable circle of radigifor each value o which lies
between the red curve and the blue curve.

The parameter constraint given by equati@rl® shows that for each radiug of a
stable circleite. 7y € (0.69,+00)), the parametefc is expressed linearly as a function
of ac The curve representing- againstac for a given valuer, is then a line of slope
Gm(m) Figure .16 shows the phase diagram of a circle obtained by plotting the different
lines representingc againstac for different values ofy € (0.69, +00). The blue and
yellow zones correspond to parameter values which give a stable circlpagitive and
negative energy respectively.

if a(ro,k) >0 then ac >

if a(ro,k) <0 then ac <

2.3.3 Experiments

In this section, we show geometric evolutions of a circle using gradienedesgiven in
figure 2.17, for different model parameter values given in taBl2 These parameter val-
ues were selected from different zones of the circle’s phase diagiran in figure2.16
Figure2.18shows the energy behaviours of a circle and the second order eneagie-
sponding to the evolutions given in figu2el 7.
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asinh(f)

0 05 1 15 2 25 0 05 1 15 2 25

asinh(fa)
& & L b o v h o

asinh(a.)

Figure 2.15: The blue and red curves shown by figaggb) and(c) correspond to fre-
guencies) and2 respectively. For figuréd), the red and blue curves correspond to lower
and upper bounds af respectively.

Evolutions 1 and 2 show that the initial circle shrinks until it disappears fptram-
eter values selected from the lower white zone of the phase diagram. Theisithen
unstable. At that zone the quadratic term is weak compared to the other teyntise
length and the area terms which constitute the classical active contour model.

Evolutions 3 and 4 show that the circle is stable for the selected parametes Wiadm
the blue zone. Figurg.18shows that for these parameter values the circle energy has a
minimum and the second order energy is strictly positive for all frequercies

Evolutions 5 and 6 show that the parameter values selected from the uppezene
evolve the circle toward a complex shape due to some unstable frequeniges: Z18
shows that for these parameter values, the second order energgtedaht the desired
radius has some unstable frequencies which give negative secarccortqy.

2.4 Conclusion

In this chapter, we have analysed the stability of both a long bar and a airdéz & HOAC
energy in order to produce stable line and circular structures. The lattex the aim
of other works for tree crown extraction from remote sensing images$ibrvath et al.
(2006@ b, 2009). The formerj.e. line network modelling, is our focus.
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o 1 2 s 4 5 & 1
asinh(a.)

Figure 2.16: Phase diagram of a circfg (€]0.69, co[). The blue and yellow zones cor-
respond to parameter values which give a stable circle with positive aradiveegnergy
respectively.

asinh(&) | asinh(B) | 7o | eo(fo) || 70 | ac Bc d
1 0.5 0.2 - - - | 0.104| 0.04 5
2 0.5 0.2 - - - |1 0.052| 0.02 | 10
3 1 1.2 0.94| 2371 5 | 0.221| 0.284| 5.319
4 1 1.2 0.94| 2.371 || 15| 0.074| 0.095| 15.96
5 1 2 2.34| -16.67 || 10 | 0.275| 0.849| 4.274
6 1 2 2.34| -16.67 | 15| 0.183| 0.566| 6.41

Table 2.2: Parameter values which correspond to the evolutions givegurg2i.17.

The stability analysis of both structures generates constraints and bottts model
parameters which have led to the diagrams given in figere8and2.16 Combining both
studies, one can superimpose both diagrams to get a full phase diagrelmisvshown in
figure2.19 The phase diagram enables parameter values to be chosen to modielegpar
situation. The sign o is important for both structures as we have mentioned.

In the case of a bar, #, < 0 then the bar lengthens to minimize the total energy, while
if eg > 0 then the bar shrinks until it disappears. The first situation is undesirabbube
gradient descent tends to create arbitrary network branches to minimiretahenergy.
Suitable parameter values therefore lie in the maroon region of the phasandjaghich
gives a stable bar with positive energy per unit length and no stable circles
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Initial contour || Evolution 1 | Evolution 2 | Evolution 3 | Evolution 4
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Figure 2.17: Gradient descent evolutions of a circle for differerdupater values given in
table2.1

1-2) ep(ro) 3-4)eq(ro) 3-4) e (1, k)

— wr\e\ﬁri = -
5-6) eq(70) 5-6)e2 (1, k)

Figure 2.18: Circle energyy (o) and second order energy(r, k) corresponding to evo-
lutions given in figure2.17. rj is the radius of a circle at the energy minimum if it exists.
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asinh(ac)

Figure 2.19: Phase diagram. Maroon, red, yellow, green, white, bille, grey, magenta
correspond respectively to B+, C+, B+ C+, B+ C-, UB UC, B- C+, B; C-and B-; B, C,
U, + and - refer respectively to bar, circle, unstable, positive enangynegative energy.



CHAPTER 3

A phase field HOAC model of
undirected networks

“All the sciences came to exist in Arabic. The systematic works on theewwiten in

Arabic writing.”

— Ibn Khaldun
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In the previous chapter, we performed a stability analysis of a networichrahich
led the determination of the phase diagram of the HOAC model, allowing a gtextien
of parameter values for network modelling. Based on that, we describdsiohfpter, a
phase field HOAC inflection point long bar model and apply it to road netwatiaction
from VHR remote sensing images of rural areas. We use the phase &eié\iiork to

reduce computational complexity.
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3.1 Introduction

3.1.1 Phase fields

In this section, we recall briefly the phase field HOAC model introduceRdshery et al.
(2005. A phase fieldp is a real-valued function on the image dom&in A phase field
determines a region by the mag¢) = {z € Q : ¢(z) > =z} wherez is a given threshold.
The basic, local phase field energy is

4 2 3
E8<¢)=/Qd2x{§a¢-a¢+x<ﬁ_qf;)+a<¢—ﬁ>}. (3.1)

If (3.1) is minimized subject t@,(¢) = R, i.e. for a fixed region, then away from
the boundary, the minimizing functiopr assumes the valueinside, and-1 outsideR
thanks to the ultralocal terms. Figusel shows the behaviour of the ultralocal terms,
the terms weighted by anda. To guarante@ stable phases at1 and1 of the system,
the inequality\ > || must be satisfied. We choose> 0 so that the energy at1 is less
than atl. This will favor pixels belonging to the outside & rather than to the interior.
The derivative term ensures the smoothness gf producing a narrow interface around
the boundary R interpolating between-1 and+1. We denotew the interface width.

0.8

0.6 -

0.4

0.2

-0.2f

Figure 3.1: Behaviour of the ultralocal terms£ 0.5 anda = 0.1).

To introduce prior shape information, a nonlocal term is then added toagietal
energyEy = E§ + Ent,, where Rochery et al.2009

Bw(0) =5 | /Q P il 96(x) - 09(a’) ('“"f’) , (3.2)

whered is the interaction range. This term creates long-range interactions bepoias
of OR (becausé¢r, is zero elsewhere) using an interaction functi@mwhich decreases
as a function of the distance between the points. The interaction funétisrgiven by
equation 2.2).
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The first functional derivative of the local terfyyj, with respect tap, is

SES
(gf)) =-DPp+\(9° —¢) +a(1-¢%) , (3-3)
while the first functional derivative of the nonlocal tetfky,, with respect tap, is (cf.
AppendixB.1.4)
o
SEni() :ﬂ/ 2ol 96(a') - OV (M) , (3.4)
0 Q d

3.1.2 Phase fields as HOACs

The phase field local energl, of ¢ is given approximately by a linear combination of
the length o0 R and the area oR, and the nonlocal phase field terfiyy,, is proportional
to the HOAC term ¢f. Rochery et al(2005):

Eo(¢r) = AcL(R) + acA(R) £ Eco(R) ,
EnL(¢r) x Ec,q(R) .
whereEc o (R) is the quadratic term in equatioR.(). The result is that one can use phase

fields instead of HOACs. The equations relating the phase field model pararaad the
HOAC model parameters aref(Rochery et al(2005)

( a:%ac,
B=1pc,
D =%\, (3.5)

2
A:Acgj,{w 1- du? (52) } .

3.2 Inflection point long bar model

In chapter2, we described the stability analysis of a network branch abstracted ag a lon
bar under a HOAC model given by equati¢hl). The result is the phase diagram given

in figure2.19 We then are able to select parameter values which produce stable reetwork
In Conclusion2.4, we argued that the maroon zone of the phase diagram gives suitable
parameter values for network modelling and will be our primary preferoee z

3.2.1 HOAC inflection point long bar model

Figure 3.2(a)shows the energy per unit length(wg) plotted against bar width, for a
particular parameter setting from the maroon region with a stable wigte= 1.2. Pa-
rameter settings that produce energy curves like fi@u2¢a)have a disadvantage when
minimized using gradient descent. Imagine an area of background in the,icuadje
network branch formed there by the vagaries of gradient descentauBedt lies in the
background, and assuming the data model is reasonable, there will beearfavards on
the branch, tending to make it shrink and disappear. This is as it shoulddveever, if



62 Chapter 3. A phase field HOAC model of undirected networks
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Figure 3.2:3.2(a)and 3.2(b) plot ey against bar widthug, with (ac, fc) = (0.8,0.53)
and (0.7,0.363) respectively, giving a minimum ab; = 1.2 and an inflection point at
wy = 0.88.

the width of the branch lies in the basin of attraction of the stable width, there ieshth
old that the force has to surmount if it is to push the branch over the maximownsh
figure3.2(a) and down to zero width. The result is the formation of ‘phantom roadsef
positives that cannot disappear due to the stability of the network branch.

Global optimization algorithms are one way to avoid local minima, but unfortunately
our problem is NP-hard. We choose a slightly less ambitious approachhaveye the
energy functional to avoid the creation of these local minima while preseasnmuch
prior knowledge as possible. This problem can be solved by constraimngarameters
so that the energy function has an inflection point at a desired wiglthe. A_ (wg, 0) = 0)
rather than a minimum. Figui@2(b)shows a plot of energy per unit length versus width
for a parameter setting that gives an inflection point. Such inflection points tieedower
edge of the coloured area of the phase diagram, &italues in the rangf, 0.9083]. The
value ofwg, = 0.88 all along this line, and this is the only value that allows an inflection
point.

3.2.2 Phase field inflection point long bar model

To model networks with the phase field model, we first select parametersvadu¢he
contour using the phase diagram. In practice, this means fixir{ghich is an application-
determined physical parameter), and then selecting valuésanfd 3 from the maroon
region of the phase diagram. These gixg which gives the required, and hencevc /¢,
which is upper-bounded so thais real. A choice of\¢ then gives the actual values of the
parameters iic p. These are then converted using equations giverBI®y. (we choosé

w = 3.

Once we impose the inflection point conditiaby, is fixed, andx is sufficient to deter-
mine 3 and hence all the other parameters exceptHowever, the inflection point condi-
tion constrains the parameters to a co-dimensisat in parameter space, so that a generic
change in the parameters, however small, will violate the condition. One canvireder

LIt cannot be too small, or a subpixel discretization will be needed fatignd descent, and it cannot be
too large or the phase field model will not be a good approximation to theGi@adel €f. Rochery et al.
(2009).
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how well this condition is preserved when the parameters are conveam@dciontour to
phase field, especially since this conversion is based on a relatively appdloximation to
og. In practice, numerical experiments show that the inflection point conditiweligre-
served, with configurations at the inflection point remaining stationary teiseiaccuracy
over thousands of iterations of gradient descent.

3.3 Likelihood energy and energy minimization

So far we have spoken only of the prior energ. In this section, we focus on the
likelihood energyF;. Figure3.3shows two, 120cm resolution, multi-spectral test images
(red, green, blue and infrared channels), together with manually &éedracad network
masks, and the histograms of the network and the background for eagh ba

3.3.1 Histogram modelling

We test two models: the multivariate Gaussian model (Ms&)Horvath(2007) and the

mixture of two multivariate Gaussian model (MMG). The multivariate model dessr

vectorial statistics, such as the mean and the covariance dfthannels, combining all

channels. Multimodal statistics are well modeled using a mixture of two Gaussians
Figure3.4shows the histograms of the four channels, the monovariate Gaussian model

and the mixture of two Gaussian models in blue, red and black respectivedystatistics

are computed for each channel independently of the others (the modef®acvariate

in this case). It is clear that the monovariate mixture of two Gaussian modekfiesr b

the histograms than the monovariate Gaussian model, for both monomodal anagbimod

histograms.

3.3.2 Data energy term

We assume that@|R, K) = P(Ig|R,0r, K)P(I3| R,03, K), wherel and I are the
restrictions of the image to the networkand the backgroung respectively, andz and
6 are the corresponding model parameters (which previously were intiodee generic
K). We further assume that the image values at different pixels are indepegiven these
parameters. Taking negative logarithms, and using= (1 + ¢)/2 to restrict integrations
to the network or background respectively, gives the following likeliheoergy:

zmw=—¢yx@m%umm¢4m+mw%mm»¢m@

—— [ 4o 2N G (@) - g (1@} 1. @9)

wheremy,, = P(Ig|R,0g, K) andmy, = P(Iz|R,05) andk is ag-independent constant,
which we drop. The functional derivative of the data energy term wipeet top is

5%"” _ _;{m(%u(x))) — In(mg, (1 (w)))} - (3.7)
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Figure 3.3: Top row, from left to right: the R-G-B bands of a multi-spedaatllite image;
the G-R-IR bands of the same image; the corresponding manually extraetdetwork
mask. Second row: similar, for a second image. Third row, from, left td:rigistograms
of the network (red) and background (blue) regions of the R, G, B,IBRnbands of the
image in the top row; Fourth row: similar, for second image. (ImagesigitalGlobe,

CNES processing, images acquired via ORFEO Accompaniment Program).
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g H &

Figure 3.4: From left to right: histograms of R, G, B and IR channels. Rognto bottom:
histograms of the interior region of the first image, the exterior region of theifhage,
the interior region of the second image and the exterior region of the sevage. Curves
in blue, red and black correspond to the histograms, the Gaussian modéfe anckture
of two Gaussian models respectively.
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3.3.2.1 Multivariate Gaussian model

After simple calculations, the MG model can be written as

Bi() =1 [ do {(I(x) TS (I — )

e B |2
(@)~ pTEN(I() — )+ n m}qﬁ(w) . (38)

wherey andjz are the mean vectors of the bands/gfand I ; respectivelyy and¥: are
the covariance matrices éf; and I respectively! indicates transposé. = (u, i, %, %)
is learnt from the original images and their masks using maximum likelihood.

3.3.2.2 Multivariate mixture of two Gaussian model

The MMG model is designed to take into account the heterogeneity in therappeaof
the network produced by occlusions. It takes the form

2
Fi(6) = /Q o {anmm-1/26-%“@*%*% @)
i=1

2
Y 2 e B ST @) ) }¢($) . (3.9)
=1

wherep; andp; weight the two Gaussian components fgrand; respectively? indi-
cates transposé. = (p1, pa, P1, Do, i1, 2, i1, fi2, 21, Y2, D1, X2 is learnt from the orig-

inal images and their masks using maximum likelihood combined with the EM algorithm
(cf. Dempster et al(1977); Ingrassia and Roc€¢R2007); Moon (1996)).

3.4 Experiments and discussion

The total phase field energy to minimizef%¢; I) = E3(¢) + Ei(1, ¢). We use gradient
descent to seek energy minina. (Rochery et al(2009).

3.4.1 MG model vs. MMG model

We compare the segmentation performance of the MG and MMG data modelsedive b
by looking at the performance of the two models using maximum likelihood clagsifica
i.e.with E set to zero. Results on the two images in figBi/@are shown in the first two
columns of figure3.5. In this case, the MMG model performs worse than the MG model,
since it allows some parts of the background to be classified as networkth#&igddition

of the prior, however, the results using the MMG model are better than tifdbe MG
model on both images, as shown in the last two columns of figuseSee tables.1 for
guantitative evaluations.
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Figure 3.5: Segmentations of the two images in fig8r& from left to right in each
row: ML using MG, ML using MMG, MAP using MG, and MAP using MMG. From
39 to 4" column and from top to bottomiwg, &, A\c) = (2,0.7646, 15), (2,0.8385,5),
(2,0.8385,20), and(2,0.6169, 10).

3.4.2 Inflection point long bar model

We compare the segmentation performance of the previous, energy minimuel mod
(EMM) and the new energy inflection point model (EIPM). The first is olgd using
parameter values from the maroon region of the phase diagram givegung2i19, and
gives an energy per unit length as a function of width as shown in figy@(@) while the
second uses the parameter constraints detailed in s&#dtto create an inflection point
model, with an energy per unit length as a function of width as shown in fig2¢)

The idea is to avoid false positives in the background by rendering a rietenfiguration
only marginally stable in the absence of supporting image data. The resutisave in
figure 3.6. the false positives are indeed eliminated without creating false negafess.
table3.1for quantitative evaluations.

3.4.3 Robustness of the algorithm to initial conditions

Initialization dependence of the final resile. becoming trapped in a local minimum, is a
drawback of deterministic descent algorithms. However, it might be hopedvith suffi-
cient prior knowledge built into the model, the entropy of the probability distidbuvould
be reduced enough to eliminate most, if not all local minima, and thereby reduemove
initialization dependence. To test this, we examine the convergence of tirétalgusing
different initializations for the phase fieltt

e tothe constant valugé, = a/\, which corresponds to the maximum of the ultralocal
terms shown by figur&.1, which is the threshold, and hence to all of2 being
boundary (the neutral initialization, NI);
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Completeness = Correctness = Quality = TP /
TP/(TP+FN) | TP/ (TP+FP) | (TP+FP+FN)
ML MG 0.7343 0.4923 0.4179
MGM | 0.8152 0.3467 0.3214
MAP MG 0.5962 0.7955 0.5170
MGM | 0.5982 0.8028 0.5216
ML MG 0.6839 0.3754 0.3199
MGM | 0.7370 0.3338 0.2983
VAP MG 0.3275 0.9405 0.3208
MGM | 0.4730 0.9282 0.4563
EMM | MMG | 0.7591 0.5798 0.4897
EIPM| MMG | 0.5982 0.8028 0.5216

Table 3.1: Quantitative evaluations of the experiments. T, F, P, and Nspaoimd to true,
false, positive, and negative respectively.

e to the constant value 1, corresponding to all of being background;

e to the constant value 1, corresponding to all of being foreground;

e when values of) are sampled independently from a uniform distributiorf-ef, 1]
(UR);

e to the ML result;
e to 1— the ML result;

e to the ML result scaled linearly towards.

y [ N [ -1 [ 41 [ UR [ ML | -ML | ScML |
NI 1 [0994]/0.035/0.997] 1 [0.994] 1
-1 [|0.994] 1 [0.029[0996]0.994] 1 | 0.994
+1 ] 0.035[0.029] 1 [0.031] 0.035[ 0.029] 0.035
UR [/ 0.997[0.996| 0.031] 1 ]0.997]0.996] 0.997
ML 1 [0994]/0.035]/0.997] 1 [0.994] 1
-ML [[0.994] 1 ]0.029]0.996[0.994] 1 [ 0.994
ScML|| 1 ]0.994]0.035[0.997] 1 [0994] 1

Table 3.2: Similarity measures of the segmentations given by the first colunguocd3.7.

