N

N

Contributions to the Design of Reliable and
Programmable High-Performance Systems: Principles,
Interfaces, Algorithms and Tools
Albert Cohen

» To cite this version:

Albert Cohen. Contributions to the Design of Reliable and Programmable High-Performance Systems:
Principles, Interfaces, Algorithms and Tools. Networking and Internet Architecture [cs.NI]. Université
Paris Sud - Paris XI, 2007. tel-00550830

HAL Id: tel-00550830
https://theses.hal.science/tel-00550830
Submitted on 31 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00550830
https://hal.archives-ouvertes.fr

THESE d’HABILITATION & DIRIGER des RECHERCHES
Spécialité : Informatique
présentée par
Albert COHEN

pour obtenir 'THABILITATION a DIRIGER des RECHERCHES de INIVERSITE PARIS-SUD 11

Sujet :

Contributions a la conception de systémes a hautes performaes,
programmables et sdrs :
principes, interfaces, algorithmes et outils

Contributions to the Design of Reliable and Programmable
High-Performance Systems:
Principles, I nterfaces, Algorithms and Tools

Soutenue le 23 mars 2007 devant le jury composé de :

Nicolas HALBWACHS Rapporteur
Francois  RIGOIN Rapporteur
Lawrence RUCHWERGER Rapporteur
Alain DARTE Examinateur
Marc DURANTON Examinateur
Olivier TEMAM Examinateur
Paul FEAUTRIER Membre Invité

Thése d’Habilitation préparée au sein de I'équipecAEMY
INRIA Futurs et LRI, UMR 8623 CNRS et Université Paris-Sud 11






Remerciements

A Isabelle, Mathilde et Loic,
si proches et si souvent inaccessibles.

Je remercie les membres de mon jury pour avoir accepté dentepgur mon travail. Leur
apport critique est précieux : il répond a une rare occas@radsembler un ensemble significatif
de résultats, et de tracer ainsi des pistes d’approfondesseou d’exploration prioritaires. Je leur
en suis d'autant plus reconnaissant, que leur role n'esphassconfortable que celui du candidat
dans I'exercice mandarinal de I'habilitation a diriger desherches. Loin de moi I'idée de contester
le principe originel de I'exercice, étape importante ianittout chercheur a réaliser et publier une
synthése de ses travaux. Mais dans sa forme hexagonalengmrtEne, I'exercice est dénaturé au
point de ne refléter que des motivations mandarinales ebijaes beaucoup moins louables. Je
m’efforcerai donc un jour de consacrer les mois nécessaifésriture d’un livre de référence. Pas
aujourd’hui, c’est bien trop tét.

Je salue chaleureusement tous mes camarades de remugeségtinle labeur développatoire
ou TeXnique, d’hier et d’aujourd’hui, de toujours et d’un joursans qui peu de choses auraient été
possibles. llIs se reconnaitront, gu'ils fussent étudiéol@irés ou déprimés, ingénieurs virtuoses ou
fatigués, chercheurs en herbe ou académiciens : leurltetvigur stimulation constantes sont le
moteur essentiel de toute mon activité passée et future.

Je saisis I'opportunité de saluer I'un de ces premiers cades; Jean-Francois Collard, mo-
teur de la compilation par instances, mentor aux précepiegds, héritier des grands sages fon-
dateurs (et néanmoins collegues) Paul Feautrier et Luc 8qug je salue également. Je remercie
également Christine Eisenbeis pour m'avoir ouvert lesgsode I'INRIA, et surtout, pour m’avoir
constamment encouragé a dépasser les frontieres du cleis@mt de la connaissance académique.
Enfin, je ne trouve pas les mots pour saluer l'influence détente d’Olivier Temam, dont la vision,
I'enthousiasme, le recul et la générosité m’ont accompalgms la construction d’'une stratégie de
recherche que je crois cohérente et pertinente.

Je tiens également a tirer mon chapeau aux instituts dergehet d’enseignement supérieur
francgais et étrangers qui ont soutenu ce travail, et a samex, a tous mes collégues “accompagna-
teurs et accompagnatrices de la recherche”. Je suis ganteuent débiteur de I'INRIA, établisse-
ment permettant I'expression de projets scientifiquesatirtelogiques ambitieux dans un environ-
nement de liberté, de souplesse et de confort qu'il se dgitdigger, alors que de nombreux instru-
ments de recherche et d’enseignement supérieur, en Fragic&earope, sombrent dans l'incapacité,
'incompréhension et 'abandon.



Dedicated to a Brave GNU World

http://ww. gnu. org

Copyright(© Albert Cohen 2006.
Verbatim copying and distribution of this document is pétexiin any medium, provided this notice is preserved.

La copie et la distribution de copies exactes de ce docunoemisitorisées, mais aucune modification n’est permise.

Al bert. Cohen@nria.fr



Contents

List of Figures 6
1 Introduction 9
1.1 Optimization Problems for Real Processor Architegure. . . . . . . . . .. . ... .. .. . . ... 11
1.2 GoingInsStancewise . . . . . . . . e e 13
1.3 Navigating the Optimization Oceans . . . . . . . . . . . . i e e 14
1.4 Harnessing Massive On-Chip Parallelism . . . . . . . . . o o 18
2 Instancewise Program Analysis 20
2.1 Control Structures and EXeCUtiON TraCES . . . . . . v v i o e e e e e e e e e e 21
2.1.1 Control Structures inthe®™GUL Language . . . . . . . . . . . o oo i 21
2.1.2 Interprocedural Control Flow Graph . . . . . . . . . . . . ... 22
2.1.3 The Pushdown Trace Automaton . . . . . . . . . . . . i i i it e e 23
2.1.4 TheTrace Grammar . . . . . . . . o v v it e e e e e e e e 24
2.2 Thelnstancewise Model . . . . . . . L e e e 26
2.2.1 From the Pushdown Trace Automaton to ControlWords . . . . . . ... ... ... ... .... 26
222 FromTracesto ControlWords . . . . . . . . . . e e 26
2.2.3 Fromthe Trace Grammarto ControlWords . . . . . . . . . . oo 27
2.2.4 Control Words and Program Termination . . . . . . . . . . oo o oo i i i 27
225 The Control Automaton . . . . . . . . . e e e 29
2.2.6 Instancesand ControlWords . . . . . . . . . L e e e 29
2.3 Data Structure Model and Induction Variables . . . . . . ... . L 30
2.3.1 DataModel . . . . . . . 31
2.3.2 Induction Variables . . . . . . . .. e 31
2.4 Binding FUNCLIONS . . . . . . . . e e e 32
2.4.1 FromInstances to Memory Locations . . . . . . . . ... e e 32
242 Bilabels . . . . . e e 33
2.4.3 Building Recurrence EQuations . . . . . . . . . e e e 33
2.5 Computing Binding FUNCLIONS . . . . . . . . e e 35
251 Binding MatriX . . . . . . o e e e e e 36
252 Binding TransduCer . . . . . . . . e e e e 38
2.6 EXperiments . . . . . .o e 39
2.7 Applications of Instancewise Analysis . . . . . . . . Lo 41
2.7.1 Instancewise Dead-Code Elimination . . . . . . . . . . . o 41
2.7.2 Stateofthe Art . . . . . . L e 42
2.8 Conclusion . . . . . e e e 42
3 Polyhedral Program Manipulation 44
3.1 A New Polyhedral Program Representation . . . . . . . . . . @ v i it it 44
3.1.1 Limitations of Syntactic Transformations . . . . . . . ... . . . ... ... ... ... . ... 44
3.1.2 Introduction to the Polyhedral Model . . . . . . . . . . . . ... . . ... . 49
3.1.3 Isolating Transformations Effects . . . . . . . . . . . . . ... 50
3.1.4 PuttingitAll Together . . . . . . e e 54
3.1.5 Normalization Rules . . . . . . . . . e e 56
3.2 Reuvisiting Classical Transformations . . . . . . . . . . . o o 57
3.2.1 Transformation Primitives . . . . . . . . . .. 57
3.2.2 Implementing Loop Unrolling . . . . . . . . . . e e 59
3.2.3 Parallelizing Transformations . . . . . . . . . . e e 61
3.2.4 Facilitating the Search for Compositions . . . . . . . ... o L 61



6 CONTENTS

3.3 Higher Performance Requires COmposition . . . . . . . . e o o o e 62
3.3.1 Manual Optimization ResUlts . . . . . . . . . . e e e e 62
3.3.2 Polyhedral vs. Syntactic Representations . . . . . . . . . . ... o 64

3.4 Implementation . . . . . .. e e 65
3.4.1 WRaP-IT: WHIRL Represented as Polyhedra— Interfae® T. . . . . . . ... ... ... ..... 65
3.4.2 URUK: Unified Representation Universal Kernel . . . .. .. . ... ... . ... . ... ..... 67
3.4.3 URDeps: URUK Dependence Analysis . . . . . . . . oo i it i o e e e e e e 67
3.44 URGenT: URUK Generation Tool . . . . . . . . . . e e e e 69

3.5 Semi-Automatic Optimization . . . . . . . . . . L e 69

3.6 Automatic Correction of Loop Transformations . . . . . .. .. . . . . . ... 71
3.6.1 Related Work and Applications . . . . . . . . . e e 72
3.6.2 Dependence Analysis . . . . . . . . e e 73
3.6.3 Characterization of Violated Dependences . . . . . . .o v e 74
3.6.4 Correctionby Shifting . . . . . . . . . e e e 75
3.6.5 Correction by Index-Set Splitting . . . . . . . . . .. 80
3.6.6 Experimental ResUlts . . . . . . . . . . e e e 83

3.7 Related WOrk . . . . . . e 84

3.8 Future Work . . . . . e 85

3.9 ConCluSioN . . . . . e e 85

4 Quality High Performance Systems 86

4.1 Motivation . . . . . L L e e e 86
4.1.1 The Needto Capture Periodic Execution . . . . . . . . . . . oo o i 87
4.1.2 The Need foraRelaxed Approach . . . . . . . . . e e 88

4.2 Ultimately Periodic CIOCKS . . . . . . . . . o e e e 89
4.2.1 Definitions and Notations . . . . . . . . . e e e e 89
4.2.2 Clock Sampling and Periodic Clocks . . . . . . . . . . 90
4.2.3 Synchronizability . . . . . . . e e e 91

4.3 The Programming Language . . . . . . . . . 0 i e 91
4.3.1 A Synchronous Data-Flow Kernel . . . . . . . . . . e 91
4.3.2 Synchronous SemantiCS . . . . . . . . . . . e e e 92
4.3.3 Relaxed Synchronous Semantics . . . . . . . . . . . L 97

4.4 Translation Procedure . . . . . . . . e 105
4.41 Translation SemantiCs . . . . . . . . . L e e 105
4.4.2 Practical Buffer Implementation . . . . . . ... 105
443 COITECINESS . . . . o o i o e e e e e e e e 106

4.5 Synchrony and Asynchrony . . . . . . . . . L e e 107

4.6 CoNnClUSION . . . . o 107

5 Perspectives 108

5.1 Compilers and Programming Languages . . . . . . . . . . o o oo e e e 108
5.1.1 Firststep: Sparsely Irregular Applications . . . . . ... . ... ... 108
5.1.2 Second step: General-Purpose Parallel Clockedd&wging . . . . . . . ... ... ......... 110

5.2 Compilers and Program GeNerators . . . . . . . . . o v v i it i e e e 110

5.3 Compilers and ArchiteCtures . . . . . . . . . . . e e 111
5.3.1 Decoupled Control, Addressand DataFlow . . . . . . .. ... ... ... ... ... . ..... 111
5.3.2 Fine-Grain Schedulingand Mapping . . . . . . . . . . . i 111

5.4 Compilers and Runtime Systems . . . . . . . . . L e e e 112
5.4.1 Staged Compilationand Learning . . . . . . . . . e e 112
5.4.2 Dynamically Extracted Parallelism . . . . . . . . . . ... ... 113

5.5 TOOIS. . . . e 113

Bibliography 117



List of Figures

11
1.2
1.3
1.4
15

21
2.2
2.3
2.4
25
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

Speedup for 12 SPEC CPU2000 fpbenchmarks . . . . . . . . . o oo i 12
Bounded backward slice . . . . . . . . e 12
Simple instancewise dead-code elimination . . . . . . . ... .. 14
More complex example . . . . . . L e e 14
Influence of parameter selection . . . . . . . . L e 17
ProgranToy inC . . . . . . . e 22
ProgranToy in MOGUL . . . . . . . . e e e 22
Simplified MOGUL syntax (control Structures) . . . . . . . . . . . e 22
Interprocedural Control Flow Graph . . . . . . . . . . 23
Simplified Pushdown Trace Automaton . . . . . . . . . . . . . i 23
Pushdown Trace AUtOMALON . . . . . . . . . 0 e e e e e 24
Activation tree . . . . . . . L e 25
Example Control AUtOmMaton . . . . . . . . . . e e e e 29
Construction of the Control Automaton . . . . . . . . . . . . e e 29
Computation of amatrix star . . . . . . . . L e e e 36
Example of matrix automaton . . . . . .. L e e e 38
Binding Transducer fAy . . . . . . . . . e e 39
ProgranPascal ine . . . . . . . e 39
Binding transducer fdlascal ine . . . . . . . . L 39
Programderge_sort _tree . . . . . . . . . e 40
Binding transducer fdlerge_sort _tree . . . . . . .. 40
Sample recursive programs applicable to binding fananalysis . . . . . ... ... ... ... L. 41
Introductory example . . . . . . L e e 45
Code size versus representation Size . . . . . . . . . ..o e 45
Executiontime . . . . . . . L 45
Versioning after outer loop fusion . . . . . . .. 45
Original program and graphical view of its polyhedrgresentation . . . . . . . .. ... ... ... ..... 47
Target optimized program and graphical view . . . . . . . ..o 47
Fusion of the three loops . . . . . . . . o e 48
Peeling prevents fusion . . . . . . . . L e e 48
Dead code before fusion . . . . . . . . L e 48
Fusion before dead code . . . . . . . . . e 48
Advanced example . . ... L e e 48
Fusionof thethree loops . . . . . . . . . e e 48
Spurious dependences . . . . . . . L e e e 48
A polynomial multiplication kernel and its polyhedddmains . . . . . . . .. ... ... ... ........ 49
Transformation template and its application . . . . . ...... . . L L 50
Targetcode generation . . . . . . . . e e e 51
Schedule matrix examples . . . . . . . e e 53
Some classical transformation primitives . . . . . . . ... L 58
Composition of transformation primitives . . . . . . . . . . L 59
Generic strip-mined loop after code generation . . . ... . . .. L o 60
Strip-mining and unrolling transformation . . . . . . . .. ... 60
Optimizingapsi (base 378S) . . . . . . . . e 63
Optimizingapplu (base 214S) . . . . . . . . e e 63
Optimizingwupwise (Dase 236S) . . . . . . . . . e 63



3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1

LIST OF FIGURES

Optimizinggalgel (base 171S) . . . . . . . . o e e 64
Optimisation ProCeSS . . . . . . o o o e e e e 65
SCoP size (iNStructions) . . . . . . . . . . e e e 66
SCoP depth . . . . . e e 66
Static and dynamic SCOP COVEerage . . . . . . . . . i e e e e 67
Move CONSETUCIOr . . . . . . . . . . . e 68
ASSIONDHMItIVE . . . . . e e 68
TILE primitive . . . . . o e e e 68
URUK scriptto optimizewim . . . . . . . . . . e e e 70
Violated dependence atdeth- 0 . . . . . . . . e 74
Violated dependence candidates atdepthO . . . . . . . . . . .. 74
Conditional separation . . . . . . . . .. e e 76
Shiftinganode forcorrection . . . . . . .. e e 77
Correctinga VDG . . . . . . . e 77
Correction algorithm . . . . . . . . . e e 78
Original code . . . . . . . . 79
lllegal schedule . . . . . . . . . e e e 79
Aftercorrectingd =0 . . . . . . L 79
Outline of the correction fqu==0 . . . . . . . . . . . . 79
Correcting + versioningy . . . . . . . . L e 79
Correcting + versionings . . . . . . . . . e 79
Outline of the correction faqu=1 . . . . . . . . . . . e 79
CastN <4 . . L e e e e e e 80
CastN > 5 . L e e 80
Originalngrid-like code . . . . . . . . . e e 81
Optimized code . . . . . . . e e e 81
Originalswi mlike code . . . . . . . . . e 81
Optimized code . . . . . . . e e e 81
Original and parallelized Code . . . . . . . . . . 82
Correction EXperiments . . . . . . . . . e e 83
The downscaler . . . . . . . . e 86
Synchronous implementationfdf . . . . . . . ... 87
Synchronous code using periodic clock . . . . . . . L 92
Thecoreclockcalculus . . . . . . . . . e 94
Semantics forthe core primitives . . . . . . . . . . 96
Data-flow semantics over clocked sequences . . . . . . . ... L 96
Therelaxed clock calculus . . . . . . . . . e e 100
Clock constraints resolution . . . . . . . . . . e e e e 102
Asynchronous buffer . . . . . . . e e 106
Synchronous bufferimplementation . . . . . . . .. 106

Overview of GRAPHITE . . . . . . . e e e e 115



Chapter 1

Introduction

It is an exciting time for high-performance and embeddedmating research. The exponential growth of com-
puting resources enters dangerous waters: the physicBooinsbased semiconductors is progressively putting
Moore’s law to an end. The close demise of this empirical lakeatens the domination of 40-years old incre-
mental research in the compilation of imperative languages(super-)scalar von Neumann architectures. This
represents an unprecedented challenge for the whole cenmpsearch and industry. As a positive side effect, the
spectrum and depth of applied research broadens to newohsriallowing to revisit scientific and technical areas
once doomed too disruptive. This is a great opportunity &orducting fundamental research while maximizing
the potential impact on actual computing systems.

In more immediate terms, these challenges are associatiedh®icrackling of the von Neumann computing
paradigm. The all-time dominant trend has been to pushrsaalhitectures towards higher operating frequencies,
showing secondary interest for power consuption, and gispatial concerns behind ever-increasing complexity.
Ten years algo, this trend started to crackle in power- aga-afficient embedded systems; its collapse is complete
with the now ubiquitous on-chip multi-processor architees. Nevertheless, despite decades of academic and
commercial attention, parallel computing is howhere clusthe maturity and accessibility of single-threaded
programming and software engineering practices.

e The design of concurrent hardware (on-chip or multi-chig)rdake tremendous progress: only the emer-
gence of post-semiconductor technologies will, in a fdoseéuture, disrupt the state of the art.

e Operating systems for shared and distributed memory aathites also made a giant leap (both the kernel
and application-support libraries): just consider thdaméity and portability of GNU/Linux, from 1024
Itanium 2 NUMA (SGI Altix) to heterogeneous system-on-chighitectures based on a variety of ISAs
(ARM 7-11, SH 4, ST 231, etc.) and interconnection netwoyles;the situation seems far from ideal in
terms of efficiency (especially, dealing with fine grainhtiy coupled threads) and reliability (although the
kernel may be closely looked upon by concurrency experts).

e The picture is much bleaker for the programming languagdsampilers. Just ask yourself the question:
what parallel programming language/model would you recemanand teach to mainstream application
developpers? It is vain to answer there is no such thing asvensal parallel computing theory. Even
restricting to a specific domain, and even recognizing tteglfier programmers to adopt a different state of
mind when designing parallel software, it is hard to pickaugatisfactory answer from the state-of-the-art.

Position of our contributions. Unlike most researchers in applied high-performance cdimguwe do not
believe the main problem comes from concurrency itself.pileghe lack of a unifying model, parallel computing
does not lack well understood semantics, syntaxes and araigency-aware compilation schemes. Emerging
from the data-flow computing model [Kah74], from the reaetdontrol theory [Cas01] and from synchronous
programming languages [BCB3], we believe thelata-flow synchronousodel [CP96, CGHP04, CD6] has
the highest potential for high-performance, general-psemand embedded computing:

e it expresses regular and irregular concurrency itompositionallsome say modular) andeterministic
fashion;

e it may serve as aimtermediate languagir computation, control and data-centric parallel conmytsyn-
thesis, to generate multi and single-threaded scalar codeethas synchronous and asynchronous circuits;

9



10 CHAPTER 1. INTRODUCTION

e on demand, it may enforagon-functional propertiegliveness, boundedness of memory, real-time) of the
generated software/hardwdrng construction

e Ourongoing research encourages us to believeitégshead-freemeaning that a portable synchronous data-
flow program can be transformed into a target-specific ongaitipg all the spatial and dynamic aspects of
the underlying hardware/software layers, not relying ontsidden runtime support of inspection.

If concurrency is not, per se, the main challenge, then wipgisllel computing not mainstream? Our answer
comes from the in-depth analysis of two apparently simplebjems:

e architecture-aware optimization of single-threaded irafiee programs,

e and maximizing the compute-density of explicitely paredkeeaming applications.

We addressed these two problems for 6 years, studying botbigded and applied viewpoints, and following a
theoretical thesis on automatic parallelization [Coh98¢sing on the extraction of static forms of parallelism in
both regular and irregular programs). One important legsthrat resource managementis by far the most complex
and combinatorial task for the compiler, and the most misustdod, hard to generalize and low-productivity
activity for the system designer.

This lesson strongly influenced our ongoing research argHerm strategy.

1. We acknowledge the spatial distribution of the hardw#re,combined complexity of underlying hard-
ware/software layers, and the dominance of the resourceimgyproblem in current and future high-
performance systems. This leads to the design of mappirgeagoncurrent intermediate representations
— the long term goal beyond our proposedynchronous Kahn networks — and this also motivates our
empirical, iterative and adaptive optimization work.

2. We ought to learn, understand, synthesize and teach tlo@ake behind relevant research in computer
architecture, runtime/operating systems, backend ania-leigel compilation, software engineering, and
programming languages.

3. We aim to contribute to the design of computing systems aha simultaneouslgcalable productive,
efficient andreliable; in the following, these four goals will be instanciated amguage design, compiler
algorithms and compiler internals.

We do not expect these four goals will be simultaneouslytad anytime soon, even with a larger and more
diverse community recently addressing them. Indeed, lphcaimputing pionneers were facing somewhat simpler
problems (mostly because of the elitist environment of eeegiis interested in parallel computers), and although
some of the most brilliant computer scientists and engsieentributed to this fertile research area, the current
state of the art is quite disappointing.

Nobody will argue against the importance of the first two goakt it is unfortunate that many researchers do
not consider efficiency (in power and space) and reliabfiiyher by construction or through tolerant detection
and replay mechanisms) as critical elements of a compugisig. We do, because embedded systems — high-
performance ones in particular — will likely become the doanrit drive for computing research and engineering
in the future, and because it is dangerous to ignore that nepncurrent systems are plagued with the nastiest
bugs.

When studying scalability and efficiency, we consider thecsfic angle of architecture-aware code generation
and optimization, targetting language designs that are jpottable (the productivity goal) and overhead-free. We
do not ignore the importance of higher-level programmingleie and the associated challenges with abstraction-
penalty removal, but do not specifically address them.

When studying productivity, we only deal with the primitiwenstructs of intermediate languages and compiler
internals, although we do check that all options are leftnofse more abstract language designs and software
engineering to take advantage of them.

When studying relyability, we focus on the design and on thwecarrency-induced problems. We also rec-
ognize the importance of fault detection and toleranceistughutting speculative and transactionnal approaches
into this body of work), but abstract them away, assumingéfevant mechanisms are present when needed.

Let us synthesize our interests and dedication. We work end#sign and compilation ohtermediate
languagelayers, aiming for the satisfaction of the four abovemergibgoaldy construction,!, operating at the
finest possible level of the program semantics, the sodtaltancewisdevel. Needless to tell this strategy may
not bring the fastests results; we hope, however, it mayritaié some of the most impactful in the long term.

1Rather than “passing the hot potato” to the next layer, whields to diminishing returns.



1.1. OPTIMIZATION PROBLEMS FOR REAL PROCESSOR ARCHITECTER 11

Structure of this manuscript. This introductory chapter summarizes the state of the prokdnd the state
of the art. It also surveys our research approachcalbility, productivity, efficiencyand reliability issues in
programming and compiling for high-performance systems.

The three following chapters match the three technicalsandeere our contributions are well identified, and
develop introductory and foundational material.

The last chapter discusses research perspectives thanatisrally from recent research partially covered in
this manuscript.

The spinal column of this work is callédstancewise compilaticend will be described momentarily. It drives
our contributions into four complementary aspects of tregieofreliable and programmable, high-performance
systemsthe principles thealgorithms theinterfacesand thetools We try to view these four aspects as equally
important, justifying our empirical work and infrastruotudevelopments (mostly in GCC and in polyhedral com-
pilation technology) through contributions to the undansting of the deeper scientific problems, computing prin-
ciples and algorithms.

1.1 Optimization Problems for Real Processor Architecturs

Because processor architectures are increasingly coniplers become practically impossible to embed accurate
machine models within compilers. As a result, compiler &fficy tends to decrease with every improvement of
processosustainegerformance. To address this challenge, several reseantton iterative, feedback-directed
optimization [OKF00, FOK02, CST02] have proven the potnti iterative optimization. The goal of our re-
search (and the resulting optimization process) is to a$dseme of theractical issues that hinder the effective
application of iterative optimization. Feedback-direttechniques [KKOWO00, FOK02, OKF00, CST02] are cur-
rently limited to finding appropriate program transformatparameters, such as tile size, unroll factor, padding
size, rather than the program transformation themseletaldne compositions of program transformations; how-
ever, several recent work have outlined that complex anidiiarcompositions of program transformations can
be necessary to reach high performance [YOR, PTV02, PTCV04, CGF05], beyond the rigid sequence of
program transformations embedded in static compilers. Emwe find a proper composition of program trans-
formations within such a huge search space? Currentlycisiegris restricted to a few optimizations, and even
then, it usually requires several hundreds of runs usingtialgorithms or other operations research heuristics
[KKOWO00, CST02, SAMOO03].

To better understand the potential and limitations of theeaoptimization, Parello et al. adopted a bottom-
up approach to the architecture complexity issue. We rdageghis work as a milestone on the road towards
a new generation of optimization methodologies and optimgizompilers compatible with the complexity and
variability of the hardware. Therefore, although we playethte and minor role in this work [PTCV04], it
consitutes an important baseline for our research. P& d@dtom-up approach is the following: assuming we
know everything about the behavior of the program on theetgpgocessor (extensive dynamic analysis), what
can we do to improve its performance? An extensive analyfsppagrams behaviors on a complex processor
architecture led to the design of a systematic and iterafienization methodology.

The approach takes the form of a decision tree which guidesptimization process. Each branch of the
tree is a sequence of analysis/decision steps based oimranvtetrics (dynamic analysis), callperformance
anomaliesand a branch leaf is one or a few localized program transitiom suggestions. An iteration of the
optimization process is equivalent to walking down one bharAfter the corresponding optimization has been
applied, the program is run again, new statistics are gathéne process starts again at the tree top and a new
branch is followed. Progressively, the process builds asece (composition) of program transformations. The
process repeats until further transformations do not baimgsignificant additional improvement. Of course, the
process is just one of the many possible “walks” within a hagarch space, but this walk is systematic; to a
limited extent it provides an approach for whole-progrartimjzation and it has been experimentally proved to
yield significant performance improvement on SPEC bencksifar the Alpha 21264 processor, beyond peak
SPEC (best optimization flags for each benchmark [Spe]gudi's latest compiler), see Figure 1.1.

The process relies on the observation of tenths of diffgperfbormancenomalies some of these anomalies
correspond to traditional statistics, e.g., data TLB ndsagailable from program counters, and others are slightly
more elaborate performance indicators. They aim at enumgrand separating the different possible causes of
performance loss. Why do we need such “performance anoshale what are they exactly?

The initial motivation was tdind the exact cause of any performance ldgsng a program execution, in order
to apply the appropriate program optimization. In an outiafer superscalar processor like the Alpha 21264, a



12 CHAPTER 1. INTRODUCTION

Peak SPEC Methodology, Peak SPEC Methodology
swim 1.00 1.61 | galgel 1.04 1.39
wupwise 1.20 2.90 | applu 1.47 2.18
apsi 1.07 1.23 | mesa 1.04 1.42
ammp 1.18 1.40 | equake 2.65 3.22
mesa 1.12 1.17 | mgrid 1.59 1.45
fma3d 1.32 1.09 | art 1.22 1.07

Figure 1.1: Speedup for 12 SPEC CPU2000 fp benchmarks

performance loss occurs when, at a given cycle, the maximumber of instructions cannot be committed (11
in this case). Determining the cause of the performance fussns understanding why a given (or several)
instruction(s) could not be committed. Determining theafteause for an instruction stall can be a very difficult
task in such a processor because performance effects caagate over a large number of cycles [DH®7]:

a data cache miss can slow down an arithmetic operation,iwihi¢urn has a resource conflict with another
arithmetic operation, which in turn delays an address cdatjmun. . . so that the instruction at the source of the
performance loss may have left the pipeline many cyclesrbeémd there are often multiple intertwined causes.

[si]idtsfLo@y) | [s2] Idt$f2,0@2) |
(FP cache hierarchy (Data TLB)
anomaly)
[s3] mult 132,813 |
(depend on memory
FP operations)
|s5] addtst4,3f3.3f4 | [ 54 1dt $f7,0@@3) |
(depend on arithmetic (FP cache hierarchy
FP operations) anomaly)

| s6] addt$f4.$7.$14 |

(depend on arithmetic
FP operations)

backtracking limit

Figure 1.2: Bounded backward slice

A straightforward, local solution consists in monitoringyhardware components, considering a performance
lossmayoccur as soon as a hardware component is not perforatiiud) capacity More precisely, to characterize
the performance loss induced by a given instruction, onemestyict backtracking to the parent instructions only
in the data-flow graph. And the selected program transfaomsitwill target that particular performance loss
whether it is only a symptom or a cause. For instance in Figu2e the analysis would naturally start with
instructionS6 at the bottom of the data-flow tree, and it would be limitedd@arentsS4 andS5 in the grey areas.

This methodology, captured in a decision tree, iterdigsamic analysiphases of the program behavior —
using a cycle-accurate simulator or hardware countedeeisionphases to choose the next analysis or transfor-
mation to perform, and program transformation phases toeadd given performance issue. After each transfor-
mation, the performance is measured on the real machinatboate the actual benefits/losses, then a new analysis
phase is needed to decide whether it is worth iterating thegss and applying a new transformation. Though this
optimization process is manual, it is alsgstemati@and iterative, the path through the decision tree beingeglid
by increasingly detailed performance metrics. Except fecisely locating target code sections and checking the
legality of program transformations, it could almost penficautomatically.

From a program transformation point of view, our methodglogsults in a structured sequence of transfor-
mations applied to various code sections. The first resultais such transformation sequences are out of reach
of current compiler technology [GVBI6]. Even worse, although particularly complex alreadgsthsequences



1.2. GOING INSTANCEWISE 13

are only the premises of the real optimizations that will beded on future architectures with multiple levels of
parallelism, heterogeneous computing resources, ekpliznagement of the communication network topology,
and non-deterministic run-time adaptation systems. Beymmplexity and unpredictability, this example also
shows how important are extensibility (provisions for ieplenting new transformations) and debugging support
(static and/or dynamic).

Essentially, the research results surveyed in the follgwictions are as many coordinated attempts to avoid
the diminishing returns associated with incremental inaproents to current compilation and programming ap-
proaches.

1.2 Going Instancewise

Most programming languages closely reflect the inductitanesof the main Church-equivalent computing mod-
els and bringabstraction as a feature for programmer’s comfoWe are interested in compilers that operate on
semantically richer program abstractions, with statycathctable algebraic properties (i.e., closed matheralatic
forms, representations in Presburger arithmetic or detédautomata-theoretic classes).

Whether denotational, operational or axiomatic, programantics assigns “meaning” tdfiaite set of syn-
tactic elements— statements or variables — using inductive definitions. WHesigning a static analysis or
transformation framework to reason about programs, itlig matural to attach static properties to this finite set of
syntactic elements. Indeed, in many situations, semamtiogram manipulations operate locally on the inductive
definitions associated with each program expression.

For the more sophisticated analyses and transformatieirsy Iso closely related to the inductive definitions
of the semantics may not be practical. Another approachetonas referred to asonstraint-basedh the static
analysis context [NNH99], consists in operating on an alesisn more or less decoupled from the natural induc-
tive semantics; typically, a system obnstraintsthat characterize the static property or the program behagi
interest.

For example, constant propagation [ASU86] amounts to cdimga property of a variable at a statemery,
asking whethev has some valuebefores executes. It is quite natural to formalize constant propagas a type
system, in a data-flow setting or in abstract interpretatirt let us now consider another static analysis problem
that may be seen as an extension of constant propagatiduction variable recognitiofiGSW95] captures the
value of some variable at a statemerg as a functionf, of the number of times has been executed. In other
words, it captures as afunction of the execution paftself. Of course, the value of a variable at any stage of
the execution is a function of the initial contents of memangl of the execution path leading to this stage. For
complexity reasons, the execution path may not be recoleefim memory. In the case of induction variables,
we may assume the number of executionsisfrecorded as a genuine loop counter. From such a funéfiéor
s, we can discover the other induction variables using aealg$linear constraints [CH78], but such syntactically
bound approaches will not easily cope with the calculatitiuoction f, itself.

In the following, we will qualify asnstancewise any compilation method operating on finitely presented
functions of the infinite set of runtime control points.

Historically, the instancewise approach derived from loegtructuring compiler frameworks [Wol96] aiming
at a large spectrum of optimizations: vectorization, instion-level, thread-level or data parallelism, scheuyli
and mapping for automatic parallelization, locality ogtiation, and many others [PD96, AK02]. The associated
loop-nest analyses and representations share a commaipf@inthey characterize static propertie$wasctions of
run-time control points (infinite or unboundeaiydnot asfunctions of syntactic program elements (finitegop-
restructuring compilers effectively operate at a higheelef understanding of the program behavior, decoupling
program reasoning from the natural inductive semanticsadtmprogramming languages.

At this point, we are forced to reexamine the principles aflitional compilation methods in a wider world
of abstract domains without fix-point calculations whermgds and recursive functions may often be manipulated
with maximal accuracy. For example, abstract interpretetCC77] is certainly not the only way to use formal ab-
straction and concretization principles (as Galois cotiaes or insertions) in compilation: the need to effectvel
resort to a form of statimterpretationis only the translation of the inductive, fix-point basedgrnam semantics.
When operating in a constraint-based representation girbgram and its properties, this interpretation may be
iteration-less [Muc97, WCPHO01, PCS05] (no need to compfiitegint, as in many SSA-based analyses) or even
resort to operation research algorithms thoroughly aliggrogram interpretation, including linear programming,
constraint solving, and all sorts of empirical methods PBaFea92]. The work of Creusillet [Cre96] is one of the
rare instancewise analyses to resort to abstract intatfef the reason lying in its interprocedural nature.



14 CHAPTER 1. INTRODUCTION

Back to instancewise compilation, Figure 1.3 shows a syittleeample where an arrayis initialized in a
loop nest and read in a recursive procedure. The footprirgarfs toA in procedure i ne is a “chess-board”: only
elements\[i][j] such thaf + j is an even number are read in the procedure. This obserlatids to a simple
optimization: half of the dynamic assignmentsAdn the loop nest are useless, they can be avoided through a
simple transformation of the bounds and strides. We caldbptimizationinstancewise dead-code elimination

A typical static analysis technique to solve this kind oftfgemns is callecrray-region analysi$CH78, Cre96].
However, because the “chess-board” footprint is not a copedyhedron, all the array-region analyses we are
aware of will fail on this example. In theory, recovering Bygrecise information seems possible by abstract
interpretation, provided the widening operator fpolyhedra (also called lattice polyhedra) can handle some
level of non-convexity [Sch86, LW97], which is not the caselie current state of the art [BRZ03]. In addition,
such precision may only be achieved bgantext-sensitivanalysis.

int A[10][10]; int A[10][10];
void line (int i, int j) { void line (int i, int j, int k, int ) {
coo = AT S = AT
if (j<10) line (i, j+2) if (j<10) line (k, I, i, j+2)
} }
int min () { int min () {
for (i=0; i<10; i++) for (i=0; i<10; i++)
for (j=0; j<10; j++) for (j=0; j<10; j++)
AT =0 AT =0
for (i=0; i<10; i+=2) { for (i=0; i<10; i+=2) {
line(i, j); line(i, j, i+1, j+1);
line(i+l, j+1); }

Figure 1.4: More complex example
Figure 1.3: Simple instancewise dead-code elimination

Figure 1.4 shows a slightly obfuscated version of the previcode: the procedure recursively swaps its
arguments and only one the two initial calls remains in tloplcAlthough it may not seem obvious, this code has
the same “chess-board” footprint as the previous one fals&aA, and the useless array assignments can still be
removed. In this new form, it is of course much harder to imagi precise enough widening operator. Recent
techniques based on model-checking of push-down systel89,E=EP00] would suffer from a similar limitation:
although such techniques provide virtually unlimited etisensitivity, operations on the abstract domain will
incur necessary approximations and lead to a convex reggtead of a “chess-board”.

In Chapter 2, we will describe a static analysis frameworK ¥iteed for this kind of problems. Instead of
searching for more precision in the lattiégprovides unlimited precision and context-sensitivityhie control do-
main, computing static properties as functions of an irdisi#t of run-time program pointsVe apply this concept
to the characterization of induction variables in reciegivograms and to (elementwise, a.k.a. non-uniform) de-
pendence analysis for trees and arrays in such programstoie that exact polyhedral dependence tests (e.g., the
Omega [Pug91a] or PIP tests [Fea88b]) are special cases ofeaganeral exact test for recursive programs with
static restrictions on the guards of conditionals and loopnals, and with a monoid abstraction of the structure
of heap-allocated data. We provide polynomial or algorghmcompute these properties as rational transduc-
ers (two-tape automata), and practical algorithms to sithlealependence test itself (with exact and approximate
versions, the problem being proven NP-complete). Thessdtsasan be found in [Coh99, Ami04].

1.3 Navigating the Optimization Oceans

Recently, iterative optimization has become an incredgimgpular approach for tackling the growing complexity
of processor architectures. Bodin et al. [BK88], Barreteau et &. [BBC99] and Kisuki et al. [KKOWOO]
have initially demonstrated that exhaustively searchimgatimization parameter space can bring performance
improvements higher than the best existing static modedsp€r et al. [CST02] have provided additional evi-

2The title of the paragraph is an intended allusion to the OREAroject, a milestone in this area.



1.3. NAVIGATING THE OPTIMIZATION OCEANS 15

dence for finding best sequences of various compiler tramsftions. Since then, recent studies [TVAO05, FOK02,
BFFO05] demonstrate the potential of iterative optimizafior a large range of optimization techniques.

Some studies show how iterative optimization can be urspdactice for instance, for tuning optimization pa-
rameters in libraries [WPDO0O, BACD97] or for building stathodels for compiler optimization parameters. Such
models derive from the automatic discovery of the mappimgfion between key program characteristics and
compiler optimization parameters; e.g., Stephenson §AD5] successfully applied this approach to unrolling.

However, most other articles on iterative optimizationetdke same approach: several benchmarks are re-
peatedly executed with the same data set, a new optimizagéicameter (e.g., tile size, unrolling factor, inlining
decision,...) being tested at each execution. So, whikeetstudies demonstrate thetentialfor iterative opti-
mization, few provide gractical approach for effectively applying iterative optimizatiohhe issue at stake is:
what do we need to do to make iterative optimization a realifjhere are three main caveats to iterative opti-
mization: quickly scanning a large search space, optirgikased on and across multiple data sets, and extending
iterative optimization to complex composed optimizatibegond simple optimization parameter tuning.

We aim at the general goal of making iterative optimizatiasable technique and especially focus on the first
issue, i.e., how to speed up the scanning of a large optimizapace. As iterative optimization moves beyond
simple parameter tuning to composition of multiple transfations [FOK02, PTCV04, LF05, CGP5] (the third
issue mentioned above), this search space can becomeiglbtdnige, calling for faster evaluation techniques.
There are at least four possible ways to speeding up thelsspace scanning:

1. search more smartly by exploring points with the higheséptial using genetic algorithms and machine
learning techniques [CSS99, CST02, VAGL03, SAMOO03, AQ&, MBQO02, HBKMO03, SA05],

2. enhance the structure of the search space so that fastatiop research algorithms with better understood
mathematical properties can be applied [O’B98, CG¥,

3. or use the programmer’s expertise to directly or indiyedtive the optimization heuristic [CHHI3,
LGP04, PTCV04, DBR05, CDG"06],

4. evaluating multiple optimizations at runtime or reducthe duration of profile runs, effectively scanning
more points within the same amount of time [FCOTO05].

Speeding up the search has mostly focused on the first appnohite we have so far focused on the three other
ones.

Enhancing the search-space structure. Optimizing compilers have traditionally been limited tossmatic
and tedious tasks that are either not accessible to thegroger (e.g., instruction selection, register allocation)
or that the programmer in a high level language does not veadeal with (e.g., constant propagation, partial
redundancy elimination, dead-code elimination, contfiiml+ optimizations). Generating efficient code for deep
parallelism and deep memory hierarchies with complex amddhyc hardware components is a completely dif-
ferent story: the compiler (and run-time system) now hasake the burden of much smarter tasks, that only
expert programmers would be able to carry. In a sense, itti€lear that these new optimization and paral-
lelization tasks should be called “compilation” anymoterative optimization and machine learning compilation
[KKOWO0O0, CST02, LO04] are part of the answer to these chgktsnbuilding on artificial intelligence and oper-
ation research know-how to assist compiler heuristicattee optimization generalizes profile-directed approach
to integrate precise feedback from the runtime behaviohefirogram into optimization algorithms, while ma-
chine learning approaches provide an automated framewdikitd new optimizers from empirical optimization
data. However, considering the ability to perform complaxsformations, or complex sequences of transforma-
tions [PTV02, PTCVO04], iterative optimization and machiearning compilation will fare no better than existing
compilers on top of which they are currently implemented.adidition, any operation research algorithm will
be highly sensitive to the structure of the search spacetiigrsing. E.g., genetic algorithms are known to
cope with unstructured spaces but at a higher cost and Iaedaltslity towards larger problems, as opposed to
mathematical programming (e.g., semi-definite or lineagpamming) which benefit from strong regularity and
algebraic properties of the optimization search spaceottinfiately, current compilers offer a very unstructured
optimization search space. First of all, by imposing phasiering constraints [Wol96], they lack the ability to
perform long sequences of transformations. In additiompmiters embed a large collection of ad-hoc program
transformations, but they asyntactictransformations, i.e., control structures are regenédrafter each program
transformation, sometimes making it harder to apply the trarsformations, especially when the application of
program transformations relies on pattern-matching tegles.



16 CHAPTER 1. INTRODUCTION

Clearly, there is a need for a compiler infrastructure thancapply complex and possibly long compositions
of optimizing or parallelizing transformations, in a ricktructured search space.

We claim that existing compilers are ill-equipped to addrd®ese challenges, because of improper program
representations and inappropriate conditioning of therskapace structure.

In Chapter 3, we try to remedy to the lack of an algebraic stingcin traditional loop-nest optimizers, as
a small step towards bridging the gap between peak and sedtperformance in future and emerging on-chip
multiprocessors. Our framework facilitates the searchctanpositionf program transformations, relying on
a unified representation of loops and statements [Q@BP This framework improves on classical polyhedral
representations [Fea92, Wol92, Kel96, LL97, AMPOQO, LLLE4Fupport a large array of useful and efficient pro-
gram transformations (loop fusion, tiling, array forwangstitution, statement reordering, software pipelining,
array padding, etc.), as well asmpositiongalso in a mathematical sense) of these transformationsip@ced
to the attempts at expressing a large array of program wemstions as matrix operations within the polyhedral
model [Wol92, Pug91c, Kel96], the distinctive asset of ampresentation lies in the simplicity of the formalism
to compose non-unimodular transformations across longbfeesequences. Existing formalisms have been de-
signed for black-box optimization [Fea92, LL97, AMPO0O],daaipplying a classical loop transformation within
them — as proposed in [Wol92, Kel96, LO04] — requires a sytitdorm of the program to anchor the transfor-
mation to existing statements. Up to now, the easy compositf transformations was restricted to unimodular
transformations [Wol96], with some extensions to singtri@nsformations [LP94].

The key to our approach is to clearly separate the four diffetypes of actions performed by program trans-
formations: modification of the iteration domain (loop bdsrand strides), modification of the schedule of each
individual statement, modification of the access functi@rsay subscripts), and modification of the data layout
(array declarations). This separation makes it possibpedeide a matrix representation for each kind of action,
enabling the easy and independent composition of the diftéactions” induced by program transformations, and
as a result, enabling the composition of transformatioeselves. Current representations of program transfor-
mations do not clearly separate these four types of actama;result, the implementation of certain compositions
of program transformations can be complicated or even isiples For instance, current implementations of
loop fusion must include loop bounds and array subscriptifitations even though they are only byproducts
of a schedule-oriented program transformation; afteryapglloop fusion, target loops are often peeled, increas-
ing code size and making further optimizations more compM#ithin our representation, loop fusion is only
expressed as a schedule transformation, and the modifisatiothe iteration domain and access functions are
implicitly handled, so that the code complexity is exactlg same before and after fusion. Similarly, an iteration
domain-oriented transformation like unrolling should éao impact on the schedule or data layout representa-
tions; or a data layout-oriented transformation like paddihould have no impact on the schedule or iteration
domain representations. Eventually, since all programsframations correspond to a set of matrix operations
within our representation, searching for compositiongafsformations is often (though not always) equivalent
to testing different values of the matrices parametershéurfacilitating the search for compositions. Besides,
with this framework, it should also be possible to find and@ate new sequences of transformations for which
no static model has yet been developed (e.g., array forwdrstitution versus loop fusion as a temporal locality
optimization).

Using the programmer’s expertise. Beyond a potential strategy for driving iterative optintiea, the method-
ological work on bottom-up optimization outlined at the egng of this section [PTCV04] has several imme-
diate benefits. (1) It provides a manual optimization pred¢hat can be used by engineers; because this process
is systematic, less expertise is required on the part of tiggneer to optimize a program. (2) The decision tree
formalizes the empirical expertise of engineers, and itvsag to pass this expertise, traditionally hard to teach,
to new engineers or researchers. (3) Each branch actudithed@ mapping between a given architecture perfor-
mance issue and appropriate program transformationsnéyping is based on empirical expertise. (4) Beyond
the optimization process, this empirical work also had taediit of filtering which, among the many existing
program transformations, bring the best benefits in practic

Indeed, programmers of computationally intensive apfiboa complain about the lack of efficiency of their
machines — the ratio of sustained to peak performance — amgdbr performance of optimizing compilers
[WPDO0Q]. Of course, they do not wait for research prototyfpebecome production-quality optimizers before
attempting to improve the productivity of their manual, bggttion-specific optimizations. In addition, no black-
box compiler has ever compiled a matrix-matrix product ceaiéten in Fortran or C on a modern multi-core
superscalar processor and reached performance leveéstolbsind-tuned mathematical libraries. There are fun-
damental reasons for such a disastrous situation:



1.3. NAVIGATING THE OPTIMIZATION OCEANS 17

e domain-specific knowledge unavailable to the compiler canegjuired to prove optimizations’ legality or
profitability [BGGT02, LBCOO03];

e hard-to-drive transformations are not available in coemgilincluding transformations whose profitability is
difficult to assess or whose risk of degrading performanhis, e.g., speculative optimizations [ACMS8,
RP99];

e complex loop transformations do not compose well, due tdagyfit constraints and code size increase
[CGTO4];

e some optimizations are in fact algorithm replacements,revtiee selection of the most appropriate code
may depend on the architecture and input data [LGP04].

MFLOPS

1200
1000 r
800 -
600

400 r

200

Il Il Il Il Il NB
50 100 150 200 250

Figure 1.5: Influence of parameter selection

It is well known that manual optimizations degrade poriabilthe performance of a C or Fortran code on a
given platform does not say much about its performance derdifit architectures. Several people have success-
fully addressed this issue, not by improving the compilat,tbrough the design of application-specific program
generators, a.k.a. active libraries [VG98]. Such genesatfien rely on feedback-directed optimization to select
the best generation strategy [Smi00], but not exclusivEélyH +03]. The most popular examples are ATLAS
[WPDOQ] for dense matrix operations and FFTW [FJ98] for tast fFourier transform. Such generators follow
an iterative optimization scheme. In the case of ATLAS: atemal control loop generates multiple versions of
the optimized code, varying the optimization parametechk |1s the tile size of the blocked matrix product, loop
unrolling factors, etc. These versions are benchmarketiftemempirical search engine selects the best param-
eters. Figure 1.5 shows the influence of the tile size of tbekad matrix product on performance on the AMD
Athlon MP processor; as expected from the two-level cacheahthy of the processor, three main intervals can
be identified, corresponding to the temporal reuse of caeh@y elements; it is harder to predict and statically
model the pseudo-periodic variations within each intergak to alignment and associativity conflicts in caches
[YLR03].

Most of these generators use transformations previouslygsed for traditional compilers, which fail to ap-
ply them for the aforementioned reasons. Conversely, dapditions often involve domain knowledge, from the
specialization and interprocedural optimization of ligréunctions [DP99, CKO01] to application-specific opti-
mizations such as algorithm selection [LGP04]. Recently,$PIRAL project [PSX04] investigated a domain-
specific extension of such program generators, operatiagiomain-specific language of digital signal processing
formulas. This project is one step forward to bridge the gaivben application-specific generators and generic
compiler-based approaches, and to improve the portabfliypplication performance.



18 CHAPTER 1. INTRODUCTION

We advocate for the use of generative programming languatgsechniques, to support the design of such
generic adaptive libraries by high-performance compugixgerts [CDG 06]. We show that complex optimiza-
tions can be implemented in a type-safe, purely generataradwork. We also show that peak performance is
achievable through the careful combination of a high-lereilti-stage language — MetaOCaml| [CTHLO3] —
with low-level code generation techniques.

