
HAL Id: tel-00550836
https://theses.hal.science/tel-00550836

Submitted on 31 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance Interactive Computing
Bruno Raffin

To cite this version:
Bruno Raffin. High Performance Interactive Computing. Computer Science [cs]. Institut National
Polytechnique de Grenoble - INPG, 2009. �tel-00550836�

https://theses.hal.science/tel-00550836
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES

INPG

Spécialité : “Informatique”

Bruno Raffin

Calcul interactif haute performance

Le 3 mars 2009

JURY

MARIE-PAULE CANI Grenoble INP Présidente

CAROLINA CRUZ-NEIRA University of Louisiana at Lafayette Rapporteur

CHARLES HANSEN University of Utah Rapporteur

THIERRY PRIOL INRIA Rennes - Bretagne Atlantique Rapporteur

JEAN-MICHEL DISCHLER Université Louis Pasteur, Strasbourg Examinateur

PASCAL GUITTON Université Bordeaux I Examinateur

Contents

1 Introduction 5

2 Synthèse de l’activité de Recherche 7

3 Curriculum Vitae 13
3.1 Fonctions . 13
3.2 Cursus universitaire . 14
3.3 Enseignement . 14
3.4 Encadrement d’activités de recherche 15

3.4.1 Thèses . 15
3.4.2 Postdoc . 16
3.4.3 Ingénieurs . 16
3.4.4 Stages . 17

3.5 Responsabilités administratives 17
3.6 Contrats . 17
3.7 Transfert technologique . 18
3.8 Logiciels et plate-formes . 19
3.9 Participation à la communauté académique 20
3.10 Cours, tutoriaux and présentations invitées 21
3.11 Publications . 22

3.11.1 Calcul interactif haute performance 22
3.11.2 Mesure de performance 24
3.11.3 Programmation parallèle 25
3.11.4 Réseaux de neurones . 26

4 Curriculum Vitae (English version) 27
4.1 Employment History . 27
4.2 Education . 27
4.3 Teaching . 28
4.4 Research Advising . 28

4.4.1 Ph.D. Students . 28
4.4.2 Postdoc . 29
4.4.3 Engineers . 29

1

4.4.4 Internships . 29
4.5 Administrative Responsibilities 29
4.6 Grants . 29
4.7 Technology Transfer . 30
4.8 Software and Platforms . 30
4.9 Participation to the Academic Community 31
4.10 Courses, Tutorials and Invited Talks 32
4.11 Publications . 33

4.11.1 High Performance Interactive Computing 33
4.11.2 Performance Measure 35
4.11.3 Parallel Programming 36
4.11.4 Neural Networks . 37

5 Distributed Rendering 39
5.1 PC Clusters for Multi-projector Rendering 39

5.1.1 Context and Motivation 39
5.1.2 Net Juggler Overview 40
5.1.3 Net Juggler Article . 42
5.1.4 SoftGenLock Overview 42
5.1.5 SoftGenLock Article . 43
5.1.6 Discussion . 43

5.2 FlowVR Render . 45
5.2.1 Motivation . 45
5.2.2 Overview . 46
5.2.3 FlowVR Render Article 48
5.2.4 Discussion . 48

6 A Middleware for HPIC 51
6.1 Motivation . 51
6.2 The FlowVR Model . 53

6.2.1 Messages and Stamps 53
6.2.2 Module . 53
6.2.3 Connection . 54
6.2.4 Routing Node . 54
6.2.5 Filter . 54
6.2.6 Synchronizer . 54

6.3 Simple Examples . 55
6.4 Run-time Environment . 61
6.5 Hierarchical Component Model 62
6.6 Application Processing . 66
6.7 FlowVR Articles . 66
6.8 Positioning . 68
6.9 Applications . 70

6.9.1 Grimage . 70

2

6.9.2 Interactive 3D Modeling 71
6.9.3 Distributed Physics Simulation 71
6.9.4 SOFA Simulation Framework 73
6.9.5 Molecular Dynamics . 73
6.9.6 Interactive Grid . 74

6.10 Debugging . 74
6.11 Discussion . 75

6.11.1 Hierarchical Components 75
6.11.2 Static data-flow Graph 75
6.11.3 Module Pool . 76
6.11.4 Application Monitoring 76
6.11.5 Multi-CPU/GPU Support 76
6.11.6 Interoperability . 76
6.11.7 Diffusion . 76
6.11.8 Long Term Perspectives 77

7 Real-Time 3D Modeling 85
7.1 Motivation . 85
7.2 Computer Vision System . 86
7.3 Parallel EPVH . 87

7.3.1 EPVH Overview . 87
7.3.2 Parallel Algorithm . 89

7.4 Parallel EPVH Article . 90
7.5 Parallel Octree Carving . 90

7.5.1 Octree Carving . 90
7.5.2 Work Stealing . 90
7.5.3 Parallel Algorithm . 92
7.5.4 Provable Performance 93
7.5.5 Experimental Results . 93

7.6 Parallel Octree Carving Article 95
7.7 Discussion . 95

8 Conclusion 97

Bibliography 101

A Selected Articles 111
A.1 Net Juggler IEEE VR 2002 Article 111
A.2 SoftGenLock IPT 2003 Article 120
A.3 FlowVR Render IEEE Vis 2005 Article 127
A.4 FlowVR Europar 2004 Article 136
A.5 FlowVR Supercomputing Journal 2008 Article 146
A.6 Parallel EPVH ICVS 2006 Article 170
A.7 Parallel Octree Carving EGPGV 2007 Article 178

3

4

Chapter 1

Introduction

Images and interactivity are central to scientific visualization and virtual reality.
Large data sets are processed to produce 3D images often visualized on advanced
display devices like CAVEs or display walls. The user expects to interact smoothly
with the application, relying on devices like 3D trackers or haptic systems for an
improved feel of immersion. Parallel machines can be used to provide the required
I/O, storing and computing resources.

Over the last 8 years my research work focused on harnessing the power of
parallel machines, mainly PC clusters, for high performance interactive comput-

ing. New issues and opportunities appeared as processors have been switching to
multi and many core architectures, and new generations of powerful co-processors,
some of them derived from GPUs, have emerged. A synthesis of this research ac-
tivity is presented in Chapter 2 (in French) as well as a detailed resume (Chap-
ter 3 in French, Chapter 4) in English). Initially focused on powering immersive
multi-projector environments using commodity PCs and graphics cards, the work
extended to a more generic approach for distributed rendering (Chapter 5). The
problem of handling the complexity of large interactive applications, developed by
several users, over several years, coupling various heterogeneous codes, some of
them parallelized, led to the development of the FlowVR middleware (Chapter 6).
FlowVR is dedicated to interactive applications and relies on a hierarchical com-
ponent model. It has been used for several applications, presented in this chapter
as well. Amongst these applications, we developed two parallel multi-camera 3D
modeling algorithms, one of them relying on work stealing to balance the load
between CPUs, some of them using a GPU as co-processor. This work on the
Grimage platfrom led to a complete real-time computer vision system that, coupled
with a physics simulation engine, enabled full body interactions with virtual objects
(Chapter 7). Chapter A includes a selection of articles. After a short summary, the
conclusion presents on-going works and discusses some research directions that
remain to be explored (Chapter 8).

5

6

Chapter 2

Synthèse de l’activité de
Recherche

Ce document retrace l’essentiel de mes activités de recherche depuis 2000. Cette
période correspond à une réorientation de mon activité de recherche par rapport à
mes travaux antérieurs. Mon travail de thèse à l’Université d’Orléans portait sur
l’étude et la conception de langages de programmation parallèle par une approche
théorique basée sur des spécifications par sémantiques opérationnelles et dénota-
tionnelles avec preuves d’équivalence. Le séjour postdoctoral à l’Iowa State Uni-
versity s’est focalisé plutôt sur de la mesure de performance de diverses machines
parallèles (grappes de PC, IBM SP, Cray T3D et SGI Origin 2000). De retour en
France à l’automne 1999 comme Maître de Conférences à l’Université d’Orléans,
nous avons monté avec Valérie Gouranton et Emmanuel Melin, eux aussi Maîtres
de Conférences à l’Université d’Orléans, une petite équipe pour étudier les prob-
lèmes de l’usage du parallélisme pour la réalité virtuelle. Cette réorientation fait
suite à la découverte du domaine de la réalité virtuelle durant mon séjour post-
doctoral. L’Iowa State University héberge en effet le VRAC (Virtual Reality Ap-
plications Center), dirigé à l’époque par Carolina Cruz-Neira, co-conceptrice du
CAVE. La rencontre avec Carolina Cruz-Neira m’a permis de mesurer l’intérêt et
les difficultés que pouvaient représenter l’usage des grappes de PC équipées de
cartes graphiques 3D pour piloter des CAVE. A l’époque, le domaine des cartes
graphiques 3D pour le jeux vidéo était en pleine expansion tout comme l’usage
des grappes de PC pour le calcul intensif. Mais encore très peu de configurations
à base de grappes pilotaient des environnements immersifs multi-projecteurs. Les
CAVE étaient pilotés par des machines dédiées de type SGI Onyx.

Dans un premier temps, nous nous sommes concentrés sur le développement
d’une solution pour piloter des environnements immersifs multi-projecteurs avec
du matériel standard. Ces travaux ont donné lieu au développement de deux logi-
ciels, Net Juggler, une extension pour grappes de PC d’une des suite logicielle
libre la plus utilisée pour la réalité virtuelle, et SoftGenLock, un logiciel pour le
genlock (synchronisation des signaux vidéos) de cartes graphiques standards, com-

7

posant essentiel pour permettre la visualisation stéréoscopique de type active. Ne
disposant pas d’environnement immersif, Sabine Coquillart, alors à l’INRIA Roc-
quencourt, nous a permis de tester notre solution sur son Workbench.

Sur la base de cette première expérience, au caractère assez technologique,
mais essentielle dans ce processus de reconversion thématique, nous avons
développé une approche plus généraliste de l’usage des capacités offertes par les
grappes de PC pour les applications de réalité virtuelle. Ce travail a conduit au
développement de l’intergiciel FlowVR, dont le développement reste encore très
actif aujourd’hui. A l’opposé des intergiciels habituels du domaine de la réalité
virtuelle construits par agrégation d’outils plus spécialisés comme des graphes de
scènes, des bibliothèques de pilotes de périphériques, etc., FlowVR a été conçu
comme un environnement de couplage logiciel dépouillé, focalisé sur les aspects
réseau, parallélisme et modularité des applications. L’intégration d’outils plus
spécialisés se fait dans une seconde phase en fonction des objectifs applicatifs.
FlowVR est un intergiciel basé sur des composants hiérarchiques. Il est destiné
aux applications interactives de grande taille utilisant de multiples ressources, sou-
vent hétérogènes, de type capteurs, entités de calcul et périphériques de sorties.
L’accent est mis sur un environnement qui contraint dans une certaine mesure le
développeur à construire une application très modulaires. Cette modularité à un
double objectif. Elle favorise des pratiques saines de génie logiciel pour la mainte-
nance, l’extension et la réutilisation de l’application. Elle force aussi l’utilisateur à
clairement définir les échanges, c’est-à-dire les dépendances de données, entre les
différents composants, facilitant la distribution de ces même composants sur une
architecture parallèle. L’objectif est de permettre au développeur, qui n’est sou-
vent pas un expert en parallélisme, de construire une application qui conduira à des
exécutions parallèles relativement performantes. Un usage optimal des ressources
demande dans tous les cas un effort plus significatif d’optimisation nécessitant une
expertise avancée en parallélisme. On retrouve ici des motivations des approches
orientées composants ou de la programmation parallèle par squelettes.

En Octobre 2001, alors que les réflexions autour de FlowVR n’en étaient
qu’à leurs débuts, j’ai intégré l’équipe-projet APACHE (maintenant scindée entre
MESCAL et MOAIS) de l’INRIA Rhône-Alpes en tant que Chargé de Recherche
INRIA. Ce changement a eu une influence significative sur la direction qu’ont
pris mes recherches. Sous l’impulsion de Brigitte Plateau, s’est élaboré le pro-
jet d’une plate-forme matérielle pour les applications interactives 3D associant une
grappe de PC, un réseau de caméras et un mur d’images. Cette plate-forme, ap-
pelée Grimage, a fait émergé des collaborations durables et enrichissantes avec
les équipe-projets PERCEPTION, en particulier Edmond Boyer, et EVASION par
l’intermédiaire de François Faure. Le travail avec PERCEPTION s’est focalisé
sur la parallélisation de l’algorithme de reconstruction 3D multi-caméras EPVH
développé par Jean-Sébastien Franco et Edmond Boyer. Ce travail s’est avéré
un excellent cadre pour valider FlowVR et nous a conduit à développer une pre-
mière application interactive de taille conséquente. Le travail avec EVASION s’est
lui plutôt focalisé sur la simulation physique temps-réel. Il s’est concrétisé par

8

l’intégration du logiciel SOFA dans les applications Grimage. Dans un second
temps, nous avons travaillé au problème de la parallélisation de SOFA sur machine
multi-processeurs à mémoire partagée, travail en cours qui n’a pas encore con-
duit à des publications. Nous avons par ailleurs mené des travaux sur le rendu en
environnement multi-projecteurs piloté par grappe de PC. Les travaux principaux
sur le domaine ont conduit à FlowVR Render, une extension de FlowVR qui im-
plante un protocole de transport des données graphiques définissant des primitives
indépendantes. Le protocole repose sur l’usage des shaders plutôt que la machine
à états OpenGL qui se prête difficilement à la définition de primitives indépen-
dantes. L’objectif est de pouvoir émettre des primitives graphiques de plusieurs
sources sans qu’il y ait des conflits concernant l’ordre d’exécution des ces prim-
itives au niveau du rendu. Pour les applications de grande taille, cette approche
permet d’éviter de devoir centraliser la génération des données de rendu. Ces
travaux ont été associés dans des applications interactives impliquant jusqu’à un
cinquantaine de processeurs, une dizaine de caméras et 16 projecteurs. Ce tra-
vail de développement lourd, où les problèmes à la fois matériels et logiciels sont
courants, est néanmoins fondamental. C’est une base de test pour valider les logi-
ciels tels que FlowVR ou SOFA et guider les nouveaux développements. Disposer
d’une implantation temps réel opérationnelle permet de tester in situ de nouveaux
modes d’interaction et d’avancer beaucoup plus concrètement vers de nouvelles
problématiques qu’à travers des exécutions temps-réel imaginées. Évidemment ce
travail rallonge significativement le cycle des publications. Par contre, il ouvre la
voie à du transfert technologique. Une première tentative avait été menée en 2004
avec Icatis, société co-fondée par Philippe Augerat, Pierre Neyron et moi-même.
Plus récemment l’ensemble de la suite logicielle développée pour la reconstruction
3D multi-caméras a été transférée vers la société 4DView Solution, crée en septem-
bre 2007 par Richard Broadbridge, Clément Ménier et Florian Geffray, ces deux
derniers ayant activement participé à Grimage.

FlowVR permet d’aborder un premier niveau de parallélisation statique et à
gros grain des applications. Certains composants de l’application nécessitent des
parallélisations plus fines pour tirer efficacement parti des ressources disponibles.
Une charge de travail variable peut en particulier motiver le recours à des tech-
niques dynamiques d’équilibrage. Un travail initié avec Jean-Louis Roch à porté
sur l’étude des techniques de vol de tâches pour les applications interactives.
L’application visée est une modélisation 3D temps-réel par raffinement recursif
d’un structure d’octree. C’est un algorithme classique de reconstruction 3D qui ne
calcule pas un enveloppe visuelle exacte comme EPVH, mais produit une struc-
ture régulière et non pas un maillage. L’octree peut être intéressant dans certains
cas, par exemple pour des calculs rapides de collisions. Étant dans un contexte
interactif, nous avons rajouté une contrainte supplémentaire par rapport au vol de
tâches classique: le calcul doit pouvoir être arrêté à tout moment en produisant
un résultat acceptable. Cet algorithme est donc de type "anytime". L’objectif
est d’imposer une durée maximum de calcul pour assurer une exécution interac-
tive. L’algorithme obtenu donne à la fois de bons résultats expérimentaux et une

9

efficacité théorique asymptotiquement optimale. Cette première expérience s’est
prolongée avec des objectifs plus ambitieux autour de la parallélisation de SOFA,
travail en cour comme mentionné plus haut.

Outre les chercheurs avec qui j’ai collaboré sur ces différents travaux, il est
important de mentionner la participation importante des stagiaires, ingénieurs et
doctorants. Je m’excuse par avance de ne pouvoir mentionner explicitement toutes
ces personnes. Je me dois cependant de citer Jérémie Allard, d’abord stagiaire
de maîtrise à l’Université d’Orléans puis thésard dans l’équipe-projet MOAIS.
Jérémie Allard est l’un des piliers du développement de Net Juggler, SoftgenLock,
FlowVR et de la plate-forme Grimage. Il est maintenant Chargé de Recherche à
l’INRIA Lille. Clément Ménier, co-encadré avec Edmond Boyer, a eu la difficile
tâche de travailler à l’intersection du parallélisme et de la vision par ordinateur. Le
travail qu’il a effectué avec Jérémie Allard autour de Grimage, FlowVR et de la
modélisation 3D temps réel a été très créatif. Il participe aujourd’hui à l’aventure
4DView Solutions dont il est l’un des fondateur. Luciano Soares nous a rejoint
pour un postdoc. Il a travaillé à la parallélisation de la modélisation par octree. Il
est actuellement chercheur chez Petrobras au Brésil. Jesus Verduzsco a travaillé
sur le rendu sur mur d’images des applications X. Il est maintenant Maître de
Conférences à l’IUT de Colima, Mexique. Plus récemment, Benjamin Petit, co-
encadré avec Edmond Boyer, Everton Hermann, co-encadré avec François Faure,
Marc Tchiboukdjian, co-encadré avec Vincent Danjean et Jean-Louis Roch, ainsi
que Jean-Denis Lesage se sont aussi lancés dans des thèses sur le calcul interactif
3D. Une difficulté commune qu’ils rencontrent est ce positionnement à mi-chemin
entre plusieurs communautés, la vision par ordinateur, le parallélisme, la réalité
virtuelle et l’informatique graphique. La publication des résultats obtenus demande
un effort supplémentaire pour assimiler les habitudes, le style et le point de vue de
chaque communauté (forme des papiers, travaux à mentionner, etc.).

Initialement centrées sur le pilotage par des grappes de PC des environ-
nement immersif multi-projecteurs, mes activités de recherche se positionnement
aujourd’hui sur une thématique que je qualifierais de calcul interactif haute per-

formance. La puissance de calcul disponible poursuit sa progression exponen-
tielle mais aujourd’hui en offrant plus de parallélisme, à travers le calcul nébuleux
("cloud computing"), les processeurs multi-coeurs, les cartes graphiques massive-
ment parallèles et programmables pour le rendu 3D mais aussi le calcul intensif,
les MPSoCs. Cette progression de la puissance disponible peut évidemment être
mise à profit pour des simulations plus complexes, mais aussi pour rendre inter-
actifs certains calculs. Alors que dans le calcul intensif traditionnel, l’humain est
peu pris en compte, il devient ici un élément important. Comment interagir avec
un programme ? Il y a évidement des critères simples tels que la fréquence et la
latence, mais aussi des problèmes difficiles sur les interfaces d’interaction, c’est-
à-dire comment et quelles informations extaire du réel, que restituer à l’utilisateur
en utilisant le plus efficacement possible les capacités sensorielles et cognitives de
l’humain. L’humain est aussi un expert qui, lorsqu’il développe une application,
ne parvient pas à transférer tout son savoir-faire dans le programme. Le pilotage

10

interactif de l’application peut-il lui permettre d’améliorer ce transfert d’expertise ?

11

12

Chapter 3

Curriculum Vitae

Bruno RAFFIN
Né le 31 décembre 1970 en France (Vienne)
Marié, un enfant.

3.1 Fonctions

• Depuis Octobre 2001 Chargé de Recherche INRIA Rhône-Alpes.

• Septembre 1999 - Septembre 2001 Maître de Conférences au LIFO, Uni-
versité d’Orléans.

• Janvier 1998 - Août 1999. Séjour postdoctoral à l’Iowa Sate University,
USA. Une charge d’enseignement de 60 heures par semestre complète mon
activité de recherche.

• Septembre 1997 - Décembre 1997. Demi poste d’ATER (Université
d’Orléans).

• Octobre 1996 - Août 1997. Boursier MESR et vacataire (Université
d’Orléans).

• Décembre 1995 - Septembre 1996. Service militaire.

• Novembre 1993 - Novembre 1995. Boursier MESR et vacataire (Université
d’Orléans).

13

3.2 Cursus universitaire

• 1993-1997. Thèse d’informatique au Laboratoire d’Informatique Fonda-
mentale d’Orléans (LIFO).

– Titre : “Un modèle structuré de communication et de synchronisation
pour le parallélisme de tâches”

– Direction scientifique : Bernard Virot et Robert Azencott

– Soutenance : 16 décembre 1997

– Composition du jury :

Président : Guy-René Perrin Université Louis Pasteur - Strasbourg

Rapporteurs: Luc Bougé École Normale Supérieure de Lyon
Joaquim Gabarró Université Polytechnique de Catalogne

Examinateurs : Robert Azencott École Normale Supérieure de Cachan
Gaétan Hains Université d’Orléans
Henri Thuillier Université d’Orléans
Bernard Virot Université d’Orléans

• 1993. DEA d’Informatique Fondamentale de l’École Normale Supérieure
de Lyon.

• 1992. Maîtrise de Mathématiques Discrètes de l’Université Claude Bernard,
Lyon.

3.3 Enseignement

• Depuis 2003

– Université d’Orléans : Architectures parallèles et protocoles hautes
performances : 8h de cours par an - DEA d’informatique.

– Université Joseph Fourier, Grenoble : Introduction au parallélisme :
18h de cours par an - 2de année ISTG.

• 2001-2002

– Université d’Orléans : Architectures parallèles et protocoles hautes
performances : 8h de cours - DEA d’informatique.

– Université de Laval : Réalité virtuelle sur grappe de PC : 6h de cours
- DESS INOREV

14

– Université Joseph Fourier, Grenoble : Introduction au parallélisme :
18h de cours - 2de année ISTG.

• 1999-2001 : Université d’Orléans.

– Architecture des ordinateurs : 38h de cours et 27h de TD - Licence
d’informatique.

– Système d’exploitation : 81h de TD et projets - Licence
d’informatique.

– JAVA : 45h de TP et projets - DESS CCI (Compétences Complémen-
taires en Informatique).

– Réseaux et technologie internet : 56h de TD et 28h de TP - DESS CCI

– Cryptographie et sécurité des réseaux : 41h de TD et projets - DESS
SIRAD (Sécurité, Réseaux et Aide à la Décision).

– Architectures parallèles et protocoles hautes performances : 18h de
cours - DEA d’informatique.

– Encadrement de 12 stages en entreprise - Maîtrise informatique, DESS
CCI, DESS SIRAD.

• 1998-1999 : Iowa Sate University.

– Analyse : 180 heures de cours-TD - Classes undergraduate math 165
et math 166 (principalement de futurs ingénieurs).

– Parallélisme de tâches : 4h de cours - Classe de master Computer Sci-
ence 525.

• 1994-1997 : Université d’Orléans.

– Algorithmique et Turbo Pascal : 132 heures de TD - Deug scientifique.

– Mathématiques de l’informatique : 94 heures de TD et 40 heures de
cours/TD - Deug scientifique.

– Bureautique : 44 heures de TD - Deug AES.

3.4 Encadrement d’activités de recherche

3.4.1 Thèses

• Depuis Octobre 2007 : Marc Tchiboukdjian (thèse BDI financée
CNRS/CEA). Algorithmes parallèles et cache oblivious pour les structures
de données 3D. Directeur de thèse: Denis Trystram. Co-encadrants: Vincent
Danjean, Jean-Louis Roch et Bruno Raffin.

• Depuis Octobre 2007 : Benjamin Petit (thèse financée par le contrat
ANR DALIA). Interaction et environnements multi-caméras. Directeur de
thèse: Edmond Boyer. Co-encadrant: Bruno Raffin.

15

• Depuis Octobre 2006 : Everton Hermann (thèse CORDI financée par
l’INRIA). Algorithmique parallèle pour le moteur physique SOFA. Di-
recteur de thèse: Bruno Raffin. Co-encadrant: François Faure.

• Depuis Septembre 2006 : Jean-Denis Lesage (thèse MESR). Algorithmes
adaptatifs pour les applications interactives de grande taille. Directeur de
thèse: Denis Trystram. Co-encadrant: Bruno Raffin.

• Octobre 2005 - Janvier 2006 : Thomas Arcila (thèse CIFRE financée
par BULL). Rendu "sort-first" haute performance. Directeur de thèse: Denis
Trystram. Co-encadrant: Bruno Raffin. Arrêt après un an de thèse. Ingénieur
chez Mercury Computer, Bordeaux.

• Septembre 2003 - Août 2007 : Clément Ménier (Allocataire Normalien).
Reconstruction 3D multi-caméras en temps-réel sur grappe de PC. Directeur
de thèse: Radu Horaud. Co-encadrants: Bruno Raffin et Edmond Boyer. Co-
fondateur et responsable du développement logiciel de la société 4D View
Solutions crée en Septembre 2007.

• Septembre 2002 - Novembre 2005 : Jérémie Allard (thèse MESR). Inter-
giciels pour les applications de réalité virtuelle de grande taille. Directeur de
thèse: Brigitte Plateau. Co-encadrant: Bruno Raffin. Chargé de Recherche
INRIA, équipe-projet ALCOVE, Lille.

• Novembre 2001 - Juin 2005 : Jesus Verduzco (thèse financée par le Mex-
ique). Environnement X Window pour mur d’images. Directeur de thèse:
Brigitte Plateau. Co-encadrant: Bruno Raffin. Maître de Conférences à
l’IUT de Colima, Mexique.

3.4.2 Postdoc

• Décembre 2005- Décembre 2006 : Luciano Soares (financé par
l’INRIA). Octree parallèle adaptatif. Chercheur chez Petrobras, Brésil.

3.4.3 Ingénieurs

• Depuis Octobre 2008 : Thomas Dupeux (financé par ADT GrimDev).
Support à la plateforme Grimage.

• Depuis Mai 2008 : Antoine Vanel (financé par contrat ANR FVNANO).
Développement de FlowVR.

• 2003- 2004 : Loick Lecointre (financé par contrat RNTL GEOBENCH).
Développement de FlowVR. Ingénieur chez Amadeus, Paris.

16

3.4.4 Stages

• Encadrement ou co-encadrement de 28 stages depuis 2000 (niveau M1 et
M2).

3.5 Responsabilités administratives

• Président de la commission de développement technologique (CDT) de
l’INRIA Rhône-Alpes (depuis 2007). Gestion des appels pour les postes
d’ingénieurs associés.

• Membre suppléant de la commission d’évaluation (CE) de l’INRIA (2005-
2008).

• Membre du jury de recrutement CR2 de l’INRIA Bordeaux (2008) en tant
que membre de la CE.

• Membre de la commission de spécialistes de l’Université Joseph Fourier
(suppléant en 2004-2006, titulaire depuis 2007).

• Membre suppléant de la commission de spécialistes de l’Université
d’Orléans (depuis 2008).

• Membre du conseil de perfectionnement du master IRAD, Université
d’Orléans (depuis 2008).

• Gestion et animation de la collaboration des équipe-projets MESCAL et
MOAIS avec les Universités du Rio Grande do Sul, Brésil. Financements
obtenus:

– PICS CNRS (2005-2007),

– Capes/Cofecub (2006-2008),

– Equipe associée INRIA Diode-A (2006-2008),

– INRIA/Cnpq (2008-2010).

• Remplaçant du responsable du DESS SIRAD, Université d’Orléans, pendant
le premier semestre de 2000-2001. Gestion des emplois du temps, des exa-
mens, de l’attribution des bourses, recherche d’intervenants extérieurs, etc.

3.6 Contrats

• Participe au projet Européen Interact (2007-2008). Objet : Interfaçage
de la modélisation 3D et de la parole. Partenaires: les équipe-projets PER-
CEPION et MOAIS, Eptron, Holographika, Total Immersion et Vecsys SA.

17

• Participe au projet ANR VULCAIN (2007-2010). Objet : fuiabilité des
structures industrielles soumises à des contraintes dynamiques. Partenaires:
les équipe-projets INRIA EVASION et MOAIS, le 3S-R, l’IPSC-ELSA, le
CEG-DGA, le LEES, le LaM, l’INERIS, l’IRSN, le CEA, le SME Environ-
nement, Phimeca et Bull.

• Thèse BDI co-financée par le CNRS et le CEA/DIF (2007-2010)).

• Cordinateur national du projet ANR DALIA (2007-2009). Objet : Appli-
cations interactives 3D distribuées et hétérogènes. Partenaires: les équipe-
projets INRIA PERCEPTION, MOAIS, I-parla et le LIFO de Université
d’Orléans.

• Responsable INRIA du projet ANR FVNANO (2008-2010). Objet
: Applications interactives de manipulation de nano-structures. Parte-
naires: l’équipe-projets INRIA MOAIS, le LIFO de Université d’Orléans,
le CEA/DIF et le Laboratoire de Biochimie Théorique de l’IBPC.

• Participe au projet RNTL OCETRE (2004-2005). Objet : Capture de
mouvement temps-réel multi-caméras. Partenaires: les équipe-projets IN-
RIA MOVI et APACHE, les sociétés Thalès et Total Immersion.

• Responsable INRIA du projet RNTL GEOBENCH (2003-2004). Objet
: Visualisation immersive distribuée et interaction haptique appliquées aux
données (géo)scientifiques. Partenaires : les équipe-projet INRIA APACHE
et I3D, le LIFO de l’Université d’Orléans, le CEA, le BRGM et la société
TGS.

• Participe à l’ACI Masse de données CYBER II (2003-2005). Objet : Cap-
ture, reconstruction et incrustation temps réel d’un animateur dans un monde
virtuel. Partenaires: équipes-projets INRIA ARTIS, MOVI et APACHE, le
laboratoire LIRIS de Lyon.

• Thèse CIFRE financée par Bull (2005).

3.7 Transfert technologique

• Transfer du code de reconstruction 3D temps réel à la société 4DView
Solutions (2007). La société 4DViews Solutions a été fondée en septembre
2007 et propose des environnements multi-caméras basés sur la technologie
développée pour la plate-forme Grimage.

• Co-fondateur de la société Icatis (2003) au titre de l’article 25.2 de la loi sur
l’innovation (conseiller scientifique), avec Philippe Augerat (25.1) et Pierre
Neyron. Icatis a développé des solutions logicielles dans le domaine du cal-
cul intensif sur grappe de PC, grappe graphique et intranet de calcul. Elle a

18

été lauréate du concours ANVAR émergence 2003 et du concours création
d’entreprise 2004. L’entreprise a stoppé son activité en 2007.

3.8 Logiciels et plate-formes

• Membre du comité de pilotage de la plate-forme Grimage (depuis 2003),
http://www.inrialpes.fr/grimage. Cette plate-forme expéri-
mentale localisée à l’INRIA Rhône-Alpes, associe une grappe de PC, un
réseau de caméras et un mur d’images multi-projecteurs. Cette plate-forme
est issue d’une collaboration entre les équipe-projets MOAIS, PERCEP-
TION et EVASION. Les sources de financement sont variées (locales, na-
tionales et européennes).

• Membre du comité de pilotage de la plate-forme Digitalis de l’INRIA
Rhône-Alpes. Digitalis est une machine parallèle de 2048 coeurs pour le
calcul en ligne et hors ligne. L’installation est prévue en deux tranches (2008
et 2009).

• Suite FlowVR (102 000 lignes de code, http://

flowvr.sourceforge.net), première version Décem-
bre 2003, plus de 800 téléchargements. Dépôt APP
IDDN.FR.001.400021.000.S.P.2008.000.10000 (FlowVR), APP
IDDN.FR.001.410004.000.S.P.2008.000.10000 (FlowVR Render) et
IDDN.FR.001.390033.000.S.P.2008.000.10000 (VTK FlowVR). Licence
GPL et LGPL. FlowVR est un intergiciel pour les applications parallèles
interactives. Co-auteurs principaux : Jérémie Allard, Clément Ménier,
Bruno Raffin, Jean-Denis Lesage, Emmanuel Melin, Valérie Gouranton,
Sophie Robert et Sébastien Limet.

• Calibration (19 000 lignes de code), première version Juin 2004. Calibra-
tion automatique de la géométrie et de la luminosité d’un mur d’image.
Tentative de commercialisation via la société Icatis en 2004. Dépôt APP
IDDN.FR.001.450012.000.S.P.2004.000.21000. Co-auteurs : Sofia Zaiden-
berg, Frederic Devernay et Bruno Raffin.

• MVREALTIME (36 000 lignes de code), première version 2004. Modélisa-
tion 3D temps-réel. Transféré à la société 4D View Solutions. Dépôt APP
IDDN.FR.001.190020.000.S.P.2007.000.10000. Co-auteurs principaux :
Clément Ménier, Florian Geffray, Jérémie Allard, Bruno Raffin et Edmond
Boyer.

• Net Juggler (82 000 lignes de code, http://netjuggler.

sourceforge.net, première version Juin 2001, près de 1000
téléchargements. Net Juggler permet d’exécuter des applications VR
Juggler sur grappe de PC. Licence LGPL. Co-auteurs principaux : Jérémie
Allard, Bruno Raffin, Emmanuel Melin and Valérie Gouranton.

19

http://www.inrialpes.fr/grimage
http://flowvr.sourceforge.net
http://flowvr.sourceforge.net
 http://netjuggler.sourceforge.net
 http://netjuggler.sourceforge.net

• SoftGenLock (6 000 lignes de code, http://netjuggler.

sourceforge.net, première version Juin 2001, téléchargé près de
700 fois). Stéréoscopie active en environnement multi-projecteurs piloté
par grappe de PC. Licence LGPL. Co-auteurs principaux : Jérémie Allard,
Bruno Raffin, Emmanuel Melin et Valérie Gouranton.

3.9 Participation à la communauté académique

• Membre du comité de piloage de Eurographics Symposium on Parallel Ren-
dering and Visualization depuis 2007.

• Co-éditeur du numéro spécial Parallel Graphics and Visualization, Parallel
Computing, Volume 33, Issue 6, 2007.

• Co-éditeur du numéro spécial Parallel Graphics and Visualization, Parallel
Computing, Volume 31, Issue 2, 2005.

• Co-responsable du Eurographics Symposium on Parallel Rendering and Vi-
sualization 2006, mai 2006, Braga, Portugal.

• Co-responsable et organisateur local du Eurographics Symposium on Paral-
lel Rendering and Visualization 2004, 10 et 11 Juin 2004, Grenoble.

• Co-responsable et organisateur du Workshop on Commodity Clusters for
Virtual Reality, IEEE VR, 22 Mars 2003, Los Angeles.

• Co-responsable des tutoriaux et membre du comité de programme de IEEE
VR 2009, Lafayette,USA.

• Membre du comité de programme du CLCAR 2009 (Conferencia Latinamer-
icana de Computatición de Alto Rendimiento), Venezuela.

• Membre du comité de programme du EGPGV 2009 (Eurographics Sympo-
sium on Parallel Graphics and Visualization), Munich, Germany.

• Membre du comité de programme du PAPP 2009 (Sixth International Work-
shop on aPpplications of declArative and object-oriented Parallel Program-
ming), Baton Rouge, USA.

• Membre du comité de programme du 4th International Symposium on Visual
Computing (ISVC08), Las Vegas, USA.

• Membre du comité de programme de ACM VRST 2008, Bordeaux, France.

• Membre du comité de programme de IEEE VR 2008 (Virtual Reality), Reno,
USA.

20

http://netjuggler.sourceforge.net
http://netjuggler.sourceforge.net

• Membre du comité de programme de EGPGV 2008 (Eurographics Sympo-
sium on Parallel Graphics and Visualization), Crète, Grèce.

• Membre du comité de programme de SVR 2008 (Symposium on Virtual and
Augmented Reality), João Pessoa, Brazil.

• Participe régulièrement à la relecture d’articles pour des revues et con-
férences: PEMCS’99, HLPP’01,02 and 03, EG’2003, RENPAR’03,
SPAA’02, Presence 2003, EGPGV’04, EGVE’04, HPCSE’04, PCS’04,
OPODIS’04, Europar’98, 02,05 and 06, IEEE VR’05, Parallel Computing
Journal, TSI, IEEE Vis 2008, PAPP 07 and 08, relecteur de livre Elsevier.

3.10 Cours, tutoriaux and présentations invitées

[1] Jérémie ALlard, Clément Ménier, Bruno Raffin, and François Faure. Grim-
age: Markerless 3D Interactions. Game Developers Conference, Lyon,
2007.

[2] Bruno Raffin. High Performance Virtual Reality. Universidad da Coruna,
España, 2007. Invited Seminar.

[3] Bruno Raffin. Adaptive Algorithms for new Parallel Supports. First In-
ternational Summer School on Emerging Trends in Concurrency (TiC’06),
Bertinoro, Italia, 2006.

[4] Bruno Raffin. Componentes estandard para muros de imagenes de alta
resolución y gran tamaño. Jornadas Internacionales de Ciencias Computa-
cionales, Colima, Mexico, 2006.

[5] Jérémie Allard, Marcio C. Cabral, Camille Goudeseune, Hank Kaczmarski,
Bruno Raffin, Benjamin Schaeffer, Luciano Soares, and Marcelo K. Zuffo.
Commodity Clusters for Immersive Projection Environments. In Proceed-

ings of ACM SIGGRAPH 03, Course 18, California, July 2003.

[6] Pilippe Augerat, Camille Goudeseune, Hank Kaczmarski, Bruno Raffin,
Benjamin Schaeffer, Luciano Soares, and Marcelo K. Zuffo. Commodity
Clusters for Immersive Projection Environments. In Proceedings of ACM

SIGGRAPH 02, Course 47, Texas, July 2002.

[7] C. Cruz-Neira, C. Just, K. Meinert, A. Bierbaum, P. Hartling, and B. Raffin.
Open Source Virtual Reality. IEEE VR 2002 Tutorial, Florida, March 2002.

[8] M. Knorich-Zuffo, B. Schaeffer, C. Cruz-Neira, B. Raffin, and R. Blach. PC
Clusters for Multiprojection Immersive Environments: Time to Go? Im-
mersive Projection Technology (IPT) 2002, Florida, March 2002. Panel
discussion.

21

[9] Bruno Raffin. Des grappes de PC pour la réalité virtuelle. Imagin@.02,
Monaco, February 2002. Invited Speaker.

3.11 Publications

3.11.1 Calcul interactif haute performance

Journaux internationaux

[1] Jean-Denis Lesage and Bruno Raffin. A Hierarchical Component Model for
Large Parallel Interactive Applications. Journal of Supercomputing, July
2008. Extended version of NPC 2007 article.

[2] Luciano P. Soares, Bruno Raffin, and Joaquim A. Jorge. PC Clusters for
Virtual Reality. The International Journal of Virtual Reality, 7(1):67–80,
March 2008. Extended Version of IEEE VR 20006 survey.

Conférences et ateliers internationaux

[3] Grimage: 3D Modeling for Remote Collaboration and Telepresence, Bor-
deaux, France, October 2008.

[4] Everton Hermann, François Faure, and Bruno Raffin. Ray-traced Colli-
sion Detection for Deformable Bodies. In 3rd International Conference

on Computer Graphics Theory and Applications (GRAPP), pages 293–299,
Madeira, Portugal, January 2008.

[5] Marc Tchiboukdjian, Vincent Danjean, and Bruno Raffin. A Fast Cache
Oblivious Mesh Layout with Theoretical Guarantees. In 1st International

Workshop on Super Visualization (IWSV08), Kos, Grece, June 2008.

[6] Jean-Denis Lesage and Bruno Raffin. High Performance Interactive Com-
puting with FlowVR. In IEEE VR 2008 SEARIS workshop, pages 13–16,
Reno, USA, March 2008. Shaker Verlag.

[7] Jean-Denis Lesage and Bruno Raffin. A Hierarchical Programming Model
for Large Parallel Interactive Applications. In IFIP International Confer-

ence on Network and Parallel Computing, volume 4672 of Lecture Notes

in Computer Science, pages 516–525, Dalian, China, September 2007.
Springer. Excellent Student Paper Award.

[8] Jérémie Allard, Clément Ménier, Bruno Raffin, Edmond Boyer, and
François Faure. Grimage: Markerless 3D Interactions. In Proceedings of

ACM SIGGRAPH 07, San Diego, USA, August 2007. Emerging Technolo-
gies.

22

[9] Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis Roch. Work
Stealing for Time-constrained Octree Exploration: Application to Real-time
3D Modeling. In Eurographics 2008 Symposium on Parallel Graphics

and Visualization (EGPGV’08), pages 273–274, Lugano,Switzerland, May
2007.

[10] Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis. Roch. Par-
allel Adaptive Octree Carving for Real-time 3D Modeling. In IEEE Virtual

Reality Conference, Charlotte, USA, March 2007. Poster.

[11] Clément Ménier, Edmond Boyer, and Bruno Raffin. 3D Skeleton-Based
Body Pose Recovery. In International Symposium on 3D Data Processing,

Visualization and Transmission (3DPVT’06), pages 389–396, 2006.

[12] Van Dat Cung, Jean-Guillaume Dumas, Thierry Gautier, Guillaume Huard,
Bruno Raffin, Christophe Rapine, Jean-Louis Roch, and Denis Trystram.
Adaptive algorithms : theory and application. In SIAM Parallel Processing,
San Francisco, February 2006.

[13] Van Dat Cung, Vincent Danjean, Jean-Guillaume Dumas, Thierry Gautier,
Guillaume Huard, Bruno Raffin, Christophe Rapine, Jean-Louis Roch, and
Denis Trystram. Adaptive and Hybrid Algorithms: classification and illus-
tration on triangular system solving. In Transgressive Computing, Grenada,
April 2006.

[14] Bruno Raffin and Luciano Soares. PC Clusters for Virtual Reality. In IEEE

Virtual Reality Conference, pages 215–222, Alexandria, USA, March 2006.

[15] Jérémie Allard and Bruno Raffin. Distributed Physical Based Simulations
for Large VR Applications. In IEEE Virtual Reality Conference, pages 215–
222, Alexandria, USA, March 2006.

[16] Jérémie Allard, Jean-Sébastien Franco, Clément Ménier, Edmond Boyer,
and Bruno Raffin. The GrImage Platform: A Mixed Reality Environment
for Interactions. In Fourth IEEE International Conference on Computer

Vision Systems (ICVS’06), pages 46–52, New York, January 2006.

[17] Jérémie Allard, Clément Ménier, Edmond Boyer, and Bruno Raffin. Run-
ning Large VR Applications on a PC Cluster: the FlowVR Experience. In
IPT & EGVE Workshop 2005, Denmark, October 2005.

[18] Jérémie Allard and Bruno Raffin. A Shader-Based Parallel Rendering
Framework. In IEEE Visualization Conference, pages 127–134, Minneapo-
lis, USA, October 2005.

[19] Jérémie Allard, Edmond Boyer, Jean-Sébastien Franco, Clément Ménier,
and Bruno Raffin. Marker-less Real Time 3D Modeling for Virtual Reality.

23

In Immersive Projection Technology Symposium (IPT’04), Ames, Iowa, May
2004.

[20] Jérémie Allard, Valérie Gouranton, Loic Lecointre, Sébastien Limet, Em-
manuel Melin, Bruno Raffin, and Sophie Robert. FlowVR: a Middleware
for Large Scale Virtual Reality Applications. In Euro-Par 2004 Parallel

Processing: 10th International Euro-Par Conference, pages 497–505, Pisa,
Italia, August 2004.

[21] Jean-Sébastien Franco, Clément Ménier, Edmond Boyer, and Bruno Raffin.
A Distributed Approach for Real Time 3D Modeling. In Conference on

Computer Vision and Pattern Recognition Workshop (CVPRW) 2004, pages
31–38, Washington, USA, July 2004.

[22] Jérémie Allard, Bruno Raffin, and Florence Zara. Coupling Parallel Simu-
lation and Multi-display Visualization on a PC Cluster. In Euro-par 2003,
Klagenfurt, Austria, August 2003.

[23] Jérémie Allard, Valérie Gouranton, Gilles Lamarque, Emmanuel Melin, and
Bruno Raffin. Softgenlock: Active Stereo and Genlock for PC Cluster. In
IPT & EGVE Workshop 2003, pages 255–260, Zurich, Switzerland, May
2003.

[24] Jérémie Allard, Valérie Gouranton, Loic Lecointre, Emmanuel Melin, and
Bruno Raffin. Net Juggler: Running VR Juggler with Multiple Displays
on a Commodity Component Cluster. In IEEE Virtual Reality Conference,
pages 275–276, Orlando, USA, March 2002.

[25] Jérémie Allard, Valérie Gouranton, Emmanuel Melin, and Bruno Raffin.
Parallelizing Pre-rendering Computations on a Net Juggler PC Cluster. In
Immersive Projection Technology Symposium (IPT), Orlando, USA, March
2002.

3.11.2 Mesure de performance

Journaux électroniques et atelier internationaux

[26] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Com-
munication Performance and Scalability of a Linux and an NT Cluster of
PCs, a SGI Origin 2000, an IBM SP and a Cray T3E-600. The Journal of

Performance Evaluation and Modelling for Computer Systems, March 2000.
http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[27] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. The Performance of
the MPI Collective Communication Routines for Large Messages on the
Cray T3E-600, the Cray Origin 2000, and the IBM SP. The Journal of

24

Performance Evaluation and Modelling for Computer Systems, July 1999.
http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[28] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Com-
munication Performance and Scalability of a SGI Origin 2000, a cluster of
Origin 2000’s and a Cray T3E-1200 using SHMEM and MPI Routines. The

Journal of Performance Evaluation and Modelling for Computer Systems,
October 1999. http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[29] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Com-
munication Performance and Scalability of a Linux and a NT Cluster of PCs,
a Cray Origin 2000, an IBM SP and a Cray T3E-600. In Proceedings of the

IEEE International Workshop on Cluster Computing (IWCC’99), pages 26–
35, Melbourne, Australia, December 1999.

[30] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Scala-
bility of the Cray T3E-600 and the Cray Origin 2000 Using SHMEM Rou-
tines. The Journal of Performance Evaluation and Modelling for Computer

Systems, December 1998. http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

3.11.3 Programmation parallèle

Journaux internationaux

[31] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Struc-
tured Synchronization and Communication Model Fitting Irregular Data Ac-
cesses. Journal of Parallel and Distributed Computing, 50:3–27, 1998.

Conférences et ateliers internationaux

[32] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Cost
Model For Asynchronous and Structured Massage Passing. In P. Amestoy,
P. Berger, M. Daydé, I. Duff, V Frayssé, L. Giraud, and D. Ruiz, editors,
EuroPar’99 Parallel Processing, volume 1685 of LNCS, pages 552–560.
Springer-Verlag, 1999.

[33] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Sim-
ple Synchronization and Communication Multi-threaded Library for Auto-
matic Distribution of Irregular Sequential Code. In Third International Con-

ference on Massively Parallel Computing Systems - MPCS’98, pages 482–
489, Colorado Springs, USA, April 1998. IEEE Computer Society Press.

[34] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Gen-
eral but Simple Technique to Handle Asynchronous Data-Parallel Control
Structures. In Fifth Euromicro Workshop on Parallel and Distributed Pro-

cessing - PDP’97, pages 189–196, London, United Kingdom, January 1997.
IEEE Computer Society Press.

25

[35] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot.
SCLchan: An Asynchronous Data-Parallel Language for Irregular Algo-
rithms. In Second International Workshop on High-Level Parallel Pro-

gramming Models and Supportive Environments - HIPS’97 (in conjonction

with 11th International Parallel Processing Symposium - IPPS’97), Geneva,
Switzerland, April 1997. IEEE Computer Society Press.

[36] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. Imple-
mentation on Cray T3D/T3E of SCLchan, a Programming Language Unify-
ing Data and Task Parallelism. In Third European CRAY-SGI MPP Work-

shop, Paris, September 1997.