Figure3.7shows segmentations of the two images in figdiBz each with two different
parameter settings, and using the above initializations. We observe thae fiirsthand
fourth parameter settings, which correspond to the first and fourth cslwifiingure3.7,
only the initialization of¢ at1 does not converge towatf; which characterizes the region
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| [ NI [ -1 [ +1 [ UR [ ML | -ML [ ScML |
NI 1 ]0.998] 0.997] 0.999] 0.999] 0.998] 0.999
-1 [[0.998] 1 |0.994] 0.999]0.998] 1 | 0.999
+1 || 0.997]0.994] 1 |0.996] 0.997| 0.994] 0.997
UR || 0.999/ 0.999] 0.996] 1 | 0.999] 0.999| 0.999
ML | 0.999] 0.998] 0.997| 0.999| 1 |0.998] 1

"ML [[0.998] 1 [0.994]0.999| 0.998] 1 | 0.999
ScML || 0.999] 0.998] 0.997| 0.999| 1 |0.999] 1

Table 3.3: Similarity measures of the segmentations given by the second coldign o
ure3.7.

BRI 1 +1 | UR | ML [ -ML [ ScML

ERE || 0.8267| 0.8267| 0.8267| 0.8267| 0.8267| 0.8267| 0.8267
Ep 0.3283| 0.3061| 3.1089| 0.3212| 0.3284| 0.3062| 0.3283
Ey 0.4234| 0.4479| 0.6081| 0.4303| 0.4233| 0.4479| 0.4234
E 0.7517| 0.7540| 3.7169| 0.7514| 0.7517| 0.7541| 0.7517

Table 3.4: Values of energy terms, at the convergence, which corrdgp the parameter
values of the first column of figur&.7. ERE refers to Empty Region Energy.

[x10° NI 1 +1 | UR | ML [ -ML [ ScML

ERE || 8.2675| 8.2675| 8.2675| 8.2675| 8.2675| 8.2675| 8.2675
E; 1.3098| 1.2540| 1.3718| 1.2910| 1.3095| 1.2535| 1.3092
Exy 3.8859| 3.9447| 3.8850| 3.9029| 3.8860| 3.9447| 3.8862
E 5.1957| 5.1987| 5.2568| 5.1938| 5.1954| 5.1982| 5.1953

Table 3.5: Values of energy terms, at the convergence, which corrdgp the parameter
values of the second column of figuser. ERE refers to Empty Region Energy.
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Figure 3.6: Left: segmentation result using parameter values selectedtifeomaroon
zone, (wp, &, A\c) = (4,0.2013,5). Right: segmentation result using parameter values
leading to an inflection point at the desired bar widthy, &, A\c) = (2, 0.7646, 15).

of interestR which is the region occupied by the network, and the rest of segmentations
agreed within 0.99 pixel similarity for both images. Tab&2 and3.3 show quantitative
similarity measures of segmentations given by the first and second colurfigsiref3.7
respectively.

Tables3.4and3.5give the values of the prior energy, the data energy, the total energy,
and the total energy of the empty regide(¢(z) = —1 Va € Q) at the converged solution.

In the case ofp(z) = 1 Vx € (, table3.4 shows that the prior energy.(089 x 10°)
dominates with comparison to the data energy(81 x 10%). This explains why the
solution gets stuck at(z) = 1 Va € 2 and does not evolve towardl because the latter
phase costs energy. The rest of the experiments show that the tota) ehdre solution is
always less than that of the empty region, which proves that a netwanklpia produced
if the total energy is decreased.

The neutral initialization is located at the maximum of the ultralocal terms evergwhe
in © for which the prior gradient term disappears. At the maximum, the force ef th
ultralocal terms i) and so the prior force i8 at this starting pointyy. So only the data
term allows the evolution af at the first iteration¢, then evolves to the ML segmentation
and thus the gain will be only one iteration, if the starting point is the ML segmentatio
itself. This is negligible with respect to the number of iterations at conveggevitch is of
order of5000 iterations. Later on, we use the neutral initialization because the prior does
not favor, at the first iteration, either the interigr £ 1) or the exterior 4 = —1) of the
regionR.

3.5 Conclusion

We have described a phase field HOAC model for road network extrdotionvVHR satel-
lite images of rural areas. The contributions of this model are: the use etiioih point
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Figure 3.7: Segmentations of the two images in figu®using different initializations.
From top to bottom: NI, -1, +1, UR, ML, -ML, Scaled MLL*! image: (wq, &, A\¢) =
(3,1.2578, 30) for the 1°* column and(3, 1.2578, 20) for the 2"¢ column. Second image:
(2,0.5924, 15) for the 39 column and(2, 0.8385, 20) for the 4" column. The MG data
model was used with the inflection point prior model.
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parameter values, which we show both reduces the number of free primmpters and
eliminates false positives; the use of multivariate mixture of two Gaussian maulétsé-
ground and background, which we show outperforms the maximum-likelipoeférred
multivariate Gaussian models when coupled with our prior model; and initializaté®s in
pendence despite the use of deterministic gradient descent, as showpebynents.

In contrast, the proposed undirected network model has two main limitatiorsslyFir
the model favours network regions where branches have approxintagesame width.
Secondly, the model does not close gaps in the network as shown in timergagion
results. In the second part of this thesis, we will introduce a new family asgliield
models of directed networks to remedy these two problems.



Part Il

Phase field HOACSs for directed
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CHAPTER4

A phase field HOAC model of
directed networks

“A new idea comes suddenly and in a rather intuitive way. But intuition is nothirighe

outcome of earlier intellectual experience.
— Albert Einstein
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In the first part of this thesis, we studied the phase field higher-ordieamntour
(HOAC) model introduced byRochery et al.2005 2006 and conducted a stability analy-
sis of a network branch leading to a phase diagram which enables usdbgeld param-
eter values to model undirected networks.the flow in them proceeds in both directions
like road networks). Many of the networks that appear in applications (gdyrographic
networks in remote sensing, vascular networks in medical imaging) arevieovdirected.
In this chapter, we introduce a phase field HOAC model of directed nesiforkhydro-
graphic network extraction from very high resolution (VHR) remote senisimages.

4.1 Introduction

Unlike the road networks previously modelled, hydrographic networksisected: each
network branch has a ‘flow direction’, and each junction therefore‘inasming’ and
‘outgoing’ branches. The existence of such a flow typically changegdbenetry of the
network, because often the flow is in some sense conserved, andssutige different
models are needed. Mathematically speaking, the problem is formulatedpistzally

by constructing densities incorporating prior knowledg@bout the regiork occupied by
the entity in the image domain, i.e.geometrical, or shape, information. More specifically,
we would like a prior model PR|K) that incorporates typical directed network properties
by satisfying the following desiderata:
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1. network shapes, in a general sense, should be favdwedugh probability regions
should take the form of a ‘fattened graph’;

2. alarge range of branch widths should be possible, but
3. changes of width should be slow, except

4. atjunctions, where the branch widths should be (softly) constram#hs) , w; =
0, where the widthsu; are negative for incoming flow and positive for outgoing
flow. Note that this includes the fact that branches should notienthey should be
prolonged, since these can be viewed as junctions with only incoming flow.

To construct such a model, we start from the phase field higher-octige @ontour
model used byRochery et al(2005 and described in sectioBl1.1, and extend it. The
phase field functiom still represents the regioR corresponding to the network, and still
interacts nonlocally so as to favour network configurations. In additioretisea vector
field v representing the ‘flow’ through the network branches. The vector iSetdupled
to ¢ in such a way that it is strongly encouraged: to be zero outBid® have unit mag-
nitude insideR; to have zero divergence; to be smooth; and to be parallel to the region
boundaryoR (i.e. to run ‘along’ the network, not ‘across’ it). The idea is that smooth-
ness and parallelism, coupled with the constraint on the magnitude, will aichgation
of network branches, and allow a larger range of stable widths, whildizitadp rate of
change of width; while divergencelessness will produce asymmetric junsctay which
total incoming branch width equals total outgoing branch width.

We describe a stability analysis of the backgrounel. é€xterior of R) and the fore-
ground {.e. interior of R) under the model that provides some constraints on the model
parameters (more will appear when we examine stability of a network brartble imext
chapter), and then the results of preliminary geometric experiments thatlsbauility of
the above constraints.

4.2 The proposed model

Directed networks by definition possess a sense of direction in eacbhhrasually due
to a unidirectional flow through a channel represented by the brancmsetvation of
flow then leads to geometric constraints on the network, particularly at jusctio@aning
that directed networks possess different characteristic geometrientiegpto undirected
networks. To model such networks, we introduce a phase field priefp, v), that in
addition tog, is a functional of a tangent vector phase fieldhich ‘represents’ the flow
through the network. We note immediately thas not supposed to be equal to the physical
flow through the network. This would require a much more complicated modetliesone
we are proposing. Rather,is an auxiliary quantity (probabilistically speaking, a hidden

Such a linear constraint arises if ‘flow volume’ is proportional to bramidth in the image. This will be
true if flow speed is roughly constant, and if ‘channel volume’ is propoal to branch width in the image,
which is true for river networks if channel depth is roughly constanttt@mother hand, for tubular networks
in three dimensions, one would rather expect the sum of the (apprdpsaeed) squares of the widths to be
zero. In any case, our aim is not to model the detailed physics of eaeti@itubut to model networks that
possess certain qualitative geometric properties.
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variable) that introduces interactions that constrain the geometry of themet\/e will
see, however, that in many ways it does behave like a physical flow.

Sincev is zero outside the network, we design the ultralocal term of the model to have
only two local minima: the background, whefe(z), |v(x)|) = (—1,0); and the fore-
ground wherg¢(zx), [v(x)|) = (1,1). This control of the magnitude of is in one sense
unphysical: for example, the channel may widen while the flow speedatasethereby
conserving the flow. However, in another sense, it representsgaical effects. Often
rigidity in the physical nature of the channeld.stiffness of the channel wall, resistance to
widening in the substrate in which the channel is embedded) means that slesting is
not possible. Some rigidity is already built into the model &jdut control of the magni-
tude ofwv, coupled with the divergence term to be described in a moment, reinfoises th
will control the rapidity of width variations. Control of the magnitudevcdilso represents
the fact that in directed networks there is a force that pushes the flougthitbe network
(e.g.gravity, pressure), which, in conjunction with viscosity and frictionatés, produces
a preferred speed. Again, we do not pretend to be modelling the phystetan: the
constraint on the magnitude ofis a stand-in for these effects, designed to realize certain
constraints on the geometry.

In addition to the ultralocal term, we introduce a term that penalizes the diveegof
v. This represents a soft version of flow conservation, but the parametéplying this
term will be large so that in general the divergence will be small. We alscaasidall
overall smoothing term on, since constraining the divergence is not sufficient to ensure
smoothness. Because of the transition frem= 1 to |v| = 0 across the boundary of
the region, the divergence term tends to makgarallel to the boundary,e. the flow is
along the channel. Coupled with the constraintj@ninside the channel, this means that
width variations are constrained to be slow along a channel, while at junctidesds to
produce configurations where total incoming flow is approximately equatabdatgoing
flow, which translates to the sum of the incoming widths being approximately exjtree
sum of the outgoing widths.

The total prior energyFp (¢, v), is then the sum of a local teri, and the nonlocal
term B, given by equation3.2). Ey is

D D, Ly
Eol¢,v) = / d%{ 5 0006+ == (9 v)? + - Ovidv+ W(¢,v)} . (4.)
Q
The third term is the smoothing termv : dv = >, (9,0™)?, wherem,n € {1,2}
label the two Euclidean coordinatéd’ (¢, v) is an ultralocal term which defines the stable
phaseg¢, |v|) = (—1,0) and(¢, |v|) = (1,1). The generic form of¥’ we use is a fourth

order polynomial inp and|v|, constrained to be differentiable:

v 4 2 v 2
W(p,v) = % + ()\22% + X219 + /\20)|2‘
4 3 2
+ )\04% + /\03% + )\02% + Ao . (4.2)

Just as in the case of the undirected network model, we expedighas local minima
corresponding to network shapes. This was directly verified for thé&eatdd network
model via a stability analysis of a long bar in chafeln the next chapters, we perform
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such an analysis for the current model. In addition, numerical experiraeatg that such
an expectation is indeed correct.

4.3 Turing stability analysis

In this section, we detail the Turing stability analysi$. (Turing (1952) for the model
Ep = Ey + Eni. In the case of the reaction-diffusion system incorporating at least two
scalar phase field functions, it has been shown that the presencéusfatifterms, which
play the role of smoothing and stabilizing, may form spatial patterns from arumiphase
which is a solution of the reaction terms of the system. So, there are conditideswhich

a spatially uniform phase is stable in the absence of diffusion but cammeegnstable to
non-uniform perturbations. Here, we study this phenomenon in the tase model Ep.

In our case, the reaction part of the model is the part where all gradiem$ are suppressed
(i.e. their weight are set t0) and onlyW remains. Let(¢(x),v(z)) = (¢o,vo) Vz € §2

be a uniform phase of the system. We assume that the uniform phase isngtathlesets
the first order variations off” evaluated at¢o, vp) to 0 and the Hessian matrix a¥ to

be positive definite at¢g, vo). Now, we study the overall model by analysing the effect
of the gradient termd.€. terms which are weighted by the parametexs3, L,, and D,,)

to the stable uniform solutiofg, vo). The question is then if the uniform phagg), vo)
remains stable by adding an arbitrary infinitesimal perturbaiendv) to it, or it evolves
toward other phases showing spatial patterns which we want to avoid.eMattcally,

a uniform phase ¢, vp) is stable to small change® anddv if the Hessian matrix of
Ep(¢,v) evaluated at¢y, vg) is positive definite. As mentioned before, we would like the
modelEp to have two stable uniform phases: the backgroumrdfe exterior ofR) and the
foreground ie. the interior of R) described by ¢, v9) = (—1,0) and(1, 1) respectively
So, we require that the phasesl, 0) and(1, 1) be stable to small changes.

In the first stage, we ensure the uniform phases, 0) and(1, 1) are minima ofiV/.
This sets the first order variations Bf evaluated at—1,0) and(1, 1) equal to zero; and
constrains the Hessian matrix @f evaluated at—1,0) and(1, 1) to be positive definite.
This allows us to express some of the parameteid ais a function of the others\yy =
—1 — A22/2 — Aa1, Aot = —A22/4 — Aa1/4 — Aoz and g2 = —Aaa/4 — Ao1 /4 — Aou;
and lower and upper bounds on parameter valué¥ afre generated to satisfy the positive
definiteness condition. We also constrain the free paramékgisios, Aoz, Ao1) of W
so that the phasgs-1,0) and(1,1) are the only two minima ofV by requiring thatit’
be bounded below, and require that the energy of the foregroundeé&egrthan of the
backgroundij.e. W (1,1) > W(—1,0). Figures4.1and4.2 show a contour plot and a 3D
plot, respectively, oV satisfying these requirements, and showing local minima at the
desired point§—1,0) and(1, 1). The saddle poinfps, vs) between the two minima plays
an important role in initializing the gradient descent algorithm: the ‘neutral’ iniaéln
is given by(¢, |v|) = (¢s, vs), the direction ofv being random.

In the second stage, Turing analysis leads to a study of the secondvaridgions of
the modelFp in order to constrain the effect of the gradient terms. The components of th
Hessian matrix? of Ep (¢, v) are (see AppendiB.1for more details about the first partial

2The notation(¢, v0) = (1, 1) means that the vector fielg is of unit magnitude.
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Figure 4.1: Contour plot of the ultralocal ter#.
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derivatives)

52Ep (o,

Hyp = P/(¢ v)
0¢/d¢

2
= [DD + )\22|U2 + 3)\04@52 + 2X030 + o2 | 0(=, a:’) — pOY(x, l’l) ,

5*W (¢, )

Ho = =505

2 . .
= |:Lv5ij|:’ — Dvaiaj + (|U‘2 + )\22% + )\qub + )\20)(51‘]' + 21)11}] 5(1‘, x') s
62EP(¢7 U) 52EP(¢7 U)
H12 = / = /
ov'd 0’ dv
= (A22¢ + Ao1)vd(z,2') |
where primed and unprimed quantities are evaluatediatlz’ respectively;; is the Kro-

necker delta and j € {1, 2} label the Cartesian coordinatés;is the negative Laplacian
operatoii.e.0 = —9?; §(x, 2’) is the Dirac deltad;d; is the second-order tensor operator

defined as
8% 0104
001 822 ’

and we then notice thatty; is a scalar,Hs is a vector anddy; is a2 x 2 matrix. The
Hessian matrixd can then be written as

Hy Hi, Hi,

As we mentioned, our aim is to analyse the stability of a given configurétierv)
corresponding to uniform phase field functiofig(z), v(x)) = (¢, vo), Vo € 2. We then
need to evaluate the Hessian matrix at the uniform fieddsvy). The components off
depend on: 1) the Dirac delta function which is diagonal in the space domdimahe
Fourier domain as well and 2) the shift invariant functirwhich can be diagonalized in
the Fourier domain. Hence, the Fourier domain diagonalizes the niatiixthe sense of
reducing the two spatial variablesandz’ to one Fourier variablé instead ofk andk’.
This is due to the shift invariance of the operators in the spatial domain.uhcidnsH,;;
evaluated at¢, vo) in the Fourier domain can then be written as (see AppeBddfor
some examples of Fourier transform calculations)

2
~ A (¥
Hyy = [D — B (k))k* + )\22’;‘ + 3X0498 + 2X0300 + Aoz

Fiy
Hoo = kaik’j + 21)62}6 + ka2(5¢j + (‘00‘2 + /\22% + Ao1¢0 + )\20) 5z’j ,

Fao
Hio = Hap = (A22¢0 + A21) vo
~—————
o
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and thend becomes

R Hy Fiov} Fiovd
H = Flgvé ka}Q + ka‘% + 2(7}(1))2 + Fyo Dykiko + 2’061}8
Fmvg Dyk1ko + 2’031}8 ka/‘Q + ka% + 2(’1}8)2 + Fyo

(4.3)

We then constraiii/ to be positive definite, for all frequencigsat (¢o, vo) = (—1,0),
i.e. the background, anfp, v9) = (1, 1), i.e. the foreground. This is equivalent to con-
straining the3 eigenvalues of7 to be strictly positive7k. In other words, a configuration
(0, v0) is stable if it is stable to everg-frequency small change. For example, the
frequency perturbation corresponds to adding a small constant valgeg, t@).