We also show that combining generative techniques waéimantics-preserving transformatioissan even
better solution, and may further improve the productivifyhah-performance library developers [DBR5].
This approach can be opposed to introspective and refleapeoaches in more expressive meta-programming
frameworks: it provides the right abstractions and privesifor architecture-aware optimization while preserving
the mostimportant safety properties. We are planning &umtbsearch in this area, in particular through an attempt
to combine the rich algebraic structure of the polyhedradelavith generative programming.

Scanning more points within the same amount of time. The principle of our approach is to improve the
efficiency of iterative optimization by taking advantageppbgramperformance stabilityat run-time. There is
ample evidence that many programs exhibit phases [SPHCB20E], i.e., program trace intervals of several
millions instructions where performance is similar. Wheathe point of waiting for the end of the execution in
order to evaluate an optimization decision (e.g., evahga# tiling or unrolling factor, or a given composition
of transformations) if the program performance is stabliniwiphases or the whole execution? One could take
advantage of phase intervals with the same performancatoate a different optimization option at each interval.
As in standard iterative optimization, many options arduatad, except that multiple options are evaluated within
the same run.

Note that there are alternative ways to gather feedbackimatahorter time. Statistical simulation techniques
[SPHCO02] could potentially be adapted to compilation psg® provided an optimization-agnostic checkpointing
of a process state can be performed [GMCTO03]. Alternatjwatg may also use machine learning techniques to
construct cost models automatically, and apply these cosdeta instead of performing a full profile run. These
ideas are left for future work.

The main assets of our approach over previous techniquesrapdicity and practicality. We show that a
low-overhead performance stability/phase detectionrsehie sufficient for optimization space pruning for loop-
based floating point benchmarks. We also show that it is plesgd search (even complex) optimizations at
runtime without resorting to sophisticated dynamic optiation/recompilation frameworks. Beyond iterative
optimization, our approach also enables one to quicklygieself-tuned applications, significantly easier than
manually tuned libraries.

Phase detection and optimization evaluation are resgdgtimplemented using code instrumentation and
versioning within the EKOPath compiler. Considering 5 detied SPEC CPU2000 fp benchmarks, our space
pruning approach speeds up iterative search by a factor tuf 382, with a 9%% accurate phase prediction and
a 26% performance overhead on average; we achieve speedgisgfiom 110 to 172 [FCOTO05].

1.4 Harnessing Massive On-Chip Parallelism

Future and emerging processor designs will integrate neasnounts of parallelism. This is a fact of the physics,
essentially due to communication delays (currently, wekags), and marginally (or temporarily) to power dissi-
pation and architecture design issues.

With such architectures, performance scalability is thestnimmediate challenge. While these processors
start invading all domains of computing, they will also patend to the low expectations in termsedficiency
programmer productivitgndreliability — thinking of the functional correctness and fault tolerare that are
unfortunately common in parallel computing. Who wants tmgsam cheap massively-parallel chips with method-
ologies and systems for worldwide grids? Beyond pure perémice, it is well known that this evolution stresses
productivity issues in the design of parallel systems, gsteanized by the DARPA HPCS program and the Fortress
language initiative by Sun Microsystems [ACQ6].

In addition, the rapid evolution of embedded system teatmol— favored by Moore’s law and standards
— is increasingly blurring the barriers between the desigsafety-critical, real-time and high-performance sys-
tems. A good example is the domain of high-end video apjiinat where tera-operations per second (on pixel
components) in hard real-time will soon be common in low-podevices. Parallel embedded computing make
the parallel programming productivity issue even moreleinging: no current framework is able to bring com-
positionality to explicit time and resource managementievgenerating efficient parallel code from high-level



1.4. HARNESSING MASSIVE ON-CHIP PARALLELISM 19

distributed computing models.

Unfortunately, general-purpose architectures and cargére not suitable for the design of real-tiaved
high-performance (massively parallai)d low-powerand programmablaystem-on-chip [CDC03]. Achieving
a high compute density and still preserving programmatigita challenge for the choice of an appropriate ar-
chitecture, programming language and compiler. Typic#ttigusands of operations per cycle must be sustained
on chip, exploiting multiple levels of parallelism in thernpute kernel, with tightly coupled operations, while
enforcing strong real-time properties.

To address these challenges, we studied the synchronowe nfambmputation [BCE03] which allows for
the generation of custom, parallel hardware and softwasteB)ys withcorrect-by-construction structural proper-
ties including real-time and resource constraints. This maodet industrial success for safety-critical, reactive
systems, through languages likes8AL [BLJ91], LUSTRE(SCADE) [HCRP91] and BTEREL[Ber00Q].

To enforce real-time and resources properties, synchsdaoguages assume a common clock for all registers,
and an overall predictable execution layer where commtinitsand computations can be proven to take less than
a (physical or logical) clock cycle. Due to wire delays, a siaay parallel system-on-chip has to be divided into
multiple, asynchronous clock domains: the so catidabally Asynchronous Locally Synchrond@ALS) model
[Cha84]. This has a strong impact on the formalization ofciyanous execution itself and on the associated
compilation strategies [LTLO3].

Due to the complexity of high-performance applications &mthe intrinsic combinatorics of synchronous
executionmultiple clock domainsave to be considereat the application level as welCDET05]. This is the
case for modular designs with separate compilation phasesfor a single system with multiple input/output
associated with different real-time clocks (e.g., videeaming). It is thus necessary to compose independently
scheduled processe&ahn Process NetworkdKPN) [Kah74] can accommodate for such a composition, com-
pensating for the local asynchrony through unbounded lohgdklFO buffers. But allowing a global synchronous
execution imposes additional constraints on the compuositiVe introduce the concept nfsynchronouglocks
to formalize these concepts and constraints. This conesatithes naturally the semantics of KPN with bounded,
statically computable buffer sizes. This extension alléfes modular composition of independently scheduled
components with multiple periodic clocks satisfying a floregervation equation, through the automatic infer-
ence of bounded delays and FIFO buffers. Our first resultdesaled in Chapter 4.



Chapter 2

Instancewise Program Analysis

This chapter studies the extension of instancewise cotigrileechniques to imperative, first-order, well structure
recursive programs. It focuses on static analysis and ooftheacterization of induction variables as closed form
expressions over non-tail-recursive definitions.

Statementwise analysis. We use the termtatementwisto refer to the classical type systems, data-flow analysis
and abstract interpretation frameworks, that define andoatenprogram properties at each program statement.
A typical example is static analysis by abstract interpiete] CC77, Cou81, Cou96]: it relies on tlellecting
semanticdo operate on a lattice of abstract properties. This rdsttlee attachment of properties tdfiaite

set of control points Little research addressed the attachment of static piiepeat a finer grain than syntactic
program elements. Refinement of this coarse grain abgirairtvolves a previoupartitioning [Cou81] of the
control points e.g.,polyvariantanalysis distinguishes the context of function calls, kg unfoldingvirtually
unrolls a loop several timefynamic partitioningBou92] integrates partitioning into the analysis its€bntrol
points can be extended wittall strings (abstract call stacks) artdnestampsbut ultimately rely ork-limiting
[SP81, Har89] osummarizatiorheuristics [RHS95] to achieve convergence. Although unbed lattices have
long been used to capture abstract properties [CH78, DiuBdte was little interest in the computation of data-
flow facts attached to aanbounded set of control point®llowing the seminal paper by Esparza and Knoop
[EK99]. This approach is the closest to our work and a detaiemparison is provided in Section 2.7; it builds on
model-checking of push-down systems to extend precisigncantext sensitivity, without sacrifying efficiency
[EPOQ], but it ultimately results in the computation of déitaw properties attached tofmite number of control
points

Instancewise analysis. On the other hand, ad-hoc, constraint-based approachéatim analysis are able to
compute program properties famctions defined on an infinite (or unbounded) number oftinne-control points
The so-callegolytope modeéncompasses most work on analysis and transformation ¢fthag-incomplete)
class ofstatic-control programgFea88a, PD96], roughly defined as nested loops with affiop lwounds and
array accesses. Aiteration vectorabstracts the runtime control point corresponding to argiteration of a
statement. Program properties are expressed and computeddh vector of values of the surrounding loop
counters. In general, the result of the analysis is a mapfporg the infinite set of iteration vectors (the run-
time control points) to an arbitrary (analysis-specifiajtee space (e.g., dependence vector). Instead of itelpative
merging data-flow properties, most analyses in the polytopeel use algebraic solvers for the direct computation
of symbolic relations: e.g., array dependence analysisingeger linear programming [Fea88a]. Iteration vectors
are quite different from time-stamps in control point pi#otiing techniques [Bou92]: they are multidimensional,
lexicographically orderedinboundegdand constrained by Presburger formula [Pug92].

First contribution. We introduce a general static analysis framework that upamses most ad-hoc formalisms
for the fine grain analysis of loop nests and arrays in seélerbcedural languages. Within this framework,
one maydefine, abstract and compupeogram properties at anfinite number ofruntime control points Our
framework is callednstancewis@nd runtime points are further referencedrestances We will formally define
instances asrace abstractionsunderstood as iteration vectors extended to arbitramnyrsae programs. The
mathematical foundation for instancewise analysisiisial language theoryrational languages finitely represent
infinite set of instances, and instancewise properties neagalptured by rational relations [Ber79]. This paper

20



2.1. CONTROL STRUCTURES AND EXECUTION TRACES 21

goes far beyond our previous attempts to extend iteratiotovgto recursive programs, for the analysis of arrays
[CCG96, CCI8, Coh99, Col02, ACFO3] or recursive data stmest[Fea98, Col02, Coh99].

Second contribution. Building on the instancewise framework, we extend the cphoéinduction variables

to arbitrary recursive programs. This extension demotestrine ability to characterize properties of programs
as functions from an infinite set of run-time control poirieyond the restricted domain of Fortran loop nests.
Technically, the valuation of induction variables is ampto parameter passing in a purely functional language:
each statement is considered as a function, binding anallinitg one or more induction variables. Our induction
variable characterization does not take the outcome of uptest predicates into accodntThus, we will
consider a superset of the valid traces for the evaluatiomaction variables. We propose two alternative
algorithms for this evaluation. The result of both algamthfor each induction variable istanding function
mapping instances to the abstract memory locations thessactt is aational functionon the Cartesian product
of two monoids and can be efficiently represented eatianal transducef{Ber79]. This binding function will
give anexactresult for valid traces.

Structure of the chapter. To focus on the core concepts and contributions, we intreddoGuL, a domain-
specific language with high-level constructs for travegsilata structures addressed by induction variables in a
finitely presented monoidn a general-purpose (imperative or functional) langyage technique would require
additional information about the shape of data structunes)g dedicated annotations [HHN92, KS93, FM97]
or shape analyses [GH96, SRW99]. Despite the generalitigeotontrol structures in MGUL, as said before,
binding functions givexactvalues for valid traces. This may be used to dealias anddependencmformation

of recursive programs with an unprecedented precision $8plLol02, ACF03]. We will survey the current
applications of instancewise analysis for recursive paotg; the reader interested in more details (for loop nests
or more general recursive programs) may refer to [Col02hfpedagogical and synthetic presentation.

Section 2.1 describes the control structures and tracergemaf MOGUL. Section 2.2 defines the abstrac-
tion of runtime control points into instances. Section Xt&ads induction variables to recursive control and data
structures. Section 2.4 states the existence of rationdiry functions from individual instances to individual
data structure elements. Section 2.5 addresses the cdiopwtad representation of binding functions as ratio-
nal transducers. We consider practical examples in Se@tidn Section 2.7 gives two simple applications of
instancewise analysis to program optimization and surtleysurrent state of the art.

2.1 Control Structures and Execution Traces

We consider a simplified notion @xecution tracevith emphasis on the identification of runtime control psint
For our purpose, &raceis a sequence of symbols calledelsthat denotes aompleteexecution of a program.
Each label registers either theginningof a statement execution or iempletion A trace prefixis the trace of a
partial execution, given by a prefix of a complete trace. nrbmainder, we will consider trace prefixes instead
of the intuitive notion of runtime control point.

Figure 2.1 presents our running example. It features a sa@icall to theToy function, nested in the body of
afor loop, operating on an array Thus, there is no simple way to remove the recursion. Inghjserwe will
construct a finite-state representation for the infiniteafd@tace prefixes oToy, then compute an exact finite-state
characterization of the elements Afaccessed by a given trace prefix

2.1.1 Control Structures intheMoGuL Language

Figure 2.2 gives the MGUL version ofToy. It abstracts the shape of arr&yhrough a monoid typkbnoi d_i nt .
Induction variable$ andk are bound to values in this monoid. Traversal#\afre expressed through k and
the monoid operation Further explanations about®GuL data structures and induction variables are deferred
to Section 2.3. We present in Figure 2.3 a simplified versibthe MoGuUL syntax, focusing on the control
structures.

This is aC-like syntax with some specific concepts. Italic non-terafsrare defined elsewhere in the syn-
tax: infinite binary wordelementary_statement covers thgaliatomic statements, including assignments, in-
put/output statements, void statements, etc.; infinitadyinvordpredicate is a boolean expression; infinite binary

1This limitation can be overcome thanks to approximations laigher complexity algorithms. We will present our solngoin another
paper.



int A[20]; structure Mnoid int A
void Toy(int n, int k) { A function Toy(Mnoid_int n, Mnoid_int k) {
if (k <n B if (k<n)
{ Cc {
for (int i=k; i<=n; D for (Monoid_ int i=k; i<=n;
i +22) d i=i.2)
(. ' . E { . ' '
Ali] = Ali] + Aln-i]; F Ali] = Ali] + Aln-i]
Toy(n, k+1); G Toy(n, k.1);
} }
} }
return
} }
int min() { H function main() {
Toy(20, 0); I Toy(20, 0);
} }
Figure 2.1: Prograrfoy in C Figure 2.2: Prograrfoy in MoGuL
program :=function
[function program
function m="function infinite binary wordident '(' infinite binary wordformal _paraneter_|ist ’
bl ock
bl ock #=LABEL ':" '{’ infinite binary wordinit_list statement_list '}’
[LABEL ':" '{' statenment_|ist '}’
statenment _|ist:=¢
[LABEL ':’ statenent statement_|ist
st at ement m=infinite binary wordel enentary_statement ’

22 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

linfinite binary wordident '(’ infinite binary wordactual _parameter_list ")" ’;
'if" infinite binary wordpredicate block 'else’ block

'for’ '(’ infinite binary wordinit_list ;' LABEL ':’ infinite binary wordpredicate ’

LABEL ':’ infinite binary wordtranslation_list ")’ block
|bl ock

Figure 2.3: Simplified M0GUL syntax (control structures)

wordinit_list contains a list of initializations for one orore loop variables, and infinite binary wordtranslatiast |

is the associated list of constant translations for thodedtion variablesl ock collects a sequence of statements,
possibly defining some induction variables. Every exedetphrt of a program is labeled, either by hand or by

the parser.

2.1.2 Interprocedural Control Flow Graph

We start with an intuitive presentation of the trace sentantif a MoGUL program, using the Interprocedural
Control Flow Graph (ICFG): an extended control flow graph [/886] with function call and return nodes. The

ICFG associated tdoy is shown in Figure 2.4.
Each elementary statement, conditional and function salriode of the ICFG. More specifically:

e one node is associated to edtlock entry;
e eachf or loop generates three nodes: initialization (entry), cbodi(termination), and iteration;

e ar et urn node exists for each function call.



2.1. CONTROL STRUCTURES AND EXECUTION TRACES 23

The iteration node follows the last node of the loop block baadls to the condition node. Given a function call
cin the program source, there is an edge in the ICFG from the asdociated toto the corresponding function
body. Moreover, there is an edge from treg ur n node to the statement following the function call in the seur
program.

pushl l I l

Toy(20, 0O
Toy(20, 0) 0y(20, 0)
Toy 1]
B
S :
i =k
D:;d
‘ i <=n 1 i <=n
B F
[return]  [Ali] = Ai]+An-i] | [return]  [Alf] iA[i]+A["'i]|
h | = FG
pushG il s l
§ Toy(20, k+1) Toy(20, k+1)
- popG d
ki
end i =i.2 end i =i.2
Figure 2.4:Interprocedural Control Flow Graph Figure 2.5:Simplified Pushdown Trace Automaton

To forbid impossible matchings of function calls and resyiire., to preserve context-sensitivity [NNH99], we
provide the ICFG with a control stack [ASU86], see Figure ZHe result is the graph of a pushdown automaton.
A complete trace is characterized as the word along a path the initial node to thend node, the stack being
empty at the latter node. We ignore the outcome of loop angteslicates, see Section 2.2. Consequently, some
accepted paths correspond to valid execution traces, betimay still take wrong branches. Since we focus on
a static scheme to name runtime control points, our tracestos will make the same simplifying assumption
and we will consider a superset of the valid traces.

2.1.3 The Pushdown Trace Automaton

Although MoGuL uses &C syntax, the instancewise framework in Section 2.2 considach statement as a call
to a function implementing elementary operations, coodél branches and iteration (as in a purely functional
language). We extend the control stack of the ICFG to taksetlraplicit calls into account. The stack alphabet
now holds every statement label. Moreover, each statera@nbvided an additional label to separate the implicit
function call from the implicit return. 1 a label,/ corresponds to the beginning of the execution of a statement
and/ indicates its completion. Regarding the control stdghiished while ¢ popsé. An additional state, called
return state is associated to the completion of each statement. Thé resalled thepushdown trace automaton
and the recognized words are #weecution traces

When all states are considered final, the automaton recegalitrace prefixeslt also recognizes prefixes of
non-terminatingraces in case the program loops indefinitely. We thus exchah-terminating programs in the
following.

Figure 2.6 presents the trace pushdown automaton ofdhgrogram. We exhibit here a prefix of a valid
trace: _ _
IABCDOEFFGABCDEFFGABBAGESAOEF

For clarity of exposure and figures relative to the runningregle and without loss of precision, we use a
simplified representation of the trace pushdown automatdfigure 2.5: it omits return states, except Toy
calls, and states associatedtmck statements and to loop predicates. Now, the previous tnatix peduces to:
IBDFFGBDFFGBBGdF. We will use this simplified representation of traces in thiéofving.




24 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

In the stack:
c ¢ pushest, while ¢ pops*.

Toy(20, k+1) —

]

ALt

——a—a—T]

Figure 2.6: Pushdown Trace Automaton

2.1.4 The Trace Grammar

After the intuitive presentation above, this section gigdermal definition of traces. There is one context-free
trace gramma®Gp per progran®.

1. For each call to a functiard, i.e., each derivation of productioBq), there is a production schema

C4q = Label Bjq Label (2.2)

whereCjg andBjg are the respective non-terminals of the function call ardibloabel is the terminal label
of the call to function d, andLabel marks the end of the statement, hereetwr n statement.

2. For each loop statemesyti.e., each derivation of productioBY1), there are four production schemas

Ls == € | Label¢ Label , BsOsLabel , Label ¢ (2.2)

Os == €& | Label; Label , Bs OsLabel , Label (2.3)

where the three non-termindlg, Os andBs correspond to the loop entry, iteration and body, respelgtiv
Label ¢, Label  andLabel ; are terminals, they are the labels of the loop entry, pregliaad iteration,
respectively.

3. For each conditiond i.e., each derivation of productio8X0), there are two productions schemas

Is = Label TsLabel | Label FsLabel (2.4)

where the three non-termindls Ts andFs correspond to the conditiondlhen branch anckl se branch,
respectivelyLabel is the terminal label of the conditional.

4. For each block, i.e., each derivation of productionS4) or (S5), there is a production schema

Bs = Label S ... S Label (2.5)



2.1. CONTROL STRUCTURES AND EXECUTION TRACES 25

where the non-termindds corresponds to the block and non-termirls .., S, correspond to each state-
ment in the blockLabel is the terminal label oBs.

5. For each elementary statemspihere is a production schema

S; = Label Label (2.6)
whereLabel is the terminal label of statemesit

The axiom of the trace grammar is the non-terminal assatiatn the block of therai n function.

Definition 1 (Trace Language) The set of traces of a program P — called thace languagef P — is the set of
terminal sentences ofgs

For a given execution trade runtime control points are sequentially ordered accaydiinthe appearance of
statement labels in

Definition 2 (Sequential Order) Thesequential ordexseqis the strict prefix order of the trace prefixes. Itis a
total order for a given execution trace.

Calling Lgp, the alphabet of labels, thteace languageecognized byGp is a context-free (a.k.a. algebraic)
subset of the free monold;,, ande denotes its empty word. Clearly, the trace language fitsrthation about
program execution and the previous presentation in terrtteedhterprocedural control flow graph: the pushdown
trace automaton recognizes the trace language.

GrammaiGp generates many terminal sentences that are possible mxeseatjuences fd?. These sentences
depend on choices between productions (2.1) to (2.6). Ialeesecution ofP, these choices are dictated by the
outcome of loop and test predicates, which our grammar doetke into account. It is customary to say that
predicates are not interpreted (in the model theory sens#)atP is aprogram schem@Man74]. We are free to
select which predicates and operations should be inteqgbretg., the polytope model interprets every loop bound
and array subscript in number theory [PD96]. In this paperwill interpret address computations in the theory
of finitely-presented monoids; everything else will remaiminterpreted.

Eventually, a runtime execution may be represented in tapesbf amctivation trefASU86]: the sequential
execution flow corresponds to the depth-first traversal efattivation tree. This representation is used in the
formal definition of instances. Figure 2.7 shows an actiratree forToy. We label each arc according to the
target node statement. The trace is obtained while readewyord along the depth-first traversal: each downward
step produces the arc label, and each upward step prodecasdbciated overlined label.

Trace prefix: |IBDFFGBDFFGBBGAFFGBBGAddDBGAF

Figure 2.7: Activation tree



26 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS
2.2 The Instancewise Model

This section is dedicated to the first part of our framewohe @bstraction ofrace prefixesnto control words

the formal representation @istances The control word abstraction characterizes an infiniteogtiace prefixes

in a tractable, finite-state representation. We presentiberties of control words from several points of view:
pushdown trace automata, trace prefixes, activation tesesMoGuUL grammar. This last insight introduces a
control words grammar that generates a superset of controlsy\We then investigate the conditions realizing the
equivalence of the language generated by the control woatargar and the set of control words. This section
ends with the description of the control word language inftlm of a finite-state automaton, a counterpart of the
pushdown trace automaton. Finally, we expose one of the reairits of this work, justifying the introduction of
control words as the basis for instancewise analysis.

2.2.1 From the Pushdown Trace Automaton to Control Words

The pushdown trace automaton will help us prove an impopeogerty of control words.

Definition 3 (Stack Word Language) The stack word language of a pushdown automadas the set of stack
words u such that there exists a state cdiior which the configuratiofig, u) is both accessible and co-accessible
— there is an accepting path traversing g with stack word u.

Definition 4 (Control Word) The stack word language of the pushdown trace automatonllisdctne control
word languageA control wordis the sequence of labels of all statements that have begimetkecution but not
yet completed it. Any trace prefix has a corresponding contord.

Since the stack word language of a pushdown automaton ed{iRS97a], we have:
Theorem 1 The language of control words is rational.

The activation tree is a convenient representation of cbmtords. When the label of nodeis at the top of the
control stack, the control word is the sequence of labelsgatbhebranchof n in the activation tree, i.e., the path
from the root to node [ASU86]. Conversely, a word labeling a branch of the acibratree is a control word.
For example|BDdF is the control word of trace prefix

IBDFFGBDFFGBBGJFFGBBGAddDBGAFin Figure 2.7.

2.2.2 From Traces to Control Words

The trace language is a Dyck language [Ber79], i.e., a hubieal parenthesis language. The restricted Dyck

congruence ovelr}, is the congruence generated f#fy= ¢, for all £ ¢ Lan? This definition induces a rewriting
rule overL},, obviously confluent. This rule is the direct transpositidnthe control stack behavior. Applying it
to any trace prefip we can associate a minimal wond

Lemma 1 The control word w associated to the trace prefix p is the gsvlement in the class of p modulo the
restricted Dyck congruence.

Definition 5 (Slimming Function) Theslimming functionmaps each trace prefix to its associated control word.

Theorem 2 The set of control words is the quotient set of trace prefixeduto the restricted Dyck congruence,
and the slimming function is the canonical projection ot&arefixes over control words.

From now on, the restricted Dyck congruence will be calleslslimming congruenceThe following table
illustrates the effect of the slimming function on a few ggqefixes.

Trace prefix IBDFFGBDF
Controlword IBD GBDF

Trace prefix IBDFFGBDFFGBBGAFFG

Control word IBD _GBD B _d _G L
Trace prefix IBDFFGBDFFGBBGAFFGBBGdAddDBGdF
Control word IBD dF

The slimming function extends Harrison’seM function, and control words are very similar to Ipicedure
strings[Har89]. Harrison introduced these concepts for a statémwisa analysis with dynamic partitioning.

2Therestrictedqualifier means that onl&? couples are consideref, being a nonsensical sub-word for the trace grammar.



2.2. THE INSTANCEWISE MODEL 27
2.2.3 From the Trace Grammar to Control Words

We may also derive aontrol words grammafrom the trace grammar. This grammar significantly diffecsr
the trace grammar in three ways.

1. Control words contain no overlined labels.
The control stack ignores overlined labels

2. Each non-terminal is provided an empty production.
A control word is associated to each trace prefix

3. If the right-hand side of a production consists of muétiplon-terminals, it is replaced by an individual
production for each non-terminal.

Only the last statement of an uncompleted sequence renmting control stack, i.e., in the control word

Under these considerations, the productions for the cbwtiods grammar are the following, with the same
notations and comments as the trace grammar.

1. For each function calild, i.e., each derivation of productio8q), there are two productions

Cq == Label Big | ¢

2. For each loop statemesyti.e., each derivation of productioBX1), there are six productions
Ls == LabeleLabel ,Bs | Label¢Os | €
Os 1= Label; Label ;Bs | Label; Os | €

3. For each conditiond i.e., each derivation of productio8X0), there are three productions

s = Label Ts | Label ks | €

4. For each block enclosingn statements, i.e., each derivation 8#] or (S5), there aren + 1 productions

Bs = Label & | - | Label &5 | ¢

5. For each elementary statement

S = Label | ¢

The axiom of this grammar is the block of thei n function.
The control words grammar grammar above is right lifeagnce its generated language is rational.

Lemma 2 The language of control words is a subset of the languagergéteby the control words grammar.

The proof comes from the three above observations thatlatarthe effect of the slimming function. For each
trace grammar derivation, we associate a correspondingatien of the control words grammar. The control
words grammar generates any stack word corresponding ttha-paccepting or not — in the pushdown trace
automaton.

The next section will show that the control words grammay@w@nerates control words, assuming the trace
grammar satisfies a termination criterion.

2.2.4 Control Words and Program Termination

Assumingany incomplete execution can be completed until the tertioinaf the program stack words corre-
sponding to a path of the pushdown automaton are all stactsmirtrace prefixes, i.e., control words.

Conversely, if a partial execution has entered a step whertast opened statement can never be completed,
a recursive cycle in the trace derivation cannot be avoided.

3At most one non-terminal in the right-hand side, and nomieals are right factors.



28 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

Example

Consider the following trace grammar:

S — aA_tb_a B — f(:_?
A — CBC_ C — gBg
A — ded

a labels the body of functiomai n andb labels an elementary stateme#t.is a non-terminal for a conditional
test; functionB is called in the hen branch, while elementary statemesyis executed in thel se one. Function

B calls functionC and conversely. Thus, théien branch may never terminate. The corresponding control svord
grammar is:

S —- aA A — ¢
S — ab B — fC
S — ¢ B — ¢
A — cB C — gB
A — de C — ¢

This grammar generates, thanks to the derivation
S—aA A—cB B—z¢e.

However, no trace prefix can be generated by the trace grafomahich the control word isc, henceacis not a
control word. To avoid this, we need a criterion that forliglsursive trap cycles. This criterion is defined through
the structure of the trace grammar; we refer to the definttfcanreduced grammajTS85].

Definition 6 (Reduced Grammar) A reducedrammar is a context-free grammar such that:
1. thereis no A— Arule;
2. any grammar symbol occurs in some sentential form (a satéorm is any derivative from the axiom);
3. any non-terminal produces some part of a terminal ser@enc

The third rule is the criterion we are looking for: a non-téred which produces some part of a terminal sentence
is saidactive The control words grammar of the program must have onlyacton-terminals; it is called an
unloopinggrammar. In the previous exampkandC arenot active

Termination criterion for the trace grammar

Starting from a set of non-terminal$, we recall an inductive algorithm that determines the sedative non-
terminalsN’ C N; if N = N/, the grammar is unlooping [TS85]. The initial $¢f contains active non-terminals
that immediately produce a part of a terminal senterkajenotes the set of grammar rulés,is the set of
terminals, ananis the cardinal oN.

Algorithm 1
Nt —{A|A—aecdANaecT*}
Fork=2,3,....m
Ne—N; UfAJA—aed Aae(TUN )"}
TN =N, ; Vk=m
Then N — N,
Applied to our example wherd = {S A,B,C}:
Ni = {A}; N = {A.S}; N3 =N3; N' = {A S N£N.
Thanks to Lemma 2, we may state a necessary and sufficienttioorfdr the control words grammar to only
generate control words.

Theorem 3 Let P be a program given by its trace grammag,Gnd let G, be the associated control words
grammar. The control words language of P is generated pyif@nd only if Algorithm 1 concludes thatg3s
unlooping.



2.2. THE INSTANCEWISE MODEL 29
2.2.5 The Control Automaton

We now assume the program satisfies Theorem 3.

It is easy to build a finite-state automaton accepting thguage generated by the right-linear control words
grammar, i.e., a finite-state automaton recognizing thguage of control words. We call the latter tbentrol
automaton

Figure 2.8 shows the control automaton Tay; the control word language is+ IB + IBD(d + GBD)* (¢ +
F+G+GB).

Q@

D ¥ @ ©
F
All states are final. = G
Toy(20, Kk+I) -
A few control words: G
IBDdF, Each statement in a sequence is linked to the enclos-
IBDGBDF, ing block.
IBDGBDdAG
Figure 2.9: Construction of the Control
Figure 2.8: Example Control Automaton Automaton

The transformation from traces to control words is a systenpaocedure. A similar transformation exists
from the pushdown trace automaton to the control autom#t@is important for the design of efficient instance-
wise analysis algorithms (see Section 2.4).

¢ Inthe pushdown trace automaton, a sequence of succesgmmsnts is a chain of arcs, while, in the control
automaton, each of these statement is linked by an edge F@eoimmon enclosing block, see Figure 2.9.
Thus, the control automaton makes no distinction betweeséluence and the conditional.

e As in the pushdown automaton for trace prefixes, all state§irzail.

e Since a et ur n statement closes the corresponding function call andetetatery label relative to it in the
control word,r et ur n nodes are not needed anymore.

2.2.6 Instances and Control Words

Consider any traceof a MOGUL program and any trace prefixof t. The slimming function returns a unique
control word. Conversely, it is easy to see that a given obatord may be the abstraction of many trace prefixes,
possibly an infinity. E.g., consider two trace prefixes diffg only by the sub-trace of a completed conditional
statement: their control words are the same.

This section will prove that, during any execution of aBuL program, the stack that registers the control
word at runtime cannot register twice the same control wagd, (for two distinct trace prefixes). In others
words, control words characterize runtime control point@imore compact way than trace prefixes. For the
demonstration, we introduce a strict order over controldsor

Definition 7 (Lexicographic Order) We first define the partigkxtual order<ap over labels. Givenssand $
two labels in Ly, 1 <jap S if and only if

e there is a production generated by (2.5) in the trace grammizch as sis the label of Sand $ is the label
of §, withl<i<j<n;

e orthere is a production generated by (2.2) or (2.3) suchaas she label of Band $ is the label of Q.

4l.e., after both branches have been completed, the firstraob-denoting thehen branch and the other the se one.



30 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

We denote by ey the strict lexicographic order over control words induced<y,p.

In other words<ap is the textual order of appearance of statements withinkslamnsidering the loop iteration
statement as textually ordered after the loop body.

Lemma 3 The sequential ordetseqover prefix traces is compatible with the slimming congreerihe lexico-
graphic order<ex is the quotient order induced byseqthrough the slimming congruence.

The proof takes two steps. First of all, tdbe a trace and its activation tree. The set of all pathsTnis ordered
by a strict lexicographic orde; T, isomorphic to<e.

Then, leta be the function mapping any pathnto the last label of the path word (accurately speaking of
the control word labeling this path). Given a trace prefiand the<t ordered sequendéy = €,by, ...,by} of all
paths inT, the (partial) depth-first traversal @funtil p yields the following word:

dft(p) £ a(bg)a(by)...a(by),

whereby is the branch op, g < n. Now, the definition of dftp) is preciselyp.
Let pq andpr be two prefixes of, pq being a prefix ofp; itself, and write

Pg = a(bo)a(by)...a(bg), pr = a(bg)a(by)...a(byr).

We have the followingpg <seqPr <= by <1 br. Together with the first stepg <seqPr <= bq <jex br.
We now come to the formal definition of instances.

Definition 8 (Instance) For a MoGUL program, aninstanceis a class of trace prefixes modulo the slimming
congruence.

It is fundamental to notice that, in this definition, instas@o not depend on any particular execution.
From Lemma 3 and Theorem 2 (the slimming function is the caraprojection of trace prefixes to control
words), we may state the two main properties of control words

Theorem 4 Given one execution trace ofMoGUL program, trace prefixes are in bijection with control words.
Theorem 5 For a givenMoGuUL program, instances are in bijection with control words.

Theorem 4 ensures the correspondence between runtimelcpoitnts and control words. Theorem 5 is just a
rewording of Theorem 2, it states the meaning of control wackoss multiple executions of a program.

In the following, we will refer to instances or control woridéerchangeably, without naming a particular trace
prefix representative.

2.3 Data Structure Model and Induction Variables

This section and the following ones apply instancewiseyaimto theexact characterization of memory locations
accessed by a MIGUL program. For decidability reasons, we will only considegstricted class of data structures
and addressing schemes:

e data structures do not support destructive updates (deletinodes and non-leaf insertior?s);

e addressing data-structures is done through so called fiodueariables whose only authorized operations
are the initialization to a constant and the associativeaifms of a monoid.

These restrictions are reminiscentmirely functional data structurd®©ka96].

In this context, we will show that the value of an inductiomighle at some runtime control point — or the
memory location accessed at this point — only depends onnttarice. Exact characterization of induction
variables will be possible at compile-time by means of stleddinding functiondrom control words to abstract
memory locations (monoid elements), independently of #eeation.

5Leaf insertions are harmless if data-structures are intlgliexpanded when accessed.



2.3. DATA STRUCTURE MODEL AND INDUCTION VARIABLES 31
2.3.1 Data Model

To simplify the formalism and exposition, ®MGUL data structures with side-effects mustddebal. This is not
really an issue since any local structure may be “expandiedtithe activation tree (e.g., several local lists may
be seen as a global stack of lists).

A finitely-generated monoid M (G, =) is specified by dinite list of generators Gand acongruence= given
by afinite list of equations over words i6*. Elements oM are equivalence classes of word€Gh modulo=.
When the congruence is emphy,is afree monoid The operation oM is the quotient of the concatenation on the
free monoidG* modulo=; it is an associative operation denoted-lwith neutral elemerg,.

Definition 9 (Abstract Location) A data structure is a pair of @ata structure namend a finitely-generated
monoid M= (G,=). An abstract memory location in this data structure is anmaat of the monoid. It is
represented by aaddress wordn G*. By definition, two congruent address words represent tineesaemory
location.

Typical examples are theary tree — the free monoid with generators (with an empty congruence) — and the
n-dimensional array — the free commutative mongait(with vector commutation and inversion).
Below are listed some practical examples of monoid-bastdslaictures.

Free monoid. :

. . . . | eft right
G={right,left}, =is the identity bt
relation,- is the concatenation: monoid o/o\o W
elements address a binary tree.

Free group. o\\ //o
G={right,left,right 1 left 1}, Yol right ™t jeftl o
= is the inversion of ef t andri ght oright tiert = so<Z Tight
(without commutation): Cayley graphs > lefl ri ght
[ECHT92, GMS95]. (0,-1) (0,-1) O/szo
Free commutative group. e e T T oo T T
G={(0,1),(1,0),(0,~1),(-1,0)}, = RV G N N )
is the vector inversion and L O)T‘(_l o N B \
commutation; is vector addition: a @ & Y Y /
two-dimensional array.
Free commutative monoid. (LO)j> ©.1) T ©.1) T ©.)
G={(0,1),(1,0)}, = is vector a O)T T T
commutation: a two-dimensional grid. e § é é
Commutative monoid. ~ ~
G={(0,1),(1,0)}, = is vector N0y N 0y N 01 P
commutation and0,1) - (0,1) = &y, a (170)( )(1=0) ( ) ( ) ( )
two-dimensional grid folded on the e} e el o]
torusZ x 2. 1 1 _1
Free partially-commutative monoid. T’ T o= —~0=——F—0
G = {next,1,—1}, = is the inversion L
and commutation of 1: nested trees T O N O

! next next
lists and arrays. o=—=x50 Q=T =50="=15¢
Monoid with right-inverse. left right

G={right,left, parent},

- - ~ ~
ri ght -parent =¢gp, _Rparent pareg%\o
| eft -parent =¢gn: atree with
o7 T

backward edges.

2.3.2 Induction Variables

Traditionally, induction variables are scalar variablethim loop nests with a tight relationship with the surround
ing loop counters [ASU86, GSW95]. This relationship, dezthérom the regularity of the induction variable



32 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

updates, is a critical information for many analyses (déeeece, array region, array bound checking) and opti-
mizations (strength-reduction, loop transformationsstirg).

A basic linear induction variable is assigned (once or more) in a loop, each assignment beithg iform
X = corx = x + ¢, wherecis a constant known at compile-time. More generally, a \dgia is called dinear
induction variabldf on every iteration of the surrounding loapjs added a constant value. This is the case when
assignments t® in the cycle are in the basic form or in the foxm= y + c, y being another induction variable.
The value ofk may then be computed as an affine function of the surroundiogg ¢ounters.

MoGUL extensions are twofold:

e induction variables are not restricted to arrays but haalliimonoid-based data structures;
e both loops and recursive function calls are considered.

As a consequence, induction variables represent absttdisses in data structures, and the basic operation over
induction variables becomes the monoid operation.

Definition 10 (Induction Variable) A variablex is an induction variable if and only if the three followingreo
ditions are satisfied:

a. x is defined at @l ock entry, af or loop initialization, orx is a formal parameter;
b. x is constant in thél ock, thef or loop or the function where it has been defined;
c. the definition ofx (according toa) is in one of the forms:

1. X = ¢, and cis a constant known at compile-time,

2. x =y - ¢,andy is an induction variable, possibly equalto

A MoGuL induction variable can be used in different address exgiwas which referencdistinctdata struc-
tures, provided these structures are defined over the sameidnoThis separation between data structure and
shape follows the approach of the declarative language[@MS95]. It is a convenient way to expose more
semantics to the static analyzer, compared with C pointerariables of product types in ML.

Eventually, the M GUL syntax is designed such thextery variable of a monoid type is an induction varigble
other variables being ignored. The only valid definitiond aperations on MGUL variables are those satisfying
Definition 10. For any monoid shape, data structure accdefiew the C array syntax:D a] denotes element
with address of structureD, wherea is in the formx orx - ¢, x an induction variable anda constant.

If Ais an array (i.e.Ais addressed in a free commutative group), the affine sytig¢ii+2j - 1] is not a valid
MoGuUL syntax. This is not a real limitation, however, since affsudscripts may be replaced by new induction
variables defined when necessary whilerj are defined. As an illustration, letbe the induction variable equal
toi +2j - 1, the subscript in the reference above. We have to buildutiir@a backward motion, static chains of
induction variables from the program start point to the @bered reference. Suppose the last modification of the
subscript before the considered program point is given bystatement= h denoted bys, whereh is another
induction variable. We have to define a new induction vaegbk i +2h- 1, living before this statement, and to
consider thas initializesk through an additional assignméat g. This work has to be done recursively for all
paths in the control flow graph until reaching the start point

2.4 Binding Functions

In MoGuUL, the computations on two induction variables in two distimonoids are completely separate. Thus,
without loss of generality, we suppose that all inductionatales belong to a single monoidi,, with operation
- and neutral elememty, called thedata structure monoid

2.4.1 From Instances to Memory Locations

In a purely functional language, function application ie tnly way to define a variable. In ®GuUL, every
statement is handled that way; the scope of a variable iSatest to the statement at the beginning of which it has
been declared, and an induction variable is constant icipes



2.4. BINDING FUNCTIONS 33

Since overloading of variable nhames occurs at the beginoirepch statement, the value of an induction
variable depends on the runtime control point of interestxlbe an induction variable, we define thimding for
x as the pair g, vp), wherep is a trace prefix and, the value ok after executingp.

Consider two trace prefixgs and p; representative of the same instance. The previous rulesgie® that
all induction variables living right aftep; (resp.p;) have been defined in statements not closed yet. Now, the
respective sequences of non-closed statemenis fand p, are identical and equal to the control wordmfand
p2. Thus the bindings of for p; andp, are equal. In others words, the function that binds the tpaeéx to the
value ofx is compatible with the slimming congruence.

Theorem 6 Given an induction variable in a MoGuUL program, the function mapping a trace prefix p to the
value ofx only depends on the instance associated to p, i.e., on thteotarord.

In other words, given an execution trace, the bindings attene prefix are identified by the control word (i.e.,
the instance).

Definition 11 (Binding Function) A binding forx is a couple(w,v), where w is a control word and v the value
of x at the instance w.
Ny denotes théinding function forx, mapping control words to the corresponding valuexof

2.4.2 Bilabels
We now describe the mathematical framework to compute b@filinctions.

Definition 12 (Bilabel) A bilabelis a pair in the set [, x Mioc. The first part of the pair is called thiaput labe]
the second one is called tloaitput label

B = L}, x Mo denotes the set of bilabels. From tieect productof the control word free monoill}, and the
data monoidVqc, B is provided with a monoid structure: its operatieiis defined componentwise drj, and
IV'Ioc.

(ala) s (Blb) €' (apla-b). 2.7)

A binding for an induction variable is a bilabel. Every statnt updates the binding of induction variables
according to their definitions and scope rules, the corneding equations will be studied in Section 2.4.3.

Definition 13 The set ofrational subsetsf a monoid M is the least set that contains the finite subdeik olosed
by union, product and the star operation [Ber79].
A rational relatiorover two monoids M and Ms a rational subset of the monoid MM'’.

We focus on the familyB,4; of rational subsets d8.

Definition 14 A semiring is a monoid for two binary operations, the “addit! +, which is commutative, and
the “product” x, distributive overt+; the neutral element fo#- is the zero forx.

The powerset of a monoilll is a semiring for union and the operation Mf[Ber79]. The set of rational
subsets oM is a sub-semiring of the latter [Ber79]; it can be expreskealigh the set of rational expressions in
M. ThusB4; is a semiring.

We overloack to denote the product operationBgy; 0 is the zero element (the empty set of bilabels); and the
neutral element fos is £ = {(¢,em)}. From now on, we identifyB;a with the set of rational expressions /i,
and we also identify a singleton with the bilabel inside {g/¢)} may be written §|c).

2.4.3 Building Recurrence Equations

To compute a finite representation of the binding functiarefach induction variable, we show that the bindings
can be expressed as a finite number of rational sets. Firdl, dfiredings can be grouped according to the last
executed statement, i.e., the last label of the control weckt, we build a system of equations in which unknowns
are sets of bindings for induction variableat staten of the control automaton. Givefl, the control automaton
modified so thah is the unique final state, l&i, be the language recognized Hy. Thebinding function forx at
state n A}, is the binding function fok restricted to£,. We also introduce a new induction variakleconstant
and equal tcen,.

The system of equations is a direct translation of the seinsaof induction variable definitions; it follows the
syntax of a MOGUL programP; we illustrate each rule on the running example.



34 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

1. Atthe initial state 0 and for any induction variakle

N = (2.8)

E.g., theToy program involves three induction variables, the loop cetinind the formal parameteksandn. We will
not considen since it does not subscript any data structure. The outpubidasZ, its neutral elemergy, is 0.

A = AP = (€]0).
2. N} denotes the set defined by
A= | (Wiem). (2.9)
We Ln

A is the binding function for the new induction varialaleestricted taL,; it is constant and equal &.

For each statemestdefining an induction variabbe to cs (casec.1 of Definition 10), and callingl anda
the respective departure and arrival statesinfthe control automaton,

AZ 2N e (Sies). (2.10)

SinceNd e (S/cs) = Uwery (WSCs), (2.10) means: ifv € Lg is a control wordwsis also a control word and
its binding forx is (wgc ).

The control automaton automatonTaly has 5 states. For the casé of Definition 10,
statement : k =0, (2.11)
and (2.10) yields
AF D Ale(1]0).

3. For each statementdefining an induction variabbetoy - c (casec.2 of Definition 10), andd anda the
respective departure and arrival states,of

A D Ale (). (2.12)

To complete the system, we add for every induction varialiechanged bg a set of equations in the form
(2.12), whereey, = g

E.g., for case.2 of Definition 10,

statemenG: k=k-1 (2.13)
statement : i=i-2 (2.14)
statemenD : i =k (2.15)

and (2.12) yields

N 2N+ (Gl0) NP2 N o (F|0)

N2 NG e (Gl N2 e (FlO)

A2 2 Ae(B|0) A2 A2e(1]0)

A% 2 N # (BJ0) Az 2N e (G|0)

A2 D N}« (D|0) A2 D Ale(B|O)

N 2N e(d]2) A} 2N« (D|0)

N2 D N}« (D|0) A3 D AZe(d|0)

N2 D NZe(d|0) AN D A3e(F|0)

Gathering all equations generated from (2.8), (2.10) arit?j%ields a systerS) of ny x ns equations with
ny X ns unknowns, where,, is the number of induction variables, includingandns the number of statements in
the progran®.

Toy yields the system

6Some unknown sets correspond to variables that are not kaitihd node of interest, they are useless.



2.5. COMPUTING BINDING FUNCTIONS 35

oy A2 = N3 e(d|2) +AZ ¢ (D|0)
,\'oif A =N}« (d|0) +AZ «(D|O)
/\S:E N =N3e(F|0)

e =% N =N} e (F|0)
N =N «(G|0)+(1]0) AL =A3e(G|0)+(1]0)
A =N} e(G[1)+(1]0) N2 = A} e (B|0)
N2 =Nle(B|0) 52 2

=N A3 =N (D|0)+AZ e (d|0)
A2 =N} e (B|0) 4_ 3

N =N« (F|0)

Let A be the set of unknowns f@rS), i.e., the set of\] for all induction variableg and nodes in the control
automaton. Le€ be the set of constant coefficients in the systés). is aleft linear system of equations over
(A,C) [RS97a]. LetX; be the unknown i\ appearing in the left-hand side of tHeequation of S). If + denotes
the union inBr;, we may rewrite the system in the form

m
Vie{l,....m}X = ZXj°Ci,j+Ri; (2.16)
=

whereR; results from the termA$ = Z in right-hand side. Note thag j is either® or a bilabel singleton of
Brat. Thus(S) is astrict system, and as such, it has a unique solution [RS97a]; mergethvs solution can be
characterized by eational expressiofior each unknown set iA.

Definition 15 (Rational Function) If M and M’ are two monoids, aational functionis a function from M to M
whose graph is a rational relation.

We may conclude that the solution @f) is a characterization of each unknown ¥gtin A as a rational
function.

Lemma 4 For any induction variablec and node n in the control automaton, the binding functiorxfagstricted
to Ly A\} is a rational function.

Theorem 7 For any induction variable, the binding function fok Ay is a rational function.

The Theorem is a corollary of Lemma 4, since the functidfisire defined on disjoint subsets of control words,
partitioned according to the suffix

Properties of rational relations and functions are sintdathose of rational languages [Ber79]: membership,
inclusion, equality, emptiness and finiteness are deaigirbjection on the input or output monoid yields a
rational sub-monoid, and rational relations are closedifoon, star, product and inverse morphism, to cite only
the most common properties. The main difference is thataineyot closed for complementation and intersection,
although a useful sub-class of rational relations has tbsuce property — independently discovered in [PS99]
and [Coh99]. Since most of these properties are associdthdalynomial algorithms, binding functions can
be used in many analyses, see [CC98, Fea98, Coh99, ACFO8lifgrevious and ongoing applications to the
automatic parallelization of recursive programs.

2.5 Computing Binding Functions

This section investigates the resolution(sf. Starting from (2.16), one may compute the last unknownrimse
of others:

m-1
xmzc;lm(_; X;#Cj+Rn). (2.17)

The solution of($) can be computed by iterating this process analogous to Gaussmination. This was the
first proposed algorithm [Coh99]; but Gaussian eliminattomnon-commutative semirings leads to exponential
space requirements. We propose two alternative methodstpute and represent binding functions effectively.
The first one improves on Gaussian elimination but keeps parential complexity; its theoretical interest is to
capture theelations between all induction variabledong a single path on the control automaton. If we only
need to represent the computation of induction variab&gsaratelyfrom each other, Section 2.5.2 presents a
polynomial algorithm.



