N

N

Program Analysis and Transformation: From the
Polytope Model to Formal Languages
Albert Cohen

» To cite this version:

Albert Cohen. Program Analysis and Transformation: From the Polytope Model to Formal Languages.
Networking and Internet Architecture [cs.NI]. Université de Versailles-Saint Quentin en Yvelines, 1999.
English. NNT: . tel-00550829

HAL Id: tel-00550829
https://theses.hal.science/tel-00550829
Submitted on 31 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00550829
https://hal.archives-ouvertes.fr

THESE de DOCTORAT de 'UNIVERSITE de VERSAILLES

Spécialité : Informatique

présentée par

Albert COHEN

pour obtenir le titre de DOCTEUR de 'UNIVERSITE de VERSAILLES

Sujet de la these:

Analyse et transformation de programmes:
du modele polyédrique aux langages formels

Program Analysis and Transformation:
From the Polytope Model to Formal Languages

Soutenue le 21 décembre 1999 devant le jury composé de:

Jean BERSTEL Rapporteur
Luc BOUGE Examinateur
Jean-Francois COLLARD Directeur
Paul FEAUTRIER Directeur
William JALBY Président
Patrice QUINTON Rapporteur
Bernard VAUQUELIN Rapporteur

These préparée a I’Université de Versailles Saint-Quentin-en-Yvelines au sein du
laboratoire PRiSM (Parallélisme, Réseaux, Systemes et Modélisation)

Remerciements

Cette thése a été préparée au sein du laboratoire PRiSM (Parallélisme, Ré-
seaux, Systémes et Modélisation) de I’'Université de Versailles Saint-Quentin-
en-Yvelines, entre septembre 1996 et décembre 1999, sous la direction de Jean-
Francois Collard et Paul Feautrier.

Je voudrais tout d’abord m’adresser a Jean-Francgois Collard (chargé de
recherches au CNRS) qui a encadré cette thése, et avec qui j'ai eu la chance
de faire mes premiers pas dans la recherche scientifique. Ses conseils, sa dis-
ponibilité extraordinaire, son dynamisme en toutes circonstances, et ses idées
éclairées ont fait beaucoup plus qu’entretenir ma motivation. Je remercie vi-
vement Paul Feautrier (professeur au PRiSM) pour sa confiance et pour son
intérét a suivre mes résultats. A travers son expérience, il m’a fait découvrir
a quel point la recherche est enthousiasmante, au dela des difficultés et des
succes ponctuels.

Je suis tres reconnaissant envers tous les membres de mon Jury; notam-
ment envers Jean Berstel (professeur a I’'Université de Marne-la-Vallée), Pa-
trice Quinton (professeur a I'IRISA, Université de Rennes) et Bernard Vau-
quelin (professeur au LaBRI, Université de Bordeaux), pour l'intérét et la
curiosité qu’ils ont porté a I’égard de mes travaux et pour le soin avec lequel
ils ont relu cette thése, y compris lorsque la problématique n’appartenait pas
a leurs domaines de recherches. Un grand merci & Luc Bougé (professeur au
LIP, Ecole Normale Supérieure de Lyon) pour sa participation a ce Jury et
pour ses suggestions et commentaires éclairés. Merci enfin a William Jalby
(professeur au PRiSM) pour avoir accepté de présider ce Jury et pour m’avoir
souvent conseillé avec bonne humeur.

J’exprime également toute ma gratitude a Guy-René Perrin pour ses en-
couragements et pour I’accés a « sa » machine parallele, a Olivier Carton pour
son aide précieuse sur un domaine tres exigeant, a Denis Barthou, Ivan Djelic
et Vincent Lefebvre pour leur collaboration essentielle aux résultats de cette
these. Je me souviens aussi de passionnantes discussions avec Pierre Boulet,
Philippe Clauss, Christine Eisenbeis et Sanjay Rajopadhye; et je n’oublie pas
non plus l'aide efficace des ingénieurs et des secrétaires du laboratoire. Je re-
pense aux bons moments passés avec les tous les membres du « monastére »
et avec les compagnons de route du PRiSM qui sont devenus mes amis.

Merci enfin a ma famille pour son soutien constant et inconditionnel, avec
une pensée particuliére pour mes parents et pour ma femme Isabelle.

Dot 10 7 DLrwe CNY Woorst?

http://www.gnu.org

Copyright (©) Albert Cohen 1999.

Verbatim copying and distribution of this document is permitted in any medium, provided

this notice is preserved.

La copie et la distribution de copies exactes de ce document sont autorisées, mais aucune

modification n’est permise.

This document was typeset using I TEX and the french package.
Graphics were designed using xfig, gnuplot and the GasTEX package.

Albert.Cohen@prism.uvsq.fr

1 ADLIY U UUIN LIUVIN 1O

Table of Contents

List of Figures

List of Algorithms

Présentation en francgais

Grandes lignes de la theése, en francais.
Dissertation summary, in French.

1 Introduction

1.1 Program Analysis.
1.2 Program Transformations for Parallelization
1.3 Thesis Overview e

Framework

2.1 Going Instancewise L L e

2.2 Program Model
2.2.1 Control Structures L L
2.2.2 Data Structures

2.3 Abstract Model
2.3.1 Naming Statement Instances
2.3.2 Sequential Execution Order
2.3.3 Adressing Memory Locations
2.3.4 Loop Nests and Arrays e

2.4 Instancewise Analysis e e
2.4.1 Conflicting Accesses and Dependences
2.4.2 Reaching Definition Analysis
2.4.3 An Example of Instancewise Reaching Definition Analysis
2.4.4 More About Approximations

2.5 Parallelization
2.5.1 Memory Expansion and Parallelism Extraction
2.5.2 Computation of a Parallel Execution Order
2.5.3 General Efficiency Remarks oo o000

Formal Tools

3.1 Presburger Arithmetics
3.1.1 Sets, Relations and Functions
3.1.2 Tramsitive Closure

3.2 Monoids and Formal Languages
3.2.1 Momnoids and Morphisms L oo
3.2.2 Rational Languages
3.2.3 Algebraic Languages
3.2.4 One-Counter Languages o

11

53
o4
57
60

61
61
63
63
64
65
66
70
71
74
75
76
7
78
80
81
81
82
85

1 ADLI JEr UULIN LIVIN 1O

3.3 Rational Relations
3.3.1 Recognizable and Rational Relations
3.3.2 Rational Transductions and Transducers
3.3.3 Rational Functions and Sequential Transducers

3.4 Left-Synchronous Relations oo
3.4.1 Definitions e
3.4.2 Algebraic Properties L
3.4.3 Functional Properties
3.4.4 An Undecidability Result
3.4.5 Studying Synchronizability of Transducers
3.4.6 Decidability Results
3.4.7 Further Extensions

3.5 Beyond Rational Relations oo
3.5.1 Algebraic Relations
3.5.2 Omne-Counter Relations

3.6 More about Intersection L o
3.6.1 Intersection with Lexicographic Order
3.6.2 The case of Algebraic Relations

3.7 Approximating Relations on Words L.
3.7.1 Approximation of Rational Relations by Recognizable Relations
3.7.2 Approximation of Rational Relations by Left-Synchronous Relations . . .
3.7.3 Approximation of Algebraic and Multi-Counter Relations

Instancewise Analysis for Recursive Programs

4.1 Motivating Examples oL
4.1.1 First Example: Procedure Queens
4.1.2 Second Example: Procedure BST
4.1.3 Third Example: Function Count

4.2 Mapping Instances to Memory Locations
4.2.1 Induction Variables. L
4.2.2 Building Recurrence Equations on Induction Variables
4.2.3 Solving Recurrence Equations on Induction Variables
4.2.4 Computing Storage Mappings oL
4.2.5 Application to Motivating Examples

4.3 Dependence and Reaching Definition Analysis
4.3.1 Building the Conflict Transducer
4.3.2 Building the Dependence Transducer
4.3.3 From Dependences to Reaching Definitions
4.3.4 Practical Approximation of Reaching Definitions

4.4 The Case of Trees o

4.5 The Case of Arrays e

4.6 The Case of Composite Data Structures

4.7 Comparison with Other Analyses,

4.8 Conclusion oL

Parallelization via Memory Expansion

5.1 Motivations and Tradeoffs oo
5.1.1 Conversion to Single-Assignment Form
5.1.2 Run-Time Overhead,
5.1.3 Single-Assignment for Loop Nests
5.1.4 Optimization of the Run-Time Overhead

123
123
123
125
125
126
126
126
128
133
134
137
139
139
140
141
143
145
147
148
150
154

1 ADLIY U UUIN LIUVIN 1O

9.2

9.3

0.4

9.5

9.6

5.1.5 Tradeoff between Parallelism and Overhead
Maximal Static Expansiono Lo
5.2.1 Motivation
5.2.2 Problem Statement L L L
5.2.3 Formal Solution
5.2.4 Algorithm
5.2.5 Detailed Review of the Algorithm
5.2.6 Application to Real Codes L.
5.2.7 Back to the Examples o o
0.2.8 Experiments
5.2.9 TImplementation L
Storage Mapping Optimization
5.3.1 Motivation L
5.3.2 Problem Statement and Formal Solution
5.3.3 Optimality of the Expansion Correctness Criterion
5.3.4 Algorithm
5.3.50 Array Reshaping and Renaming
5.3.6 Dealing with Tiled Parallel Programs
5.3.7 Schedule-Independent Storage Mappings
5.3.8 Dynamic Restoration of the Data-Flow
5.3.9 Back to the Examples 0oL
5.3.10 Experiments L e
Constrained Storage Mapping Optimization
5.4.1 Motivationo e
5.4.2 Problem Statement L L
5.4.3 Formal Solution
5.4.4 Algorithm
5.4.5 Building Expansion Constraints
5.4.6 Graph-Coloring Algorithm
5.4.7 Dynamic Restoration of the Data-Flow
5.4.8 Parallelization after Constrained Expansion
5.4.9 DBack to the Motivating Example
Parallelization of Recursive Programs
5.5.1 Problems Specific to Recursive Structures
5.5.2 Algorithm
5.5.3 Generating Code for Read References
5.5.4 Privatization of Recursive Programs
5.5.5 Expansion of Recursive Programs: Practical Examples
5.5.6 Statementwise Parallelization
5.5.7 Instancewise Parallelization
Conclusion L

6 Conclusion
Contributions e

6.1

6.2 Perspectives

Bibliography

Index

168
168
168
173
174
176
177
180
181
185
185
186
187
191
194
195
196
199
200
201
201
204
205
206
209
210
214
215
217
219
222
223
226
227
228
230
232
233
235
240
242

245
245
247

249

259

o4 Ur ri1auiviuio

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15

5.1
5.2
9.3
5.4
9.9
5.6
5.7

Simple examples of memory expansion Lo oo 58
Run-time restoration of the low of data 59
Exposing parallelism Lo L 09
About run-time instances and accesseso oo 62
Procedure Queens and control tree 67
Control automata for program Queens 69
Hash-table declaration 72
An inode declarationo 73
Computation of Parikh vectors 74
Execution-dependent storage mappings.o 7
Studying the Lukasiewicz language 95
One-counter automaton for the Lukasiewicz language 96
Sequential and sub-sequential transducers 0oL o L 100
Synchronous and é-synchronous transducers 103
Left-synchronous realization of several order relations 103
A left and right synchronizable example 104
Procedure Queens and control tree 124
Procedure BST and compressed control automaton 125
Procedure Count and compressed control automaton 126
First example of induction variables 0L, 127
More examples of induction variableso 0oL 128
Procedure Count and control automaton 138
Rational transducer for storage mapping f of program BST 146
Rational transducer for conflict relation x of program BST 146
Rational transducer for dependence relation 6 of program BST 147
Rational transducer for storage mapping f of program Queens 147
One-counter transducer for conflict relation s of program Queens 149
Pseudo-left-synchronous transducer for the restriction of Kk to W xR 150
One-counter transducer for the restriction of dependence relation § to flow de-

pendences e e 151
One-counter transducer for reaching definition relation ¢ of program Queens . . . 152
Simplified one-counter transducer foro.o 0oL oL 152
Interaction of reaching definition analysis and run-time overhead 159
Basic optimizations of the generated code for ¢ functions 163
Repeated assignments to the same memory location 164
Improving the SA algorithm oL 165
Parallelism extraction versus run-time overhead 167
First example o L 169

First example, continuedo Lo Lo 170

o4 U riauiviuio J

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
0.22
5.23
0.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
9.33
5.34
9.35
95.36
9.37
5.38
9.39
5.40
0.41
5.42
5.43
0.44

Expanded version of the first exampleo oL 170
Second example oL L 170
Partition of the iteration domain (N =4) 171
Maximal static expansion for the second example 172
Third example L 172
Inserting copy-out code 181
Parallelization of the first example.o L. 185
Experimental results for the first example 186
Computation times, in milliseconds. 186
Convolution example L 187
Knapsack programo 188
KP in single-assignment form o oL 189
Instancewise reaching definitions, schedule, and tiling for KP 190
Partial expansion for KP o oo o 190
Cases of fI*F(v) # f&*F(w) in (5.17) 194
Motivating examples for each constraint in the definition of the interference relation195
An example of block-regular storage mapping 200
Time and space optimization 0oL 205
Performance resultso L 205
Motivating example L. 206
Parallelization of the motivating example 207
Performance results for storage mapping optimization 208
Maximal static expansiono 208
Maximal static expansion combined with storage mapping optimization 209
What we want to achieve Lo 210
Strange interplay of constraint and coloring relations 213
How we achieve constrained storage mapping optimization 214
Solving the constrained storage mapping optimization problem 215
Single-assignment form conversion of program Queens 234
Implementation of the read reference in statement ~ 235
Privatization of program Queens L. 236
Parallelization of program BST 237
Second motivating example: program Map oL 237
Parallelization of program Queens via privatization 239
Parallel resolution of the n-Queens problem 240
Instancewise parallelization example 241

Automatic instancewise parallelization of procedure P 243

o4 U AL GUINL L 1T1iVIO

List of Algorithms

Recurrence-Build (program)o 130
Recurrence-Rewrite (program, system) oo 131
Recurrence-Solve (system) Lo 134
Compute-Storage-Mappings (program) 135
Dependence-Analysis (program) 141
Reaching-Definition-Analysis (program) 145
Abstract-SA (program, W, o) 157
Abstract-Implement-Phi (expanded) Lo 158
Convert-Quast (quast,ref) 161
Loop-Nests-SA (program, o) o oo i ittt 161
Loop-Nests-Implement-Phi (ezpanded) 162
Abstract-ML-SA (program, W,o™Y) 166
Loop-Nests-ML-SA (program,c™") 166
Abstract-Implement-Phi-Not-SA (ezpanded) 167
Maximal-Static-Expansion (program,x,o)o 177
MSE-Convert-Quast (quast,ref) e 177
Compute-Representatives (equivalence) 178
Enumerate-Representatives (rel, fun) 179
Storage-Mapping-Optimization (program, o, £, <psr) -« « « « « « « o e et e et 196
SMO-Convert-Quast (quast,ref) L 197
Build-Expansion-Vector (S,5<) 198
Partial-Renaming (program,t<t)o 199
Constrained-Storage-Mapping-Optimization (program,k,o , =, <par) « « « « « « « « « . 216
CSMO-Convert-Quast (quast,ref) L 216
Cyclic-Coloring (¢0) o o o o 218
Near-Block-Cyclic-Coloring (0, shape)o i i oo 219
CSMO-Implement-Phi (expanded) 220
CSMO-Efficiently-Implement-Phi (expanded) 221
Recursive-Programs-SA (program,o)o 229
Recursive-Programs-Implement-Phi (ezpanded) 230
Recursive-Programs-Online-SA (program,o) 232
Statementwise-Parallelization (program, k) o ... 238

Instancewise-Parallelization (program,k) 242

Présentation en francais

Apres une introduction détaillée, ce chapitre offre un résumé en francais des chapitres
suivants — écrits en anglais. Son organisation est le reflet de la structure de la these et les
sections et sous-sections correspondent respectivement aux chapitres et a leurs sections.
Le lecteur désirant approfondir un des sujets présentés pourra donc se reporter a la partie
correspondante en anglais pour y trouver le détail des algorithmes ainsi que des exemples.

Table des matieres

II

III

v

VI

Introduction Lo 12
11 Analyse de programmes Lo 13
1.2 Transformations de programmes pour la parallélisation 16
1.3 Organisation de cette these, 19
Modeles e e e e 20
II.1 Une vision par instances e 20
1I.2 Modele de programmeso 21
II.3 Modele formel 22
II.4 Analyse par instances 25
II.b Parallélisation. 26
Outils mathématiques L L 27
III.1 Arithmétique de Presburger 27
II1.2 Langages formels et relations rationnelles 28
II1.3 Relations synchrones a gauche 31
1I1.4 Dépasser les relations rationnelles 32
III.5 Compléments sur les approximations 34
Analyse par instance pour programmes récursifso 34
IV.1 Exemples introductifs o oo 34
IV.2 Relier instances et cellules mémoire 35
IV.3 Analyse de dépendances et de définitions visibles 38
IV.4 Les résultats de 'analyse 39
IV.5 Comparaison avec d’autres analyses 41
Expansion et parallélisation Lo o 42
V.1 Motivations et compromis 42
V.2 Expansion statique maximale oL, 44
V.3 Optimisation de 'occupation en mémoire 45
V.4 Expansion optimisée sous contrainte 45
V.5 Parallélisation de programmes récursifs 46
Conclusion L 49
VI.1 Contributions L 49

VI.2 Perspectives o1

DIV IUIN L AL INJIN 1IN P IvAIN Al

I Introduction

Les progres accomplis en matiere de technologie des processeurs résultent de plusieurs
facteurs: une forte augmentation de la fréquence, des bus plus larges, I'utilisation de plu-
sieurs unités fonctionnelles et éventuellement de plusieurs processeurs, le recours a des
hiérarchies mémoire complexes pour compenser les temps d’acces, et un développement
global des capacités de stockage. Une conséquence est que le modele de machine devient
de moins en moins simple et uniforme: en dépit de la gestion matérielle des caches, de
I’exécution superscalaire et des architectures paralleles a mémoire partagée, la recherche
des performances optimales pour un programme donné devient de plus en plus complexe.
De bonnes optimisations pour un cas particulier peuvent conduire a des résultats désas-
treux avec une architecture différente. De plus, la gestion matérielle n’est pas capable de
tirer partie efficacement des architectures les plus complexes: en présence de hiérarchies
mémoire profondes, de mémoires locales, de calcul out of core, de parallélisme d’instruc-
tions ou de parallélisme a gros grain, une aide du compilateur est nécessaire pour obtenir
de bonnes performances.

L’industrie des architectures et des compilateurs tout entiere affronte en réalité ce que
la communauté du calcul a hautes performances a découvert depuis des années. D’une
part, et pour la plupart des applications, les architectures sont trop disparates pour définir
des criteres d’efficacité pratiques et pour développer des optimisations spécifiques pour une
machine donnée. D’autre-part, les programmes sont écrits de telle sorte que les techniques
traditionnelles d’optimisation et de parallélisation ont tout le mal du monde & nourrir la
béte de calcul I'on s’appréte a installer dans un banal ordinateur portable.

Pour atteindre des performances élevées a ’aide des microprocesseurs modernes et des
ordinateurs paralléles, un programme — ou bien 1’algorithme qu’il implémente — doit
posséder un degré suffisant de parallélisme. Dans ces conditions, les programmeurs ou les
compilateurs doivent mettre en évidence ce parallélisme et appliquer les transformations
nécessaires pour adapter le programme aux caractéristiques de la machine. Une autre
exigence est que le programme soit portable sur des architectures différentes, afin de
suivre I’évolution rapide des machines paralleles. Les deux possibilités suivantes sont ainsi
offertes aux programmeurs.

— Premierement, les langages a parallélisme explicite. La plupart sont des extensions
paralleles de langages séquentiels. Ces langages peuvent étre a parallélisme de don-
nées, comme HPF, ou combiner parallélisme de données et de taches, comme les
extensions OpenMP pour architectures a mémoire partagée. Quelques extensions
sont proposées sous la forme de bibliotheques: PVM et MPI par exemple, ou bien
des environnements de haut niveau comme IML de I’Université de 1'Illinois [SSP99]
ou Cilk du MIT [MF98]. Toutes ces approches facilitent la programmation d’algo-
rithmes paralleles. En revanche, le programmeur est chargé de certaines opérations
techniques comme la distribution des données sur les processeurs, les communica-
tions et les synchronisations. Ces opérations requierent une connaissance approfon-
die de l'architecture et réduisent notablement la portabilité.

— Deuxiemement, la parallélisation automatique d’'un langage séquentiel de haut ni-
veau. Les avantages évidents de cette approche sont la portabilité et la simplicité
de la programmation. Malheureusement, la tache qui incombe au compilateur pa-
ralléliseur devient écrasante. En effet, le programme doit tout d’abord étre analysé
afin de comprendre — au moins partiellement — quels calculs sont effectués et ou

L. LININVUIJUU L LIUILN

réside le parallélisme. Le compilateur doit alors générer un code parallele, en pre-
nant en compte les spécificités de 'architecture. Le langage source usuel pour la
parallélisation automatique est le Fortran 77. En effet, de nombreuses applications
scientifiques ont été écrites en Fortran, n’autorisant que des structures de données et
de controle relativement simples. Plusieurs études considerent néanmoins la paral-
lélisation du C ou de langages fonctionnels comme Lisp. Ces recherches sont moins
avancées que ’approche historique mais plus proches de ce travail : elles considerent
les structures de données et de controle les plus générales. De nombreux projets
de recherche existent : Parafrase-2 et Polaris [BEFT96] de I’Université de 1'Illinois,
PIPS de 'Ecole des Mines de Paris [[JT90], SUIF de 1'Université de Stanford [H*96],
le compilateur McCat/Earth-C de 1'Université Mc Gill [HTZ197], LooPo de 1’Uni-
versité de Passau [GL97], et PAF de I'Université de Versailles; il y a également un
nombre croissant d’outils de parallélisation commerciaux, comme CFT, FORGE,
FORESYS ou KAP.

Nous nous intéressons principalement aux techniques de parallélisation automatique
et semi-automatique: cette these aborde a la fois I'analyse et la transformation de pro-
gramines.

I.1 Analyse de programmes

Optimiser ou paralléliseur un programme revient généralement a transformer son code
source, en améliorant un certain nombre de parametres de I’exécution. Pour appliquer une
transformation de programme a la compilation, on doit s’assurer que I'algorithme implé-
menté n’est pas touché au cours de 'opération. Etant donné qu'un algorithme peut étre
implémenté de bien des manieres différentes, la validation d’une transformation de pro-
grammes requiert un processus d’ingénierie a ’envers (reverse engineering) pour établir
I'information la plus précise possible sur ce que fait le programme. Cette technique fon-
damentale d’analyse de programmes tente de résoudre le probleme difficile de la mise en
évidence statique — c.-a-d. a la compilation — d’informations sur les propriétés dyna-
miques — c.-a-d. a 1’exécution.

Analyse statique

En matiere d’analyse de programmes, les premieres études se sont portées sur les
propriétés de I'état de la machine entre ’exécution de deux instructions. Ces états sont
appelés points de programmes. De telles propriétés sont dites statiques car elles recouvrent
toutes les exécutions possibles conduisant a un point de programme donné. Bien entendu,
ces propriétés sont calculées lors de la compilation, mais le sens de I’adjectif « statique » ne
vient pas de la: il serait probablement plus approprié de parler d’analyse « syntaxique ».

L’analyse de flot de données est le premier cadre général proposé pour formaliser le
grand nombre d’analyses statiques. Parmi les nombreuses présentations de ce formalisme
[KU77, Muc97, ASU86, JM82, KS92, SRH96], on peut identifier les points communs sui-
vants. Pour décrire les exécutions possibles, la méthode usuelle consiste a construire le
graphe de flot de contréle du programme [ASU86|; en effet, ce graphe représente tous les
points comme des sommets, et les arétes entre ces sommets sont étiquetées par des instruc-
tions du programme. L’ensemble de toutes les exécutions possibles est alors I’ensemble de
tous les chemins depuis ’état initial jusqu’au point de programme considéré. Les proprié-
tés en un point donné sont définies de la fagon suivante : puisque chaque instruction peut

DIV IUIN L AL INJIN 1IN P IvAIN Al

modifier une propriété, on doit prendre en compte tous les chemins conduisant au point
de programme et rassembler (meet) toutes les informations sur ces chemins. La formalisa-
tion de ces idées est souvent appelée rassemblement sur tous les chemins ou meet over all
paths (MOP). Bien sur, 'opération de rassemblement dépend de la propriété recherchée
et de 'abstraction mathématique pour celle-ci.

En revanche, le nombre potentiellement infini de chemins interdit toute évaluation de
propriétés a partir de la spécification MOP. Le calcul est réalisé en propageant les résultats
intermédiaires — en avant ou en arriere — le long des arétes du graphe de flot de controle.
On procede alors a une résolution itérative des équations de propagation, jusqu’a ce qu’un
point fize soit atteint. C’est la méthode dite du point fize mazrimal ou maximal fix-point
(MFP). Dans le cas intra-procédural, Kam et Ullman [KU77] ont prouvé que MFP calcule
effectivement le résultat défini par MOP — c.-a-d. MFP coincide avec MOP — lorsque
quelques propriétés simples de I'abstraction mathématique sont satisfaites; et ce résultat
a été étendu a 'analyse inter-procédurale par Knoop et Steffen [KKS92].

Les abstractions mathématiques pour les propriétés de programmes sont tres nom-
breuses, en fonction de l'application et de la complexité de ’analyse. La structure de
treillis englobe la plupart des abstractions car elle autorise le calcul des rassemblements
(meet) — aux points de rencontre — et des jointures (join) — associées aux instruc-
tions. Dans ce cadre, Cousot et Cousot [CC77]| ont proposé un schéma d’approzimation
fondé sur des connections de Galois semi-duales entre les états concrets de 'exécution et
les propriétés abstraites a la compilation. Ce formalisme appelé interprétation abstraite
a deux intéréts principaux: tout d’abord, il permet de construire systématiquement des
abstractions des propriétés a l'aide de treillis, et d’'un autre coté, il garantit que tout
point fixe calculé dans le treillis abstrait correspond a une approximation conservatrice
d’un point fixe dans le treillis des états concrets. Tout en étendant le concept d’analyse de
flot de données, 'interprétation abstraite facilite les preuves de correction et d’optimalité
des analyses de programmes. Des applications pratiques de l'interprétation abstraite et
des méthodes itératives associées sont présentées dans [Cou81, CH78, Deu92, Cre96].

Malgré d’indéniables succes, les analyses de flot de données — fondées ou non sur
I'interprétation abstraite — ont rarement été a la base des techniques de parallélisation
automatique. Certaines raisons importantes ne sont pas de nature scientifique, mais de
bonnes raisons expliquent également ce fait :

— les techniques MOP/MFP sont principalement orientées vers les optimisations clas-
siques avec des abstractions relativement simples (les treillis ont souvent une hau-
teur bornée) ; leur correction et leur efficacité dans un véritable compilateur sont les
enjeux déterminants, alors que la précision et ’expressivité de ’abstraction mathé-
matique sont a la base de la parallélisation automatique ;

— dans l'industrie, les méthodes de parallélisation se sont traditionnellement concen-
trées sur les nids de boucles et sur les tableaux, avec des degrés importants de
parallélisme de données et des structures de controle simples (non récursives, du
premier ordre); prouver la correction d’une analyse est facile dans ces conditions,
alors que 'application a des programmes réels et l'implémentation dans un compi-
lateur deviennent des enjeux majeurs;

— l'interprétation abstraite convient aux langages fonctionnels avec une sémantique
opérationnelle propre et simple ; les problemes soulevés sont alors orthogonaux aux
questions pratiques liées aux langages impératifs et bas niveau, traditionnellement
plus adaptés aux architectures paralleles (on verra que cette situation évolue).

L. LININVUIJUU L LIUILN

En conséquence, les analyses de flot de données existantes sont généralement des ana-
lyses statiques qui calculent des propriétés d'un point de programme donné ou d’une ins-
truction donnée. De tels résultats sont utiles aux techniques classiques de vérification et
d’optimisation [Muc97, ASU86, SKR90, KRS94], mais pour la parallélisation automatique
on a besoin d’informations supplémentaires.

— Que dire des différentes instances d’un point de programme ou d’une instruction a
I’exécution? Puisque les instructions sont généralement exécutées plusieurs fois, on
s’intéresse a [’itération de boucle ou a [’appel de procédure qui conduit a ’exécution
de telle instruction.

— Que dire des différents éléments d’une structure de données? Puisque les tableaux
et les structures de données allouées dynamiquement ne sont pas atomiques, on
s’intéresse a [’élément de tableau ou au neud de ’arbre qui est accédé par une
instance donnée d'une instruction.

Analyse par instances

Les analyses de programmes pour la parallélisation automatique constituent un do-
maine assez restreint, comparé avec l'immensité des propriétés et des techniques étudiées
dans le cadre de 'analyse statique. Le modele de programme considéré est également plus
restreint — la plupart du temps — puisque les applications traditionnelles des paralléli-
seurs sont les codes numeériques avec des nids de boucles et des tableaux.

Des le début — avec les travaux de Banerjee [Ban88|, Brandes [Bra88] et Feautrier
[Fea88a| — les analyses sont capables d’identifier des propriétés au niveau des instances et
des éléments. Alors que la seule structure de controle était la boucle for/do, les méthodes
itératives avec de solides fondations sémantiques paraissaient inutilement complexes. Pour
se concentrer sur la résolution des problemes cruciaux que sont ’abstraction des itérations
de boucles et des effets les éléments de tableaux, la conception de modeles simples et spé-
cialisés fut a coup sur préférable. Les premieres analyses étaient des tests de dépendance
[Ban88| et des analyses de dépendances qui rassemblent des informations sur les instances
d’instructions accédant a la méme cellule mémoire, I'un des acces étant une écriture. Des
méthodes plus précises ont été congues pour calculer, pour chaque élément de tableau lu
dans une expression, 'instance de I'instruction qui a produit la valeur. Elles sont souvent
appelées analyses de flot de données pour tableauzr [Fea91, MAL93|, mais nous préférons
le terme d’analyse de définitions visibles par instances pour favoriser la comparaison avec
une technique particuliere d’analyse statique de flot de données appelée analyse de défi-
nitions visibles [ASU86, Muc97]. Une information aussi précise améliore significativement
la qualité des techniques de transformation, et donc les performances des programmes
paralleles.

Les analyses par instances ont longtemps souffert de séveres restrictions sur leur mo-
dele de programmes: ceux-ci devaient initialement ne comporter que des boucles sans
instructions conditionnelles, avec des bornes et des indices de tableaux affines, et sans
appels de procédures. Ce modele limité englobe déja bon nombre de codes numériques,
et il a également le grand intéret de permettre le calcul ezact des dépendances et des dé-
finitions visibles [Fea88a, Fea91]. Lorsque I'on cherche a supprimer des restrictions, 1'une
des difficultés vient de I'impossibilité d’établir des résultats exacts, seule une information
approchée sur les dépendances est disponible a la compilation : cela induit des approxima-
tions trop grossieres sur les définitions visibles. Un calcul direct de ces définitions visibles

DIV IUIN L AL INJIN 1IN P IvAIN Al

est donc nécessaire. De telles techniques ont été récemment mises au point par Barthou,
Collard et Feautrier [CBF95, BCF97, Bar98] et par Pugh et Wonnacott [WP95, Won95],
avec des résultats extrémement précis dans le cas intra-procédural. Par la suite, et dans le
cas des tableaux et nids de boucles sans restrictions, notre analyse de définitions visibles
par instances sera ’analyse floue de flot des données ou fuzzy array dataflow analysis
(FADA) de Barthou, Collard et Feautrier [Bar98§].

Il existe de nombreuses extensions de ces analyses qui sont capables de prendre en
compte les appels de procédure [TFJ86, HBCM94, CI96], mais ce ne sont pas pleinement
des analyses par instances car elles ne distinguent pas les exécutions multiples d'une
instruction associées a des appels différents de la procédure englobante. En effet, cette
these présente la premiere analyse qui soit pleinement par instances pour des programmes
comportant des appels de procédures — éventuellement récursifs.

[.2 Transformations de programmes pour la parallélisation

Il est bien connu que les dépendances limitent la parallélisation des programmes écrits
dans un langage impératif ainsi que leur compilation efficace sur les processeurs modernes
et les super-calculateurs. Une méthode générale pour réduire le nombre de dépendances
consiste a réduire la réutilisation de la mémoire en affectant des cellules mémoires dis-
tinctes a des écritures indépendantes, c’est-a-dire a expanser les structures de données.

Il y a de nombreuses techniques pour calculer des ezpansions de la mémoire, c’est-a-
dire pour transformer les acces mémoire dans les programmes. Les méthodes classiques
comportent : le renommage de variables; le découpage ou l'unification de structures de
données du méme type; le redimensionnement de tableaux, en particulier ’ajout de nou-
velles dimensions; la conversion de tableaux en arbres; la modification du degré d'un
arbre ; la transformation d’une variable globale en une variable locale.

Les références en lecture sont expansées également, en utilisant les définitions visibles
pour implémenter la référence expansée [Fea9l]. La figure 1 présente trois programmes
pour lesquels aucune exécution parallele n’est possible, en raison des dépendances de sortie
(certains détails du code sont omis). Les versions expansées sont présentées en partie
droite de la figure, pour illustrer 'intérét de ’expansion de la mémoire pour 'extraction
du parallélisme.

Malheureusement, lorsque le flot de controle ne peut pas étre prédit a la compilation,
un travail supplémentaire est nécessaire lors de I’exécution pour préserver le flot de don-
nées d’origine : des fonctions ¢ peuvent étre nécessaires pour « rassembler » les définitions
en provenance de divers chemins de controle entrants. Ces fonctions ¢ sont semblables
— mais non identiques — a celles du formalisme d’assignation unique statique ou sta-
tic single-assignment (SSA) de Cytron et al. [CFR'91], et Collard et Griebl les ont été
étendues pour la premiere fois aux méthodes d’expansion par instances [GC95, Col98|.
L’argument d'une fonction ¢ est 'ensemble des définitions visibles possibles pour la réfé-
rence en lecture associee (cette interprétation est tres différente de la sémantique usuelle
des fonctions ¢ du formalisme SSA). La figure 2 propose deux programmes avec des ex-
pressions conditionnelles et des index de tableau inconnus. Des versions expansées avec
fonctions ¢ sont données en partie droite de la figure.

L’expansion n’est pas une étape obligatoire de la parallélisation ; elle reste cependant
une technique tres générale pour exposer plus de parallélisme dans les programmes. En
ce qui concerne 'implémentation de programmes paralleles, deux visions différentes sont
possibles, en fonction du langage et de I’architecture.

L. LININVUIJUU L LIUILN 1/

int x; int x1, x2;
X = ; = x; x1 = ; = x1;
X = o0 o0 =X X2="';"' =X2;

Apres expansion, c.-a-d. apres renommage de x en x1 et x2, les deux premieres instructions
peuvent étre exécutées en parallele avec les deux autres.

int A[10]; int A1[10], A2[10][10];
for (i=0; i<10; i++) { for (i=0; i<10; i++) {
sy A[0] = .-+ sy A1[i] = ---;
for (j=1; j<10; j++) { for (j=1; j<10; j++) {
S9 Alj1 = A[j-11 + ---; S9 A2[i]1[j]1 = { if (j=1) A1[il;
} else A2[i][j-1]1; }
+ e
}

Apres expansion, c.-a-d. apres renommage du tableau A en Al et A2 puis ajout d’une
dimension au tableau A2, la boucle for est parallele. La définition visible par instances
de la référence A[j-1] dépend des valeurs de i et j, comme le montre I'implémentation
avec une instruction conditionnelle.

int A[10]; struct Tree {
void Proc (int i) { int value;
Afli]l = -+ Tree *left, *right;
= A[i]; } *p;
if (---) Proc (i+1); void Proc (Tree *p, int i) {
if (---) Proc (i-1); p->value = ---;
} --- = p->value;

if (--+) Proc (p->left, i+1);
if (--+) Proc (p->right, i-1);
}

Apres expansion, les deux appels de procédure peuvent étre exécutés en parallele. L’allo-
cation dynamique de la structure Tree est omise.

...................... Figure 1. Quelques exemples d’expansion

La premiere exploite le parallélisme de controle, c’est-a-dire le parallélisme entre des
instructions différentes du méme bloc de programme. Le but consiste a remplacer le plus
d’exécutions séquentielles d’instructions par des exécutions paralleles. En fonction du lan-
gage, il y a plusieurs syntaxes différentes pour coder ce type de parallélisme, et celles-ci
peuvent ne pas toutes avoir le méme pouvoir d’expression. Nous préférons la syntaxe
spawn/sync de Cilk [MF98] (proche de celle de OpenMP) aux blocs paralléles de Al-
gol 68 et du compilateur EARTH-C [HTZ"97]. Comme dans [MF98], les synchronisations
portent sur toutes les activités asynchrones commencées dans le bloc englobant, et des
synchronisations implicites sont ajoutées aux points de retour des procédures. En ce qui
concerne l'exemple de la figure 3, ’exécution de A, B et C' en parallele suivie séquen-
tiellement de D puis de E a été écrite dans une syntaxe a la Cilk. En pratique, chaque
instruction de cet exemple serait probablement un appel de procédure.

DIV IUIN L AL INJIN 1IN P IvAIN Al

int x; int x1, x2;
S X = -+ S x1 = -
S9 if ("')X="'; S9 if (...) X2="';
r cee =X r ce. = ¢({81752});

Apres expansion, on ne peut pas décider a la compilation quelle est la valeur lue par
I'instruction . On ne sait seulement que celle-ci ne peut venir que de s; ou de sg, et le
calcul de cette valeur est caché dans l'expression ¢({s1,s}). Celle-ci observe si sy a été
exécutée, si oui elle retourne la valeur de x2, sinon celle de x1.

int A[10]; int A1[101, A2[10];
sp A[i] = -+ sy AL[i] = ---;
Sy A[+] = -+0; Sy A2[++] = -0+
rooee o= AlL]; o= d({s1,52});

Apres expansion, on ne sait pas a la compilation quelle est la valeur lue par I'instruction
r, puisque l'on ne connailt pas I’élément du tableau A écrit par 'instruction s,.

La deuxeme vision est exploite le parallélisme de données, c’ést-a-dire le parallélisme
entre des instances différentes de la méme instruction ou du meéme bloc. Le modele a
parallélisme de données a été longuement étudié dans le cas des nids de boucles [PD96],
en raison de son adéquation avec les techniques efficaces de parallélisation pour les al-
gorithmes numériques et pour les opérations répétitives sur de gros jeux de données.
On utilisera une syntaxe similaire a la déclaration de boucles paralleles en OpenMP, ou
toutes les variables sont supposées partagées par défaut, et une synchronisation implicite
est ajoutée a la fin de chaque sortie de boucle.

Pour générer du code a parallélisme de données, beaucoup d’algorithmes utilisent des
transformations de boucles intuitives comme la fission, la fusion, I’échange, le renverse-
ment, la torsion, la réindexation de boucles et le réordonnancement des instructions. Mais
le parallélisme de données est également adapté a l'expression d'un ordre d’exécution
parallele sous forme d’ordonnancement, c’est-a-dire en affectant une date d’exécution a
chaque instance d’une instruction. Le schéma de programme de la figure 4 montre donne
une idée de la méthode générale pour implémenter un tel ordonnancement [PD96]. Le
concept de front d’exécution F(t) est fondamental pusiqu’il rassemble toutes les instances
1 qui s’exécutent a la date t.

Le premier algorithme d’ordonnancement est di a Kennedy et Allen [AK87], lequel a

L. LININVUIJUU L LIUILN

for (t=0; t<=L; t++) { // L est la latence de 'ordonnancement
parallel for (v € F(t))
execute instance 1
// synchronisation implicite

3

Figure 4. Implémentation classique d'un ordonnancement dans le modele a parallélisme
de données

inspiré de nombres méthodes. Elles se fondent toutes sur des abstractions relativement ap-
proximatives des dépendances, comme les niveaux, les vecteurs et les cones de dépendance.
La complexité raisonable et la facilité d’implémentation dans un compilateur industriel
constituent les avantages principaux de ces méthodes; les travaux de Banerjee [Ban92] et
plus récemment de Darte et Vivien [DV97] donnent une vision globale de ces algorithmes.
Une solution générale a été proposée par Feautrier [Fea92|. L’algorithme proposé est tres
utile, mais ’absence de support pour décider du parametre de I’ordonnancement que l'on
doit optimiser constitue un point faible : est-ce la latence L, le nombre de communications
(sur une machine a mémoire distribuée), la largeur des fronts?

Pour finir, il est bien connu que le parallélisme de controle est plus général que le pa-
rallélisme de données, en ce sens que tout programme a parallélisme de données peut étre
réécrit dans un modele a parallélisme de controle, sans perte de parallélisme. C’est d’au-
tant plus vrai pour les programmes récursifs ol la distinction entre les deux paradigmes
n’est pas tres claire [Fea98]. En revanche, pour des programmes et des architectures réels,
le parallélisme de données a longtemps été nettement plus adapté au calcul massivement
parallele — principalement en raison du surcout associé a la gestion des activités. Des
avancées récentes dans le materiel et les logiciels ont poutant montré que la situation est
entrain d’évoluer: d’excellents résultats pour des programmes paralléles récursifs (simu-
lations de jeux comme les échecs, et algorithmes de tri) ont été obtenus avec Cilk par
exemple [MF98].

I.3 Organisation de cette these

Quatre chapitres structurent cette these avant la conclusion finale, et ceux-ci se re-
fletent dans les sections suivantes. La section II — résumant le chapitre 2 — décrit un
formalisme général pour ’analyse et la transformation de programmes, et présente les
définitions utiles aux chapitres suivants. Le but est d’étre capable d’étudier une large
classe de programmes, des nids de boucles avec tableaux aux programmes et structures
de données récursifs.

Des résultats mathématiques sont rassemblés dans la section III — résumant le cha-
pitre 3; certains sont bien connus, comme 'arithmétique de Presburger et la théorie des
langages formels; certains sont plutot peu courants dans les domaines du parallélisme
et de la compilation, comme les transductions rationnelles et algébriques; et les autres
sont principalement des contributions, comme les transductions synchrones a gauche et
les techniques d’approximation pour transductions rationnelles et algébriques.

DIV IUIN L AL INJIN 1IN P IvAIN Al

La section IV — résumant le chapitre 4 — s’attaque a l'analyse de par instances de
programmes récursifs. Celle-ci est fondée sur une extension de la notion de variable d’in-
duction aux programmes récursifs et sur de nouveaux résultats en théorie des langages
formels. Deux algorithmes pour I"analyse de dépendance et de définition visible sont pro-
posés. Ceux-ci sont expérimentés sur des exemples.

Les techniques de parallélisation fondées sur ’expansion de la mémoire constituent
I’objet de la section V — résumant le chapitre 5. Les trois premieres sous-sections pré-
sentent des techniques pour expanser les nids de boucles sans restriction d’expressions
conditionnelles, de bornes de boucles et d’index de tableaux; la quatrieme sous-section
est une contribution a l'optimisation simultanée des parametres d’expansion et de pa-
rallélisation ; et la cinquieme sous-section présente nos résultats sur l’expansion et la
parallélisation de programmes récursifs.

IT Modeles

Afin de conserver un formalisme et un vocabulaire constant tout au long de cette
these, nous présentons un cadre général pour décrire des analyses et des transformations
de programmes. Nous avons mis ’accent sur la représentation des propriétés de pro-
grammes au niveau des instances, tout en maintenant une certaine continuité avec les
autres travaux du domaine. Nous ne cherchons a concurrencer aucun formalisme existant
[KU77, CC77, JM82, KS92]: I'objectif principal consiste a établir des résultats convain-
cants sur la pertinence et 'efficacité de nos techniques.

Apres une présentation formelle des instances d’instructions et des exécutions d’un
programme, nous définissons un modele de programmes pour le reste de cette étude.
Nous décrivons ensuite les abstractions mathématiques associées, avant de formaliser les
notions d’analyse et de transformation de code.

II.1 Une vision par instances

Au cours de l'exécution, chaque instruction peut étre exécutée un certain nombre
de fois, a cause des structures de controle englobantes. Pour décrire les propriétés du
flot de données aussi précisément que possible, nos techniques doivent étre capables de
distinguer entre ces différentes exécutions d’une méme instruction. Pour une instruction s,
une instance de s a I’exécution est une exécution particuliere de s au cours de I'exécution
du programme. Dans le cas des nids de boucles, on utilise souvent les compteurs de boucles
pour nommer les instances, mais cette technique n’est pas toujours applicable : un schéma
général de nommage sera étudié dans la section I[.3.

Les programmes dépendent parfois de 1’état initial de la mémoire et interagissent
avec leur environnement, plusieurs exécutions du méme code sont donc associées a des
ensembles d’instances différents et a des propriétés du flot incompatibles. Nous n’aurons
pas besoin ici d’un degré élevé de formalisation: une exécution e d'un programme P est
donnée par une trace d’exécution de P, ¢’est-a-dire une séquence finie ou infinie (lorsque le
programme ne termine pas) de configurations (états de la machine). L’ensemble de toutes
les exécutions possibles est noté E. Pour un programme donné, on note I, I'ensemble
des instances associées a 1’exécution e € E. En plus de représenter ’exécution, I'indice e
rappelle que I’ensemble I, est « exact » : ce n’est pas une approximation.

Bien entendu, chaque instruction peut comporter plusieurs (y compris zéro) réfé-
rences a la mémoire, 'une d’entre elles étant éventuellement une écriture (c.-a-d. en

11, VIJLJI im0

partie gauche). Un couple (z,7) constitué d'une instance d'instruction et d’une référence
dans ['instruction est appelé un acces. Pour une exécution donnée e € E d’un programme,
I’ensemble de tous les acces est noté A.. Il se partitionne en: R,., 'ensemble de toutes
les lectures, c.-a-d. les acces effectuant une opération de lecture en mémoire; et W,
I’ensemble de toutes les écritures, c.-a-d. les acces effectuant une opération d’écriture en
mémoire. Dans le cas d'une instruction comportant une référence a la mémoire en partie
gauche, on confond souvent les acces en écriture associés et les instances de l'instruction.

I1.2 Modele de programmes

Nos programmes seront écrits dans un style impératif, avec une syntaxe a la C (avec
des extensions syntaxiques de C++). Les pointeurs sont autorisés, et les tableaux a plu-
sieurs dimensions sont accédés avec la syntaxe [iy,...,7,] — ce n’est pas la syntaxe du
C — pour faciliter la lecture. Cette étude s’intéresse principalement aux structures du
premier ordre, mais des techniques d’approximation permettent de prendre également en
compte les pointeurs de fonction [Cou81, Deu90, Har89, AFL95]. Les appels récursifs, les
boucles, les instructions conditionnelles, et les mécanismes d’exception sont autorisés; on
suppose en revanche que les goto ont été préalablement éliminés par des algorithmes de
restructuration de code [ASU86, Bak77, Amm92].

Nous ne considérerons que les structures de données suivantes: les scalaires (booléens,
entiers, flottants, pointeurs...), les enregistrements (ou records) de scalaires non récursifs,
les tableaux de scalaires ou d’enregistrements, les arbres de scalaires ou d’enregistrements,
les arbres de tableaux et les tableaux d’arbres (méme chainés récursivement). Pour sim-
plifier, nous supposons que les tableaux sont toujours accédés avec leur syntaxe spéci-
fique (l'opérateur [1) et que I'arithmétique de pointeurs est donc interdite. Les structures
d’arbres sont accédées a ’aide de pointeurs explicites (a travers les opérateurs * et =>).

La « forme » des structures de données n’est pas explicite dans les programmes C: il
n’est pas évident de savoir si telle structure est une liste ou un arbre et non un graphe quel-
conque. Des informations supplémentaires données par le programmeur peuvent résoudre
le probleme [KS93, FM97, Mic95, HHN92|, de méme que des analyses a la compilation
de la forme des structures de données [GH96, SRW96|. L’association des pointeurs a une
instance donnée d’une structure d’arbre n’est pas évidente non plus: il s’agit d’un cas par-
ticulier de l’analyse d’alias [Deu94, CBC93, GH95, LRZ93, EGH94, Ste96]. Par la suite,
nous supposerons que de telles techniques ont été appliquées par le compilateur.

Une question importante a propos des structures de données: comment sont-elles
construites, modifiées et détruites? La forme des tableaux est souvent connue statique-
ment, mais il arrive que 1’on ait recours a des tableauxr dynamiques dont la taille évolue a
chaque dépassement de bornes (c’est le cas dans la section V) ; en revanche, les structures a
base de pointeurs sont allouées dynamiquement avec des instructions explicites. Feautrier
a étudié le probleme dans [Fea98| et nous aurons la méme vision: toutes les structures
de données sont supposées construites jusqu’a leur extension maximale — éventuellement
infinie. La correction d’une telle abstraction est garantie lorsque 'on interdit toute inser-
tion et toute suppression a ’exécution. Cette regle tres stricte souffre tout de méme deux
exceptions que nous étudierons apres avoir introduit ’abstraction mathématique pour les
structures de données. Il n’en reste pas moins que de nombreux programmes ne respectent
malheureusement pas cette regle.

DIV IUIN L AL INJIN 1IN P IvAIN Al

I1.3 Modéle formel

Nous présentons d’abord une méthode de nommage pour les instances d’instructions,
puis nous proposons une abstraction mathématique des cellules mémoire.

Nommer les instances d’instructions

Désormais, on suppose que chaque instruction porte une étiquette, I'alphabet des éti-
quettes est noté Yorgr. Les boucles méritent une attention particuliere: elles ont trois
étiquettes, la premiere représente ’entrée dans la boucle, la deuxieme correspond a la
vérification de la condition, et la troisieme représente l'itération '. De la méme maniere,
les instructions conditionnelles ont deux labels: un pour la condition et pour la branche
then, un autre pour la branche else. Nous étudierons 'exemple de la figure 5; cette
procédure calcule toutes les solutions du probléme des n reines.

int A[n]; F
P void Queens (int n, int k) { p
I if (k <n) {
A/af/a for (int i=0; i<n; i++) { I
B/8/b for (int j=0; j<k; j++) 4

= .. A[J] S A a A a A

r
J if ¢-) Ao J J J
S Alk] = -+ Q
Q Queens (n, k+1); s s s

} ¥ FPIAaaaaads P
} I
b
Al
int main () { J/\ B
F Queens (n, 0);
} r
FPIAaasaaJQQPIAABBr

........... Figure 5. La procédure Queens et un arbre de controle (partiel)

Les traces d’exécution sont souvent utilisées pour nommer les instances a l'exécution.
Elles sont généralement définies comme un chemin de I'entrée du graphe de flot de controle
jusqu’a une instruction donnée.? Chaque exécution d'une instruction est enregistrée, y
compris les retours de fonctions. Dans notre cas, les traces d’exécution ont un certain
nombre d’inconvénients, le plus grave étant qu’une instance donnée peut avoir plusieurs
traces d’exécution différentes en fonction de I'exécution du programme. Ce point interdit
I'utilisation des traces pour donner un unique nom a chaque instance. Notre solution
utilise une autre représentation de l’exécution du programme [CC98, Coh99a, Coh97,
Fea98|. Pour une exécution donnée, chaque instance d’une instruction se situe a l'extrémité

1. En C, la vérification se fait juste apres I'entrée dans la boucle et avant chaque itération
2. Sans se soucier des expressions conditionnelles et des bornes de boucles.

11, VIJLJI im0

d’une unique liste (ordonnée) d’entrées de blocs, d’itérations de boucles et d’appels de
procédures. A chaque liste correspond un certain mot : la concaténation des étiquettes des
instructions. Ces concepts sont illustrés sur ’arbre de la figure 5, dont la définition est
donnée ultérieurement.

Définition 1 L’automate de contrdle d’un programme est un automate fini dont les états
sont les instructions et ol une transition d’un état ¢ a un état ¢’ exprime que l'instruc-
tion ¢' apparait dans le bloc ¢. Une telle transition est étiquetée par ¢'. L’état initial
est la premiere instruction exécutée, et tous les états sont finaux.

Les mots acceptés par 'automate de controle sont appelés mots de contrble. Par

construction, ils décrivent un langage rationnel Loy, inclus dans X7 . .

Si I est I'union de tous les ensembles d’instances I, pour toute exécution donnée e € E,
il y a une injection naturelle de I sur le langage L.rg, des mots de controle. Ce résultat
nous permet de parler du « mot de controle d’'une instance ». En général, les ensembles
E et I, — pour une exécution donnée e — ne sont pas connus a la compilation. Nous
considérerons souvent 1’ensemble de toutes les instances susceptibles d’eétre exécutées,
indépendamment des instructions conditionnelles et des bornes de boucles. Cet ensemble
est en bijection avec ’ensemble des mots de controle. Nous parlerons donc également de
« instance w », qui signifie « I'instance dont le mot de controle est w ».

On remarque que certains états n’ont qu’une transition entrante et une transition
sortante. En pratique, on considere souvent un automate de contréle compressé ou tous
ces états sont éliminés. Cette transformation n’a pas de conséquences sur les mots de
controle. Les automates du programme Queens sont décrits sur la figure 6.

Figure 6.b. Automate de controle com-
pressé pour Queens

Figure 6.a. Automate de controle
........................... Figure 6. Automates de controle
L’ordre d’exécution séquentiel d'un programme définit un ordre total sur les instances

que l'on note <gyq. De plus, on peut définir un ordre textuel partiel <,y sur les instructions
du programme : les instructions d’un méme bloc sont ordonnées selon leur apparition, et

DIV IUIN L AL INJIN 1IN P IvAIN Al

les instructions apparaissant dans des blocs différents sont incomparables. Dans le cas
des boucles, I'étiquette de 1'itération s’exécute apres toutes les instructions du corps de
boucle. Pour la procédure Queens on a B <ixr J <ixr @, 7 <7xr b et s <ixr Q). Cet ordre
textuel engendre un ordre lexicographique sur les mots de controle (ordre du dictionnaire)
noté < ux. Cet ordre est partiel sur X7, . et sur Lqry, (notamment a cause des instructions
conditionnelles). Par construction de l'ordre textuel, une instance i/ s’exécute avant une
instance ¢ si et seulement si leurs mots de controle w' et w respectifs vérifient w’ < px w.

Enfin, le langage des mots de controle s’interprete facilement comme un arbre infini,
dont la racine est nommeée € et chaque aréte est étiquetée par une instruction. Chaque
neeud correspond alors au mot de controle égal a la concaténation des étiquettes sur la
branche issue de la racine. Un tel arbre est appelé arbre de contréle. Un arbre d’appel

partiel pour le programme Queens est donné par la figure 5.

L’adressage des cellules mémoire

Nous généralisons ici un certain nombre de formalismes que nous avions proposés
précédemment [CC98, Coh99a, Coh97, Fea98, CCGI6]. Celui-ci s’inspire également d’ap-
proches assez diverses [Ala94, Mic95, Deu92, LH8S].

Sans surprise, les éléments de tableau sont indexés par des entiers ou des vecteurs
d’entiers. L’adressage des arbres se fait en concaténant les étiquettes des arétes en partant
de la racine. L’adresse de la racine est donc ¢ et celle du nceud root->1->r dans un arbre
binaire est [r. L’ensemble des noms d’arétes est noté Y5, ; la disposition des arbres en
mémoire est donc décrite par un langage rationnel Lyypy C X5, .,

Pour travailler a la fois sur les arbres et sur les tableaux, on note que ces deux structures
partagent la méme abstraction mathématique: le monoide (voir Section II1.2). En effet,
les langages rationnels (adressage des arbres) sont des sous-ensembles de monoides libres
avec la concaténation des mots, et les ensembles de vecteurs d’entiers (indexation des
tableaux) sont des monoides commutatifs libres avec 1’addition des vecteurs. L’abstraction
d’une structure de données par un monoide est notée Mp,ra, et le sous-ensemble de ce
monoide associé aux éléments valides de la structure sera noté Lpar,.

Le cas des emboitements d’arbres et de tableaux est un peu plus complexe, mais il
révele I'expressivité des abstractions sous forme de monoides. Toutefois, nous ne parle-
rons pas davantage de ces structures hybrides dans ce résumé en francais. Par la suite,
I’abstraction pour n’importe quelle structure de données de notre modele de programmes
sera un sous-ensemble Ly ry du monoide Mp,r, avec la loi e.

Il est temps de revenir sur I'interdiction des insertions et des suppressions de la section
précédente. Notre formalisme est capable en réalité de gérer les deux exceptions suivantes :
puisque le flot des données ne dépend pas du fait que I'insertion d’un nceud s’effectue au
début du programme ou en cours d’exécution, les insertions en queue de liste et aux
feuilles des arbres sont permises; lorsque des suppressions sont effectuées en queue de
liste ou auz feuilles des arbres, I'abstraction mathématique est toujours correcte mais
risque de conduire a des approximations trop conservatrices.

Nids de boucles et tableaux

De nombreuses applications numériques sont implémentées sous formes de nids de
boucles sur tableaux, notamment en traitement du signal et dans les codes scientifiques
ou multimédia. Enormément de résultats d’analyse et de transformation ont été obtenus
pour ces programmes. Notre formalisme décrit sans probléeme ce genre de codes, mais il

11, VIJLJI im0

semble plus naturel et plus simple de revenir a des notions plus classiques pour nommer
les instances et adresser la mémoire. En effet, les vecteurs d’entiers sont plus adaptés que
les mots de controle, car les Z-modules ont une structure beaucoup plus riche que celle
de simples monoides commutatifs.

En utilisant des correspondances de Parikh [Par66], nous avons montré que les vecteurs
d’itérations — le formalisme classique pour nommer les instances dans les nids de boucles
— sont une interprétation particuliere des mots de controle, et que les deux notions sont
équivalentes en 1’absence d’appels de procédures. Enfin, les instances d’instructions ne se
réduisent pas uniquement a des vecteurs d’itération, et nous introduisons les notations
suivantes (qui généralisent les notations intuitives de la section II.1): (S, x) représente
I'instance de I'instruction S dont le vecteur d’itération est x; (S, z, ref) représente 'acces
construit a partir de instance (S, z) et de la référence ref.

D’autres comparaisons entre vecteurs d’itération et mots de controle sont présentées
dans la section IV.5.

I1.4 Analyse par instances

La définition des exécutions d'un programme n’est pas tres pratique puisque notre
modele utilise des mots de controle et non des traces d’exécution. Nous préférons ici utiliser
une vision équivalente ou 'exécution séquentielle e € E d'un programme est un couple
(<spg, fe), OU <gpq est ordre d’exécution séquentiel sur toutes les instances possibles et
fe associe chaque acces a la cellule mémoire qu’il lit ou écrit. On remarque que <gz, ne
dépend pas de 'exécution, I’ordre séquentiel étant déterministe. Au contraire, le domaine
de f. est exactement ’ensemble A, des acces associés a l’exécution e. La fonction f,
est appelée la fonction d'accés pour I'exécution e du programme [CC98, Fea98, CFH95,
Coh99b, CL99]. Pour simplifier, lorsque 'on parlera du « programme (<guq, fe) », on
entendra l’ensemble des exécutions (<ggq, fe) du programme pour e € E.

Conflits d’acces et dépendances

Les analyses et transformations requierent souvent des informations sur les « conflits »
entre acces a la mémoire. Deux acces a et a’ sont en conflit 8’ils accédent — en lecture ou
en écriture — a la méme cellule mémoire: f.(a) = f.(da').

[’analyse des conflits ressemble beaucoup a l’analyse d’alias [Deu94, CBC93] et s’ap-
plique également aux analyses de caches [TD95]. La relation de conflit — la relation entre
conflits d’acces — est notée k. pour une exécution donnée e. Comme on ne peut générale-
ment pas connaitre exactement f, et k., 1’analyse des conflits d’acces consiste a déterminer
une approzimation conservatrice k de la relation de conflit qui soit compatible avec n’im-
porte quelle exécution du programme :

Ve e E,Vo,w € A (fe(v) = fo(w) = vrw).

Pour paralléliser, on a besoin de conditions suffisantes pour autoriser que deux acces
s’exécutent dans un ordre quelconque. Ces conditions s’expriment en terme de dépen-
dances : un acces a dépend d’un autre acces a’ si 'un d’entre eux est une écriture, s’ils
sont en conflit — f.(a) = fe(a') — et si a’ sexécute avant a — o’ <gzq a. La relation de
dépendance pour une exécution e est notée 6. : a dépend de a’ est noté a’' . a.

Ve e E,Va,d' € A,: dé.a PN (a€eW,Vad eW,)Ad <gqaA fla) = f(d).

DIV IUIN L AL INJIN 1IN P IvAIN Al

Une analyse de dépendances se contente a nouveau d’un résultat approché 6, tel que

Ve€ E\Va,d' € A,: (d'b6.a = d'ba).

Analyse de définitions visibles

Dans certains cas, on recherche une information plus précise que les dépendances:
étant donné une lecture en mémoire, on veut connaitre 'instance qui a produit la valeur.
[’acces en lecture est appelé utilisation et 'instance qui a produit la valeur est appelée
définition visible. 11 s’agit en fait de la derniere instance — selon 'ordre d’exécution — en
dépendance avec 'utilisation. La fonction associant son unique définition visible a chaque
acces en lecture est notée o, :

Vee E\Vue R, 0 (u) = IE&X{?} e W, : vﬁeu}.
sEq
Il se peut qu’une instance en lecture n’ait en fait aucune définition visible dans le
programme considéré. On ajoute donc une instance virtuelle L qui s’exécute avant toutes
les instances du programme et initialise toutes les cellules mémoire.
Lorsque 'on effectue une analyse de définitions visibles, on calcule une relation o qui
approxime de maniere conservatrice les fonctions o, :

Ve e E,Vu € R.,v € W, : (vzoe(u) — vau).

On peut aussi voir 0 comme une fonction qui calcule des ensembles de définitions vi-
sibles possibles. Lorsque | apparait dans un ensmble d’instances, une valeur non initialisée
risque d’étre lue. Cette information peut étre utilisée pour vérifier les programmes.

Par la suite on aura besoin de considérer des ensembles approchés d’instances et d’ac-
ces: On a déja rencontré la notation I qui représente ’ensemble de toutes les instances
possibles pour n’importe quelle exécution d'un programme donné :

VeeE: (1el, = 1€l

De méme, on utilisera les approximations conservatrices A, R et W des ensembles A,
R, et W,.

I1.5 Parallélisation

Avec le modele introduit par la section 11.4, paralléliser un programme (<ggq, fe) signifie
construire un programme (<psg, fEX7), oll <pup est un ordre d’exécution paralléle, ¢’est-a-
dire un ordre partiel et un sous ordre de <guq. On appelle expansion de la mémoire le fait de
construire une nouvelle fonction d’acces f*" a partir de f.. Bien str, un certain nombre
de propriétés doivent étre satisfaites par <p,z et fI*" afin de préserver la sémantique de
I’exécution séquentielle.

L’expansion de la mémoire a pour but de réduire le nombre de dépendances superflues
qui sont dues a la réutilisation des mémes cellules mémoire. Indirectement, I’expansion met
donc en évidence plus de parallélisme. On considere en effet une relation de dépendance
0% pour une exécution e du programme expansé :

Ve € E,Va,a' € A, :
def,

A 850 L (e W, Vad € W) Ad <ga A [5(a) = f57(a).

e

141, YU L0 VIALTHTIVIA L IGJU DO Zi

Pour définir un ordre parallele compatible avec n’importe quelle exécution du pro-
gramme, on doit considérer une approximation conservatrice 6"**. Cette approximation
est en générale induite par la stratégie d’expansion (voir section V.4 par exemple).

Théoréme 1 (correction d’un ordre paralléle) La condition suivante garantit que
l'ordre d’exécution parallele est correct pour le programme expansé (il préserve la
sémantique du programme d’origine).

V(e,71), (22,72) € At (21,71) 6% (22, 72) == 11 <par 22

On remarque que ¢6.*" coincide avec o, lorsque le programme est mis en assignation
unique. On supposera donc que 6™ = ¢ pour paralléliser de tels programmes.

Enfin, on ne reviendra pas ici sur les techniques utilisées pour calculer effectivement
un ordre d’exécution parallele, et pour générer le code correspondant. Les techniques de
parallélisation de programmes récursifs sont relativement récentes et seront étudiées dans
la section 5.5. En ce qui concerne les méthodes associées aux nids de boucles, de nombreux
algorithmes d’ordonnancement et de partitionnement — ou de pavage (tiling) — ont été
proposés ; mais leur description ne parait pas indispensable a la bonne compréhension des
techniques étudiées par la suite.

III Outils mathématiques

Cette section rassemble les rappels et les contributions portant sur les abstractions
mathématiques que nous utilisons. Le lecteur intéressé par les techniques d’analyse et de
transformation peut se contenter de noter les définitions et théoremes principaux.

II1.1 Arithmétique de Presburger

Nous avons besoin de manipuler des ensembles, des fonctions et des relations sur des
vecteurs d’entiers. L’arithmétique de Presburger nous convient particulierement puisque
la plupart des questions intéressantes sont décidables dans cette théorie. On la définit
a partir des formules logiques construites sur V, 3, =, V, A, I’égalité et I'inégalité de
contraintes affines entieres. La satisfaction d’une formule de Presburger est au coeur de
la plupart des calculs symboliques avec des contraintes affines: c’est un probleme NP-
complet de programmation linéaire en nombres entiers [Sch86]. Les algorithmes utilisés sont
super-exponentiels dans le pire cas [Pug92, Fea88b, Fea9l], mais d’une grande efficacité
pratique sur des problemes de taille moyenne.

Nous utilisons principalement Omega [Pug92| dans nos expérimentations et implémen-
tations de prototypes; la syntaxe des ensembles, relations et fonctions étant tres proche
des notations mathématiques usuelles. PIP [Fea88b] — 'outil paramétrique de program-
mation linéaire en nombre entiers — utilise une autre représentation pour les relations
affines: la notion d’arbre de sélection quasi-affine ou quasi-affine selection tree, plus sim-
plement appelé quast.

Définition 2 (quast) Un quast représentant une relation affine est une expression condi-
tionnelle a plusieurs niveaux, dans laquelle les prédicats sont des tests sur le signe de
formes quasi-affines ? et les feuilles sont des ensembles de vecteurs décrits dans I'arith-

3. Les formes quasi-affines étendent les formes affines avec des divisions entieres par des constantes et
des restes de telles divisions.

DIV IUIN L AL INJIN 1IN P IvAIN Al

métique de Presburger étendue avec 1. — qui précede tout autre vecteur pour ’ordre
lexicographique.

Lorsque des ensembles vides apparaissent dans les feuilles, ils different du singleton
{L} et décrivent les vecteurs qui ne sont pas dans le domaine de la relation. Des exemples
seront donnés dans la section V.

Une opération classique sur les relations consiste a déterminer la cloture transitive. Les
algorithmes classiques ne considerent que des graphes finis. Malheureusement, dans le cas
des relations affines, il se trouve que la cloture d’une relation affine n’en est généralement
pas une.

Nous utiliserons donc des techniques d’approximation développées par Kelly et al. et
implémentées dans Omega [KPRS96]. L’idée générale consiste a se ramener a une sous-
classe par approximation, puis de calculer exactement la cloture.

III.2 Langages formels et relations rationnelles

Certains concepts font partie du fond commun en informatique théorique, comme les
monoides, les langages rationnels et algébriques, les automates finis, et les automates a pile.
Les ouvrages de référence sont [HU79] et [RS97a], mais il existe également de nombreuses
introductions en francais. Nous nous contenterons donc de fixer les notations utilisées
par la suite, a 'aide d’un exemple classique. Dans un deuxiéme temps, nous étudierons
des objets mathématiques plus originaux : nous présenterons les résultats essentiels sur la
classe des relations rationnelles entre monoides de type fini.

Langages formels: exemple et notations

Le langage de Lukasiewicz est un exemple simple de langage a un compteur — c.-
a-d. reconnu par un automate a un compteur — sous-classe des langages algébriques.
Le langage de Lukasiewicz E sur un alphabet {a,b} est engendré par I'axiome ¢ et la
grammaire dont les productions sont

§ — akl | b.

Ce langage est apparenté aux langages de Dyck [Ber79], ses premiers mots étant
b, abb, aabbb, ababb, aaabbbb, aababbb, . . .

L’encodage d'un compteur sur une pile se fait de la fagon suivante: trois symboles
sont utilisés, Z est le symbole de fond de pile, I code les nombres positifs, et D les code
nombres négatifs; ZI" représente donc l'entier n, Z D™ représente —n, et Z code la valeur
0 du compteur. La figure 7 décrit un automate a pile acceptant le langage £ ainsi que son
interprétation en termes de compteur.

Une généralisation naturelle des langages a un compteur consiste a en mettre plu-
sieurs: il s’agit alors d'une machine de Minsky [Min67]. Cependant, les automates a deux
compteurs ont déja le meme pouvoir d’expression que les machines de Turing, et la plupart
des questions intéressantes deviennent donc indécidables. Pourtant, en imposant quelques
restrictions sur la famille des langages a plusieurs compteurs, des résultats de décidabilité
récents ont été obtenus. L’étude de ces objets parait riche en applications, notamment
dans le cas des travaux de Comon et Jurski [CJ98].

141, YU L0 VIALTHTIVIA L IGJU DO

bI —¢ b,>0,—1
A A g,=0
—7 1 @ —1 1 @_
al—1I11 a7 —ZI a,+1
Figure 7.a. Automate a pile Figure 7.b. Automate a un compteur associé

........................... Figure 7. Exemples d’automates

Relations rationnelles

Nous nous contentons de quelques rappels; consulter [AB88, Eil74, Ber79] pour de
plus amples détails. Soit M un monoide. Un sous-ensemble R de M est un ensemble
reconnaissable s’il existe a monoide fini /N, un morphisme « de M dans N et un sous-
ensemble P de N tels que R = o '(P).

Ces ensembles généralisent les langages rationnels tout en conservant la structure
d’algebre booléenne : en effet, la classe des ensembles reconnaissables est close pour I'union,
I'intersection et le complémentaire. Les ensembles reconnaissables sont également clos
pour la concaténation, mais pas pour 'opération étoile. C’est le cas en revanche de la
classe des ensembles rationnels, dont la définition étend celle des langages rationnels:
soit M un monoide, la classe des ensembles rationnels de M est la plus petite famille de
sous-ensembles de M comportant @ et les singletons {m} C M, close pour I'union, la
concaténation et I’opération étoile.

En général, les ensembles rationnels ne sont pas clos pour le complémentaire et 'inter-
section. Si M est de la forme M; x My, ou M; et M, sont deux monoides, un sous-ensemble
reconnaissable de M est appelé relation reconnaissable, et un sous-ensemble rationnel de
M est appelé relation rationnelle. Le résultat suivant décrit la « structure » des relations
reconnaissables.

Théoréme 2 (Mezei) Une relation reconnaissable R C M; x M, est une union finie
d’ensembles de la forme K x L ou K et L sont des ensembles rationnels de M; et M.

Par la suite nous ne considérerons que des ensembles reconnaissables et rationnels qui
sont des relations entre monoides de type fini.

Les transductions donnent une vision « plus fonctionnelle » des relations reconnais-
sables et rationnelles. A partir d’une relation R entre des monoides M; et My, on définit
une transduction 7 de M; dans M, comme une fonction de M; dans l'ensemble JB(Ms)
des parties de My, telle que v € 7(u) ssi uRv. Une transduction est reconnaissable (resp.
rationnelle) ssi son graphe est une relation reconnaissable (resp. rationnelle). Ces deux
classes sont closes pour l'inversion, et la classe des transductions reconnaissables est éga-
lement close pour la composition.

Celle des transductions rationnelles est également close pour la composition dans le
cas de monoides libres: c¢’est le théoreme de Elgot et Mezei [EM65, Ber79], fondamental
pour 'analyse de dépendances (section IV).

Théoréme 3 (Elgot and Mezei) Si A, B et C sont des alphabets, 7 : A* — B* et

DIV IUIN L AL INJIN 1IN P IvAIN Al

Ty : B* — C* sont des transductions rationnelles, alors 7 o7 : A* — C* est une
transduction rationnelle.

La représentation « mécanique » des relations et transductions rationnelles est appelée
transducteur rationnel ; ceux-ci étendent naturellement les automates finis en ajoutant un
« ruban de sortie »:

Définition 3 (transducteur rationnel) Pour un monoide « d’entrée » M; et un mo-
noide « de sortie » M, *, on définit un transducteur rationnel 7 = (M, My, Q, I, F, E)
avec un ensemble fini d’états (), un ensemble d’états initaux I C (), an ensemble d’états
finaux F' C @, et un ensemble fini de transitions (ou arétes) E' C QQ x My x My X Q.

Le théoreme de Kleene assure que les relations rationnelles de M; x M, sont exacte-
ment les relations reconnues par un transducteur rationnel. On note |7 la transduction
reconnue par le transducteur 7 : on dit que 7 réalise la transduction |7|. Lorsque les
monoides M, et My sont libres, ’élément neutre est le mot vide noté «.

Théoréme 4 Les problemes suivants sont décidables pour les relations rationnelles : est-
ce que deux mots sont en relation (en temps linéaire), la vacuité, la finitude.
Soient R et R’ deux relations rationnelles sur des alphabets A et B avec au moins
deux lettres. Il n’est pas décidable de savoir si RN R = @, RC R\, R=R, R =
A* x B*, (A* x B*) — R est fini, R est reconnaissable.

Quelques résultats intéressants concernent les transductions qui sont des fonctions
partielles. Une fonction rationnelle 1) : My — M, est une transduction rationnelle qui est
une fonction partielle, c.-a-d. telle que Card(y(u)) < 1 pour tout u € M;. Etant donnés
deux alphabets A et B, il est décidable qu’une transduction rationnelle de A* dans B*
est une fonction partielle (en O(Card(Q)*) [Ber79, BH77]). On peut également décider si
une fonction rationnelle est incluse dans une autre et si elles sont égales.

Parmi les transducteurs réalisant des fonctions rationnelles, on s’intéresse notamment
a ceux que l'on peut « calculer a la volée » en lisant leur entrée. Soient A et B deux
alphabets. Un transducteur est séquentiel lorsqu’il est étiqueté sur A x B* et que son
automate d’entrée (obtenu en omettant les sorties) est déterministe. Un transducteur
séquentiel réalise une fonction rationnelle. Cette notion de « calcul a la volée » est un peu
trop restrictive, on considere plutot I'extension suivante :

Définition 4 (transducteur sous-séquentiel) Pour deux alphabets A et B, un trans-
ducteur sous-séquentiel (7 ,p) sur A* x B* est un couple ou 7 est un transducteur
séquentiel avec F' pour ensemble d’états finaux, et ou p : F' — B* est une fonction.
La fonction 1 réalisée par (7, p) est définie comme suit: si u € A*, la valeur ¢(u) est
définie s’il existe un chemin dans 7" acceptant (u|v) aboutissant a un état final ¢ ; dans

ce cas ¥(u) = vp(q).

En d’autres termes, p ajoute un mot a la fin de la sortie d’un transducteur séquentiel.
Partant d’une démonstration de Choffrut [Cho77], Béal et Carton [BC99b| ont proposé
un algorithme polynomial pour décider si une fonction rationnelle est sous-séquentielle, et
un autre pour décider si une sous-séquentielle est séquentielle. Ils ont également proposé
un algorithme polynomial pour trouver une réalisation sous-séquentielle d’une fonction
rationnelle, lorsqu’elle existe.

4. Les monoides M, et Ms sont souvent omis de la définition.

141, YU L0 VIALTHTIVIA L IGJU DO

III.3 Relations synchrones a gauche

Les relations rationnelles ne sont pas closes pour 'intersection, mais cette opération est
indispensable dans le cadre de l’analyse de dépendances. Feautrier [Fea98] a proposé un
« semi-algorithme » pour répondre a la question indécidable de la vacuité d’une intersection
de relations rationnelles : I'algorithme ne termine a coup str que lorsque I'intersection n’est
pas vide. Puisque nous voulons calculer cette intersection, nous adoptons une approche
différente : on se ramene — par approximations conservatrices — a une classe de relations
rationnelles avec une structure d’algébre booléenne (c.-a~d. avec l'union, l'intersection et
le complémentaire).

Les relations reconnaissables constituent bien une algebre booléene, mais nous avons
construit une classe plus générale: les relations synchrones a gauche. Cette classe a été
étudiée indépendamment par Frougny et Sakarocitch [FS93], mais notre représentation est
différente, les preuves sont nouvelles et de nouveaux résultats ont été obtenus. Ce travail
est le résultat d’une collaboration avec Olivier Carton (Université de Marne-la-Vallée).

On rappelle une définition classique, équivalente a la propriété de préservation de la
longueur pour les mots d’entrée et de sortie: Un transducteur rationnel sur des alphabets
A et B est synchrone s’il est étiqueté sur A x B. Nous étendons cette notion de la facon
suivante.

Définition 5 (synchronisme a gauche) Un transducteur rationnel sur des alphabels
A et B est synchrone a gauche s'il est étiqueté sur (A x B)U (A x {e}) U ({e} x B)
et seules des transitions étiquetées sur A x {e} (resp. {€} x B) peuvent suivre des
transitions étiquetées sur A x {¢} (resp. {¢} x B).

Une relation ou une transduction rationnelle est synchrone a gauche si elle peut
étre réalisée par un transducteur synchrone a gauche. Un transducteur rationnel est
synchronisable a gauche s’il réalise une relation synchrone a gauche.

La figure 8 montre des transducteurs synchrones a gauche sur un alphabet A qui
réalisent P'ordre préfixe et 1'ordre lexicographique (<;xr est un ordre particulier sur A).

