
HAL Id: tel-00550728
https://theses.hal.science/tel-00550728

Submitted on 29 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Domain Decomposition Methods for Darcy
flow in heterogeneous media

Mikolaj Szydlarski

To cite this version:
Mikolaj Szydlarski. Algebraic Domain Decomposition Methods for Darcy flow in heterogeneous media.
Mathematics [math]. Université Pierre et Marie Curie - Paris VI, 2010. English. �NNT : �. �tel-
00550728�

https://theses.hal.science/tel-00550728
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT

DE L’UNIVERSITE PIERRE ET MARIE CURIE

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES

DE PARIS CENTRE

Spécialité

MATHÉMATIQUES APPLIQUÉES

Présentée par

M. Mikołaj SZYDLARSKI

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse:

ALGEBRAIC DOMAIN DECOMPOSITION METHODS

FOR DARCY FLOW IN HETEROGENEOUS MEDIA

Soutenue le 5 Novembre 2010 devant le jury composé de:

Président: M. Frédéric HECHT Laboratoire J.L. Lions (UPMC)

Rapporteur: M. Bernard PHILIPPE INRIA (Rennes)

Rapporteur: M. Luc GIRAUD INRIA (Bordeaux)

Directeur de thèse: M. Frédéric NATAF Laboratoire J.L. Lions (UPMC)

M. Roland MASSON IFP Energies nouvelles

M. Pascal HAVÉ IFP Energies nouvelles

MIKOŁAJ SZYDLARSKI 2

“Receive my instruction, and not money: chose knowledge rather than gold.

For wisdom is better than all the most precious things: and whatsoever may

be desired cannot be compared to it.”

THE BOOK OF PROVERBS 8:10-11

To my father. The first true scientist I have met.

MIKOŁAJ SZYDLARSKI 4

Acknowledgements

This thesis arose in part out of three years of research that has been done since I came to

France. By that time, I have worked with a number of people whose contribution in assorted

ways to the research and the making of the thesis deserved special mention. It is a pleasure

to convey my gratitude to them all in my humble acknowledgment.

In the first place I would like to record my gratitude to Fédéric Nataf for his supervision,

advice, and guidance as well as giving me extraordinary experiences through out the work.

Above all and the most needed, he provided me unflinching encouragement and support in

various ways. His scientist intuition and wisdom inspire and enrich my growth as a student,

a researcher and a scientist want to be. I am indebted to him more than he knows.

Many thanks go in particular to Pascal Havé and Roland Masson. I am much indebted

to Pascal for his valuable advice in science discussion, supervision in programming and fur-

thermore, using his precious times to read this thesis and gave his critical comments about

it. I have also benefited by supervision and guidance from Roland who kindly grants me

his time for answering of my questions about the Black Oil model and porous media flow

simulations.

I gratefully thank Bernard Philippe and Luc Giraud for their constructive comments on

this thesis. I am thankful that in the midst of all their activity, they accepted to be members

of the reading committee.

I would also acknowledge Thomas Guignon, whom I would like to thank for taught me

how to work with IFP format for storage a sparse matrices originating from the real simula-

tions of the porous media flow. It was a pleasure to work with an exceptionally experienced

scientist like him.

Collective and individual acknowledgments are also owed to my colleagues at IFP whose

present somehow perpetually refreshed, helpful, and memorable. Many thanks go in par-

ticular to Carole Widmer, Nataliya Metla, Eugenio Echague, Ivan Kapyrin, Gopalkrishnan

Parameswaran, Riccardo Ceccarelli, Safwat Hamad, Hassan Fahs, Florian Haeberlein and

Hoel Langouet for giving me such a pleasant time when working together with them since

I knew them. Special thanks to Daniele Di Pietro for the coffee break meetings and dry hu-

mour about scientist’s life. I also convey special acknowledgement to Sylvie Pegaz, Sylvie

Wolf and Léo Agélas for being such good neighbours in the office, who always ready to lend

me a hand. I would like also thank to Tao Zhao from LJLL for his generous help in perform-

ing a number of numerical experiments which results, thanks to his help some death-lines

weren’t so scary.

I was extraordinarily fortunate in having Chiara Simeoni as my master degree supervisor

at the University of L’Aquila . I could never have embarked and started all of this without her

prior teachings and wise advices. Thank you.

Where would I be without my family ? My parents deserve special mention for their in-

separable support and prayers. My Father, Marcin Szydlarski, in the first place is the person

who put the fundament my learning character, showing me the joy of intellectual pursuit

ever since I was a child. My Mother, Danuta, is the one who sincerely raised me with her

MIKOŁAJ SZYDLARSKI 5

caring and gently love. Karolina and Anna, thanks for being supportive and caring siblings.

Finally, I would like to thank everybody who was important to the successful realisation

of thesis, as well as expressing my apology that I could not mention personally one by one.

MIKOŁAJ SZYDLARSKI 6

Contents

Introduction 12

Definition of problem . 12

Future of reservoir simulations . 13

Objective . 14

Context of work . 14

Plan of report . 14

1 State of Art 18

1.1 Original Schwarz Methods . 19

1.1.1 Discrete Schwarz Methods . 20

1.1.2 Drawbacks of original Schwarz methods 23

1.2 Optimal Interface Condition . 24

1.3 Optimised Schwarz Method . 26

1.3.1 Optimal Algebraic Interface Conditions . 26

1.3.2 Patch Method . 28

1.4 Two-level domain decomposition method . 30

1.5 Discussion . 32

2 ADDMlib : Parallel Algebraic DDM Library 34

2.1 Interface for Domain Decomposition and Communication 35

2.1.1 Distributed Memory Architectures . 35

Multi-core Strategies . 36

2.1.2 Data Distribution in ADDMlib . 38

2.2 Linear Algebra . 39

2.2.1 Vector (DDMVector) . 40

2.2.2 Matrix (DDMOeprator) . 40

Structure and Sparse Storage Formats . 41

Matrix-Vector Product . 43

2.2.3 Preconditioner . 43

ADDM Preconditioning . 44

2.3 Overlaps . 45

MIKOŁAJ SZYDLARSKI 7

CONTENTS

2.3.1 The two domain case . 46

2.3.2 Implementation . 47

2.3.3 Numerical experiments . 49

2.4 Partitioning with weights . 50

2.4.1 Implementation . 52

2.4.2 Numerical Experiments . 53

2.5 Modified Schwarz Method (MSM) . 57

2.5.1 The two sub-domains . 57

2.5.2 The three sub-domains case . 57

2.5.3 Implementation . 59

2.6 Sparse Patch Method . 60

Patch parameters . 60

Patch connectivity strategy . 62

2.6.1 Parallel implementation . 63

2.6.2 Numerical Experiments . 63

3 Enhanced Diagonal Optimal Interface Conditions 66
3.1 Sparse approximation of optimal conditions . 66

3.1.1 General case for arbitrary domain decomposition 69

3.1.2 Second order β1̃c 1̃c
operator . 71

3.2 Retrieving harmonic vector from solving system 72

Right preconditioned system . 73

Retrieving approximate eigenvector from GMRES solver 74

3.3 Parallel implementation . 75

3.3.1 Implementation of β operators . 75

Approximated eigenvector . 75

Filling β operators . 76

3.3.2 Computing Sedoi c
Γ̃IΓ̃I

. 76

3.4 Numerical results . 78

3.4.1 EDOIC and quality of eigenvector approximation 79

3.4.2 EDOIC versus number of subdomains . 80

4 Two level method 84
4.1 Abstract Preconditioner . 84

4.2 The Coarse Grid Space Construction . 86

4.3 Parallel implementation . 87

4.3.1 Matrix-vector product for compose operator Ã? 88

4.3.2 Matrix-vector product for preconditioner M̃−1
? 88

4.3.3 Coarse grid correction - Ξ . 89

Operation [DDMOperator][SVC] = [SVC] . 89

Operation [SVC]T[DDMVector] = [v ∈RnV N] 90

Operation [SVC][v ∈RnV N] = [DDMVector] 91

Operation [SVC]T[SVC] = [E ∈RnV N×nV N] . 91

MIKOŁAJ SZYDLARSKI 8

CONTENTS

4.4 Numerical results . 93

4.4.1 Successive and Adaptive two-level preconditioner 94

4.4.2 How to read plots . 94

4.4.3 Two-level preconditioner versus quality of eigenvectors approximation

and size of coarse space . 94

4.4.4 Two-level preconditioner versus number of subdomains 96

4.4.5 Two-level preconditioner with Sparse Patch 98

2D Case . 98

3D Case . 99

4.4.6 Reservoir simulations - experiment with Black Oil model 101

5 Numerical Experiments 116
5.1 3D Laplace problem . 116

5.1.1 Setup of the Experiment 5.1 . 116

High Performance tests . 118

5.2 Algebraic Multi Grid method as a sub-solver in ADDM 128

5.2.1 Setup of the Experiment 5.2 . 128

5.3 Real test cases . 132

5.3.1 IFP Matrix Collection - pressure block only 132

5.4 IFP Matrix Collection - system of equations . 145

5.5 Black-Oil Simulation: series of linear systems from Newton algorithm. 153

5.5.1 Black-Oil - 60×60×32 . 154

5.5.2 Black-Oil - 120×120×64 . 156

6 Conclusion and Prospects 158

MIKOŁAJ SZYDLARSKI 9

CONTENTS

MIKOŁAJ SZYDLARSKI 10

Introduction

Definition of problem

Porous media flow simulations lead to the solution of complex non linear systems of

coupled Partial Differential Equations (PDEs) accounting for the mass conservation of each

component and the multiphase Darcy law. These PDEs are discretized using a cell-centered

finite volume scheme and a fully implicit Euler integration in time in order to allow for large

time steps. After Newton type linearization, one ends up with the solution of a linear sys-

tem at each Newton iteration which all together represents up to 90 percents of the total

simulation elapsed time. The linear systems couple an elliptic (or parabolic) unknown, the

pressure, and hyperbolic (or degenerate parabolic) unknowns, the volume or molar frac-

tions. They are non symmetric, and ill-conditioned in particular due to the elliptic part of

the system, and the strong heterogeneities and anisotropy of the media. Their solution by an

iterative Krylov method such as GMRES or BiCGStab requires the construction of an efficient

preconditioner which should be scalable with respect to the heterogeneities, anisotropies of

the media, the mesh size and the number of processors, and should cope with the coupling

of the elliptic and hyperbolic unknowns.

In practice, a good preconditioner must satisfy many constraints. It must be inexpensive

to compute and to apply in terms of both computational time and memory storage. Because

we are interested in parallel applications, the construction and application of the precondi-

tioner of the system should also be parallelizable and scalable. That is the preconditioned

iterations should converge rapidly, and the performance should not be degraded when the

number of processors increases. There are two classes of preconditioners, one is to design

specialised algorithms that are close to optimal for a narrow type of problems, whereas the

second is a general-purpose algebraic method. But this kind of preconditioning require a

complete knowledge of the problem which may not always be feasible. Furthermore, these

problem specific approaches are generally very sensitive to the details of the problem, and

even small changes in the problem parameters can penalize the efficiency of the solver. On

the other hand, the algebraic methods use only information contained in the coefficient of

the matrices. These techniques achieve reasonable efficiency on a wide range of problems.

In general, they are easy to apply and are well suited for irregular problems. Furthermore,

one important aspect of such approaches is that they can be adapted and tuned to exploit

MIKOŁAJ SZYDLARSKI 11

0. Introduction

Figure 1: Example of oil reservoir and mesh of complex well

specific applications.

The current IFP solution is based on Algebraic MultiGrid preconditioners (AMG) for the

pressure block combined with an incomplete ILU(0) factorisation of the full system. This so

called combinative-AMG preconditioner is the most serious candidate for the new genera-

tion of reservoir simulators for its very good scalability properties with respect to the mesh

size and the heterogeneities.

Nevertheless, this method still exhibits some problems of robustness when the linear sys-

tem is too far from the algebraic multigrid paradigm (e.g. for strongly non diagonally dom-

inant wells equations or for multipoint flux approximations or non linear closure laws lead-

ing to strongly positive off diagonal terms, or for convection dominated equations). Domain

Decomposition Methods (DDM) are an alternative solution that could solve the above dif-

ficulties in terms of robustness and parallel efficiency on distributed architectures. These

methods are naturally adapted to parallel computations and are more robust in particular

when the subdomain problems are solved by a direct sparse solver. They also extend to cou-

pled system of PDEs and enable to treat in the same framework the coupling of different type

of models like wells equations or conductive faults.

Future of reservoir simulations

Continuously increasing demand for accurate results from reservoir simulations indicate

usage of more dense and complex meshes along with advance numerical schemes which

can deal with them. For example in current IFP models we have only one equation per well.

However a new approach is developing in which a well has a complex modelling and refined

mesh (see figure 1). In this context domain decomposition is not only an alternative but it

becomes the natural choice for separating of model of flow around well and far from it.

Those future plans are another motivation for studying domain decomposition methods

for multiphase, compositional porous media flow simulations.

MIKOŁAJ SZYDLARSKI 12

0. Introduction

Figure 2: Example mesh of reservoir with complex wells (horizontal and vertical)

Objective

The objective of this PhD is to study and implement algebraic domain decomposition

methods as a preconditioner of a Krylov iterative solver. This preconditioner could apply

either on the full system or on the pressure “elliptic” block only as the second step of a com-

binative preconditioner. Therefore the main difficulties to be studied are the algebraic con-

struction of interface conditions between the subdomains, the algebraic construction of a

coarse grid, and the partitioning and load balancing within a distributed data structure im-

plementation.

Context of work

This work is performed in the framework of convention industrielle de formation par la

recherche (CIFRE) under the dual responsibility of Pierre and Marie Curie University (Paris

VI) and IFP Energies nouvelles (IFP New Energy) 1. Academic side is carried out by Ecole

Doctorale de Sciences Mathématiques de Paris Centre on-site Départament Mathématiques

Appliquées et le Laboratoire Jacques-Louis Lions. From industrial point of view this thesis is

a part of research project of IFP at department of Informatics and Applied Mathematics.

Plan of report

In chapter 1, we give an overview on the existing works on the two main ingredients of the

domain decomposition methods: the interface conditions between the subdomains and the

coarse grid corrections. As for the interface conditions, since the seminal paper by P.L. Lions

[39], there has been many works on how to design efficient interface conditions. The prob-

lem can be considered at the continuous level and then discretized (see e.g. [19, 28, 44]). This

1. In June 2010 IFP (French Institute of Oil) changed name into IFP Energies nouvelles in order to more

closely reflects IFP’s objectives and the very nature of its research, with their increasing focus on new energy

technologies.

MIKOŁAJ SZYDLARSKI 13

0. Introduction

approach, based on the use of the Fourier transform, is limited to smooth coefficients. In this

chapter we focus on a method that works directly at the discrete level: the patch method [40].

As for the coarse grid correction, we explain that once the coarse space is chosen, the way

to build the coarse grid correction is readily available from the papers by Nabben-Vuik and

coauthors [57].

In chapter 2, we present the main features of the library that was developed in order to

implement various existing methods and test new ideas. The library is carefully designed

in C++ and MPI with a convenient parallel matrix storage that eases the test of new algo-

rithms. Our data structure is very close to the one recently and independently proposed in

[11]. Otherwise, the library uses as much as possible existing libraries (e.g. Metis and Scotch

for partitioning, SuperLU, Hypre and PETSC for the sequential linear solvers). We report ex-

periments made with this library testing existing domain decomposition methods: Schwarz

methods with overlapping decompositions, partitioning with weights for taking into account

anisotropy and discontinuities in an algebraic multigrid fashion, modified Schwarz method

with interface conditions including the patch method [40]. The library will be used in the

next chapters to test new methods in domain decomposition methods.

Chapter 3 introduces a new algebraic way to build interface conditions. It is shown in

Lemma 3.1 that if the original matrix is symmetric positive definite (SPD), the local subprob-

lems with the algebraic interface conditions will still be SPD. This construction depends on

a parameter β (typically a diagonal matrix). In the two subdomain case, for a given har-

monic vector in the subdomain, it is possible to build the interface condition such as to

“kill” the error on this vector. This vector is chosen by computing Ritz eigenvectors from

the Krylov space. In this respect, the method is adaptive and is very efficient for the two or

three-subdomain case. But when there are many subdomains, numerical tests show that the

method does not bring a benefit and it is thus limited to the two subdomain case.

This motivates chapter 4 where an adaptive coarse grid correction is introduced for the

many subdomain case. Usually, the coarse space is given from an a priori analysis of the

partial differential operator the equation comes from see [58] and references therein. For

instance, in [47] when solving the Poisson equation it is suggested that the coarse space

should consist of subdomain wise constant functions. For problems with discontinuous co-

efficients, this is usually not enough, see [46] and a richer coarse space is necessary. Another

classical possibility in deflation methods is to make a first complete solve and to analyse then

the Krylov space to build a meaningful coarse space for subsequent solves with the same ma-

trix but a different right hand side. Here inspired by this method we propose a construction

that is usable even before a first solve is completed. The principle is to compute Ritz eigen-

vectors responsible for a possible stagnation of the convergence. They are related to small

eigenvalues of the preconditioned system. Then these global vectors are split domain-wise

to build the coarse space Z. Its size is thus the number of Ritz eigenvectors times the number

of subdomains. The coarse space is thus larger than the vector space spanned by the Ritz

eigenvectors. It contains more information and can be used to complete more efficiently the

first solve. Numerical results illustrate the efficiency of this approach even for problems with

MIKOŁAJ SZYDLARSKI 14

0. Introduction

discontinuous coefficients.

Finally in chapter 6, we give a conclusion.

MIKOŁAJ SZYDLARSKI 15

0. Introduction

MIKOŁAJ SZYDLARSKI 16

Chapter 1
State of Art

In this chapter, formulation and origin of various Schwarz methods will be

presented with emphasis on their algebraic formulation.

The widespread availability of parallel computers and their potential for the numerical

solution of difficult to solve partial differential equations have led to large amount of re-

search in domain decomposition methods. Domain decomposition methods are general

flexible methods for the solution of linear or non-linear system of equations arising from

the discretization of partial differential equations (PDEs). For the linear problems, domain

decomposition methods can often be viewed as preconditioners for Krylov subspace tech-

niques such as generalised minimum residual (GMRES). For non-linear problems, they may

be viewed as preconditioners for the solution of the linear system arising from the use of

Newton’s method or as preconditioners for solvers. The term domain decomposition has

slightly different meanings to specialists within the discipline of PDEs. In parallel comput-

ing it means the process of distributing data among the processors in a distributed memory

computer. On the other hand in preconditioning methods, domain decomposition refers to

the process of subdividing the solution of large linear system into smaller problems whose

solutions can be used to produce a preconditioner (or solver) for the system of equations

that results from the discretizing the PDE on the entire domain. In this context, domain

decomposition refers only to the solution method for the algebraic system of equations aris-

ing from discretization. Finally in some situations, the domain decomposition is natural

from the physics of the problem: different physics in different subdomains, moving domains

or strongly heterogeneous media. Those separated regions can be modelled with different

equations, with the interfaces between the domains handled by various conditions. Note

that all three of these may occur in a single program. We can conclude that the most impor-

tant motivations for a domain decomposition method are their ease of parallelization and

good parallel performance as well as simplification of problems on complicated geometry.

Many domain decomposition algorithms have been developed in the past few years,

however there is still a lack of black-box routines working at the matrix level which could

MIKOŁAJ SZYDLARSKI 17

1. State of Art

lead to the widespread adoption of these techniques in engineering and scientific comput-

ing community. One of the goals of this thesis is to follow a path which leads to construction

of such black-box solver by a collaboration between numerical analysis and computer sci-

ence.

1.1 Original Schwarz Methods

The earliest known domain decomposition method was invented by Hermann Amandus

Schwarz dating back to 1869 [53]. He studied the case of a complex domain decomposed into

two subdomains, which are geometrically much simpler, namely a discΩ1 and rectangleΩ2,

with interfaces Γ1 := ∂Ω1 ∩Ω2 and Γ2 := ∂Ω2 ∩Ω1, on which he wished to solve:

−∆(u) = f in Ω

u = g on ∂Ω.
(1.1)

Schwarz proposed an iterative method (called now alternating Schwarz method) which only

uses solution on the disk and the rectangle. The method starts with an initial guess u0
1 along

Γ1 and then computes iteratively for n = 0,1, . . . the iterates un+1
1 and un+1

2 according to the

algorithm

−∆(un+1
1) = f in Ω1

un+1
1 = g on ∂Ω1\Γ1

un+1
1 = un

2 on Γ1.

−∆(un+1
2) = f in Ω2

un+1
2 = g on ∂Ω2\Γ2

un+1
2 = un+1

1 on Γ2.

(1.2)

Alternating Schwarz Method

Schwarz proved that the sequence of functions un
1 and un

2 converge uniformly and they agree

on both Γ1 and Γ2, and thus they must be identical in the overlap. He therefore concludes

that u1 and u2 must be values of the same function u which satisfy (1.1) on Ω.

Figure 1.1: An example of two overlapping subdomains with two artificial interfaces.

MIKOŁAJ SZYDLARSKI 18

1. State of Art

This algorithm was carefully studied by Pierre Louis Lions in [39] where he also proved

convergence of the “parallel” version of the original Schwarz algorithm [39]:

“The final extension we wish to consider, concerns the “parallel” version of

the Schwarz alternating method . . . , un+1
i is solution of −∆un+1

i = f in Ωi and

un+1
i = un

j on ∂Ωi ∩Ω j .”

In contrast to alternating Schwarz method we call this method the parallel Schwarz method

which is given by:

−∆(un+1
1) = f in Ω1

un+1
1 = g on ∂Ω1\Γ1

un+1
1 = un

2 on Γ1.

−∆(un+1
2) = f in Ω2

un+1
2 = g on ∂Ω2\Γ2

un+1
2 = un

1 on Γ2.

(1.3)

Parallel Schwarz Method

The only change is the iteration index in the second transmission condition. For given initial

guesses u0
1 and u0

2, problems in domains Ω1 and Ω2 for n = 0,1, . . . may be solved concur-

rently and so the new algorithm (1.3) is parallel and thus well adapted to parallel computers.

1.1.1 Discrete Schwarz Methods

Writing the system (1.1) for the discretized problem by a finite difference, finite volume

or finite elements methods, yields a linear system of the form

AU = F. (1.4)

Where F is a given righthand side, U is the set of unknowns and A is the discretization

matrix. Schwarz methods have also been introduced directly at the algebraic level for such

linear systems, and there are several variants.

In order to obtain a domain decomposition for (1.4), one needs to decompose the un-

knowns in the vector U into subsets corresponding to subdomains on continuous level. To

quantify this operation, we need to introduce some notation. For the sake of simplicity, we

consider only a two subdomain case. But, the ideas carry over easily to the general case. Let

Ni , i = 1,2 be a partition of the indices corresponding to the vector U. Let Ri , i = 1,2 denote

the matrix that when applied to the vector U returns only those values associated with the

nodes in Ni . When we consider for instance a domain 1 made of the nodes 1,2 and 4, the

matrix R1 is given by

R1 =

1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

0 0 0 1 0 · · · 0

 (1.5)

The transpose of R1 simply inserts the given values u into the larger array

(
v1 v2 0 v3 0 · · · 0

)T = RT
1

v1

v2

v3


MIKOŁAJ SZYDLARSKI 19

1. State of Art

The matrices Ri i = 1,2 are often referred to as the restriction operators, while RT
i are the

interpolation matrixes. With these restriction matrices, R j U = U j (j = 1,2) gives decomposi-

tion set of unknowns for our two domain case. One can also define restriction on the matrix

A to the first and second unknowns using the same restriction matrices,

A j = R j ART
j , j = 1,2. (1.6)

Thus the matrix R j ART
j is simply the subblock of A associated with the given nodes.

Using this form we can write the multiplicative Schwarz method (MSM) in two fractional

steps:

Un+ 1
2 = Un +RT

1 A−1
1 R1 (F−AUn)

Un+1 = Un+ 1
2 +RT

2 A−1
2 R2(F−AUn+ 1

2).
(1.7)

Since each iteration involves sequential fractional steps, this is not ideal solution for parallel

computing, contrary to the Additive Schwarz Method (ASM) algorithm, introduced by Dryja

and Widlund [20]:

“The basic idea behind the additive form of the algorithm is to work with the

simplest possible polynomial in the projections. Therefore the equation (P1 +
P2 + . . .+PN)uh = g ′

h is solved by an iterative method.”

Thus using the same notation as for MSM in our two-subdomain model problem, the pre-

conditioned system proposed by Dryja and Widlund is as follow:

(
RT

1 A−1
1 R1 +RT

2 A−1
2 R2

)
AU = (

RT
1 A−1

1 R1 +RT
2 A−1

2 R2
)

F. (1.8)

Additive Schwarz Method as a preconditioner

Using this preconditioner for a stationary iterative method yields

Un+1 = Un + (
RT

1 A−1
1 R1 +RT

2 A−1
2 R2

)
(F−AUn). (1.9)

We can extend this idea immediately to methods that involve more than two subdomains.

For a domain Ω=∪Ω j , (1.9) can be written as

Un+1 = Un +∑
j

B̃ j (F−AUn) with B̃ j = RT
j A−1

Ω j
R j and AΩi = R j ART

j . (1.10)

A (1.9) algorithm resembles the parallel Schwarz method (1.3) but it is not equivalent to a

discretization of Lions’s parallel method, except if R j are non-overlapping in algebraic sense.

Thus if RT
1 R1+RT

2 R2 6= 1method can fail to converge, as it has been showed for Poisson equa-

tion in [22]. However with some special treatment like a relaxation parameter [43] method

still converge but this so called “damping factor” and its size is strongly connected with prob-

lem of the method in the overlap (see [26] for instance).

Nevertheless, the preconditioned system (1.8) has very desirable properties for solution

with a Krylov method: the preconditioner is symmetric, if A is symmetric. Including a coarse

MIKOŁAJ SZYDLARSKI 20

1. State of Art

grid correction denoted by ZE−1ZT (see §1.4 for definition) in the additive Schwarz precon-

ditioner, we obtain

Pas :=
J∑

j=1
RT

j A−1
Ω j

R j +ZE−1ZT. (1.11)

Dryja and Widlund showed in [20] a fundamental condition number estimate for this pre-

conditioner applied to the Poisson equation, discretized with characteristic coarse mesh H,

fine mesh size h and an overlap δ:

Theorem 1.1. The condition number κ of operator A, preconditioned by Pas i.e., ASM (1.8)

with the coarse grid correction, satisfies

κ(Pas A) ≤ C

(
1+ H

δ

)
, (1.12)

where the constant C is independent of h, H and δ.

Thus the additive Schwarz method used as a preconditioner for a Krylov method seems

to be optimal in sense that it converges independently of the mesh size and the number of

subdomains, if the ratio of H and δ is constant. However in 1998, a new family of Schwarz

methods was introduced by chance by Cai and Sarkis [12]:

“While working on an AS/GMRES algorithm in an Euler simulation, we re-

moved part of the communication routine and surprisingly the “then AS” method

converged faster in both terms of iteration counts and CPU time.”

When we use the same notation as before for our two-subdomain case, the restricted additive

Schwarz (RAS) iterations is

Un+1 = Un + (
R̃T

1 A−1
1 R1 + R̃T

2 A−1
2 R2

)
(F−AUn) (1.13)

where new restriction matrices R̃ j correspond to non-overlapping decomposition, so that

R̃T
1 R̃1 + R̃T

2 R̃2 = 1, the identity. For an illustration in one and two dimensions, see Figure 1.2.

As in the case of additive Schwarz method we can extend this idea to methods that in-

volve J subdomains,

Un+1 = Un +
J∑

j=1
R̃T

j A−1
Ω j

R j (F−AUn). (1.14)

This is proved in [26] that the RAS method is equivalent to a discretization of parallel Schwarz

method (1.3). However there is no convergence theorem similar to Theorem 1.1 for restricted

additive Schwarz. There are only comparison results at the algebraic level between additive

and restricted Schwarz [22]:

“Using a continuos interpretation of the RAS preconditioner we have shown

why RAS has better convergence properties than AS. It is due to the fact that,

when used as iterative solvers, RAS is convergent everywhere, whereas AS is not

convergent in the overlap. Away from the overlap, the iterates are identical. This

observation holds not only for discretized partial differential equations, it is true

for arbitrary matrix problem.”

MIKOŁAJ SZYDLARSKI 21

1. State of Art

(a) The restrictions operators for a one dimensional example.

(b) Subdomain with overlap (c) The restriction operator Ri (d) The restriction operator R̃i

Figure 1.2: Graphical representation of the restriction operators in RAS

Unfortunately, the restricted additive Schwarz preconditioner is non-symmetric, even if the

underlying system matrix A is symmetric, and hence a Krylov method for non-symmetric

problems needs to be used. For more details follow Cai and Sarkis in [12] or Efstathiou and

Gander in [22] and bibliography therein.

1.1.2 Drawbacks of original Schwarz methods

As we can see Schwarz algorithms brings some benefits to parallel computation tech-

niques. For example their fundamental idea of decomposition the original problem into

smaller pieces reduce amount of storage but if we take into account CPU usage, the origi-

nal algorithms are very slow (e.g. in comparison with multi-grid method [9]). The other big

drawback of the classical Schwarz method is in their need of overlap in order to converge.

This is not only a drawback in sense that we waste efforts in the region shared by the sub-

domains but for example in problems with discontinuous coefficients, a non-overlapping

decomposition with the interface along discontinuity would be more natural.

Lions therefore proposed a modification of the alternating Schwarz method for a non-

overlapping decomposition, as illustrated in Figure 1.3. The Dirichlet interface conditions

on Γ (∂Ωi \∂Ω, i = 1,2) have been replaced by Robin interface condition (∂Ωni +α, where n is

the outward normal to subdomains Ωi). With this new Robin transmission condition, Lions

proved in [39] that the new Schwarz method is convergent without overlap for the case of

MIKOŁAJ SZYDLARSKI 22

1. State of Art

Figure 1.3: An example of two non-overlapping subdomains with artificial interface.

constant parameter α and an arbitrary number of subdomains. However from his analysis

one can not see how the performance depends on the parameters α, but Lions showed that

for one dimensional model problem, one can choose the parameters in such way that the

method with two subdomains converges in two iterations, which transforms this iterative

method into a direct solver.

Moreover Lions (and independently Hagstrom, Tewarson and Jazcilevich [33]) stated in

[39] that even more general interface conditions can be defined on the interface:

“First of all, it is possible to replace the constants in the Robin condition by

two proportional functions on the interface, or even by local or nonlocal opera-

tors.”

His seminal paper has been the basis for many other works [2, 3, 38] which showed that

for all the drawbacks of the classical Schwarz methods, significant improvements have been

achieved by modifying the transmission conditions. That has led to a new class of Schwarz

methods which we call now optimized Schwarz methods.

1.2 Optimal Interface Condition

As it has been mentioned in the previous section, the major improvements of Schwarz

methods come from the use of the other interface condition. The convergence proof given

by P. L. Lions in the elliptic case was extended by B. Després to the Helmholtz equation in

[19] (general presentation can be found in [17]). A general convergence for interface condi-

tion with second order tangential derivatives has been proved. However it gives the general

condition in an a priori form. From numerical point of view it would be more practical to

derive them so as they have the fastest convergence. It was done by F. Nataf, F. Rogier and E.

de Sturler [45]:

“The rate of convergence of Schwarz and Schur type algorithms is very sensi-

tive to the choice of interface condition. The original Schwarz method is based

MIKOŁAJ SZYDLARSKI 23

1. State of Art

on the use of Dirichlet boundary conditions. In order to increase the efficiency of

the algorithm, it has been proposed to replace the Dirichlet boundary condition

with more general boundary conditions. . . . It has been remarked that absorb-

ing (or artificial) boundary conditions are a good choice. In this report, we try to

clarify the question of the interface condition.”

They consider a general linear second order elliptic partial operator L and regular, arbitrary

in number of subdomains, decomposition of domainΩ. For the sake of simplicity we present

this result for two domain case.

Problem 1.1. Find u such that L (u) = f in a domain Ω and u = 0 on ∂Ω. The domain Ω is

decomposed into two subdomains Ω1 and Ω2. We suppose that the problem is regular so that

ui := u|Ωi , i = 1,2, is continuous and has continuous normal derivatives across the interface

Γi = ∂Ωi ∩Ω j , i 6= j .

Ω
Γ1

Γ2

Ω2

Ω2Ω1

Ω1

A modified, by new interface condition, Schwarz type method is considered now as:

L (un+1
1) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩∂Ω

µ1∇un+1
1 ·n1 + B1(un+1

1)

=−µ1∇un
2 ·n2 + B1(un

2) on Γ1

L (un+1
2) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩∂Ω

µ2∇un+1
2 ·n2 + B2(un+1

2)

=−µ2∇un
1 ·n1 + B2(un

1) on Γ2

(1.15)

where µ1 and µ2 are real-valued functions and B1 and B2 are operators acting along the

interfaces Γ1 and Γ2. For instance, µ1 = µ2 = 0 and B1 = B2 = 1 correspond to the parallel

Schwarz algorithm (1.3); µ1 = µ2 = 1 and Bi = α ∈ R, i = 1,2, has been proposed in [39] by

P. L. Lions.

The authors proved that use of non-local DtN (Dirichlet to Neumann) map (a.k.a. Steklov-

Poincaré) as interface conditions in (1.15) (Bi = DtN j (i 6= j)) is optimal and leads to (exact)

MIKOŁAJ SZYDLARSKI 24

1. State of Art

convergence in two iterations. The main feature of this result is to be very general since it

does not depend on the exact form of the operator L and can be extended to system or to

coupled systems of equations, despite that they are not practical because of its non-local na-

ture, thus the new algorithm (1.15) is much more costly to run and difficult to implement.