36 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS
2.5.1 Binding Matrix

Mrat denotes the saéB;™ of square matrices of dimension with elements inBa; Mrat is @ semiring for the

induced matrix addition and product akliy; is closed by star operation [RS97a]. The neutral elemeht gfis

£ 0

E= . 2.18
0 . (2.18)

Practical computation of the transitive closure of a squraagrix C is an inductive process, using the following
block decomposition wher@andd are square matrices:

a c
C= { b d ] :
The formula is illustrated by the finite-state automatonigufe 2.10; its alphabet is the set of labétsb, c,d}
of the block matricesj and j are the two states, they are both initial and final.i Hnd j denote the lan-
guages computed iteratively for the two states, and m&iriepresents a linear transformation of the vector
(i,J): (i1,]1) = (io@a+ job,ipc+ jod). We compute the transitive closure Gfas the union of all words la-

beling a path terminated in stateor j, respectively, after zero, one, or more application<of(i., j.) =
((io+ jod*b)(a+cd*b)*, (jo+ioa*c)(d+ ba‘c)*). Writing P = (a+ cd*b)* andQ = (d + ba‘c)*,

., [ac]” [ P dbP
e8] ] 219

b
o —=—"09"

Figure 2.10: Computation of a matrix star

From (2.16), systenis) can be writtenX = XC+ R, where (matrix)C = (G j)1<i,j<m and (vectorsR =
(Ri,...,Rm), X = (Xq,...,Xm). VectorRC" is the solution of.§), but direct application of (2.19) is still laborious,
given the size o€.

Matrix Automaton

Our solution relies on the sparsity 6f we represent the system of equations in the form of an autons,
called the matrix automaton.

The graph of the matrix automaton is the same as the grapheafdhtrol automaton. Each statemeris
represented by a unique transition, gathering all infoimmetbout induction variable updates while execusng
Thebinding function forx after statement,9\, maps control words ended Isyo the value ok. It is the set of
all possible bindings fox afters. A" denotes thdinding vector at state ri.e., the tuple of binding functions for
all induction variables at state(includingz). Conversely/T; denotes thdinding vector after statement ise.,
the tuple of binding functions for all induction variabldtes executing statemest

With d the departure state of the transition associated to statesnee gather the previous linear equations
referring tos and present them in the form:

— —
VS € Mya, As =A% x S. (2.20)
As an example, we give the result for statem@raf Toy:

Nai =N} e(G|0), Aak = AF e (G|1), Az = A ¢ (G|0)
(@0 o o
Ao =N3x 0 (G o
o 0 (G




2.5. COMPUTING BINDING FUNCTIONS 37

Now, the transition of statemerin 4 is labeled by thestatement matri$. Thus,4 recognizes words with
alphabet iV 4 concatenation is the matrix product and words are ratiextession iM4;, hence elements of
Miat. Grouping equations according to the transitions’ arrétate, we get, for each stage

j —_—
N = Z A9 x Sdas Sda € Mrat, (2.21)

depreda)

where preda) is the set of predecessor statesi@indSq, is the statement matrix associated to the transition from
dtoa.
E.g., state number 1 in the matrix automatorfof yields

— — N — —
A =N +Ac=A0xT+A3 xG.

—
Theorem 8 LetA® = (Z,...,E) be the binding vector at the beginning of the execution. Theitg vector for
any state f can be computed as

— —

AT =NA0xL, (2.22)
wherelL is a matrix of regular expressions of bilabels;is computed from the regular expression associated to
the matrix automatorf, when its unique final state is f.

This result is a corollary of Theorem 7.
Because this method operates on regular expressions gthaist-case exponential complexity in the number
of states and induction variables. However, this worsedahavior is not likely on typical examples.

Application to the Running Example

We now give the statement matrices associated with equeatihl) to (2.15). With the three induction variables
—
i, k andz, the binding vector after statemdnt\; = (Aji,Aik,\iz) andl the statement matrix fdr, we have:

— — — — — —
AN=NxI, Ag=AlxB, Ap=A?xD
N — N — N —
ANd=N3xD, Ng=N3xG, Afr=A3xF

with the following statement matrices:

o o 0
statement: I= o o ©
0 10 10
Glo 0 0
statemenG: G= 0 G1 0
| 0 0 G0
[d2 o 0
statement: D= 0 do o0
o 0 do
[ o 0 0
statemenD: D= D0 D|0O 0
0 0 D|o

The other statements matrices let unchanged the inductioables.

(B0 © O
statemenB: B= 0 BO 0
| 0 0 B0
[ Flo © 0
statemenF : F= 0O FO 0
| 0 0 F|O

The resulting matrix automaton is shown in Figure 2.11 (alles are final).



38 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

B L=1I+ IB+ IBD(p+GBD)" (E+F+G+GB)
D D (E is the neutral element &fl;4;.)

Figure 2.11: Example of matrix automaton

2.5.2 Binding Transducer

We recall a few definitions and results about transducers/fe

A rational transducelis a finite-state automaton where each transition is ladglexdpair ofinputandoutput
symbols (borrowing from Definition 12), a symbol being adewf the alphabet or the empty wofd.

A pair of words(u,V) is recognizeddy a rational transducer if there is a path from an initial inal state
whose input word is equal toand output word is equal t0®

A rational transducer recognizes a rational relation, aeiprocally.

A transducer offers either a static point of view — as a maghthat recognizes pairs of words — or a dynamic
point of view — the machine reads an input word and outputsétef image words.

The use of transducers lightens the burden of solving amysfaegular expressions, but we lose the ability
to capture all induction variables and their relations iingle object. The representation for the binding function
of an induction variable is called thénding transducer

Algorithm 2
Given the control automaton and a monoid withimduction variables (including), the binding transducer
is built as follows:

e For each control automaton state, create a setp$tates, called @roduct-stateeach state of a product-
state is dedicated to a specific induction variable.

o Initial (resp. final) states correspond to the product-egbf all initial (resp. final) states of the control
automaton.

e For each statement s, i.e., for each transiti@ha) labeled s in the control automaton; calfRind P* the
corresponding product-states; and create an associgtedluct-transitiorts. It is a set of § transitions,
each one is dedicated to a specific induction variable. Wesiden again the two cases mentioned in
Definition (10c).

— casec.1: the transition runs from statedPin P9 to the state Pin P2. The input label is s, the output
label is the initialization constant c;

— casec.2: the transition runs from statey‘ﬁn P9 to state B in P2, The input label is s, the output label
is the constant c.

The binding transducer fdoy is shown in Figure 2.12. Notice that nodes allocated to thteiafiinduction
variablez are not co-accessible except the initial state (there isatiofpom them to a final state), and initial states
dedicated td andk are not co-accessible either. These states are uselegartherimmed from the binding
transducer.

The binding transducer does not directly describe the hipélinctions. A binding transducerdgdicatedo
an induction variable when its final states are restricted to the states dedicatethtthe final product-states.

Theorem 9 The binding transducer dedicated to an induction variabltecognizes the binding function far

This result is a corollary of Theorem 7.

7Pair of words leads to an equivalent definition.
8A transducer is not reducible to an automaton with bilabslelamentary symbols for its alphabet; as an illustratiom, paths labeled
(x|e)(y|2) and(x|2)(y|€) recognize the same pair of wor@g/|z).



2.6. EXPERIMENTS 39

Gl

Figure 2.12: Binding Transducer fdoy

2.6 Experiments

The construction of the binding transducer is fully implereel in OCaml. Starting from a ®IGUL program,
the analyzer returns the binding transducer accordinggalioice of monoid. This analyzer is a part of a more
ambitious framework including dependence test algoritbased on the binding transducer [ACF03]. Our im-
plementation is as generic as the framework for data stre@nd binding function computation: operations on
automata and transducers are parameterized by the typedehames and transition labels. Graphs of automata
and transducers are drawn by the fdeé software [KNOZ2].

We present two examples processed by our instancewisezanafiMoGuL programs. The first one operates
on an array, the second one on a tree.

The Pascal i ne Program

Figure 2.13 shows a program to evaluate the binomial coeffisi(a line of Pascal’s triangle). It exhibits both a
loop statement and a recursive call, two induction vargbkendL plus the constant induction varialiiex andy

are notinduction variables. Statemé&nix = 1, is an elementary statement without induction variablesGuL
simply ignores it. Thel se branch of the conditional is empty: it ensures the termamatif recursive calls.

structure Monoid_int A

A function Pascaline(Mnoid_int L, Mnoid_int n) { Lo Lo

%
B if (L<n)
c Al@ Al@
E for (Mnoid_int I=1; I<n; Bl@ Ble
e I=1.1)
F
G y = AL
H Alll =x +y;
[ x = Al

}

Pascaline(L.1, n);

}
}

K function Main() {
L Pascaline(0, 10);
}

(&

Figure 2.14: Binding transducer for
Figure 2.13: PrograrRascal i ne Pascal i ne

Figure 2.14 shows the binding transducer Pascal i ne, as generated by the software. The transducer is
drawn by hand to enhance readability, and in complementtivétindication of the dedicated induction variable,
we filled each node of the graph with a statement borrowed ftwerprogram: the statement is written in the



40 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

arrival nodes of the associated transitions. Nodes destidatthe induction variable are not used; they have
been trimmed. Notice the use of induction variabl® initialize loop counter .

monoi d Monoid_tree [next, left, right]; h function Merge(Mnoid_tree A
structure Monoid_tree Tree; Monoi d_tree B,
Monoi d_tree C,
t function Main() { int p, int q) {
s Sort(@ 37); g if ((q!=0)
} & (p = 0 || Tree[B] < Tree[(]))
V|
S function Split(Mnoid_ tree A T Tree[A] = Tree[B];
Monoi d_tree B, U Merge(A next, B.next, C g-1, p);
Monoi d_tree C, }
Monoid_int n) { e else
F if (n>0) d {
B { c if (p!=0)
A Tree[B] = Tree[A]; Y
W Tree[A] = Tree[(;
L if (n>1) X Merge(A next, B, C.next, g, p-1);
H 1
G Tree[C] = Tree[ A next]; }
1 }
R if (n>2)
N r function Sort(Mnoid_tree T, int r) {
M Split(A next.next, B.next, C. next, q if (r>1)
n-2); m
} i Split(T, T.left, T.right, r);
} j Sort(T.left, (r+1)/2);
k Sort(T.right, r/2);
| Merge(T, T.left, T.right,(r+1)/2,
rl2);
}
}
Figure 2.15: Prograrker ge_sort _tree
wer
S\
GiR)
nie \
Lie Rl@ |Fl@ L\@ﬁ?\@ U | next

X | next

@d @» @O
eps| @ | eps | next
nise .

161 Anen

cl@ [eps|@
e

216,

Figure 2.16: Binding transducer fokrge_sort tree



2.7. APPLICATIONS OF INSTANCEWISE ANALYSIS 41
The Merge_sort _tree Program

Figure 2.15 shows an implementation of the merge sort dlgariimplemented over a binary tree of lists, called
Tree. The three functionSplit, Merge andSort are recursive. Induction variabl@sB andC are locations in
the tree; they are overloaded and exchanged as formal paaned the three functions. Parameteof Spl i t
is an independent induction variable not used for memorgss®s, angd, g andr are not induction variableg
denotes the empty word, i.e., the root of the tree.

The binary tree of lists is represented as a ternary tred: is the field for the first branch, it traverses a list of
integers, thé eft andri ght fields traverse the backbone binary tree. At the beginnirgunsorted list is stored
in thenext branch of the tree naméktee It is split in two halves stored in tHeeft andri ght branches. Both
these lists are recursively sorted, then merged back iroihtenode. Figure 2.16 shows the binding transducer for
Merge_sort_tree as drawn bydot [KNO2] from the MoGuL software output. Octogonal states correspond to
the tree references at the elementary statements. Théseata useful for the computation of data dependences.
Indeed, from this binding transducer, we developed algoritto detect that the two calls to tBert function (j
andk) can be run in parallel [Fea98, Coh99].

Other sample programs

Figure 2.17 summarizes some results about recursive pregree implemented in IGUL. The last column of
the table gives the number of states in the binding transd&eesh a binding transducer can been used to check
for dependences, uninitialized values, opportunitiegfstancewise dead-code elimination and other instaneewis
extensions of bit-vector analyses, etc.

Since the first survey of instancewise analyses technidi@sd9], we discovered many recursive algorithms
suitable for implementation in IGUL and instancewise dependence analysis. Therefore, itstenthe pro-
gram model encompasses many implementations of practiaithms despite its severe constraints.

Progranm- Queens is the classical problem to plac&Queens on ax nchessboardlo_& fro is the recursive
merge-sort algorithm alternating over two arrays. It iSrted inTo_& fro+Termi nal _i nsert_sort by using
an insertion sort for the leaves of the recursion (on smadhirals of the original arrayort _3_col or s consists
in sorting an array of balls according to one color amongahusing only swaps/ si _t est simulates a test-bed
to filter-out good chips from an array of untested ones; tloegss relies on peer-to-peer test of two chips, a good
chip giving a certified correct answer about the other.

Code name Data Lines | Data Refs| Loops | Fn Calls | Nodes
Pascal i ne 1D array 21 2 1 2 13
Ml tiplication table 2D array 17 5 1 3 22
n- Queens 1D array 39 2 2 2 27
To & fro 1D array 115 12 0 19 164
Merge_sort _tree ternary tree 75 8 0 8 80
To_& fro+Term nal _insert_sort | 1D array 162 17 2 26 195
Sort_3_colors 1D array 80 4 0 11 97
WVI'si _test linked lists 58 2 0 7 97

Figure 2.17: Sample recursive programs applicable to banflinction analysis

2.7 Applications of Instancewise Analysis

To illustrate the practical applications of the bindingwducer, we describe a very simple program optimization
that benefit from the computation of instancewise bindimgfions:instancewise dead-code eliminatjdhen we
outline the main results in the area.

2.7.1 Instancewise Dead-Code Elimination

Going back to the motivating examples in Section 1.2 (eitloele version), we cafithe assignment to arrayin

the loop nest antithe read reference in proceduiiene. We assume the codes have been rewritten @@L

(the first version has a single induction variable addres&fand the second one has two recursively swapped
induction variables).



42 CHAPTER 2. INSTANCEWISE PROGRAM ANALYSIS

Let Bs andB; denote the binding functions for the array referencesandt, respectively, andl}, denote the
set of all control words. The “chessboard” footprint, vegrdhto compute by statementwise means, corresponds
to the rational seB;(L},). An intensional representation for this rational set carcdmputed, either as a finite-
state automaton (in a straightforward transducer praja¢Ber79]), or as &-polyhedron (e.g., through a Parikh
mapping [Par66, RS97a]).

From this first result, one may automatically charactetieeiterations of the loop nest which correspond to
useless assignmentsAothe (conservative) set of dead iteration8s'(B;(L},)). Once again, this turns out to be
a classical operation on transducers and finite-state attomo implement the actual optimization on the bounds
and strides, a polyhedral characterization of the itenatiomain can be deduced from the resulting automaton
(becaussis surrounded by a loop nest, not arbitrary recursive cofP®96, RS97a].

2.7.2 State of the Art

Dead-code elimination is a very simple application of tretancewise framework. One may imagine many other
extensions of classical scalar, loop and interprocedytimzations, working natively on recursive programs.
However, published results are still preliminary and ratbféthe tracks of most work on static analysis [CC98,
Fea98, Coh99, ACFO03]: here is a short overview of the knowliegtions of binding functions to the analysis of
recursive programs.

¢ Instancewise dependence analysis for arrays [CC98, Cofid@] relation between dependent instances is
computed as a one-counter (context-free) transducer, ambylti-counter transducer in the case of multi-
dimensional arrays. In the multi-counter case, the charaettion of dependences is undecidable in general,
but approximations are possible.

e Instancewise reaching-definition analysisfor arrays [EG@20h99] (a.k.a. array data-flow analysis [Fea91,
MAL93]). Compared to dependence analysis, kills of presiatray assignments are taken into account.
Due to the conservative assumptions about conditionadg,iane may only exploit kill information based
on structural properties of the program, i.e., exclusianbhes and ancestry of control words in the call tree
(whether an instance forcibly precedes another in the éxegu This limitation seems rather strong, but it
already subsumes the loop-nest case [Coh99].

¢ Instancewise dependence and reaching-definition andtydiees [Coh99]. The relation between conflict-
ing instances is a rational transducer, from the Elgot ande¥itheorem [EM65, Ber79]; the dependence
relation requires an additional sequentiality constraiiich makes its characterization undecidable in gen-
eral, but an approximation scheme based on synchronowssitreers is available [PS99, Coh99]. The array
and tree cases can be unified: [Coh99] describes a techroqaeatyze nested trees and arrays in free
partially-commutative monoids [RS97b].

¢ Instancewise dependence test for trees [Fea98]. Instemdeddtion between instances, this test leverages
on instancewise analysis to compute precise statemertesEndence information with unlimited context-
sensitivity (notk-limited). This technique features a semi-algorithm toredhe undecidable dependence
problem, and the semi-algorithm is proven to terminate joiexythe approximation scheme of the previous
technique is used (unpublished result).

¢ Instancewise dependence test for arrays [ACF03, Ami04]ir&moff's thesis proves the decidability and
NP-completeness of dependence testing based on bindirsgitreers, in the case of arrays. An extension
taking conditional guards into account is available, pded the guards can be expressed as affine func-
tions of some inductive variables lying in free-commutatiaonoids (unpublished result). This extension
defines conditions for the exactness of the dependenca.testl{e absence of approximation) that strictly
generalize the case of static-control loop nests.

2.8 Conclusion

The instancewise paradigm paves the way for better, momserprogram analyses. It decouples static analyses
from the program syntax, allowing to evaluate semantic rwgproperties on an infinite set of runtime control
points. This paradigm abstracts runtime execution statesdce prefixes) in a finitely-presented, infinite set of



2.8. CONCLUSION 43

control words. Instancewise analysis is also an extendidheodomain-specific iteration-vector approach (the
so-called polytope model) to general recursive programs.

As an application of the instancewise framework, we extérdcboncept of induction variables to recursive
programs. For a restricted class of data structures (iirgdualrays and recursive structures), induction variables
capture the exact memory location accessed at every stég @xecution. This compile-time characterization,
called the binding function, is a rational function mappaagtrol words to abstract memory locations. We give a
polynomial algorithm for the computation of binding furastis.

Our current work focuses on instancewise alias and depeedrralysis, for the automatic parallelization and
optimization of recursive programs [Ami04]. We also lookeafnew benchmark applications and data-structures
to assess the applicability of binding functions; mullidggnd sparse codes are interesting candidates. We would
also like to release a few constraints on the data strucaum@énduction variables, aiming for the computation of
approximate binding functions through abstract inteqtren.



Chapter 3

Polyhedral Program Manipulation

This chapter presents the technical background and catitits of our polyhedral, semantics-based program
representation. The use of polyhedral domains to captutethe control and data flow allows to abstract away
many implementation artifacts of syntax-based repreients and to define most loop transformations without
reference to any syntactic form of the program.

Structure of the chapter. Section 3.1 illustrates with a simple example the limitasi@f syntactic representa-
tions for transformation composition, it presents our pelgral representation and how it can circumvent these
limitations. Revisiting classical loop transformations Automatic parallelization and locality enhancement; Se
tion 3.2 generalizes their definitions in our framework gexting their applicability scope, abstracting away most
syntactic limitations to transformation composition, dadilitating the search for compositions of transforma-
tions. Using several SPEC benchmarks, Section 3.3 showsdh#plex compositions can be necessary to reach
high performance and how such compositions are easily imgréed using our polyhedral representation. Sec-
tion 3.4 describes the implementation of our representatibthe associated transformation tool, and of the code
generation technique (in Open64/ORC [ORC]). Section 3lifates these tools through the evaluation of a ded-
icated transformation sequence for one benchmark. Se8t®presents more algorithmic research on reducing
the complexity of finding a sequence of loop transformatidhsery section discusses the closest technical work,
but Section 3.7 summarizes work that relate to the overaitegech and infrastructure.

3.1 A New Polyhedral Program Representation

The purpose of Section 3.1.1 is to illustrate the limitasiarfi the implementation of program transformations in
current compilers, using a simple example. Section 3.1&dentle introduction to polyhedral representations
and transformations. In Section 3.1.3, we present our galsdd representation, in Section 3.1.4 how it alleviates
syntactic limitations and Section 3.1.5 presents norratibp rules for the representation.

3.1.1 Limitations of Syntactic Transformations

In current compilers, after applying a program transfoiarato a code section, a new version of the code section
is generated, using abstract syntax trees, three addrdss 8&8A graphs, etc. We use the tesymtactic(or
syntax-based) to refer to such transformation models. thatiethis behavior is also shared by all previous matrix-
or polyhedra-based frameworks.

Code size and complexity

As a result, after multiple transformations the code sizk@mplexity can dramatically increase.

Consider the simple synthetic example of Figure 3.1, whieiregrofitable to merge loopsk (the new loop
is named), and then loopg,| (the new loop is nameg), to reduce the locality distance of arrAyand then to
tile loopsi andj to exploit the spatial and TLB locality of arrd3; which is accessed column-wise. In order to
perform all these transformations, the following actions mecessary: merge loopk, then merge loop$, I,
then split statemerxd] i | =0 outside thé loop to enable tiling, then strip-mine logp then strip-mine loop and
then interchangeandjj (the loop generated from the strip-mining jof

44



3.1. ANEW POLYHEDRAL PROGRAM REPRESENTATION 45

for (i=0; i<M i+4+)
S | Zi] =0
for (j=0; j<N j++)
S CZi] = (AT + BT * X
or (k=0; k<P; k++)
for (1=0; 1<Q |++)
S | Z[k] += ALKJ[I] * YLD

Figure 3.1: Introductory example

Syntactic  (#lines)| Polyhedral (#values

Original code 11 78

Outer loop fusion 44  (x4.0) 78 (x1.0)
Inner loop fusion 132 (x120) 78 (x1.0)
Fission 123 (x112) 78 (x1.0)
Strip-Mine 350 (x3138) 122 (x1.5)
Strip-Mine 407 (x37.0) 182 (x2.3)
Interchange 455 (x41.4) 182 (x2.3)

Figure 3.2: Code size versus representation size

Original | KAP | Double Fusion| Full Sequence
| Time (s) 26.00| 12.68 19.00 7.38

Figure 3.3: Execution time

if ((M>=P+l) & (N ==Q && (P >= 63))
for (ii=0; ii<P-63; ii+=64)
for (jj=0; jj<Q jj+=64)
for (i=ii; i<ii+63; i++)

for (j=jj; j<mn(Qjj+63); j++)

Z[i] += (Ai[j] + BljIli]) * Xijl;
Z[i] += AT[j] * Yl

for (ii=P-62; ii<P; ii+=64)
for (jj=0; jj<Q jj+=64)
for (i=ii; i<P; i+4)
for (j=jj; j<mn(Qjj+63); j++)
Z[i] += (Ai[j] + BljIli]) * Xijl;
Z[i] += AT[j] * Yils
for (i=P+1; i<min(ii+63,M; i++)
for (j=jj; j<mn(Njj+63); j++)
CZi] += (ALTET + BIGITHD) ™ X5
for (ii=P+l; ii<M ii+=64)
for (jj=0; jj<N jj+=64)
for (i=ii; i<mn(ii+63,M; i++)

for (j=jj; j<mn(Njj+63); j++)
‘ CZi] 4= (ALTOT + BT ™ X5

Figure 3.4: Versioning after outer loop fusion

Because theandj loops have different bounds, the merging and strip-miniagswill progressively multiply
the number of loop nests versions, each with a differentdjudfter all these transformations, the program



46 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

contains multiple instances of the code section shown inrgi§.4. The number of program statements after each
step is indicated in Figure 3.2.

In our framework, the final generated code will be similayrplicated, but this complexity does not show
until code generation, and thus, it does not hamper progtamsformations. The polyhedral program representa-
tion consists in a fixed number of matrices associated with statement, and neither its complexity nor its size
vary significantly, independently of the number and natdiggrogram transformations. The number of statements
remains the same (until the code is generated), only somé&rdahensions may increase slightly, see Figure 3.2.
Note that the more complex the code, the higher the differefiar instance, if the second loop is triangular,
i.e.,(j=0; j<i; j++), the final number of source lines of the syntactic versiondis538, while the size of the
polyhedral representation is unchanged (same numbertefstats and matrix dimensions).

Breaking patterns

Compilers look for transformation opportunities usingteat-matching rules. This approach is fairly fragile,
especially in the context of complex compositions, bec@useious transformations may break target patterns for
further ones. Interestingly, this weakness is confirmedeyhistorical evolution of the SPEC CPU benchmarks
themselves, partly driven by the need to avoid pattern-niagcattacks from commercial compilers [PJEJO4].

To illustrate this point we have attempted to perform thevaeljorogram transformations targeting the Alpha
21364 EV7, using KAP C (V4.1) [KAP], one of the best produntjoreprocessors available (source to source
loop and array transformations). Figure 3.3 shows the padace achieved by KAP and by the main steps of
the above sequence of transformations (fusion of the ontkiraer loops, then tiling) on the synthetic example.
We found that KAP could perform almost none of the above faansations because pattern-matching rules were
often too limited. Even though we did not have access to the Isdurce code, we have reverse-engineered these
limitations by modifying the example source code until KA®uld perform the appropriate transformation; KAP
limitations are deduced from the required simplificatidnsSection 3.1.4, we will show how these limitations are
overridden by the polyhedral representation.

The first step in the transformation sequence is the fusioextdrnal loopd, k: we found that KAP only
attempts to merge perfectly nested loops with matching dsuine., apparently due to additional conditions of
KAP's fusion pattern); after changing the loop bounds arittsyy out Z[ i ] =0, KAP could merge loopsg k. In
the polyhedral representation, fusion is only impeded Inyas#ic limitations, such as dependences; non-matching
bounds or non-perfectly nested loops are not an issue, ar exarctly, these artificial issues simply disappear, see
Section 3.1.4. After enabling the fusion of external loopk, the second step is the fusion of internal loops
i, I. Merging loopsj, | changes the ordering of assignmentg[to] . KAP refuses to perform this modification
(apparently another condition of KAP’s fusion patternjeafenaming in the second loop and later accumulating
on both arrays, KAP could perform the second fusion.

Overall, we found out that KAP was unable to perform thesettansformations, mostly because of pattern-
matching limitations that do not exist in the polyhedralregentation. We performed additional experiments on
other modern loop restructuring compilers, such as Intett&bn (IA64), Open64/ORC (IA64) and EKOPath
(IA32, AMD64, EM64T), and we found similar pattern-matcgilimitations.

Flexible and complex transformation composition

Compilers come with an ordered set of phases, each phassmgusome dedicated optimizations and analy-
ses. This phase ordering has a major drawback: it prevemisformations from being applied several times,
after some otheenablingtransformation has modified the applicability or adequati further optimizations.
Moreover, optimizers have rather rigid optimization stgaés that hamper the exploration of potentially useful
transformations.

Consider again the example of Figure 3.1. As explained abki# was unable to split statemenri ]
by itself, even though the last step in our optimization ssme — tiling | after fusions — cannot be performed
without that preliminary action. KAP’s documentation [KRghows that fission and fusion are performed together
(and possibly repeatedly) at a given step in KAP’s optimiirasequence. So while fission could be a potentially
enabling transformation for fusion (though it failed in @aise for the reasons outlined in the previous paragraph),
it is not identified as an enabling transformation for tilimg<KAP’s strategy, and it would always fail to split to
enable tiling.

Iparameter, N, P andQ are the bounds of the 400MB matricésindB.



3.1. ANEW POLYHEDRAL PROGRAM REPRESENTATION 47

Moreover, even after splitting[i] and merging loops$, k and j, |, KAP proved unable to tile loop; it
is probably focusing on scalar promotion and performs waod-jam instead, yielding a peak performance of
12.35s. However, in our transformation sequence, execution tiexrehses from 260s to 1900s with fusion
and fission, while it further decreases t@8 thanks to tiling. Notice that both fusion and tiling are innfamt
performance-wise.

So KAP suffers from a too rigid optimization strategy, ani #sxample outlines that, in order to reach high
performance, a flexible composition of program transforomstis a key element. In Section 3.3, we will show
that, for one loop nest, up to 23 program transformationmacessary to outperform peak SPEC performance.

Limitations of phase ordering

B[1] =0

for (i=0; i<100; i++)
A | AIT =

for (i=0; 1<99; i++4)
B | Bli+1] = Ali] ...;
for (i=0; 1<100; i++)

C | dil =8i] ...
Domains = Schedules Access functions
(C) —o00—----000~ GE’ oo —--—eoe0e~-(C ‘_,‘
(B) —o0o0—---00—> O 600 —--—000e~---(B S
(A) oo ---oee- T eoe——see-""(A £
or N ool ? --- -- Q@
~ ! [}

Figure 3.5: Original program and graphical view of its paghnal representation

B[1] =0
for (i=0; 1<99; i++4)
A a=...;
B Bli+l] =a ...;
C qi] =...;
100] = B[100] ...;
Domains = Schedules Access functions
C) o006 - 000~ g " ©) *_,‘
(B) oo ---00— O k&;\// \kk;\ B 5
(A) oo ee i T » G-
orN ool @ --- ~ - %

Figure 3.6: Target optimized program and graphical view

To better understand the interplay of loop peeling, loopiusscalar promotion and dead-code elimination, let
us now consider the simpler example of Figure 3.5. The tloeed can be fused to improve temporal locality, and
assuming\ is a local array not used outside the code fragment, it capflaced with a scala. Figure 3.6 shows
the corresponding optimized code. Both figures also showaphical representation of the different domains,
schedules and access functions for the three statereBtandC of the original and optimized versions. Notice
the middle loop in Figure 3.5 has a reduced domain. Thesengatiions mainly consist in loop fusions which
only have an impact on scheduling, the last iteration (93h&ndomain ofA was removed (dead code) and the
access function to arraydisappeared (scalar promotion).

Again, we tried to optimize this example using KAP, assunthmag A is a global array, effectively restricting
ourselves to peeling and fusion.



48 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

B[l =0 B[1] =0
for (i=0; 1<99; i+4) for (i=0; i1<99; i+4)
Ai] =...; Ail =...;
Bli+1] = Ali] ...; Bli+l] = Ali] ...;
qi] =gl ...; A[100] =...;
A[100] =...; for (i=0; i<100; i++)
cf100] = B[100] ...; Cqi] =Bl oL
Figure 3.7: Fusion of the three loops Figure 3.8: Peeling prevents fusion
B[1] =0 B[1] =0
for (i=0; i<99; i++4) for (i=0; i<99; i++)
= ... as=...;
Ali] = a B[i+l] =a ...;
Bli+l] =a ...; or (i=0; i<100; i++)
or (i=0; i<100; i+4+) | dqgi] =8gi] ...;
il =B
Figure 3.9: Dead code before fusion Figure 3.10: Fusion before dead code
B[1] =0 B[1] =0
for (i=0; i<100; i++) for (i=0; 1<99; i++)
A | Ai] = A1l . Ai] = A1) ...
for (i=0; i<99; i++4) Bli+1] = Ali] ...;
B | Bli+l] = Ali] ...} qi] =Bli] ...;
for (i=0; i<100; i++) A[100] = Al1] ...;
cC |C[i] = Ali]+B[i] ...; C[ 100] = A[ 100] +B[ 100]
Figure 3.11: Advanced example Figure 3.12: Fusion of the three loops
B[1] =0
for (i=0; 1<99; i+4)
Al = A1) ..
Bli+l] = Ali] ...;
A[100] = A[ 1] ...;
for (i=0; 1<100; i++)
C i) = ALTTHB] L

Figure 3.13: Spurious dependences

The reduced domain & has no impact on our framework, which succeeds in fusingtieetioops and yields
the code in Figure 3.7. However, to fuse those loops, syintaenhsformation frameworks require some iterations
of the first and third loop to be peeled and interleaved betvtke loops. Traditional compilers are able to peel
the last iteration and fuse the first two loops, as shown infei3.8. Now, because their pattern for loop fusion
only matches consecutive loops, peeling prevents fusitimtve third loop, as shown in Figure 3.8; we checked
that neither a failed dependence test nor an erroneousaticaduin the cost model may have caused the problem.
Within our transformation framework, it is possible to fuseps with different domains without prior peeling
transformations because hoisting of control structureglayed until code generation.

Pattern matching is not the only limitation to transforraattomposition. Consider the example of Figure 3.11
which adds two references to the original prograhi] in statemenf andA[ i ] in statemen€. These references
do not compromise the ability to fuse the three loops, as shiwigure 3.12. Optimizers based on more advanced
rewriting systems [Vis01] and most non-syntactic représéons [Kel96, O'B98, LO04] will still peel an iteration
of the first and last loops. However, peeling the last iteratf the first loop introduces two dependences that



3.1. ANEW POLYHEDRAL PROGRAM REPRESENTATION 49

prevent fusion with the third loop: backward motion — flow dagdence ol 1] — and forward motion — anti-
dependence off i] — of the peeled iteration is now illegal. KAP yields the paltii fused code in Figure 3.13,
whereas our framework may still fuse the three loops as inr€i§.12.

To address the composition issue, compilers come with agreddset of phases. This approach is legitimate
but prevents transformations to be applied several timgs, &ter some other transformation has modified the
appropriateness of further optimizations. We consideiratiee example of Figure 3.5, and we now assuiig
a local array only used to compuBe KAP applies dead-code elimination before fusion: it tie®liminateA,
but since it is used to compuBg it fails. Then the compiler fuses the two loops, and scalanotion replaces
with a scalar, as shown in Figure 3.9. It is now obvious thedyah can be eliminated but dead-code elimination
will not be run again. Conversely, if we delayed dead-coduirhtion until after loop fusion (and peeling), we
would still not fuse with the third loop but we would elimireA as well as the peeled iteration, as shown in
Figure 3.10. Clearly, both phase orderings lead to subw@tiesults. However, if we compile the code from
Figure 3.9 with KAP — as if we applied the KAP sequence of tfammations twice — array and the peeled
iteration are eliminated, allowing the compiler to fuse theee loops, eventually reaching the target optimized
program of Figure 3.6.

These simple examples illustrate the artificial restritsito transformation composition and the consequences
on permuting or repeating transformations in current sstidecompilers. Beyond parameter tuning, existing
compilation infrastructures may not be very appropriateiferative compilation By design, it is hard to modify
either phase ordering or selection, and it is even hardeet@igy transformation pattern to match a significant
part of the code after a long sequence of transformations.

3.1.2 Introduction to the Polyhedral Model

This section is a quick overview of the polyhedral framewadtkalso presents notations used throughout the
chapter. A more formal presentation of the model may be faarf€ug91c, Fea92]. Polyhedral compilation
usually distinguishes three steps: one first has to represemput program in the formalism, then apply a
transformation to this representation, and finally germetfad target (syntactic) code.

Consider the polynomial multiplication kernel in Figurel&(a). It only deals with control aspects of the
program, and we refer to the two computational statementay@ssignments) through their namgsandS,.
To bypass the limitations of syntactic representations,pblyhedral model is closer to the execution itself by
consideringstatement instanced~or each statement we consider ttexation domain where every statement
instance belongs. The domains are described using affirgraorts that can be extracted from the program
control. For example, the iteration domain of staten&ntalled@%, is the set of value§) such that X i <n
as shown in Figure 3.14(b); a matrix representation is usedpresent such constraints: in our examﬁ]éln is
characterized by

i
A R

-1 2 0 1]~
for (i=2; i<=2*n; i++) oL,
S l Z[i] =0 rJ] ‘ ,3,51.‘i§§nj<: o instance o; 2
P =1 i e=n i - I A S2 e Instance of S
or (124; i<en; 1+) 2 et s
for _(]_—1, j<=n; j++) . ez e
S D Z[iH] A= X YL : ‘
1 2 n 2n i
(a) Syntactic form (b) Polyhedral domainsX 2)

Figure 3.14: A polynomial multiplication kernel and its pbedral domains

In this framework, a transformation is a setaffine scheduling functiongach statement has its own schedul-
ing function which maps each run-time statement instan@eltgical execution date. In our polynomial multi-
plication example, an optimizer may notice a locality peshland discover a good data reuse potential over array
Z, then sugged (i) = (i) and652< 'l )z (i+ j + 1) to achieve better locality (see e.g., [Bas03] for a method to

compute such functions). The intuition behind such tramsétion is to execute consecutively the instanceS;of



50 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

having the same+ j value (thus accessing the same array elemei} ahd to ensure that the initialization of
each element is executed Byjust before the first instance &f referring this element. In the polyhedral model, a
transformation is applied following the template formuidrigure 3.15(a) [Bas04], wherés the iteration vector,

iy, iS the vector of constant parameters, arid thetime-vector i.e. the vector of the scheduling dimensions.
The next section will detail the nature of these vectors &edstructure of th® and/ matrices. Notice in this
formula, equality constraints capture schedule modificesti and inequality constraints capture iteration domain
modifications. The resulting polyhedra for our example &mg in Figure 3.15(b), with the additional dimension
t.

i
n
.
2 .0
1 Pel 1 ®
—t . [ |
( | | ® ) i =0 Fodt t
- 0
0 A igp >0 o
1 o
O
2n |
i¥ 12n 20
(a) Transformation template formula (b) Transformed petita

Figure 3.15: Transformation template and its application

Once transformations have been applied in the polyhedrdemone needs to (re)generate the target code.
The best syntax tree construction scheme consists in asiee@pplication of domain projections and separations
[QRWO0O, Bas04]. The final code is deduced from the set of caimé$ describing the polyhedra attached to each
node in the tree. In our example, the first step is a projeaidn the first dimensioty followed by a separation
into disjoint polyhedra, as shown on the top of Figure 3.1L6(&is builds the outer loops of the target code (the
loops with iteratort in Figure 3.16(b)). The same process is applied onto thetfiustdimensions (bottom of
Figure 3.16(a)) to build the second loop level and so on. Tia fiode is shown in Figure 3.16(b) (the reader may
care to verify that this solution maximally exploits templreuse of arra¥). Note that the separation step for two
polyhedra needs three operatioﬁz,srln — Q)oszm, Q)oszm — Q)oslm and Q)oszmﬁ Q)oslm, thus forn statements the worst-case
complexity is 3.

It is interesting to note that the target code, althoughiobthafter only one transformation step, is quite dif-
ferent from the original loop nest. Indeed, multiple claasioop transformations are be necessary to simulate
this one-step optimization (among them, software pipe@irand skewing). The intuition is that arbitrarily com-
plex compositions of classical transformations can bewaptin one single transformation step of the polyhedral
model. This was best illustrated by affine scheduling [Fe&@296] and partitioning [LL97] algorithms. Yet,
because black-box, model-based optimizers fail on modeyoggsors, we propose to step back a littleaiid
consider again the benefits of composing classical loopsfiamations, but using a polyhedral representation
Indeed, up to now, polyhedral optimization frameworks hanly considered the isolated application of one arbi-
trarily complex affine transformation. The main origingldf our work is to address theomposition of program
transformations on the polyhedral representation itselhe next section presents the main ideas allowing to
define compositions of affine transformations without intediate code generation steps.

3.1.3 Isolating Transformations Effects

Let us now explain how our framework can separately and ieddently represent the iteration domain, the

statements schedule, the data layout and the access fusofiarray references. At the same time, we will outline

why this representation has several benefits for the imphmtien of program transformations: (1) it is generic

and can serve to implement a large array of program transfibons, (2) it isolates the root effects of program

transformations, (3) it allows generalized versions afsieal loop transformations to be defined without reference
to any syntactic code, (4) this enables transparent coripogf program transformations because applying
program transformations has no effect on the representatimplexity that makes it less generic or harder to
manipulate, (5) and this eventually adds structure (corativitly, confluence, linearity) to the optimization search

space.



3.1. ANEW POLYHEDRAL PROGRAM REPRESENTATION 51
Slalone SlandS2 S2alol
t=2, ,>=3 t<=2n ,t=2n+1
S2

Projection S1/ / S1S2 S1S2/
onto t o /

Projection
onto (t,i)

(a) Projections an separations

t=2; // Such equality is a loop running once

i =2;

S | Zdil =0

for (t=3; t<=2*n; t+4)

for (i=max(1,t-n-1); i<=min(t-2,n); i++)
‘ j o =t-i-1;

S Zli+] += Xi] * V]
i=t;
S &Z[i] = 0;
t=2*n+1,
i=n;
j=n;
S ‘ | ZLi] = X Y

(b) 7arget code

Figure 3.16: Target code generation

Principles

The scope of our representation is a sequence of loop netstcaristant strides and affine bounds. It includes
non-rectangularloops, non-perfectly nested loops, anditionals with boolean expressions of affine inequalities
Loop nests fulfilling these hypotheses are amenable to aseptation in the polyhedral model [PD96]. We call
Static Control Part(SCoP) anymaximal syntactic program segmesgtisfying these constraints [CGT04]. We
only describe analyses and transformations confined wétgiven SCoP; the reader interested in techniques to
extend SCoP coverage (by preliminary transformationshquairtial solutions on how to remove this scoping
limitation (procedure abstractions, irregular contralistures, etc.) should refer to [TFJ86, GC95, Col95, Won95,
Cre96, BCF97, RP99, BCCO00, Coh99, Col02].

All variables that are invariant within a SCoP are caligobal parameterse.g.,M, N, P andQ are the global
parameters of the introductory example (see Figure 3.1).ekoh statement within a SCoP, the representation
separates four attributes, characterized by parameteicestthe iteration domain, the schedule, the data layout
and the access functions. Even though transformationstitelpesapplied to loops or full procedures, they are
individually applied to each statement.

Iteration domains

Strip-mining and loop unrolling only modify the iteratiomhain — the number of loops or the loop bounds
— but they do not affect the order in which statement instaraze executed (the program schedule) or the way



52 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

arrays are accessed (the memory access functions). Teéeisbka effect of such transformations, we define a
representation of the iteration domain.

Although the introductory example contains 4 loopg, k andl, S andS; have a different two-dimensional
iteration domain. Let us consider the iteration domain afeshentS; it is defined as follows{(i, ) | 0 <i,i <
M—1,0<j,j <N-—1}. The iteration domain matrix has one column for each iterata each global parameter,

here respectively, j andM, N, P, Q. Therefore, M\(Iapactuallmatrix representation of statergeist
)
1 0]0000| 070K

<i
-1 0/1000|-1|i<M-1
0 1/{0000| 0| 0<]j
0-1|/0100| -1] j&<N-1

Example: implementing strip-mining  All program transformations that only modify the iteratidomain can
now be expressed as a set of elementary operations on rsgaading/removing rows/columns, and/or modifying
the values of matrix parameters). For instance, let us-gtiige loopj by a factorB (a statically known integer),
and let us consider the impact of this operation on the reptation of the iteration domain of statemé&nt

Two loop modifications are performed: logjpis inserted before loop and has a stride d8. In our rep-
resentation, loop can be described by the following iteration domain inediesi jj < j,j <jj+B—1. For
the non-unit strideB of loop jj, we introducdocal variablesto keep a linear representation of the iteration do-
main. For instance, the strip-mined iteration domairspfs {(i,jj,j) |0<j,j < N—-1,jj <j,j <jj+B—-1}jj
modB = 0,0 <i,i <M — 1}, and after introducing local variabjp such thafj = B x jj,, the iteration domain
becomes(i,jj, ) | Jjj2,0<j,] <N—=21jj <j,j <jj+B—1,jj = Bxjj5,0<i,i <M—1}? and its matrix rep-
resentation is the following (witB = 64, and from left to right: columns jj, j, jjo, M, N, P, Q and the affine
component):

Pl iz MNPQ 1
100 0/0000| 0] 0<i
-1 0 0| 0[1000|-1|i<M-1
0 0 1| 0/0000| 0|O0<]|
0 0-1 0/0100| 1| j<N-1
0-1 1| 0]0000| Of|j<j
0 1-1 0/0000| 63| | <jj+63
0-1 0| 64|0000| Ofjj<64xijj,
| 0 1 0| -64|0000| O] 64xjj, <]

Notations and formal definition Given a statemerfs within a SCoP, letls be the depth of, i the vector of
loop indices to whicls belongs (the dimension @fis dg), i, the vector ofd), local variables added to linearize
constraintsi,, the vector ofdg, global parameters, amt® the matrix ofn linear constraints/S hasn rows and
dS+4 dS+ dy, + 1 columns). The iteration domain 8fis defined by

D= {i | i, ASx [i,insigp, 1]' > 0}

Schedules

Feautrier [Fea92], Kelly and Pugh [Kel96], proposed an dimgpthat characterizes the order of execution of
each statement instance within code sections with muléiptenon-perfectly nested loop nests. We use a similar
encoding for SCoPs. The principle is to defintnae stamgor each statement instance, using the iteration vector
of the surrounding loops, e.g., vectarj) for statemen&; in the introductory example, and the static statement
order to accommodate loop levels with multiple statemeftss statement order is defined for each loop level
and starts to 0, e.g., the rank of staten®nis 1 at depth 1 (it belongs to logpwhich is the second statement at
depth 1 in this SCoP), 0 at depth 2 (it is the first statemerttap |). And for each statement, the encoding defines
a schedule matri®© that characterizes the schedule. E.g., the insténgeof statemens; is executed before the
instance(k, 1) of statemengs; if and only if

0% x [i,j,1]' < ©% x [k 1,1]'

(the last component in the instance vedfigij,1) — term 1 — is used for the static statement ordering term).
Matrix ©% is shown in Figure 3.17, where the first two columns correggon j and the last column corresponds
to the static statement order. The rows3® interleave statement order and iteration order so as toeimht

°The equatiorjj = B x jj, is simply represented by two inequalitigs> B x jj, andjj < B x jj,.



3.1. ANEW POLYHEDRAL PROGRAM REPRESENTATION 53

the lexicographic order: the first row corresponds to depth® second row to the iteration order of loigphe
third row to the static statement order within lopghe fourth row to the iteration order of logp and the fifth
row to the static statement order within loppNow, the matrix of stateme® in Figure 3.17 corresponds to a
different loop nest with different iterators.

00]0 001 00| 0 000/ 0
10|0 10|0 010 100/ 0

0% =001 ©3=100|0 ©%2= {001 . |oo00|1
01|0 010 10| 0 % =1010|0

00| 0 00| 0 00| 0 000/ 0
0010

000/ 0

Figure 3.17: Schedule matrix examples

still, thanks to the lexicographic order, the encoding jiles a global ordering, and we can check B x
fi,},1] < ©2 x [k,1,1]; in that case, the order is simply characterized by thecsstditement order at depth 0.

Because the schedule relies on loop iterators, iterationailo modifications — such as introducing a new
loop (e.q., strip-mining) — will change th@ matrix of all loop statements but not the schedule itselfrédwer,
adding/removing local variables has no impactn

We will later see that this global ordering of all statemegnsibles the transparent application of complex
transformations like loop fusion.

Formal definition Let AS be the matrix operating on iteration vectaiSthe depth of the statement apdthe
static statement ordering vector. The schedule m&®iis defined by

r Q0 --- 0 BT
Ail"' Aids 0
0O --- 0 5113
S
0°= Ag,l Aids 0
Sj . S: N
Ads,l o AdS,dS 0
0O --- 0 gs_

Example: implementing loop interchange and tiling  As for unimodular transformations, applying a schedule-
only loop transformation like loop interchange simply dstssin swapping two rows of matri®, i.e., really two
rows of matrix A. Consider loopsand j the introductory example; the new matrix f8f associated with the
interchange of andj is called®% in Figure 3.17.

Now, tiling is a combination of strip-mining and loop inteiange and it involves both an iteration domain and
a schedule transformation. In our split representaticingtloop j by a factorB simply consists in applying the
iteration domain transformation in the previous paragi@ele the strip-mining example) and the above schedule
transformation on all statements within lodpasnd j. For statemen$;, the only difference with the above loop
interchange example is that strip-mining introduces a ro@p iteratoijj. The transformed matrix is calleé® in
Figure 3.17.

Extending the representation to implement more transformaions For some statement-wise transformations
like shifting (or pipelining), i.e., loop shifting for on¢agement in the loop body but not the others (e.g., statesnent
S andSs, after merging loops k andj, I), more complex manipulations of the statement scheduleeressary.

In fact, the above schedule representation is a simplifiesiam of the actual schedule which includes a third

matrix component callefi. It adds one column to th® matrix for every global parameter (e.g., 4 columns for

the running example).

Access functions

Privatization modifies array accesses, i.e., array sytiscrror any array reference, a given point in the iteration
domain is mapped to an array element (for scalars, all itergioints naturally map to the same element). In



54 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

other words, there is a function that maps the iteration dormfiany reference to array or scalar elements. A
transformation like privatization modifies this functidhaffects neither the iteration domains nor the schedules.
Consider array referen@j ][ 1], in statemeng, after merging loops, k andj, |, and strip-mining loog.

The matrix for the corresponding access function is simghyumns are, jj, j,M,N,P,Q, and the scalar component,

from left to right):
00 0
[1 0 0} :

Formal definition ~ For each stateme we define two set£>, and %3, of (A, f) pairs, each pair representing a
reference to variabl&in the left or right hand side of the statemehis theaccess functiomapping iterations in
D5, to A elements.f is a function of loop iterators, local variables and glokaigmeters. The access functibn
is defined by a matrix F such that

110000
0|0000

F(i) = Fx [i,i,ig 1]".

Example: implementing privatization Consider again the example in Figure 3.1 and assume thstathsf
splitting statemenE[i]=0 to enable tiling, we want to privatize arrayover dimensionj (as an alternative).
Besides modifying the declaration @f(see next section), we need to change the subscripts obrefes to
Z, adding a row to each access matrix with a 1 in the column sparding to the new dimension and zeroes

elsewhere. E.g., privatization (ziﬁé yields
0
0000/ o] )}

(f21201000010)} — ({234 333

Data layout

Some program transformations, like padding, only modifydhray declarations and have no impact on the poly-
hedral representation of statements. It is critical to @effirese transformations through a separate representation
of the mapping of virtual array elements to physical memocgtion. We do notimprove on the existing solutions
to this problem [O’B98], which are sufficiently mature aldgao express complex data layout transformations.