Pour les transducteurs suivants, x et y remplacent respectivement Vo € A et Vy € A.

ely
x|z ely
by ely
:L'|y,33 <rxr Y
Figure 8.a. Ordre préfixe
x|z

Figure 8.b. Ordre lexicographique

............... Figure 8. Exemple de transducteurs synchrones a gauche

DIV IUIN L AL INJIN 1IN P IvAIN Al

Il est connu que les transducteurs synchrones constituent une algébre booléenne °.

Théoreme 5 La classe des relations synchrones a gauche constitue une algebre boo-
léenne: elle est close pour 'union, l'intersection et le complémentaire. De plus, les
relations reconnaissables sont synchrones a gauche; si S est synchrone et T' est syn-
chrone a gauche, alors ST est synchrone a gauche; si T est synchrone a gauche et
R est reconnaissable, alors T'R est synchrone a gauche. Enfin, la classe des relations
synchrones a gauche est close pour la composition.

Les relations synchrones sont décidables parmi les relations rationnelles [Eil74] , mais
ce n’est pas le cas des relations reconnaissables [Ber79] et nous avons montré qu’il en est
de méme des relations synchrones a gauche.

On s’intéresse cependant a certains cas particuliers pour lesquels une relation ration-
nelle peut étre prouvée synchrone a gauche. A cet effet, on rappelle la notion de taux de
transmission d'un chemin étiqueté par (u,v): il s’agit du rapport |v|/|u] € QT U {+oo}.
Si 7 est un transducteur synchrone a gauche, les cycles de 7 ne peuvent avoir que trois
taux de transmission possibles: 0, 1 et +o0o. Tous les cycles d’'une méme composante for-
tement connexe doivent avoir le méme taux de transmission, seuls les composants de taux
0 peuvent suivre ceux de taux 0, et seuls les composants de taux +oo peuvent suivre ceux
de taux +oo. Il existe une réciproque partielle :

Théoreme 6 Si le taux de transmission de chaque cycle d'un transducteur rationnel est
0, 1 ou +o0, et si aucun cycle de taux 1 suit un cycle de taux différent de 1, alors le
transducteur est synchronisable a gauche.

Nous pouvons donc “resynchroniser” une certaine classe de transducteurs synchroni-
sables a gauche, a savoir les transducteurs satisfaisant les hypotheses du théoreme 6. En
se fondant sur un algorithme de Béal et Carton [BC99a], on peut écrire un algorithme
de resynchronisation pour calculer des approximations synchrones a gauche de relations
rationnelles. Cette technique sera utilisée dans la section III.5.

Nous terminons sur des propriétés de décidabilité, essentielles pour ’analyse de dé-
pendances et de définitions visibles.

Lemme 1 Soient R et R' des relations synchrones a gauche sur des alphabets A et B. Il
est décidable que RNR' =@, RC R\, R=R', R= A" x B*, (A* x B*) — R est fini.

Nous travaillons toujours sur la décidabilité des relations reconnaissables parmi les
synchrones a gauche.

II1.4 Dépasser les relations rationnelles

Nous avons parfois besoin d’une puissance d’expression supérieure a celle des relations
rationnelles. Nous utiliserons donc la notion de relation algébrique — ou hors-contexte —
qui étend naturellement celle de langage algébrique. Ces relations sont définies a partir
des transducteurs a pile:

Définition 6 (transducteur a pile) Etant donnés deux alphabets A et B, un trans-
ducteur a pile T = (A*, B*,T',7%,Q, I, F, F) est constitué d'un alphabet de pile I %,
un mot non vide vy dans I'" appelé mot de pile initial, un ensemble fini d’états @, un

5. Toutes les propriétés étudiées dans cette section ont des preuves constructives.
6. Les alphabets A et B sont souvent omis de la définition.

141, YU L0 VIALTHTIVIA L IGJU DO

ensemble I C () d’états initiaux, un ensemble F' C () d’états finaux, et un ensemble
fini de transitions (ou arétes) £ C @ x A* x B* x I' x I'* x Q).

La notion de transducteur a pile réalisant une relation est définie de la méme maniere
que celle d’automate a pile réalisant un langage.

Définition 7 (relation algébrique) La classe des relations réalisées par des transduc-
teurs a pile est appelée classe des relations algébriques.

Bien entendu, les transductions algébriques constituent la vision fonctionnelle des rela-
tions algébriques.

Théoreme 7 Les relations algébriques sont closes pour I’'union, la concaténation et 1'opé-
ration étoile. Elles sont également closes pour la composition avec des transductions
rationnelles. L’image d'un langage rationnel par une transduction algébrique est un
langage algébrique.

Les questions suivantes sont décidables pour les relations algébriques: est-ce que
deux mots sont en relation (en temps linéaire), la vacuité, la finitude.

Iy a tres peu de résultats sur les transductions algébriques qui sont des fonctions par-
tielles, appelées fonctions algébriques. En particulier, nous ne connaissons pas de sous-classe
de ces fonctions qui soit « calculable a la volée » au sens des fonctions sous-séquentielles.

Néanmoins, une sous-classe intéressante des relations algébriques est celle des relations
a un compteur, réalisées par un transducteur a un compteur — définition semblable a celle
d’'un automate a un compteur. On peut également considérer plus d’'un compteur, mais
I’on obtient alors la méme puissance d’expression que les machines de Turing. Cette classe
nous intéresse lorsque nous sommes amenés a composer des transductions rationnelles
entre monoides non libres (le théoréme de Elgot et Mezei ne s’applique plus).

Théoreme 8 Soient A et B deux alphabets et n un entier positif. Si 71 : A* — Z" et
Ty © Z" — B* sont des transductions rationnelles, alors 75 o 7y : A* — B* est une
transduction a n compteurs.

Ce théoreme sera utilisé pour ’analyse de dépendances, principalement avec n = 1.
De plus, on peut déduire un résultat important de la preuve du théoreme :

Proposition 1 Soient A et B deux alphabets et n un entier positif. Soient 7 : A* — Z"
et 7 : Z" — B* des transductions rationnelles et 7 un transducteur a n compteurs
réalisant 75 o7y : A* — B* (calculé avec le théoreme 8. Alors, le transducteur rationnel
sous-jacent a 7 — obtenu en omettant les manipulations de pile — est reconnaissable.

Ce résultat garantit la cloture pour l'intersection avec n’importe quelle transduction
rationnelle, d’apres le résultat suivant :

Proposition 2 Soit R; une relation algébrique réalisée par un transducteur a pile dont
le transducteur rationnel sous-jacent est synchrone a gauche, et soit R, une relation
synchrone a gauche. Alors Ry N Ry est une relation algébrique, et on peut construire
un transducteur a pile qui la réalise dont le transducteur rationnel sous-jacent est
synchrone a gauche.

Enfin, le théoreme 8 s’étend aux monoides partiellement commutatifs libres associés
aux emboitements d’arbres et de tableaux, que nous n’abordons pas dans ce résumé.

DIV IUIN L AL INJIN 1IN P IvAIN Al

III.5 Compléments sur les approximations

Le calcul d’'intersection est tres utilisé dans le cadre de nos techniques d’analyse et
de transformation de programmes. Les relations rationnelles et algébriques ne sont pas
closes pour cette opération ; mais nous avons identifié des sous-classes qui le sont. Nous
montrons ici comment s’y ramener en appliquant des approximations conservatrices.

Plusieurs méthodes permettent d’approcher des relations rationnelles par des relations
reconnaissables. L’idée générale consiste a considérer le produit cartésien de ’entrée et de
la sortie. Des techniques plus précises consistent a effectuer cette opération pour chaque
couple d’un état initial et d’un état final, et pour chaque composante fortement connexe.
Le résultat est toujours une relation reconnaissable, grace au théoreme 2.

L’approximation par des relations synchrones a gauche est fondée sur 1’algorithme de
resynchronisation, et donc sur le théoreme 6. Lorsque 'algorithme échoue, on remplace
une composante fortement connexe par une approximation reconnaissable et on recom-
mence. Des optimisations permettent de n’appliquer qu’une seule fois l'algorithme de
resynchronisation.

L’approximation de relations algébriques — ol a plusieurs compteur — peut se faire
de deux manieres: soit on approxime la pile — ou les compteurs — par des états supplé-
mentaires, soit on approxime le transducteur rationnel sous-jacent par un transducteur
synchrone a gauche. Les deux techniques seront utilisées par la suite.

IV Analyse par instance pour programmes récursifs

Apres un certain nombre de travaux sur 'analyse par instances de programmes ré-
cursifs [CCG96, Coh97, Coh99a, Fea98, CCI8|, nous présentons une évolution majeure
avec un formalisme plus général et une automatisation complete du processus. Au dela
de 'objectif théorique d’obtenir le maximum de précision possible, nous verrons dans la
section V.5 comment ces informations permettent d’améliorer les techniques de paralléli-
sation automatique de programmes récursifs.

En partant d’exemples réels, nous discutons du calcul de variables d’induction puis
nous présentons les analyses de dépendances et de définitions visibles proprement dites.
Cette section se termine sur une comparaison avec les analyses statiques et avec les travaux
récents portant sur ’analyse par instances de nids de boucles.

IV.1 Exemples introductifs

Nous étudions deux exemples pour donner un apercu intuitif de notre analyse par
instances pour structures récursives. Un troisieme exemple est présenté dans la these,
mais il utilise une structure hybride entre arbres et tableaux dont nous ne parlons pas ici.

Premier exemple: le programme Queens

Nous considérons a nouveau la procédure Queens présentée dans la section II.3. Le
programme est reproduit sur la figure 9 avec un arbre de controle partiel.

Nous étudions les dépendances entre les instances a l’exécution des instructions. Obser-
vons par exemple 'instance FPIAAaaaaaJ(QQPIAABBr de I'instruction r, représentée par une
étoile sur la figure 9.b. La variable j est initialisée a 0 par 'instruction B et incrémentée
par l'instruction b, nous savons donc que la valeur de j en FPIAaaaaaJQQPIAaBBr est 0;

LV. AINALTYOLL ATV LINOoLAINUEL CUULLY DRV AWVIVIED IO UvoLr o

int Al[n];
P void Queens (int n, int k) {
I if (k <n) { FpP
A/afa for (int i=0; i<n; i++) {
B/s/b for (int j=0; j<k; j++) TAA
r e = e A[J] S
J if (---) A J/J/)J
s Alk] = .-+,
’ P
Q Queens (n, k+1); S Q
} FPIAAJs
} FPIAaaaJs TA A
} FPIAAaAaads
} écrivent A[0] J [\ BB
int main () { g
F Queens (n, O); FPIAA(]/AU,AJQPIAABBT llt A[O]

}
Figure 9.b. Arbre de contréle (compressé)
Figure 9.a. Procédure Queens

................ Figure 9. La procédure Queens et un arbre de controle

donc FPIAaaaaaJQQPIAaBsr lit A[0]. Observons a présent les instances de s, représentées
par des carrés. La variable k est initialisée a 0 lors du premier appel a Queens, puis elle est
incrémentée par 'appel récursif Q. Les instances FPIAaJs, FPIAaaaJs et FPIAaasaals
écrivent donc dans A[0], et sont ainsi en dépendance avecFPIAAaasaaJ(QQPIAABBr.

Laquelle de ces définitions atteint elle FPIAsaaaaJQPIAaBBr? En observant la fi-
gure a nouveau, on remarque que l'instance FPIAAasaaJs — le carré noir — s’exé-
cute en dernier. De plus, on peut assurer que cette instance est exécutée lorsque la
lecture FPIAaaraaJQPIAABBr s’exécute. Les autres écritures sont donc écrasées par
FPIAAasaaJs qui est ainsi la définition visible de FPIAaaraaJQPIAABBr. Nous montre-
rons ultérieurement comment généraliser cette approche intuitive.

Deuxiéme exemple: le programme BST

Considérons a présent la procédure BST de la figure 10. Cette procédure échange les
valeurs des nceuds pour convertir un arbre binaire en arbre binaire de recherche, ou binary
search tree. Les nceuds de I'arbre sont référencés par des pointeurs, et p->value contient
la valeur entiere du nceud. Il y a peu de dépendances sur ce programme: les seules sont
des anti-dépendances entre certaines instances d’instructions a l'intérieur des blocs I; ou
I,. Par conséquent, ’analyse de définition visible donne un résultat tres simple: la seule
définition visible de tout acces en lecture est L.

IV.2 Relier instances et cellules mémoire

On a définit dans la section 11.4 la notion de fonction d’acces. Celle-ci relie les acces
aux cellules mémoire qu’ils lisent ou écrivent. Nous avons désormais besoin d’expliciter ces
fonctions, et nous introduisons pour cela la notion de variable d’induction. En présence de

DIV IUIN L AL INJIN 1IN P IvAIN Al

P void BST (tree *p) {
I, if (p->1!'=NULL) {

L BST (p—>1);
I, if (p->value <p->1->value) {
a t = p->value;

p—>value = p->1->value;
p—>1->value = t;

}
3
Jy if (p->r!'=NULL) {
R BST (p->1);
Jy if (p->value >p->r->value) {
d t = p->value;
e p->value = p->r->value;
f p->r->value = t;
}
}
3

int main () {
F if (root!=NULL) BST (root);

procédures récursives, cette notion historiquement liée aux nids de boucles [Wol92| doit
étre redéfinie. Pour simplifier I’exposition, nous supposons que chaque variable possede
un nom distinctif unique ; on pourra ainsi parler sans ambiguité de « la variable i ». Notre
définition des variables d’induction est la suivante :

— les arguments entiers d’une fonction qui sont initialisés par une constante ou par
une variable entiere d’induction plus une constante, a chaque appel récursif;

— les compteurs de boucle entiers translatés d’une constante a chaque itération ;

— les arguments de type pointeur qui sont initialisés par une constante ou par une
variable d’induction de type pointeur éventuellement déréférencée.

L’analyse requiert un certain nombre d’hypotheéses supplémentaires sur le modele de
programme de la section I1.2: les structures de données analysées doivent étre déclarées
globales ; les indices de tableaux doivent étre des fonctions affines des variables dinduction
entieres et de constantes symboliques; et les acces aux arbres doivent déréférencer une
variable dinduction de type pointeur ou une constante.

Préalablement a I'analyse de dépendances, nous devons calculer les fonctions d’acces
afin de décrire les conflits éventuels. Soit o une instruction et w une instance de «. La
valeur de la variable i a I'instance w est définie comme la valeur de i immédiatement apres
exécution de l'instance w de U'instruction . Cette valeur est notée [i](w).

En général, la valeur d’une variable en un mot de controle donné dépend de I'exécution.
Pourtant, grace aux restrictions que nous avons imposées au modele de programme, les

LV. AINALTYOLL ATV LINOoLAINUEL CUULLY DRV AWVIVIED IO UvoLr o I

variables d’induction sont completement déterminées par les mots de controle. On montre
que pour deux exécutions différentes e et ¢, les valeurs de deux variables d’induction
sont identiques sur en un mot de controle donné. Les fonctions d’acces pour différentes
exécutions coincident donc, et nous considérerons donc par la suite une fonction d’acces
f indépendante de ’exécution.

Le résultat suivant montre que les variables d’induction sont décrites par des équations
récurrentes

Lemme 2 On considere le monoide (M4, ®) qui abstrait la structure de données consi-
dérée, une instruction «, et une variable d’induction i. L’effet de l'instruction « sur
la valeur de i est décrit par I'une des équations suivantes :

ou bien 33 € Mpsa, j € INDUC : Vua € Leggy, ¢ [1](ua) = [j](u) o 5
ou alors 30 € Mpara : Vua € Loy, ¢ [1](ua) = 3

ol INDUC est I’ensemble des variables d’induction du programme, y compris 1.

Le résultat sur la procédure Queens est le suivant. On ne s’intéresse qu’aux variables
inductives i et k, seules utiles pour ’analyse de dépendances.

De l’appel principal F': [ARG(Queens,2)](F) =0
De la procédure P: YuP € Loy, : [k](uP) = [ARG(Queens, 2)](u)
De lappel récursif Q): Yu@ € Loy, : [ARG(Queens, 2)](u@Q) = [k](u) + 1
De l'entrée de boucle B: VuB € Loy, : [j](uB) =0
De l'itération de boucle b: Vub € Loy, ¢ [j](ub) = [j](u) + 1

ARG(proc, num) représente le num® argument effectif d’une procédure proc, et toutes
les autres instructions laissent les variables inchangées.

On a concu un algorithme pour construire automatiquement un tel systeme décrivant
I’évolution des variables d’induction dans un programme. Combiné avec le résultat suivant,
cet algorithme permet de construire automatiquement la fonction d’acces.

Théoreme 9 La fonction d’acces f — qui associe chaque acces possible dans A a la

cellule mémoire qu'il lit ou écrit — est une fonction rationnelle de XY, . dans M ,p,.

Le résultat pour le programme Queens est le suivant :

{(ur|f(ur,A[31))} = (FPIAA|0)-((JQPIAA|0)+(aA|0))*-(BB|0)-(bB|1)*-(r|0)
{(us|f(us,Alk]))} = (FPIAa|0)- ((JQPIAA|L)+ (aa|0))” - (Js|0)

On a appliqué la méme technique au programme BST :

Va € {I,a,b} :

{(ucr| f(uer,p->value))} = (FPle)- (ILiLP|l)+ (JiRP|r))" - (I [,ale)
Va € {I5,b,c} :

{(uer| f(uer, p->1->value))} = (FPle)- ((ILLP|l) + (JiRP|r))" - (I, all)
Va € {Jy,d, e} :

{(ua|f(ua,p->value))} = (FPle)- (LLP|)+ (JLiRP|r))" - (Ji]ale)
Va € {Js,e, [}

{(uar| f(uer,p->r->value))} = (FPle)- ((LLLP|l)+ (JiRP|r))" - (JiJoclr)

DIV IUIN L AL INJIN 1IN P IvAIN Al

IV.3 Analyse de dépendances et de définitions visibles

A Taide des fonctions d’acces, notre premier objectif consiste a calculer la relation
entre les acces conflictuels a la mémoire. Nous ne pouvons pas espérer un résultat exact
en général, mais on peut profiter du fait que la fonction d’acces f ne dépend pas de
I’exécution. La relation de conflit approchée que nous calculons est la suivante :

Vi, € Lomy © ukv <5 v € FHf).

D’aprés le théoreme de Elgot et Mezei (section III.2) et le théoreme 8, la composition
de f~! et de f est soit une transduction rationnelle soit une transduction i plusieurs
compteurs. Le nombre de compteurs correspond a la dimension du tableau accédé, et on
peut se ramener a un seul compteur par une approximation conservatrice.

On remarque que tester la vacuité de x est équivalent a [’analyse d’alias entre pointeurs
[Deu94, Ste96], et la vacuité d’une relation rationnelle ou algébrique est décidable.

Pour établir le transducteur décrivant les dépendances, on doit d’abord restreindre la
relation xk aux couples d’acces comportant au moins une écriture, puis on intersecte avec
I’ordre lexicographique. En utilisant les techniques des sections I11.3, I11.4 et IIL.5, on peut
toujours calculer une approximation conservatrice ¢. Celle-ci est réalisée par un transduc-
teur a un compteur dans le cas des tableaux, et par un transducteur rationnel dans le cas
des arbres. De plus, grace a la proposition 1, l'intersection avec l'ordre lexicographique
n’est pas approximative dans le cas des tableaux.

Si I’on cherche a calculer les définitions visibles a partir de 'information approchée sur
les dépendances, on aura beaucoup de mal a obtenir un résultat précis. Passée la premiere
étape de restriction de 6 aux seules dépendances de flot, on doit utiliser des propriétés
additionnelles sur le flot des données. La technique principale que nous utilisons est fondée
sur une propriété structurelle des programmes :

Définition 8 (ancétre) On définit ¥ yco : un sous-ensemble de Y¢yyy, constitué de toutes
les étiquettes de blocs qui ne sont pas des instructions conditionnelles ou des corps
de boucles, et de tous les appels de procédure (non gardés), c.-a-d. les blocs dont
I’exécution est inconditionnelle.

Soient r et s deux instructions dans Yqpp,, et soit u un préfixe strict d’'un mot de
controle wr € Lgpg, (une instance de r). Si v € X% est tel que uvs € Lgpy,, alors
uvs est appelé ancétre de wr.

Cette définition se comprend aisément sur un arbre de controle comme celui de la
figure 9.b page 35: le carré noir FPIAaasaaJs est un ancétre de FPIAaasaaJQPIAABsr,
mais pas les carrés gris adjacents. Les ancéetres ont les deux propriétés suivantes :

1. T'exécution de wr implique celle de v qui est sur le chemin de la racine au nceud wr;

2. l'exécution de u implique celle de uvs car v € X7 .-

Alinsi, si une instance s’exécute, tous ses ancétres le font également. Pour appliquer
ce résultat a I'analyse de définitions visibles, on commence par identifier les instances
dont l'exécution est garantie par la propriété des ancetres, puis on applique des regles
d’élimination de transitions sur le transducteur des dépendances de flot. On obtient un
transducteur qui réalise une approximation o des définitions visibles.

L’intégration de ces idées dans 'algorithme d’analyse de définitions visibles étant re-
lativement technique, nous en resterons la dans ce résumé.

LV. AINALTYOLL ATV LINOoLAINUEL CUULLY DRV AWVIVIED IO UvoLr o

IV.4 Les résultats de ’analyse

Revenons tout d’abord sur le cas des structures d’arbres. La fonction d’acces pour le
programme BST est un transducteur rationnel décrit par la figure 11.

Izp->1 |l J2p->r

IQP|5 J2P|6 r
Lle Jole
Go: @ 1l @i @ 1l
bp|€ bp—>1|l €p|6 6p—>r|T

... Figure 11. Transducteur rationnel pour la fonction d’acces f du programme BST ...

Le transducteur du conflit réalisant x est toujours rationnel dans le cas des arbres.
Lorsque le résultat est un transducteur synchrone a gauche, on peut calculer les dépen-
dances sans approximation, sinon une approximation de x a l'aide d’un transducteur
synchrone a gauche est nécessaire. Le résultat pour BST est décrit par la figure 12.

On retrouve sur ce résultat le fait que les dépendances se situent entre les instances des
instructions d’'un méme bloc I; ou J;. Nous verrons que ce résultat permet de paralléliser
le programme.

DIV IUIN L AL INJIN 1IN P IvAIN Al

Etudions & présent le cas des tableaux. La fonction d’acces pour le programme Queens

est décrite par un transducteur rationnel de X7, . dans M,r, = Z, donné sur la figure 13.

On utilise le théoreme 8 pour calculer un transducteur a un compteur réalisant la
relation de conflit k. Pour obtenir la relation de dépendance, on applique ’algorithme de
resynchronisation au transducteur rationnel sous-jacent (qui est reconnaissable), le calcul
est toujours exact. Le résultat pour Queens est donné par la figure 14.

€|bB,—1 6|CLA J]aa
aalaa

¢|Bp 6|J | ‘Q A
@ §e 7w
elr 5|IAA £|Q

QPIQP +1

B :

5|5 8|QP FP|FP

@) (19) =

TAale | \@Ple, +1\ Tsle, =0 elr, =0 5|IAA 5|QP
® @ @
O 7 O™ 0O

adle e|bs, —1 5|aA
......... Figure 14. Transducteur a un compteur pour les dépendances de flot

On peut désormais effectuer I'analyse de définition visibles: en utilisant des infor-
mations supplémentaires sur les instructions conditionnelles du programme Queens on
démontre que seuls des ancétres d’une instance de r peuvent étre des définitions visibles.
Cette propriété tres forte permet d’éliminer toutes les transitions qui ne menent pas a

LV. AINALTYOLL ATV LINOoLAINUEL CUULLY DRV AWVIVIED IO UvoLr o

un ancétre dans le transducteur des dépendances. Le résultat est donné par la figure 15.
On peut montrer facilement que le résultat est exact: une unique définition visible est
calculée pour chaque acces en lecture.

JQPIAA|JQPIAA,+1 | JQPIAx elbs, —1

1 R
eFQ FPIAA|FPIAA tj Js|JQPIAA tj elBs "= ¢lr,=0

atlaa elaa

IV.5 Comparaison avec d’autres analyses

Parmi les restrictions du modele de programme, certaines peuvent étre éliminées a
I’aide de transformations préalables. De surcroit, de nombreuses restrictions semblent
pouvoir étre retirées dans des versions futures de 'analyse, a ’aide d’approximation adé-
quates. Il subsiste néanmoins une restriction tres importante qui est fermement enracinée
dans notre formalisme, et nous ne voyons pas de méthode générale pour s’en passer: les
insertions et suppressions dans les arbres ne sont autorisées qu’au niveau des feuilles.

Les analyses statiques de dépendance et de définition visibles obtiennent générale-
ment des résultats similaires, qu’elles soient fondées sur 'interprétation abstraite [Cou81,
JM82, Har89, Deu94| ou d’autres formalismes d’analyse de flot de données [LRZ93, BE95,
HHN94, KSV96]. Une étude intéressante des analyses statiques utiles en parallélisation est
proposée dans [RR99]. Il est aisé de comparer notre technique avec ces analyses: aucune
ne travail au niveau des instances. Aucune n’atteint la précision nécessaire pour identifier
quelle instance de quelle instruction est en conflit, en dépendance, ou est une définition
visible possible. Ces analyses sont cependant utiles pour lever un certain nombre de res-
trictions de notre modele de programmes, et pour calculer des propriétés utiles a 'analyse
de définitions visibles par instances. Il est plus intéressant de comparer ces analyses en
matiere d’applications a la parallélisation, voir section V.5.

Comparons a présent avec les analyses par instance pour nids de boucles, par exemple
avec la FADA [BCF97, Bar98]. Sur lintersection commune de leurs modeles de pro-
grammes, le résultat général n’est pas surprenant: les résultats de la FADA sont bien
plus précis. En effet, nous n’utilisons les informations sur les instructions conditionnelles
qu’a travers des analyses externes, des approximations supplémentaires sont nécessaires
dans le cas de tableaux a plusieurs dimensions, les transducteurs rationnels et algébriques
n’ont pas un pouvoir d’expression assez élevé pour manipuler des parametres entiers (un
seul compteur peut étre décrit), et des opérations fondamentales comme l'intersection
nécessitent parfois des approximations. On peut tout de méme noter des points positifs:
I’exactitude du résultat peut étre décidée en temps polynomial sur les transducteurs ra-
tionnels ; la vacuité est toujours décidable, ce qui permet une détection automatique des
variables non initialisées ; dans le cas des arbres, les tests de dépendance s’effectuent sur
des langages rationnels de mots de controle, ce qui est tres utile pour la parallélisation ;

DIV IUIN L AL INJIN 1IN P IvAIN Al

enfin, dans le cas des tableaux, les tests de dépendance sont équivalents a l'intersection
d’un langage rationnel avec un langage algébrique.

V Expansion et parallélisation

Les recherches sur ’expansion de la mémoire portent principalement sur les nids de
boucles affines. Les techniques les plus courantes sont la mise en assignation unique
[Feadl, GC95, Col98|, la privatisation [MAL93, TP93, Cre96, Li92] et de nombreuses
optimisations pour la gestion efficace de la mémoire [LF98, CFH95, CDRV97, QR99].
Lorsque le flot de controle n’est pas prévisible a la compilation ou lorsque les index de
tableaux ne sont pas affines, le probleme de la restauration du flot des données devient
capital, et les convergences d'intérét avec le formalisme SSA (static single-assignment)
[CFR™91] sont tres nettes. En partant d’exemples simples, nous étudions les problémes
spécifiques aux nids de boucles non affines, et proposons des algorithmes de mise en assi-
gnation unique. De nouvelles techniques d’expansion et d’optimisation de ’occupation en
mémoire sont ensuite proposées pour la parallélisation automatique de codes irréguliers.

Les principes du calcul parallele en présence de procédures récursives sont tres diffé-
rents de ceux des nids de boucles, et les méthodes de parallélisation existantes se fondent
généralement sur des tests de dépendance au niveau des instructions, alors que notre ana-
lyse décrit la relation de dépendance au niveau des instances! Nous montrons que cette
information tres précise permet d’améliorer notablement les techniques classiques de pa-
rallélisation. Nous étudions aussi la possibilité d’expanser la mémoire dans les programmes
récursifs, et cette étude se termine par des résultats expérimentaux.

V.1 Motivations et compromis

La mise en assignation unique ou single-assignment form conversion (SA) est l'une
des méthodes d’expansion les plus classiques. elle correspond au cas extréme ou chaque
cellule mémoire est écrite au plus une fois au cours de 'exécution. Elle differe donc de
la mise en assignation unique statique (SSA) [CFR*91, KS98], ol expansion se limite &
des renommages de variables.

L’idée consiste a remplacer chaque assignation d’une structure de données D par une
assignation a une nouvelle structure Dyyp dont les éléments sont du meéme type que ceux
de D, et sont en bijection avec I’ensemble W de tous les acces en écriture possibles au
cours de I'exécution. Dans une deuxieme étape, les références en lecture doivent étre mises
a jour en conséquence: c’est ce que 'on appelle la restauration du flot des données. On
utilise pour cela les définitions visibles par instances: pour une exécution donnée ¢ € E,
la référence a D en lecture (2, ref) doit étre remplacée par un acces a 1'élément de Dyyp
associé a o, ((1,ref)). Puisque I'on ne dispose que d'une approximation o des définitions
visibles, cette technique n’est applicable que lorsque o ({1, ref)) est un singleton. Si ce
n’est pas le cas, on doit générer un code de restauration dynamique du flot des données.
Ce code est généralement représenté par une fonction ¢, dont I’argument est l’ensemble
o ((1,ref)) des définitions visibles possibles.

Pour générer le code de restauration dynamique associé aux fonctions ¢, on utilise une
structure de données supplémentaire en bijection avec Dyyp : cette structure est notée &Dyyp.
On doit mémoriser deux informations dans ®Dyyp : 'adresse de la cellule mémoire écrite
dans le programme d’origine et l'identité de la derniere instance qui a écrit une valeur
dans cette cellule. Comme le programme est en assignation unique, l'instance est déja

Vo LA AINOLUIN 1v1 FARAL 0L IULN

décrite par I’élément de Dgyp lui méme: ¢Dyyp doit donc contenir des adresses de cellules
mémoire. L'utilisation de cette structure est la suivante: on initialise Dyyp a NULL ; puis
a chaque assignation de Dpyxp on écrit dans @Dy, ’adresse de la cellule mémoire écrite
dans le programme d’origine ; enfin une référence ¢(set) est implémentée par un calcul de
maximum — selon 'ordre séquentiel — de tous les 1+ € set tels que ®Dgy, [2] soit égal a
I’adresse de la cellule mémoire lue dans le programme d’origine.

L’analyse de définitions visibles par instances est a la base de la restauration du flot
des données [Col98]: des résultats précis permettent non seulement de réduire le nombre
de fonctions ¢, mais également de simplifier les arguments de celles-ci, et donc d’optimiser
les calculs de maximum au cours de I'exécution. On remarquera également que le calcul
de o a l'exécution peut lui méme se révéler couteux, méme en ’absence de fonction ¢.
Dans le cas des nids de boucles, le surcott n’est pourtant diu qu’a l'implémentation du
quast associé a o ; des techniques de parcours de polyedre [AI91] permettent d’optimiser le
code généré. L’exemple de la figure 16 illustre ces remarques. Dans le cas des programmes
récursifs, nous verrons que le probleme du calcul de o est plus délicat.

double A[N], Ap, Ag[N, N], Agp[N, NI;
TAT = 0;
for (i=0; i<N; i++)
for (3=0; j<N; j+) { o Ei=03]J<N; i 1
S A[i+§] = ---; sti,] SR o
ROAGD - Aliej-1] --o; o ArlL 31 = o(UDPULS 77 -
} ’ (7,5) <uex (1,3)}) -+
}

double A[N];
T A[0] = 0;
for (i=0; i<N; i++)

Figure 16.a. Programme d'origine Figure 16.b. SA sans analyse de définitions visibles

double A[N], Ag;

double A[NI, Ar; double Ag[N, N1, Ap[N, N];

double Ag[N, NI, Ap[N, NI;

Ap = 0;
TAT—(:'), ' . Ag[1, 1] = -+
for (i=0; i<N; i++) Apll, 11 = Ap --v
for (j=0; j<N; j++) { for Ei=0; i<N; i+;) {
S Agli, j1 = .- Agli, 1] = -~
R Apli, j1 = if (§j==0) Apli, 11 = Agli-1, 11 ---;
if (1==0? Ar _ for (j=0; j<N; j++) {
else Agl[i-1, jl Agli, §1 = -+
else Agli, j-il Apli, 31 = Agli, j-11 --+;
e }
¥ }

Figure 16.c. SA avec une analyse précise des

Figure 16.d. Analyse précise et « éplu-
définitions visibles g yse p D

chage » de la boucle

Figure 16. Interactions entre I’analyse de définitions visibles et le surcott a I’exécution

L’implémentation réelle de ces techniques dépend des structures de controle et de

DIV IUIN L AL INJIN 1IN P IvAIN Al

données. Dans le cas des boucles et des tableaux, nous proposons des algorithmes de
mise en assignation unique qui étendent les résultats existants a des nids quelconques. La
mise en assignation unique de programmes récursifs est un domaine nouveau que nous
étudierons dans la section V.5.

Nous avons également développé trois techniques pour optimiser le calcul des fonctions
¢. La premiere applique des optimisations simples sur les structures ¢Duyp ; la deuxieme
réduit les ensembles de définitions visibles possibles (les arguments des fonctions ¢) a
I’aide d'une nouvelle information sur le flot des données appelée définitions visible d’une
cellule mémorire; et la troisieme élimine les redondances dans le calcul du maximum
en effectuant les calculs au fur et a mesure. Cette derniere technique ne génere pas a
proprement parler un programme en assignation unique, ce qui peut parfois nuire a son
utilisation en parallélisation automatique. Avec une vision différente de 1’expansion (pas
nécessairement en assignation unique), la section V.4 propose une version améliorée de la
méthode d’élimination des redondances (appelée aussi « placement optimisé des fonctions
¢ ») qui ne nuit pas a la parallélisation.

V.2 Expansion statique maximale

Le but de I'expansion statique mazimale est d’expanser la mémoire le plus possible —
et donc d’éliminer le maximum de dépendances — sans recourir a des fonctions ¢ pour
restaurer le flot des données.

Considérons deux écritures v et w appartenant a l’ensemble des définitions visibles
possibles d'une lecture u, et supposons qu’elles affectent la méme cellule mémoire. Si v
et w écrivent dans deux cellules mémoire différentes apres expansion, une fonction ¢ sera
nécessaire pour choisir laquelle des deux écritures définit la valeur lue par u. On introduit
donc la relation R entre les écritures qui sont des définitions visibles possibles pour la
méme lecture:

Vo,we W: vRw <= JueR:vouwou.

Lorsque deux définitions visibles possibles pour la méme lecture écrivent la méme cellule
mémoire dans le programme d’origine, elles doivent faire de méme dans le programme
expansé. Puisque « écrire dans la meéme cellule mémoire » est une relation d’équivalence,
on considere en fait la cloture transitive R* de la relation 9R. En se limitant a des fonctions
d’acces expansées fE* de la forme (f,,), ou v est une certaine fonction sur les acces en
écriture, on montre le résultat suivant :

Proposition 3 Une fonction d’acces fP** = (f.,v) est une expansion statique maximale
pour toute exécution e ssi

Vo, w € W, fo(v) = fe(w): vR w <= v(v) =v(w).

A partir de ce résultat, on peut calculer une fonction v en énumérant les classes d’équi-
valence d’une certaine relation. Le formalisme est donc tres général, mais ’algorithme que
nous proposons est limité aux nids de boucles quelconques sur tableaux. Un certain nombre
de points techniques — notamment la cloture transitive de relations affines — requierent
une attention particuliere, mais ceux-ci ne sont pas traités dans ce résumé en francais.

Dans le cas général, la mise en assignation unique expose plus de parallélisme que
I’expansion statique, il s’agit donc d’'un compromis entre surcout a l'exécution et paral-
lélisme extrait. Nous présentons également trois exemples, sur lesquels nous appliquons
semi-automatiquement (avec Omega [Pug92]) I’algorithme d’expansion. Toutefois, un seul
exemple est étudié dans ce résumé, voir section V.4.

AL AINOLIUIN 14 FANALI oA L IULN

V.3 Optimisation de ’occupation en mémoire

Nous présentons maintenant une technique pour réduire I’occupation en mémoire d’un
programme expansé sans perte de parallélisme. Nous supposons ainsi quun ordre d’exé-
cution parallele <p,; a déja été déterminé pour le programme d’origine (<spq, fe) —
probablement a partir de la relation approchée des définitions visibles . Il est intéres-
sant de noter que cet ordre parallele peut étre obtenu par n’importe quelle technique —
ordonnancement ou partitionnement par exemple — tant que le résultat peut étre décrit
par une relation affine.

Moyennant un calcul de cloture transitive, il est méme possible de partir de 'ordre
« data-flow », c’est a dire 'ordre « le plus parallele possible » d’apres la relation de
définitions visibles. On obtient alors un programme expansé qui requiert (généralement)
moins de mémoire que la forme en assignation unique, mais qui est compatible avec
n’importe quelle exécution parallele légale.

Notre premiere tache pour formaliser le probleme consiste a déterminer quelles sont les
expansions correctes vis a vis de cet ordre parallele, c.-a-d. quelles sont les fonctions d’acces
expansées [qui garantissent que l'ordre d’exécution parallele préserve la sémantique
du programme d’origine. En utilisant la notation

Yo,we W : vaw 24
(EiuGR:vau/\w{PARv/\uﬁpARw/\(u<SEQwVw<SEQUva€w))
Y, (EiuGR:wou/\v{PARw/\uﬁpARv/\(u<SEQUVv<SEQwVwKU)),

nous avons montré le résultat suivant :

Théoréme 10 (correction des fonctions d’acces) Si la condition suivante est rem-
plie, 'expansion est correcte, c’est a dire qu’elle garantit que 'ordre d’exécution pa-
rallele préserve la sémantique du programme d’origine.

Ve e E.Vo,w e W, : ovxw = f%(v) # . (w).

Intuitivement, une définition visible v d'une lecture u et une autre écriture w doivent
écrire dans des cellules mémoires distinctes lorsque: w s’exécute entre v et u dans le
programme paralléele, et soit w ne s’exécute pas entre v et u soit w assigne une autre
cellule mémoire que v dans le programme d’origine. De plus, nous avons montré que ce
critere de correction est optimal, pour une approximation donnée des définitions visibles
et de la fonction d’acces du programme d’origine.

A laide de ce critere, la génération du code expansé requiert la coloration d’un graphe
non borné décrit par une relation affine. La méthode est la méme que dans le cas des nids
de boucles affines, elle est détaillée en francais dans la these de Lefebvre [Lef98].

V.4 Expansion optimisée sous contrainte

Nous montrons a présent qu’il est possible de combiner les deux techniques d’expansion
précédentes, et nous proposons un cadre général pour optimiser simultanément le surcofit
de ’expansion et le parallélisme extrait : I’ expansion contrainte optimisée. Le formalisme et
les algorithmes sont trop techniques pour faire partie de ce résumé, nous nous contenterons
donc de donner un exemple illustrant I’expansion contrainte — qui généralise I’expansion
statique — combinée avec 1’optimisation de I’occupation en mémoire.

DIV IUIN L AL INJIN 1IN P IvAIN Al

double xp[M+1, M+1], xg[M+1, M+1, N+1];
parallel for (i=1; i<=M; i++) {
parallel for (j=1; j<=M; j++)
if (P(i,7)) {

double x;
for (i=1; i<=M; i++) {
for (j=1; j<=M; j++)
if (P(i,5)) {

T xpli, jl1 = 0;
T x = 0;
’_) o for (k:l; k<=N; k++)

for Ek_l, k<_N: k++) S XS[i’ j, k] = if (k==1) XT[i, J];

S X =X > i j
) else xg[i, j, k-11 ---;

B }

. } o ’ R =¢({<571717N>7"'7<SaiaM7N>})'”;

3

Figure 17.a. Programme d'origine Figure 17.b. Mise en assignation unique

........................ Figure 17. Exemple de parallélisation

Nous étudions le pseudo-code de la figure 17.a. Nous supposons que N est strictement
positif et que le prédicat P(i,j) est vrai au moins une fois pour chaque itération de la
boucle externe. Les dépendances sur x interdisent toute exécution parallele, on transforme
donc le programme en assignation unique. Le résultat de I’analyse de définitions visibles
est exact pour les instances de S, mais pas pour celles de R: une fonction ¢ est nécessaire.
Les deux boucles externes deviennent alors paralleles, comme le montre la figure 17.b.

En raison de cette fonction ¢ et de 'utilisation d’un tableau a trois dimensions, on
observe que ’exécution en parallele de ce programme est environ cinq fois plus lente que
I'exécution séquentielle (sur SGI Origin 2000 avec 32 processeurs). Il est donc nécessaire
de réduire 'occupation en mémoire. L’application de I'algorithme de la section V.3 montre
que ’expansion selon la boucle la plus interne n’est pas nécessaire, pas plus que le renom-
mage de x en xg et xy. On obtient le code de la figure 18.a. On a implémenté la fonction
¢ avec une technique optimisée de calcul a la volée (voir section V.1) et le calcul du max
cache une synchronisation. Les performances sont donc correctes pour un petit nombre
de processeurs, mais se dégradent tres rapidement au dela de quatre.

L’application de I'algorithme d’expansion statique maximale permet de se débarrasser
de la fonction ¢, en interdisant I’expansion selon la boucle intermédiaire, voir figure 18.b;
seule la boucle externe reste parallele. Le programme paralléle sur un processeur est en-
viron deux fois plus lent que le programme séquentiel (probablement en raison des acces
au tableau & deux dimensions), mais l'accélération est excellente. On observe que la va-
riable x a été a nouveau expansée selon la boucle interne, bien que cela n’apporte aucun
parallélisme supplémentaire : il est donc nécessaire de combiner les deux techniques d’ex-
pansion. Le résultat est tres proche de I’expansion statique maximale avec une dimension
de moins pour le tableau x: x[i] au lieu de x[i, ---]. Bien entendu, les performances
sont excellentes: 'accélération est de 31,5 sur 32 processeurs (M = 64 et N = 2048).

V.5 Parallélisation de programmes récursifs

Des techniques de parallélisation automatique pour programmes récursifs commencent
a voir le jour, grace aux environnements et aux outils — comme Cilk [MF98] — facilitant
I'implémentation efficace de programmes a parallélisme de controle [RR99]. Nous propo-
sons une technique de mise en assignation unique et une technique de privatisation pour

AL AINOLIUIN 14 FANALI oA L IULN x i

double x[M+1, M+1];
int Ox[M+1];
parallel for (i=1; i<=M; i++) {

ox[i] = L;
parallel for (j=1; j<=M; j++) double x[M+1, N+1];
if (P(i,5)) { parallel for (i=1; i<=M; i++) {
T x[i, j1 = 0; for (j=1; j<=M; j++)
for (k=1; k<=N; k++) if (P(Z,j)) {
S x[i, j1 = x[i, j1 ---; T x[i, 0] = 0;
O0x[i] = max (Ox[i]l, j); for (k=1; k<=N; k++)
} S x[i, k] = x[i, k-1] ---;
R --- = x[i, ex[i]] ---; }
} R «oo =x[i, N] -+
}
Figure 18.a. Optimisation de I'occu-
pation en mémoire Figure 18.b. Expansion statique maximale

...................... Figure 18. Deux parallélisations différentes

programme récursifs, puis nous présentons deux méthodes de génération de code parallele.

Expansion de programmes récursifs

Dans un programme récursif en assignation unique, les structures expansées ont géné-
ralement une structure d’arbre : ses élément sont en bijection avec les mots de controle.
L’allocation dynamique et ’acces a ces structures est donc plus délicat que dans le cas des
nids de boucles. L’idée générale est de construire chaque structure expansée Dyy, « a la
volée », en propageant un pointeur sur le nceud courant. L’acces direct a Dgyp est toutefois
nécessaire pour la mise a jour des références en lecture: on doit tout d’abord calculer les
définitions visibles possibles a 1’aide du transducteur fourni par l'analyse, puis retrouver
les cellules mémoire associées dans Dyyp. Méme en ’absence de fonction ¢, la restauration
du flot des données risque donc d’étre tres cotteuse.

Si les définitions visibles sont connues exactement, o peut étre vue comme une fonc-
tion partielle de R dans W. Lorsque cette fonction peut étre calculée « a la volée », il
est possible de générer un code efficace pour les références en lecture du programme ex-
pansé : il suffit d’implémenter le calcul pas a pas du transducteur. C’est notamment le cas
pour les transducteurs sous-séquentiels (voir section I11.2), lorsque le programme récursif
manipule une structure d’arbre. En présence de tableaux, il est plus difficile de savoir si
le transducteur a un compteur des définitions visibles est calculable « a la volée ». Nous
avons toutefois proposé un algorithme de mise en assignation unique pour programmes
récursif, incluant le calcul a la volée des définitions visibles lorsque cela est possible.

Nous avons étendu la notion de privatisation aux programmes récursifs : elle consiste
a transformer les structures de données globales en variables locales. Dans le cas général,
une copie des données doit étre effectuée lors de chaque appel et de chaque retour d'une
procédure. Ceci peut se révéler cotteux lors de la copie des structures locales dans les
structures de la procédure appelante (le copy-out), notamment a cause des synchronisa-
tions inévitables en cas d’exécution parallele. Toutefois, lorsque les définitions visibles sont
obligatoirement des ancétres, seule la premiere phase de copie (le copy-in) est nécessaire;

DIV IUIN L AL INJIN 1IN P IvAIN Al

c’est le cas du programme Queens, de la plupart des algorithmes de tri, et plus générale-
ment des schémas d’exécution du type diviser pour régner ou programmation dynamique.
Nous proposons donc un algorithme de privatisation pour programme récursifs, ou les
fonctions ¢ sont remplacées par des copies de structures de données.

Génération de code parallele

int A[n];
P void Queens (int A[n], int n, int k) {
int B[n];
memcpy (B, A, k * sizeof (int));
I if (k <n) {
Ala for (int i=0; i<n; i++) {
B/b for (int j=0; j<k; j++) {
T = ... B[j] -+
}
J if (o) { »
S Blk] = ---; ~ | OptirrHaI —I '
Q spawn Queens (B, n, k+1); % 16 s 1 3Queense ———————————— ——————————— -
} S | | | |
} T
+ o
int main () { %
a Queens (A, n, 0); 5’-). B
} 05 i i i i
1 2 4 8 16 32
Processors

........... Figure 19. Privatisation et parallélisation du programme Queens

Nous montrons que les propriétés de décidabilité des transducteurs rationnels et al-
gébriques permettent de réaliser des tests de dépendance efficaces. On en déduit un al-
gorithme de parallélisation au niveau des instructions qui permet d’exécuter certaines
instructions de maniere asynchrone et qui introduit des synchronisations lorsque les dé-
pendances l'exigent. Cet algorithme est appliqué au programme BST, ainsi qu’au pro-
gramme Queensapres privatisation, voir figure 19. L’expérimentation a été faite sur une
SGI Origin 2000 pour n = 13. Le ralentissement sur un processeur est dii aux copies de
tableaux, et dans une moindre mesure a 'ordonnanceur de Cilk [MF98].

Nous montrons également que notre algorithme de parallélisation donne de meilleurs
résultats que les techniques existantes, lorsque la découverte de parallélisme nécessite une
information au niveau des instances. Enfin, nous étudions la parallélisation par instances
de programmes récursifs, ot les synchronisations sont gardées par les conditions précises
— sur le mot de controle — pour lesquelles une dépendance est possible. L’algorithme
que nous proposons exploite pleinement le résultat de 'analyse de dépendances par ins-
tances, et la possibilité de tester efficacement si un couple de mots est reconnu par un
transducteur. Un exemple concret permet de valider cette nouvelle technique.

vi. UUINULUOLUILN

VI Conclusion

Cette these se conclut par une récapitulation des principaux résultats, suivie d'une

discussion sur les développements a venir.

VI.1 Contributions

Nos contributions se répartissent en quatre catégories fortement interdépendantes. Les
trois premieres concernent la parallélisation automatique et sont résumées dans le tableau
suivant ; la quatrieme catégorie concerne les transductions rationnelles et algébriques.

NIDS AFFINES
SUR TABLEAUX

NIDS GENERAUX
SUR TABLEAUX

PROGRAMMES RECURSIFS
SUR ARBRES ET TABLEAUX

ANALYSE DE DEPENDANCES
PAR INSTANCES

[Bra88, Bangg]
[Fea88a, Feadl, Pug92]

[BCF97, Bar98]
[WP95, Won05]

[Fea98] !, section IV,
publié dans [CC98] 2

ANALYSE DE DEFINITIONS
VISIBLES PAR INSTANCES

[Fea88a, Feadl, Pug92]
[MAL93]

[CBF95, BCF97, Bar9g]
[WP95, Won95]

section IV,
publié dans [CC98] 2

MISE EN
ASSIGNATION UNIQUE

[Fea88a, Feadl]

[Col9g],
sections V.1 et V.4

section V.5

EXPANSION
STATIQUE MAXIMALE

sections V.2 et V.4,
publié dans [BCC98, Coh99b, BCCO0)

probléme ouvert

OPTIMISATION DE
L’OCCUPATION MEMOIRE

[LF98, Lefos]
[SCFS98, CDRV97]

sections V.3 et V.4,
publié dans [CL99, Coh99b]

probléme ouvert

PARALLELISATION section V.5

PAR INSTANCES

[Fea92, CFH95]
[DV9I7]

[GC95, CBF95]
[Col95b)

A présent, passons en revue chaque contribution.

Structures de controle et de données: au dela du modele polyédrique Dans la
section II, nous avons défini un modele de programmes et des abstractions mathématiques
pour les instances d’instructions et les éléments de structures de données. Ce cadre général
a été utilisé tout au long de ce travail pour formaliser la présentation de nos techniques,
en particulier dans le cas des structures récursives.

De nouvelles analyses de dépendances et de de définitions visibles ont été propo-
sées dans la section IV. Elles utilisent un formalisme de la théorie des langages formels,
plus précisément des transductions rationnelles et algébriques. Une nouvelle définition
des variables d’induction adaptée aux programmes récursifs a permis de décrire l'effet de
chaque instance a l’aide d’une transduction rationnelle ou algébrique. Une comparaison
avec d’autres analyses conclut ce travail.

En revanche, lorsque nous avons concu des algorithmes pour les nids de boucles sur
tableaux — un cas particulier de notre modele — nous sommes restés fideles aux vecteurs

1.1l s’agit d’un test de dépendances pour les arbres uniquement.
2. Pour les tableauxr uniquement.

DIV IUIN L AL INJIN 1IN P IvAIN Al

d’itération et nous avons profité de la quantité d’algorithmes permettant la manipulation
de relations affines dans ’arithmétique de Presburger.

Expansion de la mémoire : de nouvelles techniques pour résoudre de nouveaux
problemes L’application de I’expansion de la mémoire a la parallélisation est une tech-
nique ancienne, mais les analyses de définitions visibles par instances se sont récemment
étendues aux programmes avec des expressions conditionnelles, avec des références com-
plexes aux structures de données — par exemple des index de tableaux non affines — ou
avec des appels récursifs, et cela pose de nouvelles questions. La premiere est de garantir
que les acces en lecture dans le programme expansé réferent la bonne cellule mémoire ; la
deuxieme question réside dans I’adéquation des techniques d’expansion avec les nouveaux
modeles de programmes.

Les deux questions sont traitées dans les sections V.1, V.2, V.3 et V.4, dans pour
les nids de boucles (sans restrictions) sur tableaux. Nous avons présenté une nouvelle
technique pour réduire le surcotut de ’expansion a 1’exécution, et nous avons étendu aux
nids de boucles sans restrictions une méthode de réduction de ’occupation en mémoire.
La combinaison des deux a été étudiée et nous avons congu des algorithmes pour optimiser
la restauration du flot des données a I'exécution. Quelques résultats expérimentaux sont
présentés pour une architecture a mémoire partagée.

L’expansion de la mémoire pour programmes récursifs est un domaine de recherche
totalement nouveau, et nous avons découvert que l’abstraction mathématique pour les
définitions visibles — les transductions rationnelles ou algébriques — peuvent engendrer
des surcotits importants. Nous avons néanmoins développé des algorithmes qui expansent
des programmes récursifs particuliers avec un faible surcout a l’exécution.

Parallélisme: extension des techniques classiques Notre analyse de dépendance
a été mise a profit pour paralléliser des programmes récursifs. Nous avons pu démontrer
les applications pratiques des transductions rationnelles et algébriques, en utilisant leurs
propriétés décidables. Notre premier algorithme ressemble aux méthodes existantes, mais
il profite de I'information plus précise recueillie par I'analyse et on obtient en général
de meilleurs résultats. Un autre algorithme permet la parallélisation par instances de
programmes récursifs: cette nouvelle technique est rendue possible par 1'utilisation des
transductions rationnelles et algébriques. Quelques résultats expérimentaux sont décrits,
en combinant expansion et parallélisation sur un programme récursif bien connu.

Théorie des langages formels: quelques contributions et des applications Les
derniers résultats de ce travail n’appartiennent pas au domaine de la compilation. Ils se
trouvent principalement dans la section III.3 ainsi que dans les sections suivantes. Nous
avons défini une sous-classe des transductions rationnelles qui admet une structure d’al-
gebre booléene et de nombreuses autres propriétés intéressantes. Nous avons montré que
cette classe n’est pas décidable parmi les transductions rationnelles, mais des techniques
d’approximation conservatrices permettent de bénéficier de ces propriétés dans la classe
des transductions rationnelles tout entiere. Nous avons également présenté quelques nou-
veaux résultats sur la composition de transductions rationnelles sur des monoides non
libres, avant d’étudier I’approximation de transductions algébriques.

vi. UUINULUOLUILN

V1.2 Perspectives

De nombreuses questions se sont posées tout au long de cette these, et nos résultats
suggerent plus de recherches intéressantes qu’ils ne résolvent de problemes. Nous com-
mencons par aborder les questions liées aux programmes récursifs, puis nous discutons
des travaux futurs dans le modele polyédrique.

En premier lieu, la recherche d’une abstraction mathématique capable de décrire des
propriétés au niveau des instances apparait de nouveau comme un enjeu capital. Les
transductions rationnelles et algébriques ont souvent donné de bons résultats, mais leur
expressivité limitée a également restreint leur champ d’application. C’est 'analyse de
définitions visibles qui en a le plus souffert, ainsi que l'intégration des expressions condi-
tionnelles et des bornes de boucles dans ’analyse de dépendances. Dans ces conditions,
nous aurions besoin de plus d’un compteur dans les transducteurs, tout en conservant la
possibilité de savoir si un ensemble est vide et de décider d’autres propriétés intéressantes.
Nous sommes donc fortement intéressés par les travaux de Comon et Jurski [CJ98| sur
la décision de la vacuité dans une sous-classe des langages a plusieurs compteurs, et plus
généralement nous voudrions suivre de plus pres les études sur la vérification de systemes
fondées sur des classes restreintes de machines de Minsky, comme les automates tempori-
sés. L’utilisation de plusieurs compteurs permettrait en plus d’étendre l'une des grandes
idées de I'analyse floue de flot des données [CBF95]: 'insertion de nouveaux parametres
pour améliorer la précision en décrivant les propriétés des expressions non affines.

De plus, nous pensons que les propriétés de décidabilité ne sont pas forcément le point
le plus important pour le choix d’une abstraction mathématique: de bonnes approxi-
mations sur les résultats sont souvent suffisantes. En particulier, nous avons découvert
en étudiant les relations synchrones a gauche et les relations déterministes qu’'une sous-
classe avec de bonnes propriétés de décision ne peut pas etre utilisée dans notre cadre
général d’analyse sans méthode efficace d’approximation. L’amélioration de nos méthodes
de resynchronisation et d’approximation de transducteurs rationnels est donc un enjeu
important. Nous espérons aussi que ceci démontre I'intérét mutuel des coopérations entre
théoriciens et chercheurs en compilation.

Au dela de ces problemes de formalisme, une autre voie de recherche consiste a dimi-
nuer autant que possible les restrictions imposées au modele de programme. Comme on I’a
proposé précédemment, la meilleure méthode consiste a rechercher une dégradation pro-
gressive des résultats a I’aide de techniques d’approximation. Cette idée a été étudiée dans
un contexte semblable [CBF95], et I'application aux programmes récursifs promet des tra-
vaux futurs intéressants. Une autre idée serait de calculer les variables d’induction a partir
des traces d’exécution (au lieu des mots de controle) — pour autoriser les modifications
dans n’importe quelle instruction — puis de déduire des informations approximatives sur
les mots de controle; I'utilisation de techniques d’interprétation abstraite [CC77| serait
probablement une aide précieuse pour prouver la correction de nos approximations.

Nous n’avons pas travaillé sur le probleme de ’ordonnancement des programmes ré-
cursifs, car nous ne connaissons aucune méthode permettant d’assigner des ensembles
d’instances a des dates d’exécution. La construction d'un transducteur rationnel des dates
aux instances est peut étre une bonne idée, mais la génération de code pour énumérer les
ensembles d’'instances devient plutot difficile. Mais ces raisons techniques ne doivent pas
cacher que l'essentiel du parallélisme dans les programmes récursifs peut d’ores et déja
etre exploité par des techniques a parallélisme de controle, et la nécessité de recourir a un
modele d’exécution a parallélisme de données n’est pas évidente.

En plus de leur incidence sur notre étude des programmes récursifs, les techniques

DIV IUIN L AL INJIN 1IN P IvAIN Al

issues du modele polyédrique recouvrent une partie importante de cette these. Un objec-
tif majeur tout au long de ces travaux a été de conserver une certaine distance avec la
représentation mathématique des relations affines. Ce point de vue a I'inconvénient de ne
pas faciliter I'écriture d’algorithmes optimisés préts a 'emploi dans un compilateur, mais
il a surtout 'avantage de présenter notre approche dans toute sa généralité. Parmi les pro-
blemes techniques qui devraient étre améliorés, tant pour I’expansion statique maximale
et pour 'optimisation de I’occupation en mémoire, les plus importants sont les suivants.

Nous avons présenté de nombreux algorithmes pour la restauration dynamique du
flot des données, mais nous avons tres peu d’expérience pratique de la parallélisation de
nids de boucles avec un flot de controle imprévisible et des index de tableaux non affines.
Comme le formalisme SSA [CFR*91] est principalement utilisé en tant que représentation
intermédiaire, les fonctions ¢ sont rarement implémentées en pratique. La génération d’un
code de restauration efficace est donc un probléeme plutot récent.

Aucun paralléliseur pour nids de boucles sans restrictions n’a jamais été écrit. Il en
résulte qu'une expérimentation de grande ampleur n’a jamais pu etre conduite. Pour appli-
quer des analyses et des transformations précises sur des programmes réels, un important
travail d’optimisation reste a conduire. Les idées principales seraient de partitionner le
code [Ber93] et d’étendre nos techniques aux graphes de dépendance hiérarchiques, aux
régions de tableaux [Cre96] ou aux ordonnancements hiérarchiques [CW99].

Un compilateur parallélisant doit étre capable de régler automatiquement un grand
nombre de parametres: le surcotit a 'exécution, ’extraction du parallélisme, 'occupation
en mémoire, le placement des calculs et des communications... Nous avons vu que le
probleme d’optimisation est encore plus complexe pour des nids de boucles non affines. Le
formalisme d’expansion contrainte permet d’optimiser simultanément un certain nombre
de parametres liés a I’expansion de la mémoire, mais il ne s’agit que d'un premier pas.

Chapter 1

Introduction

Performance increase in computer architecture technology is the combined result of several
factors: fast increase of processor frequency, broader bus widths, increased number of
functional units, increased number of processors, complex memory hierarchies to deal
with high latencies, and global increase of storage capacities. New improvements and
architectural designs are proposed every day. The result is that the machine model is
becoming less and less uniform and simple: despite the hardware support for caches,
superscalar execution and shared memory multiprocessing, tuning a given program for
performance becomes more and more complex. Good optimizations for some particular
case can lead to disastrous results with a different machine. Moreover, hardware support
is generally not sufficient when the complexity of the system becomes too high: dealing
with deep memory hierarchies, local memories, out of core computations, instruction level
parallelism and coarse grain parallelism requires additional support from the compiler
to translate raw computation power into sustained performance. The recent shift of
microprocessor technology from superscalar models to explicit instruction level parallelism
is one of the most concrete signs of this trend.

Indeed, the whole of computer architecture and compiler industry is now facing what
the high performance computing community has discovered for years. On the one hand,
and for most applications, architectures are too diverse to define practical efficiency cri-
teria and to develop specific optimizations for a particular machine. On the second hand,
programs are written in such a way that traditional optimization and parallelization tech-
niques have many problems to feed the huge computation monster everybody will have
tomorrow in his laptop.

In order to achieve high performances on modern microprocessors and parallel com-
puters, a program—or at least the algorithm it implements—must contain a significant
degree of parallelism. Even then, either the programmer and/or the compiler has to ex-
pose this parallelism and apply the necessary optimizations to adapt it to the particular
characteristics of the target machine. Moreover, the program should be portable in order
to cope with the fast obsolescence of parallel machines. The following two possibilities
are offered to the programmer to meet these requirements.

e First, explicitly parallel languages. Most of these are parallel extensions of sequen-
tial languages. This includes well known data parallel languages such as HPF, and
recent mixed data and control parallel approaches such as OpenMP extensions for
shared memory architectures. Some extensions also appear under the form of li-
braries: PVM and MPI for instance, or higher-level multi-threaded environments
such as IML from the University of Illinois [SSP99] or Cilk from the MIT [MF98].

uliAalr t1yiv 4. N1 N JIJUU L IUILN

These approaches makes the programming of high performance parallel algorithms
possible. However, besides parallel algorithmics, the programmer is also in charge
of more technical and machine-dependent operations, such as the distribution of
data on the processors depending on their memory capacities, communications and
synchronizations. This requires a deep knowledge of the target architecture and re-
duces portability. Several efforts have been done in HPF so as to make the compiler
take care of some parts of this job, but it seems that the programmer still needs to
have a precise knowledge of what the compiler does.

e Second, automatic parallelization of a high level sequential language. The obvi-
ous advantages of this approach are the portability, the simplicity of programming
and the fact that even old undocumented sequential codes may be automatically
parallelized (in theory). However the task alloted to the compiler-parallelizer is over-
whelming. Indeed, the program has first to be analyzed in order to understand—at
least partially—what is performed and where the parallelism lies. The compiler then
has to take some decisions about how to generate a parallel code which takes into
account the specificities of the target architecture. Even for short programs and a
simplified model of parallel machine, “optimality” in both steps is out of reach for
decidability reasons. As a matter of fact, a wide panel of parallelization techniques
exists, and the difficulty often lies in choosing the more appropriate.

The usual source languages for automatic parallelization is Fortran 77. Indeed,
many scientific applications have been written with Fortran, which allows only rel-
atively simple data structures (scalar and arrays) and control flow. Several studies
however deal with the parallelization of C or of functional languages such as Lisp.
These studies are less advanced than the historical approach, but also more related
with the present work: they handle programs with general control and data struc-
tures. Many research projects already exist, among others: Parafrase-2 and Polaris
[BEF+96] from the University of Illinois, PIPS from Ecole des Mines [[JT90], SUIF
from Stanford University [H*96], the McCat/EARTH-C compiler from Mc Gill Uni-
versity [HTZ"97], LooPo from the University of Passau [GL97], and PAF from the
University of Versailles; there are also an increasing number of commercial paral-

lelizing tools, such as CFT, FORGE, FORESYS or KAP.

We are mostly interested in automatic and semi-automatic parallelization techniques:
this thesis addresses both program analysis and source to source program transformation.

1.1 Program Analysis

Optimizations and parallelizations are usually seen as source to source code transforma-
tions which improves one or several run-time parameters. To apply a program transfor-
mation at compile-time, one must check that the algorithm implemented by the program
is unharmed during the process. Because an algorithm can be implemented in many dif-
ferent ways, applying a program transformation requires “reverse engineering” the most
precise information about what the program does. This fundamental program analy-
sis technique addresses the difficult problem of gathering compile-time—a.k.a. static—
information about run-time—a.k.a. dynamic—properties.

4.4, UG IVALNVE AINALT OO

Static Analysis

Program analyses often compute properties of the machine state between execution of
two instructions. These machine states are known as program points. Such properties
are called static because they cover every possible run-time execution leading to a given
program point. Of course these properties are computed at compile-time, but this is not
the meaning of the “static” adjective: “syntactic” would probably be more appropriate...

Data-flow analysis is the first proposed framework to unify the large number of static
analyses. Among the various wordings and formal presentations of this framework [KU77,
Muc97, ASU86, JM82, KS92, SRH96]|, one may expose the following common issues. To
formally state the possible run-time executions, the usual method is to build the control
flow graph of the program [ASUS86]; indeed, this graph represents all program points as
nodes, and edges between these nodes are labeled with program statements. The set of
all possible executions is then the set of all paths from the initial state to the considered
program point. Properties at a given program point are defined as follows: because
each statement may modify some property, one must consider every path leading to the
program point and meet all informations along these paths. The formal statement of these
ideas is usually called meet over all paths (MOP) [KS92]. Of course, the meet operation
depends on the property to be evaluated and on its mathematical abstraction.

However, because of the possibly unbounded number of paths, the MOP specification
of the problem cannot be used for practical evaluation of static properties. Practical
computation is done by—forward or backward—propagation of the intermediate results
along edges of the control flow graph. An iterative resolution of the propagation equations
is performed, until a fiz-point is reached. This method is known as maximal fized point
(MFP). In the intra-procedural case, Kam and Ullman [KU77] have proven that MFP
effectively computes the result defined by MOP—i.e. MFP coincides with MOP—when
some simple properties of the mathematical abstraction are satisfied; and this result has
been extended to inter-procedural analysis by Knoop and Steffen [KS92].

Mathematical abstractions for program properties are very numerous, depending on
the application and complexity of the analysis. The lattice structure encompasses most ab-
stractions because it supports computation of both meet—at merge points—and join—at
computational statements—operations. In this context, Cousot and Cousot [CC77] have
proposed an approzimation framework based on semi-dual Galois connections between
concrete run-time states of a program and abstract compile-time properties. This math-
ematical formulation called abstract interpretation has two main interests: first it allows
systematic approaches to the construction of a lattice abstraction for program properties,
and second, it ensures that any computed fix-point in the abstract lattice corresponds
to a conservative approximation of an actual fix-point in the lattice of concrete states.
While extending the concept of data-flow analysis, abstract interpretation helps proving
the correctness and optimality of program analyses. Practical applications of abstract in-
terpretation and related iterative methods can be found in [Cou81, CH78, Deu92, Cre96].

Despite the undisputable successes of data-flow and abstract interpretation frame-
works, the automatic parallelization community has very rarely based its analysis tech-
niques on one of these frameworks. Beyond the important reasons which are not of a
scientific nature, we will discuss the good reasons:

e MOP/MFP techniques focus on classical optimizations techniques, with rather sim-
ple abstractions (lattices often have a bounded height); correctness and efficiency in
a production compiler are the main motivations, whereas precision and expressive-

uliAalr t1yiv 4. N1 N JIJUU L IUILN

ness of the mathematical abstraction are the main issues for parallelization;

e in the industry, parallelization has traditionally addressed nests of loops and arrays,
with high degrees of data parallelism and simple (non recursive, first order) control
structures; proving the correctness of an analysis is easy in this context, whereas
applications to real programs and practical implementation in a compiler become
issues of critical interest;

e abstract interpretation is well suited to functional languages with clean and simple
operational semantics; problems raised in this context are orthogonal with practical
issues of imperative and low-level languages such as Fortran or C, traditionally more
suitable for parallel architectures (but we will see that this point is evolving).

As a result, data-flow and abstract interpretation frameworks have mostly focused on
static analysis techniques, which compute properties at a given program point or state-
ment. Such results are well suited to most classical techniques for program checking and
optimization [Muc97, ASU86, SKR90, KRS94]|, but for automatic parallelization purposes,
one needs more information.

e What about distinct run-time instances of program points and statements? Because
statements are likely to execute several times, we are interested in which iteration
of a loop or which call to a procedure induced execution of some program statement.

e What about distinct elements in a data structure? Because arrays and dynamically
allocated structures are not atomic, we are interested in which array element or
which graph node is accessed by some run-time instance of a statement.

Because of orthogonal interests in the data-flow analysis and the automatic paral-
lelization communities, it is not surprising that results of the ones could not be applied by
the others. Indeed, a very small number of data-flow analyses [DGS93, Tz097| addressed
both instancewise and elementwise issues, but results are very far from the requirements
of a compiler in terms of precision and applicability.

Instancewise Analysis

Program analyses for automatic parallelization are a rather restricted domain, compared
to the broad range of properties and techniques studied in data-flow analysis frameworks.
The program model considered is also more restricted—most of the time—since traditional
applications of parallelizing compilers are numerical codes with loop nests and arrays.
Since the very beginning—with works by Banerjee [Ban88], Brandes [Bra88| and
Feautrier [Fea88a|—analyses are oriented towards instancewise and elementwise proper-
ties of programs. When the only control structure was the for/do loop, iterative methods
with a high semantical background seemed overly complex. To focus on solving critical
problems such as abstracting loop iterations and effects of statement instances on array
elements, designing simple and ad-hoc frameworks was obviously more profitable than
trying to build on unpractical data-flow frameworks. The first analyses were dependence
tests [Ban88] and dependence analyses [Bra88, Pug92| which collected information about
statement instances which access the same memory location, one of the accesses being a
write. More precise methods have been designed to compute, for every array element read
in an expression, the very statement instance which produced the value. They are usually
called array data-flow analyses [Fea9l, MAL93], but we prefer to call them instancewise

L.2. rnRlVonAavi tinailNnorvinuiviAadliviNg Uiy ranAl i ZaA L 1IN I

reaching definition analyses for better comparison with a specific static data-flow analysis
technique called reaching definition analysis [ASU86, Muc97]. Such accurate informa-
tion significantly improves the quality of program transformation techniques, hence the
performance of parallel programs.

Instancewise analyses have long suffered strong program model restrictions: programs
used to be nested loops without conditional statements, with affine bounds and array
subscripts, and without procedure calls. This very limited model is already sufficient
to address many numerical codes, and has the major interest of allowing computation
of ezact dependence and reaching definition information |[Fea88a, Fea9l]. One of the
difficulties in removing the restrictions is that exact results cannot be hoped for anymore,
and only approrimate dependences are available at compile-time: this induces overly
conservative approximations of reaching definition information. A direct computation of
reaching definitions is thus needed. Recently, such direct computations have been crafted,
and extremely precise intra-procedural techniques have been designed by Barthou, Collard
and Feautrier [CBF95, BCF97, Bar98] and by Pugh and Wonnacott [WP95, Won95|. In
the following, fuzzy array dataflow analysis (FADA) by Barthou, Collard and Feautrier
[Bar98] will be our prefered instancewise reaching definition analysis for programs with
unrestricted nested loops and arrays.

Many extensions to handle procedure calls have been proposed [TFJ86, HBCM94,
CI96], but they are not fully instancewise in the sense that they do not distinguish be-
tween multiple executions of a statement associated with distinct calls of the surround-
ing procedure. Indeed, the first fully instancewise analysis for programs with—possibly
recursive—procedure calls is presented in this thesis.

The next section introduces program transformations useful to parallelization. Most
of these transformations will be studied in more detail in the rest of this thesis. Of course,
they are based on instancewise and elementwise analysis of program properties.

1.2 Program Transformations for Parallelization

Dependences are known to hamper parallelization of imperative programs and their effi-
cient compilation on modern processors or supercomputers. A general method to reduce
the number of memory-based dependences is to disambiguate memory accesses in assign-
ing distinct memory locations to independent writes, i.e. to expand data structures.

There are many ways to compute memory expansions, i.e. to transform memory ac-
cesses in programs. Classical ways include renaming scalars, arrays and pointers, splitting
or merging data structures of the same type, reshaping array dimensions, including adding
new dimensions, converting arrays into trees, changing the degree of a tree, and changing
a global variable into a local one.

Read references are also expanded, using instancewise reaching definition information
to implement the expanded reference [Fea91]. Figure 1.1 shows three programs with no
possible parallel execution because of output dependences (details of the code are omitted
when not useful for presentation). Expanded versions are given in the right-hand side of
the figure, to illustrate the benefit of memory expansion for parallelism extraction.

Unfortunately, when the control-flow cannot be predicted at compile-time, some run-
time computation is needed to preserve the original data flow: ¢ functions may be needed
to “merge” data definitions due to several incoming control paths. These ¢ functions are
similar—but not identical—to those of the static single-assignment (SSA) framework by
Cytron et al. [CFR"91], and have been first extended for instancewise expansion schemes

uliAalr t1yiv 4. N1 N JIJUU L IUILN

int x; int x1, x2;
X = ; = x; x1 = ; = x1;
X = o0 o0 =X X2="';"'=X2;

After expansion, i.e. renaming x in x1 and x2, the first two statements can be executed
in parallel with the two others.

int A[10]; int A1[10], A2[10][10];
for (i=0; i<10; i++) { for (i=0; i<10; i++) {
sy A[0] = ---; sy AL[i] = ---;
for (j=1; j<10; j++) { for (j=1; j<10; j++) {
sy A[31 = A[j-11 + ---; sy A2[i][j1 = { if (j=1) A1[il;
} else A2[i][j-11; }+ ---;
}

After expansion, i.e. renaming array A in A1 and A2 then adding a dimension to array
A2, the for loop is parallel. The instancewise reaching definition of the A[j-1] reference
depends on the values of i and j, as implemented with a conditional expression.

int A[10]; struct Tree {
void Proc (int i) { int value; Tree x*left, *right;
Alil = ---; } *p;
= A[i]; void Proc (Tree *p, int i) {
if (---) Proc (i+1); p—>value = .- ;
if (---) Proc (i-1); -+ = p->value;
} if (---) Proc (p->left, i+1);

if (---) Proc (p->right, i-1);
}

After expansion, the two procedure calls can be executed in parallel. Memory allocation
for the Tree structure is not shown.

by Collard and Griebl [GC95, Col98|. The argument of a ¢ function is the set of possible
reaching definitions for the associated read reference.! Figure 1.2 shows two programs
with some unknown conditional expressions and arrays subscripts. Expanded versions
with ¢ functions are given in the right side of the figure.

Notice that memory expansion is not a mandatory step for parallelization; it is yet a
general technique to expose parallelism in programs. Now, implementation of a parallel
program depends on the target language and architecture. Two main techniques are used.

The first technique takes benefit of control parallelism, i.e. parallelism between dif-
ferent statements in the same program block. Its goal is to replace as many sequential
executions of statements—denoted with ; in C—by parallel executions. Depending on
the language, there are many different syntaxes to code this kind of parallelism, and all
these syntaxes may not have the same expressive power. We will prefer the Cilk [MF98]

spawn/sync syntax (similar to OpenMP’s syntax) to the parallel block notation from
Algol 68 or the EARTH-C compiler [HTZ97]. As in [MF98], synchronizations involve

! This interpretation of ¢ functions is very different from their usual semantics in the SSA framework.

L.2. rnRlonAavi tinailNorvinuviAadliviNg Uiy ranAl i ZaA L 1IN

int x; int x1, x2;
S1 X = ---; S x1l = N
S9 if ("')X="'; S9 if (...) X2="';
r cee = X r el = ¢({51,82});

After expansion, one may not decide at compile-time what value is read by statement
r. One only knows that it may either come from s; or from s,, and the effective value
retrieval code is hidden in the ¢({s1, so}) function. It checks whether s, executed or not,
then if it did, it returns the value of x2, else it returns the value of x1.

int A[10]; int A1[101, A2[101;
s; A[i]l = .-+ s, AL[i] = ---;
Sy A[++] = -+0g Sy A2[++] = -+-;
rooeee = ALl rooeee = p({s1,52});

After expansion, one may not decide at compile-time what value is read by statement r,
because one does not know which element of array A is assigned by statement ss.

................. Figure 1.2. Run-time restoration of the flow of data

every asynchronous computation started in the surrounding program block, and implicit
synchronizations are assumed at return points in procedures. For the example in Fig-
ure 1.3.a, execution of A, B, C' in parallel followed sequentially by D and E has been
written in a Cilk-like syntax (each statement would probably be a procedure call).

spawn A; // L is the latency of the schedule
spawn B; for (t=0; t<=L; t++) {

spawn C'; parallel for (2 € F(t))
sync; execute instance 1

// wait for A, B and C' to complete // implicit synchronization

D; }

E;

Figure 1.3.b. Data parallel implementation for
Figure 1.3.a. Control parallelism schedules

........................... Figure 1.3. Exposing parallelism

The second technique is based on data parallelism, i.e. parallelism between different
instances of the same statement or block. The data parallel programming model has
been extensively studied in the case of loop nests [PD96], because it is very well suited
to efficient parallelization of numerical algorithms and repetitive operations on large data
sets. We will consider a syntax similar to OpenMP parallel loop declaration, where all
variables are supposed to be shared by default, and an implicit synchronization takes
place at each parallel loop termination.

The first algorithms to generate data parallel code were based on intuitive loop trans-
formations such as loop fission, loop fusion, loop interchange, loop reversal, loop skewing,
loop reindexing and statement reordering. Moreover, dependences abstractions were much
less expressive than affine relations. But data parallelism is also appropriate when de-
scribing a parallel order with a schedule, i.e. giving an execution date for every statement

uliAalr t1yiv 4. N1 N JIJUU L IUILN

instance. The program pattern in Figure 1.3.b shows the general implementation of such
a schedule [PD96]. It is based on the concept of ezecution front F'(t) which gathers all
instances ¢ executing at date t.

The first scheduling algorithm was designed by Allen and Kennedy [AK87], from which
many other methods have been designed. These are all based on a rather approximative
abstractions of dependences, like dependence levels, vectors and cones. Despite the lack
of generality, the benefit of such methods is the low complexity and easy implementation
in a industrial parallelizaing compiler; see the work by Banerjee [Ban92| or more recently
by Darte and Vivien [DV97] for a survey of these algorithms.