Replacing(¢g, vg) in H and simplifying the positivity conditions of its eigenvalues,
we constrain the parameter values by lower and upper bounds in additioa parthme-
ter constraints obtained by putting the first order variations equal to Zéns, we select
parameter values which ensure the positivity of the eigenvalues for qildrecies:. This
guarantees Turing stability. Append& details the stability calculations for the back-
ground and the foreground.

4.4 Experiments

In sectiord.4.], we study gradient descent evolutions usifigfor fixed ¢. In sectiord.4.2
we study gradient descent evolutions usiig and Ep. In section4.4.3 we show a seg-
mentation result on a synthetic image of a ‘river configuration’ and on lssegallite im-
age. The interaction functio# will be taken to be either the interaction function described
by Rochery et al(2005 2006, and given by equatior2(2), or the modified Bessel function
of the second kind of ordér, K.

We employ a forward Euler scheme for gradient descent evolutionse Imetkt chapter,
we detail the governing equations for gradient descent algorithm amg&i@ameter values
are selected in practice.

4.4.1 Geometric evolutions of for fixed ¢

Figure4.3 shows gradient descent evolutionswoivith ¢ fixed to a ‘junction’ configura-
tion3 The first experiment uses the divergence term but no smoothing. InitaNi#é
constanty = (0, —wvy), it shows the effects of the divergence term and the potential, which
align the field with the network while conserving the flow. In the second éxyest, the
initial v was given a random direction at each point. In this case, the divesg#ncis
small andv is parallel to the boundary near the boundary, but it is not smooth. Tidi-co
tion of small divergence still allows a great deal of freedom: we can addatoy v with

0 - u = 0 that preserves the magnitude. The third experiment uses the smoothing term
instead of the divergence term. The result is a smooth field, but the fietddeun along

the network. The fourth experiment uses both divergence and smoddining. The vector
field evolves from an initially random configuration towards a smooth arefgénce-free
configuration that runs along the network.

3The parameter values wefRos, Aoz, Aaa, Ao1) = (2.275, —0.467, 1.34, —3) for all evolutions, while
from top to bottom:(L,, D,) = (0,0.1); (0,0.1); (0.1,0) and(0.1,0.1).
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Figure 4.3: Geometric evolutions ofkeepinge fixed. First column: initial configuration.

Second column: intermediate configuration. Third column: final configurati@om top
to bottom: result with the divergence term using a vertical initialization; resitlt the

divergence term using a random initialization; result with the smoothing tesultneith

the smoothing and divergence terms.
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4.4.2 Geometric evolutions ob and ¢

Figure 4.5 shows gradient descent evolutions using the new engkg§ For compari-
son, figure4.4 shows gradient descent evolutions using the undirected network fiblaise
model E5.° The initial regions are shown in the leftmost column; time runs from left to
right. The binary images are obtained by thresholdirad ¢;. The initial configuration for

v had(0, —v,) everywhere, whiles had the value-1 outside the region and, inside.

Both models produce stable network configurations, but it is illuminating to examin
the differences in detail. The first two experiments in each set used thadtiter func-
tion introduced byRochery et al(2005 2006. This interaction function constrains the
possible stable widths quite severely. This renders moot desideeatd 4 described in
the introduction of this chapter, and as a result, in these four experimeatajidths of
the branches are all more or less the same. The directed network modejh thends
to produce straighter branches with even less width variation than those umdirected
case. This corresponds to desideraim

The last two experiments in each group Usgas the interaction function. This con-
strains the stable width far less severely, and as a result we see a laggeofavidths in
both groups. We have thus satisfied desidera2dor our directed network model. How-
ever, the spatial distribution of this range is very different in the undiceatel the directed
cases. In the undirected case, each branch varies in width along its, lesmglimg to ‘bulge
out’ away from junctions. In the directed case, in contrast, each brtamcls to preserve
the same width, although the extent to which it does this depends on the vaheedifer-
gence term. This can be seen by comparing the last two experiments in thedlicase.
The parameteD,, was20 in the third experiment an240 in the fourth. As a result, there
are some width variations along each branch in the third experiment, whetéagourth,
they are absent. This satisfies desideraBurin addition, the fourth experiment produces
long straight branches, while at junctions the sum of incoming and outgdutthsmend
to be similar. This can be seen in figute, but it is more clearly illustrated in figu.6,
which shows a zoom on the bottom-left quarter of the final configuration irfath
experiment with the directed network modeThus desideratum is satisfied too.

4.4.3 Segmentation

Figure4.7 shows an experiment using a synthetic image of a ‘river’, consisting eethr
regions each with a different (constant) intensity value, plus addedstaausoise. The
highest intensityl; corresponds to the ‘river’, while the lowegt ; and intermediate

In = (I-1 + I)/2 intensities correspond to the background. The zone with intensity
1y is designed to resemble a network, but one that does not respect dtmservation.

“From top to bottom, parameter values wergos, o3, A22, A21, D, 8,d, Ly, D,) = (3.13,-0.99,
0.131,—2,0.7,0.4,4,7,240) ; (3.13,-0.99,0.131, —2,1, 2,4, 7, 240); (1,0.072,0.207, —1,1,2, 3, 2, 20)
and(1.25, —0.325,0.368, —1,1,2, 3,7, 240).

°From top to bottom, parameter values werei\, o, D,3,d) = (1.24,0.038,0.75,0.137,4);
(1.24,0.056,0.75,0.125, 4); (1.23, 0.076, 0.75, 0.83, 5.65) and(1.23,0.076,0.75,0.917, 5.65).

6Although not shown here, the evolution of the vector field in this experirakatved an interesting be-
haviour. At a certain point, it ran from right to left across the shortrovarhorizontal branch (call it B) in
figure 4.6. The branch joining B from the lower left widened during the gradienteles and the flow in B
gradually reversed to accommodate the extra flow. This in turn incrélaseddth of the wide, vertical branch
flowing down from the right-hand end of B.
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Figure 4.4: Gradient descent evolutions using the undirected networklnigd The
initial regions are shown in the leftmost column; time runs from left to right.

The likelihood RI|R, K) is a product of Gaussian distributions for the intensity at each
pixel, with meand; for points inR and/_; for points in its complemenk. The variances

for R and R are the same. Maximum likelihood classification is thus unable to classify
points with intensityly; the prior that decides whether such points are part of the estimated
river region or not.

As can be seen in the bottom row of figur&, the undirected network model, although
it finds a network-shaped region, includes a significant amount of thimgoding region
with intensity I. The directed network model on the other hand, is considerably more
accurate because of the geometric constraints arising from ‘flow’ oeatsen.” Figure4.8
shows a zoom on the central part of the bottom-right result in figufeshowingv as well
aso.

Figure4.9 shows a segmentation result on a real image of rivers. It shows thaitthe d
rected network model improves the segmentation result. This is particularigttneéwork
junctions where the divergence-free property of the vector fieldtcains the geometry in
such a way that the flow through them is conserved. Figur@and4.11show clearly how

"The parameters used for the undirected and directed network modets W&, a, D, S,d) =
(25,0.053,15,0.01) and (X4, Aoz, Az, A1, D, B,d, Ly, D,) = (1.025,—0.211,0.564, —1.5,0.2,0.2, 5,
8,1000).
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Figure 4.5: Gradient descent evolutions using the new, directed nemadle! Ep. The
initial regions are shown in the leftmost column; time runs from left to right.

the vector field behaves along network branches.

4.5 Conclusion

We have introduced a nonlocal phase field model for directed netwaesl regions. The
model contains two field variables: a scalar field that describes the regitmdmoothed
characteristic function, with a long-range interaction that tends to praskteerk-shaped
regions, and a vector field that represents the ‘flow’ through the nkhildre vector field
is strongly encouraged to be divergence-free, and of unit magnitsdeiand zero mag-
nitude outside the region. This forces the field in the region to be parallel tetfien
boundary, and to conserve flow. This results in slow width variations atongtwork
branch, except at junctions, where total incoming flow/width is encodrémbe equal to
total outgoing flow/width. We have confirmed the expected behaviour of treehvwa
gradient descent evolutions, and via an extraction experiment on aetigrithage repre-
senting part of a hydrographic network and on a real image as well,isbakhat the new
model can avoid errors that arise if the undirected network model is used.

The proposed directed network model has some difficulties involving paeartu-
ing. The prior modelEp has many free unphysical parameters, which are the weights of
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Figure 4.6: A zoom on the bottom-left quarter of the final configuration irfolieth ex-
periment with the directed network model, shown in figdrg, showingv as well asg
(thresholded aby).

energy terms, making parameter setting very difficult. In the next chapgewillvfocus
on constraining the parameter values for network modelling. A second isdhat the
weight of the divergence term must be very large to obtain very low gierese of the vec-
tor field. This enforces the gradient descent step to be very small sh¢hagorithm does
not diverge, and consequently the execution time is very large. So, plethe model on
relatively small real images (abo2%6 x 256).
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Figure 4.7: From left to right, top to bottom: synthetic image with three grey levals a
added noise; ground truth; segmentation using undirected network medehestation
using directed network model. Note how the constraint on branch width initbeted
network model avoids including parts of the background that have similarsityeto the
‘river’.
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Figure 4.8. A zoom on the central part of the result in figdré showingv as well asp

(thresholded aby).

ground truth; segrtientasing

undirected network model; segmentation using directed network model.

Figure 4.9: From left to right, top to bottom: real image;

Notehieo

constraint on junction widths in the directed network model guarantees ngecvation.

CNES processing, images acquired via ORFEO Accompaniment
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Figure 4.10: A zoom on the upper part of the result in fight® showingv as well asp
(thresholded aby).

Figure 4.11: A streamline plot of the result in figute, showingv as well asp (thresh-
olded atp,).






CHAPTERDS

Stability analysis of a long bar

“Geometry enlightens the intellect and sets one’s mind right. All of its pro&fvary

clear and orderly. It is hardly possible for errors to enter into geometrieasoning,

because it is well arranged and orderly. Thus, the mind that constapfijes itself to

geometry is not likely to fall into error. In this convenient way, the persba knows
geometry acquires intelligence.”

— Ibn Khaldun
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In this chapter, we analyse the stability of a network branch under theetiraetwork
model introduced in chaptel. We focus on zero-frequency perturbations of the region
boundary, which correspond to changes in the branch width. Thiingstonstraints nec-
essary to produce stable networks eliminate some parameters, replacebytipérysical
parameters such as network branch width, and place lower and uppetdon the values
of the rest. In the next chapter, we will validate the theoretical analysiswrigerical ex-
periments, and then will apply the model to the problem of road and hygrbgraetwork
extraction from multi-spectral VHR satellite images.

5.1 Introduction

A network-shaped region can be thought of as a set of branches j@hjogctions. As
with the undirected network model, we will assume that network branchésrayenough
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and straight enough that their stability can be analysed by considering thefienlbng,
straight bar. Ideally, the analysis should proceed by first finding tleeggmminimizing
®Rrg., andwvg, for the bar region, and then expanding around these values. In gractic
there are two obstacles. Firstz,  andwvg,, . cannot be found exactly. Second, it is
not possible to diagonalize exactly the second derivative operatothaadhard to impose
positive definiteness for stability. Approximate results are thereforessacg

Figure5.1shows how the phase field functions behave for a stable network comfigu
tion which is obtained by running gradient descent to minimize the prior pheldesfiergy
Ep. The first row shows a stable network configuration (left) and a zooits@entral part
showingg andw (right). The latter shows the preferred vector field configuration alotig ne
work branches. The second row shows the profiles of the funcidlest) and|v| (right),
which minimize the energy of the network configuration shown on the rightedfitst row.
The third row shows initial (left) and final (right) slices ¢fand|v|, given in blue, across
a network branch; the proposed approximations @nd|v| are shown in black. In this
chapter, we define a four-parameter familyaobatze$or ¢, andvg,, , and analyse the
stability of this family. More sophisticated approaches are possible by dkgpng,,, |
URg,,» and the second derivative operator in some small parameter.

5.2 Stability analysis

In this section, we detail the stability analysis of a four-parameter famignshtzedor
®Rrg,, andvg,,. . Figure5.2 shows theansatzfor a directed bar. Two phase field variables
are involved: the scalar fieltr,,, and the vector fieldr,, . The configuration is defined
as follows: a scalar fielgpr,, which varies linearly from-1 to ¢,, across a region in-
terface of widthw, otherwise being-1 outside andp,, inside the bar, which has width
wo; and a divergence-free vector fielgh,  whose magnitude varies linearly fromto
vy, across the region interface, otherwise bdingutside and,,, inside the bar. The four
physical parametersg, w, ¢,, andv,, define the four-parameter family ahsatze$or the
bar.

5.2.1 Energy of the bar

In this section, we calculate the energy of the &asatz To compute the energy, we split
the image domain int@ regions: the internal regiof, the external regiom? and the
interfaceR¢. The bar has two interfaces: a top interfdter and a bottom interfacB¢-p.

The ansatzedor the scalar phase field and the magnitude of the vector phase fieldsare, a
has been described, given by

%1‘2*1 if 0 < a0 <w,
10) if w< z9 < wy,

¢RBar (l’) - ¢:+1 . (51)
T(wo—x2)+1 if wyg < w9 < wy+ w,

-1 else.
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Figure 5.1: First row: a stable network configuration (left) and a zoorntsocentral part
showing¢ andw (right). Second row: profiles of functions (left) and |v| (right) of the
network shown on the right of the first row. Third row: initial (left) anddirfright) slices
of ¢ and|v|, given in blue, across a network branch after gradient descentydipesed
approximations of and|v| are shown in black.
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Figure 5.2: Directed baansatz showing the parameterization in terms of the physical
parametersug, w, ¢, anduv,,.

and
D) if 0 <o <w,
) if w< 29 < wy,
"URBar(x)‘ = U:L . (5.2)
7(’[1)0—332)4—1 if wo < 190 < wo + w,

0 else.

5.2.1.1 Local energy of the bar

The local phase field energy is
D ~ D L
Eol¢,v) = / d%{ 5 D¢ -0 + W (¢p,v) + 7 (9-v)% + 7 I Bv} . (5.3
Q

whereW (¢, v) = W(¢,v) — W(—1,0). W is the ultralocal term given by equatiof.?).
(This ensures that the energy of the background is 2&fo+1,0) = 0, which facilitates
the stability calculations.) Shifting the valuesidf by a constant valu&’(—1, 0) does not
change the minimizing functions @.
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Substituting the baansatzedy their expressions given by equatiolslj and 6.2),
the total local bar energy becomes$. AppendixD.1)

Eo(9Rpars VRpar) = Eo,r + Eg i + Eo,Rc

D(¢m +1)* + Lyv;,
= Lwov(dm, vm) + Lwp(dm, vm) + L (&m 'U)J vUm ,

where we define the total local bar energy per unit lengthyas Ey/L. The functions
V(Gms V) ANA (i, U ) ATE

M(¢m7vm> =—-—" + 5 </\22 ((bm + 1)(_3¢m + 2)

+ = (- wm+n+;>

+—5%%¢m=+1>< 9¢2, + 12¢y, + 1)

. %wm P+ 1)

1
+ ﬂ()\zz +X21)(m + 1%,

V(¢myvm> = W(¢mavm) - W(_170)

U4

=t (22 1) aen 1) 1)

+ @wm -1+ %(qu +1)*(9m = 2)

()\22 + A21) (6m +1)° .

co \

5.2.1.2 Nonlocal energy of the bar

The contribution of the nonlocal phase field term given by equatBo? @ppears only
along the boundary occupied by the regiBa. The nonlocal energy of the bar isf(
AppendixD.1)

ENL(ORp,,) = —LdB($m + 1)*Goo(tbo, ®)
wherew = w/d, wy = wy/d and

—+oco
Goo (W

wW—x9o
dzdxgjf dt{ﬂ?(x/zQ—%t2>

(VI @)} -

We define the nonlocal energy per unit lengtleas = Eni. /L.
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5.2.1.3 Total energy of the bar
The total energy per unit length of the bag,+ ent,, is

6P(wOv w, ¢m7 Um) = qu)OV(stmv Um) + wﬂ(¢m7 Um)

Dl 412 4 Lur?
— (6 + 1V Cunfig, ) + DO Dt g 4

wherew = w/d, iy = wy/d, D = D/d? andL, = L, /d? are the dimensionless parame-
ters.

The stability analysis of a network branch under the undirected networlelnaed
scribed in sectior8.1.1was performed byeng et al(2008h). They found a bar energy
similar to that in equationy(4). We notice that the parametgrandy play the same roles
as\ anda given in equation3.1) respectively. The energy gap between the foreground
and the background is equal 2o in the case of the undirected network model anith
the case of the directed network model. The parameteust be strictly positive to favour
pixels belonging to the background: this effect is similar to the area foréehvibnds to
minimize the area of the region. The parameteontrols the contribution dfl” across the
region interface of widthw: it has an effect similar to the parameter

5.2.2 Stability conditions for the bar

The energy of a network branch is given &y. A network branch is stable in the four-
parameter family ofansatzesf it minimizes ep(wo, w, ¢, v,) With respect to varia-
tions of wg, w, ¢, anduv,,. This is equivalent to setting the first order variations of
ep (o, W, om, vy, ) €qual to zero and requiring its Hessian matrix to be positive definite.
The desired value of¢,,,v,,) is (1,1) to describe the interior of the regioR. These
stability conditions produce parameter constraints.