Notice a few program transformations can affect both areglatations and array statements. For instance,
array merging (combining several arrays into a single offfects both the declarations and access functions
(subscripts change); this transformation is sometimed usémprove spatial locality. We are working on an
extension of the representation to accommodate combinetificadions of array declarations and statements,
in the light of [O’B98]. This extension will revisit the splof the schedule matrix into independent parts with
separated concerns, to facilitate the expression and thpasition of data layout transformations. A similar split
may be applicable to access functions as well.

3.1.4 Putting it All Together

Our representation allows us to compose transformatiottsowi reference to a syntactic form, as opposed to
previous polyhedral models where a single-step transfoomaaptures the whole loop nest optimization [Fea92,
LL97] or intermediate code generation steps are neede®RVilel96].

Let us better illustrate the advantage of expressing lompsformations as “syntax-free” function composi-
tions, considering again the example in Figure 3.1. Thetpadyal representation of the original program is the
following; statements are numberggd S, andS;, with global parameterig, = [M, N, P,Q]".

Statement iteration domains

1 | 0000| 070<i
’\812[71 1000 fl}ingl
1 0 [0000] 070<i 1 0 [0000|070<i
AS_ |10 1000 -1|i<M-1,g _|-10 0010|0|i<P
=|0 1 0000| 0|0<]j =|0 1 0000[0|0<]j
0 -1|0100| 1] j<N-1 0 -1/0001|0]j<0O



3.1. ANEW POLYHEDRAL PROGRAM REPRESENTATION

Statement schedules

55

10 10
. A% = o1 A% =[o1
Ar=l B = (010 p% =110
g™ =[00] rs, _ [0000( 0 rs _ [0000] 0
S —=[0000] O] *[oooo o] *[oooo o}
0|0 00| 0 001
ie.@S=|1]0 _ 10| 0 _ 10| 0
0/0 ie.®@2= (00| 1 ie.®@3 = (001
01|0 01|0
00| 0 00| 0
Statement access functions
ra={(zmooom)}  g2={ }
L% ={ (2.[100000]
Koo = (z, 100000} (x. 103000907 ) }

[osooc] )- (226000
‘ﬂo X, 010000 )}

Stepl: merging loopsi and k Within the representation, merging loopandk only influences the schedule
of statement, i.e., ©=. No other part of the polyhedral program representatiorffected. After merging,
statemeng; has the same static statement order at depth®,as., 0; its statement order at depth 1 becomes 2
instead of 1, i.e., it becomes the third statement of mergeyplil

p% =[020]

Step2: merging loopsj and | Thanks to the normalization rules on the polyhedral repriagion, performing
the previous step does not require the generation of a fyeghdic form to apply loop fusion again on internal
loops j andl. Although®% has been modified, its internal structure still exhibitscgdportunities for further
transformations. This is a strong improvement on previalgiedral representations.

Again, internal fusion of loop$ andl only modifies®. Its static statement order at depth 2 is now 1 instead
of 0, i.e., it is the second statement of merged Ipop

B =011}

Step3: fission The fission of the first loop to split-out stateméipi ] =0 has an impact o®% and®% since
their statement order at depth 0 is now 1 instead &[0 ](=0 is now the new statement of order 0 at depth 0),
while their statement order at depth 1 (Ia@js decreased by 1.

B2 =[100"' p==[101]

Step4: strip-mining j  Strip-mining loopj only affects the iteration domains of statemeBtandSs: it adds a
local variable and an iterator (and thus 2 matrix columna¥andAS) plus 4 rows for the new inequalities. It
also affects the structure of matric®® and®% to take into account the new iterator, but it does not chahge t
schedule/A® is the same as the domain matrix yin Section 3.1.3, and the other matrices are:



56 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

10 0oo0d 0] 0<i
-1 0 0001Q-1|i<P-1
0 0 0000Q 0| 0<j
AS_ | 0 0-1 00003-1] j<Q-1
0-1 1 0000Q O ji<]
0 1-1 0000Q63| j<jj+63
0-1 0 64000Q Of jj <64j,
| 0 1 0-64000Q 0] 64j, <jj
100 100
A% =1010|,p%2=[1000"and A> = |010| p==[1001
001 001

Step5: strip-mining i Strip-miningi has exactly the same effect for loopnd modifies the statemeris and
S accordingly.

Step6: interchangingi and j  As explained before, interchangingndj simply consists in swapping the second
and fourth row of matrice®% and®%, i.e., the rows of & and A%

(eolelololololola)
0]
&
|
[elelololololo) Yo

1
o
o
o
o

[eleoleol Jeolololole]
[oleoleololo] Jolole]
(el Jeolololololole]
RPOOOOOOORr

[oleolo] Jeololole]

[ecleolololo] Jolo
(el Jeoleololeolele)

[eleloleololole)

Summary Overall, none of the transformations has increased the pupfistatements. Only transformations
which add new loops and local variables increase the dimamdisome statement matrices but they do not make
the representation less generic or harder to use for cotigrosisince they enforce the normalization rules.

3.1.5 Normalization Rules

The separation between the domain, schedule, data laydatcaess functions attributes plays a major role in the
compositionality of polyhedral transformations. Indeadtions on different attributes compose in a trivial way,
e.g., strip-mining (iteration domain), interchange (stiie) and padding (data layout). Nevertheless, the previou
definitions do not, alone, guarantee good compositionalipperties. To achieve our goal, we need to define
additional normalization rules.

A given program can have multiple polyhedral represematiorl his is not harmless when the applicability
of a transformation relies on the satisfaction of represgorn prerequisites. For example, it is possible to merge
two statements in two loops only if these two statements ansecutive at the loops depth; e.g., assume the
statement order of these two statements is respectivelyd®anstead of 0 and 1; the statement order (and
thus the schedule) is the same but the statements are netcine and fusion seems impossible without prior
transformations. Even worse, if the two statements hawetiichd 3 vectors, fusion makes sense only if their
schedules span disjoint time iterations, which in turn delseon both their A an@ components, as well as their
iteration domains. Without enforcing strong invariantghe representation, it is hopeless to define a program
transformation uniquely from the matricedlormalizingthe representation after each transformation step is a
critical contribution of our framework. It proceeds as ¢olis.

Schedule matrix structure. Among many encodings, we choose to partit®into three components: matrices
A (for iteration reordering) and (iteration shifting), and vectds (statement reordering, fusion, fission),
capturing different kinds of transformations. This avo@less-pollution between statement and iteration
reordering, removing expressiveness constraints on timbication of loop fusion with unimodular trans-
formations and shifting. It allows to compose schedulegfamations without a costly normalization to
the Hermite normal form.



3.2. REVISITING CLASSICAL TRANSFORMATIONS 57

Sequentiality. This is the most important idea that structures the wholéiathrepresentation design. In brief,
distinct statements, or identical statements in distiteghtions, cannot have the same time stamp. Tech-
nically, this rule is slightly stronger than that: we reguihat the A component of the schedule matrix is
non-singular, that all statements have a diffefeaector, and that n@ vector may be the prefix of another
one.

This invariant brings two strong properties: (1) it supgessscheduling ambiguities at code generation time,
and (2) it guarantees that rule-compliant transformatiothe schedule and will preserve sequentiality of
the whole SCoP, independently of iteration domains. The fimsperty is required to give the scheduling
algorithm full control on the generated code. The secondi®m@egreat asset for separating the concerns
when defining, applying or checking a transformation; demeaaid schedule are strictly independent, as
much as modifications to A may ignore modificationgtand vice versa.

It is very important to understand that schedule sequéytialin no way a limitation in the context of
deeply and explicitly parallel architectures. First of, g@lérallel affine schedules are not the only way to
express parallelism (in fact, they are mostly practicalgsalibe bulk-synchronous parallelism), and in case
they would be used to specify a partial ordering of statenmetances, it is always possible to extend the
schedule with “spatial” dimensions to make A invertible \200].

Schedule density. Ensure that all statements at the same depth have a consdtatdering (no gap).

Domain density. Generation of efficient imperative code when scanriingolyhedra (a.k.a. lattice polyhedra
or linearly bounded lattices) is known to be a hard probleR9®, Bas03]. Although not an absolute
requirement, we try to define transformations that do nebdhice local variables in the iteration domain.
In particular, we will see in the next section that we use gediit, less intuitive and more implicit definition
of strip-mining to avoid the introduction of a local variabih the constraint matrix.

Domain parameters. Avoid redundant inequalities and try to reduce integer fhows in domain matriceé by
normalizing each row.

3.2 Reuvisiting Classical Transformations

The purpose of this section is to review, with more detai thrmal definition of classical transformations in
our compositional setting. Let us first define elementaryratiens callecconstructors Constructors make no
assumption about the representation invariants and méat&ithem.

Given a vectorv and matrix M with dinfv) columns and at leastrows, AddRow(M,i,v) inserts a new
row at positioni in M and fills it with the value of vector, RemRow(M, i) does the opposite transformation.
AddCol(M, j,v) andRemCol(M, j) play similar roles for columns.

Moving a statemen® forward or backward is a common operation: the construdtoe(P,Q,0) leaves all
statements unchanged except those satisfying

VS € Scop P E BN (Q < BSV QL B%) : BGip) — Biimp) + 0

whereu C v denotes that is a prefix ofv, whereP andQ are statement ordering prefixest. P C Q defining
respectively the context of the move and marking the inttiak-stamp of statements to be moved, and where
offseto is the value to be added to the component at deptl{Rljirof any statement ordering vectp? prefixed

by P and followingQ. If o is positive,Move(P, Q,0) insertso free slots before all statemergreceded by the
statement ordering prefi@ at the depth oP; respectively, ifo is negativeMove(P, Q, 0) deletes—o slots.

3.2.1 Transformation Primitives

From the earlier constructors, we define transformapigmitivesto serve as building blocks for transformation
sequences. These primitives do enforce the normalizatitles.r Figure 3.18 lists typical primitives affecting
the polyhedral representation of a statemetdenotes the vector filled with zeros but elemkrset to 1, i.e.,
(0,...,0,1,0,...,0); likewise,1; ; denotes the matrix filled with zeros but eleméinj) setto 1.

Like theMove constructor, primitives do not directly operate on loopsstatements, but target a collection of
statements and polyhedra whose statement-ordering weshare a common prefix P. There are no prerequisites
on the program representation to the application and corntjmosof primitives.



58 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

We also specified a number of optionallidity prerequisiteghat conservatively check for the semantical
soundness of the transformation, e.g., there are validéseguisites to check that no dependence is violated by a
unimodular or array contraction transformation. When expb the space of possible transformation sequences,
validity prerequisites avoid wasting time on corrupt tfansations.

FusioN and HssION best illustrate the benefit of designing loop transfornregiat the abstract semantical
level of our unified polyhedral representation. First of Elbp bounds are not an issue since the code generator
will handle any overlapping of iteration domains. For thaifie primitive, vector(P,0) prefixes all statements
concerned by the fission; and paramdténdicates the position where statement delaying shouldrod¢er the
fusion primitive, vector(P, 0+ 1) prefixes all statements that should be interleaved witkestants prefixed by
(P,0). Eventually, notice that fusion followed by fission — withethppropriate value df — leaves the SCoP
unchanged.

The expressive power of the latter two transformations esgameralized through the very expressiveivoN
primitive. This transformation can displace a block ofstagnts prefixed bl to a location identified by vectdr,
preserving the nesting depth of all statements and enf@ranmalization rules. This transformation ressembles
a polyhedral “cut-and-paste” operation that completelstiats all details of the programs other than statement
ordering in multidimensional time. This primitive uses afdaional notation: pfYv,d) computes the sub-vector
composed of the first components o¥/.

UNIMODULAR implements any unimodular transformation, extended tdrarly iteration domains and loop
nesting. U denotes a unimodular matrix. Notice the multation operates on both @ndT", effectively updating
the parametric shift along with skewing, reversal and thiange transformations, i.e., preserving the relativi¢ shi
with respect to the time dimensions it was applied upon.

SHIFT implements a kind of hierarchical software pipelining oe $ource code. It is extended with parametric
iteration shifts, e.g., to delay a statementMyterations of one surrounding loop. Matrix M implements the
parameterized shift of the affine schedule of a statement.ust imave the same dimensionfas

CuTtDoM constrains a domain with an additional inequality, in thexfef a vectorc with the same dimension
as a row of matrix\.

EXTEND inserts a new intermediate loop level at deptlnitially restricted to a single iteration. This new
iterator will be used in following code transformations.

ADDLOCALVAR insert a fresh local variable to the domain and to the aceasgibns. This local variable is
typically used by ©@TDOM.

PRIVATIZE and GONTRACTimplement basic forms of array privatization and conti@ttrespectively, consid-
ering dimensiorf of the array. Privatization needs an additional paranmgtée size of the additional dimension;
sis required to update the array declaration (it cannot beriatl in general, some references may not be affine).
These primitives are simple examples updating the dataitayd array access functions.

This table is not complete (e.g., it lacks index-set splifiind data-layout transformations), but it demonstrates
the expressiveness of the unified representation.

[ Syntax [ Effect |
UNIMODULAR (PU) [ VS€ Scop [PC BS,AS— UAS, TS —U.IS
SHIFT (P,M) VSE Seop | PERS, TS —T5+M
S AS S
CuTtDoM(P,c) VS E Scop | P T B5,AS — AddRow (A ,Oﬁc/gcd(clwuA,cdsmlsmgp“))

dS — dS+1; AS — AddCol(AS,c,0);

BS < AddRow(BS, £,0);

EXTEND(P,4,C) VSE Seop| PCBS, ¢ AS«— AddRow(AddCol(AS,c,0),£,1,);
IS « AddRow(I"S,£,0);

V(AF) € LEURS F — AddRow(F, /,0)
ADDLOCALVAR (P) | VS€ Scop| P B5,ds «— ds +1; AS — AddCol(AS,d5+ 1,0);
Y(AF) € LEURS F «— AddCol(F,d®+1,0)

PRIVATIZE (A, () VS € Seop, V(A F) € L5 U R3S F — AddRow(F, ¢, 1,)
CONTRACT(A, /) VS € Seop, V(A F) € L2 U R F — RemRow(F, ()
FusioN(P,0) b=max{B3p 1 | (PO C B>} +1
Move((P,0+1),(P,0+1),b); Move(P,(P,0+1),—1)
FissioN(P,0,b) Move(P,(P,0,b),1); Move((P,o+1),(P,0+1),—b)
MoTION(P,T) if dim(P) + 1= dim(T) thenb = max{BdSim(P) [PCBS}+1lelseb=1

Move(pfx(T,dim(T) — 1),T,b)
VSE Seop | P T BS,BS — BS+T — pix(P.dim(T))
Move(P,P,—1)

Figure 3.18: Some classical transformation primitives

Primitives operate on program representation while maiimg the structure of the polyhedral components
(the invariants). Despite their familiar names, the prive#’ practical outcome on the program representation



3.2. REVISITING CLASSICAL TRANSFORMATIONS 59

is widely extended compared to their syntactic countespahdeed, transformation primitives like fusion or
interchange apply to sets of statements that may be sahtteck duplicated at many different locations in the
generated code. In addition, these transformations arproperloop transformations anymore, since they apply
to sets of statement iterations that may have completelgrdiit domains and relative iteration schedules. For
example, one may interchange the loops surrounding orenstat in a loop body without modifying the schedule
of other statements, and without distributing the loop firBhother example is the fusion of two loops with
different domains without peeling any iteration.

Previous encodings of classical transformations in a pedyal setting — most significantly [Wol92] and
[Kel96] — use Presburger arithmetic as an expressparatingtool for implementing and validating transforma-
tions. In addition to operating on polytopes, our wgeneralizedoop transformations to more abstrgetlyhe-
dral domaintransformations, without explicitly relying on a nestedostructure with known bounds and array
subscripts to define the transformation.

Instead of anchoring loop transformations to a syntacticrf@f the program, limitting ourselves to what can
be expressed with an imperative semantics, we define highelrtransformations on the polyhedral representa-
tion itself, abstracting away the overhead (versioningléiation) and constraints of the code generation process
(translation to an imperative semantics)

[ Syntax [ Effect [ Comments |
swap rows ando+ 1

INTERCHANGE(P,0) | VS€ Seop| PC BS,

U=lis—loo—Lot10+1tloo+1tLor10}
UNIMODULAR (B5,U)

SKEw (P, 4,c,s) VS€E Seop| PCBS, add the skew factor

U=ls+s Lo
UNIMODULAR (B5,U)

REVERSE(P,0) VS E Seop | PE BS, puta-1in (0,0)

U=l4s—2-150;
UNIMODULAR (BS,U)

STRIPMINE (P,K) VSE Scop | PC S,
c=dim(P);
EXTEND (BS,c,c); insert intermediate loop
u=dS+dS +dgp+1; constant column
CutDOoM(BS, —k- 1o+ (AS,,,TS.1)); K-ig <ici1
CutDOM (BS k- 1c — (AS, TS 1) + (k—1)1) ier1 Skeic+k—1

TILE (P,0,k1,k2) VS€ Seop| (P0) EB®,
STRIPMINE ((P,0),k2); strip outer loop
STRIPMINE (P ky); strip inner loop
INTERCHANGE((P,0),dim(P)) interchange

Figure 3.19: Composition of transformation primitives

Naturally, this higher-level framework is beneficial foamisformation composition. Figure 3.19 composes
primitives into typical transformations.NITERCHANGE swaps the roles of, andip;1 in the schedule of the
matching statements; it is a fine-grain extension of thesatakinterchange making no assumption about the
shape of the iteration domain.k8w and REVERSE define two well known unimodular transformations, with
respectively the skew factawith it's coordinateg/, c), and the deptb of the iterator to be reversedT8IPMINE
introduces a new iterator to strip the schedule and iterat@nain of all statements at the depthPdhto intervals
of lengthk (wherek is astatically known integgr This transformation is a sequence of primitives and dags n
resort to the insertion of any additional local variables Beggure 3.19. TLE extends the classical loop tiling at of
the two nested loops at the depthyfusingk x k blocks, with arbitrary nesting and iteration domains.niland
strip-mining always operate dmedimensions, hence the propagation of a line from the scleedatrix (from A
andr) into the iteration domain constraints; it is possible ke the surrounding time dimensions of any collection
of statements with unrelated iteration domains and sclesdul

3.2.2 Implementing Loop Unrolling

In the context of code optimization, one of the most impdrteansformations is loop unrolling. A naive imple-
mentation of unrolling with statement duplications mayutes severe complexity overhead for further transfor-
mations and for the code generation algorithm (its separatigorithm is exponential in the number of statements,
in the worst case). Instead of implementing loop unrollinghie intermediate representation of our framework,
we delay it to the code generation phase and perform full looplling in alazyway. This strategy is fully imple-
mented in the code generation phase and is triggered byatiors (carrying depth information) of the statements



60 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

whose surrounding loops need to be unrolled; unrolling oxouthe separation algorithm of the code generator
[Bas04] when all the statements being printed out are madaghrolling at the current depth.

Practically, in most cases, loop unrolling by a fadbosin be implemented as a combinationstrip-mining
(by a factorb) andfull unrolling [Wol96]. Strip-mining itself may be implemented in severalys in a polyhedral
setting. Following our earlier work in [CGM5] and callingb the strip-mining factor, we choose to model a
strip-mined loop by dividing the iteration span of the outerp byb instead of leaving the bounds unchanged and
inserting a non-unit stride, see Figure 3.20.

for( L% t1<-{ J t1++)

for(i=((X); i<=u(X); i++)f strip-mine(b)
for(t2=max(£(X), b*t1); t2<=mn(u(X), b*t1+b-1); t2++)

Figure 3.20: Generic strip-mined loop after code genematio

This particular design preserves the convexity of the pedlyh representing the transformed code, alleviating
the need for specific stride recognition mechanisms (basgd,on the Hermite normal form).

In Figure 3.21(b) we can see how strip-mining the originaleof Figure 3.21(a) by a factor of 2 yields an
internal loop with non-trivial bounds. It can be very usefulunroll the innermost loop to exhibit register reuse
(a.k.a. register tiling), relax scheduling constraintd diminish the impact of control on useful code. However,
unrolling requires to cut the domains so tidh andmax constraints disappear from loop bounds. Our method
is presented in more detail in [VBCOG6]; it intuitively boitkown to finding conditionals (lower bound and upper
bound)such that their difference is a non-parametric constahe unrolling factor. Hoisting these conditionals
actually amounts to splitting the outer strip-mined looia kernel part where the inner strip-mined loop will be
fully unrolled, and a remainder part (not unrollable) sgagrat most as many iterations as the strip-mining factor.
In our example, the conditions associated with a constamttunt (equal to 2) are2>=2*t 1 andt 2<=2*t 1+1
and are associated with the kernel, separated from the quelavhere2*t 1<M and from the epilogue where
2*t 1+1>N. This separation leads to the more desirable form of FigL&(8).

Finally, instead of implementing loop unrolling in the imgediate representation of our framework, we delay
it to the code generation phase and perform full loop unrglin a lazy way, avoiding the added (exponential)
complexity on the separation algorithm. This approactesatin a preliminary strip-mine step that determines the
amount of partial unrolling.

for(tl=M t1<=N, t1++)
Si(i =t1);

(a) Original code

for(tl=M2; t1<=N2; t1++)
for(t2=max(M 2*t1);
t2<=min(N, 2*t 1+1); t2+4)
SI(i =1t2);

(b) Strip-mining of 2

i f(MR==
S1i(i

for(tl
S1(i
Sl('
f (N2
Sl(

1)
M
ML)/ 2; t1<=(N-1)/2; t1+4)
21
21
0)
N)

II
—

t1);
t1+1);

(c) Separation & unrolling

Figure 3.21: Strip-mining and unrolling transformation



3.2. REVISITING CLASSICAL TRANSFORMATIONS 61
3.2.3 Parallelizing Transformations

Most parallelizing compilers rely on loop transformatidnsextract and expose parallelism, from vector and
instruction-level to thread-level forms of parallelismH87, CHH"93, BEF" 96, H" 96, KAP, CDS96, BGGT02,
Nai04, EWO04]. The most common strategy is to compose lcapsformations to extract parallelo@l 1) or
pipeline floacr oss) loops [BEF 96]. The main transformations include privatization [MA3,9rP93, RP99] for
dependence removal and unimodular transformations or sgitng to rearrange dependences [Ban88, Wol96].

Many academic approaches to automatic parallelizatioe baed the polyhedral model — and partially or-
dered affine schedules in particular — to describe fine grdtor [Pug91a, Fea92, Xue94] or systolic [GQA,
SAR"™00] parallelism. Affine schedules have also been appliethé¢oektraction and characterization of bulk-
synchronous parallelism [LL97, DRVO0O, LLLO1]. Array expon is a generalization of privatization that lever-
ages on the precision of array dependence analysis in tlyfgudal model [Fea88a, BCC98, BCCO00]. Array
contraction [Wol96, LLLO1] and its generalization calle¢drage mapping optimization [LF98, SCFS98, QR99]
allows to control the overhead due to expansion techniques.

Our work does not aim at characterizing parallel executiéth ywartially ordered affine schedules. In this
sense, we prefer the more general and decoupled approsmhigdiby traditional parallelizing compilers where
parallelism is a separate concern. Loop transformatiopsessed on the schedule parts of the representation are
seen agnablingtransformations to extract parallel loops or independestriictions in loop bodies. These en-
abling transformations are associated with a precise dlpe® analysis to effectively allow to generate code with
parallel execution annotations, using e.g., OpenMP. Modehore dynamic forms of parallelism also requires
such a decoupled approach: recently, a modernized vergidolaris has been extended to automatically extract
vast amounts of effectively exploitable parallelism iregular scientific codes, usirybrid analysigRRHO03],
coupling a symbolic dependence analysis with an inferefgmithm to guard parallel code with low-overhead
dynamic tests wherever a fully static decision is not fdasilfet these results used no prior loop transformation
to enhance scalability through additional parallelisnrastion or to coarsen its grain. Although we cannot show
any empirical evidence yet, we believe the same reason whjramework improves on single-threaded opti-
mizations (flexibility to express complex transformati@ygences) will bring more scalability and robustness to
these promising hybrid parallelization techniques.

3.2.4 Facilitating the Search for Compositions

To conclude this section, we study how our polyhedral regregtion with normalization rules for compositional-
ity can further facilitate the search for complex transfatimn sequences.

We have seen that applying a program transformation simplyuats to recomputing the matrices of a few
statements. This is a major increase in flexibility, comgacesyntactic approaches where the code complexity
increases with each transformation. It is still the casepf@fetching and strip-mining, where, respectively, a
statement is added and matrix dimensions are increasethéatlded complexity is fairly moderate, and again
the representation is no less generic.

Transformation Space

Commutativity properties are additional benefits of theasafion into four representation aspects and the normal-
ization rules. In general, data and control transformatimmmute, as well as statement reordering and iteration
reordering. For example, loop fusion commutes with looprichange, statement reordering, loop fission and loop
fusion itself. In the example detailed in Section 3.1.4, gwiag fusion and fission has no effect on the resulting
representation; the first row @ vectors below shows double fusion followed by fission, wiiile second row
shows fission followed by double fusion.

p*=[00]  p%=[00]  p%=[00]

p®=[200 p%=[110 p%=[01]]

Confluence properties are also available: outer loop ungréind fusion (unroll-and-jam) is strictly equivalent
to strip-mining, interchange and full unrolling. The lat&equence is the best way to implement unroll-and-jam



62 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

in our framework, since it does not require statement dafibo in the representation itself but relies on lazy
unrolling. In general, strip-mining leads to confluent gatthen combined with fusion or fission.

Such properties are useful in the context of iterative sesrbecause they may significantly reduce the search
space, and they also improve the understanding of its sneiavhich in turn enables more efficient search strate-
gies [CSTO02].

Strip-mining and shifting dmot commute. However applying shifting after strip-mining amts to intra-tile
pipelining (the last iteration of a tile stays in that til@)hereas the whole iteration space is pipelined across tiles
when applying strip-mining after shifting (the last itecet of a tile being shifted towards the first iteration of the
next tile).

When changing a sequence of transformations simply means ahging a parameter

Finally, the code representation framework also opens ugwaapproach for searching compositions of program
transformations. Since many program transformations trevenly effect of modifying the matrix parameters, an
alternative is tairectly search the matrix parameters themselNesome cases, changing one or a few parameters
is equivalent to performing a sequence of program transdtions, making this search much simpler and more
systematic.

For instance, consider th®% matrix of Section 3.1.3 and now assume we want to systenfigtisearch
schedule-oriented transformations. A straightforwanorapch is to systematically search & matrix param-
eters themselves. Let us assume that, during the searchdemdy reach the following matrix:

00
01
oS — |00
10
00

RPOFROO

This matrix has 7 differences with the origin@P matrix of Section 3.1.3, and these differences actually
correspond to the composition of 3 transformations: lodprichange (loopk andl), outer loop fusion (loops
i andk) and inner loop fusion (loopg andl). In other words, searching the matrix parameters is etpnvao
searching for compositions of transformations.

Furthermore, assuming that a full polyhedral dependeragggnas been computéit,is possible to character-
ize theexact set of all schedule, domain and access matrices agsdavith legal transformation sequencésis
can be used to quickly filter out or correct any violating sfammation [BF04], or even better, using the Farkas
lemma as proposed by Feautrier [Fea92], to recast this dihphiaracterization into an explicit list of domains
(of Farkas multipliers) enclosing the very values of all matoefficients associated with legal transformations.
Searching for a proper transformation within this domairuldde amenable to mathematical tools, like linear
programming, promising better scalability than genetigpathms on plain transformation sequences. This idea
is derived from the “chunking” transformation for autonedticality optimization [BF03, BF04]; it is the subject
of active ongoing work.

3.3 Higher Performance Requires Composition

We have already illustrated the need for long sequencesmpaosed transformations and the limitations of syn-
tactic approaches on the synthetic example of Section.34k ktated in the first chapter, empirical evidence on
realistic benchmarks was provided by a methodological iegrRarello et al. [PTCV04]. We only recall the main
experimental results to enable further analysis of theirements of a transformation composition framework.

3.3.1 Manual Optimization Results

Experiments were conducted on an HP AlphaServer ES45, 1Gtm&R1264C EV68 (1 processor enabled) with
8MB L2 cache and 8GB of memory. We compare our optimized gasswith thebaseSPEC performance, i.e.,
the output of the HP Fortran (V5.4) and C (V6.4) compilearch ev6 -fast -0 ONESTEP) using the KAP
Fortran preprocessor (V4.3).

30ur tool performs on-demand computation, with lists of pelgra capturing the (exact) instance-wise dependenceriafin between
pairs of references.



3.3. HIGHER PERFORMANCE REQUIRES COMPOSITION 63

Transformation sequences

In the following, we assume an aggressive inlining of allqg@aure calls within loops (performed by KAP in most
cases). The examples in Figures 3.25, 3.23, 3.24 and 3.22 shdde variability in transformation sequences
and ordering. Each analysis and transformation phase istdd@s a gray box, showing the time difference when
executing thdull benchmarl(in seconds, a negative number is a performance improvéntkeatbase execution
time for each benchmark is also indicated in the caption hEamsformation phase, i.e., each gray box, is then
broken down into traditional transformations, i.e., whitexes.

All benchmarks benefited from complex compositions of tfamsations, with up to 23 individual loop and

array transformations on the same loop nesgédgel. Notice that some enabling transformations actually digra
performance, like (A2) igalgel.

A1: -3s A2: -2s A3: -1s
|| Fission ||| Peeling Fusion | S_oftv_vgre
Pipelining
B1: -31s Software
Pipelining
G:-27s || |[rivatization B2: -1s B3: -1s
Data [ ||Privatization Interchange || | Fission | Spftv_vae
Layout Pipelining
Fission
C1: 11s
Privatization
—|Privatization Interchange
Fission

Figure 3.22: Optimizingpsi (base 378s)

A: -29s
Full Float. point Scalar
Unrolling Reordering Promotion
G: -11s
B1: -4s
Fusion B2: -18s
Instruction Fission | Full
Splitting Unrolling
Figure 3.23: Optimizingpplu (base 214s)
A1: 19s A2: -45s A3: 11s
. Full L Full || Array .
Fusion Unrolling Unrolling Contraction Scheduling

Figure 3.24: Optimizingvupwise (base 236s)



64 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

A2: +24s Ad4: -5

Tz iz ‘Array Copy Scalar b
A3 245 Fusion H Shifing HPmpaga(mn Promotion AS: -6s
L[ Gnron Register
‘”ég.f.?é‘;’” shiing || Fiesion rip-Minin usion Fusion *A Hoisting ‘ ol i
o] o 1

Figure 3.25: Optimizingjalgel (base 171s)

3.3.2 Polyhedral vs. Syntactic Representations

Section 3.1 presented the main assets of our new polyhegnagentation. We now revisit these properties on
the 4 chosen benchmarks.

Code size and complexity

The manual application of transformation sequences leadslarge code size increase, let aside the effect of
function inlining. This is due to code duplication when uling loops, but also to iteration peeling and loop
versioning when applying loop tiling and strip-mining. Tgal cases are phases (A)adpplu and (A2)wupwise
(unrolling), and (A5) ingalgel (unroll-and-jam).

In our framework, none of these transformations performstagement duplication, only strip-mining has a
slightimpact on the size of domain matrices, as explain&eiction 3.1.3. In general, the only duplication comes
from parameter versioning and from intrinsicly code-bilogtschedules resulting from intricate transformation
sequences. This “moral” observation allows to blame thesfiammation sequence rather than the polyhedral
transformation infrastructure, yet it does not provide r@tnitive characterization of the “good” transformation
sequences that do not yield code-bloating schedules;sthedtifor future work.

Interestingly, it is also possible to control the aggremsess of the polyhedral code generator, focusing its
code-duplicating optimizations to the hottest kernelyoyielding sub-optimal but very compact code in the rest
of the program. Again, the design of practical heuristicdrive these technique is left for future work.

Breaking patterns

On the introductory example, we already outlined the difficto merge loops with different bounds and tile
non-perfectly nested loops. Beyond non-matching loop deamd non-perfect nests, loop fusion is also inhibited
by loop peeling, loop shifting and versioning from previ@ieses. For examplgalgel shows multiple instances
of fusion and tiling transformations after peeling and @hif. KAP’s pattern-matching rules fail to recognize any
opportunity for fusion or tiling on these examples.

Interestingly, syntactic transformations may also introglsome spurious array dependences that hamper fur-
ther optimizations. For example, phase (A3)gaigel splits a complex statement with 8 array references, and
shifts part of this statement forward by one iteration (safe pipelining) of a loof;. Then, in one of the fusion
boxes of phase (A4), we wish to mergewith a subsequent lodp,. Without additional care, this fusion would
break dependencgesorrupting the semantics of the code produced after (ABjle¢d, some values flow from
the shifted statement ib; to iterations ofL,; merging the loops would consume these values before pitogluc
them. Syntactic approaches lead to a dead-end in this ¢esenty way to proceed is to undo the shifting step,
increasing execution time by 24 seconds. Thanks to the cdation properties of our model, we can make the
dependence between the loops compatible with fusion byirghithe loopL, forward by one iteration, before
applying the fusion.

Flexible and complex compositions of transformations

The manual benchmark optimizations exhibit wide variagiomthe composition of control, access and layout
transformationsgalgel is an extreme case where KAP does not succeed in optimizéncpitie, even with the best
hand-tuned combination of switches, i.e., when directeapfaly some transformations with explicit optimization
switches (peak SPEC). Nevertheless, our (long) optininagequence yields a significant speedup while only
applying classical transformations. A closer look at thedeeshows only uniform dependences and constant
loop bounds. In addition to the above-mentioned syntaestrictions and pattern mismatches, our sequence of
transformations shows the variability and complexity cdleling transformations. For example, to implement the



3.4. IMPLEMENTATION 65

eight loop fusions in Figure 3.25, strip-mining must be &apto convert large loops ™2 iterations into nested
loops ofN iterations, allowing subsequent fusions with other loopl @terations.

applu stresses another important flexibility issue. Optimization two independent code fragments follow an
opposite direction: (G) and (A) target locality improvertserthey implement loop fusion and scalar promotion;
conversely, (B1) and (B2) follow a parallelism-enhancitrgtegy based on the opposite transformations: loop
fission and privatization. Since the appropriate sequenoetithe same in each case, the optimal strategy must
be flexible enough to select either option.

Finally, any optimization strategy has an important imgacthe order in which transformations are identified
and applied. When optimizingpplu andapsi, our methodology focused on individual transformationseparate
loop nests. Only in the last step, dynamic analysis inditdtat, to further improve performance, these loop
nests must first be merged before applying performancereimatransformations. Of course, this is very much
dependent on the strategy driving the optimization prqdagsan iterative feedback-directed approach is likely to
be at least as demanding as a manual methodology, since fiotantially examine much longer transformation
sequences.

3.4 Implementation

The whole infrastructure is implemented as a free (GPL)alth the Open64/ORC/EKOPath family of compilers
[ORC, Cho04]. Optimization is performed in two runs of themgiler, with one intermediate run of our tool,
using intermediate dumps of the intermediate representétie. Nfiles) as shown in Figure 3.26. It thus natively
supports the generation of IA64 code. The whole infrastmectompiles with GCC3.4 and is compatible with
PathScale EKOPath [Cho04] native code generator for AMD@#IA32. Thanks to third-party tools based on
Open64, this framework supports source-to-source opditioia, using the robust C unparser of Berkeley UPC
[BCBYO04], and planning a port of the Fortran90 unparser flopen64/SL [CZT]. It contains 3 main tools

in addition to Open64: WRaP-IT which extracts SCoPs andilthibir polyhedral representation, URUK which
performs program transformations in the polyhedral regmegtion, and URGenT the code generator associated
with the polyhedral representatitn

open64 - PHASE: p=on: | =of f : weof f : c=of f i nput.c
- open64 - PHASE: p=on: | =on: w=on: c=on out put. N
input.c

PreOPT
our
optimisation

NO
framework

output.bin

Figure 3.26: Optimisation process

3.4.1 WRaP-IT: WHIRL Represented as Polyhedra — Interface ol

WRaP-IT is an interface tool built on top of Open64 which cems the WHIRL — the compiler’s hierarchical
intermediate representation — to an augmented polyhegppadsentation, maintaining a correspondence between
matrices in SCoP descriptions with the symbol table andasytree. Although WRaP-IT is still a prototype, it
proved to be robust; the whole source-to-polyhedra-taemaonversion (without any intermediate loop trans-
formation) was successfully applied in 34 seconds in awemay benchmark on a 512MB 1GHz Pentium llI
machine.

Implemented within the modern infrastructure of Open64,aWNRT benefits from interprocedural analysis
and pre-optimization phases such as function inlininggrimocedural constant propagation, loop normalization,
integer comparison normalization, dead-code gotd elimination, and induction variable substitution. Ourltoo

4These tools can be downloaded frbirt p: / /ww. | ri . fr/~girbal /site_wapit.



66 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

extracts large and representative SCoPs for SPECfp20@htremks: on average, 88% of the statements belong
to a SCoP containing at least one loop [BOE3).

To refine these statistics, Figures 3.27 and 3.28 descré®@oP breakdown for each benchmark with respect
to instruction count and maximal loop nesting depth, reypaly. These numbers confirm the lexical importance
of code that can be represented in our model, and set a watledie$icalability target for the (most of the time
exponential) polyhedral computations associated witlym analyses and transformations.

1104

1004

90 [] 168.wupwise [ 183.equake

[] 171.swim [ 187.facerec
604 [] 172.mgrid Il 188.ammp
] 173.applu W 191.fma3d
D 177.mesa . 200.sixtrack

o1 W 79t W c0Lapsi

60+

504

Number of SCoPs

404

304

20+

= nﬂll. - I -

0-2 3-4 5-8 9-16 17-32 33-64 65-128 129-256 257+

Figure 3.27: SCoP size (instructions)

10004

%) [] 168.wupwise [ 183.equake
% [ 171.5wim [ 187.facerec
O 1004 [ 172.mgrid [ 188.ammp
n

- - ] 173.applu Il 101.fma3d
8 [ 177.mesa Il 200.sixtrack
() .
Q 104 [ 179.art Il 30Lapsi
IS

S

P4

| 1 1T

Figure 3.28: SCoP depth

6

To refine this coverage study, we computed the SCoP breakddtvmespect to effective execution time. We
conducted statistical sampling measurements, usingph& i | e portable performance monitoring framework.
Figure 3.29 gather the execution time percentage assdeidtteeach consecutive block of source statements (over
2.5% execution time). The penultimate column, #SCoPssdive number of SCoPs covering this code block: the
lower the better. The last column shows the maximal loogmgsiepth in those SCoPs and the actual loop nesting
depth in the procedure; when the two numbers differ, somtosing loops are not considered static control. In
many casesa single full-depthSCoP is sufficient to cover the whole block of “hot” instraets, showing that
polyhedral transformations will be fully applicable toghdode block. These results are very encouraging, yet
far from sufficient in the context of general-purpose amlans. This motivates further research in extending the
applicability of polyhedral techniques to “sparsely innégy” code. Inlining was disabled to isolate SCoP coverage



3.4. IMPLEMENTATION 67

in each source code functign.

) . . . SCoP Depth/
File Function Source Lines| %Time | #SCoPs Actual Depth
168.wupwise | zaxpy.f zaxpy 11-32 20.6% 1 171
zcopy.f zcopy 11-24 8.3% 1 11
zgemm.f zgemm 236-271 47.5% 7 3/3
171.swim swim.f main 114-119 5.6% 1 2/2
swim.f calcl 261-269 26.3% 1 2/2
swim.f calc2 315-325 36.8% 1 22
swim.f calc3 397-405 29.2% 1 2/2
172.mgrid mgrid.f psinv 149-166 27.1% 1 3/3
mgrid.f resid 189-206 62.1% 1 3/3
mgrid.f rprj3 230-250 4.3% 1 3/3
mgrid.f interp 270-314 3.4% 1 3/3
173.applu applu.f blts 553-624 15.5% 1 6/6
applu.f buts 659-735 21.8% 1 6/6
applu.f jacld 1669-2013 | 17.3% 1 3/3
applu.f jacu 2088-2336 | 12.6% 1 3/3
applu.f rhs 2610-3068 | 20.2% 1 4/4
183.equake quake.c main 435-478 99% 4 23
187.facerec | cfftb.fo0 passbh4 266-310 35.6% 1 212
gaborRoutines.fo0| GaborTrafo 102-132 19.2% 2 22
graphRoutines.f90| LocalMove 392-410 18.7% 2 0/4
graphRoutines.f90| TopCostFct 451-616 8.23% 1 0/0
200.sixtrack | thinéd.f thinéd 180-186 15.2% 1 1/3
thinéd.f thinéd 216-227 3.7% 1 1/3
thinéd.f thinéd 230-244 8.9% 3 1/3
thinéd.f thinéd 267-287 8.2% 2 1/3
thin6d.f thinéd 465-477 6.3% 1 1/3
thinéd.f thinéd 560-588 54.8% 1 2/4
301.apsi apsi.f dcdtz 1326-1354 4.3% 1 3/3
apsi.f dtdtz 1476-1499 4.3% 1 1/3
apsi.f dudtz 1637-1688 4.5% 1 3/3
apsi.f dvdtz 1779-1833 4.5% 1 3/3
apsi.f weont 1878-1889 7.5% 1 1/3
apsi.f trid 3189-3205 5.9% 1 11
apsi.f smth 3443-3448 3.7% 1 11
apsi.f radb4 5295-5321 6.6% 2 22
apsi.f radbg 5453-5585 9.0% 3 3/3
apsi.f radf4 5912-5938 3.2% 2 2/2
apsi.f radfg 6189-6287 5.1% 2 3/3
apsi.f dkzmh 6407-6510 11.4% 8 1/3

Figure 3.29: Static and dynamic SCoP coverage

3.4.2 URUK: Unified Representation Universal Kernel

URUK is the key software component: it performs programgfarmations within the WRaP (polyhedral) rep-
resentation. A scripting language, defines transformaténd enables the composition of new transformations.
Each transformation is built upon a set of elementary astitireconstructorgSee Section 3.2).

Figure 3.30 shows the definition of tiove constructor, and Figure 3.31 defines thesfoN transformation
based on this constructor. This syntax is preprocessedstidoaded C++ code, offering a high-level semantics to
manipulate the polyhedral representation. It takes less dme hour for an URUK expert to implement a complex
transformation like tiling of imperfectly nested loops kiprolog/epilog generation and legality checks, and to
have this transformation work on real benchmarks withordrer

Transformation composition is very natural in the URUK syat Figure 3.32 shows how simple it is to
implement tiling from the compaosition of strip-mining amdérchange primitives, hiding all the details associated
with remainder loop management and legality checking.

3.4.3 URDeps: URUK Dependence Analysis

An important feature of URUK is the ability to perform transihationswvithout mandatory intermediate validity
checks, and without reference to the syntactic progrdimis allows to compute dependence information and to
perform validity checks on demand. Our dependence analgsiputes amxactinformation whenever possible,
i.e., whenever array references are affine (control strastare assumed affine in SCoPs). A list of convex
polyhedra is computed for each pair of statements and fdr dapth,considering the polyhedral representation

5We left out 6 SPECfp2000 benchmarks due to the (current)déiskipport in our analyzer for function pointers and poiréthmetic.



68 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

%ransformation nmove % ransformation fission
Y%aram BetaPrefix P, Q Y%ar am BetaPrefix P
Yparam OFf set o Yparam OFfset o, b
Y%rereq P<=Q Y%ode
Y%ode {
{ UrukVector Q=P
foreach S in SCoP Q enqueue(0); Q enqueue(b);
if (P<=S.Beta && Q<=S. Beta) UrukVector R=P;
S. Beta(P. dim)) +=o0; R enqueue(0+1);
else if (P<=S.Beta &% (X<S. Beta) UT_move(P, Q 1). appl y( SCoP);
S. Beta(P. din()) +=o; UT_nove(R R -1).appl y(SCoP);
} }
Figure 3.30:Move constructor Figure 3.31: FSSION primitive

Y% ransformation tile
Y%ar am Bet aPrefix P
Y%aram I nteger k1
Y%ar am | nt eger k2
Y%rereq k1>0 && k2>0
Y% ode
{
Q=P. encl ose();
UT_stri pni ne(P, k2). appl y(SCoP);
UT_stripm ne(Q k1). appl y(SCoP);
UT_i nt erchange(Q . appl y(SCoP);
}

Figure 3.32: TLE primitive

only, i.e., without reference to the initial syntactic prograrhis allows forone-time dependence analybisfore
applying the transformation sequence, ané-time checht the very end, before code generation.

Let us briefly explain how this is achieved. Considering tigtidct references to the same array in the pro-
gram, at least one of them being a write, there is a dependiataeen them if their access functions coincide on
some array element. Multiple refinement of this abstradi@re been proposed, including dependence directions,
distances, vectors and intervals [Wol96] to improve theisien about the localization of the actual dependences
between run-time statement instances. In the polyhedrdémib is possible to refine this definition further and to
compute arexactdependence information, as soon as all array referencedfare [Fea91]. Exact dependences
are classically captured by a system of affine inequalitves iteration vectors; when considering a syntactic loop
nest, dependences at depthetween access functionS &d F in statement$ andT are exactly captured by
the following union of polyhedra:

Dy Do N (S1T) | FS(5) = FT(iT) AiS<piT},

where< stands for the ordering of iteration vectors at dgphe., equal component-wise up to depth 1 and
different at deptip).

Yet this characterization needs to be adapted to programpolyhedral representation, where no reference
to a syntactic form is available, and where multiple sche@md domain transformations make the definition and
tracking of the dependence information difficult. We thydaee the ordering on iteration vectors by the schedule-
induced ordering, and split the constraints according éadicomposition of the schedule in our formalism. Two
kinds of dependences at depiltan be characterized.

e Loop-carried dependence:

Bo.p1=Bd.p_1and(AS T)iS <, (AT, I



3.5. SEMI-AUTOMATIC OPTIMIZATION 69

¢ Intra-loop dependence:
B%0.p—1=BT0.p—1,  ((AST®)i%0.p1=((AT,IM)i")op12andBy < By.

Both kinds lead to a union of polyhedra that is systematdaliilt, before any transformation is applied, for all
pairs of references (to the same array) and for all deptharfoan to these references).

To solve the dependence tracking problem, we keep trackl ef@dlifications to thestructure of the time
and domain dimensions. In other words, we record any exiar{gimension insertion, to implement, e.g., strip-
mining) and any domain restriction (to implement, e.g. eixdet splitting) into a work list, and we eventually
traverse this list after all transformations have beeniadpgb update dependence polyhedra accordingly. This
scheme guarantees that the iteration domains and time diomencorrespond, after transformations, in the pre-
computed dependence information and in the modified polgh@dogram representation.

Dependence checking is implemented by intersecting evepgdence polyhedron with theversedschedule
of the transformed representation. If any such intersedimon-empty, the resulting polyhedron captures the
exact set of dependence violatioriBhis step allows to derive the exact set of iteration veptirs associated
with causality constraints violations [VCBGO06]. Based biststrong property, our implementation reports any
dependence violation as a list of polyhedra; this reporeiy wseful for automatic filtering of transformations in
an iterative optimization framework, and as an optimizata for the interactive user of URUK.

Interestingly, our formalism allows both dependence catajion and checking to be simplified, relying on
scalar comparisons on tifevectors to short-circuit complex polyhedral operationsrorer depths. This opti-
mization yields impressive speedups, due to the bloclestrad nature of most real-world schedules. The next
section will explore such a real-world example and show adgmalability of this aggressive analysis.

3.4.4 URGenT: URUK Generation Tool

After polyhedral transformations, the (re)generationnopérative loop structures is the last step. It has a strong
impact on the target code quality: we must ensure that nongght guard or complex loop bound spoils perfor-
mance gains achieved thanks to polyhedral transformatidfesused the Chunky Loop Generator (CL00G), a
recent Quilleré et al. method [QRWO0O] with some additiongbiovements to guarantee the absence of duplicated
control [Bas04], to generate efficient control for full SF|RZD00 benchmarks and for SCoPs with more than 1700
statements. Polyhedral transformations make code gémerticularly difficult because they create a large set
of complex overlapping polyhedra that need to be scanndddeitloops [AlI91, QRWO00, Bas03, Bas04]. Because
of the added complexity introduced, we had to design URGamnTajor reengineering of CLooG taking advantage
of the normalization rules of our representation to bringanential improvements to execution time and memory
usage. The generated code size and quality greatly improvaking it better than typically hand-tuned code.
[VBCO06] details how URGenT succeeds in producing efficiesdecfor a realistic optimization case-study in a
few seconds only.

3.5 Semi-Automatic Optimization

Let us detail the application of our tools to the semi-auttiengptimization of theswim benchmark, to show the
effectiveness of the approach and the performance of théemgntation on a representative benchmark. We
target a 32bit and a 64bit architecture: an AMD Athlon XP 28@Barton) at 2.08GHz with 512KB L2 cache
and 512MB single-channel DDR SDRAM (running Mandriva Linli®.1, kernel version 2.6.8), and a AMD
Athlon 64 3400+ (ClawHammer) at 2.2GHz zith 1MB L2 cache andle-channel 1GB DDR SDRAM (running
Debian GNU/Linux Sid, kernel version 2.6.11). Téw@m benchmark was chosen because it easily illustrates the
benefits of implementing a sequence of transformations irframework, compared to manual optimization of
the program text, and because it presents a reasonably3&ge to evaluate robustness (after fully inlining the
three hot subroutines).

Figure 3.33 shows the transformation sequencevion, implemented as a script for URUK. Syntactic compi-
lation frameworks like PathScale EKOPath, Intel ICC and KBlement a simplified form of this transformation
seguence oswim, missing the fusion with the nested loops in subroutialec3, which requires a very complex
combination of loop peeling, code motion and three-levétialy. In addition, such a sequence is highly specific
to swim and cannot be easily adapted, extended or reordered tochathélr programs: due to syntactic restrictions
of individual transformations, the sequence has to be densdl as a whole since the effect of any of its compo-
nents can hamper the application and profitability of thérestequence. Conversely, within our semi-automatic



70

CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

framework, the sequence can be built without concern abeLittpact of a transformation on the applicability of
subsequent ones. We demonstrate this through the dedicastbrmation sequence in Figure 3.33.