Nevertheless, this result is a guide for a choice of partial interface conditions (e.g. as a “ob-

ject” to aproximate). Moreover, this result establish a link between the optimal interface

condition and artificial boundary conditions.

Definition 1.1 (DtN map). Let

u0 : Γ1 →R

DtN2(u0) :=∇v ·n2|∂Ω1∩Ω2
,

(1.16)

where n2 is the outward normal to Ω2 \Ω1, and v satisfies the following boundary value prob-

lem:
L (v) = 0 in Ω2 \ Ω1

v = 0 on ∂Ω2 ∩ ∂Ω

v = u0 on ∂Ω1 ∩ Ω2.

1.3 Optimised Schwarz Method

Optimised Schwarz method is obtained from the classical one by changing the transmis-

sion condition. In the discrete Schwarz method however, the transmission condition do not

appear naturally anymore. One can however show algebraically that is suffices to replace

the subdomains matrices A j in additive or restricted Schwarz method by subdomain ma-

trices representing discretization of subdomain problems with Robin or more general (e.g.

optimal) boundary conditions.

1.3.1 Optimal Algebraic Interface Conditions

When the problem (1.1) is discretized by a finite element or a finite difference method, it

yields a linear system AU = F. If domain Ω in our problem is decomposed into two subdo-

mains Ω1 and Ω2, at the discrete level this decomposition leads to the matrix partitioning A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22


 U1

UΓ

U2

=

 F1

FΓ
F2

 . (1.17)

where UΓ corresponds to the unknowns on the interface Γ, and U j , j = 1,2 represent the

unknowns in the interior of subdomains Ω1 and Ω2. In order to write a “modified” (by new

interface condition) Schwarz method, we have to introduce two square matrixes S1 and S2

which act on vectors of the type UΓ, then the modified Schwarz method reads:(
A11 A1Γ

AΓ1 AΓΓ+S2

)(
Un+1

1

Un+1
Γ,1

)
=

(
F1

FΓ+S2Un
Γ,2 −AΓ2Un

2

)
(1.18a)

MIKOŁAJ SZYDLARSKI 25

1. State of Art

(
A22 A2Γ

AΓ2 AΓΓ+S1

)(
Un+1

2

Un+1
Γ,2

)
=

(
F2

FΓ+S1Un
Γ,1 −AΓ1Un

1

)
(1.18b)

Lemma 1.1. Assume AΓΓ+S1 +S2 is invertible and problem (1.17) is well-posed. Then if the

algorithm (1.18) converges, it converges to the solution of (1.17). This is to be understood in

the sense that if we denote by (U∞
1 ,U∞

Γ,1,U∞
2 ,U∞

Γ,2) the limit as n goes to infinity of the sequence

(Un
1 ,Un

Γ,1,Un
2 ,Un

Γ,2)n>2 we have for i = 1,2 :

U∞
i = Ui and U∞

Γ,1 = U∞
Γ,2 = UΓ

Remark 1.1. Note that we have a duplication of the interface unknowns UΓ into UΓ,1 and

UΓ,2.

Proof. We subtract the last line of (1.18a) to the last line of (1.18b) as n goes to infinity shows

that (U∞
1 ,U∞

Γ,1 = U∞
2 ,U∞

Γ,2)T is a solution to (1.17) which is unique by assumption.

Now following F. Magoulès, F.-X. Roux and S. Salmon in [40] we define optimal interface

condition (as the discrete counterparts of DtN maps)

Lemma 1.2. Assume Ai i is invertible for i = 1,2. Then in algorithm (1.18a)-(1.18b), taking

S1 =−AΓ1A−1
11 A1Γ

and

S2 =−AΓ1A−1
22 A2Γ

yields a convergence in two steps.

Proof. Notice that in this case, the bottom-right blocks of the two by two block matrices in

(1.18a) and (1.18b) are Schur complements. It is classical that the subproblems (1.18a) and

(1.18b) are well-posed.

By linearity, in order to prove convergence, it is sufficient to consider the convergence to

zero in the case (F1,FΓ,1,F2)T = 0. At step 1 of the algorithm, we have

A11U1
1 +A1ΓU1

Γ,1 = 0

or equivalently by applying −AΓ1A−1
11 :

−AΓ1U1
1 −AΓ1A−1

11 A1ΓU1
Γ,1 = 0

So that the righthand side of (1.18b) is zero at step 2 (i.e. n = 1). We have thus convergence

to zero in domain 2. The same proof holds for domain 1.

Unfortunately the matrices S1 and S2 are in general dense matrixes whose computation

and use as interface conditions is very costly.

MIKOŁAJ SZYDLARSKI 26

1. State of Art

1.3.2 Patch Method

In the previous sections it has been recalled that the best choice for absorbing boundary

conditions is linked with Dirichlet-to-Neumann (DtN) maps of the outside of each subdo-

main on its interface boundary. After discretization, this choice leads to a dense augmented

matrix equal to the complete outer Schur complement matrix (see §1.3). Some approxima-

tion techniques are required to obtain better performance in terms of computing time and

CPU usage.

Several algebraic techniques of approximation of DtN map have been proposed by F.

Magoulès, F-X.Roux and L. Series in [41]. They are based on the computation of a small and

local DtN maps in order to approximate the complete and non-local operator DtN for the

equation of linear elasticity. In elasticity DtM map i.e., the outer Schur complement matrix

models the stiffness of all the outer sub-domain, hence the “first step” in its approximation

leads to the restriction of the information only to the neighbouring sub-domains. This im-

plies to consider the Schur complement matrix of the neighbouring subdomains only.

Unfortunately the neighbour Schur complement matrix is still a dense matrix hence us-

ing it as an augmented matrix increases the bandwidth (this implies a lot of additional op-

erations during the factorisation of subdomain matrix). To reduce this cost, a simple sparse

mask of the neighbour Schur complement matrix can be considered. This technique presents

the advantage of keeping the sparsity of the subdomain matrix after addition of the aug-

mented sub-operator. In order to construct this sparse mask we can form small successive

parts of nodes (the patch) of subdomain as an entire system. For this purpose, new subsets

of indices are defined for the nodes of the subdomain:

υ = indices of nodes inside the subdomain and on the interface,

υΓ = indices of nodes on the interface Γ,

υi
p = indices of nodes belonging to υΓ such that the minimum connectivity

distance between each of these nodes and the node labelled i is lower

then p,p ∈N,

υi
p,l = indices of nodes belonging to υ such that the minimum connectivity

distance between each of these nodes and the nodes belonging to υi
p is

lower then l , l ∈N.

The subset υi
p corresponds to a patch of radius p around the node labeled i . Thus the

subset υi
p,l corresponds to a neighboring area of width p and depth l of the patch. The sparse

approximation consists of defining a sparse augmented matrix

A j
P =

(
A j j A jΓ

AΓ j A
j
ΓΓ

)
(1.19)

which obeys the same laws as the original problem because is defined by extracting rows

and columns from general matrix. We can create such systems for each node on interface,

in order to use them for computation “small” DtN maps from which we next, extract the

coefficients of the line associated with interface node and we insert them inside the matrix

MIKOŁAJ SZYDLARSKI 27

1. State of Art

Algorithm 1 Sparse approximation of neighbour Schur complement
Require: Initialise p and l

Ensure: (p ≥ 1) and (l ≥ 1)

1: Construct sparse matrix structure of interface matrix S
j
ΓΓ ∈Rdi m(υΓ)×di m(υΓ),

2: Construct sparse matrix structure of sub-domain matrix A j ∈Rdi m(υ)×dim(υ),

3: Assembly the matrix A j

4: for all i ∈ υΓ do
5: Extract coefficients A j

mn , (m,n) ∈ υi
p,l × υi

p,l , and construct the sparse matrix A j
P ∈

R
di m(υi

p,l×υi
p,l)

with these coefficients.

6: Compute the matrix S̃ j
i =−AΓ j (A j j)−1A jΓ.

7: Extract the coefficients of the line associated with the node i from the matrix S̃ j
i and

insert them inside the matrix S
j
ΓΓ at the line associated with the node i .

8: end for

9: Construct the symmetric matrix S
j
ΓΓ = 1

2

(
S

j
ΓΓ

T +S
j
ΓΓ

)

Ω

Ω1

Γ

Ω2

P1P2

Figure 1.4: Non-overlaping domain decomposition, with patches P1 and P2.

MIKOŁAJ SZYDLARSKI 28

1. State of Art

ΓΩ1 Ω2

(a) The example of patch P1 with width p = 1 and

deep l = 5

ΓΩ1 Ω2

(b) The example of patch P2 with width p = 2 and

deep l = 4

Figure 1.5: An example of subdomain with 2D patches.

S
j
ΓΓ. Thus a matrix S

j
ΓΓ can be used instead of S j in algorithm (1.18). The complete procedure

is presented in Algorithm (1).

The analysis of those methods by M. J. Gander, L. Halpern, F. Magoulès and F-X. Roux

in [27] shows that this particular case of the geometric patch method, namely, the case of

one patch per subdomain interface with width p ' ∞, leads to an algorithm equivalent to

overlaping Schwarz method with Dirichlet to Neumann transmission condition at the new

interface location defined by the end of the patches. Algebraic patch methods can be con-

structed without geometric information from underlying mesh, directly based on the matrix,

and their convergence depends on the size of the patches, which represents the overlap of

the equivalent classical Schwarz method. Hence algebraic patch substructing methods con-

verge independently of the mesh parameter if the patch size is constant in physical space,

which has been proved by numerical tests.

1.4 Two-level domain decomposition method

Single level methods are effective only for a small number of subdomains. The problem

with single level methods is that the information about f and g in (1.1) in one subdomain tra-

verse through all the intermediate subdomains only through their common interfaces. Thus

for example the convergence rate of the single level adaptive Schwarz method becomes pro-

gressively worse when the number of subdomains becomes large. From an algebraic point

of view this loss of efficiency is caused by the presence of small eigenvalues in the spectrum

of the preconditioned, coefficient matrix. They have a harmful influence on the condition

number, thus in addition to traditional preconditioner like ASM (1.8), a second kind of pre-

conditioner can be incorporated to improve the conditioning of the coefficient matrix, so

that the resulting approach gets rid of the effect of both small and large eigenvalues. This

combined preconditioning is also know as ‘two-level preconditioning’, and the resulting it-

erative method is called a ‘projection method’ [57].

MIKOŁAJ SZYDLARSKI 29

1. State of Art

Simple example of two-level preconditioned system is Conjugate Gradient method (CG)

[35, 51] combined with a two-grid method. In this case, together with the fine-grid linear sys-

tem from which the approximate solution of the original differential equations is computed,

a coarse-grid system is build based on a predefined coarse grid. From a Multi Grid (MG) [9]

point of view, the (second-level) coarse-grid system is used to reduce the slow-varying, low

frequency components of the error, that could not be effectively reduce on the (first-level)

fine grid. These low frequency components of the error are associated with the small eigen-

values of the coefficient matrix. The high frequency components are, however, effectively

handled on the fine grid. The latter is associated with the large eigenvalues of the coefficient

matrix.

In order to define projection method we need to introduce some terminology:

Definition 1.2. Suppose that an SPD coefficient matrix, A ∈ Rn×n , a right hand side, F ∈ Rn ,

and SPD preconditioning matrix, M−1 ∈ Rn×n , and deflation subspace matrix, Z ∈ Rn×k , with

full rank and k ≤ n are given. Then, we define the invertible matrix E ∈ Rk×k , the matrix

Q ∈Rn×n , and the deflation matrix, P ∈Rn×n , as follows:

P := 1−AQ Q := ZE−1ZT E := ZTAZ,

where 1 is the n ×n identity matrix.

Note that E is SPD for any full-rank Z, since A is SPD. Moreover, if k ¿ n, then E is a matrix

with small dimension, thus it can be easily computed and factored.

All operators of the projection methods consist of an arbitrary preconditioner M−1, com-

bined with one or more matrices P and Q. Thus in projection methods used in DDM, pre-

conditioner M−1 consist of the local exact or inexact solvers on subdomains. Thereby we

define it as in (1.8). The matrix Z describes a restriction operator, while ZT is prolongation

operator based on the subdomains and we define it like operator R in (1.5). In this case, E

is called the coarse-grid operator. Combining those elements we can define after [48] the

abstract additive coarse grid correction in form of following preconditioner:

Pas = M−1 +ZE−1ZT, (1.20)

Using the same ingredients we can define another interesting preconditioner. The bal-

ancing Neumann-Neumann preconditioner, which is well-known as a FETI algorithm in do-

main decomposition method. For symmetric systems it was proposed by Mandel in 1993

[42]. A more general form of abstract balancing preconditioner for non-symmetric systems

reads [23] as follows:

PbNtN = QDM−1PD +ZE−1YT, (1.21)

where E = YTAZ, PD = 1−AZE−1YT, QD = 1−ZE−1YTA. For SPD systems, by choosing Y = Z,

the authors in [57] define similar preconditioner

Pa−de f 2 = QDM−1 +ZE−1ZT (1.22)

which is as robust as PbNtN but less expensive.

MIKOŁAJ SZYDLARSKI 30

1. State of Art

The subscript ‘def ’ in (1.22) states for ‘deflation’, which is another projection method. In

deflation method, M−1 is often a traditional preconditioner, such as the Incomplete Cholesky

factorization. Furthermore, the deflation subspace matrix, Z, consists of so-called deflation

vectors, used in the deflation matrix P. In this case, the column space of Z spans the deflation

subspace, i.e., the space to be projected, out of the residuals. It often consist of eigenvectors,

or piecewise constant or linear vectors, which are strongly related to DDM. The good and

simple example is a deflation subspace Z proposed by Nicolaides [47]:

(zk)l =
1 l ∈Ωk

0 l ∉Ωk

, (1.23)

hence Z has the form

Z =


1Ω1 0 · · · 0

... 1Ω2 · · · 0

...
...

...

0 0 · · · 1ΩJ

 ,

where J is the number of subdomains Ω j . If instead one chooses eigenvectors for building

Z. The corresponding eigenvalues would be shifted to zero in the spectrum of the deflated

matrix. This fact has motivated the name ‘deflation method’.

1.5 Discussion

In the context of systems related with reservoir simulations, we have to deal with prob-

lems which coefficients have jumps of several orders of magnitude and are anisotropic (like

in equation arising in porous media flow simulations through Darcy’s law). In this case alge-

braic DDM (in form of preconditioner (1.8) combined with Krylov iterative method) suffers

from plateaux in the convergence due to the presence of very small isolated eigenvalues in

the spectrum of the preconditioned linear system [24]. Another weakness of DDM is the lack

of a mechanism to exchange information between all subdomains in the preconditioning

step, thus the condition number grow with the number of subdomains. To overcome those

drawbacks we can improve classical DDM by two species: enhancement of interface condi-

tion and global communication mechanism.

The classical Schwarz method is based on Dirichlet boundary conditions and overlap-

ping subdomains are necessary to ensure convergence. However we showed (see §1.2) that

we can use more general interface condition in order to accelerate the convergence and to

permit non overlapping decomposition. If exact absorbing condition are used (DtN maps)

we have optimal solution in terms of iterations count, nevertheless they are practically very

difficult to use because of their non-local nature. However we can apply some algebraic ap-

proximation (see algorithm 1) techniques and build small and local DtN maps.

In order to establish global communication between subdomains for classical DDM al-

gorithms, we can solve a “coarse problem” with a few degrees of freedom per subdomain

MIKOŁAJ SZYDLARSKI 31

1. State of Art

in each iteration. Such methods are close in sprit to multigrid methods and especially to

two-level methods which we have discussed in §1.4.

The first goal for this thesis consists in the research for algebraic approximation for opti-

mal interface condition which can be used in form of the sub-block enhancement in mod-

ified Schwarz method (2.12) (see Chapter 3). Then we put an effort on defining suitable

coarse space operator in order to construct algebraically an efficient two-level method (see

Chapter 4).

MIKOŁAJ SZYDLARSKI 32

Chapter 2
ADDMlib : Parallel Algebraic DDM Library

In this chapter, we discuss the design of ADDMlib 1, an object-oriented library

written in modern C++ for the application of algebraic domain decomposition

methods in the solution of large sparse linear systems on parallel computers.

The main design goal for ADDMlib is to provide flexible framework for parallel solver

developers which are developing new algorithms for algebraic domain decomposition. It is

our intent that ADDMlib reflects its main purpose by providing a set of carefully designed

objects grouped in four logical groups. The first group “Interface for domain decomposition”

consists in necessary data structures and methods for managing data in distributed memory

environment. The second group of classes is responsible for communication between dis-

tributed data and along with first group they make basis for implementation of third group

which is a linear algebra kernel. Finally on top of it we have interface for domain decompo-

sition algorithms which use all components from predefined groups. The simple schema of

ADDMlib structure is presented on Figure 2.1. The composition of ADDMlib determines the

structure of this chapter. At the outset we describe briefly the first three groups and then we

present algorithms and techniques used in the proposed solution.

1. First version of library was originally written and developed by Frédéric Nataf, Pascal Havé and Serge van

Criekingen.

MIKOŁAJ SZYDLARSKI 33

2. ADDM lib : Parallel Algebraic DDM Library

II Communication (MPI)I Distributed Data

III Linear Algebra

IV ADDM Algorithms

Figure 2.1: ADDM library structure.

2.1 Interface for Domain Decomposition and Communica-

tion

Since many types of parallel architectures exist in scientific computing (e.g., the “shared

memory” or the “distributed memory message-passing” models), it is difficult to develop nu-

merical libraries with data structures suitable for all of them. Thus in order to develop robust

algorithms we need to specialize our library to a chosen architecture. The ADDMlib is de-

signed for Distributed Memory Architectures.

2.1.1 Distributed Memory Architectures

A typical distributed memory system consists of a large number of identical process with

their own memories, which are interconnected in a regular topology (see Figure 2.2). In this

case each processor unit can be viewed as a complete processor with its own memory, CPU

and I/O 2 subsystem. In message-passing models there is no global synchronization of the

parallel task. Instead, computation are data driven because a processor performs a given

task only when the operands it requires become available. The programmer must program

all the data exchange explicitly between processors.

Distributed memory computers can exploit locality of data in order to keep communi-

cation cost to minimum. Thus, a two-dimensional processor grid or three-dimensional hy-

percube grid, is perfectly suitable for solving discretized elliptic PDEs in DDM framework by

assigning each subdomain to a corresponding processor. It is because the iterative methods

for solving resulting linear system will require only interchange of data between adjacent

subdomains.

Thanks to flexibility, the architecture of choice in nowadays is the distributed memory

machine using message passing. There is no doubt that this is due to the availability of ex-

cellent communication software, such as MPI; see [32]. In addition, the topology is often

2. Input/Output

MIKOŁAJ SZYDLARSKI 34

2. ADDM lib : Parallel Algebraic DDM Library

(a) Grid (b) Tree (c) Star

Figure 2.2: Diagram of different network topologies.

hidden from the user, so there is no need to code communication on specific configurations

such as hypercubes or specific grids. Since this mode of computing has penetrated the ap-

plication areas and industrial applications, it is likely to remain a standard for some time.

Multi-core Strategies

The introducing of multi-core processors to High Performance Computing (HPC) is often

viewed as a huge benefit (more cores in the same space for the same cost). While number of

cores is an advantage, multi-cores has introduced an additional layer of complexity for the

HPC users. There are many new decisions that the programmer and end user must make in

regards to multi-core technology.

A multi-core processor looks the same as multi-socket single-core server to the operat-

ing system, thus programming in this environment is essentially a matter of using POSIX

threads. 3 Thread programming can be difficult and error prone. Thus, OpenMP was de-

veloped to give programmers a higher level of abstraction and make thread programming

easier. In threaded or OpenMP environment, communication happens through memory. A

single program (process) will branch or launch multiple threads, which are then executed

on separate cores in parallel. The entire program shares the same memory space i.e., there

is no copied data, there is only one copy and it is shared between threads. In contrary to

MPI, which basically copies memory and sends it between programs (process). Thus, MPI

type of communication is best for distributed memory systems like clusters. The programs

sending messages do not share memory. By design, the MPI process can be located either on

the same server or on a separate servers. Regardless of where it runs, each MPI process has

its own memory space from which messages are copied.

3. POSIX (Portable Operating System Interface [for Unix]) is the name of a family of related standards spec-

ified by IEEE to define the application programming interface (API), along with shell and utilities interfaces

for software compatible with variants of the Unix operating system, although the standard can apply to any

operating system.

MIKOŁAJ SZYDLARSKI 35

2. ADDM lib : Parallel Algebraic DDM Library

As mentioned, MPI can run across distributed servers and on SMP (multi-core) servers,

while OpenMP is best to run on a single SMP. For this reason, MPI codes usually scale to large

number of servers, while OpenMP is restricted to a single operating system domain. There

is one important assumption about OpenMP (which in some test appears to not be a true

[1]), by the nature of threads, OpenMP is faster than distributed MPI programs (running on

multiple servers) for the same number of cores (presumably because of the communication

overhead introduced by MPI). Hence, recently popular approach to multi-core HPC is to

use both MPI and OpenMP in the same program. For example, a traditional MPI program

running on two 2-core servers (each server contains two two-core processors) is depicted on

Figure 2.3(a). There are a total of four independent process for the MPI job. If one were to

use both MPI and OpenMP, then strategy on Figure 2.3(b) would be the best way to create a

hybrid program. As shown in the figure, each node runs just one MPI process, which then

spawns two OpenMP threads.

Facing the multi-core problem during designing of ADDMlib, we decided to stick with

classical MPI and strategy depicted on Figure 2.3(a). There is couple of reason for that. First,

algorithms and data structures in ADDMlib are implemented in such a way, that amount of

data to exchange is always minimized. Thus, OpenMP environment in which cores share

memory, may not yield a great improvement. Second, ADDMlib intends to be library for

solving big sparse linear systems, which scale is dedicated to larger numbers of servers (how-

ever, there is a product from Intel called ClusterOpenMP that can run OpenMP application

across a cluster). Finally, the multi-core processors in High Performance Computing are chal-

lenge also for MPI library developers. Some of them try to adapt existing MPI libraries in such

way that they will take advantages of heterogeneous architectures (multi-core and shared

memory) [10]:

“The increasing numbers of cores, shared caches and memory nodes within

machines introduces a complex hardware topology. High-performance comput-

ing applications now have to carefully adapt their placement and behaviour ac-

cording to the underlying hierarchy of hardware resources and their software

affinities. We introduce the Hardware Locality (hwloc) software which gathers

hardware information about processors, caches, memory nodes and more, and

exposes it to applications and runtime systems in a abstracted and portable hier-

archical manner. hwloc may significantly help performance by having runtime

systems place their tasks or adapt their communication strategies depending on

hardware affinities. We show that hwloc can already be used by popular high-

performance OpenMP or MPI software. Indeed, scheduling OpenMP threads

according to their affinities or placing MPI processes according to their commu-

nication patterns shows interesting performance improvement thanks to hwloc.

An optimised MPI communication strategy may also be dynamically chosen ac-

cording to the location of the communicating processes in the machine and its

hardware characteristics.”

MIKOŁAJ SZYDLARSKI 36

2. ADDM lib : Parallel Algebraic DDM Library

Compute Node

2 MPI
Processes

Interconnect

MPI Communication

Compute Node

2 MPI
Processes

(a) 4 way MPI program execution on two nodes (4 MPI

processes).

Compute Node

1 MPI
Processes

Interconnect

MPI Communication

Compute Node

1 MPI
Processes

2 Threads 2 Threads

(b) 4 way MPI-OpenMP program execution on two

nodes (2 MPI processes, each with 2 OpenMP

threads).

Figure 2.3: Hybrid approaches for parallel program execution.

2.1.2 Data Distribution in ADDMlib

Given a sparse linear system to be solved in a distributed memory environment, it is nat-

ural to map pairs of equation/unknowns to the same processor in a certain predetermined

way. This mapping can be determined automatically by a graph partitioner or it can be as-

signed ad hoc from knowledge of problem (see §2.4 for future explanation and numerical

experiments). Without any loss of generality we can introduce a following definition of par-

titioning:

Definition 2.1 (Partitioning). Let DΩ be a domain, i.e., a set of unique indices that each corre-

spond to an unknown. Let {DΩI }I=1...N be a partition of DΩ, i.e., a set of N disjoint subsets, such

that ∪N
I=1DΩI = DΩ.

In order to distribute linear system which originates from the discretization of a PDE on a

domainΩ (see §1.1.1), we identify DΩI with a unique ID and we call this structure (along with

some additional information about overlaps; see §2.3) a Part. Each part is associated with

a unique processor, therefore we can summarise that in ADDMlib the discretized domain

DΩ, decomposed into N subdomains , has its representation in N unique Parts and their

associated data can be stored on p (1 ≤ p ≤ N) processes.

A local data structure must be set up in each processor to allow basic operation, such as

(global) matrix-vector product and preconditioning operations, to be performed efficiently.

Hence global operator is divided into sparse Partial Operators which act on Partial
Vectors i.e., components of global vector. For future explanation see §2.2.

It is important to preprocess the distributed data in order to facilitate the implementa-

tion of the communication tasks and to gain efficiency during the iterative process. The im-

portant observation is that a given process does not need to store information about global

MIKOŁAJ SZYDLARSKI 37

2. ADDM lib : Parallel Algebraic DDM Library

structure of decomposed system. It is optimal to reduce information to neighboring Parts 4

since data exchange processes only through common interface between subdomains. Thus

the preprocessing requires setting up for each process a “Part Set” object, which is a list of

local Parts and Part Infos of their neighbors. Where Part Info is a container of essential

and cheap to store, information about non local Part.

Since the Part is a fundamental constituent of domain decomposition realization in AD-

DMlib, the communication classes 5 implemented in ADDMlib support us in developing al-

gorithms focused on data exchange between them, keeping informations about their physi-

cal distribution oven a cluster of processes hidden. In other words we can first decide what

data should be exchange between given Parts (domain decomposition algorithm level) and

then by using their IDs and ADDMlib interface for MPI we can easily establish data transfer

between associated processes using point-to-point communication (data exchange between

distributed memory).

2.2 Linear Algebra

The core object models for modern linear solver library consists of base classes captur-

ing the mathematics, i.e., Matrix, Vector, Iterative Solver and Preconditioner. Their

structures should be motivated by parallel architecture on which we plan to solve our prob-

lem and by operations we want to perform in order to obtain solution.

When we consider Krylov subspace techniques, namely, the preconditioned generalized

minimal residual (GMRES) algorithm for the nonsymmetric case (or its flexible variant FGM-

RES), it is easy to notice that all Krylov subspace techniques require the same basic opera-

tions, thus the first step when implementing those algorithms on a high performance com-

puter is identifying main operations that they require. We can list them after [51]:

◦ vector updates

◦ dot products

◦ matrix by vector multiplication

◦ preconditioner setup and operations.

For the sake of straightforward presentation, this section is divided into four logical parts;

Vector, Matrix, Iterative Solver and Preconditioner. In each section emphasis is placed on

concise description of data structures and algorithms used in implementation of associated

elements and their basic algebra in ADDMlib.

4. In this case, neighboring in algebraic sense i.e., the two Parts are neighbour when they have a common

interface. Thus process on which neighbours data structures are stored, can be physically very remote.
5. ADDMlib has object oriented interface for MPI (which is procedural in nature) in order to simplify and

encapsulate typical communication tasks (e.g., sending a block of data to pointed process)

MIKOŁAJ SZYDLARSKI 38

2. ADDM lib : Parallel Algebraic DDM Library

2.2.1 Vector (DDMVector)

Vector operations, such as linear combinations of vectors and dot products, are usually

the simplest to implement on any computer. Operation of the form

y(1 : n) = y(1 : n)+a · x(1 : n),

where a is a scalar and y, x ∈Rn two vectors, are known as vector updates. On shared memory

computers, parallel version of this operation is usually automatically generated by compiler,

but on distributed memory computers, some assumptions must be made about the way

in which the vector are distributed. The main assumption is that the vectors x and y are

distributed in the same manner among processors, meaning that indices of the components

of any vector that are mapped to a given processor are the same. From previous section

we know that this mapping is encapsulated in Part and PartSet implementation. Thus

global vectors (DDMVectors hereafter) x and y are divided into N Partial Vectors with

unique ID and a size equal to the size of the corresponding sub-domain, i.e., the number of

unknowns in the corresponding Part. Moreover all Partial Vectors with the same ID are

stored on the same process. In this case the vector update operation will be translated into N

independent vector update, requiring no communication. Specifically, for all PV (Partial
Vectors) on current process (we can have couple of Parts per process), this processor will

simply execute a vector loop of the form

PVy (1 : pvn) = PVy (1 : pvn)+a ·PVx(1 : pvn),

where pvn is the number of variables in the local Partial Vector. The example of DDMVector
divided into three Partial Vectors is depicted on Figure 2.4 along with decomposed do-

main Ω. We assume that there is one Part per process.

Another essential vector operation in Krylov techniques is dot product. To be more spe-

cific, the distributed dot product operation should compute the inner product ci n = xT y of

two distributed vectors (x, y) (DDMVectors) and then make the result ci n available in each

processor. Hence, this result is needed to perform vector updates or other operations in each

node. For a large number of processors, this sort of operation can be very costly in terms of

communication cost. Fortunately MPI provides global reduction operation, which is useful

for global operations such as sums and global max-min calculations. This is a single routine

which in effective way “collect” single values (in our case local
∑(

ci nPV = PVT
x PVy

)
) from all

processes involved in the computation and perform the chosen operation (add, max, min,

multiply). Thus to obtain “global” dot product, we perform local operations over partial vec-

tors, then we sum results locally and we pass output to MPI_Allreduce subroutine in order

to obtain global sum (the ci n value) available on all process.

2.2.2 Matrix (DDMOeprator)

The Matrix class has several uses. It is used in Iterative Linear Solver class to de-

fine the problem to solve. Its matrix-vector multiply (axpy) member function is used by

MIKOŁAJ SZYDLARSKI 39

2. ADDM lib : Parallel Algebraic DDM Library

VΩ 1

P 0

Ω 1
Ω 2

Ω 3

Ω

VΩ 2

P 1

VΩ 3 P 2

Process P2

VΩ3 data

Part Set

Figure 2.4: DDMVector structure and its division into Partial Vectors according to decom-

position of domain Ω.

the Krylov class to implement Krylov-based algorithms (GMRES, FGMRES and BiCGSTAB).

Subclasses of Matrix introduce access functions that provide abstractions for accessing the

underlying data structures. Hence new interface conditions or preconditioners can be writ-

ten in terms of these access functions. Matrix class in ADDMlib should be see then, as

a container with some managing functionalities, which allows robust localisation of its dis-

tributed data structures associated with given subdomain in order to perform some algebraic

operation over the global problem.

To indicate complex functionality, all object of type Matrix we will call DDMOperators
hereafter.

Structure and Sparse Storage Formats

The computational kernels for performing sparse matrix operations such as matrix-vector

products are strongly connected with the data structures used. Lets consider Compressed

Sparse Row (CSR) format for instance. It consists of three arrays: an array A(1 : nnz) to store

the nonzero elements of the matrix row-wise, an integer array JA(j : nzz) to store the col-

umn positions of the elements in the real array A, and finally, a pointer array IA(1 : n + 1),

the i th entry of which points to the beginning of the i th row in the array A and JA. To per-

form the matrix-vector product y = Ax in parallel using this format note (see algorithm 2)

that each component of the resulting vector y can be computed independently as the dot

product of the i th row of the matrix with the vector x. On distributed memory architecture,

MIKOŁAJ SZYDLARSKI 40

2. ADDM lib : Parallel Algebraic DDM Library

Algorithm 2 CSR Format - Matrix-Vector multiplication in dot product form
1: for i = 1 to n do
2: k1 = IA(i)

3: k2 = IA(i +1)−1

4: y(i) = dot pr oduct (A(k1 : k2), x(JA(k1 : k2)))

5: end for

the outer loop can be split into a number of steps to be executed on each processor. From

previous section we know that in order to distribute global vector (DDMVector) we divide it

into PartialVectors. If we apply the same partition of unknowns on indices denoting rows

and columns of global operator we will obtain block decomposition. Sub-blocks of origi-

nal operator created in such a way are called Partial Operators hereafter. Each Partial
Operator is a distinctive object which encapsulate its sparse data in a given format. For sake

of simplicity each Partial Opeartor is denoted by pair (PartInID,PartOutID) in order to

denote direction of its action (in terms of linear algebra). For example ParialOperator(0,1)

is an operator which columns indices belong to part with ID 0, while rows indices are mapped

to part with ID 1, thus this operator acts on Partial Vector with ID 0, and the result of this

operation (e.g., axpy) returns Partial Vectorwith ID 1 i.e., Partial Vector in size of Part
with ID 1. Moreover Partial Operators whose PartInID is the same as its ParOutID, are

endomorphic since the Parts they apply are the same as the Parts containing the result of

their application (thus endomorphic Partial Operators are diagonal blocks). If PartInID
and PartOutID are different, the corresponding Partial Operator is exomporphic.