5.2.2.1 First order stability conditions

The first order variations afp with respect tavg, w, ¢, andv,, are €f. AppendixD.2)

Oerllo 0 Gms ) _ (5, 0,) — Bl + 1)2Groli, )

OJwy
dep (o, W, Gy, Uy D m—{—lz—}—ﬁvv?n
P( OaAgb ):u(¢m,vm)— (¢ A>2
W i,

— B(¢m + 1)*G11 (o, @) ,

aep(ﬁ)o, W, G, Um) _ l[)ol/qﬁ(ébm, Um) + w#qﬁ(@n» Um) — Zﬁ(qu + 1)G00(ﬁ)0, ﬁ))

OPm
D 1
w
dep (Wg, W, O, U . R Lyv
P( Oa fm m) :wOVv(¢maUm)+w,Uv(¢maUm)+2 ’UAm’
Vim w

wherevy = 0v/0pm, gy = Op/0pm, vy = OV/OUm, e = Op/OVm, Gio =
0Gyo /0wy andG11 = 0Ggp/0w. Setting the first order variations ef, evaluated at
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Figure 5.3: Example of solutions of equatidn) for some values op* usingRochery
et al.(2009’s interaction function (left) ands, (right). Curves are labeled by the values
of p*.

(o, W, o, vm) = (wo,w,1,1), equal to zero, and after some mathematical manipula-
tions, one can write the parameter constraints as

p* — G(wo,w) =0, (5.5)
ﬁ — Vi* (5 6)
" 4G1o(o, W) '

~ UA) V*Ggo(’d)o,ﬁ)) ~ %
p=2 _ 5.7
2 | 2G1o(ig, ) M) ®-7)
~2 %
Ly = —% , (5.8)

where G (g, w) = [Goo(wo,w)/w + G11 (g, )] /Gro(o, W), p* = [pu* + M; +
py/2/v* ve = v(L 1), pt o= p(1,1), py = pe(1,1) and py = py(1,1). ve(1,1)
andr,(1,1) are equal td) becausg1,1) is a minimum ofW. The starred parameters
depend only on thd free potential parameters, = (\22, A\21, A4, No3). The parameter
positivity conditionsD > 0 and L, > 0 generate lower and upper bounds:o# @ and
. Equation §.5) shows that, for fixedr) i.e. p* is determined, the set of solutions in the
plane(wy, w) is the intersection of the surface representing the funaticand the plane
located ap*. The resultis then a set of curves in the plétig, ) where each corresponds
to a value ofp*. Figure5.3shows an example of solutions of equatibrgf for some values
of p* usingRochery et al(2009’s interaction function (left) and, (right).

Equation 6.6) shows that stability depends mainly on the scaled pararﬁ%eﬁ/u*.
Figureb5.4plots the behaviour of against the scaled bar widtty, and the scaled interface
width . The left-hand graph shows the behavioupafhen the interaction functiot is
that introduced byRochery et al(2005. The right-hand graph shows the behaviougof
whenV is K. For both graphs, we have plotted the surfaces as two half-surfacess
lighter (right-hand half-surface, smalléy) than the other (left-hand half-surface, bigger
wg). The valley between both half-surfaces corresponds to the minimum eélgidor
each value ofb.
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Figure 5.4: Left: behaviour of usingRochery et al(2009'’s interaction function. Right:
behaviour ofg using Ky. The light and dark surfaces show the locations of maxima and
minima respectively.

Both graphs show that: for each vale < fnin = inf(1/4G1o(io, w)) where
Brmin = 0.1302 (left) and0.0879 (right), there are no possible values(af,, @) which sat-
isfy the constraints and so the bar energy does not have minima,; for ahudﬁv> Bmin
and for some chosen values ©f there are two possible values ©f, which satisfy the
constraints: the smaller width (left-hand half-surface) corresponds émergy maximum
and the bigger width (right-hand half-surface) corresponds to aggn@nimum.

Figure5.5 shows plots of bar energies against bar width ustoghery et al(2005’s
interaction function (left) and<, (right). The latter has a flatter basin around the desired
energy minimum than the former which constrains the range of widths moreesewhis
implies a larger range of stable widths when usitg
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Figure 5.5: Bar energies againgt usingRochery et al(2009's interaction function (left)
and K (right).
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5.2.2.2 Second order stability conditions

The Hessian matri¥lg,, is

d2%ep d2ep d2%ep d2%ep
Bﬁ)g Owog Opm O OV 0o
d%ep d2%ep d2%ep d2%ep
_ Owow Ow? 0P, Ow OV Ow
HBar - 8261:0 0%ep 32613 d%ep ’
0PmOwy  OPmOw 092, OV OPm,
0%ep d%ep 0%ep 0%ep

OumOy  OvmOw Oy Odm o2,

where Hp,, must be positive definite dtig,w,1,1). This generates upper and lower
bounds on the parameter values. This condition is tested numerically betauwssnot
compute the eigenvalues fffz,, explicitly.

Figure 5.6 shows bar energiegp, against the physical parameters of the bgr=
(o, W, dm, vm). The desired energy minimum was chosenrgt= (1.36, 0.67, 1, 1.1
We first choosery, and then comput®, g andL, using the parameter constraints given in
the previous section. The first and second rows show 1D plot of ges, which have
a minimum at the desired valug;. The third row shows 2D contour plots of bar energies
illustrating the location of the desired energy minimum.

5.3 Overall model and parameter settings

In this section, we define the overall model to be applied to real images, andhiethe
optimization process and how the parameter values are selected in practice.

5.3.1 Overall energy

To apply the model to real images, a likelihood enefgylinking the regionR to the
datal is needed in addition to the prior terfiio. The problem we are dealing with is
the extraction of road and hydrographic networks from multi-spectradR\Hiickbird im-
ages. Ly is studied in detail in sectioB.3.2 The total energy to be minimized is then
E(¢,v;1) = Ex(I,¢) + 0Ep(¢,v) whered > 0 is a parameter which balances the two
energy terms.

5.3.2 Optimization and parameter settings

In this work, we use gradient descent to seek energy minima. To do thisee to
compute the forceéEp/d¢ anddEp /ov (cf. AppendixB.1). The force of the data term,
dE1/d¢, is given by equation3.7). In practice, we implement the linear terms of the gov-

The parameter values weréhos, \os, Aoz, Ao1, D, 3,d, L,, D,) = (0.05,0.025,0.013, —0.6,
0.0007,0.003, 1, 0.208, 0).



100 Chapter 5. Stability analysis of a long bar

0.049

0048
0.047
0046

& 0045
0.044
0.043

0.042

0.041

0.2 04 0.6 08 1 12 14

0.7 T T T T T 0.35

Figure 5.6: Bar energyp against the bar parametebswg, ¢,, andv,,. Parameter values
were chosen such that there is a bar energy minimurg at (1.36,0.67,1,1).
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erning equations in the Fourier domain, which speeds up the algorithAppendixB.2):

9¢ 1. my, —1 28 27
5= - 9{5 ((D — BV (k))k ¢>(k)>
2
+ (A229 + )\21)]1)2| + X048® + A3 + Aoz2o + )\01} , (5.9)
% = —9{3"—1 (Lok*5(k) + Dyk(k - 9(k)))
2
+(’U|2+)\22¢;+)\21¢>+/\20)U} ; (5.10)

where andF ! are the Fourier transform of a function and the inverse Fourier tremsfo

respectively.

The unphysical free parameters of the prior moddlp are O:

(Aoa, Aoz, A2z, A21, D, B,d, Ly, D).

Via the stability analysis for network modelling

studied in sectio®.2, the free parameters are reduced@:td\4, \o3, A2z, A1, Wo, W, Dy)
wherew, andw are2 physical parameters of the bamsatz The predicted bar widthy is

an application-determined physical parameter. As described so farfé¢n@dtion function

¥ is chosen to be<, in order to allow a larger range of stable branch widths. To model
networks, we fix the parameter values as follows:

1. fix the desired bar widthyy depending of the application and constrain the interface
width to have a reasonable vales w < 4,2

2. choose thd free parameter values, to give the preferred profile di/,

3. computer*, u*, %, wy and thenp*, and solve %.5) which gives the values of the
scaled widthsyy andw satisfying the condition < wy,

4. compute3, D andL, using the parameter constraints given byg), (5.7) and 6.8),
and then comput® = d?D andL, = d*>L, whered = wy /1,

5. check numerically the positive definiteness of the Hessian mafgiy studied in

section5.2.2.2

6. choose the free parametey,

7. check numerically the Turing stability of the backgAround and the fortegrd.e.
positiveness of tha eigenvalues of the Hessian mat#iX studied in sectiod.3,

8. choose the remaining free parameéter

2The bar widthw, and the interface widthy must satisfy the conditiomy > w otherwise the bar model

defined here fails.
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5.4 Conclusion

In this chapter, we have conducted a theoretical study of a phase fieAdCHabdel of
directed networks in order to ascertain parameter ranges for which setiferks exist.
This was done via a stability analysis of a long, straight bar that enabled smdel
parameters to be fixed in terms of the rest, others to be replaced by physieahingful
parameters, and lower and upper bounds to be placed on the remainder.

In the next chapter, we will validate the theoretical analysis via numerigararents,
and will apply the model to the problem of road and hydrographic netwdrkeion from
multi-spectral VHR satellite images.



CHAPTERG

Experimental results

“All life is an experiment. The more experiments you make the better”
— Ralph Waldo Emerson
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In chapter5, we conducted a theoretical analysis of the directed network model to
constrain the parameter values in order to produce stable directed netwotlkis chapter,
we confirm the theoretical analysis by numerical experiments, and appigdbel to the
problem of road and hydrographic network extraction from multi-spebtHR satellite
images.

6.1 Introduction

In the first part of this thesis, we introduced a phase field higher-cadgéve contour
(HOAC) model for undirected networks via a stability analysis studied inteh@pBased
on that, we introduced a phase field inflection point long bar model deddribshapter3
to improve parameter tuning and the results of segmentation of road netwonkd/HR
satellite images.

To model directed networks, we have proposed a new directed netwasde dield
HOAC model described in chaptdr The new model is an extension of the undirected
network model. Due to the amount of shape information needed to be inatedanto
the model in order to describe efficiently the characteristic geometric pirepef directed
networks, the model possesses many free unphysical parametersweltttt the different
energy terms. This makes parameter tuning difficult. Chdptmwnducted a theoretical
analysis of the directed network model which facilitates significantly pararhetarg.

In this chapter, we describe two kinds of experiments. Firstly, we desdrilsec-
tion 6.2 geometric experiments.€. only the prior term is used) to validate the theoretical



104 Chapter 6. Experimental results

analysis in chaptes: we show that the model favours directed networks with the predicted
stable network branch width; and we also show that the directed networil tlodes gaps
in the network thanks to the flow conservation property of the vector fieddoi&dly, we
describe, in sectioB.3, experiments on road and hydrographic network extraction from
multi-spectral VHR satellite images using the overall directed network modelediein
section5.3.1; and we compare the results to those obtained using the undirected network
model.

To minimize the energy, we use gradient descent. Sebtd2describes the governing
equations %.9) and 6.10 for gradient descent and how we set the parameter values in
practice to favour stable directed networks.

6.2 Geometric experimental results

In this section, we describe geometric evolutions: the prior mégeis used without the
presence of the data term and the paramétir fixed to1 in the governing equations
studied in sectiorb.3.2 In sections6.2.1and6.2.2 we show numerical experiments to
confirm the theoretical study described in sectd? In section6.2.3 we describe a major
advantage of the new directed network model for closing gaps in networks

6.2.1 Geometric evolutions of a long bar

As a first test of the theoretical analysis, we show that straight batgesunder gradient
descent towards straight bars of the stable width predicted by theooyrelid shows such
evolutions using the directed network phase field mdgebnd the interaction functiod
is the one introduced iRochery et al(2005 for the first three rows and’, for the last
three rows:

In all evolutions, we fixedD, = 0, because the divergence term does not destabilize
the bar when initialized as a constant vector field everywhere in the imageroiitae
width of the initial straight bar ig0. The first and fourth rows show that the bars evolve
until they disappear because< Smin, Where the bar energy does not have a minimum for
wo # 0. The first column of figuré.2shows that the bar energy given by equationg.4),
corresponding to the fourth evolution, has a minimum in the directions,,, andv,,
whereas in the directiotd, it does not have a minimum.

On the other hand, the second and third rows show that straight bdve éoward
straight bars with the desired stable widihg = 6 and14, respectively, wherzfi > Bmin-
The final widths increase or decrease as a function of the desired widbie in this case,
the stable widths aré@ and14. Bars that have widths less tha#h widen until reaching the
stable width14, while bars that have widths greater thé@ashrink until reaching the stable
width 6.

The final two rows show the same kind of evolutions as in rows 2 and 3 txtap
the stable widths arg and 6, and usingK,. The corresponding bar energies are given

'From top to bottom, parameter values wer€\os, Aoz, Moz, o1, D, 3,d, L,, D,) = (0.1,0.143,
—0.303, —0.6,0.046,0.001, 4.76, 0.024, 0), (0.1,0.143, —0.303, —0.6, 0.046, 0.002, 4.76, 0.024, 0), (0.25,
0.0367,—0.018, —0.6,0.193,0.0027, 9.9, 0.4506, 0), (0.1,—-0.064, 0.232, —0.6, 0.065, 0.0027, 3.66,
0.5524,0), (0.112,0.019, —0.051, —0.6,0.055,0.011,2.78,0.115,0) and (0.1, —0.064,0.232, —0.6,
0.065,0.0077, 3.66,0.5524, 0).
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in second and third columns of figue2 respectively; the bar energy has indeed a
minimum in all the directionsig, w, ¢., andv,,.

Figure 6.1: Geometric evolutions of bars using the directed network pheldeniiodel
Ep. Time runs from left to right. For the first three rows we U&echery et al(2009’s
interaction function andy, for the last three rows. First column: initial configuration
which consists of a set of straight bar of widtth The functiong is —1 in the background
and ¢, in the foreground, and the initial vector field {$,0). 1% and 4*h rows: when

B < B, the initial bars vanish2¢, 374, 5t and6t" rows: when3 > B, the bars
evolve toward bars which have the predicted stable widths- 6, 14, 3 and6 respectively.
The regions are obtained by thresholding the functiai0.

6.2.2 Geometric evolutions of a random configuration

As a second test of the theoretical analysis, we present experimensttinathat starting
from a random configuration af andwv, the region evolves under gradient descent to a
network of the predicted width.

Figure 6.3 shows such geometric evolutions of a uniformly random initial configura-
tion2 At each point of the image domain, the péir, [v|) was initialized randomly to be
either(—1,0) or (1,1). The orientation oy was chosen uniformly on the circle. Time
runs from left to right. We us®ochery et al(2005’s interaction function for the first
four evolutions and<, for the last four. Evolutiond — 2 and5 — 6 use parameter values
computed using the parameter constraints where the desired stable widtk-i$, while
evolutions3 — 4 and7 — 8 use the desired stable widily, = 8. All evolutions show that
the initial configuration evolves to a stable network-like region with an apprabely con-
stant branch width equal to the desired stable width. This validates the stabaitysis
calculations of the directed long bar studied in secich

As explained in sectiob.2.1.3 the parameter* = v(1, 1), where we seto,,, v,) =
(1,1) which corresponds to the stable state, measures the gap of the ultraleapl Bnh

2From top to bottom, parameter values wef®oa, Aoz, Aoz, Ao1, D, 3,d, L., D)) = (0.4,0.029,0.121,
—0.8,0.239,0.0135, 3.51,0.077,10), (0.4,0.01,0.13, —0.8,0.285,0.016, 3.7,0.096, 10), (0.25,0.062,
0.093, —0.8,0.194, 0.005, 5.85,0.082, 10),  (0.4,0.029,0.121, —0.8,0.237,0.007,8,0.092,10), (0.4,
0.029,0.121, —0.8,0.273,0.013, 3.97,0.079, 10), (0.4,0.01,0.132,—0.8,0.274,0.01, 8.06, 0.091, 10),
(0.4, —0.122,0.725, —1,0.707,0.017,5.3,0.584,1) and (0.4, —0.202,0.699, —0.8,0.547,0.012, 10.81,
1.055, 1).
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Figure 6.2: From top to bottom, the bar energigsagainst the bar parameteis w,

¢m andu,,; from left to right, the columns correspond to the last three bar evolutions in
figure6.1from top to bottom respectively.
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Figure 6.3: Geometric evolutions of a random initial configuration. Time rrora feft to
right. For the first four rows we ugeochery et al(2009’s interaction function whilex is
used for the last four rows. Parameter values were chosen as a fuoictiee desired stable
width. The latter isvy = 5 for evolutionsl — 2 and5 — 6, andwy = 8 for evolutions3 — 4
and7 —8. All evolutions show that the initial configuration evolves towards a line ne¢wo
like region where branches have approximately a constant width equal desired stable
width.
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between the foreground and the background. It is taken to be positfavdar pixels
belonging to the background. It controls the area of the rediofthe network). The
energy gap/; = {(0.05,0.07),(0.02,0.05), (0.05,0.07), (0.05,0.07) } wherei = 1..8 is

the evolution number from top to bottom. For each pair of evolutions, it is cleamthen
v* increases, the area occupied by the network decreases.

The experiments in figur® 3use parameter settings where the weight of the divergence
term is not large D, = 1 or 10). Figure6.4 shows the same kind of experiments but with
large values oD, to highlight the contribution of the divergence tefrithe evolutions in
the first two rows have predicted stable width = 5, while the one in the third row has
predicted stable widthug = 8. In all cases, the initial configuration evolves to a stable
network region with branch widths equal to the predicted value, excegtjoactions,
where branch width changes slowly to accommodate flow conservatioreffBoe of large
values ofD, is to enforce the divergence ofto be( everywhere in the image domain
leading to flow/width conservation along branches and at junctions. F&&shows the
scalar phase fielg (left) and the vector field magnitude| (right) corresponding to the
converged configuration of the third experiment in figGré It shows that indeep, |v|)
assigns approximately-1, 0) outside the network region arid, 1) inside; the transition
of both functions from the exterior to interior is smooth.

Figure 6.6 shows, in the top-right, the vector field of the central two junctions of the
converged configuration of the second evolution in figbi4 Figure6.6 shows, in the
bottom, the vector field of the converged configuration of the third evolutidigime 6.4.
Both configurations show that the vector field is indeed: smooth; runningyaletwork
branches (parallel to the boundaries of the network branches)pxpyately 0 outside
the network region, of unit magnitude inside, and its magnitude varies smoaodimhyOf
to 1 across the network branch boundaries; approximately conservegivinere where
along branches the width changes slowly and at junctions, total incoming @qdtils total
outgoing width. In the top-left in figuré.6, we show a zoom on the top-right quadrant of
the converged configuration of the first evolution in fig@ré It shows that the vector field
converges to a configuration with a rotational effect. That configuraistill divergence-
free but the smoothing term is not strong enough to remedy it.