This URUK script operates on tisai m Nfile, a persistent store of the compiler’s intermediateespntation,
dumped by EKOPath after interprocedural analysis and ptieaization. At this step, EKOPath is directed to
inline the three dominant functions of the benchmasgk,c1, cal c2 andcal ¢3 (passing these function names to
the- I NLI NE optimization switch). WRaP-IT processes the resulting éil@racting several SCoPs, the significant
one being a section of 421 lines of code — 112 instruction®iénpolyhedral representation — in consecutive
loop nests within theai n function. Transformations in Figure 3.33 apply to this SCoP

Labels of the fornCxLy denote statementof procedurecal cx. Given a vector and an integer < dimv,
encl ose(v, r) returns the prefix of length dim—r of vectorv (r is equal to 1 if absent). The primitives involved
are the following:not i on translates thgd component (of a set of statementshj ft translates thé matrix;
peel splits the domain of a statement according to a given canstrad creates two labels with suffixes and
_2; stripmine andi nt erchange are self-explanatory; antd ne-prefixed primitives mimic the effect of their
iteration domain counterparts on time dimensions. Loofuis a special case of tht i on primitive. Tiling
is decomposed into double strip-mining and interchangeoplanrolling € ul | unrol I') is delayed to the code

generation phase.

Notice the script is quite concise, although the generatelé ¢s much more complex than the origisaim
benchmark (due to versioning, peeling, strip-mining ancbllimg). In particular, loop fusion is straightforward,
despite the fused loops domains differ by one or two itensti@ue to peeling), and despite the additional multi-

level shifting steps.

# Avoi d spurious versioning

addCont ext (CLL1, ' | TMAX>=9")

addCont ext ( C1L1, ' dol oop_ub>=I TMAX" )
addCont ext ( C1L1, ' dol oop_ub<=I TMAX" )
addCont ext (C1L1, ' N>=500")

addCont ext (C1L1, ' M>=500")

addCont ext (C1L1, " MNM N>=500")
addCont ext (C1L1," M\M N<=M)

addCont ext (C1L1, " M\M N<=N')

addCont ext (C1L1, ' Mk=N)

addCont ext (CLL1," M>=N')

# Move and shift cal ¢c3 backwards
shift(enclose(C3L1),{"'1",’0",’0"})
shift(encl ose(C3L10),{'1",'0"})
shift(enclose(C3L11),{'1','0"})
shift(C3L12,{'1'})
shift(C3L13,{'1'})
shift(C3L14,{'1'})
shift(C3L15,{'1'})
shift(C3L16,{'1'})
shift(C3L17,{'1'})
mot i on(encl ose( C3L1
mot i on (a3L
mot i on L
mot i on
ot i on
ot i on
ot i on
mot i on

noti on

), BLOOP)
0), BLOOP)
1), BLOOP)

encl ose 1
encl ose( C3L1
C3L12, BLOOP)
C3L13, BLOOP)
C3L14, BLOOP)
C3L15, BLOOP)
C3L16, BLOOP)
C3L17, BLOOP)

a3
(60X
(60X

P —

# Peel and shift to enable fusion
peel (encl ose(C3L1,2),'3")

peel (encl ose(C3L1 2,2),"'N-3")

peel (encl ose(C3L1 2 1,1),’3")

peel (encl ose(C3L1_ 2 1 2,1),"M3")

peel (encl ose(ClLL, 2),' 2")

peel (encl ose(CLL1 2,2),"N-2")

peel (encl ose(ClL1 2 1,1),'2")

peel (encl ose(ClL1 2 1 2,1)," M2")

peel (encl ose(C2L1,2),'1")

peel (encl ose(C2L1_2,2),"'N-1")

peel (enclose(C2L1 2 1,1),'3")

peel (encl ose(C2L1 2 1 2,1)," M3")
shift(enclose(ClL1 2 1.2 1),{'0",’1,'1})
shift(enclose(CL1 2 12 1),{"0",'2",’2'})

# Doubl e fusion of the three nests

motion(enclose(C2L1_2 1 2 1), TARGET_2_1 2 1)
motion(enclose(ClL1 2 1 2 1),CL1.2_1 2 1)
motion(enclose(C3L1 2 1 2 1),ClL1 2 1 2 1)
# Register blocking and unrolling (factor 2)

stripmne(enclose(C3L1_2_1 2_1,2),2,

(
2,2)
stripmne(enclose(C3L1 2 1 2 1,1),4,2
)
)
)

' 2)
i nt er change( encl ose(C3L1_2_1_ ' 1,2))
fullunroll (enclose(C3L1.2 1 2 1,2

21211

fullunroll (encl ose(C3L1_2_ ,

2
)
)

Figure 3.33: URUK script to optimizewvim

The application of this script is fully automatic; it prodegca significantly larger code of 2267 lines, roughly
one third of them being naive scalar copies to map schedzrgtitrs to domain ones, fully eliminated by copy-



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS 71

propagation in the subsequent run of EKOPath or Open64. igmist surprising since most transformations in
the script require domain decomposition, either explidifieeling) or implicitly (shifting prolog/epilog, at code
generation). It takes 39s to apply the whole transformat@muence up to native code generation on a 2.08GHz
AthlonXP. Transformation time is dominated by back-end pdation (22s). Polyhedral code generation takes
only 4s. Exact polyhedral dependence analysis (computatia checking) is acceptable (12s). Applying the
transformation sequence itself is negligible. These et@cuimes are very encouraging, given the complex
overlap of peeled polyhedra in the code generation phasesiane the full dependence graph captures the exact
dependence information for the 215 array references in @@PSat every loop depth (maximum 5 after tiling),
yielding a total of 441 dependence matrices. The resultisfapplication is a new intermediate representation
file, sent to EKOPath or Open64 for further scalar optimatiand native code generation.

Compared to thpeak performance attainable by the best available comglathScale EKOPath (V2.1) with
the best optimization flagspur tool achieve82% speedup on Athlon XP and 38% speedup on Athlon 64
Compared to thbase SPE@erformance numberspur optimization achieves1% speedup on Athlon XP and
92% speedup on Athlon 64 We are not aware of any other optimization effort — manuawtomatic — that
broughtswim to this level of performance on x86 processors.

We do not have results on IA64 yet, due to back-end instgbdgues in Open64 (with large basic blocks).
We expect an additional level of tiling and more aggressivelling will be profitable (due to the improved TLB
management, better load/store bandwitdh and larger egdilgt on Itanium 2 processors).

Additional transformations need to be implemented in URGKatithorize semi-automatic optimization of a
larger range of benchmarks. In addition, further work onitbeative optimization driver is being conducted to
make this process more automatic and avoid the manual ingpiition of an URUK script. Yet the tool in its
current state is of great use for the optimization expert wighes to quickly evaluate complex sequences of
transformations.

The following section proposes to further automate the gge®f building such a sequence of loop transfor-
mations, reducing the complexity of the optimization pesblfor the expert programmer or for a fully automatic
optimization heuristic.

3.6 Automatic Correction of Loop Transformations

Program optimization is a combinatorial problem, most sieci sub-problems being undecidable and their sim-
plified, statically tractable models, NP-hard. With feeclbdirected techniques, every program — and sometimes
every program with every different input — requires a difiertuning of optimization parameters and ordering.
The complexity of the optimization search space resultsftioe intrinsic complexity of the target architecture,
and from the characterization of legal program transfoiwnat Our work allows to simplify and narrow this
monstrous optimization search space, addressing the &attece of complexity (the characterization of legal
transformations), and focusing on regular nested loopsperative programs.

The power of an automatic optimizer or parallelizer greadypends on its capacity to decide whether two
portions of the program execution may be interchanged orinyparallel. Such knowledge is related to the
difficult task ofdependence analysighich aims at precisely disambiguating memory referendéthout special
care, searching for loop transformations amounts to teiivgra many-dimensional vector space with a Monte
Carlo method, using dependence conditions as a filter. ipsoach may be applicable to the selection of two
or three classical loop transformations, but does not doaleal problems, where sequences of tens or hundreds
transformations are common [CGE5].

Within the polyhedral model, and relying on profound resditom the duality theory [Sch86], it is possible
to directly characterize all affine schedules associated thie legal transformations of a loop nest, as a finite
union of polyhedra. The main algorithm to look for a “goodhsdule in this set has been proposed by Feautrier
[Fea92]. This algorithm — and its main extensions and impnoents [LL97, LLLO1, TVSAOQ1, BF04] — relies
on simplistic linear optimization models and suffers fronltiple sources of combinatorial complexity:

1. the number of polyhedra it considers is exponential wapect to the program size;

6Athlon XP:-nB2 - Ofast -OPT:ro=2: O init=0:div_split=on:alias=typed - LNO: fusi on=2: pref et ch=2 - f no- mat h- err no;
Athlon 64 (in 64 bits mode): mar ch=at hl on64 - LNO: f usi on=2: pref et ch=2 -n64 - fast -nsse2 -Inpat h; pat hf 90 always
outperformed Intel ICC by a small percentage.

“With optimization flag Of ast .

8Notice we consider the SPEC 2000 versiomswiin, much harder to optimize through loop fusion than the SPE@e®&ion.



72 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

2. the dimensionality of polyhedra is proportional to thegmam size, which incurs an exponential complexity
in the integer linear programs the algorithm relies on.

Radical improvements are needed to scale these algorithnesksize loop nests (a few hundred statements or
more), and to complement linear programming with more prgnempirical operation research heuristics. We
are working along these lines [PBCV07], but it is unreasdmabexpect this approach will scale alone to full-size
programs.

We thus develop a complementary approach to reduce the egityphnd size of the transformation space. It
consists in narrowing the set of variables of this combinat@roblem. Intuitively, operation research heuristics
are focused on the “hard to findhd “most performance impacting” ones, relying on a simple nhéaleptimize
across other dimensions of the search space.

Our main technical contribution is an algorithm to expld@pendence violationdy identifying exactly the
violated dependences, we der@e automatic correction scheme to fix an illegal transforimatsequencevith
“minimal changes”. This correction scheme amounts to dgmimg the iteration domain and translating (a.k.a.
shifting) the schedule on each part (by a minimal amounthab dependences are satisfied. Our algorithm has
two important qualities:

1. it is sound anc¢omplete any multidimensional affine schedule will be correctedasylas dependence
violations can be corrected by translation;

2. it applies gpolynomialnumber of operations on dependence polyhedra (each one enexpbnential, but
does not depend on the program size).

We will demonstrate the effectiveness and scalability af automatic correction scheme through the opti-
mization of two of these benchmarkssti mandnygri d.

3.6.1 Related Work and Applications

The concept oEnablingtransformation is central to design of loop optimizers [A4O0 Very often, a locality

or parallelism enhancing transformation violates the -dlata semantics of the program, although a simple pre-
conditioning step on the operational semantics — typicdiéy program schedule or its storage management —
suffices to enable it. Loop shifting or pipelining [DHOO],cilmop skewing [Ban92] are such enabling transforma-
tions of the schedule, while loop peeling isolates violagion boundary conditions [Muc97, FGL99] and variable
renaming or privatization removes dependences [CPRMAL93, KS98]. Unfortunately, except in special cases
(e.g., the unimodular transformation framework, or acydiépendence graphs), one faces the decision problem
of choosing an enabling transformation with no guarantatittwill do any good.

The induced combinatorics of these decision problems dhigesearch for a more compositional approach,
where transformation legality is guaranteed by constongtusing the Farkas lemma on affine schedules. As
stated in the introduction, this is our main motivation, taking all legality constraints into account makes the
algorithms not scalable, and suggest staging the seleafiadoop nest transformation into an “approximately
correct” combinatorial step — addressing the main perforteaconcerns — and a secocatrectionstep. The
idea of applying “after-thought” corrections on affine sghkes was first proposed by Bastoul [BF05]. However,
it still relies on a projection of the schedule on the subspzEdegal Farkas coefficients and does not scale with
program size.

We follow the idea of correcting illegal schedules, but fean a particular kind of correction that general-
izes loopshifting, fusionanddistribution[AKO2]. These three classical (operational) program tfamsations
boil down to the same algebraic translation in multidimenal affine scheduling. These are some of the most
important enabling transformations in the context of awgteloop parallelization [AKO2, DHOQ]. They induce
less code complexity than, e.g., loop skewing (which mayralbg performance due to the complexity of loop
bound expressions), and can cope with a variety of cyclieddpnce graphs. Yet the problem, seen as a decision
one, has been proved NP-complete by Darte [DHOQ]. This istaltige inability to characterize data-parallelism
in loops in a linear fashion (many data-parallel progranmoabe expressed with multi-dimensional schedules
[LL97]). Although we use the same tools as Darte to correleedales, we avoid this pitfall stating our problem
as a linear optimization (using the Bellman-Ford algorif@hR89]).

Decoupling research on the linear and constant parts ottredlsile has been proposed earlier [DSV97, DHOO,
VBJCO03]. These techniques all use simplified represematialependences (i.e., dependence vectors) and rely
on finding enabling transformations for their specific p@ariven by optimization heuristics. Our approach is
more general as it applies to any potentially illegal afficlkeezlule.



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS 73

Alternatively, Crop and Wilde [CW99] and Feautrier [Fea@lempt to reduce the complexity of affine
scheduling with a modular or structural decomposition. sehalgorithms are very effective, but still resort to
solving large, non-scalable integer-linear programs.yTdre complementary to our correction scheme.

To sum-up, our approach has two main complexity advantages.

1. The number of dimensions of the optimization search sgaceduced. Depending on the optimization
strategy and the program, it may eliminate from one thirdnoost all of the unknowns in the optimization
problem. We also show that remaining dimensions have a loamribution to the size of the search space
and a higher impact on performance than the ones that cambieated.

2. Index-set splitting is the state-of-the-art techniqueécompose iteration domains, allowing more expres-
sive piecewise affine schedules to be built. Its current tdation is a complex decision problem [FGL99]
which requires interaction with a non scalable schedullggrdhm. Our approach replaces it by a simple
heuristic, combined with the automatic correction proeedurhis is extremely helpful, considering that
each decision problem has a combinatorial impact on theepbatering, selection and parameterization
problem associated with the feedback-directed optimanatf each application.

Finally, our results also facilitate the design of domagiegific program generators [WPDO0O, FJ98, PBA,
DBR'05, GVB'06, CDG'06], a very pragmatic solution to the design of portablerjzed libraries. Indeed,
although human-written code is concise (code factoringpop$ and functions), optimizing it for modern ar-
chitectures incurs several code size expansion stepsiding function inlining, specialization, loop versioning
and unrolling. Domain-specific program generators (alsmknas active libraries [LBCOO03]) rely on feedback-
directed optimization and iterative search to generatelyeatimal library or application code. Our approach
reduces the number of transformation steps, focusing ttimization problem to the core execution anomalies.
Since most steps are enabling transformations that enaplegimizations [PTCV04], it is quite beneficial to the
productivity and comfort of designers of such program gatoes.

3.6.2 Dependence Analysis

Array dependence analysis is the starting point for any lpedyal optimization. It computes non transitively-
redundant, iteration vector to iteration vector, direategendences [Fea88a, VCBGO6]. In order to correct depen-
dence violations, it is first needed tompute the exact dependence information between evargfpastances

i.e., every pair of statement iterations. Considering agfatatementSandT accessing memory locations where
at least one of them is a write, there is a dependence fromstanioe(S,iS) of Sto an instanceT,i") of T (or
(T,i") depends oxiS,i%)) if and only if the followinginstancewiseonditions are met:

Execution condition: both instances belong to the corresponding statementiderdomain: Dis- iS>0 and
D'-i">0
] - L)

Conflict condition: both instances refer the same memory Iocatiéhccﬂ Accip) S = (AcciT | Accip) AT,
and

Causality condition: the instancésS,iS) is executed befor€T,i") in the original execution®S-iS < @7 -iT,

where< denotes the lexicographic order on vectors.

The schedule (the multidimensional time-stamp) at whichnatance is executed is determined, for statement
S, by the #&s+ 1 vector given byoS-iS. Relative order between instances is given by the relagixedgraphic
order of their schedule vectors.

Consider the original polyhedral representation of a paogibefore any transformation has been applied. For
a given statemers, matrix AS is the identity,rS is 0 and vectofS captures the syntactic position 8fin the
original code. In this configuration, the three aforememgib conditions correspond to the classical definition of
polyhedral dependences [Fea88a, Pug91b].

A dependence is said to be loop independent of d@pthO if the causality conditio®S-iS <« O -iT is
resolved sequentially on tiie, component of the schedule. A dependence is said to be lodpdtat loop depth
p > 0 if the causality condition is resolved by th& | ') component of the schedule at dejpth
Loop-carried dependence at depthp > O:

(ASIT9)-1%)g p = (AT [TT)-iT)g o,

Bg..p—l = Bg..p—l and((AS | rS) : is) p < ((AT | FT) . iT) o



74 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION
Loop-independent dependence at deptp < 0:
((AS| re). iS)O..\p\fl = ((AT |- iT)

S . nT S T
Bo.p—1 = Po.jpj-1 @ndBjy < Byy-

0.|p|—-1°

The purpose of dependence analysis is to compute a direepehdence multi-graph DG. Unlike traditional
reduced dependence graphs, an&re T in DG is labeled by a polyhedron capturing the set of iteratiector
pairs (S, i") in dependence. These pairs belong to the Cartesian prspace PT of dimension(ds+ d,, + 1) +
(dr +d,,+ 1) and meet the instancewise dependence conditions. Singéothe parameters are invariant across
the whole SCoP, we can remove redundant parameter dimaraidrproject this space into the equally expressive
one of dimensionls+ dt + d,, + 1.

3.6.3 Characterization of Violated Dependences

After transforming the SCoP, the question arises whetheerdbulting program still executes correct code. Our
approach consists in saving the dependence graph, befphgrapany transformation, then to apply a given
transformation sequence, and eventually to run a legal#éyysis at the very end of the sequence.

We consider a dependence fr@to T in the original code and we want to determine if it has beesgmed
in the transformed program.

Theviolated dependence analyfiaCBGO06] efficiently computes the iterations of the Caréesproduct space
PST that were in a dependence relation in the original prograsiwdrose order has been reversed by the transfor-
mation These iterations, should they exist, do not preserve thsatity of the original program. L&~ T denote
the dependence polyhedron fréito T; we are looking for the exact set of iterationsdf*T such that there is
a dependence froh to Sat transformed depth. By reasoning in the transformed space, it is straightfodvia
see that the set of iterations that violate the causalitgitiom is the intersection of a dependence polyhedron with
the constraint sedS-iS> @ -iT. This gives rise to the case distinction of Figure 3.3@if 0, and of Figure 3.35
if p<0°. Note that for the casp < 0, the violated dependence is actually the set of iteratioaisarepotentially
in violation (i.e.,that have the same timestamp up to d@ptihe additional constrair@sp‘ > B‘Tp‘ is also needed.

6S—>T

7A§..Spfl,o A].—..p_?l,o 7r§.p§l.o + :_-{..pfl‘o =0
A —Ape Mpe—Tpe=1

Figure 3.34: Violated dependence at depth 0

6S—>T
(Aip,o _AI..p,- rip,o - rI..p,o = 0)

Figure 3.35: Violated dependence candidates at deptt®

A violated dependence polyhedron at deptlas defined in Figure 3.34, will be referred t@ﬁT. The pre-
requisites o, |1 are the same as for the dependence analysis outlined iB8d.2 since we are essentially
solving thesameproblem in the transformed space.

We also define a slackness polyhedron at dgptvhich contains the set of points originally in dependence
and that are still executed in correct order after transédion. Such a polyhedron will be referred to&?T

and is built Iike&,ﬁHT with the sole exception of the last row of figure. 3.34 whicheiglaced by:
s T s T
Ape—Apetlpe—Tpe<0
Finally, to avoid enforcing unnecessary constraints imoéidns or scans [AK02], it is also possible to consider

fundamental properties such as commutativity and assatyathence further refine the violated dependence
graph.

9\We write Ap. to express thepth line of Aand A, p 1, forlines 1top—1



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS 75
3.6.4 Correction by Shifting

We propose a greedy algorithm to incrementally correceiét dependences, from the outermost to the innermost
nesting depth, with a combination of fusion and shiftingsieas will be performed to correct loop-independent
violations (p < 0) while shifts will target loop-carried violationg (> 0).

Violation and Slackness

At depthp, the question raises whether a subset of those iterationsiesevdependence has not yet been fully
resolved up to current depth — are strictly in violation anastrbe corrected.
When correcting loop-carried violations, we define thedwihg affine functions frorids+dr+dgp+1 tg 79gp+1:

o AOFT=A5,—A] . +T5.— T} . which computes the amount of time units at deptly which a specific
instance ofl executes before one &f

° ASOEHT = fAﬁ. +AE, — Fﬁ. + Fg’, which computes the amount of time units at deptby which a
specific instance db executes before one of.

Then, let us define the parametric extremal values of theséumctions:

o Shif"T =maxy por) {805 T-X>0/X e85}

, ST
e Slack~T = Min xepsr) {ASO%T X>0|Xe€ds, }

We use the parametric integer linear program solver PIPg8alato perform these computations. The result
is a piecewise, quasi-affine (affine with additional parareto encode modulo operations) function of the pa-
rameters. It is characterized by a disjoint union of polyleaghere this function is quasi-affine. This piecewise
affine function is encoded agparametric quasi-affine selection tree or quast— [Fea88b, Fea88a].

The loop-independent case is much simpler. Each violatpdrience must satisfy conditions@n

o if 8,5 notempty ancB‘Sp‘ > Bl Shif~T = ‘Sp‘ —B

o if 3,5 notempty ancﬁ‘sp‘ <By Slack~T = B‘Sp‘ -By

The correction problem can then be reformulated as findirgjutisn to a system of differential constraints
on parametric quasts. For any staten&me shall denote bgs the unknown amount of correction: a piecewise,
guasi-affine functiongs is called theshift amounfor statemens. The problem to solve becomes:

cr —cs< —ShiftT
V(S T) € SCoP Cr —cs < Slack—T

Such a problem can be solved with a variant of the BellmarBtgorithm [CLR89].

With piecewise quasi-affine functions (quasts) labeling ¢dlges of the graph, the question of parametric
case distinction arises when considering addition and mizaition of the shift amounts resulting from different
dependence polyhedra. Also for correctness proofs of thienBe-Ford algorithm to hold, triangular inequalities
and transitivity of the< operator on quasts must also hold. The algorithm in Figusé 8llows to maintain case
disjunction while enforcing all the required propertiesdmy configuration of the parameters.

At each step of the separation algorithm, two cases are cmapund tested for emptiness. Step 12 checks if
under some configuration of the parameters giveBhif £°"IA Shif°"d, the quantityShift is the biggest. Step
15 implements the complementary ché€k.

As an optimization, it is often possible to extend disjoiahditionals by continuity, which reduces the number
of versions (associated with different parameter configuma), hence reduce complexity and the resulting code
size. For example:

{ if (M=3) then 2

else if (M>4) then M—1 }E'f (M>3) then M—1.

Experimentally, performing this post processing allowsap0% less versioning at each correction depth. Given
the multiplicative nature of duplications, this can tratslinto exponentially smaller generated code.

10ynlike the more costly separation algorithm by Quilleré @3Rused for code generation, this one only needs intecsectno comple-
mentation or difference).



76 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

SeparateM nShifts: Elinmnate redundancy in a list of shifts
I nput :
redundantlist: list of redundant shift anmounts and conditions
Qut put: non redundant list of shift amounts and conditions
resultinglist «— enmpty list
1 whi | e(redundantlist not enpty)
2 if(resultinglist is enpty)
3 resul tinglist.append(redundantlist. head)
4 redundant!ist « redundantlist.tail
5 else
6 tmplist «— enmpty list
7 Shify <« redundantlist. head
8 redundant!ist « redundantlist.tail
9 whi | e(resultinglist not enpty)

10 Shifp « resultinglist.head

11 resultinglist «— resultinglist.tail

12 condl « Shifgond A Shifo"d A (Shife < Shift)
13 i f(condl not enpty)

14 tpli st. append(condl, Shift)

15 cond2 « Shifgend A Shifgond A (Shify > Shify)
16 i f(cond2 not enpty)

17 tnplist. append(cond2, Shifb)

18 i f(condl is enpty and cond2 is enpty)

19 tnpl i st. append( Shif€o"d,  Shify)

20 tnpl i st. append( Shif&°"d, Shifp)

21 resultinglist « tnplist
22 return resul tinglist

Figure 3.36: Conditional separation

Constraints graphs

In this section we will quickly outline the construction diet constraints graph used in our correction algorithm.
For a given deptip, the violated dependence denoted by ViDi&a directed multigraph where each node repre-
sents a statement in the SCoP.

The construction of the violated dependence graph procesefislows. For each violated polyhedr&yﬁq,
the minimal necessary correction is computed and resulésparametric conditional and a shift amount. We
add an edge, between S and TYG;, of type 7/ (violation). Such an edge is decorated with the tuﬁb%TT,
Shifond _ghiftST).

When ¥ type arcs are considered, they bear the minimal shiﬁingireg\fnt by whichT mustbe shifted
for the corrected values @®S and ©" to nullify the violated polyhedrom, ; T. Notice however that shift-
ing T by ShiftS~T amount does not fully solve the dependence problem. It sdivier the subset of points
{Xe &,ﬁq | 03T < Shifts=T}. The remaining points — the facet of the polyhedron such fhéat

6\,§HT | AVOE’*T = ShiftS*T} — are carried for correction at the next depth and will evaliyibe solved at the
innermosg level, as will be seen shortly.
For VDG such thap < 0, the correction is simply done by reordering fjg values. No special computation

is necessary as only the relative valuesﬁm and B‘Tp‘ are needed to determine the sequential order. When such
a violated, it means the candidate dependence polyhefo;j@ir is not emptyand B‘Sp‘ > B‘Tp‘. The correction

algorithm forces the synchronization of the loop independehedules by settirﬁfm = B‘Tp‘ and carriesSVzHT to

be corrected at deptip| +1 > 0.
Of course, for the special case whépg= dim(B%) or|p| = dim(Bg), there isno nextdepth available, hence
the solution of strictly ordering, values is chosen: remaining violated dependehes tobe corrected.

For each original dependen&&"T in the DG that has not been completely solved up to currerthd@p.,the



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS 77

candidate violated polyhedron constructed in figure. 33t empty anc‘B\,ffT is empty); add an edge, between
S and T inV DG;, of type.S (slackness). Such an edge is decorated with the tdpfe (, Slack°d, Slack~T).
Whens type edges are considered, they bear the maximal shiftioged for S so that the causality relation
S— T is ensured. If at any time a node is shifted by a quantity bigjgen one of the maximal allowed outgoing
slacks, it will give rise to new outgoing shift edges.
We are now ready to describe the greedy correction algorithm

The Algorithm

The correction algorithm is interleaved with the increnaéicomputation of the VDG at each depth level. The
fundamental reason is that corrections at previous depghd to be taken into account when computing the
violated dependence polyhedra at the current level.

Cor r ect LoopDependent Node: Corrects a node by shifting
I nput :

node: A nodeinV DGy
Qutput: Alist of paranmetric shift anounts and conditional s
for the node

corrections « corrections of node al ready

computed in previous passes

1 foreach(edge (S, node, Vi) inconming into node)
2 conpute minimal ShiftS~node gnd Shijfcond
3 corrections. append( ShiftS=nede  ghjf{ond
4 if(corrections.size > 1)
5 corrections « SeparateM nShifts(corrections)
6 foreach(edge (node, T) outgoing from node)
7 foreach(corr in corrections)

8 conpute a new shift &,B"d‘%T using corr for node
9 i f (E')V'F‘,Od‘%T not enpty)

10 addedge(node, T, ¥, &,BOd%T) to VDG,

11 el se

12 conpute a new sl ack 6SB°d%T using corr for node
13 addedge(node, T, , S, 3p®") to VDG,

14 renoveedge(edge) from VDG
15eturn corrections

Figure 3.37: Shifting a node for correction

Correct LoopDependent: Corrects a VDG by shifting
I nput :

VDG A node inVDGp
Qutput: Alist of parametric shift anounts and conditional s
for the node

corrections « enpty list
1 for(i rightarrow to [V| — 1))
2 nodelist — nodes(VDG with inconming edge of type ¥
3 foreach(node in nodelist)
4 corrections. append( Cor rect LoopDependent Node( node))
5 return corrections

Figure 3.38: Correcting a VDG



78 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

Correct Schedul es: Corrects an illegal schedule
| nput :
program A programin URUK form
dependences: The list of polyhedral dependences of the program
Qut put: Corrected programin URUK form
1 Build VDG
2 correctionList « CorrectLoopl ndependent (V DGo)
3 commit correctionList
4 for(p=1; p<=maxs in scop{rank(Bs)})
Build VDGp
correctionList « CorrectLoopDependent (V DGp)
conmi t correctionList
Build VDG_p
correctionList « CorrectLoopl ndependent (V DG_p)
0 conmit correctionList

= O 00N O

Figure 3.39: Correction algorithm

The main idea for depthp > 0 is to shift targets of violated dependences by rfirimal shifting amount
necessaryIf any of those incoming shifts is bigger than any outgoitagk. The outgoing slacks turn into new
violations that need to be corrected. During the graph tealeany node may be traversed at most— 1 times.

At each traversal, we gather the previously computed ctorezalong with incoming violations and we apply
the separation phase of Figure 3.36.

For loop-carried dependences, the algorithm to correctie iooutlined in Figure 3.37.

We use an incrementally growing cache to speed up polyhedngbutations, as proposed in [VCBGO06]. Step
8 of Figure 3.37 uses PIP to compute the minimal incoming ginifount; it may introduce case distinctions, and
since we label edges in the VDG with single polyhedra and nastg, it may result in inserting new outgoing
edges. When many incoming edges generate many outgoing,€8lige 11 separates these possibly redundant
amounts using the algorithm formerly given in Figure 3.36. practice, PIP can also introduce new modulo
parameters for a certain class of ill-behaved scheduleesd@must be treated with special care as they will
expanddgp and are generally a hint that the transformation will evatiyugenerate code with many internal
modulo conditionals.

For loop-independent corrections on the other hand, altities are just integer differences, without any case
distinction. The much simpler algorithm is just a specialea

The full correction algorithm is given in Figure 3.39. Temaiion and soundness of this algorithm are straight-
forward, from the termination and soundness of the Bellfard version [CLR89] applied successively at each
depth.

Lemma 5 (Depth-p Completeness)If there exist correction shift amounts satisfying the elysbf violation and
slackness constraints at depth p, then the correction @lgorremoves all violations at depth p.

The proof derives from the completeness of Bellman-Forltjeréthm. Determining the minimal correct-
ing shift amounts to computing the maximal value of lineaitivariate functions 4,057 andAs©3~T) over

bounded parameterized convex polyhedx,%(T andésg’q). This problem is solved in the realm of parametric
integer linear programming. The separation algorithm esaquality or incompatibility of the conditionals en-

closing the different amounts. The resulting quasts tloeessatisfy the transitivity of the operations of max, min,
+ and<. WhenV DG, has no negative weight cycle, the correction at dgpsicceeds; the proof is the same as
for the Bellman-Ford algorithm and can be found in [CLREBD].

As mentioned earlier, the computed shift amounts are thénmaimecessary so that the schedule at a given
depth is not violated after correction. The whole dependea@ach step is not fully resolved and is carried for
correction at the next level.

Another solution would be to shift target statementShyftS—T + 1, but this is deemed too intrusive. Indeed,
this amounts to adding 1 to all negative edges on the graph, potentially making tiieection impossible.

The question arises whether a shift amount chosen at a gapth chay interfere with the correction algorithm
at a higher depth. The following property guarantees thimithe case.



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS

79

for (i=0; i<=N, i+4) for (i=0; i<=N i++) for (i=0; i<=N i++)
S| ANl = S | Bli] = Ali+1]; S | if (i==0) A1l = AY]
S Al = A5l S Al = A5l S | Bli] = Ali+1];
for (i=0; i<=N i++) for (i=0; i<=N i+4) S | Al =
S | Bli] = Ali+l]; S | Al
Ag =[l]  As,=[1  Ag=[l As =[]  As,=[1] Ag=[Y —[  As=[1 Ag=
[3312[0,0] [3922[1,0] [393:[2,0] [331:[2,0] [392:[1,0] [393:[0,0] [331:[2,0] [392:[2,0] [333:[2,0]
=[0,0] Ts=[00 s =[00) =[0,0] Ts=[00 s =[00) Fs,=[0,0 Ts,=[00 Ts=[00]

Figure 3.40: Original code

Figure 3.41: lllegal schedule

B=[0,0] B=[0,0]

Figure 3.43: Outline of the correction for=0

Figure 3.42: After correcting =0

for (i=0; i<=N, i++4) for (i=0; i<=N i++4)
S | Ali] ; S | Al =
S | if (i==1 & N=4) A1) = A5l |sm if(' 1&&N<:4) A1 = A5
S | i f(i==5 && N>=5) Al1] = Al5]; S0 f (i==5 & N>=5) A[1l] = A 5];
S | Bi] = Ai+l]; St (|>1&&N<=4) Bli-1 = Ali];
S2 f (i>=6 & N>=5) B[i-6] = Ali-5]
As =[1] As, =[1] As,, =[1] As, =[1] As =[1] As, =1 As,, = [1] =1[1] As,, =[1]
le = [27 0] B921 [2 O] BSQZ [2 0] BS{g = [27 0] le = [2y0] B921 [2 0] BSQZ [2 O] B931 [2 O] BS{gz [2 0]
I's; =[0,0] Tsy,=1[00 Ts,=[05 TIs=[00] I's;=[0,00 Tsy,=[0,0 Ts,=[05 T =[01 Ts,=][0,6

Figure 3.44: Correcting + versionirg Figure 3.45: Correcting + versionirsy

0, 5] if(N>=5)

0.0 _ _

[0, 4] if(N>=5) -

Figure 3.46: Outline of the correction for= 1

Lemma 6 Correction at a given depth by the minimal shift amount da@shamper correction at a subsequent
depth.

For[p| > 1, if VDG contains a negative weight cycDG,_; contains a null weighted slackness cycle
traversing the same nodes. gﬁconstrucﬂon any violatgd atidepttp presupposes that the candidate violated
polyhedron at previous depth b1 Is not empty. Hence, for any violated edge at dgptthere exists a 0-slack
edge at any previous depths thus ensuring the existence-slelcycle at any previous depths.

In other words, the fact that a schedule cannot be corre¢tadyaven depth is an intrinsic property of the
schedule. Combined with the previous lemma, we deduce tim@lebeness of our greedy algorithm.

Theorem 10 (Completeness])f there exist shift amounts satisfying the system of vimda&nd slackness con-
straints at all depths, then the correction algorithm rem®wall violations.

Let us outline the algorithm on the example of Figure 3.48uasngN > 2. Nodes represent statements of
the program and are labeled with their respective schedflésr B) if p <0 orl" (or G) if p > 0). Dashed
edges represent slackness while plain edges represeatimd and are labeled with their constant or parametric
amount. Suppose the chosen transformation tries to petf@mmodifications of the above statements’ schedules
according to the values in Figure 3.41.

The first pass of the correction algorithm for deptk- O detects the following loop independent violations:
S—>99—-9ifN>55 -, S — S3if N> 5. No slack edges are introduced in the initial graph. The
violated dependence graph is a DAG and the correction mésrhawill first pushS, at the samép asS;. Then,



80 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

after updating outgoing edges, it will do the sameSgyielding the code of Figure 3.42. Figure 3.43 shows the
resulting VDG. So far, statement ordering within a giverdderation is not fully specified (hence the statements
are considered parallel); the code generation phase ailjitdecides the shape of the final code. In addition,
noticeS; andSg, initially located in different loop bodies th&, have been merged through the loop-independent
step of the correction.

The next pass of the correction algorithm for depth 1 now detects the following loop carried violation:
RAW dependencéS;, 5) — (S,0) is violated with the amount50=5if N > 5, WAW dependencéS;, 1) —
($,0) is violated with the amount 4 0= 1, RAW dependencés;,i + 1) — (S, i) is violated with the amount
i+1—i=1. There is also a 0-slack ed§g — Ss resulting fromS; writing Al 1] andSs reading it at iteration
i = 0. All these informations are stored in the violation polgitten. A maximization step with PIP determines a
minimal shift amount of 5 iN > 5. Stopping the correction after shiftirg and versioning given the values of
N would generate the intermediate result of Figure 3.44. Hewesince the versioning only happens at commit
phases of the algorithm, the graph is given in Figure 3.46remdode duplication is performed. The algorithm
moves forward to correcting the no8g and, at step 3, the slack ed§e— S is updated with the new shift for
S. The result is an incoming shift edge with violation amouiftM >= 6.

i f (N<=4) el se i f (N>=5)
A0l =...; for (i=0; i<=4; i+4)
Al = AT =
A1l = A5, A5l = ...
B[O] = Al1]; A1l = A5,
for (i=2; i<=N i+4) for (i=6; i<=N, i++4)
Al =...; Al =...;
Bli-1] = Ali]; B[i-6] = Ali-5];
BIN1] = AIN; or (i =N+1; i<=N+6; i++)
| Bi-6] = ALi-5];
Figure 3.47: Cashl < 4 Figure 3.48: Cashbl > 5

The separation and commit phases of our algorithm createag disjoint versions of the correction as needed
to enforce minimal shifts. The node duplications allow tpmess different schedules for different portions of the
domain of each statement.

3.6.5 Correction by Index-Set Splitting

Index-set splitting has originally been crafted as an @nghitansformation. It is usually formulated as a decision
problem to express more parallelism by allowing the comsitvn of piecewise affine functions. Yet, the iterative
method proposed by Feautrier et al. [FGL99] relies on calls tostly, non scalable, scheduling algorithm, and
aims at exhibiting more parallelism by breaking cycles ia tniginal dependence graph. However, significant
portions of numerical programs do not exhibit such cycles,dtill suffer from major inefficiencies; this is the
case of the simplified excerpts from SPEC CPU2000fp bendtsrar mandnygr i d, see Figures 3.51-3.49. Other
methods fail to enable important optimizations in the pneseof parallelization or fusion preventing dependences,
or when loop bounds are not identical.

Feautrier’s index-set splitting heuristic aims at impraythe expressiveness of affine schedules. In the context
of schedule corrections, the added expressiveness halpgerdy algorithm to find less intrusive (i.e., deeper)
shifts. Nevertheless, since not all schedules may be deddsry a combination of translation and index-set
splitting, it is interesting to have a local necessary doteto rule out impossible solutions.

Correction Feasibility

When a VDG contains a circuit with negative weight, correctby translation alone becomes infeasible.

Notice that, if no circuit exists in the DG, then no circuihcaxist in any VDG, since by construction, edges
of the VDG are built from edges in the DG. In this case, whatéyg andl™ parts are chosen for any statement,
a correction is always found.

If the DG contains circuits, a transformation modifyip@ndl™ only is always correctable. Indeed, the reverse
translation orf3 andr for all statements is a trivial admissible solution.



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS 81

As a corollary, any combination of loop fusion, loop distrilon and loop shifting [AK02] can be corrected.
Thanks to this strong property of our algorithm, we can oftempletely eliminate the decision problem of finding
enabling transformations such as loop bounds alignmeayp, $bifting and peeling.

In addition, this observation leads to a local necessarylition for ruling out non admissible correctable
schedules.

Lemma7 LetC=S— § — ... - § — S be a circuit in the DG. By successive projections onto tlagerof
every dependence polyhedron, we can incrementally cari$tr|mothedrori')sj’SI that contains all the instances
of S and Sthat are transitively in dependence along the prefix P of frauit. If 35S is not empty, the function
AS.— A3, fromZdstdstdartl to 79p 1 must be positive for a correction to exist at depth p.

Without this necessary property, index-set splitting vdoubt enhance the expressiveness of affine schedules
enough for a correction to be found (by loop shifting onlyhisTis however not sufficient to ensure the schedule
can be corrected.

Index-Set Splitting for Correction

Our splitting heuristic aims at preserving asymptotic litigaand ordering properties of original shedule while

avoiding code explosion. The heuristic runs along with thi&iag-based correction algorithm, by splitting only

target nodes of violated dependences. Intuitively, we dgxase the target domain when the two following criteria
hold:

1. the amount of correction is “too intrusive” with respeazttie original (illegal) schedule;

2. it allows a “significant part” of the target domain to be geved.

S A0 =...;
for (i=1; i<N1; i++)

for (i=0; i<N i++) S Alil =...;
S| Al = S, LB[i+1]=A[i];
S A0 = AN, S AN =

for (i=1; i<N i++) S A0 = ANI];
S | Bli] = Ali-1]; S, Bl1] = AL0];
Figure 3.49: Originatyr i d-like code Figure 3.50: Optimized code

for (i=1; i<N i++)

for (j=1; j<i-1; j++)
for (i=0; i<N i++) S ATLTT =
for (j=0; j<N j++) S Blil[j] = Alil[jl;
S C AT = S| A[] =
for (i=0; i<N i++) S Alillil = ...
S JA[i][i]=---; S | BliJ[i] = ...
or (i=1; i<N i++) for (j=i+1;, j<N j++)
for (j=1; j<N j+4+) S ATLTT =
S C BT = AT TS S Blil[j] = Alil[jl;
Figure 3.51: Originatwi mlike code Figure 3.52: Optimized code

Formally, a correction is deemed intrusive if it is a paramseghift (M) or a motion ).

To assess the second criterion, we consider for every immpsiift edge, the projection of the polyhedron
onto every non-parametric iterator dimension. A dimensitiose projection is non-parametric and included in
an interval smaller than a given constant (3 in our experis)dn calleddegenerate In the following example,



82 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

dimensionj is degenerate:

-2 + 3 + 4AM + 5 > 0
i + j - M + 2 >0
i - 3 + 2 - 9 > 0
—i + M > 0
i > 0

which simplifies into 2+2 > 6j > 2i — 5.

To determine if a domain split should be performed, we inaetally remove violated parts of the target
domain corresponding to intrusive corrections until githge run out of incoming violations, or the remaining
part of the domain is degenerate.

The intuition is to keep a non-degenerate core of the domam ¢f any parametric correction, to preserve
locality properties of the original schedule. In the endh# remaining portion of the domain still has the same
dimension as the original one, a splitis performed thatisgpa the statement into the core that is not in violation
and the rest of the domain.

Index set splitting is thus plugged into our correction aidpon as a preconditioning phase before step 4 of
Figure 3.38.

Notice that a statement is only splitted a finite number oépsince each incoming shift edge is split at most
once at each depth.

To limit the number of duplications, we allow only the coreaoflomain to be split among successive correc-
tions. If a statement has already been decomposed at a gipth, @nly its core still exhibits the same locality
properties as the original schedule. It is then unnecesaadyeven harmful as far as code size is concerned, to
further split the out-of-core part of the domain.

Figure 3.49 is a simplified version of one of the problems teesavhen optimizingrgri d. The fusion of the
first and third nests is clearly illegal since it would reveetse dependence frof%;,N — 1) to (S), as well as
every dependence froff$;, i) to (Sz,i+ 1). To enable this fusion, it is sufficient to shift the schedofl&s, by
N — 1 iterations and to shift the scheduleS®fby 1 iteration. Fortunately, only iteratian= 0 of S3 (after shifting
by 1) is concerned by the violated dependence f&mpeeling this iteration o0& gives rise t0S; andSg,. In
turn, S, is not concerned by the violation froB while S3, must still be shifted byN — 1 and eventually pops out
of the loop. In the resulting code in Figure 3.50, the logdlignefits of the fusion are preserved and the legality is
ensured.

A simplified version of theswi mbenchmark exhibits the need for a more complex split. Thesdnd-ig-
ure 3.51 features two doubly nested loops separated by anmatiiate diagonal assignment loop, with poor
temporal locality on array. While allowing to maintain the order of the original scheglfor a non-degenerate,
triangular portion of5; andS; instances (i.e{(i, ) € [1,N] | j #i}); the code in Figure 3.52 also exhibits much
more reuse opportunities and yields better performance.

While originally targeted at preserving locality propestiof given schedules during correction, our method
also succeeds at breaking cycles in a violated dependeaph.g€onsider the following example from Feautrier
etal. [FGL99] given in Figure 3.53, 4 is set to[0]. Since source and target parts of the domain are disjoipt, an
transformation satisfies the previously defined feasybdlitterion.

A self violation is detected provided iteraticstatisfied > 0 and—2i — 2N > 0. This domain is not degenerate
w.r.t. the original one, hence a split will occur foir< N}, which breaks the self violated dependence and allows
a correction at depth 1, yielding the alternate parallelized code.

for (i=0; i<N i++) DOALL(i € [0, NJ))
S| AZN- ] = A Su | AZN- ] = Alil;
DOALL(i € [N+1, 2xN])
S | AZN- 0] = Al

As, = (1] As;; =[0) Asp, = (0]
Bs, =[0,0] Bs;; =[0,0]  PBsy, =[0,1]
's, =[0,0] I's;, =[0,0] I's;, = [0,0]

Figure 3.53: Original and parallelized Code



3.6. AUTOMATIC CORRECTION OF LOOP TRANSFORMATIONS 83

3.6.6 Experimental Results

Programming languages are aimed at helping the progranomeite concise, human readable code, that executes
many iterations of a given sets of statements. However, fpogram constructs often result in bad temporal
locality in the number of loop iterations between produeard consumers. When applied to current machines,
a compiler needs to restructure these compact loop cotstincan attempt to reduce the life span of values
produced on hot paths. This may improve cache or registgeyat at a high cost in program complexity.

Our correction algorithm is applicable under many différgaenarios (multidimensional affine schedules and
dependence graphs), and we believe it is an important leegrds bridging the gap between the abstraction level
of compact loop-based programs and performance on modsghitestures.

To make its benefits more concrete, we apply it to one of the mgmortant loop transformation for locality:
loop fusion. It is often impeded by combinatorial decisioalgems such as shifting, index-set splitting and loop
bounds alignment to remove so called fusion preventingedge

To give an intuition on the kind of correction effort that iseded to exhibit unexploited locality, we provide
meaningful numbers that summarize the corrections peddrny our algorithm when applying aggressive loop
fusion on full SPEC CPU2000fp programss mandngri d.

We start from inlined versions of the programs which repned®0% of the execution time faw mand
75% forngri d. As a locality-enhancing heuristic, we try to apply loopifusfor all loops and at all loop levels.
Since this transformation violates numerous dependences;orrection mechanism is applied on the resulting
multidimensional affine schedules. Very simple examplewede from these experimentations have been shown
in Figures 3.49-3.52. Both loops exhibit “hot statementighwnportant amounts of locality to be exploited after
fusion. As indicated in Figure 3.54gri d has 3 hot statements in a 3-dimensional loop, but 12 statsraea
interleaved with these hot loops and exhibit dependenaaspitevent fusion at depth 2w m exhibits 13 hot
statements with 34 interleaved statements preventingritsidepths 2 and 3.

Program myrid SWi m

# source statements 31 99

# corrected statements 47 138

# source code size 88 132

# corrected code size 542 447

# hot statements 3 13

# fusion preventing statements 12 34

# peel 12 20

# triangular splits 0 5

# original distance (4N,0,0) (8N,0,0)| 3:(0,3N,0) 6(0,5N,0)
# final distance (2,1,0) (3,3,0) | 11:(0,0,0)(0,1,0) (0,0,1

Figure 3.54: Correction Experiments

Application of our greedy algorithm successfully resuttghie aggressive fusion of the compute cores, while
inducing only small shifts. Fargri d, the hot statements once in different loop bodies — sepatstalistances
(4 x N,0,0) and(8 x N,0,0) — are fused towards the innermost level with final transtatiectors(0, 0, 0) for
the first,(2,1,0) for the second an(B, 3,0) for the third one. Fosw m the original statements once in separate
doubly nested loops have been fused thanks to an intricatbication of triangular index-set splitting, peeling of
the boundary iterations, and shifting; 11 statements reduio shifting, 1 require(D, 1,0) and the othe(0,0,1).

Peeling and index-set splitting are required as to avoig Histribution and are quantified in th& &and 8"
rows in Figure 3.54. Overall, the number of statements thtoed by index set splitting is about 2B0% which
is quite reasonabl&:

A performance evaluation was also conducted on a 2.4GHz AMoA64 with 1MB L2 cache (3700+,
running in x86_64 mode) and 3GB of DDR2 SDRAM. Compared topghak SPEC CPU2000 figuré', the
systematic fusion with automatic correction achieves adpe 0f15% for swi m

On the contrary, the same optimization appliedoi d degrades performance by about 10%. This is not
surprising: this benchmark is bound by memory bandwidtid, thie 3D-stencil pattern of the loop nest requires
about 27 registers to allow register reuse, too much for 8& 84 ISA. Also, no significant improvement can

11But code generation may induce a larger syntactic code 1sizedse.
12 e., with one the best compilers and the optimal combinatiboptimization flags.



84 CHAPTER 3. POLYHEDRAL PROGRAM MANIPULATION

be expected regarding L2-cache locality (on top of the bam#-compiler’'s optimizations). The performance
degradation results from the complexity of the nest afteplpeeling and shifting. We were not able to optimize
myri d for the Intel Itanium 2 processor due to unstabilities in@peen64 compiler, but we expect strong speed-ups
on this platformt3

No existing optimizing compiler is capable (up to our knodde) of discovering the opportunity and applying
such aggressive fusions. In addition, existing compilexal dvith combinatorial decision problems associated
with the selection of enabling transformations. All theseidion problems disappear naturally with our correction
scheme, in favor of more powerful heuristics that aim attiimgi the amount of duplication in the resulting code
while enforcing the compute intensive part of the programefiés from locality or parallelization improvements.