[37] Yann Le Guyadec, Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and
Bernard Virot. A Loosely Synchronized Execution Model for a Simple
Data-Parallel Language. In L. Bougé, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, EuroPar’96 Parallel Processing, volume 1123 of LNCS,
pages 732–741. Springer-Verlag, 1996.

[38] Yann Le Guyadec, Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and
Bernard Virot. Structural Clocks for a Loosely Synchronized Data-Parallel
Language. In Second International Conference on Massively Parallel Com-

puting Systems - MPCS’96, pages 482–489, Ischia, Italy, May 1996. IEEE
Computer Society Press.

3.11.4 Réseaux de neurones

Journal international

[39] B. Raffin and M. B. Gordon. Minimerror, a temperature dependent learning
rule. Neural Computation, 7(6):1206–1224, November 1995.

Atelier international et chapitre de livre Français

[40] Bruno Raffin and Bernard Virot. A Learning Rule Safe From Local Minima
for a Generalized Perceptron. In P.G. Anderson and K. Warwick, editors,
Proceedings of the international ICSC Symposia IIA’96 and SOCO’96, vol-
ume B, pages 223–229. ICSC Academic Press, March 1996.

[41] Bruno Raffin and Bernard Virot. Algorithmique neuronale. In G. Authié,
J. Garcia, A. Ferriera, J. Rach, G. Villard, J. Roman, C. Roucairol, and B. Vi-
rot, editors, Parallélisme et applications irrégulières, pages 49–68. Hermes,
Paris, France, 1995.

26

Chapter 4

Curriculum Vitae (English
version)

Bruno RAFFIN
Born the 31th of December 1970, France
Married, one child

4.1 Employment History

• Since October 2001. INRIA Research Scientist at INRIA Rhône-Alpes
Grenoble, France.

• September 1999 - September 2001. Assistant Professor at Université
d’Orléans, France.

• January 1998 - August 1999. Postdoc fellow at Iowa Sate University, USA.
Funded by a Cray-SGI grant. Teaching duty of 60 hours per semester.

4.2 Education

• 1993-1997. Ph.D. in Computer Science, Université d’Orléans, France. Ti-

tle: A Structured Model of Communications and Synchronizations for Task

Parallelism. Advisers: Bernard Virot and Robert Azencott.

• 1993. DEA d’Informatique Fondamentale (Diploma of Advanced Studies
in computer sciences with specialization in parallelism). École Normale
Supérieure de Lyon, France.

27

• 1991-1992 Master in Mathematics. Université Lyon I, France.

4.3 Teaching

• 2001-2008: Parallel computing (Université d’Orléans, 8 hours per year,
Ph.D. program), Introduction to parallel computing (Grenoble Université,
18 hours per year, Master program).

• 1999-2001: Université d’Orléans. 230 hours per year. Computer architec-
ture, operating systems, networking and internet technology, security, paral-
lel computing. Master program.

• 1998-1999: Iowa Sate University. 180 hours. Math class. Undergraduate
program.

• 1994-1997: Université d’Orléans. 96 hours per year. Algorithms, Turbo
Pascal programming and mathematics for computer science. Undergraduate
program.

4.4 Research Advising

4.4.1 Ph.D. Students

• Marc Thiboukdjian (since 2007). Parallel and cache-oblivious algorithms
for 3D mesh layouts. Co-advised with Vincent Danjean and Jean-Louis
Roch.

• Benjamin Petit (since 2007). Interaction with multi-camera environments.
Co-advised with Edmond Boyer.

• Everton Hermann (since 2006). Parallel algorithms for the SOFA physics
simulation framework. Co-advised with François Faure.

• Jean-Denis Lesage (since 2006). Adaptive algorithms for large interactive
3D applications.

• Thomas Arcila (2005). High performance sort-first rendering. Stopped after
one year. Engineer at Mercury Computer, Bordeaux, France.

• Clément Ménier (2003-2007). Computer system for real-time 3D model-
ing. Co-advised with Edmond Boyer. Co-founder and chief software archi-
tect of the 4D Views company, Grenoble, France.

• Jérémie Allard (2002-2005). Middleware for large virtual reality applica-
tions running on PC clusters. INRIA research scientist at Lille, France.

• Jesus Verduzco (2001-2005). X Windows environment for display-wall.
Associate Professor at the Universidad de Colima, Mexico.

28

4.4.2 Postdoc

• Luciano Soares (2006). Postdoc. Adaptive parallel octree. Research scien-
tist at Petrobras, Brazil.

4.4.3 Engineers

• Thomas Dupeux (since 2008). Grimage platform support.

• Antoine Vanel (since 2008). FlowVR development.

• Loick Lecointre (2003-2004). FlowVR development. Engineer at
Amadeus, Paris.

4.4.4 Internships

• 28 internships since 2000 (graduate level).

4.5 Administrative Responsibilities

• President of the INRIA Rhône-Alpes Technological Development Commit-
tee (since 2007). In charge of evaluating proposals for the attribution of
engineer grants.

• Member of the INRIA Evaluation Committee (2005-2008)

• Member of the CS (associate and assistant professor recruiting committee)
for the Université Joseph Fourier (2004-2008).

• Member of the CS for the Université d’Orléans (2008).

• Grant manager for the long term collaboration with the Universities of Rio
Grande do Sul, Brazil. Grants:

– PICS CNRS (2005-2007).

– Capes/Cofecub (2006-2008).

– INRIA associate team Diode-A (2006-2008).

– INRIA/Cnpq (2008-2010).

4.6 Grants

• European Project Interact (2007-2008). Partners: Eptron, Holographika,
Total Immersion, Vecsys SA and INRIA Rhône-Alpes. 3D modeling and
speech interfacing technologies.

29

• ANR (French national research agency) grant Vulcain (2008-20010).
Partners: Université Joseph Fourier, INERIS, Université de Bourges, SME,
PHIMECA, CEA, BULL SAS, Université de Marne la Vallée, INRIA
Rhône-Alpes.

• Ph.D. Grant co-funded by CNRS and CEA (2007-2010).

• ANR grant DALIA (2007-2009). National Coordinator. Partners: Univer-
sité d’Orléans, Université Paris 7, CEA and INRIA Rhône-Alpes. Interactive
grid, collaborative interaction and telepresence.

• ANR grant FVNANO (2008-2010). Coordinator for the INRIA Rhône-
Alpes. Partners: Université d’Orléans, Université de Bordeaux and INRIA
Rhône-Alpes. Interactive simulations of nano structures on PC cluster.

• ANR grant OCETRE (2004-2005). Partners: Thalès, Total Immersion and
INRIA Rhône-Alpes. Real-time multi-camera motion capture.

• ANR grant GEOBENCH (2003-2004). Coordinator for the INRIA Rhône-
Alpes. Partners: Université d’Orléans, Mercury Computer, CEA, BRGM,
INRIA Rhône-Alpes. Virtual reality for scientific visualization.

• ANR grant CYBER II (2003-2005). Partners: Université Lyon I, INRIA
Rhône-Alpes. Real-time 3D modeling.

• Ph.D. Grant funded by the Bull SAS (2005).

4.7 Technology Transfer

• Real-time 3D modeling code licensed to the 4DViews company co-founded
by a former Ph.D. Student (2007).

• Co-founder of the Icatis Start-up (2003). Consultant for the company from
2003 to 2006.

4.8 Software and Platforms

• Member of the steering board of the Grimage platform (since 2003). Ex-
perimental platform located at INRIA Rhône-Alpes. It gathers a PC cluster,
a camera network and a display wall. This platform is shared by 3 differ-
ent INRIA teams (PERCEPTION, EVASION and MOAIS) and funded by
various grants (locals, nationals and Europeans).

• Member of the steering board of the Digitalis project. Digitalis is a future
cluster of 2048 computing cores that will be installed at INRIA Rhône-Alpes
in 2009.

30

• FlowVR Suite (102 000 code lines, http://flowvr.sourceforge.
net. First public release: 2003. More than 800 downloads. FlowVR is a
middleware for parallel interactive applications.

• MVREALTIME (36 000 code lines). First version: 2004. Real-time 3D
modeling. Code transfered to the 4DView Solutions company.

• Calibration (19 000 code lines). 2004. Software calibration of multi-
projector display walls. Not publicly available.

• Net Juggler (82 000 code lines). 2001-2004. More than 1000 downloads.
Cluster support for VR Juggler applications.

• SoftGenLock (6 000 code lines). 2001-2004. More than 700 downloads.
Software genlocking of commodity graphics cards for active stereo render-
ing.

4.9 Participation to the Academic Community

• Member of the steering board of the Eurographics Symposium on Parallel
Rendering and Visualization since 2007.

• Co-editor special issue "Parallel Graphics and Visualization", Parallel Com-
puting, Volume 33, Issue 6, 2007.

• Co-editor special issue "Parallel Graphics and Visualization", Parallel Com-
puting, Volume 31, Issue 2, 2005.

• Co-chair of Eurographics Symposium on Parallel Rendering and Visualiza-
tion, May 2006, Braga, Portugal.

• Co-chair and local organizer of Eurographics Symposium on Parallel Ren-
dering and Visualization, June 2004, Grenoble, France.

• Co-chair and organizer of the Workshop on Commodity Clusters for Virtual
Reality, IEEE VR, 22 March 2003, Los Angeles, USA.

• Tutorial co-chair and programm committee of IEEE VR 2009, Lafayette,
USA.

• Program committee of CLCAR 2009 (Conferencia Latinamericana de Com-
putatición de Alto Rendimiento), Venezuela.

• Program committee of EGPGV 2009 (Eurographics Symposium on Parallel
Graphics and Visualization), Munich, Germany.

• Program committee of PAPP 2009 (Sixth International Workshop on aPp-
plications of declArative and object-oriented Parallel Programming), Baton
Rouge, USA.

31

http://flowvr.sourceforge.net
http://flowvr.sourceforge.net

• Program committee of ISVC08 (4th International Symposium on Visual
Computing), Las Vegas, USA.

• Program committee of ACM VRST 2008, Bordeaux, France.

• Program committee of IEEE VR 2008 (Virtual Reality), Reno, USA.

• Program committee of EGPGV 2008 (Eurographics Symposium on Parallel
Graphics and Visualization), Crete, Greece.

• Program committee of SVR 2008 (Symposium on Virtual and Augmented
Reality), João Pessoa, Brazil.

• Reviewer for several conferences and journals: PEMCS’99, HLPP’01,02
and 03, EG’2003, RENPAR’03, SPAA’02, Presence 2003, EGPGV’04,
EGVE’04, HPCSE’04, PCS’04, OPODIS’04, Europar’98, 02,05 and 06,
IEEE VR’05, Parallel Computing Journal, TSI, IEEE Vis 2008, PAPP 07
and 08, book reviewer for Elsevier.

4.10 Courses, Tutorials and Invited Talks

[1] Jérémie ALlard, Clément Ménier, Bruno Raffin, and François Faure. Grim-
age: Markerless 3D Interactions. Game Developers Conference, Lyon,
2007.

[2] Bruno Raffin. High Performance Virtual Reality. Universidad da Coruna,
España, 2007. Invited Seminar.

[3] Bruno Raffin. Adaptive Algorithms for new Parallel Supports. First In-
ternational Summer School on Emerging Trends in Concurrency (TiC’06),
Bertinoro, Italia, 2006.

[4] Bruno Raffin. Componentes estandard para muros de imagenes de alta
resolución y gran tamaño. Jornadas Internacionales de Ciencias Computa-
cionales, Colima, Mexico, 2006.

[5] Jérémie Allard, Marcio C. Cabral, Camille Goudeseune, Hank Kaczmarski,
Bruno Raffin, Benjamin Schaeffer, Luciano Soares, and Marcelo K. Zuffo.
Commodity Clusters for Immersive Projection Environments. In Proceed-

ings of ACM SIGGRAPH 03, Course 18, California, July 2003.

[6] Pilippe Augerat, Camille Goudeseune, Hank Kaczmarski, Bruno Raffin,
Benjamin Schaeffer, Luciano Soares, and Marcelo K. Zuffo. Commodity
Clusters for Immersive Projection Environments. In Proceedings of ACM

SIGGRAPH 02, Course 47, Texas, July 2002.

[7] C. Cruz-Neira, C. Just, K. Meinert, A. Bierbaum, P. Hartling, and B. Raffin.
Open Source Virtual Reality. IEEE VR 2002 Tutorial, Florida, March 2002.

32

[8] M. Knorich-Zuffo, B. Schaeffer, C. Cruz-Neira, B. Raffin, and R. Blach. PC
Clusters for Multiprojection Immersive Environments: Time to Go? Im-
mersive Projection Technology (IPT) 2002, Florida, March 2002. Panel
discussion.

[9] Bruno Raffin. Des grappes de PC pour la réalité virtuelle. Imagin@.02,
Monaco, February 2002. Invited Speaker.

4.11 Publications

4.11.1 High Performance Interactive Computing

International Journals

[1] Jean-Denis Lesage and Bruno Raffin. A Hierarchical Component Model for
Large Parallel Interactive Applications. Journal of Supercomputing, July
2008. Extended version of NPC 2007 article.

[2] Luciano P. Soares, Bruno Raffin, and Joaquim A. Jorge. PC Clusters for
Virtual Reality. The International Journal of Virtual Reality, 7(1):67–80,
March 2008. Extended Version of IEEE VR 20006 survey.

International Conferences and Workshops

[3] Grimage: 3D Modeling for Remote Collaboration and Telepresence, Bor-
deaux, France, October 2008.

[4] Everton Hermann, François Faure, and Bruno Raffin. Ray-traced Colli-
sion Detection for Deformable Bodies. In 3rd International Conference

on Computer Graphics Theory and Applications (GRAPP), pages 293–299,
Madeira, Portugal, January 2008.

[5] Marc Tchiboukdjian, Vincent Danjean, and Bruno Raffin. A Fast Cache
Oblivious Mesh Layout with Theoretical Guarantees. In 1st International

Workshop on Super Visualization (IWSV08), Kos, Grece, June 2008.

[6] Jean-Denis Lesage and Bruno Raffin. High Performance Interactive Com-
puting with FlowVR. In IEEE VR 2008 SEARIS workshop, pages 13–16,
Reno, USA, March 2008. Shaker Verlag.

[7] Jean-Denis Lesage and Bruno Raffin. A Hierarchical Programming Model
for Large Parallel Interactive Applications. In IFIP International Confer-

ence on Network and Parallel Computing, volume 4672 of Lecture Notes

in Computer Science, pages 516–525, Dalian, China, September 2007.
Springer. Excellent Student Paper Award.

33

[8] Jérémie Allard, Clément Ménier, Bruno Raffin, Edmond Boyer, and
François Faure. Grimage: Markerless 3D Interactions. In Proceedings of

ACM SIGGRAPH 07, San Diego, USA, August 2007. Emerging Technolo-
gies.

[9] Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis Roch. Work
Stealing for Time-constrained Octree Exploration: Application to Real-time
3D Modeling. In Eurographics 2008 Symposium on Parallel Graphics

and Visualization (EGPGV’08), pages 273–274, Lugano,Switzerland, May
2007.

[10] Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis. Roch. Par-
allel Adaptive Octree Carving for Real-time 3D Modeling. In IEEE Virtual

Reality Conference, Charlotte, USA, March 2007. Poster.

[11] Clément Ménier, Edmond Boyer, and Bruno Raffin. 3D Skeleton-Based
Body Pose Recovery. In International Symposium on 3D Data Processing,

Visualization and Transmission (3DPVT’06), pages 389–396, 2006.

[12] Van Dat Cung, Jean-Guillaume Dumas, Thierry Gautier, Guillaume Huard,
Bruno Raffin, Christophe Rapine, Jean-Louis Roch, and Denis Trystram.
Adaptive algorithms : theory and application. In SIAM Parallel Processing,
San Francisco, February 2006.

[13] Van Dat Cung, Vincent Danjean, Jean-Guillaume Dumas, Thierry Gautier,
Guillaume Huard, Bruno Raffin, Christophe Rapine, Jean-Louis Roch, and
Denis Trystram. Adaptive and Hybrid Algorithms: classification and illus-
tration on triangular system solving. In Transgressive Computing, Grenada,
April 2006.

[14] Bruno Raffin and Luciano Soares. PC Clusters for Virtual Reality. In IEEE

Virtual Reality Conference, pages 215–222, Alexandria, USA, March 2006.

[15] Jérémie Allard and Bruno Raffin. Distributed Physical Based Simulations
for Large VR Applications. In IEEE Virtual Reality Conference, pages 215–
222, Alexandria, USA, March 2006.

[16] Jérémie Allard, Jean-Sébastien Franco, Clément Ménier, Edmond Boyer,
and Bruno Raffin. The GrImage Platform: A Mixed Reality Environment
for Interactions. In Fourth IEEE International Conference on Computer

Vision Systems (ICVS’06), pages 46–52, New York, January 2006.

[17] Jérémie Allard, Clément Ménier, Edmond Boyer, and Bruno Raffin. Run-
ning Large VR Applications on a PC Cluster: the FlowVR Experience. In
IPT & EGVE Workshop 2005, Denmark, October 2005.

34

[18] Jérémie Allard and Bruno Raffin. A Shader-Based Parallel Rendering
Framework. In IEEE Visualization Conference, pages 127–134, Minneapo-
lis, USA, October 2005.

[19] Jérémie Allard, Edmond Boyer, Jean-Sébastien Franco, Clément Ménier,
and Bruno Raffin. Marker-less Real Time 3D Modeling for Virtual Reality.
In Immersive Projection Technology Symposium (IPT’04), Ames, Iowa, May
2004.

[20] Jérémie Allard, Valérie Gouranton, Loic Lecointre, Sébastien Limet, Em-
manuel Melin, Bruno Raffin, and Sophie Robert. FlowVR: a Middleware
for Large Scale Virtual Reality Applications. In Euro-Par 2004 Parallel

Processing: 10th International Euro-Par Conference, pages 497–505, Pisa,
Italia, August 2004.

[21] Jean-Sébastien Franco, Clément Ménier, Edmond Boyer, and Bruno Raffin.
A Distributed Approach for Real Time 3D Modeling. In Conference on

Computer Vision and Pattern Recognition Workshop (CVPRW) 2004, pages
31–38, Washington, USA, July 2004.

[22] Jérémie Allard, Bruno Raffin, and Florence Zara. Coupling Parallel Simu-
lation and Multi-display Visualization on a PC Cluster. In Euro-par 2003,
Klagenfurt, Austria, August 2003.

[23] Jérémie Allard, Valérie Gouranton, Gilles Lamarque, Emmanuel Melin, and
Bruno Raffin. Softgenlock: Active Stereo and Genlock for PC Cluster. In
IPT & EGVE Workshop 2003, pages 255–260, Zurich, Switzerland, May
2003.

[24] Jérémie Allard, Valérie Gouranton, Loic Lecointre, Emmanuel Melin, and
Bruno Raffin. Net Juggler: Running VR Juggler with Multiple Displays
on a Commodity Component Cluster. In IEEE Virtual Reality Conference,
pages 275–276, Orlando, USA, March 2002.

[25] Jérémie Allard, Valérie Gouranton, Emmanuel Melin, and Bruno Raffin.
Parallelizing Pre-rendering Computations on a Net Juggler PC Cluster. In
Immersive Projection Technology Symposium (IPT), Orlando, USA, March
2002.

4.11.2 Performance Measure

International Electronic Journals and Workshop

[26] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Com-
munication Performance and Scalability of a Linux and an NT Cluster of
PCs, a SGI Origin 2000, an IBM SP and a Cray T3E-600. The Journal of

35

Performance Evaluation and Modelling for Computer Systems, March 2000.
http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[27] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. The Performance of
the MPI Collective Communication Routines for Large Messages on the
Cray T3E-600, the Cray Origin 2000, and the IBM SP. The Journal of

Performance Evaluation and Modelling for Computer Systems, July 1999.
http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[28] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Com-
munication Performance and Scalability of a SGI Origin 2000, a cluster of
Origin 2000’s and a Cray T3E-1200 using SHMEM and MPI Routines. The

Journal of Performance Evaluation and Modelling for Computer Systems,
October 1999. http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[29] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Com-
munication Performance and Scalability of a Linux and a NT Cluster of PCs,
a Cray Origin 2000, an IBM SP and a Cray T3E-600. In Proceedings of the

IEEE International Workshop on Cluster Computing (IWCC’99), pages 26–
35, Melbourne, Australia, December 1999.

[30] Glenn R. Luecke, Bruno Raffin, and James J. Coyle. Comparing the Scala-
bility of the Cray T3E-600 and the Cray Origin 2000 Using SHMEM Rou-
tines. The Journal of Performance Evaluation and Modelling for Computer

Systems, December 1998. http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

4.11.3 Parallel Programming

International Journals

[31] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Struc-
tured Synchronization and Communication Model Fitting Irregular Data Ac-
cesses. Journal of Parallel and Distributed Computing, 50:3–27, 1998.

International Conferences and Workshops

[32] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Cost
Model For Asynchronous and Structured Massage Passing. In P. Amestoy,
P. Berger, M. Daydé, I. Duff, V Frayssé, L. Giraud, and D. Ruiz, editors,
EuroPar’99 Parallel Processing, volume 1685 of LNCS, pages 552–560.
Springer-Verlag, 1999.

[33] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Sim-
ple Synchronization and Communication Multi-threaded Library for Auto-
matic Distribution of Irregular Sequential Code. In Third International Con-

ference on Massively Parallel Computing Systems - MPCS’98, pages 482–
489, Colorado Springs, USA, April 1998. IEEE Computer Society Press.

36

[34] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. A Gen-
eral but Simple Technique to Handle Asynchronous Data-Parallel Control
Structures. In Fifth Euromicro Workshop on Parallel and Distributed Pro-

cessing - PDP’97, pages 189–196, London, United Kingdom, January 1997.
IEEE Computer Society Press.

[35] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot.
SCLchan: An Asynchronous Data-Parallel Language for Irregular Algo-
rithms. In Second International Workshop on High-Level Parallel Pro-

gramming Models and Supportive Environments - HIPS’97 (in conjonction

with 11th International Parallel Processing Symposium - IPPS’97), Geneva,
Switzerland, April 1997. IEEE Computer Society Press.

[36] Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and Bernard Virot. Imple-
mentation on Cray T3D/T3E of SCLchan, a Programming Language Unify-
ing Data and Task Parallelism. In Third European CRAY-SGI MPP Work-

shop, Paris, September 1997.

[37] Yann Le Guyadec, Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and
Bernard Virot. A Loosely Synchronized Execution Model for a Simple
Data-Parallel Language. In L. Bougé, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, EuroPar’96 Parallel Processing, volume 1123 of LNCS,
pages 732–741. Springer-Verlag, 1996.

[38] Yann Le Guyadec, Emmanuel Melin, Bruno Raffin, Xavier Rebeuf, and
Bernard Virot. Structural Clocks for a Loosely Synchronized Data-Parallel
Language. In Second International Conference on Massively Parallel Com-

puting Systems - MPCS’96, pages 482–489, Ischia, Italy, May 1996. IEEE
Computer Society Press.

4.11.4 Neural Networks

International Journal

[39] B. Raffin and M. B. Gordon. Minimerror, a temperature dependent learning
rule. Neural Computation, 7(6):1206–1224, November 1995.

International Workshop and French Book Chapter

[40] Bruno Raffin and Bernard Virot. A Learning Rule Safe From Local Minima
for a Generalized Perceptron. In P.G. Anderson and K. Warwick, editors,
Proceedings of the international ICSC Symposia IIA’96 and SOCO’96, vol-
ume B, pages 223–229. ICSC Academic Press, March 1996.

[41] Bruno Raffin and Bernard Virot. Algorithmique neuronale. In G. Authié,
J. Garcia, A. Ferriera, J. Rach, G. Villard, J. Roman, C. Roucairol, and B. Vi-

37

rot, editors, Parallélisme et applications irrégulières, pages 49–68. Hermes,
Paris, France, 1995.

38

Chapter 5

High Performance Distributed
Rendering

This chapter focuses on high performance rendering and multi-projector rendering
in particular. This work led to three main publications [11, 9, 15], two courses at
Siggraph 2002 and 2003 [20, 6], a tutorial at IEEE VR 2002 [33], and one survey
initially published at IEEE VR [75] then extended to a journal version [85]. The
work led to 3 main open source software developments: Net Juggler, SoftGenLock
and FlowVR Render. Jérémie Allard’s work, during his Master and next during his
Ph.D. [4], and to some extent Jesus Verduzsco’s Ph.D. work [89], were focused on
this topic.

5.1 PC Clusters for Multi-projector Rendering

5.1.1 Context and Motivation

Multi-projector rendering was first motivated by the emergence of projector based
immersive environments like the CAVE [34]. The CAVE is a cube shaped environ-
ment where one or several users can stand. Projectors back-project images on the
different sides. The first CAVE used 4 projectors (front, left, right and floor sides),
while today some 6-sided CAVEs use multiple projectors per side. The first CAVE
was driven by a cluster of SGI machines, but the computing and graphics resources
were classically provided by SGI Onyx machines [72]. It is only during the late
90’s, early 00’s, that commodity components, i.e PCs equipped with video game
graphics cards, started to be considered as a possible alternative to these costly
dedicated machines.

Clusters were required at first to overcome a hardware limitation: no PC could
provide enough video outputs to drive a multi-projector environment. Clusters
of workstations and later of PCs appeared in the mid 90’s for high performance
computing. They started to be used for virtual reality latter when the performance
of commodity 3D graphics cards started to take-off. This was at the time of the

39

3DFX Voodoo cards, NVIDIA TNT and Geforce cards.
The classical configuration uses one graphics card per PC and one PC per pro-

jector. The issue is to distribute the computations on the different computing hosts
and more importantly to keep coherent the images displayed by the different pro-
jectors, i.e. to obtain a seamless single image from the set of images displayed by
the projectors. There are three levels of synchronization to ensure:

• Datalock: each host have access to coherent data to compute its local image

• Framelock: the hosts synchronize their frame buffer swap, i.e. the swap
between the buffer read to generate the video signal and the buffer containing
the new image to be displayed.

• Genlock: the hosts synchronize their video signals generation. Genlock is
critical for active stereo rendering, when the video signal alternatively draw
the right eye image and the left eye one: the user equipped with shutter
glasses should only see a right eye image on each projector when the left eye
shutter is on and vice-versa.

Some high-end graphics cards, like the 3Dlabs Wildcat, offered the framelock
and genlock at a hardware level. This approach was for instance adopted to drive
a CAVE at Urbana-champaign [78]. NVIDIA provided such feature latter (2003)
with its high-end Quadro graphics cards. Our goal was to propose a solution that
did not depend on the availability of such features. We favored a software approach
for low-cost commodity based clusters.

The work we performed was centered on the Net Juggler and SoftGenLock
software libraries. Net Juggler takes care of task distribution, datalock and frame-
lock, while ensuring genlock requires a low level access to the graphics cards, a
task SoftGenLock takes care of (Fig. 5.1).

5.1.2 Net Juggler Overview

Net Juggler is an extension of the VR Juggler library enabling to run any VR Jug-
gler [25] application on a Cluster with minimal code modifications. Net Juggler
ensures the task distribution, datalock and framelock. Task distribution is simple:
all cluster hosts execute the same code but with a different and complementary
viewing frustum. To ensure datalock, input events that can modify the data loaded
at the starting time must be carefully broadcasted from the source devices to the
various hosts. Usually the amount of data sent from these input devices is small,
limiting the communication overhead. The main originality of Net Juggler is its de-
centralized architecture. Input event sources, including random number generators
as well as timers, can be freely distributed on the various hosts. Each host stores
in a continuous memory area the events to be considered for the next frame com-
putation. Then, a communication layer takes care of broadcasting these massages
to every other hosts, following a allgather collective communication for efficiency

40

(a) (b)

Figure 5.1: (a) Quake running on 3 screens, each one driven by a PC, using Net
Juggler and SoftGenlock. (b) The Cluster with the SoftGenLock box on top of one
PC.

41

Figure 5.2: The simplest SoftGenLock board we developed. It broadcasts the sync
signal from the master to the 5 slaves and the IR emitter of the shutter glasses

purpose. Framelock is a simple MPI synchronization barrier performed after flush-
ing the OpenGL pipe-line and before the buffer swap. The user can not detect
image discrepancies even with a simple 100 Mbits/s Ethernet network.

The speed-up this approach provides is high. Doubling the number of hosts
enables to compute almost twice the number of pixels. Of course, the use of com-
puting and memory resources is not optimal. Some computations and data are
duplicated. But the very first performance issue for virtual reality is latency. This
approach proved to induce a small extra latency the user usually does not perceive.

5.1.3 Net Juggler IEEE VR 2002 Article

For more details about Net Juggler, please refer to the article [11] included in
section A.1 page 111.

5.1.4 SoftGenLock Overview

SoftGenLock proposes a software approach for video signal genlocking. It pro-
vides a synchronization at the v-sync level, i.e. it ensures video retrace starts on
all graphics cards with only a few microseconds of delay. As the primary goal of
SoftGenLock is to provide active stereo support, it also flips the memory page read
(right/left eye image) at each retrace and send a sync signal to the shutter glasses
to close the right shutter according to the image displayed.

One key component of SoftGenLock is to use the parallel port as a low latency
broadcasting network (some microseconds). The parallel port is a very low level
device, directly accessible from the OS kernel without requiring any driver. Having
no driver reduces the overhead caused by handling interrupts and executing the
driver code. It also allows direct access from a real time Linux kernel like RTLinux
or RTAI, a feature used for the first version of SoftGenLock. An interesting side
effect of using the parallel port is that it can directly power and control the shutter
glasses IR emitter, as it produces the required TTL signal (Fig. 5.2).

42

We basically developed two versions of SoftGenLock. The first one was based
on an active pooling performed by the slave hosts to detect when it receives the sync
signal from the master. On Linux Kernel 2.4, the overhead was excessive. It im-
paired the proper execution of the application. To avoid this issue, we used a real-
time Linux kernel to wake up the task a few microseconds before the expected syn-
chronization signal. Once the signal received, SoftGenLock gets the video signal
position reading the CRTC registers available on VGA compliant graphics cards.
If video blanking occurs before or after the expected synchronization signal, small
unnoticeable modifications of the video signals are applied by removing or adding
hidden pixels.

To get the video card to retrace alternatively the right and left image, we build
a quad-buffering system from the standard double buffering one. The X server is
configured to have a display size twice as large as the actual display resolution.
The application is requested to draw the left and right images side by side. At each
video blanking SoftGenLock changes the starting address of the image to retrace.

The first version of SoftGenLock suffered from instabilities. From time to
time, SoftGenLock crashed. It was due to some concurrency access to the CRTC
registers. We then developed a second version to solve this issue. We relied on
NVIDIA specific registers to control the pixel clock instead of writing the CRTC
register to add or remove pixels. We also used interrupts, one generated when
receiving the synchronization signal and one when the video blanking occurred, to
get ride of pooling.

5.1.5 SoftGenLock IPT 2003 Article

The article [9], included in section A.2 page 120, presents in details SoftGenLock.
It is based on SoftGenLock I but the concepts still apply to SoftGenLock II.

5.1.6 Discussion

This initial work enabled us to make our first steps into the computer graphics
and virtual reality communities. To our knowledge we were the first to be able to
drive an active stereo multi-projector environment with a commodity cluster. This
work was rather technological, but answered to a real need at the time.

Net Juggler and/or SoftGenLock were used or tested by several labs (a few we
know: NASA Johnson Space Center - USA, HRL Laboratories - USA, Argonne
Futures Lab - USA, Iowa State University - USA, University of Kentucky - USA,
VRlab - Sweden, V-lab - Italy, University of Western Sydney - Australia, Ars Elec-
tronica - Austria). Beside some citations in classical academic publications, these
tools were also at the base of a Linux Journal article in 2002 [68].

We collaborated for a time with the VRAC, Iowa State University. The VRAC
developed VR Juggler. We collaborated to provide cluster support directly in the

43

initial VR Juggler distribution. The team decided to take a different approach re-
lying on a more classical client/server model [26]. One of the main reason was to
get ride of the MPI dependency. Once this version was available, we quit support-
ing Net Juggler, as it became easier for users to rely on the integrated VR Juggler
distribution.

We know two genlocking software libraries that adopted some of the concepts
developed for SoftGenLock, a windows Version developed at ETZH, Switzer-
land [32], and a Linux version from HLRS, Germany [92]. This last version takes
advantage of the more reactive scheduler of the Linux Kernel 2.6 to get ride of the
real time kernel we had to use.

Today, driving multi-projector environments with a PC cluster is the norm.
Several open-source and commercial solutions exist. The software architecture
can vary but the approach is alway the same: intercept and distribute input events
to the copies of the application running on each node and computing images for its
own viewing frustum. Cluster support is transparent to the application developer.
Datalock is properly ensured as long as the application developer does not intend to
use event generators that can not be intercepted (this is a common error in particular
for timers and random number generators).

The offer of genlock ready graphics cards is still very reduced (NVIDIA
Quadro graphics cards). Software genlocking is thus still an attractive solution.
But today immersive systems tend to turn away from active stereo, the main rea-
son why genlocking is required. First, CRT projectors almost disappeared today.
They are sometimes replaced by high-end DLP stereo-enabled projectors. But the
majority of immersive systems tend to use passive stereo, based on polarization
or interference filters (Infitec), where each projector is dedicated to one eye view
only. This is usually a cheaper solution that can use commodity projectors. Passive
stereo quality also improved significantly in particular with the Infitec solution.

For a large range of VR applications, the approach presented answers to the
user needs. But some large applications may require to involve more computing
hosts beside the ones attached to video projectors. This is typically the case when
coupling a parallel code with a VR application for scientific visualization or to em-
bed a complex simulation requiring a parallelization to be interactive. We explored
such approach with Net Juggler by coupling a 2D fluid simulation written with
MPI [12] and a cloth simulation parallelized with ATHAPASCAN [17].

This work highlighted the limitation of the approach in this situation. A VR
application, like one we could write with VR Juggler, tends to be monolithic in the
sense that it is built around a single loop that:

• updates the input states,

• updates the virtual scene,

• publishes the new state of the scene for various renderings (image, sound,
force feedback).

44

This sequence imposes the different steps to be synchronous, i.e. to have the same
refresh rate. Of course, it is possible to circumvent this loop. This is classically
the case for instance when reading the state of input devices. Each input device
is usually managed in an external thread or process. It asynchronously updates a
buffer that the application reads when needed. A double buffering mechanism en-
sures a safe concurrent read/write access. The main loop stays anyway the central
coordination point of the application. It impairs the ability to design and execute
an application taking advantage of numerous distributed resources. We switched
to a different approach, borrowed from scientific visualization tools like Iris Ex-
plorer [40]. The application is seen as a set of tasks, each one executing a local
loop, synchronized through the flow of data. But, in opposite to scientific visual-
ization tools, parallel execution support and synchronization policy control were
top level requirements. This approach led to FlowVR (Chapter 6 page 51).

5.2 FlowVR Render

5.2.1 Motivation

As discussed before in section 5.1.6, moving to large VR applications requires
to better rationalize the role of each processing step. This means separating the
rendering steps from the other ones, possibly executing this task on a different
machine or cluster. We saw before how multi-display rendering could be achieved.
We now consider the complementary situation, where multiple distributed tasks
concurrently provide data for rendering. The goal is to enable any task, be an input
device or a physics simulation for instance, to directly provide 3D data to the tasks
in charge of rendering the scene.

Gathering graphical data can be achieved at the pixel level. This sort-last ap-
proach [71] is commonly adopted for rendering large data sets in scientific visual-
ization applications. The data set is partitioned between different hosts. Each hosts
perform a local rendering on its own data. Partial images are them composited in a
reduction phase [64] to obtain the final image. This approach requires each task to
have rendering capabilities, which is not the situation we are targeting here.

Another approach for distributed rendering consists in intercepting the calls to
a graphics library, typically OpenGL, to encapsulate the data into messages that are
then broadcasted to distant hosts for rendering. This approach was first developed
for rendering unmodified OpenGL applications on a display-wall. The Chromium
library [53, 54] implements multiple optimizations to improve performance. For
instance, it computes bounding boxes around objects to route them only towards
the displays where they are to be rendered. But OpenGL makes it complex to merge
data streams produced by multiple hosts. As OpenGL is based on a sequential
state machine, commands must respect a strict ordering. Merging multiple streams
together requires Chromium to track state changes and to use special commands
defining the relative ordering of each stream.

45

Figure 5.3: UML diagram of the objects used to describe a 3D scene with FlowVR
Render.

5.2.2 Overview

FlowVR Render proposes to rely on recent OpenGL extensions (object buffers and
shaders) to build a protocol that makes it simple and efficient to transport and merge
graphics primitives.

A scene is described as a set of independent primitives. Each primitive contains
the description of a batch of polygons and their rendering parameters (Fig. 5.3). To
reduce the number of these parameters, as well as to take advantage of the ad-
vanced features of recent graphics cards, we use shaders to define each primitive’s
appearance. Large resources such as textures or vertex attributes are often used by
several primitives in the scene. To avoid duplicating these resources in each prim-
itive, we define resources. A resource can encapsulate a shader, texture, vertex
buffer or index buffer. It is identified by an unique ID. Each primitive refers to the
IDs of all the resources it uses. Notice that it introduces a one-way dependency
between primitives and resources, but not between primitives.

Each primitive also stores its bounding box. This information is required to op-
timize communications using frustum culling. It is useful to specify this informa-
tion in the primitive as it is costly to recover from the other parameters (especially
when using shaders that can change vertex positions). Some rendering algorithms
require primitives to be processed in a given order. FlowVR Render provides a
mechanism to enforce this ordering by associating each primitive with an order
value. This number defines a partial ordering between primitives. Primitives with
the same value can be rendered in any order. Different values will mainly be used
when rendering order can affect the final image like for transparent primitives or
user-interface overlays. For a given order value, primitives can be re-ordered to
improve performance. For instance, primitives can be sorted front-to-back to take
advantage of fast Z-culling, primitives with similar parameters such as textures
and shaders can be gathered to reduce state switching overheads. This approach
enables to easily implement performance optimizations compared to the strict or-
dering defined by an immediate-mode command stream.

We call viewers the tasks generating primitives and renderers the ones in charge

46

Renderer

Viewer Viewer Viewer Viewer

Merge

(a)

Renderer

Merge

Viewer Viewer Viewer Viewer

Merge

Merge

(b)

Viewer

Renderer Renderer Renderer Renderer

Cull

Cull

Cull

(c)

Renderer Renderer Renderer Renderer

CullCull

Cull Cull

Merge Merge

Merge

Viewer Viewer Viewer Viewer

Merge

(d)

Figure 5.4: Different FlowVR Render rendering schemes

of rendering them. Performance tests show that FlowVR Render is significantly
more scalable than Chromium regarding the number of viewers or renderers.

Combining viewers, renderers and simple message processing tasks, FlowVR
Render offers a large range of rendering schemes. The classical one is to have
several viewers sending primitives to one renderer (Fig. 5.4 (a)). Primitives are
merged into a single message handled to the render on the same hosts. It enables
to keep the renderer code simple and ignorant of the number of viewers. Rather
than to merge at a central point, it can easily be done progressively using a binary
tree structure (Fig. 5.4 (b)). One viewer can also provide data to multiple renders
using a simple broadcast, or, using again a binary tree communication scheme and
culling filters to route each primitive where it is required based on its bounding
box (Fig. 5.4 (c)). These schemes can be combined when several viewers and

47

Figure 5.5: Rendering HDTV videos on a 16 projector display wall using Mplayer
and FlowVR Render.

renderers are used (Fig. 5.4 (d)). On the Grimage platform1 (16 projectors display-
wall), we use a simple communication scheme where each viewer directly sends its
primitives to each renderer. We did some preliminary tests with binary-tree based
schemes, but performance appeared to be inferior. The benefits of the binary tree
are lost in the overhead caused by the extra message copies that take place at each
intermediate host. This scheme should become efficient for a larger number of
renderers. Notice that the schemes presented here are the sort-first equivalent of
the sort-last direct-send and binary swap algorithms [64].

5.2.3 FlowVR Render IEEE Vis 2005 Article

The article [15], included in section A.3 page 127, presents in details FlowVR
Render.

5.2.4 Discussion

FlowVR Render is publicly available and distributed with the FlowVR Suite2. It
is used for most of Grimage applications [62]. It shows a high versatility in a dis-
tributed context that makes it convenient to use. Beside its classical use presented
before, it can also carry pixel data into dynamic textures. Following this approach
we ported the Mplayer video player (Fig. 5.5). Mplayer becomes a viewer that
decompresses a video stream, stores the result (YUV encoding) into textures sent
over to the renderers. The renderers call a shader for converting the data to RGB
and map the texture on any surface for rendering. Performing the conversion with
a shader as several benefits:

• The viewer is unloaded from part of the decompression process handled to
the renders.

1http://www.inrialpes.fr/grimage
2htt://flowvr.sf.net

48

http://www.inrialpes.fr/grimage
htt://flowvr.sf.net
http://www.inrialpes.fr/grimage
htt://flowvr.sf.net

• YUV to RGB conversion is a data parallel task adapted to the GPU.

• YUV encoding takes half the size of RGB encoding, reducing the network
load.

Two videos are available at the FlowVR gallery3 (one HDTV movie video and
three HDTV movie video).

Using a similar approach, we developed an OpenGL wrapper. The openGL
application is executed on one machine using the local GPU. Each rendered image
is read back from the GPU memory and handled as a texture to build FlowVR
render primitives that are next sent to renderers. This approach enables to render
any OpenGL application in a FlowVR Render context. The resolution is obviously
limited by the one of the initial rendering. The capabilities of the distant renderers
are seldom used.

By getting ride of the OpenGL state machines FlowVR Render gains in ver-
satility and performance, but, in opposite to Chromium, does not support legacy
code. An OpenGL application needs to be rewritten using FlowVR Render, while
Chromium enables its execution without even requiring a recompilation. Here
are two partial answers to circumvent this weakness beside the OpenGL wrapper
makeshift:

• Many applications are not written directly in OpenGL but using higher level
libraries. Extending these libraries so they can support FlowVR Render en-
ables to transparently support a large range of applications. We validated this
approach with VTK [80] developing a VTK viewer. The low level OpenGL
rendering layer of VTK was rewritten with FlowVR Render. It enables any
VTK application to render using FlowVR Render [15].

• The Next version of OpenGL, OpenGL 3, abandons the state machine for
a model that is close to the one adopted for FlowVR Render. Future work
will focus on studying a new version of FlowVR Render supporting, at least
partially, OpenGL 3.

As it was our goal, FlowVR Render isolates rendering in renderers. A renderer
only has to deal with rendering issues. The renderer accepts some input events to
control the rendering, like changing the viewing frustum, or switching to a wire-
frame rendering. The version for display-walls implements framelocking and binds
camera controls so all renderers keep complementary viewing frustums. We also
developed a library for the software calibration of the Grimage display-wall. Based
on camera pictures, it computes transformation matrices and brightness correction
masks to get a seamless global image (Fig. 5.6). Applying the corresponding cor-
rections is directly handled by renderers.

3http://flowvr.sourceforge.net/FlowVRGallery.html

49

http://flowvr.sourceforge.net/FlowVRGallery.html
http://www-id.imag.fr/FLOWVR/video/grimage-mplayer_1.avi
http://www-id.imag.fr/FLOWVR/video/grimage-mplayer-mulit_1.avi
http://flowvr.sourceforge.net/FlowVRGallery.html

Figure 5.6: Display-wall software calibration.

50

Chapter 6

A Middleware for High
Performance Interactive
Computing

This chapter deals with the design of a middleware adapted to large interactive
applications. This work led to FlowVR1, an open source software still actively
used and developed. FlowVR is the software backbone of the Grimage platform2.
Its design was presented in two main articles [10, 61]. It is also at the center
of four publications, which are more application oriented [13, 16, 14, 62]. Both
Ph.D. works of Jérémie Allard [4] and Jean-Denis Lesage (on-going work) are
focued on FlowVR design. Clément Ménier, an early and advanced FlowVR adept,
intensively used it for his Ph.D. work [69].

6.1 Motivation

As seen in section 5.1.6 page 43, FlowVR development was motivated by the limi-
tations experienced when intending to use Net Juggler for large parallel interactive
applications.

Today, the number of such large interactive applications is still limited. The
main difficulties to overcome include:

• Algorithmic issues to run correct simulations, to produce convincing and
useful images or other non-visual renderings, to integrate and extract data
from various captors like cameras.

• Software engineering issues where multiple pieces of codes (simulation
codes, graphics rendering codes, device drivers, etc.), developed by different
persons, during different periods of time, have to be integrated in the same
framework to properly work together.

1http://flowvr.sourceforge.net/
2http://www.inrialpes.fr/grimage

51

http://flowvr.sourceforge.net/
http://www.inrialpes.fr/grimage
http://flowvr.sourceforge.net/
http://www.inrialpes.fr/grimage

• Hardware performance limitations bypassed by multiplying the units avail-
able (disks, CPUs, GPUs, cameras, video projectors, etc.), but introducing
at the same time extra complexity. In particular it often requires to introduce
parallel algorithms and data redistribution strategies that should be generic
enough to minimize human intervention when the target execution platform
changes.

Examples of such applications include the Hercules system that couples an
earthquake simulation and an on-line visualization using 2000 processors to reach
the frequency of 2Hz on a 1200 billions elements simulation [87]. Other initiatives
intend to design cross-continental interactive applications relying on the perfor-
mance of optical networking [83]. A number of virtual reality applications are
relying on parallel machines to provide the required I/O and computing resources.
Blue-C [49] and Grimage [14] are good examples of high performance immersive
platforms relying on parallel machines to process in real time data acquired through
a network of cameras.

FlowVR was designed with the goal of enforcing a modular programming that
leverages software engineering issues while enabling high performance executions
on distributed and parallel architectures. We did target a middleware tailored for
high performance interactive applications rather than a generic purpose one. The
objective was to take advantage of the specificity of these applications to achieve an
improved modularity and performance. The base concepts FlowVR is built upon
are:

• A static data-flow model. An application is seen as a static graph, where
vertices are computing tasks distributed on computing resources and edges
are FIFO data communication channels.

• A task, or component, executes an endless iterative loop ignoring networking
issues. It just endlessly gets data from input ports, process the data and
provide results on output ports.

• A set of tasks can actually be a parallel application, i.e. tasks that commu-
nicate between each-other by other means than the data channels defined by
the graph vertices. The middleware should not be aware of these communi-
cations and should not impair them.

• Turning an existing code, parallel or not, into a component of the middleware
should lead to minimal code modifications.

• The middleware should enable the design of advanced communication
schemes, in particular collective communications, data re-sampling policies
and complex synchronization patterns.

• The model should enable to define patterns, built from other patterns, easy
to handle for further reuse.

52

• The specialization and parameterization of an application for a given target
architecture should be as independent as possible from the core application
design.

The data-flow model is classically used in several scientific visualization
tools [27, 40, 1], but usually not in a distributed context or only in a limited way.
The data-flow graph being static, it enables off-line error detections and optimiza-
tions. We decided to postpone the introduction of dynamic components in FlowVR,
to gain experience on application development and better evaluate what could be
required.

6.2 The FlowVR Model

6.2.1 Messages and Stamps

Each message sent on the FlowVR network is associated with a list of stamps.
Stamps are lightweight data that identify the message. Some stamps are automat-
ically set by FlowVR. The user can also define new stamps if required. A stamp
can be a simple ordering number, the id of the source that generated the message or
a more advanced data like a 3D bounding volume. To some extent, stamps enable
to perform computations on messages without having to read the message content.
The stamp list can be sent on the network without the message payload if the des-
tination does not need it. It enables to improve performance by avoiding useless
data transfers on the network.

6.2.2 Module

The base component of FlowVR is the module. A module has input and output
ports. It executes an endless loop and its application programming interface (API)
is built around three basic instructions:

• wait: lock the module as long as no new message is available on each of its
input port.

• get: get a pointer on the new message received on a given port.

• put: publish a new message on a given output port.

If a port is not connected to any other FlowVR component it is inactive. The wait

instruction ignore it. There is no imposed form for a module as long as its semantics
is respected. It can be a process, a thread, a group of threads collaborating to
implement a module.