The first general solution to the scheduling problem was proposed by Feautrier [Fea92].
The proposed algorithm is very useful, but its weak point is the lack of help to decide what
parameter of the schedule to optimize: is it the latency L, the number of communications
(on a distributed memory machine), the width of the fronts?

Eventually, it is well known that control parallelism is more general than data paral-
lelism, meaning that every data parallel program can be rewritten in a control parallel
model, without loosing any parallelism. This is especially true for recursive programs,
for which the distinction between the two paradigms becomes very unclear, as shown in
[Fea98]. However, for practical programs and architectures, it has long been the case
that architectures for massively parallel computations were much more suited to data
parallelism, and that getting good speed-ups on such architectures was difficult with con-
trol parallelism—mainly due to asynchronous task management overhead. But recent
advances in hardware and software systems are showing an evolution in this situation:
excellent results for parallel recursive programs (game simulations like chess, and sorting
algorithms) have been shown with Cilk for example [MF98].

1.3 Thesis Overview

This thesis is organized in four chapters and a final conclusion. Chapter 2 describes a
general framework for program analysis and transformation, and presents the formal defi-
nitions useful to the following chapters. The main interest of this chapter is to encompass
a very large class of programs, from nests of loops with arrays to recursive programs and
data structures.

A collection of mathematical results is gathered in Chapter 3; some are rather well
known, such as Presburger arithmetcis and formal language theory; some are very un-
common in compiler and parallelism fields, such as rational and algebraic transductions;
and the others are mostly contributions, such as left-synchronous transductions and ap-
proximation techniques for rational and algebraic transductions.

Chapter 4 addresses instancewise analysis of recursive programs. Based on an ex-
tension of the induction variable concept to recursive programs and on new results in
formal language theory, it presents two algorithms for dependence and reaching definition
analysis. These algorithms are applied to several practical examples.

Parallelization techniques based on memory expansion are studied in Chapter 5. The
first three sections present new techniques to expand nested loops with unrestricted condi-
tionals, bounds and array subscripts; the fourth section is a contribution to simultaneous
optimization of expansion and parallelization parameters; and the fifth section presents
our results about parallelization of recursive programs.

Chapter 2

Framework

The previous introduction and motivation has covered several very different concepts
and approaches. Each one has been studied by many authors who have defined their
own vocabulary and abstractions. Of course, we would like to keep the same formalism
along the whole presentation. This chapter presents a framework for describing program
analysis and transformation techniques and for proving their correctness or theoretical
properties. The design of this framework has been governed by three major goals:

1. build on well defined concepts and vocabulary, while keeping the continuity with
related works;

2. focus on instancewise properties of programs, and take benefit of this additional
information to design new transformation techniques;

3. head for both generality and high precision, minimizing the necessary number of
tradeoffs.

This presentation does not compete with other formalisms, some of which are firmly
rooted in semantically and mathematically sound theories [KU77, CC77, JM82, KS92].
Because we advocate for instancewise analysis and transformations, we primarily focused
on establishing convincing results about effectiveness and feasibility. This required leaving
for further studies the necessary integration of our techniques in a more traditional analysis
theory. We are sure that instancewise analysis can be modeled in a formal framework such
as abstract interpretation, even if very few works have addressed this important issue.

We start with a formal presentation of run-time statement instances and program
executions in Section 2.1, then the program model we will consider throughout this study
is exposed and motivated in Section 2.2. Section 2.3 proposes mathematical abstractions
for these instance and program models. Program analysis and transformation frameworks
are addressed in Sections 2.4 and 2.5 respectively.

2.1 Going Instancewise

During program execution, each statement can be executed several times, depending on
the surrounding control structures (loops, procedure calls and conditional expressions).
To capture data-flow information as precisely as possible, our analysis and transformation
techniques should be able to distinguish between the distinct executions of a statement.

Definition 2.1 (instance) For a statement s, a run-time instance of s is some particular
execution of s during execution of the program.

uliAar Lty 4. FIVAWVIIZVY ULV

For short, a run-time instance of a statement is called an instance. If the program termi-
nates, each statement has a finite number of instances.

Consider the two example programs in Figure 2.1. They both display the sum of an
array A with an unknown number N of elements; one is implemented with a loop and
the other with a recursive procedure. Statements B and C' are executed N times during
execution of each program, but statements A and D are executed only once. The value
of variable i can be used to “name” each instance of B and C and to distinguish at
compile-time between the 2N + 2 run-time instances of statements A, B, C' and D: the
unique instances of statements A and D are denoted respectively by (A) and (C'), and the
N instances of statement B (resp. statement C') associated with some value i of variable
i are denoted by (B, i) (resp. by (C,i)), 0 < i < N. Such an “iteration variable” notation
is not always possible, and a general naming scheme will be studied in Section 2.3.

int A[N];
i A[N];
}nt [N]; int Sum (int i) {
int c; i i
Lo if (i<N)
) i + + ;
for (i=0; i<N; i++) { ¢ elzzturn R
B =c + il;
c C Alil; D return O;
} }

printf ("%d", c); printf ("%d", Sum (0));

.................. Figure 2.1. About run-time instances and accesses

Because of the state of memory and possible interactions with its environment, several
executions of the same program may yield different sets of run-time statement instances
and incompatible results. We will not formally define this concept of program execution
in operational semantics: a very clean framework has indeed been defined by Cousot
and Cousot [Cou8l] for abstract interpretation, but the correctness of our analysis and
transformation techniques does not require so many details.

Definition 2.2 (program execution) Let P be a program. A program execution e is
given by an ezxecution trace of P, which is a finite or infinite (when the program does
not terminate) sequence of configurations—i.e. machine states. The set of all possible
program executions is denoted by E.

Now, the set of all run-time instances for a given program execution e € E is denoted
by I.. Subscript e denotes a given program execution, but it also recalls that set I,
is “exact”: it is the effective unapproximate set of statement instances executed during
program execution e. This formalism will be used in every further definition of execution-
dependent concept.

Considering again the two programs in Figure 2.1, the execution of statements B and C
is governed by a comparison of variable i with the constant N. Without any information
on the possible values of N, it is impossible to decide at compile-time whether some
instance of B or C executes. In the extreme case of an execution e where N is equal
to zero, both statements are never executed, and the set I, is equal to {(A),(D)}. In
general, I, is equal to {(A), (D)} U {(B,i),(C,i): 0 <i < N}, the value of N being part
of the definition of e.

Z.Z. rnlJanuAavi viJiJrul

Of course, each statement can involve several (including zero) memory references, at
most one of these being a write (i.e. in left-hand side).

Definition 2.3 (access) A pair (,7) of a statement instance and a reference in the
statement is called an access.

For a given execution e € E of a program, the set of all accesses is denoted by A.. It
can be decomposed into:

e R, the set of all reads, i.e. accesses performing some load operation from memory;

e and W,, the set of all writes, i.e. accesses performing some store operation into
Iemory.

Due to our syntactical restrictions, no access may be simultaneously a read and a
write. Since a statement performing some write in memory involves exactly one reference
in left-hand side, its instances are often used in place of its write accesses (this sometimes
simplifies the exposition).

Looking again at our two programs in Figure 2.1:

e statement A has one write reference to variable c, the single associated access is
denoted by (A, c);

e statement B has one write and one read reference to variable c, since both references
are identical, the associated accesses are both denoted by (B,i,¢c), 0 <i < N;

e statement B has one read reference to array A, the associated accesses are denoted
by (B,i,A[1]), 0 <i < N;

e statement C has one read reference to array A, the associated accesses are denoted
by (C,i,A[i]1), 0 < i < N;

e statement D has no memory reference, thus no associated access.

2.2 Program Model

Our framework focuses on imperative programs. This section describes the control and
data structure syntax we consider. In a preliminary work [CCG96], we defined a toy
language—called LEGS—which allowed explicit declaration of complex data structures
shapes fitting our program model. Most of the program model restrictions we enumerate
in this section were also enforced by the language semantics. We chose yet to define our
program model with a C-like syntax (with C++ syntactic sugar facilities): despite the the
lack of formal semantics available in C, we hope this choice will ease the understanding
of practical examples and the communication of our new ideas.

2.2.1 Control Structures

Procedures are seen as functions returning the void type and explicit—typed—pointers
are allowed. Multi-dimensional arrays are accessed with syntax [iy,...,i,]—not C
syntax—for better understanding.

Definition 2.4 (statement and block) A program statement is any C expression
ended with “;” or “}’. A program block is a special kind of statement that starts

uliAar Lty 4. FIVAWVIIZVY ULV

with “{”, a function declaration, a loop or a conditional expression, and surrounding
one or more sub-statements.

To simplify the exposition, the only control structures that may appear in the right-
hand side of an assignment, in a function call or in a loop declaration are conditional
statements. Moreover, multiple expressions separated by , are not allowed, and loops
are supposed to follow some minimal “code of ethics”: each loop variable is affected by
a single loop and its value is not used outside of this loop; as a consequence, each loop
variable must be initialized.

This framework is primarily designed for first-order control structures: any function
call should be fully specified at compile-time, and “computed” gotos are forbidden. But
higher-order structures can be handled conservatively, in approximating the possible func-
tion calls using external analysis techniques [Cou81, Deu90, Har89, AFL95]. Calls to
input/output functions are allowed as well, but completely ignored by analysis and trans-
formation techniques, possibly yielding incorrect parallelizations.

Recursive calls, loops with unrestricted bounds, and conditional statements with unre-
stricted predicates are allowed. Classical exception mechanisms, breaks, and continues
are supported as well. However, we suppose that gotos are removed by well known algo-
rithms for structuring programs [Bak77, Amm92|, at the cost of some code duplication in
the rare cases where the control flow graph is not reducible [ASUS86].

2.2.2 Data Structures

We only consider
e scalars (boolean, integer, floating-point, pointer...);
e records (non-recursive and non-array structure with scalar and record fields);
e arrays of scalars or records;
e trees of scalars or records;
e arrays of trees;
e and trees of arrays.

Records are seen as compound scalars with unaliased named fields. Moreover, unre-
stricted array values in trees and tree elements in arrays are allowed, including recursive
nestings of arrays and trees.

Arrays are accessed through the classical syntax, and other data structures are accessed
through the use of explicit pointers. However, to simplify the exposition, we suppose that
no variable is simultaneously used as a pointer (through operators * and ->) and as an
array (through operator [1): in particular, explicit array subscripts must be preferred to
pointer arithmetic.

By convention, edge names in trees are identical to the label of pointer fields in the
tree declaration.

Z.0. ADoi1InACvUL VI

In practical implementations, recursive data structures are not made explicit. More
precisely, two main problems arise when trying to build an abstract view of data structure
definition and usage in C programs.

1. Multiple structure declarations may be relative to the same data structure, with-
out explicit declaration of the shape of the whole object. Moreover, even a sin-
gle recursive struct declaration can describe several very different objects, such
as lists, doubly-linked lists, trees, acyclic graphs, general graphs, etc. Building a
compile-time abstraction of data structures used in a program is thus a difficult
problem, but it is essential to our analysis and transformation framework. It can be
achieved in two opposite ways: either “decorating” the C code with shape descrip-
tions which guide the compiler when building its abstract view of data structures
[KS93, FM97, Mic95, HHN92] or running a compile-time shape analysis of pointer-
based structures (GH96, SRW96|.

2. Two pointer variables may be aliased, i.e. they may be two different names for the
same memory location. The goal of alias analysis [Deu94, CBC93, GH95] (store-less)
and points-to analysis [LRZ93, EGH94, Ste96] (store-based) techniques is precisely
to disambiguate pointer accesses, when pointer updates are not too complex to be
analyzed. In practice, one may expect good results for strongly typed programs
without pointer arithmetics, especially if the goal of the alias analysis is to check
whether two pointers refer the same structure or not. Element-wise alias analysis is
very costly and still a largely open problem: indeed, no instancewise alias analysis for
pointers has been proposed so far, and it could be an interesting future development
of our framework.

In the following, we thus suppose that the shape of each data structure has been
identified as one of the supported data types, and that each pointer reference has been
associated the data structure instance it refers to.

Now, there is one last question about data structures: how are they constructed,
modified and destroyed? When dealing with arrays, a compile-time shape declaration is
available in most cases; but some programs require dynamic arrays whose size is updated
dynamically every time an out-of-bound access is detected: this is the case of some ex-
panded programs studied in Chapter 5. The problem is more critical with pointer-based
data structures: they are most of the time allocated at run-time with explicit malloc or
new operations. This problem has already been addressed by Feautrier in [Fea98] and
we consider the same abstraction: all data structures are supposed to by built to their
maximal extent—possibly infinite—in a preliminary part of the code. To guarantee that
this abstraction is correct regarding data-flow information, we must add an additional re-
striction to the program model: any run-time insertion and deletion is forbidden. In fact
there are two exceptions to this very strong rule, but they will be described in the next
section after presenting the mathematical abstraction for data structures. Nevertheless, a
lot of interesting programs with recursive pointer-based structures perform random inser-
tions and deletions, and these programs cannot be handled at present in our framework.
This issue is left for future work.

2.3 Abstract Model

We start with a presentation of a naming scheme for statement instances, and show that
execution traces are not suitable to our purpose. Then, we propose a powerful abstraction

uliAar Lty 4. FIVAWVIIZVY ULV

for memory locations.

2.3.1 Naming Statement Instances

In the following, every program statement is supposed to be labeled. The alphabet of
statement labels is denoted by Y.rr,. Now, loops and conditionals requires special atten-
tion.

e Because a loop involves an initialization step, a bound check step, and an iteration
step, loops are given three labels: the first one represents the loop entry, the second
one is the check for termination, and the third one is the loop iteration. Remem-
ber that, in C, a bound check is performed immediately after the loop entry and
immediately after each increment. The loop check is considered as a block and a
conditional statement, and the two other are non-block labels.

e An if --- then --- else --- statement is given two labels: one for the condition
and the then branch, and one for the else branch. Both labels are considered as
block labels.

Consider the program example in Figure 2.2.a. This simple recursive procedure com-
putes all possible solutions to the n-Queens problem, using an array A (details of the code
are omitted here); it is our running example in this section.

There are two assignment statements: s writes into array A and r performs some read
access in A. Statement [and .J are conditionals, and statement () is a recursive call to
procedure Queens. Loop statements are divided into three sub-statements which are given
distinct labels: the first one denotes the loop entry—e.g. A or B—the second one denotes
the bound check—e.g. 4 or B—and the third one denotes the loop iteration—e.g. a or b.
Finally, P is the label of the procedure and F' denotes the initial call in main.

A primary goal for instancewise analysis and transformation is to name each statement
instance. To achieve this, many works in the program analysis field rely on ezrecution
traces. Their interpretation for program analysis is generally defined as a path from the
entry of the control flow graph to a given statement.! They record every execution of a
statement, including return from functions.

For our purpose, these execution traces have three main drawbacks:

*

1. because of return labels, traces belong to a non-rational language in X7, ., ,

as there are recursive function calls;

as soon

2. full-length traces are huge and extremely redundant: if an instance executes before
another in the same program execution, its trace prefixes the other;

3. a single statement instance may have several execution traces because statement
execution is unknown at compile time.

To overcome the first problem, a classical technique relies on a function called NET on
Y [Har89]: intuitively this function collapses all call-return pairs in a given execution
trace, yielding compact rational sets of execution traces. The third point is much more
unpleasant because it forbids to give a unique name to each statement instance. Notice
however that different execution traces for the same instance must be associated with
distinct executions of the program.

'Without notice of conditional expressions and loop bounds.

Z.0. ADoi1InACvUL VI O

F
int A[Il]; P
P void Queens (int n, int k) {
I if (k < n) { I
A/af/a for (int i=0; i<n; i++) {
B/&/b for (int j=0; j<k; j++) A
r ceo= e AT - A a4 A a A
J if) Ao J J J
S A[k] = ...
Q Queens (n, k+1); s s s \@
}
} FPIAsaaaats p
}
} 1
int main () { A A
F X Queens (n, 0); 7 B
Figure 2.2.a. Procedure Queens "
FPIAaasaaJQPIAABBr

Figure 2.2.b. Control tree

.................... Figure 2.2. Procedure Queens and control tree

Our solution starts from another representation of the program flow: the intuition
behind our naming scheme for instances is to consider some kind of “extended stack
states” where loops are seen as special cases of recursive procedures. The dedicated
vocabulary for this representation has been defined in parts and with several variations
in [CC98, Coh99a, Coh97, Fea9s|.

Let us start with an example: the first instance of statement s in procedure Queens.
Depending on the number of iterations of the innermost loop—bounded by k—an execu-
tion trace for this first instance can be one of FPIAABBJs, FPIAABBbsJs, FPIAABBbBbBJS,
..., FPIA4BB(bB)" Js. Since we would like to give a unique name to the first instance of
s, all B, B and b labels should intuitively be left out. Now, for a given program execution,
any statement instance is associated with a unique (ordered) list of block enterings, loop
iterations and procedure calls leading to it. To each list corresponds a word: the con-
catenation of statement labels. This is precisely what we get when forgetting about the
innermost loop in execution traces of the first instance of statement s: the single word
FPIAaJs. These concepts are illustrated by the tree in Figure 2.2.b, to be defined later.
We now formally describe these words and their relation with statement instances.

Definition 2.5 (control automaton and control words) The control automaton of
the program is a finite-state automaton whose states are statements in the program
and where a transition from a state ¢ to a state ¢’ express that statement ¢’ occurs in

uliAar Lty 4. FIVAWVIIZVY ULV

block ¢. Such a transition is labeled by ¢'. The initial state is the statement executed
at the beginning of program execution, and all states are final.
Words accepted by the control automaton are called control words. By construction,

they build a rational language Loy, included in 27 .

Lemma 2.1 I, being the set of statement instances for a given execution e of a program,
there is a natural injection from I, to the language Lqrr;, of control words.

Proof: Any statement instance in a program execution is associated with a unique
list of block enterings, loop iterations and procedure calls leading to it. We can thus
define a function f from I, to XL —lists of statements labels—mapping statement

instances to their respective list of block enterings, loop iterations and procedure calls.

Consider an instances 7; of a statement s; and an instance 125 of a statement s, and
suppose f(21) = f(19) = [. By definition of f, both statements s; and s, must be part
of the same program block B, and precisely, the last element of [is B. Considering a
pair of a statement s and an instance ¢ of s, this proves that no other instance +" of a
statement s’ may be such that (f(z),s) = (f(¢),s').

Consider a function ¥ from I, to Lepp,—control words—which maps an instance ¢ of
a statement s to the concatenation of all labels in f(z) and s itself. Thanks to the
preceding property on pairs (f(z), s), function 1 is injective. [|

Theorem 2.1 Let I be the union of all sets of statement instances I, for every possible
execution e of a program. There is a natural injection from I to the language L¢rp; of
control words.

Proof: Consider two executions e; and e of a program. The function defined in the
proof of Lemma 2.1 is denoted by 1), for execution e; and v, for execution ey. If an
instance ¢ is part of both I, and I, of a program, control words v (z) and t,(z) are
the same, because the list of block enterings, loop iterations and function calls leading
to ¢ are unchanged. Lemma 2.1 terminates the proof. |

We are thus allowed to talk about “the control word of a statement instance”. In
general, the set E of possible program executions and the set I, for e € E are unknown
at compile-time, and we may consider all instances that may execute during any pro-
gram execution. Eventually, the natural injection becomes a one-to-one mapping when
extending the set I, with all possible instances associated to “legal” control words. As
a consequence, if w is a control word, we will say “instance w” instead of “the instance
whose control word is w”.

We are also interested in encoding accesses themselves with control words. A simple
solution consists in considering pairs (w, ref), where w is a control word for some instance
of a statement s and ref is a reference in statement s. But we prefer to encode the full
access “inside” the control word: we thus extend the alphabet of statement labels Yo g,
with letters of the form s,.:, for all statement s € Y.z and reference ref in s. Of
course, extended labels may only take place as the last letter in a control word: when the
last letter in a control word w is of the form s..¢, it means that w represents an access
instead of an instance. However, when clear from the context, i.e. when there is only one
“interesting” reference in a given statement or all references are identical, the reference
will be taken out of the control word of accesses. This will be the case in most practical
examples.

Z.0. ADoi1InACvUL VI

Eventually, notice that some states in the control automaton have exactly one incom-
ing transition and one outgoing transition (looping transitions count as both incoming
and outgoing). Now, these states do not carry any information about where a statement
can be reached from or lead to: in every control word, the label of the outgoing transition
follows the label of the incoming one. In practice, we often consider a compressed con-
trol automaton where all states with exactly one incoming transition and one outgoing
transition are removed. This transformation has no impact on control words.

Observe that loops in the program are represented by looping transitions in the com-
pressed control automaton, and that cycles involving more than one state are associated
with recursive calls.

Figure 2.3.b. Compressed control au-
tomaton

Figure 2.3.a. Control automaton

.................. Figure 2.3. Control automata for program Queens

Figure 2.3.a describes the plain control automaton for procedure Queens.? Since states
F, 1, A, B, @, a and b are useless, they are removed along with their outgoing edges.
The compressed automaton is described in Figure 2.3.b.

As a practical remark, notice that it is often desirable to restrict the language of
control words to instances of a particular statement. This is easily achieved in choosing
the state associated to this statement as the only final one.

To conclude this presentation of a naming scheme for statement instances, it is possible
to compare the execution traces of an instance » and the control word of . Indeed, the

2Every state is final, but this is not made explicit on the figure.

[RY) uliAar Lty 4. FIVAWVIIZVY ULV

following property is quite natural: it results from the observation that traces of an
instance may only differ in labels of statements that are not part of the list of block
enterings, loop iterations and function calls leading to this instance.

Proposition 2.1 The control word of a statement instance is a sub-word of every exe-
cution trace of this instance.

2.3.2 Sequential Execution Order

The sequential execution order of the program defines a total order over instances, call it
<smq. In English, words are ordered by the lexicographic order generated by the alphabet
order a < b < ¢ < ---. Similarly, in any program one can define a partial textual order
<xr over statements: statements in the same block are sorted in apparition order, and
statements appearing in different blocs are mutually incomparable.

Remember the special case of loops: the iteration label executes after all the state-
ments inside the loop body, but entry and check labels are not comparable with these
statements. For procedure Queens in Figure 2.2.a, we have B <ixr J <txr @, 7 <qxr b
and s <ixr @.

This textual order generates a lexicographic one on control words, denoted by < ux:

dx, 2" € oppy, w, v, 0" € Eipp tw = uzv,w' = ur'v', 1" <gxp w
Vo e, w=wv (a.k.a. prefix order).

CTRL

!
w <ipgx W <=

*

This order is only partial on X7, .

However, by construction of the textual order:

Proposition 2.2 An instance ¢’ executes before an instance ¢ iff their respective control
words w' and w satisfy w' <;px w.

Notice that the lexicographic order <,y is not total on Ly, because both cases on a
conditional are not comparable! This does not yield a contradiction, because the then and
else cases of the same if instance are never simultaneously executed in a single execution.
In general, the lexicographic order is total on the subset of control words corresponding
to instances that do execute—in one-to-one mapping with I, for some execution e € E.

Eventually, the language of control words is best understood as an infinite tree, whose
root is named ¢ and every edge is labeled by a statement. Each node then corresponds
to the control word equal to the concatenation of edge labels starting from the root.
Consider a control word ux, u € Xf,,, and € X¢y,; every downward edge from a node
whose control word is ux corresponds to an outgoing transition from state x in the control
automaton. To represent the lexicographic order, downward edges are ordered from left
to right according to the textual order. Such a tree is usually called a call tree in the
functional languages community, but control tree is more adequate in the presence of loops
and other non-functional control structures. One may talk about plain and compressed
control trees, dependending on the control automaton which defines them.

A partial control tree for procedure Queens is shown in Figure 2.2.b (a compressed
one will be studied later in Figure 4.1 page 124). Control word FPIAsaaaaJQPIAABBr
is a possible run-time instance of statement r—depicted by a star in Figure 2.2.b, and
control word FPIAAaaaaJs—depicted by a black square—is a possible run-time instance
of statement s.

Z.0. ADoi1InACvUL VI 1

2.3.3 Adressing Memory Locations

A large number of data structure abstractions have been designed for the purpose of
program analysis. This presentation can be seen as an extension of several frameworks
we already proposed [CC98, Coh99a, Coh97, Fea98| some of which in collaboration with
Griebl [CCG96], but it is also highly relevant to previous work by Alabau and Vauquelin
[Ala94], by Giavitto, Michel and Sansonnet [Mic95], by Deutsch [Deu92] and by Larus
and Hilfinger [LH88].

With no surprise, array elements are addressed by integers, or vectors of integers for
multi-dimensional ones. Tree adresses are concatenation of edge names (see Section 2.2.2)
starting from the root. The address of the root is simply e, the zero-length word. For
example, the name of node root->1->r in a binary tree is [r. The set of edge names is
denoted by Xpara. The layout of trees in memory is thus described by a rational language
Ly C X5, 0. Over edge names.

For the purpose of dependence analysis, we are looking for a mathematical abstraction
which captures relations between integer vectors, between words, and between the two.
Dealing with trees only, Feautrier proposed to use rational transductions between free
monoids in [Fea98]. We will formally define such transductions in Section 3.3, and then
show how the same idea can can be extended to more general classes of transductions and
monoids, to handle arrays and nested trees and arrays as well.

Extending the Data Structure Model

Some interesting structures are basically tree structures enhanced with traversal edges.
In many cases, these traversal edges have a very regular structure. Most usual cases
are reference to the parent and links between nodes at the same height in a tree. Such
traversal edges are often used to facilitate special-purpose traversal algorithms. There
is some support for such structures when traversal edges are known functions of the
generators of the tree structure [KS93, FM97, Mic95], i.e. the “back-bone” spanning tree
of the graph. In such a case, traversal edges are merely an “algorithmical sugar” for better
performance. But even though, our support is limited since recursion and iteration over
traversal edges is not supported. We will not study this extension any further because
a full chapter would be necessary and our support for traversal edges does not include
recursion and iteration.

Abstract Memory Model

The key idea to handle both arrays and trees is that they share a common mathematical
abstraction: the monoid. For a quick recall of monoid definitions and properties, see
Section 3.2. Indeed rational languages (tree addresses) are subsets of free monoids with
word concatenation, and sets of integer vectors (array subscripts) are free commutative
monoids with vector addition. The monoid abstraction for a data structure will be denoted
by Mpara, and the subset of this monoid corresponding to valid elements of the structure
will be denoted by Lpara.

The case of nested arrays and trees is a bit more complex but reveals the expressive-
ness of monoid abstractions. Our first example is the hash-table structure described in
Figure 2.4. It defines an array whose elements are pointers to lists on integers. A monoid
abstraction My, for this structure is generated by Z U {n}, and its binary operation e

(4 uliAar Lty 4. FIVAWVIIZVY ULV

Y Y Y Y
1 9 15 | 17 struct key {
// value of key
Y Y Y Y int value;
// next key
0 11 16 | 19 key *n;
I
Y Y
777777 Z key *hash[7];
2 18
777 70777
.......................... Figure 2.4. Hash-table declaration
is defined as follows:
nen =nn (2.1)
VieZ : ien=1in (2.2)
VieZ : nei=ni (never used for the hash-table) (2.3)
Vi,j€EZL : 1e]=1i+]. (2.4)

The set Lpsa C Mpara of valid memory locations in this structure is thus
Lyyra = Zn*.

Check that the third case in the definition of operation e is never used in Lpapa.

Our second example is the structure described in Figure 2.5. It defines an array whose
elements are references to other arrays or integers. Each array is either terminal with
integer elements or intermediate with array reference elements. This definition is very
similar to file-system storage structures, such as UNIX’s inodes. The monoid abstraction
Mpara for this structure is the same as the hash-table one. However, the set Lyyra C Mpara
of valid memory locations in this structure is now

LDATA — (Zn)*Z.

Now the definition of operation e is the same as for the hash-table structure, see (2.1).

In the general case of nested arrays and trees, the monoid abstraction is generated by
the union of node names in trees and integer vectors. Its binary operation e is defined as
word concatenation with additional commutations between vectors of the same dimension.
The result is called a free partially commutative monoid [RS97b]:

Definition 2.6 (free partially commutative monoid) A free partially commutative
monoid M with binary operation e is defined as follows:

e generators of M are letters in an alphabet A and all vectors from a finite union of
free commutative monoids of the form Z";

Z.0. ADoi1InACvUL VI (o

123

56

struct inode {
// true means terminal array of integers
// false means intermediate array of pointers
boolean terminal
// array size
int length
union {
// array of block numbers
int al[];
// array of inode pointers
inode *nl[];
}
} quad;

e operation e coincides with word concatenation on A*, Vx,y € A:zey = zy;

e for a given integer n, operation e coincides with vector addition on Z", Vz,y € Z™ :
rey=2x+7y.

This framework clearly supports recursively nested trees and arrays.

In the following, we abstract any data structure as a subset L,y of the monoid Mpars
with binary operation e. (e denotes word concatenation for trees and usual sum for
arrays.)

Eventually, we have required in the previous section that no run-time insertion or
deletion appeared in the program. This rule is indeed too conservative, and two exceptions
can be handled by our framework.

1. Because it makes no difference for the flow of data whether the insertion is done be-
fore the program or during execution—only assignment of the value does matters—
insertions at a list’s tail or tree’s leaf are supported.

2. The abstraction is still correct when deletions at a list’s tail or tree’s leaf are sup-
ported, but may lead to overly conservative results. Indeed, suppose an insertion

(= uliAar Lty 4. FIVAWVIIZVY ULV

follows a deletion at the tail of a list. Considering words in the free monoid abstrac-
tion of the list, the memory location of the tail node before deletion will be aliased
with the new location of the inserted one.

2.3.4 Loop Nests and Arrays

The case of nested loops with scalar and array operations is very important. It applies to
a wide range of numerical, signal-processing, scientific, and multi-media codes. A large
amount of work has been devoted to such programs (or program fragments), and very
powerful analysis and transformation techniques have been crafted. While the framework
above easily captures such programs, it seems both easier and more natural to use another
framework for memory addressing and instance naming. Indeed, we prefer the natural
addressing scheme in arrays, using integers and integer vectors, because Z-modules have
a much richer structure than plain commutative monoids.

To ensure consistency of the control word and integer vector frameworks, we show how
control words can be embedded into vectors. This embedding is based on the following
definition, introduced by Parikh [Par66] to study properties of algebraic subsets of free
commutative monoids:

Definition 2.7 A Parikh mapping over alphabet Y.y, is a function from words over
Yorme to integer vectors in NC#d(Ferm) guch that each word w is mapped to the vector
of occurrence count of every label in w.

There is no specific order in which labels are mapped to dimensions, but we are interested
in a particular mapping where dimensions are ordered from the label of the outer loop to
the label of the inner one.

The loop nest structure is non-recursive, hence the only cycles in the control automaton
are transitions looping on the same state. As a result, the language of control words is in
one-to-one mapping with its set of Parikh vectors. The following mapping is computed
for the loop nest in Figure 2.6:

Aa(aa)* (Bs(bs)*s + Cc(ce)'r) — N
wo— (|w|A7 |w|A7|w|a7 |w|Ba|w|Ba|w|b7
|w|C= |w|07 |w|07 |w|87 |w|?“)

Respective Parikh vectors of instances AaaaaaasaaBpbsbs and AaaaasCccceccer are
(1,5,4,1,2,2,0,0,0,1,0) and (1,4,3,0,0,0,1,4,3,0,1).

A/afa for (i=0; i<100; i++) {
B/s/b for (j=0; j<100; j++)

s Ali,j] = -
C/c/c for (k=0; k<100; k++)
T - = A[i,Kk]

3

From Parikh vectors, we build iteration vectors by removing all labels of non-iteration
statements and collapsing all loops at the same nesting level in the same dimension. Doing

Z.oge LINOLAINUIZVYV IO AINALY O1O (9]

this, there is a one-to-one mapping between Parikh vectors and pairs built of iteration
vectors and statement labels. Indeed, the statement label captures both the last non-zero
component of the Parikh vector—i.e. the identity of the statement—and the identity of
the surrounding loops—i.e. which dimension corresponds to which loop.

Continuing the example in Figure 2.6, the only remaining labels are a, b and ¢—i.e.
labels of iteration statements—and labels b and ¢ are collapsed together into the second
dimension.

e Iteration vector of instance AaaaasaaaaaBsbpbss of statement s is (4, 2).
e Iteration vector of instance AaaaaaCccccccer of statement r is (2, 3).

In this process, the lexicographic order <;zx on control words is replaced by the lex-
icographic order on iteration vectors (the first dimensions having a higher priority than
the last).

As a conclusion, Parikh mappings show that iteration vectors—the classical frame-
work for naming instances in loop nests—are a special case of our general control word
framework.

Because a statement instance cannot be reduced to an iteration vector, we introduce
the following notations (these notations generalize the intuitive ones at the end of Sec-
tion 2.1):

e (S, z) stands for the instance of statement S whose iteration vector is x;
o (S, x,ref) stands for the access built from instance (S, z) and reference ref.

This does not imply that control words are a case of overkill when studying loop nests.
In particular, they may still be useful when gotos and non-recursive function calls are
considered. However, most interesting loop nest transformation techniques are rooted too
deeply in the linear algebraic model to be rewritten in terms of control words. Further
comparison is largely open, but some ideas and results are pointed out in Section 4.7.

2.4 Instancewise Analysis

Because our execution model is based on control words instead of execution traces, the
previous Definition 2.2 of a program execution is not very practical. For our purpose,
a sequential erecution e € E of a program is seen as a pair (<spq, fe), Where <guq is
the sequential order over all possible statement instances (associated to the language of
control words) and f, maps every access to the memory location it either reads or writes.
Notice that <suq is not dependent on the execution: it is defined as the order between all
possible statement instances for all executions, which is legal because sequential execution
is deterministic. Order <ggq is thus partial, but its restriction to a set of instances I, for
a given execution e € E is a total order. However, f, clearly depends on the execution e,
and its domain is exactly the set A, of accesses.

Function f, is the storage mapping for execution e of the program [CFH95, Coh99b,
CL99|—it is also called access function [CC98, Fea98|. Storage mapping gathers the effect
of every statement instance, for a given execution of the program. It is a function from the
ezact set A, of accesses (see Definition 2.3) that actually ezecute into the set of memory
locations.

[0 uliAar Lty 4. FIVAWVIIZVY ULV

In practice, the sequential execution order is explicitly defined by the program syntax,
but it is not the case of the storage mapping. Some analysis has to be performed, either
to compute f.(a) for all executions e and accesses a, or to compute approximations of f,.

Eventually, (<guq, fe) has been defined as a view of a specific program execution e,
but it can also be seen as a function mapping e € E to pairs (<gyq, fe). For the sake of
simplicity, such a function—which defines all possible executions of a program—will be
referred as “program (<gpq, fe)” in the following.

2.4.1 Conflicting Accesses and Dependences

Many analysis and transformation techniques require some information on “conflicts”
between memory accesses.

Definition 2.8 (conflict) Two accesses ¢ and a' are in conflict if they access—either
read or write—the same memory location: f.(a) = fe(a).

This vocabulary is inherited from the cache analysis framework and its conflict misses
[TD95]. Analysis of conflicting accesses is also very similar to alias analysis [Deu94,
CBC93]. The conflict relation is the relation between conflicting accesses, and is denoted
by k. for a given execution e € E. An exact knowledge of f. and k. is impossible in
general, since f, may depend on the initial state of memory and/or input data. Thus,
analysis of conflicting accesses consists in building a conservative approzimation k of the
conflict relation, compatible with any execution of the program: vk w must hold when
there is an execution e such that v,w € A, and f.(v) = f.(w), i.e.

Vee E\Vo,w e Ayt (fo(v) = fo(w) = vEw). (2.5)

This condition is the only requirement on relation k, but a precise approximation is
generally hoped for. For most program analysis purposes, this relation only needs to
be computed on writes, or between reads and writes, but other problems such as cache
analysis [TD95] require a full computation.

Consider the example in Figure 2.7 where FirstIndex and SecondIndex are external
functions on which no information is available. Because the sign of v is unknown at
compile-time, the set of statement instances I, can be either statement S or statement
T (statements coincides with statement instances since they are not surrounded by any
loop or procedure call), depending on the execution. Since the results of FirstIndex
and SecondIndex are unpredictable too, no exact storage mapping can be computed at
compile-time. The only available compile-time information is that S and 7" may execute,
and then they may also yield conflicting accesses, i.e.

(S,A[FirstIndex ()])k (T,A[SecondIndex ()]).

However, another information is that executions of S and 7" are mutually exclusive (due to
the if --- then --- else --- construct syntax), and then S and 7' cannot be conflicting

accesses:
JecE: SecA ANTcEA,.

This example shows the need for computing approximative results about data-flow prop-
erties such as conflicting accesses, and it also shows how complex it is to achieve precise
results.

Z.oge LINOLAINUIZVYV IO AINALY O1O ‘il

int v, A[10];
scanf ("%d", &v);
if (v > 0)
S A[FirstIndex ()] = ---
else
T A[SecondIndex ()] = ---

For the purpose of parallelization, we need sufficient conditions to allow two accesses
to execute in any order. Such conditions can be expressed in terms of dependences:

Definition 2.9 (dependence) An access a depends on another access o if at least one
is a write (i.e. a € W, or @’ € W,), if they are in conflict—i.e. f.(a) = f.(a')—and if
a' executes before a—i.e. a' <guq a.

The dependence relation for an execution e is denoted by 6.: a depends on a’ is written
a b, a:

Ve e B,Va,d € Av: d'boa <5 (a€ WeVa € W) Ad <ggaA fola) = fud).
(2.6)

Once again, an exact knowledge of 6, is impossible in general. Thus, dependence analysis
consists in building a conservative approximation 6, i.e.

Ve€ E\Va,d € A,: (d'b.a = d'ba). (2.7)

Eventually, Bernstein’s conditions tell that two accesses can be executed in any order—
e.g. in parallel—if they are not dependent.

2.4.2 Reaching Definition Analysis

Some techniques require more precision than is available through dependence analysis:
given a read access in memory, they need to identify the statement instance that produced
the value. Then the read access is called the use and the instance that produced the value
is called the “definition” that “reaches” the use, or reaching definition. The reaching
definition is indeed the [ast instance—according to the execution order—on which the use
depends.

We thus define function o,, mapping every read access to its reaching definition:

Vee E,Vue R, : o, (u) =max{ve W,:vé u}; (2.8)

<seq
or, replacing max with its definition:

Ve e E\Vu e R, v EW,: v=o0,(u) <

V0, u N (VwEWe:u<SEQwVw<SEQU\/—|(w6u)).

(O uliAar Lty 4. FIVAWVIIZVY ULV

or, replacing ¢, with its definition (2.6):

Ve eEVueR,vEW,: v=o0,(u) <

v <gpq U A (Vw €W, u <gpqw Vw <gggvV fo(v) # fe(w)).

So definition v reaches use u if it executes before the use, if both refer to the same memory
location, and if no intervening write w Kkills the definition.

When a read instance w has no reaching definition, either u reads an uninitialized
value (hinting at a programming error) or the analyzed program is only a part of a
larger program. To cope with this problem, we add a virtual statement instance L which
executes before all instances in the program and assigns every memory location. Then,
each read instance u has a unique reaching definition, which may be L.

Because no exact knowledge of o, can be hoped for in general, reaching definition
analysis computes a conservative approximation o. It is preferably seen as a relation, i.e.

Vee E,VueR,veW,: (v=o0.(u) = vou). (2.9)

One may also use o as a function from reads to sets of writes, and we talk about sets
of possible reaching definitions. One must be very careful in the distinction between a
set of effective instances S C I, and the set SU {L}: if L ¢ o (u) then it says that u
reads a value produced by some instance in S, but if L € o (u) then v may read a value
produced before executing the program. The fact that L appears in a set of possible
reaching definitions is the key to program checking techniques, since it may correspond
to uninitialized values.

2.4.3 An Example of Instancewise Reaching Definition Analysis

This section is an overview of fuzzy array dataflow analysis (FADA); which was first
presented in [CBF95]. The program model is restricted to loop nests with unrestricted
conditionals, loop bounds and array subscripts. The aim of this short presentation is
to allow comparison with our own analysis for recursive programs, and because the re-
sults of an instancewise reaching definition analysis for loop nests are extensively used in
Chapter 5.

Intuitive Flavor

According to (2.8), the exact reaching definition of some read access u—o, (u)—is defined
as the maximum of the set of writes in 6, (u) (for a given program execution e € E).
As soon as the program model includes conditionals, while loops, and do loops with
non-linear bounds, we have to cope with a conservative approximation of the dependence
relation. In the case of nested loops, one usually look for an affine relation, and non-
affine constraints in (2.6) are approximated using additional analyses on variables and
array subscripts.

But then, and with the exception of very special cases, computing the maximum of an
approximate set of dependences has no meaning: the very execution of instances in 6 (u)
is not guaranteed. One solution is to take the entire set ¢ (u) as an approximation of the
reaching definition. Can we do better than that? Let us consider an example. Notice first
that, for expository reasons, only scalars are considered. The method, however, applies
to arrays with any subscript.

for (i=0; i<N; i++) {

Z.oge LINOLAINUIZVYV IO AINALY O1O J

if (--0)

Sl X = N
else

Sy X = ;
}

R ... = X ;

Assuming that N > 1, what is the reaching definition of reference x in statement R?7
Since all instances of S; and S, are in dependence with (R), it seems like we cannot do
better that approximating o ((R)) with {(S1,1),...,(S1, N),(S2,1),...,(S1, N)}.

Let us introduce a new boolean function b.(i) which represents the outcome of the
test at iteration ¢, for a program execution e € E. This allows to compute the exact
dependence relation 6, at compile-time:

Ve e E,Vv e W, :
V6. (R) <= Jie{l,... ,N}:(v=1(S1,1) Nbe(2)) V (v = (Sy,i) A =b.(7)),

which can also be written
Vee E: 6. ((R)) ={(S,1) : 1 <i <N Ab(i)} U{(Sg,7): 1 <i <N A =b(i)}.

Since the above result is not approximate, the exact reaching definition o, ((R)) of (R) is
the maximum of 6, ((R)).

Suppose o, ((R)) is an instance (Sy, 3}) for some execution e € E. Because b, (i) V
—b,(7) is equal to true for all ¢ € {1,..., N}, any value produced by an instance (S}, i) or
(Sy, i) with i < N is overwritten either by (S;, N) or by (S, N). This proves that 8! must
be equal to N. Conversely, supposing o, ((R)) is an instance (Sy, %), the same reasoning
proves that 3? must be equal to N. Then, we have the following result for function o:

Vee E: o.((R)) ={(S1,N) :b.(N)} U{(S9, N) : 7b.(N)}. (2.10)
We may now replace b, and —b, by their conservative approximations:
o ((R)) = {(S1,N),(Ss, N)}. (2.11)

Notice here the high precision achieved.

To summarize these observations, our method will be to give new names to the result of
maxima calculations in the presence of non-linear terms. These names are called parame-
ters and are not arbitrary: as shown in the example, some properties on these parameters
can be derived. More generally, one can find relations on non-linear constraints—like b,—
by a simple examination of the syntactic structure of the program or by more sophisticated
techniques. These relations imply relations on the parameters, which are then used to
increase the accuracy of the reaching definition. In some cases, these relations may be so
precise as to reduce the “fuzzy” reaching definition to a singleton, thus giving an exact
result. See [BCF97, Bar98| for a formal definition and handling of these parameters.

The general result computed by FADA is the following: the instancewise reaching
definition relation ¢ is a quast, i.e. a nested conditional in which predicates are tests
for the positiveness of quasi-affine forms (which include integer division), and leaves are
either sets of instances whose iteration vector components are again quasi-affine, or L.
See Section 3.1 for details about quasts.

uliAar Lty 4. FIVAWVIIZVY ULV

Improving Accuracy

To improve the accuracy of our analysis, properties on non-affine constraints involved in
the description of the dependences can be integrated in the data-flow analysis. As shown
in the previous example, these properties imply properties on the parameters introduced
in our computation.

Several techniques have been proposed to find properties on the variables of the pro-
gram or on non-affine functions (see [CH78, Mas93, MP94, TP95] for instance). They use
very different formalisms and algorithms, from pattern-matching to abstract interpreta-
tion. However, the relations they find can be written as first order formulas of additive
arithmetic (a.k.a. Presburger arithmetics, see Section 3.1) on the variables and non-affine
functions of the program. This general type of property makes the data-flow analysis
algorithm independent of the practical technique involved to find properties.

How the properties are taken into account in the analysis is detailed in [BCF97, Bar98].
The quality of the approximation is defined w.r.t. the ability of the analysis to integrate
(fully or partially) these properties. In general, the analysis cannot find the smallest
set of possible reaching definitions [Bar98]. This is due to decidability reasons; but for
some kind of properties, such as properties implied by the program structure, the best
approximation can be found.

2.4.4 More About Approximations

Until then, every set of instances or accesses considered was exact and dependent on the
execution. However, as hinted before, we will mostly consider approximative sets and
relations in the following. For this reason, we need the following conservative approxima-
tions:

I, the set of all possible statement instances for every possible execution of a given
program,
VeeE: (1el, = 1€l);

A, the set of all possible accesses,

VeeE: (a€A, = a€A);

R, the set of all possible reads,
Ve c E: (aER6 = aER);

W, the set of all possible writes,
VeeE: (aeW, = acW).

They can be very conservative or be the result of a very precise analysis. In practice, the
precision of these sets is not critical because they are rarely directly used in algorithms
(but they are widely used in theoretical frameworks associated with these algorithms).
Most of the time, they are implicitly present as domains or images of every relation over
instances and accesses, which have their own dedicated analysis and approximation.

Sets I, A, R, W and relations x, £, 0, o are the key to program analysis and trans-
formation techniques. In our framework, no other instancewise information is available
at compile-time. In particular, when we present an optimality result for some algorithm
it means optimality according to this information: nobody can do a better job if his only
informations are the sets and relations above.

Z.d.e LTANALLIEIAA T IULN

2.5 Parallelization

With the model defined in Section 2.4, parallelization of some program (<ggq, f.) means
construction of a program (<psp, foXF), where <,., is a parallel execution order: a partial
order and a sub-order of <gu,. Building a new storage mapping f>*" from f,. is called
memory expansion.®> Obviously, <p,r and fEXF must satisfy several properties in order to
preserve the sequential program semantics.

Some additional properties that are not mandatory for the expansion correctness, are
guaranteed by most practical expansion techniques. For example, the property that they
effectively “expand” data structures. Intuitively, a storage mapping f’*" is finer than f,
when it uses at least as much memory as f.. More precisely:

Definition 2.10 (finer) For a given execution e of a program, a storage mapping f=**
is finer than f, if

Vo,we W f20) = 7 (w) = fe(v) = fo(w).

2.5.1 Memory Expansion and Parallelism Extraction

Some basic expansion techniques techniques to build a storage mapping f** have been
listed in Section 1.2, they are used implicitly or explicitly in most memory expansion
algorithms, such as the ones presented in Chapter 5.

Now, the benefit of memory expansion is to remove spurious dependences due to mem-
ory reuse: “the more expansion, the less memory reuse”. Then, removing dependences
extracts more parallelism: “the less memory reuse, the more parallelism”. Indeed, con-
sider the exact dependence relation 6;*" for the same execution of the ezpanded program
with sequential execution order (<sq, fEX'):

Ve € E,Va,ad' € A, :
a6 a L (ae W,V d € Wo)Ad <gqah fP(a) = f5(d). (2.12)

e

Any parallel order <, (over instances) must be consistent with dependence relation 65**
(over accesses):

Ye € E,V(Zl, Tl), (22, 7'2) S Ae . (Zl, Tl) 6£}XP (Zz, 7'2) — 11 <par 2

(21, 1o are instances and ry, ry are references in a statement).

Of course, we want a compile-time description and consider a conservative approxi-
mation 6"*" of 6;*". This approximation does not require any specific analysis in general:
its computation is induced by the expansion strategy, see Section 5.4.8 for example.

Theorem 2.2 (correctness criterion of parallel execution orders) Given the fol-
lowing condition, the parallel order is correct for the expanded program (it preserves
the original program semantics).

V(e1,71), (22,72) € A (19,71) 6% (12,72) = 11 <par l2- (2.13)

An important remark is that ¢J*" is actually equal to o, when the program is con-
verted to single-assignment form (but not SSA): every dependence due to memory reuse
is removed. We may thus consider 6" = ¢ to parallelize such codes.

3Because most of the time, f&X*

2% requires more memory than f..

uliAar Lty 4. FIVAWVIIZVY ULV

2.5.2 Computation of a Parallel Execution Order

In this section, we recall some classical results about loop nest parallelization; recursive
programs will be addressed in Section 5.5. We have already presented—in Section 1.2—
two main paradigms to generate parallel code. To compute the parallel execution order
<par, data parallelism—the second paradigm—will be assumed.

Extending parallelization techniques to irregular loop nests has already been studied
by several authors: [Col95a, Col94b, GC95] to cite only the results nearest to our work.
Instead of presenting a novel algorithm for parallelization, we show how most of the
existing ones can be integrated in our framework.

Scheduling

Dependence or reaching definition analyses derive a graph where nodes are operations and
edges are constraints on the execution order. The problem is now to traverse the graph in
a partial order; this order is the execution order for the parallel program. The more partial
the order, the higher the parallelism. In general, this partial order cannot be expressed
as the list of relation pairs: one needs an expression of the partial order that does not
grow with problem size, i.e. a closed form. Additional constraints on the expression of
partial orders are: have a high expressive power; be easily found and manipulated; allow
optimized code generation.

A suitable solution is to use a schedule [Fea92], i.e. a function # from the set I of all
instances to the set N of positive integers. In a more general presentation of schedules,
vectors of integers can be used: one may then talk about multidimensional “time” and
schedules. This issue is studied by Feautrier in [Fea92]. The following definitions con-
sider one-dimensional schedules only, but it makes no fundamental difference with multi-
dimensional ones. From Theorem 2.2, we already know how the correct parallel execution
orders are defined from the dependence relation in the expanded program. Rewriting this
result for a schedule function, the correctness becomes

V(2y,71), (22,72) € At (21,71) 6% (22, 72) = 6(21) < 0(12), (2.14)

where 6™" is the dependence relation in the expanded program. (for multidimensional

schedules, <;px is used to compare vectors). If no expansion has been performed 6" is
the original dependence relation 6. If the program has been converted to single assignment
form, it is the reaching definition relation o. On the other hand, since 6 is integer valued,
the constraint above is equivalent to:

V(21,71), (22,72) € At (21,71) 0% (22, 72) = 0(11) + 1 < 0(29). (2.15)

This system of functional inequalities, called causality constraints, must be solved for the
unknown function . As it is often true for system of inequalities, it may have many
different solutions. One can minimize various objective functions, as e.g. the number of
synchronization points or the latency.

Feautrier’s Scheduling Algorithm

In the following, notation ITER(z) denotes the iteration vector of instance 2. Considering
(2.15), let us introduce &, the vector of all variables in the problem: ¢ is obtained by
concatenating ITER(z), ITER(22), and the vector of symbolic constants in the problem

Z.d.e LTANALLIEIAA T IULN

(recall ITER((S, z)) = x). It so happens that, in the context of affine dependence relations,
((21,71) 6" (19, 72)) is the disjunction of conjunctions of affine inequalities. In other words,
the set {(u,v) : w6 v} is a union of convex polyhedra. This result, built for general affine
relations, is also true when the dependence relation is approximated in various ways such
as dependence cones, direction vectors and dependence levels, see [PD96, Ban92, DV97].

Since the constraints in the antecedent of (2.15) are affine; let us denote them by
Ci(§) > 0,1 < i< M. Similarly, let ¢(¢) > 0 be the consequent #(v) —0(u) —1 > 0 in
(2.15). Then, we can apply the following lemma:

Lemma 2.2 (Affine Form of Farkas’ Lemma) An affine function () from integer
vectors to integers is non-negative on a polyhedron {¢ : C;(§) > 0,1 < ¢ < M} if there

exists non-negative integers A, ..., Ay (the Farkas multipliers) such that:
M
V(&) = Ao + Z AiCi(6) (2.16)
i=1

This relation is valid for all values of £. Hence, one can equate the constant term and the
coefficient of each variable in each side of the identity, to get a set of linear equations where
the unknowns are the coefficients of the schedules and the Farkas multipliers, A;. Since the
latter are constrained to be positive, the system must be solved by linear programming
[Fea88b, Pug92| (see also Section 3.1).

Unfortunately, some loop nests do not have “simple” affine schedules. The reason is
that when a loop nest has an affine schedule, it has a large degree of parallelism. However,
it is clear that some loop nests have few or even no parallelism, hence no affine schedule.
The solution in this case is to use a multidimensional affine schedule, whose domain is N¢,
d > 1, ordered according to the lexicographic order. Such a schedule can have as low a
degree of parallelism as necessary, and can even represent sequential programs. The selec-
tion of a multidimensional schedule can be automated by using algorithms from [Fea92].
It can be proved that any loop nest in an imperative program has a multidimensional
schedule. Notice that multidimensional schedules are particularly useful in the case of
dynamic control programs, since we have in that case to overestimate the dependences
and hence to underestimate the degree of parallelism.

Code generation of parallel scheduled programs is simple in theory, but very com-
plex in practice: issues such as polyhedron-scanning [AI91], communication handling,
task placement, and low-level optimizations are critical for efficient code generation
[PD96] (pages 79-103). Dealing with complex loop bounds and conditionals raises new
code generation problems-not talking about allocation of expanded data structures—see
[GC95, Col94a, Col95b].

Other Scheduling Techniques

Before the general solution to the scheduling problem proposed by Feautrier, most algo-
rithms were based on classical loop transformation techniques that include loop fission,
loop fusion, loop interchange, loop reversal, loop skewing, loop scaling, loop reindexing
and statement reordering. Moreover, dependences abstractions were much less expressive
than affine relations.

The first algorithm was designed by Allen and Kennedy [AK87|, which inspired many
other solutions [Ban92|. Several complexity and optimality results have also been dis-
covered by Darte and Vivien [DV97]. Extending previous results, they designed a very

uliAar Lty 4. FIVAWVIIZVY ULV

powerful algorithm, but its abstraction does not support the full expressive power of affine
relations.

Moreover, many optimizations of Feautrier’s algorithm have been designed, mainly
because of the wide range of objective functions to optimize. For example, Lim and Lam
propose in [LL97] a technique to reduce the number of synchronizations induced by a
schedule, and they compare their technique with other recent improvements.

Speculative execution is a classical technique to improve scheduling of finite depen-
dence graphs, but it is not for general affine relations. It has been explored by Collard and
Feautrier as a way to extract more parallelism from programs with complex loop bounds
and conditionals [Col95a, Col94b].

Eventually, all schedule functions computed by these techniques can be captured by
affine functions of iteration vectors. The associated parallel execution order is thus an
affine relation <p,g, well suited to our formal framework:

Vu,v € Wi u <pyp v <= 0(u) < 6(v)
for one-dimensional schedules, and
Vu,v € Wi u <pyp v <= 0(u) <ppx 0(v)

for multidimensional ones.

Tiling

Despite the good theoretical results and recent achievements, scheduling techniques can
lead to very bad performance, mainly because of communication overhead and cache
problems. Indeed, fine grain parallelization is not suitable to most parallel architectures.*
Partitioning run-time instances is thus an important issue: the solution is to group ele-
mentary computations in order to take advantage of memory hierarchies and to overlap
communications and computations.

The tiling technique groups elementary computations into a tile, each tile being ex-
ecuted on a processor in an atomic way. It is well suited to nested loops with regular
computation patterns [IT88, CFH95, BDRR94]. An important goal of these researches
is to find the best tiling strategy respecting measure criteria like the number of commu-
nications happening between the tiles. This strategy must be known at compile time to
generate efficient code for a particular machine.

Most tiling techniques are limited to perfect loop nests, and dependences are often
supposed uniform when evaluating the amount of communications. The most usual tile
model has been defined by Irigoin and Triolet in [IT88]; it enforces the following con-
straints:

e tiles are bounded for local memory requirements;

e tiles are identical by translation to allow efficient code generation and automatic
processing;

e tiles are atomic units of computation with synchronization steps at their beginning
and at their end.

4But it is suitable for instruction-level parallelism.

Z.d.e LTANALLIEIAA T IULN

Many different algorithms have been designed to find an efficient tile shape and then to
partition the nest of loops. Scheduling of individual tiles is done using classical schedul-
ing algorithms. However, inner-tile sequential execution is open for a larger scope of
techniques, depending on the context. The simplest inner-tile execution order is the orig-
inal sequential execution of elementary computations, but other execution orders—still
compatible with the program dependences—could be more suitable for the local memory
hierarchy, or would enable more aggressive storage mapping optimization techniques (see
Section 5.3 for details, but further study of this idea is left for future work). A more
extensive presentation of tiling can be found in [BDRR94].

We make one hypothesis to handle parallel execution orders produced by tiling tech-
niques in out framework: the inner-tile execution order must be affine. It is denoted by
<mn~. Nevertheless, we are not aware of techniques that would not build affine inner-tile
execution orders. The tile shape can be any bounded parallelepiped (or part of a paral-
lelepiped on iteration space boundaries), but is often a rectangle in practice. Then, the
result of a tiling technique is a pair (7,0), where the tiling function T maps statement
instances to individual tiles and the schedule § maps tiles to integers or vectors of integers.

Eventually, the result of a tiling technique can be captured by our parallel execution
order framework, with an affine relation <p.g:

Vu,v € Wi u <pppv <= 0(T(u)) <O(T(v)V (T(u)=Tw) Nu<nv) (2.17)
for a one-dimensional schedule of tiles, and
Vu,v € Wi u <ppp v <= 0(T(u)) <upx (T (v)) V (T'(u) =T(v) N u <y v) (2.18)

for a multidimensional schedule.

2.5.3 General Efficiency Remarks

When dealing with nest of loops, it is well known that complex loop transformations
require complex polytope traversals, which slightly increases execution time. Moreover,
even when no run-time restoration of the data flow is required, the right-hand side of
statements often grow huge because of nested conditional expressions. Then, the code
generated by a straightforward application of parallelization algorithms is very inefficient.
Moving conditionals and splitting loops is very useful, as well as polytope scanning tech-
niques [AI91, FBIg|.

These remarks naturally extend to recursive programs and recursive data structures.
The only difference is that most optimization techniques—such as constant propagation,
forward substitution, invariant code motion, dead-code elimination [ASU86, Muc97|—are
either limited to non-recursive programs or much less effective with complex recursive
structures. In this work, indeed, most experimentations with recursive programs have
required manual optimizations. This should encourage us to develop more aggressive
techniques suitable for recursive programs.

Of course, shape and alias analyses discussed in Section 2.2.2 are very useful when
pointer-based data structures are considered. A single pair of aliased pointers is likely to
forbid any further precise analysis or aggressive program transformation, especially when
using generic types (such as voidx).

Induction variable detection [Wol92] and other related symbolic analysis techniques
[HP96] are critical for program analysis and transformation. It is especially true for

uliAar Lty 4. FIVAWVIIZVY ULV

instancewise analyses: computing the value of an integer (or pointer) variable at each
instance of a statement is the key information for dependence analysis. We will indeed
present a new induction variable detection technique suitable for our recursive program
model.

In the following, when no specific contribution has been proposed in this work, we will
not address these necessary previous stages and optimizations:

e we will always consider that the required information about data structure shape,
aliases or induction variables is available, when this information can be derived by
classical techniques;

e we will generate unoptimized transformed programs, supposing that classical opti-
mization techniques can do the job.

We make the hypothesis that our techniques, if implemented in a parallelizing compiler,
are preceded and followed by the appropriate analyses and optimizations.

[oX]

Chapter 3

Formal Tools

Most technical results on mathematical abstractions are gathered in this chapter. Sec-
tion 3.1 is a general presentation of Presburger arithmetics and algorithms for systems of
affine inequalities. Section 3.2 recalls classical results on formal languages and Section 3.3
addresses rational relations over monoids. Contributions to an interesting class of ratio-
nal relations are found in Section 3.4. Section 3.5 addresses algebraic relations, and also
presents some new results. The two last sections are mostly devoted to applicability of
formal language theory to our analysis and transformation framework: Section 3.6 dis-
cusses intersection of rational and algebraic relations, and approximation of relations is
the purpose of Section 3.7.

The reader whose primary interest is in the analysis and transformation techniques
may skip all proofs and technical lemmas, to concentrate on the main theorems. Because
this chapter is more a “reference manual” for mathematical objects, it can also been read
“on demand” when technical information is required in the following chapters.

3.1 Presburger Arithmetics

When dealing with iteration vectors, we need a mathematical abstraction to capture sets,
relations and functions. This abstraction must also support classical algebraic operations.
Presburger arithmetics is well suited to this purpose, since most interesting questions are
decidable within this theory. It is defined by logical formulas build from -, V and A,
equality and inequality of integer affine constraints, and first order quantifiers 3 and
V. Testing the satisfiability of a Presburger formula is at the core of most symbolic
computations involving affine constraints. It is known as integer linear programming and
is decidable, but NP-complete, see [Sch86] for details. Indeed, all known algorithms are
super-exponential in the worst case, such as the Fourier-Motzkin algorithm implemented
by Pugh in Omega [Pug92] and the Simplex algorithm with Gomory cuts implemented by
Feautrier in PIP [Fea88b, Fea91|. In practice, Fourier-Motzkin is very efficient on small
problems, and the Simplex algorithm is more efficient on medium problems, because its
complexity is polynomial in the mean. Computing exact solutions to large integer linear
programs is an open problem at present, and this is a problem for practical application
of Presburger arithmetics to automatic parallelization.

uriAar tiviv 0. ruvnuiviair, 1t JULOo

3.1.1 Sets, Relations and Functions

We consider vectors of integers, and sets, functions, and relations thereof. Functions
are seen as a special case of relation and relations are also interpreted as functions: a
relation on sets A and B can equivalently be described by a function from A to the set
B(B) of subsets of B. Notice the range and domain of a function or relation may not
have the same dimension. Sets of integer vectors are ordered by the lexicographic order
<iex, and the “bottom element” 1 denotes by definition an element which precedes all
integer vectors. Strictly speaking, we consider sets, functions and relations described by
Presburger formulas on integer vectors extended with L.

To describe mathematical objects in Presburger arithmetics, we use three types of
variables: bound, unknowns and parameters. Bound variables are quantified by 4 and V in
logical formulas, whereas unknown variables and parameters are free variables. Unknown
variables appear in input, output or set tuples, whereas parameters are fully unbound and
interpreted as symbolic constants. Handling parameters is trivial with Fourier-Motzkin,
but required a specific extension of the Simplex algorithm, called Parametric Integer
Programming (PIP) by Feautrier [Fea88b].

Omega [Pug92] is widely used in our prototype implementations and semi-automatic
experiments, and its syntax is very close to the usual mathematical one. Non-intuitive
details will be explained when needed in the experimental sections. PIP uses another rep-
resentation for affine relations called quasi-affine selection tree or quast, where quasi-affine
forms are an extension of affine forms including integer division and modulo operations
with integer constants.

Definition 3.1 (quast) A quasi-affine selection tree (quast) representing an affine rela-
tion! is a many level conditional, in which

e predicates are tests for the positiveness of quasi-affine forms in the input variables
and parameters,

e and leaves are sets of vectors described in Presburger arithmetics extended with L
— which precedes any other vector for the lexicographic order.

It should be noticed that bound variables in affine relations appear as parameters in
quasts called wildcard variables. These wildcard variables are not free: they are con-
strained inside the quast itself. Moreover, quasi-affine forms (with modulo and division
operations) in conditionals and leaves can be converted into “pure” affine forms thanks
to additional wildcard variables, see [Fea91] for details.

Empty sets are allowed in leaves—they differ from the singleton {1 }—to describe
vectors that are not in the domain of a relation. Let us give a few examples.

e The function corresponding to integer addition is written
{(i1,42) — (4) 41 + iz = j}
and can be represented by the quast

{i1 +is}

'In fact, this is an extension of Feautrier’s definition to capture unrestricted affine relations and not
only affine functions, see [GC95].

Jd.1. Civopuivaluiy Al L HHiviry 1 100

e The same function restricted to integers less than a symbolic constant N is written
{(il,iz) — (])21 <N/\i2 <N/\Zl+22:]}
and as a quast
if 1u <N
then | then {i, + iy}
else ¥

else O

e The relation between even numbers is written

{() = () : (G, B0 =2a A j = 28)}

(we keep the functional notation — for better understanding, and to be compliant
with Omega’s syntax) and a quast representation

if 1 =2«
then {203 : [€ Z}
else @

(av is a wildcard variable)

Many other examples of quasts occur in Chapter 5.

A new interface to PIP has been written in Objective Caml, allowing easy and efficient
handling of these quasts. Implementation was done by Boulet and Barthou, see [Bar98§|
for details. The quast representation is neither better nor worse than the classical logical
one, but it is very useful to code generation algorithms and very near from the parametric
integer programming algorithm.

To conclude this presentation of mathematical abstractions for affine relations, we
suppose that MAKE-QUAST is an algorithm to compute a quast representation for any
affine relation. (The reverse problem is much easier and not useful to our framework.) Its
extensive description is rather technical but we may sketch the principles of the algorithm.
The Presburger formula defining the affine relation is first converted to a form with only
existential quantifiers, by the way of negation operators (a technique also used in the
Skolem transformation of first order formulas); then every bound variable is replaced by a
new wildcard variable; unknown variables are isolated from equalities and inequalities to
build sets of integer vectors; and eventually the A and V operators are rewritten in terms
of conditional expressions. Subsequent simplifications, size reductions and canonical form
computations are not discussed here, see [Fea88b, PD96, Bar98| for details.

For more details on Presburger arithmetics, integer programming, mathematical repre-
sentations of affine relations, specific algorithms and applications to compiler technology,
see [Sch86, PD96, Pug92, Fea88b).

3.1.2 Transitive Closure

Computing the transitive closure of a relation is a classical technique in computer science,
but most algorithms target relations whose graph is finite. This hypothesis is obviously

uriAar tiviv 0. ruvnuiviair, 1t JULOo

not acceptable in the case of affine relations. The problem is that the transitive closure of
an affine relation may not be an affine relation; and knowing when it is an affine relation
is not even decidable. Indeed, we can encode the multiplication using transitive closure,
which is not definable inside Presburger arithmetics:

{(z,y) = (x+Ly+2)} ={(z,y) = (@', y+2(a' —2)): x < 2"}

It should be noted that testing if a relation R is closed by transitivity is very simple:
it is equivalent to R o R — R being empty.

We are thus left with approximation techniques. Indeed, finding a lower bound is
rather easy in theory: the transitive closure R* of a relation R can be defined as

R =|J R

keN

and computing |J,_, R* for increasing values of n yields increasingly accurate lower
bounds. In some cases, |J;_, RF is constant for n greater than some value ng, and this
constant gives the exact result for R*. But in general, the size of the result grows very
quickly without reaching the exact transitive closure. This method can still be used with
“reasonable” values of n to compute a lower bound.

Now, the previous iterative technique is unable to find the exact transitive closure of
relation R = {(i) — (i +1)}, and it is even unable to give any interesting approximation.
The transitive closure of R is nevertheless a very simple affine relation: R* = {(i) —
(7/) 1 < i'}. More clever techniques should thus be used to approximate transitive
closures of affine relations. Kelly et al. designed such a method and implemented it
in Omega [KPRS96]. It is based on approximating general affine relations in a sub-
class where transitive closure can be computed exactly. They coined the term d-form
(d for difference) to define this class. Their technique allows computation of both upper
bounds—i.e. conservative approximations—and lower bounds, see [KPRS96| for details.

3.2 Monoids and Formal Languages

This section starts with a short review of basic concepts, then we recall formal languages
properties interesting to our purpose. See the well known book by Hopcroft and Ullman
[HUT79], the first two chapters of the book by Berstel [Ber79|, and the Handbook of Formal
Languages (volume 1) [RS97a] for details.

3.2.1 Monoids and Morphisms

A semi-group consists of a set M and an associative binary operation on M, usually
denoted by multiplication. A semi-group which has a neutral element is a monoid. The
neutral element of a monoid is unique, and is usually denoted by 1,; or 1 for short. The
monoid structure is widely used in this work, with several different binary operations.
Given two subsets A and B of a monoid M, the product of A and B is defined by

AB={ce M :(Jac A,Ibe€ B:c=ab)}.

This definition converts B(M) into a monoid with unit {1,,/}. A subset A of M is a
sub-semi-group (resp. sub-monoid) of M if A*> C A (resp. A2 C A and 1); € A). Given

D.4. WVIUINULIDO AN DUIvVIiAL LAINGUAUTLILO

any subset A of M, the set

A+:UA”

n>1

n>0

is a sub-semi-group of M, and

with A% = {1,,} is a sub-monoid of M. In fact, A" (resp. A*) is the least sub-semi-group
(resp. sub-monoid) for the order of set inclusion containing A. It is called the sub-semi-
group (resp. sub-monoid) generated by A. If M = A* for some A C M, then A is a system
of generators of M. A monoid is finitely generated if it has a finite set of generators.

For any set A, the free monoid A* generated by A is defined by tuples (ay,...,a,)
of elements of A, with n > 0, and with tuple concatenation as binary operation. When
A is finite and non-empty, it is called an alphabet, tuples are called words, elements of A
are called letters and the neutral element is called the empty word and denoted by . A
formal language is a subset of a free monoid A*, and the length |u| of a word u € A* is
the number of letters composing u. By definition, the length of the empty word is 0. For
a letter ¢ in an alphabet A, the number of occurrences of a in A is denoted by |u|,. We
will also use the classical notions of prefixes, suffixes, word reversal, sub-words and word
factors. The product of two languages is also called concatenation.

We also recall the definition of a monoid morphism. If M and M’ are monoids, a
(monoid) morphism g : M — M is a function satisfying

p(lpy) =1y and Vmy,mg € M p(my, me) = p(my)p(ms).
If A and B are subsets of M and p : M — M’ is a morphism, then

WAB) = p(A)u(B), u(A") = p(A)" and p(A") = p(A)".

3.2.2 Rational Languages

This sections recalls basic definitions and results, to set notations and allow reference in
later chapters.

Given an alphabet A, a (finite-state) automaton A = (A* Q, I, F, E) consists of a
finite set () of states, a set I C) of initial states, a set F' C () of final states, and a finite
set of transitions (a.k.a. edges) £ C @ x A* x Q.

Free monoid A* is often removed for comodity, when clear from the context: we write
A= (Q,I,F,E). A transition (¢, z,q¢') € E is usually written ¢ — ¢, ¢ is the departing
state, ¢’ is the arrival state, and x is the label of the transition. A transition whose label
is € is called an e-transition.

A pathis a word (py, z1,q1) - - (Pny T, Gn) in E* such as ¢; = p;q foralli € {1,... ,n—
1}, and - - -z, is called the label of the path. An accepting path goes from an initial
state to a final one. An automaton is trim when all its states are accessible and may be
part of an accepting path.

An automaton is deterministic when it has a single initial state, every transition label
is a single letter or €, at most one transition may share the same departing state and
label, and a state with departing e-transition may not have departing labeled transitions.

The language |A| realized by a finite-state automaton A is defined by v € |A] iff u
labels an accepting path of A. A regular language is a language realized by some finite-state
automaton.

uriAar tiviv 0. ruvnuiviair, 1t JULOo

Any regular language can be realized by a finite-state automaton without e-transitions
and where all transition labels are single letters. Any regular language can be realized by
a deterministic finite-state automaton.

The family of rational languages over an alphabet A is equal to the least family of
languages over A containing the empty set and singletons, and closed under union, con-
catenation and the star operation.

The following well known theorem is at the core of formal language theory.

Theorem 3.1 (Kleene) Let A be an alphabet. The family of rational and regular lan-
guages over A coincides.

Beyond the closure properties included in the definition, rational languages are closed
under the plus operation, intersection, complementation, reversal, morphism and inverse
morphism.

Proposition 3.1 The following problems are decidable for rational languages: member-
ship in linear time, emptiness, finiteness, emptiness of the complement, finiteness of
the complement, inclusion, equality.

3.2.3 Algebraic Languages

We recall a few basic facts about algebraic languages and push-down automata. See
[HUT79, Ber79] for an extensive introduction.

An algebraic grammar—a.k.a. context-free grammar—G = (A, V, P) consists of an al-
phabet A of terminal letters, an alphabet V' of variables—also known as non-terminals—
distinct from A, and a finite set P C V' x (V U A)* of productions.

When clear from the context, the alphabet is removed from the grammar definition,
and we write G = (V, P). A production ({,«) € P is usually written in the form £ — «,
and if £ — ay,s,...,& — «, are productions of G having the same left-hand side &,
they are grouped together using notation £ — ay | ay | -+ | ay.

Let A be an alphabet and let G = (V, P) be an algebraic grammar. We define the
derivation relation as an extension of the production notation —-:

f—g<< ecV,Iu,aq,ve (VUA)":{ 5a€PAf=ulvAg=uav.

Then, for any p € N, % is the p™ iteration of —, and % and = are defined as usual.
In general, grammars are presented with a distinguished non-terminal S called the
aziom. This allows to define the language Lg generated by a grammar G' = (V, P) by

Log={uec A*: S > u}.

A language L generated by some algebraic grammar G is an algebraic language—a.k.a.
context-free language.

Most expected closure properties hold for algebraic languages, but not intersection.
Indeed, algebraic languages are closed under union, concatenation, star and plus opera-
tions, reversal, morphism, inverse morphism, and intersection with rational languages.

Although the most natural definition of algebraic languages comes from the grammar
model, we prefer in this work another representation.

Given an alphabet A, a push-down automaton A = (A*,T', vy, @, I, F, E) consists of a
stack alphabet T', a non-empty word v, in I'* called the initial stack word, a finite set @

D.4. WVIUINULIDO AN DUIvVIiAL LAINGUAUTLILO

of states, a set I C () of initial states, a set F' C @ of final states, and a finite set of
transitions (a.k.a. edges) E C Q x A* X I' x I'* x Q.

Free monoid A* is often removed for commodity, when clear from the context. A tran-
sition (g, z, g,7,q') € E is usually written ¢ ¢, the finite-state automata vocabulary
is inherited, and ¢ is called the top stack symbol. An empty stack word is denoted by &.

A configuration of a push-down automaton is a triple (u, ¢,), where w is the word to
be read, ¢ is the current state and v € I'* is the word composed of symbols in the stack.
The transition between two configurations ¢; = (uy, ¢y, v1) and ¢; = (u9, g9, 72) is denoted
by relation — and defined by ¢ — ¢ iff there exist (a,g,7,7") € A* x I' x I'* x I'* such
that

U1 = AUs /\’)/1:’)/9/\72:7,7/\ (Q17a79777q2) SO

Then +- with p € N, " and — are defined as usual.
A push-down automaton A = (T, 7y, @, [, F, E) is said to realize the language L by
final state, when u € L iff there exist (¢;,qr,v) € I X F' x I'* such that

(U, qis 70) — (67 qf, 7)

A push-down automaton A = (I', v, @, I, F, E) is said to realize the language L by empty
stack, when v € L iff there exist (g;,qf) € I x F such that

(ua i, 70) 'L) (57 qf, 5)-

Notice that realization by empty stack implies realization by finite state: gy is still required
to be in the set of final states.

Theorem 3.2 The family of languages realized by final state or by empty stack by push-
down automata is the family of algebraic languages.

Unlike finite-state automata, the deterministic property for push-down automata im-
poses some restrictions on the expressive power and brings an interesting closure property.
A push-down automaton is deterministic when it has a single initial state, every transition
label is a single letter or £, at most one transition may share the same departing state, la-
bel and top stack symbol, and a state with departing s-transition may not have departing
labeled transitions.

It is straightforward that any algebraic language can be realized by a push-down au-
tomaton whose transition labels are either ¢ or a single letter. The family of languages
realized by final state by deterministic push-down automata is called the family of deter-
ministic algebraic languages. It should be noticed that this family is also known as LR(1)
(which is equal to LR(k) for k > 1) in the syntactical analysis framework [ASUS86].

Proposition 3.2 The family of languages realized by empty stack by deterministic push-
down automata is the family of deterministic algebraic languages with prefiz property.

Recall that a language L has the prefix property when a word uv belonging to L
forbids u to belong to L, for all words v and non-empty words v. The interesting closure
property is the following:

Proposition 3.3 The family of deterministic algebraic languages is closed under com-
plementation.

uriAar tiviv 0. ruvnuiviair, 1t JULOo

However, closure of deterministic algebraic languages under union and intersection are
not available. Decidability of deterministic algebraic languages among algebraic ones is
unknown, despite the number of tries and related works [RS97a].

Proposition 3.4 The following problems are decidable for algebraic languages: member-
ship, emptiness, finiteness.

These additional problems are decidable for deterministic algebraic languages:
membership in linear time, emptiness of the complement, finiteness of the comple-
ment.

The following problems are undecidable for algebraic languages: being a rational
language, emptiness of the complement, finiteness of the complement, inclusion (open
problem for deterministic algebraic languages), equality (idem).

We conclude this section with a simple algebraic language example whose properties
are frequently observed in our analysis framework [Coh99a]. The Lukasiewicz language
E over an alphabet {a,b} is the language generated by axiom ¢ and the grammar with
productions

§ — akl | b.

The Lukasiewicz language is apparented to Dyck languages [Ber79] and is the simplest
of a family of languages constructed in order to write arithmetic expressions without
parentheses (prefix or “polish” notation): the letter a represents a binary operation and
b represents the operand. Indeed, the first words of £ are

b, abb, aabbb, ababb, aaabbbb, aababbb, . . .