We are exploring the application of this correction alduritto the compression of optimization search spaces,
combining empirical heuristics (e.g., Monte-Carlo seascAnd machine-learning) with linear programming tools
[PBCVO7]. We are also using these results in the design oftadm®gramming environment for loop transfor-
mations, where automatic correction allows to raise thellef/abstraction for the expert programmer involved in
the semi-automatic optimization of a program.

3.7 Related Work

The closest technical work has already been discussed prévéus sections. This section surveys the former
efforts in designing an advanced loop nest transformatifrastructure and representation framework.

Most loop restructuring compilers introduced syntax-bas®dels and intermediate representations. ParaS-
cope [CHH"93] and Polaris [BEF96] are dependence based, source-to-source parallelarefertran. KAP
[KAP] is closely related to these academic tools.

SUIF [H"96] is a platform for implementing advanced compiler prgpats. SUIF was the vehicle for impor-
tant advances in polyhedral compilation [LL97, LLLO1], bhe resulting prototypes had little impact due to a
weak code generation method and the lack of scalability@ttire algorithms. PIPS [IJT91] is one of the most
complete loop restructuring compiler, implementing iptecedural polyhedral analyses and transformations (in-
cluding an advanced array region analysis, automatic [péiration at the function and loop level, and a limited
form of affine scheduling); it uses a syntax tree extended patyhedral annotations, but not a unified polyhedral
representation.

Closer to our motivations, the MARS compiler [O’B98] has bapplied to iterative optimization [KKGOO01];
this compiler’s goal is to unify classical dependence-tasep transformations with data storage optimizations.
However, the MARS intermediate representation only castpart of the loop-specific information (domains and
access functions): it lacks the characterization of itenaprderings through multidimensional affine schedules.
Recently, a similar unified representation has been appligbde optimization of compute-intensive Java pro-
grams, combining machine learning and iterative optinzefl O04]; again, despite the unification of multiple
transformations, the lack of multidimensional affine salled hampers the ability to perform long sequences of
transformations and complicates the characterizationtrandrsal of the search space, ultimately limiting perfor-
mance improvements.

To date, the most thorough application of the polyhedratesgntation was the Petit dependence analyzer
and loop restructuring tool [Kel96], based on the OmegaltipfKPR95]. It provides space-time mappings for
iteration reordering, and it shares our emphasis on p&metnt transformations, but it is intended as a research
tool for small kernels only. Our representation — whose fiations were presented in [CGT04] — improves on
the polyhedral representation proposed by [Kel96], ansleékplains how and why it is the first one that enables
the composition of polyhedral generalizations of claddioap transformations, decoupled from any syntactic
form of the program. We show how classical transformatidsesIbop fusion or tiling can be composed in any
order and generalized to imperfectly-nested loops with glemdomains, without intermediate translation to a
syntactic form (which leads to code size explosion). Evalhfuwe use a code generation technique suitable to a
polyhedral representation that is again significantly molmist than the code generation proposed in the Omega
library [Bas04, VBCO6].

13w try to fix these issues before the camera-ready version.



3.8. FUTURE WORK 85
3.8 Future Work

To avoid diminishing returns in tuning sequences of progt@nsformations, we advocate for the collapse of
multiple optimization phases into a single, unconventigterative search algorithm. This said, it does not bring
any concrete hope of any simplification of the problem...e@tdf, by construction, the search space we explore
is much simpler than the cross-product of the search spdeesaguence of optimisation phases.

We are still far from a general multi-purpose iterative opgation phase — if it exists — but we already made
one step in that direction: we built a search space suitablégfrative traversal that encompasab¢egal program
transformations in a particular clasSechnically, we considered the whole class of loop nessfamations that
can be modeled asne-dimensional schedulfsea9?], a significant leap in model and search space coitplex
compared to state-of-the-art applications of iterativirojzation [PBCV07]. This is only a preliminary step, but
it will shape our future work in the area. Up to now, we madefitilewing contributions:

e we statically construct the optimization space of all, &aily complex, arbitrarily long sequences of loop
transformations that can be expressed as one-dimensitinalschedules (using a polyhedral abstraction);

¢ this search space is built free of illegal and redundansfaamation sequences, avoiding them altogether
at the very source of the exploration;

e we demonstrate multiple orders of magnitude reductionérsthe of the search space, compared to filtering-
based approaches on loop transformation sequences cobtate-art affine schedule enumeration tech-
nigues;

e these smaller search spaces are amenable to fast-coryergathematically founded operation research
algorithms, allowing to compute the exact size of the spackt@atraverse it exhaustively;

e our approach is compatible with acceleration techniques$eiedback-directed optimization, in particular
on machine-learning technigues which focus the search &oraw set of most promising transformations;

e our source-to-source transformation tool yields signifigaerformance gains on top of a heavily tuned,
aggressive optimizing compiler.

We are extending this approach to multi-dimensional sclesdwsing empirical and statistical sampling tech-
nigues to learn how good schedules distribute dependegcessamultiple time dimensions. Also we can only
apply such radical techniques to small codes, we will makefédrts to scale those to real-size benchmarks,
building on modular affine scheduling approaches, algarittand mathematical formulation improvements, and
empirical decoupling of the constraints.

3.9 Conclusion

The ability to perform numerous compositions of programdfarmations is driven by the development of iter-
ative optimization environments, and motivated through ifranual optimization of standard numerical bench-
marks. From these experiments, we show that current coragife challenged by the complexity of aggressive
loop optimization sequences. We believe that little imgroents can be expected without redesigning the com-
pilation infrastructure for compositionality and rich@asch space structure.

We presented a polyhedral framework that enables the cdtigoosf long sequences of program transforma-
tions. Coupled with a robust code generator, our methodlavbe typical restrictions and code bloat of long com-
positions of program transformations. These techniques baen implemented in the Open64/ORC/EKOPath
compiler and applied to thevim benchmark automatically. We have also shown that our frasmewapens up
new directions for searching for complex transformatiouesces for automatic or semi-automatic optimization
or parallelization.



Chapter 4

Quality High Performance Systems

In this chapter, we attempt to reconcile performance c@amaitbns, as dictated by the physical limitations and the
architecture of the hardware, with the classical qualiigsbuted to computer systems: high-level programming
comfort, a certain level of predictability and efficiencpdathe ability to check for or enforce specific structural
properties (real time and resources). It is intended as émigic first step, motivating further research at the
join point of high-performance computing and synchron@mglages. Although we are currenly developing a
more general “clocked” concurrency model, the ideas ptesein this chapter are likely to stand as theoretical
and motivational foundations for our future work in the area

For the pessimistic reader, it may also be viewed as an eblaphill battle against the bleak semantical
future shaped by thread-level parallelism, whether aasediwith a shared memory model, or a message-based
communication infrastructure, or inspired from transawal semantics of concurrent data bases.

In Section 4.1, we introduce and motivate ausynchronous model through the presentation of a simple
high-performance video application. Section 4.2 fornedithe concepts of periodic clocks and synchronizabil-
ity. Section 4.3 is our main contribution: starting from aeaynchronous languagela LUSTRE, it presents
an associated calculus on periodic clocks and extends diislas to combine streams withksynchronizable
clocks. Section 4.4 describes the semantias®fnchronous process composition through translatiorstdctly
synchronous program, by automatically inserting buffeith wiinimal size. Section 4.5 discusses related work at
the frontier between synchronous and asynchronous systesonclude in Section 4.6.

4.1 Motivation

This work may contribute to the design of a wide range of erdeddystems, but we are primarily driven by video
stream processing for high-definition TV [GPRNO04]. The mealgorithms deal with picture scaling, picture com-
position (picture-in-picture) and quality enhancememti{iding picture rate up-conversions; converting the sam
rate of the displayed video, de-interlacing flat panel digp] sharpness improvement, color enhancement, etc.).
Processing requires considerable resources and involvasety of pipelined algorithms on multidimensional
streams.

HD input reorder SD output '

O-O-O-CHIFO A h—===]

hf working set  vf working set

Figure 4.1: The downscaler

These applications involve a set of scalers that resizeaésagreal-time. Our running example is a classical
downscaler [CDCO03], depicted in Figure 4.1. It converts a high definition (Hzleo signal, 1926 1080 pixels
per frame, into a standard definition (SD) output for TV sorgbat is 720< 4802

IHere we only consider the active pixels for the ATSC or BSifalgHigh Definition standards.

86



4.1. MOTIVATION 87

1. Ahorizontalfilterhf, reduces the number of pixels in a line from 1920 down to 72biteypolating packets
of 6 pixels.

2. Areordering modulegorder, stores 6 lines of 720 pixels.

3. A vertical filter,vf, reduces the number of lines in a frame from 1080 down to 48@teypolating packets
of 6 pixels.

The processing of a given frame involves a constant numbepefations on this frame only. A design tool
is thus expected to automatically produce an efficient codari embedded architecture, to check that real-time
constraints are met, and to optimize the memory footprinntdrmediate data and of the control code. The
embedded system designer is looking for a programming kEgejthat offers precisely these features, and more
precisely, whichstaticallyguarantees four important properties:

1. a proof that, according to worst-case execution time thgses, the frame and pixel rate will be sustained;

2. an evaluation of the delay introduced by the downscaltrérvideo processing chain, i.e., the delay before
the output process starts receiving pixels;

3. aproof that the system has bounded memaory requirements;

4. an evaluation of memory requirements, to store datamitteé processes, and to buffer the stream produced
by the vertical filter in front of the output process.

In theory, synchronous languages are well suited to theemphtation of the downscaler, enforcing bounded
resource requirements and real-time execution. Yet, we shat existing synchronous languages make such an
implementation tedious and error-prone.

4.1.1 The Need to Capture Periodic Execution

Technically, the scaling algorithm producestith output ;) by interpolating 6 consecutive pixelp;{ weighted
by coefficients given in a predetermined matrix (example &4 @hases, 6-taps polyphase filter [COI3]):

5
o = Zo Pex1920/720+k X Coefk,t mod 64).
k=

let clock ¢ = ok where rec
cnt =1 fby (if (cnt = 8) then 1 else cnt + 1)
and ok = (cnt = 1) or (cnt = 3) or (cnt = 6)

let node hf p = o where rec
02 =0 fby p and 03 = 0 fby 02 and 04 = 0 fby 03
and 05 = 0 fby 04 and 06 = 0 fby 05
and o = f (p, 02,03, 04,05, 06) when c

val hf : int =>int
val hf :: "a->"aonc

Figure 4.2: Synchronous implementatiorhdf

Such filtering functions can easily be programmed in a §grstnchronous data-flow language such ast
TRE or LucID SYNCHRONE. Figure 4.2 shows a first version of the horizontal filter iempented in WciD
SYNCHRONE.

At every clock tick, thehf function computes the interpolation of six consecutiveefsxof the inputp
(0 fby p stands for the previous value pfinitialised with value0). The implementation of is out of the
scope of this chapter; we will assume it sums its 6 argumeértis. horizontal filter must match the production
of 3 pixels for 8 input pixels. Moreover, the signal procagsalgorithm defines precisely the time when every
pixel is emitted: thd-th output appears at thiex 1920/720-th input. It can be factored in a periodic behavior



88 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

of size 8, introducing an auxiliary boolean strearased as a clock to sample the output of the horizontal filter.
Thel et cl ock construction identifies syntactically these particulaslban streams. Here is a possible execution
diagram.

c |true false true false false true false..
p 3 4 7 5 6 10 12

02 0 3 4 7 5 6 10

03 0 0 3 4 7 5 6

04 0 0 0 3 4 7 5

05 0 0 0 0 3 4 7

06 0 0 0 0 0 3 4

0 3 14 35

In the synchronous data-flow model, each variable/exprassicharacterized both by its stream of values and
by its clock relative to a global clock, called the base clock of theeyst The clock of any expressi@is an
infinite boolean stream whefalsestands for the absence atnde for the presence. E.g.,xfis an integer stream
variable, therx+1 andx have the same clock. A synchronous process transforms anhdhgrk into an output
clock. This transformation is encoded in the proogesk signatureor clock type Clocks signatures are relative
to some clock variables. E.g., the clock signaturkfois Ya.a — a on ¢ (printed’ a -> 'a on ¢) meaning that
for any clocka, if input p has clocka, then the output is on a subcloakon ¢ defined by the instant where the
boolean conditiom is true.

In synchronous languages, clock conditions suahan be arbitrarily complex boolean expressions, meaning
that compilers make no hypothesis on them. Yet the appdicative consider have a periodic behavior; thus a first
simplification consists in enhancing the syntax and seroamtith the notion operiodic clocks

4.1.2 The Need for a Relaxed Approach

Real-time constraints on the filters are deduced from thadreate: the input and output processes enforce that
frames are sent and received at 30Hz. This means that HDs@iréVe at 30< 1920x 1080= 62,208 000Hz —
called the HD pixel clock — and SD pixels at 30720x 480= 10,368 000Hz — called the SD pixel clock —
i.e., 6 times slower. From these numbers, the designer wikeldo know that the delay before seeing the first
output pixel is actually. 2000 cycle®f the HD pixel clock, i.e., 19315us and that the minimal size of the buffer
between the vertical filter and output proces8&9 pixels (This is not the transposition buffer, whose size is
defined in the specification.)

Synchronous languages typically offer such guaranteestatid evaluations by forcing the programmer to
make explicit the synchronous execution of the applicatidavertheless, the use of any synchronous language
requires the designer explicitly implemena synchronous code to buffer the outgoing pixels at the propgput
rate and nothing helps him/her smtomaticallycompute the value$2000and880. Unfortunately, pixels are
produced by the downscaler following a periodic but com@esnt clock. The synchronous code for the buffer
handles the storage of each pending write from the vertitaf fnto a dedicated register, until the time for the
output process to fetch this pixel is reached. Forcing tlog@mmmer to provide the synchronous buffer code is
thus tedious and breaks modular composition. This schemeeis more complex if we include blanking periods
[GPRNOA4].

In the following, we design a language that makes the contiputaf process latencies and buffer sizes
automatic, using explicit periodic clocks. Technicallye wefine a relaxed clock-equivalence principle, called
n-synchrony. A given clockk; is n-synchronizablevith another cloclck; if there exists a data-flow (causality)
preserving way of makingk; synchronous witltk, applying a constant delay thy and inserting an intermediate
sizen FIFO buffer. This principle is currently restricted to pmtic clocks defined as periodic infinite binary
words. This is different and independent from retiming [LE®ince neitheck; nor cky are modified (besides
the optional insertion of a constant delay); schedule d@wassociated witbk; andck, are not impacted by the
synchronization process.

We also define a relaxed synchronous functional programtainguage whose clock calculus accepts
synchronous composition of operators. To this end, a typeesyunderlying a strictly synchronous clock calculus
is extended with two subtyping rules. Type inference foBam ad-hoc but complete procedure.

We show that every-synchronous program can be transformed into a synchroooeg0-synchronous),
replacing bounded buffers by some synchronous code.



4.2. ULTIMATELY PERIODIC CLOCKS 89
4.2 Ultimately Periodic Clocks

This section introduces the formalism for reasoning abeubglic clocks of infinite data streams.

4.2.1 Definitions and Notations

Infinite binary wordsare words of 0+ 1)®. For the sake of simplicity, we will assume thereafter thairg infinite
binary word has an infinite number of 1s.

We are mostly interested in a subset of these words, calfgadte ultimately periodic binary wordsr simply
infinite periodic binary wordsgefined by the following grammar:

W= u(v)
u = €|0|1]|0u|lu
v = 0|1|0v|1lv

where(v) = lim,V" denotes the infinite repetition @ieriod v, andu is a prefix ofw. Let Q» denote the set of
infinite periodic binary words; it coincides with the set aftional diadic numbers [Vui94]. Since we always
consider infinite periodic binary words with an infinite nuenlof 1s, the period contains at least one 1. This
corresponds to removing the integer numbers fdsrand considering onl), — N.

Let |w| denote the length of. Let |w|; denote the number of 1smand|w|o the number of Os imv. Letw|n|
denote then-th letter ofw for n € N andw(1..n] the prefix of lengttm of w.

There are an infinite number of representations for an iefjpériodic binary word. Indee@101) is equal to
(01) and to 0101). Fortunately, there exists a normal representation: hésunique representation of the form
u(v) with the shortest prefiandwith the shortest period.

Let [w]p denote the position of the-th 1 inw. We have[lw]; =1, [Lw]p = [Wp_1+1if p> 1, and
[0.w]p = [w]p+ 1. Finally, let us define thprecedenceelation= by

Wy XWo <= Vp> 1, [wip < [Wop.

E.g., (10) < (01) < 0(01) < (001). This relation is gpartial order on infinite binary words. It abstracts the
causality relation on stream computations, e.g., to chiekdutputs are produced before consumers request them

as inputs.
We can also define the upper boumd/w and lower bounavrw’ of two infinite binary words with

Vp> 1, [wUw]p = max([w]p, [W]p)
Vp > 1, [wnw], = min([w]p, [(W]p).

E.g., 110) LU (01) = (01) and 110) 1 (01) = 1(10); (1001) LI (0110 = (01) and(1001) 1 (0110 = (10).
Proposition 1 The set((0+ 1)®, <,11,M, L = (1), T = (0)) is a complete lattice.

Notice T is indeed(0) since[(0)]p = « for all p> 0.2
Eventually, the following remark allows most operationdmfmite periodic binary words to be computed on
finite words.

Remark 1 Considering two infinite periodic binary words, swu(v) and w = U (V'), one may transform these
expressions into equivalent representativés) and d(b’) satisfying one of the following conditions.

1. One may choose a/,a, and B with |a| = |a'| = max|u|,|U|) and |b| = |b'| = lcm(]v|,|V|) where Icm
stands forleast common multipleIndeed, assuming| < |U|, p= |[U| — Ju| and n= lem(|v], |V]): w =
uv(d]...v[pl.(v[p+1]...v[p+|v])"M) and w = ' (V¥ V!). E.g., word€010(001109 and1000%10) can
be rewritten intad01000q/ 110000 and1000110101Q.

2. Likewise, one may obtain prefixes and suffixes with the samber of 1s: w= a(b) and w = & (b')
with |a|1 = |&|1 = maX|u|1,|U]1) and |b]1 = |b|1 = lem(|v|1,|V]1). Indeed, supposk|1 < [U]1, V|1 <
V|1, p=|U]1—|uls, r = [V]p, and n= lem(|V|z, |V]1): W = wv[2]...v[r].((V[r + 1]...v[r + |v|]])V V1)
and w = u'.(vV"/Vl1). E.g., the pair of word910(00110Q and 1000%10) become)10001100001 and
1000%1010.

2Yet the restriction of this lattice t@; is not complete, neither upwards nor downwards, even wifbin- N.




90 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

3. Finally, one may write w= a(b) and w = a'(b') with |aj; = |&| and |b|; = |b/|. Indeed, supposk|; <
U], vz < V|, p=[U]1—|u], r = [V]p, and n=lem(|v|s, |V/|): w = uv[1]... V[r].((V[r +1]...v[r +
v[))M1) and w = u' (v V1). E.g., the pair of word©10(00110Q and 1000%10) can be rewritten into
010001100001(D00013 and1000%10).

4.2.2 Clock Sampling and Periodic Clocks

A clock for infinite streams can be an infinite binary word oranposition of those, as defined by the following
grammar:
ci=w|conw, we {0,1}*.

If cis a clock andwv is an infinite binary word, thenon w denotes aubsampled clockf ¢, wherew is itself
set on clocke. In other wordsg on w is the clock obtained in advancing in cloekat the pace of clock. E.g.,
(01) on (101) = (010103 on (101) = (010001.

c 01 0101010 1..|()
w 1 0 1 1 0 ..| (103
coow|0 1 0 0 0 1 0 1 O O ..| (01000}
Formally,on is inductively defined as follows:
Owonw = O.(wonw)
lwonOw = 0. (wonw)
lwonlw = 1. (wonw)

Clearly, theon operator imot commutative.

Proposition 2 Given two infinite binary words w and'wthe infinite binary word ven w' satisfies the equation
[wonw]p = W]y, forall p> 1.

Proof. This is proven by induction, observing thdtietraversed at the rate of 1s in viw on w]; is associated

with the g-th 1 of w such that q is the rank of the first 1 i) ixe., g= [W];. Assuming the equation is true

for p, the same argument proves thaton w]y1 = (W] w],+q Where q is the distance to the next 1 ih we.,

q= [W]p+1— [W]p, Which concludes the proof. O
There is an important corollary:

Proposition 3 (on-associativity) Let wy, Wy and ws be three infinite binary words.
Then w on (W2 0n wg) = (Wg 0N Wy) 0N Wa.

Indeed(w on oy, = [ Woljwglp — (W1 w 00 ws) -
The following properties also derive from Proposition 2:

Proposition 4 (on-distributivity) theon operator is distributive with respect to the lattice opeoais andL.

Proposition 5 (on-monotonicity) For any given infinite binary word w, functionsx xon w and x— won x are
monotone. The latter is also injective utthe former

Using infinite binary words, we can exhibit an interestingafeclocks that we calultimately periodic clocks
or simply periodic clocks A periodic clock is a clock whose stream is periodic. Padadbcks are defined as
follows:

ci=wj|conw, we Q.

In the case of these periodic clocks, proposition 2 becomedgorithm, allowing to effectively compute the
result ofc on w. Let us consider two infinite periodic binary wondis = u(v1) andw, = uz(v2) with |uz|1 = |uy]
and|vi|1 = |v2|, this is possible because of Remark 1. Then= w; on w, = uz(v3) is computed byus| = |uy|,
|us|1 = [Uz[1, [Us]p = [Ua]jy,], @and|vs| = |va, Va1 = [V2l1, [Va]p = [Vi]jy,,-

Likewise, periodic clocks are closed for the pointwise astens of boolean operatass, not , and&.

3E.g.,(1001) on (10) = (1100 on (10).



4.3. THE PROGRAMMING LANGUAGE 91
4.2.3 Synchronizability

Motivated by the downscaler example, we introduce an etpri¢a relation to characterize the concept of resyn-
chronization of infinite binary words (not necessarily pditc).

Definition 16 (synchronizable words) We say that infinite binary words w and are synchronizableand we
write wi W, iff there exists dd’ € N such that w= 09w and w < 0%w. It means that we can delay w bititks
so that the 1s of (occur before the 1s of w, and reciprocally.

It means that the-th 1 ofwis at a bounded distance from theh 1 ofw'. E.g., 110) and(01) are synchroniz-
able; 110) and(0) are not synchronizabl¢910) and(10) are not synchronizable since there are asymptotically
too many reads or writes.

In the case of periodic clocks, the notion of synchronizhis computable.

Proposition 6 Two infinite periodic binary words w u(v) and w = u'(V') are synchronizablgdenoted by waw/,
iff they have the sanmate(a.k.a.throughpu}

VIa/ IVl = V]2/IV].

In other words, w< w means w and fshave the same fraction of 1s {m) and (V'), hence the same asymptotic
production rate. It also means the n-th 1 of w is at a boundsthdice from the n-th 1 of'w

Proof. From Remark 1, consideriw= u(v) and w, = u' (V') with |u| = |u'| and|v| = |V/|. wy = u(v) >xwp = U/ (V)
iff there exists dd’ s.t.Yw < wa[1..|u] 4 |v| +d], W < 0%wa[L..|u| + V]| A |W| = W] = |w|1 > |W|; andVw <
0% wy [1..|u] + V]|, W < Wa[dL.|u|+|v] + d'] Aw| = |W| = |w|; > |w|s. Itis sufficient to cover the prefixes of
finite length< |u| + |v| + maxd+d’).

Case|V|1 = O is straightforward. Let us assume thiat1/|V|1 > |v|/|V]| (the caselv|1/|V|1 < |V|/|V] is
symmetric). Because of Remark 1, it mepis/|V/|1 > 1. Then it entails thatv) and (V') are not synchronizable
so as w and w. Let us denote a |v|; — [V|1, then ¥ has nal more than . Thus ¥ < of My where
V| > f(n) > na and f(n) is minimal in the sense thaf ¥ 0f(W=1v", It entails that(v) < 0"™f(" (V) and thus
there are not synchronizable.

Conversely, assumg|1/|V|1 = |v|/|V|. Since u and ‘uare finite, we havd'u < 0Pu’ and 14U’ < 0% with
r =max0, |U|1 —|u[1), k= maxO0, |ul; — |U]1). (V), p=min{l || <|u/+rAlu=0u}andg=min{l |l <
|U/| 4+ A1k < 0'u}. (V) are also synchronizable, thygs) < 0™(V) and (V') < 0"(v). Then w < OP+™Vlw, and
w, < 09 KVIw,  There is an additional delay ofv] since each period v holds at least one 1. 0

4.3 The Programming Language

This section introduces a simple data-flow functional laagguon infinite data streams. The semantics of this
language has a strictly synchronous core, enforced by altdclock calculus a type system to reject non
synchronous programs, following [CP96, CP03]. Our maintigbution is to extend this core with relaxed in-
terpretation of synchronyThis is obtained by extending the clock calculus so as tetcihe composition of
streams whose clocks are “almost equal’. These progranncanmr be automatically transformed into conven-
tional synchronous programs by inserting buffer code ap@rplaces.

4.3.1 A Synchronous Data-Flow Kernel

We introduce a core data-flow language on infinite streanms.sylhtax derives from [CGHPO04]. Expressions
(e) are made of constant streamy {ariables X), pairs € €), local definitions of functions or stream variables
(ewher e x = €),* applications €(e)), initialized delays¢f by €) and the following sampling functionswhen pe
is the sampled stream efon the periodic clock given by the value p§& andner ge is the combination operator
of complementary streams (with opposite periodic clockgrder to form a longer strearhst andsnd are the
classical access functionsat eis a clock constraint, asserting the first operand to be eldcl the rate of the
second. As a syntactic sugamhenot peis the sampled stream efon the negation of the periodic cloge

A program is made of a sequence of declarations of streantifunsc{ et node f x =€) and periodic clocks
(period p= pe). E.g.,period half = (01) defines the half periodic clock (the alternating bit seqegand this

4Corresponds tbet x = e in ein ML.



92 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

clock can be used again to build an other onepikei od quarter= half on half. Periodic clocks can be combined
with boolean operators. Note that clocks atatic expressions which can be simplified at compile time into the
normal formu(v) of infinite periodic binary words.

e == X]|i|(ee)|ewherex=e]|e(e)|op(ee)
| ef by e| ewhen pe|nerge peee
|fst e|snde|eat e

d == let node fx=e|d;d
dp = periodp=pe|dpdp
pe = p|w|peon pe|not pe|peor pe| pe& pe

We can easily program the downscaler in this language, asrshioFigure 4.3. Therai n function consists
in composing the various filtering functions. Notatiomat (i when (100000)) is a constraint given by the
programmer; it states that the output pirehust be produced at some cloalon (100000, thus 6 times slower
than the input clockr.

et period ¢ = (10100100)
let node hf p = o where rec (...)
and o = f (p, 02,03, 04, 05,06) when c

let node mini = o0 at (i when (100000)) where rec
t =hf i
and (i1,i2,i3,i4,i5,i6) = reorder t
and o = vf (i1,i2,i3,i4,i5,i6)

Figure 4.3: Synchronous code using periodic clock

4.3.2 Synchronous Semantics

The (synchronous) denotational semantics of our core fttatalanguage is built on classical theory of syn-
chronous languages [CGHPO04]. Up to syntactic details,ishéssentially the corelsTRElanguage. Nonethe-
less, to ease the presentation, we have restricted sangplérgtions to apply to periodic clocks only (whereas any
boolean sequence can be used to sample a stream in existiclysgous languages). Moreover, these periodic
clocks are defined globally as constant values. These pexime:ssions can in turn be automatically transformed
into plain synchronous code or circuits (i.e., expressfoms €) [Vui94].

This kernel can be statically typed with straightforwargibg rules [CGHPO04]; we will only consider clock
types in the following. In the same way, we do not considesaéity and initialization problems nor the rejection
of recursive stream functions. These classical analyg@yg djpectly to our core language and they are orthogonal
to synchrony.

The compilation process takes two steps.

1. Aclock calculuscomputes all constraints satisfied by every clock, as géeettey a specifitype system
These constraints are resolved througéicationprocedure, tanfer a periodic clock for each expression
in the program. If there is no solution, we prove that someaesgions do not have a periodic execution
consistent with the rest of the program: the program is notssonous, and therefore is rejected.

2. If a solution is found, theode generatiorstep transforms the data-flow program into an imperative one
(executable, OCaml, etc.) where all processes are synahshnexecuted according to their actual clock.

Clock Calculus

We propose a type system to generate the clock constraimesgdal of the clock calculus is to produce judgments
of the formP,H - e: ct meaning that “the expressi@hasclock type ctin the environments of perioddand the
environment”.

Clock types$ are split into two categories, clock scheme} quantified over a set of clock variables)@nd
unquantified clock type<t). A clock may be a functional cloclc{ — ct), a product ¢t x ct) or a stream clock

5We shall sometimes sajockinstead ofclock typewhen clear from context.



4.3. THE PROGRAMMING LANGUAGE 93

(cK). A stream clock may be a sampled clock ¢n pe) or a clock variabled).

g = Vai,..,ap.ct

ct = ct—ct|ctxct|ck
ck = ckonpe|la

H &= [X1:01,....%n: Om)
P == [p1:peL,..,Pn: P&

The distinction between clock typest) and stream clock typesK) should not surprise the reader. Indeed,
whereas Kahn networks do not have clock types [Kah74], tiseaeclear distinction between a channel (which
receives some clock typek), a stream function (which receives some functional clgglett — ct’) and a pair
expression (which receives some clock tyghex ct’ meaning that the two expressions do not necessarily have
synchronized values).

Clocks may be instantiated and generalized. This is a kayrfeao achieve modularity of the analysis. E.g,
the horizontal filter of the downscaler has clock schéfmex — o on (10100100; this means that, if the input
has any clocla, then the output has some cloglon (10100100. This clock type can in turn be instantiated in
several ways, replacing by more precise stream clock type (e.g., some sampled ofomik (01)).

The rules for instantiating and generalizing a clock typegiven belowFV/(ct) denotes the set of free clock
variables inct. .

ct'[ck/d] < Wva.ct
fgenct) = Vai,...,am.ctwhereay,...,am = FV(ct)

The inequality in the first rule stands for “being more predisan”: it states that a clock scheme can be
instantiated by replacing variables with clock expressjon the second ruldgen(ct) returns a fully generalized
clock type where every variable @t is quantified universally.

When defining periods, we must take care that identifiers laeady defined. IfP is a period environment
(i.e., a function from period names to periods), we shallpgymvrite P - pewhen every free name appearing in
peis defined inP.

The clocking rules defining the predicdéH + e: ct are now given in Figure 4.4 and are discussed below.

e A constant stream may have any claiqrule om)).

e The clock of an identifier can be instantiated (ruleT)).

e The inputs of imported primitives must all be on the samelcloale (or)).

e Rule(ray) states that the clock & f by e; is the one ok; ande, (they must be identical).

e Rule wHEeN) states that the clock afwhen peis a sub-clock of the clock af and we write itckon pe In
doing so, we must check thpeis a valid periodic clock.

e Rule(MERGE) states an expressiomr ge pe g € is well clocked and on clockk if e; is on clockckon pe
ande is on clock the complementary clockon not pe

e Rulepp)is the classical typing rule of ML type systems.
e RulewrerE)is the rule for recursive definitions.
e Rules(rair), (FrsT)and(snp) are the rules for pairs.

e Rule(cTr) for the syntare; at e, states that the clock associateatds imposed by the clock ab; it is the
type constraint for clocks.

¢ Node declarations (rulgope)) are clocked as regular function definitions. We wHtex : ct; as the clock
environmenH extended with the associatian ct;. Because node definitions only apply at top-level (and
cannot be nested), we can generalize every variable apgéarihe clock typé.

¢ Rulespreriob), (pEFH) and(perp)check that period and stream variables are well formed niagnes in period
and stream expressions are first defined before being used.

6This is slightly simpler than the classical generalizatiofe of ML which must restrict the generalization to varibivhich do not appear
free in the environment.



94 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

vy PHEi:ck
<H®X

PHFEFX:ct
PHFe :ck BPHFe:ck

(INST)

(OP)

P.H - op(ex,ez) : ck
PHFe :ck PHFe&:ck
PHEe fby e :ck
PHFe:ck P pe

(FBY)

(WHEN)

P,H I ewhen pe: ckon pe

(MERGE) P pe HFe :ckonpe RHFEe:ckon not pe

P,HFnerge pea e :ck
PHFe:ct; —cty PHFEe:ch

PHEe(e):cty
PH,x:ctiFep:cty P H,x:ctiFex:ch

(APP)

(WHERE)

PHFewherex=¢e;:ct

PHFe :cti PHFe:ch
(PAIR)

PHF (e1,e) :cty x ctp
PHFe:ct; xct
PHFfst e:cty
PHFe:ct; xct
PHEsnde:ct
PHFe :ck PHFe&:ck

(FST)

(SND)

(CTR)

PHFeat e :ck

P, H,x:cty-e:cty
(NODE)

HElet node f x=e:[f:fgencty — cty)]
P pe

P+ period p=pe:[p: p¢
Hl—dhliHj_ H,Hl'—dhzin

HFdhy;dhy: Hq,Ho
PHdpi:PL PPiFdp:P

PHdpi;dp: P,P

(PERIOD)

(DEFH)

(DEFP)

Figure 4.4: The core clock calculus

Structural Clock Unification

In synchronous data-flow languages such astREor LuciD SYNCHRONE, clocks can be made of arbitrarily
complex boolean expressions. In practice, the compilerasiak hypothesis on the conditioin the clock type
(ckon c). This expressiveness is an essential feature of synchsdanguages but forces the compiler to use a
syntactical criteria during the unification process: twackl types €k; on ¢;) and €k on ¢2) can be unified itk
andcky can be unified and if; andc; are syntactically equal.

This approach can also be applied in the case of periodi&slotwvo clock typesdkon wi) and ke on wy)
can be unified itky; andcky, can be unified and v = w, (for the equality between infinite binary words). As
a result, this structural clock unification is unable to camgia on (01)) on (01) anda on (0001) though two



4.3. THE PROGRAMMING LANGUAGE 95

stream on these clocks are present and absent at the veryrsdams. A more clever unification mechanism will
be the purpose of section 4.3.3.

Semantics over Clocked Streams

We provide our language with a data-flow semantics over famtkinfinite sequences following Kahn formulation
[Kah74]. Nonetheless, we restrict the Kahn semantics byimgathe absence of a value explicit. The set of
instantaneous values is enriched with a special valuepresenting the absence of a value.

We need a few preliminary notations.Tifis a set,T® denotes the set of finite or infinite sequences of elements
over the sefl (T® =T* +T%). The empty sequence is notedndx.s denotes the sequence whose headdrd
tail is s. Let < be the prefix order over sequences, ixes; y if x is a prefix ofy. The ordered séd = (T*,<) is
a complete partial order (CPO).[If; andD» are CPOs, the®; x D is a CPO with the coordinate-wise order.
[D1 — D2] as the set of continuous functions frdba to D3 is also a CPO by taking the pointwise order.fIfs
a continuous mapping from; to D2, we shall writefix(f) = lim,_... f"(€) for the smallest fix point of (Kleene
theorem). We define the s€tockedStreariT ) of clocked sequences the set of finite and infinite sequences of
elements over the s@&t =TU{L}.

T = Tu{l}
ClockedStreaiff) = (T.)”
A clocked sequence is made of present or absent values. Weedké clock of a sequenseas a boolean

sequence (without absent values) indicating when a valpesent. For this purpose, we define the functimak
from clocked sequences to boolean sequences:

clock(e) = €
clock L.s) = 0.clock(s)
clockx.s) = 1l.clock(s)

We shall use the letter for present values. Thus,s denotes a stream whose first element is present and
whose rest is whereasl .s denotes a stream whose first element is absent. The int&tipredf basic primitives
of the core language over clocked sequences is given in figGréNe use the mark # to distinguish the syntactic
construct (e.gf by) from its interpretation as a stream transformer.

e Theconst primitive produces a constant stream from an immediateevalthis primitive is polymorphic
since it may produce a value (or not) according to the enwiremt. For this reason, we add an extra argu-
ment giving its clock. Thussonst” i ¢ denotes a constant stream with stream clo@ock const”ic) =

C).

e For a binary operator, the two operands must be synchronogether present or together absent) and the
purpose of the clock calculus is to ensure it statically éothise, some buffering is necessary).

e fby is the unitary delay: it “conses” the head of its first arguirterits second one. The arguments and
result off by must be on the same clodkby corresponds to a two-state machine: while both argumeats ar
absent, it emits nothing and stays in its initial stafiey(’). When both are present, it emits its first argument
and enters the new statebfy1¥) storing the previous value of its second argument. In tlEgesit emits a
value every time its two arguments are present.

e The sampling operator expects two arguments on the samie. clde clock of the result depends on the
boolean conditiond).

e The definition ofirer ge states that one branch must be present when the other igabsen

 Note thatot” andon” operate on boolean sequences only. The other boolean iopesrah clocks, e.qgr
andg, follow the same principle.

Itis easy to check that all these functions are continuoudarked sequences.
Semantics is given to expressions which have passed thle cédculus E judgments). We define the inter-
pretation of clock types as the following:

et — ct2]lp [[ctu]lp — [cta]lp]

ety x ctaflp = [ct]lp x [cto]lp

se [Vay,...,an.Cct]p = Vcky,...,Cky, S € [[Ct[cky /01, ..., Cky/Cn]Ip
se [cKp clock(s) < P(ck)



96 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

const”il.c = i.constic
const”i 0.c = l.const®ic
op*(s1, %) = gifsg=¢corsp=¢
op’(L.s1, L.%) = Llop'(s;,®)
op(v1.51,V2.%) = (vi0pw).op*(s1, %)
fby”(e,9) = €

foy*(L.s1, L.s) = L.iby*(s1,s)
foy*(v1.51,V2.9) = Vvi.fby1%(v2,51, )
foy1%(v,e,8) = ¢

foy1*(v, L5, L.9)
foy1#(V,v1.81,V2.9)

(

(
when ( C)

.

(

(

L £by1*(v51. %)
V'fbyl#(V27 Sf|.7 &)
€

when”(L.s, C) 1 .when®(s,c)
when”(v.s,1.C) V.when®(s, c)
when”(v.s,0.C) = L.when”(sc)

merge”(C,s1,%) = cgifsgg=¢cors,=¢
merge”(1.c,v.5, L.S) vmerge®(c,s1,%)
merge”*(0.c, 1.5,V.p) vmerge”(c,s1,%)

not¥l.c = O.not"c
not”0.c = lnot'c

on”(1.c1,1.¢0) 1.on"(cy,Cy)
on#(l.Cl, 0.c2) O.on#(c1, C2)
on*(0.c1,¢p) = 0.on"(cy,0)

Figure 4.5: Semantics for the core primitives

[PHFop(er,&):cklp = op*([PHFer:cKlp, [PHFex:cKp)
[PHEX:ctlp, = p(x
[PHEi:cklp = i*[cKp
[PHEefbye:cklp = fby*([PHF ey :cKlp, [PH e :cKp)
[P,HF ewhen pe:ckon pel, = when#([[P,H Fe: cKlp,P(pe))

merge#(P(pe),[[P,H e : ckon pd]p, [P,H F e :ckon not pe]p)
([PHFer:cty — ch]lp)([PHF e :ct]lp)

|
[PHFep,e:cty xct]p ([PHFer:cty]p, [PHFe:ctfp)
[PHEfst 51,5 :cty]p s; wheres;, s, = [P,H Fe:cty x cto]lp
|
I

[PHFnerge peg e :cKjp
[PHFei(e):ct]p

[PHFEsnds;,s:ciofp S wheres;, s, = [P,H Fe:cty x cto]lp
[PHEEwherex=e:ctp = [P Hx:ctke€:ct]ope/y
wherex® =fix(d — [P, H,x: cti-e: ctllojq/x)
[PHFlet node f(x)=e:fgen(cty — ctr)]p [(d [P H,x:cty-e:ct]lp/x)/ f]
[PHFeat ex:cKlp = [P HHFe:cKlp

Figure 4.6: Data-flow semantics over clocked sequences

In order to take away causality problems (which are treajesldme dedicated analysis in synchronous lan-
guages)/ck]lp contains all the streams whose clock is a prefix of the valuekghnd in particular the empty
sequence). This way, an equatior = x+ 1 which is well clocked (sinc® H,x: ck+ x+ 1 : ck) but not causal
(its smallest solution is) can receive a synchronous semantics.

For any period environmem, clock environmenid and any assignmept(which maps variable names to val-
ues) such thags(x) € [H(x)]p, the meaning of an expression is given[lyH + e: ct], suchthafP.H Fe: ct], €
[ct]e. The denotational semantics of the language is definedstally in Figure 4.6.



4.3. THE PROGRAMMING LANGUAGE 97
Example

Let us illustrate these definitions on the downscaler in Fégu3.
1. Suppose that the inputhas some clock type; .

2. The horizontal filter has the following signature, cop@sding to the effective synchronous implementation
of the processa, — o2 on (10100100.

3. Between the horizontal filter and the vertical filter, therder process stores the 5 previous lines in a sliding
window of size 5, but has no impact on the clock besides dedpfie output until it receives 5 full lines,
i.e., 5x 720= 3600 cycles. We shall give to the reorder proess the cloalasigeas — o3 on 03609(1).

4. The vertical filter produces 4 pixels from 9 pixels repdbtacross the 720 pixels of a stripe (6 lines). Its
signature (matching the process’s synchronous implertienjas:

04 — dg0N (172007201720072007201720072007201720)

To simplify the presentation, we will assume in manual cotapons that the unit of computation of the
vertical filter is a line and not a pixel, hence replace 720 by fhe previous signature, yieldingty —
04 0n (101001001

5. Finally, the designer has required that if the global tripis on clockas, then the clock of the output
should bex; on (100009 — the 6 times subsampled input clock — tolerating an additidelay that must
automatically be deduced from the clock calculus.

The composition of all 5 processes yield the type conssaint= a,, az = 02 on (10100100, andog =
az on 0%699(1). Finally, after replacing variables by their definitions et for the output the following clock

type:
((a1 on (10100100) on 0%5°%(1)) on (101001001 = a4 on 0°6°%(100001000000010000000100

Yet, the result is1otequal to the clock constraint stating tlashould have clock types on (10000Q. The
downscaler is thus rejected in a conventional synchronalelis. This is the reason why we introduce the
relaxednotion of synchronizability

4.3.3 Relaxed Synchronous Semantics

The downscaler example highlights a fundamental probleti thie embedding of video streaming applications
in a synchronous programming model. The designer oftendad ggasons to apply a synchronous operator (e.g.,
the addition) on two channels with different clocks, or tonmse two synchronous processes whose signatures do
not match, or to impose a particular clock which does not matty solution of the constraints equations. Indeed,
in many cases, the conflicting clocks may be “almost idelitica., they have the same asymptotic production
rate. This advocates for a more relaxed interpretation nlsgonism. Our main contribution is a clock calculus

to accept the composition of clocks which are “almost id=itj as defined by the structural extension of the
synchronizability relation on infinite binary words to stme clocks:

Definition 17 (synchronizable clocks)We say that two stream clocks akw and ckon w' are synchronizablg
and we write clon wix<ickon w/, if and only if weaw'.

Notice this definition does not directly extend to streanctktowith different variables.

Buffer Processes

When two processes communicate with synchronizable c]@sidwhen causality is preserved (i.e., writes pre-
cede or coincide with reads), one may effectively genesatetsonous code for storing (the bounded number of)
pending writes.

Consider two infinite binary worde andw’ with w < w/. A buffer buf f er s is a process with the clock
typebuf fer v : VB.B on w — B on w and with the data-flow semantics of an unbounded lossle<d Etfannel
[Kah74]. The existence of such an (a priori unbounded) bigfguaranteed by the causality of the communication
(writes occur at clockv that precede clock/). We are only interested in buffers ifite size(a.k.a. bounded
buffers), where the size of a buffer is the maximal numberesfging writes it can accomodate while preserving
the semantics of an unbounded lossless FIFO channel.



98 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

Proposition 7 Consider two processes:tk— aonw and f : a on w — cK, with wexw and w=< w. There
exists a buffebuf f er v : VB.p on w— Bon w such that fobuf fer,, o f is a (0—)synchronous composition
(with the unificatioro = f3).

Proof. A buffer of size n can be implemented with n data registeasie2n + 1 clocks(wi)1<i<n @and (ri)o<i<n.
Pending writes are stored in data registers;[j¥ = 1 means that there is a pending write stored jrakcycle j.
Clocks r determine the instants when the process associated Witredis the data inixri[j] = 1 means that the
data in register xis read at cycle j. For a sequence of pushes and pops imposelddis w and Yy the following
case distinction simulates a FIFO on theregistersstaticallycontrolled through clocks wand r:

NOP: w[j] = 0and w[j] = 0. No operation affects the buffer, i.e;[ji = 0, wi[j] = wi[j — 1]; registers x are left
unchanged.

PUSH: w[j] = 1andw[j] = 0. Some data is written into the buffer and stored in registgratl the data in the
buffer being pushed from nto x1. Thus x=x_1 and x = input, Vi > 2, wi[j] =wi_1[j — 1], wa[j] =1
and i[j] = 0.

POP: w[j] =0andw|j] = 1. Let p=max{0} U{1<i <n|w[j—1] =1}). If pis zero, then no register stores
any data at cycle j: input data must be bypassed directly éodhtput, crossing the wire clocked hy; r
setting ¢[j] =0fori > 0and fo[j] = 1, w[j] =wi[j —1]. Conversely, if p> O, Vi # p,ri[j] =0, rp[j] =1,

Vi # p,wi[j] =wi[j — 1] and wy[j] = 0. Registers xare left unchanged (notice this is not symmetric to the
PUSH operation).

POP; PUSH: w[j] =1andw|[j] = 1. This case boils down to the implementation &GP followed by aPUSH,
as defined in the two previous cases.

O

Assumingw andw’ are periodic and have been written= u(v) andw = u' (V') under the lines of Remark 1, it
is sufficient to conduct the previous simulation fafr+ |v| cycles to compute periodic clocks andr;. This leads
to an implementation in a plaifd—)synchronous language; yet this implementation is impcatbecause each
clockw; orri has a worst case quadratic size in the maximum of the periodsaodw’ (from the application of
remark 1), yielding cubic control space, memory usage adé se. This motivates the search for an alternative
buffer implementation decoupling the memory managemaenth® FIFO from the combinatorial control space;
such an implementation is proposed in Section 4.4.2.
Relaxed Clock Calculus
Let us now modify the clock calculus in two ways:

1. a subtyping [Pie02] rulesus) is added to the clock calculus to permit the automatic inmemf a finite
buffer in order to synchronize clocks;

2. rule(cTr)is modified into a subtyping rule to allow automatic insemt{and calculation) of a bounded delay.

The Subtyping Rule

Definition 18 The relation<: is defined by
W<IW <= WaW AW=W.

This is a partial order, and its restriction to equivalendasses for the synchronizability relatiorx forms a
complete lattice.
We structurally extend this definition to stream clocksckv and ckon w where w<: w'.”

Relation<: defines a subtyping ruleus) on stream clocks types:

PHFe:ckonw w<:w
PHFe:ckonw

(SUB)

“Yet this definition does not directly extends to stream coaith different variables.



4.3. THE PROGRAMMING LANGUAGE 99

This is a standard subsumption rule, and all classicalt&eeulsubtyping apply [Pie02].

The clock calculus defined in the previous section rejegisessions such asty when the clocks ot andy
cannot be unified. With rulgus), we can relax this calculus to allow an expressavith clock ckto be used “as
if it had” clock ck as soon ask andck’ aresynchronizablend causality is preserved.

E.g., the following program is rejected in tfi@—)synchronous calculus since, assumirttgas some cloch,
a on (01) cannot be unified witlot on 1(10).

l et node f(x) =ywhere
y = (xwhen (01)) + (xwhen 1(10))

Let e; denote expressionx (when (01)) ande, denote expressionx (when 1(10)), and let us generate the type
constraints for each construct in the program:

1. (voDE): suppose that the signature bfs of form f : a — a’;
2. (»: the addition expects two arguments with the same clocks;
3. (wHEN): we getcky = o on (01) for the clock ofe; andck, = a on 1(10) for the clock ofey;

4. (su). becaus€01) and 1(10) are synchronizable, the two clockls = a on (01) andck, = o on 1(10) can
be resynchronized into on (01), since(01) <: (01) and 110) <: (01).

The final signature i$ : Voa.a — a on (01).
Considering the downscaler example, this subtyping ruéeé&) does not solve the clock conflict: the imposed
clock first needs to be delayed to avoid starvation of thewyipcess. This is the purpose of the following rule.

The Clock Constraint Rule The designer may impose the clock of certain expressionge Br) is relaxed
into the following subtyping rule:

(CTR)P,HI—el:ckonwl PHFe:ckonw, wi <:0%p»

PHF e at e :ckon 0%,
Consider the previous example with the additional consttaat the output must have clock001).

I et node f(x) =yat (xwhen (1001)) where
y = (xwhen (01)) + (xwhen 1(10))

We previously computed tha@k when (01)) + (X when 1(10)) has signaturet — o on (01), and(01) does not
unify with (1001). Rule(cTr)yields

P,HFy:aon (01),xwhen (1001) : aon (1001 (01) <:0(1001
P,HFyat (xwhen (1001)) : aon 0(1001)

Finally, f : Vo.a — o on 0(1001). Indeed, one cycle delay is the minimum to allow synchraivrawith the
imposed output clock.