By default each module has:

• an output port endit where a message is sent every time the module enters
the wait instruction,

53

• an input port beginit that, when active, locks the module as long as no mes-
sage is received on the port (the message is used as an event and its content
is ignored).

6.2.3 Connection

A connection is a simple FIFO channel connecting an input port to an output port.
Several connections can connect to one output port. In this case each message
available on the output port is broadcasted on each connection. One input port can
only have one incoming connection.

The simplest application a user can write involves two module connected
through a connection. The size of the buffer associated to a connection is only
limited by the amount of memory available. If the receiver is slower than the
sender, an overflow will occur once the memory is saturated. We will see later how
to avoid such situation.

FlowVR defines two types of connections. Full connections carry the full mes-
sages, i.e the stamp list and the payload, while stamp connections extract from the
message the stamp list and carry only this data to the destination.

6.2.4 Routing Node

A routing node is a simple message routing task that has one incoming connection
and possibly several output connections. It is used for data broadcasting or to
reroute messages.

6.2.5 Filter

A filter has input and output ports. In opposite to modules that can only access
the last message received on each input port, a filter has access to the full buffer
of incoming messages stored locally. It can freely modify or discard any of these
messages. A filter can for instance re-sample messages, by discarding all incoming
messages except the last one that it forwards on its output port.

The API to develop modules is intentionally simple and constraining (see the
wait semantic for instance). The goal is to keep module development simple. In
opposite, filters offer more freedom in particular regarding buffer access. Usually
an application developer does not have to develop new filters. Filters provided
with FlowVR perform generic message handling tasks, making them easy to reuse
in multiple applications. Combining filters and modules enable to implement com-
plex behaviors as we will see in the following section.

6.2.6 Synchronizer

Synchronizers are a specific class of filters that are in charge of implementing syn-
chronization policies. In opposite to general filters, they only receive message
stamp lists and not the full messages.

54

Figure 6.1: A simple FlowVR application with only one connection between two
modules.

6.3 Simple Examples

We detail a few simple examples of some common patterns. Assembling such pat-
terns for large applications can lead to complex data-flow graphs (Fig. 6.8 page 62).

The simplest application connects one data producer, the modules compute,
and the visu consumer module (Fig. 6.3). The consumer frequency at most reaches
the one of the producer. If the consumer is slower than the producer, the number of
messages sent will grow because the consumer will not be able to process them. In
the model, the buffers associated to FIFO connections are unlimited, but practically
they are limited by the amount of memory available. So a memory overflow will
occur.

A simple approach to avoid such memory overflow is to switch from a push
paradigm to a pull one. Because FlowVR allows cycles in the data-flow graph, it is
possible to have the visu module controlling the frequency of compute. Each time
visu ends an iteration, it sends a request message on it endIt port. This message is
forwarded by the PreSignal filter to the beginIt port of compute. This message will
unlock compute, that will proceed to produce a new data.

To avoid deadlocks caused by the cycle, we use the PreSignal filter. This filter
starts by sending a first message to compute and proceed by forwarding incoming
messages: it puts an initial token into the cycle to unlock it.

55

Figure 6.2: The visu module pull on demand messages from compute.

56

Figure 6.3: The max frequency filter bounds the frequency of the compute module.

Another approach to control the frequency of a module, is to use a MaxFre-

quency synchronizer (Fig. 6.3). Each time the module ends an iteration, it sends
a request message to the synchronizer (endIt port). The synchronizer respond by
sending a message to compute on it benginIt port, enabling a new iteration. The
frequency of these responses matches the request frequency as long as it is lower
than the maximum allowed frequency (a parameter of the synchronizer).

Here we have a cycle too. This is the MaxFrequency synchronizer that is in
charge of sending the unlocking first message. As this synchronizer is always used
in cycles, it is convenient to give it this responsibility.

We usually add an input port to the MaxFrequency synchronizer to modify on-
line the maximum frequency parameter through an other module that implements
a graphical user interface.

For large interactive applications, having all modules running at the frequency
of the slowest one can severely affect the reactivity of computations. A possible ap-
proach is to consider that a data stream is a sampled signal that can be re-sampled.
The consumer only gets the data it can process, discarding the other ones.

We present the greedy pattern, a basic re-sampling pattern favoring the reactiv-
ity by providing the consumer with the most recent data available (Fig. 6.4). Be-
cause filters have access to the full buffer of messages stored locally, it can easily
implement a sampling policy. This pattern relies on 2 filters and one synchronizer.

Each time the module visu ends an iteration (endItăport), the synchronizer re-

57

Figure 6.4: The greedy pattern enables compute and visu to run at independent
frequencies

58

Figure 6.5: Merging messages with one filter.

ceives one message. The synchronizer also receives a stamp message for each
message sent by the producer. This stamp message is actually provided by the
PreSignal filter. Like for the previous example, the PreSignal is present to unlock
the cycle created by the synchronizer. When the synchronizer receives a request
from visu, it forwards to the FilterIt filter the stamp of the last stamp message re-
ceived from PreSignal. The filter FilterIt waits to receive the full message having
this same stamp, discards all older messages locally stored and forwards this mes-
sage to visu. If no message is available when the synchronizer receives the request,
it tells, with a special empty message, the module to reuse the last message already
received.

Assume now that compute is a parallel application starting four modules com-

pute/O,... compute/3. We could modify visu to have four input ports to receive the
data part produce by each process. Though possible, this is an approach we usu-
ally avoid with FlowVR. It makes the visu module code dependent of its external
environment. To enforce the modularity of the application, visu is not modified
and the reduction of the partial results to one message is performed by an external
filter (Fig. 6.5). Performance is affected if this involves data copies that would not
perform a modified visu module. The reduction can also be implemented along a
binary tree merging pattern for performance reasons (Fig. 6.6). Switching between
these different patterns is external to the module code. It involves neither code
modification nor module recompilation.

Notice that a host name, host1, host2, etc. is associated with each component.
This is the host that executes the component. Module mapping is the responsibility

59

Figure 6.6: Merging messages along a binary tree of filters.

60

 Daemon

 Process2

 Process1

Shared

Memory

Network

Figure 6.7: The FlowVR daemon acts as a broker between modules.

of the user. Filter mapping is usually automatically derived from the module hosts.
This automatic mapping is based on our experience rather than some optimization
process.

6.4 Run-time Environment

FlowVR run-time environment relies on a daemon that runs on each host of the
target machine. This daemon is in charge of:

• registering each module running on its host,

• implementing all message exchanges transiting through its host,

• executing all local filters and routing nodes.

Modules are launched directly using their own command. FlowVR does not
imposes any specific launching command to ease portability of existing codes. For
instance a MPI code can use mpirun. Once launched, each module registers at the
daemon of its host.

The daemon manages a shared memory segment that is used to store all mes-
sages it handles (Fig. 6.7). When a module requests a memory space to store a new
message, the daemon provides the module a pointer to a free space in the shared
memory segment. Having direct access to the shared memory segment saves data
copies.

When a module executes a put, it tells the daemon that the message is ready to
be forwarded to its destination. If the destination module runs on the same host,
the demon provides a pointer to the module that directly reads the message from
the shared memory. If the message has to be forwarded to a module running on
a distant host, the daemon sends it to the daemon of the distant host. The target
daemon retrieves the message, stores it in its shared memory segment and provides
a pointer on the message to the destination module.

61

Figure 6.8: Example of the data-flow graph of an application running on the Grim-
age platform. Edges represent connections and vertices modules, filters or routing
nodes.

Each daemon stores a table of actions to perform on messages according to
their origin. An action can be a simple message routing, or the execution of a
filter. Filters ares plugins loaded by the daemons when starting the application.
Appear here an other important difference between a filter and module. A filter is
necessarily a daemon plugin, while a module is a process or thread external to the
daemon.

From the description of the application, we compute a list of commands that
are sent to each daemon at starting time and that enables it to:

• instantiate a module controller for each module that will be registered,

• built its action table,

• load the required filter plugins.

The daemon and its plugins are multi-threaded, ensuring a better performance
scalability on multi-core and multi CPU architectures.

6.5 Hierarchical Component Model

Because FlowVR is designed for large applications, the data-flow graph can be
complex (Fig. 6.8). We have to provide the user tools to face this complexity
and avoid him the burden of explicitly describing such a graph. We rely on the

62

composite design pattern [45] to support hierarchies of components. It enables
to encapsulate in one component a complex pattern recursively built from simpler
ones.

A component defines input and output ports. We distinguish two kinds of com-
ponents:

Primitive components. A primitive component is a base component that cannot
contain an other component. Primitive components are modules, filters, rout-
ing nodes and connections.

Composite components. A composite component contains other components
(composite or primitive). Each port is visible from the outside and the in-
side of the component. Component encapsulation is strict. A component can
not be directly contained into two parent components.

A link connects two component ports. It cannot directly cross a component
membrane. A link between 2 ports is allowed only for the 2 following cases:

• A descendant link connects a port of a parent composite component to a port
of one of its child component. Such links must always connect an input/input
or output/output pair of ports.

• A sibling link connects two ports of two components having the same parent
component. Such a link must always connect an input/output pair of ports.

A simple and common composite component is a metamodule. A metamodule
handles modules that are logically related, in particular when they are all started
from a single command. This is for instance the case for a MPI code that uses
mpirun to start all its processes. Such metamodule takes as parameter the list
of hosts where to start the program. From this list of hosts it defines the different
modules, one per MPI process, and the exact syntax of the command to start the
application.

In this model, a FlowVR application becomes one component. Each compo-
nent is defined locally according to the other sibling components and its parent. It
favors modularity. The developer does not need to control all components of the
application as he would if he had to directly write the data-flow graph. For instance,
all components need to have a unique id. With the hierarchical model, the user just
needs to make sure the component he develops has an id different from the other
sibbling components having the same parent component. He does not have to pay
attention to other component ids. Then, the components of the data-flow graph are
produced processing the hierarchical description. If we consider the examples of
the component ids, the data-flow graph component ids are obtained by concatenat-
ing all ascendants ids. The unicity of ids between siblings components ensures the
final ids are all unique.

The function to process a component is local to each component. It enables
to adapt the function to the local context. For instance, a component could decide

63

to capitalize its id before to concatenate it. Such function is called a controller.
Because components are developed using object inheritance, controllers are over-
written only when required, the inherited controller being used otherwise.

Controllers are called during an application traverse. Usually one traverse
just calls one controller per component. During a traverse, parameters can be ex-
changed between controllers to propagate data. It enables for instance to get the
concatenation of all ascendant names and a file where to append the newly com-
puted component name.

Some controllers, called configuration controllers, modify the state of their
component. In this case the execution order of various controllers is significant.

FlowVR application processing relies on 4 main controllers:

• an execute controller in charge of creating child components and ports com-
ponents according to their environment (external parameters as well as other
component states). For a MPI metamodule it creates the list of child compo-
nent (modules) from the lists of hosts where to execute the application.

• a mapping controller in charge of defining the host each primitive component
is executed on. For a MPI metamodule, it associates one host name to each
child module.

• a run controller that extracts the launching command for each metamodule.

• an XMLBuild controller that builds the data-flow graph of the application
(using the XML markup language).

Here is an example of component hierarchy (Fig. 6.9). The Computes meta-
module is a MPI application spawning several modules. The Visualization meta-
module only spawns two modules (interleaved threads), one dedicated to keyboard
and mouse event capture, and the other to process and render incoming data. To
interconnect both components, we use an extra composite component, called Con-

nect. Connect is in charge of gathering the partial results from the various Com-

pute/i processes to forward a single message containing a full simulation state to
Visualization. Connect is built from the NtoOne component. This component en-
capsulates a generic tree pattern for data redistribution. Connect just sets the pa-
rameters of NtoOne: the arity of the tree (2) and the type of the component used
for the tree nodes (Merge). The actual content of NtoOne is known once Computes

is properly instantiated. Only at this point NtoOne knows how many pieces of data
it has to gather to set the tree depth. The execute controller of NtoOne must be ex-
ecuted after the one of Computes that creates the modules Compute/i. If Computes

spawns only one module Compute/0, Connect will produce one point-to-point con-
nection between Compute/0 and Render.

64

Figure 6.9: A component hierarchy (top) and the associated data-flow graph (bot-
tom). Dashed sets show the composite components the graph elements are related
to.

65

6.6 Application Processing

For configuration controllers that depend on the state of other linked (directly or
not) components, the traverse must obey a certain execution order to respect data
dependencies. For instance, a component may define its number of children ac-
cording to the number of modules of the metamodule it is linked to. It thus re-
quires that the metamodule has defined its child modules before the controller can
be called on the current component.

We use a simple algorithm that guarantees to complete the traverse when pos-
sible or return the list of misprogrammed components if some data dependencies
cannot be solved whatever the execution order is. The traverse algorithm is a
greedy process. The algorithm manages a queue of non-executed components, ini-
tialized with the top-level components of the application. For each component in
this queue, the algorithm tries to execute the associated controller. If the controller
is successfully executed, then all of its children are pushed in the queue. Other-
wise, the algorithm restores the component initial state and push it at the end of the
queue. The traverse ends successfully when the queue is empty. If no controller
can be called on the rest of the components in the list, then the algorithm stops in
a fail state. The controller of the remaining components cannot be executed either
because at least one of these components is misconfigured (a parameter is not in-
stantiated for instance), or because a cycle of dependencies has been introduced
when assembling the components.

The hierarchical component model only affects the front-end of FlowVR
(Fig. 6.10). The run-time environment is not modified. Components are written
in C++ and compiled into shared libraries. An application is also a composite
component compiled into a shared library. It can thus be reused in other applica-
tions without being recompiled. The FlowVR front-end loads the application and
applies a sequence of traverses to produce the list of commands to start the modules
and the instructions to forward to the different daemons to implement the data-flow
graph.

6.7 Europar 2004 and Supercomputing Journal 2008 Ar-
ticles

The first article [10], included in section A.4 page 136, presents the FlowVR Model
in details. Is is not based on the hierarchical component model but on the initial
application description environment using Perl scripts and XML. The second arti-
cle [61], included in section A.5 page 146, is focused on the hierarchical model. It
presents the traverse algorithms, a complexity analysis and a convergence proof.

66

Figure 6.10: The FlowVR front-end. Components (left to right) are compiled,
loaded and traversed to provide the module launching commands and the instruc-
tion sets for the daemons. Once compiled, modules (top to bottom) are started as
requested by the application.

67

Figure 6.11: Iso-surface extraction performed with VTK and multi-projector ren-
dering with FlowVR Render.

6.8 Positioning

The data-flow model is classical for scientific visualization tools. But usually dis-
tributed executions and parallel code coupling are not first class features and their
support is limited [27].

Some tools, like VTK [2], VISIT [29] or AVS [88], support data parallelism re-
lying on MPI. These tools adopt either a push (data-driven) or pull model (demand-
driven). For instance VTK and VISIT are both pull based, OpenDX [1] and Iris
Explorer [40] use a push one.

In a distributed context the pull model can impair performance, as it adds the
latency caused by the request message. For this reason FlowVR adopts a push
model. But because it allows cycles, it can also implement pull actions. It enables
to mix between a push or pull model depending on the application requirements.

FlowVR, being a low level middleware, is not directly a scientific visualization
tool. However it can encapsulate visualization tools to provide higher level func-
tionalities. For instance, the VTK-FlowVR [15] extension enables to encapsulate
VTK codes into FlowVR components (Fig. 6.11). Encapsulation can take place at
an application level, where a full VTK application is one FlowVR component, or
at a lower level, where a VTK pipeline is split in several FlowVR components.

Virtual reality frameworks are first focused on parallelism for multi-projector

68

rendering and distributed input devices [85]. For instance VR juggler [26] uses
CORBA for distributing input devices. Parallel simulations coupling is supported
in some cases relying on simple data redistribution mechanisms [90].

OpenMask [65] makes sampling one of its base concept. OpenMask is based
on a data-flow model where each task run asynchronously. Each data stream is
associated with an interpolation/extrapolation function to re-sample it according
to the destination data needs. FlowVR filters can be used to implement similar
re-sampling schemes.

Component oriented middleware libraries were first developed for distributed
applications [73, 74], making flexibility their primary goal. It results in tools that
are not well adapted for high performance computing, motivating the development
of extensions and new models [58, 36, 37, 23, 18]. Notice in particular the on-going
project SCIRun2, whose goal is to extend the SCIRun environment to support the
CCA component model for high performance computing [93]. Limitations of clas-
sical component oriented middleware include:

• missing abstractions for parallel programming,

• performance issues,

• usually require substantial modification of existing applications.

The component models aforementioned, mainly derived from CCM, do not
support component hierarchy. Fractal makes it one of its basic feature [38]. But
like the CCM model, parallel code coupling is not directly supported. Pro-active,
a grid middleware, implements part of the Fractal specification and supports both,
component hierarchy and parallel code coupling [21]. However redistribution pat-
terns are coded into the ports of the parallel components. A pattern cannot be
modified without affecting the component, limiting the application modularity.

FlowVR adopts a component oriented approach based on a data-flow model
rather than remote procedure calls. It takes advantage of its static data-flow model
to enable component hierarchies, while enabling parallel component coupling. One
important issue of parallel code coupling is data redistribution (classically called
the N × M issue) [94, 39, 76]. The hierarchical FlowVR model enables to encap-
sulate redistribution patterns into components that are independent from the data
producers and consumers. Though the model should support complex N × M
redistribution patterns, we have not yet implemented such components.

Let us end this positioning section by mentioning works related to parallel
skeletons. The skeleton model proposes a pattern language for parallel program-
ming [31, 66]. A program is written from the composition of predefined parallel
patterns. Various environments rely on this model like ASSIST [3] for grid com-
puting or Skipper [81] for vision applications. Skeletons have a clear semantics,
can be associated to a cost model and hide their implementation details to the ap-
plication developer. Given the target architecture, the application is compiled down
to a specialized parallel code. Hierarchies of skeletons are supported by some en-
vironments like Skipper-D.

69

FlowVR composite components can be considered as parametric skeletons. Ju-
bertie et al. propose in [55] a cost model for the data-flow graph that could be
extended to composite components. However, FlowVR components tend to be
closer to design patterns than skeletons. Application developers can freely ignore
all predefined patterns and develop their own patterns. There is no discontinuity
between primitive components and high level ones that would make such develop-
ment specifically difficult.

6.9 Applications

Interactive application development has always counted for a significant part of our
activity. It enables us to:

• validate our approaches with realistic applications. FlowVR is designed to
enforce application modularity for leveraging software engineering issues
while enabling high performance executions on parallel architectures. It is
thus essential to have access to realistic applications to evaluate both aspects
aforementioned. It includes code scalability and reuse, maintenance ease,
multi-user application development practicability, and portability on differ-
ent architectures.

• detect important emerging issues that must be faced when the complexity
of applications increases. Developing our own applications gives us hands-
on experiences, which are crucial to foresee issues, understand them, and
propose relevant solutions. A good example is FlowVR Render, developed
after facing difficulties to merge and render 3D data provided by several
distributed sources.

We already introduced some of the applications we developed with Net Juggler,
FlowVR and its extensions (FlowVR Render and VTK FlowVR). In this section,
we focus on the most significant ones.

6.9.1 Grimage

This work is closely related to the research activity on the Grimage platform
(Fig. 6.12). The application was developed over several years (2004-2008), involv-
ing various developers (about 10 different persons). We provide some snapshots
of different versions of this application (Fig. 6.13), but we strongly advice to refer
to video materials to get a quick and precise understanding of the application and
evaluate the performance as well as the interaction level (Videos available from the
FlowVR gallery3). As mentioned in the introduction of this Chapter, four papers
are related to applications [13, 16, 14, 62].

3http://flowvr.sourceforge.net/FlowVRGallery.html

70

http://flowvr.sourceforge.net/FlowVRGallery.html
http://flowvr.sourceforge.net/FlowVRGallery.html

Figure 6.12: The Grimage platform.

6.9.2 Interactive 3D Modeling

The core element of this application is real-time 3D modeling used as an input
device. 3D modeling computes a real-time model of the objects present into the
acquisition space from a set of images shot from different videos cameras. We de-
veloped a parallel version of the Polyhedral Visual Hull algorithm [41] that com-
putes the complete and exact visual hull polyhedron with regard to silhouette inputs
(Fig. 6.14). The algorithm and its parallelization is presented in details in Chap-
ter 7. The first parallelization attempt was based on MPI. It led to a monolithic
code abusing of communicators to provide some modularity (at the time FlowVR
was still in its early stages). We switched to FlowVR and experienced a significant
improvement of the code modularity. It became easier to detect erroneous program-
ming choices, or to test different approaches playing with filters. The application
performance quickly outperformed the MPI one. This code was initially developed
in 2004 and after 4 years of improvements is still actively used. Amongst the most
significant changes, models are now dynamically textured using the photometric
data extracted from the images. We also recently started to study collaborative in-
teractions through 3D models by having two platforms (Grimage and its portable
version) connected.

6.9.3 Distributed Physics Simulation

3D modeling is the interaction device for applications that involve two other im-
portant components: rendering and physics simulations. FlowVR Render provides
distributed rendering support (Section 5.2 page 45). Different approaches have
been evaluated for physics simulation. The first one consisted in encapsulating in

71

a FlowVR sequential component the Open Dynamics Engine (ODE). It enables to
simulate the dynamics of rigid and articulated objects. We next developed a dis-
tributed physic simulation framework (Fig. 6.13 (a) and Video). The model relies
on two main classes of modules, animators and interactors [16]. Animators own
objects. They are responsible for updating their object states from the forces that
apply to these objects. Objects are self-defined to ensure that adding or removing
an object does not affect other objects. The forces applied to objects are computed
by interactors, based on the object states they receive from animators. Each inter-
actor is usually dedicated to one algorithm, for handling collisions between rigid
objects for instance. It enables a modular coupling of existing algorithms to build
simulations combining the capabilities of each of these algorithms.

The simulation developed couples a net simulation based on a mass-spring sys-
tem, a rigid object simulation, and a fluid simulation enabling two-way interactions
between rigid objects and fluids based on Carlson et al. algorithm [28]. Because
the fluid simulation is computationally intensive, it was parallelized with MPI us-
ing a classical block partitioning. Simulation and rendering on a dual processor
machine (1.6 GHz dual Opteron PC) with a scene consisting of:

• 20 rigid objects

• one fluid simulation on a 32 × 64 × 32 grid.

• one mass-spring 2D net, with 20 × 20 nodes.

reached 6.5 frames per second.
For the interactive execution, we added 3D modeling as an input device. A spe-

cific animator is dedicated to the 3D model. It is managed as a classical rigid object
with one-way interactions (no force can affect it). The application was executed on
the Grimage platform that consisted in:

• sixteen 1.6 GHz dual Opteron PCs equipped with NVIDIA FX 5700 graphics
cards

• eleven dual-Xeon 2.6 GHz PCs

• a gigabit Ethernet network

• five FireWire cameras

• a sixteen projector display-wall

Eight hosts were dedicated to the parallel fluid simulation. Fluid rendering used
particles. To avoid collapsing the network when sending the particles from each
MPI process to the 16 rendering nodes (up to 200000 particles generated), the
output filter of MPI process was set to dynamically route the grid cell content
according to each projector’s frustum. The application reached 18 fps, about three
times faster than on a single machine, but with 16 times more pixels to compute

72

http://www-id.imag.fr/FLOWVR/video/ieeevr06-flowvr-interact.avi

and a dynamics 3D mesh to handle. The network is an important bottleneck. When
all fluid particles are forwarded to all 16 rendering hosts, the frame rate is reduced
1 fps. Dynamic particle routing enabled to significantly reduce this bottleneck to
reach 18 fps.

This application, one of the largest resource consumer we have developed so
far, was built from a pool of 20 modules. The data-flow graph contained about 200
module instances, 4000 connections and 5000 filters.

6.9.4 SOFA Simulation Framework

We relied on the SOFA [7] simulation framework for the application developed
for the Siggraph 2007 Emerging Technology Show [14]. SOFA enables to sim-
ulate complex scenes involving various types of objects (solid, articulated, soft,
fluids). Because objects are tightly coupled, the parallelization effort of SOFA
mainly focus on multi-processor and multi-core PCs that offer high bandwidth data
exchanged rates. Jérémie Allard, at INRIA Lille, currently develops a fine-grain
parallelization approach to transfer computations on the GPU, using the Cuda li-
brary. We are studying a coarser grain parallelization based on work-stealing with
KAAPI [46] (Everton Hermann Ph.D. work). The application architecture fellows
a similar organization than previous ones. SOFA is simply encapsulated in one
FlowVR module (Fig. 6.15).

The demo run during 5 days at San Diego on a portable version of the Siggraph
platform. About 3000 persons experienced the demo (Fig. 6.13 (c), Siggraph 2007
submission video and Siggraph 2007 Etech show video). This demo was well
covered by medias4.

The on-going work on collaborative interaction is a direct extension of this
architecture where two 3D models are produced from different platforms and are
gathered into a virtual world managed by SOFA (Fig. 6.13 (d), (e)).

6.9.5 Molecular Dynamics

We are today extending our application domain to molecular dynamics (Fig. 6.16).
This on-going work is performed in collaboration with the Université d’Orléans,
the CEA (Bruyère le Châtel) and the IBPC (Paris). The goal it to enable interactive
handling of molecules [44]. The user interacts through a haptic device. Molecular
simulation is performed by the Gromacs parallel code (MPI based parallelization).
With the help of FlowVR, we expect to couple Gromacs, the haptic device, and
a FlowVR Render rendering to execute interactive applications involving tens to
hundreds of processors.

4http://www.inrialpes.fr/grimage/#press

73

http://www-id.imag.fr/FLOWVR/video/grimage_siggraph07.avi
http://www-id.imag.fr/FLOWVR/video/grimage_siggraph07.avi
http://www-id.imag.fr/FLOWVR/video/grimage_etechshow_siggraph07.avi
http://www.inrialpes.fr/grimage/#press
http://www.inrialpes.fr/grimage/#press

6.9.6 Interactive Grid

An other on-going project involving the Université d’Orléans, the INRIA Bordeaux
(project-team I-parla) focuses on grid oriented applications. The goal is to develop
interactive applications that harness the resources of heterogeneous distributed re-
sources, from clusters to mobile devices. Typically some clusters are in charge
of providing georeferenced data [47] to build a virtual scene where users from
different sites meet. Users may participate using ultra mobile PC with reduced
capabilities as well as immersive and multi-camera environments powered by clus-
ters. FlowVR is used as the backbone for coupling the components running on
the different clusters. This work already led to some low-level improvements of
FlowVR to control the application deployment on several sites.

6.10 Debugging

Parallel application debugging is a critical issue. It is not different for FlowVR ap-
plications, which tend to be heterogeneous and complex (Fig. 6.8). We developed
several complementary approaches.

The first one, well adapted to the data-flow model, consists in visualizing the
graph of the application. We developed a first simple tool based on the Graphviz
library to produce images of the data-flow graph. However, it suffered from dif-
ferent issues. It produces a 2D vectorial image (pdf, svg) with a high quality,
even when closely zooming on a specific elements. But navigating, zooming and
even opening the image was slow. To circumvent these limitations we developed
a graphical interface based on OpenGL for the graph drawing (layout is still com-
puted by Graphviz). Relying on OpenGL enables to smoothly and quickly zoom
on the graph, change the view point, color the graph, etc. (Fig. 6.17). It is as-
sociated to a QT user interface to control the element displayed, to color vertices
according to their host or their type, etc. Experience shows it is a must-have tool
appreciated by all developers. It provides an alternate view of the application that
users quickly understand. Many bugs are easily detected, like wrong connections
or incorrect host mapping.

This tool does not support yet hierarchical graph visualization. This is an on-
going work. The difficulty comes from the layout computation, drawing, and er-
gonomy of the hierarchy navigation.

Trace capture and visualization is also an other debugging tool we provide.
Trace capture has been developed to minimize the performance overhead. It takes
advantage of the FlowVR architecture. A specific filter, called a logger is loaded
to capture events that it sends as messages on its output port. A specific module
runs per host to save these events to a file. Using a different module, we could for
instance directly compute and display some average monitoring values instead of
storing them into files.

Some events are predefined (entering or leaving the wait) while others can
be user-defined. Activating trace capture affects the data-flow graph but does not

74

require to recompile modules or filters. Because the target machine usually does
not provide a global clock, we perform tests to evaluate the clock drifts just before
and after activating the trace capture.

We developed a simple OpenGL based tool for trace visualization (Fig. 6.18).
Like for the data-flow graph, OpenGL enables to quickly and smoothly navigate,
zoom, slide on the time-line.

The third level of debugging we provide is even more classical. We take ad-
vantage of the different traverses of the application to detect possible errors, and
correct them when possible. A typical error is to have several incoming connec-
tions to an input port, or to forget a connection along a path of links. These can
easily be detected during traverses.

6.11 Discussion

6.11.1 Hierarchical Components

Up to version 1.5, FlowVR application description was based on a mix of XML
files and Perl scripts the user had to provide. This environment was quickly devel-
oped to enable application programming, as our efforts were focused on the core
FlowVR implementation. This approach proved limited for several reasons:

• Large Perl scripts quickly become difficult to understand and debug ;

• The user had to navigate between 3 languages, C++, XML and Perl, an extra
difficulty especially for students without a good programming experience ;

• The modularity offered by Perl functions was limited.

Preliminary user feedbacks shows that the hierarchical component model over-
comes these limitations. The C++ API is sometimes too verbose, making appli-
cation description fastidious. In the future we will provide a binding of the API
with scripting languages using Swig. An extra effort is still required on patterns
(components). The goal is to develop relevant patterns, generic yet usable, while
avoiding their proliferation. Our experience with realistic large applications is here
crucial.

6.11.2 Static data-flow Graph

The data-flow graph is static. It has several benefits, one being the ability to display
it for debugging purpose. It also eases optimizations during traverses, the full graph
being available. Having a static graph does not prevent dynamic behaviors. A
module can dynamically spawn processes or threads (FlowVR is thread-safe), as
long as it takes care of scheduling and data sharing. A module or filter can also
implement a classical client or server. This is the solution adopted by FlowVR
VRPN. Our approach is to confine dynamicity where it is required not to lose the

75

benefits of a static graph. In particular, we are studying the type of sub-graph
connection/reconnections that could be enabled and the associated modifications
to apply to the FlowVR code.

6.11.3 Module Pool

In comparison to other VR middleware libraries, we offer few support for scene
graphs or other higher-level libraries. Our goal is to focus on the middleware core
design rather than providing a large range of peripheral tools. We will provide
some modules. For instance we should shortly make available a SOFA module.
But we mainly count on external contributors to help us fill a module pool.

6.11.4 Application Monitoring

Rudimentary tools have been developed to monitor and control a running FlowVR
application. They demonstrated their usefulness as it enables the user to understand
the behavior of his application and eventually change some parameters. We expect
to generalize this approach by developing an integrated environment for steering
FlowVR applications. The modular design of FlowVR enables to implement these
extra tasks as FlowVR components.

6.11.5 Multi-CPU/GPU Support

How FlowVR behaves on multi-core, multi-CPU and multi-GPU machines ? The
FlowVR daemon is multithreaded to take advantage of multi-core/CPU machines.
Executed on 8 dual-core PC, we experienced no performance issue. But advanced
performance tests are required. On the GPU side, we are starting a collaboration
with the Universidade da Coruña to integrate into the FlowVR daemon, via filters,
features to simplify and optimize GPU access for modules developed with Cuda.

6.11.6 Interoperability

Interoperability between languages and operating systems is a base feature of many
component oriented environments. FlowVR currently provides only a C++ version
of its module API. We expect to provide bindings for other languages using Swig,
enabling to develop applications mixing modules programmed with different lan-
guages. The FlowVR daemon runs on Linux and Mac OS X platforms, but Win-
dows support is not planed yet (seldom used for clusters but more common in VR
labs).

6.11.7 Diffusion

FlowVR5 was first publicly released in December 2003. It became the FlowVR
suite with the addition of FlowVR Render and VTK FlowVR (Fig. 6.12). Recently

5http://flowvr.sourceforge.net/

76

http://flowvr.sourceforge.net/
http://flowvr.sourceforge.net/

FlowVR VRP [77], a FlowVR wrapper of the VRPN device library developed by
the Université d’Orléans, joined the suite. On average, today the suite is down-
loaded 40 times per month. Beside the FlowVR users we are directly working
with, we have few feedbacks on the possible uses of FlowVR. We suspect that a
large amount of these downloads are for testing purpose. Adopting a middleware
library like FlowVR to support heavy development efforts requires a long term
support guarantee. We are committed to provide such support, but having a larger
community of users and developers would make it even more convincing. Beside
publications and a public web site, we intend to promote FlowVR through different
other actions. Effort are made to make on-site and off-site demos (IEEE VR 2006,
Vision 2006, Siggraph 2007, 40 ans INRIA 2007, VRST 2008, Fête de la Science
au Grand Palais de Paris 2008). FlowVR is also the backbone software of the inter-
active solutions the 4D View Solutions6 company proposes. Starting in September
2008, FlowVR will be used for a Master class at the Université d’Orléans.

6.11.8 Long Term Perspectives

When developing large applications, users are facing an explosion of the number
of design choices and parameters to tune. FlowVR intends to assist the user by
offering an environment that separates module development, assembly, parameter-
ization and instantiation for a given target architecture. Still, the user needs ex-
pertise to master these different aspects. Should a given module be parallelized ?
What communication pattern to use between modules (FIFO mode or re-sampling)
? How to map the components on the available resources ? Decisions are made tak-
ing into account multiple criteria, often antagonists, like latency, frequency, level of
details. High frequencies require to allocate more resources to components, usually
obtained by distributing them on different hosts. But it leads to extra communica-
tion overheads that affect latency. Tuning the level of detail enables to control
the amount of resources used, but obviously affect the quality of computations. We
also have to consider variations during execution. For instance, when a second user
enters the acquisition space, the frequency of 3D modeling decreases significantly.
How the application could dynamically adapt to this changing context to improve
the use of the available resources, taking into account the user will (higher priority
on latency than on level of details for instance) ? In the context of multi-modal in-
teractions, but also when considering approaches like frameless rendering, spatial
and temporal coherency are important criteria to consider. The answer is not trivial
as it depends on the application and the human capabilities of accepting some inco-
herences. For instance a haptic device could compute force feedbacks based on a
collision position that is slightly different from the one the user visually experience.
This may be caused by an inaccurate calibration, the latency on event transmission,
rounding errors, etc. In molecular dynamics, each simulated time step represents a
few femtoseconds. They are obviously computed at a much slower frequency, but

6http://www.4dviews.com/

77

http://www.4dviews.com/
http://www.4dviews.com/

will not be experienced as a discrepancy as long as it enables comfortable interac-
tions. In a virtual football game, users will be much more sensible to the dynamics
of the ball as they will directly compare their virtual experience to the real one.

All these issues are long term research goals we are considering from a sys-
tem/middleware point of view. On-going work with Jean-Denis Lesage focuses on
on-line adaptive frequency control. We intend to develop local adaptive algorithms
that require sparse and local monitoring data about the current state of execution.
Re-sampling schemes lead to useless data production, i.e. data that will be dis-
carded. Are these data really all useless? Over producing data can improve latency
to some extent. If we are able to suppress useless data, can we re-allocate resources
to improve the performance? We are still in the early stages of understanding these
behaviors and developing a model for future algorithms.

78

Figure 6.13: Various versions of 3D modeling based interactive applications (2005-
2008). (a) Distributed simulation, 3D model not textured (2005). (b) 3D model
textured (2006). (c) Siggraph 2007 Emerging Technologies demo with textured
3D models and the SOFA simulation engine. (d), (e) Collaborative application
using two 3D modeling platforms (2008).

79

…

…

2D

3D

Figure 6.14: The 3D modeling pipe-line.

80

Figure 6.15: Overview of the application architecture presented at Siggraph
Emerging Technologies 2007.

81

Figure 6.16: Screen shot of an 2500 atom interactive simulation. Gromacs simula-
tion coupled to a FlowVR Render rendering.

Figure 6.17: The OpenGL/QT graphical user interface for navigating application
data-flow graphs.

82

Figure 6.18: Trace visualization at 2 different zoom levels. Horizontal lines rep-
resent modules or filters when active (green) or waiting (red), diagonal arrows are
communications.

83

84

Chapter 7

Real-Time 3D Modeling

This chapter presents the parallelization of two 3D modeling algorithms,
EPVH [41, 43], and octree carving [86]. EPVH is the algorithm used on the Grim-
age platform. The code of the parallel version has been transfered to the 4D View
Solutions1 company. The parallelization is based on FlowVR. This work led to sev-
eral publications [42, 5, 8], including a derivative computer vision work on pose
recovery [70]. The second algorithm relies on an anytime work stealing approach.
The proposed algorithm enforces a relaxed parallel width first octree carving that
enables to stop computations at anytime while ensuring a balanced carving. It was
published at EGPGV 2007 [84]. Clément Ménier’s Ph.D. work was focused on this
topic [69]. Benjamin Petit started his Ph.D. in 2007 to study interactions through
3D models. Both Ph.Ds are co-advised by Edmond Boyer. Luciano Soares worked
on octree carving during its Postdoc stay at INRIA.

7.1 Motivation

One important VR device is the position tracker that provides in real-time the 3D
position of a marker. Various approaches exist, relying on passive or active mark-
ers. Because each marker is attached to a known object or body part, it enables to
track its position, compute its velocity and acceleration. But data density is lim-
ited, and trackers require to attach markers to the objects or users, restricting the
flexibility of the system. In VR environments for instance, trackers classically pro-
vide data for less than ten points. Up to a few tens of markers are used for special
effects and avatar animation in motion capture environments.

Markerless 3D modeling takes a different approach. The goal is to extract
relevant data from a scene based on its observation, without having to equip objects
with markers. We are considering here modeling the 3D shape of a dynamics scene
using multiple video cameras.

Markerless interactions were pioneered by Krueger et al. [59] whos used
one camera. Several multi-camera systems have been designed for 3D TV or free

1http://www.4dviews.com/

85

http://www.4dviews.com/
http://www.4dviews.com/
http://www.4dviews.com/

viewpoint video [56, 52, 63]. Because interactions are limited to changing the
view point on the scene, 3D modeling can be performed off-line or with a high
latency. Computing a full 3D model is not even required as only one or several 2D
views on the scene are used for rendering. For telepresence, distant participants
exchange their 3D and textured model. The closed interaction loops between users
require low latencies [91, 49, 67]. One-way interactions with virtual objects were
experimented by Hasenfratz et al. [50].

We can distinguish two main approaches to compute 3D models from images,
the former using photoconsistancy [79], i.e. color consistency across images, and
the latter based on silhouettes [82], i.e. image contours. We focus on the latter
approach that retrieves the visual hull of the objects by reconstructing their shape
from the silhouettes extracted from the video streams [22, 60]. Geometrically, the
visual hull is the intersection of the viewing cones, the generalized cones whose
apex are the cameras’ projective centers and whose cross-sections coincide with
the scene silhouettes. When considering piecewise-linear image contours for sil-
houettes, the visual hull becomes a regular polyhedron. A visual hull cannot model
concavities.

We worked on two different algorithms. We first parallelized the EPVH al-
gorithm developed by Franco and Boyer [41, 43], both of them involved in the
Grimage platform. The EPVH algorithm has the particularity of retrieving an ex-
act 3D model, i.e. the back projection of the 3D model into the images provides
the exact same silhouettes than the ones used to produce the model. This is an im-
portant feature when the models need to be textured as it makes textures, extracted
from silhouettes consistent with the 3D model.

The second algorithms is a classical one based on an "octree carving" [86].
This algorithm, not being exact, gives poor results when intending to texture the
models produced (after computing a surface using a marching cube algorithm for
instance). But this algorithm is interesting for uses that do not require rendering.
It provides a regular volumetric data structure that can be efficiently accessed, for
fast collision detection for example. Our goal when parallelizing this algorithm
was first to test how work stealing approaches could be used in an anytime context.

7.2 Computer Vision System

3D modeling is one part of the computer vision system we built for Grimage. It also
includes video streams processing, simulations and rendering tasks (Section 6.9).
We give a brief overview of the computer vision part. Refer to [69] for more details.

Both algorithms work from silhouettes. First, cameras need to be calibrated
and tuned, an off-line process that takes place before data acquisition. Cameras
also need to be genlocked, i.e. to synchronize image shooting. Inappropriate syn-
chronization can lead to poor 3D models with missing parts as the image set the
algorithm works on does not show objects at the same position. Quality of synchro-
nization depends on the speed of the objects considered. The 3D modeling pipe-

86

Figure 7.1: Viewing Edges.

line starts with computations that are local to each camera (Fig. 6.14 page 6.14).
It consists in subtracting the background and computing the vectorized silhouettes.
Background subtraction is performed based on the fixed background learned dur-
ing the initialization phase [57]. Vectorization relies on a algorithm proposed by
Debled et al. [35]. It enables to control the vectorization level of details, a feature
we use to control the work load of the 3D modeling algorithm. Once vectorized
we extract the silhouettes as well as the texture delimited by each silhouette. These
steps, are performed locally by each host in charge of a camera (for performance’s
sake we usually have only one camera per host).

The 3D modeling algorithm takes as input the silhouettes as well as the cali-
bration data for each camera. Texturing takes place when the 3D model needs to
be rendered. On Grimage we use FlowVR Render and a shader that textures each
face by mixing the three closest images.

7.3 Parallel EPVH

7.3.1 EPVH Overview

We first give an overview of the sequential algorithm. For more details refer to [43].
EPVH first computes viewing edges (Fig. 7.1). Viewing edges are the edges of

the visual hull induced by viewing lines of contour vertices. There is one viewing
line per silhouette edge. On each viewing line, EPVH projects the silhouette of
each other image delimiting segments included in all silhouettes. Each segment,

87

Triple point

Discrete cone intersection

Viewing Cone

Visual Hull

Viewing edge

Figure 7.2: Polyhedral visual Hull build from the intersection of 3 image silhou-
ettes (viewing cones). This case exhibits one triple point, the intersection point of
3 surfaces that project into 3 silhouette segments from 3 different images.

called a viewing edge, is an edge of the visual hull and each segment extremity
a vertex. Each vertex is trivalent, i.e. the intersection point of 3 edges (higher
valence is neglected because highly unlikely).

For each viewing edge, EPVH stores the two generator planes, i.e. the two
planes defined by the projection of the two silhouette vertices incident to the edge
the viewing line is originated from. It also stores for each viewing vertex the third
generator plan defined by the projection of the silhouette edge that intersects the
viewing line.

However the visual hull is incomplete (Fig. 7.2). Somes edges are missing to
fulfill the mesh connectivity. It also misses somes vertices, called triple points. A
triple point is a vertex of the visual hull generated from the intersection of 3 planes
defined by silhouette segments from three different images.

Existing vertices are only connected by one edge, a viewing edge. This edge
is delimited by the intersection of the two generator planes belonging to the same
silhouette. EPVH intersects each of this generator plane with the third one, provid-
ing the missing edges. Let P be this third generator plane. The missing extremity
of each of these edges is first delimited by an existing vertex, the one defined by
the intersection with one of the generator plane incident to P in the same silhou-
ette. Then, like for viewing edges, it checks if the segment is intersected by other
silhouettes. If this occurs, we have a new vertex, a triple point.

88

This process provides the full mesh connectivity. A last step consists in travers-
ing the mesh to identify the polyhedron faces. 3D face contours are extracted by
walking through the complete oriented mesh while always taking left turns at each
vertex. Orientation data is inferred from silhouette orientations (counter-clockwise
oriented outer contours and clockwise oriented inner contours).

7.3.2 Parallel Algorithm

The parallel EPVH algorithm is a three stage pipe-line.

• Stage 1: viewing edges. Let P be the number of hosts in charge of com-
puting the viewing edges. Each host in charge of a silhouette extraction
broadcasts it to the P hosts. Each host computes locally the viewing edges
for P/n viewing lines, where n is the total number of viewing lines.

• Stage 2: mesh connection. Let M be the number of hosts in charge of com-
puting the mesh. The P hosts from the previous step broadcast the viewing
edges to the M hosts. Each host is assigned a slice of the space (along
the vertical axis as we are usually working with standing humans) where it
computes the mesh. Slices are defined to have the same number of vertices.
Each host complement the connectivity of it sub-mesh, creating triple points
when required. The sub-mesh are then gathered on one host that merges the
results, taking care of the connectivity on slice boundaries (removing dupli-
cate edges or adding missing triple points).

• stage 3: face identification. The mesh is broadcasted to K processors in
charge of face identification. Workload is balanced by evenly distributing
the generator planes the processors extract faces from.

This parallel algorithm gives satisfactory results on the Grimage set-up. We
are able to match the cameras refresh rates (tuned in between 20 and 30 frames per
second) and ensure a latency below 100 ms (including video acquisition and 2D
image processing) when one person is present in an acquisition space surrounded
by 4 to 8 cameras. Processors involved in the 3D modeling vary from 4 to 8.
Involving more processors did not proved to significantly increase the performance.

Using a large number of cameras raises several issues. The algorithm com-
plexity is quadratic in the number of cameras, quickly leading to non acceptable
latencies. Increasing the number of cameras can also affect the quality of the model
due to error accumulation on input data (calibration errors for instance). Today our
efforts focus on using higher resolution cameras (2M pixel cameras are in test)
rather than significantly more cameras. The algorithm complexity is in n log(n),
where n is the maximum number of segment per silhouette, making it more scal-
able on this parameter. Having more cameras makes sense for large acquisition
spaces, where 3D models are computed per sub-sets of cameras.

89

7.4 Parallel EPVH ICVS 2006 Article

The ICVS 2006 article [8], included in section A.6 page 170, presents the Grimage
computer vision system and the EPVH parallel algorithm.

7.5 Parallel Octree Carving

7.5.1 Octree Carving

Octree carving is a simple 3D modeling algorithm. A voxel, corresponding to a
3D volume of the acquisition space, is projected into all silhouettes. If it lies inside
all silhouettes, it is part of the 3D model. If it is outside at least one silhouette, it
is excluded from the 3D model. If it intersects at least one silhouette, the test is
recursively applied on the 8 sub-voxels. The algorithm stops when all voxels up to
a certain maximum depth level have been tested. Carving can also take place under
a time constraint. Once the algorithm is requested to stop, it applies a final test to
decide if each untested voxel is rather inside or outside the model. In this context,
a width-first carving ensures an even level of detail on the full 3D model.

7.5.2 Work Stealing

Because the work-load is not evenly distributed, mainly concentrated on the model
surface, we relied on work stealing for our parallelization. It is a classical approach
for dynamic load balancing that has been used for various computations, including
parallel graphics[51, 30]. It extends the Graham list scheduling principle [48] for
programs that create tasks recursively. The principle is simple. When starting the
execution, a first processor is assigned all source tasks (the initial ready tasks). At
runtime, each processor maintains a local list where it stores the ready tasks it has
locally created. A task becomes ready when all its predecessor tasks, i.e. the tasks
it depends on, have been executed. The tasks are organized in the list according
to a total sequential depth first order. When a processor P completes a task, it
pops the first one t (according to depth first order) in its local ready list if non
empty. If its local list is empty, P is idle and becomes a thief: it randomly selects
another processor until finding one victim processor V that owns ready tasks. Then
it picks-up the oldest ready task t in the ready list of V . In both cases, P starts the
execution of t.

Work stealing achieves a provable performance with respect to the work and
depth of the parallel algorithm. The work W1 is the total number of elementary
operations performed during the execution of the algorithm. An instruction may
be a standard operation or a task creation. The depth W∞ is the critical path in
number of operations for an execution on an unbounded number of processors,
i.e. the number of instructions along the longest dependency path. Let Tp be
the execution time on p identical processors with execution speed Π (in number
of instructions per time unit). An execution takes a time T1 = W1

pΠ
on a single

90

Figure 7.3: Parallel octree carving with 16 cores (max depth of 8). Voxels are
color-coded according to the core that produced them. It shows the good spatial
locality of work stealing.

processor and a time T∞ = W∞

Π
on an unbounded number of processors. On p

processors, work stealing ensures that with a high probability [19]:

Tp ≤
W1

pΠ
+ O

(

W∞

Π

)

, (7.1)

the number of steals being small, O(W∞) per processor.
With slight modification in the work stealing strategy, Bender et al. [24] prove

that this result also holds for p heterogeneous processors with average speed π per
processor.