Proposition 3.5 Let w € {a,b}*. Then w € L iff |w|, — |w|, = —1 and |u|, — |ul, > 0
for any proper left factor u of w (i.e. Jv € {a,b}" : w = wv). Moreover, if w,w’ € E,
then

jww'le — [ww'ly = |wle = [wly + |w'la — |w'],.

This implies that £ has the prefix property, see [Ber79] for details. A graphical rep-
resentation may help understand intuitively the previous proposition and properties of
E: drawing the graph of function v — |u|, — |u], as u ranges over the left factors of
w = aabaabbabbabaaabbb yields Figure 3.1.a.

Eventually, Figure 3.1.b shows a push-down automaton which realizes the Lukasiewicz
language by empty stack. It has a single state, which is both initial and final, a single stack
symbol 7. The initial stack word is also I, it is denoted as — I on the initial state. The
push-down automaton in Figure 3.1.c realizes E by final state. Two states are necessary,
as well as two stack symbols Z and I, the initial stack word being Z.

Important remark. In the following, every push-down automaton will implicitly ac-
cept words by final state.

3.2.4 One-Counter Languages

An interesting sub-class of algebraic languages is called the class of one-counter languages.
It is defined through push-down automata. A classical definition is the following: A push-
down automaton is a one-counter automaton if its stack alphabet contains only one letter.

D.4. WVIUINULIDO AN DUIvVIiAL LAINGUAUTLILO

1

0
J a a b a a b b a b b a b a a a b b IN
-1

Figure 3.1.a. Evolution of occurrence count differences

Y

b, — ¢ b,I — ¢
I 7 el — Z
— — 1 @‘
a,l — II a, I — I1 a, /. — 41
Figure 3.1.b. Push-down automaton Figure 3.1.c. Push-down automaton accept-
accepting by empty stack ing by final state

.................... Figure 3.1. Studying the Lukasiewicz language

An algebraic language is a one-counter language if it is realized by a one-counter automaton
(by final state).

However, we prefer a definition which is more suitable to our practical usage of one-
counter languages. This definition is a bit more technical.

Definition 3.2 (one-counter automaton and language) A push-down automaton
is a one-counter automaton if its stack alphabet contains three letters, Z (for “zero”),
I (for “increment”) and D (for “decrement”) and if the stack word belongs to the
(rational) set ZI* + ZD*. An algebraic language is a one-counter language if it is
realized by a one-counter automaton (by final state).

It is easy to show that Definition 3.2 describes the same family of languages as the
preceding classical definition: the idea is to replace all stack symbols by I and to “remem-
ber” the original symbol in the state name. Intuitively, if n is a positive integer, stack
word ZI" stands for counter value n, stack word Z D" stands for counter value —n, and
stack word Z stands for counter value 0.

The family of one-counter languages is strictly included in the family of algebraic
languages, and appears as a natural abstraction in our program analysis framework. The
Lukasiewicz language is a simple example of one-counter language, Figure 3.2 shows a one-
counter automaton realizing it. This example introduces specific notations to simplify the
presentation of one-counter automata:

—mn stands for initialization of the stack word to ZI™ is n is positive, ZD" if n is
negative, and Z if n is equal to zero;

+n for n > 0 stands for pushing /™ onto the stack if the stack word is in ZI*, and if

uriAar tiviv 0. ruvnuiviair, 1t JULOo

the stack word is ZD* its stands for removing max(n, k) symbols then, if n > £k,
pushing back I"~* onto the stack;

+n for n < 0 stands for —(—n);

—n for n > 0 stands for pushing D™ onto the stack if the stack word is in ZD*, and if the
stack word is ZI* its stands for removing max(n, k) symbols then, if n > k, pushing
back D" * onto the stack:

—n for n < 0 stands for +(—n);

=0 stands for testing if the top stack symbol is Z;

#0 stands for testing if the top stack symbol is not Z;
>0 stands for testing if the top stack symbol is I;

<0 stands for testing if the top stack symbol is D;

v

0 stands for testing if the top stack symbol is Z or [;
<0 stands for testing if the top stack symbol is Z or D.

These operations are the only available means to check and update the counter. Moreover,
tests for 0 can be applied before additions or subtractions: <0, —1 stands for allowing the
transition and decrementing the counter when the counter is negative, and ¢, 41 stands
for incrementing the counter in all cases. See also the transition labeled by b on Figure 3.2.

The general form for a one-counter automaton is thus (A*, ¢, Q, I, F, E)], where A is
an alphabet (removed when clear from the context), ¢ is the initial value of the counter,
and E C Q x A* x {¢,=0,#0,>0,<0,>0,<0} X Z x Q.

a,+1

.......... Figure 3.2. One-counter automaton for the Lukasiewicz language

After this short presentation of one-counter languages, one would expect a generaliza-
tion to multi-counter languages, also called Minsky machines [Min67]. The general form
of n-counter automata is (A*, ¢}, ... ,c"+0,Q, I, F, E), where c} is the initial value of the
k" counter and E is defined on the product of all stacks. However, it has been shown
that two-counter automata have the same expressive power as Turing machines—which
is a stronger result than the well known equivalence of Turing machines and two-stack
automata. Most interesting questions thus become undecidable for multi-counter lan-
guages. However, a few additional restrictions on this family of languages have recently

J.9. NALIVUINAL v d 1UIND JU

been proven to enable several decidability results, as for the emptiness problem. Studying
the applicability of these new results to our program analysis framework is left for future
work, but most interesting applications would probably arise from work by Comon and
Jurski [CJ98].

3.3 Rational Relations

We start with definition and basic properties of recognizable and rational relations, then
introduce the machines realizing rational transductions. After studying some examples,

we review decision problems and closure properties. This section recalls classical results,
see [Eil74, Ber79, ABS8S8]| for details.

3.3.1 Recognizable and Rational Relations

We recall the definition and a useful characterization of recognizable sets in finitely gen-
erated monoids.

Definition 3.3 (recognizable set) Let M be a monoid. A subset R of M is a recog-
nizable set if there exist a finite monoid N, a morphism « from M to N and a subset
P of N such that a(R) = P.

Recognizable sets can be seen as a generalization of rational (a.k.a. regular) languages
to non-free monoids which preserves the structure of boolean algebra:

Proposition 3.6 Let M be a monoid, both @ and M are recognizable sets in M. Rec-
ognizable sets are closed under union, intersection and complementation.

Although recognizable sets are closed under concatenation, they are not closed under
the star operation. But it is the case of rational sets, which extend recognizable ones.
Their definition is borrowed from rational languages:

Definition 3.4 (rational set) Let M be a monoid. The family of rational sets in M is
the least family of subsets of M holding @ and singletons {m} C M, closed under
union, concatenation and the star operation.

However, rational sets are not closed under complementation and intersection, in gen-
eral.

When there are two monoids M; and M, such that M = M; x M,, a recognizable
subset of M is called a recognizable relation. The following result describes the “structure”
of recognizable relations.

Theorem 3.3 (Mezei) A recognizable relation R in M) x M, is a finite union of sets of
the form K x L where K (resp. L) is a rational set of M; (resp. Ms).

When there are two monoids M; and M, such that M = M; x M, a rational subset
of M is called a rational relation. In the following, we will only consider recognizable or
rational sets which are relations between finitely generated monoids.

uriAar tiviv 0. ruvnuiviair, 1t JULOo

The following characterization of rational relations is fundamental: it allows to express
rational relations by means of rational languages and monoid morphisms. (The formula-
tion is slightly different from the original theorem by Nivat, see [Ber79] for details.)

Theorem 3.4 (Nivat) Let M and M’ be two monoids. Then R is a rational relation over
M and M' iff there exist an alphabet A, two morphisms p : A* — M, u' : A* — M,
and a rational language K C A* such that

R ={(p(h), p'(h)) : h € K}.

3.3.2 Rational Transductions and Transducers

We recall here a “more functional” view of recognizable and rational relations. From a
relation R over M, and M, we define a transduction T from M, into M as a function from
M into the set PB(M;) of subsets of My, such that v € 7(u) iff uRv. For commodity, 7
may also been extended to a mapping from P(M;) to P(Ms), and we write 7 : My — M.

A transduction 7 : M; — M, is recognizable (resp. rational) iff its graph is a recog-
nizable (resp. rational) relation over M; and M,. Both recognizable and rational trans-
ductions are closed under inversion (i.e. relational symmetry).

In the next sections, we use either relations or transductions, depending on the context.
The family we will study lies somewhere between recognizable and rational relations; it
retains the boolean algebra structure and the closure under composition.

The following result—due to Elgot and Mezei [EM65, Ber79]—is restricted to free
monoids.

Theorem 3.5 (Elgot and Mezei) If A, B and C are alphabets, 7 : A* — B* and 7 :
B* — C* are rational transductions, then 7 o7 : A* — C* is a rational transduction.

Nivat’s theorem can be rewritten for rational transductions:

Theorem 3.6 (Nivat) Let M and M’ be two monoids. Then 7 : M — M’ is a rational
transduction iff there exist an alphabet A, two morphisms p : A* — M,y : A* — M',
and a rational language K C A* such that

VmeM: 7(m)=p(p " (m)NK).

These two theorems are key results for dependence analysis and dependence testing,
see Chapter 4.

The “mechanical” representations of rational relations and transductions are called
rational transducers; they extend finite-state automata in a very natural way:

Definition 3.5 (rational transducer) A rational transducer T = (M, M,,Q,I,F,E)
consists of an input monoid M7, an output monoid M, a finite set of states (7, a set of
initial states I C @, a set of final states F' C (), and a finite set of transitions (a.k.a.
edges) E C QQ x My x M, x Q.

Monoids M; and M; are often removed for commodity, when clear from the context: we
write 7 = (Q, I, F,). Since we only consider finitely generated monoids, the transitions
of a transducer can equivalently be chosen in Q' x (G U {ly,}) X (Go U {1,1,}) X @,
where Gy (resp. (y) is a set of generators for M, (resp. M) and @' is some set of states
larger than Q.

J.9. NALIVUINAL v d 1UIND

Most of the time, we will be dealing with free monoids—i.e. languages; the empty
word is then the neutral element and is denoted by e.

A path is a word (p1,21,91,¢1) "+ (Pn, Tn, Yn, ¢n) in E* such as ¢; = p;;q for all i €
{1,...,n =1}, and (xy- -2, 41 ---yn) is called the label of the path. A transducer is
trim when all its states are accessible and may be part of an accepting path.

The transduction |7 | realized by a rational transducer 7 is defined by g € |T|(f) iff
(f,g) labels an accepting path of 7. It is a consequence of Kleene’s theorem that a subset
of My x M, is a rational relation iff it is recognized by a rational transducer :

Proposition 3.7 A transduction is rational iff it is realized by a rational transducer.
Let us now present decidability and undecidability results for rational relations.

Theorem 3.7 The following problems are decidable for rational relations: whether two
words are in relation (in linear time), emptiness, finiteness.

However, most other usual questions are undecidable for rational relations.

Theorem 3.8 Let R, R’ be rational relations over alphabets A and B with at least two
letters. It is undecidable whether RN R = @, R C R, R = R, R = A* x B*,
(A* x B*) — R is finite, R is recognizable.

A few questions may become decidable when replacing A* and B* by some particular
finitely generated monoids, but it is not the case in general.

The following definition will be useful in some technical discussions and proofs in the
following. It formalizes the fact that a rational transducer can be interpreted as a finite-
state automaton on a more complex alphabet. But beware: both interpretations have
different properties in general.

Definition 3.6 Let 7 be a rational transducer over alphabets A and B. The finite-
state automaton interpretation of 7 is a finite-state automaton A over the alphabet
(Ax B)U(Ax {e})U({e} x B) defined by the same states, initial states, final states
and transitions.

3.3.3 Rational Functions and Sequential Transducers

We need a few results about rational transductions that are partial functions.

Definition 3.7 (rational function) Let M; and M, be two monoids. A rational func-
tion v : My — M, is a rational transduction which is a partial function, i.e. such that
Card(¢(u)) < 1 for all u € M;.

Most classical results about rational functions suppose that M; and M, are free
monoids, but we will see a result about composition of rational functions over non-free
monoids in Section 3.5. In the following, however, M; and M, will be free monoids.

Given two alphabets A and B, it is decidable whether a rational transduction from
A* into B* is a partial function. However, the first algorithm by Schiitzenberger was
exponential [Ber79]. The following result by Blattner and Head [BH77] shows that it is
decidable in polynomial time.

Theorem 3.9 It is decidable in O(Card(Q)?*) whether a rational transducer whose set of
states is () implements a rational function.

1UU uriAar tiviv 0. ruvnuiviair, 1t JULOo

Rational functions have two additional decidable properties:

Theorem 3.10 Given two rational functions f and f’ from A* to B*, it is decidable
whether f C f’ and whether f = f.

Among transducers realizing rational functions, we are especially interested in trans-
ducers whose output can be “computed online” with its input. Our interpretation for
“online computation” is the following: it requires that when a path e leading to a state
q is labeled by pair of words (u,v), and when a letter x is read, there is only one state
¢" and one output letter y such that (ux,vy) labels a path prefixed by e. This is best
understood using the following definitions.

Definition 3.8 (input and output automata) The input automaton (resp. output au-
tomaton) of a transducer is obtained by omitting the output label (resp. input label)
of each transition.

Definition 3.9 (sequential transducer) Let A and B be two alphabets. A sequential
transducer is labeled in A x B* and its input automaton is deterministic (which enforces
that it has a single initial state).

A sequential transducer obviously realizes a rational function; and a function is se-
quential if it can be realized by a sequential transducer. The transducer example in
Figure 3.3.a, whose initial state is 1 is sequential. It replaces by a the bs which appear
after an odd number of bs.

blb blb
ala blb ala blb
bla a ala b

Figure 3.3.a. Sequential transducer Figure 3.3.b. Sub-sequential transducer

................ Figure 3.3. Sequential and sub-sequential transducers

Note that a if ¢ is a sequential function and () is defined, then v (¢) = €. Moreover,
when all the states of a sequential transducer are final, the function it realizes is prefix
closed, i.e. if uv belongs to its domain then it is the same for u.? To a sequential transducer
7 =(A,B*,Q,1,F,F), one may associate a “next state” function av: Q x A — @) and a
“next output” function 4 : Q) x A — B* whose purpose is self-explanatory. Together with
the set I of final states, functions « and [are indeed an equivalent characterization of
T.

However, the sequential transducer definition is a bit too restrictive regarding our
“online computation” property, and we prefer the following extension.

Definition 3.10 (sub-sequential transducer) If A and B are two alphabets, a sub-
sequential transducer (7T, p) over A* x B* is a pair composed of a sequential transducer

In [Ber79, Eil74], all states of a sequential transducer are final.

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 1U1

T over A* x B* with F' as set of final states, and of a function p : F — B*. The
function v realized by (7, p) is defined as follows: let u be a word in A*, the value
t(u) is defined iff there is an accepting path in 7 labeled by (u|v) and leading to a
final state g; in this case ¥(u) = vp(q).

In other words, the function p is used to append a word to the output at the end
of the computation. A sub-sequential transducer is obviously a rational function; and a
function is sub-sequential if it can be realized by a sequential transducer. A sequential
function is sub-sequential: consider p(q) = ¢ for all final states g.

This definition matches our “online computation” property. The function realized by
the sub-sequential transducer in Figure 3.3.b appends to each word its last letter. This
function is not sequential because all its states are final and it is not prefix closed.

The following result has been proven by Choffrut in [Cho77].

Theorem 3.11 It is decidable if a function realized by a transducer is sub-sequential,
and it is decidable if a sub-sequential function is sequential.

Béal and Carton [BC99b] give two polynomial-time algorithms to decide if a rational
function is sub-sequential, and if a sub-sequential function is sequential. Two algorithms
to build a sub-sequential realization and a sequential realization are also provided, but
the first may generate an exponential number of states; as a result, this does not provide
a polynomial-time algorithm to decide if a rational function is sequential.

Before we conclude this section, notice that the “online computation” property satis-
fied by sub-sequential transducers is still satisfied for a larger class of rational functions:

Definition 3.11 (online rational transducer) A rational transducer is online if it is a
rational function and if its input automaton is deterministic. A rational transduction
is online if it is realized by an online rational transducer.

The only difference with respect to sub-sequential transducers is that ¢ is allowed in
the input automaton, as long as the deterministic property is kept. We are not aware of
any result for this class of rational functions, strictly larger than the class of sub-sequential
transductions. But if it was decidable among rational functions, it would probably replace
every use of sub-sequential functions in the following applications.

In our analysis and transformation framework, we will only use rational and sub-
sequential functions, which are decidable in polynomial-time among rational transduc-
tions.

3.4 Left-Synchronous Relations

We have seen that rational relations are not closed under intersection, but intersection is
critical for dependence analysis. Addressing the undecidable problem of testing whether
the intersection of two rational relations is empty or not, Feautrier designed a “semi-
algorithm” for dependence testing which sometimes not terminate [Fea98]. Because we
would like to effectively compute the intersection, and not only testing its emptiness, our
approach is different: we are looking for a sub-class of rational relations with a boolean
algebra structure (i.e. with union, intersection and complementation).

Indeed, the class of recognizable relations is a boolean algebra, but we have found
a more expressive one: the class of left-syncrhonous relations. We will show that left-
synchronous relations are not decidable among rational ones, but we could define a precise

1UZ uriAar tiviv 0. ruvnuiviair, 1t JULOo

algorithm to conservatively approximate relations into left-synchronous ones. In fact,
this point is even more interesting for us than decidability. Many results presented here
have already been published by Frougny and Sakarovitch in [FS93]. However, our work
has been done independently and based on a different—more intuitive and versatile—
representation of transductions. Proofs are all new, and several unpublished results have
also been discovered.

Notice that a larger class with a boolean algebra structure is the class of deterministic
relations [PS98] defined by Pelletier and Sakarovitch. But some interesting decidability
properties are lost and we could not define any precise approximation algorithm for this
class, See Section 3.4.7.

This work has been done in collaboration with Olivier Carton (University of Marne-
la-Vallée).

3.4.1 Definitions

We recall the definition of synchronous transducers:?

Definition 3.12 (synchronism) A rational transducer on alphabets A and B is syn-
chronous if it is labeled on A x B.
A rational relation or transduction is synchronous if it can be realized by a syn-
chronous transducer. A rational transducer is synchronizable if it realizes a synchronous
relation.

Obviously, such a transducer is length preserving; Eilenberg and Schiitzenberger [Eil74]
showed that the reciprocal is true: a length preserving rational transduction is realized
by a synchronous transducer.

A first extension of the synchronous property is the 6-synchronous one:

Definition 3.13 (6-synchronism) A rational transducer on alphabets A and B is 6-
synchronous if every transition appearing in a cycle of the transducer’s graph is labeled
on A x B.
A rational relation or transduction is é-synchronous if it can be realized by a
synchronous transducer. A rational transducer is d-synchronizable if it realizes a o6-
synchronous relation.

Such a transducer has a bounded length difference; Frougny and Sakarovitch [FS93]
showed that the reciprocal is true: a bounded length difference rational transduction is
realized by a é6-synchronous transducer. Obviously, the bound is 0 when the transducer is
synchronous. Two examples are shown in Figure 3.4. They respectively realize {(u,v) €
{a,b}* x {a,b}* : w=v} and {(u,v) € {a,b}* x {c}* : |ul, = |v]|c A |ul, = 2}.

Then, we define two new extensions:

Definition 3.14 (left-synchronism) A rational transducer over alphabets A and B is
left-synchronous if it is labeled on (A x B) U (A x {¢})U ({e} x B) and only transitions
labeled on A x {e} (resp. {¢} x B) may follow transitions labeled on A x {¢} (resp.
{e} x B).

A rational relation or transduction is left-synchronous if it is realized by a left-
synchronous transducer. A rational transducer is left-synchronizable if it realizes a
left-synchronous relation.

31t appears to be a special case of k,[-synchronous transducers, where k = [= 1, see Section 3.4.7.

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 1Yo

Figure 3.4.a. A synchronous transducer Figure 3.4.b. A 6-synchronous transducer

............... Figure 3.4. Synchronous and 6-synchronous transducers

Definition 3.15 (right-synchronism) A rational transducer over alphabets A and B
is right-synchronous if it is labeled on (A x B)U(Ax {c})U({e} x B) and only transitions
labeled on A x {e} (resp. {¢} x B) may precede transitions labeled on A x {¢} (resp.
{e} x B).

A rational relation or transduction is right-synchronous if it can be realized by a
right-synchronous transducer. A rational transducer is right-synchronizable if it realizes
a right-synchronous relation.

Figure 3.5 shows left-synchronous transducers over an alphabet A realizing two orders
(a.k.a. orderings), where <;yr is some order on A: the prefix order f <ppp g < {3h €
A* . f = gh} and the lexicographic order f < ux ¢ < {f <ppe ¢ V (Ju,v,w € A% a,b €
A:f=wuav A g=ubw A a <Db)}.

In the following transducers, labels x and y stand for Vo € A and Vy € A respectively.

ely
x|z ely
Iy ely
x|y,a; <rxr Y
Figure 3.5.a. Prefix order
x|z

Figure 3.5.b. Lexicographic order

.......... Figure 3.5. Left-synchronous realization of several order relations

The word-reversal operation converts a left-synchronous transducer into a right-
synchronous one and conversely. The two definitions are not contradictory: some re-
lations are left and right synchronous, such as synchronous ones.

“Recognizable, synchronous and é-synchronous relations are closed under word-reversal.

1Ua uriAar tiviv 0. ruvnuiviair, 1t JULOo

Figure 3.6 shows a transducer realizing the relation 7 = {(u,v) € A* x B* : |u| = |v|
mod 2}. It is neither left-synchronous nor right-synchronous, but the left-synchronous and
right-synchronous realizations in the same figure show that 7 is left and right synchronous.

In the three following transducers, labels x and y stand for Vo € A and Vy € B.

ely ely

zly

zly

zyle elzy
x|e xle

(left-synchronous) (left and right synchronizable) (right-synchronous)

................. Figure 3.6. A left and right synchronizable example

In the following we mostly consider left-synchronous transducers, because all results
extend to right-synchronous through the word-reversal operation and most interesting
transducers are left-synchronous.

3.4.2 Algebraic Properties

It is well known that synchronous and é-synchronous relations are closed under union,
complementation, intersection. We show that it is the same for left-synchronous relations.

Lemma 3.1 (Union) The class of left-synchronous relations is closed under union.

Proof: Let 7 = (Q,I,F,E)and 7' = (Q',I', F', E') be left-synchronous transducers.
() and @' can be supposed disjoint without loss of generality; and then (Q U @', I U
I''FUF'|EUE') realizes |T|U|T"|. |

The proof is constructive: given two left-synchronous realizations, one may compute a
left-synchronous realization of the union.
Here is a direct application:

Theorem 3.12 Recognizable relations are left-synchronous.

Proof: Let R be a recognizable relation in A* x B*. From Theorem 3.3, there
exists an integer n, Ay,..., A, € A*, and By,...,B, € B* such that tau = A; X
ByU---UA, x B,. Leti e {l,...,n}, Ax = (Qa, s, Fa,E,) accepting A;, and
Ap = (@, Ip, Fp, Ep) accepting B;. We suppose ()4 and @Qp are disjoint sets—
without loss of generality—and define a transducer 7 = (Q, I, F, FE), where @ =
(QaxQp)UQAaUQp, I =1y xIg, F=FyxFgUF4UFg, and F is defined as
follows:

1. All transitions in F4 and Eg are also in F;

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 1U9

2. If g4 — ¢y € E4 and g —> ¢} € Ep, then (qa,q5) 2, (¢,) € E;

3. If g4 (resp. ¢3) is a final state and gz —— ¢ € Ep (resp. g4 — ¢y € Ey), then

| x|

(ga,q8) —> ¢y € E (vesp. (¢a,q8) — ¢4 € B).

By construction, 7 is left-synchronous, its input is A; and its output is B;. Moreover,
it accepts any combination of input words in A; and output words in B;. Lemma 3.1
terminates the proof. |

The proof is constructive: given a decomposition of a recognizable relation into products
of rational languages, one may build a left-synchronous transducer.
Another application is this useful decomposition result for left-synchronous relations:

Proposition 3.8 Any left-synchronous relation can be decomposed into a union of rela-
tions of the form SR, where S is synchronous and R has either no input or no output
(R is thus recognizable).

Proof: Consider a relation U € A* x B* realized by a left-synchronous transducer
7T, and consider an accepting path e in 7. The restriction of 7 to the states and
transitions in e yields a transducer 7, such as |Z;| C |7|. Morover, 7, can be divided
into transducers 7; and 7, such as the (unique) final state of the first is the (unique)
initial state of the second, 7 is synchronous and 7, has either no input or no output.
Therfore, 7, realizes a left-synchronous relation of the form SR, where S is synchronous
and R has either no input or no output. Since the number of “restricted” transducers
7, is finite, closure under union terminates the proof. [|

The proof is constructive if the left-synchronous relation to be decomposed is given by a
left-synchronous realization.

To study complementation and intersection, we need two more definitions: unambi-
guity and completion.

Definition 3.16 (unambiguity) A rational transducer 7 over A and B is unambiguous
if any couple of words over A and B labels at most one path in 7. A rational relation
is unambiguous if it is realized by an unambiguous transducer.

This definition coincides with the one in [Ber79] Section IV.4 for rational functions,
but differs for general rational transductions.

Definition 3.17 (completion) A rational transducer 7 is complete if every pair of
words labels at least one path in 7 (accepting or not).

It is obviously not always possible to complete a transducer in a trim one. From these
two definitions, let us recall a very general result.

Theorem 3.13 The class of a complete unambiguous rational relations is closed under
complementation.

Proof: Let R be a complete unambiguous relation realized by transducer 7 =
(Q,I,F,E). We define a transducer 7' = (Q, I, Q — F, F) such that an accepting path
in 7 cannot be one of 7'. The completion of 7 and the uniqueness of accepting paths
in 7 shows that the complementation of R is realized by 7. [|

1U0 uriAar tiviv 0. ruvnuiviair, 1t JULOo

The proof is constructive.
Now, we specialize this result for left-synchronous relations.

Lemma 3.2 A left-synchronous relation is realized by an unambiguous left-synchronous
transducer.

Proof: Let 7 be a left-synchronous transducer over A and B realizing a relation R.
Let A be the finite-state automaton interpretation of 7—over the alphabet (A x B) U
(Ax{e})U({e} x B)—and let A’ be a deterministic finite-state automaton accepting
the same language as A. Let f, g two words such that |7 |(f) = g, and let e and €’ be
two accepting paths in 7.

Suppose e differs from e’. By the determinim property, the words w and w’ they accept
in A’ also differs; let (x,y) and (2',y') be the first difference. If + = ¢ and 2’ # ¢,
the definition of left-synchronous transducers imposes that w to be labeled in {¢} x B
after (x,y), then e and e’ accept different inputs in 7. The same reasoning applies to
the three other cases—y = c and ¢ # ¢, 2’ =cand x # ¢, ¢y = ¢ and y # e—and
yields different inputs or outputs for paths e and e’. This contradicts the definition of
e and €.

Thus f and g are accepted by a unique path in the rational transducer interpretation
7" of A'. Since A’ is the determinization of A, a transition labeled on A x {€} (resp.
{e} x B) may only be followed by another transition labeled on Ax {¢} (resp. {} x B).
Eventually, 7' is unambiguous and left-synchronous, and it realizes R. |

The proof is constructive.

Proposition 3.9 A left-synchronous relation is realized by a complete unambiguous left-
synchronous transducer.

Proof: Let R be a left-synchronous relation. We use Lemma 3.2 to compute an
unambiguous left-synchronous transducer 7 = (@, I, F, E') which realizes R. We define
a transducer 7' = (Q',I, F,E"), where ¢;, ¢, and ¢;, are three new states, @)’ =
Q U{4i, G0, Gio}, and E' is defined as follows:

1. All transitions in E are also in E'.

2. For all (z,y) € A X B, g, “l, 0o € E'.

zle x|

3. Forallz € A, ¢o — ¢; € E' and ¢; — ¢; € E.

4. Forall y € B, iy —% ¢, € E' and ¢, —% ¢, € E.

5. If ¢ € @ is such that V(2',¢') € A X Q : ¢ =k, q ¢ E, then V(y",¢") € BxQ :

qd—y>q”¢E:>qg|—y>qo€E’-

6. If ¢ € Q is such that V(y',¢') € Bx Q : ¢ , q ¢ E, then V(z",¢") € AxQ :
zH|6 w”|€

g—q"¢ E=q— q €F.

7. If g € Q is such that ¥(2',¢) € Ax Q: ¢’ 5 ¢ Eand ¥(y',¢) € Bx Q: ¢ 2%
w”|y” a/,”|yll

g E, then V(2" y",¢") e AxBxQ: ¢—¢"¢E=q— q,€FE.

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 1U{

The resulting transducer is left-synchronous, complete, and realizes relation R. More-
over, the three last cases have been carefully designed to preserve the unambiguous
property: no transition departing from a state ¢ is added if its label is already the one
of an existing transition departing from gq. |

The proof is constructive.

Theorem 3.14 (Complementation and Intersection) The class of left-synchronous
relations is closed under complementation and intersection.

Proof: As a corollary of Theorem 3.13 and Proposition 3.9, we have the closure
under complementation. Together with closure under union, this proves closure under
intersection. |

Eventually, we have proven that the class of left-synchronous relations is a boolean
algebra, which will be of great help for dependence and reaching definition analysis, see
Section 4.3.

Synchronous and ¢-synchronous relations are obviously closed under concatenation,
but it is not true for left-synchronous ones. However, we have the following result:

Proposition 3.10 Let S, T and R be rational relations.
(i) If S is synchronous and T is left-synchronous, then ST is left-synchronous.

(ii) If T is left-synchronous and R is recognizable, then T'R is left-synchronous.

Proof: Proof of (i) is a straightforward application of the definition of left-
synchronous transducers (see Proposition 3.12 for a generalization).

We use Proposition 3.8 to partition 7" into S1Ry,...,S,R, where S; is synchronous
and R; is recognizable for all 1 < 7 < n. Now, R;R is recognizable, hence left-
synchronizable from Theorem 3.12. Application of (i) shows that S;R;R is left-
synchronizable. Closure under union terminates the proof of (ii). |

The proof is constructive when a left-synchronous realization of T' is provided, thanks to
Proposition 3.8. A generalization of (i) is given in Section 3.4.5.

To close this section about algebraic properties, one should notice that the finite-state
automaton interpretation (see Definition 3.6) of a left-synchronous transducer 7 has ex-
actly the same properties as 7 itself, regarding computation of the complementation and
intersection. Indeed, by definition of left-synchronous relations, applying classical algo-
rithms from automata theory to the finite-state automaton interpretation yields correct re-
sults on the transducer. This remark shows that algebraic operations for left-synchronous
transducers have the same complexity as for finite-state automata in general.

3.4.3 Functional Properties

Synchronous and é-synchronous transductions are closed under inversion (i.e. relational
symmetry) and composition. Clearly, the class of left-synchronous transductions is also
closed under inversion.

Combined with the boolean algebra structure, the following result is useful for reaching
definition analysis (to solve (4.17) in Section 4.3.3).

Theorem 3.15 The class of left-synchronous transductions is closed under composition.

1UO

uriAar tiviv 0. ruvnuiviair, 1t JULOo

Proof: Consider three alphabets A, B and C', two transductions 7 : A* — B* and
71 : B* — C*, and two left-synchronous transducers 7; = (Q1, I1, F1, Ey) realizing 7
and 7y = (Q9, I, Fy, E5) realizing 5. We suppose (1 and ()5 are disjoint sets—without
loss of generality—and define 7 = (Q; X QU Q1 UQ2, I} X Iy, Fi x F, UF} UFy, E) as

1. All transitions in F; and E, are also in F;

zly ylz x|z

2. f ¢ — ¢} € Ey and ¢o — ¢}, € E, then (q1,¢2) — (¢}, ¢5) € E;

xle x|z

3. If ¢ — ¢} € E1 and ¢y <k, ¢y € Es, then (q1,¢2) — (4, 43) € E;

yle ele

4. If ¢ v, q € By and ¢o — ¢; € By, then (q1,q2) — (q1,) € E;

zly yle zle

5. If ¢ — ¢} € Fy and ¢9 — ¢} € Es, then (q1,92) — (¢}, ¢}) € E;

elz

6. If ¢ R q; € Ey and ¢, v, ¢y € Es, then (q1,¢2) — (47, 43) € E;

zle x|e

7. If g — ¢} € Ey, then Vg, € Fy : (q1,¢2) — ¢} € E;

8. If q2 i q; € Ez, then Vq1 S F1 . (ql,(h) i q'2 € E.

First, consider an accepting path e in 7 for a couple of words (f, h). We may write
e = e1p€’, where ey is the Q1 X @) part of e. By construction of 7, the end state of
e1o is a final state of 77 and €’ is a path of 75, or it is the opposite. Considering the
projection of states in e;y on 1, ejs accepts a couple of words (f,g) in 7; such as
h € 15(g). Hence h € 15 0 1y (f).

Second, consider three words f,g,h such as ¢ € 7(f) and h € 1(g). Let e; be an
accepting path for (f, ¢) in 7; and ey be one for (g, h) in 75. Suppose |e1| > |es|. Build a
path ey in 7 from the product of states and labels of the first |ey| transitions in e; and
ey; its end state is (¢, ¢2) with ¢; € @1 and ¢ € Fy. Now, the last |e;| —|ey| transitions
in e; can be written (¢, z, ¢, q)).€}, hence e15.((¢1, q2), z, £, q})-€} is an accepting path
for (f,h) in 7.

Eventually, we have shown that 7 realizes 75 o 7. Now, using the classical ¢|e-
transition removal algorithm for finite-state automata, we define transducer 7'. It
is left-synchronous because 7; and 75 are, and transitions involving states of)1 or
()2—labeled on A x {e} or {e} x C—are never followed by transitions involving states

of Ql X Qz. [|

The proof is constructive.

Before showing an important application of this result, we need an additional defini-

tion:

Definition 3.18 (a-selection) Let 7 : A* — B* be a rational transduction, and « be

a rational order on B*—i.e. a rational relation which is reflexive, anti-symmetric and
transitive. The a-selection of 7 is a partial function 7, defined by

Vu,v € A* X B*: v =1,(u) <= v =min7(u).

Proposition 3.11 Let 7 : A* — B* be a left-synchronous transduction, and « be a

left-synchronous order on B*. The a-selection of 7 is a left-synchronous function.

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 1UJ

Proof: Let ¢ be the identity rational function on B*. If 7, is the a-selection of 7,
the proof comes from the fact that 7, =7 — ((—) o 7) |

The most interesting application of this to our framework appears when choosing the
lezicographic order for «, see Section 4.3.3. For more details on a-selection, also known
as uniformization, see [PS98].

3.4.4 An Undecidability Result

It is well known that the recognizability of a transduction is undecidable. This is proved
by Berstel in [Ber79] Theorem 8.4, and we use a similar technique to show that it is the
same for left-synchronous relations. We start with a preliminary result.

Lemma 3.3 Let K be a positive integer, let A = {a, b}, let B be any alphabet, and let
Uy, U, - .. , U, € B*. Define

U = {(ab™,uy), (ab*™,uy), ..., (ab’™, u,)}.

Then, U and U™ are rational relations, and relation (A* x B*) — U™ is also rational.

Proof: Relation U is finite, hence rational, and U™ is rational by closure under
concatenation and the star operation.

Usually, the class of rational relations is not closed under complementation, so we have
to prove something here. This is done the same way as in [Ber79] Lemma 8.3, with
the only substitution of b by b¥. [|

Theorem 3.16 Let A and B be alphabets with at least two letters. Given a rational
relation R over A and B, it is undecidable whether R is left-synchronous.

Proof: We may assume that A contains exactly two letters, and set A = {a,b}.
Consider two sequences uy, U, ... ,u, and vy, v, ... ,v, of non-empty words over B,
and let K be their maximum length. Define

U= {(ab" uy),...,(a"" u,)} and V = {(ab",v1),..., (ab"™ v,)}.

From Lemma 3.3, U, V, Ut, V*, U = (A* x B*) = U+t and V = (4* x B*) =V are

rational relations.

Let R = U U V. Since left-synchronous transductions are closed under complementa-
tion, R is left-synchronous iff (A* x B*) = R=U"NV™ is.

Assume UT NV is non-empty and realized by a left-synchronous transducer 7. Con-
sider (m,u) € Ut NV*. We may write m = fg with |f| = |u| and |g| > 0. Left-
synchronism requires that (g,) labels a path in 7. Moreover, ((fg)*, u*) e Ut NV*
for all £ > 1, hence the path labeled by (g,¢) must be part of a cycle:

39" :Vk: (fg(g'g)F,u) e UTNVT,

However, because wy,...,u, and v,...,v, are non-empty, the ratio between the
length of input and output words must be less than or equal to K + 1; this is contra-
dictory.

11U uriAar tiviv 0. ruvnuiviair, 1t JULOo

Eventually, R is left-synchronous iff U™ NV is empty.> Since deciding this emptiness
is exactly solving the Post’s Correspondence problem for u,,... ,u, and vy,... ,v,, we
have proven that left-synchronism is undecidable. [|

A similar proof shows the following result, which is not a corollary of Theorem 3.16.

Theorem 3.17 Let A and B be alphabets with at least two letters. Given a rational
relation R over A and B, it is undecidable whether R is left and right synchronous.

3.4.5 Studying Synchronizability of Transducers

Despite the general undecidability results, we are interested in particular cases where a
rational relation can be proved left-synchronous.

Transmission Rate

We recall the following useful notion to give an alternative description of synchronism
in transducers. The transmission rate of a path labeled by (u,v) is defined as the ratio
|v]/|u] € Q" U {+o0}.

Eilenberg and Schiitzenberger [Eil74] showed that the synchronism property of a
transducer is decidable. Frougny and Sakarovitch [FS93] showed a similar result for
0-synchronism, and their algorithm operates directly on the transducer that realizes the
transduction. The result is:

Lemma 3.4 A rational transducer is d-synchronizable iff the transmission rate of all its
cycles is 1.

There is no characterization of recognizable transducers through the transmission rate
of its cycles, but one may give a sufficient condition:

Lemma 3.5 If the transmission rate of all cycles in a rational transducer is 0 or 400,
then it realizes a recognizable relation.

Proof: Let 7 be a rational transducer whose cycles transmission rates are only 0 and
+o00. Considering a strongly-connected component, all its cycles must be of the same
rate. Hence a strongly-connected component has either no input or no output. This
proves that strongly-connected components are recognizable. Closure of recognizable
relations by concatenation and by union terminates the proof. |

There is no characterization of left-synchronizable transducers either. However, as a
straightforward application of previous definitions, one may give the following result:

Lemma 3.6 If 7 is a left-synchronous transducer, then cycles of 7 may only have three
different transmission rates: 0, 1 and +o00. All cycles in the same strongly-connected
component must have the same transmission rate, only components of rate 0 may
follow components of rate 0, and only components of rate +o0o may follow components
of rate +oo.

Even if synchronizable transducers may not satisfy these properties, some kind of
reciprocal is available, see Theorem 3.19.

®We have also proven here that U™ and VT are not left-synchronous.

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 111

Classes of Transductions

We have shown that left-synchronous transductions extend algebraic properties of rec-
ognizable transductions. The following theorem shows that they also extend real-time
properties of 6-synchronous transducers.

Theorem 3.18 6-synchronous transductions are left-synchronous.

Proof: Consider a 6-synchronous transducer 7 realizing a relation R over alphabets
A and B, and call 6 the upper bound on delays between input and output words
accepted by 7. Taking advantage of closure under intersection, one may partition R
into relations R; of constant delay i, for all —6 <1 < 6. Let 7; realize relation R;: by
construction, v € |7;|(u) iff |u| = |v| + .

Let “)” be a new label; if 7 is non-negative (resp. negative), define 7 from 7; in
substituting its final state by a transducer accepting (g,) (resp. (L% ¢)). Each 7/
is length preserving, hence synchronizable. Transducer 7" = 7', U --- U 7/ is thus
synchronizable, hence left-synchronizable.

Let P realize relation {(u,u) : u € A*,a > 0} and Q realize relation {(v .’ v) : v €
B*;b > 0}, which are both left-synchronizable. Transducer Q o 7' o P realizes the
same transduction as 7, and it is left-synchronizable from Theorem 3.15. [|

One may go a bit further and give a generalization of Theorems 3.12 and 3.18, based
on Lemmas 3.5 and 3.4:

Theorem 3.19 If the transmission rate of each cycle in a rational transducer is 0, 1 or
+o00, and if no cycle whose rate is 1 follows a cycle whose rate is not 1, then the
transducer is left-synchronizable.

Proof: Consider a rational transducer 7 satisfying the above hypotheses, and con-
sider an acceptation path e in 7. The restriction of 7 to the states and transitions in e
yields a transducer 7, such as |7,| C |7|. Moreover, 7, can be divided into transduc-
ers 7, and 7,, such as the (unique) final state of the first is the (unique) initial state of
the second, and the transmission rate of all cycles is 1 in 7; and either 0 or +o0 in 7Z,.
From Lemma 3.5, 7, is recognizable. From Lemma 3.4, 7 is ¢-synchronizable, hence
left-synchronizable from Theorem 3.18. Eventually, Proposition 3.10 shows that 7, is
left-synchronizable. Since the number of “restricted” transducers 7, is finite, closure
under union terminates the proof. [|

The proof is constructive.
As an application of this theorem, one may give a generalization of Proposition 3.10.(i):

Proposition 3.12 If ¢ is ¢-synchronous and 7 is left-synchronous, then o.7 is left-
synchronous.

Notice that the left and right synchronizable transducer example in 3.6—which is even
recognizable—does not satisfy conditions of Theorem 3.19, since the transmission rate of
some cycles is 2.

112 uriAar tiviv 0. ruvnuiviair, 1t JULOo

Resynchronization Algorithm

Although left-synchronism is not decidable, one may be interested in a synchronization
algorithm that work on a subset of left-synchronizable transducers: the class of transducers
satisfying the hypothesis of Theorem 3.19.

Extending an implementation by Béal and Carton [BC99a| of the algorithm in [FS93],
it is possible to “resynchronize” our larger class along the lines of the proof of Theo-
rem 3.19. This technique will be used extensively in Sections 3.6 and 3.7, to compute—
possibly approximative—intersections of rational relations. Presentation of the full algo-
rithm and further investigations about its complexity are left for future work.

3.4.6 Decidability Results

We first present an extension of the minimality concept for finite-state automata to left-
synchronous transducers. Let 7 = (Q, I, F, E) be a transducer over alphabets A and B.
We define the following predicate, for ¢ € @ and (u,v) € A* x B*:

Accept(q, u, v) iff (u,v) labels an accepting path starting at q.
Nerode’s equivalence, noted =, is defined by
q = ¢ iff for all (u,v) € A* x B* : Accept(q, u,v) <= Accept(q’, u,v).
The equivalence class of ¢ € () is denoted by . Let

T)==(Q/ =1/ = F/=E),

where E is naturally defined by

(quaxayanZ) € E — 3(qll,q;) € qu X qAZ : (qiaxayaqg) SON

Using Nerode’s equivalence, we extend the concept of minimal automaton to left-
synchronous transducers.

Theorem 3.20 Any left-synchronous transduction is realized by a unique minimal left-
synchrnonous transducer (up to a renaming of states).

Proof: Let 7 be a transduction over alphabets A and B, realized by a left-synchronous
transducer 7 = (Q, I, F, E). We suppose without loss of generality that 7 is trim.
By definition of =, it is clear that 7/ = realizes 7.

Every transition on 7/ = is labeled on A x BUA x {e}U{e} x B. Consider two states
q,q¢" € @ such that ¢ = ¢’ and ¢ holds an input transition labeled on A x {¢} (resp.
{e} x B); and consider (u,v) € A* x B* such that Accept(q, u,v) and Accept(q', u,v).
Any output transition from ¢ must be labeled on A x {e} (resp. {¢} x B), hence v
(resp. u) must be empty. Since this is true for all accepted (u,v), and since 7 is trim,
any output transition from ¢’ must also be labeled on A x {e} (resp. {¢} x B); this
proves that 7/ = is left-synchronous.

Finally, let A be the finite-state automaton interpretation of 7 (see Definition 3.6). It
is well known that A4/ = is the unique minimal automaton realizing the same rational
language as A (up to a renaming of states). Thus, if 7" is an realization of 7 with as

d.ax. L 1-0 Y INUINTIUINUUO v Ad 1UIND 119

many states as 7/ =, its finite-state automaton interpretation must be A/ = (up to
a renaming of states) which is the interpretation of 7/ =. This proves the unicity of
the minimal left-synchronous transducer. [|

As a corollary of closure under complementation and intersection, usual questions
become decidable for left-synchronous transductions:

Lemma 3.7 Let R, R' be left-synchronous relations over alphabets A and B. It is
decidable whether RNR' = @, RC R', R=R', R = A* x B*, (A* X B*) — R is finite.

These properties are essential for formal reasoning about dependence and reaching
definition abstractions in the following chapter.

Eventually, we are still working on decidability of recognizable relations among left-
synchronous ones. We have strong arguments to expect a positive result, but no proof at
the moment.

3.4.7 Further Extensions

We now consider possible extensions of left-synchronizable relations.

Constant Transmission Rates

An elementary variation on synchronous transducers consists in enforcing a single trans-
mission rate in all cycles which is not necessary 1: if £ and [are positive integers, a
(k,l)-synchronous relation over A* x B* is realized by a transducer whose transitions
are labeled in A% x B!. Similarly, one may define é-(k,[)-synchronous and left-(k, [)-
synchronous transducers.

When noticing that a change of the alphabet converts a (k, [)-synchronous transducer
into a classical synchronous one, it obviously appears that the same properties are satisfied
for any k£ and [, including £ = [= 1. The only difference is that transmission rates of
cycles is now 0, 400 and k/I. Mixing relations in (k,[)-synchronous classes for different
(k,1) is not allowed, of course.

However, most rational transductions useful to our framework, including orders, are
left-(1, 1)-synchronous, that is left-synchronous... This strongly reduces the usefulness of
general left-(k, [)-synchronous transductions.

Deterministic Transducers

Much more interesting is the class of deterministic relations introduced by Pelletier and
Sakarovitch in [PS98]:

Definition 3.19 (deterministic transducer and relation) Let A and B be two al-
phabets. A transducer 7 = (A*, B*,@Q, I, F, F) is deterministic if the following condi-
tions hold:

(i) there exists a partition of the set of states @ = @4 U @p such that the label of an
edge departing from a state in Q4 is in A x {e} and the label of an edge departing
from a state in Qp is in {¢} x B;

(i) for every p € Q and every (z,y) € (A x {e}) U ({e} x B), there exists at most one
q € @ such that (p,x,y,q) is in E (i.e. the finite-state automaton interpretation is
deterministic);

114 uriAar tiviv 0. ruvnuiviair, 1t JULOo

(iii) there is a single initial state in I.
A deterministic relation is realized by a deterministic transducer.

This class is strictly larger than left-synchronous relations, and keeps most of its good
properties: the greatest loss is closure under composition. Moreover, because relation U™
is deterministic in the proof of Theorem 3.16, it is undecidable whether a deterministic
relation is recognizable, left-synchronous or both left and right synchronous.

But the most important reason for us to use left-synchronous relations instead of
deterministic ones is that there is no result such as Theorem 3.19 to find a deterministic
realization of a relation, or to help approximate a rational relation by a deterministic one.

3.5 Beyond Rational Relations

For the purpose of our program analysis framework, we sometimes require more expres-
siveness than rational relations: “finite automata cannot count”, and we need counting
to handle arrays! We thus present an extension of the algebraic—also known as context-
free—property to relations between finitely generated monoids. As one would expect,
the class of algebraic relations includes rational relations, and retains several decidable
properties. This sections ends with a few contributions: Theorems 3.27 and 3.28, and
Proposition 3.13.

3.5.1 Algebraic Relations

We define algebraic relations through push-down transducers, defined similarly to push-
down automata (see Section 3.2.3).

Definition 3.20 (push-down transducer) Given alphabets A and B, a push-down
transducer T = (A*, B*,T",v,Q, I, F, E)—ak.a. algebraic transducer—consists of a
stack alphabet I, a non-empty word vy in I'" called the initial stack word, a finite set
Q of states, a set I C @ of initial states, a set F' C () of final states, and a finite set
of transitions (a.k.a. edges) £ C @ x A* x B* x I' x I'* x Q.

Free monoids A* and B* are often removed for commodity, when clear from the context.

A transition (¢, x,y,9,7,¢) € F is usually written ¢ g ¢'. The push-down automata

and rational transducer vocabularies are inherited.

A configuration of a push-down automaton is a quadruple (u,v,q,), where (u,v)
is the pair of word to be accepted or rejected, ¢ is the current state and v € I'* is
the word composed of symbols in the stack. The transition between two configurations
c1 = (u1,v1,q1,71) and ¢3 = (ug, v9, @2, 72) is denoted by relation — and defined by ¢ — ¢/
iff there exist (z,v,9,7,7) € A* x B* x I' x I'* x I'* such that

uw=auy A=y A =79A =77 (0,7,9,9,7¢) € E.
Then 2 with p € N, — and —— are defined as usual.

A push-down transducer 7 = (I, v, Q, I, F, E) is said to realize the relation R, when
(u,v) € R iff there exist (g;,q,7) € I x F x I'* such that

(u7 v, dq;, 70) 'L) (67 g, qf, 7)

d.Jd. DIV T UINL 1AL IUINAL TuluilaA 1L IUIND 119

A push-down transducer 7 = (', 7y, @, I, F, E) is said to realize the relation R, when
(u,v) € R iff there exist (g;,qf) € I X F such that

(ua v, 4i, 70) 'L (57 g, 4y, 5)'

Notice that realization by empty stack implies realization by finite state: ¢ is still required
to be in the set of final states.

Definition 3.21 (algebraic relation) The class of relations realized by final state or
by empty stack by push-down transducers is called the class of algebraic relations.

As for rational relations, the following characterization of algebraic relations is fun-
damental: it allows to express algebraic relations by means of algebraic languages and
monoid morphisms. A proof in a much more general case can be found in [Kar92]. (Berstel
uses this theorem as a definition for algebraic relations in [Ber79].)

Theorem 3.21 (Nivat) Let A and B be two alphabets. Then R is an algebraic relation
over A* and B* iff there exist an alphabet C', two morphisms ¢ : C* — A* ¢ : C* —
B*, and an algebraic language L C C* such that

R ={(¢(h),¢(h)) : h € L}.

To generalize Section 3.3.2, algebraic transductions are the functional counterpart of
algebraic relations.
Nivat’s theorem can be formulated as follows for algebraic transductions:

Theorem 3.22 (Nivat) Let A and B be two alphabets. Then 7 : A* — B* is an
algebraic transduction iff there exist an alphabet C, two morphisms ¢ : C* — A*,
¥ : C" — B* and an algebraic language L C C* such that

Vwe A* . 7(w) = (¢ H(w) N L).
Let us recall some useful properties of algebraic relations and transductions.

Theorem 3.23 Algebraic relations are closed under union, concatenation, and the star
operation. They are also closed under composition with rational transductions (similar
to Elgot and Mezei theorem). The image of a rational language by an algebraic
transduction is an algebraic language (thanks to Nivat’s theorem).

The image of an algebraic language by an algebraic transduction may not be algebraic,
but there are some interesting exceptions:

Theorem 3.24 (Evey) Given a push-down transducer 7, if L is the algebraic language
realized by the input automaton of 7 (see Definition 3.8), the image 7 (L) is an
algebraic language.

The following definition will be useful in some technical discussions and proofs in the
following. It formalizes the fact that a push-down transducer can be interpreted as a
push-down automaton on a more complex alphabet. But beware: both interpretations
have different properties in general.

Definition 3.22 Let 7 be a push-down transducer over alphabets A and B. The push-
down automaton interpretation of 7 is a push-down automaton A over the alphabet
(Ax B)U(Ax{e})U({e} x B) defined by the same stack alphabet, initial stack word,
states, initial states, final states and transitions.

110 uriAar tiviv 0. ruvnuiviair, 1t JULOo

Among the usual decision problems, only the following are available for algebraic
relations:

Theorem 3.25 The following problems are decidable for algebraic relations: whether
two words are in relation (in linear time), emptiness, finiteness.

Important remarks. In the following, every push-down transducer will implicitly ac-
cept words by final state. Recognizable and rational relations were defined for any finitely
generated monoids, but algebraic relations are defined for free monoids only.

Algebraic Functions

There are very few results about algebraic transductions that are partial functions. Here
is the definition:

Definition 3.23 (algebraic function) Let A and B be two alphabets. An algebraic
function f : A* — B* is an algebraic transduction which is a partial function, i.e. such
that Card(f(u)) <1 for all u € A*.

However, we are not aware of any decidability result for an algebraic transduction to
be a partial function, and we believe that the most likely answer is negative.

Among transducers realizing algebraic functions, we are especially interested in trans-
ducers whose output can be “computed online” with its input. As for rational transducers,
our interpretation for “online computation” is based on the determinism of the input au-
tomaton:

Definition 3.24 (online algebraic transducer) An algebraic transducer is online if
it is a partial function and if its input automaton is deterministic. An algebraic
transduction is online if it is realized by an online algebraic transducer.

Nevertheless, we are not aware of any results for this class of algebraic functions; even
decidability of deterministic algebraic languages among algebraic ones is unknown.

3.5.2 One-Counter Relations

An interesting sub-class of algebraic relations is called the class of one-counter relations.
It is defined through push-down transducers. A classical definition is the following:

Definition 3.25 A push-down transducer is a one-counter transducer if its stack alphabet
contains only one letter. An algebraic relation is a one-counter relation if it is realized
by a one-counter transducer (by final state).

As for one-counter languages, we prefer a definition which is more suitable to our
practical usage of one-counter relations.

Definition 3.26 (one-counter transducer and relation) A push-down transducer is
a one-counter transducer if its stack alphabet contains three letters, Z (for “zero”),
I (for “increment”) and D (for “decrement”) and if the stack word belongs to the
(rational) set ZI* + ZD*. An algebraic relation is a one-counter relation if it is realized
by a one-counter transducer (by final state).

d.Jd. DIV T UINL 1AL IUINAL TuluilaA 1L IUIND 114

It is easy to show that Definition 3.26 describes the same family of languages as the
preceding classical definition.

We use the same notations as for one-counter languages, see Section 3.2.4. The family
of one-counter relations is strictly included in the family of algebraic relations.

Notice that using more than one counter gives the same expressive power as Turing
machines, as for multi-counter automata, see the last paragraph in Section 3.2.4 for further
discussions about this topic.

Now, why are we interested in such a class of relations? We will see in our program
analysis framework that we need to compose rational transductions over non-free monoids.
Indeed, the well known theorem by Elgot and Mezei (Theorem 3.5 in Section 3.3) can be
“partly” extended to any finitely generated monoids:

Theorem 3.26 (Elgot and Mezei) If M; and M, are finitely generated monoids, A
is an alphabet, 71 : M; — A" and 7 : A* — M, are rational transductions, then
Ty o1 : My — M, is a rational transduction.

But this extension is not interesting in our case, since the “middle” monoid in our
transduction composition is not free. More precisely, we would like to compute the com-
position of two rational transductions 75 o 74, when 7 : A* — Z"™ and m, : Z" — B*, for
some alphabets A and B and some positive integer n. Sadly, because of the commutative
group nature of Z, composition of 75 and 7y is not a rational transduction in general. An
intuitive view of this comes from the fact that all “words” on Z of the form
l+14---+1-1—-1—--—1

(.

~~ '

k k

are equal to 0, but do not build a rational language in {1, —1}* (they built a context-free
one).

We have proven that such a composition yields a n-counter transduction in general,
and the proof gives a constructive way to build a transducer realizing the composition:

Theorem 3.27 Let A and B be two alphabets and let n be a positive integer. If 7 :
A* — Z"™ and 1 : Z" — B* are rational transductions, then m o7 : A* — B*is a
n-counter transduction.

Proof: We first suppose that n is equal to 1. Let 73 = (A*, Z, Q4, 1, F1, E}) realize
7 and Ty = (Z, B*, Qs, I5, F5, E5) realize 7. We define a one-counter transducer
7] = (A*, B*,0,Q1, I, F1, E])—with no output on B*—from 7;: if (¢,u,v,q") € E;
then (¢, u,e,e,4v,q¢") € E] (no counter check). Similarly, we define a one-counter
transducer 7, = (A*, B*,0,...,cl,Qq, Iy, Fy, E}))—with no input from A*—from 7:
if (q,u,v,q') € E, then (q,e,v,e,—u,q') € E (no counter check). Intuitively, the
output of 7; and 7, are replaced by counter updates in 7] and opposite counter
updates in 7.

Then we define a one-counter transducer 7 = (A*, B*,0,Q, U Q2 U {qr}, I1,{qr}, E)
as a kind of concatenation of 7] and 7,:

o if e € £} then e € E;

o if e € £ then e € E;

1106 uriAar tiviv 0. ruvnuiviair, 1t JULOo

e if g € F} and ¢y € I, then (¢1,¢,¢,¢,¢,q2) € E (neither counter check nor counter
update);

e if g, € Fy then (gq,2,6,=0,¢,qr) € E (no counter update);

e no other transition is in F.

Intuitively, 7" accepts pairs of words (u,v) when (u,e) would be accepted by 77, (¢, v)
would be accepted by 75 and the counter is zero when reaching state ¢z. Then, 7 is
a one-counter transducer and recognizes 7y o 7.

Finally, if n is greater than 1, the same construction can be applied to each dimension
of Z", and the associated counter check and updates can be combined to build a
n-counter transducer realizing 7 o 7. [|

Theorem 3.27 will be used in Section 4.3 to prove properties of the dependence analysis.
In practice, we will restrict ourselves to n = 1 applying conservative approximations
described in Section 3.7, either on 71 and 75 or on the multi-counter composition.

We now require an additional formalization of the rational transducer “skeleton” of a
push-down transducer.

Definition 3.27 (underlying rational transducer) Let 7 = (I',v,Q, I, F, E) be a
push-down transducer. We can build a rational transducer 7’ = (@, I, F, E') from 7
in setting

(¢,z,y,¢) e B' <= Jgel',yel":(¢,2,9,9,7.¢) € E.

The underlying rational transducer of 7 is the rational transducer obtained in trimming
7" and removing all transitions labeled ¢|e.

Looking at the proof of Theorem 3.27, there is a very interesting property about
transducer 7 realizing 75 o 77: the transmission rate of every cycle in 7 is either 0 or +o0.
Thanks to Lemma 3.5 in Section 3.4, we have proven the following result:

Proposition 3.13 Let A and B be two alphabets and let n be a positive integer. Let
71 A" — Z"™ and 7 : Z" — B* be rational transductions and let 7 be a n-counter
transducer realizing 75 o 7 @ A* — B* (computed from Theorem 3.27). Then, the
underlying rational transducer of T is recognizable.

Applications of this result include closure under intersection with any rational trans-
duction, thanks to the technique presented in Section 3.6.2.

Eventually, when studying abstract models for data structures, we have seen that
nested trees and arrays are neither modeled by free monoids nor by free commutative
monoids. Their general structure is called a free partially commutative monoid, see Sec-
tion 2.3.3. Let A and B be two alphabets, and M be such a monoid with binary opera-
tion e. We still want to compute the composition of rational transductions 7 o 77, when
71 : A" — M and 75 : M — B*. The following result is an extension of Theorem 3.27,
and its proof is still constructive:

Theorem 3.28 Let A and B be two alphabets and let M be a free partially commutative
monoid. If 7 : A* — M and » : M — B* then o7 : A* — B* is a multi-counter
transduction. The number of counters is equal to the maximum dimension of vectors
in M (see Definition 2.6).

92.0. ViUl ADUU L 1IN 1L 1wl U L IULN 11J

Proof: Because the full proof is rather technical while its intuition is very natural, we
only sketch the main ideas. Considering two rational transducers 7; and 7, realizing
71 and 7, respectively, we start applying the classical composition algorithm for free
monoids to build a transducer 7 realizing 7 o 7;. But this time, 7 will be multi-
counter, every counter is initialized to 0, and transitions generated by the classical
composition algorithm simply ignore the counters.

Now, every time a transition of 7; writes a vector v (resp. 73 reads a vector v), the
“normal execution” of the classical composition algorithm is “suspended”, only tran-
sitions reading (resp. writing) vectors of the same dimension as v are considered in 7
(resp. 77), and v is added to the counters using the technique in Theorem 3.27. When
a letter is read or written during the “suspended mode”, each counter is checked for
zero before “resuming” the “normal execution” of the classical composition algorithm.

The result is a transducer with rational and multi-counter parts, separated by checks
for zero. [|

Theorem 3.28 will also be used in Section 4.3.

3.6 More about Intersection

Intersecting relations is a major issue in our analysis and transformation framework. We
have seen that this operation neither preserve the rational property nor the algebraic
property of a relation; but we have also found sub-classes of relations, closed under in-
tersection. The purpose of this section is to extend these sub-classes in order to support
special cases of intersections.

3.6.1 Intersection with Lexicographic Order

For the purpose of dependence analysis, we have already mentioned the need for intersec-
tions with the lexicographic order. Indeed, the class of left-synchronous relations includes
the lexicographic order and is closed under intersection.

In this section, we restrict ourselves to the case of relations over A* x A* for some
alphabet A. We will describe a class larger than synchronous relations over A* x A* which
is closed under intersection with the lezicographic order only.

Definition 3.28 (pseudo-left-synchronism) Let A be an alphabet. A rational trans-
ducer 7 = (A, A,Q, I, F, E) (same alphabet A) is pseudo-left-synchronous if there exist
a partition of the set of states Q) = Q; U Qs U Q1 satisfying the following conditions:

(i) any transition between states of @); is labeled x|z for some a in A;

(ii) any transition between a state of Q; and a state of Q7 is labeled x|y for some x # y
in A;
(iii) the restriction of 7 to states in Q; U Qg is left-synchronous.
A rational relation or transduction is pseudo-left-synchronous if it is realized by a

pseudo-left-synchronous transducer. A rational transducer is pseudo-left-synchronizable
if it realizes a pseudo-left-synchronous relation.

6This class is not comparable with the class of deterministic relations proposed in Definition 3.19 of
Section 3.4.7.

12U uriAar tiviv 0. ruvnuiviair, 1t JULOo

An intuitive view of this definition would be that a pseudo-left-synchronous transducer
satisfies the left-synchronism property everywhere but after transitions labeled x|y with
x # y. The motivation for such a definition comes from the following result:

Proposition 3.14 The class of pseudo-left-synchronous relations is closed under inter-
section with the lexicographic order.

Proof: Because the non-left-synchronous part is preceded by transitions labeled x|y
with & # y, which are themselves preceded by transitions labeled x|z, intersection with
the lexicographic order becomes straightforward on this part: if x < y the transition
is kept in the intersection, otherwise it is removed. Intersecting the left-synchronous
part is done thanks to Theorem 3.14. |

Another intersecting result is the following:

Proposition 3.15 Intersecting a pseudo-left-synchronous relation with the identity re-
lation yields a left-synchronous relation.

Proof: Same idea as the preceding proof, but transitions x|y with z # y are now
removed every time. [|

Of course, pseudo-left-synchronous relations are closed under union, but not intersec-
tion, complementation and composition.

Eventually, the constructive proof of Theorem 3.19 can be modified to look for pseudo-
left-synchronous relations: when a transition labeled x|y is found after a path of transitions
labeled x|z, leave the following transitions unchanged.

3.6.2 The case of Algebraic Relations

What about intersection of algebraic relations? The well known result about closure of
algebraic languages under intersection with rational languages has no extension to alge-
braic relations. Still, it is easy to see that there is a property similar to left-synchronism
which brings partial intersection results for algebraic relations.

Proposition 3.16 Let R; be an algebraic relation realized by a push-down trans-
ducer whose underlying rational transducer is left-synchronous, and let R, be a left-
synchronous relation. Then R; N R, is an algebraic relation, and one may compute a
push-down transducer realizing the intersection whose underlying rational transducer
is left-synchronous.

Proof: Let 7; be a push-down automaton realizing R; whose underlying rational
transducer 7} is left-synchronous, and let 75 be a left-synchronous realization of Rj.
The proof comes from the fact that intersecting 7, and 75 can be done without “for-
getting” the original stack operation associated with each transition in 7;. This is
due to the cross-product nature of the intersection algorithm for finite-state automata
(which also applies to left-synchronous transducers). |

D.l. AL IVUJUALIVIALLIING AL 1IUINS ULV VvUInL/o 141

Of course, the pseudo-left-synchronism property can be used instead of the left-
synchronous one, yielding the following result:

Proposition 3.17 Let A be an alphabet and let R be an algebraic relation over A* x A*
realized by a push-down transducer whose underlying rational transducer is pseudo-
left-synchronous. Then intersecting R with the lexicographic order (resp. identity rela-
tion) yields an algebraic relation, and one may compute a push-down transducer real-
izing the intersection whose underlying rational transducer is pseudo-left-synchronous
(resp. left-synchronous).

3.7 Approximating Relations on Words

This section is a transition between the long study of mathematical tools exposed in this
chapter and applications of these tools to our analysis and transformation framework.
Remember we have seen in Section 2.4 that exact results were not required for data-flow
information, and that our program transformations were based on conservative approxi-
mations of sets and relations. Studying approximations is rather unusual when dealing
with words and relations between words, but we will show its practical interest in the
next chapters.

Of course, such conservative approximations must be as precise as possible, and exact
results should be looked for every time it is possible. Indeed, approximations are needed
only when a question or an operation on rational or algebraic relations is not decidable.
Our general approximation scheme for rational and algebraic relations is thus to find a
conservative approximation in a smaller class which supports the required operation or
for which the required question is decidable.

3.7.1 Approximation of Rational Relations by Recognizable Re-
lations

Sometimes a recognizable approximation of a rational relation may be needed. If R is a
rational relation realized by a rational transducer 7 = (Q, I, F, E), the simplest way to
build a recognizable relation K which is [arger than R is to define K as the product of
input and output languages of R.

A smarter approximation is to consider each pair (¢;, ¢f) of initial and final states in 7,
and to define K, ;. as the product of input and output languages of the relation realized
by (@,{¢:};{¢s}, E). Then K is defined as the union of all K, , for all (¢;,q7) € I x F'.
This builds a recognizable relation thanks to Mezei’s Theorem 3.3.

The next level of precision is achieved in considering each strongly-connected compo-
nent in 7 and approximating it with the preceding technique. The resulting relation K
is still recognizable, thanks to Mezei’s theorem. This technique will be considered in the
following when looking for a recognizable approximation of a rational relation.

3.7.2 Approximation of Rational Relations by Left-Synchronous
Relations
Because recognizable approximations are not precise enough in general, and because the

class of left-synchronous relations retains most interesting properties of recognizable re-
lations, we will rather approximate rational relations by left-synchronous ones.

124 uriAar tiviv 0. ruvnuiviair, 1t JULOo

The key algorithm in this context is based on the constructive proof of Theorem 3.19
presented in Section 3.4.5. In practical cases, it often returns a left-synchronous transducer
and no approximation is necessary. When it fails, it means that some strongly-connected
component could not be resynchronized. The idea is then to approximate this strongly
connected component by a recognizable relation, and then to restart the resynchronization
algorithm.

For better efficiency, all strongly-connected components whose transmission rate is
not 0, 1 or 400 should be approximated this way in a first stage. In the same stage, if
a strongly-connected component C' whose transmission rate is 1 follows some strongly-
connected components C1, ... , C, whose transmission rates are 0 or 400, then a recogniz-
able approximation K¢ of C should be added to the transducer with same outgoing tran-
sitions as (', and all paths from C,... ,C), to C should now lead to K. Applying such a
first stage guarantees that the resynchronization algorithm will return a left-synchronous
approximation of R, thanks to Theorem 3.19.

Eventually, when trying to intersect a rational transducer with the lexicographic order,
we are looking for a pseudo-left-synchronous approximation. The same technique as before
can then be applied, using the extended version of Theorem 3.19 proposed in Section 3.6.

3.7.3 Approximation of Algebraic and Multi-Counter Relations

There are two very different techniques when approximating algebraic relations. The sim-
plest one is used to give conservative results to a few undecidable questions for algebraic
transducers that are decidable for rational ones. It consists in taking the underlying ratio-
nal transducer as a conservative approximation. Precision can be slightly improved when
the stack size is bounded: the finite number of possible stack words can be encoded in
state names. This may induce a large increase of the number of states. The second tech-
nique is used when looking for an intersection with a left-synchronous relation: it consists
in approximating the underlying rational transducer with a left-synchronous (or pseudo-
left-synchronous) one without modifying the stack operations. In fact, stack operations
can be preserved in the resynchronization algorithm (associated with Theorem 3.19), but
they are obviously lost when approximating a strongly-connected component with a rec-
ognizable relation. Which technique is applied will be stated every time an approximation
of an algebraic relation is required.

Eventually, we have seen that composing two rational transductions over Z" yields a
n-counter transduction by Theorem 3.27. Approximation by a one-counter transduction
then consists in saving the value of bounded counters into new states names, then removing
all unbounded counters but one. Smart choices of the remaining counter and attempts to
combine two counters into one have not been studied yet, and are left for future work.

12429

Chapter 4

Instancewise Analysis for Recursive
Programs

Even though dependence information is at the core of virtually all modern optimizing
compilers, recursive programs have not received much attention. When considering in-
stancewise dependence analysis for recursive data structures, less than three papers have
been published. Even worse is the state of the art in reaching definition analysis: be-
fore our recent results for arrays [CC98|, no instancewise reaching definition analysis for
recursive programs has been proposed.

Considering the program model proposed in Chapter 2, we now focus on dependence
and reaching definition analysis at the run-time instance level. The following presentation
is built on our previous work on the subject [CCG96, Coh97, Coh99a, Fea98, CC98|, but
has been going through several major evolutions. It results in a much more general and
mathematically sound framework, with algorithms for automation of the whole analysis
process, but also in a more complex presentation. The primary goal of this work is rather
theoretical: we look for the highest precision possible. Beyond this important target, we
will show in a later chapter (see Section 5.5) how this precise information can be used
to outperform current results in parallelization of recursive programs, and also to enable
new program transformation techniques.

We start our presentation with a few motivating examples, then discuss induction
variable and storage mapping function computation in Section 4.2, the general analysis
technique is presented in Section 4.3, with questions specific to particular data structures
deferred to the next sections. Eventually, Section 4.7 compares our results with static
analyses and with recent works on instancewise analysis for loop nests.

4.1 Motivating Examples

Studying three examples, we present an intuitive flavor of the instancewise dependence
and reaching definition analyses for recursive control and data structures.

4.1.1 First Example: Procedure Queens

Our first example is still the procedure Queens, presented in Section 2.3. It is reproduced
here in Figure 4.1.a with a partial control tree.

Studying accesses to array A, our purpose is to find dependences between run-time
instances of program statements. Let us study instance FPIAaaaaaJQPIAaBsr of state-

1244 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

P void Queens (int n, int k) {

I if (k <n) { rp
A/afa for (int i=0; i<n; i++) {
B/s/b for (int j=0; j<k; j++) IAa
r e = e A[J] S
J if ¢-0) { W
5 Akl = ---; s QP
k+1);
Q X Queens (n, k+1); FPIALTs
FPIAsaaJs 1AA
¥ FPIAaasands
, ¥ write Af0] 7/ \P”
,
int main O { FPIAaaaaaJQPIAABer % reads A[O]
F Queens (n, 0);

3

Figure 4.1.b. Compressed control tree
Figure 4.1.a. Procedure Queens

.................... Figure 4.1. Procedure Queens and control tree

ment 7, depicted as a star in Figure 4.1.b. In order to find some dependences, we would
like to know which memory location is accessed. Since j is initialized to 0 in state-
ment B, and incremented by 1 in statement b, we know that the value of variable j at
FPIAAraaaaJQPIAABBr is 0, so FPIAaaaaaJQPIAABBr reads A[0].

We now consider instances of s, depicted as squares: since statement s writes into
A[k], we are interested in the value of variable k: it is initialized to 0 in main (by the
first call Queens(n, 0)), and incremented at each recursive call to procedure Queens in
statement (). Thus, instances such as FPIAaJs, FPIAaaaJs or FPIAaasaaJs write into
A[0], and are therefore in dependence with FPIAaasaaJ(Q)PIAABBr.

Let us now derive which of these definitions reaches FPIAaaaaaJQPIAaBBr. Looking
again at Figure 4.1.b, we notice that instance FPIAaasaaJs—denoted by a black square—
is, among the three possible reaching definitions that are shown, the last to execute. And it
does execute: since we assume that FPIAraaaaJQPIAABBr executes, then FPIAArasaaJ
(hence FPIAaaaaalJs) has to execute. Therefore, other instances writing in the same
array element, such as FPIAaJs and FPIAaaaJs, cannot reach the read instance, since
their value is always overwritten by FPIAaaaaaJs.! Noticing that no other instance of
s could execute after FPIAaasaals, we can ensure that FPIAaasaalJs is the reaching
definition of FPIAaasaaJQPIAaBpr. We will show later how this simple approach to
computing reaching definitions can be generalized.

LFPIAAaAaAJs is then called an ancestor of FPIAAaAaAJQPIAABBr, to be formally defined later.

2.l VIULIVALIING IDAAWNVIE LD 1249

4.1.2 Second Example: Procedure BST

Let us now look at procedure BST, as shown in Figure 4.2. This procedure swaps node
values to convert a binary tree into a binary search tree (BST). Nodes of the tree structure
are referenced by pointers; p->1 (resp. p->r) denotes the pointer to the left (resp. right)
child of the node pointed by p; p—>value denotes the integer value of the node.

P void BST (tree *p) {
I, if (p->1!=NULL) {

L BST (p->1);
I, if (p->value < p->1->value) {
a t = p—>value;

p->value = p—>1->value;
p—>1->value = t;

}
}
Ji if (p—>r!=NULL) {
R BST (p->r);
Jo if (p->value > p->r->value) {
d t = p->value;
e p—>value = p->r->value;
f p->r->value = t;
¥
¥

}

int main () {
F if (root!=NULL) BST (root);

There are few dependences on program BST. If « is an instance of block I5, then there
are anti-dependences between the first read access in u and instance ub, between the
second read access in u and uc, between the read access in instance ua and instance ub,
and between the read access in ub and instance uc. It is the same for an instance v of
block Jy: there is an anti-dependence between the first read access in u and ue, between
the read access in u and u f, between the read access in ud and ue, and between the read
access in ue and uf. No other dependences are found. We will show in the following how
to compute this result automatically. Eventually, a reaching definition analysis tells that
L is the unique reaching definiton of each read access.

4.1.3 Third Example: Function Count

Our last motivating example is function Count, as shown in Figure 4.3. It operates on
the inode structure presented in Section 2.3.3. This function computes the size of a file
in blocks, in counting terminal inodes.

Since there is no write access to the inode structure, there are no dependences on
the Count program (not considering the other data structures, such as scalar ¢). How-

120 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

P int Count (inode *p) {
1 if (p->terminal)

a return p->length;
E else {

b c = 0;

L/t/l for (int i=0; i<p->length; i++)
c c += Count (p->nl[il);
d return c;
}
by

int main () {
F Count (file);

ever, an interesting result for cache optimization techniques [TD95] would be that each
memory location is read only once. We will show that this information can be computed
automatically by our analysis techniques.

4.1.4 What Next?

In the rest of this chapter, we formalize the concepts introduced above. In Section 4.2,
we compute maps from instance names to data-element names. Then, the dependence
and reaching definitions relation are computed in Section 4.3.

4.2 Mapping Instances to Memory Locations

In Section 2.4, we defined storage mappings from accesses—i.e. pairs of a run-time instance
and a reference in the statement—to memory locations. To abstract the effect of every
statement instance, we need to make explicit these functions. This is done through the
use of induction variables.

After a few definitions and additional restrictions of the program model, we show
that induction variables are described by systems of recurrence equations, we prove a
fundamental resolution theorem for such systems, and finally we apply this theorem in an
algorithm to compute storage mappings.

To simplify the notations of variables and values, we write “v” for the name of an

existing program variable, and “v” is an abbreviation for “the walue of variable “v”.

4.2.1 Induction Variables

We now extend the classical concept of induction variable—strongly connected with nested
loops—to recursive programs. To simplify the exposition, we suppose that every integer
or pointer variable that is local to a procedure or global to the program has a unique

distinctive name. This allows quick and non-misleading wordings such as “variable i”,

T4 viArrriiNGg LiINod1Alvulyvo LU vituividvivr UL 1UIND 124

and has no effect on the generality of the approach. Compared to classical works with
nests of loops [Wol92], we have a rather original definition of induction variables:

e integer arguments of a function that are initialized to a constant or to an integer
induction variable plus constant (e.g. incremented or decremented by a constant),
at each procedure call;

e integer loop counters that are incremented (or decremented) by a constant at each
loop iteration;

e pointer arguments that are initialized to a constant or to a possibly dereferenced
pointer induction variable, at each procedure call;

e pointer loop variables that are dereferenced at each loop iteration;

For example, suppose i, j and k are integer variables, p and q are pointer variables
to a list structure with a member next of type list*, and Compute is some procedure
with two arguments. In the code in Figure 4.4, reference 2xi+j appears in a non-recursive
function call, hence i, j, p and q are considered induction variables. On the opposite, k
is not an induction variable because it retains its last value at the entry of the inner loop.

void Compute (int i, list *p) {
int j, k;
list *q;

for (g=p, k=0; q!=NULL; g=gq->next)
for (j=0; j<100; j+=2, k++)
// recursive call
Compute (j+1, q);

printf ("%d", 2%i+j);

................... Figure 4.4. First example of induction variables

As a kind of syntactic sugar to increase the versatility of induction variables, some
cases of direct assignments to induction variables are allowed—i.e. induction variable
updates outside of loop iterations and procedure calls. Regarding initialization and in-
crement/decrement /dereference, the rules are the same than for a procedure call, but
there are two additional restrictions. These restrictions are those of the code motion
IKRS94, Gup98| and symbolic execution techniques [Muc97]| used to move each direct
assignment to some loop/procedure block surrounding it. After such a transformation,
direct assignments can be interpreted as “executed at the entry of that block”, the name
of the statement being replaced by the actual name of the block.