The important observation is that exomorphic Partial Operators are more sparse then

their endomorphic counterparts. It is due to fact that exomorphic operators have nonze-

ros only in rows whose associated unknowns liey on the interface of given subdomain. For

that reason storage formats differ between diagonal and off-diagonal Partial Operators.

Sparse data in endomorphic operators are stored in CSR format and for compress nonze-

ros in exomorphic operators we use Compressed Sparse Rows & Columns Format (CSRC) in

which both, rows and columns storage data is compacted. CSRC format can easy be applied

by adding additional two integer vectors to standard CSR format. Those extra vectors consist

in the list of indices for which corresponding rows and columns has non zero values.

Notice that the unique bind of PartID and process ID puts storage constraints only on

endomorphic operators i.e., since we associate chosen Part to a given process, it holds data

structures with all Partial Vectors with the same PartID, thus it is preferable that endo-

morphic Partial Operator acting on it will be store on the same process, in contrary to

exomorphic Partial Operators for which user can choose arbitrary distribution.

The example of global linear system and its decomposition into Partial Vectors and

Opearators, along with its distribution among process, is depicted on Figure 2.5.

MIKOŁAJ SZYDLARSKI 41

2. ADDM lib : Parallel Algebraic DDM Library

VΩ 1

A 11
A 13

P 0

VΩ 2

A 22
A 23

A 31

P 1

VΩ 3

A 33

A 32

1
2

3

1
2

3

↓in

P 2

Endomorphic Partial Operator

Exomorphic Partial Operator

Figure 2.5: Decomposition of global linear system into Partial Vectors and Operators
along with their distribution among three processes. Decomposition into subdomains refers

to domain Ω depicted on Figure 2.4.

Matrix-Vector Product

To perform a global matrix-vector product, with Partial Operators encapsulated in

DDMOperator, each processor must perform the following operations. First, multiply the

local Partial Vectors by local endomorphic Partial Operators. Second, obtain the ex-

ternal variables from neighboring processor and their Partial Vectors in order to (third

step) multiply these by local exomorphic Partial Operators and add the resulting vector

to the one obtained from the first multiplication. Obviously the first and third step can be

done in parallel.

2.2.3 Preconditioner

When we consider Krylov iterative techniques, vector updates, dot and matrix-vector

product described in previous sections, are all we need to successfully implement iterative

linear solver. There is a number of algorithms which use Krylov spaces in order approxi-

mate solution using this small set of algebraic operations. They differ in the restrictions or

optimality conditions associated with the computed solution. In this report we focus only

on the family 6 of Generalised Minimum RESidual methods (GMRES) which basic algorithm

6. Left/Right preconditioned GMRES, flexible variant of GMRES (FGMRES) and GMRES with restarting [51,

31].

MIKOŁAJ SZYDLARSKI 42

2. ADDM lib : Parallel Algebraic DDM Library

has been introduced by Yousef Saad and Martin H. Schultz in 1986 [52], for other techniques

we refer the reader to the books [51, 31].

For many difficult problems Krylov iterative solvers may converge very slowly, or even di-

verge. The convergence of iterative methods can be improved by transforming general linear

system AU = F into another system which is easier to solve. A preconditioner is a matrix that

realises such a transformation. Thus, if M−1 is a non-singular matrix which approximates

A−1, then the transformed linear system:

M−1AU = M−1F, (2.1)

might be solved faster. The system (2.1) is preconditioned from the left, but one can also

precondition from the right side:

AM−1t = F. (2.2)

Once the solution t is obtained, the solution of the AU = F is recovered by U = M−1t .

ADDM Preconditioning

Since ADDMlib intend to be a platform for applying a domain decomposition techniques,

our choice of preconditioner is motivated by additive Schwarz procedure, which basic form

is presented in Algorithm 3. The preconditioning matrix is simple to obtain from the additive

Algorithm 3 Additive Schwarz Iterations

Require: DΩ =∪N
i=1DΩi thus Ai = Ri ART

i (see §2.2.2)

1: for i = 1 to N do
2: Compute βi = RT

i Ai Ri (F−AU)

3: end for

4: Unew = U+
N∑

i=1
βi

Schwarz procedure. For better picture let us introduce some notations:

Notation 2.1.

Ai = Ri ART
i PartialOperator(i , i) (2.3)

Pi = RT
i A−1

i Ri A (2.4)

Ti = Pi A−1 = RT
i A−1

i Ri (2.5)

For Ri definition with example see §1.1.1 p. 20.

Using new notation (N. 2.1), notice that the new iterate in ASM satisfies the relation

Unew =
(
1−

N∑
i=1

Pi

)
U+

N∑
i=1

Ti F.

MIKOŁAJ SZYDLARSKI 43

2. ADDM lib : Parallel Algebraic DDM Library

Thus, this iteration corresponds to a fixed-point iteration Unew = GU+ f , with

G = I−
N∑

i=1
Pi , f =

N∑
i=1

Ti F.

With the relation G = 1−M−1A between G and the preconditioning matrix M, the result is

that

M−1A =
N∑

i=1
Pi

and

M−1 =
N∑

i=1
Pi A−1 =

N∑
i=1

Ti .

Now the procedure for applying the preconditioned operator M−1 becomes clear (see Al-

gorithm 4). Note that the do loop can be performed in parallel. Line 6 sums up the vec-

Algorithm 4 Additive Schwarz Preconditioner
1: Input: (DDMVector) v

2: Output: (DDMVector) z = M−1v

3: for i = 1 to N do
4: Compute (Partial Vector) zi := Ti v = [

endomorphic PartialOperator(i , i)
]−1 vi

5: end for
6: Compute z := z1 + z2 + . . .+ zN

tors zi in each domain to obtain global vector z. Thus in ADDMlib vector zi corresponds

to Partial Vector with ID(i) and matrix Ti agrees with endomorphic Partial Operator
with the same PartID.

From technical point of view, instead of “inverting” endomorphic operators, the precon-

ditioner class in ADDMlib, provide an interface to external solvers like SuperLU 7 or PETSc
library 8 in order to solve the following system[

PartialOperator(i , i)
]

zi = vi

By default we use a direct solver (SuperLU), but since we can also use PETSc, the number

of available techniques for solving this local linear system is greatly extended by iterative

methods like Boomer - Algebraic Multi-grids [6]. This successful “alliance” of ADDMlib with

the external solvers, makes it a very flexible hybrid solver.

2.3 Overlaps

As it has been shown in previous chapter, the original Schwarz method need overlap-

ping subdomains to converge. Moreover the slowness of the method and the need of the

7. SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of

linear equations; see [18].
8. Portable, Extensible Toolkit for Scientific Computation; see [6, 7, 8].

MIKOŁAJ SZYDLARSKI 44

2. ADDM lib : Parallel Algebraic DDM Library

overlap is linked (see Theorem 1.1). In order to increase the efficiency we introduce here

“inflation” - the tool to create overlapping regions by duplicating unknowns at the algebraic

level. Once an inflation has been performed, simple Dirichlet-type interface conditions can

be enhanced by introducing more complex interface conditions. This leads to the modified

Schwarz method, investigated in §2.5.

Definition 2.2 (Inflation). Let DΩ be a domain, i.e. a set of unique indices that each corre-

spond to an unknown. Let {DΩI }I=1...N be a partition of DΩ, i.e. a set of N disjoint subsets, such

that ∪N
I=1DΩI = DΩ. Each subset DΩI can be inflated into D̃ΩI as follows. Let i0, i1, . . . , iNI denote

the indices of DΩI . Then D̃ΩI is constructed by adding to DΩI the duplication of the indices jβ
belonging to any subset DΩJ 6=I such that

D̃ΩI = DΩI ∪
{

jβ ∈ DΩJ

∣∣∣ ∃iα ∈ DΩI , aiα jβ 6= 0
}

(2.6)

Inflation

where aiα jβ is an element in matrix A.

The inflated set of subscripts Di n f l
Ω is in turn defined as the union

D̃Ω =∪N
I=1D̃ΩI where DΩI ⊂ D̃ΩI . (2.7)

In the sequel, we will often denote a set of indices with the same notation than its capitalised

identifier, e.g. DΩI by I and D̃ΩI by Ĩ. Finally, the inflated operator Ai n f (or Ã) is obtained by

duplicating the appropriate rows and columns as we can see in following example.

2.3.1 The two domain case

For the sake of simplicity, consider the one dimensional, algebraically non-overlapping

case presented on figure 2.6. When this problem is discretized, its forms the following linear,

block system  A11 A12

A21 A22

 U1

U2

=
 F1

F2

 . (2.8)

Let us consider now an one level 9 inflation, the A11 block is then inflated by the non-

zero elements in A12, while the block A22 by non-zeros in A21. Re-ordering the unknowns if

necessary, we have

U1 =
 U1i

U1Γ

 such that F1 =
 F1i

F1Γ

 ,

U2 =
 U2i

U2Γ

 such that F1 =
 F1i

F1Γ

 .

9. It is possible to execute inflation algorithm couple of times which quota we name “level” or “depth”.

MIKOŁAJ SZYDLARSKI 45

2. ADDM lib : Parallel Algebraic DDM Library

Figure 2.6: An 1D example of two subdomains inflation.

We then introduce the corresponding splitting for sub-operators

A11 =
[

A1i 1i A1i 1Γ

A1Γ1i A1Γ1Γ

]
, A12 =

[
A1i 2I A1i 2Γ

A1Γ2i A1Γ2Γ

]
=

[
0 0

0 A1Γ2Γ

]

A22 =
[

A2i 2i A2i 2Γ

A2Γ2i A2Γ2Γ

]
and A21 =

[
A2i 1i A2i 1Γ

A2Γ1i A2Γ1Γ

]
=

[
0 0

0 A2Γ1Γ

]

such that equation (2.8) can be re-written in following form
A1i 1i A1i 1Γ 0 0

A1Γ1i A1Γ1Γ 0 A1Γ2Γ

0 0 A2i 2i A2i 2Γ

0 A2Γ1Γ A2Γ2i A2Γ2Γ




U1i

U1Γ

U2i

U2Γ

=


F1i

F1Γ

F2i

F2Γ

 . (2.9)

The subscripts “Γ” and “i ” in introduced notation denote whenever the nodes correspond-

ing to marked set of indices are located on interface or in interior of the subdomain.

We can now proceed an inflation. The inflation duplicates the unknowns kΓ, thus we

obtain after inflation

A1i 1i A1i 1Γ 0 0 0 0

A1Γ1i A1Γ1Γ A1Γ2Γ 0 0 0

0 A2Γ1Γ A2Γ2Γ A2Γ2i 0 0

0 0 0 A2i 2i A2i 2Γ 0

0 0 0 A2Γ2i A2Γ2Γ A2Γ1Γ

A1Γ1i 0 0 0 A1Γ2Γ A1Γ1Γ





U1i

U1Γ

U2Γ

U2i

U2Γ

U1Γ


=



F1i

F1Γ

F2Γ

F2i

F2Γ

F1Γ


. (2.10)

2.3.2 Implementation

In order to demonstrate how the inflation was implemented in the ADDMlib, we divided

this subsection into four parts according to distinct actions which the inflation algorithm

needs to perform. For each step, the graphical schema has been constructed. All steps are

depicted on Figure 2.7.

MIKOŁAJ SZYDLARSKI 46

2. ADDM lib : Parallel Algebraic DDM Library

 P0
 P1

A1i1i A1i1Γ

A1Γ1i A1Γ1Γ A1Γ2Γ

A2i2i A2i2Γ

A2Γ2i A2Γ2ΓA2Γ1Γ

 P0
 P1

A1i1i A1i1Γ

A1Γ1i A1Γ1Γ

A2i2i A2i2Γ

A2Γ2i A2Γ2Γ

A1Γ2Γ

A2Γ1Γ

Extra Indices Set

 P1

MPI

 P0

A1i1i A1i1Γ

A1Γ1i A1Γ1Γ

A2i2i A2i2Γ

A2Γ2i A2Γ2Γ

A1Γ2Γ

A2Γ1Γ

A2Γ2i A2Γ2Γ
A2Γ1Γ

A1Γ1i A1Γ1Γ A1Γ2Γ

MPI

 P1
 P0

A1i1i A1i1Γ

A1Γ1i A1Γ1Γ

A2i2i A2i2Γ

A2Γ2i A2Γ2Γ

A1Γ2Γ

A2Γ1Γ

A2Γ2iA2Γ2ΓA2Γ1Γ

A1Γ1i
A1Γ1ΓA1Γ2Γ

Updated Part Size

1

2

3

4

Figure 2.7: Four main steps of Inflation algorithm implemented in ADDMlib.

MIKOŁAJ SZYDLARSKI 47

2. ADDM lib : Parallel Algebraic DDM Library

First step - Reconfiguring Data Distribution From the §2.2 we know that exomorphic Par-

tial Operators in ADDMlib can be distributed among processors without any restric-

tions. Hoverer for inflation process it is preferable that all Partial Operators with the

same PartOutID (see §2.2.2) are stored on the same process. In such configuration

each process has instant access to full rows of global system associated with unknowns

which are mapped to it via Part interface. Thus (if needed) we change distribution of

exomorphic operators in order to obtain convenient local disposition of Partial Oper-

ators.

Second step - Extra Indices Set Next for each Part, algorithm collect all columns in exomor-

phic PartialOperators which has non-zero values i.e., collected columns are extracted

from all Partial Operators with the same PartOutID but different PartInIDs. After that,

the extracted data is added to endomorphic PartialOperator, thus proceeded Part is

extended by collected in this way column indices i.e., new unknowns from neighboring

subdomain interfaces. In order to keep information about origin of those additional

indices, the new data structure is created for each inflated Part; the Extra Indices Set.

Third step - Rows Duplication In third step, for all entries in Extra Indices Set the inflation

algorithm collect corresponding rows of global operator i.e., for each extra index we

know its origin Part ID (PartInID of Partial Operator from which we have extracted

corresponding columns), thus we need to duplicate row with the same index from all

Partial Operators with PartOutID equal to proceed index origin Part ID. This sparse

data corresponds to whole rows of global operator.

Fourth step - Part Set update Duplicated rows are added to the inflated Partial Operators

in such a way that non-zeros for which column indices are now in the Extra Indices

Set are moved to corresponding, new positions in the endomorphic Partial Operator.

Non-zeros in positions which indices do not belong to the inflated Part, are new entries

in the exomorphic Partial Operators. When all data is correctly associated, the Part Set

on each processor is updated by new sizes of the inflated Parts

To inflate the DDMVector, we simply use Extra Indices Sets created during inflation

of the DDMOperator. Thus, each Partial Vector is extends by duplicated values, pointed

by entries in corresponding set of Extra Indices.

The inflation process can be repeated many times. The number of repetition we name

“inflation level” or “inflation depth” hereafter.

2.3.3 Numerical experiments

In order to present influence of overlap on ASM performance, we can process the follow-

ing numerical experiment:

Numerical Experiment 2.1. Let us consider Laplace’s equation −∆(u) = 0, discretized using

P1-type finite elements on 2D unit square in size Nx ×Ny and triangulated by the Delaunay-

Voronoi-type algorithm. On left and right side of the square we pose Dirichlet condition u = 0

and Neumann condition ∂u
∂~n = 0 on top and bottom. The righthand side of resulting linear

MIKOŁAJ SZYDLARSKI 48

2. ADDM lib : Parallel Algebraic DDM Library

system is a function f which gives random values from set 〈1,2) (fixed for all variants of test).

For domain decomposition we use decomposition into Mx ×My subdomains, each of size nx ×
ny (thus, Nx = nxMx and Ny = ny My). We solve the resulting discrete system using GMRES

left preconditioned by ASM. The initial guess is chosen to be u(0) = 0 (if experiment description

say no different) and the stopping criterion ‖ri‖ ≤ tol · ‖r0‖ for tol = 1×10−6. The estimated

condition number is given asκ≈ = λmax/λmi n whereλ{mi n,max} are the approximated, extreme

eigenvalues of (M−1A).

Influence of the inflation depth on condition number (κ) and number of iterations in

experiment 2.1 is presented in table 2.1. For the experiment we set nx = ny = 50 and Mx =
My = 4.

Method κ≈ n-iter

ASM + no inflation 317.94 39

ASM + 1 level inflation 104.86 27

ASM + 2 level inflation 61.98 21

ASM + 3 level inflation 43.56 17

0 20 40

Table 2.1: Influence of the inflation depth on condition number (κ) and number of iterations

(n-iter) in ASM method.

2.4 Partitioning with weights

The primary problem that a programmer needs to face when solving a problem on a

parallel computer is to decide how to subdivide and map data into processors. Distributed

memory computers allows a mapping of the data in arbitrary fashion but this automatically

creates question how to find a good mapping. Thus efficient techniques must be available

for partitioning an arbitrary graph.

From basic definition for a general sparse linear system whose adjacency graph is G =
(V,E), the k-way graph partitioning problem is defined as follows: given a graph G = (V,E)

with |V| = n, partition V into k subsets, V1,V2, . . . ,Vk such that Vi ∩V j = ; for i 6= j , |Vi | =
n/k, and ∪i Vi = V, and the number of edges of E whose incident vertices belong to different

subset is minimized. A k-way partition of V is commonly represented by a partition vector

P of length n, such that for every vertex v ∈ V, P[v] is an integer between 1 and k, indicating

the partition at which vertex v belongs 10.

The underlying goal of adjacency graph partitioner is to achieve a good load balance of

the work among the processors as well as ensure that the ratio of communications to com-

putation is small for the given task. There are a number of available software for graph parti-

10. This is a way how we pass partition to ADDMlib in order to create Parts

MIKOŁAJ SZYDLARSKI 49

2. ADDM lib : Parallel Algebraic DDM Library

(a) Example of the meshed domain

1 10 20 34

1

10

20

34

1 10 20 34

1

10

20

34

(b) Sparsity of the operator orig-

inate from discretized (P1-FEM)

problem on mesh a.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

(c) Adjacency graph of the matrix

depicted on figure 2.8(b)

Figure 2.8: Discrete components of PDE solution.

tioning. The two most popular; METIS [36] and SCOTCH [16] present very good performance

keeping good quality of partition (mostly in terms of data balance).

However, there are different ways to partition the computational domain. For instance

when we have access to the mesh on which we solve our problem, we can use availability of

geometrical informations in order to perform decomposition (we call it manual partitioning

hereafter).

During our experiments we quickly noticed that the way how adjacency graph is par-

titioned has strong influence on overall performance of algebraic domain decomposition

methods which we use in ADDMlib. Because adjacency graph partition is independent of

values in underlying sparse matrix (without user’s tricks), in order to obtain different parti-

tion we were changing the automatic partitioning algorithm, or we were using manual par-

titioning.

There is certain number of problems for which clever partitioning in domain decom-

position methods can increase robustness of the iterative process. For example, for highly

anisotropic problems it is preferable to keep interfaces of subdomains along anisotropy di-

rection, otherwise (e.g., in extreme case when interfaces goes perpendicularly to anisotropy

direction) occurrence of big jumps of coefficients along interface can slow down conver-

gence of iterative method. Generally speaking, it is preferable to keep together all nodes

which are strongly connected and disengage (to form subdomain) those which are con-

nected weakly. Therefore we can ask a following question:

Is it possible to extract algebraically some information about physical properties

of the problem to solve, and use them to obtain better partition ?

The k-way partitioning problem can be naturally extended to graphs that have weights as-

sociated with the vertices and the edges of the graph. In this case, the goal is to partition the

vertices into k disjoint subsets such that the sum of the vertex-weights in each subset is the

same, and the sum of the edge-weights whose incident vertices belong to different subset

is minimised. Therefore we can “smuggle” some physical properties of underlying system

MIKOŁAJ SZYDLARSKI 50

2. ADDM lib : Parallel Algebraic DDM Library

by defining custom weights for all edges in graph. When we relate graph partition mecha-

nism i.e., cutting graph edges, to highly anisotropic problem, the way how we should define

values of the edges weights comes naturally. In order to avoid partition with interfaces of

the subdomains going along a direction of anisotropy we need to associate edges parallel

to this direction with big weight. Thus from the minimisation process point of view, it will

be a big “cost” for partitioner to cut them, in contrary to edges which are oriented perpen-

dicularly to anisotropy direction which we associate with small weights in such way that it

will be “cheap” to cut them. However, we do not need to know the geometrical orientation

of edges to compute for them suitable weights. Some simple calculation inherited from al-

gebraic multi grids techniques [56], express the desired properties described above. Thus,

since number of edges of the adjacency graph is equal to the number of non-zeros in under-

lying sparse matrix, we can easily compute edge weight using values of underlying matrix via

following formula

c =
⌊(|ai j |

|ai i |+ |a j j |
×γconst

)⌋
, (2.11)

Automatic weight labelling

where bxc is the floor function maps a real number to the next smallest integer and γconst is

an arbitrary constant.

As we will show in following subsections, the adjacency graph partitioned with such de-

fined weights on edges, increase robustness of algebraic domain decomposition methods

used in ADDMlib.

2.4.1 Implementation

It is common policy that graph partitioners take as input the adjacency structure of the

graph and the weights of the vertices and edges (if any) stored using the CSR format. In this

format adjacency structure of a graph with n vertices and m edges is represented using two

arrays, namely xad j and ad j nc y . The xad j array is of size n +1 whereas the ad j nc y array

is of size 2m (this is because for each edge between vertices v and u we store both (v,u) and

(u, v)). The weights of the edges are stored in an additional array, namely ad j w g t , which

contains 2m elements in such way that the weight of the edge ad j nc y[j] is stored at location

ad j w g t [j]. The edge weights are most often integers due to performance of computing.

Since the CSR format is a standard way to store the adjacency structure of the graph, we

can easily extract it from the sparse matrix stored in the same format. When we take a closer

look on the CSR storage format used in ADDMlib (see §2.2.2 on page 41) we notice that is

enough to pass as input to partitioner two arrays; IA(1 : n + 1) and JA(1 : nzz) in order to

obtain partition vector P(1 : n).

To accelerate computation of the edges weights, we can copy from global operator all

values laying on diagonal in order to create additional array Adi ag val (1 : n). Thus, when

MIKOŁAJ SZYDLARSKI 51

2. ADDM lib : Parallel Algebraic DDM Library

we proceed calculation via (2.11), we simply proceed through all non-zeros of the global op-

erator (edges of adjacency graph) stored in CSR format (A(1 : nzz) array), in order to extract

|ai j | values. Hence, thanks to Adi ag val (1 : n) array, we have instant access to values |ai i |
and |a j j |, necessary to complete computation of custom weights. Resulting additional array

(Awei g ht s(1 : nnz)) is an additional input to standard METIS/SCOTCH routines.

2.4.2 Numerical Experiments

In this subsection we present results of three numerical experiments under some com-

mon assumptions:

◦ All problems which associated linear system we solved, originates from P1-FEM dis-

cretization.

◦ For each experiment, the size of the problem (nodes of the two dimensional mesh) is

fixed. Thus, only the way how the adjacency graph was partitioned varies.

◦ The resulting partitioned, linear systems, were solved using GMRES, preconditioned

(left preconditioner) by ASM with following parameters

– The initial guess is chosen to be U(0) = 0.

– The stopping criterion ‖ri‖ ≤ tol · ‖r0‖ for tol = 1×10−6 .

– The roughly estimated condition number 11 is given asκ≈ = λmax/λmi n whereλ{mi n,max}

are the approximated, extreme eigenvalues of (M−1A).

11. See remark 5.1 p. 118

MIKOŁAJ SZYDLARSKI 52

2. ADDM lib : Parallel Algebraic DDM Library

Numerical Experiment 2.2 (Laplace problem). Let us consider Laplace’s

equation −η∆(u) = 0 discretized on 2D unit square in size Nx ×Ny , where

Nx = Ny = 128. For domain decomposition we used six different configura-

tions depicted below.

(a) Manual decomposition into 4×4

squares, each of size 32×32

(b) Manual decomposition into 16

strips, each of size 128×8

(c) SCOTCH graph partitioner with-

out weights, for decomposition into

16 subdomains

(d) SCOTCH graph partitioner with

weights define by (2.11). Decompo-

sition into 16 subdomains.

Paritioner κ≈ n-iter

(a) Manual 214.98 39

(b) Manual 524.65 70

(c) SCOTCH 282.63 52

(d) SCOTCH + W 215.35 44

0 50 100

MIKOŁAJ SZYDLARSKI 53

2. ADDM lib : Parallel Algebraic DDM Library

Numerical Experiment 2.3 (Anisotropy). Let us consider following,

anisotropic problem: −κ∆(u) = f , discretized on 2D unit square in size

Nx ×Ny , where Nx = Ny = 128 and

κ=
[
κxx 0

0 κy y

]
=

[
1×10−6 0

0 1

]
.

For manual domain decomposition we use the same variants of partitioning

as in Experiment (2.2).

(e) SCOTCH graph partitioner with-

out weights, for decomposition into

16 subdomains

(f) SCOTCH graph partitioner with

weights define by (2.11). Decompo-

sition into 16 subdomains.

Paritioner κ≈ n-iter

(a) Manual 217.19 12

(b) Manual 1048.51 44

(e) SCOTCH 342.72 106

(f) SCOTCH + W 1.00 2

0 55 110

MIKOŁAJ SZYDLARSKI 54

2. ADDM lib : Parallel Algebraic DDM Library

Numerical Experiment 2.4 (Anisotropy problem on unit disk). Consider

anisotropic problem from Experiment 2.3, discretized on 2D unit disk, tri-

angulated by the Delaunay-Voronoi-type algorithm. For domain decom-

position we used only SCOTCH partitioner with arbitrary number of sub-

domains n = 8. The anisotropy tensor κ variants are depicted below.

(a) (c) (e)

(b) (d) (f)

Paritioner κ≈ n-iter

(a) SCOTCH 37.74 26

(b) SCOTCH + W 36.34 26

(c) SCOTCH 49.56 45

(d) SCOTCH + W 28.30 34

(e) SCOTCH 46.76 42

(f) SCOTCH + W 26.54 32

0 25 50

MIKOŁAJ SZYDLARSKI 55

2. ADDM lib : Parallel Algebraic DDM Library

2.5 Modified Schwarz Method (MSM)

As it has been pointed out in §1.2, the main idea of the modified Schwarz method con-

sists in using minimum overlapping along with interface conditions enhancement, in such

a way that more than “Dirichlet data” is passed from one subdomain to another during the

iterative process. In algebraic terms, these interface condition enhancements become addi-

tional sub-block matrices in the inflated matrix and that will be called “interface blocks”.

2.5.1 The two sub-domains

Lets take equation (2.10) for which we will introduce the interface blocks S1 and S2 in

order to obtain modified system

A1i 1i A1i 1Γ 0 0 0 0

A1Γ1i A1Γ1Γ A1Γ2Γ 0 0 0

0 A2Γ1Γ A2Γ2Γ+S1 A2Γ2i −S1 0

0 0 0 A2i 2i A2i 2Γ 0

0 0 0 A2Γ2i A2Γ2Γ A2Γ1Γ

A1Γ1i −S2 0 0 A1Γ2Γ A1Γ1Γ+S2





U1i

U1Γ

U2Γ

U2i

U2Γ

U1Γ


=



F1i

F1Γ

F2Γ

F2i

F2Γ

F1Γ


. (2.12)

The additive Schwarz method can be applied to solve this last system in parallel.

Remark 2.1 (Optimal choice for two domain case). The choice of S1 and S2 in (2.12) can be

“adjusted” in such a way that Schur complements appears, i.e., taking

Sopt
1 =−A2Γ2i A−1

2i 2i
A2i 2Γ (2.13a)

Sopt
2 =−A1Γ1i A−1

1i 1i
A1i 1Γ (2.13b)

is optimal, and the ASM in form of preconditioner in an iterative Krylov solver, converges for

the system (2.12) in two steps. Interface operators in such form we call “optimal interface

conditions” (see §1.3).

2.5.2 The three sub-domains case

In order to present how we can apply new interface conditions in more general case. Lets

consider linear system (2.14), which applies to discretized problem depicted on Figure 2.4

p.41. In this simple case, the sub-domainΩ2 has two disjoined interfaces, withΩ1 on the top

and Ω3 on the bottom. For the sake of perspicuous demonstration we introduce here, the

additional notation.

Notation 2.2 (Interface Manager for Inflated system). For 1 ≤ I 6= J ≤ N

◦ Ii is a unique subset of ΩI or Ω̃I which refers to interior nodes, i.e., nodes that do not lie

on the interface and are not duplicated in any other sub-domain.

◦ ΓI is set of indices which refer to nodes on the interface of ΩI.

MIKOŁAJ SZYDLARSKI 56

2. ADDM lib : Parallel Algebraic DDM Library

Figure 2.9: An 1D example of three subdomains inflation.

◦ Let us take a partition of ΓI, ΓI = ∪J 6=IΓ
J
I such that ΓJ

I is a set of indices which refers to

nodes ling on the interface between ΩI and ΩJ only.

◦ SI
J is the interface block operator to apply in Part with ID(I), on its interface with Part

J.



A1i 1i A1iΓ
2
1

0 0 0 0 0

AΓ2
11i

AΓ2
1Γ

2
1

0 AΓ2
1Γ

1
2

0 0 0

0 0 A2i 2i A2iΓ
1
2

A2iΓ
3
2

0 0

0 AΓ1
2Γ

2
1

AΓ1
22i

AΓ1
2Γ

1
2

0 0 0

0 0 AΓ3
22i

0 AΓ3
2Γ

3
2

0 AΓ3
2Γ

2
3

0 0 0 0 0 A3i 3i A3iΓ
2
3

0 0 0 0 AΓ2
3Γ

3
2

AΓ2
33i

AΓ2
3Γ

2
3





U1i

UΓ2
1

U2i

UΓ1
2

UΓ3
2

U3i

UΓ2
3


=



F1i

FΓ2
1

F2i

FΓ1
2

FΓ3
2

F3i

FΓ2
3


. (2.14)

When the system (2.14) is inflated, we can extend its operator by additional sub-operators

MIKOŁAJ SZYDLARSKI 57

2. ADDM lib : Parallel Algebraic DDM Library

which acts on the interfaces. Modified in such a way operator, has a following form:

A1i 1i A1iΓ
2
1

0 0 0 0 0 0 0 0 0

AΓ2
11i

AΓ2
1Γ

2
1

AΓ2
1Γ

1
2

0 0 0 0 0 0 0 0

0 AΓ1
2Γ

2
1

AΓ1
2Γ

1
2
+S1

2 AΓ1
22i

−S1
2 0 0 0 0 0 0

0 0 0 A2i 2i A2iΓ
1
2

A2iΓ
3
2

0 0 0 0 0

0 0 0 AΓ1
22i

AΓ1
2Γ

1
2

0 AΓ1
2Γ

2
1

0 0 0 0

0 0 0 AΓ3
22i

0 AΓ3
2Γ

3
2

0 AΓ3
2Γ

2
3

0 0 0

AΓ2
11i

−S2
1 0 0 AΓ2

1Γ
1
2

0 AΓ2
1Γ

2
1
+S2

1 0 0 0 0

0 0 0 0 0 AΓ2
3Γ

3
2

0 AΓ2
3Γ

2
3
+S2

3 AΓ2
33i

−S2
3 0

0 0 0 0 0 0 0 0 A3i 3i A3iΓ
2
3

0

0 0 0 0 0 0 0 0 AΓ2
33i

AΓ2
3Γ

2
3

AΓ2
3Γ

3
2

0 0 0 AΓ3
22i

0 −S3
2 0 0 0 AΓ3

2Γ
2
3

AΓ3
2Γ

3
2
+S3

2


(2.15)

2.5.3 Implementation

To enhance algebraically Part (subdomain) by new interface conditions. We need first

to perform, at least one-level inflation, in order to build Extra Indices Set, i.e., include

all current interface nodes to proceeded subdomain. In this way the Interface Manager;

a special ADDMlib class for managing new interfaces, will modify only locally duplicated

values of the original operator.

New interface conditions has a form of small, square block matrix, define for each Part.

It can be arbitrary or automatically constructed (see Chapter 3 p.66). It size is determined

by Extra Indices Set i.e., a collection of indices gathered from interface through infla-

tion process. For one-level inflation, the size of new interface block-matrix is exactly equal

to Extra Indices Set. For deeper inflation (more then one level), the sub-blocks size is

determined by the number of new extra indices, added during last inflation pass. Thus,

columns indices of the interface operators agree with extra indices corresponding with nodes

lying on the interface of subdomain.