Thus, if the depth W∞ is small compared to the total amount of work W1 the
parallel execution time is close to the lower bound W1

pΠ
. This motivates the use of

work stealing to schedule parallel programs having a small depth W∞.
Octree carving shows properties making it very well adapted to work steal-

ing. The computation associated with one voxel is considered as one task. The
dependency graph corresponds to the octree graph, as a given voxel can be com-
puted as soon as its parent has been treated. In the worst case where no pruning
occurs, a tree of depth n leads to W1 = 8

n+1−1

7
tasks, while the critical path is

91

W∞ = O(n). Thus, having W1 ≫ W∞, work stealing should lead to optimal
parallel executions. Even when pruning occurs, the ratio is usually very favorable
to work stealing. For instance, our test data set, consisting of a full human body
(Fig. 7.3), has W1 = 162799 voxels when going up to depth level W∞ = 8.

Work stealing efficiency also depends on the overhead to handle tasks. Stealing
a task just consists in getting a voxel coordinate and size, a small amount of data. A
task only depends on its parent voxel. It is ready to be executed as soon as created.

Work stealing efficiency can be impaired as parallelism is reduced when start-
ing the algorithm. Moreover, the amount of computation to test a voxel against a
silhouette is proportional to its size. To soften this effect, carving starts at a higher
depth level. Experiments show that a good choice is to start at the smallest depth
level providing at least one task per processor.

7.5.3 Parallel Algorithm

We assume the target parallel machine supports a global address space with a
shared (or virtually shared) memory access.

Each voxel is represented as a quadruple of its coordinates and level (i, j, k, d).
Voxels are organized in ready lists. We call a task, the computations required to
test a voxel status.

The algorithm starts at depth level n with 8n initial voxels. These voxels are
split into p ready lists, where p is the number of processors. The goal is to avoid
the performance bottleneck of the first depth levels that do not provide enough
parallelism.

The ready lists are organized in a singly-circularly-linked list. There is one list
of ready lists per depth level, called a level list. All level lists, except the ones from
the starting depth level, are initially empty. Each processor is assigned a first ready
list from the starting level.

One processor is the manager. It takes care of initializing the first ready lists
and signal all other processors when computations must be stopped (because the
timeout occurred).

All processors start to work on the tasks of the same depth. Each processor
tests the voxels of its ready list. If a voxel needs to be split, its 8 child are inserted
into the ready list of the next level. Once it ends its ready list, it cycle through the
list, starting from a random position, for other freely available ready lists. If not
available, it starts a second cycle to steal tasks from the ready lists of other pro-
cessors. When encountering a victim with a non empty ready list, it grabs half of
the remaining voxels, leaving a minimum of voxels (defined by a threshold). This
aims at avoiding to steal a too small number of voxels, with a stealing overhead
that would not be compensated by the new workload balance.

When a processor ends its second cycle through the current level list, it starts
working on the next level, processing the voxels of its ready list if not empty.

To enforce a width first voxel processing without compromising the efficiency
of work stealing, we propose a loosen synchronization mechanism. It enables a

92

processor to process its ready list at depth d only if all voxels from depth d−2 have
been processed. The goal is to overlap synchronization overhead while limiting
the octree unbalance. To each depth level d corresponds a shared counter C[d]
initialized to the number of processors p. When a processor completes all its ready
tasks at level d and if C[d − 1] = 0, it starts stealing. If it does not succeed to get
voxels from other processors, then it decreases C[d] by 1 and starts the computation
of its local voxels at level d+1. Once completed, it waits until C[d−1] = 0 before
starting new steal requests.

A time control routine is integrated in the algorithm to bound the execution
time. The algorithm is requested to stop through a timeout event that all processors
check every time they end a ready list. They flush the remaining voxels with a
specific fast test to associate them a inside/outside status.

7.5.4 Provable Performance

We prove the performance of the parallel algorithm against the reference sequential
algorithm.

The following theorem states that the algorithm, without time limit, is almost
p times faster than the sequential one if the depth of the octree is small w.r.t. its
number of voxels.

Theorem Let Ts be the time of the reference sequential algorithm to compute
an octree with n nodes and depth d on a processor with speed Π. The adaptive
algorithm running on p identical processors with speed Π computes the same octree
in time:

Tp =n→∞
Ts

p
+ O

(

d log n

Π

)

(7.2)

However, due to real time interactive constraints, the depth of the octree is
truncated at a given unknown time limit. The next theorem states that in a fixed
time t, the parallel algorithm on p processors reaches almost the same level of
details as the reference sequential algorithm in a time p.t.

Theorem Let np be the number of voxels computed by the adaptive algorithm
in a time limit t on p identical processors. Let ns be the number of voxels com-
puted by the sequential reference algorithm in a time limit p.t on 1 processor. Let
dp (resp. ds) be the last fully completed level of the adaptive (resp. sequential)
algorithm.

Then:
np = ns − O(log ns) and |dp − ds| ≤ 1 (7.3)

For the proofs of both theorems, refer to [84], included in section A.7 page 178.

7.5.5 Experimental Results

The algorithm was implemented with Posix threads. For a better performance,
the use of mutex like semaphores was eliminated. Instead, assembly atomic op-
erations like compare_and_swap "cmpxchg" and atomic_add_return "xadd" com-

93

Figure 7.4: Performance result of octree carving with a 30 ms time limit. (Top)
Execution time, (Middle) number of voxels computed, (Down) percentage of voxel
per depth level (max depth level set to 8).

bined with the LOCK prefix were used. These atomic operations are supported by
most modern CPUs. We noticed a performance increase of about 20% compared
to a mutex based implementation. We run one thread per processor, locked with
the "pthread_setaffinity_np" instruction.

For shake of conciseness, we only give an overview of the experimental re-
sults. Tests were executed on a PC equipped with 8 dual Core 2.2 GHz Opteron
processor. Carving was performed against a pre-recorded 8 camera video sequence
of a full body person (780x582 pixel images). The speed-up reaches 14 with 16
cores, no time limit and a max depth level of 7. As expected from the theoretical
results the number of steals is small with an average of about 42 steals attempt, 25
successful, compared to the 162799 voxel computed (Fig. 7.3).

We tested the time control routine with a 30 ms deadline. With just one core it
is not even possible to complete level 5, making the model unrecognizable. The ex-
ecution time is significantly larger than 30 ms, because the core does not check the
elapsed time before it completes the first ready list. Up to 8 cores, the time control
is effective: the execution stops before all voxels of level 8 are computed. Notice

94

that the measured execution time is usually slightly higher than 30 ms because all
cores apply a fast test algorithm to guess if each pending voxel is full or empty
after the timeout occurs. With 8 cores, the 30 ms limit enables to reach the max
depth level. Next, as the number of cores further increases, the extra computing
resources available enable to decrease the execution time, ending below 20 ms (the
number of voxels computed at level 8 stops to increase).

On-line experience on the Grimage platform is coherent with these off-line
results (see the (Octree carving Video2).

7.6 Parallel Octree Carving EGPGV 2007 Article

The EGPGV 2007 article [84], included in section A.7 page 178, presents the par-
allel octree carving algorithm in details and comes with the theoretical proofs of
performance.

7.7 Discussion

The parallel EPVH algorithm has been used for all applications involving 3D mod-
eling developed on Grimage. It proved stable and reaches a performance that en-
ables interactions with a low latency. From a parallelization point of view this algo-
rithm could be significantly improved. The parallelization we proposed is strongly
based on the sequential version to take advantage of its complex data structure and
various optimizations. But highly optimized data structures adapted to sequential
algorithms can impair independent task extraction if not carefully revisited. This
is a work that has not been done yet as we mainly focused on developing an oper-
ational vision system, 3D modeling being only one part of this full system.

On Grimage, EPVH provides models for the physical simulation engines and
for rendering. Being exact, EPVH leads to good quality textured models. Tex-
turing increases drastically the ability of the observer to recognize the object or
person being modeled. It gives the illusion of geometrical details missing on the
3D model (cloth folds or concavities for instance). On-going work focuses on ef-
ficient handling of texture streams that put a high pressure on network bandwidth.
It becomes an important issue as we are increasing the number of cameras (about
15), their resolution (2M pixels), and testing telepresence between distant sites.
Texture mapping is also a difficult research problem we have not been able to pur-
sue beside the direct algorithm we are using on Grimage. Related issues include
occlusion detection, multi-view texture blending, re-lighting.

Though not yet used for Grimage applications, octree carving provides an in-
teresting data structure for physics. The work stealing mechanism achieves a good
load balancing, leading to high speed-ups. Combined with a relaxed width first
carving and the ability to stop the execution under the occurrence of an external

2http://vpod.tv/menier/151271

95

http://vpod.tv/menier/151271
http://vpod.tv/menier/151271

signal, it demonstrates its ability to take advantage of the cores available to com-
pute faster or more voxels. Blender et al. [24] proved the performance of work
stealing for heterogeneous processors with varying speeds. We extended our algo-
rithm to enable a core to delegate part of voxel testing to one GPU. The goal was to
validate if work stealing enabled us to easily take advantage of the cores as well as
the GPUs available. A CPU is very efficient in testing a voxel as it probes the voxel
status after each individual point projection test. In opposite, the SIMD nature of
the GPU and the overhead of CPU/GPU data transfer impose that many points be
tested before returning the result. It generally slows down the core/GPU couple,
impairing performance in comparison to an execution without GPU. The GPU was
programmed with OpenGL. Because Cuda offers more flexibility, we could expect
some performance gains by switching to Cuda and using more recent generations
of NVIDIA graphics cards.

3D modeling provides an instantaneous surface or volume of the observed
scene as well as photometric data. It enables a textured rendering and to com-
pute collisions. Because we have no velocity data, reaction forces due to collisions
are incorrect. We do not identify the objects or some of their sub-parts, limiting
higher level interactions. These are open issues. Using markers can solve some
of them. In a markerless context some solutions are proposed, usually not at in-
teractive execution time [69]. Benjamin Petit started in 2007 a Ph.D. to better
understand the relation between input data and interactions, in particular in the 3D
modeling context, augmented of extra data if required.

96

Chapter 8

Conclusion

This document synthesized 8 years of my research activity corresponding to a ma-
jor change of focus. After a Ph.D. in parallel programming language design and
a Postdoc on parallel machine performance measure, my research effort headed
towards the association of parallel computing and virtual reality.

First contributions answer to the challenge of powering an active stereo multi-
projector environment with a PC cluster equipped with commodity graphics cards.
It led to Net Juggler and SoftGenLock. Today, using PC clusters for such environ-
ments is the norm. Most of VR libraries support PC clusters.

Based on this experience and preliminary coupling experiences of VR and par-
allel simulations, we designed FlowVR, a hierarchical component oriented mid-
dleware based on a data-flow paradigm. The goal was to support coupling various
heterogeneous codes, possibly parallel, to build large interactive applications re-
quiring multiple input, output and computing units. Experiences with large appli-
cations show that FlowVR meets its goals. It enforces a modular programming that
leverages software engineering issues while enabling high performance executions
on parallel architectures. It assists users by offering an environment that separates
module development, assembly, parameterization and instantiation for a given tar-
get architecture. Besides coupling, FlowVR also proved relevant to develop native
parallel codes, like the FlowVR Render distributed protocol for parallel 3D ren-
dering, a parallel physical simulation engine or the EPVH parallel 3D modeling
algorithm.

Parallel EPVH ensures load balancing through the preprocessing steps occur-
ring at each pipe-line stage. It assumes the evenly distributed tasks all require a
similar work load. For octree carving, we adopted a different approach based on
work stealing. It ensures an efficient load balancing at a finer granularity, enabling
to stop the computation at anytime. We are now using work stealing for the par-
allelization of the SOFA physical simulation framework. The context is different.
Work stealing is used to correct the work unbalance that could occur between it-
erations (new collisions between objects for instance). We switch from a classical
recursive work stealing scheme to an iterative one, requiring to revisit the algo-

97

rithm.
The Grimage platform plays a central role in this research work. It enabled to

validate our approaches on realistic applications and to evaluate their limits. This
is essential for interactive applications where the human has a central role. Even
if we did not conduced rigorous user studies, experiencing ourselves, observing
and questioning visitors was a very valuable source of inputs to foresee upcom-
ing relevant research directions. Grimage was also the cornerstone of the fruitful
collaboration with the Perception and Evasion project-teams. The Grimage lab
is the room where people meet, work together, exchange skills, imagine, discuss
and mature new ideas. It has been the catalyst of a very creative collaboration.
Our contributions are diffused through scientific publications, but also open source
software libraries, on-site and off-site demos, and technology transfer to private
companies.

This work goes beyond the initial VR oriented research. What I would call
High Performance Interactive Computing (HPIC) is at the intersection between
VR, scientific and information visualization, computational steering and parallel
computing. Involving humans changes the architecture and goals of the applica-
tions. Interactions require input and output devices. Interaction should be im-
mersive and multi-modal, going a way beyond the classical keyboard, mouse and
display devices. Interaction means a performance adapted to human sensory-motor
and cognitive abilities. From a system/middleware point of view, it translates into
latencies, refresh rates, coherency and level of details management concerns.

Adapted computing platforms are needed. Grimage relies on a dedicated clus-
ter (30 nodes, gigabit Ethernet network). Because high performance architectures
have evolved towards more commodity architectures and improved software ad-
ministration tools increasing management flexibility, we can consider a more poly-
valent architecture. The coming Digitalis computing platform of the INRIA and
LIG lab will be a large cluster shared for HPIC as well as HPC. Some nodes will
be available to support I/O devices like cameras and projectors. GPUs will be avail-
able for both computing and rendering. The OAR scheduler will enable to reserve
interactive computing time. Because costs are shared with the HPC community, it
provides access to a machine with a unified high performance network gathering a
large number of nodes (from 1024 to 2048 CPU cores expected). Such architecture
will ease quality model texturing with high resolution multi-video streams. It will
also enable to couple larger parallel codes, like Gromacs molecular dynamics sim-
ulations. This machine will be part of the Grid’50001 grid infrastructure, favoring
on-going telepresence and interactive grid experiments.

Grimage leans towards a large number of high resolution cameras to increase
the 3D model quality and the volume of the acquisition space. All interactive ex-
periments on Grimage have been performed at the third-person. We are integrating
a head mounted display and held cameras for testing first-person interactions. Be-
side reducing latency, improving 3D modeling geometrical and photometric qual-

1http://www.grid5000.fr

98

http://www.grid5000.fr
http://www.grid5000.fr

ity, improving refresh rates to better sample fast movements, we are also studying
how to extract higher level data, like velocity. Interaction capabilities depend on
the quality and type of information extracted. For instance computing the force a
virtual ball is kicked requires the acceleration of the user’s foot. Grabbing virtual
objects is an other example of difficult interaction issue. Springs could be created
between the hand and the object when detecting a collision. But changes of the 3D
model geometry between iterations can affect the stability of the connection with
the virtual object. Grabbing in the real world involves frictions and pressures. Can
we infer such data using cameras?

The multi and many core shift in processor architecture gives parallelism a
new emphasis even for small configurations. FlowVR has been tested on SMP
machines, but as the number of cores grows, we may have to revisit the daemon
architecture. To take advantage of GPUs we are studying a FlowVR extension
to simplify and optimize GPU access for Cuda modules. We tested how work
stealing could be used to dynamically balance octree carving on multiple CPUs,
one of them using the GPU as a co-processor. In the SOFA context, we expect to
couple our work stealing parallelization with the Cuda code developped by Jérémie
Allard.

When developing large applications, users are facing an explosion of the num-
ber of design choices and parameters to tune. Changing execution context can also
affect the behavior of the application, requiring on-line adjustments. FlowVR work
focused on structuring the application development and instantiation. A long term
research goal is to study how middleware algorithms could take in charge some as-
pects of resource allocation. Target criteria are multiple and can be antagonist, like
latency, frequency, level of details. Algorithm behaviors should be consistent with
the user expectations or provide high level tuning parameters to control trade-off
between criteria. On-going work focuses on on-line frequency control. We intend
to develop local adaptive algorithms that require sparse and local monitoring data
about the current state of execution.

99

100

Bibliography

[1] Greg Abram and Lloyd Treinish. An extended data-flow architecture for
data analysis and visualization. In 6th IEEE Visualization Conference (VIS

’95), 1995.

[2] J. Ahrens, C. Law, W. Schroeder, K. Martin, and Michael Papka. A Par-
allel Approach for Efficiently Visualizing Extremely Large, Time-Varying
Datasets. http://www.acl.lanl.gov/Viz/papers/pvtk/pvtkpreprint/.

[3] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo.
ASSIST as a research framework for high-performance Grid programming
environments. In J. C. Cunha and O. F. Rana, editors, Grid Computing:

Software environments and Tools. Springer, January 2006.

[4] Jérémie Allard. FlowVR: calculs interactifs et visualisation sur grappe. PhD
thesis, INPG, 2005.

[5] Jérémie Allard, Edmond Boyer, Jean-Sébastien Franco, Clément Ménier,
and Bruno Raffin. Marker-less Real Time 3D Modeling for Virtual Reality.
In Immersive Projection Technology Symposium (IPT’04), Ames, Iowa, May
2004.

[6] Jérémie Allard, Marcio C. Cabral, Camille Goudeseune, Hank Kaczmarski,
Bruno Raffin, Benjamin Schaeffer, Luciano Soares, and Marcelo K. Zuffo.
Commodity Clusters for Immersive Projection Environments. In Proceed-

ings of ACM SIGGRAPH 03, Course 18, California, July 2003.

[7] Jérémie Allard, Stephane Cotin, François Faure, Pierre-Jean Bensoussan,
François Poyer, Christian Duriez, Herve Delingette, and Laurent Grisoni.
SOFA: an Open Source Framework for Medical Simulation. In Medicine

Meets Virtual Reality (MMVR), 2007. http://www.sofa-framework.org.

[8] Jérémie Allard, Jean-Sébastien Franco, Clément Ménier, Edmond Boyer,
and Bruno Raffin. The GrImage Platform: A Mixed Reality Environment
for Interactions. In Fourth IEEE International Conference on Computer

Vision Systems (ICVS’06), pages 46–52, New York, January 2006.

101

[9] Jérémie Allard, Valérie Gouranton, Gilles Lamarque, Emmanuel Melin, and
Bruno Raffin. Softgenlock: Active Stereo and Genlock for PC Cluster. In
IPT & EGVE Workshop 2003, pages 255–260, Zurich, Switzerland, May
2003.

[10] Jérémie Allard, Valérie Gouranton, Loic Lecointre, Sébastien Limet, Em-
manuel Melin, Bruno Raffin, and Sophie Robert. FlowVR: a Middleware
for Large Scale Virtual Reality Applications. In Euro-Par 2004 Parallel

Processing: 10th International Euro-Par Conference, pages 497–505, Pisa,
Italia, August 2004.

[11] Jérémie Allard, Valérie Gouranton, Loic Lecointre, Emmanuel Melin, and
Bruno Raffin. Net Juggler: Running VR Juggler with Multiple Displays
on a Commodity Component Cluster. In IEEE Virtual Reality Conference,
pages 275–276, Orlando, USA, March 2002.

[12] Jérémie Allard, Valérie Gouranton, Emmanuel Melin, and Bruno Raffin.
Parallelizing Pre-rendering Computations on a Net Juggler PC Cluster. In
Immersive Projection Technology Symposium (IPT), Orlando, USA, March
2002.

[13] Jérémie Allard, Clément Ménier, Edmond Boyer, and Bruno Raffin. Run-
ning Large VR Applications on a PC Cluster: the FlowVR Experience. In
IPT & EGVE Workshop 2005, Denmark, October 2005.

[14] Jérémie Allard, Clément Ménier, Bruno Raffin, Edmond Boyer, and
François Faure. Grimage: Markerless 3D Interactions. In Proceedings of

ACM SIGGRAPH 07, San Diego, USA, August 2007. Emerging Technolo-
gies.

[15] Jérémie Allard and Bruno Raffin. A Shader-Based Parallel Rendering
Framework. In IEEE Visualization Conference, pages 127–134, Minneapo-
lis, USA, October 2005.

[16] Jérémie Allard and Bruno Raffin. Distributed Physical Based Simulations
for Large VR Applications. In IEEE Virtual Reality Conference, pages 215–
222, Alexandria, USA, March 2006.

[17] Jérémie Allard, Bruno Raffin, and Florence Zara. Coupling Parallel Simu-
lation and Multi-display Visualization on a PC Cluster. In Euro-par 2003,
Klagenfurt, Austria, August 2003.

[18] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn,
Lois McInnes, Steve Parker, and Brent Smolinski. Toward a common com-
ponent architecture for high-performance scientific computing. In Proceed-

ing of the 8th IEEE International Symposium on High Performance Dis-

tributed Computation, August 1999.

102

[19] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread
Scheduling for Multiprogrammed Multiprocessors. Theory Comput. Syst.,
34(2):115–144, 2001.

[20] Pilippe Augerat, Camille Goudeseune, Hank Kaczmarski, Bruno Raffin,
Benjamin Schaeffer, Luciano Soares, and Marcelo K. Zuffo. Commodity
Clusters for Immersive Projection Environments. In Proceedings of ACM

SIGGRAPH 02, Course 47, Texas, July 2002.

[21] Françoise Baude, Denis Caromel, and Matthieu Morel. From Distributed
Objects to Hierarchical Grid Components. In CoopIS/DOA/ODBASE, pages
1226–1242, 2003.

[22] Bruce G. Baumgart. Geometric Modeling for Computer Vision. PhD thesis,
CS Dept, Stanford U., Oct. 1974. AIM-249, STAN-CS-74-463.

[23] P. H. Beckman, P. K. Fasel, W. F. Humphrey, and S. M. Mniszewski. Effi-
cient coupling of parallel applications using PAWS. In Proceedings of the

7th IEEE International Symposium on High Performance Distributed Com-

putation, July 1998.

[24] M. A. Bender and M. O. Rabin. Online Scheduling of Parallel Programs
on Heterogeneous Systems with Applications to Cilk. Theory of Computing

Systems Special Issue on SPAA ’00, 35(3):289–304, 2002.

[25] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira.
VR Juggler: A Virtual Platform for Virtual Reality Application Develop-
ment. In IEEE VR 2001, Yokohama, Japan, March 2001.

[26] A. Bierbaum1, P. Hartling, P. Morillo, and C. Cruz-Neira. Implementing
immersive clustering with vr juggler. In Computer Graphics and Geomet-

ric Modeling (TSCG 2005) Workshop, volume 3482/2005 of LNCS, pages
1119–1128, 2005.

[27] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, and J. D.
Wood. Distributed and collaborative visualization. Computer Graphics Fo-

rum, 23(2), 2004.

[28] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Trans. Graph. (Proceedings of ACM

SIGGRAPH 04), 23(3):377–384, 2004.

[29] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock,
and N. Max. A contract based system for large data visualization. In IEEE

Visualization 2005, pages 191–198, October 2005.

[30] J. Clyne and J. Dennis. Interactive Direct Volume Rendering of Time-
Varying Data. In Eurographics Data Visualization ’99 Conference, pages
109–120, 1999.

103

[31] Muray Cole. Algorithmic Skeletons: Structured Management of Parallel

Computation. MIT Press, 1989.

[32] D. Cotting, M. Waschbusch, M. Duller, and M. Gross. Winsgl: synchroniz-
ing displays in parallel graphics using cost-effective software genlocking.
Parallel Computing, 33(6):420–437, 2007.

[33] C. Cruz-Neira, C. Just, K. Meinert, A. Bierbaum, P. Hartling, and B. Raffin.
Open Source Virtual Reality. IEEE VR 2002 Tutorial, Florida, March 2002.

[34] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart.
The Cave Audio VIsual Experience Automatic Virtual Environement. Com-

munication of the ACM, 35(6):64–72, 1992.

[35] Isabelle Debled-Rennesson, Salvatore Tabbone, and Laurent Wendling. Fast
Polygonal Approximation of Digital Curves. In Proceedings of the 17th

International Conference on Pattern Recognitio), volume I, pages 465–468,
2004.

[36] A. Denis, C. Pérez, and T. Priol. Achieving portable and efficient parallel
CORBA objects. Concurrency and Computation: Practice and Experience,
15(10):891–909, August 2003.

[37] Alexandre Denis, Christian Pérez, and Thierry Priol. PadicoTM: an Open
Integration Framework for Communication Middleware and Runtimes. Fu-

ture Generation Computer Systems, 19(4):575–585, 2003.

[38] Eric Bruneton and Thierry Coupaye and Matthieu Leclercq and Vivien
Quéma and Jean-Bernard Stefani. The FRACTAL Component Model and
its Support in Java: Experiences with Auto-Adaptive and Reconfigurable
Systems. Software Practice & Experience, 36(11-12):1257–1284, 2006.

[39] A. Esnard. Analyse, conception et réalisation d’un environnement pour le

pilotage et la visualisation en ligne de simulations numériques parallèles.
Informatique, Université de Bordeaux 1, décembre 2005.

[40] David Foulser. IRIS Explorer: a Framework for Investigation. Journal of

ACM SIGGRAPH 95, 29(2):13–16, 1995.

[41] Jean-Sebastien Franco and Edmond Boyer. Exact Polyhedral Visual Hulls.
In Proceedings of the British Machine Vision Conference, Norwich (UK),
pages 329–338, Septembre 2003.

[42] Jean-Sébastien Franco, Clément Ménier, Edmond Boyer, and Bruno Raffin.
A Distributed Approach for Real Time 3D Modeling. In Conference on

Computer Vision and Pattern Recognition Workshop (CVPRW) 2004, pages
31–38, Washington, USA, July 2004.

104

[43] J.S. Franco and E. Boyer. Efficient Polyhedral Modeling from Silhouettes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.

[44] N. Férey, O. Delalande, G. Grasseau, and M. Baaden. A VR Framework
for Interacting with Molecular Simulations. In ACM VRST 2008, Bordeaux,
October 2008.

[45] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[46] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. KAAPI: A thread
scheduling runtime system for data flow computations on cluster of multi-
processors. In PASCO ’07: Proceedings of the 2007 international workshop

on Parallel symbolic computation, pages 15–23, New York, NY, USA, 2007.
ACM.

[47] V. Gouranton, S. Madougou, E. Melin, and C. Nortet. Interactive rendering
of massive terrains using PC cluster. In EuroVis 2005: Eurographics/IEEE-

VGTC Symposium on Visualization, June 2005.

[48] R. L. Graham. Bound for certain multiprocessing anomalies. Bell System

Tech. J., pages 1563–1581, 1966.

[49] M. Gross, S. Wuermlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz,
E. Koller-Meier, T. Svoboda, L. Van Gool, K. Strehlke S. Lang, A. Vande
Moere, and O. Staadt. Blue-C: A Spatially Immersive Display and 3D Video
Portal for Telepresence. In Proceedings of ACM SIGGRAPH 03, San Diego,
2003.

[50] Jean-Marc Hasenfratz, Marc Lapierre, and François Sillion. A real-time sys-
tem for full body interaction with virtual worlds. Eurographics Symposium

on Virtual Environments, pages 147–156, 2004.

[51] Alan Heirich and James Arvo. A Competitive Analysis of Load Balancing
Strategies for Parallel Ray Tracing. The Journal of Supercomputing, 12(1–
2):57–68, 1998.

[52] Adrian Hilton and Jonathan Starck. Multiple view reconstruction of people.
In 3DPVT ’04: Proceedings of the 3D Data Processing, Visualization, and

Transmission, 2nd International Symposium on (3DPVT’04), pages 357–
364, Washington, DC, USA, 2004. IEEE Computer Society.

[53] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: A Scalable Graphics System for Clusters. In Proceedings of ACM

SIGGRAPH 2001, 2001.

105

[54] Greg Humphreys, Mike Houston, Ren Ng, Sean Ahern, Randall Frank, Pe-
ter Kirchner, and James T. Klosowski. Chromium: A Stream Processing
Framework for Interactive Graphics on Clusters of Workstations. In Pro-

ceedings of ACM SIGGRAPH 02, pages 693–702, 2002.

[55] Sylvain Jubertie, Emmanuel Melin, Jeremie Vautard, and Arnaud Lallouet.
Mapping heterogeneous distributed applications on clusters. In Europar,
August 2008.

[56] Takeo Kanade, Peter Rander, and P.J. Narayanan. Virtualized reality: Con-
structing virtual worlds from real scenes. IEEE Multimedia, Immersive

Telepresence, 4(1):34–47, January 1997.

[57] Mustafa Karaman, Lutz Goldmann, Da Yu, and Thomas Sikora. Comparison
of static background segmentation methods. In Visual Communications and

Image Processing (VCIP ’05), Beijing, China, July 2005.

[58] K. Keahey and D. Gannon. PARDIS: A parallel approach to CORBA. In
6th International Symposium on High Performance Distributed Computing

(HPDC ’97), pages 31–39, Portland, Oregon, USA, August 1997. IEEE.

[59] Myron W. Krueger, Thomas Gionfriddo, and Katrin Hinrichsen. Videoplace
– an artificial reality. In CHI ’85: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 35–40. ACM Press, 1985.

[60] A. Laurentini. The visual hull concept for silhouette-based image under-
standing. IEEE Transactions on PAMI, 16(2):150–162, February 1994.

[61] Jean-Denis Lesage and Bruno Raffin. A Hierarchical Component Model for
Large Parallel Interactive Applications. Journal of Supercomputing, July
2008. Extended version of NPC 2007 article.

[62] Jean-Denis Lesage and Bruno Raffin. High Performance Interactive Com-
puting with FlowVR. In IEEE VR 2008 SEARIS workshop, pages 13–16,
Reno, USA, March 2008. Shaker Verlag.

[63] Ming Li, Marcus Magnor, and Hans-Peter Seidel. A hybrid hardware-
accelerated algorithm for high quality rendering of visual hulls. In GI ’04:

Proceedings of the 2004 conference on Graphics interface, pages 41–48,
School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communications Society.

[64] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh.
Parallel volume rendering using binary-swap compositing. IEEE Computer

Graphics and Applications, 14:59–68, July 1994.

[65] D. Margery, B. Arnaldi, A. Chauffaut, S. Donikian, and T. Duval. Open-
mask: {Multi-Threaded | Modular} animation and simulation {Kernel | Kit

106

}: a general introduction. In Simon Richir, Paul Richard, and Bernard Tar-
avel, editors, VRIC 2002 Proceedings, pages 101–110. ISTIA Innovation,
June 2002.

[66] Timothy. G. Mattson, Beverly A. Sanders, and Berna L. Massingill. A Pat-

tern Language for Parallel Programming. Addison Wesley, 2004.

[67] W. Matusik and H. Pfister. 3D TV: A Scalable System for Real-Time Ac-
quisition, Transmission, and Autostereoscopic Display of Dynamic Scenes.
In Proceedings of ACM SIGGRAPH 04, 2004.

[68] Douglas B. Maxwell. Linux Cluster Powers Four-Wall 3D Display. Linux

Journal, December 2002.

[69] Clément Ménier. Systéme de vision temps-réel pour les interactions. PhD
thesis, INPG, 2007.

[70] Clément Ménier, Edmond Boyer, and Bruno Raffin. 3D Skeleton-Based
Body Pose Recovery. In International Symposium on 3D Data Processing,

Visualization and Transmission (3DPVT’06), pages 389–396, 2006.

[71] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classification of
Parallel Rendering. IEEE Computer Graphics and Applications, 14(4):23–
32, July 1994.

[72] J.S. Montrym, D.R. Baum, D.L. Dignam, and C.J. Migdal. InfiniteReality:
A Real-Time Graphics System. In Computer Graphics (ACM SIGGRAPH

97), pages 293–303. ACM Press, August 1997.

[73] Object Management Group. CORBA components specification, v. 3.0, June
2002. Document formal/02-06-65.

[74] OMG CCM Implementers Group. CORBA component model tutorial, April
2002. Document ccm/2002-04-01.

[75] Bruno Raffin and Luciano Soares. PC Clusters for Virtual Reality. In IEEE

Virtual Reality Conference, pages 215–222, Alexandria, USA, March 2006.

[76] N. Richart, A. Esnard, and O. Coulaud. Toward a Computational Steering
Environment for Legacy Coupled Simulations. In Proceedings of 6th Inter-

national Symposium on Parallel and Distributed Computing (ISPDC 2007),
pages 319–326, Hagenberg, Austria, July 2007. IEEE Press.

[77] S. Robert and S. Limet. FlowVR-VRPN: a Generic VRPN/FlowVR Cou-
pling for Interactive Applications. In ACM VRST 2008, Bordeaux, October
2008.

[78] B. Schaeffer and C. Goudeseune. Syzygy: Native PC Cluster VR. In IEEE

VR Conference, 2003.

107

[79] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal of Com-

puter Vision, 47(1-3), April-June 2002.

[80] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit

An Object-Oriented Approach To 3D Graphics, 3rd Edition. Kitware, Inc.,
2003.

[81] Jocelyn Serot and Dominique Ginhac. Skeletons for parallel image process-
ing: an overview of the skipper project. Parallel Computing, 28(12):1685–
1708, December 2002.

[82] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafe. A Survey of
Methods for Volumetric Scene Reconstruction from Photographs. In Inter-

national Workshop on Volume Graphics, 2001.

[83] Larry L. Smarr, Andrew A. Chien, Tom DeFanti, Jason Leigh, and Philip M.
Papadopoulos. The optiputer. Commun. ACM, 46(11):58–67, 2003.

[84] Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis Roch. Work
Stealing for Time-constrained Octree Exploration: Application to Real-time
3D Modeling. In Eurographics 2008 Symposium on Parallel Graphics

and Visualization (EGPGV’08), pages 273–274, Lugano,Switzerland, May
2007.

[85] Luciano P. Soares, Bruno Raffin, and Joaquim A. Jorge. PC Clusters for
Virtual Reality. The International Journal of Virtual Reality, 7(1):67–80,
March 2008. Extended Version of IEEE VR 20006 survey.

[86] R. Szeliski. Rapid Octree Construction from Image Sequences. Computer

Vision, Graphics and Image Processing, 58(1):23–32, 1993.

[87] Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman, Jacobo Bielak,
Omar Ghattas, Kwan-Liu Ma, and David R. O’Hallaron. From Mesh Gen-
eration to Scientific Visualization: An End-to-End Approach to Parallel Su-
percomputing. In Super Computing, 2006.

[88] C. Upson, T. Faulhaber Jr., D. Kamins, D. H. Laidlaw, D. Schlegel,
L. Vroom, R. Gurwitz, and A. van Dam. The Application Visualization
System: A computational environment for scientific visualization. IEEE

Computer Graphics and Applications, 9(4):30–42, 1989.

[89] Jesus Alberto Verduzco. Environnement X Window pour mur d’images. PhD
thesis, INPG, 2005.

[90] A. Wierse, U. Lang, and R. Rühle. Architectures of distributed visualization
systems and their enhancements. In Eurographics Workshop on Visualiza-

tion in Scientific Computing, Abingdon, 1993.

108

[91] Xiaojun Wu, Osamu Takizawa, and Takashi Matsuyama. Parallel pipeline
volume intersection for real-time 3d shape reconstruction on a pc cluster.
In Proceedings of the Fourth IEEE International Conference on Computer

Vision Systems (ICVS’06), Washington, DC, USA, 2006. IEEE Computer
Society.

[92] Uwe Wössner and Martin Aumüller. Software-based genlock for active
stereo nvidia cards. http://www.hlrs.de/organization/vis/

people/aumueller/genlock/.

[93] Keming Zhang, Kostadin Damevski, Venkatanand Venkatachalapathy, and
Steven G. Parker. SCIRun2: A CCA framework for high performance com-
puting. In 9th International Workshop on High-Level Parallel Programming

Models and Supportive Environments (HIPS’04), pages 72–79, 2004.

[94] Li Zhang and M. Parashar. Enabling efficient and flexible coupling of par-
allel scientific applications. In Parallel and Distributed Processing Sympo-

sium (IPDPS) 2006., April 2006.

109

http://www.hlrs.de/organization/vis/people/aumueller/genlock/
http://www.hlrs.de/organization/vis/people/aumueller/genlock/

110

Appendix A

Selected Articles

A.1 Net Juggler IEEE VR 2002 Article

111

Net Juggler and SoftGenLock:
Running VR Juggler with Active Stereo and Multiple Displays on a Commodity

Component Cluster

Jeremie Allard Valérie Gouranton Loı̈ck Lecointre Emmanuel Melin
Bruno Raffin

Université d’Orléans
Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

F-45067 Orleans Cedex 2, France
gouranton@lifo.univ-orleans.fr, melin@lifo.univ-orleans.fr, raffin@lifo.univ-orleans.fr

Abstract

High performance commodity components are available
today to build clusters powerful enough to run high per-
formance virtual reality applications. But cluster program-
ming is time consumming and error prone. Virtual reality
platforms that hide the complexity of the cluster architec-
ture and provide automatic parallelization schemes are re-
quired.

We present in this paper two open source softwares, Net
Juggler and SoftGenLock. The association of these libraries
makes possible to run a VR Juggler application with active
stereo and multi displays on a commodity component PC
cluster. Net Juggler turns a cluster running the VR Juggler
platform on each node into a single VR Juggler image clus-
ter. Application parallelization is transparent to the user.
SoftGenLock provides software genlock and quad buffer
page flipped stereo, without requiring specific hardware or
graphics card driver source code. The performed tests show
these softwares do no introduce a significant overhead.

1 Introduction

Advanced visualization environments are increasingly
used for immersive virtual reality, complex data visualiza-
tion and collaborative work. These environments use mul-
tiple projectors to obtain high resolution and large display
surfaces. For example, Caves [10] uses from 3 to 6 pro-
jectors to display images on some or all the walls of a cubic
room, while the l-shaped display surface of a Workbench re-
quires 2 projectors. Stereo head mounted displays can also
be used in collaborative environments making 2 projectors

per user. A large range of input devices can be used to in-
teract with the application. The user being mobile in such
environments, his head position has to be tracked to update
the view of the displayed 3D scene accordingly. 3D mice
or data gloves may be used to move or bend objects in the
scene. The computing task includes collecting input data,
updating the 3D scene and then rendering the scene, possi-
bly in stereo, with several projectors. Computational load
may be very important. Updating object properties may in-
volve complex behaviors, when two objects are colliding
for example. Latency between input events and image pro-
jections should be kept small and constant for a smooth in-
teraction, imposing a real-time constraint. Thus, a high per-
formance computer is required.

Today’s advanced visualization environments are mainly
driven by high-end specific architectures, which cost is pro-
hibitive for most university labs or private companies. The
cost of developing proprietary hardware and software, to-
gether with the relatively small size of the market partly ex-
plain such high prices. For example the SGI Onyx, probably
the most used system, delivers high performance by making
an intensive use of parallelism. The Onyx 2 [12] has mul-
tiple nodes, each node having 2 processors sharing a com-
mon memory. Nodes exchange date using a high bandwidth
low latency CrayLink interconnect. The machine integrates
specialized hardware to provide a global address space with
a cache coherency protocol. The OS supports automatic
thread distribution easing multi thread programming. The
Onyx is equipped with one or more InfiniteReality graph-
ics pipes [20], each one supporting multiple video outputs.
A specialized network ensures the synchronization of the
frame buffer swaps and the video retraces for the different
video outputs. These two synchronization levels, usually
called swaplock and genlock, are required in a multi display

112

context for a high quality image projection without drifting
or tearing, and to make possible active stereo rendering.

Starting in the early 90’s intensive research has been per-
formed to decrease costs of parallel computers using com-
modity components and open source softwares. Today large
computers built with PCs and gigabit interconnects compete
with proprietary parallel machines [18] and are widely used
for high performance scientific computing. Such PC clus-
ters can be equipped with high performance graphics cards,
based on NVIDIA or ATI graphics processors for example,
which are now available at low cost. Nevertheless, using
such an architecture to drive an advanced visualization en-
vironment faces several limitations.

Common PC graphics cards are not designed to have
their video signal swaplocked and genlocked through an
external synchronization signal. Known approaches to cir-
cumvent this limitation use specific high-end PC graph-
ics cards supporting genlock an swaplock through a spe-
cialized synchronization network. We are aware of three
of these approaches, the 3Dlabs Wildcat graphics card,
the Quantum3D AAlchemy system, and the recently in-
troduced SGI ImageSync technology associated with Vpro
graphics cards. Some graphics clusters implement only a
software swaplock using a classical communication net-
work [7, 23, 1]. But active stereo rendering using shutter
glasses synchronized on video retrace is not possible. A
different technology must be used, like passive stereo, gen-
erally at the price of a lower quality.

Developing an application for a graphics cluster requires
to distribute data and computation load on the different
processors. The different video outputs must be coherent
to have the different projectors displaying complementary
parts of a large image. But parallel programming is time
consuming and diverts the programmer from its main goal
that is to develop innovative interactive graphics applica-
tions. Thus, the programming environment should hide the
complexity of the underlying architecture and provide auto-
matic parallelization schemes.

An other approach consists in duplicating the applica-
tion on each node [21, 7, 8]. Every frame, time and in-
put device data are broadcasted to each copy to guaranty
data coherency. This parallelization is handled automati-
cally by the execution environment, without requiring the
application developer to be aware of the cluster architec-
ture. Because data are duplicated and some computations
are redundant, cluster resources are not optimally used. But
compared to the previous approach the network is not the
boottleneck. The required network bandwidth is limited due
to the small amount of data communicated. Duplicating the
application is efficient even for real-time applications with
frequent updates of the scene. Note that existing environ-
ments require input devices to be on the same node, putting
all the stress of input data acquisition on a single node.

In this paper, we extend this approach to turn a cluster

running a VR system on each node into a single VR sys-
tem image cluster. Our work is based on the VR Juggler.
The open source VR Juggler library [6, 3] defines a execu-
tion platform for virtual reality applications. It provides an
abstraction of the underlying system, while giving direct ac-
cess to various graphics API for maximum control over ap-
plications. The application is independent of the displays,
the input and output devices. System components are con-
figured with a set of files when launching the application.
VR Juggler also integrates dynamic reconfiguration mech-
anisms, allowing to add a display during the execution for
example. Currently, VR Juggler can run on machines like
multi-processor multi-pipe SGI Onyx machines, or single
(possibly SMP) Linux or Windows boxes, but it does not
support cluster configurations. VR Juggler does not support
swaplock and genlock. It assumes the system will take care
of it if required.

We implemented Net Juggler, a C++ library that turns a
cluster running VR Juggler on each node into a single VR
Juggler image cluster. Net Juggler does not modify the VR
Juggler API. It ensures that all VR juggler operating func-
tionalities are available. VR Juggler configuration mecha-
nism is extended to cluster configuration. The user does not
have to contact each node for configuration, which would
have been error-prone and fastidious. Instead, the user gives
configuration data to the single VR Juggler image that dis-
tributes these data to the concerned nodes. In contrast to
previous approaches, input devices can be distributed on
different nodes for more flexibility and a better use of the
connectors available.

Because we first target commodity component clusters,
we also developed a software approach for genlock and
swaplock that does not require specific hardware. The
swaplock synchronization is directly integrated into Net
Juggler. The genlock algorithm is included in an exter-
nal library, called SoftGenLock, currently implemented for
Linux. SoftGenLock also implements software quad
buffer page flipped stereo.

VR Juggler main features are first described in sec-
tion 2 before to present Net Juggler in section 3. Section 4
presents the swaplock and genlock algorithms. Section 5
discusses performance results before to conclude in sec-
tion 6.

2 VR Juggler

VR Juggler is an open source project started in 1997
at Iowa State University [6, 3]. VR Juggler is a virtual
reality plateform hiding the underlying machine complex-
ity and specificity. The application is independent of the
displays, the input and output devices. For maximum con-
trol over applications the developer has direct access to

113

Kernel

Application VjControl

Configuration Manager

Display Manager

Configuration Manager
Cluster

Stream Manager

Environment Server
Cluster

Environment Manager

Net kernel

Client and Server Proxies

Draw Manager

Communication Manager

Input Manager

Figure 1. VR Juggler (thin lines) and Net Juggler (thick lines)

various graphics API, like Performer or OpenGL. Special
care has been taken to enforce VR Juggler modularity and
extensibility to ease addition of new functionalities and
portability to different platforms. At this moment, VR jug-
gler has been ported to numerous platforms, like IRIX,
Linux, Windows or Solaris. It supports several tracking
systems, gloves, and input devices and can probably con-
trol any display configuration, like head mounted display or
6 sided Caves.

VR Juggler allows every element of the system to be
configured at run-time. For example, an input device can
be started, reconfigured or stopped while the application is
running. VR Juggler also integrates a tool for collecting
performance data and visualize them at run-time.

VR Juggler is a C++ library. Its micro-kernel architec-
ture is organized around a kernel and different components
called managers (Fig. 1). Each manager handles a set of
specific system details, while the kernel controls the whole
run-time system and brokers communications between the
different managers. Every input device is controlled by the
input manager. When an application requests access to a de-
vice, it talks to a proxy. The proxy hides the actual device
and tracks the most recent data received from the device.
Each graphics API is encapsulated in a draw manager. The
kernel instantiates only the draw manager required by the
application. The display manager takes care of the windows
and displays. The configuration manager handles a data
base with configuration informations, like window prop-
erties, proxy names and associated devices. The environ-
ment manager is the user entry point to talk to VR Juggler.
The environment manager collects configuration and per-
formance data from the systems and forwards them to the
user through a socket connection. The user also accesses
this connection to send reconfiguration orders. A graphics
utility, VjControl, is provided with VR Juggler for handling
and visualizing data exchanged with the environment man-

ager.

3 Net Juggler

The goal of the Net Juggler project was to design a soft-
ware harness to run VR Juggler on a cluster. Net Juggler [4]
was developed with the following in mind:

� A VR juggler application should not require any
modification to run on a cluster.

� Launching the application and configuring the cluster
should not require the user to access each node.

� All VR Juggler features, like run-time reconfigura-
tion or performance data collection, should be avail-
able on a cluster.

� Net Juggler should be as transparent as possible. Any
new feature that could be added in future VR Juggler
releases, should be also available on a cluster, ideally
with no porting effort.

� Net Juggler should respect VR Juggler micro-kernel
architecture. Required modifications to VR Juggler
code should be minimal.

� Net Juggler should be scalable and ensure high per-
formance executions. In particular, communication
and synchronization costs should be minimized.

� No cluster node should have a master position for bet-
ter scalability. In particular, it should be possible to
scatter input devices on different nodes.

� No specific hardware and driver source code should
be necessary. Thus, Net Juggler should include sup-
port for a software swaplock. A software genlock and
quad buffer page flipped stereo is also required.

114

3.1 Micro-Kernel Architecture

Adding cluster support to VR Juggler requires new func-
tionalities. Following VR Juggler micro-kernel organiza-
tion, we implemented new managers. A Net Juggler kernel
derives from the VR Juggler kernel to handle them (Fig. 1).

3.2 Parallelization Paradigm

To run a VR Juggler application on a cluster we adopted
a simple parallelization paradigm: each node of the cluster
runs its own copy of the application with its own local pa-
rameters, like the viewport for instance. Obviously, input
devices are not duplicated. Thus to ensure data consistency
across the different copies, input events must be broadcasted
to each node. This parallelization can easily be hidden from
the user. It is scalable and ensures the amount of data to
communicate is small.

The main drawback is that it can lead to redundant com-
putations. But performance should not be affected for a
large range of virtual reality applications. Future works will
address this problem for very computation intensive virtual
reality applications.

3.3 Sharing Inputs

A given input device is connected to a given node. Net
Juggler must get the inputs from the device, and broadcast
the collected data to each node of the cluster. VR Juggler
manages each input device through a driver. This driver is
connected to a proxy that forwards the data to the applica-
tion. We could develop a server input driver for the node the
device is connected to, and a client input driver for the other
nodes. This solution was rejected because every single de-
vice driver would require a client and a server input driver.
Instead, we have client and server proxies (Fig. 1). Proxies
provide an abstraction of input drivers and thus their num-
ber is limited and should not increase significantly in the
future.