Of course, symbolic execution techniques cannot convert all cases of direct assignations
into legal induction variable updates, as shown by the following examples. Considering
the program in Figure 4.5.a, i is an induction variable because the while loop can be
converted into a for loop on i, but j is not an induction variable since it is not initialized
at the entry of the inner for loop. Considering the other program in Figure 4.5.b, variable
i is not an induction variable because s is guarded by a conditional.

1240 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

int i=0, j=0, k, A[200];
while (i<10) {

int i, A[10, 10];
for (k=0; k<10; k++) { int i, A[10, 10];

for (i=0, j=0; i<10; i++) {

)T if ()
}...; R
A[i] = A[i] + A[j]; T X Ali, j1 = ---;
i=1+1;

¥ Figure 4.5.b. Third example

Figure 4.5.a. Second example

.................. Figure 4.5. More examples of induction variables

Additional restrictions to the program model In comparison with the general
program model presented in Section 2.2, our analysis requires a few additional hypotheses:

e every data structure subject to dependence or reaching definition analysis must be
declared global (notice that local variables can be made global using explicit memory
allocations and stacks);

e every array subscript must be an affine function of integer induction variables (not
any integer variable) and symbolic constants;

e cvery tree access must dereference a pointer induction variable (not any pointer
variable) or a constant.

4.2.2 Building Recurrence Equations on Induction Variables

Describing conflicts between memory accesses is at the core of dependence analysis. We
must be able to associate memory locations to memory references in statement instances
(i.e. A[i], *p, etc.) by means of storage mappings. This analysis is done independently
on each data-structure. For each induction veriable, we thus need a function mapping
a control word to the associated value of the induction variable. In addition, the next
definition introduces a notation for the relation between control words and induction
variable values.

Definition 4.1 (value of induction variables) Let « be a program statement or
block, and w be an instance of . The value of variable i at instance w is defined
as the value of 1 immediately after executing (resp. entering) instance w of statement
(resp. block) a. This value is denoted by [i](w).

For a program statement « and an induction variable i, we call [i,a] the set of
all pairs (uc, 1) such that [i](u«) = i, for all instances u« of «.

We consider pairs of elements in monoids, and to be consistent with the usual notation
for rational sets and relations, a pair (x,y) will be denoted by (z]y).

In general, the value of a variable at a given control word depends on the execution.
Indeed, an execution trace keeps all the information about variable updates, but not a

T4 viArrriiNGg LiINod1Alvulyvo LU vituividvivr UL 1UIND 129

control word. However, due to our program model restrictions, induction variables are
completely defined by control words:

Lemma 4.1 Let i be an induction variable and u a statement instance. If the value
[i](u) depends on the effect of an instance v—i.e. the value depends on whether v
executes or not—then v is a prefiz of w.

Proof: Simply observe that only loop entries, loop iterations and procedure calls may
modify an induction variable, and that loop entries are associated with initialisations
which “kill” the effect of all preceeding iterations (associated with non-prefix control
words). |

For two program executions e, e’ € E, the consequence of Lemma 4.1 is that storage
mappings f. and f. coincides on A, N A.. This strong property allows to extend the
computation of a storage mapping f, to the whole set A of possible accesses. With this
extension, all storage mappings for different executions of a program coincides. We will
thus consider in the following a storage mapping f independent on the execution.

The following result states that induction variable are described by recurrence equa-
tions:

Lemma 4.2 Let (Mpara,®) be the monoid abstraction of the considered data structure.
Consider a statement v and an induction variable i. The effect of statement « on the
value if i is captured by one of the following equations:

either 30 € Mpapa,j € INDUC: Yua € Logg, : [1](ua) = [j](v)e 3 (4.1)
or 36 € Mpyps: Yua € Loy, @ [1](va) = 3 (4.2)

where INDUC is the set of all induction variables in the program, including i.

Proof: Consider an edge « in the control automaton. Due to our syntactical restric-
tions, edge « corresponds to a statement in the program text that can modify i in
only two ways:

e either there exist an induction variable j whose value is j € My, just before
executing instance ua of statement « and a constant 3 € My, such that the
value of i after executing instance ua is j @ 3—translation from a possibly identical
variable;

e or there exist a constant § € My, such that the value of i after executing instance
uq is f—initialization.

Notice that, when accessing arrays, we allow general affine subscripts and not only
induction variables. Therefore we also build equations on affine functions a(i,j,---)
of the induction variables. For example, if a(i,j,k) = 2*i+j-k then we have to build
equations on [2* i+ j —k[(u) knowing that [2x i+ j—k](u) = 2[i](v) + [j](u) —

[k](u).?

2We have indeed to generate new equations, since computing [2 x i + j — k](u) from [i](w), [§](u)
and [k](u) is not possible in general: variables i, j and k may have different scopes.

190U UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

To build systems of recurrent equations automatically, we need two additional nota-
tions:

UNDEFINED is a polymorphic value for induction variables, [1](w) = UNDEFINED means
that variable i has an undefined value at instance w; it may also be the case that i
is not visible at instance w;

ARG(proc,num) stands for the num'™ actual argument of procedure proc.

Algorithm RECURRENCE-BUILD applies Lemma 4.2 in turn for each statement in the
program.

RECURRENCE-BUILD (program)
program: an intermediate representation of the program

returns a list of recurrence equations

1 sys— @
2 for each statement o in program
3 do for each induction variable i in «
4 do switch
5 case « = for (i=init; ---; ---): // loop entry
6 sys « sys U {Yua € Loy, : [1](uar) = init}
7 case o = for (---; ---; i=i+inc) : // loop iteration
8 sys «— sys U {Vua € Loy, ¢ [1](ue) = [1](u) @ inc}
9 case o« = for (---; ---; i=i->inc) : // loop iteration
10 sys «— sys U {‘v’ua € LCTRL 1] (uer) = [i](u) @ inc}
11 case o = proc (- var, ---):
el
12 sys « sys U {Yua € Loy, : [ARG(proc, m)](uw) = [var](u)}
13 case o = proc (-- , var+est, «-+):
et
14 sys « sys U {Yua € Loy, : [ARG(proc, m)](uw) = [var](u) e cst}
15 case «« = proc (.-, var->cst, ---):
et
16 sys « sys U {Yua € Loy, : [ARG(proc, m)](ua) = [var](u) e cst}
17 case o =proc (--, cst, «++):
et
18 sys «— sys U{Yua € Ly, : [ARG(proc, m)](ua) = est}
19 case default :
20 sys « sys U {Yua € Loy, : [1](uar) = [1](u)}
21 for each procedure p declared proc (type; arg;, ---, type, arg,) in «
22 do for m «— 1 to n
23 do sys <« sys U {Vup € Loy, : [argm](up) = [ARG(proc, m)](u)}

24 return sys

Now, suppose that there exist a statement «, two induction variables i and j, and a
constant € Mp,p, such that [i](ua) = [j](u) @ 3 is an equation generated by Lemma 4.2.
Transposed to [1, a]—the set of all pairs (uc|[i](ue))—it says that

(ulj) € [3,d] = (ualjep) € [i,q],

for all statements ' that may precede « in a valid control word u. Second, suppose that
there exist a statement «, an induction variables i, and a constant 0 € My, such that

T4 viArrriiNGg LiINod1Alvulyvo LU vituividvivr UL 1UIND 1ol

[i](uc) = is an equation generated by Lemma 4.2. Transposed to [1i, «], it says that

(ui) € [1,0'] = (ualB) € [1,a],

for all statements «' that may precede « in a valid control word u. These two observa-
tions allow to build a new system involving equations on sets [i,«] from the result of
RECURRENCE-BUILD. Algorithm to achieve this is called RECURRENCE-REWRITE: the
two conditionals in RECURRENCE-REWRITE are associated with v = ¢, i.e. with recur-
rence equations of the form [i](«) = [j](¢)5 ([j](¢) is an undefined value) or [i](«) = 3,
and the two loops on «' consider predecessors of «.

RECURRENCE-REWRITE (program, system)
program: an intermediate representation of the program

system: a system of recurrence equations produced by RECURRENCE-BUILD

returns a rewritten system of recurrence equations

L¢rry, < language of control words of program

new «— <

for each equation Yua € Ly, : [1](ua) = [j](uv) ® 5 in system

do if a € Ly,

then new «— new U {(a]je 3) € [1,a]}

for each o' such that (Xf,,, o'an LCTRL) + @
do new «— new U {Yua € Loy : (ulj) € [j,0] = (ualjeB) € [1,a]}

for each equation Yua € Loy, : [1](ua) = B in system

do if a € Ly,

10 then new — new U {(«|3) € [1,a]}

11 for each o' such that (X}, &'a N Loy.) # @

12 do new «— new U {Vua € Loy : (ui) € [1,d'] = (uva|f) € [1, o]}

13 return new

O~ O Ot i W+

Ne}

Algorithms RECURRENCE-BUILD and RECURRENCE-REWRITE are now applied to
procedure Queens. There are three induction variables, i, j and k; but variable i is not
useful for computing storage mapping functions. We get the following equations:

From main call F: [ARG(Queens,2)]|(F) =0
From procedure P: VYuP € Lgyy, : [K](uP) = [ARG(Queens, 2)](u)
From recursive call Q: Vu@ € Loy, : [ARG(Queens, 2)](u@) = [k](u) + 1
From entry B of loop B/B/b: YuB € Loy, : [j](uB) =0
From iteration b of loop B/B/b: Vub € Loy, ¢ [j](ub) = [3](u) + 1

All other statements let induction variables unchanged or undefined:

[7](F) = UNDEFINED

VuP € Lopgy, © [j](uP) = UNDEFINED
Vul € Loy @ [j](ul) = UNDEFINED
VuA € Loy, ¢ [j](uA) = UNDEFINED
Vua € Lorgy, @ [j](ua) = UNDEFINED
Vua € Loy, @ [j](ua) = UNDEFINED
Vus € Lo : [3](ur) = [3](w)
Vur € Lorgy, : [[J]](UT‘) = [[J]](u)
VuJ € Lo = [31(ud) = [5](u)
Vu@ € Loy [[J]](uQ) = UNDEFINED
[51(

Yus € Lorgy :

1o4 uliAalr L1iuivy 4.

[k](F) =
Vul € Lapyg,, :
VuA € Leopgy, -
Yua € Loy, :
Yua € Lorgy, -
YuB € Loy, :
Yup € Loy, :
Yub € Leargy, :
Yur € Loy -
YuJ € Lorgs :
Vu@ € Lerry
Yus € Lorgy -

LINO L AINUILVYV IO AINAL Yoo UL Iy uivol v i iU ivAlivio

UNDEFINED

[(u) = [K](v)

[k (uA) = [k](u)
[k (ua) = [&](u)
[k] (ua) = [k](u)
[k](uB) = [k](u)
[k] (up) = [k] ()
[k] (ub) = [k](u)
[k] (ur) = [k] (u)
[k (u]) = [k] ()
[k] (u@) = [k](u)
[k (us) = [k](u)

Now, recall that [j, o] (resp. [k,) is the set of all pairs (ualj) (resp. (ucr|k)) such that

[31(ue) = j (resp. [k](uc
above, RECURRENCE-REWRITE yields:

;

VuP € Lo, © (ulj) € [3, F]
VuP € Lo, : (ulf) € [3,Q]
Yul € Lopgy : (u|]) [[J,P]l
VuA € Lergy, - (UU) € [[ij]l
Vua € Lergy, : (u|]) S [[j7A]l
Yua € Lergy - (u|]) S [[jaa]l
Yua € Lergy : (u|j) S [[j,A]l
VuB € Loy, - (u|]) S [[jaA]l
Vus € Lorgy, : (u|]) S [[j7B]l
VuB € Lorgy (u|]) S [[j7b]l
Vub € Lorgy, (u|]) S [[j7B]l
Yur € Loy (U|j) S [[JJ B]l
VuJ € Lorgy, : (u|]) S [[ij]l
Vu@ € Lergy © (ulj) € [3, 7]
L Vus € Lergy : (UU) S [[J7 J]l

(F|UNDEFINED) €

) = k), for all instances u« of a statement «. From equations

[35, F]

= (uP|UNDEFINED) € [j, P]
= (uP|UNDEFINED) € [j, P]
= (uI|UNDEFINED) € [j,]

= (uA|UNDEFINED) € [j, A]
= (u4|UNDEFINED) € [j, 4]

= (ua|UNDEFINED) € [j, 4]

= (ua|UNDEFINED) € [j, d]

= (uB|0) € [3, B]

= (uslj) € [3, 4]

= (usl)) € 5, 4]

= (ublj +1) € [3,0]

= (urlj) € [3,7]

= (uJ|UNDEFINED) € [j, J]
= (uQ|UNDEFINED) € [j, Q]
= (us|UNDEFINED) € [j, 5]

T.L.

\

WVIALT 1IN G LINo L AINUIO LU ViiyiviJivl LUJUUALIUIND 199

(F|UNDEFINED) € [k, F]

VuP € Loy, : (u]z) € [ARG(Queens, 2), F] = (uP|x) € [k, P]
VuP € Loy, : (u]z) € [ARG(Queens, 2),Q] = (uP|x) € [k, P]
Vul € Loy @ (ulk) € [k, P] = (ullk) € [k,]
VuA € Lo : (ulk) € [k, I] = (uAlk) € [k, 4]
Vua € Lo : (ulk) € [k, A] = (ualk) € [k, 4]
Vua € Loy, : (ulk) € [k,a] = (ualk) € [k, 4]
Vua € Loy, : (ulk) € [k, 4] = (ualk) € [k, a]
VuB € Loy @ (ulk) € [k, 4] = (uB|k) € [k, B]
VuB € Loy : (ulk) € [k, B] = (uBlk) € [k, B]
VuB € Loy, @ (ulk) € [k, 0] = (uBlk) € [k, 5]
Vub € Loy, : (ulk) € [k, B] = (ublk) € [k, 0]
Vur € Loy, : (ulk) € [k, 8] = (ur|k) € [k, 7]
VuJ € Loy, : (ulk) € [k, 4] = (uJ|k) € [k, J]
Vu@ € Lomgy : (ulk) € [k, J] = (uQlk) € [k, Q]
Vus € Loy, : (ulk) € [k, J] = (us|k) € [k, 5]
(F'|0) € [ArRG(Queens, 2), F]]
Vu@ € Loggy = (ulk) € [k, J] = (uQ|k + 1) € [ARG(Queens, 2), (]

4.2.3 Solving Recurrence Equations on Induction Variables

The following result is at the core of our analysis technique, but it is not limited to this
purpose. It will be applied in the next section to the system of equations returned by
RECURRENCE-REWRITE.

Lemma 4.3 Consider two monoids L and M with respective binary operations x and x.

Let R be a subset of L x M defined by a system of equations of the form
(El) ‘v’lEL,ml e M: (l|m1)€R1 — (l*a1|m1*ﬁl)€R

and
(E») Vie Lims € M: (llms) € Ry = (I*xs|fs) € R,

where Ry C L x M and Ry C L x M are some set variables constrained in the system
(possibly equal to R), ay, ay are constants in L and [y, By are constants in M. Then,
R is a rational set.

Proof: Our first task is to convert these expressions on unstructured elements of L
and M, into expressions in the monoid L x M. Then our second task is to derive set
expressions in L x M, of the form set - constant C set or constant C set (the induced
operation is denoted by “”). Indeed, the right-hand-side of (F}) can be written

(I|m1) - (e]B1) € R.

Thus, (E) gives
Ry - (au|B) C R.

The right-hand-side of (E3) can also been written
(le) - (azlf2) € R

but (l|€) is neither a variable nor a constant of L x M.

loa UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

To overcome this difficulty, we call R® the set of all pairs (I|¢) such that Im € M :
(Ilm) € R. It is clear that R® satisfies the same equations as R with all right pair
members replaced by . Now, (Es) yields two equations:

RS (agle) C R and R - (¢|f) C R.
At last, if the only equations on R are (E;) and (F,), we have
R = Ry-(ale) + R5 - (asle)
R = Ry (aq|f1)+ R - (¢|Ps)
More generally, applying this process to Ry, Ry and to every subset of L x M described

in the system, we get a new system of reqular equations defining R. It is well known
that such equations define a rational subset of L x M. [|

Thanks to classical list operations INSERT, DELETE and MEMBER (systems are en-
coded as lists of equations), and to string operation CONCAT (equations are encoded
as strings), algorithm RECURRENCE-SOLVE gives an automatic way to solve systems of
equations of the form (E;) or (Ej).

RECURRENCE-SOLVE (system)
system: a list of recurrence equations of the form (£)) and (E»)

returns a list of regular expressions

1 sets— @&
2 for each implication “ (I|m) € A= (Ixalm%f) € B” in system
3 do INSERT (sets,{A - (a|3) C B})
4 INSERT (sets, {A° - (ale) C B})
5 for each implication “ (I[|m) € A= (Ix«|f) € B” in system
6 do INSERT (sets,{B° - (¢|f) C B})
7 INSERT (sets, {A® - (ale) C B})
8 wariables <+ @
9 for each inclusion “A-(z|y) C B” in sets
10 do if MEMBER (variables, B)
11 then equation «— DELETE (variables, B)
12 INSERT (variables, CONCAT (equation, “ +A - (x|y) 7))
13 else INSERT (variables,“ B = A - (z|y)”)

14 wariables < COMPUTE-REGULAR-EXPRESSIONS (variables)
15 return variables

Algorithm COMPUTE-REGULAR-EXPRESSIONS solves a system of regular equations
between rational sets, then returns a list of regular expressions defining these sets. The
system is seen as a reqular grammar and resolution is done through variable substitution—
when the variable in left-hand side does not appear in right-hand side—or Kleene star
insertion—when it does. Well known heuristics are used to reduce the size of the result,
see [HUTY] for details.

4.2.4 Computing Storage Mappings

The main result of this section follows: we can solve recurrence equations in Lemma 4.2
to compute the value of induction variables at control words.

Theorem 4.1 The storage mapping f that maps every possible access in A to the mem-
ory location it accesses is a rational function from X7 .. to Mpsp,.

T.L.

WVIALT 1IN G LINo L AINUIO LU ViiyiviJivl LUJUUALIUIND 199

Proof: Since array subscripts are affine functions of integer induction variables, and
since tree accesses are given by dereferenced induction pointers, one may generate a
system of equations according to Lemma 4.2 (or RECURRENCE-BUILD) for any read
or write access.

The result is a system of equations on induction variables. Thanks to RECURRENCE-
REWRITE, this system is rewritten in terms of equations on sets of pairs (ua|[i](uc)),
where ua is a control word and i is an iteration variable, describing the value of
i for any instance of statement a. We thus get a new system which inductively
describes subset [i, o] of Xf.., X Mpara. Because this system satisfies the hypotheses
of Lemma 4.3, we have proven that [i, «] is a rational set of X%, .. X Mpara. Now, for
a given memory reference in «, we know that pairs (w|f(w))—where w is an instance
of a—build a rational set. Hence f is a rational transduction from X7 . to Mp,,.

Because f is also a partial function, it is a rational function from X7 . to M,\,,. W

The proof is constructive, thanks to RECURRENCE-BUILD and RECURRENCE-SOLVE,
and COMPUTE-STORAGE-MAPPINGS is the algorithm to automatically compute storage
mappings for a recursive program satisfying the hypotheses of Section 4.2.1. The result
is a list of rational transducers—converted by COMPUTE-RATIONAL-TRANSDUCER from
regular expressions—realizing the rational storage mappings for each reference in right-
hand side.

COMPUTE-STORAGE-MAPPINGS (program)

N O Ol Wi

program: an intermediate representation of the program

returns a list rational transducers realizing storage mappings
system < RECURRENCE-BUILD (program)

new < RECURRENCE-REWRITE (program, system)

list «— RECURRENCE-SOLVE (new)

newlist «— @

for each regular expression reg in list

do newlist < newlist U COMPUTE-RATIONAL-TRANSDUCER (reg)
return newlist

Let us now apply COMPUTE-STORAGE-MAPPINGS on program Queens. Starting from

the result of RECURRENCE-REWRITE, we apply RECURRENCE-SOLVE. Just before call-
ing COMPUTE-REGULAR-EXPRESSIONS, we get the following system of regular equations:

190 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

([j,F] = (F|UNDEFINED)
[37,P] = [j,F] - (PJUNDEFINED) + [j, Q] - (P|UNDEFINED)
[3,I] = [j,P] (I|/UNDEFINED)
[i,A] = [j,1] - (A|UNDEFINED)
[3,4) = [j,A] " (A|UNDEFINED) + [j, a] - (A|UNDEFINED)
[i,a] = [j, 4] (¢|]UNDEFINED)
[3.B] = [3,B] - (¢|0)
[3.8] = [3.B]-(80) + [3,0] - (50)
[3.0] = [3,8]-(0]1)
[3.7] = [3,8] (r]0)
[i,7] = 1[j, 4] (J|[UNDEFINED)
[;,Q] = [j,J] (QIUNDEFINED)
l3,s] = [3,J] " (s|UNDEFINED)
[3.F]° = (Fle)
5. P = [3, F]F - (P|0) + [3, QI - (P|0)
[3.71° = [3,P]°-(1]0)
[3.Al° = [3.1]° - (A|0)
[3.4° = [3,A] - (4]0) + [3, a]* - (4]0)
[3.al° = [3,4]° - (al0)
[3.B]* = [i,4]° - (B|0)
[3.8]° = [3.B]° - (80) +[3,0]° - (50)
[3.00° = [3,5]° - (b|0)
[3.71° = [3,4]° - (J]0)
([3,QFF = [3,7]F - (Q[0)
([k, F] = (F|UNDEFINED)
[k, P] = [ARrG(Queens,?2), F]-(P|0)+ [ARG(Queens,2),Q] - (P]0)
[k, 1] = [k, P]-(1]0)
k,A] = [k1]-(A]0)
[kl = [k A]-(]0) + [k a] - (a]0)
[k,a] = [k, 4] - (al0)
[k, B] = [k, 4]-(B0)
. [x,8] = [k, B]-(50)+ [k, b] - (50)
k0] = [k] ([0)
ko] = [x] (r]0)
[k,J] = [k 4]-(J]0)
[k, Q] = [k J]-(Q|0)
[k,s] = [k J]-(s]0)
[ARG(Queens,2), F] = (F|0)
| [ArG(Queens,2),Q] = [k J]-(QI)

These systems—seen as reqular grammars—can be solved with COMPUTE-REGULAR-
EXPRESSIONS, yielding reqular expressions. These expressions describe rational functions
from ¥}, to Z, but we are only interested in [j,r] and [k, s] (accesses to array A):

[3,7] = (FPIA|0)- ((JQPIA4|0) + (aa|0))” - (Bs5|0) - (bs|1)* - (r]0) (4.3)
[k,s] = (FPIAA|0)- ((JQPIAA|1) + (aa|0)) - (Js|0)

T4 viArrriiNGg LiINod1Alvulyvo LU vituividvivr UL 1UIND 1o

Eventually, we have found the storage mapping function for every reference to the array:
{(ur|f(ur,al31))} = (FPIAA|0)- ((JQPIA4|O) + (aa]0))" - (BB|0) - (bB|L)* - (r]0)(4.5)
{(us|f(us,Alk]))} = (FPIAA|0)- ((JQPIA4|L) + (a4|0))" - (Js|0) (4.6)

4.2.5 Application to Motivating Examples

We have already applied COMPUTE-STORAGE-MAPPINGS on program Queens, and we
repeat the process for the two other motivating examples.

Procedure BST

Algorithm COMPUTE-STORAGE-MAPPINGS is now applied to procedure BST in Fig-
ure 4.2. The only induction variable is p:

From main call F: [ARG(BST,1)](F) =¢
From procedure BST: YuP € Loy, : [K](uP) = [ARG(BST, 1)](u)
From first recursive call L: VYuL € Loy, : [ARG(BST, 1)](uL) = [p](u)1
From second recursive call R: YuR € Leyyg, : [ARG(BST, 1)](uR) = [p](u)r.

All other statements let the induction variable unchanged. Recall that [p,«] is the
set of all pairs (u|p) such that [p](u) = p, for all instances u of a statement «. From
equations above, this set satisfy the following regular equations:

;

[p,P] = (FPle)+[p. 1] - (LP|) + [p, /1] - (RP|r)
[p, ;] = [p.P]- (Lile)
[[pa‘]l]] = [[p,P]l-(J1|5)
[p,] = [p. 1] - (Lzle)
[p, o] = [p.Ji]- (ale)
[p,a]l = [p,L2] - (ale)
[p,0] = [p,12] - (bl¢)
[p,c] = [p.L2] - (cle)
[p,d] = [p,J2] - (dle)
[p,e] = [p.J2] - (ele)
\ HPJ.ﬂ] = HPJJZ]](fLC:)

*

This system describes rational functions from ¥, . to Z, but we are only interested in
[p, a] for a € {I5,a,b, ¢, Jy,d, e, f} (accesses to node values):

Va € {Iy,a,b,c} : [p,a] = (FPle)- (LLP|l)+ (LRP|r)) - (Iilale) (4.7)

Va € {Jo,d,e, f}: [p,a] = (FPle)- (ILLLP|l)+ (JiRP|r))" - (Jioale) (4.8)

Eventually, we can compute the storage mapping function for every reference to the tree:
Va € {Iy,a,b} :

{(ua|f(uer,p->value))} = (FPle)- (LLLP|l)+ (JiRP|r))" - (L1 hale) (4.9)
Va € {Iy,b, ¢} :

{(uer|f(uer,p->1->value))} = (FPle)- ((LLP|l)+ (iRP|r))" - (IiLall) (4.10)
Va € {Jy,d, e} :

{(uar| f(uer,p->value))} = (FPle)- (LLLP) + (JiRP|r))" - (JiJoale) (4.11)
Va € {Jy,e, f}:

{(uer| f(uer, p->r->value))} = (FPle)- ((ILLP|l) + (JiRP|r))" - (JiJoclr) (4.12)

190 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

Function Count

Algorithm COMPUTE-STORAGE-MAPPINGS is now applied to procedure Count in Fig-
ure 4.3. Variable p is a tree index and variable i is an integer index. Indeed, the inode
structure is neither a tree nor an array: nodes are named in the language Ly,py = (Zn*)Z.
Thus, the effective induction variable should combine both p and ¢ and be interpreted in
Lpara, with binary operation e defined in Section 2.3.3. But no such variable appears in
the program... The reason is that the code is written in C, in which the inode structure
cannot be referenced through a uniform “cursor”—like a tree pointer or array subscript.

P int Count (inode &p) {
1 if (p—->terminal)

a return p->length;
E else {

b c = 0;

L/i/l for (int i=0, inode &qg=p->n; i<p->length; i++, g=q->1)
c c += Count (q);

d return c;
b
}
main () {
F Count (file);
}

This would become possible in a higher-level language: we have rewritten the program
in a C+-+-like syntax in Figure 4.6. Now, p is a C++ reference and not a pointer, and
operation -> has been redefined to emulate array accesses.®> References p and q are the
two induction variables:

From main call F: [ARG(Count,1)](F)=¢
From procedure P: YuP € Lgyy, : [p](uP) = [ARG(Count, 1)](u)
From recursive call ¢: Yuc € Ly, 1 [ARG(Count, 1)](uc) = [q] ()
From entry L of loop L/r/l: VuL € Loy : [q](uL) = [p](u) en
From iteration [of loop L/r/l: Yul € Lepg, : [a](ul) = [q](u) e 1

All other statements let induction variables unchanged or undefined. Recall that
[p,] (resp. [q,«]) is the set of all pairs (u|p) (resp. (u|q)) such that [p](u) = p (resp.
[a)(u) = q), for all instances u of a statement a. From equations above, these sets satisfy

3Yes, C++ is both high-level and dirty!

T.9. DI iyINGDJIviNCOL AING I A ULTEIN G DIV HIND L AUJIN AINAL Y O1O 1loJ

the following regular equations:

([

=
|

T T T
S~
I—1
I

2
=
I

“O“
=
|

=

IiH:’

o

oo oo
h
="

F|UNDEFINED) + [q,] - (¢P|UNDEFINED)
] - (I|JUNDEFINED)

] - (E|UNDEFINED)

- (a]UNDEFINED)

- ()|UNDEFINED)

- (L[n)

- (2[0) + g, 2] - (12[1)

- (d{|UNDEFINED)

Q
s}
Q

2
I=—""}
2

Q

Q Q
=8

Qa
=
I=I=

Q
z

Q
R

Q

= = /= e e) e 1) =) = = =
=
= = = = = 1 =~ e e)) e = e

2
=y
2

Ve

*

These systems describe rational functions from X, . to (Zn*)Z, but we are only
interested in [p, I], [p,a] and [p, L] (accesses to inode values):

[p,I] = {(ul|f(ul,p->terminal))}

= (FPle)- ((ELtn) - (I]1)* - (cPle))" - (I]e) (4.13)
pral = {(ualf(ua, p->1Lengtn))}

= (FPle)- (ELtn) - (1t]1)* - (cPle))" - (1ale) (4.14)
[p.L] = {(uLs|f(uLL,p->length))}

= (Fle)- ((ELL|n) - (1L|1)* - (¢Ple))" - (ELle) (4.15)

4.3 Dependence and Reaching Definition Analysis

When all program model restrictions are satisfied, we have shown in the previous section
that storage mappings are rational transductions. Based on this result, we will now present
a general dependence and reaching definition analysis scheme for recursive programs.
Both classical results and recent contributions to formal languages theory will be useful,
definitions and details can be found in Chapter 3.

This section tackles the general dependence and reaching definition analysis problem
in our program model. See Sections 4.4 (trees), 4.5 (arrays) and 4.6 (nested trees and
arrays) for technical questions depending on the data structure context.

4.3.1 Building the Conflict Transducer

In Section 2.4.1, we have seen that analysis of conflicting accesses is one of the first
problems arising when computing dependence relations. We thus present a general com-
putation scheme for the conflict relation, but technical issues and precise study is left for
the next sections.

We consider a program whose set of statement labels is Xqg;,. Let Lo, C X, be
the rational language of control words. Let My,ry be the monoid abstraction for a given

13U UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

data structure D used in the program, and Ly, C Mpara be the rational language of valid
data structure elements.

Now because f is used instead of f. (it is independent on the execution), the exact
conflict relation k. is defined by

Ve € E,Vu,v € Lopr, © ukev <= (u,v € Ae) A f(u) = f(v),
which is equivalent to

Ve € E\Vu,v € Loppy, 1 Ukev <= (u,v € A) Av e fH{f(u)).

Because f is a rational transduction from X7 ., to My, f —1 is a rational transduction

from Mpapa to X7, and Mp,p, is either a free monoid, or a free commutative monoid,
or a free partially commutative monoid, we know from Theorems 3.5, 3.27 and 3.28 that
f~1o f is either a rational or a multi-counter counter transduction. The result will thus
be exact in almost all cases: only multi-counter transductions must be approximated by
one-counter transductions.

We cannot compute an exact relation k., since A, depends on the execution e. More-
over, guards of conditionals and loop bounds are not taken into account for the moment,
and the only approximation of A, we can use is the full language A = Lg, of control

words. Eventually, the approximate conflict relation we compute is the following:

Vi, v € Loy © ukv &% p € FHf(w)). (4.16)

In all cases, we get a transducer realization (rational or one-counter) of transduction k.
This realization is often unapproximate on pairs of control words which are effectively
executed.

One may immediately notice that testing for emptiness of x is equivalent to testing
whether two pointers are aliased [Deu94, Ste96], and emptimess is decidable for rational
and algebraic transductions (see Chapter 3). This is an important application of our
analysis, considering the fact that is often unapproximate in practice.

Notice also that this computation of k does not require access functions to be rational
functions: if a rational transduction approximation of f was available, one could still
compute relation x using the same techniques. However, a general approximation scheme
for function f has not been designed, and further study is left for future work.

4.3.2 Building the Dependence Transducer

To build the dependence transducer, we need first to restrict relation k. to pairs of write
accesses or read and write accesses, and then to intersect the result with the lexicographic
order <;ppx:

Ve € E\Vu,v € Loy, : wéev <= u(ke N (W x W)U (W xR)U(R x W))N <px 0.

Thanks to techniques described in Section 3.6.2, we can always compute a conservative
approximation 6 of 6.. Relation ¢ is realized by a rational transducer in the case of trees
and by a one-counter transducer in the case of arrays or nested trees and arrays.
Approximations may either come from the previous approximation x of k. or from
the intersection itself. The intersection may indeed be approximate in the case of trees
and nested trees and arrays, because rational relations are not closed under intersection

T.9. DI iyINGDJIviNCOL AING I A ULTEIN G DIV HIND L AUJIN AINAL Y O1O 131

(see Section 3.3). But thanks to Proposition 3.13 it will always be exact for arrays. More
details in each data structure case can be found in Sections 4.4, 4.5 and 4.6. We can now
give a general dependence analysis algorithm for our program model. The DEPENDENCE-
ANALYSIS algorithm is exactly the same for every kind of data structure, but individual
steps may be implemented differently.

DEPENDENCE-ANALYSIS (program)
program: an intermediate representation of the program

returns a dependence relation between all accesses

1 f < COMPUTE-STORAGE-MAPPINGS (program)

2 ke (fof)

3 if k is a multi-counter transduction

4 then k < one-counter approximation of

5 if the underlying rational transducer of & is not left-synchronous

6 then x < resynchronization with or without approximation of x
7 k—kN(WxW)U(WxR)U(R xW))

8 6 «— KN <ypx

9 return 6

The result of DEPENDENCE-ANALYSIS is limited to dependences on a specific data
structure. To get the full dependence relation of the program, it is necessary to compute
the union for all the data structures involved.

4.3.3 From Dependences to Reaching Definitions

Remember the formal definition in Section 2.4.2: the exact reaching definition relation is
defined as a lexicographic selection of the last write access in dependence with a given
read access, i.e.

Vee E,Vu e R.: o0, (u) =max{v € W, :vd,u}.

<LEX

Clearly, this maximum is unique for each read access v in the course of execution.
In the case of an exact knowledge of 6., and when this relation is left-synchronous, one
may easily compute an ezact reaching definition relation, using lexicographic selection,
see Section 3.4.3.

The problem is that 6. is not known precisely in general, and the above solution is
rarely applicable. Moreover, using the computation scheme above, conditionals and loop
bounds have not been taken into account: the result is that many non-ezisting accesses
are considered dependent for relation 6. We should thus be looking for a conservative
approximation o of o,, built on the available approximate dependence relation ¢. Relying
on 6 makes computation of o from (4.17) almost impossible, for two reasons: first, a
write v may be in dependence with v without being executed by the program, and sec-
ond, all writes which are not effectively in conflict with « may be considered as possible
dependences.

However, we know we can compute an approximate reaching definition relation o from
0 when at least one of the following conditions is satisfied.

e Suppose we can prove that some statement instance does not execute, and that this
information can be inserted in the original transduction: some flow dependences can
be removed. The remaining instances are described by predicate ey, (w) (instances
that may execute).

132 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

e On the opposite, if we can prove that some instance w does execute, and if this
information can be inserted in the original transduction, then writes executing before
w are “killed”: they cannot reach an instance u such that woéu. Instances that
are effectively executed are described by predicate eyysy(w) (instances that must
execute).

e Eventually, one may have some information ecoxprrionan (v, w) about an instances w
that does execute whenever another instance v does: this “conditional” information
is used the same way as the former predicate eyygr.

The more precise the predicates eyay, €yusr and econprrionar, the more precise the reaching
definition relation. In some cases, one may even compute an exact reaching definition
relation.

Now, remember all our work since Section 4.2 has completely ignored guards in condi-
tional statements and loop bounds. This information is of course critical when trying to
build predicates ey,y, eyusr and econprrionan- Retrieving this information can be done using
both the results of induction variable analysis (see Section 4.2) and additional analyses
of the value of variables [CH78, Mas93, MP94, TP95|. Such ezternal analyses would for
example compute loop and recursion invariants.

Another source of information—mostly for predicate econprrionar—iS provided by a
simple structural analysis of the program, which consists in exploiting every information
hidden in the program syntax:

e in a if --- then --- else --- construct, either the then or the else branch is
executed;

e in a while construct, assuming some instance of a statement does execute, all
instances preceding it in the while loop also execute;

e in a sequence of non-guarded statements, all instances of these statements are si-
multaneously executed or not;

Notice this kind of structural analysis was already critical for nested loops [BCF97, Bar98,
Won95].

Another very important structural property is described with the following additional
definition:

Definition 4.2 (ancestor) Consider an alphabet .., of statement labels and a lan-
guage Loy, of control words. We define Yyyco: a subset of Yrg, made of all block
labels which are not conditionals or loop blocks, and all (unguarded) procedure call
labels, i.e. blocks whose execution is unconditional.

Let r and s be two statements in Y.x., and let u be a strict prefix of a control word
wr € Loy, (an instance of 7). If v € X% (without labels of conditional statements)
is such that uvs € Largr, then uvs is called an ancestor of wr.

The set of ancestors of an instance u is denoted by ANCESTORS(u).

This definition is best understood on a control tree, such as the one in Figure 4.1.b
page 124: black square FPIAaaaaalJs is an ancestor of FPIAsaaaaJQPIAABBr, but not
gray squares FPIAaaaJs and FPIAaJs. Now, observe the formal ancestor definition:

1. execution of wr implies execution of u, because it is in the path from the root of
the control tree to node wr;

T.9. DI iyINGDJIviNCOL AING I A ULTEIN G DIV HIND L AUJIN AINAL Y O1O 139

2. execution of w implies execution of uws, because v is made of declaration blocks
only, without conditional statements.

We thus have the following result:

Proposition 4.1 If an instance u executes, then all ancestors of u also execute. This
can be written using predicates eyysr and ecoxprrionar:

Vu € Lorpr @ €conprrionar (%, ANCESTORS(u)),
Vu € Lopgy @ eyuse(2) = eyusr (ANCESTORS(u)).

At last, we can define a conservative approximation o of the reaching definition rela-
tion, built on 6, eyay, enusr and econprrionar:

VueR: o(u)={ve€b(u):eun(v) A
(ﬂw €6 u) U <ppgx WA (eMUST(w) \ €CONDITIONAL(U7 w) \ eCONDITIONAL(u7 w))} (4'17)

Predicates eyay, €vusrs €conprionar Should define rational sets, in order to compute the
algebraic operations involved in (4.17). When, in addition, relation 6 is left-synchronous,
closure under union, intersection, complementation, and composition, allows unaproxi-
mate computation of o with (4.17).

However, designing a general computation framework for these predicates is left for
future work, and we will only consider a few “rules” useful in our practical examples.

4.3.4 Practical Approximation of Reaching Definitions

Instead of building automata for predicates eyay, €yvsr and €conprrionar, then computing
o from (4.17), we present a few rewriting rules to refine the sets of possible reaching
definitions, starting from a very conservative approximation of the reaching definition
relation: the restriction of dependence relation 6 to flow dependences (i.e. from a write to
a read access). This technique is less general than solving (4.17), but it avoids complex—
and approximate—algebraic operations.

Applicability of the rewriting rules is governed by the compile-time knowledge ex-
tracted by external analyses, such as analysis of contitional expressions, detection of in-
variants, or structural analysis. In the Section 4.5, we will demonstrate practical usage of
these rules when applying our reaching definition analysis framework to program Queens.

For the moment, we choose a statement s with a write reference to memory, and try to
refine sets of possible reaching definitions among instances of s. Refining sets of possible
reaching definitions which are instances of several statements will be discussed at the end
of this section.

The vrA Property (Values are Produced by Ancestors)

This property comes from the common observation about recursive programs that “values
are produced by ancestors”. Indeed, a lot of sort, tree, or graph-based algorithms perform
in-depth explorations where values are produced by ancestors. This behavior is also
strongly assessed by scope rules of local variables.

VPA <= Ve e E,u € R.,v € W, : (v =o0.(u) = v e ANCESTORS(u)).

139 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

Since all possible reaching definitions are ancestors of the use, rule VPA consists
in removing all transitions producing non-ancestors. Formally, all transitions o'|« s.t.
o/ <ixpr a and o # s are removed.

We may define one other interesting property useful to automatic property checking;
its associated rewriting rule is not given.

The 0kKA Property (One Killing Ancestor)

If it can be proven that at least one ancestor vs of a read u is in dependence with u, it
kills all previous writes since it does execute when u does.

OKA <= Yu e R: (6 (u) # @ = (v € ANCESTORS(u) : v € § (u))).

Property Checking

Property OKA can be discovered using invariant properties on induction variables. Check-
ing for property vPA is difficult, but we may rely on the following result: when property
OKA holds, checking VPA is equivalent to checking whether an ancestor vs in dependence
with us may followed—according to the lexicographic order—by a non-ancestor instance
w in dependence with wus.

Other properties can be obtained by more involved analyses: the problem is to find a
relevant rewriting rule for each one.

Now, remember we restricted ourselves to one assignation statement s when presenting
the rewriting rules. Designing rules which handle the global flow of the program is a bit
more difficult. When comparing possible reaching definition instances of two writes s;
and sy, it is not possible in general to decide whether one may “kill” the other without
a specific transducer (rational or one-counter, depending on the data structure). The
problem is thus to intersect two rational or algebraic relations, which cannot be done
without approximations in general, see Sections 3.6 and 3.7. In many cases, however,
storage mappings for s; and sy are very similar, and exact results can be easily computed.

The REACHING-DEFINITION- ANALYSIS algorithm is a general algorithm for reaching
definition analysis inside our program model. Algebraic operations on sets and relations
in the second loop of the algorithm may yield approximative results, see Sections 3.4, 3.6
and 3.7. The intersection with R x {w : eyay(w)} in the third line serves the purpose of
restricting the domain to read accesses and the image to writes which may execute; it can
be computed exactly since R x {w : ey, (w)} is a recognizable relation. The REACHING-
DEFINITION- ANALYSIS algorithm is applied to program Queens in Section 4.5.

Notice that all output and anti-dependences are removed by the algorithm, but some
spurious flow dependences may remain when the result is approximate.

Now, there is something missing in this presentation of reaching definition analysis:
what about the L instance? When predicates eyysr(v) Or ecoxprrionar(, v) are empty for
all possible reaching definitions v of a read instance u, it means that an uninitialized value
may be read by u, hence that L is a possible reaching definition; and the reciprocal is
true. In terms of our “practical properties”, OKA can be used to determine whether L
is a possible reaching definition or not. This gives an automatic way to insert L when
needed in the result of REACHING-DEFINITION- ANALYSIS.

To conclude this section, we have shown a very clean and powerful framework for
instancewise dependence analysis of recursive programs, but we should also recognize
the limits of relying on a list of refinement rules to compute an approximate reaching

.. L1117 Aol U LI 1ad

REACHING-DEFINITION-ANALYSIS (program)
program: an intermediate representation of the program

returns a reaching definition relation between all accesses
compute eyay, eyusr and eqonprrionar UsSing structural and external analyses
6 «— DEPENDENCE-ANALYSIS
6 — 0N (R xA{w:eya(w)})
for each assignment statement s in program
do check 6 for properties OKA, VPA, and other properties
using external static analyses or asking the user

apply refinement rules on 6 accordingly
for each pair of assignment statements (s,t) in program
do kill — {(us,w) e W xR : (vt € W :usdw A vtdw A us <,gx vt

A (eMUST(Ut) V' €conprrionaL (usa Ut) \% €CONDITIONAL(w7 Ut)))}

0 «— 0 — kull

return 6

© 00~ O Ol = Wi -

— =
N = O

definition relation from an approximate dependence relation. Now that the feasibility
of instancewise reaching definition analysis for recursive programs has been proven, it is
time to work on a formal framework to compute predicates eyay, €yuvsr and €conprrionars
from which we could expect a powerful reaching definition analysis algorithm.

4.4 The Case of Trees

We will now precise the dependence and reaching definition analysis in the case of a tree
structure. Practical computations will be performed on program BST presented in 4.2.

The first part of the DEPENDENCE-ANALYSIS algorithm consists in computing the
storage mapping. When the underlying data structure is a tree, its abstraction is the
free monoid Mp,ra = {1, 1} and the storage mapping is a rational transduction between
free monoids. Computation of function f for program BST has already been done in Sec-
tion 4.2.5. Figure 4.7 shows a rational transducer realizing rational function f. Following
the lines of Section 2.3.1 page 68, the alphabet of statement labels has been extended to
distinguish between distinct references in Iy, Jo, b and e, yielding new labels I, I ,,,
Joys Joy s bp, bpos1, € and ep5r (these new labels may only appear as the last letter in a
control word).

Computation of « is done thanks to Elgot and Mezei’s theorem, and yields a rational
transduction. The result for program BST is given by the transducer in Figure 4.8.

When x is realized by a left-synchronous transducer, the last part of the DEPENDENCE-
ANALYSIS algorithm does not require any approximation: dependence relation ¢ =
kN <psx can be computed exactly (after removing conflict between reads in k). It is
the case for program BST, and the exact dependence analysis result is shown in Fig-
ure 4.9. In the general case, a conservative left-synchronous approximation of x must be
computed, see Section 3.7.

One may immediately notice that every pair (u, v) accepted by the dependence trans-
ducer is of the form v = wu' and v = wv" where w € {F,P,L, R, I, J;}* and «',v" do
not hold any recursive call—i.e. L or R. That means that all dependences lie between
instances of the same block I; or J;. We will show in Section 5.5 that this result can be
used to run the first if block—statement I;—in parallel with the second—statement .J;.

Eventually, it appears that dependence transduction ¢ is a rational function, and the

170 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

I, |e Iy, |l Jo, |e o, T
IQ|€ J2|5
ale c|l dle flr
bole |\ b1l eple |\ €p-sr|T

IQP_>1 |IQC
IQC|IQP_>1

J2p|J26P
J2€p|J2p

restriction of 6 to pairs (u,v) of a read u and a write v yields the empty relation! Indeed,
the only dependences on program BST are anti-dependences.

T.d. L1117 Aol U AlviuAaro 1ad

4.5 The Case of Arrays

We will now precise the dependence and reaching definition analysis in the case of an

array structure. Practical computations will be performed on program Queens presented
in 4.1.

The first part of the DEPENDENCE-ANALYSIS algorithm consists in computing the
storage mapping. When the underlying data structure is an array, its abstraction is the
free commutative monoid M,y = Z. Computation of function f for program Queens
has already been done in Section 4.2.5. Figure 4.10 shows a rational transducer realizing

1720 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

*

rational function f : Xf,. — Z. It reflects the combination of regular expressions (4.5)
and (4.6).

Computation of x is done thanks to Theorem 3.27, and yields a one-counter transduc-
tion. The result for program Queens is given by the transducer in Figure 4.11—with four
initial states.

To compute a dependence relation 6, one first restrict x to pairs of accesses with at least
one write, then intersect the result with the lexicographic order. From Proposition 3.13
the underlying rational transducer of « is recognizable, hence left-synchronous (from The-
orem 3.12) and can thus be resynchronized with the constructive proof of Theorem 3.19
to get a one-counter transducer whose underlying rational transducer is left-synchronous.

Resynchronization of xk has been applied to program Queens in Figure 4.12: it is
limited to conflicts of the form (us,vr), us,vr € Lo, The lacking three fourths of the
transducer have not been represented because they are very similar the the first fourth
and not used for reaching definition analysis. The underlying rational transducer is only
pseudo-left-synchronous because resynchronization has not been applied completely, see
Section 3.6 and Definition 3.28

Intersection with <;py is done with Theorem 3.14. As a result, the dependence relation
0 can be computed exactly and is realized by a one-counter transducer whose underlying
rational transducer is left-synchronous.

This is applied to program Queens in Figure 4.13, starting from the pseudo-left-
synchronous transducer in Figure 4.12. Knowing that B <ixr J <ixr ¢ and s <;xr @,
transitions J|a and s|@Q are kept but transitions a|.J, a|B and J|B are removed (and the
transducer is trimmed). This time, only one third of the actual transducer is shown: the
transducer realizing flow dependences. Anti and output dependences are realized by very
similar transducers, and are not used for reaching definition analysis.

We now demonstrate the REACHING-DEFINITION-ANALYSIS algorithm on program
Queens. A simple analysis of the inner loop shows that j is always less than k. This
proves that for any instance w of r, there exists u, v € X}, s.t. w = uQur and us 6 uQur.
Because us is an ancestor of uQur, property OKA is satisfied. Dependence transducer in
Figure 4.13 shows that all instances of s executing after us are of the form uQv's, and it
also shows that reading () increases the counter: the result is that no instance executing
after us may be in dependence with w. In combination with OKA, property VPA thus
holds. Applying rule VPA, we can remove transition .J|a4 which does not yield ancestors.
We get the one-counter transducer in Figure 4.14. Notice that the L instance (associated
with uninitialized values) is not accepted as a possible reaching definition: this is because
property OKA ensures that at least an ancestor of every read instance defined a value.

The transducer is “compressed” in Figure 4.15 to increase readability. It is easy to
prove that this result is exact: a unique reaching definition is computed for every read
instance. However, the general problem of the functionality of an algebraic transduction
is “probably” undecidable. As a result, we achieved—in a semi-automated way—the best
precision possible. This precise result will be used in Section 5.5 to parallelize program
Queens.

4.6 The Case of Composite Data Structures

We will now precise the dependence and reaching definition analysis in the case of a
nested list and array structure. Practical computations will be performed on program
Count presented in 4.3.

+.0. L1111y vAaply U VUVIEGYUol L1y 1A1A oL 1IvUU L UIvuo 1aJ

.... Figure 4.11. One-counter transducer for conflict relation x of program Queens

The first part of the DEPENDENCE-ANALYSIS algorithm consists in computing the
storage mapping. When the underlying data structure is built of nested trees and arrays,
its abstraction is a free partially commutative monoid Mp,r,. Computation of function f
for program Count has already been done in Section 4.2.5.

19U UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

aalaa ‘@

@ @ el @, @
Ple, +1 QPle, +1
TAale | \@Ple, + sle,=0 TAale sle,=0
By @) s
Il J|e

s|QP FPEP ()

e @ @ il
HO
glr,=0 5|[AA~ el@p

' £|Bp ? elJ

e|bp, —1 £laa

Figure 4.12. Pseudo-left-synchronous transducer for the restriction of kK to W x R

Computation of k is done thanks to Theorem 3.28, and yields a one-counter transduc-
tion. On program Count, there are no write accesses to the inode structure. Now, we
could be interested in an analysis of conflict-misses for cache optimization [TD95]. The
result f~! o f for program Count is thus interesting, and it is the identity relation! This
proves that the same memory location is never accessed twice during program execution.

Now, when computing a dependence relation in general, Proposition 3.13 does not
apply: it is necessary in general to approximate the underlying rational transducer by a
left-synchronous one. Eventually, the REACHING-DEFINITION- ANALYSIS algorithm has
no technical issues specific to nested trees and arrays.

4.7 Comparison with Other Analyses

Before evaluating our analysis for recursive programs, we summary its program model
restrictions. First of all, some restrictions are required to simplify algorithms and should
be considered harmless thanks to previous code transformations—see Sections 2.2 and 4.2
for details:

e 1o function pointers (i.e. higher-order control structures) and no gotos are allowed;

.. CUUNVIEATIUIOUIN Vil U 1111y AINALY O 191

e|bp, —1 £laa 7]as
3 - 3 =
elr e|llAa] / €|Q

g|g CI,A|aA ‘@

717 TA4|IAA

TAale | N\ @Ple, +1\ fsle, =0
QP|QP, +1
(8 =) (s
Je

' s|QP FP|FP
e @) @ -,
glr,=0 6|IAA~ el@p
? £|Bp ? elJ @

elbs, —1 glaa

Figure 4.13. One-counter transducer for the restriction of dependence relation 6 to flow
dependences

e a loop variable is initialized at the loop entry and used only inside this loop;

e expressions in right-hand side may hold conditionals but no function calls and no
loops;

e cvery data structure subject to dependence or reaching definition analysis must be
declared global;

Now, some restrictions on the program model cannot been avoided with preliminary
program transformations, but should be removed in further versions of the analysis, thanks
to appropriate approximation techniques (induction variables are defined in Section 4.2):

e only scalars, arrays, trees and nested trees and arrays are allowed as data structures;
e induction variables must follow very strong rules regarding initialization and update;

e cvery array subscript must be an affine function of integer induction variables and
symbolic constants;

e cvery tree access must dereference a pointer induction variable or a constant.

194 UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

JQPIAA|JQPIAa,+1 £|JQPIAA elbs, —1

i I
—0 FPIAA|FPIAx \Cj J3|JQP]AAB e|Bs

aslaa elaa

Eventually, one restriction is very deeply rooted in the monoid abstraction for tree
structures, and we expect no general way to avoid it:

e random insertions and deletions in trees are forbidden (allowed only at trees’ leaves).

We are now able to compare the results of our analysis technique with those of classical
static analyses—some of which also handle our full program model—and with those of
the existing instancewise analyses for loop nests.

Static dependence and reaching definition analyses generally compute the same kind of
results, whether they are based on abstract interpretation [Cou81, JM82, Har89, Deu94]
or other data-flow analysis techniques [LRZ93, BE95, HHN94, KSV96]. A comprehen-
sive study of static analysis useful to parallelization of recursive programs can be found
in [RR99]. Comparison of the results is rather easy: none of these static analyses is in-
stancewise.* None of these static analyses is able to tell which instance of which statement

“We think that building an instancewise analysis of practical interest in the data-flow or abstract
interpretation framework is indeed possible, but very few works have been made in this direction, see

.. CUUNVIEATIUIOUIN Vil U 1111y AINALY O 199

is in conflict, in dependence, or a possible reaching definition. However, these analyses
are very useful to remove a few restrictions in our program model, and they also compute
properties useful to instancewise reaching definition analysis. Remember that our own
instancewise reaching definition analysis technique makes a heavy use of so called “exter-
nal” analyses, which precisely are classical static analyses. A short comparison between
parallelization from the results of our analysis and parallelization from static analyses will
be proposed in Section 5.5, along with some practical examples.

Comparison with instancewise analyses for loop nests is more topical, since our tech-
nique was clearly intended to extend such analyses to recursive programs. A simple
method to get a fair evaluation consists in running both analyses on their common program
model subset. The general result is not surprising: today’s most powerful reaching defini-
tion analyses for loop nests such as fuzzy array dataflow analysis (FADA) [BCF97, Bar9§]
and constraint-based array dependence analysis [WP95, Won95] are far more precise than
our analysis for recursive programs. There are many reasons for that:

e we do not use conditionals and loop bounds to establish our results, or when it is
the case, it is through “external” static analyses;

e multi-dimensional arrays are roughly approximated by one-dimensional ones;

e rational and algebraic transducers have a limited expressive power when dealing
with integer parameters (only one counter can be described);

e some critical algebraic operations such as intersection and complementation are not
decidable and thus require further approximations.

A major difference between FADA and our analysis for recursive program is deeply
rooted the philosophy of each technique.

e FADA is a fully exact process with symbolic computations and “dummy” parameters
associated with unpredictable constraints, and only one approximation is performed
at the end; this ensures that no precious data-flow information is lost during the
computation process (see Section 2.4.3).

e Our technique is not as clever, since many approximation stages can be involved.
It is more similar to iterative methods in that sense, and hence it is far from being
optimal: some approximations are made even if the mathematical abstraction could
have enough expressive power to avoid it.

But the comparison also reveals very positive aspects, in terms of all the information
available in the result of our analysis:

e exactness of the result is equivalent to deciding the functionality of a transduction,
and is thus polynomial for rational transductions; but it is unknown for algebraic
ones, and decidability of the finiteness of a set of reaching definitions can help in
some cases;

e cmptiness of a set of reaching definitions is decidable, which allows automatic de-
tection of read accesses to uninitialized variables;

[DGS93, Tz097, CKI8|.

1loa UllAL L1y 2. LINOLAINUILYVY IO AINAL YOO UL UyUuivol vy U aivAalivio

e in the case of rational transductions, dependence testing can be extended to rational
languages of control words, because of Nivat’s Theorem 3.6 and the fact that rational
languages are closed under intersection; this is very useful for parallelization;

e in the case of algebraic transductions, dependence testing is equivalent to the inter-
section of an algebraic language and a rational one, because of Nivat’s Theorem 3.21
for algebraic transductions and Evey’s Theorem 3.24; this is still very useful for par-
allelization.

We refer to Section 5.5 for additional comparisons between the applicability of our
analysis and loop nest analyses to parallelization.

4.8 Conclusion

We presented an application of formal language theory to the automatic discovery of
some semantic properties of programs: instancewise dependences and reaching defini-
tions. When programs are recursive and nothing is known about recursion guards, only
conservative approximations can be hoped for. In our case, we approximate the relation
between reads and their reaching definitions by a rational (for trees) or algebraic (for ar-
rays) transduction. The result of the reaching definition analysis is a transducer mapping
control words of read instances to control words of write instances. Two algorithms for
dependence and reaching definition analysis of recursive programs were designed. Inci-
dentally, these results showed the use of the new class of left-synchronous transductions
over free monoids.

We have applied our techniques on several practical examples, showing excellent ap-
proximations and sometimes even exact results. Some problems obviously remain. First,
some strong restrictions on the program model limit the practical use of our technique.
We should thus work on a graceful degradation of our analyses to encompass a larger set
of recursive programs: for example, restrictions on induction variables operations could
perhaps be removed by allowing computation of approximate storage mappings. Second,
reaching definition analysis is not quite mature now, since it relies on rather ad-hoc tech-
niques whose general applicability is unknown. More theoretical studies are needed to
decide whether precise instancewise reaching definition information can be captured by
rational and algebraic transducers.

We will show in the next chapters that decidability properties on rational and alge-
braic transductions allow several applications of our framework, especially in automatic
parallelization of recursive programs. These applications include array expansion and
parallelism extraction.

199

Chapter 5

Parallelization via Memory
Expansion

The design of program transformations dedicated to dependence removal is a well studied
topic, as far as nested loops are concerned. Techniques such as conversion to single-
assignment form [Fea9l, GC95, Col98|, privatization [MAL93, TP93, Cre96, 1i92], and
many optimizations for efficient memory management [LF98, CFH95, CDRV97, QR99|
have been proven useful for practical parallelization of programs (automatically or not).
However, these works have mostly targeted affine loop nests and few techniques have
been extended to dynamic control flow and general array subscripts. Very interesting
issues arise when trying to expand data structures in unrestricted nests of loops, and
because of the necessary data-flow restoration, confluent interests with the SSA (static
single-assignment) [CFR*91] framework become obvious.

Motivation for memory expansion and introduction of the fundamental concepts is
the first goal of Section 5.1; then, we study specific problems related with non-affine
nests of loops and we design practical solutions for a general single-assignment form
transformation. Novel expansion techniques presented in Sections 5.2, 5.3 and 5.4 are
contributions to bridging the gap between the rich applications of memory expansion
techniques for affine loop nests and the few results with irregular codes.

When extending the program model to recursive procedures, the problem is of another
nature: principles of parallel processing are then very different from the well mastered
data parallel model for nested loops. Applicable algorithms have been mostly designed
for statementwise dependence tests, when our analysis computes an extensive instance-
wise description of the dependence relation! There is of course a large gap between the
two approaches and we should now demonstrate that using such a precise information
brings practical improvements over existing parallelization techniques. These issues are
addressed by Section 5.5, starting with an investigation of memory expansion techniques
for recursive programs. Because this last section addresses a new topic, several negative
or disappointing answers are mixed with successful results.

5.1 Motivations and Tradeoffs

To point out the most important issues related with memory expansion, and to motivate
the following sections of this chapter, we start with a study of the well-known expansion
technique called conversion to single-assignment form. Both abstract and practical point
of views are discussed. Several results presented here have been already presented by

190 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

many authors, with their formalism and their program model, but we prefered to rewrite
most of this work in our syntax to fix the notations and to show how memory expansion
also makes sense out of the loop nest programming model.

5.1.1 Conversion to Single-Assignment Form

One of the most usual and simplest expansion schemes is conversion to single-assignment
(SA) form. It is the extreme case where each memory location is written at most once
during execution. This is slightly different from static single-assignment form (SSA)
[CFR'91, KS98|, where each variable is written at most in one statement in the program,
and expansion is limited to variable renaming.

The idea of conversion to SA-form is to replace every assignment to a data structure
D by an assignment to a new data structure Dyy, Whose elements have the same type as
elements of D, and are in one-to-one mapping with the set W of all possible write accesses
during any program execution. Each element of Dy, is associated to a single write access.
This aggressive transformation ensures that the same memory location is never written
twice in the expanded program. The second step is to transform the read references
accordingly, and is called restoration of the flow of data. Instancewise reaching definition
information is of great help to achieve this: for a given program execution e € E, the value
read by some access (2, ref) to D in right-hand side of a statement is precisely stored in the
element of Dy, associated with o, ({1, ref)) (see Section 2.4 for notations and definitions).
In general, an exact knowledge of o, for each execution e is not available at compile time:
the result of instancewise reaching definition analysis is an approximate relation o. The
compile-time data-flow restoration scheme above is thus unapplicable when o ((z, ref)) is
a non-singleton set: the idea is then to generate a run-time data-flow restoration code,
which tracks what is the last instance executed in o ((z,ref)). As we have seen for general
expansion schemes in Section 1.2, this run-time restoration code is hidden in a ¢ function
whose argument is the set o ({1, ref)) of possible reaching definitions.

A few notations are required to simplify the syntax of expanded programs.

e CURINS holds the run-time instance value, encoded as a control word or iteration
vector, for any statement in the program. It is supposed to be updated on-line in
function calls, loop iterations and every block entry. More precisions about this
topic in Section 5.1.3 and Section 5.5.3.

e ¢ has the syntax of a function from sets of run-time instances to untyped values,
but its semantics is to summarize a piece of data-flow restoration code. It is very
similar to ¢ functions in the SSA framework [CFR*91, KS98]. Code generation for
¢ functions is the purpose of Section 5.1.2.

e Dy, is the expanded data structure associated with some original data structure D.
Its “abstract” syntax is inherited from arrays: Dgs,[set of element names] for
the declaration and Dy, [element mname] for the read or write access. In practice,
element names are either integer vectors or words, and Dgyp is an array, a tree, or a
nest of trees and arrays. Its “concrete” syntax is then implemented as an array or
as a pointer to a tree structure. See Sections 5.1.3 and 5.5.1 for details.

We now present ABSTRACT-SA: a very general algorithm to compute the single-
assignment form. This algorithm is neither really new nor really practical, but it defines
a general transformation scheme for SA programs, independently of the control and data

J.ol. WVIULLIVALIUINOG AIND 1 0uAJIJUrIro 1I{

structures. It takes as input the sequential program and the result of an instancewise
reaching definition analysis—seen as a function. Control structures are left unchanged.
This algorithm is very “abstract” since data structures are not defined precisely and some
parts of the generated code have been encapsulated in high-level notations: CURINS and

o.

ABSTRACT-SA (program, W, o)
program: an intermediate representation of the program
W: a conservative approximation of the set of write accesses
o: a reaching definition relation, seen as a function
returns an intermediate representation of the expanded program
for each data structure D in program
do declare a data structure Dy, [W]

for each statement s assigning D in program

do left-hand side of s < Dyyp [CURINS]

for each reference ref toD in program

do ref « if (o (CurIns,ref)=={L1}) ref

else if (o (CurIns,ref)={1}) Dgxp [1]

else ¢(o (CurIns,ref))
7 return program

SOk W N

We will show in the following that several “abstract” parts of the algorithm can be
implemented when dealing with “concrete” data structures. Generating code for the ¢
function is the purpose of the next section.

5.1.2 Run-Time Overhead

When generating code for ¢ functions, the common idea is to compute at run-time the
last instance that may possibly be a reaching definition of some use. In general, for each
expanded data structure Dy, one needs an additional structure in one-to-one mapping
with Dyxp. In the static single-assignment framework for arrays [KS98|, these additional
structures are called @-structures and store statement instances. Dealing with a more gen-
eral single-assignment form, we propose another semantics for additional structures, hence
another notation: the data structure in one-to-one mapping with Dyyp is a $-structures
denoted by @Dgyp.

To ensure that run-time restoration of the flow of data is possible, elements of @Dy,
should store two informations: the memory location assigned in the original program
and the identity of the last instance which assigned this memory location. Because we
are dealing with single-assignment programs, the identity of the last instance is already
captured by the element itself (i.e. the subsrcipt of Dgyp).! Elements of #Dgyp should
thus store memory locations.

e D, is initialized to NULL before the expanded program,;

e Every time Dgyp is modified, the associated element of @Dyyp is set to the value of
the memory location that would have been written in the original program.

!This run-time restoration technique is thus specific to SA-form. Other expansions require different
type and/or semantics of &-structures.

190 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

e When a read access to D in the original program is expanded into a call of the form
¢(set), the ¢ function is implemented as the maximum—according to the sequential
execution order—of all + € set such that ®Dg, [2] is equal to the memory location
read in the original program.

ABSTRACT-IMPLEMENT-PHI (expanded)
expanded: an intermediate representation of the expanded program

returns an intermediate representation with run-time restoration code
1 for each data structure Dgxp in expanded
2 do if there are ¢ functions accessing Dyyp
3 then declare a structure Dy, with the same shape as Dyy, initialized to NULL
for each read reference refy to Dy, whose expanded form is ¢(set)
do for each statement s involved in set
do ref; < write reference in s
if not already done for s
then following s insert &Dgy, [CURINS] = f.(CURINS,Tef;)
9 P(set) « Dgyp [max., {1 € set :@Dpyp [11= f.(CURINS, Tefy)}]
10 return expanded

00 -1 O Ot =

ABSTRACT-IMPLEMENT-PHI is the abstract algorithm to generate the code for ¢
functions. In this algorithm, the syntax f.(CURINS, ref) means that we are interested in
the memory location accessed by reference ref, and not that some compile-time knowledge
of f. is required. Of course, practical details and optimizations depend on the control
structures, see Section 5.1.4. Notice that the generated code is still in SA form: each
element of a new @-structure is written at most once.

An important remark at this point is that instancewise reaching definition analysis is
the key to run-time overhead optimization. Indeed, as shown by our code generation al-
gorithm, SA-transformed programs are more efficient when ¢ functions are sparse. Thus,
a parallelizing compiler has many reasons to perform a precise instancewise reaching def-
inition analysis: it improves parallelism detection, allow to choose between a larger scope
of parallel execution orders (depending on the “grain size” and architecture), and re-
duces run-time overhead. An example borrowed from program sjs in [Col98] is presented
in Figure 5.1. The most precise reaching definition relation for reference A[i+j-1] in
right-hand side of R is

if j>1

then (S,i,j — 1)

o ((R,i,j,A[i+j-11)) = if i>1

else | then (S,i—1,j)
else (T)

This exact result shows that definitions associated with the reference in left-hand side of
R never reach any use. Expanding the program with a less precise reaching definition
relation induces a spurious ¢ function, as in Figure 5.1.b. One may notice that the quast
implementation in Figure 5.1.c is not really efficient and may be rather costly; but using
classical optimizations such as loop peeling—or general polyhedron scanning techniques
[AI91]—can significantly reduce this overhead, see Figure 5.1.d. This remark advocates
once more for further studies about integrating optimization techniques.

J.ol. WVIULLIVALIUINOG AIND 1 0uAJIJUrIro 19J

double A[N], AT, As[N, N], AR[N, N];

double A[N]; T Ay = 0;
T A[0] = 0; for (i=0; i<N; i++)
for (i=0; i<N; i++) for (j=0; j<N; j++) {
for (j=0; j<N; j++) { S Agli, j1 = ---;
S Ali+j] = ---; R Arli, 31 = o({(T)}U{(S,7,j"):
R A[i] = A[i+j-1] ---; (7,5") <wex (1,3)})
}
}

Figure 5.1.a. Original program
Figure 5.1.b. SA without reaching definition analysis

double A[N], Ay, Ag[N, NI, Ax[N, NI;
TAT = 0;
for (i=0; i<N; i++)
for (j=0; j<N; j++) {
S Agli, j1 = -
R Agli, jl = if (j==0) if (i==0) Ay else Agl[i-1, j]
else Ag[i, j-1]

3

Figure 5.1.c. SA with precise reaching definition analysis

double A[N], Ay, Ag[N, NI, Ar[N, NI;
Ap = 0;
Agl1, 11 = ---;
Apll, 11 = Ap -+
for (i=0; i<N; i++) {
Agli, 1] = --+;
Apli, 1] = Agl[i-1, 11 ---;
for (j=0; j<N; j++) {
Agli, jl = --+;
Arli, j1 = Agli, j-11 ---;
}
}

Figure 5.1.d. Precise reaching definition analysis plus loop peeling

..... Figure 5.1. Interaction of reaching definition analysis and run-time overhead

Eventually, one should notice that ¢ functions are not the only source of run-time
overhead: computing reaching definitions using ¢ at run-time may also be costly, even
when it is a function (i.e. it is exact). But there is a big difference between the two
sources of overhead: run-time computation of o can be costly because of the lack of
expressiveness of control structures and algebraic operations in the language or because of
the mathematical abstraction. For example, transductions generally induce more overhead
than quasts. On the opposite, the overhead of ¢ functions is due to the approximative

10U uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

knowledge of the flow of data and its non-deterministic impact on the generated code; it
is thus intrinsic to the expanded program, no matter how it is implemented. In many
cases, indeed, the run-time overhead to compute o can be significantly reduced by classical
optimization techniques—an example will be presented later on Figure 5.1—but it is not
the case for ¢ functions.

5.1.3 Single-Assignment for Loop Nests

In this section, we only consider intra-procedural expansion of programs operating on
scalars and arrays. An extension to function calls, recursive programs and recursive data
structures is studied at the end of this chapter, in Section 5.5. These restrictions simplify
the exposition of a “concrete” SA algorithm in the classical loop nest framework.

When dealing with nest of loops, instancewise reaching definitions are described by an
affine relation (see [BCF97, Bar98] and Section 2.4.3). We pointed in Section 3.1.1 that
seeing an affine relation as a function, it can be written as a nested conditional called
a quast [Fea91]. This representation of relation o is especially interesting for expansion
purposes since it can be easily and efficiently implemented in a programming language.
Algorithm MAKE-QUAST introduced in Section 3.1.1 builds a quast representation for
any affine relation.

We use the following notations:

e STMT((S,z)) = S (the statement),
e ITER((S,z)) = z (the iteration vector),
e and ARRAY(S) is the name of the original data structure assigned by statement S.

Given a quast representation of reaching definitions, CONVERT-(QUAST generates an ef-
ficient code to retrieve the value read by some reference. This code is more or less a
compile-time implementation of the conditional generated at the end of ABSTRACT-SA.
A ¢ function is generated when a non-singleton set is encountered. Eventually, because
statements partition the set of memory locations in the single-assignment program, we
use an array Ag[x| instead of the proposed Agxp(S, z) in the abstract SA algorithm.

Thanks to CONVERT-QUAST, we are ready to specialize ABSTRACT-SA for loop nests.
The new algorithm is LOOP-NESTS-SA. Current instance CURINS is implemented by its
iteration vector (built from the surrounding loop variables). To simplify the exposition,
scalars are seen are one-dimensional arrays of a single element. All memory accesses are
thus performed through array subscripts.

The abstract code generation algorithm for ¢ functions can also be precised when
dealing with loop nests and arrays only. For the same reason as before, run-time in-
stances are stored in a distinct structure for each statement: we use ®Ag[x] instead of
®Age [(S,2)]. The new algorithm is LOOP-NESTS-IMPLEMENT-PHI. Efficient computa-
tion of the lexicographic maximum can be done thanks to parallel reduction techniques
[RF94].

One part of the code is still unimplemented: the array declaration. The main problem
regarding array declaration is to get a compile-time evaluation of its size. In many cases,
loop bounds are not easily predictable at compile-time. One may thus have to consider
some expanded arrays as dynamic arrays whose size is updated at run-time. Another
solution proposed by Collard [Col94b, Col95b] is to prefer a storage mapping optimization
technique—such as the one presented in Section 5.3—to single-assignment form, and to

J.ol. WVIULLIVALIUINOG AIND 1 0uAJIJUrIro 101

CONVERT-QUAST (quast, ref)
quast: the quast representation of the reaching definition function

ref: the original reference, used when L is encountered
returns the implementation of quast as a value retrieval code for reference ref
switch
case quast = {1} :
return ref
case quast = {1} :
A — ARRAY(1)
S «— StMT(2)
x «— ITER(1)
return Ag[x]
case quast = {1y,19,...}:
return ¢({e1,2,...})
case quast = if predicate then quast, else quasts :
return if predicate CONVERT-QUAST (quasty, ref)
else CONVERT-QUAST (quasts, ref)

© 00 ~J O Ul = W N+

— ==
N = O

LooP-NESTS-SA (program, o)
program: an intermediate representation of the program
o: a reaching definition relation, seen as a function
returns an intermediate representation of the expanded program
for each array A in program
do for each statement S assigning A in program
do declare an array Ag
left-hand side of S is replaced by Ag [ITER(CURINS)]
for each read reference ref to A in program
do 0/ — o N (I xref)
quast < MAKE-QUAST (0/¢f)
map < CONVERT-QUAST (quast, ref)
ref «<— map (CURINS)
10 return program

O~ O Ot = W N -

Ne}

fold the unbounded array into a bounded one when the associated memory reuse does not
impairs parallelization. Such structures are very usual in high-level languages, but may
result in poor performance when the compiler is unable to remove the run-time verification
code. Two examples of code generation for ¢ functions are proposed in the next section.

5.1.4 Optimization of the Run-Time Overhead

Most of the run-time overhead comes from dynamic restoration of the data flow, using
¢ functions; and this cost is critical for non-scalar data structures distributed across
processors. The technique presented in Section 5.2 (maximal static expansion) eradicates
such run-time computations, to the cost of some loss in parallelism extraction. Indeed, ¢
functions may sometimes be a necessary condition for parallelization. This justifies the
design of optimization techniques for ¢ function computation, which is the second purpose
of this section.

We now present three optimizations to the code-generation algorithm in Section 5.1.2.
The first method groups several basic optimizations for loop nests, the second one is based

1024 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

LooP-NESTS-IMPLEMENT-PHI (exzpanded)
expanded: an intermediate representation of the expanded program

returns an intermediate representation with run-time restoration code

1 for each array Ag in expanded
2 do d, <+ dimension of array Ag
3 refs «— write reference in S
4 if there are ¢ functions accessing Ag
5 then declare an array of d-dimensional vectors ®Ag
6 initialize #Ag to NULL
7 for each read access to Ag of the form ¢(set) in expanded
8 do if not already done for S
9 then insert
10 ®Ag[ITER(CURINS)] = f.(CURINS,Tefs)
11 immediately after S
12 for each original array A in expanded
13 do for each read access ¢(set) associated with A in expanded
14 do ¢(set) « parallel for (each S in STMT(set))

vector[ST = max. {z: (S, z) € set N 2Aglz] = f.(CurINns,ref,)}

instance = max., {(S,vector[S]):S € StMT(set)}
ASTMT(instance) [ITeEr(instance)]
15 return expanded

on a new instancewise analysis, and the last one avoid redundant computations during
the propagation of “live” definitions. The second and third methods apply to loop nests
and recursive programs as well.

First Method: Basic Optimizations for Loop Nests

When dealing with nests of loops, the #-structures are ¢-arrays indexed by iteration vectors
(see LOOP-NESTS-IMPLEMENT-PHI). Because of the hierarchical structure of loop nests,
accesses in a set o (u) are very likely to share a few iteration vector components. This
allows the removal of the associated dimensions in &-arrays and to reduce the complexity
of lexicographic maximum computations. Another consequence is the applicability of up-
motion techniques for invariant assignments. An example of ®-array simplification and
up-motion is described in Figure 5.2, where function max computes the maximum of a set
of iteration vectors, and where the maximum of an empty set is the vector (—oo, ... , —00).

Another interesting optimization is only applicable to while loops and for loops whose
termination condition is complex: non-affine bounds, break statements or exceptions.
When a loop assigns the same memory location an unbounded number of times, conversion
to single-assignment form often requires a ¢-function but the last defining write can be
computed without using ®-arrays: its iteration vector is associated with the last value of
the loop counter.? An example is described in Figure 5.3.

2The semantics of the resulting code is correct, but rather dirty: a loop variable is used outside of the
loop block.