When new interface operator for a given Part is defined, the Interface Manager adds it

to corresponding endomorphic Partial Operator by modifying extra rows i.e., those rows

which were duplicated during last pass of inflation algorithm. To keep algebraic equiva-

lence with original operator, the opposite values must be placed in the original position

of extra indices i.e., the opposite sub-operator need to be define in the original exomor-

phic Partial Operator for any interface sub-block define on extra indices in endomorphic

Partial Operator. For better picture see Figure 2.10, where procedure of “extending” in-

terface conditions is presented in form of additional step to inflation algorithm.

MIKOŁAJ SZYDLARSKI 58

2. ADDM lib : Parallel Algebraic DDM Library

 P0

−S1

 P0

A1i1i A1i1Γ

A1Γ1i A1Γ1Γ A1Γ2Γ

A2Γ2iA2Γ2ΓA2Γ1Γ

4

A1i1i A1i1Γ

A1Γ1i A1Γ1Γ A1Γ2Γ

A2Γ2iA2Γ1Γ

*

New interface conditions

A∗
2Γ2Γ

A∗
2Γ2Γ= A2Γ2Γ+S1

Figure 2.10: New interface condition as an additional step in inflation algorithm.

2.6 Sparse Patch Method

One possible way for enhancing interface conditions is to construct the sparse patch for

each node Ni
12 lying on the interface ΓJ

I between subdomains DΩI and DΩJ (i ∈ ΓJ
I, I 6= J), in

order to obtain sparse approximation of the neighbour Schur complement. We modified the

original algorithm (initially described in §1.3.2 on page 28) in order to fit it to the modified

Schwarz method implemented in ADDMlib. Thus, in ADDMlib environment we use sparse

patches to construct automatically an interface blocks Si , defined in section 2.5.

Since Interface Manager requires at least one-level inflation, our sparse patch imple-

mentation is dedicated to overlapping sub-domains i.e., patches are build for nodes lying

on the interfaces defined by inflation depth where indices originally did not belong to the

sub-domain (Part).

Patch parameters

Patch for node Ni on the interface ΓJ
I is defined by the set P

ΓJ
I

i , in such a way that P
ΓJ

I
i

is the subset of the neighboring subdomain DΩJ consists of indices which refer to joined to-

gether nodes N j (j ∈ DΩJ), in which at least one of them is connected with node Ni i.e.,

a(i , j) 6= 0. Where a(i , j) is an element of underlying matrix A, and value |a(i , j)| specifies con-

nection strength between those two nodes.

Each patch has an abstract geometry specified by two parameters; “width” and “depth”.

The name of those two variables originate from graphical representation of the patch on two

dimensional mesh, but even in more general cases (three dimensional meshes for instance)

description of the patch geometry is still described by those two variables.

Patch width in ADDMlib’s implementation is the range of connection between the node

and its neighboring nodes on the interface i.e., “width” equal one means: “include to patch

computation all indices of nodes on the interface which are directly connected to current

12. See remark 2.3 at the end of following subsection.

MIKOŁAJ SZYDLARSKI 59

2. ADDM lib : Parallel Algebraic DDM Library

(a) Fronts for simple decom-

position

(b) Fronts for nine point stencil

numerical schema

(c) Fronts for five point stencil

numerical schema

Figure 2.11: The example of different “shape” of fronts ld depending on the numerical

scheme used for the discretization.

node”. If the width is equal to two, we need to include to this set also indices of direct neigh-

bours of those nodes and so on.

Direct neighbours of the processed node is an important issue for any algebraic method

described in this report. This information is extracted from the matrix. Thus even for an

arbitrary mesh or grid, the number of “direct neighbours” for each node (in algebraic sense)

can vary as varies the numerical scheme used for the discretization.

The depth of the patch also refers to range of connections between processed node and

its direct neighbours, but in this instance we look only for nodes which belong to neighbour

subdomains. All nodes in neighbouring subdomain which are direct neighbours to nodes

lying on the interface are called “first front” (l1). If we go deeper i.e., we denote direct neigh-

bours of nodes in first front and then neighbours of their neighbours, we can define another

two fronts and so on.

All patch parameters can be easily illustrated with the help of the figure depicted below,

and description of the actual parameters given as input to Sparse Patch subroutine, imple-

mented in ADDMlib.

◦ g - depth of inflation. The number of nodes-fronts included to a sub-domain during

inflation. The last included front, becomes new interface on which we build patches.

The minimal value of g is 1 (see remark 2.2).

◦ p - patch width.

◦ lmax - depth. Maximum number of fronts in which we look for nodes to construct

patches.

MIKOŁAJ SZYDLARSKI 60

2. ADDM lib : Parallel Algebraic DDM Library

Γ Γ̃

i

l

2
p

+
1

Ω1 Ω2

g

Patch(g , p, lmax ,α) (2.16)

◦ α - connectivity strategy. Parameter used for steering the connectivity strategy (see

description below).

Patch connectivity strategy

In previous subparagraph we showed that patch “depth” is expressed in terms of fronts,

whose definition is closely connected with adjacency graph of the underlying matrix. In

order to construct the set P
ΓJ

I
i we analyse connectivity between fronts starting from nodes

on the interface (which we can consider as the front l0), to nodes in front lmax .

In the general case, a chosen node N d
n in front ld can be connected

with a number of nodes N d+1
m in neighboring front ld+1. The way how

we choose which nodes include to the patch geometry, is called the

“patch connectivity strategy”. We control it by the float parameter α in

following way:

◦ First we define a maximum connectivity strength cmax(n) be-

tween N d
n and N d+1

m .

cmax(n) = max
(
|a(n,m)|

∣∣∣n : Nn ∈ ld ,m : Nm ∈ ld+1,0 ≤ d ≤ lmax

)
◦ When cmax is computed we can decide (by fronts) which nodes

to include to the patch geometry

P
ΓJ

I
i =∪lmax−1

d=0

{
m : N d+1

m ∈ ld+1

∣∣∣a(n,m) 6= 0∧|a(n,m)| ≥ cmax(n)×α,n : Nn ∈ ld

}

4 4
3

3

4

34
4

l1 l2 l3

α = 1.0

4 4
l1 l2 l3

α = 0.0

2

3

Figure 2.12: Connectivity strategy

From above is clear that for α = 0.0 we include to the

patch geometry all nodes from lmax fronts in neigh-

bouring subdomain, which are directly or indirectly

(i.e., through their neighbours) connected to chosen (by

patch “width”) nodes on the interface Γ. In case of

α = 1.0 this set is limited to only strongest connected

nodes. The example is depicted on Figure 2.12.

Remark 2.2 (Depth of inflation in Sparse Patch routine).
Inflation depth parameter g , is a strictly technical add-

on to patch method described in §1.3.2. Its value describes after how many inflations repetition

MIKOŁAJ SZYDLARSKI 61

2. ADDM lib : Parallel Algebraic DDM Library

we will build patches. We group this parameter with variables denoting patch geometry in

order to simplify the description of the numerical experiments which involves patch method

with variable depths of inflation.

Remark 2.3 (Abstract definition of nodes). Whenever we speak about discrete constituents of

the domain on which we perform computation, we name them “nodes”. However, since the

only source of information we have is the linear system which originates from discretization of

the problem to solve. The definition of the nodes is very abstract and refers to “elements” used

for discretization e.g., nodes of the grid in the finite-difference method, polygons of the mesh

used in FEM methods and small volumes surrounding node point on a mesh in Finite volume

methods. When we depict some property of the system or techniques used in our methods, the

resulting figures refer to system discretized by finite-different method.

2.6.1 Parallel implementation

Γ

Ω1

Ω2

(a) Initial data distribution.

TMP

Γ Γ̃

i

l

2
p

+
1

Ω1

Ω2gΓ̃

(b) Data distribution during Sparse Patch computa-

tion.

Figure 2.13: Sub-domain data distribution for ADDMlib Sparse Patch algorithm.

The main difficulty in parallel, sparse patch computing is to localize the values of the

global matrix, necessary for constructing new interface operator. For a given Part, patches

are built over values extracted from operators associated with neighboring Parts. Thus, in

general case, we have no local access to this data. However, we can avoid frequent message

passing (for each “missing” value) by performing inflation. Hence, to increase total perfor-

mance of Sparse Patch computation, we carry out (g + lmax)-level inflation, in order to make

local copy of data which will be used in patch computation.

Illustration of data distribution related with this technique is depicted on Figure 2.13,

where temporary data for Part(1) is denoted by TMP.

2.6.2 Numerical Experiments

In order to present influence of new interface conditions constructed via sparse patches,

on roughly estimated condition number κ≈ and number of iterations, we proceeded ex-

periment 2.1 p. 49 in which ASM algorithm was changed into MSM described in §2.5. All

MIKOŁAJ SZYDLARSKI 62

2. ADDM lib : Parallel Algebraic DDM Library

the computations were performed for an arbitrary decomposition with nx = ny = 50 and

Mx = My = 5. Variants of patch geometry are given according to arguments defined in (2.16).

The results of the experiment are depicted below.

Method κ≈ n-iter

MSM + Patch(1,1,1,1) 142.84 33

MSM + Patch(1,1,1,0) 137.84 33

MSM + Patch(1,2,1,1) 132.93 32

MSM + Patch(1,3,1,1) 130.27 32

MSM + Patch(1,3,1,0) 130.06 32

MSM + Patch(1,2,2,1) 105.36 29

MSM + Patch(1,2,3,1) 95.23 28

MSM + Patch(1,2,4,1) 91.27 27

MSM + Patch(1,2,4,0) 86.96 27

MSM + Patch(1,3,2,1) 97.55 28

MSM + Patch(1,3,3,1) 79.27 26

MSM + Patch(1,3,4,1) 76.05 25

MSM + Patch(1,3,4,0) 69.87 25

MSM + Patch(2,2,3,1) 67.86 24

MSM + Patch(3,2,3,1) 56.77 22

MSM + Patch(3,2,3,0) 55.57 21

ASM + 1 level Inflation 214.98 39

ASM + 2 level inflation 127.12 31

ASM + 3 level inflation 89.39 27

0 20 40

Influence of the different patch geometry on approximated condition number (κ≈)

and number of iterations (n-iter) in MSM method. Patch variants according to (2.16)

Comments 2.6.1. The effect of the patch interface condition is minimal for our tested cases.

Other examples of the influence of the patch method are given in numerical result of depth

4. We see there that in connection with coarse grid correction, they improve convergence for

Poisson like problem.

MIKOŁAJ SZYDLARSKI 63

2. ADDM lib : Parallel Algebraic DDM Library

MIKOŁAJ SZYDLARSKI 64

Chapter 3
Enhanced Diagonal Optimal Interface

Conditions

In this chapter I would like to define a new way for the algebraic approxima-

tion of optimal interface condition along with algorithm and data structures de-

signed for parallel computing.

3.1 Sparse approximation of optimal conditions

For the sake of simplicity in this section we have only two subdomains (DΩ = DΩ1 ∪DΩ2)

and we focus on domain Ω1 which we simply denote by 1 and its inflated counterpart by 1̃

(see Figure 3.1). Thus the optimal interface condition reads:

Sopt

Γ̃1Γ̃1
:=−AΓ̃11̃c

A−1
1̃c 1̃c

A1̃c Γ̃1
, (3.1)

where 1̃c = Ω̃ \ Ω̃1. Matrix A−1
1̃c 1̃c

is not readily available because it is distributed among pro-

cesses. However not all entries of A−1
1̃c 1̃c

are used in (3.1), but only those whose columns are

non zero rows of A1̃c Γ̃1
and whose rows are non zero columns of AΓ̃11̃c

. Therefore let us de-

note by Γ̃1 the boundary of 1̃ and lets assume that the graph of the matrix A is symmetric,

Figure 3.1: An 1D example of one level inflation for two subdomains.

MIKOŁAJ SZYDLARSKI 65

3. Enhanced Diagonal Optimal Interface Conditions

then in (3.1) we only use [
A−1

1̃c 1̃c

]
Γ̃1Γ̃1

.

Our goal is to approximate it by a sparse matrix keeping some filtering properties. More

precisely, let V be a vector harmonic in 1̃c , i.e.:

A1̃c 1̃c
V1̃c

+A1̃c Γ̃1
VΓ̃1

= 0 (3.2)

A harmonic vector property

Remark 3.1 (Decomposition used for harmonic vector V). Assuming the appropriate order-

ing of the unknowns and using straightforward notation for inflated system proposed in this

section, the linear system (2.8) one can write in the following block formA1i 1i A1i Γ̃1
0

AΓ̃11i
AΓ̃1Γ̃1

AΓ̃11̃c

0 A1̃c Γ̃1
A1̃c 1̃c


U1i

UΓ̃1

U1̃c

=

F1i

FΓ̃1

F1̃c

 (3.3)

where we assume that A1̃c 1i
≡ 0, which is satisfied for symmetric graph since A1i 1̃c

≡ 0 (all

indices in 1i denote interior nodes of subdomain which “interact” only with its interface).

Since the calculation of optimal interface blocks of type (3.1) is too costly, we seek rather a

approximation to Sopt

Γ̃1Γ̃1
in the form

S≈
Γ̃1Γ̃1

:=−AΓ̃11̃c
β1̃c 1̃c

A1̃c Γ̃1
(3.4)

The optimal interface conditions approximation

such that

−AΓ̃11̃c
β1̃c 1̃c

A1̃c Γ̃1
VΓ̃1

= Sopt

Γ̃1Γ̃1
VΓ̃1

(3.5)

where β1̃c 1̃c
is a sparse matrix to be chosen. Thus the optimality condition is verified only on

a vector VΓ̃1
defined on Γ̃1. Taking into account equation (3.2), it amounts to

−A1̃c Γ̃1
VΓ̃1

= A1̃c 1̃c
V1̃c

−AΓ̃11̃c
A−1

1̃c 1̃c
A1̃c Γ̃1

VΓ̃1
= AΓ̃11̃c

V1̃c
.

·AΓ̃11̃c
A−1

1̃c 1̃c

Let us now define the entries of sparse matrix β1̃c 1̃c
.

Definition 3.1. If V is a harmonic vector in 1̃c , we take β1̃c 1̃c
to be a diagonal matrix defined

by

MIKOŁAJ SZYDLARSKI 66

3. Enhanced Diagonal Optimal Interface Conditions

β1̃c 1̃c
:= diag

(
−V1̃c

./A1̃c Γ̃1
VΓ̃1

)
(3.6)

β1̃c 1̃c
operator

and β1̃c 1̃c
= 0 otherwise.

Remark 3.2 (“./” - element wise division). The “./” operator denotes element-wise division

which is an operation dividing each entry in vector v with its corresponding entry in vector w,

under assumption that vectors u and w have the same length. Thus we have
v1
...

vn

 ./


w1

...

wn

=


v1 /w1

...
vn /wn

 ,

where n is size of vectors.

Proposition 3.1. Let β1̃c 1̃c
satisfy (3.6) and assume that A1̃c Γ̃1

VΓ̃1
has no zero component on

Γ̃1. Then, we have

Sopt

Γ̃1Γ̃1
VΓ̃1

=−AΓ̃11̃c
β1̃c 1̃c

A1̃c Γ̃1
VΓ̃1

Proof.

−AΓ̃11̃c
β1̃c 1̃c

A1̃c Γ̃1
VΓ̃1

= AΓ̃11̃c
V1̃c

=−AΓ̃11̃c
A−1

1̃c 1̃c
A1̃c Γ̃1

VΓ̃1

which is by definition Sopt

Γ̃1Γ̃1
VΓ̃1

.

In order to improve the approximation Sopt

Γ̃1Γ̃1
by our sparse matrix we do the following.

Let β1̃c 1̃c
be a symmetric sparse operator that satisfies

β1̃c 1̃c
A1̃c 1̃c

V1̃c
= V1̃c

, (3.7)

or equivalently using (3.2)

−β1̃c 1̃c
A1̃c Γ̃1

VΓ̃1
= V1̃c

. (3.8)

The optimal interface condition Sopt

Γ̃1Γ̃1
is approximated by

Sedoi c
Γ̃1Γ̃1

:=−AΓ̃11̃c

(
2β1̃c 1̃c

−β1̃c 1̃c
A1̃c 1̃c

β1̃c 1̃c

)
A1̃c Γ̃1

(3.9)

Definition of Sedoi c
Γ̃1Γ̃1

operator

The idea of this improvement originates from the following calculations: ‖(BA − I)‖ ≤ ε < 1

leads to ‖(BA − I)2‖ ≤ ε2 < ε. Then, remarking that (BA − I)2 = BA BA − 2BA + I = I−
(2B−BA B)A , one concludes that C = 2B−BA B is better approximation of A −1 than B

since ‖C − I‖ ≤ ε2 < ε.

MIKOŁAJ SZYDLARSKI 67

3. Enhanced Diagonal Optimal Interface Conditions

Since new approximation is created by applying some enhancement to diagonal ap-

proximation defined in (3.6), we call it Enhanced Diagonal Optimized Interface Conditions

(EDOIC). This new defined operator has three very interesting theoretical properties in the

SPD case. The first two being independent of the choice of the symmetric matrix β1̃c 1̃c
.

Lemma 3.1. If the original matrix is SPD, then we have

◦ AΓ̃1Γ̃1
+Sedoi c

Γ̃1Γ̃1
is symmetric as AΓ̃1Γ̃1

+Sopt

Γ̃1Γ̃1
is.

◦ for all vector v, (Sedoi c
Γ̃1Γ̃1

v, v) ≥ (Sopt

Γ̃1Γ̃1
v, v). Thus, AΓ̃1Γ̃1

+Sedoi c
Γ̃1Γ̃1

is SPD as AΓ̃1Γ̃1
+Sopt

Γ̃1Γ̃1
is.

◦ Sedoi c
Γ̃1Γ̃1

VΓ̃1
= Sopt

Γ̃1Γ̃1
VΓ̃1

Proof. Since symmetry is obvious, we prove the first two properties:

Sedoi c
Γ̃1Γ̃1

−Sopt

Γ̃1Γ̃1
= AΓ̃11̃c

(
A−1

1̃c 1̃c
−2β1̃c 1̃c

+β1̃c 1̃c
A1̃c 1̃c

β1̃c 1̃c

)
A1̃c Γ̃1

= AΓ̃11̃c
A−1/2

1̃c 1̃c

(
IΓ̃1

−2A1/2
1̃c 1̃c

β1̃c 1̃c
A1/2

1̃c 1̃c
+

(
A1/2

1̃c 1̃c
β1̃c 1̃c

A1/2
1̃c 1̃c

)2
)

A−1/2
1̃c 1̃c

A1̃c Γ̃1

= AΓ̃11̃c
A−1/2

1̃c 1̃c

(
IΓ̃1

−A1/2
1̃c 1̃c

β1̃c 1̃c
A1/2

1̃c 1̃c

)2
A−1/2

1̃c 1̃c
A1̃c Γ̃1

Let us prove the last filtering property, using the harmonicity of the vector (UΓ̃1
,U1̄c)T:

Sedoi c
Γ̃1Γ̃1

VΓ̃1
= − AΓ̃11̃c

(
2β1̃c 1̃c

−β1̃c 1̃c
A1̃c 1̃c

β1̃c 1̃c

)
A1̃c Γ̃1

VΓ̃1

= AΓ̃11̃c

(
2β1̃c 1̃c

−β1̃c 1̃c
A1̃c 1̃c

β1̃c 1̃c

)
A1̃c 1̃c

V1̃c

= AΓ11̃c

(
2V1̃c

−β1̃c 1̃c
A1̃c 1̃c

V1̃c

)
= AΓ̃11̃c

V1̃c

= − AΓ̃11̃c
A−1

1̃c 1̃c
A1̃c Γ̃1

VΓ̃1
= Sopt

Γ̃1Γ̃1
VΓ̃1

3.1.1 General case for arbitrary domain decomposition

We now consider a general case of domain decomposition (DΩ = ∪N
I=1DΩI) and for the

sake of simplicity, we still focus on inflated subdomain D̃Ω1 = 1̃. Notice that in the gen-

eral case there is no optimal interface condition like (3.1), which yields a convergence in

a finite number of steps, but we may ask if in the other subdomains, the approximate so-

lutions match and satisfy the equations but do not have necessarily the correct values, we

have convergence in domain Ω̃1 at the next step. In other words, the interface condition

does not delay convergence. Then, the definition of this “nearly” optimal interface condi-

tion is still given by (3.1). This interface condition was approximated by (3.4) or (3.9) in the

two-subdomain case. In general case, these formulas still make sense but the choice of the

matrix β1̃c 1̃c
is more problematic. Indeed, it seems difficult to have harmonic functions in

the neighbours of domain Ω̃1 that match on duplicated points. The most important thing

to satisfy is β1̃c 1̃c
to be uniquely defined. For this purpose, we define V using only original

nodes, and we use it in formula (3.6) in order to compute values of β1̃c 1̃c
.

Before introducing more general way for computing operator β1̃c 1̃c
we define additional

notation:

MIKOŁAJ SZYDLARSKI 68

3. Enhanced Diagonal Optimal Interface Conditions

Figure 3.2: An 1D example of one and level inflation for three subdomains.

Notation 3.1 (̃Ic decomposition). Let ĨJ
c is the set of indices associated with nodes which are

not in the inflated part Ĩ and belong to part J i.e.,

◦ Ĩc := DΩ \ Ĩ

◦ ĨJ
c ∩ Ĩ =;

◦ ĨJ
c := Ĩc ∩ J

◦ Ĩc =∪N
J=1ĨJ

c ,

where N is the number of subdomains.

Notation 3.2 (Γ̃I decomposition). Let Γ̃J
I be the set of indices associated with nodes which are

in the inflated part Ĩ, they lay on its interface and originally belong to part J i.e.,

◦ Γ̃J
I := Γ̃I ∪DΩJ ,

where N is the number of subdomains and Γ̃I ∪DΩI =;.

In order to perform the computation, we need to define a filling formula for operator

β1̃c 1̃c
. Thus from (3.6) we can define(

β1̃c 1̃c

)
i i

:=−(
V1̃c

)
i
·
/(

A1̃c Γ̃1

)
i j

(
VΓ̃1

)
j

, (3.10)

where (β1̃c 1̃c
)i i is a diagonal entry of matrix β1̃c 1̃c

.

Taking into consideration the definition of new notations (3.2 & 3.1) we can observe that

for an arbitrary decomposition, set Ĩc can be divided into subsets related to different sub-

domains. In consequence, we can divide vectors VĨc
into sub-vector and operator β1̃c 1̃c

into

blocks. We choose therefore, to adapt (3.10) in the following manner:

Definition 3.2 (Arbitrary βĨc Ĩc
). For each J 6= I, let VJ be a harmonic vector in subdomain DΩ̃J

which we can decompose in the following way:

VJ =
[

V
Γ̃J

I

VĨJ
c

]
. (3.11)

We compute for all i ∈ ĨJ
c and j ∈ Γ̃J

I:

MIKOŁAJ SZYDLARSKI 69

3. Enhanced Diagonal Optimal Interface Conditions

(
βĨJ

c ĨJ
c

)
i i

:=−
(
VĨJ

c

)
i
·
/(

AĨJ
c Γ̃

J
I

)
i j

(
V
Γ̃J

I

)
j

(3.12)

Arbitrary β1̃c 1̃c

where it makes sense and zero otherwise.

3.1.2 Second order β1̃c 1̃c
operator

From the formula (3.12) we know how to build and fill a sparse symmetric matrix β1̃c 1̃c

out of local contributions β1̃J
c 1̃J

c
for J 6= 1. In other words, for any part J, we shall build β1̃J

c 1̃J
c

such that

−β1̃J
c 1̃J

c
A1̃J

cΓ
J
1
V
ΓJ

1
= V1̃J

c
. (3.13)

However, vector (A1̃J
cΓ

J
1
V
ΓJ

1
) is a sparse vector, while V1̃J

c
should be a full vector. Therefore

block operator β1̃J
c 1̃J

c
cannot be a fully diagonal matrix and another way for filling must be

developed.

Firstly we can define for which indices in 1̃J
c , the corresponding values in the sparse vector

(A1̃J
cΓ

J
1
V
ΓJ

1
) will be non-zero i.e., we can define a following set

1̃J∗
c := {

i ∈ 1̃J
c

∣∣ (A1̃J
c Γ̃

J
1
)i j (V

Γ̃J
1
) j 6= 0

}
. (3.14)

The important observation is that for all indices in 1̃J∗
c , the corresponding nodes are di-

rect neighbours to nodes on the interface Γ̃J
1. We can use this “geometrical” information to

define a function

f : 1̃J
c → 1̃J∗

c , (3.15)

in such a way, that f maps index of each node Ni (i ∈ 1̃J
c) with index of the closest node N j

(j ∈ 1̃J∗
c). In order to determine a distance between two nodes, we use adjacency graph of the

underlying matrix and we solve shortest path problem [4]. When mapping f is defined we

use algorithm 5 to fill local operator β1̃J
c 1̃J

c
. The example of shortest paths between nodes, is

depicted on Figure 3.3.

MIKOŁAJ SZYDLARSKI 70

3. Enhanced Diagonal Optimal Interface Conditions

(a) Square domain divided into

three subdomains.

(b) Strongest connection within 1̃2
c

set.

(c) Strongest connection within 2̃1
c

set.

Figure 3.3: Examples of strongest connection “paths” between nodes which indices belong

to complement sets.

Algorithm 5 Filling of the operator β1̃J
c 1̃J

c
using (3.12).

1: for J 6= 1 do
2: for i ∈ 1̃J

c do

3: temporary_value :=−
(
VĨJ

c

)
i

/(
AĨJ

c Γ̃
J
I

)
f (i) j

(
V
Γ̃J

I

)
j

4:
(
β1̃J

c 1̃J
c

)
i f (i)

:= temporary_value

5: if i 6= f (i) then
6:

(
β1̃J

c 1̃J
c

)
f (i)i

:= temporary_value

7: end if
8: end for
9: end for

3.2 Retrieving harmonic vector from solving system

In §3.1 we say that instead of computing the optimal blocks in form (3.1), we are inter-

ested in an approximation of the form (3.5).

Notice that due to the block preconditioning (the Schwarz method), the residuals (ri =
F̃−M̃−1ÃŨi) are zero for the internal nodes in the subdomain. Thus, the vectors in the Krylov

space Km(M̃−1Ã,r0) are sub-domain wise harmonic.

If we had used another preconditioner, then for the small eigenvalue of the Ritz eigen-

vector are almost harmonic in the subdomain. Therefore, let us show now that carefully

chosen eigen pair (λ,V) of the inflated system (3.3) holds this assertion, thus it can be used

to compute a sparse approximation of the optimal conditions (3.1).

Let (λ,V) be any eigenpair of inflated system (3.3). V to agree with inflated operator Ã is

decomposed in the following way

MIKOŁAJ SZYDLARSKI 71

3. Enhanced Diagonal Optimal Interface Conditions

V =

V1i

VΓ̃1

V1̃c

 where Ã =


(

A1i 1i A1i Γ̃1

AΓ̃11i
AΓ̃1Γ̃1

) (
0

AΓ̃11̃c

)
(
0 A1̃c Γ̃1

) (
A1̃c 1̃c

)
 and M−1 =


(

A1i 1i A1i Γ̃1

AΓ̃11i
AΓ̃1Γ̃1

)−1 (
0

0

)
(
0 0

) (
A1̃c 1̃c

)−1


then for left preconditioner we have

M−1Ã =

 I

(
A1i 1i A1i Γ̃1

AΓ̃11i
AΓ̃1Γ̃1

)−1 (
0

AΓ11̃c

)
(
A1̃c 1̃c

)−1 (
0 A1̃c Γ̃1

)
I

 .

Hence from the definition of the eigenvector we can write

M−1ÃV = λV (3.16a)

[
A1i 1i A1i Γ̃1

AΓ̃11i
AΓ̃1Γ̃1

]−1 [
0

AΓ̃11̃c
V1̃c

]
= (λ−1)

[
V1i

VΓ̃1

]
[

A1̃c 1̃c

]−1 [
A1̃c Γ̃1

VΓ̃1

]
= (λ−1)

[
V1̃c

]
[

0

AΓ̃11̃c
V1̃c

]
= (λ−1)

[
A1i 1i A1i Γ̃1

AΓ̃11i
AΓ̃1Γ̃1

][
V1i

VΓ̃1

]
(3.16b)[

A1̃c Γ̃1
VΓ̃1

]
= (λ−1)

[
A1̃c 1̃c

][
V1̃c

]
(3.16c)

Now we can expand (3.16c)

A1̃c Γ̃1
VΓ̃1

= λ
(
A1̃c 1̃c

V1̃c

)−A1̃c 1̃c
V1̃c

,

thus if λ' 0 we get

A1̃c Γ̃1
VΓ̃1

+A1̃c 1̃c
V1̃c

= 0 (3.17)

As a result we could use values of eigenpair (λ,V) (for sufficiently small λ) in order to build

operator β1̃c 1̃c
(3.6). Thus the construction of diagonal approximation of optimal interface

condition can be achieved by looking for eigenvectors with extreme eigenvalues in block-

preconditioned matrix Ã.

Right preconditioned system

For the right-preconditioned system ÃM−1U? = F, with U = M−1U?, let first prove a gen-

eral result :

MIKOŁAJ SZYDLARSKI 72

3. Enhanced Diagonal Optimal Interface Conditions

Proposition 3.2. If (λ,VL) is an eigenpair of
(
M−1A

)
then (λ,VR = MVL) is an eigenpair of

(
AM−1

)
.

Proof.

M−1Ax = λx

Ax = λMx(
AM−1)Mx = λMx.

·M

It yields that in the right-preconditioned system, after the eigenvector VR of AM−1 is cal-

culated, one must compute V = M−1VR. It is not an eigenvector for A but for M−1A, and thus

we can construct operator β1̃c 1̃c
(3.6) using filtering property (3.17).

Retrieving approximate eigenvector from GMRES solver

Many iterative methods for the solution of linear system and the computation of (se-

lected) eigenvalues make use of Krylov subspaces. Thus, for a given real, nonsingular matrix

A ∈Rn×n and a vector r0 ∈Rn , the Krylov subspaces

Km(A,r0) = SPAN
{
r0, Ar0, A2r0, . . . , Am−1r0

}
(3.18)

for m = 1,2, . . . ,n form a nested sequence of subspaces.

The computational kernel of GMRES [52] is the Arnoldi process which computes the

orthonormal basis Wm for the Krylov subspace Km(A,r0). Since the Arnoldi basis is or-

thonormal, Wm = (w1 w2 . . . wm) is an orthogonal matrix (Wm ∈ Rn×m). In the orthogo-

nalisation process the scalars hi j are computed so that the square upper Hessenberg matrix

Hm ∈Rm×m satisfies the fundamental relation

AWm = WmHm +hm+1,m wm+1eH
m = Wm+1Hm . (3.19)

The rectangular upper Hessenberg matrix Hm ∈ R(m+1)×m is the square upper Hessenberg

matrix Hm supplemented with an extra row (0 . . . 0 hm+1,m). From (3.19) we can derive the

following expression for Hm :

Hm = WH
m AWm . (3.20)

The eigenvalues of Hm are called Ritz values and they approximate the eigenvalues of A.

Thus, in practice, the best way to approximate eigenvector V of A is to compute the Ritz pair

(zm ,λ), where zm are the eigenvectors of matrix Hm extracted from GMRES solver [29]. If

zm is an eigenvector for Hm , then Vm = Wm zm is almost an eigenvector of A, for the same

eigenvalue i.e.,

AVm ' WmHmWH
mWm zm =

= WmHm zm =
= Wmλzm = λVm .

(3.21)

MIKOŁAJ SZYDLARSKI 73

3. Enhanced Diagonal Optimal Interface Conditions

+registerObserver(observer)
+unregisterObserver(observer)
+notifyObservers()

+observerCollection
Subject

notifyObservers()

for observer in observerCollection
 call observer.notify()+notify()

ConcreteObserverA
+notify()
ConcreteObserverB

+notify()
Observer

Figure 3.4: UML diagram of Observer pattern.

3.3 Parallel implementation

The computing process of new interface condition in form (3.9) is divided into two stages.

During the first phase we construct operators βĨc Ĩc
in close collaboration with krylov solver.

Next, the more demanding computation is performed - the construction of interface opera-

tors Sedoi c
Γ̃IΓ̃I

. We subdivided this section according to this splitting.

3.3.1 Implementation of β operators

Implementation of routine which compute β operators, is a good example of the Ob-

server pattern[25]i.e., a software design pattern in which an object, called the subject, main-

tains a list of its dependants, called observers, and notifies them automatically of any state

changes, usually by calling one of their methods (see UML 1 diagram depicted on figure 3.4).

In ADDMlib the Krylov solver objects (GMRES/FGMRES) are the “subjects” which no-

tify all their “observers” about progress in computation i.e., about current number of iter-

ation and current residual norm. Thus, an “observer” (in ADDMlib this is an object which

computes and keeps sparse data of matrixes β) in answer can analyse this simple data and

in chosen moment (after given number of iterations or when it will discover stagnation in

solver iterations) can perform an additional computation like calculation of approximated

eigenvector.