3.4 Configuration Management

3.4.1 System Configuration

The VR Juggler system configuration is controlled by files
given when starting the program, or by requests sent dur-
ing the execution from VjControl. Configuration data are
organized in chunks, each chunk having some informations
about a part of the system. For configuring a Net Juggler
cluster we just had to add a host parameter to each chunk
pointing out the nodes the chunk should be applied to. We
also defined a new type of chunk for client/server proxy

couples. In this case, the host parameter has a different se-
mantics: it points out the node that runs the server proxy, all
the other nodes having a client proxy.

3.4.2 Processing Configuration Chunks

One cluster configuration manager stores configuration
chunks in a data base on each node (Fig. 1). We want each
node to know the whole cluster configuration to avoid to
centralize configuration informations on one specific node
or to have to handle scattered chunks when the user asks
for the configuration. Each node processes the chunks to
select the ones that must be applied locally and to generate
VR Juggler chunks from Net Juggler specific chunks. The
VR Juggler configuration manager maintains a data base of
local chunks.

3.4.3 Dynamic Configuration

VjControl can connect to any node of the cluster running a
cluster environment server (Fig. 1). Configuration requests
are intercepted and broadcasted to all nodes before being
stored in each local data base and processed to be applied
localy. VR Juggler environment manager is still available
to retrieve local data, like performance data. This open con-
nection is also useful for debugging.

3.5 Communications

Communications must take place to broadcast configura-
tion requests and input data. For performance purpose these
data transfers must be carefully gathered.

3.5.1 Streams

We use and extend the classical stream paradigm to rep-
resent data communication between nodes. There is one
stream by server proxy and by cluster environment server.
A stream is associated to a specific node source and can
have several destination nodes. Each stream is identified by
a unique id and can be created, deleted or modified at run-
time. The abstraction level provided by the streams hides
the actual data movements that take place at a lower level.
Stream related operations are performed by the stream man-
ager (Fig. 1).

3.5.2 Messages

Data communications take place only once per frame.
When a node writes into a stream, it builds a message con-
taining the data and appends it to the buffer of pending mes-
sages. When the communication actually takes place each
node broadcasts its buffer to each other node (allgather col-
lective communication).

115

Configuration events can take place at any time and
cause buffers to have an unpredictable size. The adopted
semantics for the allgather requires all nodes to know the
size of the messages they will receive. When the allgather
is executed, it sends input data and a special message in-
dicating the size of the reconfiguration data. If this size is
different from 0 a second communication step is triggered
to send the reconfiguration data.

3.5.3 Communication Implementation

Because only input events are sent over the network, band-
width should not be a limiting factor. Synchronization bar-
riers are mainly used for swaplock and genlock (see sec-
tion 4). The genlock requires precise and fast barriers.
As we will discuss it in section 5, a gigabit network like
Myrinet, or a Fast Ethernet network associated with a spe-
cific fast synchronization network provide the required per-
formance.

Net Juggler is designed to ease porting on top of vari-
ous communication libraries. Communication routines are
defined in an abstract communication manager class. De-
rived classes provide the actual implementation (Fig. 1).
For the moment, one communication manager is imple-
mented with the MPI [24] standard. MPI is widely used
and many implementations are available, on top of standard
protocols like TCP/IP [14] or high performance user-level
protocols [5, 17, 13].

Depending on MPI implementations, collective opera-
tions may not be optimized for Net Juggler communication
requirements. For example the allgather operation is typ-
ically implemented by having all processors shifting mes-
sages in a ring. This is efficient for large messages, but
for small messages a gather followed by a broadcast is gen-
erally more efficient [19]. Several implementations of the
broadcast and allgather collective operations are provided
with Net Juggler so it can be easily tuned up for the net-
work and protocol used.

4 Swaplock, Genlock and Active Stereo

Except for some high-end cards, off-the-shelf graphics
cards do not support swaplock and genlock. Especially for
Linux, today’s graphics card drivers generally do not enable
quad buffer page flipped stereo. These are important limita-
tions for virtual reality PC clusters.

We describe in this section software solutions we devel-
oped to bypass these limitations. Swaplock support is in-
tegrated in Net Juggler. Genlock and active stereo support
are gathered in the SoftGenLock library. Note that we de-
veloped solutions that do not require the source code of the
graphics card driver.

For the moment, SoftGenLock has been ported on Linux.
It should work with any graphics cards, but was only tested
with Geforce cards.

4.1 Swaplock

Swaplock is obtained with a synchronization barrier that
forces the different nodes to wait each other before to swap
their frame buffers. This technique is used in other sys-
tems [7, 23] and proved efficient.

4.2 Active Stereo Support

Active stereo display requires the graphics card to com-
pute two different images, one for each eye, and to display
them alternatively, switching at each video retrace. Shutter
glasses are synchronized with the retrace signal to ensure
each eye only see its image.

4.2.1 Quad Buffering

XFree86 is set up to have a virtual buffer twice as large
as the screen display. The 3D software (NET/VR Juggler)
must then be set up to write the left eye image in the left half
buffer and the right eye image in the righ half buffer. Each
time a vertical retrace is detected, the displayed part of the
buffer is changed and a signal is sent to the shutter glasses.

4.2.2 Vertical Retrace Detection

Because proprietary drivers do not let us have access to
the vertical retrace interrupt, other approaches to detect and
wait for the vertical retrace must be considered.

Most graphics cards are VGA compatible, having a sta-
tus register and CRTC registers. The status register can be
used to detect the vertical retrace. The CRTC registers can
be used to modify the video signal.

We could poll the state of the status register to detect
the vertical retrace, but this active waiting is CPU time con-
suming. To free the CPU, we use a real-time timer that is
started after each vertical retrace. It is set up to wake up the
SoftGenLock thread just before the next vertical retrace.

We use the RT-Linux system [2]. The high precision of
RT-Linux timers permits to reduce the active waiting to a
few tens of microseconds for each retrace. This overhead
could be reduce by dynamically refining the SoftGenLock
thread sleeping time.

4.2.3 Page Flipping

To alternate the image displayed, SoftGenLock modifies the
display start address in the CRTC registers.

116

wait = false
frame = 0
Loop:

Wait for vertical retrace
Barrier
t = barrier execution time
set_display_starting address((frame % 2) * image_size)
set_stereo_sync_signal ((frame % 2) ? right_eye : left_eye)
frame = frame + 1
if (t > too_long and wait == false) then

Slow down video signal
wait = true

end
if (t < small_enough and wait == true) then

Go back to normal signal speed
wait = false

end
end

Figure 2. SoftGenLock main algorithm for stereo and genlock

4.2.4 Stereo Sync Signal

To send the stereo sync signal to shutter glasses we devel-
oped two approaches:

� The signal is written to a parallel port register. Gen-
erally shutter glasses are not connected to the parallel
port but it is easy to brew a home made adaptor.

� The stereo signal is written to the DDC SDA pin of
the SVGA video port. For NVIDIA cards the DDC
bit is set by writing into the CRTC register0x3f. A
stereo enabler adaptor is then necessary to extract the
signal and forward it to the glasses. Using the ELSA
Revelator stereo enabler adaptor allows to connect
any glasses that has a VESA standard 3-pin mini-DIN
stereo connector.

4.3 Genlock

4.3.1 Algorithm

When a node detects the vertical retrace for its video cards,
it starts a synchronization barrier and measures the time
taken to proceed this barrier (Fig. 2). If the delay is con-
sidered too long the machine slows down its video retraces.
When the delay is considered small enough video retrace
goes back to its normal speed.

The genlock algorithm requires the following data :
� The timesync time required to execute a barrier

when all barrier calls are synchronized.

� The extra timedelay introduced during one image
retrace when the signal is slowed down.

The highest quality genlock is achieved by setting the vari-
ablessmall enough to sync time andtoo long to
sync time+delay.

The synchronization should be short enough to leave
enough time to flip the shutters before the next image re-
trace starts.

Note that active stereo does not require a perfect genlock.
The signals should stay synchronized within a range that
ensures the shutters flip without an eye seeing the wrong
image.

4.3.2 Synchronization Barrier

We estimated a quality stereo display typically requires a
synchronization barrier below 100 microseconds. Depend-
ing on the cluster size and the barrier implementation, com-
modity networks like Fast Ethernet or Myrinet, can fulfills
this requirement. We also developed a low cost network
that provides high performance and scalable synchroniza-
tion barriers. Executing the synchronization on a dedicated
network avoids to overload the communication network and
to have the barrier perturbated by other communications.

This network, called ISPPAPERS, is used for the gen-
lock synchronization barriers, but can also execute the
swaplock synchronization barrier. A node connects to the
network through the parallel port. A 4 PC synchronization
is achieved in less than 5 microseconds. Basic synchroniza-
tion units can be tree assembled to connect an arbitrary large
number of nodes with very high synchronization perfor-
mance. Each extra tree level only adds a few nanoseconds
to the synchronization barrier. ISPPAPERS is based on

117

Test Juggler Network Display Nodes Frames per second
Sync. and comm. time

(pourcentage of the frame time)

Quake VR Juggler - Mono 1 41 -
Quake Net Juggler ISP + Fast Ethernet Mono 4 39.0

✁✄✂ ☎✝✆
Quake Net Juggler Myrinet Mono 4 31.4 ✞ ✂ ☎✝✆
Quake VR Juggler - Stereo 1 31.1 -
Quake Net Juggler ISP + Fast Ethernet Stereo 4 31.4 ✟ ✂ ✠✡✆
Quake Net Juggler Myrinet Stereo 4 32.6 ☛ ✂ ☎✝✆
Fluid VR Juggler - Mono 1 26.9 -
Fluid Net Juggler ISP + Fast Ethernet Mono 4 27.6

✁✄✂ ✠✡✆
Fluid Net Juggler Myrinet Mono 4 27.8 ☛ ✂ ✞☞✞ ✆
Fluid VR Juggler - Stereo 1 20.5 -
Fluid Net Juggler ISP + Fast Ethernet Stereo 4 19.1 ✟ ✂ ✌✡✆
Fluid Net Juggler Myrinet Stereo 4 22.2 ☛ ✂ ☛ ✌✝✆

Table 1. Performance results for Quake III Arena and the Fluid applications

the TTL PAPERS network [11]. But ISPPAPERS core
component can be reprogrammed, adding versatility to
the communication, computation and synchronization func-
tions the network can support.

5 Performance

Net Juggler and SoftGenLock were tested on 4 dual
Pentium III 800 Mhz PCs equipped with GeForce 2 GTS
64 MB DDR graphics cards. Three networks were avail-
able, a 100 Mbits/s Fast Ethernet network associated with
the ISPPAPERS synchronization network, and a 2 Gbits/s
Myrinet 2000 network. Each node was running the Linux
kernel 2.2.17.

Performance were measured with two different applica-
tions, Quake III Arena and an interactive real time fluid flow
simulation we developed. These applications were using
only one of the two processors present on each node.

For each application we measured the average frame rate
and the average communication and synchronization time
spent per frame for different configurations, using VR Ju-
gler or Net Juggler, mono or stereo display. As input de-
vices both applications were using a keyboard, a mouse and
a time server.

When using VR Juggler, the application ran on a single
node driving a single✞✍☛☞✟✏✎✒✑✔✓✏✕ ✌ resolution display. When
using Net Juggler, the application ran on four nodes, each
one driving a ✞✍☛☞✟✖✎✗✑✘✓✖✕ ✌ resolution display, making four
times the resolution of the VR Juggler configuration. Com-
munications and synchronization used either the Fast Eth-
ernet and ISPPAPERS networks or the Myrinet network.

With the Fast Ethernet network Net Juggler used mpich-
1.2.4 over TCP/IP and SoftGenLock the ISPPAPERS net-
work. With Myrinet Net Juggler and SoftGenLock used
mpich-1.2..5 over gm-1.4pre51.

Results (Table 1) show no significant performance degra-
dation using Net Juggler alone or with SoftGenLock. The
communication and synchronization time represents less
than ✎ ✆ of the total frame time for both network config-
urations. This time depends on the number of nodes, the
number and distribution of input devices, but it does not
depend on the scene complexity. Communication perfor-
mance when using the Fast Ethernet network could be in-
creased using mpich on top of a user-define protocol like
Gamma [9] instead of TCP-IP. We did not test this config-
uration, because Gamma was unstable with the Intel 82559
NIC our nodes were equipped with.

6 Conclusion

High performance commodity components are available
today to build clusters powerful enough to run high perfor-
mance virtual reality applications. But software solutions
are required to provide an abstraction level on top of these
machines to ease development, portability, cluster configu-
ration and execution control. Platforms like VR Juggler [6]
or Maverik [15] are designed with that goal but do not sup-
port clusters yet.

We presented in this paper two open source softwares,
Net Juggler and SoftGenLock. The association of these li-
braries makes possible to run a VR Juggler application with
active stereo and multi displays on a commodity component
PC cluster. Net Juggler turns a cluster running VR Juggler

118

on each node into a single VR Juggler image cluster. Ap-
plication parallelization is transparent to the user. Cluster
configuration and execution control is done accessing the
single image system and not each node individually. Soft-
ware swaplock support is integrated in Net Juggler. Soft-
GenLock provides software genlock and quad buffer page
flipped stereo, without requiring specific hardware or even
graphics card driver source code. The performed tests show
these softwares do no introduce a significant overhead.

The parallelization scheme adopted is based on running
a copy of the application on each node. Data are duplicated
and some computations are redundant. For some applica-
tions this can be a memory and performance bottleneck that
we will address in future works.

References

[1] MetaVR Web Server. www.metavr.com.
[2] RT Linux Web Server. www.rtlinux.org.
[3] VR Juggler Web Server. www.vrjuggler.org.
[4] J. Allard, L. Lecointre, V. Gouranton, E. Melin, and B. Raf-

fin. Net Juggler Guide. Technical Report 2001-02, Lab-
oratoire d’Informatique Fondamentale d’Orléans, Orléans,
France, June 2001.

[5] R. A. Bhoedjang, T. Rühl, and H. E. Bal. User-Level Net-
work Interface Protocols.IEEE Computer, 31(11):53–60,
November 1998.

[6] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira. VR Juggler: A Virtual Platform for Virtual
Reality Application Development. InIEEE VR 2001, Yoko-
hama, Japan, March 2001.

[7] M. Bues, R. Blach, S. Stegmaier, U. Häfner, H. Hoffmann,
and F. Haselberger. Towards a Scalable High Performance
Application Platform for Immersive Virtual Environements.
In J. D. B. Fröhlich and H.-J. Bullinger, editors,Immer-
sive Projection Technology and Virtual Environements 2001,
pages 165–174, Stuttgart, Germany, May 2001. Springer.

[8] Y. Chen, H. Chen, D. W. Clark, Z. Liu,
G. Wallace, and K. Li. Software Envi-
ronments for Cluster-based Display Systems.
http://www.cs.princeton.edu/omnimedia/papers.html,
2001.

[9] G. Chiola and G. Ciaccio. Efficient Parallel Processing on
Low-cost Clusters with GAMMA Active Ports.Parallel
Computing, 26, 2000.

[10] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon,
and J. C. Hart. The Cave Audio VIsual Experience Auto-
matic Virtual Environement.Communication of the ACM,
35(6):64–72, 1992.

[11] H. G. Dietz, R. Hoare, and T. Mattox. A Fine-Grain Parallel
Architecture Based On Barrier Synchronization. InProceed-
ings of the International Conference on Parallel Processing,
pages 247–250, 1996.

[12] J. Fier. Performance Tuning Optimization for Ori-
gin 2000 and Onyx 2. Silicon Graphics, 1996.
http://techpubs.sgi.com.

[13] P. Geoffray, L. Prylli, and B. Tourancheau. BIP-SMP: High
Performance Message Passing over a Cluster of Commod-
ity SMPs. InProceedings of Super Computing 99, Portland,
USA, November 1999.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
A High-Performance, Portable Implementation of the
MPI Message Passing Interface Standard. http://www-
c.mcs.anl.gov/mpi/mpich/.

[15] R. Hubbold, J. Cook, M. Keates, S. Gibson, T. Howard,
A. Murta, A. West, and S. Pettifer. GNU/MAVERIK: A
mirco-kernel for large-scale virtual environements. InPro-
ceedings of the ACM Symposium on Virtual Reality Soft-
ware and Technology, pages 66–73, London, UK, December
1999.

[16] G. Humphreys and P. Hanrahan. A Distributed Graphics
System for Large Tiled Displays. InProceedings of IEEE
Visualization’99, 1999.

[17] M. Lauria and A. A. Chien. MPI-FM: High Performance
MPI on Workstation Clusters.Journal of Parallel and Dis-
tributed Computing, 40(1):4–18, 1997.

[18] G. R. Luecke, B. Raffin, and J. J. Coyle. Comparing the
Communication Performance and Scalability of a Linux and
a NT Cluster of PCs, a Cray Origin 2000, an IBM SP and
a Cray T3E-600. InProceedings of the IEEE International
Workshop on Cluster Computing (IWCC’99), pages 26–35,
Melbourne, Australia, December 1999.

[19] G. R. Luecke, B. Raffin, and J. J. Coyle. The Performance
of the MPI Collective Communication Routines for Large
Messages on the Cray T3E600, the Cray Origin 2000, and
the IBM SP. The Journal of Performance Evaluation and
Modelling for Computer Systems, July 1999. http://hpc-
journals.ecs.soton.ac.uk/PEMCS/.

[20] J. Montrym, D. Baum, D. Dignam, and C. Migdal. In-
finiteReality: A Real-Time Graphics System. InComputer
Graphics (SIGGRAPH 97), pages 293–303. ACM Press,
August 1997.

[21] D. Pape, C. Cruz-Neira, and M. Czernuszenko.CAVE User’s
Guide. Electronic Visualization Laboratory, University of
Illinois at Chicago, 1997.

[22] J. Rohlf and J. Helman. IRIS Performer: A High Perfor-
mance Multiprocessing Toolkit for Real-Time 3D Graphics.
In Computer Graphics (SIGGRAPH 94), pages 381–394.
ACM Press, July 1994.

[23] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh.
Load Balancing for Multi-Projector Rendering Systems.
In ACM, editor, Proceedings of SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 107–144, Los An-
geles, USA, August, 1999.

[24] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra.MPI, The Complete Reference. Scientific and
Engineering Computation. The MIT Press, 1996.

119

A.2 SoftGenLock IPT 2003 Article

120

Softgenlock: Active Stereo and GenLock for PC Cluster

Jérémie Allard1

Valérie Gouranton2

Guy Lamarque3

Emmanuel Melin2

Bruno Raffin1

1 Laboratoire Informatique et Distribution (ID)
CNRS - INPG - INRIA - UJF
38330 Montbonnot, France

2 Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)
Université d’Orléans

F-45067 Orleans Cedex 2, France
3 Laboratoire d’Electronique, Signaux, Images (LESI)

Université d’Orléans
F-45067 Orleans Cedex 2, France

Abstract
In this paper, we present SoftGenLock, an open source software that enables genlock and active stereo on commod-

ity graphics cards. SoftGenLock is implemented on top of Linux. It does not require any hardware modification of

the graphics card. Rather than to gain total control on signal generation, which would make the software deeply

dependent on the graphics card specification, SoftGenLock applies continuous small modifications to converge

and maintain genlocked video signals. To be properly synchronized with each video retrace, SoftGenLock is exe-

cuted as a real-time task. The genlock signal is propagated along the different machines using the parallel port, a

low latency device present on all PCs. It results in a software that only requires access to few specific registers on

a graphics card: it can be ported with minimal effort on potentially any graphics card.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics H.5.1 [Information Interfaces and Presentation]: Artificial, augmented, and virtual realities

Keywords: Active Stereo; Genlock; Real-time; Immersive Projection Environment; PC Cluster.

1. Introduction

Immersive environments 12 are classically powered by ded-
icated graphics supercomputers like SGI Onyx machines 15.
However, today the anatomy of super-computing is quickly
and deeply changing. Clusters of commodity components
are becoming the leading choice architecture. They are scal-
able and modular with a high performance-price ratio. Clus-
ters range from a few low-end machines connected through
an Ethernet network to thousands of 64-bit processors us-

ing Myrinet or Quadrix interconnects. These architectures
proved efficient for classical (non interactive) intensive com-
putations. Recently the availability of low cost high perfor-
mance graphics cards have foster researches to use clus-
ters to run interactive virtual reality applications in multi-
projector immersive environments 6, 8, 14, 16.

One difficulty is to harness the distributed resources
(CPU, memory, GPU, projector) such that the images dis-
played with the different projectors appear as a single high

121

resolution image. Three levels of synchronization can be
identified:

• DataLock ensures the images on each node are com-
puted on coherent data sets. For example, the user position
should be the same for all nodes.

• SwapLock ensures the images computed on each node are
released at the same time, i.e. the buffer swaps are syn-
chronized.

• GenLock ensures video signals are synchronized. Syn-
chronization can occur at a pixel level, line or frame level.
In this paper we consider a frame level genlock.

Several approaches have been developed to ensure proper
datalock and swaplock. A master server can ensure datalock
by broadcasting graphics primitives to the render nodes 14.
An other approach consists in duplicating data on each node
at starting time and broadcasting any subsequent data modi-
fication event 6, 11, 17. A synchronization barrier, executed on
a classical Fast Ethernet network just before the buffer swap,
is sufficient to ensure a proper swaplock 6, 11, 17. Genlock,
as it concerns video signal generation, is close to the hard-
ware and then much more difficult to ensure with a software
only approach. Some vendors, like 3DLabs or nVIDIA (the
recently announced quadro FX), develop high-end graph-
ics cards with built-in support for genlock. Other compa-
nies like Artabel, Orad or MetaVR, modify existing graph-
ics cards. However, main commodity graphics cards from
nVIDIA, ATI or Matrox, do not support genlock. There is
no strong technical limitation to provide this feature at a
hardware level. It is rather an economical reason as the very
small size of the market does not justify the extra cost in-
curred : extra hardware, extra connector for genlock signal,
extra space to locate this connector on the graphics card, and
drivers that support it.

A frame level genlock is mandatory for active stereo 8.
Left and right eye images are displayed alternatively. Swap
occurs during the vertical blanking, i.e. when no pixel is gen-
erated before the next video retrace starts. The user wears
glasses with shutters opening alternatively to let him see the
right eye images with the right eye only and vice-versa. If
genlock is not properly ensured, the user may see from the
same eye both, a right and a left eye image displayed by two
different projectors. The quality of stereo is then affected.

The goal of the open source SoftGenLock 7 project was
to develop a software approach to enable genlock and ac-
tive stereo on commodity graphics cards. SoftGenLock, de-
veloped for Linux, was first released in June 2001. It has
been designed to minimize dependencies on graphics cards.
It does not require any hardware modification of the graph-
ics card. The genlock signal is propagated along the different
machines using the parallel port. Thus no direct wiring of
the graphics card is required. Genlocking and active stereo
requires a strong synchronization with video retrace. This
is usually ensured at a hardware level. SoftGenLock avoids
this dependency by taking advantage of real-time systems

like RTAI 4 or RTLinux 9: SoftGenLock is executed as a
real-time task. For stereo, SoftGenLock counts on X to set-
up a virtual screen twice as large as the actual screen, that
can contain side by side the left and right eye images.

During video blanking, it just has to swap the address of
the half screen to display (the left or right eye image). The
switching signal for the shutter glasses is sent through the
parallel port. Genlocking is achieved by applying continu-
ous small modifications to the video signal, adding or re-
moving hidden pixels for example, an approach that requires
a limited control on the signal generation. As a result, Soft-
GenLock only requires access to few specific registers on a
graphics card: to detect a specific position of the video re-
trace, to apply small modifications to the video signal and to
change the address of the buffer to display. Thus, supporting
a new graphics card does not require a full code rewrite but
only to support the new set of registers. Given a family of
cards, vendors usually ensures an upward compatibility. In
this case, SoftGenLock code is identical for all the family.
This is for example the case of all cards based on nVIDIA
Geforce/Quadro GPUs.

SoftGenLock design and algorithm are discussed first in
section 2. Specific features are detailed in sections 3, 4, 5, 6
and 7, before to end with results in section 8.

2. SoftGenLock Design and Algorithm

Rather than to gain total control on signal generation, Soft-
GenLock applies continuous small modifications to con-
verge and maintain genlocked video signals. This approach
requires minimal control over the graphics card. We basi-
cally need two features: a way to inflect the signal generation
speed, and a way to periodically detect the signal position
(once per frame for a frame level genlock). The former can
be obtained by modifying the speed of the pixel clock or the
number of pixels to generate. The latter, we call it the sync

event, is implemented using the vertical blanking interrupt or
by pooling a CRTC state register 1. Information must be ex-
changed between machines to measure the time gap between
the different sync events. The video signals will be consid-
ered genlocked if the time gaps are small enough (usually
5-40 µs for good stereo quality). Based on this measure each
machine can locally decide to slow down or accelerate the
video signal to reduce this time gap. Amongst the machines
one is considered the reference: the master. It never modifies
its video-signal. Each other machine, the slaves, measures
the time gap between the master sync event and its own sync
event and corrects the video signal speed if required.

To obtain a genlock and stereo of quality, SoftGenLock
must be executed in real-time. If glasses switch a few hun-
dreds of microseconds after the expected time, because an
interruption suspended SoftGenLock execution for example,
the stereo quality is affected (switch occurs during video re-
trace). As we target a genlock with a discrepancy of about

122

5-40 µs, the time gap must be measured with a precision of a
few microseconds. The Linux kernel 10 does not guarantee a
process will not be interrupted or will be granted CPU access
with a short response time (few µs). The response time of the
Linux Kernel 2.4 can be as large as 10 ms. Thus, Linux does
not allow SoftGenLock to measure the time gap with the re-
quired precision. To satisfy these real-time constraints we
run SoftGenLock as a RTLinux 9 or RTAI 4 task.

Before SoftGenLock starts to genlock the video signals
and activate stereo, it goes through a calibration step and a
local synchronization step. During the calibration step, Soft-
GenLock evaluates different times, like the time gap be-
tween two consecutive sync events. During the local syn-
chronization step, SoftGenLock calibrates its timers to wake
up when needed during the video blanking. The goal is to
minimize busy waiting to avoid monopolizing a CPU. Next,
once per video retrace, SoftGenLock executes the following
tasks (the order may change depending on the implementa-
tion):

• The master sends a signal to the slaves a soon as it detects
its sync event.

• Each slave detects the time tm it receives the signal from
the master. It subtracts from tm the expected signal trans-
mission (user given, generally about 5µs).

• Each slave measures the time tl the local sync event oc-
curred.

• Each slave modifies the video signal generation speed if
|tm − tl | is considered too large (usually about 5-40 µs).

• The machine driving the shutter glasses sends the switch-
ing signal.

• All machines switch the address of the image to display
(left or right eye image).

3. Real-time System

SoftGenLock is implemented as a real-time task using
RTLinux 9 or RTAI 4. These add-ons to the Linux kernel
ensures real-time tasks are triggered with micro-second re-
sponse times and are not interrupted without their consent.

RTLinux and RTAI share the same main concepts. The
real time system implements a basic kernel that handles two
kinds of tasks: the Linux kernel and real-time tasks. The real-
time kernel does not implement preemptive multi-tasking.
Task scheduling must be programmed at the task level. This
is the responsibility of the programmer to ensure two tasks
do not try to grab the same CPU at the same time. Clas-
sically, real-time tasks are activated through a timer inter-
ruption: the real-time kernel intercepts the interruption and
activate the real-time task that is waiting for that interrup-
tion. The task releases the CPU when it is done. No other
task will be scheduled during that period of time. The real-
time kernel has been designed to ensure the delay between
the hardware interruption and the task activation is as small
as possible, generally about a microsecond. The Linux ker-
nel is the lowest priority task. It has access to the CPU only

when no real-time task asks for it. Hardware interruptions
for the Linux kernel are intercepted and stored by the real-
time kernel as long as the Linux kernel does not have access
to a CPU.

SoftGenLock is programmed as a real-time task. There is
no time sharing difficulty as it is the only real-time task. Soft-
GenLock reprograms the timer interruption to be activated
only when required. As a result, its only uses about 50µs of
CPU time per video retrace. The guaranteed microsecond re-
activity of real-time tasks and the non-preemptive time shar-
ing ensures SoftGenLock actions are all performed on time.

Real-time execution allows a fine-tuning of event trigger-
ing, making it possible to optimize genlock and stereo qual-
ity for each configuration. For example shutter latency may
vary from one model to the other. SoftGenLock can precisely
control when the shutter switching signal is sent to minimize
ghosting: glasses should switch as late as possible to avoid
the opening shutter let the user see the image just drawn, but
not too late to ensure the other shutter is closed when the
next video retrace starts.

4. Sync Event Detection

SoftGenLock supports two different approaches. The first
one detects the vertical blanking pooling the VGA Input Sta-
tus #1 register 1 (3DAh). To avoid monopolizing a CPU,
SoftGenLock uses a real-time timer to wake up just before
the sync event is expected. The second approach uses the
vertical blanking interrupt. The interrupt is intercepted by
RTAI that wakes-up SoftGenLock within about a microsec-
ond. Next, RTAI forwards the interrupt to the Linux kernel
as it may be required by the graphics card driver. This second
approach only supports nVIDIA cards for the moment.

5. Communication Network

SoftGenLock requirements for the communication network
are the following :

• The master has to send a signal (one bit) to the slaves
every video retrace.

• The communication time of the signal should not suffer
unpredictable variations. A slave must be able to know
the time the signal was sent to deduce the time the sync
event was detected on the master slave.

• The network should be accessible from a real-time task.

Using a parallel port based network appeared as the best
solution. Parallel port is still present at no extra cost on all
PCs. The parallel port can be accessed from a real-time task.
The signal (a bit) is directly written on a parallel port reg-
ister and transformed into an electrical signal, without hav-
ing to go through a protocol layer 2. It ensures fast trans-
mission times (about 5µs to send a bit) and low variations.
Notice that classical high performance networks (Giga Eth-
ernet, Myrinet or SCI for example) are not accessible from

123

RTAI or RTLinux tasks. This would require specific real-
time drivers that are not available.

The parallel port has 8 pins (pins 2-9) that the master can
use to send data 2. On one pin, it is possible to connect sev-
eral slaves. We did not make intensive tests, but it seems
reasonable to connect 4 slaves per pin without requiring any
signal amplifier. Thus, we can easily build a cheap and elec-
tronics free network for 33 nodes (one master, 8×4 slaves).
By default the master writes the signal on all 8 output pins.
This is useful as it allows to add or remove slaves online.

We also developed an advanced network based on the
TTL_PAPERS design 13. Using a reprogramable chip, it can
implements more complex tasks than just to propagate a sig-
nal. The idea behind this advanced network is to have a re-
configurable networks to use SoftGenLock like algorithms
for other tasks, like swaplocking or clock synchronization
for example.

Figure 1: The basic board with a 2096VE device (front and

back side)

The basic circuit board (Fig. 1) is four layered, the two in-
ternal layers are reserved for ground and power planes. The
other layers are fully available for signal routing. The archi-
tecture is based around two CPLD (Complex Programmable
Logic Device) ispLSI 2096VE, one on each side of the
board. These devices have 96 general purpose Input/Output
pins. These non volatile CPLD are electrically erasable and
system programmable. The basic unit of logic on the ispLSI
2096VE devices is the Generic Logic Block (GLB). There
are a total of 24 GLBs in the 2096VE device. Each GLB has
a programmable AND/OR/Exclusive OR array. Each out-
puts can be configured to be either combinatorial or regis-
tered (96 registers). Even though these devices have a 3.3V
low voltage architecture, the signal levels are TTL compati-
ble with standard 5V TTL devices: they are compliant with
the IEEE 1284 standard for parallel port. It is possible to
interconnect several boards for large clusters. Each addi-
tional board only increases communication times by a few
nanoseconds.

The hardware design can be programmed with tools
like Very high speed Integrated Circuit (VHSIC) or Hard-
ware Description Language (VHDL) for example. Once
the program written, a file is generated and loaded to the

non volatile Electrically Erasable Programmable Read Only
Memory (EEPROM) architecture of the ispLSI.

6. Video Signal Control

Once we determined the time gap between the master sync
event and the local sync event, corrections must be applied to
accelerate or slow-down the video signal generation. The al-
teration of the video signal must be done carefully, otherwise
the projector detects it : during a few milliseconds it does
not display anything to reinitialize its state (the phenomena
is classically experienced when changing the resolution of a
CRT screen).

Depending on the characteristics of the graphics card, two
approaches are supported.

6.1. VGA compatible cards

The VGA standard 1 specifies the registers that control the
video signal. Some registers control the number of lines and
columns of pixels (CRTC registers 00/06). SoftGenLock ac-
cesses these registers to add or remove pixels. When small
modifications are required, hidden pixels are added/removed
by adding/removing a few columns to some hidden lines. For
larger modifications an extra blank line is added (hidden pix-
els too).

This approach can be used for any graphics card VGA-
compatible on register level. It has been successfully used on
nVIDIA and S3 cards. Unfortunately, several graphics cards
are not compliant (Voodoo, ATI).

As VGA is an old standard, it has several limitations. It
only supports one video head on multi-head cards, and some
high-resolution modes are not supported. Another impor-
tant draw-back is the possible interference with the video
driver. As SoftGenLock is designed no to require access to
the video driver’s source code, mutual exclusion between
the driver and SoftGenLock cannot be ensured. Accessing
a VGA register is not atomic. It is a 2-step operation: first
setting the index of the register and then reading/writing the
value. Conflicts can occur when SoftGenLock and the driver
are concurrently accessing the registers. This may lead to
occasional corruptions of the VGA registers, which can lead
to a corrupted display, X server crashes, or even hard lock
of the entire system. Depending on the hardware environ-
ment, these problems can be quite rare (only after several
hours of operation), or they can occur after only a few min-
utes. Resolving this issue require either more knowledge of
the graphics card hardware (see next section) or to modify
the driver to implement a lock that would guarantee mutual
exclusion.

6.2. Pixel Clock Access

The pixel clock is the hardware component used to activate
the output of each pixel of the video signal. Depending on

124

the graphics card model, it is possible to alter its speed. This
requires knowledge on the hardware, but provides a very ef-
ficient way to control the video signal. For the moment only
nVIDIA cards are supported, but this approach can easily be
adapted to other models.

The pixel clock is based on a static base clock divided by
a programmable factor. On nVIDIA cards, a register (offset
0x680508 in the MMIO area) contains 3 parameters M, N

and P, which are used to specify the frequency using the
following formula:

Pixel Frequency =
BaseFreq∗N

M ∗2P

To sync the master sync event and the local sync event,
SoftGenLock modifies this register for a small period of time
during the vertical blanking.

This approach supports any resolution. Both video heads
can be controlled. Writing in this register is atomic so there
is no concurrency issues.

7. Active Stereo

Figure 2: A parallel cable to genlock 2 machines. Beside the

two DB25 connectors, we can distinguish a female mini-din

3 connector to plug the IR emitter of the shutter glasses.

Active stereo requires displaying alternatively the left eye
and right eye images with shutter glasses masking the user’s
opposite eye. Image and shutter switching must occur before
each video retrace:

• Glasses Control: The signal to control the shutter glasses
is written on a pin of the parallel port and forwarded to
the glasses with an adapted connector (Fig 2). It can be
written at a different address if, for example, the graph-
ics card has a dedicated output for the glasses. The time
the signal is sent is critical to ensure the wrong image
is not seen while shutters are switching. A microsecond
precision is reached using RTAI or RTLinux. Experience
shows that stereo signal should be sent about 700 µs be-
fore the next video retrace starts (this may vary depending
on the glasses).

• Image Switching: SoftGenLock provides left/right im-
age switching without requiring any specific hardware or

driver support. XFree86 is set to have a virtual screen
twice as large as the actual screen (a simple modification
in the XF86Config file). We thus have a double size frame
buffer. The 3D software must be configured to write the
left eye image on the left half screen and the right eye im-
age on the right half screen. This can be done through a
simple modification of configuration files with Net Jug-
gler 6. During the vertical retrace, SoftGenLock switches
the starting address of the half screen to display. This is
done writing into a VGA register (CRTC registers 0C/0D)
or a nVIDIA-specific register.

8. Results

The current implementation supports all cards having VGA
registers. SoftGenLock is mainly used with nVIDIA cards
(Geforce 2, Quadro 2, Geforce 4, Quadro 4), but was also
tested with other VGA cards from S3 for example. It has
been used for genlocking and active stereo with up to 6 ma-
chines. It requires about 50µs of CPU time per video retrace.
SoftGenLock can be adapted to use non VGA registers, as-
suming the required hardware specification is available. We
led developments to support specific nVIDIA registers. Only
one output is VGA compliant on nVIDIA cards (the DVI one
on GeForce 4 models). Using nVIDIA registers, SoftGen-
Lock proved more reliable and can use the second output
(one at a time for the moment, both at the same time in the
future). Other non VGA cards, in particular from ATI, Ma-
trox or 3Dlabs, are not supported for the moment.

Hardware specifications required to port SoftGenLock on
a new graphics card are basics features that can be found
in the 2D open source drivers that are usually available on
Linux. We ported SoftGenLock on nVIDIA graphics cards
using the informations from the nv driver of The XFree86
Project 5 and the RivaTV 3 developer resources.

9. Conclusion

Today’s commodity graphics cards have reached a level of
quality that allow them to be used in immersive environ-
ments. However, multi-projector displays and active stereo
require genlocked video outputs, a feature only supported by
some high-end graphics cards. In opposite to these dedicated
hardware approaches, SoftGenLock minimizes hardware de-
pendencies by implementing a genlock algorithm on top of
real-time Linux systems. It results in a software that can en-
able genlock and active stereo for potentially any graphics
card, assuming the required hardware specification is avail-
able.

Future works will investigate possibilities to support di-
rectly OpenGL stereo mode. Two directions will be investi-
gated: to associate SoftGenLock with the stereo mode some
drivers support, or to emulate quad-buffer stereo using an
OpenGL wrapper library.

125

References

1. Hardware Level VGA and SVGA
Video Programming Information Page.
http://web.inter.nl.net/hcc/S.Weijgers/FreeVGA/home.htm.

2. Interfacing the Standard Parallel Port.
http://www.beyondlogic.org/spp/parallel.htm.

3. RivaTV. http://rivatv.sourceforge.net/.

4. The RTAI Manual. http://www.aero.polimi.it/ rtai/.

5. The XFree86 Project. http://www.xfree86.org/.

6. J. Allard, V. Gouranton, L. Lecointre, E. Melin, and
B. Raffin. Net Juggler: Running VR Juggler with Mul-
tiple Displays on a Commodity Component Cluster. In
IEEE VR, pages 275–276, Orlando, USA, March 2002.

7. J. Allard, V. Gouranton, E. Melin, and B. Raffin. Soft-
GenLock Manual: Software Active Stereo and Genlock
for Linux, 2002. http://netjuggler.sourceforge.net.

8. P. Augerat, C. Goudeseune, H. Kaczmarski, B. Raffin,
B. Schaeffer, L. Soares, and M. K. Zuffo. Commodity
Clusters for Immersive Projection Environments. ACM
SIGGRAPH 02 Course, July 2002.

9. M. Barabanov and V. Yodaiken. Real-Time Linux,
1996. http://www.fsmlabs.com.

10. D. P. Bovet and M. Cesati. Understanding the Linux

Kernel. O’Reilly, 2001.

11. M. Bues, R. Blach, S. Stegmaier, U. Häfner, H. Hoff-
mann, and F. Haselberger. Towards a Scalable High
Performance Application Platform for Immersive Vir-
tual Environements. In Immersive Projection Technol-

ogy and Virtual Environements 2001, pages 165–174,
Stuttgart, Germany, May 2001. Springer.

12. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V.
Kenyon, and J. C. Hart. The Cave Audio VIsual Experi-
ence Automatic Virtual Environement. Communication

of the ACM, 35(6):64–72, 1992.

13. H. G. Dietz, R. Hoare, and T. Mattox. A Fine-Grain
Parallel Architecture Based On Barrier Synchroniza-
tion. In Proceedings of the International Conference

on Parallel Processing, pages 247–250, 1996.

14. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Ev-
erett, and P. Hanrahan. WireGL: A Scalable Graph-
ics System for Clusters. In Proceedings of ACM SIG-

GRAPH 01, 2001.

15. J. Montrym, D. Baum, D. Dignam, and C. Migdal.
InfiniteReality: A Real-Time Graphics System. In
Proceedings of ACM SIGGRAPH 97, pages 293–303.
ACM Press, August 1997.

16. R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hy-
brid Sort-First and Sort-Last Parallel Rendering with

a Cluster of PCs. In ACM SIGGRAPH/Eurographics

Workshop on Graphics Hardware, August 2000.

17. B. Schaeffer. Networking Management
Framewoks for Cluster-Based Graphics.
http://www.isl.uiuc.edu/ClusteredVR/ClusteredVR.htm,
2002.

126

A.3 FlowVR Render IEEE Vis 2005 Article

127

A Shader-Based Parallel Rendering Framework

Jérémie Allard∗ Bruno Raffin†

ID-IMAG, CNRS/INPG/INRIA/UJF
Grenoble - France

ABSTRACT

Existing parallel or remote rendering solutions rely on com-
municating pixels, OpenGL commands, scene-graph changes or
application-specific data. We propose an intermediate solution
based on a set of independent graphics primitives that use hard-
ware shaders to specify their visual appearance. Compared to an
OpenGL based approach, it reduces the complexity of the model
by eliminating most fixed function parameters while giving access
to the latest functionalities of graphics cards. It also suppresses
the OpenGL state machine that creates data dependencies making
primitive re-scheduling difficult.

Using a retained-mode communication protocol transmitting
changes between each frame, combined with the possibility to use
shaders to implement interactive data processing operations instead
of sending final colors and geometry, we are able to optimize the
network load. High level information such as bounding volumes
is used to setup advanced schemes where primitives are issued in
parallel, routed according to their visibility, merged and re-ordered
when received for rendering. Different optimization algorithms can
be efficiently implemented, saving network bandwidth or reducing
texture switches for instance.

We present performance results based on two VTK applications,
a parallel iso-surface extraction and a parallel volume renderer.
We compare our approach with Chromium. Results show that our
approach leads to significantly better performance and scalability,
while offering easy access to hardware accelerated rendering algo-
rithms.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

Keywords: Distributed Rendering; Shaders; Volume Rendering

1 INTRODUCTION

Context. In recent years, graphics clusters have become a
platform of choice for high performance scientific visualization.
The goal is to interconnect multiple PCs through a dedicated net-
work to aggregate the power of their disks, memories, CPUs and
GPUs. Such cluster can drive from a single screen to a display wall
of several projectors allowing a higher brightness, resolution and
display size. The difficulty is then to develop software solutions to
efficiently take advantage of such platforms.

Graphics applications, like scientific visualization ones, are of-
ten structured as a pipeline. A raw data set is read either from disk
or from a live simulation application. It is processed to obtain a
graphical representation. This scene is then rendered to an image
that is finally displayed. Each of these stages can be distributed

∗e-mail: Jeremie.Allard@imag.fr
†e-mail:Bruno.Raffin@imag.fr

differently on a cluster. For example, the final display can be con-
nected to a single host, or each host can drive one video projector
of a large display wall. Each host can render the pixels it displays,
or it can render pixels to be displayed by different hosts. In this
case pixels have to be communicated on the network and recom-
posed to form the final images [20]. This scheme is usually called
a sort-last approach [18]. The graphics objects can also be pro-
duced with a different distribution scheme than the one adopted
for rendering (sort-first approach). When the higher-level stage is
distributed, multiple data streams have to be merged, and similarly
scatter operations are required when distributing lower-level stages.
The scalability of the system depends on the overhead introduced
by these operations and the volume of communications.

Implementing higher level communications is generally more
dependent on the application. Sort-last solutions are highly generic,
as pixel format does not change. Sort-first frameworks depend on
the rendering API used in the application to describe the scene.
Most applications use OpenGL.

Humphreys et al. [10] proposes a framework called Chromium.
Chromium uses a protocol for distributing OpenGL commands.
However, due to OpenGL’s history and the requirement to sup-
port legacy applications, these commands are numerous and of-
ten redundant. For example, OpenGL supports both immediate-
mode primitives and retained-mode objects (using several concepts
such as display lists, vertex array, buffer objects). Immediate-
mode rendering does not allow to easily detect changes between
frames, introducing duplicated communications or a high compu-
tational overhead to detect unchanged primitives. Similarly, high
level informations such as bounding boxes are not available. It
makes it difficult to perform efficient scatter operations (i.e. frustum
culling) to different render hosts. Moreover, as OpenGL is based on
a sequential state machine, commands must respect a strict order-
ing. Merging multiple streams together requires Chromium to track
state changes and to use special commands defining the relative or-
dering of each stream.

All these constraints are driven by the need to support legacy
OpenGL applications. In the context of scientific visualization
where performance is critical and the final rendering is often han-
dled by a shared toolkit, considering alternative solutions to an
OpenGL based protocol is relevant.

In the rest of this paper we will refer to the programs used in
the rendering stage of the pipeline as renderers, and the programs
responsible to create the graphics objects will be called viewers.

Contribution. We propose a sort-first retained-mode parallel
rendering framework called FlowVR Render. Instead of relying on
OpenGL commands, we define a shader based protocol using inde-
pendent batches of polygons as primitives. This protocol offer the
following benefits:

• Shaders are used to specify the visual appearance of graphics
objects. They require only a few parameters and not the full
complexity of the fixed-function OpenGL state machine. It
leads to a simpler protocol that does not have to manage state
tracking.

• Shaders enables to easily take advantage of all features offered
by programmable graphics cards.

128

• Primitives are un-ordered unless explicitly stated by view-
ers (for transparent objects or user-interface overlays for in-
stance). It enables renderers to optimize the local rendering
order, reducing shader and texture switches for example. It
also eases merging and reordering primitives coming from
multiple streams.

• A higher level information such as bounding-boxes or
changes since the last frame can be directly specified by view-
ers, avoiding unnecessary processing and network traffic. In
most cases this information is already available (visualization
toolkits often detect changes between frames to recompute
only the affected data).

We base our design and implementation on FlowVR [3], a mid-
dleware for modular data-flow based interactive applications. It
provides the environment to develop, launch and execute a dis-
tributed application on a cluster. It also allows to express complex
collective communications patterns and coupling policies.

Compared to an OpenGL based protocol, our approach requires
modifying the applications to issue FlowVR Render primitives.
However this drawback is limited as scientific visualization codes
usually rely on a reduced set of graphics primitives. Porting their
rendering API to FlowVR Render is usually not too difficult. To
demonstrate this, we modified the rendering code of VTK [29], one
of the most widely used visualization toolkit, to transparently sup-
port FlowVR Render.

Rendering on a display wall with a varying number of parallel
viewers and renderer for iso-surface extraction and volume render-
ing was tested both with VTK+Chromium and VTK+FlowVR Ren-
der. FlowVR Render leads to a higher performance and a bet-
ter network scalability as the number of viewers and/or renderers
increases. The shader based protocol also enables to implement
hardware-accelerated volume rendering algorithms that achieve
high quality rendering [7, 13].

Organization. After presenting the related works in section 2,
we detail the protocol as well as the basic filtering operations used
by FlowVR Render in section 3. Communication patterns for par-
allel rendering will be discussed in section 4. Their usage is pre-
sented and tested using two applications in section 5. Finally results
and future works are discussed in section 6.

2 BACKGROUND AND RELATED WORK

In this section, we discuss rendering APIs before giving an
overview of existing parallel rendering approaches. The section
ends with a discussion on the benefits of using shaders for visual-
ization algorithms.

2.1 Rendering APIs

OpenGL [30] is currently the predominant graphics rendering API
and is available for most platforms and graphics cards. It is origi-
nally based on a immediate-mode model where the application se-
quentially specifies the objects in the scene. A large state machine
is used to handle rendering parameters such as transformation ma-
trices, lights, material properties, etc. Graphics cards and hardware
platforms have evolved significantly since OpenGL introduction in
1992. To match this evolution an extension mechanism is used for
hardware vendors to expose additional functionalities correspond-
ing to new features or optimizations. Periodically, a new OpenGL
version standardizing useful extensions is released by the Architec-
ture Review Board (ARB). The latest version, OpenGL 2.0, was
released in September 2004 and supports recent features such as
non-power-of-two textures and high-level programmable shaders.