6.2.3 Geometric evolutions for gap closure

As mentioned in the introduction of this thesis, the problem of occlusions ismirésthe
images we are dealing with. This leads to gaps in the network entity to be extfemted
the image. This problem can be solved by the contribution of the divergentein the
prior directed network modédlp. The undirected network model described in secBdnl
does not close gaps because the extremities of two separated bragpdlesiue to the
nonlocal term, and there are no forces attracting one extremity to the attthie tase of
the directed network model, the flow conservation property of the vectdrdieourages
branch extremities to not end but to elongate, and then to join and thus close ga
Figure 6.7 shows, from left to right, three geometric evolutions of an initial config-

uration of two separated branches using the mddel Time runs from top to bottom.

3From top to bottom, the parameter values webgis, Aoz, a2, A1, D, B, d, Ly, D) = (0.25,0.0625,
0.0932, —0.8,0.1045, 0.0054, 4, 0.0391, 100), (0.25, 0.0625, 0.0932, —0.8,0.111, 0.0061, 3.65, 0.0412, 50)
and(0.4, —0.1217,0.7246, —1, 0.4566, 0.0083, 10.8, 0.4334, 100).
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Figure 6.5: The phase field functian(left) and the magnitude of the vector phase field
function|v| (right) of the converged configuration of the third experiment in fidhide



110 Chapter 6. Experimental results

Figure 6.6: The final configuration af and ¢ (thresholded a0): (top-left) a zoom on
the top-right quadrant, (top-right) a zoom on the central two junctiond,(battom) a
zoom of the converged configurations of the first, second and thildtewas in figure6.4
respectively.
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Figure 6.7: Geometric evolutions of branches using the prior directed rletnadel Ep.
Time runs from top to bottomy is initialized to be—1 outside the branches adnside,
andwv is initialized to be0 outside and of unit magnitude inside, and running along the
branches. Parameter values are the same for the three experimentstlesaiyergence
weight D,, is 1, 10 and 100 from left to right. The initial width of branches 88 and

the stable width is fixed t@0. From left to right: branches shrink until they disappear;
branch extremities join each other to form a single branch, and then the faitdessuntil

it disappears; branch extremities join each other to form a single brandhtha latter
lengthens. Regions are obtained by thresholdirag0.

Figure 6.8: Configurations of and ¢ (thresholded a0) of a zoom on the central gap
corresponding to the third experiment in fig@&. Time runs from left to right, and from
top to bottom.
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BN

Figure 6.9: Three multi-spectral Quickbird images showing road netwarkktheir refer-
ence segmentations extracted manually. The resolution of imeayef2 is 1/4 the original
resolution £.44m); image3 is at full resolution .61m). Imagesd., 2 and3: RGB channels

of the images. (Original image®DigitalGlobe, CNES processing, images acquired via
ORFEO Accompaniment Program.)

Parameter values were the same for the three evoldtexept that the parametéy, is,

from left to right, 1, 10 and100. The stable branch width is chosen to li® The first
evolution shows that the initial branches shrink until they disappear bedha divergence
term weighted byD,, = 1 is weak compared to the other terms, so that the directed net-
work model behaves similarly to the undirected network model. The secamidtiewn,
whereD,, = 10, shows that the central gap is closed but still the resulting branch shrinks
until it disappears. This means that iDy, = 10 the force is not strong enough to elongate
branch extremities when the gap is relatively large. The third evolution,enbgr= 100,
shows that the model is able to close the central gap and elongate the reasatiog until

all gaps are closed. Figu&8 shows an evolution of the vector field configuration of a
zoom on the central gap corresponding to the third column of figute

6.3 Experimental results on real images

In this section, we apply the model to multi-spectral VHR satellite images for rodd a
hydrographic network segmentation. The channels are red, greemiudLinfra-red. Fig-
ures6.9 and6.10show examples of images of road networks and hydrographic networks

“The parameter values wer¢os, Aoz, A2z, Ao1, D, 8,d, L,) = (0.1,0.0387, —0.0192, —0.6, 0.0351,
0.001,20.41,0.2964).
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respectively, and their reference segmentations extracted manuallgctiorss.3.1, we
describe segmentations of the real images using a Maximum Likelihood (Mimate

and compare different data models. In sectoB.2 we describe segmentations using a
maximuma posteriori(MAP) estimate and compare the undirected and directed network
models.

6.3.1 ML segmentation

In section3.4, the road network segmentation performance of a phase field HOAC model
for undirected networks was tested using two classes of likelihoods (the skass was
used for bothk and R): a multivariate Gaussian (MG) and a mixture of two multivariate
Gaussians (MMG). In maximum likelihood segmentations, the performancenivasl,

but when combined with the prior energy, the MMG model was found to olgiperthe

MG model, with the improvement being most significant when the image was very he
erogeneous. Here, we test the maximum likelihood performance of thede&éhoood
classes on the real images, and compare them to segmentations obtainetheisiog
malized difference vegetation inde OV I = (I — R)/(I + R)) (Rouse et a).1973
Tucker, 1979 and the normalized difference water indeXPWI = —(I — G)/(I +

(7)) (McFeeters1996. We apply the former to images of road networks in which the
background is mostly vegetation, and the latter to images of hydrographiomkstw

The second, third, and fourth rows of figuBell show maximum likelihood (ML)
segmentation results for road networks using NDVI, MG, and MMG rdsmdz The
second, third, and fourth rows of figurésl2and6.13show ML segmentation results for
hydrographic networks using NDWI, MG, and MMG respectively.

Table6.1shows quantitative evaluations of the quality of the ML segmentations using
NDVI, MG, and MMG. The bold nhumbers show the best ML segmentation metiod
all experiments in figuré.11, the NDVI results show lower performance, according to the
quality measure, than the MG and MMG results. The NDVI results on the fidstacond
images show that most of the hidden parts of the network are not retriecedide they
resemble vegetation more than road network.

Table6.2 shows quantitative evaluations of the quality of the ML segmentations using
NDWI, MG, and MMG. The NDWI results on the second and third images indéguL2
and the second image in figuel3 show better performance, according to the quality
measure, than the MG and MMG results. On the other hand, as in the caB¥/bfés$ults
for road networks, the NDWI results on these images show that most oidtiernparts of
the network are not retrieved because they resemble background moreytragraphic
network.

The result is the presence of many lengthy gaps in the ML segmentation using
NDVI/NDWI. Because these gaps are so long, it is very unlikely that thoe pgerm would
close them. In contrast, the MG and MMG segmentations include most of the kebmor
also many points of the background, which the prior model should be ablartimate.
When coupled with the results in sectiBm showing that MMG outperforms MG, these
results lead us to choose the MMG model to construct the likelihood ed&rgp the case
of the MMG model,Ey is given by equation3.9).
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Figure 6.10: Five multi-spectral Quickbird images showing hydrograpbie/orks, and
their reference segmentations extracted manually. The resolution of imagels is 1/4

the original resolution2.44m); the resolution of image is 1/16 the original resolution
(9.76m); the resolution of imagé is 1/2 the original resolution1(.22m); image5 is at
full resolution (0.61m). Images2, 3, 4 and5: RGB channels of the images. Image
GBI (mapped to RGB) channels of the image. (Original ima@d3igitalGlobe, CNES
processing, images acquired via ORFEO Accompaniment Program.)
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Figure 6.11: From top to bottom: original images of road networks; segmeamgabio-
tained using NDVI and optimal thresholding; ML segmentations using the MG Inddle
segmentations using the MMG model.
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Figure 6.12: From top to bottom: original images of hydrographic netwsdgmentations
obtained using NDWI and optimal thresholding; ML segmentations using the Mé&ino
ML segmentations using the MMG model.
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e

Figure 6.13: From top to bottom: original images of hydrographic netwsdgmentations
obtained using NDWI and optimal thresholding; ML segmentations using the Mé&ino
ML segmentations using the MMG model.
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Image| Method| Completeness Correctness Quality
NDVI | 0.4296 0.3965 0.2598
1 MG 0.6920 0.3423 0.2970
MMG | 0.7510 0.3000 0.2728
NDVI | 0.4745 0.6536 0.3791
2 MG 0.7166 0.4958 0.4145
MMG | 0.7983 0.3521 0.3233
NDVI | 0.6776 0.4517 0.3718
3 MG 0.9060 0.4099 0.3932
MMG | 0.8634 0.4641 0.4323

Table 6.1. Quantitative evaluations of the ML segmentations given in figure The
numbersl, 2, and3 correspond to the three images in figér&1, from left to right. Com-
pleteness= TP/(TP + FN), correctness= TP/(TP + FP) and quality = TR/@P+ FN). T,
F, P, and N correspond to true, false, positive, and negative tasggc

Image| Method| Completeness Correctness Quality
NDWI | 0.6280 0.9446 0.6057
1 MG 0.7835 0.8468 0.6862
MMG | 0.8485 0.7424 0.6555
NDWI | 0.6574 0.8352 0.5819
2 MG 0.8109 0.2189 0.2082
MMG | 0.8312 0.2414 0.2301
NDWI | 0.3588 0.3363 0.2102
3 MG 0.7924 0.1378 0.1338
MMG | 0.7846 0.1816 0.1730
NDWI | 0.7692 0.6105 0.5160
4 MG 0.9127 0.4765 0.4557
MMG | 0.9361 0.5381 0.5190
NDWI | 0.7995 0.8477 0.6990
5 MG 0.9067 0.7140 0.6651
MMG | 0.9445 0.6233 0.6012

Table 6.2: Quantitative evaluations of the ML segmentations given in figui@and6.13
The numbers 1, 2 and 3 (4 and 5) correspond to the images in BglL2¢6.13, from left
to right. Completeness= TP/(TP + FN), correctness= TP/(TP + FP) aridyqud P/(TP
+ FP +FN). T, F, P, and N correspond to true, false, positive, andtivegespectively.
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6.3.2 MAP segmentation

Figure 6.14 shows the MAP segmentation results for road networks obtained using the
undirected network model (first columm)Es, and the directed network model (second
column)® Ep. Figures6.15 and 6.16 show the MAP segmentation results for hydro-
graphic networks obtained using the undirected network model (firstragl( £, and
the directed network model (second colurfrBp.

The undirected network model favours network structures in which afidires have
the same width. Consequently, network branches which have widths sigriijidifferent
from the average are not extracted. The result on the third image in figlibeshows
clearly the false negative in the central part of the network branchresthe width is about
half the average width. Similarly, the results on the third image in figutd and on the
second image in figur@. 15show a false positive at the central two loops of the network and
at the bottom of the central loop of the network respectively, where tleebiranch width
is small. The result on the first image in figusel5 again shows a small false negative
piece in the network junction at the bottom. The two images in figutéshow also false
positive in the central loop in each image, and in the horizontal branch inrgenfiage
where the branch width of the segmentation changes significantly alongathehbr

The directed network model remedies these problems. The first anddsecages in
figure6.14and the third image in figuré.15show many gaps in the road network and hy-
drographic network, respectively, due mainly to the presence of {fféese gaps cannot be
closed using the undirected network model. The directed network modelase these
gaps because flow conservation tends to prolong network branclades®.3 and 6.4
show that, in all experiments, the directed network model outperforms theeatet! net-
work model.

In all experiments obtained using the directed network model, the role ofitbegdnce
term at junctions is clear. The divergence-free property of the véietdifavours junctions
where total incoming branch width equals total outgoing branch width. Fgdreshows
streamline plots of the final vector field configuration superimposed on tashbidedy
corresponding to the third result in figudel4and the first result in figuré.15 The vector
field is indeed of constant (unit) magnitude inside the network, parallel to ¢heonk
boundaries, and smooth; the flow is approximately conserved along tetwarches and
in particular at junctions, where the total incoming flow is approximately equtdttd
outgoing flow. Similarly, figures.18 shows the final vector field configurations of some
zoomed parts of the segmentations given in fig@.é$and6.16

*The parameter values were, from top to bottotx, o, D, 3,d) = (5.6,0.851,3.75,0.1472, 3.41),
(4.88,0.3486, 3,0.0603, 2.27) and(24.54,1.5, 15, 0.2592, 9.09).

®The parameter values were, from top to bottoMod, Aos, A22, A21, D, 8,d, L, Dy, 0) = (0.3375,
—0.1767,0.2712, —0.6, 0.2645, 0.0629, 1.68, 0.2649, 100, 33.33), (0.1,0.0164,0.1162, —0.8,0.0512,
0.0205, 1.45,0.0227, 200, 100) and (0.4, —0.018,0.15, —0.8, 0.548, 0.0316, 3.45, 0.150, 50, 25).

"The parameter values were, from top to bottom and from figut&to figure6.16 (\, o, D, 3,d) =
(18.74,0.0775,11.25, 0.0134,34.1), (4.88,0.3327,3,0.0575,4.54), (19.88,0.6654,12,0.1151,9.1),
(12.01,1.0804, 7.5,0.1869, 5.68) and(14.27,1.439, 9, 0.2489, 5.68).

8The parameter values were, from top to bottom and from fi§Lt&to figure6.16 (N4, Aoz, A22, A2t
D,B,d,L,,D,,0) = (0.412,-0.0008,0.0022, —0.6,0.257,0.0083, 8.33,0.275, 50, 25), (0.2650,
—0.1659, 0.5023, —0.8,0.1926, 0.0387, 2.027, 0.2023, 100, 16.66), (0.4525, —0.2629, 0.6611, —0.8,
0.3585,0.0289, 5.12, 0.4224, 10, 22.22), (0.4625, —0.2918,0.778, —1,0.8786, 0.105, 2.228,0.3536, 100,
25) and(0.4375, —0.2557, 0.6818, —0.8, 0.3597, 0.0329, 3.81, 0.432, 10, 15) .
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Figure6.19shows the segmentation of a hydrographic network from a colour optical
image? The likelihood model used was the same, but with one less band. The fl@greon
vation property and its geometric consequences enable the algorithm tcandédinding
factors in the background and segment the network to a good accuracy.

Image| Method| Completeness Correctness Quality
1 UNM | 0.5997 0.6411 0.4490
DNM | 0.6084 0.7906 0.5240
5 UNM | 0.6799 0.6919 0.5219
DNM | 0.6231 0.7978 0.6779
3 UNM | 0.7118 0.6840 0.4957
DNM | 0.5894 0.7051 0.5435

Table 6.3: Quantitative evaluations of experiments of the three images gifignre6.14
T, F, P, N, UNM and DNM correspond to true, false, positive, negatinédirected network
model and directed network model respectively.

Image| Method| Completeness Correctness Quality
1 UNM | 0.8439 0.9168 0.7739
DNM | 0.8202 0.9489 0.7924
5 UNM | 0.9094 0.6999 0.6043
DNM | 0.8484 0.7856 0.6889
3 UNM | 0.5421 0.6411 0.4158
DNM | 0.7702 0.6251 0.6513
4 UNM | 0.8916 0.8757 0.7914
DNM | 0.7067 0.9394 0.8722
5 UNM | 0.8649 0.8724 0.7678
DNM | 0.8766 0.8881 0.7894

Table 6.4: Quantitative evaluations of experiments of the three images gifignie6.15
(1, 2 and 3) and of the two images given in fig#d6(4 and 5). T, F, P, N, UNM and
DNM correspond to true, false, positive, negative, undirected n&tmadel and directed
network model respectively.

6.4 Conclusion

In this chapter, we validated the theoretical analysis of the directed nemmantkl, studied

in chapter5, via numerical experiments and we described a major advantage of the model:
closing gaps in the network. We then added a likelihood energy and testetbtted on

the problem of road and hydrographic network extraction from multitspe¢HR satel-

lite images, showing that the directed network model outperforms the undineete/ork
model.

®Parameter values were:(\os, Ao3, Aoz, M1, D, B,d, Ly, Dy, 0) = (0.25,0.0323,0.1138, —0.8,
0.1903,0.0176, 2.56,0.0644, 100, 0.07).
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On the other hand, the directed network model has difficulties compared tmtlie
rected network model. Firstly, the number of free parameters, afterpeng the stability
analysis, is large7(parameters). This makes parameter learning hard. Secondly, in our
work, we have used a local optimizer (gradient descent algorithm) toesesglgy minima,
which renders parameter tuning harder in the sense that a parameter wéithggives
a local minimum corresponding to a bad segmentation, may give a global minimum co
responding to a good segmentation, and vice-versa. Thirdly, the wditjid divergence
term, D,,, must be large in order to have a very low divergence of the vector fighis
implies a very small time step in the gradient descent algorithm and thus sloergence.

In addition to that, we have two governing equations (one for the scalaifieldhe other
for the vector field) to compute at each iteration which consumes time.

Thus important future directions are estimation of the parameter values okthe n
model and reduction of the execution time needed to find a good segmentation.
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Figure 6.14: Road network segmentations using the undirected network (ficstecol-
umn) and the directed network model (second column). Regions are abtajrtbresh-
olding ¢ at0.
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Figure 6.15: Hydrographic network segmentations using the undirectesbnkemodel
(first column) and the directed network model (second column). Regrenstaained by
thresholdingp atO0.
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Figure 6.16: Hydrographic network segmentations using the undirectesnkemodel
(first column) and the directed network model (second column). Regienstdaained by
thresholdingy atO0.
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Figure 6.17: The final configuration af and ¢ (thresholded a6) corresponding to the
third segmentation in figuré.14and first segmentation in figu@&15 The vector field is
indeed zero outside the network and of constant (unit) magnitude insidetlsnparallel

to branch boundaries, and conserved along network branches jandtons.
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change of width, and along branches, as illustrated by a slow changiltbf. w2010
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Conclusion and perspectives

“The important thing is not to stop questioning. Curiosity has its own reason fo
existing”
— Albert Einstein

Summary

The purpose of this work was to build variational models for network modefongoad
and hydrographic network extraction from multi-spectral VHR Quickbirdgesa More
concretely, we focused on developing specific and sophisticated phiapefor undirected
and directed network modelling.