Approximated eigenvector

In order to compute approximated eigenpair (V ,λ), the βmatrix object (notified by “sub-

ject” after m iterations), extracts from solver a square upper Hessenberg matrix Hm ∈ Rm×m

and orthonormal basis Wm for the Krylov subspace used by linear solver 2. Hm is a small

1. Unified Modelling Language is a standardised general-purpose modelling language in the field of soft-

ware engineering.
2. Usually in our experiments the Arnoldi loop constructs an orthogonal basis of the left-preconditioned

Krylov subspace for inflated operator i.e., Km(M̃−1Ã,r0)

MIKOŁAJ SZYDLARSKI 74

3. Enhanced Diagonal Optimal Interface Conditions

matrix which is local for each process, while Wm consists of m - DDMVectors (see §2.2.1).

After extraction, ADDMlib performs eigendecomposition 3 of Hm in order to obtain Hm =
ZDZ−1, where D is a diagonal matrix formed from the sorted by a magnitude eigenvalues of

Hm , and the columns of Z are the corresponding eigenvectors of Hm (z∗
1 . . . z∗

m).

Next we pick from D the smallest eigenvalueλ and its corresponding eigenvector z∗
m from

Z, in order to perform the final computation:

Vm = (
w1 · z∗

m(1)+w2 · z∗
m(2)+ . . .+wm · z∗

m(m)
)

. (3.22)

Computing the approximated eigenvector V is “cheap” and does not involve any MPI

communication because each process has its own, local copy of the matrix Hm . Thus, a

vector update operations in (3.22) is performed on local Partial Vectors and duplicated

on each process, the vector z∗
m .

Filling β operators

When approximated eigenvector is computed, we can use it as a harmonic vector V in

order to fill operators β via formula (3.12). As in case of approximation of eigenvector V , this

is also a local operation since all the necessary data for the computation consists in endo-

morphic Partial Operators and corresponding Partial Vectors (local contributors of

V).

The important observation is that each Part needs to construct a number of β operators

equal to number of their neighbours, which is a consequence of different definition of set ĨJ
c

for varying part ID= I i.e., for fixed J and for all L 6= M, L̃J
c 6= M̃J

c . For the same reason we need

to define unique map f (3.15) for each operator. But this operation is local and independent

of vector V used in filling formula, thus we can perform it as a pre processing.

3.3.2 Computing Sedoi c
Γ̃IΓ̃I

Because the linear algebra kernel implemented in ADDMlib has no general routines for

sparse matrix multiplication. We need to perform all matrix-matrix multiplications in (3.9)

“manually” i.e., we have to retrieve matrices AΓ̃ĨIc
, AĨc Γ̃I

and submatrices of AĨc Ĩc
and βĨc Ĩc

for

all 1 ≤ I ≤ N and compute (3.9). However we can notice that we do not need to have access

to all entries in AĨc Ĩc
, since matrix AΓ̃ĨIc

is located where Part with ID I is, whereas the three

other matrices are located where the neighbours of Part I are. Thus, it makes sense to drive

the computation of Sedoi c
Γ̃IΓ̃I

by the most right factor of AĨc Γ̃I
and split this computation in the

same manner as we can split Γ̃I (Γ̃I =∪J 6=IΓ̃
J
I).

In contrary to the computation of the matrices βĨc Γ̃I
, the construction of the new interface

operators needs some data exchanges between Parts. Nevertheless we have managed to

minimize number of messages exchange between the processes by dividing the formula (3.9)

3. Because of the small size of the matrix, this computation is performed by routines implemented in well

known LAPACK library (Linear Algebra PACKage [5])

MIKOŁAJ SZYDLARSKI 75

3. Enhanced Diagonal Optimal Interface Conditions

into four distinct and local operations separated by some block data exchange 4. The whole

process is depicted on Figure 3.5 and we dedicate to it a following description:

1

2

3

4

1
2

3
4

Figure 3.5: Four main steps of computation Sedoi c
Γ̃1Γ̃1

.

First step - a_tmpJ Thanks to inflation process, indices in Γ̃J
I are duplicated from Part with

ID J and in order to be able to track this duplication, they are marked as shared indices

(see §2.3). Thus, since indices in ĨJ
c are by definition part of DΩJ , all entries of operator

A1̃J
c Γ̃

J
1

can be found in endomorphic Partial Operator of Part J. Therefore for all

j ∈ shared indices of the Part J we loop over the entries of the corresponding column.

The row number of the entry is denoted by k and we have to decide if we keep it, i.e.,

if k ∈ ĨJ
c . Each value collected in this way is multiply by non-zeros in column k of the

matrix β1̃J
c 1̃J

c
and in consequence we get(

a_tmpJ

)
l j =

∑
k

(
β1̃J

c 1̃J
c

)
l k

(
A1̃J

c Γ̃
J
1

)
k j

. (3.23)

We store this sparse matrix separately in order to reuse it in steep three.

Important observation is that, computation in the first step are local to a given process.

It is due to fact that operator βĨc Ĩc
is defined Part wise, thus rows indices in operator

AĨc Γ̃
J
I

are limited to set 1̃J
c which is a subset of DΩJ .

4. Instead of exchanging single values of matrix between processes (when its needed), we first collect all of

them, in order to send one “big” message consisting data of sparse sub-matrix.

MIKOŁAJ SZYDLARSKI 76

3. Enhanced Diagonal Optimal Interface Conditions

Second step - partial_solJ Matrix-matrix product witch involves operator AĨc Ĩc
requires

very careful handling, since during first step of inflation process, non-zero values from

exomorphic Partial Operatorswith the same PartOutID are moved to correspond-

ing endomorphic Partial Operator. In terms of the computation a formula (3.9)

it means that in case when ĨJ+K
c = D̃ΩJ ∩ ĨK

c 6= ;, we can retrieve from endomorphic

Partial Operator J a small sparse matrix AĨJ
c ĨJ+K

c
. Which we need to send to Part K in

order to obtain partial result: part_tmpJ+K = AĨJ
c ĨJ+K

c
[tmpK]̃IJ+K

c ĨJ+K
c

. Next, the part_tmpJ+K

is send back to Part J in order to define

b_tmpJ = AĨJ
c ĨJ

c
a_tmpJ +part_tmpJ+K =∑

l

∑
k

(
AĨJ

c Ĩc

)
ml

(
βĨc ĨJ

c

)
lk

(
AĨJ

c Γ̃
J
I

)
k j

(3.24)

Third steep - partial_solJ Starting from this steep, we drive computation of matrix prod-

ucts from the left side (by rows indices not columns). It is due to fact that all operators

at this level are well described i.e., they have own containers and we do not need re-

trieve them from underling Partial Operator. Moreover, the computation is local

to a given process and we reuse in it partial results from previous steps. Thus, we can

easily compute [
partial_solJ

]̃
IJ
c Γ̃

J
I
= 2 a_tmpJ −βĨJ

c ĨJ
c
b_tmpJ, (3.25)

and send it to Part I in order to finish computation.

Fourth step - finishing computation When Partwith ID I will gather all partial_solJ from

its neighbours, it can easily combine them into one operator[
partial_solJ +partial_solK + . . .

]̃
Ic Γ̃I

(3.26)

and finish computation by multiply it by operator AΓ̃ĨIc
.

Entries of the matrix AΓ̃ĨIc
are readily available in the duplicated lines of the exomor-

phic Partial Operators which PartOutID= I. Therefore, this is a local computation

since after inflation all Partial Operators with the same PartOutID are stored on

the same process (see §2.3 p. 45).

3.4 Numerical results

For all experiment in this section let us consider Laplace’s equation−∆(u) = 0, discretized

using P1-type finite elements on 2D domain triangulated by the Delaunay-Voronoi-type al-

gorithm. The right hand side of resulting linear system is a function f which gives random

values from set 〈1,2) (fixed for all variants of test). For domain decomposition we use graph-

partitioner.

We inflate once and solve the resulting discrete system using GMRES left preconditioned

by ASM or MSM. The initial guess (in both cases) is chosen to be u(0) = 0 and the stopping

criterion ‖ri‖ ≤ tol · ‖r0‖ for tol = 1× 10−6. The estimated condition number is given as

κ≈ = λmax/λmi n where λ{mi n,max} are the approximated, extreme eigenvalues of (M−1Ã).

MIKOŁAJ SZYDLARSKI 77

3. Enhanced Diagonal Optimal Interface Conditions

In order to present how the new interface condition influences, the roughly estimated

the roughly estimate condition number κ≈ and the number of iterations, the resulting lin-

ear system is solved twice. First solver is preconditioned by ASM and then second by MSM.

Moreover, the first n iterations of ASM algorithm are used to find an approximated eigenvec-

tor V . Next the vector V is used in construction of Part wise operators βĨc Ĩc
. After that, we

are able to compute interface sub-operators SΓ̃IΓ̃I
(3.9) in order to enhance inflated operator

Ã and solve it by the MSM algorithm (§2.5).

3.4.1 EDOIC and quality of eigenvector approximation

In the following experiment we test how the quality of eigenvector approximation influ-

ences the robustness of the EDOIC type interface conditions. The computational domain is

chosen to be a triangulated (27604 triangles) unit disk. For decomposition we use SCOTCH

partitioner over adjacency graph originate from underlying matrix.

EDOIC(n) denotes a variant of experiment in which the eigenvector has been approxi-

mated after n iterations of reference solver i.e., “(ref) ASM”.

MIKOŁAJ SZYDLARSKI 78

3. Enhanced Diagonal Optimal Interface Conditions

Two sub-domain case

Method κ≈ n-iter

MSM+EDOIC(1) 46.13 29

MSM+EDOIC(2) 5.72 12

MSM+EDOIC(3) 5.92 12

MSM+EDOIC(6) 5.78 12

MSM+EDOIC(10) 4.76 11

MSM+EDOIC(20) 5.16 11

(ref) ASM 27.03 21

0 15 30

Three sub-domain case

Method κ≈ n-iter

MSM+EDOIC(1) 64.13 32

MSM+EDOIC(2) 21.80 18

MSM+EDOIC(3) 20.35 17

MSM+EDOIC(6) 14.56 17

MSM+EDOIC(10) 14.37 17

MSM+EDOIC(20) 14.36 17

(ref) ASM 36.47 24

0 15 30

Comments 3.4.1. We see that if the Ritz eigenvector is computed after at least two iterations,

numerical results are improved by EDOIC

3.4.2 EDOIC versus number of subdomains

In the following experiments we present how the number and the shape of the sub-

domains influence on the robustness of the EDOIC-type interface conditions. The com-

putational domains are chosen to be an unit square with fixed size (150×150 vertices) and

a complex domain which is the union of a disc and rectangle. New interface conditions are

tested with different partitions depicted along with the results.

MIKOŁAJ SZYDLARSKI 79

3. Enhanced Diagonal Optimal Interface Conditions

Experiment with unite square

(a) Two sub-domains. (b) Three sub-domains. (c) Four sub-domains

(d) Four sub-domains. (e) Five sub-domains. (f) Five sub-domains.

(SCOTCH partitioner)

Method κ≈ n-iter

(a) ASM 46.97 19

(a) MSM + EDOIC(5) 3.34 9

(b) ASM 74.19 25

(b) MSM + EDOIC(5) 4.47 13

(c) ASM 105.28 31

(c) MSM + EDOIC(5) 20.76 20

(d) ASM 77.76 22

(d) MSM + EDOIC(5) 31.98 16

(e) ASM 133.26 36

(e) MSM + EDOIC(5) 57.59 27

(f) ASM 102.06 32

(f) MSM + EDOIC(5) 50.55 25

0 18 36

MIKOŁAJ SZYDLARSKI 80

3. Enhanced Diagonal Optimal Interface Conditions

Experiment with complex domain

(a) Two sub-domains. (b) Three sub-domains. (c) Six sub-domains.

Method κ≈ n-iter

(a) ASM 9.33 12

(a) MSM+EDOIC(3) 2.56 8

(b) ASM 13.79 17

(b) MSM+EDOIC(3) 7.67 13

(c) ASM 19.58 23

(c) MSM+EDOIC(3) 14.71 20

0 12 24

MIKOŁAJ SZYDLARSKI 81

3. Enhanced Diagonal Optimal Interface Conditions

In this variant of experiment we keep the resolution of each subdomains

fixed i.e, we use a global resolution Nx ×Ny , with decomposition into Mx ×
My subdomains, each of resolution nx × ny . Therefore, Nx = nxMx and

Ny = ny My .

Fixed size problem nx = ny = 50

(a) Mx = My = 2 (b) Mx = My = 3 (c) Mx = My = 4

Method κ≈ n-iter

(a) ASM 32.97 17

(a) MSM+EDOIC(3) 18.21 13

(b) ASM 66.03 26

(b) MSM+EDOIC(3) 35.30 23

(c) ASM 112.76 34

(c) MSM+EDOIC(3) 96.97 36

0 18 36

Comments 3.4.2. We see that for 4 or 9 sub-domains, the EDOIC Interface conditions auto-

matically improves the convergence. But for more subdomains, the improvement is margined.

This motivate the next chapter devoted to coarse grid corrections which are well suited to the

many sub-domain case.

MIKOŁAJ SZYDLARSKI 82

Chapter 4
Two level method

In this chapter I would like to define a new way for algebraic construction of

two-level preconditioner in which a coarse grid construction is based on approxi-

mated eigenvectors extracted from the Krylov space.

As we briefly mentioned in §1.4, in order to prevent stagnation in the convergence of the

“one-level” domain decomposition methods for highly decomposed domain. One needs to

define a two-level method to have a scalable algorithm i.e., an algorithm whose convergence

rate is weakly dependent on the number of subdomains [58].

4.1 Abstract Preconditioner

Two-level domain decomposition methods are closely related to multigrid methods and

deflation corrections. These methods are defined by two ingredients: a full rank matrix Z ∈
Rn×k with k << n and an algebraic formulation of the correction which implies solving a

reduced size problem of order k ×k called a coarse grid problem.

As we presented in §1.4, we can combine those elements with arbitrary preconditioner

M−1 in order to construct abstract preconditioners like Pas (1.20), PbNtN (1.21) and Pa−de f 2

(1.22).

Notation 4.1 (Elements of abstract preconditioner). For the sake of simplicity we introduce

here some notations:

Ã Coefficient matrix of the inflated linear system ÃŨ = F̃.

Z Full rank matrix which spans the coarse grid subspace.

E = ZTÃZ Coarse-grid matrix.

Ξ= ZE−1ZT Coarse-grid correction matrix.

QD = I−ΞÃ = I−Z(ZTÃZ)−1ZTÃ

Our choice of abstract preconditioner is the symmetric version of Pa−de f 2 adapted to

Modified Schwarz Method (see §2.5). Hence, using notation 4.1 we can define it as follows:

MIKOŁAJ SZYDLARSKI 83

4. Two level method

P2l vl = (QD +Ξ)M̃−1 (4.1)

Two-level preconditioner P2l vl

Operator M̃−1 refers to the modified Schwarz method (§2.5) preconditioner. Therefore, fol-

lowing example depicted on figure 2.9 (p. 58), we can extract from the modified operator

(2.15) the following block preconditioner:

M̃−1 =


M̃−1

D̃Ω1
0 0

0 M̃−1
D̃Ω2

0

0 0 M̃−1
D̃Ω3

 , (4.2)

where

M̃−1
D̃Ω1

=


A1i 1i A1iΓ

2
1

0

AΓ2
11i

AΓ2
1Γ

2
1

AΓ2
1Γ

1
2

0 AΓ1
2Γ

2
1

AΓ1
2Γ

1
2
+S1

2


−1

M̃−1
D̃Ω2

=



A2i 2i A2iΓ
1
2

A2iΓ
3
2

0 0

AΓ1
22i

AΓ1
2Γ

1
2

0 AΓ1
2Γ

2
1

0

AΓ3
22i

0 AΓ3
2Γ

3
2

0 AΓ3
2Γ

2
3

0 AΓ2
1Γ

1
2

0 AΓ2
1Γ

2
1
+S2

1 0

0 0 AΓ2
3Γ

3
2

0 AΓ2
3Γ

2
3
+S2

3



−1

M̃−1
D̃Ω3

=


A3i 3i A3iΓ

2
3

0

AΓ2
33i

AΓ2
3Γ

2
3

AΓ2
3Γ

3
2

0 AΓ3
2Γ

2
3

AΓ3
2Γ

3
2
+S3

2


−1

.

Remark 4.1 (MSM vs. ASM). Using new interface conditions like Sparse Patch (see §2.6) or

EDOIC (see chapter 3) is another strategy to accelerate the convergence. Therefore, we designed

our method in such a way that it can benefit from modified Schwarz method i.e., from inflated

operator extended by small interface sub-operators. This is a general solution because we can

easily simplify MSM algorithm to additive Schwarz method (ASM) by discarding additional

interface operators e.g., for S1
2 = S2

1 = S2
3 = S3

2 = 0, operator (4.2) is an ASM preconditioner.

The second term (M̃−1) in two-level preconditioner (4.1) is a fine grid solver which can

remove the very large eigenvalues of the coefficient matrix, which correspond to high fre-

quency modes. But the small eigenvalues can still exist in the spectrum since they corre-

spond to low frequency modes and represent certain global information. Therefore, we need

a suitable the coarse solver (QD +Ξ) to efficiently deal with them.

The robustness of two-level preconditioners strongly depends on the choice of a coarse

grid subspace. We focus now on the construction of the coarse space Z.

MIKOŁAJ SZYDLARSKI 84

4. Two level method

4.2 The Coarse Grid Space Construction

From deflation techniques [23, 47, 57] we know that it is preferable to choose the coarse

grid subspace Z which consists of eigenvectors associated with the small eigenvalues. But

the lower part of the spectrum of matrix M̃−1Ã can be very costly to obtain. However at the

step m of the Krylov method we can use Krylov subspace

Km(M̃−1Ã,r0) = SPAN
{
r0,M̃−1Ãr0,M̃−1Ã2r0, . . . , Am−1r0

}
in order to approximate the selected

eigenvectors via a procedure described in the previous chapter (§3.2 p. 72). Thus, we can

perform m iterations of Krylov-type solver for preconditioned system M̃−1Ã in order to ap-

proximate nV ≤ m eigenvectors Vi i.e.,(
M̃−1Ã

)
V1 ' λ1V1

...(
M̃−1Ã

)
VnV

' λnV
VnV

.

Where (λi)1≤i≤nV
are the smallest (see remark 4.2) eigenvalues of the current square upper

Hessenberg matrix Hm (3.19).

Remark 4.2 (Number of approximated eigenvectors.). The value nV is an important param-

eter in our method. Along with the number of sub-domains it determines the size of the coarse

space (see end of this section). The choice of nV can be fixed (e.g., nV = 2 means: “compute

two approximated eigenvectors associated with “two” smallest eigenvalues (|Re(λi)| ≤ tV)”) or

we can dynamically drive this value by some threshold tV i.e., we compute all approximated

eigenvectors Vi for which corresponding eigenvalue |Re(λi)| ≤ tV .

Approximated eigenvectors Vi are of the same size as inflated domain D̃Ω (see §2.3 p. 45).

Moreover they obey partition of D̃Ω in such a way that we can easily decompose them into

Vi =


[Vi]D̃Ω1

[Vi]D̃Ω2
...

[Vi]D̃ΩN

 .

where N is the number of subdomains and [Vi]D̃Ω j
is the local contribution of Vi to subdo-

main D̃Ω j (1 ≤ j ≤ N). Therefore, we can compose the following block operator from nV

approximated eigenvectors:

Z? := [
V1 V2 · · · VnV

] =


[V1]D̃Ω1

[V2]D̃Ω1
· · · [VnV

]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

· · · [VnV
]D̃Ω2

...
...

...

[V1]D̃ΩN
[V2]D̃ΩN

· · · [VnV
]D̃ΩN


Unfortunately, vectors (Vi)1≤i≤nV

already belong to the Krylov space which we use in

searching the solution of the system M̃−1ÃŨ = F̃. For this reason using Z? in constructing

a two-level preconditioner (4.1) will bring no benefits.

MIKOŁAJ SZYDLARSKI 85

4. Two level method

However we can apply a part wise splitting to Z? in order to construct a coarse space

which is similar in structure to (1.23) i.e., to the deflation subspace Z proposed by Nicolaides

in [47]. Therefore, we can propose the following form of operator Z:

Z :=


[V1]D̃Ω1

[V2]D̃Ω1
· · · [VnV

]D̃Ω1
0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 [V1]D̃Ω2
[V2]D̃Ω2

· · · [VnV
]D̃Ω2

· · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · [V1]D̃ΩN
[V2]D̃ΩN

· · · [VnV
]D̃ΩN



Coarse grid subspace Z

In contrary to Z?, columns of Z are vectors which do not necessary belong to the Krylov

space Km(M̃−1Ã,r0) = SPAN
{
r0,M̃−1Ãr0, (M̃−1Ã)2r0, . . . , (M̃−1Ã)m−1r0

}
, thus there is some ben-

efit we can incorporate to the robustness of two-level preconditioner (4.1) with Z defined in

this way. Moreover, part wise, block structure of Z is very suitable for parallel implementa-

tion.

We can also easily determine the size of the coarse space. Since Z ∈ Rn×(nV N), the coarse

problem to solve will be of size nV N×nV N.

4.3 Parallel implementation

The main challenge during implementation of two-level preconditioner in form (4.1) is to

encapsulate its complex structure in one object of the same type as Preconditioner class in

ADDMlib (see §2.2.3). In other words, from the user point of view, a two-level preconditioner

must be a matrix operator which can act on DDMVectors via axpy routine, where axpy is a

method of any matrix type object in ADDMlib to perform matrix-vector product. This is, for

matrix A and two vectors V1 and V2, we can define:

[
A.axpy(V1,V2)

]
:= [V2 = V2 +AV1] . (4.3)

Matrix-vector products are essential for building Krylov spaces. Therefore, if we want to

build Krylov space for inflated system ÃŨ = F̃ preconditioned by (4.1) we need to be able to

perform a following computation:

V1 =
[
(QD +Ξ)

(
M̃−1Ã

)]
V2. (4.4)

In order to fit this computation to the simple interface of linear algebra kernel in ADDMlib,

we apply the following decomposition:

MIKOŁAJ SZYDLARSKI 86

4. Two level method

Therefore, if we define matrix-vector product routines for M̃−1
? and Ã?, iterative solvers im-

plemented in ADDMlib will be able to create a Krylov space of the form

Km(M̃−1
? Ã?,r0) = SPAN

{
r0,M̃−1

? Ã?r0, (M̃−1
? Ã?)2r0, . . . , (M̃−1

? Ã?)m−1r0
}

, (4.5)

in order to find a solution Ũ of the system M̃−1
? Ã?Ũ = F̃.

4.3.1 Matrix-vector product for compose operator Ã?

Matrix-vector product between the operator Ã? and DDMVector Vi is easy to perform

since axpy methods of its components are well defined and belong to linear algebra kernel

of ADDMlib (see §2.2). For that reason, we can propose the following simple algorithm:

Algorithm 6 Ã?.axpy(V1,V2)

1: temporary_vector := ÃV1

2: V2 = V2 +M̃−1temporary_vector

4.3.2 Matrix-vector product for preconditioner M̃−1
?

In case of the matrix-vector product for the operator M̃−1
? the “axpy” routine is more

difficult to implement, since M̃−1
? is an abstract container for “interaction” between three

different operators (Z,ZT and Ã). However if we write M̃−1
? Vi explicitly we can apply similar

decomposition as for (4.4):

(QD +Ξ)Vi = [(
I−ΞÃ

)+Ξ]
Vi = Vi −ΞÃVi +ΞVi (4.6)

where

Therefore, only ΞVi is an operation which must be implemented additionally.

MIKOŁAJ SZYDLARSKI 87

4. Two level method

4.3.3 Coarse grid correction - Ξ

The essence of evaluation ΞVi is in solving coarse problem E−1(times)(ZTV1). In order

to create coarse operator E = ZTÃZ we need to perform two matrix-matrix multiplications

(B̃ = ÃZ and ZTB̃), where Z is a part-wise operator with the block structure defined in pre-

vious section. Operator Z originates from Z? which is a collection of DDMVectors, thus one

way to evaluate ÃZ is to perform matrix-vector products between operator Ã and columns of

Z? with some mask.

In chapter §2 we defined an axpymethod (realisation of matrix-vector product) for global

DDMOperator and DDMVectorwhich we expressed in the form of linear combination of matrix-

vector products between PartialOperators and PartialVectors. We can exploit this de-

composition and create a new specialised object: SparseVectorCollection (SVC) which

is a collection of PartialVectors uniquely defined by two numbers: PartID and index

1 ≤ j SP ≤ nV N, witch denotes the virtual column. Partial Vectors are distributed along

process in the same manner as Partial Vectors in DDMVector i.e., all Partial Vectors
with the same PartID are stored on the same process.

Using SVCwe can easily construct operator Z from Z? by associating each Partial Vector
∈ Z? with proper j SP. For example in three sub-domain case and two DDMVectors in Z? we

have:

Z? :=


[V1]D̃Ω1

[V2]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

[V1]D̃Ω3
[V2]D̃Ω3

 (4.7)

Z :=


[V1]D̃Ω1

[V2]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

[V1]D̃Ω3
[V2]D̃Ω3

 (4.8)

[SVC]Z :=


(1)

[
[V1]D̃Ω1

]
1

(1)
[

[V2]D̃Ω1

]
2

(2)
[

[V1]D̃Ω2

]
3

(2)
[

[V2]D̃Ω2

]
4

(3)
[

[V1]D̃Ω3

]
5

(3)
[

[V2]D̃Ω3

]
6

 . (4.9)

Where [SVC]Z is a SparseVectorCollection for Z in which each PrtialVecotr is denoted

by (PartID)[V] j SP .

In order to successfully use this new data structure in (4.6) we need to define couple of

algebraic operations in form a(times)b = c (see table 4.1).

Operation [DDMOperator][SVC] = [SVC]

Operation [DDMOperator][SVC] is a generalisation of axpy method for DDMOperator and

DDMVector described in details in §2.2.2 (p. 43). The main difference is an additional in-

dex j SP, which ensures proper structure of final operator (of type [SVC]) which is a collec-

tion of partial results i.e., results originate from evaluation axpy method between Partial

MIKOŁAJ SZYDLARSKI 88

4. Two level method

data type var a data type var b data type var c

1) [DDMOperator] Ã [SVC] Z1 = [SVC] Z2

2) [SVC] ZT [DDMVector] W = [small vector ∈RnV N] v

3) [SVC] Z [small vector ∈RnV N] v = [DDMVector] V

4) [SVC] ZT
1 [SVC] Z2 = [small sparse matrix ∈RnV N×nV N] E

Table 4.1: List of algebraic operation for SVC object defined in ADDMlib. All operations are

in form a(times)b = c.

Operators in DDMOperator and Partial Vectors in Sparse Vector Collection con-

tainer. Following our example with three sub-domain case we have:

ÃZ =


A11 A12 A13

A21 A22

A31 A33




[V1]D̃Ω1
[V2]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

[V1]D̃Ω3
[V2]D̃Ω3



=


A11[V1]D̃Ω1

A11[V2]D̃Ω1
A12[V1]D̃Ω2

A12[V2]D̃Ω2
A13[V1]D̃Ω3

A13[V2]D̃Ω3

A21[V1]D̃Ω1
A21[V2]D̃Ω1

A22[V1]D̃Ω2
A22[V2]D̃Ω2

A31[V1]D̃Ω1
A31[V2]D̃Ω1

A33[V1]D̃Ω3
A33[V2]D̃Ω3



=


(1)V1 (1)V2 (1)V3 (1)V4 (1)V5 (1)V6

(2)V1 (2)V2 (2)V3 (2)V4

(3)V1 (3)V2 (3)V5 (3)V6


← Proc 0

← Proc 1

← Proc 2

Remark 4.3. In example in this section we assume that each part is associated with different

process. We display this by horizontal (or vertical in case of transposed operators) lines in op-

erators representation. We put also some restrictions on distribution of Partial Operators
in DDMOperator Ã i.e., each Parital Operator with the same PartOutID is stored on the

same process. This restriction indicates that operation “[DDMOperator][SVC]” needs some data

transfer between processes. Therefore in order to perform locally all “axpyies” between Partial
Operators and Partial Vector in SVC we need to transfer (via point-to-point communi-

cation) sparse data from SVC to DDMOperator i.e., sparse parts of Partial Vectors in SVC
accordingly to non-zero columns in endomorphic Partial Operators in DDMOperator.

Operation [SVC]T[DDMVector] = [v ∈RnV N]

Operation [SVC]T[DDMVector] creates local copy of coarse vector v ∈ RnV N on each pro-

cess. We exploit in this operation assumption that all Partial Vectors with the same

PartID are of the same size, thus in order to fill vector v , we need perform series of dot

products i.e.:

v j SP =
∑

PartID
[(PartID)V j SP] · [W]D̃ΩPartID

(4.10)

MIKOŁAJ SZYDLARSKI 89

4. Two level method

where [(PartID)V j SP] are elements of SVC and [W]D̃ΩPartID
are Partial Vectors in global

DDMVector W .

In practice on each process we create temporary vTMP ∈ RnV N which we partially fill by

performing all local dot products (all Partial Vectors with the same PartID in SVC and

DDMVectors are stored on the same process). Then we sum those partial results by calling

MPI_ALLREDUCE in order to create final result on each process.

Following our three sub-domains example from previous subsections we have:

ZTW =



[V1]T
D̃Ω1

[V2]T
D̃Ω1

[V1]T
D̃Ω2

[V2]T
D̃Ω2

[V1]T
D̃Ω3

[V2]T
D̃Ω3




[W]D̃Ω1

[W]D̃Ω2

[W]D̃Ω3

 =

=



[V1]D̃Ω1
· [W]D̃Ω1

[V2]D̃Ω1
· [W]D̃Ω1

0

0

0

0


+



0

0

[V1]D̃Ω2
· [W]D̃Ω2

[V2]D̃Ω2
· [W]D̃Ω2

0

0


+



0

0

0

0

[V1]D̃Ω3
· [W]D̃Ω3

[V2]D̃Ω3
· [W]D̃Ω3


︸ ︷︷ ︸

MPI_ALLREDUCE(..., ..., ..., ..., MPI_SUM, ...)

=



v1

v2

v3

v4

v5

v6


.

Operation [SVC][v ∈RnV N] = [DDMVector]

Since each process has is own copy of vector v (see previous subsection), operation [SVC]

[v ∈RnV N] do not involve any communication. In order to calculate components of DDMVec-
tor we need to sum Partial Vectors with the same PartID in SVC scaled by proper value

from v i.e.:

[W]D̃ΩPartID
= ∑

j SP

v j SP [(PartID)V j SP] (4.11)

where [(PartID)V j SP] are elements of SVC, [W]D̃ΩPartID
is a component of DDMvector and v j SP

is an value from vector v .

Operation [SVC]T[SVC] = [E ∈RnV N×nV N]

The role of operation [SVC]T[SVC] is a creation of coarse operator E ∈ RnV N×nV N which

must be duplicated on each process. This operation is a generalisation of [SVC]T[DDMVector].

Therefore to compute values of E we also need to perform a series of dot products:

ei j =
∑

PartID
(PartID)[V1]i · (PartID)[V2] j (4.12)

MIKOŁAJ SZYDLARSKI 90

4. Two level method

where (PartID)[V1]i are elements of [SVC] ZT
1 and (PartID)[V1]i of [SVC] Z2 (see table 4.1).

In case of operation [SVC]T[DDMVector] we first create temporary vectors vTMP ∈ RnV N

for partial and local results. Next, we sum them together and final product is automatically

created on each process.

In order to adapt this procedure to more general operation described in this subsection,

we need change temporary vectors to temporary operators. However we can not allocate

them as a full matrixes due to memory limitation (see remark 4.4). Moreover we expect

coarse operator to be sparse thus we prefer to store it in CSR format. Unfortunately we can

not easily deduce CSR structure of E while components of ZT
1 and Z2 are distributed. Thus

first we create on each process temporary matrix Btmp ∈ {true,false}nV N×nV N which all val-

ues are set to false. Next we evaluate all local dot products between Partial Vectors
with the same PartID from [SVC] Z1 and [SVC] Z2. Values obtained in this way are store in a

map i.e., in a standard C++ container which is a sorted associative array of unique keys and

associated data 1. The unique key in this case is a pair of indices <i,j> i.e., a column indexes

of the Partial Vectors from Z1 and Z2. For each non-zero value computed in this way, a

value bi j in temporary matrix Btmp is changed to true.

When we collect locally all partial results we perform MPI_ALLREDUCE(..., MPI_OR)
for local matrixes Btmp . In a result each process will have a copy of matrix Btmp in which

values true denote non-zeros in final matrix E of the same size. For our three sub-domain

example we have:

MPI_ALLREDUCE(..., ..., ..., ..., MPI_OR, ...)︷ ︸︸ ︷
1 2 3 4 5 6

1 • • • • • •
2 • • • • • •
3 ◦ ◦ ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ ◦ ◦ ◦
6 ◦ ◦ ◦ ◦ ◦ ◦

or

1 2 3 4 5 6
◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦• • • • ◦ ◦• • • • ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦

or

1 2 3 4 5 6
◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦• • ◦ ◦ • •• • ◦ ◦ • •

=
1 2 3 4 5 6
• • • • • •• • • • • •• • • • ◦ ◦• • • • ◦ ◦• • ◦ ◦ • •• • ◦ ◦ • •

Proc 0 Proc 1 Proc 2 All Proc

Where • = true, ◦ = false and or 2 states for logical disjunction.