J.ol. WVIULLIVALIUINOG AIND 1 0uAJIJUrIro 109

double x; double x, xg[N+1, N+1, N+1];
for (i=1; i<=N; i++) { for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) for (j=1; j<=N; j++)
if (--4) if (--4)
for (k=1; k<=N; k++) for (k=1; k<=N; k++)
S X = -3 S xgli, j, k1 = ---;
R cee = X, R o= o({(S, 1,5, 1< < NPU{L});
} }
Figure 5.2.a. Original program Figure 5.2.b. SA program

double x, xg[N+1, N+1, N+1], éxg[N+1, N+1, N+1]={NULL};
for (i=1; i<=N; i++) {
for (j=1; j<=N; j++)

if (-)
for (k=1; k<=N; k++) {
S XS[i, j, k]="';

exgli, j, k] = &x;

R e = {
maxs = max {(i,7,k):1<j <NAK =NA ®xgli,j’ k'l = &x};
if (maxg != (—o0, —00,—0)) xgl[maxg] else x;
}
}

Figure 5.2.c. Standard ¢ implementation

double x, xg[N+1, N+1, N+1], &xq[N+1]1={NULL};
for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) {

if (--2) {
for (k=1; k<=N; k++) {
S xg[i, j, k]l = -+
exg[jl = &x;
}
R ceeo= {
maxs = max {j :1<j <NA exg[j'] = &x};
if (maxg != —o0) xglmaxg] else x;

3
}

Figure 5.2.d. Optimized ¢ implementation

......... Figure 5.2. Basic optimizations of the generated code for ¢ functions

Second Method: Improving the Single-Assignment Form Algorithm

In some cases, ¢ functions can be computed without é-arrays to store possible reaching
definitions. When the read statement is too complex to be analyzed at compile-time,

104 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

double x, xg[---1;

w=1;
dogble X; while (---) {
while (--+)
S xglw]l = -+
S X = - 4
R .- = X; }w ,
R - = ¢({(S,w): 1 <w}uU{L});

Figure 5.3.a. Original program

Figure 5.3.b. SA program
double x, xg[---]1, ®xg[---]={NULL};

w=1;
while (---) { double x, xg[---1;
S XS[W] = ...y W=1,
dxgw]l = &x; while (---) {
wtt; ’ S xglw] = -3
¥ W
R = A } .
maxs = max {w:®xg[w] = &x}; R --- =1if (w>1) xglw-1] else x;
' = —)
, if (maxg ! o0) xglmaxg] else x; Figure 5.5.d. Optimized ¢ implementa-

tion
Figure 5.3.c. Standard ¢ implementation

........... Figure 5.3. Repeated assignments to the same memory location

the set of possible reaching definitions can be very large. However, if we could compute
the very memory location accessed by the read statement, the set of possible reaching
definitions would be much smaller—sometimes reduced to a singleton. This shows the
need for an additional instancewise information, called reaching definition of a memory
location: the exact function which depends on an execution e € E of the program is
denoted by o} and its conservative approximation by o™*. Here are the formal definitions:

Ve e E,Vu € R c € fo(We): 0" (u,c¢) = max {v e W, v <spquA fov) = c},
SEQ

Ve e E,Vu € Re,c€ fo(We): v=0)"(u,¢) = v e o™ (u,c).

Computing relation ¢™* is not really different from reaching definition analysis. To

compute the o™" for a reference r in right-hand side of a statement, r is replaced by a
read access to a new symbolic memory location ¢, then classical instancewise reaching
definition analysis is performed. The result is a reaching definition relation parameterized
by c¢. Seeing ¢ as an argument, it yields the expected approximate relation o¢™". In some
rare cases, this computation scheme yields unnecessary complex results:® the general
solution is then to intersect the result with o.

Algorithm ABSTRACT-ML-SA is an improved single-assignment form conversion al-
gorithm based on reaching definitions of memory locations. It is based on the ezact

3Consider an array A, an assignment to A[foo] and a read reference to A[fool, where foo is some
complex subscript. A precise reaching definition analysis would compute an exact result because the
subscript is the same in the two statements. However, the reaching definition of a given memory location
is not known precisely, because foo in the assignment statement is not known at compile time.

J.ol. WVIULLIVALIUINOG AIND 1 0uAJIJUrIro 109

run-time computation of the symbolic memory location with storage mapping f.. This
algorithm can also been specialized for loop nests and arrays, using quasts parameterized
by the current instance and the symbolic memory location, see LOOP-NESTS-ML-SA.
In both cases, the value of f. should not be interpreted, it must be used as the original
reference code—possibly complex—to be substituted to the symbolic memory location c.
An example is described in Figure 5.4.

double A[N+1];
for (i=1; i<=N; i++)
for (j=1; j<=N; j++)
S A[j1 = A[j]1 + Alfool;

Figure 5.4.a. Original program

double A[N+1], Ag[N+1, N+1];
for (i=1; i<=N; i++)
for (j=1; j<=N; j++)
S Ag[jl = if (i>1) Agli-1, j] else A[j]
+ 1if (i>1 || 3>1) o({L}U{(S,i,j"): 1 <i 7' <NA(J) <wex (1,3)})
else Al[foo];

Figure 5.4.b. SA program

double A[N+1], Ag[N+1, N+1];
for (i=1; i<=N; i++)
for (j=1; j<=N; j++)
S Ag[§] = if (i>1) Agli-1, j] else A[j]
+ if (foo<j) Agli, fool
else if (i>1) Ag[i-1, fool else A[fool;

Figure 5.4.c. SA program with reaching definitions of memory locations

....................... Figure 5.4. Improving the SA algorithm

Third Method: Cheating with Single-Assignment

A general problem with implementations of ¢ functions based on ®-structures is the large
redundancy of lexicographic maximum computations. Indeed, each time a ¢ function
is encountered, the maximum of the full set of possible reaching definitions must be
computed. In the static single-assignment framework (SSA) [CFR™91, KS98|, a large
part of the work is devoted to optimized placement of ¢ functions, in order to never
recompute the maximum of the same set. These techniques are well suited to the variable
renaming involved in SSA, but are unable to support the data structure reconstruction
performed by SA algorithms. Nevertheless, for another expansion scheme presented in
Section 5.4.7, we are able to avoid redundancies and to optimize the placement of ¢
functions, but the algorithm is rather complex.

The method we propose here has been studied with the help of Laurent Vibert. It
removes redundant computations, but computation is not made with é-structures in SA

100 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

ABSTRACT-ML-SA (program, W, o"")
program: an intermediate representation of the program
W: a conservative approximation of the set of write accesses
oM reaching definitions of memory locations
returns an intermediate representation of the expanded program
for each data structure D in program
do declare a data structure Dyyp[W]
for each statement s assigning D in program
do left-hand side of s «— Dy [CURINS]
for each reference ref toD in program
do ref «— if (o™ ((CurIns,ref), fo(CURINS,ref))={L}) ref
else if (o™ ((CurIns,ref), fo(CURINS, Tef))=={1}) Dgxp[2]

else ¢(o™ ((CurIns,ref), f.(CURINS,ref)))
7 return program

SO W N

LoopP-NESTs-ML-SA (program,o™)
program: an intermediate representation of the program
o™ reaching definitions of memory locations
returns an intermediate representation of the expanded program
for each array A in program
do for each statement S assigning A in program
do declare an array Ag
left-hand side of S «— Ag[ITER(CURINS)]
for each reference ref to A in program
do o}, o™ N (Ixref)
u «— symbolic access associated with reference ref
quast < MAKE-QUAST (o7, ; (u, fe(u)))
map < CONVERT-QUAST (quast,ref)
ref < map (CurINns)

11 return program

© 00 ~1 O Ot = W N =

—_
e}

form: it is based on @-structures whose semantics is similar to @-arrays in the static
single-assignment (SSA) framework [KS98|. This is a simple compromise between de-
pendence removal and efficient computation of ¢ functions, based on the commutativity
and associativity of the lexicographic maximum. The idea is to use @-structures in one-
to-one mapping with the original data structures instead of the expanded ones. Notice
@-structures are not in single-assignment form, and maximum computation must be done
in a critical section. Both the write instance and the memory location should be stored,
but the memory location is now encoded in the subscript: @-structures are thus storing
instances instead of memory locations, see ABSTRACT-IMPLEMENT-PHI-NOT-SA.

The original memory-based dependences are displaced from the original data struc-
tures to their @-structures: they have not disappeared! However, thanks to the properties
of the lexicographic maximum, output dependences can be ignored without violating the
original program semantics. Spurious anti-dependences remain, and must be taken into
account for parallelization purposes. The first example in Figure 5.5 can be parallelized
with this technique, but not the second.

In the case of loop nests and arrays, a simple extension to the technique can be helpful.
It is sufficient, for example, to parallelize the second example in Figure 5.5. Consider a
call of the form ¢(set). If the component value of some dimensions is constant for all

J.ol. WVIULLIVALIUINOG AIND 1 0uAJIJUrIro 101{

ABSTRACT-IMPLEMENT-PHI-NOT-SA (expanded)
expanded: an intermediate representation of the expanded program

returns an intermediate representation with run-time restoration code
for each original data structure D[shape] in expanded
do if there are ¢ functions accessing Dpxp
then declare a data structure @D [shape] initialized to L
for each read reference ref, to D whose expanded form is ¢(set)
do subg « subscript of reference ref,
for each statement s involved in set
do sub, < subscript of the write reference to D in s
if not already done for s
then following s insert @D[subs] = max (@D[subs], CURINS)
P(set) «— if (@D[subyl!=1) Dgg[@D] else Dlsubyl
11 return expanded

© 00~ O Ol = Wi+~

—_
)

iteration vectors of instances in set, then it is legal to expand the @-array along these
dimensions. Applied to the second example in Figure 5.5, @x is replaced by @x[i], which
makes the outer loop parallel.

double x;
for (i=1; i<=N; i++) {
T x= -
for (j=1; j<=N; j++)
double x; S if (+-) x=x---;
for (i=1; i<=N; i++) R - =x;
S if (or) X = oo }

R ... = X;
Figure 5.5.c. Second example

Figure 5.5.a. First example
double x, xp[N+1], xg[N+1, N+1];

double x, xg[N+1], @x=—00; double @x=(—00,—00);
parallel for (i=1; i<=N; i++) for (i=1; i<=N; i++) {
S if -2 { T xplil = -+,
X = e for (j=1; j<=N; j++)
0x = max (0x, 1i); S if ¢--) o
} xgli, j1 = if (G>1) xgli, j-1]
R --- = if (0x '= —00) xg[0x] else xp[i] ---;
else x; 0x = max (@x, (i, j));
}
Figure 5.5.b. First example: R -+ =1if (@x != (—00,—00)) xg[0x]
parallel expansion else xpl[il;
}

Figure 5.5.d. Second example:
not parallelizable expansion

............. Figure 5.5. Parallelism extraction versus run-time overhead

In practice, this technique is both very easy to implement and very efficient for run-

1006 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

time restoration of the data flow, but it can often hamper parallelism extraction. It is a
first and simple attempt to find a tradeoff between parallelism and overhead.

5.1.5 Tradeoff between Parallelism and Overhead

All the single-assignment form algorithms described and most techniques for run-time
restoration of the data flow share the same major drawback: run-time overhead. By
essence, SA form requires a huge memory usage, and is not practical for real programs.
Moreover, some ¢ functions cannot be implemented efficiently with the optimizations
proposed. To avoid or reduce these sources of run-time overhead, it is thus necessary to
design more pragmatic expansion schemes: both memory usage and run-time data-flow
restoration code should be handled with care. This is the purpose of the three following
sections.

5.2 Maximal Static Expansion

The present section studies a novel memory expansion paradigm: its motivation is to
stick with the compile-time restoration of the flow of data while keeping in mind the
approximative nature of the compile-time information. More precisely, we would like
to remove as many memory-based dependences as possible, without the need of any ¢
function (associated with run-time restoration of the data-flow). We will show that this
goal requires a change in the way expanded data structures are accessed, to take into
account the approximative knowledge of storage mappings.

An expansion of data structures that does not need a ¢ function is called a static
ezpansion [BCC98, BCCO0].* The goal is to find automatically a static way to expand
all data structures as much as possible, i.e. the mazimal static expansion. Maximal static
expansion may be considered as a trade-off between parallelism and memory usage.

We present an algorithm to derive the maximal static expansion; its input is the (per-
haps conservative) output of a reaching definition analysis, so our method is “optimal”
with respect to the precision of this analysis. Our framework is valid for any imperative
program, without restriction—the only restrictions being those of your favorite reaching
definition analysis. We then present an intra-procedural algorithm to construct the maxi-
mal static expansion for programs with arrays and scalars only, but where subscripts and
control structures are unrestricted.

5.2.1 Motivation

The three following examples introduce the main issues and advocate for a maximal static
expansion technique.

First Example: Dynamic Control Flow

We first study the pseudo-code shown in Figure 5.6; this kernel appears in several convo-
lution codes®. Parts denoted by - -- are supposed to have no side-effect.

“Notice that according to our definition, an expansion in the static single-assignment framework
[CFRT91, KS98] may not be static.

For instance, Horn and Schunck’s algorithm to perform 3D Gaussian smoothing by separable convo-
lution.

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 10J

double x;
for (i=1; i<=N; i++) {
T X = -0-;
while (---)
S X =X ;
R . =X ;
}

Each instance (7, i) assigns a new value to variable x. In turn, statement S assigns x
an undefined number of times (possibly zero). The value read in x by statement R is thus
defined either by T, or by some instance of S, in the same iteration of the for loop (the
same 7). Therefore, if the expansion assigns distinct memory locations to (7',¢) and to
instances of (S,4,w),® how could instance (R,i) “knmow” which memory location to read
from?

We have already seen that this problem is solved with an instancewise reaching defini-
tion analysis which describe where values are defined and where they are used. We may
thus call 0 the mapping from a read instance to its set of possible reaching definitions.
Applied to the example in Figure 5.6, it tells us that the set o ((S,i,w)) of definitions
reaching instance (5,7, w) is:

o ((S,i,w)) =if w>1 then {(S,i,w—1)} else {{T,i)} (5.1)
And the set o ((R, 7)) of definitions reaching instance (R, 1) is:

o ((R,i)) = {(T,i)} U{(S,i,w) : w > 1}, (5.2)

where w is an artificial counter of the while-loop.

Let us try to expand scalar x. One way is to convert the program into SA, making T’
write into xr [1] and S into xg [4, w]: then, each memory location is assigned to at most
once, complying with the definition of SA. However, what should right-hand sides look
like now? A brute-force application of (5.2) yields the program in Figure 5.7. While the
right-hand side of S only depends on w, the right-hand side of R depends on the control
flow, thus needing a ¢ function.

The aim of maximal static expansion is to expand x as much as possible in this program
but without having to insert ¢ functions.

A possible static expansion is to uniformly expand x into x[i] and to avoid output
dependencies between distinct iterations of the for loop. Figure 5.8 shows the resulting
maximal static expansion of this example. It has the same degree of parallelism and is
simpler than the program in single-assignment.

Notice that it should be easy to adapt the array privatization techniques by Maydan
et al. [MAL93| to handle the program in Figure 5.6; this would tell us that x can be
privatized along i. However, we want to do more than privatization along loops, as
illustrated in the following examples.

6We need a virtual loop variable w to track iterations of the while loop.

1{YU uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

for (i=1; i<=N; i++) {
T XT[i] = ...

w=1;
while (---) {
S xgli,w] = if (w==1) x¢p[i] else xg[i,w-1] ---
Wt
}
R o= (T, 1) U{(S 1, w) rw>1}) ---
}

for (i=1; i<=N; i++) {
T x[i] = ---
while (---)
S x[i] = x[i] ---
R v = x[i] ---

Second Example: Array Expansion

Let us give a more complex example; we would like to expand array A in the program in
Figure 5.9.

Since T always executes when j equals N, a value read by (S,i,7), j > N is never
defined by an instance (S,d',j') of S with 5/ < N. Figure 5.9 describes the data-flow
relations between S instances: an arrow from (7', j") to (4, j) means that instance (¢, j')
defines a value that may reach (i, j).

double A[4xN];
for (i=1; i<=2xN; i++)
for (j=1; j<=2*N; j++) {

if (---)
S A[i-j+2*N] = .- A[i-j+2#N] ---;
T if (j==N) A[i+N] = -.-;

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 141

Formally, the definition reaching an instance of statement S is:”
if j<N
then {(S,7,j/):1<i <2NAL<j <jAni—j=i—j}

{(5,¢,j) : 1<V <2NAN<j <jAi—j=i—j}
U{(T,¢,N):1<i¢ <ini=i—j+N}

U((‘SaZa])) = (53)

else

Because reaching definitions are non-singleton sets, converting this program to SA form
would require run-time computation of the memory location read by S.

J J
2N | ' aN |
N + N +
T e
N 2N N 2N
Figure 5.10.a. Instances involved in the Figure 5.10.b. Counting groups per memory
same data flow location

................ Figure 5.10. Partition of the iteration domain (N =4)

However, we notice that the iteration domain of S may be split into disjoint subsets
by grouping together instances involved in the same data flow. These subsets build a
partition of the iteration domain. Each subset may have its own memory space that
will not be written nor read by instances outside the subset. The partition is given in
Figure 5.10.a.

Using this property, we can duplicate only those elements of A that appear in two
distinct subsets. These are all the array elements Alc], 1 + N < ¢ < 3N — 1. They are
accessed by instances in the large central set in Figure 5.10.b. Let us label with 1 the
subsets in the lower half of this area, and with 2 the subsets in the top half. We add one
dimension to array A, subscripted with 1 and 2 in statements Sy and S3 in Figure 5.11,
respectively. Elements A[c], 1 < ¢ < N are accessed by instances in the upper left triangle
in Figure 5.10.b and have only one subset each (one subset in the corresponding diagonal
in Figure 5.10.a), which we label with 1. The same labeling holds for sets corresponding
to instances in the lower right triangle.

The maximal static expansion is shown in Figure 5.11. Notice that this program has
the same degree of parallelism as the corresponding single-assignment program, without
the run-time overhead.

14 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

double A[4xN, 2];
for (i=1; i<=2%N; i++)
for (j=1; j<=2*N; j++) {
// expansion of statement S
if (-2#N+1<=i-j && i-j<=-N) {

if (-4)
St A[i-j+2#N, 0] = --- A[i-j+2*N, 1] ---;
} else if (-N+1<=i-j && i-j<=N-1) {
if (j<=N) {
if (---)
S A[i-j+2#N, 0] = --- A[i-j+2#N, 0] ---;
} else
if (---)
S A[i-j+2«N, 1] = --- A[i-j+2xN, 1] ---;
} else
if (-4)
Sy A[i-j+2#N, 0] = --- A[i-j+2*N, 0] ---;
// expansion of statement T
T if (j==N) A[i+N, 2] = ---;
b
............ Figure 5.11. Maximal static expansion for the second example
double A[N+1]; double A[N+1, N+1];
for (i=1; i<=N; i++) { for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) for (j=1; j<=N; j++)
T A1 = -+ T Alj, i1 = --+;
S Alfoo(1)] = ---; S Alfoo (i), i] = -+
R --- = - Albar(i)]; R - = ... Albar (i), il;
+ }
Figure 5.12.a. Source program Figure 5.12.b. Expanded version

............................. Figure 5.12. Third example

Third Example: Non-Affine Array Subscripts

Consider the program in Figure 5.12.a, where foo and bar are arbitrary subscripting
functions®. Since all array elements are assigned by 7', the value read by R at the i*!
iteration must have been produced by S or 71" at the same iteration. The data-flow graph

"Some instances of S read uninitialized values (e.g. when j = 1) and they have no reaching definition.
As a consequence, the expanded program in Figure 5.11 shoud begin with a copy-in code from the original
array to the expanded one.

8A[foo (i)] stands for an array subscript between 1 and N, “too complex” to be analyzed at compile-
time.

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY {0

is similar to the first example:

o ((R,i)) = {(S,i)} U{(T,i,j): 1< j <N} (5.4)

The maximal static expansion adds a new dimension to A subscripted by 7. It is sufficient
to make the first loop parallel.

What Next?

These examples show the need for an automatic static expansion technique. We present
in the following section a formal definition of expansion and a general framework for
maximal static expansion. We then describe an expansion algorithm for arrays that
yields the expanded programs shown above. Notice that it is easy to recognize the original
programs in their expanded counterparts, which is a convenient property of our algorithm.

It is natural to compare array privatization [MAL93, TP93, Cre96, Li92] and maximal
static expansion: both methods expose parallelism in programs at a lower cost than single-
assignment form transformation. However, privatization generally resorts to dynamic
restoration of the data flow, and it only detects parallelism along the enclosing loops;
it is thus less powerful than general array expansion techniques. Indeed, the example in
Section 5.2.1 shows that our method not only may expand along diagonals in the iteration
space but may also do some “blocking” along these diagonals.

5.2.2 Problem Statement

We assume an instancewise reaching definition analysis is performed previously, yielding
a conservative approximation o of the relation between uses and reaching definitions.

The definition of static expansion has first been introduced in [BCC98]: the idea is to
avoid dynamic restoration of the data flow. Let us consider two writes v and w belonging
to the same set of reaching definitions of some read u. Suppose they both write in the
same memory location. If we assign two distinct memory locations to v and w in the
expanded program, then a ¢ function is needed to restore the data flow, since we do
not know which of the two locations has the value needed by u. Using the notations
introduced in Sections 2.4 and 2.5, “v and w write in the same memory location” is
denoted by f.(v) = fo(w), and “u and w are assigned distinct memory locations in the
expanded program” is denoted by fEXF(v) # fE¥¥(w).

We introduce relation 8 between definitions that possibly reach the same read (recall
that we do not require the reaching definition analysis to give exact results):

YVowe W: vRw < JueR:vouAAwou.

Whenever two definitions possibly reaching the same read assign the same memory lo-
cation in the original program, they must still assign the same memory location in the
expanded program. Since “writing in the same memory location” is an equivalence rela-
tion, we actually use JR*, the transitive closure of R (see Section 5.2.4 for computation
details). Relation 2*, therefore, generalizes webs [Muc97] to instances of references, and
the rest of this work shows how to compute 2R* in the presence of arrays.’

9Strictly speaking, webs include definitions and uses, whereas SR* applies to definitions only.

1ia uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

Relation R holds between definitions that reach the same use. Therefore, mapping
these writes to different memory locations is precisely the case where ¢ functions would
be necessary, a case a static expansion is designed to avoid:

Definition 5.1 (static expansion) For an execution e € E of the program, an expan-
sion from storage mapping f. to storage mapping fJ*" is static if

Vo,w € We: vR w A fe(v) = fe(w) = f7*(v) = f2757(w). (5.5)

e

When clear from the context, we say “static expansion f*"” instead of “static ex-
pansion from f, to fJ**”. Now, we are interested in removing as many dependences as
possible, without introducing ¢ functions. We are looking for the maximal static expansion
(MSE), assigning the largest number of memory locations while verifying (5.5):

Definition 5.2 (maximal static expansion) For an execution e, a static expansion
5 is maximal on the set W, of writes, if for any static expansion f,

Vo,w € Wi fB%(0) = [P (w) = fl(v) = fl(w). (5.6)

e

Intuitively, if f¥*" is maximal, then f! cannot do better: it maps two writes to the same
memory location when f**" does.

We need to characterize the sets of statement instances on which a maximal static
expansion fI*" is constant, i.e. equivalence classes of relation {u,v € W, : f>"(u) =
f¥¥(v)}. However, this hardly gives us an expansion scheme, because this result does not
tell us how much each individual memory location should be expanded. The purpose of
Section 5.2.3 is to design a practical expansion algorithm for each memory location used
in the original program.

5.2.3 Formal Solution

Following the lines of [BCCO00], we are interested in the static ezpansion which removes
the largest number of dependences.

Proposition 5.1 (maximal static expansion) Given a program execution e, a stor-
age mapping f2*" is both a maximal static expansion of f, and finer than f. if and
only if

Vo,w € We: vR w A fe(v) = fo(w) <= f*(v) = £ (w) (5.7)

Proof: Sufficient condition—the “if” part

Let fP* be a mapping s.t. Vu,v € W : fPP(u) = fF(v) & uR*v A fo(u) = fe(v).
By definition, f*" is a static expansion and fJ*" is finer than f,.

Let us show that f¥** is maximal. Suppose that for u,v € W: f*"(u) = f&*(v).
(5.7) implies uR* v and f.(u) = fe(v). Thus, from (5.5), any other static expansion
fe satisfies fi(u) = fi(v) too. Hence, f7**(u) = f&*(v) = fi(u) = [fi(v), so f& is

maximal.
Necessary condition—the “only if” part

Let f**" be a maximal static expansion finer than f,. Because fI*" is a static expan-
sion, we only have to prove that

Vu,0 € W [() = [(0) = uR 0 A felu) = fe(v).

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 149

On the one hand, " (u) = f*(v) = fe(u) = fe(v) because f, is finer than f.. On
the other hand, for some u and v in W, assume f¥*(u) = f5**(v) and =(uR*v). We
show that it contradicts the maximality of f¥**: for any w in W, let f!(w) = f2**(w)
when —(uM*w), and fl(w) = ¢ when uR* w, for some ¢ # fPF(u). f! is a static
expansion: By construction, f!(u') = f!(v) for any " and v’ such that «'9R*v'. The
contradiction comes from the fact that f.(u) # fl(v). |

Results above make use of a general memory expansion f>*". However, constructing it
from scratch is another issue. To see why, consider a memory location ¢ and two accesses v
and w writing into ¢. Assume that v 9R* w: these accesses must assign the same memory
location in the expanded program. Now assume the contrary: if —(v9R*w), then the
expansion should make them assign two distinct memory locations.

We are thus strongly encouraged to choose an expansion P of the form (f., v) where
function v is constructed by the analysis and must be constant on equivalence classes of
M*. Notation (f.,r) is merely abstract. A concrete method for code generation involves
adding dimensions to arrays, and extending array subscripts with v, see Section 5.2.4.

Now, a storage mapping f*" = (f,,v) is finer than f. by construction, and it is a
maximal static expansion if function v satisfies the following equation:

Ve € E,Vv,w € Wy, f.(v) = fe(w): vR*w <= v(v) =v(w).

In practice, fo(v) = fe(w) can only be decided when f, is affine. In general, we have to
approximate f, with relation x and derive two constraints from the previous equation:

Expansion must be static: Vo,w € W: vkw A v R w = v(v) =v(w); (5.8)
Expansion must be maximal: Yo,w € W: vrkw A =(vR*w) = v(v) # v(w). (5.9)

First, notice that changing k into its transitive closure £* has no impact on (5.8), and
that the transformed equation yields an equivalence class enumeration problem. Second,
(5.9) is a graph coloring problem: it says that two writes cannot “share the same color” if
related. Direct methods exists to address these two problems simultaneously (see [Coh99b]
or Section 5.4), but they seem much two complicated for our purpose.

Now, the only purpose of relation x is to avoid unnecessary memory allocation, and
using a conservative approximation harms neither the maximality not the static prop-
erty of the expansion. Actually, we found that relation x differs from x*—meaning x is
not transitive—only in contrived examples, e.g. with tricky combinations of affine and
non-affine array subscripts. Therefore, consider the following maximal static expansion
criterion:

Vo,w e W,ok w: 1R w <= v(v) =r(w) (5.10)

Now, given an equivalence class of k*, classes of SR* are exactly the sets where storage
mapping fP*" is constant:

Theorem 5.1 A storage mapping f&** = (f,,r) is a maximal static expansion for all
execution e € E iff for each equivalence class C € W/,.g*, v is constant on each class
in C/g)f{* and takes distinct values between different classes: Vo, w € C : vR*w &
v(v) = v(w).

Proof: C ¢ W/,@* denotes a set of writes which may assign the same memory cell, and
C/m* is the set of equivalence classes for relation SR* on writes in C. A straightforward
application of (5.10) concludes the proof. [|

140 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

Notice that v is only supposed to take different values between classes in the same
C: if C;,Cy € W/gr with C; # Cs, u; € Cy and uy € Cs, nothing prevents that
v(uy) = v(ug).

As a consequence, two maximal static expansions fF*" and f! are identical on a class of
W/,@*, up to a one-to-one mapping between constant values. An interesting result follows:

Lemma 5.1 The expansion factor for each memory location assigned by writes in C is
Card(Cjr).

Let C be an equivalence class in W/K* (statement instances that may hit the same
memory location). Suppose we have a function p mapping each write u in C to a rep-
resentative of its equivalence class in C (see Section 5.2.4 for details). One may label
each class in C/g)f{*, or equivalently, label each element of p(C). Such a labeling scheme is
obviously arbitrary, but all programs transformed using our method are equivalent up to
a permutation of these labels. Labeling boils down to scanning exactly once all the integer
points in the set of representatives p(C), see Section 5.2.5 for details. Now, remember
that function f™* is of the form (f.,v). From Theorem 5.1, we can take for v(u) the
label we choose for p(u), then storage mapping fF** is a maximal static expansion for our
program.

Eventually, one has to generate code for the expanded program, using storage mapping
£, Tt is done in Section 5.2.4.

5.2.4 Algorithm

The maximal static expansion scheme given above works for any imperative program.
More precisely, you may expand any imperative program using maximal static expansion,
provided that a reaching definition analysis technique can handle it (at the instance level)
and that transitive closure computation, relation composition, intersection and union are
feasible in your framework.

In the sequel, since we use FADA (see [BCF97, Bar98] and Section 2.4.3) as reaching
definition analysis, we inherit its syntactical restrictions: data structures are scalars and
arrays; pointers are not allowed. Loops, conditionals and array subscripts are unrestricted.
Therefore, MAXIMAL-STATIC-EXPANSION and MSE-CONVERT-(QUAST are based on the
classical single-assignment algorithms for loop nests, see Section 5.1. They rely on Omega
[KPRS96] and PIP [Fea88b] for symbolic computations. Additional algorithms and tech-
nical points are studied in Section 5.2.5. [n MAXIMAL-STATIC-EXPANSION, the function
p mapping instances to their representatived is encoded as an affine relation between it-
eration vectors (augmented with the statement label), and labeling function v is encoded
as an affine relation between the same iteration vectors and a “compressed” vector space
found by ENUMERATE-REPRESENTATIVES, see Section 5.2.5.

An interesting but technical remark is that, by construction of function v—seen as a
parameterized vector, a few components may take a finite—and hopefully small—number
of values. Indeed, such components may represent the “statement part” of an instance.
In such case, splitting array A into several (renamed) data structures'® should improve
performance and decrease memory usage (avoiding convex hulls of disjoint polyhedra).
Consider for instance MSE of the second example: expanding A into A1l and A2 would
require 6NV — 2 array elements instead of 8V —2 in Figure 5.11. Other techniques reducing

0Recall that in single-assignment form, statements assign disjoint (renamed) data structures.

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 104

MAXIMAL-STATIC-EXPANSION (program, ko)
program: an intermediate representation of the program

k: the conflict relation
o: the reaching definition relation, seen as a function
returns an intermediate representation of the expanded program

1 K* < TRANSITIVE-CLOSURE (k)
2 R* « TRANSITIVE-CLOSURE (0 0o o 1)
3 p < COMPUTE-REPRESENTATIVES (x* N R*)
4 v < ENUMERATE-REPRESENTATIVES (K", p)
5 for each array A in program
6 do v, «—component-wise maximum of v(u) for all write accesses u to A
7 declaration A[shape] is replaced by Ay [shape, 1v,]
8 for each statement S assigning A in program
9 do left-hand side A [subscript] of S is replaced by Agyp [subscript, v(CURINS)]
10
11 for each read reference ref to A in program
12 do 0/, < restriction of o to accesses of the form (s, ref)
13 quast <+ MAKE-QUAST (v 0 0/yf)
14 map «— MSE-CONVERT-QUAST (quast, ref)
15 ref «<— map (CUrRINS)

16 return program

MSE-CONVERT-QUAST (quast, ref)
quast: the quast representation of the reaching definition function

ref: the original reference
returns the implementation of quast as a value retrieval code for reference ref

1 switch
2 case quast = {1} :
3 return ref
4 case quast = {1} :
5 A — ARRAY(1)
6 S «— StMT(2)
7 x « ITER(2)
8 subscript «—original array subscript in ref
9 return A, [subscript, x]
10 case quast = {11,19,...}:
11 error “this case should never happen with static expansion!”
12 case quast = if predicate then quast, else quasts :
13 return if predicate MSE-CONVERT-QUAST (quasty, ref)

else MSE-CONVERT-QUAST (quasty, ref)

the number of useless memory locations allocated by our algorithm are not described in
this paper.

5.2.5 Detailed Review of the Algorithm

A few technical points and computational issues are raised in the previous algorithm.
This section is devoted to their analysis and resolution.

14O uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

Finding Representatives for Equivalence Classes

Finding a “good” canonical representative in a set is not a simple matter. We choose the
lexicographic minimum because it can be computed using classical techniques, and our
first experiments gave good results.

Notice also that representatives must be described by a function p on write instances.
Therefore, the good “parametric” properties of lexicographical minimum computations
[Fea9l, Pug92] are well suited to our purpose.

A general technique to compute the lexicographical minimum follows. Let = be an

equivalence relation, and C an equivalence class for =. The lexicographical minimum of
C is:

min(C) =v e Cs.t. fue€ C,u <ypy v.

<iEX

Since < ux is a relation, we can rewrite the definition using algebraic operations:

min(C) = (= \(<ux 0 =))(C). (5.11)

<iEX

This is applied in our framework to classes of R* and «* with order <gg,.

COMPUTE-REPRESENTATIVES (equivalence)
equivalence: an affine equivalence relation over instances

returns an affine function mapping instances to a canonical representative
1 repres « equivalence \ (<spq oequivalence)
2 return repres

Applying Algorithm COMPUTE-REPRESENTATIVES to relation R* yields an affine
function p, but this does not readily provide the labeling function v. The last step
consists in enumerating the image of p inside classes of equivalence relation k*.

Computing a Dense Labeling

To label each memory location, we associate each location to an integer point in the affine
polyhedron of representatives, i.e. the image of function p whose range is restricted to
a class of equivalence relation «*. Labeling boils down to scanning exactly once all the
integer points in the set of representatives. This can be done using classical polyhedron-
scanning techniques [AI91, CFR95] or simply by considering a “part” of the representative
function in one-to-one mapping with this set. It is thus easy to compute a labeling function
v.

But computing a “good” labeling function is much more difficult: a “good” labeling
should be as dense as possible, meaning that the number of memory locations accessed
by the program must be as near as possible as the number of memory locations allocated
from the shape of function v.

A possible idea would be to count the number of integer points in the image of function
p, thanks to Erhart polynomials [Cla96], and to build a labeling (non-affine in general)
from this computation. But this would be extremely costly in practice and would some-
times generate very intricate subscripts; moreover, most compile-time properties on v
would be lost, due to the possible non-affine form. As a result, the “dense labeling prob-
lem” is mostly open at the moment. We have found an interesting partial result by Wilde
and Rajopahye [WR93], but studying applicability of their technique to our more general
case is left for future work.

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 1{iJ

Many simple transformations can be applied to p to compress its image. Thanks
to the regularity of iteration spaces of practical loop nests, techniques such as global
translation, division by an integer constant—when a constant stride is discovered—and
projection gave excellent results on every example we studied. Algorithm ENUMERATE-
REPRESENTATIVES implements these simple transformations to enumerate the image of
a function whose range is restricted to a class of some equivalence relation.

ENUMERATE-REPRESENTATIVES (rel, fun)
rel: equivalence relation whose classes define enumeration domains

fun: the affine function whose image should be enumerated

returns a dense labeling of the image of fun restricted to a class of rel

repres < COMPUTE-REPRESENTATIVES (rel)

enum < SYMBOLIC-VECTOR-SUBTRACT (fun, repres o fun)

apply appropriate translations, divisions and projections to iteration vectors in enum
return enum

=W N

What about Complexity and Practical Use?

For each array in the source program, the algorithm proceeds as follows:

e Compute the reciprocal relation o ! of 0. This is different from computing the

inverse of a function and consists only in a swap of the two arguments of o.
e Composing two relations o and ¢’ boils down to eliminating y in xoy A yo' z.

e Computing the exact transitive closure of R or k is impossible in general: Presburger
arithmetic is not closed under transitive closure. However, very precise conservative
approximations (if not exact results) can be computed. Kelly et al. [KPRS96] do not
give a formal bound on the complexity of their algorithm, but their implementation
in the Omega toolkit proved to be efficient if not concise. A short review of their
algorithm is presented in Section 3.1.2. Notice again that the exact transitive closure
is mot necessary for our expansion scheme to be correct.

Moreover, R and « happens to be transitive in most practical cases. In our imple-
mentation, the TRANSITIVE-CLOSURE algorithm first checks whether the difference
(RoR)\ R is empty, before triggering the computation. In all three examples, both
relations R and k are already transitive.

e In the algorithm above, p is a lexicographical minimum. The expansion scheme just
needs a way to pick one element per equivalence class. Computing the lexicograph-
ical minimum is expensive a priori, but was easy to implement.

e Finally, numbering classes becomes costly only when we have to scan a polyhedral
set of representatives in dimension greater than 1. In practice, we only had intervals
on our benchmark examples.

Is our Result Maximal?

Our expansion scheme depends on the transitive closure calculator, and of course on the
accuracy of input information: instancewise reaching definitions ¢ and approximation
k* of the original program storage mapping. We would like to stress the fact that the

10U uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

expansion produced is static and maximal with respect to the results yielded by these
parts, whatever their accuracy:

e The exact transitive closure may not be available (for computability or complex-
ity reasons) and may therefore be over-approximated. The expansion factor of a
memory location ¢ is then lower than Card({u € W : fe(u) = C}/g)f{*) However, the
expansion remains static and is mazximal with respect to the transitive closure given
to the algorithm.

e Relation x* approximating the storage mapping of the original program may be
more or less precise, but we required it to be pessimistic (a.k.a. conservative). This
point does not interfere with the staticity or maximality of the expansion; but the
more accurate the relation x*, the less unused memory is allocated by the expanded
program.

5.2.6 Application to Real Codes

Despite good performance results on small kernels (see following sections), it is obvious
that reaching definition analysis and MSE will become unacceptably expensive on larger
codes. When addressing real programs, it is therefore necessary to apply the MSE al-
gorithm independently to several loop nests. A parallelizing compiler (or a profiler) can
isolate loop nests that are critical program parts and where spending time in powerful
optimization techniques is valuable. Such techniques have been investigated by Berthou
in [Ber93], and also in the Polaris [BEFT96] and SUIF [H*96] projects.

However, some values may be initialized outside of the analyzed code. When the set
of possible reaching definitions for some read accesses is not a singleton and includes L,
it is necessary to perform some copy-in at the beginning of the code. Each array holding
values that may be read by such accesses must be copied into the appropriate expanded
arrays. In practice this is expensive when expanded arrays hold many copies of original
values. However, the process is fully parallel and can hopefully not cost more than the
loop nest itself.

There is a simple way to avoid copy-in, to the cost of some loss in the expansion degree.
It consists in adding “virtual write accesses” for every memory location and replacing s
in the reaching definition relation by the appropriate virtual access (accesses indeed, when
the memory location accessed is unknown). Since all Ls have been removed, computing
the maximal static expansion from this modified reaching definition relation requires no
copy-in; but additional constraints due to the “virtual accesses” may forbid some array
expansions. This technique is especially useful when many temporary arrays are involved
in a loop nest. But its application to the second motivating example (Figure 5.9) would
forbid all expansion since almost all reads may access values defined outside the nest.

Moreover, the data structures created by MSE on each loop nest may be different, and
the accesses to the same original array may now be inconsistent. Consider for instance the
original pseudo code in Figure 5.13.a. We assume the first nest was processed separately
by MSE, and the second nest by any technique. The code appears in Figure 5.13.b.
Clearly, references to A may be inconsistent: a read reference in the second nest does not
know which v to read from.

A simple solution is then to insert, between the two loop nests, a copy-out code in
which the original structure is restored (see Figure 5.13). Doing this only requires to add,
at the end of the first nest, “virtual accesses” that reads every memory locations written

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 101

for i for i
S AL - o ALLf(0), n(i)]
end for end for
for i --- for i ---
= ALfo(i)] --- -+ = A1[f5(i), /* unknown */]
end for end for
Figure 5.13.a. Original code Figure 5.13.b. MSE version
for i ---
- ALLf1(0), n(i)]
end for
for ¢ --- // copy-out code
Alc] = Atlc, vi(o(--+))]
end for
for i
= ALfy(i)]
end for

in the nest. The reaching definitions within the nest give the identity of the memory
location to read from. Notice that no ¢ functions are necessary in the copy code—the
opposite would lead to a non-static expansion. More precisely, if we call V(¢) the “virtual
access” to memory location ¢ after the loop nest, we can compute the maximal static
expansion for the nest and the additional virtual accesses, and the value to copy back into
¢ is located in (¢, v(o (V(¢)))).

Fortunately, with some knowledge on the program-wide flow of data, several opti-
mizations can remove the copy-out code!!. The simplest optimization is to remove the
copy-out code for some data structure when no read access executing after the nest uses a
value produced inside this nest. The copy-out code can also be removed when no ¢ func-
tions are needed in read accesses executing after the nest. Eventually, it is always possible
to remove the copy-out code in performing a forward substitution of (¢, v(o (V(¢)))) into
read accesses to a memory location ¢ in following nests.

5.2.7 Back to the Examples

This section applies our algorithm to the motivating examples, using the Omega Calcu-
lator [Pug92] as a tool to manipulate affine relations.

HTet us notice that, if MSE is used in codesign, the intermediate copy-code and associated data,
structures would correspond to additional logic and buffers, respectively. Both should be minimized in
complexity and/or size.

104 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

First Example

Consider again the program in Figure 5.6 page 169. Using the Omega Calculator text-
based interface, we describe a step-by-step execution of the expansion algorithm. We
have to code instances as integer-valued vectors. An instance (S,) is denoted by vector
[i,..,s], where [..] possibly pads the vector with zeroes. We number T, S, R with 1,
2, 3 in this order, so (T, %), (S, 1, j) and (R, i) are written [1,0,1], [i,j,2] and [i,0,3],
respectively.

From (5.1) and (5.2), we construct the relation S of reaching definitions:

= {[i,1,2]->[1,0,1] : 1<=i<=N}
union {[i,w,2]->[i,w-1,2] : 1<=i<=N && 2<=w}
union {[1,0,3]1->[1,0,1] : 1<=i<=N}
union {[1,0,3]->[1,w,2] : 1<=i<=N && 1<=w};
Since we have only one memory location, relation x tells us that all instances are

related together, and can be omitted.
Computing R is straightforward:

S’ := inverse S;
R := S(S?);
R;

{[i1,0,1]1->[1,0,1] : 1<=i<=N} union
{[i,w,2]->[1,0,1] : 1<=i<=N && 1<=w} union
{[1,0,1]1->[i,w’,2] : 1<=i<=N && 1<=w’} union
{[i,w,2]->[1,w’,2] : 1<=i<=N && 1<=w’ && 1<=w}

In mathematical terms, we get:
(TR (Ti) <= 1<i<N
(S,i,w)R(S,i,w') <= 1<i<Nw>lLw >1
(S,i,w)yR(T,i) «<—= 1<i<NAw>1
(T,i)R(S,i,w'") <= 1<i<NAw >1 (5.12)
Relation R is already transitive, no closure computation is necessary:
R =NR"

There is only one equivalence class for x*.

Let us choose p(u) as the first executed instance in the equivalence class of u for R*
(the least instance according to the sequential order): p(u) = min. ({v' : v’ R*u}). We
may compute this expression using (5.11):

Viyw, 1 <i< N,w>1: p((T,i)) =(T,1i), p((S,i,w)) = (T, 1).

Computing p(W) yields N instances of the form (7', 7). Maximal static expansion of
accesses to variable x requires N memory locations. Here, ¢ is an obvious label:

Viow, 1 <i< N,w>1: v({(S iw))=v({T,i)) =i. (5.13)

All left-hand side references to x are transformed into x[i]; all references to x in the
right hand side are transformed into x[i] too since their reaching definitions are instances
of S or T for the same i. The expanded code is thus exactly the one found intuitively in
Figure 5.8.

The size declaration of the new array is x[1..N].

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 1069

Second Example

We now consider the program in Figure 5.9. Instances (S,i,j) and (7,4, N) are denoted
by [i,j,1] and [i,N,2], respectively.
From (5.3), the relation S of reaching definitions is defined as:

= {[i,j,11->[i’, j>,1] : 1<=i,i’<=2N && 1<=j’<j<=N && i’-j’=i-j}
union {[i,j,11->[i’,j’,1] : 1<=i,i’<=2N && N<j’<j<=2N && i’-j’=i-j}
union {[i,j,11->[1i’,N,2] : 1<=i,i’<=2N && N<j<=2N && i’=i-j+N};

It is easy to compute relation x since all array subscripts are affine: two instances of
S or T, whose iteration vectors are (i,j) and (i, ;') write in the same memory location
iff 1 — j = ¢ — j'. This relation is transitive, hence k = k*. We call it May in Omega’s

syntax:

May := {[i,j,s]->[1i’,j’,s’] : 1<=i,j,1i’,j’<=2N && i-j=i’-j’ &&
(s=1 || (s=2 && j=N) || s’=1 || (s’=2 && j’=N))};

As in the first example, we compute relation R using Omega:

S’ := inverse S;
= 5(8°);
R;

{[1,j,11->[i?,j-1i+1i’,1] : 1<=i<=2N-1 && 1<=j<N && 1<=i’<=2N-1

&& i<j+i’ && j+i’<N+i} union

{[i,j,1]->[i’,j-i+i’,1] : N<j<=2N-1 && 1<=i<=2N-1 && 1<=i’<=2N-1
&& N+i<j+i’ && j+i’<2N+i} union

{[i,N,2]->[1i’> ,N-i+i’,1] : 1<=i<i’<=2N-1 && i’<N+i} union
{[i,j,1]1->[N+i-j,N,2] : N<j<=2N-1 && i<=2N-1 && j<N+i} union
{[i,N,2]->[i,N,2] : 1<=i<=2N-1}

That is:
(T,i, NYR(T,i,N) & 1<i<2N -1
(S,i,J)R(S,7,5) & (A<i,i' <2N-1)A(i—j=1i—])
AN(1<jj<NVN<jj <2N-1)
(S,i, N R(T,N+i—jN) & (1<i<2N-1)AN<j<2N-1)A(j <N+
(T,i, NYR(S, i/, N —i+i) & 1<i<i <2N—-1A7 <N +i

Relation R is already transitive: 9B = 2R*. Figure 5.10.a shows the equivalence classes
of R*.

Let C be an equivalence class for relation x*. There is an integer k s.t. C = {(S,,7) :
i—j =k}U{(T,k+N,N)}. Now, foru € C, p(u) = min.,({v' € W : v/ *u A v R*u}).

Then, we compute p(u) using Omega:

1-2N<i—j<-=N : p((S,i,5)) =(S, 1,1 —i+j)

I1-N<i—j<N—-1AjF<N : p({(S,i,7))=(S,i—j+1,1)
1-N<i—j<N-1Aj>=N : p((S,i,7)) =(T,i,N)

N<i—j<2N-—-1 : p((S,i,5)) =(S;i—j+11)
1<i<2N -1 : p((T,i,N))=(T,i,N)

104 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

The result shows three intervals of constant cardinality of C/m*; they are described in
Figure 5.10.b. A labeling can be found mechanically. If i — j < —N or ¢ — 5 > N, there
is only one representative, thus v((S,7,j)) =1. If 1 = N <i—j < N — 1, there are two
representatives; then we define v((S,4,7)) = 1 if j < N, v((S,i,5)) = 2if j > N, and
v((T,i,N)) = 2.

The static expansion code appears in Figure 5.11. As hinted in Section 5.2.4, condi-
tionals in v have been taken out of array subscripts.

Array A is allocated as A[4*N, 2]. Note that some memory could have been spared
in defining two different arrays: Al standing for A[--- ,0] holding 4N — 1 elements, and
A2 standing for A[--- ,1] holding only 2N — 1 elements. This idea was pointed out in
Section 5.2.4.

Third Example: Non-Affine Array Subscripts

We come back to the program in Figure 5.12.a. Instances (7,i,7), (S,7) and (R, i) are
written [i,j,1], [1,0,2] and [i,0,3].
From (5.4), we build the relation of reaching definitions:

S := {[1,0,3]1->[i,j,1] : 1<=i,j<=N}
union {[1,0,3]1->[1,0,2] : 1<=i<=N};

Since some subscripts are non affine, we cannot compute at compile-time the exact
relation between instances writing in some location A[x]. We can only make the following
pessimistic approximation of x: all instances are related together (because they may assign
the same memory location).

S’ := inverse S;
R := S(8’);
R;

{[i,j,11->[1i,j’,1] : 1<=i<=N && 1<=j<=N

&% 1<=j’<=N} union

{[i,0,2]1->[i,j’,1] : 1<=i<=N && 1<=j’<=N} union
{[i,j,11->[1,0,2] : 1<=i<=N && 1<=j<=N} union
{[i,0,2]1->[i,0,2] : 1<=i<=N}

R is already transitive: R = R*.
There is only one equivalence class for x*.
We compute p(u) using Omega:

Vi, 1 <i< N : p((S,i)) =(T,i,1)
Vi,j, 1<i<N,1<j<N : p((T,i,5)) = (T,i,1)
Note that every (7,1, j) instance is in relation with (7', 1).
Computing p(W) yields N instances of the form (7,7). Maximal static expansion

of accesses to variable x requires N memory locations. We can use ¢ to label these
representatives; thus the resulting v function is:

v((S, 1)) = v((T,i,5)) = i.

J.L. WVIANLIVIAL O1 AT 1 VAT AINOIUILY 109

Using this labeling, all left hand side references to A[---] become A[---, i] in the
expanded code. Since the source of (R,7) is an instance of S or T at the same iteration
7, the right hand side of R is expanded the same way. Expanding the code thus leads to
the intuitive result given in Figure 5.12.b.

The size declaration of A is now A[N+1, N+1].

5.2.8 Experiments

We ran a few experiments on an SGI Origin 2000, using the mp library. Implementation
issues are discussed in Section 5.2.9.

Performance Results for the First Example

For the first example, the parallel SA and MSE programs are given in Figure 5.14. Re-
member that w is an artificial counter of the while-loop, and M is the maximum number
of iterations of this loop. We have seen that a ¢ function is necessary for SA form, but it
can be computed at low cost: it represents the last iteration of the inner loop.

double xy[N], xg[N, MI;
parallel for (i=1; i<=N; i++) {

T xp[i] = - -;

w=1; double x[N+1];

while (---) { parallel for (i=1; i<=N; i++)
S xg[i] [w] = if (w==1) xp[i] ---; T x[i] = -+

wt+; while ()
by S x[i] = x[i] ---;
else xg[i, w-11 ---; R ceeo= x[1] -

R - = if (w==1) xp[i] ---; }

else xg[i, w-1] ---;

// the last two lines implement Figure 5.14.b. Maximal static expan-

[T, 1)U Lw): T <w<Mp) L0

Figure 5.14.a. Single-assignment

................... Figure 5.14. Parallelization of the first example.

Table in Figure 5.15 first describes speed-ups for the maximal static expansion relative
to the original sequential program, then speed-ups for the MSE version relative to the
single-assignment form. As expected, MSE shows a better scaling, and the relative speed-
up quickly goes over 2. Moreover, for larger memory sizes, the SA program may swap or
fail for lack of memory.

5.2.9 Implementation

The maximal static expansion is implemented in C++ on top of the Omega library. Fig-
ure 5.16 summarizes the computation times for our examples (on a 32MB Sun SPARC-
station 5). These results do not include the computation times for reaching definition
analysis and code generation.

1060 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

M x N
Configuration | 200 x 250 | 200 x 500 | 200 x 1000 | 200 x 2000 | 200 x 4000
Speed-ups for MSE versus original program
16 processors 6.72 9.79 12.8 13.4 14.7
32 processors 5.75 9.87 15.3 21.1 24.8
Speed-ups for MSE versus SA
16 processors 1.43 1.63 1.79 1.96 2.07
32 processors 1.16 1.33 1.52 1.80 1.99

1% example | 2"4 example | 3" example

transitive
closure 100 100 110
(check)
picking the
representatives 110 160 110
(function p)
other 130 150 70
total 340 410 290

................... Figure 5.16. Computation times, in milliseconds.

Moreover, computing the class representatives is relatively fast; it validates our choice
to compute function p (mapping instances to their representatives) using a lexicographical
minimum. The intuition behind these results is that the computation time mainly depends
on the number of affine constraints in the data-flow analysis relation.

Our only concern, so far, would be to find a way to approximate the expressions of
transitive closures when they become large.

5.3 Storage Mapping Optimization

Memory expansion techniques have two main drawbacks: high memory usage and run-
time overhead. Parallelization via memory expansion thus requires both moderation in
the expansion degree and efficiency in the run-time computation of data-flow restoration
code.

Moderation in the expansion degree can be addressed in two ways: either with “hard
constraints” such as the one presented in Section 5.2 or with optimization techniques that
do not interfere with parallelism extraction. This section addresses such optimization

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 101{

techniques, and presents the main results of a collaboration with Vincent Lefebvre. It can
be seen as an extension of a work by Feautrier and Lefebvre [LF98] and also by Strout et
al. [SCFS98].

Our contributions are the following: we formalize the correctness of a storage map-
ping, according to a given parallel execution order, for any nest of loops with unrestricted
conditional expressions and array subscripts; we show that schedule-independent storage
mappings defined in [SCFS98| correspond to correct storage mappings according to the
data-flow execution order; and we present an algorithm for storage mapping optimization,
applicable to any nest of loops and to all parallelization techniques based on polyhedral
dependence graphs (i.e. captured by Presburger arithmetics).

5.3.1 Motivation
First Example: Dynamic Control Flow

We first study the kernel in Figure 5.17.a, which was already the first motivating example
in Section 5.2. Parts denoted by --- have no side-effect. Each loop iteration spawns
instances of statements included in the loop body.

double x; double xp[N+1], xg[N+1, M+1]
for (i=1; i<=N; i++) { parallel for (i=1; i<=N; i++) {
T X = e T xp[i] = -
while (---) { w=1;
S X =X - while (--+) {
} S xg[i]l [w] = if(w=1) xp[i] ---;
R R SRR else xg[i, w=1] ---;
} Wt
}
Figure 5.17.a. Original program R v = if (w==1) xp[i] .

else xg[i, w-1] ---;
// the last two lines implement
/] ST, DY U(S, 5, w) 1 1< w < u})
}

Figure 5.17.b. Single-assignment
double xpg[N+1]
parallel for (i=1; i<=N; i++) {

T XTS[i] = ...
while (---) {
S xrs[i] = xpgl[il -+
}
R e =XTS[i] s
}

Figure 5.17.c. Partial expansion

.......................... Figure 5.17. Convolution example

Any instancewise reaching definition analysis is suitable to our purpose, but FADA

1060 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

[BCF97] is prefered since it handles any loop nest and achieves today’s best precision.
Value-based dependence analysis [Won95] is also a good choice. In the following, The
results for references x in right-hand side of R and S are nested conditionals:

o((S,i,w,x)) = if w=1 then {T} else {(S,i,w—1)}
o((R,i,%x)) = {(S,i,w):1<w}.

Here, memory-based dependences hampers direct parallelization via scheduling or
tiling. We need to expand scalar x and remove as many output, flow and anti-dependences
as possible. Reaching definition analysis is at the core of single-assignment (SA) algo-
rithms, since it records the location of values in expanded data structures. However,
when the flow of data is unknown at compile-time, ¢ functions are introduced for run-
time restoration of values [CFR*91, Col98]. Figure 5.17.b shows our program converted
to SA form, with the outer loop marked parallel (M is the maximum number of iterations
of the inner loop). A ¢ function is necessary but can be computed at low cost since it
represents the last iteration of the inner loop.

SA programs suffer from high memory requirements: S now assigns a huge N x M
array. Optimizing memory usage is thus a critical point when applying memory expansion
techniques to parallelization.

Figure 5.17.c shows the parallel program after partial expansion. Since 1" executes
before the inner loop in the parallel version, S and 7" may assign the same array. Moreover
a one-dimensional array is sufficient since the inner loop is not parallel. As a side-effect, no
¢ function is needed any more. Storage requirement is IV, to be compared with NM + N in
the SA version, and with 1 in the original program (allowing no legal parallel reordering).

This partial expansion has been designed for a particular parallel execution order.
However, it is easy to show that it is also compatible with all other execution orders,
since the inner loop cannot be parallelized. We have thus built a schedule-independent
(a.k.a. universal) storage mapping, in the sense of [SCFS98|. On many programs, a more
memory-economical technique consists in computing a legal storage mapping according
to a giwen parallel execution order, instead of finding a schedule-independent storage
compatible with any legal execution order. This is done in [LF98] for affine loop nests
only.

Second Example: a More Complex Parallelization

We now consider the program in Figure 5.18 which solves the well known knapsack prob-
lem (KP). This kernel naturally models several optimization problems [MT90]. Intuitively:
M is the number of objects, C' is the “knapsack” capacity, W[k] (resp. P[k]) is the weight
(resp. profit) of object number k; the problem is to maximize the profit without exceeding
the capacity. Instances of S are denoted by (S, k, Wk]), ... (S, k,C), for 1 <k < M.

int A[C+1], W[M+1], P[M+1];
for (k=1; k<=M; k++)
for (j=W[k]; j<=C; j++)
S A[jl = max (A[j], P[k] + A[j-W[k]l]1);

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 106J

We suppose (from additional static analyses) that W[k] is always positive and less than
or equal to an integer K. The result for references A[j] and A[j-W[k]] in right-hand
side of S are conditionals:

if k=1
o ((S,k,j,Al[31)) = | then {1}
else {(S,k—1,7)}
o ((S,k,j,AL-WIKID)) = {(S.K,5"):1 <K <k Amax(0,j — K) < j' <j—1}

First notice that program KP does not have any parallel loops, and that memory-
based dependences hampers direct parallelization. Therefore, parallelizing KP requires
the application of preliminary program transformations.

Thanks to the reaching definition information, Figure 5.19 shows program KP con-
verted to SA form. The unique ¢ function implements a run-time choice between values
produced by {(S,k',5") : 1 < k' <k Amax(0,j — K) < j' < j— 1}, for some read access
(S, k,7,A[j-W[k]]).

int A[C+1], W[M+1], P[M+1]
int Ag[M+1, C+1]
for (k=1; k<=M; k++)
for (j=W[k]; j<=C; j++)
S Aglk, j1 = if (k==1)
max (A[j], P[1] + A[j-W[111);
else
max (Ag[k-1, j],
P[] + o({(S,k,j"): 1 <k <k Amax(0,j — K) <j <j—1});

Eventually, in this particular case, the ¢ function is really easy to compute: the value
of A[j-W[k]] has been “moved” by SA form transformation “to” Ag[k, j-W[kl]. Then
Sd({(S,k',7") : 1 <k <k Amax(0,j — K) < j < j—1}) is equal to Ag[k,j-W[k]].
This optimization avoids the use of temporary arrays. It can be performed automatically,
along with other interesting optimizations, see Section 5.1.4.

The good thing with SA-transformed programs is that the only remaining dependences
are true dependences between a reaching definition instance and its use instances. Thus
a legal parallel schedule for program KP is: “ezecute instance (S, k,j) at step k + j7, see
Figure 5.20 (see Section 2.5.2 for schedule computation).

Since KP is a perfectly nested loop, it is also possible to apply tiling techniques
to single-assignment KP, based on instancewise reaching definition information. Tiling
techniques improve data locality and reduce communications in grouping together com-
putations affecting the same part of a data structure (see Section 2.5.2). Rectangular
m X c tiles seem appropriate in our case; the height m and width ¢ can be tuned thanks
to theoretical models [IT88, CFH95, BDRR94] or profiling techniques. The knapsack
problem has been much studied and very efficient parallelizations have been crafted by
Andonov and Rajopadhye [AR94], see also [BBA98| for additional information on tiling

1JU uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

J J AN AN AN AN J \/ ™ \/ ™
A A o o o o A (o o] (o o
\ AN \ \] ® AN ; ; A N ;
N N N N N N
‘oo @ o o o) lo o
N N N N N RN)
N N N N . N N A
N AN N N s N N ™
o, Q@ . Q Q (e} R (e} o R o
. N N N . N AN | AN X
N AN N N RN [N
o Q@ . Q R o, \O (e}) \O (0])
N N . N N AN
» k - k - k

the knapsack algorithm. The third graph in Figure 5.20 represents 2 x 2 tiles, but larger
sizes are used in practice, see Section 5.3.10.

Consider the dependences in Figure 5.20. The value produced by instance (S, k, j) may
be used by (S, k,7 4+ 1),...,(S, k,min(C,j + K)) or by (S, k+ 1, 7). Using the schedule
or the tiling proposed in Figure 5.20, we can prove that some value produced during the
execution stops being useful after a given delay: if 1 < k&' < M and 1 < j,j' < C are
such that k + j + K < k' + j', the value produced by (S, %,) is not used by (S, %', j').
This allows a cyclic folding of the storage mapping: every access of the form Ag[k, j]
can be safely replaced by Ag[k % (K+1), jl. The result is shown in Figure 5.21.

int A[C+1], W[M+1], P[M+1]
int Ag[K+2, C+1]
for (k=1; k<=M; k++)

for (j=W[k]; j<=C; j++)

S Aslk % (K+1), j1 = if (k==1)
max (A[jl, P[1] + A[j-W[1]1);
else

max (Ag[(k-1) % (K+1), jl,
Pkl + o({(S,K,7): 1<K <kAmax(0,j— K)<j <j—1});

Storage requirement for array Ag is (K +1)C, to be compared with MC' in the SA ver-
sion, and with C' in the original program (where no legal parallel reordering was possible).
This suggests two observations:

e first, the gain is only significant when K is much smaller than M, which may not
be the case in practice;

e second, the expanded subscript in left-hand side is not affine any more, since K is
a symbolic constant.

In general, when the cyclic folding is based on a symbolic constant (like K), it becomes
both difficult to measure the effectiveness of the optimization and to reuse the generated

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 1J1

code in subsequent analyses. In [Lef98], Lefebvre proposed to forbid such symbolic fold-
ings, but we believe they can still be useful when some compile-time information on the
symbolic bounds (like K) is available.

Eventually, this partial expansion is not schedule-independent, because it highly de-
pends on the “parallel front” direction associated with the proposed schedule and tiling.

5.3.2 Problem Statement and Formal Solution

Given an original program (<gq, fe), we suppose that an instancewise reaching definition
analysis has already been performed—yielding relation c—and that a parallel execution
order <p,z has been computed using some suitable technique (see Chapter 2.5.2). Our
problem is here to compute a new storage mapping fI*" such that (<pag, f2*") preserves
the original semantics of (<spq, fe)-

Given a parallel execution order <p,z, we have to characterize correct expansions
allowing parallel execution to preserve the program semantics. In addition to the conflict
relation k., we use the no-conflict relation f,, which is the complement of k.. As in
Section 2.4.1, we build a conservative approximation 4 of this relation:

Vee E\Vo,w € A, (feo(v) # fo(w) = v fw).

Since both approximations k and § are conservative, we have to be very careful that they
are not complementary in general. Indeed, k. and §, are complementary for the same
execution e € E, but x is defined as a “may conflict” approximation for all executions,
and 4 is the negation of the “must conflict” approximation.

Our first task is to formalize the memory reuse constraints enforced by the partial
order <p,z. We introduce o.: the exact reaching definition function for a given execution
e of parallelized program (<pg, f**").!? The expansion is correct iff, for every program
execution, the source of every access is the same in the sequential and in the parallel
program:

Ve e E,Vu € R,,Vv € W, : v =0,(u) = v=o0,(u). (5.14)
We are looking for a correctness criterion telling whether two writes may use the same
memory location or not. To do this, we return to the definition of o’:
Vee E: v=o0,(u) <

U <pan U A () = [P (0) A (Y € Wt U <ppp 0 V w <pap v V [(0) £ 2 (0)).
(5.15)

Plugging (5.15) in (5.14), we get

Vee E\Vue R,Vo,w € Wo: 0 =0,(u) AU Lppp WA W Lppp v =

v <par A fo () = fT(0) A ST (0) # ST (w).

We may simplify this result since v <p,p v and fE2F(u) = f2F(v) constraints are already
implied by v = o, (u)—through (5.14)—and do not bring any information between f2**(v)
and f2F(w):

Ve € E,Vu € R.,Vv,w € W, :

V=0 () AU Lpsr WA W Lppp v => [(v) # £ (w). (5.16)

12The fact that <pap is not a total order makes no difference for reaching definitions.

1J4 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

It means that we cannot reuse memory (i.e. we must expand) when both v = o, (u) and
U Lpar W A u Lpap w are true. Starting from this dynamic correctness condition, we would
like to deduce a correctness criterion based on static knowledge only. This criterion must
be valid for all executions; in other terms, it should be stronger than condition (5.16).

We can now expose the expansion correctness criterion. It requires the reaching defi-
nition v of a read v and an other write w to assign different memory locations when: w
executes between v and w in the parallel program, and either w does not execute between
v and w or w assigns a different memory location from v (v £ w) in the original program;
see Figure 5.22. Here is the precise formulation of the correctness criterion:

Theorem 5.2 (correctness of storage mappings) If the following condition holds,
then the expansion is correct—i.e. allows parallel execution to preserve the program
semantics.

Ve € E,Vv,w € W :
JuER:voUNAW Lppp VAU Lpar WA (U <gpq WV W <ggq vV VL w)

= [() # 7 (w). (5.17)
Proof: We first rewrite the definition of v being the reaching definition of u:

Ve e E,Vu € R.,Vv € W, :
v =0 (u) = v <gpq U A fe(u) = fe(v) A
(Vw € We : u <guq 0 V W <guq 0V fe(v) # fe(w)).

As a consequence,

Ve e E,Vu € R.,Vv € W, :
v=0,(u) = (Vw € W, :u <gq wV w <spq vV fe(v) # fe(w)). (5.18)

The right-hand side of (5.18) can be inserted into (5.16) as an additional constraint:
(5.16) is equivalent to

Ve € E,Vu € R, Vo, w € W, :
V=0¢ (u) AW Lprr VA U Lppg W A (u <gpq WV W <ggq UV fe(v) # fe(w))
= [(v) # £ (w). (5.19)

Let us now replace o, with its approximation o in (5.19)—using v = o, (u) = vo u:

Ve € E,Vu € R, Vv, w € W, :
vou A (u <gpq WV W <guq UV fe(v) # fe(w)) AW Lpar VAU Lppr W
= fo " (v) # [(w)
|l approximation: v = o, (v) = vou
Ve e E,Vu € R.,Vv,w € W, :
v =0¢(u) A (u <gpq WV W <gpq vV fe(v) # fe(w)) AW Lpar VAU Lppg W
= [(v) # f (w)

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 1J9

Eventually, we approximate f. over all executions thanks to relation g#—using f.(v) #

fe(u) = v fu:

Yo,w € W :
JuER 00U AW Lppp VAU Lpar WA (U <gpq WV W <gpq ¥V VW)

= [() # [(w)

| approximation: f.(v) # f.(u) = v fu
Ve € E,Vu € R,,Vvo,w € W, :

vou A (u <gpq WV W <ggq UV fe(v) # fe(w)) AW Lpar VA U Lpag W
= [() # [(w)

This proves that (5.17) is stronger than (5.19), itself equivalent to (5.16). |

Notice we returned to the definition of o, at the beginning of the proof. Indeed, some
information on the storage mapping may be available, and we do not want to loose
it'®: the right-hand side of (5.18) gathers information on w which would have been lost in
approximating o, by o in (5.16). Without this information on w, we would have computed
the following correctness criterion:

Ve € E,Vv,w e W :
(FueR:v=0(u) At goprn WA W £ppn v) = [(0) # [P (w). (5.20)

Sadly, this choice is not satisfying here.!'* Indeed, consider the motivating example: two
instances (5,7, w) and (S, i, w') would satisfy the left-hand side of (5.20) as long as w #
w'. Therefore, they should assign different memory locations in any correct expanded
program. This leads to the single-assignment version of the program... but we showed in
Section 5.3.1 that a more memory-economical solution was available: see Figure 5.17.c.

A precise look to (5.16) explains why replacing o, with o in 5.16) is too conservative:
it “forgets” that w is not executed after the reaching definition o, (u). Indeed, w £psp v
in left-hand side of (5.20) is much stronger: it states that w is not executed after any
possible reaching definitions of w, which includes many instances execution before the
reaching definition o, (u).

In the following, we introduce a new notation for the expansion correctness criterion:
the interference relation < is defined as the symmetric closure of the left-hand side of
(5.17):

def
Yo,we W: ovxw <=

(Hueszau/\wKPARv/\UKPARw/\(u<SEQw\/w<SEQUVvﬁw))
Vo (FueR:wouAv Zoan WA U par v A (U <gpg 0V 0 <gq w V w fv)). (5.21)

We take the symmetric closure because v and w play symmetric roles in (5.17). Using
a tool like Omega [Pug92], it is much easier to handle set and relation operations than

13Such information may be more precise than deriving it from the approximate reaching definition
relation o.

14This criterion was enough for Lefebvre and Feautrier in [LF98] since they only considered affine loop
nests and exact reaching definition relations.

1Ja uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

veEo(u) u
Sequential I _ I > <gpq
W <gpq V v fw U <gpg W
v € o(u) u
e
W Lpar v
U pan W

logic formulas with quantifiers. We thus rewrite the previous definition using algebraic
operations:!®

M= ((U (R) X W)ﬂ }PAR ﬁ(>5EQ U ﬁ{)) U (}PAR ﬂ(O' o (%PAR N <SEQ)))
U ((0(R) x W)N Zpar N(<spo U £)) U ((Zpar N(0 0 (Lpan N <sua)))- (5.22)

Rewriting (5.17) with this new syntax, v and w must assign distinct memory locations
when v > w—one may say that “v interferes with w”:

Ve e E,Vo,w e W: oxw = f7*(v) # 75 (w). (5.23)

An algorithm to compute f™* from Theorem 5.2 is presented in Section 5.3.4. Notice
that we compute an ezact storage mapping f2*" which depends on the execution.

5.3.3 Optimality of the Expansion Correctness Criterion

We start with three examples showing the usefulness of each constraint in the definition
of >q, see Figure 5.23.
We now present the following optimality result:*®

Proposition 5.2 Let <,z be a parallel execution order. Consider two writes v and w
such that v><w (defined in (5.22) page 194), and a storage mapping f2** such that
P (v) = fEXP(w)—that is, f¥*" does not satisfy the expansion correctness criterion
defined by Theorem 5.2. Then, executing program (<p,g, fo**) violates the original
program semantics, according to approximations o and £.

Proof: Suppose vou A w Lpyg ¥ A U Lpag W A (U <gpg W V W <ggq v V v g w)
is satisfied for a read u, and two writes v and w. One may distinguish three cases
regarding execution of w relatively to u and v, see Figure 5.22.

15Each line of (5.21) is rewritten independently, then predicates depending on u are separated from the
others. The existential quantification on w is captured by composition with o. Because v is the possible
reaching definition of some read access, intersection with (o (R) x W) is necessary in the first disjunct
of each line.

16Gee Section 2.4.4 for a general remark about optimality.

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 1J9

T x=--; S || T <seq R is legal but requires renaming: this is
S X = - ; enfOI‘CQd by T <SEQ S, i.e. w <SEQ v (&Ild T %PAR S, i.e.
R =X e W ZLppr Uy and R Lpap T, 1. U Lppp w).

Figure 5.23.a. Constraints w <szq v and w ZLpx U, U Lpap W

Z * 7 _X’) S <spq I' <spq R is legal but requires renaming: this is
T x = ..0- ’ enforced by R <gpo 1, 1.6, u <ggq w.

Figure 5.23.b. Constraints w £psg v, U Lppp W and u <gpq W

S A[1] = ---; S || T <ssq R is legal but requires renaming: this is en-
T Alfool = ---; forced by S £ T, i.e. v £ w, since S may assign a different
R ... =A[1] -+ memory location as 7.

Figure 5.23.c. Constraints w £pag v, U £par W and v g w

Figure 5.23. Motivating examples for each constraint in the definition of the interference
relation

The first two cases are (1) u executes before w in the sequential program, i.e. u <gzq w,
or (2) w executes before v in the sequential program, i.e. w <ggq v: then w must assign
a different memory location than v, otherwise the value produced by v would never
reach u as in the sequential program.

When w executes neither before v nor after » in the sequential program, one may
keep v and w assigning the same memory location if it was the case in the sequential
program. However, if it might not be the case, i.e. if v £ w, then w must assign a
different memory location than v, otherwise the value produced by v would never
reach u as in the sequential program. [|

5.3.4 Algorithm

The formalism presented in the previous section is general enough to handle any imper-
ative program. However, as a compromise between expressivity and computability, and
because our prefered reaching definition analysis is FADA [BCF97], we choose affine rela-
tions as an abstraction. Tools like Omega [Pug92] and PIP [Fea91] can thus be used for
symbolic computations, but our program model is now restricted to loop nests operating
on arrays, with unrestricted conditionals, loop bounds and array subscripts.

Finding the minimal amount of memory to store the values produced by the program
is a graph coloring problem where vertices are instances of writes and edges represent
interferences between instances: there is an edge between v and w iff they can’t share the
same memory location, i.e. when vpqw. Since classic coloring algorithms only apply to
finite graphs, Feautrier and Lefebvre designed a new algorithm [LF98|, which we extend
to general loop-nests.

The more general application of our technique starts with instancewise reaching defini-
tion analysis, then apply a parallelization algorithm using o as dependence graph —thus

1J0 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

avoiding constraints due to spurious memory-based dependences, describe the result as a
partial order <;,g, and eventually apply the following partial expansion algorithm.

Partial Expansion Algorithm

STORAGE-MAPPING-OPTIMIZATION and SMO-CONVERT-QUAST are simple extensions
of the classical single-assignement algorithms for loop nests, see Section 5.1. Input is
the sequential program, the results ¢ and 4 of an instancewise analysis, and parallel
execution order <p,; (not used for simple SA form conversion). The big difference with
SA-form is the computation of an expansion vector Eg of integers or symbolic constants:
its purpose is to reduce memory usage of each expanded array Ag with a “cyclic folding”
of memory references, see BUILD-EXPANSION-VECTOR in Section 5.3.5. To reduce the
number of expanded arrays, partial renaming is called at the end of the process to coalesce
data structures using a classical graph coloring heuristic, see PARTIAL-RENAMING in
Section 5.3.5.

STORAGE-MAPPING-OPTIMIZATION (program, o, f, <pag)
program: an intermediate representation of the program

o: the reaching definition relation, seen as a function

#: the no-conflict relation

<par: the parallel execution order

returns an intermediate representation of the expanded program

> — ((0 (R) X W)N #par N(>ssq U #£)) U (Fear N0 0 (£oar N <seq)))
U ((0(R) x W)N Zpar N(<seq U £)) U (Lpar N0 0 (£par N <seq)))
for each array A in program
do for each statement S assigning A in program
do Eg <+ BUILD-EXPANSION-VECTOR (S,)
declare an array Ag
left-hand side of S < Ag[ITER(CURINS) % Egl
for each reference ref to A in program
do 0/pef — o N (I xref)
quast < MAKE-QUAST (0/ref)
11 map «— SMO-CONVERT-QUAST (quast, ref)
12 ref < map (CurINS)
13 program < PARTIAL-RENAMING (program,)
14 return program

© 00 ~1 O Ot W N -

[
e

This algorithm outputs an expanded program whose data layout is well suited for
parallel execution order <,,;: we are assured that the original program semantic will be
preserved in the parallel version.

Two technical issues have been pointed out. How is the expansion vector Eg built
for each statement S?7 How is partial renaming performed? This is the purpose of Sec-
tion 5.3.5.

5.3.5 Array Reshaping and Renaming
Building an Expansion Vector

For each statement S, the expansion vector must ensure that two instances v and w
assign different memory locations when ve<dw. Moreover, it should introduce memory

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 1J1

SMO-CONVERT-QUAST (quast, ref)
quast: the quast representation of the reaching definition function

ref: the original reference, used when L is encoutered
returns the implementation of quast as a value retrieval code for reference ref

1 switch

2 case quast = {1} :

3 return ref

4 case quast = {1} :

5 A «— ARRAY(1)

6 S «— StMT(2)

7 x «— ITER(2)

8 return Ag[x % Egl

9 case quast = {11,%,... }:
10 return ¢({o1,2,...})
11 case quast = if predicate then quast, else quasts :
12 return if predicate SMO-CONVERT-QUAST (quasty, ref)

else SMO-CONVERT-QUAST (quastsy, ref)

reuse between instances of S as often as possible.

Building an expanded program with memory reuse on S introduces output depen-
dences between some instances of this statement (there is an output dependence between
two instances v and w in the expanded code if v € W, w € W and ¥ (v) = f¥(w)).
An output dependence between v and w is valid in the expanded program iff the left-hand
side of the expansion correctness criterion is false for v and w, i.e. iff v and w are not
related by 1. Such an output dependence is called a neutral output dependence [LF98].
The aim is to elaborate an expansion vector which gives to Ag an optimized but sufficient
shape to only authorize neutral output dependences on S.

The dimension of Eg is equal to the number of loops surrounding S, written Ng.
Each element Eg[p + 1] is the expansion degree of S at depth p (the depth of the loop
considered), with p € {0,..., Ng — 1} and gives the size of dimension (p+ 1) of Ag. Each
dimension of Ag must have a sufficient size to forbid any non-neutral output dependence.
For a given access v, the set of instances which may not write in the same location as v
can be deduced from the expansion correctness criterion (5.17), call it W, (v). It holds
all instances w such that:

e w is an instance of S: STMT(w) = S;
e ITER(v)[1..p] = ITER(w)[1..p] and ITER(v)[p + 1] < ITER(w)[p + 11;
e And vaw.

Let wy (v) be the lexicographic maximum of W’ (v). For all w in W (v), we have the
following relations:

ITER(v) [1..p] = ITER(w) [1..p] = ITER(w; (v)) [1..p]
ITER(v) [p + 11 < ITER(w) [p + 11 < ITER(w) (v)) [p + 1]

If Eg[p + 11 is equal to (ITER(w} (v))[p + 11 — ITER(v) [p 4 11 4 1) and knowing that
the index function will be Ag[ITER(v) % Eg], we ensure that no non-neutral output
dependence appear between v and any instance of Wps (v). But this property must be

190 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

verified for each instance of S, and Eg should be set, to the maximum of (ITER(w} (v)) [p+
11 —ITER(v)[p+ 1] + 1) for all instances v of S. This proves that the following definition
of Eg forbids any output dependence between instances of S in relation with o<

Es[p + 1] = max {ITER(wf(v)) [p+11 —ITER(v)[p+ 11 +1:v € W A STMT(v) = S}
(5.24)

Computing this for each dimension of Eg ensures that Ag has a sufficient size for the
expansion to preserve the sequential program semantics. This is the purpose of BUILD-
EXPANSION-VECTOR: working is relation (v, W, (v)) and mazv is relation (v, wS(v)).
For a detailed proof, an intuitive introduction and related works, see [LF98, Lef98]. For
the BUILD-EXPANSION-VECTOR algorithm, the simplest optimality concept is defined by
the number of integer-valued components in Eg, i.e. the number of “projected” dimensions,
as proposed by Quilleré and Rajopadhye in [QR99]. But even with this simple definition,
optimality is still an open problem. Since the algorithm proposed by [QR99] has been
proven optimal, we should try to combine both techniques to yield better results, but his
is left for future work.