We first improved the HOAC model for undirected network modelling. We ootet
a stability analysis of a long bar under the HOAC model which aims to constraimathe
rameter values to obtain stable networks with a predicted stable branch wigghtolhe
topological complexity of a networke. a network may have many loops, a phase field for-
malism is used to allow full topological freedom, a neutral initialization for therélym,
and reduced execution time. An equivalence was shown between theatexplitiOAC,
and the implicitj.e. nonlocal phase field, representation of the region of interest. Thk resu
is that one can use nonlocal phase fields instead of HOACs. Basedtpwéhstudied the
inflection point energy under undirected network phase field HOAGswamshowed that
it outperforms the non-inflection point energy for road network extradtiom Quickbird
images.

Hydrographic networks have different geometric properties to roadanks. There
is an orientation to the ‘flow’ they carry through their branches. This hasffect on the
geometric properties of the network. We introduced a new family of phalseH®ACs
that incorporates, in addition to the standard scalar field function, a Viegltbdescribing
the ‘flow’ through the network branches. The vector field is enforceldet@aero outside
the network and of unit magnitude inside, smooth, parallel to the region boyrhd
divergence-free. The vector field is strongly encouraged to begtinee-free so that the
proposed directed network model favours geometric structures whictemwe the ‘flow’
in some sense: along branches, the width changes slowly; and at juntbi@hgcoming
branch width approximately equals total outgoing branch width. A stability arsabyf
a directed straight, long bar was conducted to constrain the parametes galdexpress
some parameters as a function of the others. We were able to expressfibmenodel
parameters as a function of the physical parameters of the bar which ddamemoare
the predicted branch network width and the interface width. We appliedimeated net-
work phase field HOAC model to the extraction of hydrographic and red&darks from
Quickbird images. The results showed that the directed network model fmrtpsrthe
undirected network model for hydrographic network extractions frongasa The pro-
posed model allowed: to close the gaps of networks present in real irtteagéss to the
‘flow’ conservation property which allows to prolong network branghesextract net-
work branches which have significantly different widths thanks to thelseitehoice of
the interaction function.
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Phase fields and Markov random fields

In general, Bayesian inference-based segmentation methods invadvegqiec models. In
this case, the solution of the problem depends strongly on the values of thed pawam-
eters. In this thesis, the parameter values, of both the undirected antedirestwork
models, were fixed manually. A more ambitious way to solve the problem of ptgame
tuning is to estimate them.

Parameter estimation requires a probabilistic formulation of the model and in particu
lar the normalizing constants of the Gibbs distribution corresponding to thel mioekyy.
As described in the first chapter, the phase field HOAC model introducgi®bghery
et al, 2005 2006 was also used to detect circular shapes, via a stability analysis con-
ducted by Horvath et al.2009), in addition to network structureBlaskovics et al(2009
proposed a new Markov Random Field (MRF) model incorporating agsbape prior to
detect circular shapes. The authors used the phase field formulatiomn ‘gb#hof circles’
model to construct the new MRF model. The continuous phase field functiliscietized
and assigns the two labelsl. The MRF model uses the discretized function and defines
long-range interactions to favour circular shapes. The authors vilbge@approximate
the parameters of the MRF model as a function of those of the phase field wioida
uses a continuous function. Performing this equivalence between thetdisnd con-
tinuous models, new ways will be opened to solve the challenging probleraraimeter
estimation.

Active contours and marked point processes

Marked Point Processes (MPP) have a long history applied to the praiblenject extrac-
tion from images. Particularly, MPPs were used for the extraction of readanks (a-
coste et al.2004 2005 2010, buildings Ortner et al.2007), and treesRerrin et al.2005.
These works represent the objects by simplified shapgsllipses, discs or rectangles.

Kulikova et al. (2010 proposed a new MPP model which incorporates strong prior
shape information for the extraction of multiple, arbitrarily-shaped objecte duthors
constructed, first, a single-object model which combines a data term aiat égpm. The
prior term incorporates, in addition to a smoothing term, a HOAC term whichritbesc
specific shapes of the object. Secondly, a multiple-object model is build lmessampling
from a Gibbs distribution, and each object evolves with respect to the sabgget model.

A birth-and-death algorithm was used to speed up the convergence.

The incorporation of active contours into a MPP framework has seaeralntages:
possible overlap between objects; the topology of the object changesatidally, and
efficient computation thanks to birth-and-death dynamics. This opens inettidns to
describe arbitrarily-shaped objects in scenes of high complexity contaivieidapping
objects. In the case of road or hydrographic networks, a challengoiggm appears if
two or more network branches overleyg.a bridge crossing a river or road, which produces
an overlapping in the observed image: one way to handle this is through MPP.
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Perspectives

To improve the model, we list a few perspectives:

1. Some of the results obtained using the directed network model still haeepiads
tives. The main reason is that the gradient descent algorithm becombg $beek
in a local minimum, so that some of the background remains classified as network
even if this is globally energetically unfavourable. So, one may think to ussbalg
minimization algorithm to seek global miningag.simulated annealing.

2. Some of the results obtained using the directed network model still haeenkeds
atives. The main reason are long gaps in the visible network caused logiocs.
More investigations on parameter tuning will help to understand why gaprelosu
may fail for some parts of the network and may succeed for other parts.

3. Our data model is taken to be either a multivariate Gaussian or a multivariate mix-
ture of two Gaussians. They gave very encouraging results for rablyalrographic
network extraction. Many other possibilities may be useful to outperfornsege
mentation results: one can incorporate multiscale featergsyavelets, or texture
features. This will help in the case of VHR remote sensing images where therketw
branches are very large.

4. One can think to accelerate the algorithm convergence. In our wousggegradient
descent to seek minima. Many other algorithms may help to speed up the conver-
gencee.g.conjugate gradient descent, implicit methods...

5. The stability analysis performed in this work allowed us to express some ofddel
parameters as a function of the others so as to favor stable networksrtingess,
the model still has several free parameters. Parameter estimation tectoagloblse
used to estimate these parameters rather than fixing them manually. Implementing
this is very difficult task, however, due to the complexity of the model, and tie la
of knowledge of the normalizing constant of the Gibbs distribution definethéy
model energy.
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Stability calculations for a long bar
under the undirected network
HOAC model
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In this appendix, we detail the stability calculations of each term of the totahgki
energy given by equatior2(l). We Taylor-expand these terms to second order around a
long bar of widthwy.

A.1 Length of the contour

The derivative of the contouy given by equationZ.6) is

: Eu(ty) = £l
iltu) = { Bl = bu(t)
xu( p) = Eul
( #) = Zku ikl amk#eikultu )

The length of the contour is defined as

= / plt)] dis
lu, D%Uf

where the tangent vector is given by
1
4 , 2
Fu(tw) = 11— Z ay,kuau,k;kukfﬁl(kﬁk“)““ . (A.1)

Ky k.,
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Expanding equatioA.1 in a Taylor series to second order and using the fact that

/ ekltugr, = 5(k) , (A.2)
Ovu
and
1
Vi+ar~1+ ix ,
we obtain

. 1
/ ()| dty =1 [1 + B} Z au,k,IQkMQI .
U ky

Then the length of the contour becomes to second order

1
L(y) ~1 2+szau,kuzku2]
L mo Ry

1
=1 2+2§k2(\a1,k!2+!a2,k\2>] : (A.3)

A.2 Area of the contour

The area of the contouris defined as

A(y) = /D Uya(t1) — ya(—t1) dts
Y1

= / l(wo + 5y1(t1) — 6y2(—t1)) dty ,
Oy

and using the expression for the perturbations expressed in terms réoaefficients,
and the integral value given by equatighiZ), we obtain

A(y) = l[wo + (a1,0 — azp)]

= I[wo+ > Fpapo] - (A.4)
I

A.3 The quadratic energy E¢(v)

The general expression for the quadratic endfgy~) can be written as
Bo)= 3 [ ande Gieatl) (A5)
W,V (D’W“D’YV)

whereG is the energy interaction of a pair of poirtfsandt,,, which can be defined as

Gt t) = Au(t) 3o (£,) W (|vu(tn) — W (t)]) - (A.5b)
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A.3.1 Inner product of tangent vectors
The inner product of the tangent vectargt,,) and, (t,,) is given by
Yultu) Jo (b)) = Eulty) 20 (t,) + 9u(t) Gu(t,)
= 4,4, 24 0yu(t,) oy (t,) . (A.6)
A.3.2 Quadratic distance

Using the expression for the contour given by equatihf)( we can compute the squared
distance between two contour points:

i (t) = ()P = (@ultn) = 2o () + Gultn) — yu(t))

w
= [y lt, — 4+, 182 + [Eo(iu — ) + 0yu(ty) — Sy ()] .

LetA? , = (£, 1t, — £, 1t,)* andX§ = A2, + %3(1 — +,4,). We then obtain

Y (tn) = 1t = X5+ (0yu(tn)? + (0 (t))* + wo(dp — £2)6y,(ty)
- wo(iu - iu)(syu(t://) - 25yu(tu)5yu(tly) )

which, after expansion in a Taylor series to second order aréightbecomes

1 1
"Yu(%) - ’Yu(t:)‘ ~ Xo + wo (£, — iu)éyu(tu) — 5 wol(Eu — il/>53/u(t;/)

2X0 2‘XO
AXE — wd(, — £,)? 2, AX3 — wd(, — £,)°

Syt L Sy, (t),))?

+ SXS’ ( yu( M)) + SXS’ (dyw(ty))

4X2 —wi(£, — £,)?
-2 ot
—_ . : 1 1 )
To simplify the last expression, we defifg = ——wo(£, — +,), Xo = (1-X7)
2X, 2 X0

andAdy,., = 0y, (t,) — dyu(t,):

V() — Ywl(t,)] ~ Xo+ X1A0yu, + X2(A5?/u,u)2 .

A.3.3 Interaction function

Expanding the interaction function in a Taylor series to second ordendt®y, we obtain
(7 (t) — Ww(t))]) = (Xo) + [X1A0y, + Xa(Ady,,)*] ¥'(Xo)

(X,

+ V) w2 gy,

= \I/(XQ) + Xl\I//(Xo)A(Sy%V

X2
+ X2 W' (Xo) + S0 (Xo) | (Adypn)? - (A7)
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A.3.4 Computation of G(t,,1,)
Substituting the expressions given by equatidrandA.7 in A.5b, we find

Gty t,) = {\II(XO) + X1V (X0)Ady,,, + {XQ\I/’(XO) + )212\11”()(0)] (Aéyuvy)Q}

{5 B+ byt by (1)}
=4, +, 1 U(Xp)
—_——
Foo
+ £, £, 2 X0V (Xo) Ady,,

Fio

X2
b B | XaW (X0) + 00| (2

Fyo
+ W(Xo) 0yp(ty) dyu(ty,)
2
21

and so, the total quadratic energy becomes

Z/ G(ty,t,) dt, dt, _Z/ Foo(ty,t,) dt,, dt.,
T S

Uy /U

/ / Fio(ty, t,)Ady,,, dt, dt,
D'Yu Oy

/ / FQO /M 1/ A(syuu) dt,u dt:/
Oy YOy

+Z [ [ Eattu b duntes) du, e,
Uy /O
(A.8)

To compute these integrals, we make a change of variables to simplify the taltsia
These integrals can be written as

/ [t t,) dt, dt, (A.9)
Uy /Oy

wheref(t,,t,) is a function which depends ah,it,, and=+,t],. Making a first change of
variabless,, = it,, ands], = it],, equatiorA.9 becomes

i [3 1[5 [3
Lo st aneat, =5 [ [ p(ssl) s
2 Y2 2 Y2

The functionsF;; depend or{+,,s,, — =+, s,,), SO a second change of variables can be made:
x = *,s, — £,s, andy = £,s, + +,s,, which gives, = £,%% ands, = £, %%
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The variables,, ands, lie betweens! andZ, so the new integration domain is defined as:
{(y)|—1<z <l -1+ |z Sygl—m} We obtain

i
// F(taotl) dt dt, —212/ dx/lﬂx

The expression foff (z,y) can always be written as a product of two functions: the first
function depends on the interaction functiéngiven by equatior2.2 and its derivatives,
embedded in the expressions fgr, which are equal to zero for a distancgreater that

a given threshold which characterizes the interaction rangk; aghe second function is
written as an exponential function describing the contribution of the Fopeigurbations.
Then, we can approximate the integration domaiq by, y)| — | < = < I,—1 < y < l}.
After these simple mathematical manipulations, we obtain

1 1
2 2
2 2

We now compute the different double integrals in equati&r8) using the equality
given by equatioi\.10.

l
/ / Foo(ty,t,) dt, dt, = £, £, l/ U(Xo(z)) dx
Uve /O —1

/ / Fio(ty, t,)Ady,,, dt, dt,
Oyp YO
/

Fio(tu,t,) Za#k/ thulty _ Zam k€ ethvity ) dt,, dt;,

1 l l ) -
= 2l2{/ / Fl(](.f[f) Zauykuei‘ﬂk“% dx dy
l l

Fu

Il .
[ ) S )
—1J-1

ky

1 ! P L
= 2l2{ au,ku/ Fyo(z)ennz (/ X1kl dy) da
v -1 -1

~——
206 (k)

e~ Fviky z dy) dw}

l l
=S [ Fiolwe =
l

Ky - =

l
==+, %, l(au0 — avp) /l X1(2)¥'(Xo(z)) dz ;
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/ / F20(t/u t;)(Aéyu,,})Q dty dt;} = / / F20(t/m t;/) (5yu<tu))2 dty, dt:/
Oy JOv Uy JOv

/ / F20 1 1/ (sy,j( )) dt dt
Oy /Oy

I

- 2/ / Fo(tu, ) 0ypu(tu)oyu(t,,) dty, dt), ;
Uy J/Ov

—

I3

(A.11)

I :/ Fgo(tﬂ, Z A1,k Qpu ke, e’ ikt )lt“dt dt
Uy U kiuk/

l !
212 Z Qi ke, Oy ke, / Fyo(w)etniFuthi)s alﬂ?/lei“l(k“Jrk“)g dy
Kok, -

l
= %Z |a#’kuyz/ Fyy(x) dz
Ky =i
1 5 [!
— 72’0,#’]6’ /ZFQ()(.I‘) dl’
. _

216 (kpu+k,,)

and due to the symmetry pfandv in the expressions fal; and/,, we find

1 l
= 7 Z ]a,,yk|2/ Fgo(HJ) dx
L —1
and finally

13—/ / Foo(ty,t,) g Ay ke, Ok, e’k“lt“e’k”ltl’dt dt,,
Uy /Oy Ky koo

1 ! . . L Y
+k,—t0k))E +,k+Et0ky) 2
- 22 z : A ke, v ke, /ZF20($>62( e )de leZ( o . 2
kl—HkV - _

28 (% kp+t k)

1 ! ,
+,,ik
= 7 E A kQu,—+, 4,k F20(33>6 HUWT
—1
k
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Substituting the expressions fby, I; and /3 in equationA.11, one has

/ / F20 ;u 1/ Aéyul/ dt dt/ Z |a#7k| / F20

D’Y,u Oy

+ 7 Z ’au,k‘Q /l Fy(z) dox — 27 Zau,kau,iuiyk/leo(x)ei“ikx da
k - I _

1 ! I ‘
= 1 Z{(|au7k|2 + |au,k‘2)/ Fyo(x) dx — 2a;t,kau,—iuiyk/ FQO(x)e:tlﬂ‘km dw} :
k -1 1

/ / F21(tﬂ,t§,)5yu(tu)5yy(t§j)dtu dt!, =
Oy JOv

/ / Foy(ty,t, Z ik O ke, 22 kuky ethnlty gikult;, dt,, dt;,
Uyp /Ov Epuky

1 l ) . l
- _ﬁ Z aﬂ,kna%kuﬂkuky/fFQl(x)Gl(i#k#iyku)?dm/l A ku)2dy
Eyky - _

26 (% kp+t k)

!
= lszGM,kau,—ﬂ:Miuk/ZW(X0($))eiulkx dx ;
- _

Substituting the double integrals in equati@ng) by their expressions computed pre-
viously, we obtain

/DW - G(t,,t.,) dt, dt, = Zi +, / U(Xo(z)) dx
+ Z +, +, lauo — a,,vo)/ X1 (2)¥' (Xo(z)) dz
v !
l 2
+ZZ:|: +, |auk\ + |ay i )/_l [Xg(x)\ll’(Xg(l‘)) —I—);l\l///(XO(l,))] dx
! 2
3N 2t lapkan / [Xg(:c)\ll'(Xo(J:)) + )gl\y”(xo(g;))} etk gy
ok -

l
-+ Z Z j:li :ty leaH,kaVﬁi#iyk /l \I/(X()((L'))ei“lkx d$ .
wy ok B
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To compute the total quadratic enerfy), we separate two cases:
First case=,+, = 1, which givesXy(z) = |z|, Xi(z) = 0 and Xz (z) = ﬁ We
then get

4, =1
Ey" (v) = Eqg(m1,m) + Eq(v2,72)

= > dut /\Il(Xo(ac))dx

+,4,=1
l
1
bYWl + o) [ 5w el de
Mt _1 2||
l
1 .
T D D Al
+uto=1 k ! ’x‘
l
+ Y Yt Kapgan, + ik/ W (|a|)e ™ d
=1 k !
l
:2;/ W(|z]) da
-1

l
+2z§j<|a1,k|2 + lagal?) / SV (Ja]) da
—2lZ ax i + Jazil?) / o ¥ (e)eda
l B
S K2 (Jan il + anl?) / W(ae™ do
k

l
= QZ/_Z\II(]dex

l
1 1 , .
+12_(lar sl +lazl?) / i (|a)) = O (|2])e™ + KU (|a))e™ da
k

1 |] ]
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Second casext,+, = -1, which gives Xo(z) = /z?+wi, Xi(z) =
2
+, 0 5 andXsy(z) = < =. We then get
z? + wj 2(z? + wd)?