Relaxed Clock Calculus Rules The predicat®, H s e: ct states that an expressieihas clocket in the period
environmentP and the clock environmeni, under the use of some synchronization mechanissndefinition
extends the one ¢ H F e: ct with the new rules in Figure 4.7. The axiom and all other ralesidentical to the
ones in Figure 4.4, usings judgments instead of.

Thus, starting from a standard clock calculus whose purisasereject non-synchronous program, we extend
it with subtypingrules expressing that a stream produced on some claatan be read on the clodk as soon
asck; can be synchronized inttkz, using some buffering mechanism. By presenting the systdwa steps, the
additional expressiveness with respect to classical spmgtis made more precise.



100 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

PHFge:ckonwg wp <:w
(SuB) s 1 1 <IW2

P,HFse:ckonw,

(CTR)P,H Fser:ckonw; PHFEser:ckonwy wy <: 0%,

PHFse at e :ckon 0%,

Figure 4.7: The relaxed clock calculus

Relaxed Synchrony and thef by Operator Noticef by is considered a length preserving function in data-
flow networks, hence its clock scherda.a x a — a in the 0-synchronous case, and despite it only needs its
first argument at the very first instant. In the relaxed casecould have chosen one of the following clock
signatures:vVa.a on 1(0)ex o — a, Vo.a on 1(0) x a on 0(1) — a, or Va.a x o on 0(1) — a. The first two
signatures require the first argument to be present at thefirst instant only, which is overly restrictive in
practice. The third signature is fully acceptable, with dhservation that the original length-preserving sigratur
can be reconstructed by applying the subtyping cuten (1) <: a on 0(1). This highlights the fact that thieby
operator is a one-place buffer.

Construction of the System of Clock Constraints

The system of clock constraints is build from the systemaiplication of the core rules in Figure 4.4 and the
relaxed calculus rules in Figure 4.7. All rules are syntarctied excepsus) whose application is implicit at each
(function or operator) composition.

Rule cTr) is a special case: the clock constraint is built by compudimpssible value for the delal This
computation is syntax directed, and we always choose tormiwei delay insertion: deldw,w') = min{l | w =<
0'w'}. Whenw < W/, no delay is necessary. Note that in general, detay ) # delayw,w).

Proposition 8 The delay to synchronize an infinite periodic binary word whwan imposed infinite periodic
binary word w can be automatically computed by the formula

dela}(WaV\/) = ma)(mpa)([W] p— [V\/] p)a O)
On periodic words, this delay is effectively computabletsato Remark 1.

Proof. Indeed, let d= maxmax,([w]p — [W]p),0) and v= 0% we have w v since for all p,v]p = d + [W]p.
Moreover, d is minimal: suppose there exists p such thatlc [w], — [W]p, then ¥V = 09-1w/ satisfiesv]p =
d—1+ [W]p < [W]p. Thus, wA V. O
For the simplified downscaler, the minimal delay to resyoaime the vertical filter with the output process is
0%03 since 9603 (clock cycles) is the minimal valuedos$uch that
0°699(1000010000000100000001)08 09(10000Q. For the real downscaler (with fully developed verticakiilt
signature), we automatically computed that the minimahgelas12000to permit communication with the SD
output.

Unification

We need a better unification procedure on clock types thastthetural one (see Section 4.3.2), types to obtain
an effective resolution algorithm for this system of coastts. In our case, a syntactic unification would unnec-
essarily reject many synchronous programs with periodickd. We propose a semi-interpreted unification that
takes into account the semantics of periodic clocks. Moeegipely, the unification of two clock types andct’
can be purely structural on functional and pair types, winergimplification on periodic clocks can be applied,
but it has to be aware of the properties of the sampling opefat) when unifying stream clock types of the form
ckon wandck on w'. Two cases must be considered.

First of all, unifyinga on w anda on w returns true if and only ifv=w'.

In the most general case, assumanda’ are clock variables (clocks can be normalised, thanks taske-
ciativity of on). Equationa on w = a’ on w always has an infinite number of solutigiisese solutions generate
an infinite number of different infinite binary words. Iniugély, a periodic sampling ol consists of the insertion



4.3. THE PROGRAMMING LANGUAGE 101

of Os inw, in a periodic manner. v < W, it is always possible to delay theth 1 inw (resp.w’) until the p-th 1
inw (resp.w) through the insertion of Os i (resp. ina’). Let us define the subsampling relatiggs such that

a<ssd <= Ja,a=aond.

Note that ifa <ssa' thena’ < a, but the converse is not truéd1) < (0011) and there is no solutioa such that
(0011 = a on (01).

Proposition 9 Relation<gsis a partial order.

Proof. <ssis trivially reflexive and transitive. Antisymmetry holdscuse< is a partial order, and a<ssa
implies d < a. |

In a typical unification scheme, one would like to replaceaheve type equation by “the most general clock
type satisfying the equation”. We will see that there is Eal@ most general wonsh such that all common
subsamples ofv andw’ are subsamples of (<ssis an upper semi-lattice), yet the expressiomof von w =
Vv on W does not lead to a unique choice forand for the maximal unifiers andV. In fact, there can be an
infinite set of such words.

In a strictly synchronous setting, we need to fall back tormomplete unification scheme (some synchronous
programs with periodic clocks will be rejected), choosimg @f these solutions. [f,V) is the chosen solution,
the unification ofaon w anda’ on w yields a unique clock type on von w= o on V' on W, and every occurence
of a(resp.d) is replaced byt on v (resp.a on V).

Yet in our relaxed synchronous setting, the most generéieuhias an interesting property:

Proposition 10 (synchronizable unifiers) Consider w, v, V> such that y on w = v, on w; we have y i vs.

This directly derives from Proposition 2.
We may thus make an arbitrary choice fiwv') among maximal unifiers, and select one that is easy to
compute. Formally, we define tlearliestsubstitutionsl’ and 7’ through the following recurrent equations:

V(09w 0909 1w) = 19091V (w,w)
V(0904 1w, 091.w) = 19191V (w,w)
V'(092.w,090% L.w) = 1919197 (w,w)
7’090 L.w,091.w) = 190919 (w,w)

Let M (w,w') denote the unifier
M(w,w) = V(ww)onw= v (ww)onw.
The computation o/ and”’ terminates on periodic words because there are a finite nushbenfigurations

(bounded by the product of the period lenghtsvandw).
E.g.,aon (1000 = & on 0(101):

w 100010001000 1..](1000
W 0101101104110 1. |0(100)
ww) 011111111111 1.]001)
7wWw)[1110010001100..|1(11001000
Ww)[010001000100 0..|0(1000

Proposition 11 For all w,w/, p,
(M (WW)]ps1= [M(WW)]p+max[Wp:1— [W]p, [W]pi1— [W]p).

Proof. An inductive proof derives naturally from the previous alfon. In particular, observe that between
two consecutive 1s ifM (w,w'), the associated subword of either v drig a sequence of 1s; hence either
[(M(WW)]pr1— [M(WW)]p = [W]ps1— [W]p of [M(WW)]ps1— [MWW)]p = W]p1— [W]p. O

In addition, M (w,w') is the maximuncommon subsample @f andw’ and has several interesting properties:



102 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

Theorem 11 (structure of subsamples)The subsampling relatiorss forms an upper semi-lattice on infinite
binary words, the supremum of a pair of wordssvbeing M (w,w').

Common subsamples of w and farm a complete lower semi-lattice structure far M (w,w') being the
bottom element.

M is also associativeM (w, M (W, w")) = M (M (w,w),w"). (Hence the complete lower semi-lattice struc-
ture for < holds for common subsamples of any finite set of infinite pinards.)

Proof. We proceed by induction on the position of the p-th 1. Comsidgfinite binary word h=uonw =
u on w. By construction of mm]|; = max([w]1, [W]1), hencem|1 < [m]1. Assume all common subsamples of w
and w are subsamples of m up to their p-th 1, and tht, < [n7], for some p> 1. Proposition 11 tells that m is
identical to either w or Wbetween its p-th and - 1-th 1; hence common subsamples of w ahdre subsamples
of m up to the next 1; and since-wm' and W < n7 (<ssis a reversed sub-order of), we getm] 1 < [M]py1,
hence mx m' by induction on p.

Associativity derives directly from Proposition 11. O

Resolution of the System of Clock Constraints

We may now define a resolution procedure through a set of @nssimplification rules.

(CYCLE) S+{oonwy <:oonwp} ~» S if Wy <iWp
(SUP) S+{aonw; <:d’, aonwy <:a'} ~ St{aonwiliw, <:a'} if wybawy
(NF)  S+{o’ <:aonwy, o <aonwy} ~ S+{a’ <:aonwiMwe} if Wy bWy
S=S+11+15, with
} it 1p={oq0onwy <:ck}or{ck <:aionwi},
I ={oz0nw, <:cky} or {cky <:0p0nws}
(cut) S+{aronw<:ozonw} ~ S+{aq <:030n Uy, 030N Up <: 02} if 01 # 02, Ul = Umax(W), Uz = Umin(W)
(FORK) S+{a <:ajonw, a<:dzonw} ~» Jagonuonw/a]+{azonu<:0g, azonu<:oy} if a1 02, U= Unin(W)
(JOIN) S+{ajonw<:a, aponw<:a} ~» Foagonuonw/a]+ {0 <:dzonu, dz <:0d3z0nu} if a1 02, U= Umax(W)
(susT) S@l ~ Ycek/a] if | ={a <:ck}or{ck<:a}, a¢FV(ck

0‘;1 onvy/og
a5 onvo/dy

ap# 02 Vi = V(W wp)

EQUAL) S~ S )
(EQUAL) Wy #EW 7 Vo = V' (W, Wp)

Figure 4.8: Clock constraints resolution

The clock system given is turned into an algorithm by intrddg a subtyping rule at every application point
and by solving a set of constraints of the focky <: ck. The program is well clocked if the set of constraints is
satisfiable.

Definition 19 (constraints and satisfiability) A system S of clock constraints is a collection of inequatioe+
tween clock types:

S = {cki<:ck,...,cky <:ck}

We write St {cki <: cko} for the extension of a system S with the inequaitka <: cko }. We write $b {ck; <:
cko} for S+ {cky <: cko} such that S does not containdérected chairof inequations from any free variable in
cki to any free variable in ¢k For example, $ {a1 <: a2 on wp} means that, in 31 never appear on the left
of an inequation that leads transitively to an inequatiorevdt, appears on the right.

A system S is satisfiable if there exists a substitugilom variables to infinite binary words such that for all

{ck <:ck} € Sp(ck) <: p(cK).
There is a straightforward but important (weak) confluerroperty on subsampling and satisfiability:

Proposition 12 (subsampling and satisfiability) If a’ ¢ S, then for all w, S is satisfiable iff@® on w/qa] is sat-
isfiable.

Proof. Suppose S is satisfiable witf) = yon m. Then we can build another substitutigrsatisfying the system
of constraints by choosing/(y) =Y on ¢(m,w), p’(a) =¥ on ¥(m,w) on m andp’(a’) =y on 9’(m,w). The
reciprocal is obvious. O



4.3. THE PROGRAMMING LANGUAGE 103

Let us eventually define three functions useful to bound gtetsubsamples of a given wortinin, Umax
andA are defined recursively as follows:

Unin(0*1°.w) = 13020°1°. Upin(w)
Unax(021P.w) = 030°121°. Upmax(w)
A(ug.Up.u,021°.w) = 130°1121°.up.A(u, W)

with |U1|1 =2a+ b7 |U2|1 = b7 |U1|o =0C, |U2|0 =C2

Notice A — from pairs of infinite binary words to infinite binary wordsis-of technical interest for the proofs
only.

Proposition 13 For all w, Umin(W) > Umax(W), Umin(W) <: Umax W), and Umin(W) 0N W= Umax(W) 0N W.
For all u, w, A(u,w) is an infinite periodic binary word and is synchronizablehnit

Proof. The first part of the proposition is proven inductively on plusition of 1s in the subsampling.

. ancy 1a1b . e . .
The second part derives fro:%%clllallgfz“l = % éﬁii’f = “‘31‘32“1 where y.u, satisfies the constraints in

the inductive definition . O

Proposition 14 For all u, v, w,

A(u,w) on Umin(w) on W= uon Umin(w) on w=
uon Umaxw) on w=A(U,w) on Umax(W) on W

Proof. SinceUmin(w) on W= Umax(W) on w, we have

uon Umin(w) on w=uon Umaxw) on w and

AU, W) 0N Urin(W) on W= A(U,W) 0N Umax(W) 0n W In addition, Umin(0*1°.w) on 021°.w = 020°021°, hence
A(ug.Up.u, 021°.W) 0N Uin(021°.w) on 021°.w =

020%0°02.uz.A(u, W) on Upmin(W) on w (since|up|1 = b). Finally, uy.uz.uon Umin(021°.w) on 021°.w =
022+D+CL Yy U 0N Upnin(W) 0N W. 0

Proposition 15 A(u,w) on Umin(w) is the minimum (forz) of all v such that
V on w = A(U,W) on Umin(W) ON W.
A(u,w) on Umax(w) is the maximum (fox) of all V' such that

vV on w = A(U,W) 0n Umax(W) ON W.

Proof. The result is proven by induction, observing that the p-tm 1iis enclosed between the p-th 1 in
A(u,W) on Uin(w) and inA(u,w) on Umax(W). Indeed, we hava(u;.u.u,021°.w) on Upin(0?1°.w) =
120°1020°.up.A(U, W) 0N Unin(W), andA(us.Up.u, 021°.W) on Umax(021°.w) = 020°10°12.up.A(U, W) 0N Unax(W).
O
The set of subsamples of a given word is characterized byotleing technical proposition:

Proposition 16 For all u, v, w,
uon Umin(w) onw <:vonw = A(U,W) on Umin(W) <: V

and
VOon W <:Uuon Umaxw) onw = v <:A(U,W) 0N Unax(W).

Proof. Observe that ©n Umin(w) on w <: von w. From Proposition 14, we hau&u,w) on Umin(w) on w <:
von w. And from Proposition 15, we gAtu,w) on Unmin(W) <: V. The second part of the proof is symmetrical.

Let us finally define the simplification relation between clock constraints. Its definition is given in Fig-
ure 4.8. Any new variable appearing in right-hand side ofsihgplification relation is assumed to be fresh.

Theorem 12 (preservation of satisfiability) If S is satisfiable and S~ S then Sis satisfiable.



104 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

Proof. Proposition 12 authorizes to sample (to slow down) the systed will be used throughout the proof.
Let us consider every relation in Figure 4.8.

(sup), (INF) and(cvcLe). Presevation of satisfiability is a direct application of Pasitions 2 and 5.
(EQUAL). This rule preserves satisfiability: it just subsamples a pavariables.

cum). By definition oftmin and Unay the right-hand side of the relation is a sufficient conditaf satisfiability.

Conversely, consider a solutiam = o on vy andaz = o on vo. Let Vi = V(v1, Unin(w)) and | =
V' (v1, Umin(w)), and replacea by a’ on Vi. We haven; = a’ on V] on Umin(w). Let us chooseiz =
a’ on A(VJ,w); From Proposition 16, we havee; <: a’ on V] on UnaxW) <: 03 0n Umax(W).

We also have }on Umin(w) on w <: V1 0on vz on w, hence Proposition 16 yieldS(V;,w) on Umin(W) <:
Vi on v,. Sincea, = a’ on Vj on Vo, we havens on Unin(w) <: a2. The right-hand side of the relation is
thus satisfiable.

(Fork) and@oiny. The proof is very similar: choosing the samg satisfies both inequalities am anda; simul-
taneously.

(sussT) Consider the form of the inequality | an The right-hand side of the relation is of course a sulfficient
condition of satisfiability. It is also clear that it is nec@sy when the inequality does not belong to a circuit.
Assuming it belongs to a circuit, simplify the system thiotige systematic application of all other rules,
enforcing that no inequality belongs to multiple simpleaits. A retiming argument [LS91] shows that, if
the system is satisfiable, then there is a solution such thiaegyualities in a given circuit but (at most) one
are converted to equalities: considering a solution witHeatst two strict inequalities, split the circuit by
renaming the common clock variable, choosing one name &pd#th from one inequality to the other and
another one on the other path, unify any one of the brokenualitées to effectively remove this inequality
from the solution.

The proof is symmetical for the second form of I.

O
Rule equay) is only provided to factor the unification step out of tlweT), (Fork) and oin) rules. As a
consequence, in the following resolution algorithm, weuass rulequar) is an enabling simplification, applied
once before each ruteur), (Fork) andoiny.

Theorem 13 (resolution algorithm) The set of rules in Figure 4.8 defines a non-deterministitabuays termi-
nating resolution algorithm:

1. the tree of simplifications S+ S is finite;

2. if Sis satisfiable, there is a sequence of rule applicatieading to the empty set.

Proof. The proofis based on the graph structure induced by S.

(sup) and (nr) strictly reduces the number of acyclic pathg&gquav) is only used once for each application
of cum), (Fork) and @oiN). The w # wp condition guarantees it can only be applied a finite numbetirogs.
A systematic application géupr), (NF), (cuT), (FORk) and (oiny leads to a system where no inequality belongs to
multiple simple circuits. This enablesssTt) which strictly reduces the length of any circuit or mulétp sub-
graphs.(cvcLEyreduces short-circuits on a single variable.

Any ordering in the application of these rules terminatey] gields the empty set when S is satisfiable[d

As a corollary:

Theorem 14 (completeness}or any expression e, and for any period and clock environte'Brand H, if e has
an admissible clock type in R for the relaxed clock calculus, then the type inferencealym computes a clock
ct verifying PH Fse: ct.

Intuitively, if the type constraints imposed by the clocketdus are satisfiable, then our resolution algorithm
discovers one solution. This strong result guarantees Itk calculus’s ability to accept all programs with
periodic clocks that can be translated to a stri¢fly )synchronous framework.

Completeness would be easier to derive from principaliéy, from the existence of a most general type for
every expression [Pie02, AW93]. Yet the unification of cl@tieam types is not purely structural (it exploits the



4.4. TRANSLATION PROCEDURE 105

properties of then operator), and there are many ways to solve an equation ok tfpes. There is not much
hope either that the system of clock constraints can be ddiyea set of confluent rules, since multiple solutions
are often equivalent up to retiming [LS91].

Finally, although Theorem 13 proves completeness, oulutso algorithm does not guarantee anything
about the quality of the result (total buffer size, periodgth, rate of the common clock).

4.4 Translation Procedure

When a network is associated with a system of clock ineqeslivthere not all of them are simplified into equal-
ities, its execution is undefined with respect to the sernamtf 0-synchronous programs. Buffer processes are
needed to synchronize producers with consumers.

4.4.1 Translation Semantics

Consider the input clockk on w and the output periockon W/, with w < w'. To fully synchronize the communi-
cation, we insert a new buffer nodef f er ,,, with clockVB.onw — [onw; w (resp.w) states when gush
(resp.pop) occurs.

Proposition 17 (buffer size) Consider two synchronizable infinite binary words w aridsuch that w< w'. The
minimal buffer to allow communication from w td is of size

sizew,w) =maxmax({q— p| W] > Wa}).0).

Communication from w to s called sizéw,w')-synchronous.
On periodic words, this size is effectively computable kisao Remark 1.

Proof. This is the maximal number of pending writes appearing lgefbeir matching reads, hence a lower
bound on the minimal size. It is also the minimal size, sihdg possible to implement a size n buffer with n
registers. O

For the simplified downscaler, buffer size is equal to 1,siclock #8°%1000010000000 10000000108ay
take at most one advance tick with respect to clo¥®%100000. For the real downscaler, we automatically com-
puted the siz&80. (This is not the transposition buffer in the reorder notiesize is defined in the specification
and not inferred from the clocks.)

Let us now define &anslation semanticéor programs accepted with the relaxed clock calculus. Whiis
enable us to state the cornerstone result of this work, nathak programs accepted with the relaxed clock
calculus can be turned into synchronous programs which arepéed by the original clock calculus. This is
obtained through a program transformation which insertafiebevery time a strict inequality on stream clock
types remains after resolution. Because a buffer is itsgjfrehronous program, the resulting translated program
can be clocked with the initial system and can thus be symdusly evaluated. This translation is obtained by
asserting judgmem H s e: ct = €, meaning that in the period environmé&hand the clock environmeit, the
expressiore with clockct is translated int&. The insertion rule is:

PHFse:ckonw=¢€ w<:wW
PHFse:ckonw = buffer ,w(€)

(TRANSLATION)

Other rules are simple morphisrhs.

4.4.2 Practical Buffer Implementation

From the definition in Section 4.3.3, one may define a custdfeijprocess with the exact clock type to resynchro-
nize a communication. Yet this definition suffers from theiisic combinatorics of0—)synchronous commu-

nication between periodic clocks (with statically knownipdic clocks). We propose an alternative construction
where the presence or absence of data is captured by dyrdgmimaputed clocks. The memory and code size

8Notice the(CTR) rule shifts a clock constraint imposed by the programmes; rile will often lead to the insertion of a synchronization
buffer, triggering thgTRANSLATION) rule indirectly.



106 CHAPTER 4. QUALITY HIGH PERFORMANCE SYSTEMS

pushl push2

push

T ) i M) SR e F il L

B1 B2 B3

! e
—

Bn
] { = ( s (= P "

Figure 4.9: A synchronous buffer

become linear in the buffer size, which is appropriate foracfical implementation. The downside is that static
properties about the process become much harder to extiitdtitomated tools (model checking, abstract inter-
pretation): in particular, it is hard to prove that the codtially behaves as a FIFO buffer when at mostkens
are sent and not yet received.

et node bufferl (push, pop, i) = (enpty, o) where
o =if penpty then i else pneno
and meno = if push then i else pneno
and pnemo = 0 fby neno
and enpty =
if push then if pop then penpty else false
else if pop then true
el se pempty
and penpty = true fby enpty

Figure 4.10: Synchronous buffer implementation

A buffer of size one, called 1-buffer, can be written as a syanous program with three inputs and two
outputs. It has two boolean inpyigsh andpop and a data. o andenpty are the outputs. Its behavior is the
following: the outputb equali when its internal memory was empty and equals the internatong otherwise.
Then, the memory is set iowhenpush is true. Finally, theenpt y flag gives the status of the internal memory.
If a push and apop occur and the memory is empty, then the buffer is bypassed.plfsh occurs onlgnmpty
becomes false. Conversely, ifpap occurs then the memory is emptied. This behavior can be anogred in
a synchronous language. Figure 4.10 gives an implementatithis buffer in a strictly synchronous languate.
Buffers of sizen can be constructed by connecting a sequence of 1-buffetsoassn Figure 4.9. To complete
these figures, notice the boolean stregoesh andpop need to be computed explicitely from the periodic words
w andw’ of the output and input stream clocks.

Finally, because safety is already guaranteed by the cedlom periodic clocks, a synchronous implementation
for the buffer is not absolutely required. An array in randaatess memory with head and tail pointers would be
correct by construction, as soon as it satisfies the sizaéremmants.

4.4.3 Correctness

We define judgmerf®, H F e: ct to denote that expressi@has clocket in the period environmer and the clock
environmenH, for theoriginal 0-synchronous system. The following result states thatpaogram accepted by
the relaxed clock calculus translates to an equivalent@tapnous program (in terms of data-flow on streams).
This equivalent program has the same clock types.

Theorem 15 (correctness)For any period environment P and clock environment H, i Ps e: ct = € then
PHHFé€:ct.

The proof derives from the subtyping rule underlyingudgments: classical subtyping theory [Pie02, AW93,
Pot96] reduces global correctness to the proof of localr@issonism of each process composition in the translated

9Lucip SYNCHRONE[CPO3]; distribution and reference manual available at
ww. | ri. fr/~pouzet/I ucid-synchrone.



4.5. SYNCHRONY AND ASYNCHRONY 107

program (includingt clock constraints). This is guaranteed by the previousgourffsertion scheme, since each
buffer's signature is tailored to the resynchronizatioa giir of different but synchronizable clocks. This ensures
the translated program is synchronous.

4.5 Synchrony and Asynchrony

A system that does not have a single synchronous clock isaegssarily asynchronous: numerous studies have
tackled with relaxed or multi-clocked synchrony at the heatk or software levels. We only discuss the most
closely related sudies, a wide and historical perspectinebe found in [Cas01].

There are a number of approaches to the specification angidefshybrid hardware/software systems. Most
of them are graphical tools based on process networks. Katuegs networks (KPN) [Kah74] is a fundamental
one, but it models only functional properties, as opposestriectural properties. KPN are used in a number of
tools such as YAPI [dKES00] or the COSY project [BKK 00]; such tools still require expertise from different
domains and there is no universal language that combinetidmal and structural features in a single framework.

Steps towards the synchronous control of asynchronousragsare also conducted in the domain of syn-
chronous programming languages, such as the work of Le @Guetral. [LTLO3] on Polychrony. This work
targets the automatic and correct by construction refinémwfeprograms, in the same spirit as our clock com-
position, but it does not consider quantitative propertieslocks. Streamlt [TKAO02] is a language for high
performance streaming computations that tackles mairdast-level and algebraic optimization issues.

Ptolemy [BHLM94] is a rich platform with simulation and agais tools for the design of embedded streaming
systems: it is based on the synchronous data-flow (SDF) nafdeimputation [EAL87]. Unlike synchronous
languages, SDF graphs cannot express (bounded or notyi@tand arbitrary aperiodic execution. They are not
explicitly clocked either: synchrony is a consequence oéldalance equations on periodic execution schemes.
The SDF model allows static scheduling and is convenienttierautomatic derivation of timing properties
[MBvMO4], but the lack of clocks weakens its amenability fimrmal reasoning and correct-by-construction
generation of synchronous code, with respect to synchmtemguages [HCRP91, BCB3]. Interestinglyn-
synchronizable clocks seem to fill this hole, leading to th#nition of a formal semantics for SDF while exposing
the precise static schedule to the programmer (for incteesetrol on buffer management and code generation).
Further analyses of the correspondence between the twolsrer@deft for future work.

4.6 Conclusion

We proposed a synchronous programming language to implecerect-by-construction, high-performance
streaming applications. Our model addresses the autosatthesis of communications between processes that
are not strictly synchronous. In this model, we show thareies and buffer requirements can be inferred auto-
matically. We extend a core data-flow language with a notfqgeoodic clocks and with a relaxed clock calculus
to compose synchronous processes. This relaxed syncteammdel defines a formal semantics for synchronous
data-flow graphs, building a long awaited bridge with syoedous languages. The clock calculus and the transla-
tion procedure from relaxed synchronous to strictly synobus programs are proven correct, and the associated
type inference is proven complete. An implementation insjrechronous languageulcib SYNCHRONE is under

way and was applied to a classical video downscaler examfite believe this work widens the scope of syn-
chronous programming beyond safety-critical reactivéesys and circuit synthesis, promising increased safety
and productivity in the design and optimization of a largectpum of applications.



Chapter 5

Perspectives

To conclude this manuscript, we build on our results and tsideding to propose a structured analysis of the
immediate and longer-term perspectives.

Our work-plan intensionally extends the recent resultsgmeed in this thesis. Although this may look like
a rather closed point of view (w.r.t. the global researctajrihis plan contributes to a tighter integration of the
research conducted so far. The aim is to prioritize the aehient of key contributions involving the deepest level
of specialization, while maximizing the impact on appliezhthins. The proposed work is also wide enough to
cover several challenges identified by the research contynand to drive the activity of multiple research groups.
As a matter of fact, most of these perspectives are suppbytegsearch projects involving theLAHEMY group
(from European and French funding agencies) and collalooisatvith the best research group from academia and
industry, in Europe and abroad.

We hope this manuscript will help other research groupseshaiticize and confront our analysis, and thus
contribute to the achievement of significant advances ihdpigrformance computing.

This chapter addresses the interplay of compiler foundatimd technology with

. programming languages,

. program generators,

1
2
3. processor architectures,
4. runtime systems,

5

. and the associated tool (infrastructure) developméaittsf

5.1 Compilers and Programming Languages

We believe the future of scalable and efficient computingesys lies in parallel programming languages with
strong semantical guarantees, allowing to maximize priddty; robustness and portability of performance. This
section is a first attempt at shaping an “ideal” parallel paogming model. The goal is to let the programmer
expressnostof the parallelism, in @eterministiccompositiona{or modular) and¢ompiler-friendly(or overhead-
free) semantics.

5.1.1 First step: Sparsely Irregular Applications

Starting from the experience of the data-flow language 8tleave believe we can dramatically improve expres-
siveness, parallelism extraction, optimization and magmpportunities on specific hardware. This work will
first be targeted towards regular data and computationainsive applications, with sparsely irregular control
(mostly mode transitions).

Most of the parallelism. Most parallel languages ask the programmer to make serms$ibiees in the exposition
of coarse grain parallelism. Yet to allow multi-level pdetitm to be efficiently exploited on a variety of targets, it
is absolutely necessary to expose the fine-grain data-flontstre of the computation. To simplify the compilation
and runtime, we first assume a restricted form of control-faperating at a sparse, higher “reconfiguration” level.

108



5.1. COMPILERS AND PROGRAMMING LANGUAGES 109

In a data-flow execution model, there is no need for an explistinction between data and control paral-
lelism. Processes are functions with private memory/sthéy can be composed and replicated. Communication
and control is explicit, and can be provided with an add#ionterface for comfortable data parallel programming
and for the flexible expression of functional pipelines.slihterface may take the form of semantically rich com-
munication and partially-parallel computation skeletdnslt on top of the abovementioned data-flow primitives,
like reductions/scans, collective communications. Thigrface should also provide a clean atomic execution and
synchronization semantics at the higher level of control.

Deterministic. To preserve the Kahn principle [Kah74] (determinism andeabs of schedule or resource-
induced dead-locks), there must be no information flow betwprocesses without explicit communications,
assuming non-blocking writes and blocking reads on FIFQhobl. Non-FIFO communications can be seen
as “peek/poke” operations into implicitly unbounded segksignment buffers (but practically bounded through
static analysis), which can in turn be translated into Flip@rations [TKA02], but compiled much more efficiently
with circular buffers, address generators or rotatingstegifiles. Communications can be hierarchically structure
to reflect the organization of data or computation itselfe @rrite/read operation in a high-level process may be
further detailed into a deterministic sequence of finefrgcammunications in nested processes. The mapping of
these semantically abstract communications onto tagggstic primitives is completely hidden.

Compositional. Determinism offers composition (or modularity) for fres,lang as liveness and equity prop-
erties are satisfied (prerequisites of the Kahn principig)uity depends on the compilation flow, for the larger
part, in a statically controlled architecture. Livenesssirhe proven at compilation time by static analysis (e.g.,
checking for delays in circuits of the data-flow graph).

Preserving compositionality of resource, placement ahédwle properties is much more difficult, but syn-
chronous Kahn networks [CP96, CGHPO04] are a great progréisisidirection, as discussed in the next paragraph.

Compiler-friendly. To ensure early satisfaction of the resource and real-tiomstcaints in the compilation
flow, the data-flow semantics must be complemented with oitpind local scheduling information to reason
globally about the application-architecture mapping.slikithe contribution of the synchronous execution model
to high-performance parallel programming; constrainilhg@mputations to take place at well defined instants in
a global, totally ordered, logical time (hence the term ‘tdymonous”) allows for much more advanced compilation
strategies and optimizations. The lack of such semantifatrnation is a major reason for Streamit’s inability to
harness multi-level, heterogeneous and fine-grain pésatie

A synchronous distributed system does not have any hiddemmication buffer: all communications are
“logical wires” and do not need any particular storage belythre duration of the “instantaneous clock tick”. In
practice, depending on the compilation strategy, registaemory or communication elements may be required.
We advocate for a pragmatic implementation of this prirgipb go much beyond the limitations of Streamit
[TKAO2] which are those of the SDF [EAL87]. We propose to use tevels of clocks:

e asymptotically periodic, or piecewise affine ones to moleldtart-up and steady state of the regular data-
flow level of the computation;

e arbitrary boolean clocks (which depend on external signahternal reactions) to model the reconfigura-
tions and trigger transient executions of the applicataffectively modeled by an bounded aperiodic but
statically known behavior of the application.

The periodic/affine level of clocks yields a statically mgeable hierarchy of computations that may be con-
verted into compact, efficient loop nests, amenable to éurtiptimizations and fine-grain parallelization. These
clocks also allow to relax the synchronous hypothesis loyatig to compose “almost synchronous” processes and
infer the intermediate buffers automatically to statigalllocate memory/communication resources [CDH].
Finally, these logical clocks are needed to generate afficiede and manage resources statically, but they can be
overridden in the optimization flow, through multi-dimemsal retiming techniques.

The higher level of more expressive but semantically poclaaks requires dynamic control in the generated
code (nestedf conditionals), and resembles the compilation of most syorbus languages [BCH3].

Sparsely irregular. The abovementioned two-level clocks allow to model irregukconfigurations or “mode
transitions”. Typically, all modes and all transitions duie statically defined in the application, letting the



110 CHAPTER 5. PERSPECTIVES

compiler best optimize the schedule and resource mappingaith transient and steady state. Early feedback
on the satisfaction of the resource and real-time constraian be gathered, facilitating the adaptation of the
partitioning in a manual or automatic design-space exfitmraf the application-architecture mapping.

On the data and communication side, the non-FIFO commuoitatan be translated into bounded arrays.
Specific treatment of affine subscripts is very important, @lowing indirect subscripts is important for some
rendering algorithms and for mesh computations.

5.1.2 Second step: General-Purpose Parallel Clocked Progmming

To broaden the acceptation of data-flow concurrency in fgredmputing (beyond streaming applications and
systems), we revisit the basic principles of synchronotes-flaw computing with a more compiler-centric point of
view. For example, instead of emphasizing on the synchrétlyeo“rendez-vous” between independent threads
and the instantaneity of the local computations, we prefetevelop the ability of the concurrency model to
compute directly on clocks as first-class citizens. Thisipof view does not match all flavors of synchrony, in
particular it radically departs from the Esterel point adwiwhere clocks should not exist in the program semantics
itself. There are numerous reasons why clocks — and the iatsdsemantical restrictions and clock-directed
compilation strategies — are necessary to enable “effidigrdesign” compilation methods (e.g., generating
sequential code with nested loops and no conditional cbfitne from multiple processes with different clocks).

The extension to more general, less regular computatisredso a longer term challenge. Our current ap-
proach is to investigate how dynamic parallelization arajaation techniques can be combined with the data-flow
programming model, to allow for limited non-determinisgpeculative or data-dependent computations to be ef-
ficiently compiled on a parallel architecture. The sectiarruntime systems below provides more insights about
this, and we advocate for a tight cooperation between détéstic and non-deterministic forms of parallelism —
atomic transactions, with inspector-executor instruragon or speculation — with a core data-flow concurrency
model.

5.2 Compilers and Program Generators

The quality of compiler-optimized code for high-perforncarapplications is far behind what optimization and
domain experts can achieve by hand. Although it may seenrising at first glance, the performance gap has
been widening over time, due to the tremendous complexitgase in microprocessor and memory architectures,
and to the rising level of abstraction of popular prograngianguages and styles. We wish to further explore in-
between solutions, neither fully automatic nor fully mahways to adapt a computationally intensive application
to the target architecture. As hinted to in the introductionuch progress was achieved, not by improving the
compiler, but through the design of application-specifieggpam generators, a.k.a. active libraries [VG98]. The
most advanced project in this area is SPIRAL [P9A].

We are interested in improving language support for domgieks to implement such active libraries. This
motivation is apparently shared by language designs inégsfACLT06]. Our early work is based on multi-
stage languages. In particular, we used MetaOCaml to erpatiwith off-line and online generation of high-
performance programs [CD®6]. The main advantages of this approach are the abilityeteerate code that
does not trigger future-stage compilation errors (synséixicture, type), and the seamless integration of values
produced in various execution stages (for online optinoreand specialization).

Yet our results have been mitigated by the constraints oe gadospection (opening code expressions) as-
sociated with the simultaneous enforcement of type safatalf stages. The ability to implement generic and
reusable program generator components is also restrigtégbimeed to express some transformations on a higher
level, non-syntactic representation, using unconveatidomain-specific denotations, polyhedral encodings of it
erative computations, etc. Some progresses can be expemtedxtended type systems to manage the recapture
of variable names exposed through the opening of code esipnss

Another interesting perspective is the extension of safagrantees to abstract properties like memory depen-
dences. This would allow semantics-preserving transfiamg to take place on well-formed code expressions
or denotations. Our first proposal, thelanguage, goes in this direction. It combines multi-staggramming
with programmable semantics-preserving loop transfaongirimitives and search-space traversal capabilities
[DBR*05].

Eventually, in collaboration with Denis Barthou, we aredstigating the complementation of program gener-
ators with a resolution-based search engine. Using Pral&jratego [Vis01] rules, it is quite natural to design



5.3. COMPILERS AND ARCHITECTURES 111

an iterative optimization system based on term-rewritingided by profile feedback and performance models.
This allows direct search techniques (optimizations basedirect performance measurements) to be accelerated
and focused in a narrower space thanks to the knowledge ahaidexpert. This knowledge is implemented as
optimizationgoalsof the rewriting system. Therefore, we call this approgohl-driven iterative optimizatian

A major challenge consists in inverting the performance ef®tb infer optimization sub-goals from partial goal
fulfillments and partial transformation sequences.

5.3 Compilers and Architectures

The biggest challenge for the design of future architestis'® achieve scalability of performance. Yet, scalabilit
is not so useful if efficiently and programmability are nexgésl. It is well known from VLIW processor design
that the main improvements in efficiency come with progreaseompiler technology. To make an architecture
resource-efficient, the balance may vary between fundtioniéss, memory and communication; however, the
invariant goal is to minimize the size of control structumredavor of smarter software support (at runtime and
compile-time).

We believe that future processors will necessarily follodisaributed memory model and feature a heteroge-
neous, coarse-grain reconfigurable mesh of resourcekd FiiGAs and fine-grain reconfigurable devices (which
waste too many transistors in hardware lookup tables) sengrain reconfigurable processors with heterogeneous
and distributed resources offer the best tradeoff in terhsealability and efficiency. The RAW machine was a
pionneer in this direction, but major challenges remairdapd the computing paradigm to the capabilities of code
generators and optimization techniques, or alternativelyvolve the programmer in the mapping process while
preserving productivity.

5.3.1 Decoupled Control, Address and Data Flow

Our approach to the efficiency challenge takes two consecsiieps.

The first step focuses on embedded streaming applicatiahgranessors, with regular computation and com-
munication patterns. Inspired by the early DSP designsv@tdrarchitecture), it makes sense to strictly decouple
the architecture into control, address generation andfttatestreams. Our previous work in the SANDRA project
[CDC™03], in collaboration with Philips Research, was a firstrafteto design a compiler for such a decoupled
architecture for stream-processing. Improvements inlpedyal code generation and automatic distribution will
be very valuable for regular applications. Yet more genanal irregular processing will benefit from a explic-
itly parallel data-flow programs with synchronous clocksgtiide the mapping and scheduling on a distributed
decoupled architecture. In this direction, we are workingegplicitly modeling hardware resources and the map-
ping of operations and communications in the applicatiotihtse resources, as the composition of synchronous
processes. The design of a common synchronous languagadetdetween the programmer and a suite of op-
timization tools would be a fundamental progress. It wolds de of immediate use throughout the design of a
massively parallel real-time embedded system, as an egehlrapresentation between signal-processing experts,
application programmers, optimization and architectupeees.

The second step will also be language-centric, and will eskigeneral-purpose computing. Building on the
clock abstraction of the synchronous data-flow paradigmkmeav it is possible to design a concurrent program-
ming language and to extend compilation techniques degignthe first step, to target more general clock and
process semantics, possibly with a graceful degradatipeiformance as irregularity grows. Neither decoupled
architectures nor synchronous languages are intrinsimiyain-specific: we believe the current state-of-the-art,
inertia and misuse of vocabularynake them appear so.

5.3.2 Fine-Grain Scheduling and Mapping

Modulo scheduling is the dominant family of heuristics fofta/are pipelining. Its success lies in its scalability

and its ability to produce compact code with near-optimigiition intervals. This success comes with a heavy bias
towards asymptotic performance for high trip-count lod@aying considerations about single-iteration make-span
and register usage as second-class optimization critErigpirical results also indicate that modulo-scheduling
heuristics achieve low complexity at the expense of chagmiformance results (on realistic resource models).
Eventually, modulo scheduling lacks an integrated way &soe about code size (unrolling factor) and to model

1synchronous languages do not require synchronous exeautih can model arbitrary non-reactive semantics [CP96, PT&H



112 CHAPTER 5. PERSPECTIVES

resource constraints that are not transparent to the daendence graph (register spill and reload, clustered
register files, instruction selection). The combinatiortto$ overall success and intrinsic limitations has driven

numerous theoretical and practical studies, but with divelst low impact on actual compiler designs at the end

of the road.

We are working on a new cyclic scheduling algorithm, calledsiit Scheduling. It is a bi-criteria heuristic
for software pipelining, based on a Petri net represenmtatialependence and resource constraints. The aim is to
simulate modulo scheduling, but extend it into a bi-créaesptimization problem, to improve both the initiation
interval and make-span. We attempt to preserve the bestafilmscheduling heuristics, while improving perfor-
mance stability and allowing for a variety of optimizatiooais and resource constraints. Unlike existing Petri net
scheduling approaches, our algorithm does not iteratéaufiti point to ultimately recognize a periodic execution
kernel. Instead, it complements the traditional Petri eetantics with an original transition-firing rule that pre-
serves the distinctive code-size control of modulo schiaduDur current results are encouraging: when directing
the optimization towards asymptotic performance, our erpental results match or outperform state-of-the-art
modulo scheduling heuristics. Our results also show benefien optimizing loops with low trip-counts, which
are common in multimedia routines and hierarchically tiégh-performance libraries.

Given the flexibility of the model, it is very attractive totexd this heuristic to multidimensional software
pipelining. Indeed, when scheduling quasi-periodic dbta- processes on a massively parallel chip multi-
processor, the optimization problem becomes intrinsialjtireriteria. The problem consists in optimizing code
size, buffer size, computation throughput and computagitamcy, but none of these dimensions can be neglected,
since the figures in each dimension may vary by multiple @démagnitude (unlike traditional software pipelin-
ing problems). We believe that programmer interventiom nél necessary to drive the optimization towards rea-
sonable sub-spaces of this daunting problem. We are clyrstatlying, as a preliminary example, the scheduling
of Synchronous Data-Flow graphs (SDF) [EAL87] on the Cetigessor. When stepping from regular quasi-
periodic applications to general-purpose ones, our puasvigork on Deep Jam — a generalization of nested
unroll-and-jam for irregular codes — will be quite valuapJO5].

5.4 Compilers and Runtime Systems

Embedded systems and large-scale parallel architectothsdquire dynamic adaptation to make most effective
use of computing resources. These research perspectivudd wot be complete without considering staged
compilation, as well as dynamic parallelization and optition techniques.

5.4.1 Staged Compilation and Learning

In a just-in-time (JIT) compilation environment, optimizms are staged, i.e., split into off-line and runtime
program manipulations. The success of this compilationehauygests additional improvements could arise from
a tighter coupling between program analyses and transtansaat different stages of the compilation/execution.
We are particularly interested in progresses in three areas

1. Enabling new, more aggressive optimizations to takeepladIT or runtime compilers, using annotations
of the intermediate language (bytecode) to pass staticeptiep or predigested results of operation research
algorithms. For example, software pipelining and globalestuling algorithms are usually too expensive
beyond classical static compiler environments. This catlshge provided a sparse and accurate encoding
of memory dependences and/or partial schedule hints caadse@ to a JIT compiler.

2. Intermediate language annotations can convey messagisgure-stage code generation, including code
specialization, loop unrolling and procedure inlining. iFimay have a strong impact on code size and
benefit to embedded systems research.

3. We believe in the combination machine learning and pbasé&#xt adaptation, passing features through
the compilation stages to postpone the key optimization zardllelization decisions to the “right exe-
cution/compilation stage”. This approach builds on ouwjmes work on runtime iterative optimization
[FCOTO5].



5.5. TOOLS 113
5.4.2 Dynamically Extracted Parallelism

A variety of computational problems benefit from the dynamemwtraction of parallelism. For example, it does
not make much sense to extract fully-static parallelisrmfgparse matrix computations, or from finite element
methods on irregular meshes, in general. In some casesilape can further improve scalability in extracting
parallelism at a coarser grain or in reducing load imbalance

The most promising work in this area are those of LawrencecRaarger, related work by Josep Torrellas,
and the recent hype on transactional memory in computeitacttre.

e Hybrid analysis performs a symbolic static analysis to kgaize the minimal dynamic (in)dependence test
to parallelize a loop [RRHO03]. Extending this to more geheoatrol and data structures may bring signif-
icant improvements in irregular, computationally inteesapplications, with very little overhead. This ap-
proach is compatible with most embedded system constr&ntslarly, STAPL proposes a library-centric,
container-centric parallel programming model based ontheé STL [AJR"01]. Besides its C++ speci-
ficities, this model combines dynamic and static informatio exploit vast amounts of parallelism on dis-
tributed architectures. Combining both approaches, atigithe compiler to reason about (in)dependence
in general-purpose computations, seems the most pron@pmigach. Once again, this research area needs
library, program generators and compilers to be tightlggnated.

e Speculative parallelization can be done on software onisarel [OHL99, RP99, CMTO00, LT®06]. It has

an interesting potential in speeding up sequential andlpbagplications. Yet its intrinsic overheads (mem-
ory management, communications, squash and commit, ssedesputations) limits its practical applica-
bility. Transactional memory models (hardware or softwzased) [MCC 06, HMJHO5] and programming
languages [ACIE06] are an interesting progress over lock-based multiatihed programs and over the
fully automated extraction of speculative threads. We aterésted in minimizing the impact on hardware
resources (using speculation when strictly necessaryresheting on-chip storage for atomic transaction
state), and in the combination of transactional semantidsdeterministic, synchronous data-flow seman-
tics.

Regarding the potential of transactional memory semangtais quote Tim Harris, Simon Marlow, Simon
Peyton Jones, and Maurice Herlihy [HMJHO5] (Section 2, pagdescribing a software transactional memory
system built on Concurrent Haskell:

Perhaps the most fundamental objection [...] is that loageld programs do not compose: correct
fragments may fail when combined. For example, considersh table with thread-safe insert and
delete operations. Now suppose that we want to delete omeAitieom tablet 1, and insert it into
tablet 2; but the intermediate state (in which neither table comstéie item) must not be visible to
other threads. Unless the implementor of the hash tableipatés this need, there is simply no way
to satisfy this requirement. [...] In short, operationd #ra individually correct (insert, delete) cannot
be composed into larger correct operations.

The ability to compose parallel programs into correct laayges is nothing new. The already mentioned Kahn
property of data-flow systems already offers this benefig istributed but more constrained — deterministic
— concurrency model. We encourage further comparisongimnstef scalability, efficiency and expressiveness,
aiming for the integration of the two models.

Eventually, given the complexity and intrication of deois$ associated with deferring analyses to runtime
or with speculation, it is obvious that this research wilhbt from advances in machine learning compilation
[ABC*06].

5.5 Tools

This chapter closes with a discussion of tool and developissues. Perspectives in this area are not secondary.
Compilation research has long suffered from the lack ofogerability between research prototypes, production
compilers and academic language front-ends. Given theddgiplexity of any modern compiler and program-
ming language, we defend the idea that academic researchuffér from ever-increasing inefficiencies if not
embracing a widespread production compilation framework.

Practically, this means choosing GCC, since all other pitatf are either very narrow in terms of retargetabil-
ity and language support, or not robust and maintainablegma the long term. We are not encouragaib



114 CHAPTER 5. PERSPECTIVES

developments to take place in GCC, only those which have thigiteon to survive the research projet¢hat
initially motivated them.

The GCC is a multi-language, multi-target, and multi-OSssroompiler with about 2.5 million lines of
(mostly C) code. The development started in 1984 as parteoGiRU project of the Free Software Foundation
(FSF). In 2005, GCC 4.0 was released thanks to the effortsamfyndevelopers. It introduces a new, innovative
middle-end based on a state-of-the-art SSA-form interatediepresentation. This was the result of many years
of commitment by major hardware, software and service conggaincluding Red Hat (Cygnus), Novell (SUSE),
IBM, Apple, Intel, AMD, HP, Sony, Code Sourcery, among other

Although GCC has always been a reference in terms of robsstaed conformance to standards, the per-
formance of the compiled code was lagging behind targetiBpecompilers developed by hardware vendors.
The rise of GCC 4.0 eventually allowed to implement modetatis and dynamic) analyses and optimizations,
quickly bridging the gap with the best compilers on the marKéese improvements also affect embedded and
special-purpose processors: e.g., GCC recently achigegdp of the ranking published by the EEMBC telecom
benchmark on the PowerPC 970FX processor, wittkk Zpeed-up over the previous compiler.

GCC 4.2 features more than 170 compilation passes, twostlofdhem playing a direct role in program
optimization. These passes are selected, scheduled, amohgtarized through a versatile pass manager. The
main families of passes can be classified as:

e interprocedural analyses and optimizations;

o profile-directed optimization (interprocedural and iptr@acedural);
¢ induction variable analysis, canonicalization and sttiefrgduction;
e loop optimizations;

e automatic vectorization;

e data layout optimization.

More advanced developments are in progress. We identifiee tinajor ones with a direct impact on high-
performance embedded systems research:

¢ link-time optimization (towards just-in-time and dynandompilation), with emphasis on scalability to
whole-program optimization and compatibility with prodion usage;

e automatic parallelization, featuring full OpenMP 2.5 sagg@nd evolving towards automatic extraction of
loop and functional parallelism, with ongoing research pecsilative forms of parallelism.