Pure immediate-mode rendering requires re-issuing all graphics
primitives for each frame and thus can not benefit from inter-frame

coherence. It introduces a high overhead on the CPU and the CPU
to GPU communication bus. As the graphics cards performance
improved, it became a serious performance bottleneck. To reduce
this bottleneck, OpenGL has evolved to support a number of mech-
anisms to optimize data uploads to the graphics card, ranging from
the original display-list mechanism to compiled vertex arrays and
the recent vertex/pixel buffer objects extensions.

Each new OpenGL version is backward compatible with all pre-
vious versions. As a consequence many deprecated or duplicate
functionalities exist such as the different ways to specify vertex
data or the fixed function pipeline superseded by programmable
shaders [4]. This significantly increases the complexity of OpenGL
implementations. An effort to remove legacy commands and states
from OpenGL’s core API was originally proposed for OpenGL 2.0.
This proposal was not accepted but led to a derived API for embed-
ded systems, OpenGL ES [5].

In opposite to immediate-mode rendering, retained-mode
APIs [34, 32] manage a scene description the application creates
and then updates at each frame (often in the form of a hierarchical
scene graph). This model is today commonly used by scene graph
libraries on top of OpenGL.

2.2 Parallel Rendering

Different approaches have been proposed for cluster based parallel
rendering [6]. Sort-last parallelism [18] relies on hardware or soft-
ware compositors to combine pixels computed on different graphics
cards [14, 31]. This approach has also been used for load balancing
on display walls [28].

Sort-first approaches distribute graphics primitives to several
rendering nodes. Sorting is generally based on each node’s view
frustum. Pixels are either directly displayed or sort-last techniques
are used to recombined them. Chromium [10] proposes an OpenGL
based protocol that enables sort-first parallel rendering. Legacy
OpenGL applications can be executed on a display wall without
recompilation. Chromium intercepts primitives issued by the appli-
cation and sends them to the rendering hosts. It relies on advanced
caching, compression and state tracking mechanisms to save net-
work bandwidth. Chromium also proposes a set of OpenGL ex-
tensions for ordering several primitive streams in order to enable a
parallel primitive generation, but at the price of the OpenGL com-
patibility.

Other approaches work at a higher level. Scene graphs rely on a
partial graph duplication on rendering nodes and coherency proto-
cols [27], to balance network traffic, duplication of data and compu-
tations. However, the user control over the parallelization scheme
implemented is usually limited. Scalable scientific visualization of-
ten requires a finer control on data movements and to combine dif-
ferent parallelization schemes to be efficient.

2.3 Shader-Based Visualization

Procedural shaders have been extensively used in offline software-
based rendering [9] to specify the visual appearance of graphics
objects. Initially hardware systems only supported fixed functional-
ities that were programmed through a set of parameters or switches.
New generations of graphics cards are now able to execute full pro-
grammable shaders [22, 24]. Recent models [12] support high-level
shaders [15, 26] with method calls, loops, conditionals, and full 32-
bit floating point precision for computation and textures/buffers.

Shaders provide additional flexibility and precision allowing
graphics cards to execute algorithms that only the CPU could ex-
ecute before. Such algorithms include high-quality lighting models
(per-pixel evaluation, shadows), tone shading [8], or volume render-
ing [25]. For instance, obtaining colors from raw data by applying
a transfer function can now be done within a shader.

129

2.4 Summary

Using recent OpenGL buffer objects and hardware shaders, appli-
cations can efficiently take advantage of advanced graphic cards
features. However, the OpenGL state machine and the numerous
duplicated functionalities that OpenGL still supports significantly
increase the complexity and hinder the effectiveness of any imple-
mentation, in particular parallel ones.

Using shaders, parts of the data processing visualization pipeline
is now executed by the graphics card, distributing the load between
the CPU and the GPU. This changes the level of information sent
to the graphics cards, which can receive general datasets instead of
only final colors. Tuning the parameters of the processing imple-
mented by shaders only requires updating a few values instead of
re-uploading the complete dataset. In a distributed context where
graphics primitives are issued on one machine and rendering is per-
formed on a distant one this can drastically change the performance
of the pipeline.

We propose to develop a pure shader based sort-first protocol
dedicated to high performance parallel rendering.

3 FLOWVR RENDER MODEL

In this section we present the FlowVR Render framework and its
different components. A viewer program describes primitives sent
to a renderer program using a specific protocol. Complex parallel
rendering architectures can be built combining various viewers and
renderers mapped on different nodes of a cluster. Filters are used to
implement advanced routing functions on primitives.

3.1 Graphics Primitives

A scene is described as a set of independent primitives. Each prim-
itive contains the description of a batch of polygons and their ren-
dering parameters (see figure 1). To reduce the number of these
parameters, as well as to take advantage of the advanced features
of recent graphics cards, we use shaders to define each primitive’s
appearance.

Large resources such as textures or vertex attributes are often
used by several primitives in the scene. To avoid duplicating these
resources in each primitive, we define resources. A resource can
encapsulate a shader, texture, vertex buffer or index buffer. It is
identified by an unique ID. Each primitive refers to the IDs of all the
resources it uses. Notice that it introduces a one-way dependency
between primitives and resources, but not between primitives.

The framework must ensure that IDs are globally unique even
in a distributed context. Possible methods include using a specific
host, which can introduce a bottleneck for large applications, or
using local information unique to each host. In our implementation
we use 64-bits IDs by appending an atomic counter local to each
host with the IP address of the host.

A name can be specified for each primitive for identification in
error messages, visual selection feedback, or filters based on name
patterns.

Each primitive also stores its bounding box. This information is
required to optimize communications using frustum culling. It is
useful to specify this information in the primitive as it is costly to
recover from the other parameters (especially when using shaders
that can change vertex positions).

Some rendering algorithms require primitives to be processed in
a given order. FlowVR Render provides a mechanism to enforce
this ordering by associating each primitive with an order value.
This number defines a partial ordering between primitives. A prim-
itive with a lower order value must be rendered before a primitive
with a higher value. Primitives with the same value can be rendered
in any order. Different values will mainly be used when render-
ing order can affect the final image like for transparent primitives

Figure 1: Simplified UML schema of a primitive.

or user-interface overlays. For a given order value, renderers can
re-order primitives to improve performance. For instance, primi-
tives can be sorted front-to-back to take advantage of fast Z-culling,
primitives with similar parameters such as textures and shaders can
be gathered to reduce state switching overheads. This approach
enables to easily implement performance optimization compared to
the strict ordering defined by an immediate-mode command stream.
This strict ordering can however still be achieved by assigning a dif-
ferent order value to each primitive.

Global parameters such as camera position, z clipping distances,
or background colors are directly set at the renderer statically or
upon reception of user’s interaction events. A viewer can also
override these parameters using a primitive with the predefined ID
ID CAMERA.

3.2 Communication Protocol

In graphics scenes some data are static, i.e. they do not change be-
tween frames, while others are dynamic. One important optimiza-
tion is to describe static information only once, and then transmit
changes at each frame. To achieve this goal, renderers maintain the
current description of the scene, and viewers describe the changes
to this description. Each change is encapsulated in a chunk. At each
frame, a viewer sends one message containing a list of chunks. A
renderer waits to receive one message. A chunk can correspond
to a:

• Creation of a new resource ;

• Destruction of a resource ;

• Update of a resource ;

• Creation of a new primitive ;

• Destruction of a primitive ;

• Modification of a primitive’s parameter.

This protocol is purely one-way, from viewers to renderers. In
particular, IDs are generated by the viewers and not the render-
ers. This property is useful when the viewers and renderers are
not tightly synchronized (for example storing messages on disk and
replaying them later).

3.3 Filters

Parallel rendering schemes require filtering message streams to dis-
tribute data between several viewers and/or renderers. For that pur-
pose we introduce filters that implement the processings necessary
for advanced routing networks. We define in the following some
130

common filters. Complex assemblies of viewers, filters and render-
ers are presented in section 4.

To support scene descriptions distributed on multiple viewer
modules, it is necessary to be able to merge several messages to-
gether. In our model all primitives are independent and use globally
unique IDs. As a consequence this operation consists in a simple
gather, appending messages from all streams together.

For sort-first rendering with a single viewer, a simple broadcast
can be used to send messages to all renderers. For highly dynamic
scenes, messages can be filtered by removing (cull) all changes not
affecting the local view frustum of each renderer. The bounding
box information is readily available to test for intersection with the
frustum, enabling to simply discard hidden primitives, without any
effects on other primitives as they are independent. The only dif-
ficulty concerns resources (textures, vertex data), as they can be
shared by several primitives. A simple algorithm consists in send-
ing all resources referenced by each visible primitive, provided it
wasn’t already sent. For very large textures or meshes, a more com-
plex implementation may only send visible parts of each resource,
but recovering this information is costly.

Thanks to the one-way and retained-mode nature of our model,
another operation that is very efficient and easy to implement is
to allow for different frequencies between viewers and/or render-
ers. In particular, this enables multiple asynchronous visualization
of the scene (two distant displays in a collaborative application, or
a low-performance console view not affecting the performance of
the main display for instance). Another more advanced applica-
tion consists for each viewers in having a specific update frequency
(low-frequency for large objects or remote viewers, high-frequency
for local viewers or interactive updates such as camera manipula-
tion). Filters implementing this strategy simply require either in-
serting empty messages or appending several messages together.

Other operations can be implemented depending on the appli-
cations. It is for instance possible to design filters altering the ap-
pearance of the scene for stylized rendering [16, 17], splitting the
objects for an exploded view [21], or writing the scene’s 3D de-
scription in a file [17]. Compared to the traditional approach of
modifying OpenGL commands, implementing these operations us-
ing our framework is easier as higher-level information is available.
Also only a handful set of chunk types are used, compared to the
hundreds of different OpenGL commands.

4 SYSTEM ARCHITECTURE

Data-flow based architectures, where several data streams are pro-
cessed through a network of filters, have been successfully applied
both in visualization and distributed rendering applications [1, 2,
10]. It can be applied at different stages in the application, from
inputs events to final pixels composing. This section presents the
design of the data-flow network used to transmit graphics primi-
tives.

4.1 General Design

FlowVR Render architecture follows a data-flow graph. The source
nodes of the graph are viewers that produce scene description mes-
sages as described in section 3.2. These messages travel through a
network of filters that are responsible for implementing the neces-
sary operations as described in section 3.3. Once data have been
redistributed and processed by this network, it is used by the desti-
nation nodes, the renderers, to render the scene.

We consider modular visualization applications, where objects
in the same scene are handled by completely different programs.
As FlowVR Render primitves are a-priori independent, merging
several data streams has a small overhead. This architecture pro-
vides two main advantages. First it favors code reuse, allowing to

Figure 2: Sort-first distributed rendering. For small or static objects
a broadcast tree can be used instead of frustum culling filters.

choose the right visualization toolkit or library for each task instead
of reimplementing it in a single environment, and second it permits
to choose a different distribution strategy for each object, allowing
a fine performance tuning.

4.2 Distribution Strategies

Distributed rendering is a typical problem where no generic solu-
tion exists. Several factors (size and time dependency of datasets,
computational power, network speed, number of pixels) are in-
volved in determining the best distribution scheme between sort-
first [18], sort-last, hybrid, or input-event based distribution. Test-
ing different strategies should thus be as simple as possible. More-
over, as the same program can be used in situations requiring differ-
ent distirbution strategies, changing the distribution scheme should
require minimal modifications to the program. Data-flow based ar-
chitectures propose an elegant solution to this issue as changing
of strategy often consists in simply changing the position of each
element, eventually adding some filters. The modular design of
applications in FlowVR Render lets multiple schemes be simulta-
neously executed for different parts of the scene. The rest of this
section will concentrate on the basic patterns implementing each
distribution scheme. Using several schemes in a single application
is then possible by combining these patterns together.

In a multiple display system (cave or display wall for example),
if one viewer is connected to several renderers through frustum-
culling filters as shown in figure 2 we have a sort-first distribution
model. Notice that for better scalability we can use a two-level
culling filter tree: first splitting horizontally then vertically. De-
pending on the size and dynamicity of the primitives, the cull filter
can either simply cull on an primitive level or split each triangle
individually. The first option is often preferred as it is simpler to
implement, especially when the frustum is not static, and the spared
network and GPU bandwidth might not counter-balance the addi-
tional CPU cost of a more precise culling method. To avoid any
network communication of the graphics primitive, the viewer can
also be replicated locally on each rendering node (figure 3).

When using multiple viewers, each one describing a part of the
scene, merge filters are responsible for combining their messages
together (figure 4). This scheme is useful for parallel data extrac-
tion applications, which we will show in section 5.2. It is also nec-
essary for recombining parts of an application that uses different
distribution schemes. In this case, the different streams are merged
together before being forwarded to each renderer.

We now consider remote rendering systems. The renderer can
be placed at the same location as the viewer, pixels being commu-
nicated to the remote site (figure 5(a)). It can alternatively be moved
to the display location. In this case, the graphics primitive descrip-
tions are transmitted instead (figure 5(b)). A more interesting case
is when both are combined (figure 5(c)). In a scene composed of

131

Figure 3: Replication: Viewer application is replicated on each ren-
dering node. If the application is non-determinist then communica-
tions will be necessary to keep copies synchronized.

Figure 4: Parallel scene description: To distribute the load in viewers,
several viewers can describe parts of the scene which are then merged
together.

streamlines and volumetric rendering for instance, the streamlines
could be transmitted over the network and rendered with a high res-
olution, while the volume image will be rendered locally and trans-
mitted at a lower resolution. Another combination happens when
the viewer and renderer are distant but the final display is on the
viewer side (figure 5(d)). This scheme corresponds to the render
server system, where rendering is provided as a distant shared re-
source. By using existing image composing tools [14, 20] we can
use several servers in parallel for increased performance.

4.3 Interactions and Scene Management

Having a distributed scene description controlled by unrelated pro-
grams can lead to difficulties in obtaining a coherent manipulation
interface. In monolithic applications, this is often done through the
scene graph structure, where the user can change parameters of the
nodes (visibility, wireframe, ...) and control transformation nodes
with special widgets to move/rotate/scale objects. To implement
this within our framework we face two issues: as the communi-
cation protocol is strictly one-way, how can viewers get the user’s
actions; and as the scene description model forbids dependencies
between primitives, how can we specify that a group of primitives
should be moved through a common transform node.

User inputs depend on the interaction devices (mouse, keyboard,
VR tracking devices, ...). Reading inputs data is done by the render-
ers for mouse/keyboard inputs, or by special tools for other devices.
As the data is small, broadcasting the inputs over the network is
simple [33, 23]. However interactions are often expressed in terms
of objects in the scene (i.e. a user selected object with a specific
ID). As we already have a globally unique ID associated with each
primitive, renderers can output events containing these IDs. View-
ers can then use this information to manage interactions.

As described at the beginning of this section, basic interactions
(moving objects, changing rendering attributes, ...) are often not
handled by the objects themselves but by other components in the
scene (widgets and transform nodes). The same functionality can
be achieved by adding custom filters in the data-flow network to
transparently change the affected parameters. If required, addi-
tional widgets viewer programs can be introduced, adding objects

(a) Pixel-based communication. (b) Graphics primitives communi-
cation.

(c) Different communication levels
for specific viewers.

(d) Render server scheme: send
graphics primitives, get rendered
pixel back.

Figure 5: Remote rendering.

in the scene and retrieving interaction events on these objects, even-
tually sending resulting movements to the transform filters. This ar-
chitecture can be seen as the data-flow based mapping of the equiv-
alent scene-graph hierarchical structure. Thus while the scene de-
scription model does not allow for interdependencies between prim-
itives, we can implement the equivalent functionalities by adding
filters in the network.

4.4 Implementation

FlowVR Render architecture can be implemented using many dif-
ferent communication API, such as TCP connections or CORBA
objects. We chose to use FlowVR [3] as it provides a clean abstrac-
tion to design interactive data-flow applications. At the lowest level
it transparently uses either TCP connections for network commu-
nications or shared-memory for local communications. It also pro-
vides tools to launch and control distributed applications, as well as
generating large filters networks using scripts.

Current implementation of FlowVR Render can be downloaded
from http://flowvr.sf.net/render/.

5 APPLICATIONS

In this section we present experimental results using FlowVR Ren-
der, VTK (version 4.2) and Chromium (version 1.8). VTK and
Chromium have been chosen because they are probably the most
used and advanced tools publicly available today in their category.
We used them without in-depth code tunings and optimizations. A
version of VTK has been tuned for Chromium [19], but it is not
used here as it is not publicly available.

While we present performance comparisons between Chromium
and FlowVR Render, the reader should keep in mind that their con-
ditions of use are different. Chromium supports all OpenGL ap-
plications without modification, while FlowVR Render proposes a
new shader based rendering framework that requires application to
be adapted.

Tests were performed on the GrImage1 platform composed of a
cluster of 16 Dual-Opteron 2.0 GHz having 2 GB of memory each.
Cluster nodes are interconnected by a gigabit Ethernet network.
Each node uses an NVIDIA Geforce 6800 Ultra graphics cards to
drive a 4×4 display-wall with a total resolution of 4096×3072.

1http://www.inrialpes.fr/grimage/

132

Figure 6: An example VTK application rendering on the display wall
with FlowVR Render.

Figure 7: Iso-surface extracted from a frame of a time-varying fluid
simulation dataset.

5.1 VTK and FlowVR Render Integration

Several powerful open-source visualization toolkits are available
such as OpenDX [1] or VTK [29]. We developed a library that
transparently replaces VTK rendering classes to use FlowVR Ren-
der instead of OpenGL. VTK uses a small set of rendering classes
to draw images, meshes (with a list of points, lines and trian-
gles) or volumes. The original rendering classes use OpenGL
immediate mode commands or display lists. These are complex
classes to handle all possible combinations of vertex data as well
as legacy OpenGL drivers. The new FlowVR Render classes are
simpler as they often only consist in encapsulating the raw data
into FlowVR Render resources and selecting the right shader. Un-
modified VTK applications can then be rendered on a display-wall
as shown in figure 6. Developing this library only took a couple
of weeks for one programmer, most of which was spent learning
VTK.

5.2 Parallel Iso-surface Extraction

To compare the performance of our framework with Chromium
we implemented a parallel iso-surface extraction application. We
used a 3D fluid simulation dataset of 132× 132× 66 cells for 900
timesteps (one timestep is shown in figure 7). The application in-
teractively extracts and displays an iso-surface (containing approx-
imately 100000 triangles) for each timestep. The iso-surface ex-
traction is parallelized by splitting the dataset into blocks, each one
assigned to a different viewer.

Figure 8 presents Chromium and FlowVR Render performance

(a) Chromium (b) Chromium

(c) FlowVR Render (d) FlowVR Render

Figure 8: Parallel iso-surface extraction with sort-first rendering, us-
ing Chromium (a)-(b) or FlowVR Render (c)-(d). Scalability regard-
ing the number of renderers is presented on the left, while scalability
regarding the number of viewers is shown on the right.

results depending on the number of renderers as well as the num-
ber of iso-surface extraction viewers. FlowVR Render outperforms
Chromium and shows a better scalability, both while increasing the
number of renderers and the number of viewers. FlowVR Render
achieves 12 frames per second with 16 data viewers and 16 ren-
derers to display the result on the 4× 4 display-wall. Chromium
performance is probably affected by the high overhead related to
culling and stream merging operations.

Using pixel shaders can also greatly improve visual quality. For
this application, a classic OpenGL-based lighting is evaluated per
vertex, while it is computed per pixel with shaders. The resulting
surface appears smoother.

5.3 Volume Rendering

The second test pushes further the use of shaders to highlight the
benefits of our approach. For that purpose we focus on sort-first
parallel volume rendering. Notice that usually sort-last approaches
have proved more efficient than sort-first approaches [35]. We show
that using hardware shaders can significantly improve performance
of sort-first algorithms based on the following points:

• Due to the massively parallel nature of todays GPUs, pixel
shaders have access to more important resources, both in
terms of memory bandwidth and computing power [12].

• Shaders are able to apply transfer functions to raw volumetric
data to obtain the final color and opacity. This allows to send
the raw data once, and then only update the transfer function
when it is modified by the user. For time-varying datasets

133

Figure 10: Volume rendering on the display wall.

this is also interesting as the raw data can be 4 times smaller
than final colors and opacity data (1 value per voxel versus 4
values).

• Using pre-integrated transfer functions [7] and adaptive sam-
pling steps [25], a shader can create a very high quality image
while using fewer steps through the volume, allowing to use
larger datasets.

By default VTK uses a slice-based 2D texturing approach for
hardware volume rendering. We implemented a new VTK volume
rendering class using shaders. A pixel shader is used to cast a ray
through the volume and accumulate color and opacity using either
blending, additive, or maximum value composing. As this com-
posing is done in temporary registers instead of the frame buffer,
it stays in full 32-bit precision and it saves the bandwidth required
to write and read-back framebuffer values in traditional multi-pass
approaches.

To implement the pre-integrated transfer function, we use a 2D
texture that, given the previous and current density value, stores the
color and opacity produced by integrating all intermediate densi-
ties in the transfer function. This greatly improves visual quality
for high frequency transfer functions and allows for much larger
sampling steps for smoothly varying datasets.

As this application is only limited by the fill-rate of the graph-
ics cards, we used a simple broadcast distribution scheme where
everything is sent to all renderers.

Renderings obtained using the VTK original slice-based 2D
texturing and FlowVR Render-based raycasting shader with and
without preintegration are shown in figure 9. The data set is a
512× 512× 512 Christmas tree [11]. Performance results are pre-
sented in table 1. As a comparison, VTK 2D texturing implementa-
tion achieved 0.18 frames per second on one display. This is mostly
due to the fact that without shaders full-color textures must be used
instead of the raw grayscale texture. In our case this means that
VTK had to reupload the data at each frame as it does not fit inside
the graphics card.

Rendering on the display wall instead of only one display does
not introduce significant overhead as the transfered data is small
for most frames (camera position and transfer function). We even
obtain better performance on the display-wall as coherency between
neighbor pixels is higher. It leads to a more efficient texture caching
inside the graphics cards.

Notice that a higher framerate may be obtained during interac-
tions (when the camera is moving for example), by decreasing the

rendering resolution in addition to the sampling resolution. It per-
mits to obtain fluid movements while keeping a reasonable quality.

6 CONCLUSION

In this paper, we presented a novel parallel and remote rendering
framework using a scene abstraction based on batches of polygons
and shaders. This framework proved to be efficient and scalable
while using simple enough concepts to be easily extensible. Al-
though not directly compatible with existing applications in oppo-
site to Chromium, the porting effort should usually be limited. In
the case of visualization applications using a common toolkit this
effort only has to be made once, with the additional benefit of pro-
viding access to advanced features using shaders.

The iso-surface extraction test application showed that the
FlowVR Render approach outperforms Chromium regarding per-
formance and scalability. The volume rendering application
showed that using shaders and a communication protocol based on
incremental changes significantly reduces the amount of data com-
municated over the network. Using raw data sets instead of final
colors and geometry also reduces the memory requirements on the
graphics card, allowing larger datasets on each node. In particular,
we achieved an interactive rendering of a 512× 512× 512 dataset
on a 4096×3072 display wall.

Notice that the experiments presented focused on direct render-
ing on a display wall. FlowVR Render can also be used for remote
rendering in conjunction with sort-last algorithms.

Future works will address the design of a more complete toolkit
to manage user interactions. We will also extend FlowVR Render
to support a dynamic level-of-detail. Viewers will send several ver-
sions of primitives (either reducing the number of vertices or the
shaders quality), and renderers will adapt the rendering resolution
and quality of the objects depending on the desired performance.

REFERENCES

[1] G. Abram and L. Treinish. An extended data-flow architecture for data
analysis and visualization. In 6th IEEE Visualization Conference (VIS

’95), 1995.
[2] J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka. A parallel

approach for efficiently visualizing extremely large. Technical Report
LAUR-001630, Los Alamos National Laboratory, 2000.

[3] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,
and S. Robert. FlowVR: a middleware for large scale virtual reality ap-
plications. In Euro-Par 2004 Parallel Processing: 10th International

Euro-Par Conference, pages 497–505, Pisa, Italia, August 2004.
[4] I. S. Bains and J. A. Doss. ShaderGen – fixed functionality shader gen-

eration tool. http://developer.3dlabs.com/downloads/shadergen/.
[5] D. Blythe, editor. OpenGL R© ES Common/Common-Lite Profile Spec-

ification, Version 1.0. The Kronos Group Inc., 2003.
[6] Y. Chen, H. Chen, D. W. Clark, Z. Liu, G. Wallace, and

K. Li. Software Environments for Cluster-based Display Systems.
http://www.cs.princeton.edu/omnimedia/papers.html, 2001.

[7] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In HWWS ’01:

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics hardware, pages 9–16. ACM Press, 2001.
[8] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic

lighting model for automatic technical illustration. In Proceedings of

ACM SIGGRAPH 98, pages 447–452. ACM Press, 1998.
[9] P. Hanrahan and J. Lawson. A language for shading and lighting cal-

culations. In Proceedings of ACM SIGGRAPH 90, pages 289–298.
ACM Press, 1990.

[10] G. Humphreys, M. Houston, R. Ng, S. Ahern, R. Frank, P. Kirchner,
and J. T. Klosowski. Chromium: A Stream Processing Framework for
Interactive Graphics on Clusters of Workstations. In Proceedings of

ACM SIGGRAPH 02, pages 693–702, 2002.
134

(a) VTK 2D texture slices (b) Raycasting shader (c) Raycasting shader with preintegration

Figure 9: Christmas tree dataset with different rendering methods (512 sampling steps per pixel).

Method Sampling Framerate on 1 display 4×4 display-wall 4×4 display-wall 4×4 display-wall
steps Resolution 1024×768 4096×3072 2048×1536 1024×768

Raycast Shader 512 1.16 2.25 5.40 8.21
Pre-Integrated Raycast Shader 512 1.10 2.04 4.97 7.70
Pre-Integrated Raycast Shader 200 2.79 5.14 12.44 19.11

Table 1: Volume rendering performances with a 512×512×512 dataset.

[11] A. Kanitsar, T. Theussi, L. Mroz, M. Sramek, A. V. Bartroli,
B. Csebfalvi, J. Hladuvka, D. Fleischmann, M. Knapp, R. Wegenkittl,
P. Felkel, S. Roettger, S. Guthe, W. Purgathofer, and M. E. Groller.
Christmas tree case study: computed tomography as a tool for master-
ing complex real world objects with applications in computer graph-
ics. In Proceedings of IEEE Visualization’02, pages 489–492, 2002.

[12] E. Kilgariff and R. Fernando. The GeForce 6 series GPU architec-
ture. In M. Pharr and R. Fernando, editors, GPU Gems 2: Pro-

gramming Techniques for High-Performance Graphics and General-

Purpose Computation, chapter 30, pages 471–491. Addison-Wesley,
2005.

[13] E. B. Lum, B. Wilson, and K.-L. Ma. Vissym 2004, symposium on
visualization. Eurographics Association, May 2004.

[14] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel
volume rendering using binary-swap compositing. IEEE Computer

Graphics and Applications, 14:59–68, July 1994.
[15] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: a sys-

tem for programming graphics hardware in a c-like language. In Pro-

ceedings of ACM SIGGRAPH 03, pages 896–907. ACM Press, 2003.
[16] A. Mohr and M. Gleicher. Non-invasive, interactive, stylized render-

ing. In SI3D ’01: Proceedings of the 2001 Symposium on Interactive

3D graphics, pages 175–178. ACM Press, 2001.
[17] A. Mohr and M. Gleicher. HijackGL: reconstructing from streams for

stylized rendering. In NPAR ’02: Proceedings of the 2nd international

symposium on Non-photorealistic animation and rendering, pages 13–
ff. ACM Press, 2002.

[18] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classifi-
cation of Parallel Rendering. IEEE Computer Graphics and Applica-

tions, 14(4):23–32, July 1994.
[19] K. Moreland and D. Thompson. From cluster to wall with vtk. In

Proceedings of IEEE 2003 Symposium on Parallel and Large-Data

Visualization and Graphics, pages 25–31, October 2003.
[20] K. Moreland, B. Wylie, and C. Pavlakos. Sort-last parallel rendering

for viewing extremely large data sets on tile displays. In Proceedings

of the IEEE 2001 Symposium on Parallel and Large-Data Visualiza-

tion and Graphics, 2001.
[21] C. Niederauer, M. Houston, M. Agrawala, and G. Humphreys. Non-

invasive interactive visualization of dynamic architectural environ-
ments. In SI3D ’03: Proceedings of the 2003 symposium on Inter-

active 3D graphics, pages 55–58. ACM Press, 2003.
[22] M. Olano and A. Lastra. A shading language on graphics hardware:

the pixelflow shading system. In Proceedings of ACM SIGGRAPH 98,
pages 159–168. ACM Press, 1998.

[23] E. Olson. Cluster Juggler–PC cluster virtual reality. Master’s thesis,
Iowa State University, 2002.

[24] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A real-time
procedural shading system for programmable graphics hardware. In
Proceedings of ACM SIGGRAPH 01, pages 159–170, 2001.

[25] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart
hardware-accelerated volume rendering. In VISSYM ’03: Proceed-

ings of the symposium on Data visualisation 2003, pages 231–238.
Eurographics Association, 2003.

[26] R. J. Rost. OpenGL R© Shading Language. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2004.

[27] M. Roth, G. Voss, and D. Reiners. Multi-threading and clustering for
scene graph systems. Computers & Graphics, 28(1):63–66, 2004.

[28] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-
first and sort-last parallel rendering with a cluster of PCs. In ACM

SIGGRAPH/Eurographics Workshop on Graphics Hardware, August
2000.

[29] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit

An Object-Oriented Approach To 3D Graphics, 3rd Edition. Kitware,
Inc., 2003.

[30] M. Segal and K. Akeley. The OpenGLTM Graphics System: A Specifi-

cation, Version 1.0. Silicon Graphics, 1992.
[31] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy,

C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A
High-Performance Display Subsystem for PC Clusters. In Proceed-

ings of ACM SIGGRAPH 01, 2001.
[32] P. S. Strauss. Iris inventor, a 3d graphics toolkit. In OOPSLA ’93: Pro-

ceedings of the conference on object-oriented programming systems,

languages, and applications, pages 192–200. ACM Press, 1993.
[33] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and

A. T. Helser. VRPN: a device-independent, network-transparent VR
peripheral system. In ACM Symposium on Virtual Reality Software &

Technology 2001, 2001.
[34] A. van Dam. PHIGS+ functional description revision. SIGGRAPH

Computer Graphics, 22(3):125–220, 1988.
[35] C. Wang, J. Gao, and H.-W. Shen. Parallel Multiresolution Volume

Rendering of Large Data Sets with Error-Guided Load Balancing. In
Proceedings of the Eurographics Parallel Graphics and Visualization

Symposium, pages 23–30, Grenoble, France, June 2004.

135

A.4 FlowVR Europar 2004 Article

136

FlowVR: a Middleware for Large Scale Virtual

Reality Applications

Jérémie Allard1, Valérie Gouranton2, Löıck Lecointre1, Sébastien Limet2,
Emmanuel Melin2, Bruno Raffin1, and Sophie Robert2

1 Laboratoire ID, CNRS/INPG/INRIA/UJF, Montbonnot, France
2 LIFO, Université d’Orléans/CNRS, Orléans, France

Abstract. This paper introduces FlowVR, a middleware dedicated to
virtual reality applications distributed on clusters or grid environments.
FlowVR supports coupling of heterogeneous parallel codes and is compo-
nent oriented to favor code reuse. While classical communication para-
digms focus on either a synchronous approach (FIFO channels) or an
asynchronous one (sampling), FlowVR enables a large range of inter-
mediate policies to better balance the application performance between
levels of details, latencies and refresh rates.

1 Introduction

Classically, a virtual reality (VR) application features a complex simulation us-
ing input and output devices to provide users with a sense of immersion in a
synthetic world [7]. Most of today’s VR applications only run on machines with
a reduced number of processors, like visualization clusters or SGI Onyx. They
do not take advantage of the computing power offered by large clusters and grid
environments. One main limitation is the difficulty to assemble and distribute
the different (potentially parallel) components and to maintain the overall appli-
cation coherent while guaranteeing a good quality interaction with low latency
and high refresh rates. We define the coherency as the fact that the information
provided to the user senses at a given moment are related to the same simulated
time.

To improve latency and refresh rates, VR applications can take advantage
of a data exchange model based on sampling. The producer updates data in
a shared buffer asynchronously read by the consumer. Some updates may be
lost if the consumer is slower than the producer. While asynchronism leads to
a performance improvement, the application coherency cannot be maintained.
Depending on the context this may be acceptable. It is for example used when
coupling haptic and visualization systems that run at very different frequencies
(about 1000 Hz and 60 Hz respectively). Distributed virtual environments [9, 11]
or VR middlewares like OpenMask [2] use such an approach, but parallel code
coupling becomes difficult in this context as no coherency control is offered.
The other approach classically used for parallel programming, parallel code cou-
pling [8, 10], or distributed visualization environments [3–5], relies on a classical

137

FIFO synchronization semantics. It ensures proper application coherency, but it
is difficult to efficiently implement a sampling approach.

In this paper, we propose a programming model that eases the implemen-
tation of a large range of synchronization policies, from FIFO to sampling. We
present FlowVR [1], a middleware dedicated to VR and supporting coupling of
heterogeneous parallel codes to build large scale applications. FlowVR reuses
and extends the data flow paradigm commonly used for scientific visualization
environments [3, 4]. A VR application is seen as a set of possibly distributed
modules exchanging data. Each module endlessly iterates, consuming and pro-
ducing data. From the FlowVR point of view, modules are not aware of the
existence of other modules, the FlowVR engine taking care of moving data be-
tween producers and consumers. This leads to a simple application programming
interface (API) that eases turning an existing code into a FlowVR module (or
several modules in case of a parallel code). For data exchange between modules,
FlowVR defines an abstract network featuring from simple routing operations to
complex message handling operations. Each message is associated with a list of
stamps, a lightweight data used to route or filter messages. This list can also be
routed separately from its message to special network nodes in charge of synchro-
nization policies. Besides predefined FlowVR stamps, others, like a time or a 3D
bounding box for instance, may be added to extend the network routing, filtering
or synchronization abilities. The FlowVR network enables to build complex col-
lective communications, a desirable feature for efficient parallel code coupling. It
is also possible to go beyond the classical synchronization barrier, designing syn-
chronizations waiting for the resolution of complex constraints based on stamps
(a data semantically richer than a signal). Different FlowVR networks can be
designed without modification of the module codes.

2 The FlowVR Application Model

In this section we introduce the FlowVR application model.

2.1 Running Example

All along this paper, we use a simple yet important example, an interactive VR
application where the user can perturbate a fluid flow simulation with its hand.
We distinguish three parts :

– A tracker that gives the user’s hand position.
– A physical fluid simulation parallelized with MPI. The simulation is based

on a 2D grid split in blocks amongst the different MPI processes. MPI com-
munications take place at each iteration to exchange the values of the grid
borders between neighbors. Each process should also receive the hand posi-
tion, which acts as an obstacle for the fluid flow.

– A multi-projector visualization environment. Each projector, driven by its
own PC, displays a tile of the entire scene. The distribution paradigm adopted

138

initialization

while not stop

wait()
get(position)
computations

put(grid)

Tracker

pos

p

Simulation

grid

p grid

Visualization

Fig. 1. The algorithm of the simulation
module.

Fig. 2. Interactive fluid simulation with 3
modules.

is simple: all PCs run a copy of the visualization application, each one expect-
ing the coordinates of the hand position and a density grid at each iteration.
To ensure a strong coherency of the displayed images, these copies must re-
ceive the same input data at each iteration. Next, each copy computes its tile
of the global image based on its own viewing frustum (viewing angle). All
PCs must then display the new image synchronously, either using a hardware
swaplock or a software barrier.

These codes can run independently at very different frequencies. The tracker
is certainly the fastest one and the fluid simulation the slowest one. A sampling-
based data exchange model will let the codes run independently at their highest
frequency, but it may lead to incoherences. For instance, in a given image, the
displayed hand position may not correspond to the one used to compute the
displayed simulation state. On the opposite, a FIFO communication model will
ensure the overall application coherency, but at the price of a lower performance.
All codes will run at the same frequency, synchronized on the slowest one. The
tracker will produce a new data as soon as room is available in the output channel
buffer. The latency will increase by the time such data stay unused in this buffer,
the time required by the fluid simulation to consume all data previously stored
in this buffer. FlowVR has been designed to let the user specify these different
policies and other intermediate solutions, without requiring any modification of
the codes.

2.2 Modules

We first introduce the API used to program FlowVR modules. This API is kept
as simple as possible to limit the effort required to convert an existing code into a
FlowVR module. For that purpose we explicitly took advantage of the interactive
nature of VR applications. A FlowVR module is a computation loop periodically
reading input data and producing new results. To improve code reuse, a module
cannot directly address another module. This way there is no explicit dependency
between modules. Their only knowledge of the FlowVR environment is a list of
input and output ports. The module API is based on three main methods:

– The wait defines the transition to a new iteration. It is a blocking call that
ensures each connected input port holds a new message. Input ports not

139

connected to any other port will never receive any message. They are deac-
tivated.

– The get function enables a module to retrieve the message available on a
port.

– The put function enables a module to write a message on an output port.
Only one new message can be written per port and iteration. Each output
message is automatically stamped by FlowVR with the current iteration
number.

In our example, we would define:

– One module for the tracker with one output port (a position data).
– Each MPI process of the fluid simulation will define a module with one input

(a position data) and one output (its block of the fluid density grid) (Fig. 1).
To be able to distinguish the different blocks, each process stamps its output
messages with the coordinates of its block.

– One module for each visualization process, with two input ports each, one to
retrieve the tracker position and the other one to retrieve the whole density
grid.

Each module has two additional predefined ports. The input activation port
is used to lock the module to an external event (fixed frequency trigger for the
tracker for instance). The output activation port is used to signal other compo-
nents that the module has started a new iteration (see section 2.5).

2.3 Connections

Once modules are defined, they are assembled connecting their input and output
ports. The simplest primitive used to build a FlowVR network is a connection.
A connection is a typed FIFO channel with one source and one destination.
Messages in a connection are numbered. Each message is stamped with this
number and the source id.

Let us consider our example. We can build a simple first application with
one tracker module, one fluid simulation module and one visualization module
(Fig. 2). We add one connection from the tracker to the visualization, another
one from the tracker to the simulation and a last one from the simulation to
the visualization. This simple application implements a classical communication
scheme using FIFO channels. The FIFO connections ensure a strong coherency.
At each iteration the visualization module will always retrieve a tracker position
and a density grid corresponding to the same simulated time. Therefore the
resulting application will be synchronized on the slowest module, presumably
the fluid simulation. If the tracker module is faster than the simulation module,
there will be a significant lag between between user interactions and their effects
on the virtual world. Also notice that adding the connections does not require
to modify the code of the modules.

However, having only point to point FIFO connections, it is difficult to loosen
the synchronizations imposed by the FIFO model or to express collective com-
munications.

140

Tracker

pos

p

Simulation/0

act grid

f0

p

Simulation/1

act grid

p

Simulation/2

act grid

f1

p

Simulation/3

act grid

p grid

Visualization/0

p grid

Visualization/1

f2

(a)

Tracker

pos

p

Simulation/0

act grid

f0Sync

p

Simulation/1

act grid

p

Simulation/2

act grid

f1

p

Simulation/3

act grid

p grid

Visualization/0

p grid

Visualization/1

Fit

f2

(b)

Fig. 3. (a) Fluid simulation with a FIFO network. Modules are represented as round-
shaped squares, routing nodes as circles and filters as diamonds. (b) Fluid simulation
with a coherent sampling network using one synchronizer (a square). Dashed lines
correspond to connections carrying only stamps. The act port corresponds to the output
activation port.

2.4 Filters

To extend the capabilities of the FlowVR network we introduce a new compo-
nent, called filter.

A filter has typed input and output ports and can perform complex operations
on messages. Filters have all the freedom to discard, combine or even generate
messages. They are not restricted to receive only one message per port and per
iteration like modules. They have free access to incoming buffers. Filters usually
handle messages based on the associated lists of stamps. For instance, a filter can
discard all incoming messages, which 3D bounding box falls outside of a given
volume. Amongst filters, we distinguish the routing nodes as the filters that only
forward all incoming messages on one or several outputs.

Let extend our example by now using four modules for the simulation and
two modules for the visualization (Fig. 3(a)). The tracker messages must be
broadcasted to these modules. For that purpose we introduce in our network
several routing nodes. To broadcast the data to modules we choose to implement
a binary-tree broadcast. The data exchange between simulation and visualization
is more complex as we have to ensure that all visualization modules receive the
whole density grid while each simulation module sends only one fourth of it.
For that purpose we use a filter that combines two blocks of density grids into
a larger one. This example implements a network with non trivial collective
communications. A strong coherency is still ensured as the filter we use here
does not suppress or generate new data (FIFO network).

141

2.5 Synchronizers

We distinguish a special class of filters, called synchronizers, used to implement
the resolution of non local constraints. A synchronizer works on stamps. There-
fore all incoming and outgoing connections only carry message stamps. Generally
a synchronizer activity is triggered by incoming stamps on some selected ports.
As synchronizers do not receive the data part of the messages, their output ports
are generally connected to filters. These filters typically have 2 input ports, one
receiving full messages (the data and its list of stamps) from a module or a
filter, and the other one receiving only stamps from a synchronizer. The filter
processes the incoming full messages according to incoming stamps. For instance,
such a filter can forward to its output only the full messages corresponding to
the incoming stamps, discarding the other messages.

Classical synchronization schemes can often be expressed in term of signal
handling. In this case the synchronizer only uses its inputs as signals. A sampling
scheme is implemented by selecting the last received message each time an acti-
vation signal is received from the destination module (request for another input
message). But synchronizers can implement more complex algorithms by taking
advantage of the semantically rich information hold by stamps. For example, in
VR environments some coherency constraints can be expressed in term of spatial
relationships. A strong coherency is required for objects close to the user, while
background or unseen parts of the scene require much less attention. A stamp
holding a bounding box information can be used to implement such a coherency
policy.

In our example, because the simulation will probably be slower than the
tracker, we introduce a synchronizer to keep pace with the tracker (Fig. 3(b)).
This synchronizer takes as input the stamps from the position messages, and
the stamps from the activation output ports of the fluid modules. When all
fluid modules request a new data, the synchronizer selects the newest stamp
available and sends it to the filter Fit. This filter only forwards on its output
port the messages having the stamps selected by the synchronizer. A strong
coherency is ensured as the visualization and simulation modules receive the
same position messages. Similar ideas could be applied to implement a coherent
sampling scheme to enable the visualization to run asynchronously from the
simulation. Once again, building this network did not require any modification
of the module codes.

3 Runtime Engine

FlowVR is open source and currently ported on Linux for IA32, IA64 and
Opteron.

The FlowVR runtime engine relies on daemons, one per participating node.
Daemons are in charge of FlowVR networks. They act as brokers and relay
messages between modules. Filters, including synchronizers, are implemented as
dynamically loaded classes (plugins) within the daemon. Communications lo-
cal to a node use a shared memory area. Care is taken to avoid unnecessary

142

0

10

20

30

40

50

1 2 3 4

It
er

at
io

n
s

p
er

se
co

n
d

Number of nodes

Visu. & Fluid (FIFO)+

+
+

+

+
Visu. (sampling)

✷
✷

✷
✷

✷

Fluid (sampling)

×

×
×

×

×

(a) Refresh rate

0

50

100

150

200

250

1 2 3 4

L
at

en
cy

(m
s)

Number of nodes

FIFO

+

+
+

+

+
sampling

✷

✷ ✷
✷

✷

(b) Latency
Tracker

pos

pos

Simulation/0

act grid

f0

Sync

pos

Simulation/1

act grid

pos

Simulation/2

act grid

f1

pos

Simulation/3

act grid

pos grid

Visualization/0

act

SyncS

SyncV

pos grid

Visualization/1

act

pos grid

Visualization/2

act

pos grid

Visualization/3

act

Fit

FitS/0FitS/1 FitS/2FitS/3

FitV

f2

(c) Coherent sampling network (d) Screenshot of the visualization

Fig. 4. Experimental results with a coherent sampling network and a FIFO network.

data copies and memory allocations by exchanging pointers and reusing allo-
cated buffers. The current implementation of inter-node communications relies
on TCP. Networks of heterogeneous nodes are easily exploited, as connections are
dynamically created and each daemon can be launched independently. Several
applications can safely run concurrently using the same daemons.

Each FlowVR application is managed by one special module called a con-
troller, automatically loaded at starting time. The controller first starts the ap-
plication’s modules using their own launching command, ssh or mpirun for in-
stance. Once the modules launched, they register themselves to their local dae-
mon that sends an acknowledgment to the controller. Then, the controller sends
to each daemon the list of plugins to load to implement the FlowVR network.

FlowVR integrates tools to generate the module launching commands and
the list of plugins to load. It uses as input an XML description of the syntax
of the launching command associated with each module code, as well as an
XML description of the FlowVR network with an explicit placement of all com-
ponents on target nodes. Ongoing work focuses on developing automatic and
semi-automatic FlowVR network generation tools.

143

3.1 Experimental Results

We implemented the running example porting an existing fluid simulation code.
The fluid simulation is parallelized with MPI, while the multi-projector visual-
ization is handled by Net Juggler (also based on MPI) [6]. From the FlowVR
point of view, each MPI fluid process and each Net Juggler process is seen as
a module. Note that all fluid modules (respectively visualization modules) are
synchronized through MPI communication calls FlowVR is not aware of. All
results presented here run a fluid simulation based on a 2D 512× 512 grid. The
visualization modules integrate the fluid into a rich virtual environment (See
Fig. 4(d)).

Two versions of the network were tested, a FIFO network (similar to Fig. 3(a)),
and a coherent sampling network enabling the tracker, the fluid simulation and
the visualization to run asynchronously. It extends the network presented in
Fig. 3(b) by adding an extra synchronizer between the tracker and the visualiza-
tion, and another one between the simulation and the visualization (Fig. 4(c)).
Tests were performed on a PC cluster with dual Xeon PCs (2.66 GHz) con-
nected through a Gigabit Ethernet network. Each machine was equipped with a
GeForce FX 5600 graphics card.

The number of visualization and fluid modules vary from 1 to 4. Each module
runs on its own PC. For instance when 8 nodes are used, 4 of them execute a
fluid module, while each of the 4 other PCs run a visualization module. Each
of these 4 PCs drives a video projector to display the result of its visualization
module (1/4 of the global image).

We measured the refresh rate, i.e. number of iterations per second, for the
visualization and the fluid simulation (see Fig. 4(a)). The FIFO networks im-
pose the same refresh rate for the visualization and the fluid modules. For the
coherent sampling network, the visualization and the fluid run asynchronously.
It enables the visualization to run significantly faster than the simulation. The
fluid simulation keeps the same performance as in the FIFO case. It shows that
the communications induced by synchronizers do not significantly affect the per-
formance. As the number of nodes allocated to the fluid simulation increases,
the fluid performance increases too. For the sampling approach this decreases
the refresh rate of the visualization modules as they must upload to the graphics
card new data from the fluid modules more frequently.

We also measured the overall latency, i.e. the time lag between the time a
new tracker position is available and the end of the iteration of the visualization
modules using this tracker position (see Fig. 4(b)). Allocating more nodes to the
simulation also improves latency. Sampling leads to a better latency than FIFO,
because sampling uses the more recent data available while FIFO uses the older
one. Note that the FIFO was executed with intermediate buffers of size 2.

The synchronizers used for the sampling approach can be extended to enable
a finer control over dependencies between modules. For instance, the synchronizer
between the fluid modules and the visualization modules could take into account
a user position data to know for each visualization module if the fluid is visible
or not. If not, it could block the transmission of fluid grid to the visualization

144

module, to let the visualization and network resources fully available for objects
that are in the user field of view.

4 Conclusion

We introduced FlowVR, a middleware dedicated to distributed interactive ap-
plications. FlowVR distinguishes two main parts in an application, the modules
and the network. Modules are endless loops reading and writing data on input
and output ports. Modules are assembled in a network with advanced features
for message handling. It enables parallel code coupling and the design of com-
plex communication and synchronization schemes. First experiences show that
FlowVR eases the development and deployment of interactive distributed appli-
cations, while leading to high performance executions.