+,+,=—1
Egy" (v) = EQ(m,72) + Eq(y2,71)

:Z—z/ (Xo(z

+pt=-1

+ Z —l(au,o al,o/ \/m M)dx
0

+,4,=—1
rE St il [ (o

+pt=-1 &k

wo me /.2 2
+2(J;2+w )\I] (Y@ +wp) }dm
l 2
v 2 a“’ka”k/z{z( 2)2‘1’/(\/m)

2
tut,=—1 k %+ wy

2
Wo " 2 2 +,ikx
__ g/ wike g
+2(:62+w§) (\/z +w0)}e T
l
+ E E —lk auka,,k/l\ll( x2+w8)ei“1k$d:ﬁ

tut,=—1 k

I
:_QZ/ v \/m dx —2l(a a / \/m di
y ( o) 1,0 — G2,0 \/m 2)
Al +loaef) [ T gt e
12(2? + wp)? 077 2(22 + wd) 0
l xQ / 5
+ 21 (a1,ka2,k+a1,ka2’k)/ {‘I’(\/m)
Zk: 1L 2(22 + w)? 0
b St ) L
2(1‘2+w(2)) 0
I
_lZ(a1,ka2,k+a1,ka27k)/ kzm(\/m) ke g,
k

w
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The total quadratic energy of the contouis then given by

+,+0=1 +,t,=—1
Eq(v) = EQM (v) + EQM (7)

l l
:zz/ \If(|:v|)dx—2l/ W(y/22 + wd) da
—1 -1 0
l
wo ’
—2l(a10—a / —VU \/l‘2+w2 dx
( 1,0 2,0) o \/m ( O)

l
1 1 , ,
1Y (sl - laal?) [ oW (el = oW (e R (el)e™ da
d :

E
l ZL‘2
=0 Mensl? o) [ { v (o
k 0

“1(22+w

w(% \II” 2 2 d
+$2+w8 (\/2? +wg) ¢ dx
l LUQ
+ lZ(aLkag,k + a17,ka2,,k) / {()3\11/( [22 &+ w%)
_l 2

2 2
L T4+ wj

2 .

0

l
_ ZZ(al,ka2,k + a1,7ka2’,k) / k2m(\/m>€lkxdx .
-l

k

(A.12)
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Substituting the length, the area and the quadratic terms by their expresisiem$by

equations A.3), (A.4) and @A.12) in the expression for the geometric enetfjy of the
contoury given by equationg.1), we find

EP(7) = Aol

1
245 Zk:kQ(!al,k\Z + |a2,k\2)]

+ ac lw + (a1,0 — a2,0)]

zz/ () — (/2 + ud) da

50 / [
l(ai,0 — azp T4 4+ wj) dx
2 \/x2—|—w )

1 . .
- 7ZZ<\a1,k|2 Flasal?) [ Lo el) — L@ 2w e

2

" wl
ZZ a1k ? + [ag,x| )/ m\lf’(vaﬂ—i—w%)%— 2+ ‘I’H(\/x?—l—w%)daﬁ
Bc l 22
-5 > (a1 paz + a1,—ka2,—k;)/ [223‘1"(\/ 22 + wi)
. —1L(2? + wf)>2
4 w% \I///< 2+ 2 zkzd
7(3;2 ) \/ &2 +wg)|e x

I
+ ﬁicl Z(al,ka2,k + a1, —ras i) / ki?‘l’(\/ 22+ wd)e*du .
2 - )

The bar lengthi, is very big compared to the bar widtlg, in order that we can ignore
the effect of both bar extremities, and we will take the> +oco limit. To simplify the
expression for the energy, we define

—+o00
Goo(wo) :/ ‘11(\:6|)—\I'(\/x2+w8)dx,
+oo —wy
Gio(w 2 4+ w?)dx
wlwo) = | g W)
+oo $2 w2
o L(22 +uwd)2 O (a? 4 wg) ’

~ Ly - ey k2\v<|x|>e“”}dx ,
G (wo, k) :/+OO _L\p/( 22 4 wl) — L\pu( [42 + w2)
7 —0 (332+wg)% O (@2 + ) ’

+ K2 (/2?2 + wl) pe*da .
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Here we detail the variational calculations for the phase field energy diyesqua-
tion (4.1). For each energy term, we compute the energy ¢fd¢ andv + dv and we try
to express it as the followingEl(¢ + d¢,v + dv) = E(¢,v) + (E1(p,v)|0(d,v)). The
derivative is ther¥; (¢, v).

B.1 First derivatives of phase field terms

B.1.1 Derivative of the term weighted byD

E(p+d0) = /8¢+5¢) AP+ ) = /8(]5 0¢ + 20¢ - 0o
— B(p) - / (8- 9656,

and so

5 1 L
M/Q&b-@qﬁ——@ ®.

B.1.2 Derivative of the term weighted byD,

E(v+5v):;/ (a-(u+5v))2:;/(a-ma-(sv)?
:;/(8-0)2+2(8~v)(8 5v) /aa v)
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and so

;U/ @0 = 0(0-0).

B.1.3 Derivative of the term weighted byL,

E(v+dv) =

/ (V" +00v"))" = ;/ (O™ + Op60™)?

0™ (O™ /a O v"

[\D\H

l\.’)\t—l
\..

and so

5 1 n\2 _ 92

B.1.4 Derivative of the nonlocal term

B+ 80) =~ [[ 06 +50)-0(¢' + 50

:E(¢)—;//a¢.65¢’@—;/ 95¢ - 0’V
= E(¢ —/ 0¢ - 96 U
// (04'D))
+//a¢-aw¢,

and so

{_// d*z’ 0¢(x) - 0p(x") (x—:c)}_/Qd%’aqﬁ(x’)-aqz(x—x’)

- / d?z’ ()00 (z — 2')
Q

_ /ﬂ &2’ ()0 (z — o)
= ¢(x) x 9*V(x) .
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B.2 Fourier transform of the linear derivatives

Let ¢ the Fourier transform of andJ = —§? the negative Laplacian. The Fourier
transform of the negative Laplacian ofis

S e

2
_/d27r ( ’Lk) —zk:caqs /dxk2 —zkz¢ /{72¢( )

where we made two integrations by parts.
The Fourier transform of the derivative of the nonlocal teirethe convolution prod-

uct —W % ¢, is
F(—0O « ¢) = —k>U(k)p(k) .

The Fourier transform of the divergence derivativé(0 - v) is
d2 —ik-x n d2 —ik-x n
F(— By (B™)) = / e (0, (Dv )):/ L (k) e B
/k: kpe T gn = ke ke ® = ke (k- 0(F))

The Fourier transform of the derivative of the smoothing teréitv is

2, 2
F(— By (Bry™)) = / %e-l’” (=B (D)) = / ‘;ﬂ( o) e~ 9,

d2
:/ o Fmbime ™™ 0" = 20" (k) -
™
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In this appendix, we detail the stability analysis of the background and tegrfind
under the total phase field HOAC modék = Ey + Eni, whereEy is

D

Eo(gb,v):/gd%{l;&ﬁ‘@qﬁ—k2”(8'11)2—1—[;811:811

+ % (06 - v)2 + W (o, U)} . (C.1)

The local phase field model given by equatidnl) is obtained by settingd,, = 0.
We study, firstly, the first order stability conditions and, secondly, théipibg conditions
for the eigenvalues of the Hessian matfix expressed in the Fourier domain and eval-
uated at the desired stable configurations. the background and the foreground). The
Hessian matrix is given by equation4.3). This will generate constraints on the model
parameters.

The first order stability conditions.e. that the first order variations of the energy be
equal to zero, of the background and the foreground constrain taenpéers of the poten-
tial W as the follows:

A
Nop = —1 — 7222 — o1, (C.2)
A2 A1
Aop = 22 221y c3
01 4 4 03 5 ( )
A2z A1
Nop = 222 22\ C4
02 1 1 04 (C.4)

Thus the number of free parameters of the potemtiak reduced fron¥ to 4.

The second order stability conditions, that the Hessian matrix be positivetdefi the
desired local minima, give upper and lower bounds for the parametersvalbe Hessian
matrix is given by equation4(3). I is positive definite iff its eigenvalues are strictly
positives for all frequenciek . It is simpler to study the three invariants Bfgiven below
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instead of the eigenvalues. The positivity conditions of the eigenvaluesgaiealent to
those of the invariants. A statey, vy) is stable iff the 3 invariants off evaluated at this
point are strictly positive for all frequenciés The 3 invariants of{ are

I =tr(H) = Ay(k - v0)? + Dyk? + 2L, k% + 202 + [D — BG(k)|k® + Fy1 + 2F» |

o 1 r\ 2 72
Ih=3 (tr(H) tr(H ))
= (Dyk? + 2L k% + 2F5 + 203) | Ay(k - v0)2 4 [D — BG(K)|K? + Fi1 +Lyk? + Fay
Y X
— (Lok? 4 Fao)? — FA08 4+ 2Dy (k x v0)?
13 = det(I:I)

— (Av(k: o) + [D — BG(k)|K* + F11> ((F22 + Lok?)(Dyk? 4 2L, k2 + 2Fy 4 207)

— (Fyy + Lyk*)? + 2D, (k x vo)2> — F2[(Fog + Loyk*)vE + Dy(k x 19)?],

where tr andlet are the trace and the determinant of a matrix respectivelg, the cross
product between two vectors. The invariants can be written as

L=X+Y>0Vk,

Iy = Y/(X + Lyk? + Fpo) 4 2D, (k x v9)? — (Fog + L,k*)? — FA0E > 0 Yk |

I3 = X[(Foo + Lok*)Y — (Foa + Lyk?)? + 2Dy (k x v)?] — Fiy[(Fa2 + Luk®)v
+ Dy (k x v9)%] > 0 Vk .

First, we study the case &f= 0. The eigenvalues off are

AL = Fag
1
)\2 = 5 (F—I—FH — \/(F— F11)2 —|—4F122U8> ,

1
Ay = 5 (F+F11 + \/(F* F11)2 +4F1221)8> ,

wherel’ = Fyy + 21;3. The stability conditions require that, firgt;; > 0 and, second,
0 < \o (because\s < \3) which givesF' + Fy; > 0 andFFy; — FZ > 0, the latter gives
Fy1 > 0 becausd” > 0. Then, the inequality systefst, which corresponds th = 0, is

Fi1 >0,
S() =< Fy >0 R
Fii(Fye +203) — FHvgE > 0.
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The positivity conditions of th8 invariants are then summarized as

X+Y >0Vk,
Y (X + Lyk? + Fay) 4+ 2Dy (k x 19)? > 0 Vk ,

o Y (X + Lyk? + Fao) 4+ 2Dy (k x v9)? — (Fag + Lyk?)? — FA0¢ > 0 Vk
X[(Fag + Lyk?)Y — (Faa + Lyk?)? + 2Dy (k x v9)?] > 0 Vk ,

X[(Fag + Lyk?)Y — (Fag + Lyk?)? 4+ 2Dy (k x vg)?]

—F2[(Foa + Lpk®)v¢ + Dy(k x v9)?] > 0 Vk .

The fourth inequality is satisfied X > 0 becausdba (Y — Fs) > 0. And due toY” > 0,
we get

X > 0VEk,
Y(X + Lok? + Faz) + 2Dy (k x v9)* = (Fo + Lok?)* = Fiyud > 0 Vk
X[(Fo2 + ka2)Y — (Fyo + ka,2)2 + 2D, (k x vo) ]
—F2[(Foa + Lyk®)v¢ + Dy(k x v9)?] > 0 Vk .
(C.5)

To conclude, the poinfgg, vg) is stable iff S is satisfied. The zero frequency con-
straints,i.e. the systemSy, involve only terms coming from th&’. A way to solve the
constraints given by the systefh(i.e. the form f(k) > 0 Vk) can be treated in 2 steps: 1)
prove thatf is bounded below &t = k* and 2)f(k*) > 0. A way to prove that a function
f is bounded below is to prove th#thas a minimum ak*.

C.1 Stability of the background
When(¢o, v9) = (—1,0), i.e. (¢o, v, v3) = (—1,0,0), the functionsF;; become

F{y = 3Xos — 2X03 + Aoz
A
Fy, = %—)\214—)\207
and replacing the parameteks, and \yy by their expressions given byD(2), (D.3)
and 0.4), one can get

Aog A1
F = 2X\g — 203 — —2 — ==
1= 2A04 — 2h03 — 1
The systems, andS are reduced to
Fb >0,
Sp=4 Fb >0, (C.6)

Xb>0.
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C.1.1 Particular case:L, =0and ¥ = K,

Here, we restrict the stability calculations to the case in whiich= 0 and the interaction
function¥ = K, whereK| corresponds to a modified Bessel function of the second kind
of order0. Its Fourier transform is given by (k) = 1/(m?2+k?) wherem is an interaction
range parameter in the Fourier domain like the paraméierthe spatial domain given in
equation 8.2). Replacing¥ by its expression, one can write

Dk* + (Dm? — B)k?

XU(k) = m? + k2

+F1b17

and its derivative with respect tig while introducing the variabley = k2, is 8)(82(’“) =
k@X (w)

where

0Xb(w)  Dw? +2Dm?*w — (B8 — Dm?*)m?
ow (m? 4+ w)?

:O’

which has one solution* = (—Dm? + m/DpB)/D if B > Dm?, andX®(w*) = F}, —
(vB—m+v/D)? < Xb(0) = F}, . So the constraink®(k) > 0 Vk becomes:

if 3< Dm? thenX?(0) = Ff, >0
if Dm? < 3 < (mvVD+/F!)? thenX®(w*) >0 (C.7)
if 3> (mvVD+/FP)? then X®(w*) <0,

and so the conclusion isY®(k) > 0 Vk is satisfied ifd < 8 < (mv/D + \/ F},)2.

C.2 Stability of the foreground

When(¢g, v) = (1,1),i.e.(do, [vo]) = (do, /(v§)? + (v3)?) = (1, 1), the functionsF;;
become

A
F{1:%+3)\04+2)\03+/\02,

A
F;2:1+%+)\21+)\207
F1f2 = (A2 + A1),

and replacing the parametexg, and Ao by their expressions given byp(4) and 0.2),
one can get

A A
11—2>\04+2)\03+%—%,
F2fz:Ov

F1f2 = (A2 + Aa1) .
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Due to the Euclidean invariance af, we putvy = (1,0) and so(k - v9)? = k? = w,
and(k x vp)? = k2 = wy wherew; + we = w. The systems, andS are reduced to
Fl >0
2Pl — (Ff,)? > 0
X! >0Vk
7! =2x1 — (FL)2 > 0Vk,

Sp = (C.8)

becaus&f X7/ +2D,(k x v)? > 2X/. Of course, the fourth constraint implies the third
one.

C.2.1 Particular case:L, =0and ¥ = K,

The minima ofZ/ are the same as thoseX¥f ; so we seek the minima €7, After simple
calculations, one can write

Dw? 4+ Aywyw + Aym?w; + (Dm? — Bw

X7 (ky, ke) = X (w1, w) = 2+ w +F1fl'
The partial derivatives ok / can be computed as
! !
0X (kla k2) - 9% 0X (w17 ) (Cg)

ok; - ow; ’
wherei = 1,2 andD = D + D,,. After calculations, we obtain
OX T (wi,w)  (Ay+ D)w? + 2(A, + D)ym?w + (Aym? + Dm? — B)m?

== = 0
Owq (m? + w)?
OX/ (we,w) Dw? + 2Dm?*w + (Dm? — 8)m? _0
Ows B (m? + w)? -
which are equivalent to
(w+m?)? =0
Dw? + 2Dm?w + (Dm?2 — B)m?2 =0,
where only the second equation has, wh&n> Dm?, a solutionw* = —m? +

my/ (B + D,m?)/D becausev = k? > 0. Then, the solutions of the equations given
by (C.9) are as follows:

if 3< Dm? then(kt,k3) = (0, 0) >0

if Dm? >3 then(kf, k3) = (0, \/w* — w}) = (0,vVw*) > 0.
The constraintZ/ (ki, ko) > 0, Vky, ks is then equivalent t&/ (w*) = —2D(m — T')? +
2F}, — (F1,)2 > 0 wherel’ = \/(6 + D,m?)/D. We then get

if 6< Dm? thenz/(0) = 2F{, — (F/,)? >0

2
if Dm? < <D <m + \/(2F1f1 — (F{2)2)/(2D)> — Dym? thenZf(w*) >0

2
if 3> D (m + \/(2F1fl - (F{2)2)/(2D)> — D,m? thenZ/ (w*) < 0,
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and so the conclusion is: ,
Zi(k) >0, Vk=0<pB<D (m + \/(2F1f1 - (F{2)2)/(2D)> — Dym?.
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In this appendix, we detail the stability calculations for the directed long bdiestin
chapterb.

D.1 Energy of the long bar

D.1.1 Contribution of the local term

The local phase field model is
Epo = / d%{ %aqﬁ 06 + W(p,v) + % (0-v) + % v 81}} , (D.1)
Q

whereW (¢, v) = W($,v) — W(—1,0), where the generic form d/ (¢, v) is given by
equation 4.2). The first order stability conditiongge. that the first order variations of the
energy equal zero, of the background and the foreground canteaparameters di as
the follows €f. AppendixC):

A
Ayg = —1 — % — A2t s (D.2)
A22 A1
__fe A D.
Aot 1 1 o3 (D.3)
A A
Mg = — 22 22 3\, (D.4)
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The local energy contributions & and R are

+oo wo ~
EO,R = / / dz1dzo W(quyvm) = L(wﬂ - w)(W(¢maUm) - W(_17 0)) s

+o0o B
Eyr= / /Rd331d552 W(-1,0)=0,

and due to the symmetry of the bar, the contribution®ef; and Ro are equal:

Eorop =

+oo — — ~
/ / dﬂf]_ de (¢m * 1) (¢m ks 1> + & Cm o + W(¢RBar’ URBar)

w w 2w  w

¢m )2 Lyv

2 —+00 w
2 " + L— 5 ;’; LwT/V(l,O)Jr/_OO /0 dz1 dzo W(dRg.., VRpar) »

where

+o0 w
/ / d$1d$2W(¢RBar7vRBa'r) =
oo Jo

“+o00 w 4 4 1 2 1
/ / dridxs {vmm42 =+ [)\22 <¢m + To — 1) + Aot <¢m + To — 1)
—x Jo 4w 2 w w

223 A 1 4 LA 1 ’
+ Ago| mT2 4 20 bm + xy —1 =2 ¢m+ ry—1
2w? 4 w 3

A m+ 1 2 1
) <¢ 2_1> W <¢m 2_1>}
—+00 v 1,4 (¢m+1
/ / d:zlde{ 24 [2< T —
+ A lxg—x2 + Aooz2 ﬁ—l—@ ¢m+1m —1 !
2 w 2P 072092 g w
Om +1

A m+ 1 5 A 2 m+ 1
SR ¢ :E2—1> —1-32( x2—1> +)\01<¢w 962—1)}

w”;f 1)x§ + x%)

w
_pfneh | [Ae (@t s (Ontloh 2} ((OntDrf a3
20w 2 ow 2w 3 4w 3
23] 02 Aoa W Om + 1 N3 w Om + 1 4
N2 | Im_ . 204 m —1 — - -1
+203]w2+20¢m+1< w2 >+12¢m+1< w 2 )

Aoz w Om +1 S w Om +1 1Y
202 1) 420 1
T oI\ w 2T ) T2 i 0

_ Lw(vy, v, Doy Om | 1 dm 1, 2X0
=S5 (e -G oy -9
F 20 (8 4 2, — b 1)+ 2B (g 16 )
+@<¢m b+ 1)+ Aar(6 ~ 1)
Lw

- 7C(¢m7 Um) )
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and the total contribution akRg and R is then

Eore = 2ERqp,0

D(¢m +1)? + Ly

Combining the local term contributions, the total local bar energy becomes

Eo(®Rpar» VRpar) = Eo.r + Eg g + Eo.Re
= Lwo (W (¢m,vm) — W(-1,0))
+ Lw (C(¢m, vm) — W(m, vm) — W(—=1,0))
2 2
w

where we define the total local bar energy per unit lergthv, wy) = Ey/L, which can
be written as

)

eo(w, wO) = Wo (W(¢m7 Um) - W(_l) O))

V(d)my’Um)
+w (C(Qbma Um) - W(Qbrrn Um) - W(—L 0))
w(Pm,vm)
D(¢m + 1)2 + va12n
+ )
w
where
o Aoa Aoz | Aoz
W(—l,O) - 4 3 + 2 )\01

Aoa 2X03 Ao Aog .