From final version of Btmp we can easily construct CSR structure for operator E:

1 2 3 4 5 6
1 • • • • • •
2 • • • • • •
3 • • • • ◦ ◦
4 • • • • ◦ ◦
5 • • ◦ ◦ • •
6 • • ◦ ◦ • •

→ (CSR)

rows = [1 7 13 17 21 25 29]

cols = [1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 1 2 3 4 1 2 5 6 1 2 5 6]

data = [e11 e12 e13 e14 e15 e16 e21 e22 e23 e24 e25 e26 ... e65 e66]

While converting Btmp to CSR structure we fill data vector by our local results and in place

of missing values we put zeros. In this way the data vector has the same length on each

processor and we can perform another MPI_ALLREDUCE(..., MPI_SUM) in order to join

all distributed products and create final operator on each process.

1. For more details see [55].
2. In logic and mathematic, or, also know as logical Inclusive disjunction, is a logical operator that results

in true whenever one or more of its operands are true.

MIKOŁAJ SZYDLARSKI 91

4. Two level method

MPI_ALLREDUCE


[e11 e12 e13 e14 e15 e16 e21 e22 e23 e24 e25 e26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] Proc 0

[0 0 0 0 0 0 0 0 0 0 0 0 e31 e32 e33 e34 e41 e42 e43 e44 0 0 0 0 0 0 0 0] Proc 1

[0 e51 e52 e55 e56 e61 e62 e65 e66] Proc 2

data = [e11 e12 e13 e14 e15 e16 e21 e22 e23 e24 e25 e26 e31 e32 e33 e34 e41 e42 e43 e44 e51 e52 e55 e56 e61 e62 e65 e66]︸ ︷︷ ︸
All Proc

Remark 4.4. If we assume that matrix E is full and we skip procedure of prediction a sparsity

we can easily ran out of memory. We can estimate size of matrix full of double (64 bits) by

following formula:[
(n vectors in Z?) (number of parts)

]2 64 bits
8 388 608 bits

= [matrix size] MB. (4.13)

Therefore in case of 1024 subdomains and coarse operator builded from 5 DDMVectors we

would need 200 MB. With 3 additional vectors we would reach 512 MB. For comparison in ex-

periment with double inflated 3D Laplace case (see §5 p.116), coarse operator E builded from 5

eigenvectors for 1024 subdomain has only 556600 non-zero elements. Hence only 4.25 MB were

needed to store its data in CSR format.

Finally to find result of E−1v , we solve small linear system using external direct solver like

we perform in case of DDM preconditioners. Therefore, we refer to §2.2.3 for more details.

4.4 Numerical results

As we showed in previous sections, in order to define the two-level preconditioner (4.1)

we need to set up the coarse space Z. More precisely, for each computation we need to fix

up two parameters. The number of iteration of Krylov solver - m, after which we will com-

pute nV ≤ m approximated eigenvectors. Therefore, in order to identify difference between

numerical experiments with different values of m and nV we propose a following notation

P2Level(m,nV).

In order to present influence of the new two-level preconditioner on condition number κ

and number of iterations, we following numerical experiment which different configuration

define separate subsections.

Numerical Experiment 4.1. Let us consider Laplace equation −η∆(u) = 0, discretized using

P1-type finite elements on 2D or 3D domain Ω triangulated by the Delaunay-Voronoi-type

algorithm with uniform Dirichlet condition on boundary (u = 0 on ∂Ω). The right hand side

of resulting linear system is a function f which gives random values from set 〈1,2) (fixed for

all variants of test). For domain decomposition into N sub-domain we use SCOTCH graph

MIKOŁAJ SZYDLARSKI 92

4. Two level method

partitioner or we perform manual partition. We solve the resulting discrete system using GM-

RES preconditioned by a preconditioner specified by variant of experiment. The initial guess

is chosen to be u(0) = 0 and the stopping criterion ‖ri‖ ≤ tol · ‖r0‖ for default tol = 1× 10−6

(in 3D case we use also lower tolerance). The roughly estimated condition number is given

as κ≈ = λmax/λmi n where λ{mi n,max} are the approximated, extreme eigenvalues of (M̃−1Ã) or

(M̃−1
? Ã?).

4.4.1 Successive and Adaptive two-level preconditioner

Since it is necessary to perform at least m iterations of the Krylov solver to approximate

given number of eigenvectors, we can distinguish two tactics:

I successive - in which the first solver after m iteration computes approximated eigen-

vectors and then continues its iterations in order to obtain solution. After that we build

two-level preconditioner using pre-calculated eigenvectors and we can use new type

of preconditioning in second solve starting with default initial guess.

II adaptive - in which we stop first solver after m iterations and we compute approxi-

mated eigenvectors. Then we construct new preconditioner in order to use it in second

solve which as a initial guess uses “imprecise” solution from the stopped, first solver.

Successive tactic (default for experiments in this chapter) refers to situations in which we

need to solve couple of linear systems with the same operator or not too different. While the

adaptive technique is more adequate for solving difficult linear systems with long stagnation

in convergence.

4.4.2 How to read plots

Figure 4.1: Unite disc

We present all the results of our experiments in form of plots.

Therefore, for each test we depicted number of iterations and esti-

mated condition number of preconditioned system, in such a way

that they can be easily compared with a reference solution (usually

once inflated system preconditioned by additive Schwarz method)

or with different variants of the same experiment. In case of ex-

periment with Black-Oil for all tests we also depicted convergence

curves 3 for both iterative solvers used in given variant. In case of

adaptive tactic, the convergence curve of first solver (one with one-

level preconditioner) is limited to the first m iterations.

4.4.3 Two-level preconditioner versus quality of eigenvectors approxima-

tion and size of coarse space

In the following variant of experiments 4.1 we test how the quality of eigenvectors ap-

proximations and size of coarse space influences the robustness of the two-level precondi-

3. In our case it is a logarithm of residual norm (p = 2) for each iteration of Krylov solver.

MIKOŁAJ SZYDLARSKI 93

4. Two level method

tioner. The computational domain Ω is chosen to be triangulated unite disk (85306 trian-

gles). For decomposition we use SCOTCH partitioner over adjacency graph originate from

underlying matrix. The number of sub-domain is fixed to N = 14. Different variants of

P2Level(m,nV) are compared with one-level (additive Schwarz method) reference solution.

Method κ≈ n-iter

Different coarse space size

P2Level(7,1) 26.95 25

P2Level(7,2) 19.69 24

P2Level(7,3) 19.13 23

P2Level(7,4) 19.51 23

Different upper Hessenberg matrix size

P2Level(3,3) 26.50 27

P2Level(6,3) 21.39 24

P2Level(9,3) 15.55 19

P2Level(12,3) 15.83 18

P2Level(15,3) 14.96 18

Results for bigger coarse space

P2Level(6,6) 17.29 23

P2Level(12,6) 14.83 17

P2Level(18,6) 9.48 12

(referece) ASM 128.00 49

0 10 20 30 40 50

Example spectra of M̃−1
? Ã? and M̃−1Ã (ASM)

0 0.5 1 1.5 2

ASM
P2Level(7,3)

0 0.5 1 1.5 2

ASM
P2Level(18,6)

Comments 4.4.1. Using the one-level method, we have 49 iterations. Using the two-level

method brings benefits. As expected for large values of m and nV the iteration counts are better

and better. For example for m = 18 and nV = 6 we need only 12 iterations. Also if we consider

MIKOŁAJ SZYDLARSKI 94

4. Two level method

upper Hessenberg matrix sizes with a coarse space of fixed size (3 × number of subdomains),

we see that using large m brings benefit up to m = 9 but for large m there is no improvements.

That is, for m = 9, the quality of the first 3 Ritz eigenvectors was sufficient. Now if we add to

the iteration counts the value of m (the number of iterations of the first solve used to compute

the Ritz eigenvectors) we see that the total iteration counts is nearly flat since it takes values

between 29 and 33. In this case, the method is not too sensible to the choice of the parameters,

if the coarse space has to be used for subsequent solves, it is better to use “large” values of m

and nV since the first solve will not be penalised while it will more efficiently accelerate the

subsequent solves.

4.4.4 Two-level preconditioner versus number of subdomains

In the following variant of our experiments we present how the number and a shape of

sub-domains influence the robustness of the two-level preconditioner. The computational

domains Ω is chosen to be a complex domain which is an union of disc and rectangle. The

mesh is of size 9000 triangles. We divided Ω into 9 and more sub-domains. Different parti-

tions via graph partitioner are depicted above results.

Experiment with complex domain and fixed global mesh

(a) 9 sub-domains. (b) 18 sub-domains. (c) 27 sub-domains.

Method κ≈ n-iter

(a) ASM 52.05 32

(a) 2Level(6,3) 8.64 15

(b) ASM 80.42 37

(b) 2Level(6,3) 12.23 17

(c) ASM 98.66 43

(c) 2Level(6,3) 9.38 16

0 22 44

Comments 4.4.2. Notice that in this case, the overlap has fixed physical size so that the in-

crease in the iteration counts of the one level method are due only to the increase in the number

of subdomains.

MIKOŁAJ SZYDLARSKI 95

4. Two level method

In following experiments we keep the resolution of each subdomains fixed i.e, we

use a global resolution Nx ×Ny , with decomposition into M×M subdomains, each

of resolution n×n, where n = 70. Therefore, Nx = Ny = nM. Therefore, the physical

size of the overlap decreases while the number of subdomains increases.

(a) M = 2 (b) M = 3 (c) M = 4 (d) M = 5

Method κ≈ n-iter

(a) ASM 93.69 23

(a) 2Level(6,3) 10.05 14

(b) ASM 244.71 37

(b) 2Level(6,3) 17.35 20

(c) ASM 471.21 55

(c) 2Level(6,3) 29.10 25

(d) ASM 773.05 66

(d) 2Level(6,3) 32.56 29

0 33 66

Results for bigger coarse space

Method κ≈ n-iter

(a) 2Level(10,4) 5.59 9

(b) 2Level(10,4) 18.61 18

(c) 2Level(10,4) 24.88 22

(d) 2Level(10,4) 24.70 25

0 33 66

Comments 4.4.3. In these experiments, the increase of iteration counts for the two-level method

comes from the fact that as M (number of sub-domains) increases, the physical size of the

overlap decreases. In the next paragraph, Sparse Patch interface condition gives much better

robustness to the two-level method in this case.

MIKOŁAJ SZYDLARSKI 96

4. Two level method

4.4.5 Two-level preconditioner with Sparse Patch

Let us introduce some additional notation describing different type of algebraic tech-

niques used in this experiments:

method name description

ASM no I Additive Schwarz Method (see algorithm 3 p. 44) with

minimal overlap (no inflation §2.3).

ASM no I (low tol) Additive Schwarz Method with minimal overlap (no infla-

tion). (l ow tol) stays for lower tolerance for GMRES, by

default tol = 1e −6, but in this experiment tol = 1e −8.

ASM + I(1) Additive Schwarz method with one level inflation:

ni ter (κM̃−1Ã)

ASM + I(2) Additive Schwarz Method with two level inflation.

P2Level(m,nV) Two level preconditioner where M̃−1 =ASM.

Patch(g , p, lmax ,α) Modified Schwarz Method (MSM) (see §2.5) with Sparse

Patch. (see (2.16) p. 62 for the exact meaning of the pa-

rameters.).

P+P2Level(m,nV) Two level preconditioner where M̃−1 =MSM with Sparse

Patch P(g , p, lmax ,α) (2.16).

2D Case

In this experiment we test scaled performance (in terms of number of iterations) of two-

level preconditioner combined with Sparse Patch Method (see §2.6 p. 60) The computational

domains Ω is chosen to be the unit square Ω. We decomposed Ω into M2 subdomains man-

ually, keeping the resolution of each subdomains fixed i.e., the number of subdomains in-

creases M = {2,3,4,5,6,7,8,9,10} while size of the subdomains stays constant (nx = ny = 80)

i.e., the size of the global mesh increases with M2.

Final results can be compare with reference solvers i.e., for a given number of parts (np)

we present couple of results for different method given in form: number of iteration (condi-

tion number).

MIKOŁAJ SZYDLARSKI 97

4. Two level method

Results for 2D scaled performance test of two-level preconditioner combined with Sparse

Patch Method

np ASM+I(1) P(1,2,3,1) κ≈ n-iter P+P2Level(7,3)

4 32 (160.00) 15 (24.00) 3.96 6

9 42 (320.00) 24 (48.31) 10.43 12

16 65 (546.26) 33 (82.18) 10.73 14

25 73 (837.77) 39 (125.84) 12.89 17

36 94 (1194.24) 47 (177.97) 16.51 19

49 103 (1615.65) 52 (241.77) 17.16 21

64 120 (2101.90) 61 (313.47) 17.40 21

81 130 (3116.19) 93 (1402.03) 17.50 22

100 144 (3890.81) 104 (1762.50) 18.00 23

0 5 10 15 20 25

Comments 4.4.4. This test shows how well the two-level preconditioner combined with Sparse

Patch Method makes iterative solution insensitive (in terms of iterations) to both a growing

number of sub-domain and more and more refined mesh. For example, from np = 49 to np =
100 we doubled the number of sub-domains but the number of iteration stay at the same level.

In this case, combining the Sparse Patch method with our two-level preconditioner yields very

good results.

3D Case

In this numerical experiment Ω is the unit cube which we decomposed into M3 sub-

cubes, each of the same size. Hence, like in previous experiment we increase number of

subdomain (M = {2,3,4,5}) keeping its size constant (nx = ny = nz = 20).

Remark 4.5 (Final error). During our experiments we have noticed, that for a fixed tolerance

(by default tol = 1e−6) for GMRES method used in all test, the final error=max |[(F̃− ÃŨsol)]i |
can strongly vary, which means that some methods brings some benefits also to quality of

solution while keeping number of iterations relatively small. To visualise this phenomena we

add an additional column to the results for the 3D case.

MIKOŁAJ SZYDLARSKI 98

4. Two level method

Method error κ≈ n-iter

M = 2 8 Sub-domains

ASM no I 1.756e-06 39.97 24

ASM no I (l ow tol) 1.601e-07 39.97 27

ASM + I(1) 2.558e-09 12.55 15

ASM + I(2) 7.434e-09 6.84 11

P2Level(5,3) 1.600e-08 3.32 8

Patch(1,3,3,0) 8.498e-09 4.26 11

Patch(2,3,3,0) 7.702e-10 3.56 10

P(1,2,3,1)+P2Level(5,2) 1.007e-08 2.49 10

M = 3 27 Sub-domains

ASM no I 1.743e-06 78.03 25

ASM no I (l ow tol) 2.059e-08 78.03 31

ASM + I(1) 1.093e-08 22.95 16

ASM + I(2) 3.429e-09 12.71 14

P2Level(5,3) 9.927e-08 4.93 10

Patch(1,3,3,0) 1.010e-10 10.44 14

Patch(2,3,3,0) 1.319e-09 7.03 14

P(1,2,3,1)+P2Level(5,2) 1.433e-08 4.05 12

M = 4 64 Sub-domains

ASM no I 2.307e-06 136.53 40

ASM no I (l ow tol) 1.997e-08 136.53 50

ASM + I(1) 6.937e-09 43.09 23

ASM + I(2) 3.141e-09 24.07 18

P2Level(5,3) 2.614e-08 5.85 11

Patch(1,3,3,0) 1.534e-11 18.89 27

Patch(2,3,3,0) 2.176e-10 12.52 18

P(1,2,3,1)+P2Level(5,2) 3.161e-08 4.37 14

M = 5 125 Sub-domains

ASM no I 1.810e-06 206.82 46

ASM no I (l ow tol) 1.237e-08 206.03 55

ASM + I(1) 9.315e-09 64.64 26

ASM + I(2) 1.152e-08 36.00 20

P2Level(5,3) 1.414e-07 7.98 13

Patch(1,3,3,0) 2.337e-08 27.71 21

Patch(2,3,3,0) 2.318e-12 19.65 25

P(1,2,3,1)+P2Level(5,2) 4.354e-08 5.00 14

0 10 20 30 40 50

MIKOŁAJ SZYDLARSKI 99

4. Two level method

Comments 4.4.5. As in 2D case, the combined use of the Sparse Patch method along with ours

two-level preconditioner yields iteration counts that are almost constant. Notice that in this

case, the physical size of the number of subdomains increases.

4.4.6 Reservoir simulations - experiment with Black Oil model

In order to test our new algebraic methods with linear systems which originate from

porous media flow simulations, we simulated the five spot problem using well-known Blac-

Oil model [15]. This model computes the saturation change of three phases (oil, water and

gas) and pressure of each phase in each cell at each time step i.e, the Black-Oil model consists

of a set of partial differential equations describing the conservation of mass for each com-

ponent and the time evolution of the phase pressures and velocities. We limit our interest in

this experiment to pressure block only.

The variable which drives the condition number of our test matrices i.e., complexity of

our experiment variant, is a permeability field of domain in which multi-phase flow is simu-

lated. The reservoir permeability field is a full tensor quantity that presents very large local

variations, up to 4 or 10 orders of magnitude [21]. This results in highly discontinuous terms

in the discretized form of the equation that may lead to inaccurate solutions (example of per-

meability field used in our experiment is depicted on figure 4.2(b)). According to the value of

these jumps we have for given size three matrices with suffices var 4, var 8 and var 12. The

higher is the number, the higher the jumps.

The five-spot problem consists of four injection wells symmetrically disposed around

one production well (see figure 4.2(c)). More precisely, our computation domain is chosen

to be parallelepiped Ω in size (0,1000)× (0,1000)× (0,100)m. Production well is placed in

the middle of Ω (x = y = 500m) and it perforates each cell in (Lz/2,Lz), where Lz is length

in z direction. The average permeability K is considered to be isotropic in x and y direction

(Kx = Ky) and highly anisotropic in z, therefore in order to create sub-domains, we will make

“cuts” only on plane x y or we use graph partitioner (without weights).

Two sizes of a uniform mesh are used for discretizing the Black-Oil model on Ω; 30×30×
16 and 60×60×32. In order to distinguish which type of mesh and permeability field was

used in experiment we simply denote each variant by: (x × y × z)var(4,8 or 12).

MIKOŁAJ SZYDLARSKI 100

4. Two level method

(a) Pressure final solution on XY plane for Z/2.

(b) Permeability values on XY plane for Z/2 (field ex-

ample for var 4).

(c) Configuration of wells in five-spot problem

Figure 4.2: Five-spot problem for Blac-Oil model simulation.

MIKOŁAJ SZYDLARSKI 101

4. Two level method

Method κ≈ n-iter

30x30x16 var 4 4 parts (Lx/2,Ly /2,Lz/1)

Ref. ASM + Inf(1) 10.13 17

Successive P2Level(10,2) 3.74 11

Adaptive P2Level(10,2) 3.80 6

Successive P2Level(10,4) 3.04 9

Adaptive P2Level(10,4) 2.96 5

Ref. ASM + Inf(2) 5.59 13

Successive P2Level(10,2) 2.67 9

Adaptive P2Level(10,2) 1.82 3

Successive P2Level(10,4) 1.31 6

Adaptive P2Level(10,4) 1.25 2

30x30x16 var 8 4 parts (Lx/2,Ly /2,Lz/1)

Ref. ASM + Inf(1) 12.79 18

Successive P2Level(10,2) 6.27 12

Adaptive P2Level(10,2) 6.00 7

Successive P2Level(10,4) 5.97 10

Adaptive P2Level(10,4) 4.04 6

Ref. ASM + Inf(2) 5.97 13

Successive P2Level(10,2) 2.45 8

Adaptive P2Level(10,2) 2.00 3

Successive P2Level(10,4) 1.72 6

Adaptive P2Level(10,4) 1.00 2

30x30x16 var 12 4 parts (Lx/2,Ly /2,Lz/1)

Ref. ASM + Inf(1) 17.00 18

Successive P2Level(10,2) 9.75 13

Adaptive P2Level(10,2) 7.77 7

Successive P2Level(10,4) 8.86 10

Adaptive P2Level(10,4) 3.96 6

Ref. ASM + Inf(2) 5.80 12

Successive P2Level(10,2) 2.62 8

Adaptive P2Level(10,2) 1.39 2

Successive P2Level(10,4) 1.64 6

Adaptive P2Level(10,4) 1.22 2

0 5 10 15 20

MIKOŁAJ SZYDLARSKI 102

4. Two level method

Method κ≈ n-iter

60x60x32 var 4 16 parts (Lx/4,Ly /4,Lz/1)

Ref. ASM + Inf(1) 81.28 44

Successive P2Level(10,2) 15.36 21

Adaptive P2Level(10,2) 15.24 19

Successive P2Level(10,4) 15.95 19

Adaptive P2Level(10,4) 16.09 19

Ref. ASM + Inf(2) 37.72 32

Successive P2Level(10,2) 7.76 15

Adaptive P2Level(10,2) 7.70 12

Successive P2Level(10,4) 6.60 13

Adaptive P2Level(10,4) 6.64 11

60x60x32 var 8 16 parts (Lx/4,Ly /4,Lz/1)

Ref. ASM + Inf(1) 123.70 47

Successive P2Level(10,2) 59.07 33

Adaptive P2Level(10,2) 58.91 30

Successive P2Level(10,4) 58.69 31

Adaptive P2Level(10,4) 58.59 30

Ref. ASM + Inf(2) 48.90 31

Successive P2Level(10,2) 14.49 19

Adaptive P2Level(10,2) 14.50 17

Successive P2Level(10,4) 12.19 16

Adaptive P2Level(10,4) 12.55 15

60x60x32 var 12 16 parts (Lx/4,Ly /4,Lz/1)

Ref. ASM + Inf(1) 108.04 44

Successive P2Level(10,2) 86.91 32

Adaptive P2Level(10,2) 85.48 31

Successive P2Level(10,4) 82.96 29

Adaptive P2Level(10,4) 84.73 30

Ref. ASM + Inf(2) 31.71 27

Successive P2Level(10,2) 25.54 21

Adaptive P2Level(10,2) 23.42 14

Successive P2Level(10,4) 23.53 18

Adaptive P2Level(10,4) 21.86 14

0 10 20 30 40 50

MIKOŁAJ SZYDLARSKI 103

4. Two level method

Matrix variant: 30×30×16 var 4+ Inf(1)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

Matrix variant: 30×30×16 var 4+ Inf(2)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

MIKOŁAJ SZYDLARSKI 104

4. Two level method

Matrix variant: 30×30×16 var 8+ Inf(1)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

Matrix variant: 30×30×16 var 8+ Inf(2)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

MIKOŁAJ SZYDLARSKI 105

4. Two level method

Matrix variant: 30×30×16 var 12+ Inf(1)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

Matrix variant: 30×30×16 var 12+ Inf(2)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

MIKOŁAJ SZYDLARSKI 106

4. Two level method

Matrix variant: 60×60×32 var 4+ Inf(1)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

Matrix variant: 60×60×32 var 4+ Inf(2)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

MIKOŁAJ SZYDLARSKI 107

4. Two level method

Matrix variant: 60×60×32 var 8+ Inf(1)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

Matrix variant: 60×60×32 var 8+ Inf(2)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

MIKOŁAJ SZYDLARSKI 108

4. Two level method

Matrix variant: 60×60×32 var 12+ Inf(1)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

Matrix variant: 60×60×32 var 12+ Inf(2)

Successive P2Level(10,2) Adaptive P2Level(10,2)

Successive P2Level(10,4) Adaptive P2Level(10,4)

MIKOŁAJ SZYDLARSKI 109

4. Two level method

Method κ≈ n-iter

Ref. ASM + Inf(2) 31.71 27

Successive P2Level(20,2) 19.25 20

Adaptive P2Level(20,2) 10.59 6

Successive P2Level(20,4) 11.33 15

Adaptive P2Level(20,4) 7.50 5

0 10 20 30 40 50

Matrix variant: 60×60×32 var 12

Successive P2Level(20,2) Adaptive P2Level(20,2)

Successive P2Level(20,4) Adaptive P2Level(20,4)

MIKOŁAJ SZYDLARSKI 110

4. Two level method

In following experiment we build coarse space using approximated eigenvectors

from Patched operator i.e., we use Sparse Patch method for first solve.

Method κ≈ n-iter

60x60x32 var 4 16 parts (Lx/4,Ly /4,Lz/1)

Ref. ASM + Inf(1) 81.28 44

Ref. ASM + Patch(1,2,3,1) 56.16 36

Successive P+P2Level(10,4) 11.47 16

Adaptive P+P2Level(10,4) 11.51 15

Ref. ASM + Inf(2) 37.72 32

Ref. ASM + Patch(2,2,3,1) 29.52 28

Successive P+P2Level(10,4) 4.85 11

Adaptive P+P2Level(10,4) 4.89 9

60x60x32 var 8 16 parts (Lx/4,Ly /4,Lz/1)

Ref. ASM + Inf(1) 123.70 47

Ref. ASM + Patch(1,2,3,1) 78.56 38

Successive P+P2Level(10,4) 32.86 21

Adaptive P+P2Level(10,4) 32.91 21

Ref. ASM + Inf(2) 48.90 31

Ref. ASM + Patch(2,2,3,1) 36.79 26

Successive P+P2Level(10,4) 8.41 14

Adaptive P+P2Level(10,4) 8.50 13

60x60x32 var 12 16 parts (Lx/4,Ly /4,Lz/1)

Ref. ASM + Inf(1) 108.04 44

Ref. ASM + Patch(1,2,3,1) 66.69 35

Successive P+P2Level(10,4) 48.79 22

Adaptive P+P2Level(10,4) 48.10 20

Ref. ASM + Inf(2) 31.71 27

Ref. ASM + Patch(2,2,3,1) 23.55 23

Successive P+P2Level(10,4) 16.74 15

Adaptive P+P2Level(10,4) 16.84 10

0 10 20 30 40 50

MIKOŁAJ SZYDLARSKI 111

4. Two level method

Matrix variant: 60×60×32 var 4

Successive P2Level(10,4)+P(1,2,3,1) Adaptive P2Level(10,4)+P(1,2,3,1)

Successive P2Level(10,4)+P(2,2,3,1) Adaptive P2Level(10,4)+P(2,2,3,1)

Matrix variant: 60×60×32 var 8

Successive P2Level(10,4)+P(1,2,3,1) Adaptive P2Level(10,4)+P(1,2,3,1)

Successive P2Level(10,4)+P(2,2,3,1) Adaptive P2Level(10,4)+P(2,2,3,1)

MIKOŁAJ SZYDLARSKI 112

4. Two level method

Matrix variant: 60×60×32 var 12

Successive P2Level(10,4)+P(1,2,3,1) Adaptive P2Level(10,4)+P(1,2,3,1)

Successive P2Level(10,4)+P(2,2,3,1) Adaptive P2Level(10,4)+P(2,2,3,1)

Comments 4.4.6. We see from the plots that the size of the overlap is very important in these

cases and the Schwarz method is very robust to the variance of the permeability field. As for

the two level method, for matrices var 4 and var 8, setting m = 10 is enough to significantly

change the slope of the convergence curve as compared to the one-level method. But for the

highest (which is rather unrealistic case) variance var 12, we had to fix m = 20 in order to

improve over the one-level method.

MIKOŁAJ SZYDLARSKI 113

4. Two level method

MIKOŁAJ SZYDLARSKI 114

Chapter 5
Numerical Experiments

In contrary to subsections “Numerical results” at the end of previous chapters, numerical

results present in this chapter intend to present how ADDMlib cope with real test cases and

academical problems in “industrial” 1 size and difficulties.

5.1 3D Laplace problem

Numerical Experiment 5.1. Let us consider Laplace equation −∆(u) = 0, discretized using

P13D-type finite elements on hexahedral domainΩ of a size: m nx
4 ×m ny

4 ×m nz
4 with Dirichlet

condition on the top face (u = 1.0 for z = nz
4 and nz ∈ {10,15}) and homogeneous Neumann

conditions on the other boundaries.

5.1.1 Setup of the Experiment 5.1

A finite elements discretization scheme was applied to the set of discretized problems,

where we use tetrahedral mesh. Discretization and mesh construction has been performed

via FreeFem++ [34]. For the domain decomposition into N subdomains we performed man-

ual partition in such a way that subdomains shape cubes of the same size [Ωn]SIZE = m3.

The righthand side of the resulting linear system is a function f which gives random values

from set 〈1,2) (computed once and before an experiment). We solved the linear system using

GMRES method preconditioned by a preconditioner specified by variant of experiment (one

level Additive Schwarz Method or two-level preconditioner). For the subdomain (A−1
Ω̃i

) and

coarse operator (E−1) solvers we chose the direct solver SuperLU [18]. The initial guess is

chosen to be u0 = 0 and the stopping criterion ‖ri‖ ≤ tol · ‖r0‖ for default tol = 1×10−6 and

ri to be a residual. The roughly estimated condition number (see remark 5.1 p. 118) is given

as κ≈ = λmax/λmi n where λ{mi n,max} are the approximated, extreme eigenvalues of (M̃−1Ã)

or (M̃−1
? Ã?).

Since our two-level method (see §4) need a set of the approximated eigenvectors in order

to construct coarse space we executed each numerical test (except case with no inflation) as

1. Up to 3.5×106 of unknowns.

MIKOŁAJ SZYDLARSKI 115

5. Numerical Experiments

a concatenation of two iterative processes. A “classical”, one-level Additive Schwarz Method

with a different size of overlap (inflation depth) and the iterative method with two-level pre-

conditioner built from “informations” collected during first solve (approximated eigenvec-

tors). For this reason we divided our experiment into number of stages.

In first stage we read sparse matrix from a file. The matrix is next partitioned and dis-

tributed in order to define DDMOperator. Resulting operator is inflated (according to set

up level) and then it is solved by the classical Schwarz method (which involves LU decom-

position of each endomorphic Partial Operator). At the end of the first solve, the spec-

trum of upper Hessenberg matrix is automatically analyse and for each eigenvalue which

Re(λi) < tol = 0.1, the approximated eigenvector of the preconditioned system is compute

(see §3.2). If in the analysing spectrum there is no eigenvalues satisfying given threshold,

only one eigenvector corresponding to the smallest eigenvalue is compute. On the other

hand if spectrum consist a big number of small eigenvalues we sometimes limit our inter-

est to the Nv smallest values, which implies that for a coarse space we use Nv approximated

eigenvectors (in tables and plots this variant is denoted by “VF”). The resulting collection of

eigenvectors is use to create the coarse space operator (see §4.3) which is next assemble with

“Schwarz method” preconditioner (builded for the first solve) in order to create two-level

preconditioner. Finally we solve our linear system once again with the new preconditioner,

zero initial guess and the same level of inflation i.e., we reuse DDMOperator from the first

solve.

FI
R
S
T

S
O

LV
E

G
M

R
ES

 +
 S

ch
w

ar
z

M
et

ho
d

LU
 F

ac
to

ri
za

ti
on

of

 s
ub

op
er

at
or

s

In
fla

ti
on

Pa
rt

it
io

ni
ng

 a
nd

da

ta
 d

ys
tr

ib
ut

io
n

B
ui

ld
in

g
 C

oa
rs

e
S
pa

ce

Ex
tr

ac
ti
ng

A
pp

ro
xi

m
at

ed
 E

ig
en

Ve

ct
or

s

LU
 F

ac
to

ri
sa

ti
on

 o
f

C
oa

rs
e

S
pa

ce

O
pe

ra
to

r

S
EC

O
N

D
 S

O
LV

E
G

M
R
ES

 +
 T

w
o-

le
ve

l
Pr

ec
on

di
ti
on

er

Figure 5.1: Stages of experiment 5.1 on time axis.

The results for each solve (experiment variants) are presented in two ways. First, results

will be summarised in a table, presenting number of iterations, roughly approximated con-

dition number, standard norm of the relative errors (i.e., ||Aui t −b||2/||b||2 2 with the iterated

solution ui t) and number of approximated eigenvectors used in construction of Coarse Op-

erator E. In addition we also included average time (in seconds) of execution major stages

during our experiment. Second, the results are represented graphically, by showing relative

error of residual in 2-norm during the iteration process. On top of each set of results (ta-

ble and plot) the reader will find essential information about solved matrix (number of rows

and non zero values in it) and domain which we use to generate linear system (e.g., size of

subdomain).

2. For the system in form: Au = b.

MIKOŁAJ SZYDLARSKI 116

5. Numerical Experiments

High Performance tests

All numerical experiments in this chapter have been performed on a super computer.

Numerical experiments with 3D Laplace have been performed on IFP Energies Nouvelles’

cluster of 114 nodes equipped with 4 processes AMD Barcelona 2.3 Ghz (each with quad-

core socket) interconnected by Infiniband switched fabric (type of network topology). Max-

imum number of available processes was limited to 256, therefore in variants of experiment

in which computational domain was decomposed into more then 256 sub-domains, we ded-

icated more then one sub-domain per one process. Otherwise each sub-domain (ADDMlib

Part) was dedicated to one process.