Acknowledgment

This work is partly funded by the RNTL project Geobench.

References

1. FlowVR. http://flowvr.sf.net.
2. OpenMASK. http://www.irisa.fr/siames/OpenMASK.
3. Scirun: A scientific computing problem solving environment.

http://software.sci.utah.edu/scirun.html.
4. Covise Programming Guide, 2001. http://www.hlrs.de/organization/vis/covise.
5. J. Ahrens, C. Law, W. Schroeder, K. Martin, and Michael Papka. A Paral-

lel Approach for Efficiently Visualizing Extremely Large, Time-Varying Datasets.
http://www.acl.lanl.gov/Viz/papers/pvtk/pvtkpreprint/.

6. J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing pre-rendering com-
putations on a net juggler PC cluster. In Immersive Projection Technology Sym-

posium, Orlando, USA, March 2002.
7. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart. The

Cave Audio VIsual Experience Automatic Virtual Environement. Communication

of the ACM, 35(6):64–72, 1992.
8. A. Denis, C. Pérez, and T. Priol. Padicotm: An open integration framework for

communication middleware and runtimes. Future Generation Computer Systems,
2003.

9. E. Frécon and M. Stenius. Dive: A scalable network architecture for distributed
virtual environments. Distributed Systems Engineering Journa, 5:91–100, 1998.

10. N. Karonis, B. Toonen, and I. Foster. Mpich-g2: A grid-enabled implementation
of the message passing interface. Journal of Parallel and Distributed Computing,
63(5):551–563, 2003.

11. K. Watsen and M. Zyda. Bamboo - a protable system for dynamically extensi-
ble, real-time, networked, virtual environments. In IEEE Virtual Reality Annual

Internationnal Symposium, Georgia, USA, 1998.

145

A.5 FlowVR Supercomputing Journal 2008 Article

146

A Hierarchical Component Model for Large

Parallel Interactive Applications

Jean-Denis Lesage and Bruno Raffin

INRIA
Laboratoire d’Informatique de Grenoble (LIG)

Email: jean-denis.lesage@imag.fr and bruno.raffin@imag.fr

Abstract. This paper focuses on parallel interactive applications rang-
ing from scientific visualization, to virtual reality or computational steer-
ing. Interactivity makes them particular on three main aspects: they are
endlessly iterative, use advanced I/O devices, and must perform under
strong performance constraints (latency, refresh rate). A data flow graph
is a common approach to describe such applications. Edges represent
data streams while vertices are nodes processing incoming data streams
and producing new data streams. When applications become large this
approach shows its limits in terms of maintainability and portability. In
this paper, we propose to use the composite design pattern to extend this
model for supporting hierarchies of components. The component hierar-
chy is traversed to instantiate the application and extract the data flow
graph required for the execution. This approach has been implemented
for the FlowVR middleware. It enables to define parametric composite
components, commonly called skeletons, that can be reused in various
applications. This approach proved to significantly leverage application
modularity as presented in different case studies.

Keywords: Interactive Applications; Parallelism; Components; Com-
posite Design Pattern

1 Introduction

An interactive application involves a program and a user interacting in an end-
less iterative process through input and output devices. It is often referred to a
”human in the loop simulation”. Today, an emerging class of interactive applica-
tions intends to associate virtual reality, scientific visualization, simulation and
application steering. It leads to very complex applications coupling advanced
I/O devices, large data sets, various parallel codes. To be interactive, these ap-
plications must perform under strong performance constraints, often measured
in terms of latency and refresh rate.

For example, the Hercules system couples an earthquake simulation and an
on-line visualization using 2000 processors to reach the frequency of 2Hz on a

147

1200 billions elements simulation [1]. Other initiatives intend to design cross-
continental interactive applications relying on the performance of optical net-
working [2]. A number of virtual reality applications are relying on parallel ma-
chines to provide the required I/O and computing resources. Blue-C [3] and
Grimage [4] are good examples of high performance immersive platforms relying
on parallel machines to process in real time data acquired through a network of
cameras.

In this paper, we focus on two issues faced when designing such applications:

– Software engineering issues where multiple pieces of codes (simulation codes,
graphics rendering codes, device drivers, etc.), developed by different persons,
during different periods of time, have to be integrated in the same framework
to properly work together.

– Hardware performance limitations bypassed by multiplying the units avail-
able (disks, CPUs, GPUs, cameras, video projectors, etc.), but introducing
at the same time extra complexity. In particular it often requires to intro-
duce parallel algorithms and data redistribution strategies, that should be
generic enough to minimize human intervention when the target execution
platform changes.

Most iterative applications can be seen as an assembly of static tasks endlessly
processing incoming data and forwarding results to other tasks. Many scientific
visualization tools use this data flow graph model to specify the applications [5].
But the graph tends to quickly become complex as the application size grows,
impairing the modularity.

In this paper, we propose to rely on the composite design pattern to extend
the data flow graph model. Edges are components that can recursively contain
other components. Vertices link sibling component ports or parent/child ports.
To enforce the genericity of the described application, components defer intro-
spection and auto-configuration processes to controllers. A controller is local to
a given component, but it may get extra data consulting the state of the neigh-
bor components or through external data repositories. These controllers, that
can generate new components for instance, are called recursively and repeatedly
in a traverse process until reaching a fixed point. A traverse either leads to an
error (missing data impairs the traverse completion) or a success. For instance
a traverse is called to extract the data flow graph required for the execution
from this hierarchical application description. This approach enables us to define
highly generic composite components, enforcing the application maintainability
and portability. In particular, we can define skeletons, i.e. parametric composite
components, that encapsulate commonly used and optimized parallel processing
patterns. This approach has been implemented for the FlowVR middleware [6].

Section 2 discusses related works. After an overview of FlowVR (section 3),
we present the hierarchical component model in section 4. Section 5 presents a
collection of skeletons built using our model. Section 6 focuses on 2 case studies
to discus the benefits of our approach on real applications, before to conclude in
section 7.

148

2 Related Work

The goal of scientific visualization is to process large data sets to compute im-
ages. Interactivity enables for instance users to change their point of view on
the data set or the transfer function applied for volume rendering. Applications
are developed with visualization environments like OpenDX [7], Iris Explorer [8]
or VTK [9]. These environments are usually based on a data flow graph model
where processing tasks receive data and generate new ones. Most of them sup-
port parallel executions. An application is basically a list of filters applied to the
data set before rendering. The first natural level of parallelism is to distribute
the different steps of the filter pipeline on different machines. Because the data
set is read only, the pipeline can easily be duplicated and executed in parallel
on sub parts of the data set [10]. Advanced parallel rendering algorithms exist,
based for instance on specific parallel data structures and dynamic work bal-
ancing schemes. In this case they are implemented on their own, usually using
classical parallel programming languages, because visualization environements
do not provide the necessary constructs [11].

Attempts to associate virtual reality, scientific visualization and simulations
push forward the complexity of interactive applications. They involve various
simulation codes that may generate large data sets, advanced I/O devices, like
network of cameras, projector arrays, haptic devices. Pipeline must be used with
care. It improves the application frequency, but also increases the latency. So
to ensure a good trade-off between frequency and latency multiple forms of
parallelism are associated, from pipelines or data parallelism to dynamic task
parallelism.

In virtual reality, to ensure an efficient data redistribution between paral-
lel algorithms that may run at different and varying frequencies, complex cou-
pling schemes associating data re-sampling and collective communications are re-
quired. Dedicated environments like FlowVR [6], OpenMask [12] or COVISE [13]
propose different approaches to support such features. However, the resulting ap-
plication code tends to be difficult to be maintained when reaching a certain size.
Connectivity between processing tasks (communication channels) are expressed
by direct links between the corresponding elements: it requires the concerned el-
ements be directly visible one from each other, preventing attempts to strongly
structure the code by encapsulating patterns in methods or functions.

Component models, like CCA (Common Component Architecture) or CCM
(Corba Component Model), provide Architecture Description Languages for dis-
tributed applications. SCIRun, an environment dedicated to scientific visualiza-
tion, is based on the CCA model [14]. Some extensions intend to enforce the
support of parallel components and the associated coupling patterns [15]. But
these models suffer from the same limitations as the systems mentioned earlier
(FlowVR, COVISE) regarding the modularity of parallel component coupling.
Fractal [16] is a hierarchical component model. We are aware of one implemen-
tation of Fractal for parallel (grid) applications: ProActive [17]. A ProActive
composite component can be a parallel component. But redistribution patterns

149

are coded into the ports of the parallel components. A pattern cannot be modi-
fied without modifying the component, limiting the application modularity.

The skeleton model proposes a pattern language for parallel programming [18,
19]. A program is written from the composition of predefined parallel patterns.
Various environments rely on this model like ASSIST [20] for grid computing
or Skipper [21] for vision applications. Skeletons have a clear semantics, can be
associated to a cost model and hide their implementation details to the applica-
tion developer. Given the target architecture, the application is compiled down
to a specialized parallel code. Hierarchies of skeletons are supported by some
environments like Skipper-D. ‘ With the emergence of multicore architectures
and GPU programming, some programming environments propose to focus on a
stream paradigm, like StreamIT [22], Brook [23] or Cg [24]. They target stream-
ing applications like video, voice or DSP programming. A program is usually a
set of iterative modules that communicate via FIFO data channels. Parallelism
is expressed by the composition of a reduced number of skeletons. For exam-
ple, in StreamIT, developers are allowed to use 3 kinds of skeletons: Pipeline,
SplitJoin and FeedBack Loop. By limiting the available skeletons, it constrains
the program to simple data parallel access patterns, enabling to write efficient
compilers for the targeted architecture. It is however too restrictive to ensure
efficient executions on a general purpose and potentially heterogeneous parallel
machine.

3 FlowVR

We present in this section FlowVR [6]. Our component model relies on this mid-
dleware. FlowVR is dedicated to parallel interactive applications. It is based on
the data flow model also used by other scientific visualization tools. A FlowVR
application is a network of static iterative processes connected by data flow
channels. The main target applications include virtual reality and scientific vi-
sualization.

FlowVR has been used for developing various large interactive applications [25,
26]. FlowVR is open source1. It is distributed with extensions like FlowVR-
Render that enables distributed rendering or VTK-FlowVR that encapsulates
VTK[9] applications into FlowVR Modules [27].

3.1 FlowVR Run-time

An application is composed of modules exchanging data through a FlowVR net-
work. A module is an endless iterative code that defines input and output ports.
At each iteration it reads incoming data from input ports, processes these data
and writes the results on output ports. A module runs in its own independent
process or thread, thus reducing the effort required to turn an existing code into
a module. For instance an MPI program can be modified to define one module
per process.

1 FlowVR is available at http://flowvr.sf.net

150

The FlowVR network is handled at run-time by a FlowVR daemon running
on each host of the target machine. Daemons act as brokers. They relay messages
between modules. Modules are not aware of the existence of other modules. A
module only exchanges data with the daemon that runs on the same host. If
the destination module runs on the same host, the daemon gives this module
a pointer to the data (messages are stored in shared memory segments). If the
destination runs on a distant host, the module sends the data to the daemon of
this host using TCP. At reception the daemon stores the message in a shared
memory segment and handles a pointer to the destination module.

The role of the daemon is not limited to data forwarding. It can load plugins
to process data, duplicate, merge or split messages for instance. The user can
define its own plugins if required. Notice that plugins have a less restricted
access to the shared memory than modules, enabling to implement more efficient
message handling actions.

Each FlowVR application is managed by a special module, called a controller,
automatically loaded at starting time. The controller first starts the application’s
modules using their own launching command, ssh or mpirun for instance. Once
launched, modules register to their local daemon that sends an acknowledgment
to the controller. Then, the controller sends to each daemon the routing table
and list of plugins to load to implement the FlowVR network.

3.2 Flat Data Flow Graph

Fig. 1. The flat data flow graph of a large FlowVR application. Edges represent pro-
cessing tasks and vertices data channels.

151

At low level a FlowVR application is modeled by a flat data flow graph
composed of:

– Modules with input and output ports, each one is mapped on a given host,
– Filters that are daemon plugins. Like modules, filters have input and output

ports, and are mapped on a given host.
– Connections that represent FIFO data channels. A connection connects one

source input port to a destination output port.
– Routing nodes that have one input port and one or more output ports. They

are assigned to a given host and model message routing actions.

In the first versions of FlowVR, the application developer had to specify its
application describing this graph. He was assisted by a library of Perl functions
that encapsulated some commonly used patterns. However large applications
proved difficult to debug and maintain, motivating the adoption of a hierarchical
approach to further enforce the application modularity (Fig. 1).

4 Component Model

We adopt a hierarchical component model to describe a FlowVR application. It
is based on the composite design pattern [28].

4.1 Hierarchical Components

A component has an interface defined by a set of ports. We distinguish two kinds
of components:

Primitive components. A primitive component is a base component that can-
not contain an other component. Primitive components are modules, filters,
routing nodes and connections.

Composite components. A composite component contains other components
(composite or primitive). It has input and output ports. A port is visible from
both, the outside and the inside of the component. It identifies the data
that can cross a component boundary. Component encapsulation is strict. A
component can not be directly contained into two parent components.

4.2 Links

A link connects two component ports. It cannot directly cross a component
membrane. A link between 2 ports is allowed only for the 2 following cases:

– A descendant link connects a port of a parent composite component to a port
of one of its child component. Such links must always connect an input/input
or output/output pair of ports.

– A sibling link connects two ports of two components having the same parent
component. Such a link must always connect an input/output pair of ports.

Port typing can be enforced if required, putting more constraints on the ports
that can be linked. For instance, link could be restrained to connect only ports
corresponding to the same data type.

152

4.3 Example

Fig. 2. Application example. Computes simulates the dynamics of a ball falling into
a water tank. Results transit up to Render for rendering. Capture forwards mouse
positions to Render that uses them to render the simulation scene with the point of
view requested by the user.

Throughout this paper, we use a simple example (Fig. 2). It shows the clas-
sical structure of a basic interactive application. In this iterative simulation,
component Computes publishes its state at each iteration. We can for instance
consider that this simulation computes the dynamics of a ball falling into a
water tank. Each simulation state is received by a Render component. For a
given point of view, this component computes an image giving a view on the
simulation scene. The user can control this point of view with a mouse. A Cap-
ture component is in charge of reading the mouse position and forwarding it to
Render.

For sake of simplicity, we keep this application synchronous, i.e. the Render
component can only start the next iteration if it receives data from Computes
and Capture. Often real applications loose this synchronization by introducing
data sampling components (a sampling pattern is presented in section 5).

Using the hierarchical component model, the example is structured as follows
(Fig. 2):

153

Fig. 3. a) Two levels of hierarchy for the Connect component. The skeleton defined by
NtoOne is generated according to the number of Computes primitive components. b)
The flat data flow graph for the application. Dashed sets show the composite compo-
nents the graph elements are related to (connections are arrows, modules are in green
and filters in blue).

154

– As the Capture and Render components are closely related, they are stored
in a composite component called Visualization. This encapsulation is a com-
modity that enables to easily reuse this assembly having just to handle the
Visualization component.

– The Computes component is actually a parallel application that spawns n

processes. The goal is to be able to speed-up the simulation involving more
processors if available. Computes is modeled as a composite component with
one output port out to send its simulation state at each iteration. It con-
tains n child components Compute/0,..., Compute/n-1. These are primitive
components, each one having an output port out linked to the out port of
Computes. The value n and where these n processes are mapped on a target
architecture is unknown at the time of the application design. They will be
instantiated later when traversing the application to call configuration con-
trollers. Notice that communications can take place between the different
parallel processes, but they are not modeled here. We consider that they are
under the responsibility of the programming environment used to parallelized
the application, MPI for instance.

– Computes being a parallel component, each process spawned computes one
part of the simulation state. The Visualization component is not designed to
received partial results. We could modify the Visualization component, but
we actually prefer to manage this issue outside of this component. Applica-
tion modularity is enforced by delegating data redistribution issues to spe-
cialized components. We use an extra component, called Connect, between
Computes and Visualization. Connect is in charge of gathering the partial
results from the various Compute/i processes to forward a single message
containing a full simulation state to Visualization. Connect is a composite
component (Fig. 3.a). It is built from the NtoOne component. This com-
ponent encapsulates a generic tree pattern for data redistribution. Connect
just set the parameters of NtoOne: the arity of the tree (2) and the type
of the component used for the tree nodes (Merge). The actual content of
NtoOne is only known once Computes is properly instantiated. Only at this
point NtoOne knows how many pieces of data it has to gather to set the
tree depth. The NtoOne configuration controller must be executed after the
Computes configuration controller. We see here that the traverse algorithm in
charge of executing the configuration controllers has to respect a given pro-
cessing order. A possible traverse order is: Computes, Visualization, Connect,
NtoOne, Merge/0, Merge/1, Merge/2, Compute/0, Compute/1, Compute/2,
Compute/3, Capture, Render. Merge is a primitive component that builds
one message sent on its out port from the 2 messages it reads on its in/0 and
in/1 ports.

Notice that if the application is configured with only one component Com-
pute/0, Merge becomes a simple point-to-point connection between Compute/0
and Render.

The model we propose first target applications with static components, i.e.
without components created while the application is running. Because of their

155

iterative nature, interactive applications tend to be mostly static. However, if
required for some parts of the application, a component can dynamically create
or kill threads or processes as long as it implements a proxy that hides this
dynamic behavior. We are also working on extending the model to support some
level of run-time reconfiguration.

4.4 Controllers

To improve the application genericity and thus its portability, instantiation of
some component aspects are deferred to controllers. A controller is local to a
component. It can only modify the state of its component. It can read the state
of other components its owner is linked to (directly or not). A component can
have several controllers. It usually enforces modularity to have multiple specialize
controllers. We distinguish 2 types of controllers:

– An introspection controller just get data from its component. For instance
an introspection controller can be dedicated to print its component name in
a file.

– A configuration controller modifies its component state. In the example ap-
plication, the child components of Computes are generated by such a con-
troller.

Controllers are called during an application traverse. Usually one traverse
just calls one controller per component. During a traverse, parameters can be
exchanged between controllers. It enables for instance to exchange a file descrip-
tor where each controller appends the name of its component. The final result
of the traverse is a list of all application components. The result may of course
depend on the execution order of the different traverses.

Our model imposes one configuration controller, called execute. This con-
troller creates child components. For example, in the Computes component, the
execute controller creates all Compute/i primitive components and links them to
Computes. Data distribution components usually have execute controllers that
need to get data from the neighbor components. For instance, the execute con-
troller of NtoOne needs to get the number of Compute/i components to create
the merging tree.

Developers can create controllers dedicated to a given aspect. A controller
can be in charge of mapping primitive components to the target architecture
processors. Implementing mapping in a controller enables to keep the application
description independent of the mapping. In FlowVR, the application is first
traversed to call the execute controller, then a mapping controller is called, and
a third controller generates the flat data flow graph.

An other example of introspection controller used for FlowVR is the com-
mand line generator. The construction of command lines to launch modules is
delegated to an introspection controller. This controller builds a command line
using data related to the FlowVR network (hosts list, number of processes), con-
figuration files (target architecture description) or user parameters (application

156

specific parameters). This specific controller is embedded into composite com-
ponents called metamodules. A metamodule handles modules that are logically
related, in particular when they are all started from a single command. This is
for instance the case for a MPI code that uses mpirun to start all its processes.

Notice that a controller can be seen as an aspect (in the Aspect Oriented
Programming way). Nevertheless, we do not have code weaving. Controllers are
embedded in components by the programmer.

4.5 Traverse Algorithm

As seen for the example (Section 4.3), in a traverse the execution of controllers
may need to obey a certain order to respect data dependencies. We propose
a simple algorithm that guarantees to complete the traverse when possible or
return the list of misprogrammed components if some data dependencies cannot
be solved whatever the execution order is.

The traverse algorithm is a greedy process. The algorithm manages a queue
of non-executed components, initialized with the top-level components of the ap-
plication. For each component in this queue, the algorithm tries to execute the
associated controller. If the controller is successfully executed, then all of its chil-
dren are pushed in the queue. Otherwise, the algorithm restores the component
initial state and push it at the end of the queue. The traverse ends successfully
when the queue is empty. If no controller can be called on the rest of the com-
ponents in the list, then the algorithm stops in a fail state. The controller of the
remaining components cannot be executed either because at least one of these
components is misconfigured (a parameter is not instantiated for instance), or
because a cycle of dependencies has been introduced when assembling the com-
ponents.

4.6 Traverse Proof

We prove the traverse algorithm always ends, with success if a solution exists,
and that the number of controller calls, successful or not, is at most quadratic
in the number of components.

Let C be the set of all components in an application and Ncomp the size
of C. The goal of the algorithm is to iterate on all components in C with a
consistant order. We put in the non-executed queue a marker that denotes the
starting point. Each time the marker comes back to the front of the queue, it
is appended at the end of the queue. We count the number of times the marker
has reached the front since the algorithm started. It denotes what we call in the
following the number of iterations.

Let NonExecutedk = {c ∈ C/ the controller of c has not been executed
at the iteration k } and Executedk = {c ∈ C/ the controller of c has been
successfully executed during the iteration k }. We call N the iteration that
reaches a fixed point, i.e. the first iteration where ExecutedN = ∅. In this case,
the algorithm stops. The misconfigured components or dependency cycles are
contained in NonExecutedN .

157

Let Ek =
⋃k

i=1
(Executedi) be the set of components successfully executed

from the first to the kth iteration. Let Ek =
⋃∞

i=k (NonExecutedi) be the set of
components that have to be executed after the iteration k.

We call E∞ =
⋂∞

i=1
Ei the set of components that cannot be executed.

Thus we have:

– ∀k,C = Ek ⊕ Ek

– E0 = C and E0 = ∅

We first prove the algorithm always ends.

Proposition 1. The traverse algorithm reaches a fixed-point with N ≤ Ncomp

and NonExecutedN = E∞

Proof. During execution of traverse, we are assured that ExecutedN 6= ∅, so for
all k we have Ek+1 =

⋃∞

i=k+1
(NonExecutedi) ⊂

⋃∞

i=k (NonExecutedi) ⊂ Ek.

So EN decreases to E∞. The algorithm reaches a fixed-point where limk→∞Ek =
E∞.

As C = Ek ⊕ Ek, if at the iteration k we have Ek = Ek+1 then Ek = Ek+1.
So the algorithm reaches the fixed-point at k.

Consequently Ek strictly decreases to E∞ ⇒ N ≤ |E0| = Ncomp.

We now focus on the complexity of the algorithm.

Proposition 2. The traverse algorithm performs at most N2
comp calls to con-

trollers.

Proof. Let Calls be the total of calls to controller. Calls =
∑

k≤N |NonExecutedk|.
Previously, we proved:

– N ≤ Ncomp

– ∀k,NonExecutedk ⊂ C ⇒ |NonExecutedk| ≤ Ncomp

So Calls ≤ N2
comp

The overhead due to unsuccessful controller calls can be significant. But
implementing an algorithm that solves all constraints to identify an acceptable
execution order would be complex or it would require the application developer
to encode extra information into its program to help that algorithm. Our solution
is a good trade-off between scalability and complexity of the implementation. We
experimented applications with 200 components. Traverse computation time is
about one second only.

We now characterize E∞, the set of remaining components. Let Data = {c ∈
C / c cannot be executed because a data is missing } and Dep = {c ∈ C /
c cannot be executed because it depends on a component that has not been
executed yet }. No other reason can lead to a controller call failure. So we have
E∞ = Data ∪ Dep.

Proposition 3. If Data = ∅ and E∞ = Dep 6= ∅ then there is at least one
dependency cycle in E∞

158

Proof. Assume there is no dependence cycle in Dep. So there is a longest de-
pendency path. Let c and d be the components at the extremities of one of the
longest dependency paths.

But because c belongs to Dep and not to Data (Data = ∅), there exists e in
Dep such as c depends on e. So the path from e to d is longer than the longest
path from c to d. It contradicts the assumption: there is a dependence cycle in
Dep.

This proposition shows the traverse algorithm can help debugging an appli-
cation. If the traverse fails, the user should first fix the components with missing
data. Usually such flaws are detected when the controller fails if error raising
has been properly programmed. Next, if the algorithm still fails, the user should
look at suppressing the cyclic dependencies. In our implementation we rely on
exceptions to signal when controller fail.

4.7 The FlowVR Front-end

The hierarchical component model only affects the front-end of FlowVR (Fig. 4).
The run-time engine is not modified. Components are written in C++ and com-
piled into shared libraries. An application is also a composite component com-
piled into a shared library. It can thus be reused in other applications without
being recompiled. The FlowVR front-end loads the application and applies a
sequence of several traverses to produce the list of commands to start the mod-
ules and the instructions to forward to the different daemons to implement the
application network. The flat data flow graph is usually saved as it is useful for
debugging purpose.

5 Skeletons

We present four base parametric composite components, i.e. skeletons, that
proved to be very useful for developing interactive applications. These skeletons
provide users an easy way to handle parallel processing patterns or complex
communication schemes. These skeletons fully take advantage of the component
hierarchy and modularity provided by the controller based approach. They are
templated to enforce their genericity. Their instantiation is deferred to their
execute controller (Sect. 4.4):

Pipeline This is a very simple skeleton modeling a sequence of precessing steps.
It is modeled by a composite component containing an arbitrary sequence
of linked components (primitives or composite).

Parallel This skeleton creates N instances of a component passed as a tem-
plate. The skeleton creates the same ports than the template component.
Once the internal components created, their ports are linked to their equiv-
alent skeleton ports. The Computes component in our example could have
been alternatively designed by encapsulating a Parallel component pattern
using Compute as template component. This skeleton can be used as a shell

159

Fig. 4. The FlowVR front-end. Components (left to righ) are compiled, loaded and
traversed to provide the module launching commands and the instructions for deamons.
Once compiled, modules (top to bottom) are started as requested by the application.

160

for duplicating a given component. It can also be used to encapsulate a
static parallel program. In this case communications due to parallelization
are not visible from the component point of view. We consider the parallel
programming environment used for the parallelization takes care of these
communications.

Tree A tree skeletons has two ports, the root and the leaves. The number of
leaves in the tree is defined a traverse time according to the number of
neighbors connected to the leaves port. We distinguish 2 specializations of the
tree depending on the data propagation direction, either from root to leaves
(the OnetoN component) or from leaves to root (the NtoOne component).
The arity of the tree is a parameter to be instantiated. The node type used to
build the tree is a template pattern. Here are some examples of components
pattern built from Tree:

Broadcast The simplest skeleton that can be built from the tree. It uses
the OnetoN skeleton instantiated with a primitive component, a rout-
ing node, that forwards the messages it receives on its input to each of
its outputs. The arity of the broadcast tree depends on the number of
outputs of the template component.

Scatter Similar to the Broadcast except that the template component splits
the input message into sub-messages forwarded on its outputs. For in-
stance, a classical 3D rendering parallelization approach, called sort-
first [29], consists in having a task responsible for one area of the screen
(Fig. 5.a). Thus, a task only requires to execute the graphics primi-
tives that will contribute to its screen area. To distribute the graphics
primitive, we can use a Scatter with a Culling component that uses a
fast method to test if a graphics primitive contributes to a given screen
area [27].

Gather A OneToN tree that uses a message merging template pattern.
Using a template component that sorts the integers it receives, it creates
a distributed merge sort (Fig. 5.b). This skeleton is also used by the
Connect component of our example (Fig. 3).

Sampling This skeleton is specific to interactive applications where tasks may
run at different frequencies. For example, a physical simulation has to run at
high frequency to be stable, while graphics rendering usually runs between 30
and 60 Hz. If the two tasks are directly connected with a FIFO connection, it
will force both tasks to run a the frequency of the slowest one, the rendering
task in this case. To avoid this issue a common approach is to sample the
incoming signal. This sampling could be performed by the rendering task,
making the rendering task less generic. To enforce the modularity, we design
a special skeleton that samples data streams under the control of their desti-
nation tasks. With this approach neither the source neither the destination
tasks need to be modified or even recompiled. The sampling skeleton is an
assembly of 2 composite components (Fig. 5.c):

– The Filter composite component analyzes and samples the incoming data
stream according to an external policy. It has four ports : in receives the

161

incoming data stream, out produces the sampled signal, freq sends the
frequency of the incoming stream and order receives sampling orders.

– The Sampler composite component controls the sampling policy. It has
two ports : freq receives the frequency of the incoming stream and order
sends orders about the stream sampling. Using the incoming stream fre-
quency, it decides the messages that have to be discarded and the ones
to replay.

By changing the template components Sampler and Filter different sampling
strategies can be implemented.

Because there is no discontinuity from primitive components to high-level
composite ones, the developer can freely choose to combine, extend, specialize
or simply ignore these skeletons. In a sense the approach we propose is very close
to the one of the C++ Standard Template Library. This skeletons can also be
seen as a derivative of Cools skeletons [18] for a specific application domain.
One of the main difference is the absence of cost model.

Fig. 5. a) Sort-first scatter pattern. The Culling components route the graphics primi-
tive for rendering the bunny according to the screen area they project onto. b) Integer
merge-sort scatter pattern. c) Sampling pattern. Filter is the operative part of the com-
munication: it processes sampling on incoming messages flow. Sampler is the control
part: it decides the sampling policy.

6 Case Studies

In this section, we present two case studies taking advantage of the component
hierarchy and the skeletons presented in previous sections. The first application

162

shows an example of coupling MPI and FlowVR. The second example is an
interactive 3D modeling application using a camera network.

6.1 Case Study 1: MPI Fluid Simulation

We implemented a fluid simulation algorithm [30] using MPI (Fig. 6.a). This
application shows how to integrate a MPI code. The fluid simulation is based on
a 2D grid of cells. At each new iteration, a new state is computed for each grid
cell. This state depends on the state at the previous iteration of the considered
cell and its four neighbors. The simulation is parallelized by splitting the grid
cell into blocks distributed amongst the different MPI processes. Data exchange
between blocks are MPI communications, transparent to FlowVR. The MPI code
is modified so that each process is a FlowVR module with one output port to
send the result of each iteration. These modules are called Fluid/0 Fluid/N,
the number being assigned based on the rank provided by MPI. Beside the actual
MPI code of the modules, a Fluid primitive component is written. A metamodule
Metamodule-MPI implements the controller to generate the launching command
using mpirun. It also contain a parallel skeleton that creates the correct number
of instances of the Fluid module. It is important here that the ranking be the
same as the one assigned by MPI. The Metamodule-MPI component is linked to
a Gather skeleton (Fig. 5.b) using a 2DMerge filter as template. The goal here is
to gather the results of each MPI process into one full 2D grid forwarded to an
OpenGL renderer. For more implementation details refer to the fluid example
provided with the FlowVR source code.

A possible traverse order to generate the flat data flow graph and the launch-
ing commands is:

1. FluidSimulation instantiates the 3 components: MetaModule-MPI(Fluid),
MetaModule(OpenGLRender) and Gather(2DMerge).

2. MetaModule-MPI(Fluid) creates the PatternParallel(Fluid) component.
3. PatternParallel(Fluid) instantiates the 4 Fluid modules and set their ranks.
4. Gather(2DMerge) detects the 4 Fluid and creates the gather tree with 3

2DMerge filters. Each Fluid is connected to one leave of the gather tree
according to their rank.

5. MetaModule(OpenGLRender) creates the OpenGLRender module.
6. MetaModule-MPI(Fluid) generates the MPI command line with the appro-

priate list of hosts and ranks.
7. MetaModule(OpenGLRender) generates the UNIX command line to launch

the rendering in the appropriate X-server.

6.2 Case 2: Real-Time 3D Modeling

We ported a parallel real-time 3D modeling application. It consists in computing
in real-time a 3D model of a scene from the various 2D video-streams acquired
by multiple video cameras surrounding the scene [31] (Fig. 7.a). Real-time 3D

163

Fig. 6. a) Fluid application. Four MPI processes compute a fluid simulation on a 2D
grid. A gather skeleton merges results from MPI processes and sends the full grid
to an OpenGL renderer. b) C++ description of the FluidSimulation component that
encapsulates the application.

modeling enables full body interactions into a virtual environment [4]. 3D mod-
eling is both I/O and computation intensive. We typically use between 6 and

164

Fig. 7. a) A 3D model of a person computed from 6 cameras. b) Description of the
application. This composite contains 4 composite components.

15 cameras, each one acquiring 30 images per seconds. The computation of 3D
models must match the camera frequency and run in less than 100 ms per 3D
model to keep the overall latency small enough to enable interactions. A paral-
lelization is thus required. Parallelization is based on several steps. For sake of
conciseness we just give an overview of the parallel algorithm here. Refer to [32]
for details. First, the video stream of each camera is acquired and filtered to
subtract the background and compute the image silhouette. This pipeline is exe-
cuted in parallel on each machine a camera is connected to. Next silhouettes have
to be redistributed for computing the 3D model. 3D modeling is implemented
with 3 parallel processing steps separated by data redistributions.

This application contains 4 composite components (Fig. 7.b): a video ac-
quisition component, a 3D modeling component, a physical component and a
rendering one. The video acquisition component is a parallel pattern containing
a pipeline of the different steps from acquisition to silhouette extraction. The 3D
modeling component is another hierarchy of components making an intensive use
of various skeletons. Physical simulations are computed by SOFA [33], an exter-
nal framework. This framework computes collisions between virtual objects and
user 3D model. The rendering component renders all meshes (virtual objects
and user 3D model) and the virtual environment. The application designed is
independent from the number of processors available on the target machine, and
from the number of cameras and their mapping on the machines.

This application represents a significant development effort involving several
developers over several years. Developments started in 2002 using MPI. It was
quickly abandoned as MPI proved not to offer a sufficient level of modularity for
this type of interactive application. A computer vision specialist should be able
to work on the acquisition pipeline without having to worry about the MPI code

165

or the overall coherency of the communication schemes. We switched to FlowVR
that better separates the code of the tasks (the modules) from the task coor-
dination issues. But as the applications grew, for instance texturing of the 3D
model started in 2006 and SOFA was only added in 2007, the FlowVR network
became very complex and bugs difficult to track and solve. Switching to the
hierarchical component approach increased significantly the application main-
tainability, scalability and portability. It did not directly modify the flat data
flow graph and so the performance. But because the modularity improved, per-
formance enhancements proved easier to implement. Several videos are available
at http://flowvr.sf.net showing the evolution of the application and the level of
performance reached.

Let now focus on the acquisition component. The full pipeline from camera
to image silhouette is implemented in a composite component. Using the parallel
skeleton, we are able to instantiate this pipeline for all cameras (Fig. 8). These
pipelines can be driven from a user interface for on-line tuning of some parame-
ters. To implement this new feature we used 3 parallel skeletons and 1 sampling
skeleton (Fig. 9).

Controllers ease extensions of this basic implementation of the acquisition
component. For instance, we developed a controller that adds a supervision in-
terface to control these pipelines. This supervision consists in a graphic user
interface to set some parameters for the different modules in the pipeline. For
example, the user can set the acquisition rate. This interface also displays the
outputs from several stages of the pipeline. We use this interface to control and
debug the acquisition algorithms. We implemented this controller using a new
component that encapsulates the graphics interface. This controller also adds
several asynchronous communications that send parameters to pipeline com-
ponents (Fig. 9). These communications use the sampling skeleton. This imple-
mentation enables to separate the main implementation of the pipeline from this
supervision aspect. It improves the modularity and provides a simple solution
to extend the application.

Fig. 8. Flat data flow graph of the acquisition component for 6 cameras (50 nodes and
68 edges).

166

Fig. 9. Flat data flow graph of the acquisition component for 6 cameras and a super-
vision interface (105 nodes and 176 edges).

7 Conclusion

We presented a framework to use a hierarchical component model for interactive
applications. Our main goal was to ensure a high level of modularity for large
applications involving parallel components and advanced coupling schemes. Con-
figuration of components is deferred to controllers. It enables us to separate some
aspects of a component from its core functional nature. Controllers are called in
a traverse process. We presented a traverse algorithm that calls the controllers
in an appropriate order or produce an error if completion is not possible due to
cycles or missing data. This approach was implemented for the FlowVR middle-
ware and proved effective to leverage the modularity of applications.

Acknowledgment

This work was partly funded by Agence Nationale de la Recherche contract
ANR-06-MDCA-003.

References

1. Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’Hallaron,
D.R.: From Mesh Generation to Scientific Visualization: An End-to-End Approach
to Parallel Supercomputing. In: Super Computing. (2006)

2. Smarr, L.L., Chien, A.A., DeFanti, T., Leigh, J., Papadopoulos, P.M.: The OptI-
Puter. Communication of the ACM 46(11) (2003) 58–67

3. Gross, M., Wuermlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-
Meier, E., Svoboda, T., Gool, L.V., S. Lang, K.S., Moere, A.V., Staadt, O.: Blue-C:
A Spatially Immersive Display and 3D Video Portal for Telepresence. In: Proceed-
ings of ACM SIGGRAPH 03, San Diego (2003)

4. Allard, J., Ménier, C., Raffin, B., Boyer, E., Faure, F.: Grimage: Markerless 3D
Interactions. In: Proceedings of ACM SIGGRAPH 07, San Diego, USA (August
2007) Emerging Technology.

5. Brodlie, K., Duce, D.A., Gallop, J.R., Walton, J.P.R.B., Wood, J.: Distributed
and Collaborative Visualization. Computer Graphics Forum 23(2) (2004) 223–251

167

6. Allard, J., Gouranton, V., Lecointre, L., Limet, S., Melin, E., Raffin, B., Robert,
S.: FlowVR: a Middleware for Large Scale Virtual Reality Applications. In: Pro-
ceedings of Euro-par 2004, Pisa, Italia (August 2004)

7. Lucas, B., Abram, G.D., Collins, N.S., Epstein, D.A., Gresh, D.L., McAuliffe, K.P.:
An Architecture for a Scientific Visualization System. In: IEEE Visualization Con-
ference, Los Alamitos, CA, USA, IEEE Computer Society Press (1992) 107–114

8. Foulser, D.: IRIS Explorer: a Framework for Investigation. Journal of ACM SIG-
GRAPH 95 29(2) (1995) 13–16

9. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit An Object-
Oriented Approach To 3D Graphics, 3rd Edition. Kitware, Inc. (2003)

10. Ahrens, J., Law, C., Schroeder, W., Martin, K., Papka, M.: A Parallel Approach for
Efficiently Visualizing Extremely Large Time-Varying Datasets. Technical report,
Los Alamos National Laboratory, Los Alamos National Laboratory (2000)

11. Wang, C., Gao, J., Shen, H.W.: Parallel Multiresolution Volume Rendering of
Large Data Sets with Error-Guided Load Balancing. Parallel Computing 31(2)
(February 2005) 185–204

12. D.Margery, B.Arnaldi, A.Chauffaut, S.Donikian, T.Duval: OpenMASK: Multi-
Threaded or Modular Animation and Simulation Kernel or Kit : a General In-
troduction. In Richir, S., Richard, P., Taravel, B., eds.: VRIC 2002 Proceedings.
(2002) 101–110

13. A.Wierse, U.Lang, Rhle, R.: Architectures of Distributed Visualization Systems
and their Enhancements. In: Eurographics Workshop on Visualization in Scientific
Computing, Abingdon (1993)

14. Keming Zhang and Kostadin Damevski and Venkatanand Venkatachalapathy and
Steven G. Parker: SCIRun2: A CCA Framework for High Performance Computing.
In: Proceedings of the Ninth International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments, HIPS. Volume 00., Los Alamitos,
CA, USA, IEEE Computer Society (2004) 72–79

15. Denis, A., Pérez, C., Priol, T.: PadicoTM: an Open Integration Framework for
Communication Middleware and Runtimes. Future Generation Computer Systems
19(4) (2003) 575–585

16. Eric Bruneton and Thierry Coupaye and Matthieu Leclercq and Vivien Quéma and
Jean-Bernard Stefani: The FRACTAL Component Model and its Support in Java:
Experiences with Auto-Adaptive and Reconfigurable Systems. Software Practice
& Experience 36(11-12) (2006) 1257–1284

17. Baude, F., Caromel, D., Morel, M.: From Distributed Objects to Hierarchical Grid
Components. In: CoopIS/DOA/ODBASE. (2003) 1226–1242

18. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press (1989)

19. Mattson, T.G., Sanders, B.A., Massingill, B.L.: A Pattern Language for Parallel
Programming. Addison Wesley (2004)

20. Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M., Zoccolo, C.: ASSIST
as a research framework for high-performance Grid programming environments. In
Cunha, J.C., Rana, O.F., eds.: Grid Computing: Software environments and Tools.
Springer (January 2006)

21. Serot, J., Ginhac, D.: Skeletons for parallel image processing: an overview of the
skipper project. Parallel Computing 28(12) (December 2002) 1685–1708

22. William Thies and Michal Karczmarek and Saman P. Amarasinghe: StreamIt:
A Language for Streaming Applications. In: CC ’02: Proceedings of the 11th
International Conference on Compiler Construction, London, UK, Springer-Verlag
(2002) 179–196

168

23. Ian Buck and Tim Foley and Daniel Horn and Jeremy Sugerman and Kayvon Fata-
halian and Mike Houston and Pat Hanrahan: Brook for GPUs: Stream Computing
on Graphics Hardware. ACM Transaction on Graphics 23(3) (2004) 777–786

24. William R. Mark and R. Steven Glanville and Kurt Akeley and Mark J. Kilgard:
Cg: a System for Programming Graphics Hardware in a C-like Language. In:
Proceedings of ACM SIGGRAPH 03, New York, NY, USA, ACM Press (2003)
896–907

25. Arcila, T., Allard, J., Ménier, C., Boyer, E., Raffin, B.: Flowvr: A framework for
distributed virtual reality applications. In: 1ière journées de l’Association Française
de Réalité Virtuelle, Augmentée, Mixte et d’Interaction 3D, Rocquencourt, France
(November 2006)

26. Allard, J., Raffin, B.: Distributed Physical Based Simulations for Large VR Ap-
plications. In: IEEE Virtual Reality Conference, Alexandria, USA (March 2006)

27. Allard, J., Raffin, B.: A Shader-Based Parallel Rendering Framework. In: IEEE
Visualization Conference, Minneapolis, USA (October 2005)

28. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

29. Molmar, S., Cox, M., Ellsworth, D., Fuchs, H.: A Sorting Classification of Parallel
Rendering. IEEE Computer Graphics and Applications 14(4) (1994) 23–32

30. Jos Stam: Stable fluids. In: Proceedings of ACM SIGGRAPH 99, New York, NY,
USA, ACM Press (1999) 121–128

31. Franco, J., Boyer, E.: Exact Polyhedral Visual Hulls. In: Proceedings of
BMVC2003. (2003)

32. Allard, J., Boyer, E., Franco, J.S., Ménier, C., Raffin, B.: Marker-less Real Time
3D Modeling for Virtual Reality. In: Proceedings of the Immersive Projection
Technology Workshop, Ames, Iowa (May 2004)

33. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette,
H., Grisoni, L.: SOFA: an Open Source Framework for Medical Simulation. In:
Medicine Meets Virtual Reality (MMVR). (2007)

169

A.6 Parallel EPVH ICVS 2006 Article

170

The GrImage Platform: A Mixed Reality Environment for Interactions

Jérémie Allard Jean-Sébastien Franco Clément Ménier Edmond Boyer
Bruno Raffin

Laboratoire Gravir, Laboratoire ID
CNRS/INPG/INRIA/UJF

INRIA Rhône-Alpes
655 avenue de l’Europe, 38334 Saint Ismier, France

E-mail: firstname.lastname@inrialpes.fr

Abstract

In this paper, we present a scalable architecture to com-

pute, visualize and interact with 3D dynamic models of real

scenes. This architecture is designed for mixed reality ap-

plications requiring such dynamic models, tele-immersion

for instance. Our system consists in 3 main parts: the ac-

quisition, based on standard firewire cameras; the compu-

tation, based on a distribution scheme over a cluster of PC

and using a recent shape-from-silhouette algorithm which

leads to optimally precise 3D models; the visualization,

which is achieved on a multiple display wall. The pro-

posed distribution scheme ensures scalability of the system

and hereby allows control over the number of cameras used

for acquisition, the frame-rate, or the number of projectors

used for high resolution visualization. To our knowledge

this is the first completely scalable vision architecture for

real time 3D modeling, from acquisition to visualization

through computation. Experimental results show that this

framework is very promising for real time 3D interactions.

1 Introduction

Interactive and mixed reality environments generally
rely on the ability to retrieve 3D information about users,
in real time, in an interaction space. Such information is
used to make real and virtual worlds consistent with one an-
other. Traditional solutions to this problem usually consist
in tracking positions of sensors by means of various tech-
nologies including electromagnetic waves, infrared sensors
or accelerometers. However, this requires users to wear in-
vasive equipment and usually specific body suits. Further-

more it does not lead to a shape description, as required
for many applications such as tele-immersion for example.
In this paper, we consider a more flexible class of methods
based on digital cameras. These methods can compute 3D
shape models in real-time, and without any markers or any
specific equipment. We propose a framework in this con-
text, from acquisition to visualization and interactions. Our
objective is to provide a flexible solution which especially
focuses on issues that are critical in such systems: precision
of the 3D model, precision of the visualization and process
speed.

Several multi-camera systems for dynamic modeling
have been proposed. Stereo based systems were first pro-
posed [16] for virtualization, but most recent systems use
image silhouettes as input data to compute 3D shapes. They
can be classified according to the fact that they work offline
or in real-time, and also by the type of 3D models which
they build. Offline systems allow complex and precise mod-
els to be built [6, 5], in particular articulated models, how-
ever they do not allow real-time interaction as intended in
this work. Most real-time systems, such as [7, 10], that have
been proposed in the past, compute voxel models, i.e. dis-
crete 3D models made of elementary parallelepipedic cells.
Interestingly, several systems in this category [4, 12, 3, 18]
use a distribution scheme over a PC cluster to speed up
computations and hence, provide some kind of control over
the model precision and the process speed. However, voxel
based methods are still imprecise unless a huge number of
voxels is used. Furthermore they require post-processing,
typically a marching cubes approach, to produce surface
shapes. This is computationally expensive, and generates
very small-scale geometry whenever precision is required.

Another class of real time, but non-parallel, approaches
directly render new viewpoint images [17] using possibly

171

graphic cards for computations[14]. Based on the Image

Based Visual Hull method [15], these approaches efficiently
focus on the desired 2D image, but they still rely on a sin-
gle PC for computations, limiting the number of video-
streams or the frame-rate, and they do not provide explicit
3D shapes as required by many applications.

In contrast to the aforementioned systems, ours directly
computes watertight and manifold surface models. These
surface models are exact with respect to the input silhouette
information available and, as such, are optimal and equiv-
alent to voxel grids with infinite resolutions. A particular
emphasis has been put on the system scalability to ensure
flexibility and to address performance and hardware cost ef-
ficiency issues. To this aim, the system is composed of mul-
tiple commodity components: FireWire cameras distributed
on multiple PCs interconnected through a standard Ethernet
network, as well as multiple projectors for a wall display.
To reach real time performance, a careful distribution of the
work load on the different resources is achieved. For that
purpose we rely on a middleware library [1], dedicated to
the distribution of interactive applications.

Section 2 outlines the global approach. Section 3 dis-
cusses issues related to image acquisition. The 3D modeling
algorithm and its parallel implementation is then explained
in section 4. In section 5, interactions and visualization are
described. Section 6 details the distributed framework for
our system. Section 7 presents some experimental results
before concluding in section 8.

2 Outline

Our goal is to compute 3D shapes of users in an
acquisition space surrounded by several cameras in real
time (see figure 1). Such models are subsequently used for
interaction purposes, including display. In order to achieve
this, several processes must be coupled.

Acquisition Fixed cameras are set to surround the scene.
Their calibration is obtained offline through off-the-shelf li-
braries such as OpenCV. Each camera is handled by a dedi-
cated PC. Each acquired image is locally analyzed to extract
regions of interest (the foreground) which are then vector-
ized, i.e. their delimiting polygonal contours are computed.