BUILD-EXPANSION-VECTOR. (S,1x)
S: the current statement

>d: the interference relation
returns expansion vector Eg (a vector of integers or symbolic constants)
Ng «—number of loops surrounding S
for p=1 to Ng
do working «— {(v,w) : (S,v) € W A (S,w) € W
Av[l.p] = w[l..p] Av[l.p+ 1] <w[l.p+1]
A (S, v)>a (S, w)}
maxv — {(v,max._{w: (v,w) € working})}
vector[p + 1] « max. {w—v[p+1]+1: (v,w) € mazv}
return vector

O~ O Ot = W N -

Now, a component of Eg computed by BUILD-EXPANSION-VECTOR can be a symbolic
constant. When this constant can be proven “much smaller” than the associated dimen-
sion of iteration space of S, it is useful for reducing memory usage; but if such a result
cannot be shown with the available compile-time information, the component is set to
+00, meaning that no modulo computation should appear in the generated code (for this
particular dimension). The interpretation of “much smaller” depends on the application:
Lefebvre considered in [Lef98] that only integer constants where allowed in Eg, but we
believe that this requirement is too strong, as shown in the knapsack example (a modulo
K + 1 is needed).

Partial Renaming

Now every array Ag has been built, one can perform an additional storage reduction to
the generated code. Indeed, for two statements S and 7', partial expansion builds two
structures Ag and Ap which can have different shapes. If at the end of the renaming
process S and T are authorized to share the same array, this one would have to be the
rectangular hull of Ag and Ap: Agy. It is clear that these two statements can share the
same data iff this sharing is not contradictory with the expansion correctness criterion

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN 199

for instances of S and 7". One must verify for every instance u of S and v of 7', that the
value produced by u (resp. v) cannot be killed by v (resp. u) before it stops being useful.
Finding the minimal renaming is NP-complete. Our method consists in building a
graph similar to an interference graph as used in the classic register allocation process.
In this graph, each vertex represents a statement of the program. There is an edge
between two vertices S and 7' iff it has been shown that they cannot share the same
data structure in their left-hand sides. Then one applies on this graph a greedy coloring
algorithm. Finally it is clear that vertices that have the same color can have the same
data structure. This partial renaming algorithm is sketched in PARTIAL-RENAMING (the
GREEDY-COLORING algorithm returns a function mapping each statement to a color).

PARTIAL-RENAMING (program,)
program: the program where partial renaming is required

>: the interference relation
returns the program with coalesced data structures
for each array A in program
do interfere «— @
for each pair of statements S and 7" assigning A in program
do if 3(S,v), (T, w) € W : (S, v) > (T, w)
then inter fere « inter fere U {(S,T)}
coloring < GREEDY-COLORING (inter fere)
for each statements S assigning A in program
do left-hand side A[subscript] of S < Acoioring(s) Lsubscript]
return program

© 00 ~J O Ol = W N+

5.3.6 Dealing with Tiled Parallel Programs

The partial expansion algorithm often yields poor results, especially on tiled programs.
The reason is that subscripts of expanded arrays are of the form Ag[subscript % Egl,
and the block regularity of tiled programs does not really fit in this cyclic pattern. Fig-
ure 5.24 shows an example of what we would like to achieve on some block-regular expan-
sions. No cyclic folding would be possible on such an example, since the two outer loops
are parallel.

The design of an improved graph coloring algorithm able to consider both block and
cyclic patterns is still an open problem, because it requires non-affine constraints to be
optimized. We only propose a work-around, which works when some a priori knowledge
on the tile shape is available. The technique consists in dividing each dimension with the
associated tile size. Sometimes, the resulting storage mapping will be compatible with
the required parallel execution, and sometimes not: decision is made with Theorem 5.2.
Expanded array subscripts are thus of the form Ag [i;/shape;, ---, iy/shapen], where
(i1,...,in) is the iteration vector associated with CURINS (defined in Section 5.1), and
where shape; is either 1 or the size of the '" dimension of the tile.

It is possible to improve this technique in combining divisions and modulo operations,
but the expansion scheme is somewhat different: see Section 5.4.6.

4UU uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

int x; int xg[N, NJ;
for (i=0; i<N; i++) for (i=0; i<N; i++)
for (j=0; j<N; j++) { for (j=0; j<N; j++) {
S X = o0 S xgl[i, j1 = --+;
R A R <= xgli, j1 -+
b b
Figure 5.24.a. Original program Figure 5.24.b. Single-assignment program

int xg[N/16, N/16];
parallel for (i=0; i<N; i+=16)
parallel for (j=0; j<N; j+=16)
for (ii=0; 1i<16; ii++)
for (jj=0; jj<i16; jj++) {
S xs[i/16, j/16] = ---;
R oo = xgli/16, j/16]1 ---;
}

Figure 5.24.c. Partially expanded tiled program

5.3.7 Schedule-Independent Storage Mappings

The technique presented in Section 5.3.4 yields the best results, but involves an external
parallelization technique, such as scheduling or tiling. It is well suited to parallelizing
compilers.

A schedule-independent (a.k.a. universal) storage mapping [SCFS98] is useful whenever
no parallel execution scheme is enforced. The aim is to preserve the “portability” of SA
form, at a much lower cost in memory usage.

From the definition of ba—the interference relation—in (5.21), and considering two
parallel execution orders <!, and <2,. whose associated interference relations are p<'

and >, we have:
2
PAR

L C<? — x? Ot

PAR —

<

Now, a schedule-independent storage mapping f'*" must be compatible with any possi-
ble parallel execution <, of the program. Partial order <;,; used in the STORAGE-
MAPPING-OPTIMIZATION algorithm should thus be included in any correct execution
order. By definition of correct execution orders—Theorem 2.2 page 81—this condition is
satisfied by the data-flow execution order, which is the transitive closure of the reaching
definition relation: o ™.

Section 3.1.2 describes a way to compute the transitive closure of o (useful remarks
and experimental study are also presented in Section 5.2.5). In general, no exact result
can be hoped for the data-flow execution order o™, because Presburger arithmetic is not
closed under transitive closure. Hence, we need to compute an approximate relation.
Because the approximation must be included in all possible correct execution order, we
want it to be a sub-order of the exact data-flow order (i.e. the opposite of a conservative
approximation). Such an approximation can be computed with Omega [Pug92].

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN ZU1

5.3.8 Dynamic Restoration of the Data-Flow

Implementing ¢ functions for a partially expanded program is not very different from what
we have seen in Section 5.1.3. Indeed, algorithm LoopP-NESTS-IMPLEMENT-PHI applies
without modification. But doing this, no storage mapping optimization is performed on -
arrays. Now, remember é-arrays are supposed to be in one-to-one mapping with expanded
data structures. Single-assignment ¢-arrays are not necessary to preserve the semantics
of the original program, since the same dependences will be shared by expanded arrays
and &-arrays.

The resulting code generation algorithm is very similar to LOOP-NESTS-IMPLEMENT-
Pui. The first step consists in replacing every reference to ®Ag[z] with its “folded”
counterpart ®Ag [z % Eg]. In a second step, one merge ¢-arrays together using the result
of algorithm PARTIAL-RENAMING.

Eventually, for a given ¢ function, the set of possible reaching definitions should be
reconsidered: values produced by a few instances may now be overwritten, according to the
new storage mapping. As in the motivating example, the ¢ function can even disappear,
see Figure 5.17. A good technique to automatically achieve this is not to perform a new
reaching definition analysis. One should update the available sets of reaching definitions:
a ¢(set) reference should be replaced by

d({v € set : Pw € set 1 v <gq w A ¥ (v) = [(w)}).

Moreover, if coloring is the result of the greedy graph coloring algorithm in PARTIAL-
RENAMING, fP¥*((s,z)) = fPF((s',2")) is equivalent to

coloring(s) = coloring(s') A (x mod E; =2’ mod Ey).

5.3.9 Back to the Examples
First Example

Using the Omega Calculator text-based interface, we describe a step-by-step execution
of the expansion algorithm. We have to code instances as integer-valued vectors. An
instance (s,7) is denoted by vector [i, ---, s], where [---] possibly pads the vector
with zeroes. We number 7', S, R with 1, 2, 3 in this order, so (T,1i), (S,4,j) and (R, 1)
are written [1,0,1], [1,j,2] and [i,0,3], respectively.

Schedule-dependent storage mapping. We first apply the partial expansion algo-
rithm according to the parallel execution order proposed in Figure 5.17.
The result of instancewise reaching definition analysis is written in Omega’s syntax:

S := {[1,0,2]->[1,0,1] : 1<=i<=N}
union {[i,w,2]->[1i,w-1,2] : 1<=i<=N && 1<=w}
union {[i,0,3]->[i,0,1] : 1<=i<=N}
union {[1i,0,3]->[1i,w,2] : 1<=i<=N && 0<=w};

The no-conflict relation is trivial here, since the only data structure is a scalar variable:

NCon := {[i,w,s]->[i’,w’,s’] : 1=23}; # 1=2 means FALSE!

4LU4 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

We consider that the outer loop is parallel. It gives the following execution order:

Par := {[i,w,2] -> [i,w’,2] <=1 <= N && 0 <= w < w’} union
{[i,0,1] -> [i,w’,2] <= i <= N && 0 <= w’} union
{[i,0,1] -> [1,0,3] : 1 <= i <= N} union
{[i,w,2] —> [1,0,3] : 1 <=1 <= N && 0 <= w};

1
1

We have to compute relation > in left-hand side of the expansion correctness criterion,
call it Int.

The "full" relation
Full := {[i,w,s]-—>[1i’,w’,s’] : 1<=s8<=3 && (s=2 || w=w’=0)
&& 1<=1,i’<=N && 0<=w,w’};

The sequential execution order

Lex := {[1,w,2]->[1’,w’,2] : 1<=i<=i’<=N && O0<=w,w’ && (i<i’ || w<w’)}
union {[i,0,1]1->[i’,0,1] : 1<=i<i’<=N}
union {[i,0,3]->[i’,0,3] : 1<=i<i’<=N}
union {[i,0,1]->[i’,w’,2] : 1<=i<=i’<=N && 0<=w’}
union {[i,w,2]->[1?,0,1] : 1<=1i,i’<=N && O<=w && i<i’}
union {[i,0,1]->[i’,0,3] : 1<=i<=1i’<=N}
union {[i,0,3]->[i’,0,1] : 1<=i<i’<=N}
union {[i,w,2]->[i’,0,3] : 1<=i<=i’<=N && O<=w}
union {[i,0,3]->[i’,w’,2] : 1<=i<i’<=N && 0<=w’};

ILex := inverse Lex;

NPar := Full - Par;
INpar := inverse NPar;

(INPar intersection (ILex union NCon))
union (INPar intersection S(NPar intersection Lex));
Int union (inverse Int);

Int

Int
The result is:

Int;

{[i,w,2] => [i?,w’,2] <= 1’ <1 <=N & 1 <= w <= w’} union
{[i,0,2] -> [i’,w’,2] <= 1’ < 1 <= N && 0 <= w’} union
{[i,w,2] -> [i’,w-1,2] : 1 <= i’ < 1 <= N && 1 <= w} union
{i,w,2] —> [i’,w’>,2] : 1 <=1’ <1 <= N & 0 <= w’ <= w-2} union
{[i,0,1] —> [i’,0,1] <= i’ < i <= N} union

{[i,0,2] -> [i’,0,1] <= i’ < i <= N} union

{[1,0,1] => [i’,w’,2] : 1 <=1’ < i <= N && 0 <= w’} union
{[i1,0,3] -> [i’,0,1] : 1 <= i’ < i <= N} union

{[1,0,3] —> [i’,w’,2] : 1 <=1’ <1 <= N & 0 <= w’} union
{[i,w,2] -> [1’,0,3] : 1 <=1 < i’ <= N && 0 <= w} union
{[i,0,11 -> [1’,0,3] : 1 <= 1i < i’ <= N} union

{[i,w,2] => [1’,0,1] : 1 <=1 < i’ <= N && 0 <= w} union
{[i,0,1] -> [i’,0,2] : 1 <=1 < i’ <= N} union

1
1

1
1

J.Jd. o1 UNnAUlL viAarriiNGg Ul L1ivilZaA 1 1\UIN AL

{[i,0,1] —> [i’,0,1] : 1 <=1 < i’ <= N} union

{[i,w,2] > [i’,w’,2] : 1 <=1 < 1’ <= N && 0 <= w <= w’-2} union
{[i,w,2] —> [i’,w+1,2] : 1 <=1 < i’ <= N && 0 <= w} union
{[i,w,2] => [17,0,2] : 1 <=1 < i’ <= N && 0 <= w} union

{[i,w,2] -> [1’,w’,2] : 1 <=1 <1’ <= N & 1 <= w’ <= w}

A quick verification shows that
Int intersection {[i,w,s]->[i,w’,s’]}

is empty, meaning that neither expansion nor renaming must be done inside an iteration
of the outer loop. In particular: Eg[2] should be set to 0. However, computing the set
W¢ (v) (i-e. for the outer loop) yields all accesses w executing after v (for the same 7).
Then Eg[1] should be set to N. We have automatically found the partially expanded
program.

Schedule-independent storage mapping. We now apply the expansion algorithm
according to the "data-flow” execution order. The parallel execution order is defined as
follows:

Par := S+;
Once again
Int intersection {[i,w,s]->[i,w’,s’]}

is empty. The schedule-independent storage mapping is thus the same as the previous,
parallelization-dependent, one.

The resulting program for both techniques is the same as the hand-crafted one in
Figure 5.17.

Second Example

We now consider the knapsack program in Figure 5.18. It is easy to show that a schedule-
independent storage mapping would give no better result that single-assignment form.
More precisely, it is impossible to find any schedule such that a “cyclic folding” —a storage
mapping with subscripts of the form Ag [CURINS 7 Eg]—would be more economical than
single-assignment form.

We are thus looking for a schedule-dependent storage mapping. An efficient paral-
lelization of program KP requires tiling of the iteration space. This can be done using
classical techniques since the loop is perfectly nested. Section 5.3.10 has shown good
performance for 16 x 32 tiles, but we consider 2 x 1 tiles for the sake of simplicity. The
parallel execution order considered is the same as the one presented in Section 5.3.1: tiles
are scheduled in fronts of constant k£ + j, and the inner-tile order is the original sequential
execution one.

The result of instancewise reaching definition analysis is written in Omega’s syntax:

S := {[k,jl->[k-1,j] : 2<=k<=M && 1<=j<=C} union
{[k,jl->[k,j’] : 1<=k<=M && 1<=j’<j<=C && j’-K<=j};

Instances which may not assign the same memory location are defined by the following
relation:

NCon := {[k,jl->[k’,j’] : 1<=k,k’<=M && 1<=j,j’<=C && j'=j’};

LUz uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

Considering the 2 x 1 tiling, it is easy to compute <pug:

InnerTile := {[k,jl->[k’,j] : (exists kq,kr,kr’ : k=2kq+kr
&& k’=2kq+kr’ && 0<=kr<kr’<2)};

InterTile := {[k,jl->[k’,j’] : (exists kq,kr,kq’,kr’ : k=2kq+kr
&& k’=2kq’+kr’ && O<=kr,kr’<2 && kq+j<kq’+j’)};

Par := Lex intersection (InnerTile union InterTile);

We have to compute relation > in left-hand side of the expansion correctness criterion,
call it Int.

The "full" relation
Full := {[k,jl1->[k’,j’] : 1<=k,k’<=M && 1<=j,j’<=C};

The sequential execution order
Lex := Full intersection {[k,jl->[k’,j’] : k<k’ || (k=k’ && j<j’)};

ILex := inverse Lex;

NPar := Full - Par;

INpar := inverse NPar;
Int := (INPar intersection (ILex union NCon))

union (INPar intersection S(NPar intersection Lex));
Int := Int union (inverse Int);

The result is:

Int;

{[x,j] > [k’,j’] : 1 <=k <=k’ <=M && 1 <= j < j’ <= C} union
{[x,j] > [k’,j’] : 1 <=k <k’ <=M&& 1 <= j’ < j <= C} union
{lk,jl -> [k?,j’] : Exists (alpha : 1, 2alpha+2 <= k < k’ < M
& j <= C && 1 <= j’ && k’+2j’ <= 2+2j+2alpha)} union

{lk,jl -> [k?,j’] : Exists (alpha : 1, 2alpha+2 <= k’ < k < M
&% j’ <= C && 1 <= j && k+2j <= 2+2j’+2alpha)} union

{k,j] > [k’,j’] : 1 <= j<j’><=C& 1 <=5k’ <k <= M} union
{[k,j] > [k?,j’] : 1 <=k’ <=k <=M & 1 <= j’> < j <= C}

A quick verification shows that
Int intersection {[k,jl->[k+K+1,j’]1}

is empty, meaning that Eg[1] should be set to K + 1.

5.3.10 Experiments

Partial expansion has been implemented for Cray-Fortran affine loop nests [LF98]. Semi-
automatic storage mapping optimization has also been performed on general loop-nests,
using FADA, Omega, and PIP.

Figure 5.25 summarizes expansion and parallelization results for several programs.
The three affine loop nests examples have already been studied by Lefebvre in [LF98,

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 4ZUdJ

Sequential Parallel Parallel Size Run-time Overhead

Program | Complexity | Size Complexity SA Optimized SA | Optimized
MVProduct O(N?) N242N+1 O(N) 2N24+3N N242N no ¢ no ¢
Cholesky O(N?3) NZ24+N+1 O(N) N34+ N2 2N2+N no ¢ no ¢
Gaussian O(N3) N24+N+1 O(N) N3+N2+N 2N2+2N no ¢ no ¢
Knapsack O(MC) C+2M O(M+C) | MC+C+2M | KC+2C+2M | free ¢ free ¢
Convolution O(NM) 1 O(M) NM+N N cheap ¢ no ¢

Figure 5.25. Time and space optimization

Lef98]: matrix-vector product, Cholesky factorization and Gaussian elimination. A few
experiments have been made on an SGI Origin 2000, using the mp library (but not PCA,
the built-in automatic parallelizer). As one would expect, results for the convolution
program are excellent even for small values of N. Execution times for program KP appear
in Figure 5.26. The first graph compares execution time of the parallel program and of
the original (not expanded) one; the second one shows the speed-up. We got very good
results for medium array sizes,!” both in terms of speed-up and relatively to the original
knapsack program.

140 ,

Séquenﬂa:? — ?Optimal? —
120 Payaliel -e Effective -o-—
16 - O SR S
100
m =3 8
=}
< 3
[J]
()
= & ar
R 2 £ S S, -
0 L L ' L 1 I I | |
1 2 4 8 16 32 1 2 4 8 16 32
Processors Processors

Figure 5.26. Performance results

5.4 Constrained Storage Mapping Optimization

Sections 5.2 and 5.3 addressed two techniques to optimize parallelization via memory
expansion. We show here that combining the two techniques in a more general expansion
framework is possible and brings significant improvements. Optimization is achieved from
two complementary directions:

e Adding constraints to limit memory expansion, like static expansion avoiding ¢-
functions [BCC98|, privatization [TP93, MAL93|, or array static single assignment
[KS98|. All these techniques allow partial removal of memory-based dependences,
but may extract less parallelism than conversion to single assignment form.

"Here C=2048, M=1024 and K=16, with 16 x 32 tiles (scheduled similarly to Figure 5.18).

4U0 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

e Applying storage mapping optimization techniques [CL99]. Some of these are either
schedule-independent [SCFS98] or schedule-dependent [LF98] (yielding better opti-
mizations) whether they require former computation of a parallel execution order
(scheduling, tiling, etc.) or not.

We try here to get the best of both directions and show the benefit of combining them
into a unified framework for memory expansion. The motivation for such a framework is
the following: because of the increased complexity of dealing with irregular codes, and
given the wide range of parameters which can be tuned when parallelizing such programs,
a broad range of expansion techniques have been or will be designed for optimizing one
or a few of these parameters. The two preceding sections are some of the best examples
of this trend. We believe that our constrained expansion framework greatly reduces the
complexity of the optimization problem, in reducing the number of parameters and helping
the automation process.

With the help of a motivating example we introduce the general concepts, before
we formally define correct constrained storage mappings. Then, we present an intra-
procedural algorithm which handles any imperative program and most loop nest paral-
lelization techniques.

5.4.1 Motivation

We study the pseudo-code in Figure 5.27.a. Such nested loops with conditionals appear
in many kernels, but most parallelization techniques fail to generate efficient code for
these programs. Instances of T are denoted by (T, 1, j), instances of S by (S, 1,7, k), and
instances of R by (R, i), for 1 <i,j7 < M and 1 <k < N. (“P(i,j)” is a boolean function
of 7 and j.)

double x7[M+1, M+1], xg[M+1, M+1, N+1];
for (i=1; i<=M; i++) {
for (j=1; j<=M; j++)
if (P(i,5)) {
T xr[i, j1 = 0;

double x;
for (i=1; i<=M; i++) {
for (j=1; j<=M; j++)
if (P(i,7)) {

T x = 0;
1 et for (k=1; k<=N; k++)
for (k=1; k<=N; k++) xsli, j, k] = if (k==1) xr[i, jl;
S X =X -+ . .
) else xgli, j, k=11 ---;
B }
R } - ’ R =¢({<571717N>77<8717M7N>});

3

Figure 5.27.a. Original program Figure 5.27.b. Single assignment form

........................... Figure 5.27. Motivating example

On this example, assume N is positive and predicate “P(i, j)” evaluates to true at least
one time for each iteration of the outer loop. A precise instancewise reaching definition
analysis tells us that the reaching definition of the read access (S, 1,7, k) to x is (T4, 7)
when & = 1 and (S,4,j,k — 1) when & > 1. We only get an approximate result for
definitions that may reach (R,i): those are {(S,i,1,N),...,(S,i,M,N)}. In fact, the

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN LU

value of x may only come from S (since N > 0) for the same i (since 7" executes at least
one time for each iteration of the outer loop), and for k = N.

Obviously, memory-based dependences on x hampers parallelization. Our intent is to
expand scalar x so as to get rid of as many dependences as possible. Figure 5.27.b shows
our program converted to SA form. The unique ¢ function implements a run-time choice
between values produced by (S,i,1,N),...,(S,i, M, N).

SA removed enough dependences to make the two outer loops parallel, see Fig-
ure 5.28.a. Function ¢ is computed at run-time using array @x. [t holds the last value of
j at statement S when x was assigned. This information allows value recovery in R, see
the third method in Section 5.1.4 for details.

But this parallel program is not usable on any architecture. The main reason is
memory usage: variable x has been replaced by a huge three-dimensional array, plus two
smaller arrays. This code is approximately five times slower than the original program on
a single processor (when arrays can be accomodated in memory).

double xp[M+1, M+1], xg[M+1, M+1, N+1];
int Ox[M+1];

parallel for (i=1; i<=M; i++) {
ox[i] = L;
parallel for (j=1; j<=M; j++)
if (P(i,7)) {

T xrli, j1 = 0;
for (k=1; k<=N; k++)
S xsl[i, j, k]l = if (k==1)
xr[i, jl;

else xgli, j, k-1]
0x[i] = max (@x[il, j);
}
R --- =xgl[i, 0x[i], N] ---;
}

Figure 5.28.a. Parallel SA

double x[M+1, M+1];
int Ox[M+1];
parallel for (i=1; i<=M; i++) {
0x[i] = L;
parallel for (j=1; j<=M; j++)
if (P(1,7)) {

T x[i, jl = 0;
for (k=1; k<=N; k++)
S x[i, j1 = x[i, j1 ---;
0x[i] = max (@x[i], j);
}
R cee = X[i, @X[l]] s
}

Figure 5.28.b. Parallel SMO

................ Figure 5.28. Parallelization of the motivating example

This shows the need for a memory usage optimization technique. Storage mapping
optimization (SMO) [CL99, LF98, SCFS98| consists in reducing memory usage as much
as possible as soon as a parallel execution order has been crafted, see Section 5.3. A
single two-dimensional array can be used, while keeping the two outer loops parallel, see
Figure 5.28.b. Run-time computation of function ¢ with array @x seems very cheap at
first glance, but execution of @x[i] = max (@x[il, j) hides synchronizations behind
the computation of the maximum! As usual, it results in a very bad scaling: good
accelerations are obtained for a very small number of processors, then speed-up drops
dramatically because of synchronizations. Figure 5.29 gives execution time and speed-up
for the parallel program, compared to the original—not expanded—one. We used the mp
library on an SGI Origin 2000, with M = 64 and N = 2048, and simple expressions for
“...7 parts.

This bad result shows the need for a finer parallelization scheme. The question is to

4U0 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

140 T T T 4 T T T T
. Sequential —— — : dptimal : :
Lo (. e B _ © : / : ;
120 sMo = U SMO e
i i = I A NS e R i
100 5 2
o 5 A .
E s | .
p 5 i S SO R s
£ 60 & N
= % ~
40 S 0.5 b .
(]
20 <3
i i i i 2 i i i i
0 i i i i 0.25 i i i i
1 2 4 8 16 32 1 2 4 8 16 32
Processors Processors

find a good tradeoff between expansion overhead and parallelism extraction. If we target
widely-used parallel computers, the processor number is likely to be less than 100, but
SA form extracted two parallel loops involving M? processors! The intuition is that we
wasted memory and run-time overhead.

One would prefer a pragmatic expansion scheme, such as mazimal static expansion
(MSE) [BCC98|, or privatization [TP93, MAL93]. Choosing static expansion has the
benefit that no ¢ function is necessary any more: x can be safely expanded along outermost
and innermost loops, but expansion along j is forbidden—it requires a ¢ function thus
violates the static constraint, see Section 5.2. Now, only the outer loop is parallel, and we
get much better scaling, see Figure 5.30. However, on a single processor the program still
runs two times slower than the original one: scalar x—probably promoted to a register in
the original program—has been replaced by a two-dimensional array.

double x[M+1, N+1];
parallel for (i=1; i<=M; i++) {
for (j=1; j<=M; j++)
if (P(i,7)) {

=

c

=2

5]

°

o

. 3
T x[i, 0] = 0; 3
£

Q.

>

e}

(0]

(0]

Q.

o

dptimal
. MSE :o--

for (k=1; k<=N; k++)
S x[i, k] = x[i, k-1] ---;

¥
R - =xli, N --; I P T R B

Maximal static expansion expanded x along the innermost loop, but it was of no
interest regarding parallelism extraction. Combining it with storage mapping optimization
solves the problem, see Figure 5.31. Scaling is excellent and parallelization overhead is

very low: the parallel program runs 31.5 times faster than the original one on 32 processors
(for M = 64 and N = 2048).

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN ARV

This example shows the use of combining constrained expansions—such as privati-
zation and static expansion—with storage mapping optimization techniques, to improve
parallelization of general loop nests (with unrestricted conditionals and array subscripts).
In the following, we present an algorithm useful for automatic parallelization of impera-
tive programs. Although this algorithm cannot itself choose the “best” parallelization, it
aims to simultaneous optimization of expansion and parallelization constraints.

double x[M+1]; _ % T Opimal |
parallel for (i=1; i<=M; i++) { % 16 MSEfSMO &
for (j=1; j<=M; j++) 5 g
if (P(i,7)) {)
T x[i] = 0; T e (e e]
for (k=1; k<=N; k++) = D I V- N U N]
S x[1] = x[i] ---; 3
} g 1 e B R N
R ceeo= x[4] -y ? 05
} 1 2 4 8 16 32

Processors

Figure 5.31. Maximal static expansion combined with storage mapping optimization

5.4.2 Problem Statement

Because our framework is based on maximal static expansion and storage mapping opti-
mization, we inherit their program model and mathematical abstraction: we only consider
nests of loops operating on arrays and abstract these programs with affine relations.

Introducing Constrained Expansion

The motivating example shows the benefits of putting an a priori limit to expansion.
Static expansion [BCC98| is a good example of constrained expansion. What about other
expansion schemes? The goal of constrained expansion is to design pragmatic techniques
that does not expand variables when the incurred overhead is “too high”. To generalize
static expansion, we suppose that some equivalence relation = on writes is available from
previous compilation stages—possibly with user interaction. It is called the constraint
relation. A storage mapping constrained by = is any mapping f&*" such that

Vee E\Vo,w e W: v=wA f(v) = fo(w) = f7*(v) = f7*(w). (5.25)

It is difficult to decide whether to forbid expansion of some variable or not. A short
survey of this problem is presented in Section 5.4.5, along with a discussion about building
constraint relation = from a “syntactical” or “semantical” constraint. Moreover, we leave
for Section 5.4.8 all discussions about picking the right parallel execution order.

Now, the two problems are part of the same two-criteria optimization problem: tun-
ing expansion and parallelism for performance. We do not present here a solution to this
complex problem. The algorithm described in the next sections should be seen as an inte-
grated tool for parallelization, as soon as the “strategy” has been chosen—what expansion

41U uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

constraints, what kind of schedule, tiling, etc. Most of these strategies have already been
shown useful and practical for some programs; our main contribution is their integration
i an automatic optimization process. The summary of our optimization framework is
presented in Figure 5.32.

—71— Single-assignment form —r— Data-flow execution order

A (Expansion constrained by =)

(scheduling, tiling, etc.)

(storage mapping optimization)

—_— (Correct parallel execution order <pAR)

S (Correct optimized expansion f! = (fe, 1/))

—— Original storage mapping f, —>— Sequential program <gpq

Expansion Parallelism

5.4.3 Formal Solution

We first define correct parallelizations then state our optimization problem.

What is a Correct Parallel Execution Order?

Memory expansion partially removes dependences due to memory reuse. Recall from
Section 2.5 that relation 6™" approximates the dependence relation of (<guq, fF*7), the
expanded program with sequential execution order. (6™ equals o when the program is
converted to SA form.) Thanks to Theorem 2.2 page 81, we want any parallel execution
order <p, to satisfy the following condition:

V(e1,71), (22,72) € At (21,71) 6% (22, 72) = 21 <par 22- (5.26)

Computation of approximate dependence relation 6**" from storage mapping f*" is pre-
sented in Section 5.4.8.

What is a Correct Expansion?

Given parallel order <.z, we are looking for correct expansions allowing parallel execu-
tion to preserve original semantics. Our task is to formalize memory reuse constraints
enforced by <p,r. Using interference relation > defined in Section 5.3.2, we have proven
in Theorem 5.2 that the expansion is correct if the following condition holds.

Ve e E,Yo,w e W: ovxw = [(v) # fF(w). (5.27)

e

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 411

Computing Parallel Execution Orders and Expansions

We formalized the parallelization correctness with an expansion constraint (5.25) and two
correctness criteria (5.26) and (5.27). Let us show how solving these equations simulta-
neously yields a suitable parallel program (<psp, f&*7).

Following the lines of Section 5.2.3, we are interested in removing as many dependences
as possible, without violating the expansion constraint. We can prove—like Proposi-
tion 5.1 in Section 5.2.3—that a constrained expansion is maximal—i.e. assigns the largest
number of memory locations while verifying (5.25)—iff

Ve c E.Vo,w e W v=wA fe(v) = fe(w) <= 2 (v) = f7*(w).

Still following Section 5.2.3, we assume that f*" = (f,, v), where v is constant on equiv-
alence classes of =. Indeed, if f.(v) = f.(w), condition f¥*(v) = f&"(w) becomes
equivalent to v(v) = v(w). Because we need to approximate over all possible executions,
we use conflict relation x*, and our maximal constrained expansion criterion becomes

Vo,w e Wiok w: v=w <= v(v)=rv(w) (5.28)

Computing v is done by enumerating equivalence classes of =. For any access v in a class
of k* (instances that “may” hit the same memory location), v(v) can be defined via a
representative of the equivalence class of v for relation =. Computing the lexicographical
minimum is a simple way to find representatives, see Section 5.2.5.

It is time to compute dependences 6" of program (<gpq, fi*F): an access w depends
on v if they hit the same memory location, v executes before w, and at least one is a
write. The full computation is done in Section 5.4.8 and uses (5.28); the result is

VveW,weR: v6"™w & (EIuEW:uaw/\v/iu/\vEu)/\v<SEQw
VoeRiweW: 06w & (EIuEW:uav/\umw/\uEw)/\v<SEQw
Vo,we W: 06w & vkwAv=wAv <gqw (5.29)

We rely on classical algorithms to compute <;,x from 6™ [Fea92, DV97, IT88, CFH95|.

Knowing (<pag, f*F), we could stop and say we have successfully parallelized our
program; but nothing ensures that fI** is an “economical” storage mapping (remember
the motivating example). We must build a new expansion from <p,; that minimizes
memory usage while satisfying (5.27).

For constrained expansion purposes, f&** has been chosen of the form (f,,). This
has some consequences on the expansion correctness criterion: when f.(v) # f.(w), it is
not necessary to set v(v) # v(w) to enforce fF*(v) # fF*F(w). As a consequence, the
v #w clause in (5.22) is not necessary any more (see page 194), and we may rewrite the
expansion correctness criterion thanks to a simplified definition of interference relation .
Let <¢ be the interference relation for constrained expansion:

voow <L (EluER:vau/\w{PARv/\uipARw/\(u<SEQwVw<SEQv))
V. (FueR: wouAv £oan WA U £par 0 A (U <gug 0V 0 <gpq w)). (5.30)

We can rewrite this definition using algebraic operations:

O = ((0’ (R) X W)ﬁ %PAR N >sEqQ) U (%PAR ﬂ(O' © (7<PAR N <SEQ)))
U (0 (R) x W)N Zpar N <sng) U (Zear N(0 0 (Zpar N <sua))). (5.31)

414 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

Theorem 5.3 (correctness of constrained storage mappings) If a storage map-
ping fE** is of the form (f.,v) and the following condition holds, then f¥** is a correct
expansion of f,—i.e. f¥*" allows parallel execution to preserve the program semantics.

Vo,w e Wyvkw: voow = v(v) # v(w). (5.32)

Proving Theorem 5.3 is a straightforward rewriting of the proof of Theorem 5.2 and
the optimality result of Proposition 5.2 also holds: the only difference is that the v £ w
clause has been replaced by vk w in left-hand side of (5.32).

Building a function v satisfying (5.32) is almost what the partial expansion algorithm
presented in Section 5.3.5 has been crafted for. Instead of generating code, one can
redesign this algorithm to compute an equivalence relation x over writes: the coloring
relation. Its only requirement is to assign different colors to interfering writes,

Vo,w € W:ivoow = —(vyw), (5.33)

but we are also interested in minimizing the number of colors. When v y w, it says that
it is correct to have f**(v) = fP*(w). The new graph coloring algorithm is presented in
Section 5.4.6.

By construction of relation y, a function v defined by

Vo,w e Wyvkw: vyxyw <= v(v)=r(w)

satisfies expansion correctness (5.32), but annoyingly, nothing ensures that expansion
constraint (5.25) is still satisfied: for all v, w € W such as v kK w, we have voow = v(v) #
v(w) but not necessarily v = w = v(v) # v(w). Indeed, y defines a minimal expansion
allowing the parallel execution order to preserve the original semantics, but it does not
enforce that this expansion satisfies the constraint.

The first problem is to check the compatibility of = and ¢o. This is ensured by the
following result.!®

Proposition 5.3 For all writes v and w, it is not possible that v = w and v <o w at the
same time.!?

Proof: Suppose vkw, v = w, voow and v <gzq w. The third line of (5.29) shows that
v 6™ w, hence v <ppp w from (5.26). This proves that the v £, w conjunct in second
line of (5.30) does not hold. Now, since v oo w, one may consider a read instance u € R
such that the first line of (5.30) is satisfied: vou A W Lppp ¥ A U Lppap W A U <gpg W.
Exchanging the role of u and v in the second line of (5.29) shows that u 6"** w, hence
u <ppr w from (5.26); this is contradictory with u £p.p w.

Likewise, the case w <y, v yields a contradiction with u £,z v in the second line of
(5.30). This terminates the proof. |

We now have to define v from a new equivalence relation, considering both = and x.
Figure 5.33 shows that = U x is not sufficient: consider three writes u, v and w such that
Je(u) = fe(v) = fe(w), u = v and v x w. (5.28) enforces f¥*F(u) = fE*F(v) since u = wv.
Moreover, to spare memory, we should use coloring relation x and set f*™*"(v) = f2F(w).
Then, no expansion is done and parallel order <,,; may be violated.

18The proof of this strong result is rather technical but helps understanding the role of each conjunct
in equations (5.29), (5.26) and (5.30).
19 A non-optimal definition of relation oo would not yield such a compatibility result.

CVUiNo L uALINIyVE oL UNATLL ViAalr NG U L1VILAA 1 IULN 419

. u X = u oy =

f =
:)1(=)XX w if () x = w if () x =
w Tw = X ""w e = X
u X = .. .
R v if (--) x = v if () y =

- Tuw = X Typ -~ = y
Tuw = X
Original Droeram Wrong expansion when Correct when
- (rg) _ F{)w}g and, moving v to the top: 7y, assigning y in « and v
- (rw)__ (0,0} may read the value and moving u to the
wos v e produced by wu. top.

.......... Figure 5.33. Strange interplay of constraint and coloring relations

To avoid this pitfall, coloring relation must be used with care: one may safely set
B (u) = fP®(v) when for all v’ = w, v' = v: «/ x o' (i.e. v/ and v' share the same color).
We thus build a new relation over writes, built from y and =. It is called the constraint
coloring relation, and is defined by

Vo,we W: vyxy=w AL v =wv (Vo',w' v =vAw =w = vxu'). (5.34)
We can rewrite this definition using algebraic operations:

x= = =U(x\=o(WxW)\x)o=). (5.35)

The good thing is that relation y= is an equivalence: the proof is simple since both
= and y are equivalence relations. Moreover, choosing v(v) = v(w) when v y—=w and
v(v) # v(w) when its not the case ensures that > = (f., v) satisfies both the expansion
constraint and the expansion correctness criterion.

The following result solves the constraint storage mapping optimization problem:?°

Theorem 5.4 Storage mapping f2** of the form (f.,v) such that
Vo,w e Wyok' w: vx=w <= v(v) =r(w) (5.36)

is the minimal storage mapping—i.e. accesses the fewer memory locations—which is
constrained by = and allows the parallel execution order <p,y to preserve the program

semantics, = and y being the only information about permitting two instances to
assign the same memory location.

Proof: From Proposition 5.3, we already know that = and < have an empty inter-
section. Together with the inclusion of y \ = o((W x W) \ x)o = into Y, this proves
the correctness of f7** = (f.,v). The constraint is also enforced by fF** since = C y=.
To prove the optimality result, one first observe that v defines an equivalence relation
of write instances, and second that y= is the largest equivalence relation included in
=Uy. |

Theorem 5.4 gives us an automatic method to minimize memory usage, according to
a parallel execution order and a predefined expansion constraint. Figure 5.34 gives an

20See Section 2.4.4 for a general remark about optimality.

41 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

intuitive presentation of this complex result: starting from the “mazimal constrained
expansion” , we compute a parallel execution order, from which we compute a “minimal
correct expansion”, before combining the result with the constraint to get a “minimal
correct constrained erpansion”.

—71— Single-assignment form —1— Data-flow execution order

= 1 (Constrained expansion)

(scheduling, tiling, etc.)

X=_ | (Correct optimized expansion) —1 (Correct parallel execution order)
(<ran
X —1 //E)rage mapping optimization)
<seq
—— Original storage mapping —— Sequential program
Expansion Parallelism

....... Figure 5.34. How we achieve constrained storage mapping optimization

5.4.4 Algorithm

As a summary of the optimization problem, one may group the formal constraints exposed
in Section 5.4.3 into the system:

(Constraints on f** = (f.,v):

Vo,w e W: vkwAv=w = v(v) =v(w)
Vo,w e W: vkwAvoow = v(v) # v(w)

Constraints on <pug:
V(1,71), (22,72) € At (11,71) 0% (12, 12) = 1 <par 02

\

Figure 5.35 shows the acyclic graph allowing computation of relations and mappings
involved in this system.

The algorithm to solve this system is based on Theorem 5.4. It computes relation
x= with an extension of the partial expansion algorithm presented in Section 5.3.4,
rewritten to handle constrained expansion. Before applying CONSTRAINED-STORAGE-
MAPPING-OPTIMIZATION, we suppose that parallel execution order <;,; has been com-
puted from <y, K, 0, and =, by first computing dependence relation 6**" then ap-
plying some appropriate parallel order computation algorithm (scheduling, tiling, etc.).
Then, this parallel execution order is used to compute the expansion correctness criterion
0. Algorithm CONSTRAINED-STORAGE-MAPPING-OPTIMIZATION reuses COMPUTE-
REPRESENTATIVES and ENUMERATE-REPRESENTATIVES from Section 5.2.5.

As in the last paragraph of Section 5.2.4, one may consider splitting expanded arrays
into renamed data structures to improve performance and reduce memory usage.

Eventually, when the compiler or the user knows that the parallel execution order <p,p
has been produced by a tiling technique, we have already pointed in Section 5.3.6 that

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 41dJ

Program (<guq, fe) Expansion scheme

Program analysli/\ \ Program analysis
|
I

<sEQ I .
| Section 5.4.5

Y

6EXP
¢ Scheduling, etc.

<PAR

NN

&0
+ Coloration

X

Y

X=
+ Enumeration of equivalence classes

v

Y

Il = (fe,v) and code generation for (<psg, f1)

the cyclic graph coloring algorithm is not efficient enough. If the tile shape is known,
one may build a vector of each dimension size, and use it as a “suggestion” for a block-
cyclic storage mapping. This vector of block sizes is used when replacing the call to
CycL1c-COLORING with a call to NEAR-BLOCK-CYCLIC-COLORING in CONSTRAINED-
STORAGE-MAPPING-OPTIMIZATION.

5.4.5 Building Expansion Constraints

Our goal here is not to choose the right constraint suitable to expand a given program,
but this does not mean leaving the user compute relation =!

As shown in Section 5.4.2, enforcing the expansion to be static corresponds to setting
== M*. The constraint is thus built from instancewise reaching definition results (see
Section 5.2).

Another example is privatization, seen as expansion along some surrounding loops,
without renaming. Consider two accesses v and v writing into the same memory location.
After privatization, v and v assign the same location if their iteration vectors coincide on
the components associated with privatized loops:

u = v <= ITER(u)[privatized loops| = ITER(v)[privatized loops],

where ITER(u)[privatized loops| holds counters of privatized loops for instance w.

410 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

CONSTRAINED-STORAGE-MAPPING-OPTIMIZATION (program, ko ,=, <pg)
program: an intermediate representation of the program

the conflict relation
the reaching definition relation, seen as a function
: the expansion constraint
<par: the parallel execution order
returns an intermediate representation of the expanded program

i Q=

1 o0« ((U (R) X W)ﬂ Fear N >smq) U (Frar ﬂ(O' © (%PAR N <SEQ)))
2 U ((0(R) x W)N Zpan N <sug) U (Zoan N(0 0 (Zparn N <suq)))
3 x < CycLIc-COLORING (kN ©0)
4 x= = =U(x\=o((Wx W)\ x)o=)
5 p <« COMPUTE-REPRESENTATIVES (k* N x=)
6 v <« ENUMERATE-REPRESENTATIVES (K*, p)
7 for each array A € program
8 do v, < component-wise maximum of v(u) for all write accesses u to A
9 declaration A[shapel < Agyp [shape, 1,]
10 for each statement S assigning A in program
11 do left-hand side A[subscript] of S « Agyp [subscript, v(CurIns)]
12 for each reference ref to A in program
13 do o/pef — o N (I xref)
14 quast <+ MAKE-QUAST (v 0 0/,.5)
15 map «— CSMO-CONVERT-QUAST (quast, ref)
16 ref < map (CURINS)

17 return program

CSMO-CONVERT-QUAST (quast,ref)
quast: the quast representation of the reaching definition function

ref: the original reference
returns the implementation of quast as a value retrieval code for reference ref
switch
case quast = {1} :
return ref
case quast = {1} :
A «— ARRAY(1)
S «— STtMT(2)
x «— ITER(2)
subscript < original array subscript in ref
return A, [subscript, x]
case quast = {11,19,...}:
return ¢({e1,2,...})
case quast = if predicate then quast, else quasts :
return if predicate CSMO-CONVERT-QUAST (quasty, ref)
else CSMO-CONVERT-QUAST (quasty, ref)

© 00~ O Ol W N+

e
W N = O

Building the constraint for array SSA is even simpler. Instances of the same statement
assigning the same memory location must still do so in the expanded program (only
variable renaming is performed):

u=v <= STMT(u) = STMT(v)

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 411

Now, remember we have defined an extension of reaching definitions, called reaching
definitions of memory locations. This definition can be used to weaken the static expan-
sion constraint: if the aim of constrained expansion is to reduce run-time overhead due
to ¢ functions, then o™ seems more appropriate than o to define the constraint. Indeed,
if LoopP-NESTS-ML-SA is used to convert a program to SA form, we have seen that ¢
functions generated by the classical algorithm have disappeared, see the second method
in Section 5.1.4. It would thus be interesting to replace

MAKE-QUAST (v © 0/c5)
in line 14 of CONSTRAINED-STORAGE-MAPPING-OPTIMIZATION by
MAKE-QUAST (0. ; (u, fe(u)))
and to consider the constraint defined by the transitive closure of relation 20
Vo,we W: vWw <= Jce f(u):v,w € o™ (u,c),

where f is some conservative approximation of f.. Maximal expansion according to
constraint 200" is called weakened static expansion. Eventually, setting == 2J* combines
weakened static expansion with storage mapping optimization.

These practical examples give the insight that building = from the formal definition
of an expansion strategy is not difficult. New expansion strategies should be designed and
expressed as constraints—statement-by-statement, user-defined, knowledge-based, and es-
pecially architecture dependent (number of processors, memory hierarchy, communication
model) constraints.

5.4.6 Graph-Coloring Algorithm

Our graph coloring problem is almost the same as the one studied by Feautrier and
Lefebvre in [LF98], and the core of their solution has been recalled in Section 5.3.5.
However, the formulation is slightly different now: it is no longer mixed-up with code
generation. An easy work-around would be to redesign the output of algorithm STORAGE-
MAPPING-OPTIMIZATION, as proposed in [Coh99b]: let STMT(u) (resp. ITER(u)) be the
statement (resp. iteration vector) associated with access u, and let NEWARRAY(S) be
the name of the new array assigned by S (after partial expansion),

YVo,we W: ovxw PN NEWARRAY(STMT(v)) = NEWARRAY(STMT(w))
A (ITER(v) mod Egryrw) = ITER(w) mod ESTMT(w)).

This solution is simple but not practical. We thus present a full algorithm suitable
for graph defined by affine relations: CycCLIC-COLORING is used on statement instances
for our storage mapping optimization purposes. Since the algorithm is general purpose,
we consider an interference relation between vectors (of the same dimension). Using this
algorithm for statement instances requires a preliminary encoding of statement name
inside the iteration vector, and a padding of short vectors with zeroes. We already use
this technique when formatting instances to the Omega syntax: see Section 5.2.7 for a
practical example.

Remember that STORAGE-MAPPING-OPTIMIZATION was based on two independent
techniques: building of an expansion vector and partial renaming. This decomposi-
tion came from the bounded statement number which allowed efficient greedy coloring

410 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

techniques, and the infinity of iteration vectors which required a specific cyclic coloring.
CycLIic-COLORING proceeds in a very similar way, and the reasoning of Section 5.3.5 and
[LF98, Lef98] is still applicable to prove its correctness. However, the decomposition into
two coloring stages is extended here in considering all finite dimensions of the vectors con-
sidered: if the vectors related with an interference relation have some dimensions whose
components may only take a finite number of values, it is interesting to apply a classical
coloring algorithm to these finite dimensions. We then build an equivalence relation of
vectors that share the same finite dimensions: it is called finite in the CycLiC-COLORING
algorithm (the number of equivalence classes is obviously finite). When vectors encode
statement instances, it is clear that the last dimension is finite, but some examples may
present more finite dimensions, for example with small loops whose bounds are known at
compile time. This extension may thus bring more efficient storage mappings that the
STORAGE-MAPPING-OPTIMIZATION algorithm in Section 5.3.4.

CyCLIC-COLORING (¢0)
<o: the affine interference graph

returns a valid and economical cyclic coloration

1 N « dimension of vectors related with inter fere
2 finite « equivalence relation of vectors sharing the same finite components
3 for each class set in finite
4 doforp=1to N
5 do working «— {(v,w) : v € set A w € set
6 Av[l.p] =w[l.p] Av[l.p+1] < w[l.p+1]
7 A (S, v) oo (S, w)}
8 mazxv — {(v,max. {w: (v,w) € working})}
9 vector[p + 1] «— max., {w —v[p+1]+1: (v,w) € mazv}
10 cyclicge +— v mod vector
11 interfere «— @
12 for each set,set’ in finite
13 do if (Jv € set, v’ € set’ : voor')
14 then inter fere « inter fere U {(set, set')}
15 coloring « GREEDY-COLORING (inter fere)
16 col — @
17 for each set in finite
18 do col « col U (cyclicse, coloring(set))
19 return col

The NEAR-BLOCK-CYCLIC-COLORING algorithm is an optimization ofCycLic-
COLORING: it includes an improvement of the technique to efficiently handle graphs
associated with tiled programs, as hinted in Section 5.3.6. In this particular case, we
consider—as in most tiling techniques—a perfectly nested loop nest. Notice the “/” sym-
bol is used for symbolic integer division. The intuitive idea is that a block-cyclic coloring
is prefered to the cyclic one of the classical algorithm.

The NEAR-BLOCK-CYCLIC-COLORING algorithm should be seen as a first attempt
to compute optimized storage mappings for tiled programs. As shown in Section 5.3.6,

the block-cyclic coloring problem is still open for affine interference relations.

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 41J

NEAR-BLOCK-CYCLIC-COLORING (¢, shape)
<o: a symbolic interference graph

shape: a vector of block sizes suggested by a tiling algorithm
returns a valid and economical block-cyclic coloration
N « number of nested loops
quotient — {(z,z) : v € ZN}
forp=1to N
do quotient’ < quotient o
{(z,9) - y[1] = 2[1],... ,ylp] = x[p]/shape,, ..., y[N] = z[N]}
if (Az : 2 quotient’ o oo o quotient' ™" 2)
then quotient < quotient’
col «— CycLIC-COLORING (quotient o ooo quotient™)
return col o quotient

© 00 ~J O Ol = W N+

5.4.7 Dynamic Restoration of the Data-Flow

As in Section 5.3.8, ®-arrays should be chosen in one-to-one mapping with the expanded
data structures, and arguments of ¢ functions—i.e. sets of possible reaching definitions—
should be updated according to the new storage mapping. The technique is essentially
the same: function f’*" is used to access ¢-arrays, then relation 4§ and function v are
used to recompute the sets of possible reaching definitions:?! a ¢(set) reference should be
replaced by

d({v € set : Fw € set 1 v <guq w A ~(v fw) A v(v) = v(w)}).

Another optimization is based on the shape of &-arrays: since f** = (f.,v), the
memory location written by a possible reaching definition can be deduced from the array
subscript, and the boolean type is now preferred for é-arrays elements. This very simple
optimization reduces both memory usage and run-time overhead. Algorithm CSMO-
IMPLEMENT-PHI summarizes these optimizations.??

As hinted in Section 5.1.4, the goal is now to avoid redundancy in the run-time restora-
tion of the data flow. Our technique extends ideas from the algorithms to efficiently place
¢ functions in the SSA framework [CFR™91, KS98|. However, code generation for the
online computation of ¢ functions is rather different.

As in the SSA framework, ¢ functions should be placed at the joins of the control-flow
graph [CFRT91]: there is a join at some program point when several control-flow paths
merge together. Remember the control-flow graph is not the control automaton defined
in Section 2.3.1, and a program point is an inter-statement location in the program text
[ASUS86]. Of course, textual order <,y is extended to program points.

Joins are efficiently computed with the dominance frontier technique, see [CFR*91] for
details. Indeed, the only “interesting” joins are those located on a path from a write w
to a use whose set of possible reaching definitions is non empty and holds w. If POINTS
is the set of program points, the set of “interesting” joins for an array (or scalar) A is

2lWe use —(v #w) to approximate the relation between writes that must assign the same memory
location.

22For efficiency reasons, an expanded array Agyp is partitioned into several sub-arrays, as proposed in
Section 5.4.4. To correctly handle this partitioning, some simple—but rather technical—modifications
should be made on the algorithm.

44U uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

CSMO-IMPLEMENT-PHI (expanded)
expanded: an intermediate representation of the expanded program

returns an intermediate representation with run-time restoration code
1 for each array Ag[shape]l in expanded
2 do if there are ¢ functions accessing Apxp
3 then declare an array ®A.,, [shape] initialized to false

4 for each read reference refy to Apxy whose expanded form is ¢(set)
) do subg «— array subscript in refy
6 short « {v € set : w € set : v <spq w A ~(v fw) A v(v) = v(w)}
7 for each statement s involved in set
8 do refs < write reference in s
9 subs «— array subscript in ref;

10 if not already done for s

11 then following s insert

12 ®Agyp [subs, v(CurINS,Tefs)] = true

13 P(set) «— Agge [maxc . {1 € short :®Au, [suby, v(1,refs)]=true}]

14 return expanded

denoted by JOINS,, and is formally defined by

Vp € POINTS: p € JOINS, <= dv,uel:
vou A STMT(v) <ixr P <pxr STMT(u) A ARRAY(STMT(u)) = A. (5.37)

For each array (or scalar) A in the original program, the idea is to insert at each join
J in JOINS, a pseudo-assignment statement

P; Al = ALl

which copies the entire structure into itself. Then, the reaching definition relation is
extended to these pseudo-assignment statements and the constraint storage-mapping op-
timization process is performed on the modified program instead of the original one.?
Application of CONSTRAINED-STORAGE-MAPPING-OPTIMIZATION and then CSMO-
IMPLEMENT-PHI (or an optimized version, see Section 5.1.4) generates an expanded pro-
gram whose interesting property is the absence of any redundancy in ¢ functions. Indeed,
the lexicographic maximum of two instances is never computed twice, since it is done as
early as possible in the ¢ function of some pseudo-assignment statement.

However, the expanded program suffers from the overhead induced by array copying,
which was not the case for a direct application of CONSTRAINED-STORAGE-MAPPING-
OPTIMIZATION and CSMO-IMPLEMENT-PHI. Knobe and Sarkar encounter a similar
problem with SSA for arrays [KS98] and propose several optimizations (mostly based
on copy propagation and invariant code motion), but they provide no general method
to remove array copies—it is the very nature of SSA to generate temporary variables.
Nevertheless, there is such a general method, based on the observation that each pseudo-
assignment statement in the expanded program is followed by an ®-array assignation, by
construction of pseudo-assignment statements and the set JOINS,. Consider the following
code generation for a pseudo-assignment statement P:

for (---) { // iterate through the whole array

BExtending the reaching definition relation does not require any other analysis: the sets of possible
reaching definitions for pseudo-assignment accesses can be deduced from the original reaching definition
relation.

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 441

P Ao [subscript] = Age [max (set)];
A [subscript] = true;

3

Statement P does not compute anything, it only gathers possible values coming from
different control paths. The idea is thus to store instances instead of booleans and to use
@-arrays (see Section 5.1.4) instead of &-arrays. An array @Ag, is initialized to L, and
the array copy is bypassed in updating QAgy, [subscript] with the maximum in right-hand
side of P. The previous code fragment can thus safely be replaced by:

for (---) { // iterate through the whole array
QA [subscript] = max (set);

3

This technique to remove spurious array copies is implemented in CSMO-EFFICIENTLY-
IMPLEMENT-PHI: the optimized generation code algorithm for ¢ functions. Remember
that before calling this algorithm, CONSTRAINED-STORAGE-MAPPING-OPTIMIZATION
should be applied on the original program eztended with pseudo-assignment statements.?*

CSMO-EFFICIENTLY-IMPLEMENT-PHI (expanded)
expanded: an intermediate representation of the expanded program

returns an intermediate representation with run-time restoration code

1 for each array Agy[shape]l in expanded
2 do if there are ¢ functions accessing Apxp
3 then declare an array @Ag,, [shape] initialized to L
4 for each read reference refy to Auxe whose expanded form is ¢(set)
) do subg «+— array subscript in ref,
6 short « {v € set : w € set : v <spq W A (v fw) A v(v) = v(w)}
7 for each statement s involved in set
8 do refs «+ write reference in s
9 subg «— array subscript in ref
10 if not already done for s
11 then following s insert
12 ©Agyp [subs, v(CurINs,Tef;)] = CURINS
13 P(set) «— Aexp [maxc, {2 € short :@Au, [suby, v(1,7efy)]1}]
14 for each pseudo-assignment P to Ay, with reference ¢(set)
15 do genmax < code-generation for the lexicographic genmax in set
16 right-hand side of ®-array assignment following p < genmax
17 remove statement P

18 return expanded

Eventually, computing the lexicographic maximum of a set—defined in Presburger
arithmetics—is a well known problem with very efficient parallel implementations [RF94].
but it is easier and sometimes faster to perform an online computation. Let us denote
by NEXTJOIN the next instance of the nearest pseudo-assignment statement following
CurlIns. Computation of the lexicographic maximum in ¢(set) can be performed online
in replacing each assignment of the form

@Agxp [subscript, v(CurIns)] = CurINS;

24Same remark regarding partitioning of expanded arrays as for CSMO-IMPLEMENT-PHI.

LLl uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

by
@Agyp [subscript, v(NExTJOIN)] = max (@Ag, [subscript, v(NExTJoin)], CURINS);

(v is defined for instances of NEXTJOIN: it is a pseudo-assignment to A).
Applying CSMO-EFFICIENTLY-IMPLEMENT-PHI and this transformation to the mo-
tivating example yields the same result as the SA form in Figure 5.28.

5.4.8 Parallelization after Constrained Expansion

This section aims to characterize correct parallel execution orders for a program after
maximal constrained expansion. The benefit memory expansion is to remove spurious
dependences due to memory reuse, but some memory-based dependences may remain after
constrained expansion. We still denote by 65" (resp. 6™*) the exact (resp. approximate)
dependence relation of the expanded program with sequential execution order (<guq, f2*7).
As announced in Section 5.4.3, we now give the full computation details for (5.29).
Dependences left by constrained expansion are, as usual, of three kinds.

1. Output dependences due to writes connected to each other by the constraint = (e.g.
by JR* in the case of MSE).

2. True dependences, from a definition to a read, where the definition either may reach
the read or is related (by =) to a definition that reaches the read.

3. Anti dependences from a read to a definition where the definition, even if it executes
after the read, is related (by =) to a definition that reaches the read.

Formally, we thus define ¢J*" for an execution e € E as follows:

Vee E\Vo,we A, : 06w <~ vow
Vo fe(v) = fe(w) ANv=w A v <ggqg w
Vo fe(v) = feloe (w)) A v = 0e (W) AN v <gpg w
Vo fo(w) = fe(oe (0) Aoe (V) =w A v <gpq w

Then, the following definition of 6"*" is the best pessimistic approximation of 6;*", sup-

posing relation x is the best available approximation of function f, and o is the best
available approximation of function o,:

def
Yo,weA: 06w &S vow

V vEWAV=wW AV <ggg W
\Y% (HUEW:uaw/\vnu/\vEu)/\v<SEQw
\Y, (EluEW:uav/\umw/\uzw)/\U<SEQw

Now, since xk and = are reflexive relations, we observe that (5.38) is already included in
(5.40). We may simplify the definition of §***:

VoeW,weR: v6"™w & (EIUEW: uaw/\vmu/\vzu)/\v<smw
Vo e Robwe W:vd™w & (EIuGW: uav/\umw/\uzw)/\v<smw
Vo,w e Wi 0™ w & vkwAv=wAv <ggqw (5.42)

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN 44D

Eventually, we get an algebraic definition of the dependence relation after maximal con-
strained expansion:

P = (kN=) U (kN=)oo U o lto(kn=). (5.43)

The first term describes output dependences, the second one describes flow dependences
(including reaching definitions), and the third one describes anti-dependences.

Using this definition, Theorem 2.2 page 81 describes correct parallel execution order
<par after maximal constrained expansion. Practical computation of <, is done with
scheduling or tiling techniques, see Section 2.5.2.

As an example, we parallelize the convolution program in Figure 5.6 (page 169). The
constraint is the one of the mazimal static expansion. First, we define the sequential
execution order <gu, within Omega (with conventions defined in Section 5.2.7):

Lex := {[1i,w,2]->[1’,w’,2] : 1<=i<=1i’<=N && 1<=w,w’ && (i<i’ || w<w’)}
union {[1i,0,1]1->[i’,w’,2] : 1<=i<=i’<=N && 1<=w’}
union {[i,w,2]->[1’,0,1] : 1<=1i,i’<=N && 1<=w && i<i’}
union {[1,0,1]1->[1’,0,1] : 1<=i<i’<=N}
union {[i,0,3]1->[i’,0,3] : 1<=i<i’<=N}
union {[i,0,1]1->[1’,0,3] : 1<=i<=i’<=N}
union {[i,0,3]->[i’,0,1] : 1<=i<i’<=N}
union {[i,w,2]->[1’,0,3] : 1<=i<=i’<=N && 1<=w}
union {[i,0,3]->[i’,w’,2] : 1<=1i<i’<=N && 1<=w’};

Second, recall from Section 5.2.7 that all writes are in relation for x (since the data
structure is a scalar variable), and that relation R* is defined by (5.12). We compute 6***
from (5.43):

D := (R union R(S) union S’(R)) intersection Lex;
D;

{[i,w,2] > [i,w’,2] : 1 <=1 <=0N && 1 <= w < w’} union
{[i1,0,1] -> [i,w’,2] : 1 <=1 <= N && 1 <= w’} union
{[i,0,1] -> [i,0,3] <= i <= N} union

{[i,w,2] -> [1i,0,3] <= i <= N && 1 <= w}

1
1

After MSE, it only remains dependences between instances sharing the same value of
i. It makes the outer loop parallel (it was not the case without expansion of scalar x).
The parallel program in maximal static expansion is given in Figure 5.14.b.

5.4.9 Back to the Motivating Example

Using the Omega Calculator text-based interface, we describe a step-by-step execution
of the expansion algorithm. We have to code instances as integer-valued vectors. An
instance (s, i) is denoted by vector [i,..,s], where [..] possibly pads the vector with
zeroes. We number 7', S, R with 1, 2, 3 in this order, so (T, 1, j), (S,1i,j, k) and (R, i) are
written [i,j,0,1], [i,j,k,2] and [i,0,0,3], respectively.

The result of instancewise reaching definition analysis is written in Omega’s syntax:

S := {[1,0,0,3]->[i,j,k,2] : 1<=i,j<=M && 1<=k<=N}

union {[i,j,1,2]1->[i,j,0,1] : 1<=i,j<=M}
union {[i,j,k,2]1->[1,j,k-1,2] : 1<=i,j<=M && 2<=k<=N};

Ll uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

The conflict and no-conflict relations are trivial here, since the only data structure is
a scalar variable: x is the full relation and 4 is the empty one.

Con := {[i,j,k,s]->[i’,j’,k’,s’] : 1<=i,i’,j,j’<=M && 1<=k,k’<=N
&& ((s=1 && k=0) || s=2 || (s=3 && j=k=0))
&& ((s’=1 && k’=0) || s’=2 || (s’=3 && j’=k’=0))};

NCon := {[i,j,k,sl->[1i’,j’,k’,s’] : 1=2}; # 1=2 means FALSE!

As in Section 5.4.1, we choose static expansion as constraint. Relation = is thus
defined as R* in Section 5.2.2:

S’ := inverse S;
R := S(S?);

No transitive closure computation is necessary since R is already transitive. Computing
dependences is done according to (5.43) and relation Con is removed since it always holds:

D := R union R(S) union S’(R);

In this case, a simple solution to computing a parallel execution order is the transitive
closure computation:

Par := D+;

We can now compute relation > in left-hand side of the expansion correctness criterion,
call it Int.

The "full" relation

Full := {[i,j,k,s]->[i’,j’,k’,s8’] : 1<=i,i’,j,j’<=M && 1<=k,k’<=N
&& ((s=1 && k=0) || s=2 || (s=3 && j=k=0))
&& ((s’=1 && k’=0) || s’=2 || (s°=3 && j’=k’=0))};

The sequential execution order
Lex := {[1,j,0,1]1->[i’,]’,0,1] : 1<=i<i’<=M && 1<=j,j’<=M}
union {[i,j,0,11->[1’,j’,k’,2] : 1<=i<=i’<=M && 1<=j,j’<=M
&& 1<=k’<=N}
union {[i,j,k,2]->[1’,j’,0,1] : 1<=i<i’<=M && 1<=j,j’<=M
&& 1<=k<=N}
union {[i,j,k,2]->[1’,j’,k’,2] : 1<=i<=i’<=M && 1<=j,j’<=M
&& 1<=k,k’<=N && (i<i’ || (j<=j’ && (j<j’ |l k<k’)))}
union {[i,j,0,1]1->[i’,0,0,3] : 1<=i<=i’<=M}
union {[i,0,0,3]1->[i’,j’,0,1] : 1<=i<i’<=M}
union {[i,j,k,2]->[1’,0,0,3] : 1<=i<=i’<=M && 1<=j<=M

&& 1<=k<=N}
union {[1,0,0,3]->[i’,j’,k’,2] : 1<=i<i’<=M && 1<=j’<=M
&& 1<=k’<=N}
union {[i,0,0,3]1->[17,0,0,3] : 1<=i<i’<=M};
ILex := inverse Lex;

NPar := Full - Par;
INPar := inverse NPar;

J.a. UULINo L inuAlivivy/ o1nAUly viArriiNGg Ul L1ivilZaA 1L 1IN

Int

(INPar intersection ILex)

union (INPar intersection S(NPar intersection Lex));

Int

The result is:

Int;

{0i,j,k,2] -

[i’,j’,k’,2]

Int union (inverse Int);

1<=j<=j’<=M

& 1 <=k <=k’> <= N && 1 <= i’ < i <= M} union

{[i,j.k,2] ->

[i’,j’,k’,2]

1<=3<j <=M

&& 1 <= k> <k <= N && 1 <= i’ < i <= M} union

{[i,j.k,2] ->

[i”,5,k’,2]

&& 1 <= i’ < i <=M && 1

{li,j,1,2] -

[i>,57,1,2]

& 1 <= i’ < i <=M && 1

{[i,j.,k,2] ->

[i’,j’,k’,2]

& 1 <= i’ < 1 <=M && 1

{0i,j,k,2] -

[i’,j’,k’,2]

&& 1 <= i’ < i <=M && 1

{[i,j,k,2] ->
&g 1 <= i <
{[i,j,k,2] ->
&% 1 <= i <
{[i,j,k,2] —>
& 1 <= j <
{[i,j,k,2] ->
&g 1 <= i <
{[i,j,k,2] —>
& 1 <= j <
{[i,j,k,2] —>

[i’,j,k’,2]

i’ <=M && 1
[i’,37,k’,2]
i’ <=M && 1
[i’,j’,k’,2]
j? <=M &k 1
[i’,37,k’,2]
i’ <=M && 1
[i’,j’,k’?,2]
j? <=M && 1
[i’,j’,k’,2]

& 1 <= i’ < i <=M && 1

{[i,j.k,2] ->

[i’,j’,k’,2]

& 1 <= i’ < 1 <=M && 1

{0i,j,k,2] -

[i’,j,k’,2]

&& 1 <= i’ < i <=M && 1

{[i,j,k,2] ->
& 1 <= j <
{[i,j,k,2] ->
& 1 <= j <
{[i,j,1,2] —>
& 1 <= j <
{[i,j,k,2] ->
&% 1 <= k <
{[i,j,k,2] —>
&% 1 <= k <
{[i,j,k,2] —>

[i’,37,k’,2]
j? <=M && 1
[i’,37,k’,2]
j? <=M &k 1
[i’,j,1,2]

1 <=k’ <k <=N
<= j <= M} union

c N=1

<= j’ < j <= M} union
1 <=k <=k’ <=N

<= j’? < j <= M && 2 <= N} union
1 <=k’ <k<=0N

<= j’ < j <= M} union

k-1, 1 <= k <= k’

<= j <= M && k < N} union
1, k’-1 <= k <= k’

<= j < j’ <= M & k < N} union
1<=1<1i’” =N

<= k’ < k < N} union

:k’-1, 1 <=k <=k’

<= j’ < j <=M && k < N} union

: k-1, 1 <=k’ <=k

<= i’ < i <=M && k’ < N} union
1 <=k <k’” <N

<= j’ < j <= M} union
1, k-1 <=k’ <=k

<= j’ < j <=M && k’ < N} union

k-1, 1 <=k’ <=k

<= j <= M & k’ < N} union
1 <=1<1i’” <=M
<= k < k’> <= N} union
1 <=1<1i’” <=M
<= k’ <= k <= N && 2 <= N} union

cN=1%&1<=1<1’ =N

j’ <= M} union

[i’,j,k’,2]

k? <=N && 1
[i’,j’,k’,2]
k2 <=N && 1
[i’,j’,k’,2]

1 <=1<1i’”> <= N

<= j <= M} union
1<=1<1i’” =N

<= j’ < j <= M} union
1<=1<1i’” =N

&& 1 <= k? <=k <= N && 1 <= j’ <= j <= M}

L4

440 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

A quick verification shows that
Int intersection {[i,j,k,2]->[i,j,k’,2]};
and
Int intersection {[i,j,0,11->[i,j,k’,2] : k’ != 0};

are both empty. It means that (7,i,7) and (S,4,j, k) should share the same color for
all 1 < k < N (R does not perform any write). However, the sets W{ (v), Wy (v) (for
the i loop), Wl (v), W(v) (for the j loop) hold all accesses w executing after v. Then,
different ¢ or j enforces different color for (7,4, j) and (S, 1, j, k). Application of the graph
coloring algorithm thus yields the following definition of the coloring relation:

Col := {[i,j,0,11->[1,j,k,2] : 1<=i,j<=M && 1<=k<=N}
union {[i,j,k,2]->[i,j,k’,2] : 1<=i,j<=M && 1<=k,k’<=N};

We now compute relation y=, thanks to (5.35):
Eco := R union (Col-R(Full-Col(R)));

We choose the representative of each equivalence class as the lexicographic minimum
(relation x always holds and has been removed):

Rho := Eco-Lex(Eco);
The result is:

Rho;

{0i,j,0,11 -> [i,j,0,1] : 1 <= i <= M && 1 <= j <= M} union
{[i,j,k,2] -> [i,j,0,1] : 1 <= i <= M && 1 <= j <= M && 1 <= k <= N}

The labeling scheme is obvious: the last two dimensions are stripped off from Rho.
The resulting function v is thus

V(T,i,4) = (i) and w((S,i,5.k) = (i, j).

Following the lines of CONSTRAINED-STORAGE-MAPPING-OPTIMIZATION, we have
computed the same storage mapping as in Figure 5.31.

5.5 Parallelization of Recursive Programs

The last contribution of this work is about automatic parallelization of recursive programs.
This topic has received little interest from the compilation community, but the situation
is evolving thanks to new powerful multi-threaded environments for efficient execution
of programs with control parallelism. When dealing with shared-memory architectures
and software-emulated shared memory machines, tools like Cilk [MF98] provide a very
suitable programming model for automatic or semi-automatic code generation [RR99].
Now, what programming model should we consider for parallel code generation? First,
it it still an open problem to compute a schedule from a dependence relation described
by a transducer. This is of course a strong argument against data parallelism as a model
of choice for parallelization of recursive programs. Moreover, we have seen in Section 1.2

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio L4

that the control parallel paradigm was well suited to express parallel execution in re-
cursive programs. In fact, this assertion is true when most iterative computations are
implemented with recursive calls, but not when parallelism is located within iterations of
a loop. Since loops can be rewritten as recursive procedure calls, we will stick to control
parallelism in the following.

Notice we have studied powerful expansion techniques for loop nests, but no practical
algorithm for recursive structures has been proposed yet. We thus start with an investiga-
tion of specific aspects of expanding recursive programs and recursive data structures in
Section 5.5.1. Then we present in Section 5.5.2 a simple algorithm for single-assignment
form conversion of any code that fit into our program model: the algorithm can be seen as
a practical realization of ABSTRACT-SA, the abstract algorithm for SA-form conversion
(page 157). Then, a privatization technique for recursive programs is proposed in Sec-
tion 5.5.4; and some practical examples are studied in Section 5.5.5. We also give some
perspectives about extending maximal static expansion or storage mapping optimization
to this larger class of programs.

The rest of this section addresses generation of parallel recursive programs. Sec-
tion 5.5.6 starts with a short state of the art on parallelization techniques for recursive
programs, then motivates the design of a new algorithm based on instancewise data-
flow information. In Section 5.5.7, we present an improvement of the statementwise
algorithm which allows instancewise parallelization of recursive programs: whether some
statements execute in parallel or in sequence can be dependent on the instance of these
statements—but it is still decided at compile-time. This technique is also completely novel
in parallelization of recursive programs.

5.5.1 Problems Specific to Recursive Structures

Before proposing a general solution for SA-form conversion of recursive programs, we
investigate several issues which make the problem more difficult for recursive control and
data structures. Recall that elements in data structures in single-assignment form are
in one-to-one mapping with control words. Thus, the preferred layout of an expanded
data structure is a tree. Expanded data structures can sometimes be implemented with
arrays: it is the case when only loops and simple recursive procedures are involved, and
when loops and recursive calls are not “interleaved” —program Queens is such an example.
But automatic recognition of such programs and effective design of a specific expansion
technique are left for future work. We will thus always consider that expanded data
structures are trees whose edges are labeled by statement names.

Management of Recursive Data-Structures

Compared to arrays, lists and trees seems much less easy to access and traverse: they
are indeed not random access data structures. For example, the abstract algorithm
ABSTRACT-SA (page 157) for SA-form conversion uses the notation Dgy, [CURINS] to
refer the access of an element index by word 2 in a data structure Dyyp. But when Dy, is
a tree, what does it mean? How is it implemented? Is it efficient?

There is a quick answer to all these questions: the tree is traversed from its root using
pointer dereferences along letters in CURINS, the result is of course very costly at run-
time. A more clever analysis shows that CURINS is not a random word: it is the current
control word. Tts “evolution” during program execution is fully predictable: it can be seen

440 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

as a different local variable in each program statement, a new letter being added at each
block entry.

The other problem with recursive data structures is memory allocation. Because they
cannot be allocated at compile-time in general, a very efficient memory management
technique should be used to reduce the run-time overhead. We thus suppose that an
automatic scheme for grouping mallocs or news is implemented, possibly at the C-compiler
or operating system level.

Eventually, both problems can be solved with a simple and efficient code generation
algorithm. The idea is the following: suppose a recursive data structure indexed by
CURINS must be generated by algorithm ABSTRACT-SA; each time a block is entered,
a new element of the data structure is allocated and the pointer to the last element—
stored in a local variable—is dereferenced accordingly. This technique is implemented in
RECURSIVE-PROGRAMS-SA.

About Accuracy and Versatility

When trying to extend maximal static expansion and storage mapping optimization to
recursive programs, two kind of problems immediately arise:

e transductions are not as versatile as affine relations, because some critical algebraic
operations are not decidable and require conservative approximations;

e the results of dependence and reaching definition analyses are not always as precise
as one would expect, because of the lack of expressiveness of rational and one-counter
transductions.

These two points are of course limiting the applicability of “evolved” expansion techniques
which intensively rely on algebraic operations on sets and relations.

In addition, a few critical operations useful to “evolved” expansion techniques are
lacking, e.g., the class of left-synchronous relations is not closed under transitive closure.
Conversely, the problem of enumerating equivalence classes seems rather easy because
the lexicographical selection of a left-synchronous transduction is left-synchronous, see
Section 3.4.3; a remaining problem would be to label the class representatives...

We are not aware of any result about coloring graphs of rational relations, but op-
timality should probably not hoped for, even for recognizable relations. Graph-coloring
algorithms for rational relations would of course be useful for storage mapping optimiza-
tion; but recall from Section 5.3.2 that many algebraic operations are involved in the
expansion correctness criterion, and most of these operations are undecidable for rational
relations.

The last point is that we have not found enough codes that both fit into our program
model and require expansion techniques more “evolved” than single-assignment form or
privatization. But this problem is more with the program model restrictions than with
the applicability of static expansion and storage mapping optimization.

5.5.2 Algorithm

Algorithm RECURSIVE-PROGRAMS-SA is a first attempt to give a counterpart of al-
gorithm LOOP-NESTS-SA for recursive programs. It works together with RECURSIVE-
PROGRAMS-IMPLEMENT-PHI to generate the code for ¢ functions. Expanded data struc-
tures all have the same type, ControlType, which is basically a tree type associated with

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio L4d

the language Lgrg, of control words. It can be implemented using recursive types and
sub-types, or simply with as many pointer fields as statement labels in Y¢rs;,. An addi-
tional field in ControlType stores the element value, it has the same type as original data
structure elements, and it is called value.

RECURSIVE-PROGRAMS-SA (program, o)
program: an intermediate representation of the program

o: a reaching definition relation, seen as a function
returns an intermediate representation of the expanded program
define a tree type called ControlType whose elements are indexed in Lopgy
for each data structure D in program
do define a data structure Dy, of type ControlType
define a global pointer variable D;gcar = &Dgxp
for each procedure in program
do insert a new argument D; o, in the first place
for each call to a procedure p in program
do insert Dygca,=>p = new ControlType () before the call
insert a new argument D ., =>p in the first place
for each non-procedure block b in program
do insert Dy gc,,=>b = new ControlType () at the top of b
define a local pointer variable D gcar. = Digear—>0
for each statement s assigning D in program
do left-hand side of s «— D gca.—>value
15 for each reference ref toD in program
16 do ref «— ¢(o (CURINs, ref))
17 return program

© 00 ~J O Ol = W N+~

— = =
= W N = O

A simple optimization to spare memory consists in removing all “useless” fields from
ControlType, and every pointer update code in the associated program blocks and state-
ments. By useless, we mean statement labels which are not useful to distinguish between
different memory locations, i.e. which cannot be replaced by another label and yield an-
other instance of an assignation statement to the considered data structure. Applied to
program Queens, only three labels can be considered to define the fields of ControlType:
@, a, and b; all other labels are unnecessary to enforce the single-assignment property.
This optimization should of course be applied on a data structure per data structure basis,
to take benefit of the locality of data structure usage in programs.