Remaining numerical experiments we performed on UMPC cluster, which is a 80 nodes

of 2 quad-core processes Xeon Nehalem 2.53Ghz also interconnected by Infiniband switched

fabric. Maximum number of available processes was limited to 80.

Notation 5.1. For the each different size of computational domain, the reader will find a result

of different variants of numerical experiment collected in table with following notation:

expvar solver variant where I(x) denote Additive Schwarz Method with x

depth of inflation and D.. (or (DEFLATION)) is a version of experi-

ment in which GMRES method was preconditioned by two-level pre-

conditioner.

niter number of iterations

κ roughly estimated condition number given as κ = λmax/λmi n where

λ{mi n,max} are the approximated, extreme eigenvalues of (M̃−1Ã) or

(M̃−1
? Ã?)

nV number of approximated eigenvectors used in construction of coarse

space

||rsol || standard norm of final residual i.e., ||rsol || = ||Ausol −b||2/||b||2

CS[s] time of “construction” coarse space operator

Inf[s] time of inflation process for each level

LU[s] time of LU factorisation of endomorphic Partial Operators in

DDMOperator
sol[s] time of iterative process (in case of varian with two-level precondi-

tioner sol consist also LU factorisation time of coarse operator)

Remark 5.1. In the field of numerical analysis, the condition number (usually denoted by κ) is

a measure of sensitivity of a matrix (or the linear system it represents) to numerical operations.

The condition number for the matrix inversion with respect to a matrix norm ‖ · ‖ of a square

matrix A is defined by κ(A) = ‖A‖ ‖A−1‖, if A is non-singlular; and κ→+∞ if A is singular. Of

course, this definition depends on the choice of the norm i.e., if ‖·‖ is a l2 and A is normal then

κA = |λmax(A)/λmi n(A)| where λmax(A) and λmi n(A) are maximal and minimal (by moduli)

eigenvalues of A respectively.

MIKOŁAJ SZYDLARSKI 117

5. Numerical Experiments

Since in our methods we use approximated eigenvalues extracted from Krylov space, we

can define a similar number using the same definition. Therefore for most of the experiment

we compute κ≈ = |λ≈max(M−1A)/λ≈mi n(M−1A)|, where λ≈max(M−1A) and λ≈mi n(M−1A) are ap-

proximated maximal and minimal eigenvalues of the operator M−1A, where M−1 is a precon-

ditioner use in iterative method.

MIKOŁAJ SZYDLARSKI 118

5. Numerical Experiments

Matrix L3D4x4x4n10.mtx

nparts nrows nnz

64 68,921 993,961

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x4 (10) +I (0)
Laplace3D 4x4x4 (10) +I (1)

(DEFLATE)(3V) Laplace3D 4x4x4 (10) +I (1)
Laplace3D 4x4x4 (10) +I (2)

(DEFLATE)(2V) Laplace3D 4x4x4 (10) +I (2)
Laplace3D 4x4x4 (10) +I (3)

(DEFLATE)(1V) Laplace3D 4x4x4 (10) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 65 584.65 8.71e −07 0.25 1.78
+I(1) 41 180.85 5.34e −09 0.23 0.26 1.52

D..+I(1) 16 3.36 3 6.65e −09 0.04 0.88
+I(2) 31 98.85 1.21e −08 0.23+0.35 0.59 1.41

D..+I(2) 15 2.86 2 3.52e −09 0.05 1.11
+I(3) 26 64.51 9.33e −10 0.2+0.35+0.58 1.31 1.34

D..+I(3) 15 2.48 1 1.01e −08 0.04 1.25

Table 5.1: Results for numerical experiment 5.1 where nx = 4, ny = 4, nz = 4 and m = 10. For

notation see page 118.

MIKOŁAJ SZYDLARSKI 119

5. Numerical Experiments

Matrix L3D4x4x4n15.mtx

nparts nrows nnz

64 226,981 3,316,141

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70 80

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x4 (15) +I (0)
Laplace3D 4x4x4 (15) +I (1)

(DEFLATE)(4V) Laplace3D 4x4x4 (15) +I (1)
Laplace3D 4x4x4 (15) +I (2)

(DEFLATE)(3V) Laplace3D 4x4x4 (15) +I (2)
Laplace3D 4x4x4 (15) +I (3)

(DEFLATE)(2V) Laplace3D 4x4x4 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 78 879.91 9.37e −07 1.46 3.65
+I(1) 49 280.10 5.41e −09 1.12 2.49 2.86

D..+I(1) 19 5.49 4 1.28e −09 0.27 1.75
+I(2) 39 158.20 8.67e −10 1.10+1.60 4.12 2.16

D..+I(2) 16 3.49 3 9.23e −11 0.26 2.05
+I(3) 33 106.24 2.81e −09 1.07+1.60+2.41 7.14 3.40

D..+I(3) 16 2.98 2 2.04e −10 0.24 2.69

Table 5.2: Results for numerical experiment 5.1 where nx = 4, ny = 4, nz = 4 and m = 15. For

notation see page 118.

MIKOŁAJ SZYDLARSKI 120

5. Numerical Experiments

Matrix L3D4x4x8n10.mtx

nparts nrows nnz

128 136,161 1,976,481

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70 80 90 100

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x8 (10) +I (0)
Laplace3D 4x4x8 (10) +I (1)

(DEFLATE)(6V) Laplace3D 4x4x8 (10) +I (1)
Laplace3D 4x4x8 (10) +I (2)

(DEFLATE)(4V) Laplace3D 4x4x8 (10) +I (2)
Laplace3D 4x4x8 (10) +I (3)

(DEFLATE)(2V) Laplace3D 4x4x8 (10) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 94 2458.56 9.92e −07 0.20 9.43
+I(1) 56 759.10 8.68e −10 0.26 0.25 4.23

D..+I(1) 14 2.71 6 8.39e −10 0.23 2.22
+I(2) 43 414.01 3.63e −09 0.25+0.40 0.67 3.86

D..+I(2) 13 2.28 4 9.31e −10 0.20 2.01
+I(3) 36 269.63 4.20e −09 0.27+0.41+0.73 1.61 3.80

D..+I(3) 14 2.53 2 7.49e −09 0.15 2.33

Table 5.3: Results for numerical experiment 5.1 where nx = 4, ny = 4, nz = 8 and m = 10. For

notation see page 118.

MIKOŁAJ SZYDLARSKI 121

5. Numerical Experiments

Matrix L3D4x4x8n15.mtx

nparts nrows nnz

128 450,241 6,606,721

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x8 (15) +I (0)
Laplace3D 4x4x8 (15) +I (1)

(DEFLATE)(8V) Laplace3D 4x4x8 (15) +I (1)
Laplace3D 4x4x8 (15) +I (2)

(DEFLATE)(5V) Laplace3D 4x4x8 (15) +I (2)
Laplace3D 4x4x8 (15) +I (3)

(DEFLATE)(5V) Laplace3D 4x4x8 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 115 3694.10 8.31e −07 2.06 8.84
+I(1) 69 1174.49 1.92e −10 1.18 4.39 8.35

D..+I(1) 15 3.61 10 2.55e −09 1.18 3.36
+I(2) 53 662.34 3.09e −09 1.16+1.73 6.35 6.37

D..+I(2) 15 2.78 5 1.07e −09 0.76 4.41
+I(3) 44 444.15 2.59e −09 1.19+1.76+2.60 14.59 8.03

D..+I(3) 13 2.37 5 5.46e −09 1.66 4.91

Table 5.4: Results for numerical experiment 5.1 where nx = 4, ny = 4, nz = 8 and m = 15. For

notation see page 118.

MIKOŁAJ SZYDLARSKI 122

5. Numerical Experiments

Matrix L3D4x4x16n10.mtx

nparts nrows nnz

256 270,641 3,941,521

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120 140

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x16 (15) +I (0)
Laplace3D 4x4x16 (15) +I (1)

(DEFLATE)(10V) Laplace3D 4x4x16 (15) +I (1)
Laplace3D 4x4x16 (15) +I (2)

(DEFLATE)(7V) Laplace3D 4x4x16 (15) +I (2)
Laplace3D 4x4x16 (15) +I (3)

(DEFLATE)(5V) Laplace3D 4x4x16 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 139 10097.30 9.11e −07 0.19 12.52
+I(1) 82 3116.28 5.74e −09 0.33 0.31 9.27

D..+I(1) 13 2.28 10 3.69e −09 0.83 3.74
+I(2) 61 1698.61 1.50e −09 0.31+0.46 0.59 7.85

D..+I(2) 12 2.13 7 5.28e −09 0.56 3.75
+I(3) 50 1105.62 3.68e −10 0.31+0.47+0.72 1.69 6.56

D..+I(3) 12 2.07 5 2.76e −09 0.46 3.76

Table 5.5: Results for numerical experiment 5.1 where nx = 4, ny = 4, nz = 16 and m = 10.

For notation see page 118.

MIKOŁAJ SZYDLARSKI 123

5. Numerical Experiments

Matrix L3D4x4x16n15.mtx

nparts nrows nnz

256 896,761 13,187,881

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120 140 160 180

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x16 (15) +I (0)
Laplace3D 4x4x16 (15) +I (1)

(DEFLATE)(12V) Laplace3D 4x4x16 (15) +I (1)
Laplace3D 4x4x16 (15) +I (2)

(DEFLATE)(10V) Laplace3D 4x4x16 (15) +I (2)
Laplace3D 4x4x16 (15) +I (3)

(DEFLATE)(7V) Laplace3D 4x4x16 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 169 15158.70 9.78e −07 2.04 17.44
+I(1) 101 4818.07 1.68e −09 1.29 3.56 10.30

D..+I(1) 14 5.82 13 2.18e −06 2.12 5.17
+I(2) 77 2715.89 2.12e −09 1.29+1.89 7.40 12.63

D..+I(2) 12 2.30 10 9.43e −07 2.20 5.81
+I(3) 64 1820.48 2.64e −09 1.27+1.87+2.74 13.81 14.57

D..+I(3) 13 2.18 7 1.09e −08 2.00 6.79

Table 5.6: Results for numerical experiment 5.1 where nx = 4, ny = 4, nz = 16 and m = 15.

For notation see page 118.

MIKOŁAJ SZYDLARSKI 124

5. Numerical Experiments

Matrix L3D8x8x8n15.mtx

nparts nrows nnz

512 1,771,561 26,223,481

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120 140 160

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 8x8x8 (15) +I (0)
Laplace3D 8x8x8 (15) +I (1)

(DEFLATE)(13V) Laplace3D 8x8x8 (15) +I (1)
Laplace3D 8x8x8 (15) +I (2)

(DEFLATE)(10V) Laplace3D 8x8x8 (15) +I (2)
Laplace3D 8x8x8 (15) +I (3)

(DEFLATE)(7V) Laplace3D 8x8x8 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 159 4083.11 9.09e −07 2.61 16.91
+I(1) 97 1294.14 1.61e −09 2.67 4.11 13.91

D..+I(1) 14 3.47 13 1.05e −07 3.42 27.56
+I(2) 75 727.35 3.44e −09 6.49 8.29 14.10

D..+I(2) 11 2.05 10 2.37e −09 2.78 16.56
+I(3) 65 486.40 1.35e −09 12.04 14.54 16.13

D..+I(3) 11 1.89 8 1.33e −09 2.71 13.83

Table 5.7: Results for numerical experiment 5.1 where nx = 8, ny = 8, nz = 8 and m = 15. For

notation see page 118.

MIKOŁAJ SZYDLARSKI 125

5. Numerical Experiments

Matrix L3D8x8x16n15.mtx

nparts nrows nnz

1024 3,528,481 52,345,441

-7

-6

-5

-4

-3

-2

-1

 0

 0 50 100 150 200 250

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 8x8x16 (15) +I (0)
Laplace3D 8x8x16 (15) +I (1)

(DEFLATE)(7FV) Laplace3D 8x8x16 (15) +I (1)
(DEFLATE)(10FV) Laplace3D 8x8x16 (15) +I (1)

Laplace3D 8x8x16 (15) +I (2)
(DEFLATE)(15V) Laplace3D 8x8x16 (15) +I (2)

Laplace3D 8x8x16 (15) +I (3)
(DEFLATE)(12V) Laplace3D 8x8x16 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 241 16715.00 9.95e −07 7.46 56.51
+I(1) 144 5296.63 9.07e −10 6.07 16.24 48.06

D..+I(1) 20 5.44 7F 1.38e −06 7.35 44.32
D..+I(1) 16 4.26 10F 1.22e −05 12.79 73.38

+I(2) 109 2975.54 1.68e −09 14.94 16.71 41.26
D..+I(2) 12 2.76 15 1.22e −05 16.15 111.32

+I(3) 91 1988.98 9.24e −10 27.85 29.01 33.43
D..+I(3) 11 2.23 12 1.47e −05 12.61 57.62

Table 5.8: Results for numerical experiment 5.1 where nx = 8, ny = 8, nz = 16 and m = 15.

For notation see page 118.

MIKOŁAJ SZYDLARSKI 126

5. Numerical Experiments

5.2 Algebraic Multi Grid method as a sub-solver in ADDM

Numerical Experiment 5.2. In this investigation we consider the same problem as in exper-

iment 5.1, but we limit our tests only to the variants with the biggest sub-domain size i.e.,

[Ωi]SIZE = 153. Other changes are due to setup of the experiment.

5.2.1 Setup of the Experiment 5.2

The only change in setup of numerical experiment 5.2 in comparison to previous tests is

a type of sub-solver used in “Schwarz preconditioner” of the first solve. Instead of SuperLU
routines we used HYPRE Algebraic Multi Grid methods via interface of PETSc library

with the default setup (convergence tolerance tol = 1e−6). In a consequence of using AMG
instead of direct solver we changed also a type of first iterative method from GMRES to

F(lexible)GMRES. Thus we applied Schwarz Method as a right preconditioner and approxi-

mated eigenvectors needed special treatment in order to by successfully used in coarse space

computation for the two-level preconditioner (see §3.2 p. 72).

The stages of experiment 5.2 are depicted on figure 5.2.1.

FI
R
S
T

S
O

LV
E

FG
M

R
ES

 +
 S

ch
w

ar
z

M
et

ho
d

(A
M

G
)

A
M

G
 s

et
up

In
fla

ti
on

Pa
rt

it
io

ni
ng

 a
nd

da

ta
 d

ys
tr

ib
ut

io
n

B
ui

ld
in

g
 C

oa
rs

e
S
pa

ce

Ex
tr

ac
ti
ng

A
pp

ro
xi

m
at

ed
 E

ig
en

Ve

ct
or

s

LU
 F

ac
to

ri
sa

ti
on

 o
f

C
oa

rs
e

S
pa

ce

O
pe

ra
to

r

S
EC

O
N

D
 S

O
LV

E
G

M
R
ES

 +
 T

w
o-

le
ve

l
Pr

ec
on

di
ti
on

er
 (

LU
)

LU
 F

ac
to

ri
za

ti
on

of

 s
ub

op
er

at
or

s

Figure 5.2: Stages of experiment 5.1 on time axis.

Notation 5.2. Because we changed sub-solver type, instead of LU factorisation time in first

solve we measured time of configuration AMG preconditioners for endomorphic Partial Oper-

ators, which we denoted in tables by AMG.

AMG[s] configuration time of iterative solver with AMG preconditioner for

each Partial Operator in DDMOperator

Time of LU factorisation of Partial Operators in second solve was automatically included

to time of coarse space computation (CS[s]).

MIKOŁAJ SZYDLARSKI 127

5. Numerical Experiments

Matrix L3D4x4x4n15.mtx

nparts nrows nnz

64 226,981 3,316,141

-7

-6

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25 30 35 40 45 50

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x4 (15) +I (1) (AMG)
(DEFLATE)(4V) Laplace3D 4x4x4 (15) +I (1)

Laplace3D 4x4x4 (15) +I (2) (AMG)
(DEFLATE)(3V) Laplace3D 4x4x4 (15) +I (2)

Laplace3D 4x4x4 (15) +I (3) (AMG)
(DEFLATE)(2V) Laplace3D 4x4x4 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] AMG[s] sol[s]

+I(1) 43 280.11 5.41e −09 1.07 0.24 3.77
D..+I(1) 19 5.81 4 1.90e −09 0.31 1.85

+I(2) 33 158.20 8.49e −10 1.05+1.64 0.18 4.38
D..+I(2) 16 3.40 3 9.20e −11 0.28 2.14

+I(3) 28 106.24 2.74e −09 1.04+1.62+2.45 0.22 5.68
D..+I(3) 16 2.91 2 2.17e −10 0.25 2.66

Table 5.9: Results for numerical experiment 5.2 where nx = 4, ny = 4, nz = 4 and m = 15. For

notation see page 118 and 128.

MIKOŁAJ SZYDLARSKI 128

5. Numerical Experiments

Matrix L3D4x4x8n15.mtx

nparts nrows nnz

128 450,241 6,606,721

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x8 (15) +I (1) (AMG)
(DEFLATE)(8V) Laplace3D 4x4x8 (15) +I (1)

Laplace3D 4x4x8 (15) +I (2) (AMG)
(DEFLATE)(5V) Laplace3D 4x4x8 (15) +I (2)

Laplace3D 4x4x8 (15) +I (3) (AMG)
(DEFLATE)(5V) Laplace3D 4x4x8 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] AMG[s] sol[s]

+I(1) 69 1174.49 1.13e −10 1.14 0.16 4.83
D..+I(1) 15 2.6 9 9.13e −09 1.20 3.37

+I(2) 53 662.34 3.03e −09 1.10+2.54 0.18 7.02
D..+I(2) 15 2.73 5 6.37e −09 0.84 4.37

+I(3) 44 444.16 2.61e −09 1.11+1.69+2.52 0.25 8.20
D..+I(3) 13 2.32 5 8.19e −09 1.75 4.84

Table 5.10: Results for numerical experiment 5.2 where nx = 4, ny = 4, nz = 8 and m = 15.

For notation see page 118 and 128.

MIKOŁAJ SZYDLARSKI 129

5. Numerical Experiments

Matrix L3D4x4x16n15.mtx

nparts nrows nnz

256 896,761 13,187,881

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x16 (15) +I (1) (AMG)
(DEFLATE)(12V) Laplace3D 4x4x16 (15) +I (1)

Laplace3D 4x4x16 (15) +I (2) (AMG)
(DEFLATE)(10V) Laplace3D 4x4x16 (15) +I (2)

Laplace3D 4x4x16 (15) +I (3) (AMG)
(DEFLATE)(7V) Laplace3D 4x4x16 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] AMG[s] sol[s]

+I(1) 101 4818.07 1.85e −09 1.22 0.20 4.83
D..+I(1) 13 4.53 12 1.63e −06 2.24 5.17

+I(2) 77 2715.89 1.62e −09 1.25+1.86 0.20 7.02
D..+I(2) 10 2.31 10 1.78e −08 2.30 5.88

+I(3) 64 1820.48 2.24e −09 1.25+1.88+2.81 0.23 8.20
D..+I(3) 7 2.18 7 1.52e −08 2.11 6.65

Table 5.11: Results for numerical experiment 5.2 where nx = 4, ny = 4, nz = 16 and m = 15.

For notation see page 118 and 128.

MIKOŁAJ SZYDLARSKI 130

5. Numerical Experiments

5.3 Real test cases

The following section is dedicated to real test cases which originated from simulations

of various petroleum and geophysical problems. Problems are organised in set of sparse

matrices (of a different size and sparsity pattern) and corresponding vector with righthand

side.

As in the experiment 5.1 we solve a given linear system twice, i.e., once with a one-level

preconditioner and after restart with two-level preconditioner. The only difference is that

instead of manual partition we used sequential graph partitioner (METIS 5.1 [36]). We refer

to §5.1.1 for most of the setup details.

5.3.1 IFP Matrix Collection - pressure block only

In this subsection we consider the scalar problems (pressure unknown only). For parti-

tioning we used kway subroutine from METIS library, but we repeated experiments also for

matrix partitioned with weights defined on edges of its adjacency graph (see §2.4 p. 50). In

description we used the same notation as for previous experiments (see §5.1 p. 118).

name n-parts nrows nnz

mou1 8 360 2.094

Canta 16 8.016 60.246

IvaskBO 32 49.572 478.050

IvaskMULTI 32 49.572 480.612

GCS 128 370.982 2.916.372

spe10 256 1.094.421 7.515.591

Table 5.12: Matrixes used in experiment, where: nrow - number of rows, n-parts - number

of parts (subdomains), nnz - number of non-zero elements.

MIKOŁAJ SZYDLARSKI 131

5. Numerical Experiments

Matrix mou1_p_only.mtx

nparts nrows nnz

8 360 2,094

-7

-6

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25 30

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

mou1_p_only(8p)+I(0)
mou1_p_only(8p)+I(1)

(DEFLATE)(1V)mou1_p_only(8p)+I(1)
mou1_p_only(8p)+I(2)

(DEFLATE)(1V)mou1_p_only(8p)+I(2)
mou1_p_only(8p)+I(3)

(DEFLATE)(1V)mou1_p_only(8p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 29 24.84 6.95e −07 0.00 0.01
+I(1) 15 5.13 6.99e −09 0.00 0.00 0.02

D..+I(1) 12 3.48 1F 1.27e −09 0.00 0.00
+I(2) 10 2.53 6.96e −08 0.00 + 0.00 0.00 0.02

D..+I(2) 9 1.89 1F 8.30e −09 0.00 0.01
+I(3) 8 1.51 1.30e −10 0.01 + 0.00 +0.00 0.00 0.01

D..+I(3) 7 1.32 1F 3.21e −10 0.01 0.00

Table 5.13: Results for the matrix: mou1_p_only.mtx.

MIKOŁAJ SZYDLARSKI 132

5. Numerical Experiments

Matrix mou1_p_only.mtx

nparts nrows nnz

8 360 2,094

(METIS partitioner with weights)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

mou1_p_only(8pWW)+I(0)
mou1_p_only(8pWW)+I(1)

(DEFLATE)(1V)mou1_p_only(8pWW)+I(1)
mou1_p_only(8pWW)+I(2)

(DEFLATE)(1V)mou1_p_only(8pWW)+I(2)
mou1_p_only(8pWW)+I(3)

(DEFLATE)(1V)mou1_p_only(8pWW)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 23 18.04 8.86e −07 0.00 0.03
+I(1) 12 3.75 1.63e −08 0.00 0.00 0.01

D..+I(1) 10 2.49 1F 1.99e −08 0.00 0.01
+I(2) 10 2.32 2.62e −09 0.00+0.01 0.00 0.02

D..+I(2) 8 1.66 1F 4.52e −09 0.00 0.00
+I(3) 9 1.60 1.72e −09 0.00+0.01+0.00 0.00 0.02

D..+I(3) 7 1.26 1F 2.80e −08 0.00 0.00

Table 5.14: Results for the matrix: mou1_p_only.mtx (partitioner with weight).

MIKOŁAJ SZYDLARSKI 133

5. Numerical Experiments

Matrix Canta_p_only.mtx

nparts nrows nnz

16 8,016 60,246

-7

-6

-5

-4

-3

-2

-1

 0

 0 50 100 150 200 250 300

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

Canta_p_only(16p)+I(0)
Canta_p_only(16p)+I(1)

(DEFLATE)(4V)Canta_p_only(16p)+I(1)
Canta_p_only(16p)+I(2)

(DEFLATE)(2V)Canta_p_only(16p)+I(2)
Canta_p_only(16p)+I(3)

(DEFLATE)(2V)Canta_p_only(16p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 300 351011 9.34e −07 0.01 3.08
+I(1) 99 18149.10 3.78e −10 0.01 0.01 0.76

D..+I(1) 18 6.90 12 4.06e −06 0.02 0.06
+I(2) 67 7436.2 7.47e −10 0.01+0.04 0.01 0.12

D..+I(2) 20 7.98 6 1.20e −09 0.01 0.02
+I(3) 48 3872.88 9.33e −10 0.02+0.03+0.05 0.03 0.11

D..+I(3) 18 7.47 4 6.61e −10 0.01 0.03

Table 5.15: Results for the matrix: Canta_p_only.mtx.

MIKOŁAJ SZYDLARSKI 134

5. Numerical Experiments

Matrix Canta_p_only.mtx

nparts nrows nnz

16 8,016 60,246

(METIS partitioner with weights)

-7

-6

-5

-4

-3

-2

-1

 0

 0 50 100 150 200 250

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

Canta_p_only(16pWW)+I(0)
Canta_p_only(16pWW)+I(1)

(DEFLATE)(6V)Canta_p_only(16pWW)+I(1)
Canta_p_only(16pWW)+I(2)

(DEFLATE)(2V)Canta_p_only(16pWW)+I(2)
Canta_p_only(16pWW)+I(3)

(DEFLATE)(1V)Canta_p_only(16pWW)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 232 68506.6 9.35e −07 0.00 2.45
+I(1) 51 5623.23 5.85e −10 0.04 0.01 0.13

D..+I(1) 13 3.64 6 2.36e −10 0.00 0.03
+I(2) 36 2702.11 6.81e −09 0.05+0.07 0.02 0.11

D..+I(2) 17 7.88 2 1.05e −09 0.00 0.03
+I(3) 28 1492.98 6.65e −11 0.05+0.06+0.10 0.04 0.13

D..+I(3) 19 12.39 1 2.34e −09 0.01 0.04

Table 5.16: Results for the matrix: Canta_p_only.mtx (partitioner with weight).

MIKOŁAJ SZYDLARSKI 135

5. Numerical Experiments

Matrix IvaskBO_p_only.mtx

nparts nrows nnz

32 49,572 478,050

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120 140

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

IvaskBO_p_only(32p)+I(0)
IvaskBO_p_only(32p)+I(1)
IvaskBO_p_only(32p)+I(2)
IvaskBO_p_only(32p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 124 1348.60 9.89e −07 0.12 0.84
+I(1) 42 65.53 1.85e −09 0.10 0.2 0.28

D..+I(1) - - err!
+I(2) 26 20.60 2.92e −09 0.10+0.14 0.37 0.34

D..+I(2) - - err!
+I(3) 19 10.45 2.34e −09 0.11+0.14+0.21 0.49 0.54

D..+I(3) - - err!

Table 5.17: Results for the matrix: IvaskBO_p_only.mtx.

MIKOŁAJ SZYDLARSKI 136

5. Numerical Experiments

Matrix IvaskBO_p_only.mtx

nparts nrows nnz

32 49,572 478,050

(METIS partitioner with weights)

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

IvaskBO_p_only(32p)+I(0)
IvaskBO_p_only(32p)+I(1)
IvaskBO_p_only(32p)+I(2)
IvaskBO_p_only(32p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 63 249.86 9.85e −07 0.06 0.24
+I(1) 7 2.49 9.70e −10 0.30 0.14 0.25

D..+I(1) - err!
+I(2) 6 2.31 4.09e −09 0.29+0.42 0.27 0.47

D..+I(2) - err!
+I(3) 6 2.15 1.41e −09 0.30+0.42+0.55 0.4 1.05

D..+I(3) - err!

Table 5.18: Results for the matrix: IvaskBO_p_only.mtx (partitioner with weight).

MIKOŁAJ SZYDLARSKI 137

5. Numerical Experiments

Matrix IvaskMULTI_p_only.mtx

nparts nrows nnz

32 49,572 480,612

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70 80 90

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

IvaskMULTI_p_only(32p)+I(0)
IvaskMULTI_p_only(32p)+I(1)
IvaskMULTI_p_only(32p)+I(2)
IvaskMULTI_p_only(32p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 88 516.69 9.58e −07 0.14 0.47
+I(1) 47 131.22 7.24e −09 0.13 0.24 0.27

D..+I(1) - - err!
+I(2) 31 33.75 3.67e −09 0.12+0.16 0.39 0.41

D..+I(2) - - err!
+I(3) 22 17.84 1.80e −08 0.11+0.15+0.24 0.56 0.67

D..+I(3) - - err!

Table 5.19: Results for the matrix: IvaskMULTI_p_only.mtx.

MIKOŁAJ SZYDLARSKI 138

5. Numerical Experiments

Matrix IvaskMULTI_p_only.mtx

nparts nrows nnz

32 49,572 480,612

(METIS partitioner with weights)

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25 30 35 40 45

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

IvaskMULTI_p_only(32p)+I(0)
IvaskMULTI_p_only(32p)+I(1)
IvaskMULTI_p_only(32p)+I(2)
IvaskMULTI_p_only(32p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 41 117.50 9.27e −07 0.09 0.16
+I(1) 10 5.08 2.34e −09 0.23 0.19 0.29

D..+I(1) - err!
+I(2) 5 1.04 5.94e −09 0.23+0.26 0.29 0.55

D..+I(2) - err!
+I(3) 5 1.04 1.58e −11 0.22+0.26+0.31 0.55 1.12

D..+I(3) - err!

Table 5.20: Results for the matrix: IvaskMULTI_p_only.mtx (partitioner with weight).

MIKOŁAJ SZYDLARSKI 139

5. Numerical Experiments

Matrix GCS_p_only.mtx

nparts nrows nnz

128 370,982 2,916,372

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

GCS2K_p_only(128p)+I(0)
GCS2K_p_only(128p)+I(1)

(DEFLATE)(1V)GCS2K_p_only(128p)+I(1)
GCS2K_p_only(128p)+I(2)

(DEFLATE)(1V)GCS2K_p_only(128p)+I(2)
GCS2K_p_only(128p)+I(3)

(DEFLATE)(1V)GCS2K_p_only(128p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 68 803.04 9.66e −07 0.64 2.06
+I(1) 20 18.77 3.09e −09 1.25 1.58 2.43

D..+I(1) 17 10.24 1F 1.31e −09 0.03 0.27
+I(2) 14 7.72 1.29e −09 1.27+1.11 7.22 1.22

D..+I(2) 11 4.53 1F 1.03e −09 0.07 0.27
+I(3) 10 3.04 8.96e −10 1.29+1.11+1.66 12.22 2.03

D..+I(3) 8 1.88 1F 5.31e −10 0.10 0.29

Table 5.21: Results for the matrix: GCS_p_only.mtx.

MIKOŁAJ SZYDLARSKI 140

5. Numerical Experiments

Matrix GCS_p_only.mtx

nparts nrows nnz

128 370,982 2,916,372

(METIS partitioner with weights)

-7

-6

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

GCS2K_p_only(128p)+I(0)
GCS2K_p_only(128p)+I(1)

(DEFLATE)(1V)GCS2K_p_only(128p)+I(1)
GCS2K_p_only(128p)+I(2)

(DEFLATE)(1V)GCS2K_p_only(128p)+I(2)
GCS2K_p_only(128p)+I(3)

(DEFLATE)(1V)GCS2K_p_only(128p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 22 14.50 8.00e −07 0.59 0.71
+I(1) 12 3.82 2.36e −09 2.61 2.26 2.19

D..+I(1) 11 3.14 1F 5.47e −09 0.03 0.18
+I(2) 9 2.11 5.30e −09 2.59+3.98 5.97 4.14

D..+I(2) 8 1.85 1F 1.46e −09 0.06 0.25
+I(3) 8 1.59 1.49e −09 2.66+3.99+6.16 13.69 7.75

D..+I(3) 7 1.44 1F 9.29e −09 0.12 0.34

Table 5.22: Results for the matrix: GCS_p_only.mtx (partitioner with weight).

MIKOŁAJ SZYDLARSKI 141

5. Numerical Experiments

Matrix spe10_p_only.mtx

nparts nrows nnz

256 1,094,421 7,515,591

-7

-6

-5

-4

-3

-2

-1

 0

 0 100 200 300 400 500 600 700 800

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

spe10_p_only (256p)+I(0)
spe10_p_only (256p)+I(1)

(DEFLATE)(10VF) spe10_p_only (256p)+I(1)
spe10_p_only (256p)+I(2)

(DEFLATE)(10VF) spe10_p_only (256p)+I(2)
spe10_p_only (256p)+I(3)

(DEFLATE)(10VF) spe10_p_only (256p)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 800 87727.30 3.87e −06 3.03 117.05
+I(1) 453 15179.60 1.48e −09 2.90 5.75 60.66

D..+I(1) 81 120.14 10F 4.78e −08 1.15 8.86
+I(2) 295 7821.55 3.99e −09 2.89+3.56 10.67 34.16

D..+I(2) 60 98.95 10F 2.05e −08 5.72 8.06
+I(3) 232 5056.57 4.58e −09 2.91+5.82+4.96 19.32 32.08

D..+I(3) 40 23.82 10F 2.21e −08 4.01 7.2

Table 5.23: Results for the matrix: spe10_p_only.mtx.