3D modeling A geometric model is then computed from
the silhouettes using an efficient method to compute the vi-

sual hull [13]. Obtained visual hull polyhedrons are suf-
ficient for numerous VR applications including collision
detection or virtual shadow computation for instance. To
reach a real time execution, their computation is distributed
among different processors.

Interactions and Visualization The 3D mesh is asyn-
chronously sent to the interaction engines and to the visu-
alization PCs. Multi-projector rendering is handled by a

Figure 1. From multi-camera videos to dy-
namic textured 3D models

mixed replicated/sort-first approach.

3 Acquisition

Acquisition takes place on a dedicated set of PCs, each
connected to a single camera. These PCs perform all nec-
essary preliminary image processing steps: color image ac-
quisition, background subtraction and silhouette polygonal-
ization (see figure 2). All cameras are standard firewire
cameras, capturing images at 30 fps with a resolution of
780x580 in YUV color space.

172

Figure 2. The different steps in the acquisi-
tion process: (a) the original image; (b) the

binary image of the silhouette; (c) the exact
silhouette polygon (250 vertices); (d) a sim-
plified silhouette polygon (55 vertices).

3.1 Synchronization

Dealing with multiple input devices raises the problem of
data synchronization. Indeed, our applications rely on the
assumption that the input data chunks received from differ-
ent sources are coherent, i.e. that they relate to the same
scene event. We use an hardware synchronization where
image acquisition is triggered by externally gen-locking the
cameras, ensuring a delay between images below 100µs.

3.2 Background Subtraction

Regions of interest in the images, i.e. the foreground
or silhouette, are extracted using a background subtraction
process. As most of the existing techniques [11, 7], we rely
on a per pixel color model of the background. For our pur-
pose, we use a combination of a Gaussian model for the
chromatic information (UV) and an interval model for the
intensity information (Y) with a variant of the method by
Horprasert et al. [11] for shadow detection. A crucial re-
mark here is that the quality of the produced 3D model
highly depends on this process since the modeling approach
is exact with respect to the silhouettes. Notice that a high
quality background subtraction can easily be achieved by
using a dedicated environment (blue screen). However, for
prospective purposes, we do not limit ourself to such spe-
cific environments in our setup.

3.3 Silhouette Polygonalization

Since our modeling algorithm computes a surface and
not a volume, it does not use image regions as defined by
silhouettes, but their delimiting polygonal contours. We ex-
tract such silhouette contours and vectorize them using the
method of Debled et al. [8]. Each contour is decomposed
into an oriented polygon, which approximates the contour

to a given approximation bound. With a single-pixel bound,
obtained polygons are strictly equivalent to the silhouettes
in the discrete sense (see figure 2-c). However in case of
noisy silhouettes this leads to numerous small segments. A
higher approximation bound results in significantly fewer
segments (see figure 2-d). This enables to control the model
complexity, and therefore the computation time, in an effi-
cient way.

4 3D Modeling

The visual hull is a well studied geometric shape [13]
which is obtained from a scene object’s silhouettes observed
in n views. It is the maximum shape consistent with all
silhouettes. As such, it can be seen as the intersection of the
images’ viewing cones, the volumes that backproject from
each view’s silhouette (see figure 3).

Viewing Cone

Viewing edge

Viewing line

Polyhedral Visual Hull

Figure 3. Visual hull of a sphere with 3 views.

We use a distributed surface-based method we have de-
veloped [9]. It recovers the exact polyhedral visual hull
from the input silhouette polygons in three steps. First, a
subset of the polyhedron edges – the viewing edges – is
computed. Second, starting from this partial description
of the polyhedron’s mesh, all other edges and vertices are
recovered by a recursive series of geometric deductions.
Third, the shape’s faces are recovered by traversing the ob-
tained mesh. The following paragraphs briefly detail these
steps, and their distribution over p CPUs.

4.1 Computing the Viewing Edges

Viewing edges are intervals along viewing lines associ-
ated from silhouette contours’ vertices. They are obtained
by computing the set of intervals along such a viewing line
that project inside all silhouettes. The distribution of this
computation uses the fact that each viewing line’s contri-
butions can be computed independently. Viewing lines are
partitioned into p identical cardinality sets and each batch is

173

distributed to a different CPU. The final set is obtained by
gathering partial results.

4.2 Computing the Visual Hull Mesh

The viewing edges give us an initial subset of the visual
hull geometry. The missing chains of edges, are then recov-
ered recursively starting from the viewing edges set. To al-
low concurrent task execution, the 3D space is partitionned
into p slices. Slice width is adjusted by attributing a con-
stant number of viewing edge vertices per slice for workload
balancing. Each CPU computes the missing edges in its as-
signed slice. Partial meshes are then gathered and carefully
merged across slice borders.

4.3 Computing the Faces

Faces of the polyhedron surface are extracted by walk-
ing through the complete oriented mesh while always tak-
ing left turns at each vertex, so as to identify each face’s
contours. Each CPU independently computes a subset of
the face information, the complete mesh being previously
broadcasted to each CPU.

5 Interactions and Visualization

5.1 Real-Time interactions

We experimented two different interactions. The first
one consists in a simple object carving (see figure 4(a)). The
user can sculpt an object using any part of his body. This
is done with octree-based boolean operations to update the
object where it intersects with the user’s model. Update op-
erations include removal, addition of matter and change in
sculpture color. The object can be rotated to simulate a pot-
ter’s wheel.

The second interaction results from the integration of the
user’s model inside a rigid body simulation (see figure 4(b)).
Several dynamic objects where added in the scene, and the
system handles collisions with the user’s body. This inter-
action requires all available information about the user’s
3D surface, which is not available using classical track-
ing methods. Using our surface modeling approach, such
fine level collision detection is something our system can
achieve.

5.2 Multi-projector Visualization

To provide the user with a wide field of view while pre-
serving image details, as necessary in semi-immersive and
immersive applications, we have chosen to use a multi-
projector display. The most scalable approach to implement

(a) Carving

(b) Collision

Figure 4. Interaction experiments.

this setup is to use one PC to drive each projector. To ob-
tain a coherent image, each PC will have to synchronously
render the same scene with a different view point, corre-
sponding to the position of the related projector.

Several methods are available to implement parallel vi-
sualization, depending on the level of the primitives ex-
changed. We use a new framework [2], allowing to use a
different scheme for each part of the scene. Large static ob-
jects, such as the landscape, use a replicated scheme so that
they are sent locally on each PC. Other objects, such as the
reconstructed mesh, are created on specific PCs and then
sent to all visualization PCs, possibly culling invisible data
(sort-first scheme).

The rendering of the 3D mesh itself is quite simple as
it is already a polygonal surface. We can optionally com-
pute averaged normal vectors at each vertex to produce a
smoothly shaded rendering. It is relatively small (approxi-
mately 10000 triangles) so it can be broadcasted to all visu-
alization PCs.

6 Implementation

6.1 The middleware library

To provide the I/O and computing power necessary to
run our applications in real time, we use a PC cluster. How-
ever, coupling all pieces of code involved, distributing them

174

on the PCs and insuring data transfers can be cumbersome.
To get a high performance and modular application, we use
a tool we developed [1] to manage distributed interactive
applications. It relies on an data-flow model. Computation
and I/O tasks are encapsulated into modules. Each module
endlessly iterates, consuming and producing data. Modules
are not aware of the existence of other modules. A mod-
ule only exchanges data with the middleware daemon that
runs on the same host. The set of daemons running on a
PC cluster are in charge of implementing the data exchange
network that connects modules. Daemons use TCP connec-
tions for network communications or shared-memory for
local communications. The middleware network defined
between modules can implement simple module-to-module
connections as well as complex message handling opera-
tions like synchronizations, data filtering operations, data
sampling, broadcasts, etc. This fine control over data han-
dling enables to take advantage of both the specificity of the
application and the underlying cluster architecture to opti-
mize the latency and refresh rates.

6.2 Data-flow Graph

We propose for our application the following distributed
data-flow graph from acquisition to rendering (see fig-
ure 5).

Interaction

Visu/0 Visu/1 Visu/2 Visu/3

Acq/0

BGSub/0

ModelStep1/0 ModelStep1/1

Acq/1

BGSub/1

Acq/2

BGSub/2

Acq/3

BGSub/3

ModelStep2/0 ModelStep2/1

ModelStep3/0 ModelStep3/1

Figure 5. Data-flow graph from 4 cameras ac-

quisitions to 4 video projectors rendering.

Each dedicated acquisition PC locally performs the data
acquisition to obtain the silhouettes which are then broad-
casted to the PCs in charge of the first modeling step, the

viewing edge computation step. Follows the two other mod-
eling steps, the global mesh recovery and the surface ex-
traction. The resulting reconstructed surface is broadcasted
to the PCs in charge of interaction computation and to the
visualization hosts. These PCs also receive data from the
interaction modules of the VR environment.

To obtain good performance and scalability it is nec-
essary to setup specific coupling policies between the dif-
ferent parts of the application so they can run at different
frequencies. The acquisition part typically runs at the fre-
quency of the cameras while interactions run at more than
100Hz. The visualization stage runs independently, allow-
ing to change the viewpoint without waiting for the compu-
tation of the next 3D model. To implement these coupling
policies we use two dataflow control policies: FIFO con-
nections between modules running at the same frequency
and greedy sampling connections (receivers always use last
available data) between modules running asynchronously.

7 Results

We present the results obtained with our platform. It
gathers 11 dual-Xeon 2.6 GHz PCs and 16 dual-Opteron
PCs connected together by a gigabit Ethernet network. 6
FireWire Cameras are connected to the dual-Xeon ma-
chines. 16 projectors are connected to the dual-Opteron
machines through NVIDIA 6800 Ultra graphics cards. The
projectors display images on a flat screen of 2.7 × 2 me-
ters. The acquisition space where the cameras are focused
is located 1 meter away from the screen.

To evaluate the potential of 3D modeling for interaction
purposes, we identified the following classical criteria as
being relevant:

• Latency: it is the delay between a user’s action and the
perception of this action on the displayed 3D model. It
is the most important criterion. A large latency can sig-
nificantly impair the interaction experience. For most
experiments on our system the overall latency, includ-
ing all stages from video acquisition to visualization,
was around 100ms. This can be noticed by the user
but is small enough to maintain a high level of interac-
tivity. The quality of the background subtraction step
as well as the simplification threshold applied to the
resulting contours have a high impact on the latency as
they determine the computational cost of the 3D mod-
eling.

• Update frequency (modeling framerate): in our experi-
ments, using 4 CPUs was enough to provide an update
frequency of 30 Hz with 6 cameras when one user was
in the interaction space.

175

• Quality (model’s level of detail): in our experiments,
the user was able to use its hands to carve virtual ob-
jects, and, depending on the angle relative to the cam-
eras, it was possible to distinguish his fingers.

• Robustness to acquisition noise: our modeling algo-
rithm is exact with respect to provided input silhou-
ettes however noisy. The resulting 3D model is always
watertight (no holes) and manifold (no self intersec-
tions). These properties are very important as many
interaction applications or visualization (shadows, ...)
rely on them. Moreover the approximation of silhou-
ette contours removes most of the background subtrac-
tion noise.

• Model Content (the type of information available, sur-
faces, and textures in our case). When texturing the
3D models with the images obtained from the cameras,
this property enables to avoid artefacs (see figure 6).
Notice that in the applications presented the model is
not textured. Real-time texturing is a challenging issue
as the amount of data to handle in a distributed con-
text is important. This is an ongoing work with very
promising preliminary results.

Figure 6. Details of a 3D model and its tex-
tured version (off-line).

8 Conclusion

We presented a marker-less 3D shape modeling approach
which optimally exploits all the information provided by
standard background subtraction techniques and produces
watertight 3D models. The shape can easily be used for vi-
sual interactions, like rendering, shading, object occlusion,
as well as mechanical interactions, like collision detection
with other virtual objects. I/O devices and computing units
are commodity components (FireWire cameras, PCs, giga-
bit Ethernet network, classroom projectors). They provide a

scalable and efficient environment. The aggregation of mul-
tiple units and an adequate work-load distribution enable us
to achieve real time performance.

Future works investigate two directions. One is to focus
on data quality, in particular background subtraction and
temporal consistency. The other is to focus on recovering
semantic information about scene objects. The goal is to
identify parts of the user’s body for motion tracking, ges-
ture recognition and more advanced interactions with the
virtual world.

References

[1] FlowVR. http://flowvr.sf.net.

[2] J. Allard and B. Raffin. A shader-based parallel ren-
dering framework. In IEEE Visualization Conference,
Minneapolis, USA, October 2005.

[3] D. Arita and R.-I. Taniguchi. Rpv-ii: A stream-based
real-time parallel vision system and its application to
real-time volume reconstruction. In Proceedings of

ICVS, Vancouver (Canada), 2001.

[4] Eugene Borovikov and Larry Davis. A Distributed
System for Real-time Volume Reconstruction. In pro-

ceedings of CAMP-2000, IEEE, 2000.

[5] J. Carranza, C. Theobalt, M. Magnor, and H.P. Sei-
del. Free-viewpoint video of human actors. In Proc. of

ACM SIGGRAPH, San Diego, pages 569–577, 2003.

[6] G. Cheung, S. Baker, and T. Kanade. Visual Hull
Alignment and Refinement Across Time: A 3D
Reconstruction Algorithm Combining Shape-From-
Silhouette with Stereo. In Proceedings of CVPR,

Madison, 2003.

[7] G. Cheung, T. Kanade, J.Y. Bouguet, and M. Holler.
A real time system for robust 3d voxel reconstruction
of human motions. In Proceedings of CVPR, Hilton

Head Island, volume 2, pages 714 – 720, June 2000.

[8] I. Debled-Rennesson, S. Tabbone, and L. Wendling.
Fast Polygonal Approximation of Digital Curves. In
Proceedings of ICPR, volume I, pages 465–468, 2004.

[9] J.S. Franco and E. Boyer. Exact Polyhedral Visual
Hulls. In Proceedings of the 14th British Machine Vi-

sion Conference, Norwich, (UK), 2003.

[10] J.-M. Hazenfratz, M. Lapierre, J.-D. Gascuel, and
E. Boyer. Real Time Capture, Reconstruction and In-
sertion into Virtual World of Human Actors. In Vision,

Video and Graphics Conference, 2003.

176

[11] T. Horprasert, D. Harwood, and L.S. Davis. A Statisti-
cal Approach for Real-time Robust Background Sub-
traction and Shadow Detection . In IEEE ICCV’99

frame-rate workshop, 1999.

[12] Y. Kameda, T. Taoda, and M. Minoh. High Speed 3D
Reconstruction by Spatio Temporal Division of Video
Image Processing. IEICE Transactions on Informa-

tions and Systems, pages 1422–1428, 2000.

[13] A. Laurentini. The Visual Hull Concept for Silhouette-
Based Image Understanding. IEEE Transactions on

PAMI, 16(2):150–162, February 1994.

[14] M. Li, M. Magnor, and H.-P. Seidel. Improved
hardware-accelerated visual hull rendering. In Vision,

Modeling and Visualization Workshop, Munich, 2003.

[15] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and
L. McMillan. Image Based Visual Hulls. In Proceed-

ings of ACM SIGGRAPH, pages 369–374, 2000.

[16] P.J. Narayanan, P.W. Rander, and T. Kanade. Con-
structing Virtual Wolrds Using Dense Stereo. In Pro-

ceedings of ICCV, Bombay, (India), pages 3–10, 1998.

[17] W. Stephan, L. Edouard, and G. Markus. 3D
Video Fragments: Dynamic Point Samples for Real-
time Free-Viewpoint Video. Computers & Graphics,
28(1):3–14, 2004.

[18] X. Wu and T. Matsuyama. Real-Time Active 3D
Shape Reconstruction for 3D Video. In Proceedings

of the 3rd International Symposium on Image and Sig-

nal Processing and Analysis, Rome (Italy), pages 186–
191, September 2003.

177

A.7 Parallel Octree Carving EGPGV 2007 Article

178

Work Stealing for Time-constrained Octree Exploration:
Application to Real-time 3D Modeling

Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis Roch.

INRIA, Laboratoire d’Informatique de Grenoble - LIG, Grenoble, France

Abstract

This paper introduces a dynamic work balancing algorithm, based on work stealing, for time-constrained parallel

octree carving. The performance of the algorithm is proved and confirmed by experimental results where the

algorithm is applied to a real-time 3D modeling from multiple video streams. Compared to classical work stealing,

the proposed algorithm enforces a relaxed width first octree carving that enables to stop computations at anytime

while ensuring a balanced carving.

Categories and Subject Descriptors (according to ACM CCS): C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) I.4.5 [Image Processing and Computer Vision]: Reconstruction

1. Introduction

Mastering parallelism is a major challenge when developing
computationally intensive interactive applications, but it can
enable to reach the targeted low latencies and high refresh
rates.

This article presents a dynamic load balancing algorithm,
based on work stealing, that enables to stop computations
at any time. This algorithm is applied to 3D modeling. 3D
Modeling consists in building a 3D model of people or ob-
jects being filmed by a set of calibrated cameras. This 3D
model must be computed in real time from the different
video streams before it is injected into the virtual world to
enable interactions [MP04, GWN∗03]. Many different al-
gorithms exist for 3D modeling. A classical approach, the
one our experimental results rely on, is to "carve" an oc-
tree [Sze93]. 3D modeling has been selected as it is an in-
teresting case study where interactivity is critical and the
amount of computations to perform can be significant.

Parallelizing such octree carving algorithm raises two
main isssues:

• load-balancing: the shape of the octree is irregular and
depends on the input data. Thus a static load balancing
scheme fails to guarantee an efficient use of the available
computing resources. An efficient dynamic load balanc-
ing is required.

• time-constraint: when the timeout occurs we expect the
octree to be balanced, i.e. that computing resources co-
ordinate their efforts to avoid having a branch deeply ex-
plored while an other is seldom tested. It requires extra
synchronizations between processors to enforce a relaxed
width first octree carving.

To achieve this goal we propose a modified work-stealing
technique. The efficiency of this approach is validated for-
mally and experimentally.

Our parallel algorithm dynamically balances the proces-
sor work load and ensures it can be stopped at anytime while
guaranteeing a balanced space carving. The implementation
on a 16 cores architecture (8 dual-core processors) speeds
up the computations up to 14.4 times in comparison to the
sequential execution. We also present early experiences us-
ing one GPU as a co-processor. The performance increases
by 30% compared to using only one CPU, and fades as the
number CPUs involved increases.

The paper is organized as follow. Section 2 presents the
octree based algorithm for 3D Modeling. Work stealing and
the associated theoretical results are detailed in Section 3.
The parallel octree algorithm is presented in Section 4, its
proof in Section 5, its implementation in Section 6 and the
experimental results in Section 7. Section 8 discusses the
GPU based tests before conclusions are draw in Section 9.

179

2. Octree Based Voxel Carving

We present in the following the sequential octree based
voxel carving algorithm. The algorithm takes as input data
video streams from a network of cameras (Fig. 1). To en-
sure a high quality modeling, cameras must be properly cal-
ibrated (brightness, color and position) and synchronized.
From each image a 2D silhouette is extracted by back-
ground substraction. Various methods exist [HHD99]. we
rely on [KGYS05]. Pixels outside the silhouettes are set to
white, while the others are set to black (Fig. 2). The octree
algorithm is executed on each set of silhouette images taken
at the same time. Starting from one initial voxel correspond-
ing to the acquisition space, the algorithm probes each voxel
to compute if it lies outside or inside the visual hull, i.e. if
the voxel projects at least outside one silhouette or inside all
silhouettes. Uncertain voxels (intersecting a silhouette con-
tour) are split in 8 smaller voxels. A stopping condition can
be set to bound the execution time, based on a timer or a
maximum depth level for instance.

Figure 1: 6 Cameras filming a user.

Figure 2: Silhouettes from 3 cameras.

There are several approaches to test if a voxel is full
(inside the visual hull) or not. We are using an exhaustive
method where a voxel is subdivided into a regular 3D grid.
The algorithm iterates on each grid vertex, projecting it into
the silhouette. Computations for this voxel are stopped as
soon as the voxel is known to be full, empty or uncertain.
The number of grid vertices contained in a voxel is propor-
tional to its size.

This algorithm is interesting on different aspects. First, as
all octree based approaches, it enables to reduce the amount
of computations, compared to a space partitioning with a

fixed voxel size. Second, it provides a volumetric model in
the form of a list of cubes, making it easy for computing col-
lisions with other objects. Finally, it easily enables to control
the amount of time allotted to carving by having the stop
condition waiting for a timeout or an external event. In this
case it is important to underline that the tree carving should
be performed width first rather than depth first. If performed
depth first, the octree will be very detailed in some areas,
while seldom tested in others (Fig. 3). For a sequential ex-
ecution, the only consequence of a width first carving is an
extra memory consumption.

Figure 3: A depth first(left) and width first(right) octree

carving with the same elapsed time. The former leads to an

unbalanced space carving, the latter to a balanced one.

3. Work Stealing

We recall the principle of work stealing, the main associated
results and analyze why work stealing is well adapted for
octree carving.

Work stealing is a classical approach for dynamic load
balancing. It has been used for various computations, includ-
ing parallel graphics [HA98, CD99]. It extends the Graham
list scheduling principle [Gra66] for programs that create
tasks recursively. The principle is simple. When starting the
execution, a first processor is assigned all source tasks (the
initial ready tasks). At runtime, each processor maintains a
local list where it stores the ready tasks it has locally created.
A task becomes ready when all its predecessor tasks, i.e. the
tasks it depends on, have been executed. The tasks are or-
ganized in the list according to a total sequential depth first
order. When a processor P completes a task, it pops the first
one t (according to depth first order) in its local ready list if
non empty. Else, P is idle and becomes a thief: it randomly
selects another processor until finding one victim processor
V that owns ready tasks. Then it picks-up the oldest ready
task t in the ready list of V . In both cases, P starts the execu-
tion of t.

Work stealing achieves a provable performance with re-
spect to the work and depth of the parallel algorithm. The
work W1 is the total number of elementary operations per-
formed during the execution of the algorithm. An instruction

180

may be a standard operation or a task creation. The depth W∞

is the critical path in number of operations for an execution
on an unbounded number of processors, i.e. the number of
instructions along the longest dependency path. Let Tp be
the execution time on p identical processors with execution
speed Π (in number of instructions per time unit). An ex-
ecution takes a time T1 = W1

pΠ
on a single processor and a

time T∞ = W∞

Π
on an unbounded number of processors. On p

processors, work stealing ensures that with a high probabil-
ity [ABP01]:

Tp ≤
W1

pΠ
+O

(

W∞

Π

)

(1)

and the number of steals is small, O(W∞) per processor.

Thus, if the depth W∞ is small compared to the total
amount of work W1 the parallel execution time is close to
the lower bound W1

pΠ
. This motivates the use of work stealing

to schedule parallel programs having a small depth W∞.

The octree shows properties making it very well adapted
to work stealing. We consider a task the computation asso-
ciated with one voxel. The dependency graph corresponds
to the octree graph, as a given voxel can be computed as
soon as its parent has been treated. In the worst case where
no pruning occurs, a tree of depth n leads to W1 = 8n+1−1

7
tasks, while the critical path is W∞ = O(n). Thus, having
W1 ≫W∞, work stealing should lead to optimal parallel exe-
cutions. Even when pruning occurs, the ratio is usually very
favorable to work stealing. For instance, our test data set,
consisting of a full human body (Fig. 4), has W1 = 162799
voxels when going up to depth level W∞ = 8. The follow-
ing properties also contribute to keep the overhead of work
stealing small:

• All tasks perform the same computation. The only dif-
ference between two tasks is the coordinates and size of
the considered voxel. Thus stealing work only consists in
stealing a list of a voxel coordinates and size. It leads to
light memory transfers.

• Task dependencies are simple: a task only depends on its
parent. When a processor splits a voxel, it can directly
add its 8 children voxels to its ready list. There is no other
dependency to be solved that could require to wait for an-
other processor.

Close to the octree root, the amount of parallelism is re-
duced (1 voxel at the root, 8 at depth 1, 64 at depth 2), and
the cost of projecting a voxel into the silhouettes is higher
(proportional to the voxel size). This can impair the perfor-
mance of work stealing. To soften this effect, usually octree
carving starts at a higher depth level (level 2 for our tests).

4. Adaptive Octree Algorithm

The goal of this work stealing algorithm is to dynamically

schedule the work load to better use the processors available.
We assume the target parallel machine supports a global ad-
dress space with a shared (or virtually shared) memory ac-
cess and manages data locality.

Each voxel is represented as a quadruple of its coordinates
and level (i, j,k,d). To manage the workload the voxels are
organized in ready lists. Each ready list consists of a vector
of voxels and pointers to the first, last and current voxel. We
call a task, the computations required to test a voxel status.

4.1. Initialization

The algorithm starts at depth level n with 8n initial voxels.
The number n is usually the smallest number to have more
initial voxels than processors. These voxels are split into p

ready lists, where p is the number of processors. The goal is
to avoid the performance bottleneck of the first depth levels
that do not provide enough parallelism.

The ready lists are organized in a singly-circularly-linked
list. There is one list of ready lists per depth level, called a
level list. All level lists, except the ones from the starting
depth level, are initially empty. Each processor is assigned a
first ready list from the starting level.

One processor has a manager role. It takes care of ini-
tializing the first ready lists and signal all other processors
when computations must be stopped (because the timeout
occurred).

4.2. Octree Level Computation Based on Work Stealing

Each processor tests the voxels of its ready list. If a voxel
needs to be split, its 8 child are inserted into the ready list of
the next level.

Each processor cycles twice through the level list. A pro-
cessor scans the level list from a randomly chosen position,
looking for a free ready list in the level list until it completes
one cycle. If it finds one, it takes it. Else, since there is no
more ready list to grab, it performs a second loop, but this
time the processor becomes a thief. It traverses the ready lists
trying to get part of the remaining voxels. For a target ready
list, the thief processor locks the current working pointer of
the victim processor (the owner of the list). It grabs half of
the remaining voxels, leaving a minimum number of vox-
els (fixed by a threshold) to avoid voxels to be stolen back
and forth. The thief creates a new ready list containing these
voxels. This operation just involves pointer settings and does
not lead to voxel copies. The working pointer of the victim is
unlocked as soon as it can safely restart processing its ready
list.

Finally, when a processor ends its second cycle through
the current level list, it starts working on the next level, pro-
cessing the voxels of its ready list if not empty.

181

4.3. Overlapping Level Synchronization

Let Li(t) be the level of the voxel being computed by pro-
cessor i at time t, and σ = maxt maxi6= j |Li(t)− L j(t)| be
the maximal level synchronization, i.e. the largest distance
in term of levels between two processors. To enforce a (re-
laxed) width first like octree carving it is required that σ is
always kept small. This is achieved by introducing extra syn-
chronizations. Setting a global barrier after each level guar-
antees a synchronization σ = 0 at any time, but it prevents
level overlapping and then restricts parallelism. A synchro-
nization σ ≤ 1 enables to overlap synchronization overhead
while limiting the octree unbalance. To ensure σ ≤ 1, we
implemented it as follows. To each level d corresponds a
shared counter C[d] initialized to the number of processors
p. When a processor completes all its ready tasks at level d

and if C[d−1] = 0, it starts stealing. If it does not succeed to
get voxels from other processors, then it decreases C[d] by 1
and starts the computation of its local voxels at level d + 1.
Once completed, it waits until C[d − 1] = 0 before starting
new steal requests.

4.4. Time Control

A time control routine was integrated in the algorithm to
bound the time spent to carve the octree. The main objective
is to enforce a real-time behaviour for the final application,
i.e. a minimum latency and maximum refresh rate.

The manager processor is in charge of checking the time
elapsed and signal other processors that the time is over.

One difficulty is to define the time check frequency, to
limit the overhead while being frequent enough to enable a
good time control. A good choice is to have the manager
control the time elapsed each time it completes a ready list.
Because synchronizations are present into the code to en-
force a width first tree traversal, it enables to stop the algo-
rithm at any time keeping a well balanced space carving.

5. Provable Performance of the Adaptive Octree
Algorithm

This section deals with the proof of the performance of
the adaptive octree algorithm. It is analyzed with respect to
the reference sequential algorithm.

For the sake of simplicity, we consider that the adaptive al-
gorithm implements a maximal level synchronization σ = 0,
with a synchronization barrier after each octree level. This
prevents level overlapping: level d is computed only when
level d −1 is completed, like in the sequential computation.
Then parallelism occurs only at each level. Furthermore, we
will consider that the sequential computation starts with the
same voxels as the parallel algorithm. So if we consider p

processors, we consider the sequential computation to be ini-
tialized at depth ⌈log8 p⌉ with 8⌈log8 p⌉ voxels.

Under those assumptions, when there is no time limit, the
following theorem states that the adaptive algorithm is al-
most p times faster than the sequential one if the depth of
the octree is small w.r.t. its number of voxels.

Theorem Let Ts be the time of the reference sequential
algorithm to compute an octree with n nodes and depth d on
a processor with speed Π. The adaptive algorithm running
on p identical processors with speed Π computes the same
octree in time:

Tp =n→∞

Ts

p
+O

(

d logn

Π

)

(2)

Proof. The state of each voxel being deterministically com-
puted, both algorithms compute the same octree. Let Ts(i)
(resp. Tp(i)) be the time of the reference sequential algo-
rithm (resp. adaptive algorithm) to compute level i, 1≤ d ≤ i,
and ni be its number of nodes. At each successful steal,
a processor steals half the ready voxels of a non idle pro-
cessor. Then, on an infinite number of processors, the par-
allel algorithm has critical depth W∞ = logni. The opera-
tions performed by the parallel algorithm are either voxels
computations, i.e. Ts(i).Π unit operations, or overhead in-
structions to manage parallelism (locks, steals, list manage-
ment). Due to work stealing, the number of steal requests is
O(W∞) per processor, i.e. O(logni). Except steals, the only
other overhead operations are when a processor access its
own local ready list to extract voxels. This requires a lock
to avoid contention with possible thieves. However, if there
are v voxels in the ready list, then logv voxels are extracted
at the price of only one lock. Then, following [RTB06],

the number of lock operations is O
(

ni

logni

)

. Then, from the

work stealing fundamental theorem (Section 1), we have

Tp(i)≤
Ts(i)

p + 1
Π

O
(

ni

p. logni
+ logni

)

=ni→∞
Ts(i)

p . Summing

for all the levels concludes the proof. △

However, due to real time interactive constraints, the
depth of the octree is truncated at a given unknown time
limit. The computation time of the algorithm is fixed and the
objective is to maximize the level of details, i.e. the number
of voxels computed. Indeed, taking benefit of parallelism,
the adaptive octree algorithm not only computes faster but
also more details. The next theorem states that in a fixed time
t, the adaptive algorithm on p processors computes almost
the same precision as the reference sequential algorithm in a
time p.t.

Theorem

Let np be the number of voxels computed by the adap-
tive algorithm in a time limit t on p identical processors. Let
ns be the number of voxels computed by the sequential ref-
erence algorithm in a time limit p.t on 1 processor. Let dp

(resp. ds) be the last fully completed level of the adaptive
(resp. sequential) algorithm.

182

Then:

np = ns −O(logns) and |dp −ds| ≤ 1 (3)

Proof. The proof is also based on the work stealing the-
orem, applied to each level. Let d be the maximal level
of a voxel computed by the adaptive algorithm. Since this
algorithm performs a barrier after each level, clearly d ≤
dp + 1. From previous theorem, in a time t, the adaptive al-
gorithm performs Wp = p.t.Π operations among which at

most O
(

d lognp +
np

lognp

)

are overhead instructions with re-

spect to voxels computation. Then, if Ts(np) denotes the se-
quential time to compute the corresponding voxels, p.t.Π =

Ts(np) + O
(

d lognp +
np

lognp

)

. Then, asymptotically for np

large enough w.r.t. d, p.t.π ≃ Ts(np). Moreover, all those
np nodes are at most on two levels, dp and dp + 1. Then,
since p.t.Π = Ts(ns), np ≃ ns and, due to barrier, ds = dp or
ds = dp +1. △

Asymptotically for a large number of nodes w.r.t. the
depth of the octree, both theorems generalize to the prac-
tical case where σ = 1 (then at most two levels may differ
between the sequential and the adaptive algorithm).

6. Implementation

The algorithm was implemented in C++ using Posix
Threads. As stated earlier, we target parallel computers sup-
porting a global address space with shared (or virtually
shared) memory. In this context Posix threads provide a well
adapted programming environment.

For a better performance the use of mutex like semaphores
was eliminated. Instead assembly atomic operations like
compare_and_swap "cmpxchg" and atomic_add_return
"xadd" combined with the LOCK prefix were used. These
atomic operations are supported by most modern CPUs. We
noticed a performance increase of about 20% compared to a
mutex based implementation.

The "yield" instruction("sched_yield" systems call) was
used to better manage waiting times. It improves the perfor-
mance in the waiting loops informing the kernel to schedule
other processes.

The application is launched with one thread per proces-
sor. The first thread is the manager. We consider we are
the only users of the computer and no other application is
running. To prevent the migration of threads during exe-
cution, which would impact performance, each thread was
locked on a given processor. For that purpose, we used the
"pthread_setaffinity_np" instruction. This technique also im-
proves the frame memory control, avoiding cache misses and
sparse memory allocations.

To better balance the work load into the initial ready lists,
the voxels are distributed in a round-robin fashion. The goal

is to give each working list voxels from different space re-
gions.

To reduce contention, a thread does not wait to steal from
a locked ready list. If one thief fails to lock a working list, it
does not try a second time. It just steps to the next ready list
in the chain. It avoids waiting for a lock release.

We relied on the GCC compiler to make an efficient use
of SIMD parallel instructions available on the processor. A
careful manual code optimization could probably further im-
prove performance.

7. Results

The computer used for the tests has 8 dual Core
AMDTM2.2GHz Opteron processors, 32 GB of mem-
ory, and is running Linux kernel 2.6.17. This is a CC-
NUMA (Cache coherency Non Uniform Memory Access)
architecture with a virtually shared memory using the
HyperTransportTMinter-processors communication layer.

7.1. Off-line Cameras

Tests were first performed with two off line series of im-
ages. The first one is a sequence of a full body person
filmed with 8 cameras, called the Ben benchmark, freely
available at https://charibdis.inrialpes.fr/.
Each camera image has a resolution of 780x582 pixels.
The second benchmark, called Al Capone, is a synthetic
3D model, from which we computed 64 images (resolution
of 300x300 pixels) from different view points. This model
enables to test our algorithm with a very large number of
silhouettes. Though today marker-less motion capture envi-
ronments have usually less than 64 cameras, the trend is to
increase this number as it improves the quality of the ob-
tained 3D model. Notice that both image sets fit in the 1MB
L2 cache available per core. Ben requires 456KB and Al
Capone 713KB.

We first compared a pure sequential implementation of
the octree carving algorithm with our parallel code launched
with only one thread. The overhead due to the extra code
introduced into the algorithm for work stealing is small. It is
about 4% for the Ben model and below 1.3% for Al Capone.

We ran the algorithm for both benchmarks with varying
numbers of CPUs, without time limit but with various max
depth levels. All results are averages over 100 runs. The exe-
cution times include the time to load the images from the lo-
cal disk. We plot (Fig. 6 and Fig. 7) the execution times (log-
arithmic scale on the y-axis) and the speed up (s = T1

Tn
). The

gain of using 16 CPUs is very significant with an efficient
use of the resources (high speed-ups). For instance Ben at
max depth level 8 is computed on 1 processor in about 234.2
ms. The same model takes only 16.82 ms on 16 processors.

183

Figure 4: Ben. Max depth level set to 8.

Figure 5: Al Capone. Depth level set to 5 (left) and 7 (right).

At max depth level 7, the Al Capone goes from about 441.1
ms with 1 CPU to about 31.15 ms with 16 CPUs. Notice
that the reconstruction at level 5 does not scale well, since
at this low level the execution time is dominated by the im-
age loading – sequential – step. As the amount of parallelism
increases while going deeper in the tree, the speed-up in-
creases with the max depth level. Al Capone was also tested
with work stealing turned off (Fig. 7). The performance is
significantly affected. A static load balancing is inefficient
as the shape of the octree, and thus the work load, cannot be
predicted.

The number of steals is low in comparison to the amount
of cells as predicted by the theory. Table 1 presents the av-
erage of all voxels computed against the number of full vox-
els, and the relative number of steals. About 60% of steal
attempts are successful. A side effect from this low number
of steals is the good space locality of voxel distribution. By
associating a color per CPU, we notice that large contiguous
area are processed by the same thread (Fig. 4 and Fig. 5).

Figure 6: Execution time and speed up for Ben.

Figure 7: Execution time and speed up for Al Capone, with

work stealing enabled or disabled (NA for Non-Adaptive)

We tested the time control routine with Ben (Fig. 8) and
a 30 ms deadline. The simulation is set to go up to depth
level 8. With just one processor it is not even possible to
complete level 5, making the model unrecognizable. The ex-
ecution time is significantly larger than 30 ms, because the
processor does not check the elapsed time before it com-
pletes the first ready list. Up to 8 processors, the time con-
trol is effective: the execution stops before all voxels of level
8 are computed. Notice that the measured execution time is
usually slightly higher than 30 ms because after the time-
out occurs all processors apply a fast test algorithm to guess

184

Voxels Steals/threads
Dataset Level Computed Full Tries Success

Ben 8 162799 67398 42.59 25.26
Al Capone 7 44840 34601 26.21 16.18

Table 1: For each data set computed up to a given max level,

the number of voxels computed is given with the number of

voxels identified as full, the number of steal attempts and

successful steals per thread.

if each pending voxel is full or empty. With 8 processors,
the 30 ms limit enables to reach the max depth level. Next,
as the number of processors further increase, the extra com-
puting resources available enable to decrease the execution
time, ending below 20 ms (the number of voxels computed
at level 8 stops to increase).

Figure 8: Ben modeling with a 30 ms time limit. The graph

plots the total execution time, the middle graph plots the

amount of voxels produced per level, and the lower graph

the percentage of voxels types.

7.2. On-line Cameras

We tested the algorithm in a live environment with 5
FireWire cameras (image resolution 780x580) filming a per-
son in real time. Cameras are genlocked through a specific
network. Each one is connected to one computer (dual xeon),
processing the incoming video stream to remove the back-
ground and compute the silhouette images. Then, the silhou-
ettes are forwarded to the 16 cores computer. It computes
the octree and sends the list of full voxels to 16 dual Opteron
computers powering a 16 projectors high resolution display
wall. These computers render the voxels. All computers are
connected through a gigabit Ethernet network.

This application was developed on top of FlowVR [AR06]

Figure 9: Live tests with 5 on-line cameras with max depth

level 6 (top) and 8 (bottom).

for coupling and distributing the different software compo-
nents. FlowVR Render [AR05] was used for the distributed
rendering on the display wall.

Refer to the video associated with the article for the re-
sults. Notice the resolution of the video is lower than the
display wall resolution, making it difficult to distinguish the
smaller voxels while they are clearly visible on the display
wall. When rendering, the voxels are colored according to
their depth level. Tests were performed with and without
time control, with various numbers of processors and differ-
ent levels of max depths. The quality significantly increases
with the max depth (Fig. 9). Fingers become visible at level
8. Some artifacts (ghost leg) are visible in some situations.
This is due to the accumulation of small errors from cam-
era calibration, background subtraction and voxel projec-
tion tests. The time control enables to keep the latency low
and the frame rate stable. Some momentaneous performance
drops are visible in the video. Though the cause of these
drops are not yet clearly identified, it is probably related to
network issues (we suspect the linux network driver).

8. Involving the GPU

The implementation was modified to use a GPU as a co-
processor for one thread. The work stealing algorithm is not
modified. The only difference comes from the way a GPU

185

processes a voxel. As stated earlier, to test a voxel, differ-
ent points contained in the voxel are projected back onto the
silhouettes. On a CPU, the result of each point projection is
probed to detect if the status of the voxel can be defined. If so
the CPU skips to the next voxel. Due to the SIMD nature of
a GPU, making so many probing tests is highly inefficient.
To bypass this limitation, the CPU provides to the GPU a
list of points to project back onto the silhouettes. The GPU
performs all these projections and the CPU gets back the re-
sults to define the status of the voxels. The GPU becomes
faster than the CPU (compared to the case where the CPU
performs all the projections) only if the number of points to
test is large enough to hide the overhead of transferring the
data back and forth between the CPU and the GPU. So the
use of the GPU is triggered only if the number of tests to
perform reaches a certain threshold. To reach that threshold
several voxels can be tested at once if available in the ready
list.

Figure 10: GPGPU x Pure CPU.

Experiments were performed on the 16 core machine
equipped with one Nvidia Geforce 7900 graphics card
(Fig. 10). Involving the GPU instead of relying only on the
CPU increases the performance by 30% from 234.20ms to
180.17ms. Using these numbers as the reference sequential
execution times (T GPU

1 = 180.17ms and TCPU
1 = 234.20ms),

we can compute a lower bound for the execution time when
p− 1 CPUs and one CPU/GPU couple are involved in the
computation:

Tideal(p) =
1

(p−1)
TCPU

1
+ 1

T GPU
1

(4)

Experimental results shows that our implementation usually
fails to stick to this ideal case, often a pure CPU based execu-
tion being more efficient. The CPU is in fact often faster than
the GPU because it can bypass many projection tests while
the GPU will always perform all tests even if the voxel status
can be defined after just a few tests. The main interest of this
early experiment is to show that a GPU can be involved in the
computation without having to deeply revisit the work steal-
ing algorithm. Future experiments will focus on involving

more GPUs and improving the GPU implementation, target-
ing a Nvidia G80 GPU programmed with the CUDA library.

Notice that the theoretical results (Section 5) does not ap-
ply to computing units running at different speeds. How-
ever we should be able to extend our result to this case by
relying on Bender and Rabint’s proof of work-stealing for
heterogeneous processors of different and possibly changing
speeds [BR02].

9. Conclusion

This paper introduced a work stealing algorithm for a
time-constrained octree carving. The algorithm enables to
dynamically balance the work load while ensuring a relaxed
width first octree carving, required to get a balanced octree
carving when the timeout occurs.

The algorithm was validated theoretically as well as ex-
perimentally by applying it to 3D modeling. The algorithm
is general enough to be applied to other problems, for in-
stance from computer graphics where octrees are common.
It can also be applied to different tree structures. Just notice
that the smaller the tree arity, the smaller the ratio W1

W∞
.

Future work will focus on improving the GPU implemen-
tation to efficiently involve multiple CPUs as well as multi-
ple GPUs into the computation.

10. Acknowledgements

The authors wish to thank Thomas Arcila, Everton Hermann
and Florian Geffray for their help with the experiments.

This work is partly funded by ANR grant
BGPR/SafeScale.

References

[ABP01] ARORA N. S., BLUMOFE R. D., PLAXTON

C. G.: Thread scheduling for multiprogrammed multi-
processors. Theory Comput. Syst. 34, 2 (2001), 115–144.

[AR05] ALLARD J., RAFFIN B.: A shader-based parallel
rendering framework. In IEEE Visualization Conference

(Minneapolis, USA, October 2005).

[AR06] ALLARD J., RAFFIN B.: Distributed Physical
Based Simulations for Large VR Applications. In IEEE

Virtual Reality Conference (Alexandria, USA, March
2006).

[BR02] BENDER M. A., RABIN M. O.: Online schedul-
ing of parallel programs on heterogeneous systems with
applications to cilk. Theory of Computing Systems Spe-

cial Issue on SPAA ’00 35, 3 (2002), 289–304.

[CD99] CLYNE J., DENNIS J.: Interactive direct volume
rendering of time-varying data. In Eurographics Data Vi-

sualization ’99 Conference (1999), pp. 109–120.

186

[Gra66] GRAHAM R. L.: Bound for certain multiprocess-
ing anomalies. Bell System Tech. J. (1966), 1563–1581.

[GWN∗03] GROSS M., WUERMLIN S., NAEF M.,
LAMBORAY E., SPAGNO C., KUNZ A., KOLLER-
MEIER E., SVOBODA T., GOOL L. V., S. LANG K. S.,
MOERE A. V., STAADT O.: Blue-C: A Spatially Immer-
sive Display and 3D Video Portal for Telepresence. In
Proceedings of ACM SIGGRAPH 03 (San Diego, 2003).

[HA98] HEIRICH A., ARVO J.: A competitive analysis
of load balancing strategies for parallel ray tracing. The

Journal of Supercomputing 12, 1–2 (1998), 57–68.

[HHD99] HORPRASERT T., HARWOOD D., DAVIS L. S.:
A Statistical Approach for Real-time Robust Background
Subtraction and Shadow Detection . In IEEE ICCV’99

frame-rate workshop (1999).

[KGYS05] KARAMAN M., GOLDMANN L., YU D.,
SIKORA T.: Comparison of static background segmenta-
tion methods. In Visual Communications and Image Pro-

cessing (VCIP ’05) (Beijing, China, July 2005).

[MP04] MATUSIK W., PFISTER H.: 3D TV: A Scal-
able System for Real-Time Acquisition, Transmission,
and Autostereoscopic Display of Dynamic Scenes. In
Proceedings of ACM SIGGRAPH 04 (2004).

[RTB06] ROCH J.-L., TRAORE D., BERNARD J.: On-line
adaptive parallel prefix computation. In EUROPAR’2006

(Dresden, Germany, August 2006), Springer-Verlag L. .,
(Ed.), pp. 843–850.

[Sze93] SZELISKI R.: Rapid Octree Construction from
Image Sequences. Computer Vision, Graphics and Image

Processing 58, 1 (1993), 23–32.

187

	Introduction
	Synthèse de l'activité de Recherche
	Curriculum Vitae
	Fonctions
	Cursus universitaire
	Enseignement
	Encadrement d'activités de recherche
	Thèses
	Postdoc
	Ingénieurs
	Stages

	Responsabilités administratives
	Contrats
	Transfert technologique
	Logiciels et plate-formes
	Participation à la communauté académique
	Cours, tutoriaux and présentations invitées
	Publications
	Calcul interactif haute performance
	Mesure de performance
	Programmation parallèle
	Réseaux de neurones

	Curriculum Vitae (English version)
	Employment History
	Education
	Teaching
	Research Advising
	Ph.D. Students
	Postdoc
	Engineers
	Internships

	Administrative Responsibilities
	Grants
	Technology Transfer
	Software and Platforms
	Participation to the Academic Community
	Courses, Tutorials and Invited Talks
	Publications
	High Performance Interactive Computing
	Performance Measure
	Parallel Programming
	Neural Networks

	Distributed Rendering
	PC Clusters for Multi-projector Rendering
	Context and Motivation
	Net Juggler Overview
	Net Juggler Article
	SoftGenLock Overview
	SoftGenLock Article
	Discussion

	FlowVR Render
	Motivation
	Overview
	FlowVR Render Article
	Discussion

	A Middleware for HPIC
	Motivation
	The FlowVR Model
	Messages and Stamps
	Module
	Connection
	Routing Node
	Filter
	Synchronizer

	Simple Examples
	Run-time Environment
	Hierarchical Component Model
	Application Processing
	FlowVR Articles
	Positioning
	Applications
	Grimage
	Interactive 3D Modeling
	Distributed Physics Simulation
	SOFA Simulation Framework
	Molecular Dynamics
	Interactive Grid

	Debugging
	Discussion
	Hierarchical Components
	Static data-flow Graph
	Module Pool
	Application Monitoring
	Multi-CPU/GPU Support
	Interoperability
	Diffusion
	Long Term Perspectives

	Real-Time 3D Modeling
	Motivation
	Computer Vision System
	Parallel EPVH
	EPVH Overview
	Parallel Algorithm

	Parallel EPVH Article
	Parallel Octree Carving
	Octree Carving
	Work Stealing
	Parallel Algorithm
	Provable Performance
	Experimental Results

	Parallel Octree Carving Article
	Discussion

	Conclusion
	Bibliography
	Selected Articles
	Net Juggler IEEE VR 2002 Article
	SoftGenLock IPT 2003 Article
	FlowVR Render IEEE Vis 2005 Article
	FlowVR Europar 2004 Article
	FlowVR Supercomputing Journal 2008 Article
	Parallel EPVH ICVS 2006 Article
	Parallel Octree Carving EGPGV 2007 Article