One should notice that every read reference requires a ¢ function! This is clearly a big
problem for efficient code generation, but detecting exact results and computing reaching
definitions at run-time is not as easy as in the case of loop nests. In fact, a part of the
algorithm is even “abstract”: we have not discussed yet how the argument of the ¢ can be
computed. To simplify the exposition, all these issues are addressed in the next section.

Of course, algorithm RECURSIVE-PROGRAMS-IMPLEMENT-PHI generates the code for
$-structures Dy using the same techniques as the SA-form algorithm. These $-structures
store addresses of memory locations, computed from the original write references in as-
signment statements. Each ¢ function requires a traversal of &-structures to compute the
exact reaching definition at run-time: the maximum is computed recursively from the
root of #Dyyp, and the appropriate element value in Dyyp is returned. This computation of
the maximum can be done in parallel, as usual for reduction operations on trees.

49U uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

RECURSIVE-PROGRAMS-IMPLEMENT-PHI (expanded)
expanded: an intermediate representation of the expanded program

returns an intermediate representation with run-time restoration code
1 for each expanded data structure Dyyp in expanded
2 do if there are ¢ functions accessing Dyyp
3 then define a data structure Dy, of type ControlType

4 define a global pointer variable D gcar = &®Dgysp
5 for each procedure in program
6 do insert a new argument &D; ¢, in the first place
7 for each call to a procedure p in program
8 do insert ®D yc,.—>p = new ControlType () before the call
9 insert a new argument D_y.,.~>p in the first place
10 for each non-procedure block b in program
11 do insert D ,c,.—>b = new ControlType () at the top of b
12 define a local pointer variable D,y = ®Dpgear—>b
13 insert @D, gca—>value = NULL
14 for each read reference refy to Dpxp whose expanded form is ¢(set)
15 do for each statement s involved in set
16 do ref, «write reference in s
17 if not already done for s
18 then following s insert D qc..—>value = &ref;
19 ¢(set) «— { traverse Dy, and ¥D.,, in lexicographic order
using pointers D yca. and @D gc,. respectively
if (&Dygoa->value == &refy) maxloc = Dygeur;

maxloc->value; }
20 return expanded

Two problems remain with ¢ function implementation.

e The tree traversal does not use the set argument of ¢ functions at all!l Indeed,
testing for membership in a rational language is not a constant-time problem, and
it is even not linear in general for algebraic languages. This point is also related
with run-time computation of sets of reaching definitions: it will be discussed in the
next section.

e Several ¢ functions may induce many redundant computations, since the maximum
must everytime be computed on the whole structure, not taking benefit of the
previous results. This problem was solved for loop nests using a complex technique
integrated with constrained storage mapping optimization (see Section 5.4.7), but
no similar technique for recursive programs is available.

5.5.3 Generating Code for Read References

In the last section, all read accesses were implemented with ¢ functions. This solution
ensures correctness of the expanded program, but it is obviously not the most efficient.
If we know that the reaching definition relation o is a partial function (i.e. the result is
exact), we can hope for an efficient run-time computation of its value, as it is the case
for loop nests (with the quast representation). Sadly, this is not as easy in general: some
rational functions cannot be computed for a given input in linear time, and it is even
worse for algebraic functions.

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio 491

The class of sequential functions is interesting for this purpose, since it is decidable
and allows efficient online computation, see Section 3.3.3. Because for every state and
input letter, the output letter and next state are known unamiguously, we can compute
sequential functions together with pointer updates for expanded data structures. This
technique can be easily extended to a sub-sequential function (7, p), in adding the pointer
updates associated with function p (from states to words, see Definition 3.10 page 100).
The class of sub-sequential transductions is decidable in polynomial time among ratio-
nal transductions and functions [BC99b]. This online computation technique is detailed
in algorithm RECURSIVE-PROGRAMS-ONLINE-SA, for sub-sequential reaching defintion
transductions. An extension to online rational transduction would also be possible, with-
out significantly increasing the run-time computation cost, but decidability is not known
for this class.

Dealing with algebraic functions is less enthusiastic, because deciding whether an
algebraic relation is a function is rather unlikely, and it is the same for the class of online
algebraic transductions. But supposing we are lucky enough to know that an algebraic
transduction is online (hence a partial function), we can implement efficiently the run-
time computation, with the same technique as before: the next state, output label, and
stack operation is never ambiguous.

A similar technique can be used to optimize the tree traversal in the implementa-
tion of ¢(set) by algorithm RECURSIVE-PROGRAMS-IMPLEMENT-PHI. Computing a
left-synchronous approximation of the reaching definition transduction (even in the case
of an algebraic transduction), one may use the closure under prefiz-selection (see Sec-
tion 3.4.3 and especially Proposition 3.11) to select the topmost node in Dgy, [set] and
$D.» [set]. These topmost nodes can be used instead of the root of the trees to initiate the
traversal. To be computed at run-time, however, the rational function implementing the
prefix-selection of o (approximate in general) must be sub-sequential. Another approach
consists in computing an approximation of the union of all possible sets of reaching defini-
tions involved in a given ¢ function. The result is rational (resp. algebraic) if the reaching
definition transduction is rational (resp. algebraic), thanks to Nivat’s Theorem 3.6 (resp.
Evey’s Theorem 3.24), and it can be used to restrict the tree traversal to a smaller domain.
Both approaches can be combined to optimize the ¢ function implementation.

To conclude this discussion on run-time computation of reaching definitions, only
the case of sub-sequential functions is very clear: it allows efficient online computation
with algorithm RECURSIVE-PROGRAMS-ONLINE-SA. In all other cases—which includes
all cases of algebraic transductions—we think that no real alternative to ¢ functions is
available. In practice, RECURSIVE-PROGRAMS-ONLINE-SA should be applied to the
largest subset of data structures and read references on which ¢ is sub-sequential, and
RECURSIVE-PROGRAMS-SA is used for the rest of the program. It is perhaps one of
the greatest failures of our framework, since we computed an interesting information—
reaching definitions—which we are unable to use in practice. This is also a discouraging
argument for extending static expansion to recursive programs: what is the use of remov-
ing ¢ functions if the reaching definition information fails to give the value we are looking
for at a lower cost? Finally, ¢ functions may be so expensive to compute that conversion
to single-assignment form should be reconsidered, in favor of other expansion schemes. In
this context, a very interesting alternative is proposed in the next section.

Eventually, looking at our motivating examples in Chapter 4, or thinking about most
practical examples of recursive programs using trees and other pointer-based data struc-
tures, one common observation can be made: there is “not so many” memory reuse—if

494 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

RECURSIVE-PROGRAMS-ONLINE-SA (program, o)
program: an intermediate representation of the program

o: a sub-sequential reaching definition transduction
returns an intermediate representation of the expanded program

1 define a tree type called ControlType whose elements are indexed in Lergy
2 build (7, p) from o where 7 = (Q,{q}, F, E) is sequential and p: Q) — X% ..
3 build a “next state” function « : Q X Yo, — @ from 7
4 build a “next output” function 3 : Q) X Xp, — Xip, from T
5 for each data structure D in program
6 do declare a data structure Dy, of type ControlType
7 define a global pointer variable D, gcpy, = &Dgxe
8 define a global pointer variable DY .,, = &Dgxp
9 define a global “state” variable D, = qo
10 for each procedure in program
11 do insert a new argument Do, in the first place
12 insert a new argument D? ., in the second place
13 insert a new argument Df)oc A 1 the third place
14 for each call to a procedure p in program
15 do insert Dygca,=>p = new ControlType () before the call
16 insert a new argument D y.,,=>p in the first place
17 insert a new argument D7 ., ->3(D%_,,,p) in the second place
18 insert a new argument «(D%cay, p) in the third place
19 for each non-procedure block b in program
20 do insert Dyge,,=>b = new ControlType () at the top of b
21 define a local pointer variable Dygcar = Digear—>0
22 define a local pointer variable D7, = D7 . ->B(D%_,.,b)
23 define a local pointer variable D9 _, = «(D9_, ,b)
24 for each statement s assigning D in program
25 do left-hand side of s «— D gca—>value
26 for each reference ref toD in program

27 do Tef — DZUCAL_>p(DQ

LDCAL) _>Va1ue
28 return program

not zero memory reuse—in these programs! This late but simple discovery is a strong
argument against memory expansion techniques for recursive tree programs: they may
simply be useless. In fact, many tree programs already have a high level of parallelism
and do not need to be expanded. This is very disappointing that the best results of our
single-assignment technique are likely to be very rarely useful in practice. In the case of
recursive array programs, expansion is still a critical issue for parallelisation, like for the
Queens program in Chapter 4.

5.5.4 Privatization of Recursive Programs

We have seen that SA-form conversion is not practical for all recursive programs. It
was already the case for loop nests, but the problem is more obvious here. However,
SA-form is probably not the most suitable method to extract parallelism from recursive
programs. Because of the heavy use of procedures and functions, looking at expansion as a
transformation of global data structures into local ones is much more profitable. This idea

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio 49JJ

happens to be very similar to the principles of array privatization for loop nests, and we
use the same word here. A general privatization technique can be defined for unrestricted
recursive programs, but copy-out code is necessary to update the data structures of the
calling procedure. In a parallel execution, this often requires additional synchronizations,
and the overhead of such an expansion is likely to be very high. Further study is left for
future work.

We will restrict ourselves to the case of reaching definition relations o which satisfy the
VvPA property defined in Section 4.3.4 (for reaching definition analysis purposes): forall
U, v € Lepgy, if vou then v is an ancestor of u, i.e. Jwy, wy € Lerpy, S € Xorpy : U = w1S A
u = wiywy (and v < zx w, which is trivial since v o u). This property is enforced in many
important classes of recursive programs: all divide-and-conquer execution schemes, most
dynamic-programming implementations, many sorting algorithms...

Now, the privatization technique for VPA programs is very simple: every global data
structure (probably an array) to be expanded is made local to each procedure in the
program, and the appropriate copy-in code of the whole structure is inserted at the
beginning point of each procedure. Notice no copy-out is needed since it would involve
reaching definitions from non-ancestor instances. A program privatized in that sense is
generally less expanded than SA-form?®, and the parallelism extracted by privatization
can be found at function calls only: instead of waiting for the function’s return, one may
run each function call in parallel and insert synchronizations only when the result of a
function is needed.

This technique may appear somewhat expensive because of the data structure
copying, but the same optimization that worked for loop nests can be applied here
[TP93, MAL93, Li92]: privatization can be done on a processor basis instead, and copy-
in is only performed when a procedure call is made accross processors. We implemented
this optimization for program Queens, using Cilk’s “fast” and “slow” implementations
of parallel procedures, the “slow” one being called only when a processor “catches” new
work [MF98]. Further discussion about parallelization of expanded programs is delayed
to Section 5.5.6.

5.5.5 Expansion of Recursive Programs: Practical Examples

We applied single-assignment algorithm RECURSIVE-PROGRAMS-SA to program Queens.
The result is shown in Figure 5.36. The ControlType structure has been optimized in
keeping only fields which enforce the single-assignment form property. It is implemented
with a C++ template-like syntax to handle both Dyyp and &-structure ®Dgyp:

struct ControlType<T> {
T value;
ControlType<T> *Q;
ControlType<T> *a;
ControlType<T> *b;

I

Notice that the input automaton for the reaching definition transducer of procedure
Queens is not deterministic. This ruins any hope to efficiently compute reaching defini-
tions at run-time and to remove the ¢ function, despite the fact our analysis technique

25As a technical remark, this is not always true because we copy the whole data structures and not
each element. In some tricky cases, privatization can require more memory than SA-form!

49Jx uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

ControlType<int> Ag = new ControlType<int> ();
ControlType<int> *A ;ca = &Apxp;

ControlType<int*> &A., = new ControlType<int*> ();
ControlType<int*> *®A, o, = &PAkr;

P void Queens (ControlType<int> *A ,c,., ControlType<int*> *®A ,c,.,
int n, int k) {
I if (k < n) {
Ala for (int i=0; i<n; i++) {
Algca=>b = new ControlType<int> ();
$A oca—>b = new ControlType<int*> ();
ControlType<int> *A ;car = Apgcar—>a;
ControlType<int*> *®A ., = A pca—>a;
B/b for (int j=0; j<k; j++) {
Aloca—>b = new ControlType<int> ();
@A, oca—>b = new ControlType<int*> ();
ControlType<int> *A gcar = ApLoca=>b;
ControlType<int*> *®A .., = ®A ;ca—>b;

! ++o = .-+ ¢(o(CurIns,A[j])) --;
}

J if (--) {

s ALUCAL_>Va1ue = .-y

@A jca—>value = &(A [k]);

Aloca—>Q = new ControlType<int> ();

@A oca—>Q = new ControlType<int*> ();
Q Queens (ALOCAL_>Q, <I>AL.DCAL._>Q, n, k+1);

int main () {
F Queens (ALUCAL H ¢'A'LUCAL H n 3 0) ;

computed an exact result! The tree traversal associated with the ¢ function has not been
implemented in Figure 5.36, but it does not require a full tranversal of Dyyp: because
only ancestors are possible reaching definitions (property vPA), the computation of the
maximum can be made on the path from the root (i.e. &Dgyp) to the current element
(i.e. &Dygcar)- This is implemented most efficiently with pointers to the parent node in
ControlType, stopping at the first ancestor in dependence (i.e. the deepest ancestor in
dependence). An effective implementation of statement r is given in Figure 5.37. The

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio 49dJ

maxatloc != NULL test is necessary in general, when | can be a possible reaching defini-
tion, but it could indeed be removed in our case since execution of ancestors is guaranteed.
The appropriate construction of the parent field in ControlType is assumed in the rest
of the code.

ControlType<int> *maxloc = D gcar;

ControlType<int*> *maxatloc = &D gcar;

while (maxatloc != NULL && maxatloc->value != &(A[j1)) {
maxloc = maxloc—>parent;
maxatloc = maxatloc->parent;

= ... maxloc—->value - ;

We also experimented the privatization technique since property VPA is satisfied for
program Queens, see Figure 5.38. An additional optimization has been performed: only
the k first elements of array A are copied, because the others are not used. This result can
be obtained thanks to static analyses of variables [CH78]. Parallelization of the privatized
form is studied in Section 5.5.6.

5.5.6 Statementwise Parallelization

We start with two motivating examples to show what we want to achieve, then discuss the
results of classical static analyses on such examples, before we present our statementwise
parallelization algorithm.

Motivating Example

Our first example is the BST program introduced in Section 2.3. Instancewise dependence
analysis has been performed in Section 4.4 and the result is the rational transducer in
Figure 4.9. Because the two recursive calls involve dereferences of pointer p along two
distinct edges, and because the underlying data structure is a tree, we know that all
accesses performed after the first call are independent from accesses performed after the
second one. Both conditional statements /; and J; can thus be executed asynchronously
(recall that an implicit synchronization is supposed at the return point of procedure BST,
see Section 1.2). The parallel version is given by Figure 5.39.

Our second example maps two functions on a list, one on even elements and the other
on the odd ones, see program Map in Figure 5.40. The result of our analysis for this
program is that there are no dependences between instances of s and ¢. This allows
parallel execution of s and ¢, and their respective function calls to Even and 0dd.

Let us compare the effectiveness of related parallelization techniques with the expected
results on these two motivating examples. Hendren et al. propose in [HHN94| a depen-
dence test for recursive programs with pointer-based data structures. Their technique
does not handle arrays (seen as pointer arithmetics in that case). But since it handles

490 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

P void Queens (int A[n], int n, int k) {
int B[n];
memcpy (B, A, k * sizeof (int));

I if (k < n) {

Ala for (int i=0; i<n; i++) {

B/b for (int j=0; j<k; j++) {
7 cev = oev B[---;

}
J if ¢-2) {
s B[k] = ---;
Q Queens (B, n, k+1);

}

}
}
}

int main () {
F Queens (A, n, 0);

a wide range of recursive data structures, including directed acyclic graphs and doubly-
linked lists, it is more general than our technique in that domain. Because their pointer
aliasing abstraction is based on path expressions which are pairs of regular expressions on
the edge names, the BST program is actually parallelized with their technique. But the Map
procedure is not, since their path expressions cannot capture the evenness of dereference
numbers. The very precise alias analysis by Deutsch [Deu94] would allow parallelization of
the two examples because Kleene stars are there replaced by named counters constrained
with systems of affine equations. More usual flow-sensitive and context-sensitive alias
analyses [LRZ93, EGH94, Ste96] would generally succeed for BST and fail for Map.

Algorithm

We now present an algorithm for statementwise parallelization of recursive programs,
based on the results of our dependence analysis. Let (Xcrry, E) be the dual control flow
graph [ASUS86| of the program—i.e. the dual graph of the control flow graph—whose nodes
are statements instead of program points, and whose edges are program points instead
of statements. We define a synchronization graph (X¢q., E') as a sub-graph of (Xcipy, F)
such that every edge in E' is associated with a synchronization barrier. Supposing that
all sequential compositions of statements are replaced by asynchronous executions, a syn-
chronization graph must ensure that there are enough synchronization points to preserve
the original program semantics. Thanks to Bernstein’s conditions, this is ensured by the
following condition: let S, T € Y., be two program statements, ST € E, and B be the

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio

P void BST (tree *p) {
I spawn if (p—->1!'=NULL) A

L BST (p->1);
I, if (p->value < p->1->value) {
a t = p->value;

p->value = p—>1->value;
p—>1->value = t;
}
}
Ji spawn if (p->r!=NULL) {
BST (p—>r);
if (p->value > p->r->value) {
t = p->value;
p—>value = p->r->value;
p—>r->value = t;
¥
¥

-0 Ry

3

int main () {
F if (root!=NULL) BST (root);

void Map (List #*p, List *q) {

s p—>value = Even (p->value);
t gq->value = 0dd (gq->value);
if () |

Map (p->next->next, g->next->next);

int main () {
Map (list, list->next);

innermost block surrounding both S and 7',

Lo

ST € E' <= Jv,w € Loy, u, 2",y € i, 0,y € (Zerm \ {B})":

v=uBxSt' Nw=uByTy' NvbwVwbv. (5.44)

Indeed, executing uBxzS and uByT1 in parallel induces parallel execution of all their
descendants—coarse grain parallelization—and prefix u should be chosen as long as pos-

490 uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

sible, hence the restriction of x and y to non-B labels. Algorithm STATEMENTWISE-
PARALLELIZATION is based on this equation to generate a parallel program with the
required synchronizations. It is interesting to notice that

vowVwdy <= vkwA (ve€WVweW),

which means that intersection with the lexicographic order is not necessary: conflict re-
lation k can be used instead of the dependence one to describe statements that may
execute in parallel. Because (X%, B(Zcrre \ {B})*SEf s X X B(Zcre, \ {B})* T} 100)
in STATEMENTWISE-PARALLELIZATION is a recognizable language, its intersection with
depend can be computed exactly. These two remarks show that computing the synchro-
nization graph for a recursive program can be done without any approximation in most
cases: the conflict relation is approximate only for multi-dimensional arrays. Notice that
this algorithm does not perform any statement reordering inside a program block; this
issue is left for future work.

STATEMENTWISE-PARALLELIZATION (program, k)
program: an intermediate representation of the program
k: the conflict relation to be satisfied by all parallel execution orders
returns a parallel implementation of program
depend — kN (W xR)U (R x W)U (W x W))
(X¢rae, edges) < dual control flow graph of program
for each ST in edges
do B «+ innermost block surrounding both S and T’
synchro «— depend N (X%, B(Zcre \ {B})* S5

CTRL

X EZTRLB(ECTRL \ {B})*TEZTRL)
if synchro # @
then insert a sync statement at program point associated with ST
insert a spawn keyword before every statement
return program

© 00~ O Ol Wi

—_
e}

Of course, several spawn keywords may be useless or misplaced regarding the paral-
lel programming environment: Cilk only allows asynchronous procedure calls, not asyn-
chronous execution at the statement level, and several environments do not support nested
parallelism. When a spawned statement is immediately followed by a sync, both keywords
can be removed since such a construct is equivalent to sequential execution. In addition,
powerful methods have been crafted to optimize the number of synchronization points
and shrink the critical-path, see for example [Rin97]. Application of STATEMENTWISE-
PARALLELIZATION on the two motivating examples yields the expected results.

Eventually, the parallelization technique proposed by Feautrier in [Fea98] would find
a similar result on both motivating examples, since they are based on an instancewise de-
pendence test (but automatic computation of storage mappings is not handled in [Fea98]).

Statementwise Parallelization via Memory Expansion

Our running example is now program Queens, already studied in the previous chapters.
This program does not hold any parallel loop (the inner-loop looks parallel but memory
dependences on the “---” parts actually hampers parallelization). We will consider the
reaching definition information computed in Section 4.5, i.e. the one-counter transducer in
Figure 4.15, and the privatized Queens program proposed in Section 5.5.5, see Figure 5.38.

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio 49dJ

Recall that reaching definition relation o of program Queens satisfied the VPA property:
this guarantees that the reaching definition relation can be used as dependence information
to decide whether a procedure call can be executed asynchronously or not. The result
is that the recursive call can be made asynchronous, see Figure 5.41. Starting from the
single-assignment form version of program Queens(see Figure 5.36), no more parallelism
would have been extracted but the overhead due to ¢ function computation would make
the parallel program unpractical.

P void Queens (int A[n], int n, int k) {
int B[n];
memcpy (B, A, k * sizeof (int));

I if (k < n) {

Ala for (int i=0; i<n; i++) {

B/b for (int j=0; j<k; j++) {
r oo = e BLGT -e;

}
J if (¢--2) {
S B[k] = ---;
Q spawn Queens (B, n, k+1);

}

}
}
}

int main () {
F Queens (A, n, 0);

The algorithm to achieve this result automatically is simple. First choose between
single-assignment form and privatization; Second, apply algorithm STATEMENTWISE-
PARALLELIZATION using the reaching-definition relation as dependence relation for the ex-
panded program. However, if privatization is chosen, only asynchronous calls to privatized
procedures are provably correct (they preserve the original program semantics), all other
asynchronous and parallel constructs should be removed from the generated code; this is
because some memory-based dependences between instances of non-procedure statements
may remain.

Some experiments have been performed with the Cilk environment [MF98] on a 32
processor SGI Origin 2000. The results in Figure 5.42 corresponds to the execution time
and to the speed-up of the parallel version compared to the sequential non-privatized
one (without Cilk overhead and without array copying). The program was run with
13 queens only, to demonstrates both the efficiency of the Cilk run-time and the low
overhead induced by the expansion of program Queens. Performance is very good up to
16 processors, then it degrades for 32 processors.

47aU uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

T T T 32
Sequential — |

T T
\ : Optimal —
N\ 13-Queens -

6L 1 3:9!4?9’,‘?,,:?%?,? ,,,,,,,,,,,,,,,, A i

Time (s)

Processors Processors

............... Figure 5.42. Parallel resolution of the n-Queens problem

Notice that the privatized Queens program can itself be the matter of a comparison
with other parallelization techniques. It happens that analyses for pointer arithmetics
(seen as a particular implementation of arrays) used by Rugina and Rinard in [RR99]
are unable to parallelize the program. Indeed, the ordering analysis shows that j <
k, which means that for a given iteration of the outer loop, the procedure call can be
executed asynchronously with the next iterations. However, the inter-procedural region
expression analysis computes a fix-point over recursive calls to procedure Queens which
cannot capture the fact that only the k first elements of array A are useful: subsequent
recursive calls are thus supposed to read the whole array A, which is not the case in
practice.

5.5.7 Instancewise Parallelization

This last section investigates parallelization of recursive programs at the statement in-
stance level. This common technique for loop nest parallelization is completely new for
recursive programs. Notice we do not propose a run-time parallelization technique for
recursive programs: we describe at compile-time the sets of run-time instances which can
be executed asynchronously.

Motivating Example

We study the procedure P example in Figure 5.43.a. Pointer arguments p and q are
identical in the first call: they are set to the root of a binary tree structure.

Because p and q may be aliased during the whole execution, any dependence test—
instancewise or not—would return the same result: no parallelism can be found in this
program. However, a more precise observation shows that when the current control word
w contains both a and b or both ¢ and d, p and q may never be aliased again in all
descendants of w (words such as w is a strict prefix). This proves the correctness of the
abstract parallelization of procedure P in Figure 5.43.b (recall that CURINS stands for the
run-time value of the control word). As soon as both branches of the same conditional
have been taken, all recursive calls can be executed asynchronously. This yields in practice
a huge amount of parallelism—an average logarithmic parallel complexity.

Eventually, this motivating example shows the need for an instancewise parallelization
technique for recursive programs. Of course, such a technique requires more information

J.J. rrAnRALa /Al 1IN U nuibOuivol Vi iy alivAvio 4l

P void P (int *p, int *q) { 5 VOI(_i;; ilnt .*p, e xa) A
: p—>v = -+ . z_>V=”.:

oV = a if (---) spawn P (p—>1, q);
ARSI O R Ay el ot
. if () b (p->r ’ D if (CurIns € (a+d)* + (b+¢)*) sync
d else P (p q—>1),' , ‘ if (o) spamn P (p—>1, q);
3 ’ ’ d else spawn P (p, g—>1);

int main () {
F P (tree, tree);
}

int main () {
F P (tree, tree);
}

Figure 5.43.a. Procedure P Figure 5.43.b. Abstract parallelization of P

.................. Figure 5.43. Instancewise parallelization example

than a simple dependence test: a precise description of the instances in dependence is the
key for instancewise parallelism detection.

Algorithm

We now present an algorithm to automatically detect instancewise parallelism in recursive
programs, and to generate the parallel code. This technique naturally extends the previous
statementwise algorithm, but synchronization statements are now guarded by membership
of the current run-time instance to rational subsets of L.z, —the whole language of control
words. The idea consists in guarding every sync statement with the domain of relation
synchro in STATEMENTWISE-PARALLELIZATION. In the case of algebraic relations, this
domain is an algebraic language and membership may not be decided efficiently, we then
compute a rational approximation of the domain before generating the code.

Instancewise parallelization algorithm INSTANCEWISE-PARALLELIZATION is based on
the statementwise version, and it generates a “next state” function alpha : Q X Xorp, — Q
for online computation of the CURINS € set condition. This function is usually imple-
mented with a two-dimensional array, see the example below.?

The result of INSTANCEWISE-PARALLELIZATION applied to procedure P is shown in
Figure 5.44. Tt is basically the same parallelization as the abstract code in Figure 5.43.a,
but the synchronization condition is now fully implemented: the deterministic automata
used for online recognition of (a 4+ d)* + (b+ ¢)* is given in Figure 5.44.b. Transitions are
stored in array next, the first dimension is indexed by state numbers and the second by
statement labels.

Notice the parallelization technique proposed by Feautrier in [Fea98] would also fail
on this example, because it is a dependence fest only: it cannot be used to compute at
compile-time which instances of procedure P allow asynchronous execution of the recursive

26 An extension to deterministic algebraic languages would be rather easy to design, and would some-
times give better results for recursive programs with arrays. Nevertheless, it requires computation of
a deterministic approximation of an algebraic language, which is much more difficult than a rational
approximation.

Ll uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

INSTANCEWISE-PARALLELIZATION (program, k)
program: an intermediate representation of the program

k: the conflict relation to be satisfied by all parallel execution orders
returns a parallel implementation of program

1 depend — kN (W xR)U(R x W)U (W x W))
2 (Zore, edges) < dual control flow graph of program
3 for each ST in edges
4 do B « innermost block surrounding both S and T’
5 synhro «— depend N (X, B(Zcmn — {B})*SEm.
6 X ZETRLB(ECTRL - {B})*TEETRL)
7 set «domain of relation synchro
8 if set # @
9 then if set is algebraic
10 then set <rational approximation of set
11 (Q,{q}, F, E) «determinization of set
12 compute a “next state” function « from (@, {q}, F, E)
13 define a global variable state = ¢q
14 for each procedure in program
15 do insert a new argument state in the first place
16 for each call to a procedure p in program
17 do insert a new argument «(state,p) in the first place
18 for each non-procedure block b in program
19 do define a local variable state = «(state,b)
20 insert “if (state € F') sync” at program point associated with ST’
21 insert a spawn keyword before every statement

22 return program

calls.

5.6 Conclusion

In this chapter, we studied automatic parallelization techniques based on memory ex-
pansion. Expanding data structures is a classical optimization to cut memory-based
dependences. The first problem is to ensure that all reads refer to the correct memory
location, in the generated code. When control and data flow cannot be known at compile-
time, run-time computations have to be done to find the identity of the correct memory
location. The second problem is that converting programs to single-assignment form is
too costly, in terms of memory usage.

When dealing with unrestricted nests of loops and arrays, we have tackled both prob-
lems. We proposed a general method for static expansion based on instancewise reaching
definition information, a robust run-time data-flow restoration scheme, and a versatile
storage mapping optimization technique. Our techniques are either novel or generalize
previous work to unrestricted nests of loops. Eventually, all these techniques were com-
bined in a simultaneous expansion and parallelization framework, based on expansion
constraints. Many algorithms were designed, from single-assignment conversion to con-
strained storage mapping optimization and efficient data-flow restoration. This work
advocates for the use of constrained expansion in parallelizing compilers. The goal is now
to design pragmatic constraints and to propose a real bi-criteria optimization algorithm

J.0. UUIVULUOLUILN 4

int state = 0;
int next[4, 4] = {{1,2,2,1}, {1,3,3,1}, {2,3,3,2}, {3,3,3,3}};

P void P (int state, int *p, int *q) {

S p—>V=...;
t q—>V=...;
a if (--4)

spawn P (next[state, 0], p—>1, q);
b else

spawn P (next[state, 1], p, gq->1);

if (state == 3) sync

c if (--)

spawn P (next[state, 2], p->r, q);
d else

spawn P (next[state, 3], p, q->1);

int main () {
F P (state, tree, tree);
}

Figure 5.44.b. Automaton to decide
Figure 5.44.a. Parallel code synchronization at run-time

.......... Figure 5.44. Automatic instancewise parallelization of procedure P

for expansion overhead and parallelism extraction.

The second part of this chapter discussed parallelization of recursive programs. We
investigated memory expansion of recursive programs, which is a new issue in automatic
parallelization. Single-assignment and privatization were extended to recursive programs,
based on the rational and algebraic transduction results of our analysis for recursive pro-
grams. Difficult problems related with online computation of reaching definitions and
run-time data-flow restoration where investigated. Extending constrained expansion and
storage mapping optimization to recursive programs is left for future work, but several
unresolved issues for simpler expansion schemes must be investigated first. Eventually,
we showed that the rational or algebraic transductions returned by dependence analysis
could be used to extract control parallelism. A simple algorithm to decide whether two
statements can be executed in parallel has been designed and applied to an example—
in combination with the privatization technique. This algorithm achieves better results
than most existing techniques, because it is based on a very precise—and instancewise—
dependence information. These good results motivate further researches in dependence
analysis of recursive programs. Another contribution is the algorithm for instancewise
parallelization: it decides at compile-time whether two instances of a statement can be
executed in parallel or not. Common in the case of nested loops, this technique is com-
pletely new for recursive programs. However, algorithms proposed are still rather prim-
itive: they neither perform statement reordering nor integrate architecture parameters
such as the minimal grain of parallel tasks. Fortunately, these issues have been widely
studied in more classical parallelization frameworks and we hope that the same solutions

47T uliAar 11y J. Al il ZzA L 1\JIN ViIA WVIIZIVIUIVY DA AINOLIULY

would apply to our own framework.

Future work is threefold. First, improve optimization of the generated code and
study—both theoretically and experimentally—the effect of ¢ functions on parallel code
performance. Second, study how comprehensive parallelization techniques can be plugged
into the constrained storage mapping optimization framework: reducing memory usage is
a good thing, but choosing the right parallel execution order is another. Third, proceed in

an extensive study of the applicability of memory expansion techniques for parallelization
of recursive programs.

Chapter 6

Conclusion

4

We now conclude this thesis by a summary of the main results and contributions, followed
by a discussion of perspectives and future works.

6.1 Contributions

Our main contributions can be divided into four closely related parts. The first three parts
address automatic parallelization and are summarized in the next table, and the fourth
one is about rational and algebraic transductions. Not all contributions in this table are
well matured and ready to use results: most of the work about recursive programs should
be seen as a first attempt to extend instancewise analysis and transformation techniques
to a larger class of programs.

AFFINE LOOP NESTS
WITH ARRAYS

UNRESTRICTED LOOP NESTS
WITH ARRAYS

RECURSIVE PROGRAMS
WITH ARRAYS AND TREES

INSTANCEWISE
DEPENDENCE ANALYSIS

[Bra88, Bang8g]
[Fea88a, Feadl, Pug92]

[BCF97, Bar98]
[WP95, Won95)

[Fea98],! Chapter 4,
published in [CC98]?

INSTANCEWISE REACHING
DEFINITION ANALYSIS

[Fea88a, Feadl, Pug92]
[MALO3]

[CBF95, BCF97, Bar9g]
[WP95, Won95)

Chapter 4,
published in [CC98]2

SINGLE-ASSIGNMENT
FORM

[Fea88a, Fea9l]

[Col9g],
Sections 5.1 and 5.4

Section 5.5

MAXIMAL STATIC
EXPANSION

Sections 5.2 and 5.4,
published in [BCC98, Coh99b, BCCO0]

open problem

STORAGE MAPPING
OPTIMIZATION

[LF98, Lef9s]
[SCFS98, CDRV97]

Sections 5.3 and 5.4,
published in [CL99, Coh99b]

open problem

INSTANCEWISE
PARALLELIZATION

[Fea92, CFH95]
[DVI7]

[GC95, CBFY5]
[Col95b]

Section 5.5

Let us now review every contribution in more detail.

!Dependence test for trees only.

2For arrays only.

470 ulriAar 11yiv 0. UUINULUOLIUILY

Control and Data Structures: Beyond the Polyhedral Model In Chapter 2,
we defined a program model and mathematical abstractions for statement instances and
elements of data structures. This framework was used throughout this work to give a
formal presentation of our techniques, especially when dealing with recursive control and
data structures.

Novel instancewise dependence and reaching definition analyses for recursive programs
were proposed in Chapter 4, based on formal language theory, and more precisely on ratio-
nal and algebraic transductions. Using a new definition of induction variables in recursive
programs, we could capture the effect of every run-time instance of a statement in a ratio-
nal or algebraic transduction. Because conditionals and loop bounds are unrestricted, we
could achieve only approximate results in general. A summary of program model restric-
tions and a comparison with other dependence and reaching definition analyses concludes
this work.

However, when designing algorithms for nested loops and arrays—a special case of
the program model—we sticked to the classical iteration vector framework, and we took
benefit of the wealth of algorithms to work with affine relations in Presburger arithmetics.

Memory Expansion: New Techniques to Solve New Problems Parallelization
via memory expansion is an old technique, but the recent extension of instancewise reach-
ing definition analyses to programs with conditionals, complex data structure references—
e.g. non-affine array subscripts—or recursive calls raises new questions. The first one is to
ensure that read accesses in the expanded program refer to the correct memory location;
the second is that existing techniques for memory expansion have to be extended to fit
the new program models.

We addressed both questions in the first four sections of Chapter 5, when dealing with
unrestricted nested loops and arrays. A new technique to reduce the run-time overhead
of memory expansion has been proposed, and another technique to reduce memory usage
has been extended to unrestricted loop nests. Combination of the two techniques has also
been studied. Eventually, we designed several algorithms to optimize run-time restoration
of the flow of data (when it is mandatory). We also discussed experimental results on a
shared-memory architecture.

Memory expansion for recursive programs is a completely new topic, and we discov-
ered that the mathematical abstraction for reaching definitions—rational and algebraic
transductions—may incur a severe run-time overhead. Nevertheless, in a few particular
cases we could design algorithms to generate low-overhead expanded recursive programs.

Parallelism: Extending Classical Techniques Our new dependence analysis tech-
nique has been shown useful to parallelizing recursive programs. [t demonstrates the
applicability of rational and algebraic transductions, thanks to their decidable properties.
The first algorithm we presented is similar to existing parallelization methods for recursive
programs, but it takes benefit of the additional information captured by our analysis to
achieve better results in general. Another algorithm addresses instancewise parallelization
of recursive programs: this new technique is made possible by the instancewise informa-
tion captured in rational and algebraic transductions. A few experimental results were
discussed, combining expansion and parallelization on a well known recursive program.

Formal Language Theory: Several Contributions and Applications The last
results of this work do not belong to compilation. They are mostly found in the third

O.24. @Mivivolr IOl 1V Lxd

section of Chapter 3—presenting useful mathematical abstractions—and some in the fol-
lowing sections. We designed a sub-class of rational transductions with boolean algebra
structure and many other interesting properties. We showed that this class is not de-
cidable among rational transductions, but conservative approximation techniques allow
to take benefit of these properties in the whole class of rational transductions. We also
presented some new results about composition of rational transductions over non-free
monoids and investigated approximation of algebraic transductions.

6.2 Perspectives

Many questions arose along this thesis, and our results motivate more interesting studies
than it solves problems. We start with questions related with recursive programs, then
discuss future work in the polyhedral model.

First of all, looking for the good mathematical abstraction to capture instancewise
properties appeared once more as a critical issue. Rational and algebraic transductions
have been successful in many cases, but the lack of expressiveness has often limited their
applications. Reaching definition analysis has most suffered of these limitations, as well
as integration of conditional expressions and loop bounds in dependence analysis. In this
context, we would like to consider more than one counter in a transducer, and still be able
to decide emptiness and other useful properties. We are thus very interested in the work
by Comon and Jurski [CJ98] on deciding the emptiness for a sub-class of multi-counter
languages, and more generally in studies about system verification based on restricted
classes of Minsky machines, such as timed automata. In addition, using several counters
would allow us to extend one of the major ideas underlying fuzzy array dataflow analysis
[CBF95]: inserting new parameters to capture properties of non-affine expressions and
improve precision.

Moreover, we believe that decidability of the mathematical abstraction is not the most
important thing for program analysis: a few good approximate results are often sufficient.
In particular, we discovered when studying deterministic and left-synchronous relations
that a nice sub-class with good decidability properties cannot be used in our framework
without an efficient approximation method. Improving our techniques to resynchronize
rational transducers and approximate them by left-synchronous ones is thus an important
issue. We also hope that this demonstrates the high mutual interest of cooperations
between theoretical computer scientists and compilation researchers.

Besides these formal aspects, another research issue is to alleviate as many restrictions
as possible in the program model. As hinted before, the best way consists in looking
for a graceful degradation of our results using approximation techniques. This idea has
been investigated in a similar context [CBF95], and studying its applicability to recursive
programs is an interesting future work. Another idea would be to perform induction
variable computation on execution traces (instead of control words)—allowing induction
variable update in every program statement—then to deduce approximate information
on control words; relying on abstract interpretation techniques [CC77] would perhaps be
helpful in proving the correctness of our approximations.

The interest of memory expansion for recursive programs is still unclear, because of
the high overhead to compute reaching definitions at run-time—either exactly or with ¢
functions. Pragmatic techniques similar to privatization—i.e. making a global variable
local to each procedure—seem more promising, but require further study. Working on
an extension of maximal static expansion and storage mapping optimization to recursive

4730 ulriAar 11yiv 0. UUINULUOLIUILY

programs is perhaps too early in this context, but transitive closure, class enumeration
and graph coloring techniques for rational and algebraic transductions are interesting
open problems.

We have not addressed the problem of scheduling recursive programs, because the
way to assign sets of run-time instances to logical execution dates is unknown. Building
a rational transducer from dates to instances is perhaps a good idea, but the problem of
generating the code to enumerate the precise sets of instances becomes rather difficult.
Besides these technical reasons, most parallelism in recursive programs can already been
exploited by control parallel techniques, and the need for a data parallel execution model
is not obvious.

In addition to motivating a large part of our work on recursive programs, techniques
from the polyhedral model cover an important part of this thesis. An major goal through-
out his work was to keep some distance with the mathematical representation of affine
relations. One drawback of this point of view is the increased difficulty to build optimized
algorithms ready to be used in a compiler, but the big advantage is the generality of the
approach. Among the technical problems that should be improved in both maximal static
expansion and storage mapping optimization, the most important are the following.

Many algorithms for run-time restoration of the data flow have been designed, but
practical experience with parallelization of loop nests with unpredictable control flow and
non-affine array subscripts is still very low. Because the SSA framework [CFR91] is
mainly used as an intermediate representation, ¢ functions are rarely implemented in
practice. Generating an efficient data-flow restoration code is thus a rather new problem.

No parallelizing compiler for unrestricted nested loops has been designed. As a result,
a large scale experiment has never been performed. To apply precise analysis and trans-
formation techniques to real programs, an important work in optimizing the techniques
must be done. The main ideas would be code partitioning [Ber93| and extending our tech-
niques to hierarchical dependence graphs, array regions [Cre96| or hierarchical schedules
[CW99.

A parallelizing compiler must be able to tune automatically a large number of pa-
rameters: run-time overhead, parallelism extraction, parallelization grain, copy-in and
copy-out, schedule latency, memory hierarchy, memory usage, placement of computations
and communications... And we have seen that the optimization problem is even more
complex for non-affine loop nests. Our constrained expansion framework allows simulta-
neous optimization of some parameters related with memory expansion, but this is only
a first step.

Zxd

Bibliography

[ABSS]

[AFL95)

[AI91]

[AKS7]

[Ala94]

[Amm92]

[ARO4]

[ASUS6]

[Bak77]

[Bangg)

[Ban92]

[Bar9g)

J.-M. Autebert and L. Boasson. Transductions rationnelles. Masson, Paris,
France, 1988.

A. Aiken, M. Fahndrich, and R. Levien. Better static memory management:
Improving region-based analysis of higher-order languages. In ACM Symp. on
Programming Language Design and Implementation (PLDI’95), pages 174—
185, La Jolla, California, USA, June 1995.

C. Ancourt and F. Irigoin. Scanning polyhedra with DO loop. In $%ACM
Symp. on Principles and Practice of Parallel Programming (PPoPP’91), pages
39-50, June 1991.

J. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Trans. on Programming Languages and Systems, 9(4):491-542,
October 1987.

M. Alabau. Une expression des algorithmes massivement paralléles a struc-

tures de données irrégulieres. PhD thesis, Université Bordeaux I, September
1994.

Z. Ammarguellat. A control-flow normalization algorithm and its complexity.
IEEE Trans. on Software Engineering, 18(3):237-251, March 1992.

R. Andonov and S. Rajopadhye. A sparse knapsack algo-tech-cuit and its
synthesis. In Int. Conf. on Application-Specific Array Processors (ASAP’94),
pages 302-313, San-Francisco, California, USA, August 1994. IEEE Computer
Society Press.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

B. S. Baker. An algorithm for structuring programs. Journal of the ACM,
924:98-120, 1977.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Boston, USA, 1988.

U. Banerjee. Loop Transformations for Restructuring Compilers: The Foun-
dations. Kluwer Academic Publishers, Boston, USA, 1992.

D. Barthou. Array Dataflow Analysis in Presence of Non-affine Constraints.
PhD thesis, Université de Versailles, France, February 1998.
http://www.prism.uvsq.fr/"bad/these.html.

ZJU

[BBAOS)]

[BC99al

[BCY9b]

[BCC9S]

[BCCO00]

[BCF97]

[BDRR94]

[BE95]

[BEFT96]

[Ber79]

[Ber93)

[BHT77]

[Brags]

[CBC93]

DIDLAUGGIVATT LY

H. Bourzoufi, B. Sidi Boulenouar, and R. Andonov. A tiling approach for
solving dynamic programming knapsack problem recurrences. In Rencontres
francophones du parallélisme (RenPar’10), Strasbourg, France, June 1998.

M. P. Béal and O. Carton. Asynchronous sliding block maps. Technical Report
IGM 99-06, Institut Gaspard Monge, Université de Marne-la-Vallée, France,
1999.

M.-P. Béal and O. Carton. Determinization of transducers over finite and infi-
nite words. Technical Report (to appear), Institut Gaspard Monge, Université
de Marne-la-Vallée, France, 1999.

D. Barthou, A. Cohen, and J.-F. Collard. Maximal static expansion. In
25" ACM Symp. on Principles of Programming Languages, pages 98-106, San
Diego, California, USA, January 1998.

D. Barthou, A. Cohen, and J.-F. Collard. Maximal static expansion. Int.
Journal of Parallel Programming, June 2000. To appear.

D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array dataflow analysis.
Journal of Parallel and Distributed Computing, 40:210-226, 1997.

P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling? In
Scalable High-Performance Computing Conf., pages 568-576, Knoxville, Ten-
nessee, USA, May 1994. IEEE Computer Society Press.

W. Blume and R. Eigenmann. Symbolic range propagation. In Proc. of the
9™ Int. Parallel Processing Symp. (IPPS’95), pages 357-363, Santa Barbara,
California, USA, April 1995. IEEE Computer Society Press.

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Pe-
tersen, W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Parallel
programming with Polaris. IEEE Computer, 29(12):78-82, December 1996.

J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart,
Germany, 1979.

J.-Y. Berthou. Contruction d’un paralléliseur de logiciels scientifiques de
grande taille guidée par des mesures de performances. PhD thesis, Univer-
sité Pierre et Marie Curie (Paris VI), France, October 1993.

M. Blattner and T. Head. Single valued a-transducers. Journal of Comput.
and System Sci., 15:310-327, 1977.

T. Brandes. The importance of direct dependences for automatic paralleliza-
tion. In ACM Int. Conf. on Supercomputing, pages 407-417, St. Malo, France,
July 1988.

J.-D. Choi, M. Burke, and P. Carlini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In 20" ACM Symp. on
Principles of Programming Languages (PoPL’93), pages 232-245, Charleston,
South Carolina, USA, January 1993.

DIpDLIVanArily 491

[CBF95]

[cCT7]

[CCO8]

[CCG6]

[CDRV97]

[CFHO5]

[CFR*91]

(CFRY5|

[CHTS]

[Cho77]

[C196]

[CJ98]

[CK98]

J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis.
In ACM Symp. on Principles and Practice of Parallel Programming, pages
92-102, Santa Barbara, California, USA, July 1995.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction of approximation of fixpoints. In
4 ACM Symp. on Principles of Programming Languages, pages 238-252, Los
Angeles, California, USA, January 1977.

A. Cohen and J.-F. Collard. Instance-wise reaching definition analysis for
recursive programs using context-free transductions. In Parallel Architectures
and Compilation Techniques, pages 332-340, Paris, France, October 1998.
IEEE Computer Society Press. (IEEE award for the best student paper).

A. Cohen, J.-F. Collard, and M. Griebl. Data-flow analysis of recursive struc-
tures. In Proc. of the 6" Workshop on Compilers for Parallel Computers,
pages 181-192, Aachen, Germany, December 1996.

P.-Y. Calland, A. Darte, Y. Robert, and Frédéric Vivien. Plugging anti and
output dependence removal techniques into loop parallelization algorithms.
Parallel Computing, 23(1-2):251-266, 1997.

L. Carter, J. Ferrante, and S. Flynn Hummel. Efficient multiprocessor paral-
lelism via hierarchical tiling. In SIAM Conference on Parallel Processing for
Scientific Computing, February 1995.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Ef-
ficiently computing static single assignment form and the control dependence
graph. ACM Trans. on Programming Languages and Systems, 13(4):451-490,
October 1991.

J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO loops from
systems of affine constraints. Parallel Processing Letters, 5(3), 1995.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5"ACM Symp. on Principles of Programming
Languages, pages 84-96, January 1978.

C. Choffrut. Une caractérisation des fonctions séquentielles et des fonctions

sous-séquentielles en tant que relations rationnelles. Theoretical Computer
Science, 5:325-338, 1977.

B. Creusillet and F. Irigoin. Interprocedural array region analyses. Int. Jour-
nal of Parallel Programming, 24(6):513-546, December 1996.

H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
presburger arithmetic. In A. Hu and M. Vardi, editors, Proc. Computer
Aided Verification, volume 1427 of LNCS, pages 268-279, Vancouver, Britich
Columbia, Canada, 1998. Springer-Verlag.

J.-F. Collard and J. Knoop. A comparative study of reaching definitions anal-
yses. Technical Report 1998/22, Laboratoire PRiSM, Université de Versailles,
France, 1998.

494

[CL99]

[Cla96]

[Coh97]

[Coh99a)

[Coh99b)|

[Col94a]

[Col94b]

[Col95al

[Col95b]

[Col98]

[Cou8l1]
[Cre96]

[CW99]

DIDLAUGGIVATT LY

A. Cohen and V. Lefebvre. Optimization of storage mappings for parallel
programs. In EuroPar’99, number 1685 in LNCS, pages 375-382, Toulouse,
France, September 1999. Springer-Verlag.

P. Clauss. Counting solutions to linear and nonlinear constraints through
Ehrhart polynomials: Applications to analyze and transform scientific pro-
grams. In ACM Int. Conf. on Supercomputing, pages 278-295. ACM Press,
1996.

A. Cohen. Analyse de flot de données de programmes récursifs a l'aide de
grammaires hors-contexte. In Rencontres francophones du parallélisme (Ren-
Par’9), Lausanne, Suisse, May 1997. (IEEE award for the best french-speaking
student paper).

A. Cohen. Analyse de flot de données pour programmes récursifs a 1’aide
de langages algébriques. Technique et science informatiques, 18(3):323-343,
1999.

A. Cohen. Parallelization via constrained storage mapping optimization. In
Int. Symp. on High Performance Computing (ISHPC’99), number 1615 in
LNCS, pages 83-94, Kyoto, Japan, May 1999. Springer-Verlag.

J.-F. Collard. Code generation in automatic parallelizers. In C. Girault,
editor, Proc. of the Int. Conf. on Applications in Parallel and Distributed
Computing, IFIP W.G. 10.3, pages 185-194, Caracas, Venezuela, April 1994.
North Holland.

J.-F. Collard. Space-time transformation of while-loops using speculative
execution. In Scalable High Performance Computing Conf., pages 429-436,
Knoxville, Tennessee, USA, May 1994. IEEE Computer Society Press.

J.-F. Collard. Automatic parallelization of while-loops using speculative exe-
cution. Int. Journal of Parallel Programming, 23(2):191-219, April 1995.

J.-F. Collard. Parallélisation automatique des programmes a controle dy-
namique. PhD thesis, Université Pierre et Marie Curie (Paris VI), France,
January 1995.

http://www.prism.uvsq.fr/~jfc/memoire.ps.

J.-F. Collard. The advantages of reaching definition analyses in Array (S)SA.
In 11" Workshop on Languages and Compilers for Parallel Computing, num-
ber 1656 in LNCS, pages 338-352, Chapel Hill, North Carolina, USA, August
1998. Springer-Verlag.

P. Cousot. Semantic foundations of programs analysis. Prentice-Hall, 1981.

B. Creusillet. Array Region Analyses and Applications. PhD thesis, Ecole
Nationale Supérieure des Mines de Paris (ENSMP), Paris, France, December
1996.

J. B. Crop and D. K. Wilde. Scheduling structured systems. In FuroPar’99,
LNCS, pages 409-412, Toulouse, France, September 1999. Springer-Verlag.

DIpDLIVanArily 49JJ

[Deu9o]

[Deu92]

[Deu94]

[DGS93]

[DV97]

[EGHO4|

Eil74]

[EM65]

[FB9S]

[Fea88a]

[Fea88b]

[Fea91]

[Fea92]

[Fea9s|

A. Deutsch. On determining lifetime and aliasing of dynamically allocated
data in higher-order functional specifications. In 17 ACM Symp. on Prin-
ciples of Programming Languages (PoPL’90), pages 157-168, San Francisco,
California, USA, January 1990.

A. Deutsch. Operational Models of Programming Languages and Representa-
tions of Relations on Regular Languages with Application to the Static Deter-
mination of Dynamic Aliasing Properties of Data. PhD thesis, Ecole Poly-
technique, France, April 1992.

A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
limiting. In ACM Symp. on Programming Language Design and Implementa-
tion (PLDI’94), pages 230-241, Orlando, Florida, USA, June 1994.

E. Duesterwald, R. Gupta, and M.-L. Soffa. A practical data flow framework
for array reference analysis and its use in optimization. In ACM Symp. on

Programming Language Design and Implementation (PLDI’93), pages 6877,
Albuquerque, New Mexico, USA, jun 1993.

A. Darte and F. Vivien. Optimal fine and medium grain parallelism detection
in polyhedral reduced dependence graphs. Int. Journal of Parallel Program-
ming, 25(6):447-496, December 1997.

M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. In ACM Symp. on
Programming Language Design and Implementation (PLDI’9j), pages 242—
256, June 1994.

S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
1974.

C. C. Elgot and J. E. Mezei. On relations defined by generalized finite au-
tomata. IBM Journal of Research and Development, pages 45-68, 1965.

P. Feautrier and P. Boulet. Scanning polyhedra without do-loops. In Parallel
Architectures and Compilation Techniques (PACT’98), Paris, France, October
1998. IEEE Computer Society Press.

P. Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing, pages
429-441, St. Malo, France, July 1988.

P. Feautrier. Parametric integer programming. RAIRO Recherche Opéra-
tionnelle, 22:243-268, September 1988.

P. Feautrier. Dataflow analysis of scalar and array references. Int. Journal of
Parallel Programming, 20(1):23-53, February 1991.

P. Feautrier. Some efficient solution to the affine scheduling problem, part II,
multidimensional time. Int. Journal of Parallel Programming, 21(6):389-420,
December 1992. See also Part I, One Dimensional Time, 21(5):315-348.

P. Feautrier. A parallelization framework for recursive tree programs. In
EuroPar’98, LNCS, Southampton, UK, September 1998. Springer-Verlag.

4Jx

[FM97]

[FS93]

[GCY3]

[GH95]

[GH96]

[GLYT]

[Gup9g|

[H*96]

[Har89)

[HBCM94]

[HHN92]

[HHNO4]|

[HPY6]

DIDLAUGGIVATT LY

P. Fradet and D. Le Metayer. Shape types. In 24" ACM Symp. on Principles
of Programming Languages (PoPL’97), pages 27-39, Paris, France, January
1997.

C. Frougny and J. Sakarovitch. Synchronized relations of finite words. Theo-
retical Computer Science, 108:45—-82, 1993.

M. Griebl and J.-F. Collard. Generation of synchronous code for automatic
parallelization of while loops. In S. Haridi, K. Ali, and P. Magnusson, editors,
EuroPar’95, volume 966 of LNCS, pages 315-326. Springer-Verlag, 1995.

R. Ghiya and L. J. Hendren. Connection analysis: A practical interproce-
dural heap analysis for c. In 8" Workshop on Languages and Compilers for

Parallel Computing, number 1033 in LNCS, Columbus, Ohio, USA, August
1995. Springer-Verlag.

R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A shape
analysis for heap-directed pointers in C. In 23%ACM Symp. on Principles
of Programming Languages (PoPL’96), pages 1-15, St. Petersburg Beach,
Florida, USA, January 1996.

M. Griebl and C. Lengauer. The loop parallelizer LooPo — announcement.
LNCS, 1239:603-607, 1997.

R. Gupta. A code motion framework for global instruction scheduling. In Int.
Conf on Compiler Construction (CC’98), pages 219-233, 1998.

M. Hall et al. Maximizing multiprocessor performance with the SUIF com-
piler. IEEE Computer, 29(12):84-89, December 1996.

W. L. Harrison. The interprocedural analysis and automatic parallelisation
of scheme programs. Lisp and Symbolic Computation, 2(3):176-396, October
1989.

M. Hind, M. Burke, P. Carini, and S. Midkiff. An empirical study of precise
interprocedural array analysis. Scientific Programming, 3(3):255-271, 1994.

L. J. Hendren, J. Hummel, , and A. Nicolau. Abstractions for recursive pointer
data structures: improving the analysis and transformation of imperative pro-
grams. In ACM Symp. on Programming Language Design and Implementation
(PLDI’92), pages 249-260, San Francisco, Calfifornia, USA, June 1992.

J. Hummel, L. J. Hendren, and A. Nicolau. A general data dependence test
for dynamic, pointer-based data structures. In ACM Symp. on Programming
Language Design and Implementation (PLDI’94), pages 218-229, Orlando,
Florida, USA, June 1994.

M. Haghighat and C. Polychronopoulos. Symbolic analysis for parallelizing
compilers. ACM Trans. on Programming Languages and Systems, 18(4):477—
518, July 1996.

DIpDLIVanArily 49JdJ

[HTZ+97

[HU79]

[LJT90]

[IT88)]

[IM82]

[Kar92]

[KPRS96]

[KRS94]

[KS92]

[KS93]

[KS98]

[KSV96]

KUT77]

[Lefo8]

L. J. Hendren, X. Tang, Y. Zhu, S. Ghobrial, G. R. Gao, X. Xue, H. Cai,
and P. Ouellet. Compiling C for the EARTH multithreaded architecture. Int.
Journal of Parallel Programming, 25(4):305-338, August 1997.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

F. Irigoin, P. Jouvelot, and R. Triolet. Overview of the PIPS project. In
P. Feautrier and F. Irigoin, editors, 2"%Int. Workshop on Compilers for Par-
allel Computers, pages 199-212, Paris, December 1990.

F. Irigoin and R. Triolet. Supernode partitioning. In 15ACM Symp. on
Principles of Programming Languages (PoPL’88), pages 319-328, San Diego,
California, USA, January 1988.

N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural data
flow analysis and programs with recursive data structures. ACM Press, 1982.

G. Karner. Nivat’s theorem for pushdown transducers. Theoretical Computer
Science, 97:245-262, 1992.

W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of infinite
graphs and its applications. Int. Journal of Parallel Programming, 24(6):579—
998, 1996.

J. Knoop, O. Riithing, and B. Steffen. Optimal code motion: Theory and prac-
tice. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1117-1155, 1994.

J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Proc.
of the 4™Int. Conference on Compiler Construction (CC’92), number 641 in
LNCS, Paderborn, Germany, 1992.

N. Klarlund and M. I. Schwartzbach. Graph types. In 20"ACM Symp. on
Principles of Programming Languages (PoPL’93), pages 196-205, Charleston,
South Carolina, USA, January 1993.

K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In
25" ACM Symp. on Principles of Programming Languages, pages 107-120,
San Diego, California, USA, January 1998.

J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and
optimal bitvector analyses for parallel programs. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 18(3):268-299, May 1996.

J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:309-317, 1977.

V. Lefebvre. Restructuration automatique des variables d’un programme en
vue de sa parallélisation. PhD thesis, Université de Versailles, France, Febru-
ary 1998.

http://www.prism.uvsq.fr/"vil/these.ps.gz.

4910

[LFOg]

[LHS3]

Li92]

[LL7]

[LRZ93]

[MAL93)

[Mas93|

[MF98]

[Mic95]

[Min67]

[MP94]

[MT90]

[Muc97]

DIDLAUGGIVATT LY

V. Lefebvre and P. Feautrier. Automatic storage management for parallel
programs. Parallel Computing, 24(3):649-671, 1998.

J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure ac-

cesses. In ACM Symp. on Programming Language Design and Implementation
(PLDI’88), pages 21-34, 1988.

Z. Li. Array privatization for parallel execution of loops. In ACM Int. Conf.
on Supercomputing, pages 313-322, Washington, District of Columbia, USA,
July 1992. ACM Press.

A. W. Lim and M. S. Lam. Communication-free parallelization via affine
transformations. In 2{"ACM Symp. on Principles of Programming Lan-
guages, pages 201-214, Paris, France, jan 1997.

W. A. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side
effect analysis with pointer aliasing. In ACM Symp. on Programming Lan-
guage Design and Implementation (PLDI’93), pages 56-67, Albuquerque, New
Mexico, USA, June 1993.

D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataflow analysis
and its use in array privatization. In 20" ACM Symp. on Principles of Pro-
gramming Languages, pages 2-15, Charleston, South Carolina, USA, January
1993.

F. Masdupuy. Semantic analysis of interval congruences. In D. Bgrner,
M. Broy, and I. V. Pottosin, editors, Int. Conf. on Formal Methods in
Programming and their Applications, volume 735 of LNCS, pages 142-155,
Academgorodok, Novosibirsk, Russia, June 1993. Springer-Verlag.

K. H. Randall M. Frigo, C. E. Leiserson. The implementation of the Cilk-5
multithreaded language. In ACM Symp. on Programming Language Design
and Implementation (PLDI’98), pages 212-223, Montreal, Canada, June 1998.

O. Michel. Design and implementation of 81/2, a declarative data-parallel
language. Technical Report 1012, Laboratoire de Recherche en Informatique,
Université Paris Sud (Paris XI), France, 1995. Contains paper Group-based
Fields with J.-L. Giavitto and Jean-Paul Sansonnet, Proc. of the Parallel
Symbolic Languages and Systems, October 1995.

M. Minsky. Computation, Finite and Infinite Machines. Prentice-Hall, 1967.

V. Maslov and W. Pugh. Simplifying polynomial constraints over integers to
make dependence analysis more precise. Technical Report CS-TR-3109.1, U.
of Maryland, February 1994.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementation. John Wiley and Sons, 1990.

S. S. Muchnick. Advanced Compiler Design € Implementation. Morgan Kauf-
mann, 1997.

DIpDLIVanArily LI

[Par66]

[PDY6]

[PS98]

[Pug92]

(QR99)]

[RF94]

[Rin97]

[RR99]

[RS97a]

[RSO7D]

[SCFS98]

[Sch86]

[SKR90]

[SRH96]

R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570-581,
1966.

G. R. Perrin and A. Darte, editors. The Data Parallel Programming Model.
Number 1132 in LNCS. Springer-Verlag, 1996. For scheduling issues, see
“Automatic Parallelization in the Polytope Model”, pages 79-103.

M. Pelletier and J. Sakarovitch. On the representation of finite deterministic
2-tape automata. Technical Report 98 C 002, Ecole Nationale Supérieure
des Télécommunications (ENST), Paris, France, May 1998. To appear in
Theoretical Computer Science.

W. Pugh. A practical algorithm for exact array dependence analysis. Com-
munications of the ACM, 35(8):27-47, August 1992.

F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhe-
dral model. Technical Report 1228, Institut de Recherche en Informatique et
Systemes Aléatoires, Université de Rennes, France, January 1999.

X. Redon and P. Feautrier. Scheduling reductions. In ACM Int. Conf. on
Supercomputing, pages 117-125, Manchester, UK, July 1994.

M. Rinard. Effective fine-grain synchronization for automatically parallelized
programs using optimistic synchronization primitives. In 6*ACM Symp. on
Principles and Practice of Parallel Programming (PPoPP’97), pages 112-123,
Las Vegas, Nevada, USA, June 1997.

R. Rugina and M. Rinard. Automatic parallelization of divide and conquer
algorithms. In 7*ACM Symp. on Principles and Practice of Parallel Program-
ming (PPoPP’99), Atlanta, Georgia, USA, May 1999.

G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, vol-
ume 1: Word Language Grammar. Springer-Verlag, 1997.

G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, vol-
ume 3: Beyond Words. Springer-Verlag, 1997.

M. M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-independant
storage mapping for loops. In ACM Symp. on Architecture Support for Pro-
gramming Languages and Operating Systems, 8, 1998.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley and
Sons, Chichester, UK, 1986.

B. Steffen, J. Knoop, and O. Riithing. The value flow graph: A program rep-
resentation for optimal program transformations. In Proc. of the 3™ European
Symp. on Programming (ESOP’90), volume 432 of LNCS, pages 389-405,
Copenhagen, Denmark, May 1990.

M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. IEEE Trans. on Computers, 167(1-
2):131-170, October 1996.

ZJ0O

[SRW96]

[SSP99]

[Ste96]

[TD95)

[TFJ86]

[TP93]

[TPY5]

[Tz097]

[Wol92]

[Won95|

[WP95]

[WR93]

DIDLAUGGIVATT LY

S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. In 28ACM Symp. on Principles
of Programming Languages (PoPL’96), pages 16-31, St. Petersburg Beach,
Florida, USA, January 1996.

H. Saito, N. Stavrakos, and C. Polychronopoulos. Multithreading runtime
support for loop and functional parallelism. In Int. Symp. on High Perfor-
mance Computing (ISHPC’99), number 1615 in LNCS, pages 133-144, Kyoto,
Japan, May 1999. Springer-Verlag.

B. Steensgaard. Points-to analysis in almost linear time. In 23 ACM Symp. on
Principles of Programming Languages (PoPL’96), pages 32-41, St. Petersburg
Beach, Florida, USA, January 1996.

O. Temam and N. Drach. Software assistance for data caches. Future Gener-
ation Computer Systems, 1995. Special issue on high performance computer
architectures.

R. Triolet, P. Feautrier, and P. Jouvelot. Automatic parallelization of fortran
programs in the presence of procedure calls. In Proc. of the 1°* European Symp.
on Programming (ESOP’86), number 213 in LNCS, pages 210-222. Springer-
Verlag, March 1986.

P. Tu and D. Padua. Automatic array privatization. In 6™ Workshop on
Languages and Compilers for Parallel Computing, number 768 in LNCS, pages
500-521, Portland, Oregon, USA, August 1993.

P. Tu and D. Padua. Gated SSA-Based demand-driven symbolic analysis for
parallelizing compilers. In ACM Int. Conf. on Supercomputing, pages 414-423,
Barcelona, Spain, July 1995.

S. Tzolovski. Data dependences as abstract interpretations. In International
Static Analysis Symposium SAS’97, Paris, France, 1997.

M. Wolfe. Beyond induction variables. In ACM Symp. on Programming Lan-
guage Design and Implementation (PLDI’92), pages 162-174, San Francisco,
California, USA, June 1992.

D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis,
University of Maryland, 1995.

D. Wonnacott and W. Pugh. Nonlinear array dependence analysis. In Proc.
Third Workshop on Languages, Compilers and Run-Time Systems for Scalable
Computers, 1995. Troy, New York, USA.

D. K. Wilde and S. Rajopadhye. Allocating memory arrays for polyhedra.
Technical Report 749, Institut de Recherche en Informatique et Systemes
Aléatoires, Université de Rennes, France, July 1993.

Index

Symbols
<ipx, 70, see lexicographic order, 75,
140, 197

<par, 81, see parallel execution order

<smq, 70, see sequential execution order

<qxr, 70, see textual order, 144

Yo, 006, see statement label

Lergy, 68, see control word, 70, 129, 139

Lypara, 71, see data structure
abstraction, 140

Mpyara, 71, see data structure
abstraction, 129, 140

[i,a], 128, see induction variable, 130,
135

[i](w), 128, see induction variable

Dixp, 156, see memory expansion

Eg, 196, see expansion vector

Eslp + 11, 197, see expansion degree

A, 80, see access, 82, 134

A., 63, see access, 80

E, 62, see program execution, 70, 129,
156, 191, 222

I, 80, see instance, 82

I., 62, see instance, 68, 80

R, 80, see read, 140

R., 63, see read and access, 80

W, 80, see write, 140

W,., 63, see write and access, 80

I', 92, see stack alphabet and
push-down automaton

Yo, 92, see initial stack word and
push-down automaton

(S, x), 75, see iteration vector and
instance

(S, x,ref), 75, see iteration vector and
access

=, 209, see constraint relation, 214

R*, 173, see static expansion, 175

R, 173, see static expansion

0%, 217, see weakened static expansion

20, 217, see weakened static expansion

259

0, 77, see dependence relation, 140

0., 77, see dependence relation, 140

0™ 81, see dependence relation and
memory expansion, 82, 210, 214

0%, 81, see dependence relation and
memory expansion

k*, 175, see conflict relation and static
expansion

k, 76, see conflict relation, 175, 191

ke, 76, see conflict relation, 191

#, 191, see no-conflict relation, 193

., 191, see no-conflict relation

>, 193, see interference relation, 194,
210, 211

oo, 211, see interference relation, 214

X, 212, see coloring relation

X=, 213, see constraint coloring relation

o, 78, see reaching definition

oM, 164, see reaching definition of a
memory location and memory
expansion

o, 164, see reaching definition of a
memory location and memory
expansion

Oe, 77, see reaching definition

¢, 156, see memory expansion, 168, 174,
217, 219

JOINS,, 220, see join

PoiNTSs, 219, see program point

ANCESTORS(u), 142, see ancestor

ARRAY, 160, see memory expansion

CURINS, 156, see run-time instance and
memory expansion, 227, 240

ITER, 160, see memory expansion and
iteration vector

STMT, 160, see memory expansion and
iteration vector

UNDEFINED, 130, see induction variable

0, 82, see schedule, 85

e, 91, see empty word

foXr) 81, see storage mapping and

Z0U

memory expansion, 173, 191, 209
fe, 75, see storage mapping, 173
f, 129, see storage mapping
Ag[x], 160, see memory expansion
$Dyxp, 157, see memory expansion

A
a-selection, 108
a-selection, 141, 231
access, 63, 75

A, 80, 82,134

A, 63,80

R, 140

R., 63, 80

W, 140

W,, 63, 80

(S, z,ref), 75
algebraic function, 116
algebraic grammar, 92
algebraic language, 92
algebraic relation, 115
algebraic transducer, 114, see

push-down transducer

aliased, 65
analysis of conflicting accesses, 76
ancestor, 142, 144, 148

ANCESTORS(u), 142

B
block, 63

C
call tree, 70
causality constraint, 82
coloring relation, 212
X, 212
complete, 105
configuration, 93, 114
conflict, 76
conflict equation
K, 175
conflict relation, 76, 139, 140, 191, 211
K*, 175
K, 76, 191
Ke, 76, 191
constrained expansion, 209
constraint coloring relation, 213
X=, 213
constraint relation, 209

LINLJTUAN

=, 209, 214

oo, 214
context-free grammar, 92
context-free language, 92
control automaton, 67

compressed, 69
control parallelism, 58
control tree, 70, 123, 142

compressed, 70
control word, 68

Ly, 68, 70, 129, 139

D
data parallelism, 59
data structure abstraction, 139

Lpars, 71, 140

Mypara, 71, 129, 140
data-flow execution order, 200
0-synchronizable, 102
0-synchronous, 102
dependence, 77
dependence analysis, 77
dependence relation, 77

0, 77, 140

e, 77, 140

o™ 81, 82, 210, 214

0", 81
deterministic algebraic languages, 93
dominance frontier, 219
dynamic arrays, 160

E
edge name, 64, 71, 236
empty word, 91
e, 91
execution front, 60
execution trace, 66
expansion correctness criterion, 192,
193, 194
expansion degree, 197
Eslp+ 11, 197
expansion vector, 196
Eg, 196

F

finer, 81, see storage mapping, 174

finite-state automaton
deterministic, 91

finitely generated, 91, 97, 98

LINLJTUAN

formal language, 91
free monoid, 91

free partially commutative monoid, 72,
118

I
induction variable, 127
[i,«], 128, 130, 135
[i)(w), 128
UNDEFINED, 130
undefined value, 130
value at an instance, 128
initial stack word, 92
Yo, 92
input automaton, 100
instance, 62, 75
I, 80, 82
I, 62,68, 80
(S,z), 75
integer linear programming, 87
interference relation, 193, 210, 211
>, 193, 194, 210, 211

o, 211, 214
iteration vector
(S, x,ref), 75
(S,z), 75
ITER, 160
StMT, 160
iteration vectors, 74
J
join, 219
JOINS,, 220
L

left-synchronizable, 102

left-synchronous, 102, 148, 231

lexicographic order, 70, 75, 88, 103, 140
<iex, 70, 75, 140, 197

loop variable, 64

M
maximal, 211
maximal constrained expansion, 222
maximal static expansion, 174
memory expansion, 81

Dyxp, 156

o™*r 81, 82, 210, 214

0", 81

oMt 164

4201

o b, 164
¢, 156, 168, 174, 217, 219
ARRAY, 160
Curlns, 156, 227, 240
ITER, 160
St™T, 160
foxr, 81, 173, 191, 209
Aglx], 160
@-structures, 157, 166
$-structures, 157
$Dyxp, 157

monoid, 90

N

no-conflict relation, 191
K, 191,193
., 191

o

one-counter automaton, 94, 95
one-counter language, 95

one-counter relation, 116

one-counter transducer, 116

online algebraic transducer, 116
online algebraic transduction, 116, 231
online rational transducer, 101

online rational transduction, 101, 231
output automaton, 100

P
parallel execution order, 81
<par, 61
parallelization, 81
partial expansion, 196, 197
partial renaming, 196
path, 91, 99
label, 91, 99
privatization, 233
program execution, 62
E, 62, 70, 129, 156, 191, 222
program point, 219
PoinTs, 219
pseudo-left-synchronizable, 119
pseudo-left-synchronous, 119, 148
push-down automaton, 92
r, 92
Yo, 92
deterministic, 93
push-down transducer, 114

4204

push-down automaton
interpretation, 115

underlying rational transducer, 118,
120, 122

Q

quasi-affine selection tree, 88, see quast
quast, 88, 160, 165
quasi-affine selection tree, 88

R
rational function, 99
rational language, 92
rational relation, 97, 128
rational set, 97, 128
rational transducer, 98
finite-state automaton
interpretation, 99, 107
reaching definition, 77, 173
o, 78
O, (7
reaching definition analysis, 78
reaching definition of a memory
location, 164, 217
oM 164
o), 164
read, 63
R, 80, 140
R., 63, 80
realize, 91, 99, 135, 140
by empty stack, 93, 115
by final state, 93, 94, 114, 116
recognizable relation, 97, 148
recognizable set, 97
regular language, 91, see rational
language
right-synchronizable, 103
right-synchronous, 103
run-time instance, 61
CURrlINs, 156, 227, 240

S
SA, 156
schedule, 59, 82, 85
6, 82, 85
schedule-independent, 188, 200
semi-group, 90
sequential execution order, 70
<spq, 70

LINLJTUAN

sequential function, 100, 231
sequential transducer, 100
shape analysis, 65
single-assignment, 156
SSA, 156
stack alphabet, 92

r, 92
statement, 63
statement label, 66

E(:TRL: 66
static expansion, 173

R*, 173, 175

R, 173

Kk*, 175
static single-assignment, 156
storage mapping, 75, 126, 128, 135

foxr 81, 173, 191, 209

fe, 75,173

finer, 81
sub-sequential function, 101, 231
sub-sequential transducer, 100
synchronizable, 102
synchronization graph, 236
synchronous, 102

T
textual order, 70, 144
<oxr, 70, 144
tiling, 84
tile, 84

top stack symbol, 93
transduction, 98
algebraic, 115
rational, 98
recognizable, 98
transmission rate, 110
trim, 91, 99

U

unambiguous, 105

underlying rational transducer, 148
use, 77,173

\%%
weakened static expansion, 217
20+, 217
20, 217
write, 63
W, 80, 140
W., 63, 80

LINLJTUAN 4209

Résumé

Les microprocesseurs et les architectures paralleles d’aujourd’hui lancent de nou-
veaux défis aux techniques de compilation. En présence de parallélisme, les optimisa-
tions deviennent trop spécifiques et complexes pour étre laissées au soin du program-
meur. Les techniques de parallélisation automatique dépassent le cadre traditionnel
des applications numériques et abordent de nouveaux modeles de programmes, tels
que les nids de boucles non affines, les appels récursifs et les structures de données
dynamiques. Des analyses précises sont au cceur de la détection du parallélisme, elles
rassemblent des informations a la compilation sur les propriétés des programmes a
I’exécution. Ces informations valident des transformations utiles pour 'extraction
du parallélisme et la génération de code parallele.

Cette these aborde principalement des analyses et des transformations avec une
vision par instances, c¢’est-a-dire considérant les propriétés individuelles de chaque
instance d’une instruction a I’exécution. Une nouvelle formalisation a I'aide de lan-
gages formels nous permet tout d’abord d’étudier une analyse de dépendances et de
définitions visibles par instances pour programmes récursifs. L’application de cette
analyse a ’expansion et la parallélisation de programmes récursifs dévoile des ré-
sultats encourageants. Les nids de boucles quelconques font 'objet de la deuxiéme
partie de ce travail. Une nouvelle étude des techniques de parallélisation fondées sur
I’expansion nous permet de proposer des solutions a des problemes d’optimisation
cruciaux.

Mots-clés : parallélisation automatique, programmes récursifs, nids de boucles non af-
fines, analyse de dépendances, analyse de définitions visibles, expansion de la mémoire.

Abstract

Compilation for todays microprocessor and multi-processor architectures is fac-
ing new challenges. Dealing with parallel execution, optimizations become overly
specific and complex to be left to the programmer. Traditionally devoted to numeri-
cal applications, automatic parallelization addresses new program models, including
non-affine nests of loops, recursive calls and pointer-based data structures. Paral-
lelism detection is based on precise analyses, gathering compile-time information
about run-time program properties. This information enables transformations use-
ful to parallelism extraction and parallel code generation.

This thesis focuses on aggressive analysis and transformation techniques from
an instancewise point of view, that is from individual properties of each run-time
instance of a program statement. Thanks to a novel formal language framework, we
first investigate instancewise dependence and reaching definition analysis for recur-
sive programs. This analysis is applied to memory expansion and parallelization of
recursive programs, and promising results are exposed. The second part of this work
addresses nests of loops with unrestricted conditionals, bounds and array subscripts.
Parallelization via memory expansion is revisited in this context and solutions to
challenging optimization problems are proposed.

Keywords: automatic parallelization, recursive programs, non-affine loop nests, depen-
dence analysis, reaching definition analysis, memory expansion.