MIKOŁAJ SZYDLARSKI 142

5. Numerical Experiments

Matrix spe10_p_only.mtx

nparts nrows nnz

256 1,094,421 7,515,591

(METIS partitioner with weights)

-7

-6

-5

-4

-3

-2

-1

 0

 0 100 200 300 400 500 600 700

lo
g

1
0

(r
e

s
id

u
a

l
n

o
rm

)

number of iterations

spe10_p_only(256pWW)+I(0)
spe10_p_only(256pWW)+I(1)

(DEFLATE)(10VF)spe10_p_only(256pWW)+I(1)
spe10_p_only(256pWW)+I(2)

(DEFLATE)(10VF)spe10_p_only(256pWW)+I(2)
spe10_p_only(256pWW)+I(3)

(DEFLATE)(10VF)spe10_p_only(256pWW)+I(3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 627 54917.50 9.98e −07 2.21 60.68
+I(1) 315 7367.61 2.87e −09 4.73 5.25 27.33

D..+I(1) 45 28.91 10F 1.26e −08 1.05 7.66
+I(2) 209 2529.12 9.87e −07 4.87+6.96 11.16 22.19

D..+I(2) 33 16.86 10F 1.17e −07 1.64 7.91
+I(3) 160 961.38 6.85e −10 4.66+6.97+10.16 20.40 23.80

D..+I(3) 27 13.62 10F 6.10e −09 2.27 8.77

Table 5.24: Results for the matrix: spe10_p_only.mtx (partitioner with weight).

MIKOŁAJ SZYDLARSKI 143

5. Numerical Experiments

5.4 IFP Matrix Collection - system of equations

In this subsection we consider full system problem (more then one unknown per cell).

We solved each linear system from a given set (see table 5.4) with classical Schwarz method

implemented in ADDMlib. We could not use two-level preconditioner since its form (4.6

p.88) was designed for SPD matrixes only. Also partitioning with weights (§2.4) implemented

in ADDMlib is limited to scalar case, thus we partitioned matrixes by default kw ay method

from METIS library.

name nrows bsize nnz

mou1 1,080 3 9,673

Canta 24,048 3 146,184

his 104,283 3 1,041,884

IvaskBO 148,716 3 2,417,273

IvaskMULTI 247,860 5 4,461,102

GCS 1,112,946 3 11,544,049

sp10 2,188,842 2 21,554,641

Table 5.25: Matrixes used in experiment, where: nrow - number of rows, bsize - block size

(number of unknowns per mesh cell), nnz - number of non-zero elements.

MIKOŁAJ SZYDLARSKI 144

5. Numerical Experiments

Matrix mou1_sys.mtx

nparts nrows nnz

8 1,080 9,673

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70 80

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

mou1_sys (8p) +I (0)
mou1_sys (8p) +I (1)
mou1_sys (8p) +I (2)
mou1_sys (8p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 70 4.90e −04 < 1 0.05
+I(1) 81 2.46e −03 0.03 < 1 0.05
+I(2) 61 9.81e −03 0.01+0.02 < 1 0.10
+I(3) 48 1.38e −03 0.01+0.02+0.02 < 1 0.04

Table 5.26: Results for the matrix: mou1_sys.mtx.

MIKOŁAJ SZYDLARSKI 145

5. Numerical Experiments

Matrix Canta_sys.mtx

nparts nrows nnz

16 24,048 146,184

-6

-5

-4

-3

-2

-1

 0

 0 50 100 150 200 250 300

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Canta_sys (16p) +I (0)
Canta_sys (16p) +I (1)
Canta_sys (16p) +I (2)
Canta_sys (16p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 254 3.79e −06 < 1 1.59
+I(1) 116 8.19e −07 0.18 < 1 0.95
+I(2) 76 3.32e −07 0.19+0.31 < 1 0.86
+I(3) 59 3.53e −07 0.19+0.31+0.5 < 1 1.16

Table 5.27: Results for the matrix: Canta_sys.mtx.

MIKOŁAJ SZYDLARSKI 146

5. Numerical Experiments

Matrix his_sys.mtx

nparts nrows nnz

16 104,283 1,041,884

-6

-5

-4

-3

-2

-1

 0

 0 50 100 150 200 250 300

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

his_sys (16p) +I (0)
his_sys (16p) +I (1)
his_sys (16p) +I (2)
his_sys (16p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 259 1.00e −03 ≈ 1 11.94
+I(1) 133 1.99e −08 1.76 ≈ 2 6.56
+I(2) 60 1.08e −08 1.76+2.18 ≈ 2 5.01
+I(3) 47 2.71e −08 1.77+2.13+2.89 ≈ 4 6.99

Table 5.28: Results for the matrix: his_sys.mtx.

MIKOŁAJ SZYDLARSKI 147

5. Numerical Experiments

Matrix IvaskBO_sys.mtx

nparts nrows nnz

32 148,716 2,417,273

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120 140 160

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

IvaskBO_sys (32p) +I (0)
IvaskBO_sys (32p) +I (1)
IvaskBO_sys (32p) +I (2)
IvaskBO_sys (32p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 158 2.20e −06 ≈ 1 4.99
+I(1) 84 4.69e −09 2.01 ≈ 2 6.17
+I(2) 35 3.58e −09 2.00+3.29 ≈ 4 5.04
+I(3) 18 2.29e −09 2.14+3.61+5.35 ≈ 8 9.03

Table 5.29: Results for the matrix: IvaskBO_sys.mtx.

MIKOŁAJ SZYDLARSKI 148

5. Numerical Experiments

Matrix IvaskMULTI_sys.mtx

nparts nrows nnz

32 247,860 4,461,102

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120 140 160 180

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

IvaskMULTI_sys (32p) +I (0)
IvaskMULTI_sys (32p) +I (1)
IvaskMULTI_sys (32p) +I (2)
IvaskMULTI_sys (32p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 162 1.84e −06 ≈ 5 15.48
+I(1) 43 2.65e −08 8.57 ≈ 10 14.19
+I(2) 20 2.90e −08 8.85+12.84 ≈ 21 23.32
+I(3) 11 8.56e −09 7.50+10.99+17.40 ≈ 35 36.94

Table 5.30: Results for the matrix: IvaskMULTI_sys.mtx.

MIKOŁAJ SZYDLARSKI 149

5. Numerical Experiments

Matrix GCS_sys.mtx

nparts nrows nnz

128 1,112,946 11,544,049

-6

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25 30 35 40 45

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

GCS_sys (128p) +I (0)
GCS_sys (128p) +I (1)
GCS_sys (128p) +I (2)
GCS_sys (128p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 45 3.50e −07 ≈ 9 17.16
+I(1) 20 1.13e −08 7.62 ≈ 20 24.66
+I(2) 15 1.58e −08 7.39+11.82 ≈ 47 53.14
+I(3) 10 2.15e −08 7.39+11.86+17.66 ≈ 78 83.81

Table 5.31: Results for the matrix: GCS_sys.mtx.

MIKOŁAJ SZYDLARSKI 150

5. Numerical Experiments

Matrix spe10_sys.mtx

nparts nrows nnz

256 2,188,842 21,554,641

-6

-5

-4

-3

-2

-1

 0

 0 100 200 300 400 500 600 700

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

spe10_sys (256p) +I (0)
spe10_sys (256p) +I (1)
spe10_sys (256p) +I (2)
spe10_sys (256p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 663 1.43e −06 ≈ 4 343.13
+I(1) 361 2.12e −09 4.36 ≈ 6 70.76
+I(2) 252 3.81e −08 4.37 + 7.23 ≈ 13 70.88
+I(3) 183 2.03e −08 4.52 + 7.42 + 11.00 ≈ 24 78.14

Table 5.32: Results for the matrix: spe10_sys.mtx.

MIKOŁAJ SZYDLARSKI 151

5. Numerical Experiments

5.5 Black-Oil Simulation: series of linear systems from New-

ton algorithm.

The following investigation we dedicate to the solving of large-scale nonlinear

problems arising from the finite-volume discretization in which non-linearity is

handled by a Newton–Raphson algorithm. We show that we can reuse a coarse

operator built from eigenvectors approximated during the first resolution in so-

lutions of linear systems for remaining Newton-Raphson iterations.

Nonlinear problems arising from various applications in mathematics, physics or me-

chanics. Solving these problems very often leads to a succession of linear problems the so-

lution to which converges towards the solution to the considered problem. In our numerical

experiment we consider a series of linear systems extracted from Black-Oil simulator which

refer to the Newton-Raphson iterations for a chosen time step in simulation. To be more

precise, we consider two series of five linear systems, in which each series correspond to

simulation on domain in different size (60×60×32 and 120×120×64 nodes). For each series

we performed a following experiment:

◦ In sequence we read linear system in series from a file and we partition it via graph

partitioner (partitioning from first matrix is preserve for future decomposition of re-

maining matrices in series).

◦ Resulting DDMOperator is once inflate (in order to accelerate convergence).

◦ Next, we solve inflated linear system. If it is a first linear system in series (. . .X_mat1.mtx)

we solve it by Additive Schwarz Method (ASM) and at the end of iterative process we

calculate all approximated eigenvectors which corresponding eigenvalues satisfy a fol-

lowing inequality: Re(λi) < TOL = 0.1. From approximated eigenvectors we construct

coarse operator which we preserve for next resolution in series. Hence, if the cur-

rent linear system was preceded by a coarse space construction we solve it using two-

level preconditioner which is a combination of Additive Schwarz preconditioner built

for a current linear system and the coarse space operator from first resolution. The

schematic view of the stages in our experiment is depicted on figure 5.5.

S
O

LV
E

(m
at

1)
G

M
R
ES

 +
 M

od
ifi

ed

S
ch

w
ar

z
M

et
ho

d

LU
 F

ac
to

ri
za

ti
on

of

 s
ub

op
er

at
or

s
(m

at
1)

Pa
rt

it
io

ni
ng

 a
nd

da

ta
 d

ys
tr

ib
ut

io
n

(m
at

1)

B
ui

ld
in

g
 C

oa
rs

e
S
pa

ce

Ex
tr

ac
ti
ng

A
pp

ro
xi

m
at

ed
 E

ig
en

Ve

ct
or

s

LU
 F

ac
to

ri
za

ti
on

of

 s
ub

op
er

at
or

s
(m

at
2)

S
O

LV
E

(m
at

2)
G

M
R
ES

 +
 T

w
o-

Le
ve

l
pr

ec
on

di
ti
on

er

Pa
rt

it
io

ni
ng

 a
nd

da

ta
 d

ys
tr

ib
ut

io
n

(m
at

2)

Figure 5.3: Stages of experiment with series of matrices.

MIKOŁAJ SZYDLARSKI 152

5. Numerical Experiments

All experiment in this section have been performed on UPMC cluster 3 in such a way that

two subdomains/parts were dedicated to one MPI process. Therefore in first variant we used

40 processes and in second 80.

5.5.1 Black-Oil - 60×60×32

Results for series of matrix extracted from Black Oil simulator on regular domain

in size 60×60×32 nodes.

Matrix BO_60x60x32_matX.mtx

mat_name nparts nrows nnz

BO_60x60x32_mat1.mtx 80 115,200 791,520
BO_60x60x32_mat2.mtx 80 115,200 791,572
BO_60x60x32_mat3.mtx 80 115,200 791,598
BO_60x60x32_mat4.mtx 80 115,200 791,500
BO_60x60x32_mat5.mtx 80 115,200 791,512

-7

-6

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60 70

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

BO 60x60x32 mat 1 (80p) +I (1)
BO 60x60x32 mat 2 (80p) +I (1)
BO 60x60x32 mat 3 (80p) +I (1)
BO 60x60x32 mat 4 (80p) +I (1)
BO 60x60x32 mat 5 (80p) +I (1)

(TOL)(7V) BO 60x60x32 mat 2 (80p) +I (1)
(TOL)(7V) BO 60x60x32 mat 3 (80p) +I (1)
(TOL)(7V) BO 60x60x32 mat 4 (80p) +I (1)
(TOL)(7V) BO 60x60x32 mat 5 (80p) +I (1)

Table 5.33: Convergence curves for series of linear systems solutions with one and two-level

preconditioner.

3. See beginning of this chapter for parameters of this super computer.

MIKOŁAJ SZYDLARSKI 153

5. Numerical Experiments

Prec. type n-iter

ASM 67

ASM+D (TOL) 28

0 35 70

Table 5.34: Comparison of the average number of the iterations for an iterative method with

one-level preconditioner (ASM) and two-level preconditioner (ASM+D).

Prec. type sol[s]

ASM sol1lvl 0.42

ASM+D (TOL) sol2lvl 0.21

0 0.25 0.5

Table 5.35: Comparison of the average time of iterative process for each method (from first

to last iteration, without cost of building the preconditioner operator).

∑
5× (sol1lvl +LU[s]) 2.35

1× (sol1lvl +LU[s])+4× (CS[s]+LU[s]+ sol2lvl) 1.59

0 1.20 2.40

Table 5.36: Comparison of the total time costs of the experiment i.e., time of solving all

matrixes with one-level preconditioner versus procedure described at the beginning of this

section.

MIKOŁAJ SZYDLARSKI 154

5. Numerical Experiments

5.5.2 Black-Oil - 120×120×64

Results for series of matrix extracted from Black Oil simulator on regular domain

in size 120×120×64 nodes.

Matrix BO_120x120x64_matX.mtx

mat_name nparts nrows nnz

BO_120x120x64_mat1.mtx 160 921,600 6,391,680
BO_120x120x64_mat2.mtx 160 921,600 6,391,680
BO_120x120x64_mat3.mtx 160 921,600 6,391,680
BO_120x120x64_mat4.mtx 160 921,600 6,390,986
BO_120x120x64_mat5.mtx 160 921,600 6,387,222

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100 120

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

BO 120x120x64 mat 1 (160p) +I (1)
BO 120x120x64 mat 2 (160p) +I (1)
BO 120x120x64 mat 3 (160p) +I (1)
BO 120x120x64 mat 4 (160p) +I (1)
BO 120x120x64 mat 5 (160p) +I (1)

(TOL)(14V) BO 120x120x64 mat 2 (160p) +I (1)
(TOL)(14V) BO 120x120x64 mat 3 (160p) +I (1)
(TOL)(14V) BO 120x120x64 mat 4 (160p) +I (1)
(TOL)(14V) BO 120x120x64 mat 5 (160p) +I (1)
(10F)(10V) BO 120x120x64 mat 2 (160p) +I (1)
(10F)(10V) BO 120x120x64 mat 3 (160p) +I (1)
(10F)(10V) BO 120x120x64 mat 4 (160p) +I (1)
(10F)(10V) BO 120x120x64 mat 5 (160p) +I (1)

Table 5.37: Convergence curves for series of linear systems solutions with one and two-level

preconditioner. Results for series of matrix extracted from Black Oil simulator on regular

domain in size 120×120×64.

MIKOŁAJ SZYDLARSKI 155

5. Numerical Experiments

Prec. type n-iter

ASM 114

ASM+D (TOL) 26

ASM+D (10F) 30

0 30 60 90 120

Table 5.38: Comparison of the average number of the iterations for an iterative method with

one-level preconditioner (ASM) and two-level preconditioners; (ASM+D TOL) in which for

the construction we have used all eigenvectors from the first resolution which corresponding

eigenvalues where smaller then TOL = 0.1 and (ASM+D 10V) where only 10 smallest eigen-

values where used.

Prec. type sol[s]

ASM sol1lvl 4.18

ASM+D (TOL) sol1lvl-tol 1.67

ASM+D (10F) sol1lvl-10F 1.41

0 2.1 4.2

Table 5.39: Comparison of the average time of iterative process for each method (from first

to last iteration, without cost of building the preconditioner operator).

∑
5× (sol1lvl +LU[s]) 26.00

1× (sol1lvl +LU[s])+4× (CS[s]+LU[s]+ sol2lvl-tol) 17.92

1× (sol1lvl +LU[s])+4× (CS[s]+LU[s]+ sol2lvl-10F) 16.00

0 13 26

Table 5.40: Comparison of the total time costs of the experiment i.e., time of solving all

matrixes with one-level preconditioner versus procedure described at the beginning of this

section.

MIKOŁAJ SZYDLARSKI 156

Chapter 6
Conclusion and Prospects

We have focused on algebraic domain decomposition methods in the sense that we have

only access to the coefficient of the matrix of the linear system to be solved. We have in-

troduced two new algebraic techniques for building interface conditions and a coarse grid

space. Let us mention the important fact that both methods are adaptive and can be used

during the first solve that is even before the first solve is completed.

For both methods, we extract information from the Krylov space generated by a few iter-

ations of the Schwarz algorithm with overlapping subdomains. More precisely, we consider

the Ritz eigenvectors corresponding to the low eigenvalues since they are responsible for the

stagnation or slowness of the Krylov solver preconditioned by the Schwarz algorithm. We

are then able to build interface conditions that “kill” the error on the Ritz eigenvector cor-

responding to the small eigenvalues in magnitude. Numerical tests show that the method

brings some benefit but is limited to the two or three subdomain cases. As for the coarse

space, it is built by splitting subdomain-wise a given number of the Ritz eigenvectors cor-

responding to the low eigenvalues. The coarse space is thus larger than the vector space

spanned by the Ritz eigenvectors. It contains more information and can be used to com-

plete more efficiently the first solve. Numerical results illustrate the efficiency of the ap-

proach even for problems with discontinous coefficients. The tests were made using a libray

carefully designed in C++ and MPI with a convenient parallel matrix storage that eases the

test of new algorithms. The library uses as much as possible existing libraries (e.g. Metis and

Scotch for partitioning, SuperLU, Hypre and PETSC for the sequential linear solvers).

The two new introduced methods have been tested numerically. It was proved that for a

symmetric positive definite problem, the algebraic interface conditions lead to submatrices

that are still symmetric definite positive. These methods depend on some parameters:

◦ after how many iterations of the first solve it is best to compute the Ritz eigenvalues,

◦ how many Ritz eigenvectors should be incorporated in the coarse space.

Numerical tests suggest that the answers to these questions will depend on the difficulty of

the problem to be solved. It seems natural as well that for problems arising from systems

of partial differential equations, the optimal choices will be different than those for matrices

MIKOŁAJ SZYDLARSKI 157

6. Conclusion and Prospects

arising from the pressure block of multiphase porous media flow simulations.

MIKOŁAJ SZYDLARSKI 158

Bibliography

[1] A. Multi-core Strategies: MPI and OpenMP. http://www.hpccommunity.org/f55/
multi-core-strategies-mpi-openmpi-702/.

[2] ACHDOU, Y., AND NATAF, F. A robin-robin preconditioner for an advection-diffusion

problem. C. R. Acad. Sci. Paris 325, Série I (1997), 1211–1216.

[3] ACHDOU, Y., TALLEC, P. L., NATAF, F., AND VIDRASCU, M. A domain decoposition pre-

conditioner for an advection-diffusion problem. Comp. Meth. Appl. Mech. Engrg 184

(2000), 145–170.

[4] ALDOUS, J., AND WILSON, R. J. Graphs and Applications: An Introductory Approach.

Springer London Ltd., 2003.

[5] ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J.,

DU CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY, A., AND SORENSEN,

D. LAPACK Users’ Guide, third ed. Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1999.

[6] BALAY, S., BUSCHELMAN, K., EIJKHOUT, V., GROPP, W. D., KAUSHIK, D., KNEPLEY,

M. G., MCINNES, L. C., SMITH, B. F., AND ZHANG, H. PETSc users manual. Tech.

Rep. ANL-95/11 - Revision 3.0.0, Argonne National Laboratory, 2008.

[7] BALAY, S., BUSCHELMAN, K., GROPP, W. D., KAUSHIK, D., KNEPLEY, M. G., MCINNES,

L. C., SMITH, B. F., AND ZHANG, H. PETSc Web page, 2009. http://www.mcs.anl.
gov/petsc.

[8] BALAY, S., GROPP, W. D., MCINNES, L. C., AND SMITH, B. F. Efficient management of

parallelism in object oriented numerical software libraries. In Modern Software Tools

in Scientific Computing (1997), E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.,

Birkhäuser Press, pp. 163–202.

[9] BASTIAN, P., HACKBUSH, W., AND WITTUM, G. Additive and multiplicative multi-grid -

a comparison. Computing 60 (1998), 345–346.

[10] BROQUEDIS, F., CLET ORTEGA, J., MOREAUD, S., FURMENTO, N., GOGLIN, B., MERCIER,

G., THIBAULT, S., AND NAMYST, R. hwloc: a Generic Framework for Managing Hardware

Affinities in HPC Applications. In PDP 2010 - The 18th Euromicro International Confer-

ence on Parallel, Distributed and Network-Based Computing (Pisa Italie, 02 2010), IEEE,

Ed.

MIKOŁAJ SZYDLARSKI 159

http://www.hpccommunity.org/f55/multi-core-strategies-mpi-openmpi-702/
http://www.hpccommunity.org/f55/multi-core-strategies-mpi-openmpi-702/
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

BIBLIOGRAPHY

[11] BULUÇ, A., FINEMAN, J. T., FRIGO, M., GILBERT, J. R., AND LEISERSON, C. E. Paral-

lel sparse matrix-vector and matrix-transpose-vector multiplication using compressed

sparse blocks. In SPAA ’09: Proceedings of the twenty-first annual symposium on Paral-

lelism in algorithms and architectures (New York, NY, USA, 2009), ACM, pp. 233–244.

[12] CAI, X.-C., AND SARKIS, M. A restricted additive Schwarz preconditioner for general

sparse linear systems. SIAM Journal on Scientific Computing 21 (1999), 239–247.

[13] CHAN, T., GLOWINSKI, R., PÉRIAUX, J., AND WIDLUND, O., Eds. Domain Decomposition

Methods (Philadelphia, PA, 1989), SIAM. Proceedings of the Second International Sym-

posium on Domain Decomposition Methods, Los Angeles, California, January 14 - 16,

1988.

[14] CHAN, T. F., AND MATHEW, T. P. Acta numerica. Cambridge University Press, 1994,

ch. Domain decomposition algorithms.

[15] CHEN, Z., HUAN, G., AND MA, Y. Computational Methods for Multiphase Flows in

Porous Media. Society for Industrial and Applied Mathematics, Dallas, Texas, 2006.

[16] CHEVALIER, C., AND PELLEGRINI, F. PT-SCOTCH: a tool for efficient parallel graph or-

dering. Parallel Computing 6-8, 34 (2008), 318–331.

[17] COLLINO, F., GHANEMI, S., AND JOLY, P. Domain decomposition methods for harmonic

wave propagation : a general presentation. Comput. Methods Appl. Mech. Engrg, 2-4

(2000), 171–211.

[18] DEMMEL, J. W., EISENSTAT, S. C., GILBERT, J. R., LI, X. S., AND LIU, J. W. H. A supern-

odal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Application 20, 3

(1999), 720–755.

[19] DESPRÉS, B. Domain decomposition method and the Helmholtz problem.II. In Second

International Conference on Mathematical and Numerical Aspects of Wave Propagation

(Newark, DE, 1993) (Philadelphia, PA, 1993), SIAM, pp. 197–206.

[20] DRYJA, M., AND WIDLUND, O. B. Towards a unified theory of domain decomposition

algorithms for elliptic problems. In Third International Symposium on Domain De-

composition Methods for Partial Differential Equations (1990), T. Chan, R. Glowinski,

J. Périaux, and O. B. Widlund, Eds., SIAM, Philadelphia, PA, pp. 3–21.

[21] DURLOFSKY, L. J. A triangle based mixed finite element-finite volume technique for

modeling two phase low through porous media. J. Comput. Phys., 105 (1993), 252–266.

[22] EFSTATHIOU, E., AND GANDER, M. J. Why Restricted Additive Schwarz converges faster

than Additive Schwarz. BIT Numerical Mathematics 43 (2003), 945–959.

[23] ERLANGGA, Y. A., AND NABBEN, R. Deflation and balancing preconditioners for krylov

subspace methods applied to nonsymmetric matrices. SIAM J. Matrix Anal. Appl. 30

(2008), 684–699.

[24] FLAURAUD, E., NATAF, F., AND WILLIEN, F. Optimized interface conditions for domain

decomposition methods for problems with extreme contrast in the coefficients. Journal

of Computational and Applied Mathematics 189 (2006), 539–554.

MIKOŁAJ SZYDLARSKI 160

BIBLIOGRAPHY

[25] GAMMA, E. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 2004.

[26] GANDER, M. J. Schwarz methods in the course of time. ETNA 31 (2008), 228–255.

[27] GANDER, M. J., HALPERN, L., MAGOULÈS, F., AND ROUX, F. X. Analysis of patch sub-

structuring methods. Int. J. Appl. Math. Comput. Sci. 17, 2 (2007), 395–402.

[28] GANDER, M. J., MAGOULÈS, F., AND NATAF, F. Optimized Schwarz methods without

overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 1 (2002), 38–60.

[29] GOOSSENS, S., AND ROOSE, D. Ritz and harmonic ritz values and the convergence of

fom and gmres. Numerical Linear Algebra with Applications 6, 4 (Sep 1999), 281–293.

[30] GOSSELET, P., AND REY, C. On a selective reuse of Krylov subspaces in Newton-Krylov

approaches for nonlinear elasticity. In Proceedings of the fourteenth international con-

ference on domain decomposition methods Fourteenth international conference on do-

main decomposition methods (Cocoyoc Mexique, 2003), O. W. I. Herrera, D. Keyes and

R. Yates, Eds., pp. 419–426.

[31] GREENBAUM, A. Iterative Methods for Solving Linear Systems. SIAM, 1997.

[32] GROP, W., LUSK, E., AND SKJELLUM, A. Using MPI: Portable Parallel Programming with

Message-Passing Interface. MIT Press, 1994.

[33] HAGSTROM, T., TEWARSON, R. P., AND JAZCILEVICH, A. Numerical experiments on a do-

main decomposition algorithm for nonlinear elliptic boundary value problems. Appl.

Math. Lett. 1, 3 (1988).

[34] HECHT, F. FreeFem++, 3.7 ed. Numerical Mathematics and Scientific Computation.

Laboratoire J.L. Lions, Université Pierre et Marie Curie, http://www.freefem.org/ff++/,

2010.

[35] HESTENES, M., AND STIEFEL, E. Methods of conjugate gradient for solving linear sys-

tems. J. Res. Nat. Bur. Stand. 49 (1952), 409–436.

[36] KARYPIS, G., AND KUMAR, V. A fast and highly quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing 20, 1 (1999), 359–392.

[37] LAI, C.-H., BJØRSTAD, P. E., CROSS, M., AND WIDLUND, O., Eds. Eleventh International

Conference on Domain Decomposition Methods (1998). Proceedings of the 11th Inter-

national Conference on Domain Decomposition Methods in Greenwich, England, July

20-24, 1998.

[38] LE TALLEC, P. Domain decomposition methods in computational mechanics. In Com-

putational Mechanics Advances, J. T. Oden, Ed., vol. 1 (2). North-Holland, 1994, pp. 121–

220.

[39] LIONS, P.-L. On the Schwarz alternating method. III: a variant for nonoverlapping sub-

domains. In Third International Symposium on Domain Decomposition Methods for

Partial Differential Equations ,held in Houston, Texas, March 20-22, 1989 (Philadelphia,

PA, 1990), T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, Eds., SIAM.

MIKOŁAJ SZYDLARSKI 161

BIBLIOGRAPHY

[40] MAGOULÈS, F., ROUX, F.-X., AND SALMON, S. Optimal discrete transmission condi-

tion for non-overlapping domain decomposition method for helmholtz equation. SIAM

Journal on Scientific Computing 25, 5 (2004), 1947–1515.

[41] MAGOULÈS, F., ROUX, F. X., AND SERIES, L. Algebraic approximation of dirichlet-to-

neumann maps for equations of linear elasticity. Comp. Meth. Appl. Mech. Engrg. 195

(2006), 3742–3759.

[42] MANDEL, J. Balancing domain decomposition. Communications in Applied and Nu-

merical Methods 9 (1993), 233–241.

[43] MATSOKIN, A. M., AND NEPOMNYASCHIKH, S. V. A Schwarz alternating method in a

subspace. Soviet Mathematics 29(10) (1985), 78–84.

[44] NATAF, F., AND ROGIER, F. Factorization of the convection-diffusion operator and the

Schwarz algorithm. M3AS 5, 1 (1995), 67–93.

[45] NATAF, F., ROGIER, F., AND DE STURLER, E. Optimal interface conditions for domain

decomposition methods. Tech. Rep. 301, CMAP (Ecole Polytechnique), 1994.

[46] NATAF, F., XIANG, H., AND DOLEAN, V. A coarse space construction based on local dtn

maps. http://hal.archives-ouvertes.fr/hal-00491919/fr/, 2010.

[47] NICOLAIDES, R. A. Deflation of conjugate gradients with applications to boundary

value problems. SIAM J. Matrix Anal. Appl. 24 (1987), 355–365.

[48] PADIY, A., AXELSSON, O., AND POLMAN, B. Generalized augmented matrix precondi-

tioning approach and its application to iterative solution of ill-conditioned algebraic

systems. SIAM J. Matrix Anal. Appl. 22 (2000), 793–818.

[49] PETTER E. BJØRSTAD, M. S. E., AND KEYES, D. E., Eds. Ninth International Conference

on Domain Decomposition Methods (1997). Proceedings of the 9th International Con-

ference on Domain Decomposition Methods in Bergen, Norway.

[50] QUARTERONI, A., AND VALLI, A. Domain Decomposition Methods for Partial Differential

Equations. Oxford Sci. Publ., Oxford University Press, 1999.

[51] SAAD, Y. Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, Philadelphia, 2003.

[52] SAAD, Y., AND SCHULTZ, M. H. GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (1986).

[53] SCHWARZ, H. A. Über einen Grenzübergang durch alternierendes Verfahren. Viertel-

jahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (May 1870), 272–286.

[54] SMITH, B. F., BJØRSTAD, P. E., AND GROPP, W. Domain decomposition: Parallel Mul-

tilevel Methods for Eliptic Partial Differential Equations. Cambridge University Press,

1996.

[55] STROUSTRUP, B. The C++ Programming Language. Addison-Wesley, 1997.

[56] STÜBEN, K. A review of algebraic multigrid. Journal of Computational and Applied

Mathematics 128 (2001), 281–309.

MIKOŁAJ SZYDLARSKI 162

BIBLIOGRAPHY

[57] TANG, J. M., NABBEN, R., VUIK, C., AND ERLANGGA, Y. A. Comparison of two-level pre-

conditioners derived from deflation, domain decomposition and multigrid methods. J.

Sci. Comput. 39 (2009), 340–370.

[58] TOSELLI, A., AND WIDLUND, O. Domain Decomposition Methods: algorithms and the-

ory. Springer, 2005.

MIKOŁAJ SZYDLARSKI 163

	Introduction
	Definition of problem
	Future of reservoir simulations

	Objective
	Context of work
	Plan of report

	State of Art
	Original Schwarz Methods
	Discrete Schwarz Methods
	Drawbacks of original Schwarz methods

	Optimal Interface Condition
	Optimised Schwarz Method
	Optimal Algebraic Interface Conditions
	Patch Method

	Two-level domain decomposition method
	Discussion

	ADDMlib : Parallel Algebraic DDM Library
	Interface for Domain Decomposition and Communication
	Distributed Memory Architectures
	Multi-core Strategies

	Data Distribution in ADDMlib

	Linear Algebra
	Vector (DDMVector)
	Matrix (DDMOeprator)
	Structure and Sparse Storage Formats
	Matrix-Vector Product

	Preconditioner
	ADDM Preconditioning

	Overlaps
	The two domain case
	Implementation
	Numerical experiments

	Partitioning with weights
	Implementation
	Numerical Experiments

	Modified Schwarz Method (MSM)
	The two sub-domains
	The three sub-domains case
	Implementation

	Sparse Patch Method
	Patch parameters
	Patch connectivity strategy

	Parallel implementation
	Numerical Experiments

	Enhanced Diagonal Optimal Interface Conditions
	Sparse approximation of optimal conditions
	General case for arbitrary domain decomposition
	Second order cc operator

	Retrieving harmonic vector from solving system
	Right preconditioned system
	Retrieving approximate eigenvector from GMRES solver

	Parallel implementation
	Implementation of operators
	Approximated eigenvector
	Filling operators

	Computing SedoicII

	Numerical results
	EDOIC and quality of eigenvector approximation
	EDOIC versus number of subdomains

	Two level method
	Abstract Preconditioner
	The Coarse Grid Space Construction
	Parallel implementation
	Matrix-vector product for compose operator
	Matrix-vector product for preconditioner -1
	Coarse grid correction -
	Operation [DDMOperator][SVC]=[SVC]
	Operation [SVC]T[DDMVector]=[vRnVN]
	Operation [SVC][vRnVN]=[DDMVector]
	Operation [SVC]T[SVC]=[ERnVNnVN]

	Numerical results
	Successive and Adaptive two-level preconditioner
	How to read plots
	Two-level preconditioner versus quality of eigenvectors approximation and size of coarse space
	Two-level preconditioner versus number of subdomains
	Two-level preconditioner with Sparse Patch
	2D Case
	3D Case

	Reservoir simulations - experiment with Black Oil model

	Numerical Experiments
	3D Laplace problem
	Setup of the Experiment 5.1
	High Performance tests

	Algebraic Multi Grid method as a sub-solver in ADDM
	Setup of the Experiment 5.2

	Real test cases
	IFP Matrix Collection - pressure block only

	IFP Matrix Collection - system of equations
	Black-Oil Simulation: series of linear systems from Newton algorithm.
	Black-Oil - 606032
	Black-Oil - 12012064

	Conclusion and Prospects