4 3 8 8 ’

I Ao Aa1 A0 Aoa Aoz Aoz
W(1,1) = > 4 222 221 A2, 204 403 | A0,
L=+ +5 +5 + 5 +5+5 H

_ 1 Qo Zhs 3he 3Aar
4 4 3 8 g
lm, vm) = _32@(;); * U;Q” <A1202(¢m +1)(=3¢m +2) + %(—3% +1)+ ;)
+ %(Cbm + 1)%(=9¢2, + 12¢, + 1)
20 g )2+ 1)

1 2 .
+ ﬂ()‘” + A1) (dm +1)7 5

4

2
V(om,vm) = —2 + 1);”()\222(%1 — 1)+ Xoi(pm, — 1) — 1>

<

B

+ %(«ﬁ?n -1+ %wm +1)%(6m — 2)

- 1()\22 +A21) (dm + 1)? 5

oo
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D.1.2 Contribution of the nonlocal term

The contribution of the nonlocal phase field term given by equatBo? @ppears only
along the boundary occupied by the regi®p:

BnL(6Ran,) = Bf/md%d?’ ot Wate) - aey w(E=21)

S
—//R . d%d%’@('”““ﬂ

— [/m/m/ dxq ') dxo

{/w 2, o <\/(a:1—a:1)d+ x2—:c2)2)

0

[ g (T
/%ii (M N )}
— / / / / dxy d’y dy daly

{\P<\/(:c1 —xh)? + (2o — ) )

d

oY IR |

d

where(z1, z2) and(x, ) are the coordinates afandz’ respectively and is the normal
unit vector. Making the change of variables= (z; — 2)/d andt = (2!, — x2)/d, one
has

ENL($Rp.,) = —LdB(¢m + 1)*Goo(tip, @) |

where & = w/d, Wy = wo/d, Goo(io,®) = Z5loo(io, ), loo(tbo, ) =
f+ dz I (g, w, z) and

/d@/w " { ( z2+t2>—\11< z2+(w0+t)2>}.

We define the nonlocal energy per unit lengtleas = Enr,/L.

D.1.3 Total bar energy
The total phase field energy per unit length of the bar is
ep (o, W, Pm, vm) = €0 + eNL

D(¢m + 1)+ Lyv2,
W

= dlDQV(¢m, Um) + dwﬂ(¢m7 Um) +d
— dB(pm + 1)*Goo (1o, W) |
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wherew, = wp/d, D = D/d?, L, = L,/d?. The interaction rangd appears as a
multiplicative term in the bar energy and does not change the energy minimaui/ie
equal tol for better readability.

D.2 Stability constraints

D.2.1 First order stability conditions

The first order stability conditions consist of putting the first partial @arres of the bar
energy equal to zero. The first partial derivatives are:

8613(71/07 W, Py Um)

= V(Gm, vm) — B(dm + 1)*G1o(tho, ®) ,

O
Oep (Wg, W, G, Um D m+12—|—ﬁvv,2n -
Gl (f“)?i)(b ) (P V) — (@ w)g — B(ém + 1)2G11(w07w) ]

8613(@210, W, Py Um)

Opm

= 1@0V¢(¢m, Um) + wu¢(¢ma Um) - 2B(¢m + 1)G00(’LZ)0, UA})

+2D(¢Wi+ 1) ’
w

Lyvm,

Ben (i
ep(Wo, W, P, Vm) = WoVy (P, V) + Whte (Prms Um) + 2 R

Ovp,

where

8N(¢ma Um)

ﬂ¢(¢m,vm) = 8¢m

A A
- 306‘( 1863, — 96, + 166m +7) + 7 (=367, — 20m + 1)

+ E(/\zz + A1) (¢m +1) 5

8 my ¥Ym
i (Gms V) = M(gv V)
31) 3¢m Qbm

_ Pm 1\
= —l—vm<)\22( 0 " 10t )+)\21( 2+6)+3)7

Ov(bm, Vi)
Odm,

2
- 77” (A220m + A21) + Aoa (9, — m) + Aos(dr, — 1)

V¢(¢m7 Um) =

(A22 + A21)(Pm + 1) :
((Z)m, Um)

OV,

=03, + Um (A” (62, — 1) + Aot (¢ — 1) — 1) :

Q»,»Jkﬁ—‘

Vv(¢m» vm) =
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o OGoo (o, ) 2 [t @ /
a = Zooolto,®) _ _ dz dzs d
10(to, W) 9, 3 | de day da
ﬁ}o + :L'/2 — T2 / 9 R , 9 )
{\/z2+(1210+:c’2—:1:2)2\1j \/z ¥ oty =) ’
0G0 (W, w
G (i, ) = 250000 0)
4 . 2 Olyo(wo, w 2 . 2 .
—3100(to, @) + AQOOEMO) = = Goo(to, @) + —5 I1 (wo, W) ,
wherel;; = 9lo = [5°° g, 2000.0:2) gng

Owo

aw aw{/ / ds < NER (x;—x2)2) —\1/<\/22+(w0+x'2—x2)2>}
_ [/D dal, <\/22—|—(a:2—xg)2> —\II<\/z2+(1Do+x’2—a:2)2>L2:w
+/Owdx2;w /Owdxé \IJ<\/,22+($/2—:C2)2> _q/<\/z2+(w0+x/2—x2)2)
—/Owd:):é m( 22+(x’2—121)2> —\Il<\/z2+(’lf)o+:t’2—1f))2>
+/0wd:c2 w( 22+(1i)—x2)2) —\I’(\/22+(ﬁ)o+li)—x2)2>
:2/Owdx2 qf( 22+(x2—w)2>

—/Owdmg \I/<\/z2+(12)0+x2—12))2> —/Owczgc2 \If<\/22—|—(1210+w—x2)2)
:2/0wdt w(Jm) —/wﬁwdt w(@) .

Wo—w

Putting the first partial derivatives of the bar energy equal to zeaéar some math-
ematical manipulations, one finds th@arameter constraints:

e tn) + 2 o) + 5 )
+ g [gbm (B vm) + 2 vo(6m, vmﬂ

m [Goo (o, W) + G0 (o, w)] = 0 ; (D.5)
= ot e ) ©8)
F = == [0 (s 0m) + D110 (s )] (0.8)

v =
2Um,
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D.2.2 Second order stability conditions

The second order stability condition says that the Hessian mAisj%, evaluated at the
desired physical parametefg, w, ¢, v) = (o, w, 1,1), must be positive definite.
Hg,, is given by

826p 8281:) 326p 82€p
aﬁ)g Jwog Opm g OV 0o
826p 82613 82613 (92€p
_ Qwowg Ow? Opm Ow OV, OW
HBar - d%ep d2ep (g ep d?%ep
0Pm 0wy  OdPmOow 0¢2, OV Obm,
d%ep d2ep d%ep d2%ep

Ovm Oy  OvmOw  OvmOdpm ovZ,
The second order variations of the bar energy are

N
enllo, @ Om, 0m) _ g5, 4 1)2Gi (i, 1) |

owd
32613(%01102’1}]‘?’”’") = B(¢m + 1)>Gay (1o, ®) ,
82ep(1;((;;11fg£;mvm) = Ug(dm> Om) — 2B(dm + 1)Gro(tdo, ©)
626P(w0ég;¢m,’l)m> _ 215(¢m +;)32 + L2, — B(bm + 1)2Gaa (i, ) ,
82€P(lg(;;@ézm,vm) — 16( by Um) — 2D¢mw‘; 1 2B(¢pm + 1)G11 (w0, w)
8261’(7’22}’58’27”’ ) iy (i) — 2L
826P(w%$%;¢m7 Vm) _ WoVp(Pm, vm) — 2BGoo(Wo, W) + Whepp (Pm, vm) + 23 ;
8261}(?3:2%2”’ Um) _ WoVyg(Pms Um) + Witpg(Pms Um)
where
tigg(Pms Um) = W
_ —%Amv?n n %(_Qw; — 9 +8) — %(&bm +1)
+ %()\22 + A1) ;
poo(Pm; Um) = W
:_91;’%1+/\22(—3f§”—%+;)+A21(—?+é)+;?
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82N(¢m7 ’Um)
V0P,

= Uy <)\22(_&¢m _ i) _ )‘21> ;

Mv¢(¢m7 'Um) =

) 10 2
aQV((bm? 'l)m)

o7,
2

v 1
= )\22?771 + X0 (3¢2, — 1) + 2X03bm — Z()\ZQ + Aa21) ;

82V(¢TI’L7 Um)
81}2

V¢¢(¢mv ’Um) =

Vvv(¢m7 'Um) =

= 3v; +f<<z>m 1)+ A1 (m — 1) = 1
((bm?Um)
6Um6¢m
= Um (A22dm + A21) ;
. 0G10(wo,
G0 (o, W) = _w
+o00o

Vv¢(¢ma 'Um) =

%2 / \/ 2 . I 2
{(22+ (o + 7:52)2)3/2‘1’ ( 22 + (o + oy — x2) )

(’lf)() + .1'/2 — 1‘2)2 R
e (1170 . x2)2 v’ \/22 + (wo + ) — x9)?

—I—oo W — xz
dacg
U)2 wWo—T2
2
/ 2 2 " 2 2 .
{(22+t2)3/2\1/ (\/z +t)+z2+ v (V24 )}
. OGo(o,w)
GQl(’LUO,’LU) - T
2

+oo t
Iy = / / dz dt o + \I/’( 22 + (o + t)2>
22+ (wg +1)?

/+OO /w0+w dt dz \II' <\/ 22+ t2> :
+

Wo—w
o 0G11 (o,
Gaa (o, w) = uawo)

8 2
— 12)3111 + ﬁbz ;

“+00
Ioyo = / dz {2\11(\/ 22 + Tf)2>
0
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D.2.3 Derivatives of the functionk

To compute the derivatives of the modified Bessel function of the secioldoik orderv
denotedK, (z), we use these formulae:

812052) =—-Kq(z2),
8K8VZ(Z) _ _% (Ky-1(2) + Ky11(2)) -

We denote ori the derivative with respect te. Using the above formulae, one can
compute the first three derivatives &% (z):

Ki) = —Ki2),
= 5 (Ko(e) + Ka(2))
K§() = =5 (K1(2) + Ko=)

Kg(2)
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Conference papers

2010

1. A. El Ghoul, I. H. Jermyn and J. Zerubia. A theoretical and numestaly of a
phase field higher-order active contour model of directed netwofCV, Asian
Conference on Computer VisioQueenstown, New Zealand, November 2010.

2. A. El Ghoul, I. H. Jermyn and J. Zerubia. Segmentation of netwoik® fYHR
remote sensing images using a directed phase field HOAC mi&RRS Technical
Commission Il Symposium on Photogrammetry Computer Vision ancelAuagly-
sis. Paris, September 2010.

2009

1. A. El Ghoul, I. H. Jermyn and J. Zerubia. A phase field higher+oadéve contour
model of directed networksin 2nd IEEE Workshop on Non-Rigid Shape Analysis
and Deformable Image Alignment, at ICCK{oto, Japan, September 2009.
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higher-order active contours for network extraction from VHR satellitegessE U-
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2008

1. A. El Ghoul, I. H. Jermyn and J. Zerubia. Phase diagram of a longihder a
higher-order active contour energy: application to hydrographic ar&textraction
from VHR satellite imagedCPR, International Conference on Pattern Recognition
Tampa, Florida, USA, December 2008.
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2010

1. Phase fields for network extraction from images. 24 August 2010s TWionisia).
Invited by Professor Amel Benazza at URISA (Sup’Com).

2. Phase fields for network extraction from images. 19 May 2010, Sdjftiaolis
(France). SHAPE Working Group meeting at INRIA Sophia Antipolis.

3. A phase field higher-order active contour model of directed netsv@& April 2010,
Sophia Antipolis (France). ADSTIC Seminar at I3S.

2009

1. Shape modelling via phase field higher-order active contours. 220@9, INRIA
Rocquencourt Paris. ERCIM MUSCLE WG Meeting.

2. Shape modelling via Higher-Order Active Contours and Phase Fiefgjdication to
hydrographic network extraction. 6 April 2009, Tunis (Tunisia). Inyity Professor
Amel Benazza at URISA (SupCom).

3. Shape modelling via Higher-Order Active Contours and Phase Fieldan@ary
2009, Tunis (Tunisia). Invited by Doctor Ali Saada at LAMSIN (ENIT).

2008

1. Shape modelling via Phase Field Higher-Order Active Contours: Stahildlysis
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2. Shape modelling via Phase Field Higher-Order Active Contours: Stahilalysis
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3. Shape modelling via Phase Field Higher-Order Active Contours: Stahilélysis
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CNES Workshop on Information Extraction and Scene Understandindyléter
Resolution Images.

4. Phase diagram of a higher-order active contour energy. 11hv2068, Sophia
Antipolis (France). ADSTIC Seminar at I3S.

5. Phase Field Higher-Order Active Contours For Object Extractian fRemote Sens-
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Information Mining: pursuing automation of geospatial intelligence for emvirent
and security.

6. Tree detection and road network extraction using higher order actiteurs. 10-11
January 2008, CNES Paris. ORFEO Methodology Meeting.
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1. Phase diagram of a higher-order active contour energy. 23H$@®007, Beijing
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team at LIAMA (Chinese Academy of Sciences).
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ABSTRACT

This thesis describes the construction of an undirected netweagkréad network) model, based on the
recently developed higher-order active contours (HOACs) andepfielsls, and introduces a new family of
phase field HOACs for directed networks.d. hydrographic networks in remote sensing imagery, vascular
networks in medical imagery). In the first part of this thesis, we fogushe stability analysis of a HOAC
energy leading to a ‘phase diagram’. The results, which are confioyedimerical experiments, enable the
selection of parameter values for the modelling of undirected networks.

Hydrographic networks, unlike road networks, are direcitedthey carry a unidirectional flow in each
branch. This leads to specific geometric properties of the branchgsaaticlilarly of the junctions, that it is
useful to capture in a model, for network extraction purposes. We tneda@p a nonlocal phase field model
of directed networks, which, in addition to a scalar field representingiandyy its smoothed characteristic
function, and interacting nonlocally so as to favour network configurgtioontains a vector field representing
the ‘flow’ through the network branches. The vector field is stronglyareged to be zero outside, and of unit
magnitude inside the network; and to have zero divergence. This gloetwork branches; controls width
variation along a branch; and produces asymmetric junctions for whighit@oming branch width approxi-
mately equals total outgoing branch width. In conjunction with a new interafitioetion for the scalar field,
it also allows a broad range of stable branch widths. The new proposddlrs applied to the problem of
hydrographic network extraction from VHR satellite images, and it oupers the undirected network model.

Keywords: Shape priors, higher order active contours, phase diagram, fie&dse undirected networks,
directed networks, road networks, hydrographic networks, reneitsrsg.

RESUME

Cette these décrit la construction d’'un modele de réseaux non-direglsqeng. réseaux routiers), fondé
sur les contours actifs d’ordre supérieur (CAOSSs) et les champbatepléveloppés récemment, et introduit
une nouvelle famille des CAOSs des champs de phase pour des rélesmtionnels (e.g. réseaux hydro-
graphiques en imagerie de télédétection, vaisseaux sanguins en inmgditale). Dans la premiére partie
de cette thése, nous nous intéressons a I'analyse de stabilité d'unie éeeygpe CAOSs aboutissant a un ‘di-
agramme de phase’. Les résultats, qui sont confirmés par desesqas numériques, permettent une bonne
sélection des valeurs des parametres pour la modélisation de réseadixentionnels.

Au contraire des réseaux routiers, les réseaux hydrographiqueslisectionnels, i.e. ils contiennent
un ‘flux’ monodimensionnel circulant dans chaque branche. Celdiqog des propriétés géométriques
spécifiques des branches et particulierement des jonctions, prepgéié est utile de traduire dans un
modele, pour I'extraction de réseaux. Nous développons donc uilendé champ de phase non-local
de réseaux directionnels, qui, en plus du champ de phase scalaireadécne région par une fonction
caractéristique lisse et qui interagit non-localement afin que des acatiigns de réseaux linéiques soient
favorisées, introduit un champ vectoriel représentant le ‘flux’ desmbranches du réseau. Ce champ vectoriel
est contraint d’étre nul a I'extérieur, et de magnitude égale a 1 a I'iniédie réseau ; circulant dans le sens
longitudinal des branches du réseau ; et de divergence tres faiele. plonge les branches du réseau ;
contrle la variation de largeur tout au long une branche ; et forme desgas non-symétriques telles que la
somme des largeurs entrantes soit approximativement égale a cdbegdess sortantes. En conjonction avec
une nouvelle fonction d’interaction pour le champ de phase scalaire,délmassure aussi une vaste gamme
de valeurs des largeurs stables des branches. Ce nouveau moteéppli€ué au probleme d’extraction de
réseaux hydrographiques a partir d'images satellitaires trés hauletig@so

Mots clefs: A priori de forme, contours actifs d’ordre supérieur, diagrammepladagse, champs de phase,
réseaux non-directionnels, réseaux directionnels, réseaux rouéigsesux hydrographiques, télédétection.