Outside of GCC, the two traditional alternatives would be:

1. The source-to-source model, by far the most popular mares environments, during the last two decades.
It is much less attractive now, for two reasons. Experiene#is the new infrastructure of GCC show
comparable development time and no significant increaseritpiexity of the intermediate representation
or programmer interface: in practice, the design freedonefis do not offset the development overheads,
except on limited toy prototypes. Second, the lack of argirstted compilation flow, broken by one ore more
conversions to a programming language, is a source of rerdirarheads (not speaking about compile-time
overheads of course), semantical mismatches and design sage restrictiorts.

We believe the only and most significant advantage of sotormurce compilation is portability, not ease of
development. Given the openness of GCC (license-wiseukgerwise and target-wise), this advantage is
not very significant. Of course, some research fields stjlliir® the use of proprietary back-ends, including
hardware synthesis, and generating code for awkward, bt srod more attractive (performance-wise)
fine-grained controlled architectures. In the latter cageencourage researchers to mutualize efforts to
bypass these tools and obsolete them through combinededppi$earch and software engineering with
industrial third parties.

2Notice many compilers use persistent (sometimes seméiyticall defined) intermediate languages. This is quiteatit from source-
to-source compilation, since arbitrarily rich semanticgl(iding the result of static and dynamic analysis) canrhbexlded in such interme-
diate languages.



5.5. TOOLS 115

2. Development in a native compiler prototype. This optias hlways been less attractive, often due to the
closeness of the distribution model or the limitations targetability. Since GCC is gradually eating-up the
market for most proprietary compilers, this approach dagseem to make sense, except in the domains
where GCC is still lagging behind in performance (VLIW andbiAtargets).

For low-level program manipulation, targeting, e.g., VLPbcessors, a lot of work may also take place in
external restructuring tools a la SALTO [BRS96]. Combinsugh approaches with GCC would be highly
beneficial to both industrial and academic research.

One may notice a recent surge of top-quality publication&GC-based advanced compilation research: auto-
matic vectorization in ACM PLDI'06 (Nuzman et al.) and ACM @®6 (Nuzman et al.), thread-level speculation
in ACM PPoPP’06 (Liu etal.) and ACM ICS’05 (Renau et al.),liietion variable recognition in HIPEAC'05 (Pop
et al.), statistical analysis for iterative optimizationACM ICS’05 (Haneda et al.), template meta-programming
with concepts in ACM PoPL'06 (Dos Reis et al.Yhese articles confirm the worldwide interest for GCC as
a mature, competitive research platfarrhis is good news for the scientific methodology of our resealo-
main, since the free licensing scheme of GCC encouragesniptloe publication of the scientific results, but
also improves the robustness of the scientific methodolegfj facilitating the reproduction of experiments on
real-world benchmarks.

1 2
(From GIMPLE) (GIMPLE Generatiof
GIMPLE = GRAPHITE = GIMPLE
0(Data Dependences 3(Transform Selection

4(Array Regions 3("Cost Modeld

5{Numerical Domains Common Interface

Omega PIPlib Intervals
PolyLib Octagons Congruences

Figure 5.1: Overview of GRAPHITE

Beyond coordination and animation activities within the?PHAC network, our main efforts have concen-
trated on induction variable recognition, loop transfotior@s and polyhedral static analysis. Our approach
to induction variable analysis complements state-ofdtieclassification methods and closed form abstractions
[GSW95, LLC96, VEO1], and addresses the more fundamemakcasf retrieving precise information from in-
tricate control and data-flow graphs [PCSO05]; our algoritiits) particularly well with the normalization and
simplification approach of GCC’'s GIMPLE representatiom ba expressed as a handful of Prolog rules. Our
approach is compatible with algorithms making use of inidurcinformation without explicitely recognizing id-
ioms [WCPHO01, RZR04]. Our work also led to the first constiarcof a formal semantics and the associated
conversion algorithm for an SSA language [Pop06]. Thisltasay eventually rejoin the instancewise program
manipulation paradigm, as the SSA’s formal semantics famgle whi | e language builds directly on instance-
wise control-point naming. This exciting perspective isoah great source of satisfaction, as this body of work
emerged from the most practical research we have ever cteafudhis work contributes to the classical loop
optimizer of GCC, including loop vectorization, strengdduction, value-range propagation, induction variable
canonicalization, and various dependence-based loogftnamations. Based on the same work, we are porting
our WRaP-IT/URUK polyhedral analysis and transformatioal tfrom the Open64 compiler to GCC. This plan,
called GRAPHITE (GIMPLE Represented as Polyhedra withriiitangeable Envelopes), builds on multiple open
libraries developed at INRIA, Paris-Sud University, Unisigy of Strasbourg, and Ecole Nationale Supérieure des
Mines de Paris [PCB06]. This development effort will lead to further applieddafundamental research in
extending the applicability and effectiveness of the peltjfal model.

3To be fair, it really emerged from Sebastian Pop’s tenagitysion, with the experience and rigor of Pierre Jouveiotf ENSMP...



116 CHAPTER 5. PERSPECTIVES

The main components of GRAPHITE, the development priaritend the important dependences between
components are depicted in Figure 5.1. Our development gdatains five stages, humbered on the figure:
first the translation from GIMPLE to the polyhedral reprasdinon, then the translation back to GIMPLE, the
development of cost models and the selection of the tramsfmhedule. The interprocedural refinement of the
data dependence information based on the array regionsigaj but it is necessary for gathering more precise
informations that potentially could enable more transfations, or more precise transform decisions. Finally, the
least critical component is the integration of the numéideemains common interface, based on which it will be
possible to change the complexity of the algorithms usetampblyhedral analyses.

We plan to progressively integrate within GCC most of thelengentation efforts associated with our research
projects. Particularly important is the the developmerd ebnvincing, widely applicable and distributed imple-
mentation of the parallel programming language designsgsed at the beginning of this chapter. This work is
intended to be implemented on top of the existing OpenMEymbcedural optimization and loop transformation
frameworks in GCC, with additional support for managing caumications, the optimization of these, and the
extended type systems associated with logical clocks f@ping and schedule annotations.

This implementation work will not contribute to the compifteainline before most of the effective research has
been completed. The long-term management of GCC branchie$ighly sophisticated compilation techniques
is a problem. We do not hope that GCC will be a magical solutiche dilemma of academic prototypes: nobody
wants to maintain them when it would be most useful in termdis§emination and transfer. However, we will
make constant efforts to involve other members of the GCCnaonity in our research, hence maximize the
chances of a successful transfer.



Bibliography

[ABC*06]

[ACFO3]

[ACG*04]

[ACL*06]

[ACM*98]

[A191]

[AJRH01]

[AK87]

[AKO2]

[Ami04]

[AMPOO]

[ASUS6]

[AW93]

[BACD97]

[Ban88]

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursink.® O’'Boyle, J. Thomson, M. Tous-
saint, and C.K.l. Williams. Using machine learning to fodesative optimization. Irdth Annual
International Symposium on Code Generation and OptinonatCGO) March 2006.

P. Amiranoff, A. Cohen, and P. Feautrier. Instanisevarray dependence test for recursive programs.
In Proc. of the 18 Workshop on Compilers for Parallel Computers (CPC’08)msterdam, NL,
January 2003. University of Leiden.

L. Almagor, K. D. Cooper, A. Grosul, T.J. Harvey, S.W. Reg, D. Subramanian, L. Torczon, and
T. Waterman. Finding effective compilation sequencesPrc. Languages, Compilers, and Tools
for Embedded Systems (LCTESges 231-239, 2004.

E. Allen, D. Chase, V. Luchangco, C. Flood, J.-W. MaesSerRyu, S. Tobin-Hochstadt, and G. L.
Steele. The fortress language specification 0.866. Teahr@port, Sun Microsystems, 2006.

D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. Mo@ier, B.-C. Cheng, P. R. Eaton,
Q. B. Olaniran, and W.-M. Hwu. Integrated predicated andcgfagive execution in the IMPACT
EPIC architecture. IProceedings of the 25th Intl. Symp. on Computer Architectluly 1998.

C. Ancourt and F. Irigoin. Scanning polyhedra with O@op. In ACM Symp. on Principles and
Practice of Parallel Programming (PPoPP’9]pages 39-50, June 1991.

P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanaséhbmas, N. M. Amato, and L. Rauch-
werger. Stapl: An adaptive, generic parallel c++ librany.Languages and Compilers for Parallel
Computing (LCPC’01)pages 193-208, 2001.

J. Allen and K. Kennedy. Automatic translation of fi@n programs to vector fornrACM Trans. on
Programming Languages and Syste®(@):491-542, October 1987.

R. Allen and K. KennedyOptimizing Compilers for Modern Architecturesorgan and Kaufman,
2002.

P. Amiranoff. An Automata-Theoretic Modelization of Instancewise Paog/Analysis: Transducers
as mappings from Instances to Memory LocatidPisD thesis, CNAM, Paris, December 2004.

N. Ahmed, N. Mateev, and K. Pingali. Synthesizingrisformations for locality enhancement of
imperfectly-nested loop nests. ACM Supercomputing’Q®May 2000.

A. Aho, R. Sethi, and J. UllmanCompilers: Principles, Techniques and Taolkddison-Wesley,
1986.

A. Aiken and E. L. Wimmers. Type inclusion constrardnd type inference. IRunctional Pro-
gramming Languages and Computer Architectyp@ges 31-41, 1993.

J. Bilmes, K. Asanow, C.W. Chin, and J. Demmel. Optimizing matrix multiply ugiBHIPAC: A
portable, high-performance, ANSI C coding methodologyAG®M Intl. Conf. on Supercomputing
(ICS'97), pages 340-347, 1997.

U. BanerjeeDependence Analysis for Supercomputikiyiwer Academic Publishers, Boston, 1988.

117



118
[Ban92]

[Bar9s]

[Bas03]

[Bas04]

[BBC*+99]

[BCBY04]

[BCCO8]

[BCCOO]

[BCE*+03]

[BCF97]

[BCG*03]

[BEF+96]

[Ber79]
[Ber00]
[BFO3]

[BFO4]

[BFO5]

[BFFO5]

[BGGT02]

BIBLIOGRAPHY

U. BanerjeeLoop Transformations for Restructuring Compilers: The fkdations Kluwer Aca-
demic Publishers, Boston, 1992.

D. Barthou.Array Dataflow Analysis in Presence of Non-affine ConstsiRhD thesis, Université
de Versailles, France, February 1998t p: / / ww. pri sm uvsq. fr/ ~bad/these. htm .

C. Bastoul. Efficient code generation for autompécallelization and optimization. I 8PDC’2
IEEE International Symposium on Parallel and Distributedn@puting Ljubjana, Slovenia, October
2003.

C. Bastoul. Code generation in the polyhedral madeasier than you think. IRarallel Architec-
tures and Compilation Techniques (PACT 'QAintibes, France, September 2004.

M. Barreteau, Francois Bodin, Zbigniew Chamski, Heérigfre Charles, Christine Eisenbeis, John R.
Gurd, Jan Hoogerbrugge, Ping Hu, William Jalby, Toru Kisukéter M. W. Knijnenburg, Paul
van der Mark, Andy Nisbet, Michael F. P. O'Boyle, Erven Rohauodré Seznec, Elena Stéhr, Menno
Treffers, and Harry A. G. Wijshoff. Oceans - optimising cdlags for embedded applications. In
Euro-Par’'99, pages 1171-1775, August 1999.

Christian Bell, Wei-Yu Chen, Dan Bonachea, andlatne Yelick. Evaluating support for global
address space languages on the cray XIJAQM Intl. Conf. on Supercomputing (ICS’Q&t-Malo,
France, June 2004.

D. Barthou, A. Cohen, and J.-F. Collard. Maximatistaxpansion. 25" ACM Symp. on Principles
of Programming Languages (PoPL'98)ages 98-106, San Diego, California, January 1998.

D. Barthou, A. Cohen, and J.-F. Collard. MaximatistaxpansionIntl. J. of Parallel Programming
28(3):213-243, June 2000.

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,ePGluernic, and R. de Simone. The
synchronous languages 12 years laRroceedings of the IEEP1(1), January 2003.

D. Barthou, J.-F. Collard, and P. Feautrier. Fuzmpwadataflow analysisJ. of Parallel and Dis-
tributed Computing40:210-226, 1997.

C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temautting polyhedral loop transformations
to work. InLanguages and Compilers for Parallel Computing (LCPC0BNCS, pages 23-30,
College Station, Texas, October 2003. Springer-Verlag.

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflind®rPadua, P. Petersen, W. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Parallel progreng with Polaris. IEEE Computer
29(12):78-82, December 1996.

J. BerstelTransductions and Context-Free Languagésubner, Stuttgart, Germany, 1979.
G. Berry.The Foundations of EsteteMIT Press, 2000.

C. Bastoul and P. Feautrier. Improving data locdhyychunking. InCC Intl. Conf. on Compiler
Constructionnumber 2622 in LNCS, pages 320-335, Warsaw, Poland, &8.2

C. Bastoul and P. Feautrier. More legal transfororagifor locality. InEuro-Par’10, number 3149 in
LNCS, pages 272—-283, Pisa, August 2004.

Cédric Bastoul and Paul Feautrier. Adjusting a pamgtransformation for legalityarallel process-
ing letters 15(1):3-17, March 2005.

J. Thomson B. Franke, M. O’'Boyle and G. Fursin. Philistic source-level optimisation of embed-
ded systems software. KRCM SIGPLAN/SIGBED Conference on Languages, CompiletsTaals
for Embedded Systems (LCTES'(H)05.

A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian. Autatic intra-register vectorization for the intel
architecturelntl. J. of Parallel Programming30(2):65-98, 2002.



BIBLIOGRAPHY 119

[BHLM94] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmittol®mny: A framework for simulating and

[BKK +98]

[BKK *+00]

[BLIO1]

[Bou92]

[BRS96]

[BRZ03]

[Cas01]

[CC77]

[CCo8]

[CCGY6]

[CCJ05]

[CDC*03]

[CDE*05]

[CDE*+06]

[CDG*06]

prototyping heterogenous systentist. J. in Computer Simulatig(2):155-182, 1994.

F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyland E. Rohou. Iterative compilation in
a non-linear optimisation space. Rroc. Workshop on Profile and Feedback Directed Compilation
1998.

J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, F. Pétra. Pasquier, E. A. de Kock, and W. J. M.
Smits. COSY communication IP’s. B¥"Design Automation Conference (DAC'0pages 406—409,
Los Angeles, California, June 2000.

A. Benveniste, P. Le Guernic, and C. Jacquemot. Bsorous programming with events and rela-
tions: the signal language and its semanti€zience of Computer Programmint6(2):103-149,
1991.

F. Bourdoncle. Abstract interpretation by dynarpartitioning. J. of Functional Programming
2(4):407-423,1992.

F. Bodin, E. Rohou, and A. Seznec. Salto: Systemdsembly-language transformation and opti-
mization. InWorkshop on Compilers for Parallel Computers (CPC'98gcember 1996.

R. Bagnara, E. Ricci, and E. Zaffanella. Preciseemidg operators for convex polyhedra. Iht.
Symp. on Static Analysis (SAS'OBNCS, San Diego, CA, June 2003. Springer-Verlag.

P. Caspi. Embedded control: From asynchrony torspmy and back. IEMSOFT’01 volume 2211
of LNCS Lake Tahoe, October 2001. Springer-Verlag.

P. Cousot and R. Cousot. Abstract interpretationniéiaed lattice model for static analysis of pro-
grams by construction of approximation of fixpoints4PACM Symp. on Principles of Programming
Languagespages 238-252, Los Angeles, CA, January 1977.

A. Cohen and J.-F. Collard. Instancewise reachiriopitien analysis for recursive programs using
context-free transductions. Farallel Architectures and Compilation Techniques (PA@S), pages
332-340, Paris, France, October 1998. IEEE Computer Societ

A. Cohen, J.-F. Collard, and M. Griebl. Data-flow lgs& of recursive structures. IRroc. of the
6" Workshop on Compilers for Parallel Computers (CPC’963ges 181-192, Aachen, Germany,
December 1996.

P. Carribault, A. Cohen, and W. Jalby. Deep Jam: €amiwn of coarse-grain parallelism to
instruction-level and vector parallelism for irregulapéipations. InParallel Architectures and Com-

pilation Techniques (PACT'05pages 291-300, St-Louis, Missouri, September 2005. IE&R-C

puter Society.

Z. Chamski, M. Duranton, A. Cohen, C. Eisenbeis, P. Feayand D. Genius.Ambient Intelli-
gence: Impact on Embedded-System Desibgapter Application Domain-Driven System Design for
Pervasive Video Processing, pages 251-270. Kluwer Acarleress, 2003.

A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Blateand M. Pouzet. Synchronization of
periodic clocks. IPACM Conf. on Embedded Software (EMSOFT,@lges 339—-342 (short paper),
Jersey City, New York, September 2005.

A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Blatand M. Pouzet. N-sychronous Kahn
networks. 133" ACM Symp. on Principles of Programming Languages (PoPL p&yes 180-193,
Charleston, South Carolina, January 2006.

A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, Oelf@/, and D. Padua. In search of a
program generator to implement generic transformationkifgh-performance computingscience
of Computer Programming2(1):25-46, September 2006. Special issue on the Firsi®eaml
Workshop 2004.



120
[CDS96]

[CFR+91]

[CGHPO4]

[CGP*05]

[CGTO04]

[CH78]

[Cha84]

[CHH*93]

[Cho04]

[CKO1]

[CLR89]

[CMTO0]

[Coh99]

[Col95]

[Col02]
[Cou81]
[Cou96]

[CP96]

[CPO3]

[Cre96]

BIBLIOGRAPHY

S. Carr, C. Ding, and P. Sweany. Improving softwépelmning with unroll-and-jam. IfProceedings
of the 29th Hawaii Intl. Conf. on System Sciences (HICSS/®8)me 1: Software Technology and
Architecture IEEE Computer Society, 1996.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and Zatleck. Efficiently computing static
single assignment form and the control dependence giph Trans. on Programming Languages
and Systemd 3(4):451-490, October 1991.

J.-L. Colago, A. Girault, G. Hamon, and M. Pouzetwards a Higher-order Synchronous Data-flow
Language. IEEMSOFT'04 Pisa, Italy, September 2004.

A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and/akilache. Facilitating the search for
compositions of program transformations. A&GM Intl. Conf. on Supercomputing (ICS'Q®ages
151-160, Boston, Massachusetts, June 2005.

A. Cohen, S. Girbal, and O. Temam. A polyhedral apploto ease the composition of program
transformations. Ifcuro-Par'04, number 3149 in LNCS, pages 292-303, Pisa, Italy, Augus#200
Springer-Verlag.

P. Cousot and N. Halbwachs. Automatic discoveryrédir restraints among variables of a program.
In 5"ACM Symp. on Principles of Programming Languagesyes 84-96, January 1978.

D. M. ChapiroGlobally-Asynchronous Locally-Synchronous Systdth® thesis, Stanford Univer-
sity, October 1984.

K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKay, J. M. Mellor-Crummey, L. Torc-
zon, and S. K. Warren. The ParaScope parallel programmirigpement.Proceedings of the IEEE
81(2):244-263,1993.

F. Chow. Maximizing application performance thgbunterprocedural optimization with the path-
scale eko compiler suitéat t p: / / www. pat hscal e. comf whi t epapers. ht m, August 2004.

A. Chauhan and K. Kennedy. Optimizing strategiest@escoping languages: procedure strength
reduction and procedure vectorization.A@M Intl. Conf. on Supercomputing (ICS'04rges 92—
101, June 2001.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to AlgorithmsMIT Press, 1989.

M. H. Cintra, J. F. Martinez, and J. Torrellas. Argutural support for scalable speculative paral-
lelization in shared-memory multiprocessors. AGM/IEEE Intl. Symp. on Computer Architecture
(ISCA'00) pages 13-24, 2000.

A. Cohen.Program Analysis and Transformation: from the Polytope kldd Formal Languages
PhD thesis, Université de Versailles, France, Decembe®.199

J.-F. Collard. Automatic parallelization of whileops using speculative executidntl. J. of Parallel
Programming 23(2):191-219, April 1995.

J.-F. Collard Reasoning About Program Transformatioi@pringer-Verlag, 2002.
P. CousotSemantic foundations of programs analy$sentice-Hall, 1981.

P. Cousot. Program analysis: The abstract inteafpioa perspective. ACM Computing Surveys
28A(4es), December 1996.

P. Caspi and M. Pouzet. Synchronous Kahn networksCH# '96: Proceedings of theStACM
SIGPLAN Intl. Conf. on Functional programmingages 226—238. ACM Press, 1996.

J.-L. Colago and M. Pouzet. Clocks as first class abistypes. IEMSOFT’'03 pages 134-155,
Grenoble, France, 2003.

B. CreusilletArray Region Analyses and ApplicatiorBhD thesis, Ecole Nationale Supérieure des
Mines de Paris (ENSMP), France, December 1996.



BIBLIOGRAPHY 121

[CSS99]

[CSTO02]

[CTHLO3]

[CW99]

[CzTH]

[DBR*05]

[Deu94]

[DHOO]

[DHW*97]

[dKES*00]

[DP99]

[DR94]

[DRVOO]

[DSV97]

[EALS7]

[ECH*92]

[EK99]

[EM65]

K. D. Cooper, P.J. Schielke, and D. Subramanianin@phg for reduced code space using genetic
algorithms. InProc. Languages, Compilers, and Tools for Embedded Sygt€di€S) pages 1-9,
1999.

K. D. Cooper, D. Subramanian, and L. Torczon. Adeptiptimizing compilers for the 21st century.
J. of Supercomputin@002.

C. Calcagno, W. Taha, L. Huang, and X. Leroy. Imp&ting multi-stage languages using asts,
gensym, and reflection. IAKCM SIGPLAN/SIGSOFT Intl. Conf. Generative Programmind @om-
ponent Engineering (GPCE’'03pages 5776, 2003.

J. B. Crop and D. K. Wilde. Scheduling structured sys$. InEuroPar'99, LNCS, pages 409-412,
Toulouse, France, September 1999. Springer-Verlag.

C. Coarfa, F. Zhao, N. Tallent, J. Mellor-Crummey, and Y.t&mko. Open-source compiler tech-
nology for source-to-source optimizatiomt t p: / / waw. cs. ri ce. edu/ ~j ohnnt/research. ht n

(project page).

S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. BarthouCahen, M. Garzaran, D. Padua, and
K. Pingali. A language for the compact representation oftiplel program versions. lhanguages
and Compilers for Parallel Computing (LCPC’Q5)NCS, Hawthorne, New York, October 2005.
Springer-Verlag. 15 pages.

A. Deutsch. Interprocedural may-alias analysispfminters: beyond-limiting. In ACM Symp. on
Programming Language Design and Implementation (PLDL'@&ges 230-241, Orlando, Florida,
June 1994,

A. Darte and G. Huard. Loop shifting for loop paraiketion. Intl. J. of Parallel Programming
28(5):499-534, 2000.

J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, andZGChrysos. ProfileMe: Hard-
ware support for instruction level profiling on out-of-ord@ocessors. Iin Proceedings of the
30"International Symposium on MicroarchitectuC, December 1997.

E. A. de Kock, G. Essink, W. J. M. Smits, P. van der WolfYJBrunel, W. M. Kruijtzer, P. Lieverse,
and K. A. Vissers. Yapi: Application modeling for signal pessing systems. [87th Design
Automation Conferengé&os Angeles, California, June 2000. ACM Press.

L. De Rose and D. Padua. Techniques for the translationatlab programs into fortran 9&\CM
Trans. on Programming Languages and Systethé?):286—-323, 1999.

A. Darte and Y. Robert. Mapping uniform loop nestsadistributed memory architecturearallel
Computing 20(5):679-710, 1994.

A. Darte, Y. Robert, and F. VivienScheduling and Automatic ParallelizatioBirkhaliser, Boston,
2000.

Alain Darte, Georges-Andre Silber, and Frederigi®fi. Combining retiming and scheduling tech-
niques for loop parallelization and loop tilingarallel Processing Letters(4):379-392, 1997.

D. G. Messerschmitt E. A. Lee. Static scheduling gfhchronous data flow programs for digital
signal processindEEE Trans. Computer86(1):24—25, 1987.

D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, ME&terson, and W.P. Thurstoword
Processing in GroupsJones and Bartlett Publishers, Boston, 1992.

J. Esparza and J. Knoop. An automata-theoretic aggbreo interprocedural data-flow analysis. In
FOSSACS’991999.

C. C. Elgot and J. E. Mezei. On relations defined by galired finite automatdBM J. of Research
and Developmenpages 45-68, 1965.



122 BIBLIOGRAPHY

[EPOOQ] J. Esparza and A. Podelski. Efficient algorithms f@*@mnd post* on interprocedural parallel flow
graphs. IPACM Symp. on Principles of Programming Languages (PoPL'p&jyes 1-11, 2000.

[EWO04] A. E. Eichenberger, P. Wu, and K. O’'Brien. Vectotiaa for simd architectures with alignment
constraints. IPACM Symp. on Programming Language Design and Implementé&®aDI '04),
pages 82-93, 2004.

[FCOTO5] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A piead method for quickly evaluating pro-
gram optimizations. Irdntl. Conf. on High Performance Embedded Architectures @othpilers
(HIPEAC'05), number 3793 in LNCS, pages 29-46, Barcelona, Spain, Noge@®)5. Springer-
Verlag.

[Fea88a] P. Feautrier. Array expansion. AGM Intl. Conf. on Supercomputingages 429-441, St. Malo,
France, July 1988.

[Fea88b] P. Feautrier. Parametric integer programmifAIRO Recherche Opérationnellg2:243-268,
September 1988.

[Fea91] P. Feautrier. Dataflow analysis of scalar and areégrences.Intl. J. of Parallel Programming
20(1):23-53, February 1991.

[Fea92] P. Feautrier. Some efficient solutions to the affileduling problem, part Il, multidimensional time.
Intl. J. of Parallel Programming21(6):389-420, December 1992. See also Part |, one dipradsi
time, 21(5):315-348.

[Fea98] P. Feautrier. A parallelization framework for resive tree programs. IfEuroPar'98 LNCS,
Southampton, UK, September 1998. Springer-Verlag.

[Fea06] P. Feautrier. Scalable and structured scheduliogppear at Intl. J. of Parallel Programming8,
2006.

[FGL99] P. Feautrier, M. Griebl, and C. Lengauer. On indexsgditting. In Parallel Architectures and
Compilation Techniques (PACT'9®ewport Beach, CA, October 1999. IEEE Computer Society.

[FJ98] M. Frigo and S. G. Johnson. FFTW: An adaptive softveaohitecture for the FFT. IRroc. of the
ICASSP Confvolume 3, pages 1381-1384, 1998.

[FM97] P. Fradet and D. Le Metayer. Shape typesAG@M Symp. on Principles of Programming Languages
(PoPL'97), pages 27-39, Paris, France, January 1997.

[FOK02] G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluaiiterative compilation. I11"Languages and
Compilers for Parallel Computind_NCS, Washington DC, July 2002. Springer-Verlag.

[GC95] M. Griebl and J.-F. Collard. Generation of synchranoode for automatic parallelization\dfi | e
loops. In S. Haridi, K. Ali, and P. Magnusson, editoEsjroPar'95 volume 966 ofLNCS pages
315-326. Springer-Verlag, 1995.

[GH96] R. Ghiyaand L. J. Hendren. Is it atree, a DAG, or a @/gliaph? A shape analysis for heap-directed
pointers in C. INRACM Symp. on Principles of Programming Languages (PoPL’'p&yes 1-15, St.
Petersburg Beach, Florida, January 1996.

[GMCTO03] S. Girbal, G. Mouchard, A. Cohen, and O. Temam. Di&Bimple, reliable and scalable method
to significantly reduce processor architecture simulatiore. InIntl. Conf. on Measurement and
Modeling of Computer Systems, ACM SIGMETRICSZ$ Diego, California, June 2003.

[GMS95] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. @rtased fields. IRroc. of the Parallel Symbolic
Languages and Systen@ctober 1995. See also “Design and Implementationaf & Declarative
Data-Parallel Language, RR 1012, Laboratoire de Rechexncheformatique, Université Paris Sud
11, France, 1995".



BIBLIOGRAPHY 123

[GPRNO4]

[GQQ*01]

[GSWO5]

[GVB*06]

[H*96]

[Har89]

[HBKMO3]

[HCRPI1]

[HHNO92]

[HMJHO5]

[1J791]

[Kah74]

[KAP]

[Kel96]

[KKGOO1]

[KKOWOO]

[KNO2]

[KPRO5]

K. Goossens, G. Prakash, J. Rover, and A. P. Nimanjaterconnect and memory organization in
SOCs for advanced set-top boxes and TV — evolution, analgeib trends. In Jari Nurmi, Hannu
Tenhunen, Jouni Isoaho, and Axel Jantsch, editotsyconnect-Centric Design for Advanced SoC
and NoG chapter 15, pages 399-423. Kluwer Academic Press, Apdid20

A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhyedd. Risset. Hardware design methodology
with the Alpha language. IRDL’'01, Lyon, France, September 2001.

M. P. Gerlek, E. Stoltz, and M. J. Wolfe. Beyond indoie variables: detecting and classifying
sequences using a demand-driven ssa fok@M Trans. on Programming Languages and Systems
17(1):85-122, January 1995.

S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. ParéMoSigler, and O. Temam. Semi-automatic
composition of loop transformations for deep parallelisrd memory hierarchiedntl. J. of Parallel
Programming 34(3), 2006. Special issue on Microgrids. 57 pages.

M. Hall et al. Maximizing multiprocessor performancehvthe SUIF compiler.|EEE Computer
29(12):84-89, December 1996.

W. L. Harrison. The interprocedural analysis antbeatic parallelisation of Scheme prograrisp
and Symbolic Computatiog(3):176—396, October 1989.

K. Heydeman, F. Bodin, P.M.W. Knijnenburg, and L.avin. UFC: a global trade-off strategy for
loop unrolling for VLIW architectures. IfProc. Compilers for Parallel Computers (CPQ)ages
59-70, 2003.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaute synchronous dataflow programming lan-
guage lustreProceedings of the IEEE9(9):1305-1320, September 1991.

L. J. Hendren, J. Hummel, and A. Nicolau. Abstran8dor recursive pointer data structures: im-
proving the analysis and transformation of imperative pgogs. INACM Symp. on Programming
Language Design and Implementation (PLDI'9@ages 249-260, San Francisco, Calfifornia, June
1992.

T. Harris, S. Marlow, S. Peyton Jones, and M. Hetlifomposable memory transactions.AGM
Symp. on Principles and Practice of Parallel Programmin&@PP’05) Chicago, Illinois, 2005.

F. Irigoin, P. Jouvelot, and R. Triolet. Semanticaérprocedural parallelization: An overview of the
pips project. IPACM Intl. Conf. on Supercomputing (ICS’90ologne, Germany, June 1991.

G. Kahn. The semantics of a simple language for fEnatogramming. In J. L. Rosenfeld, editor,
Information processingpages 471-475, Stockholm, Sweden, August 1974. Northaka|IAmster-
dam.

KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digil UNIX. http://ww. hp. conf
t echsevers/ sof t ware/ kap. ht i .

W. Kelly. Optimization within a unified transformiah framework. Technical Report CS-TR-3725,
University of Maryland, 1996.

T. Kisuki, P. Knijnenburg, K. Gallivan, and M. O'Bte. The effect of cache models on iterative
compilation for combined tiling and unrolling. Parallel Architectures and Compilation Techniques
(PACT'00) IEEE Computer Society, October 2001.

T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijgiff. Iterative compilation in program optimiza-
tion. InProc. CPC’10 (Compilers for Parallel Computerglages 3544, 2000.

E. Koutsofios and S. NorthDrawing Graphs Withdot , February 2002ht t p: / / www. r esear ch.
att.conl swtool s/ graphvi z/ dot gui de. pdf .

W. Kelly, W. Pugh, and E. Rosser. Code generatiomfoltiple mappings. Ifrrontiers’95 Symp. on
the frontiers of massively parallel computatjdvcLean, 1995.



124
[KS93]

[KS98]

[LBCOO3]

[LF98]

[LFO5]

[LGPO4]

[LLO7]

[LLCO6]

[LLLO1]

[LO04]

[LP94]

[LS91]
[LSCO5]

[LTC*06]

[LTLO3]

[LW97]

[MAL93]

[Man74]

[MBQO2]

[MBVMO04]

BIBLIOGRAPHY

N. Klarlund and M. |. Schwartzbach. Graph types.A@M Symp. on Principles of Programming
Languages (PoPL'93pages 196—-205, Charleston, South Carolina, January 1993.

K. Knobe and V. Sarkar. Array SSA form and its use ingilatization. In25"ACM Symp. on
Principles of Programming Languaggsages 107-120, San Diego, CA, January 1998.

C. Lengauer, D. Batory, C. Consel, and M. Oderskijtaes. Domain-Specific Program Generation
Number 3016 in LNCS. Springer-Verlag, 2003.

V. Lefebvre and P. Feautrier. Automatic storage nggmaent for parallel program®arallel Com-
puting, 24(3):649-671, 1998.

S. Long and G. Fursin. A heuristic search algorithredzhon unified transformation framework. In
7th Intl. Workshop on High Performance Scientific and Engiirey Computing (HPSEC-052005.

X. Li, M.-J. Garzaran, and D. Padua. A dynamicallged sorting library. IlACM Conf. on Code
Generation and Optimization (CGQO’04¥an Jose, CA, March 2004.

A. W. Lim and M. S. Lam. Communication-free parallgition via affine transformations. In
24"ACM Symp. on Principles of Programming Languagesjes 201-214, Paris, France, jan 1997.

S.-M. Liu, R. Lo, and F. Chow. Loop induction variatanonicalization in parallelizing compilers.
In Proceedings of the 1996 Conference on Parallel Architextand Compilation Techniques (PACT
'96), page 228. IEEE Computer Society, 1996.

A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and aiyacontraction across arbitrarily nested
loops using affine partitioning. IACM Symp. on Principles and Practice of Parallel Programgnin
(PPoPP’01) pages 102-112, 2001.

S. Long and M. O’Boyle. Adaptive java optimisationing instance-based learning. ACM Intl.
Conf. on Supercomputing (ICS’Q4)ages 237-246, St-Malo, France, June 2004.

W. Li and K. Pingali. A singular loop transformatiorafework based on non-singular matrices.
Intl. J. of Parallel Programming22(2):183-205, April 1994.

C. E. Leiserson and J. B. Saxe. Retiming synchronwoasitry. Algorithmica 6(1), 1991.

J. Lau, S. Schoenmackers, and B. Calder. Trangifi@se classification and prediction.livierna-
tional Symposium on High Performance Computer Architeg005.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, aritbdrellas. Posh: a tls compiler that
exploits program structure. IACM Symp. on Principles and Practice of Parallel Programgnin
(PPoPP’06) pages 158-167, New York, New York, 2006.

P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Pdisany for system designlournal for Circuits,
Systems and Computers, Special Issue on Application Spdaifiware DesignApril 2003.

V. Loechner and D. Wilde. Parameterized polyhedrd #ieir verticesIntl. J. of Parallel Program-
ming, 25(6), December 1997t tp: / /i cps. u- strashg. fr/ Pol yLi b.

D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Arrataflow analysis and its use in array
privatization. In20"ACM Symp. on Principles of Programming Languageses 2—15, Charleston,
South Carolina, January 1993.

Z. Manna.Mathematical Theory of ComputatioMcGraw-Hill, 1974.

A. Monsifrot, F. Bodin, and R. Quiniou. A machine le&ng approach to automatic production of
compiler heuristics. IProc. AIMSA number 2443 in LNCS, pages 41-50, 2002.

A.J.M. Moonen, M. Bekooij, and J. van Meerbergeniming analysis model for network based
multiprocessor systems. Proc. of ProRISC, 15th annual Workshop of Circuits, Systath@ignal
Processingpages pages 91-99, Veldhoven, The Netherlands, Noverabér 2



BIBLIOGRAPHY 125

[MCC*06] A. McDonald, J. Chung, B. Carlstrom, C. Minh, H. Chafi, Cozgrakis, and K. Olukotun. Ar-

[Muc97]
[Naio4]

[NNH99]

[0'B98]

[OHL99]

[Oka96]

[OKFOO]

[ORC]
[Par66]
[PBCV07]

[PCB*06]

[PCSO05]

[PD96]

[Pie02]

[PIEJO4]

[Pop06]

[P0t96]

[PS99]

[PSX+04]

chitectural semantics for practical transactional memdryACM/IEEE Intl. Symp. on Computer
Architecture (ISCA’'06)2006.

S. S. MuchnickAdvanced Compiler Design & Implementatidiorgan Kaufmann, 1997.

D. Naishlos. Autovectorization in GCC. Rroceedings of the 2004 GCC Developers Supaijes
105-118, 2004ht t p: / / www. gccsunmi t. or g/ 2004.

F. Nielson, H. Nielson, and C. HankiRrinciples of Program AnalysisSpringer-Verlag, 1999.

M. O’Boyle. MARS: a distributed memory approach teesed memory compilation. IRroc. Lan-
guage, Compilers and Runtime Systems for Scalable Congp&tittsburgh, May 1998. Springer-
Verlag.

J. T. Oplinger, D. L. Heine, and M. S. Lam. In searchspkculative thread-level parallelism. In
Parallel Architectures and Compilation Techniques (PA@3), Newport Beach, California, October
1999.

C. Okasaki. Functional data structurAdvanced Functional Programmingages 131-158, 1996.

M. O'Boyle, P. Knijnenburg, and G. Fursin. Feedbaskisted iterative compiplation. Rroc. LCR
2000.

Open research compildrt t p: / /i pf - orc. sourcef or ge. net .
R. J. Parikh. On context-free languagksf the ACM 13(4):570-581, 1966.

L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vagiic Iterative optimization in the polyhedral
model: Parti, one-dimensional time.ACM Conf. on Code Generation and Optimization (CGO,07)
San Jose, California, March 2007. To appear.

S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, BinWfasilache. Graphite: Loop optimizations
based on the polyhedral model for GCC. Rroc. of the & GCC Developper's SummiOttawa,
Canada, June 2006.

S. Pop, A. Cohen, and G.-A. Silber. Induction vdeamalysis with delayed abstractions. litl.
Conf. on High Performance Embedded Architectures and CemsgiHiPEAC’05) number 3793 in
LNCS, pages 218-232, Barcelona, Spain, November 2005@prMerlag.

G.-R. Perrin and A. Darte, editorShe Data Parallel Programming ModeNumber 1132 in LNCS.
Springer-Verlag, 1996.

B. C. PierceTypes and Programming Languag®sIT Press, 2002.

A. Phansalkar, A. Joshi, L. Eeckhout, and L. Johour generations of SPEC CPU benchmarks:
what has changed and what has not. Technical Report TR-840D2A, University of Texas Austin,
2004.

S. PopThe SSA Representation Framework: Semantics, AnalyseS@admplementationPhD
thesis, Ecole Nationale Supérieure des Mines de Paris,Q&: 2

F. Pottier. Simplifying subtyping constraints. ACTM Intl. Conf. on Functional Programming
(ICFP’96), volume 31(6), pages 122-133, 1996.

M. Pelletier and J. Sakarovitch. On the representatf finite deterministic 2-tape automaftheo-
retical Computer Scien¢@25(1-2):1-63, 1999.

M. Pischel, B. Singer, J. Xiong, J. Moura, J. Johnson, &luR, M. Veloso, and R. W. Johnson.
SPIRAL: A generator for platform-adapted libraries of siyprocessing algorithmsJournal of
High Performance Computing and Applications, special ésen Automatic Performance Tuning
18(1):21-45, 2004.



126
[PTCVO04]

[PTV02]

[Pug91a]

[Pug91b]

[Pug9ic]

[Pug92?]

[QR99]

[QRWOO]

[RHS95]

[RP99]

[RRHO3]

[RS974]

[RS97b]

[RZR04]

[SAO5]

[SAMOO03]

[SAR*00]

BIBLIOGRAPHY

D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. wdials a systematic, pragmatic and
architecture-aware program optimization process for demprocessors. IRACM Supercomput-
ing’04, Pittsburgh, Pennsylvania, November 2004. 15 pages.

D. Parello, O. Temam, and J.-M. Verdun. On incregsanchitecture awareness in program opti-
mizations to bridge the gap between peak and sustainedgsmcperformance? matrix-multiply
revisited. InSuperComputing’0Baltimore, Maryland, November 2002.

W. Pugh. The omegatest: a fast and practical inprggramming algorithm for dependence analy-
sis. INACM/IEEE Conf. on Supercomputimuages 4-13, Albuquerque, August 1991.

W. Pugh. The omegatest: a fast and practical infgggramming algorithm for dependence analy-
sis. InProceedings of the third ACM/IEEE conference on Supercaimgyages 4—13, Albuquerque,
August 1991.

W. Pugh. Uniform techniques for loop optimizatibnACM Intl. Conf. on Supercomputing (ICS’91)
pages 341-352, Cologne, Germany, June 1991.

W. Pugh. A practical algorithm for exact array degece analysisCommunications of the ACM
35(8):27-47, August 1992.

F. Quilleré and S. Rajopadhye. Optimizing memorygesa the polyhedral model. Technical Report
1228, Institut de Recherche en Informatique et Systéemeatdites, Université de Rennes, France,
January 1999.

F. Quilleré, S. Rajopadhye, and D. Wilde. Generatibefficient nested loops from polyhediatl.
J. of Parallel Programming28(5):469—-498, October 2000.

T. Reps, S. Horwitz, and M. Sagiv. Precise interporal dataflow analysis via graph reachability.
In ACM Symp. on Principles of Programming Languages (PoPL’'$8h Francisco, CA, January
1995.

L. Rauchwerger and D. Padua. The LRPD test: Speeelain—time parallelization of loops with
privatization and reduction parallelizatiofEEE Transactions on Parallel and Distributed Systems,
Special Issue on Compilers and Languages for Parallel argdributed Computersl 0(2):160-180,
1999.

S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybridysis static & dynamic memory reference
analysis.Intl. J. of Parallel Programming31(4):251-283, 2003.

G. Rozenberg and A. Salomaa, editétandbook of Formal Languagegolume 1: Word Language
Grammar. Springer-Verlag, 1997.

G. Rozenberg and A. Salomaa, editétandbook of Formal Languagegolume 3: Beyond Words.
Springer-Verlag, 1997.

S. Rus, D. Zhang, and L. Rauchwerger. The value ¢éeolgraph and its use in memory reference
analysis. InParallel Architectures and Compilation Techniques (PA@H), Antibes, France, 2004.
IEEE Computer Society.

M. Stephenson and S. Amarasinghe. Predicting ufeotbrs using supervised classification. In
IEEE / ACM International Symposium on Code Generation antin@pation (CGO 2005)IEEE
Computer Society, 2005.

M. Stephenson, S. P. Amarasinghe, M. C. Martin, dndil. O’'Reilly. Meta optimization: improving
compiler heuristics with machine learning. ACM Symp. on Programming Language Design and
Implementation (PLDI'03)pages 77-90, San Diego, California, 2003.

R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. Mahlke,Abraham, and G. Snider. High-level
synthesis of nonprogrammable hardware accelerators. nidiReport HPL-2000-31, Hewlett-
Packard, May 2000.



BIBLIOGRAPHY 127

[SCFS98]

[Sch86]

[Smi00]

[SP81]

[Spe]
[SPHCO02]

[SRW99]

[TFJ86]

[TKAO2]

[TP93]

[TS85]
[TVAO5]

[TVSAO01]

[VAGLO3]

[VBCO6]

[VBJCO3]

[VCBGO6]

[VEO1]

[VG98]

M. M. Strout, L. Carter, J. Ferrante, and B. Simorcheslule-independant storage mapping for
loops. INACM Symp. on Architectural Support for Programming Langesagnd Operating Systems
(ASPLOS'98)8, 1998.

A. Schrijver. Theory of Linear and Integer Programmingohn Wiley and Sons, Chichester, UK,
1986.

M. D. Smith. Overcoming the challenges to feedbdikected optimization. IPACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and Optirforapages 1-11, 2000. (Keynote
Talk).

M. Sharir and A. PnuelProgram Flow Analysis: Theory and Applicatigrehapter Two Approaches
to Interprocedural Data Flow Analysis. Prenticce Hall, 198

Standard performance evaluation cdwd.p: / / www. Spec. or g.

T. Sherwood, E. Perelman, G. Hamerly, and B. Caldartomatically characterizing large scale
program behavior. Irl0th International Conference on Architectural Suppont Rsogramming
Languages and Operating Syster2802.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric steaalysis via 3-valued logic. IARCM Symp.
on Principles of Programming Languages (PoPL'98ages 105-118, San Antonio, Texas, January
1999.

R. Triolet, P. Feautrier, and P. Jouvelot. Autompérallelization of fortran programs in the presence
of procedure calls. IfProc. of the #European Symp. on Programming (ESOP’8@8)mber 213 in
LNCS, pages 210-222. Springer-Verlag, March 1986.

W. Thies, M. Karczmarek, and S. Amarasinghe. Stréaflanguage for streaming applications. In
Intl. Conf. on Compiler Constructiqiisrenoble, France, April 2002.

P. Tu and D. Padua. Automatic array privatization. 6fhanguages and Compilers for Parallel
Computingnumber 768 in LNCS, pages 500-521, Portland, Oregon, AU@®s.

J.-P. Tremblay and P.-G. Sorens®dhe theory and practice of compiler writiniylcGraw-Hill, 1985.

S. Triantafyllis, M. Vachharajani, and D. I. AugusCompiler optimization-space exploration. In
Journal of Instruction-level Parallelisp2005.

W. Thies, F. Vivien, J. Sheldon, and S. AmarasingAeunified framework for schedule and storage
optimization. INACM Symp. on Programming Language Design and Implementé&8oDI’01),
pages 232-242, 2001.

X. Vera, J. Abella, A. Gonzalez, and J. Llosa. Opittiing program locality through CMEs and GAs.
In Proc. PACT pages 68-78, 2003.

N. Vasilache, C. Bastoul, and A. Cohen. Polyhedaalegeneration in the real world. Broceedings
of the International Conference on Compiler ConstructiBfAPS CC’06)LNCS, pages 185-201,
Vienna, Austria, March 2006. Springer-Verlag.

Sven Verdoolaege, Maurice Bruynooghe, Gerdastarss and Francky Catthoor. Multi-dimentsional
incremetal loops fusion for data locality. ASAR pages 17-27, 2003.

N. Vasilache, A. Cohen, C. Bastoul, and S. Girbabl&ted dependence analysis.AGM Intl. Conf.
on Supercomputing (ICS’08Fairns, Australia, June 2006.

R. A. van Engelen. Efficient symbolic analysis for iogizing compilers. InProceedings of the
International Conference on Compiler Construction (ETARS01), pages 118-132, 2001.

T. Veldhuizen and D. Gannon. Active libraries: Reiking the roles of compilers and libraries. In
SIAM Workshop on Object Oriented Methods for Inter-opega&itientific and Engineering Comput-
ing, October 1998.



128
[Vis01]

[VUi94]

BIBLIOGRAPHY

E. Visser. Stratego: A language for program transfation based on rewriting strategies. System de-
scription of Stratego 0.5. In A. Middeldorp, edit®ewriting Techniques and Applications (RTA'01)
volume 2051 ot ecture Notes in Computer Scienpages 357-361. Springer-Verlag, May 2001.

J. E. Vuillemin. On circuits and numberdEEE Trans. on Computerd3(8):868—879, 1994.

[WCPHO01] P.Wu, A. Cohen, D. Padua, and J. Hoeflinger. Moniotevolution: an alternative to induction vari-

[Wol92]

[Wol96]
[Won95]

[WPDOO]

[Xue94]

[YLR+03]

able substitution for dependence analysisAGM Intl. Conf. on Supercomputing (ICS’Q8orrento,
Italy, June 2001.

M. E. Wolf. Improving Locality and Parallelism in Nested Lood3hD thesis, Stanford University,
August 1992. Published as CSL-TR-92-538.

M. J. Wolfe. High Performance Compilers for Parallel Computingddison-Wesley, 1996.

D. G. WonnacottConstraint-Based Array Dependence AnalyBisD thesis, University of Maryland,
1995.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Autedatmpirical optimizations of software and the
atlas projectParallel Computing2000.

J. Xue. Automating non-unimodular loop transfotimias for massive parallelisniarallel Comput-
ing, 20(5):711-728, 1994.

K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garaar, D. Padua, K. Pingali, P. Stodghill,
and P. Wu. A comparison of empirical and model-driven optation. INnACM Symp. on Program-
ming Language Design and Implementation (PLDI'08an Diego, CA, June 2003.



BIBLIOGRAPHY 129



Résumé

La loi de Moore sur semi-conducteurs approche de sa fin. liéem de I'architecture de von Neu-
mann a travers les 40 ans d’histoire du microprocesseur duétcén des circuits d’une insoutenable
complexité, a un trés faible rendement de calcul par trtorsist une forte consommation énerge-
tique. D’'autre-part, le monde du calcul paralléle ne sufgppas la comparaison avec les niveaux
de portabilité, d’accessibilité, de productivité et de ifibde I'ingénérie du logiciel séquentiel. Ce
dangereux fossé se traduit par des défis passionnants gechkerche en compilation et en langages
de programmation pour le calcul a hautes performancesy@étié ou embarqué. Cette thése mo-
tive notre piste pour relever ces défis, introduit nos ppalgs directions de travail, et établit des
perspectives de recherche.

Abstract

Moore’s law on semiconductors is coming to an end. Scaliegztin Neumann architecture over the
40 years of the microprocessor has led to unsustainablétaamplexity, very low compute-density,
and high power consumption. On the other hand, parallel coimgp practices are nowhere close
to the portability, accessibility, productivity and rddisity levels of single-threaded software engi-
neering. This dangerous gap translates into exciting ehgéls for compilation and programming
language research in high-performance, general purpaserahedded computing. This thesis moti-
vates our approach to these challenges, introduces ourdimaations and results, and draws research
perspectives.



