
HAL Id: tel-00551301
https://theses.hal.science/tel-00551301

Submitted on 3 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosis of Large Software Systems Based on Colored
Petri Nets

Yingmin Li

To cite this version:
Yingmin Li. Diagnosis of Large Software Systems Based on Colored Petri Nets. Software Engineering
[cs.SE]. Université Paris Sud - Paris XI, 2010. English. �NNT : �. �tel-00551301�

https://theses.hal.science/tel-00551301
https://hal.archives-ouvertes.fr

THÈSE

UNIVERSITÉ PARIS SUD 11

présentée pour obtenir le grade de

DOCTEUR DE L’U NIVERSITÉ PARIS-SUD 11

Spécialité : INFORMATIQUE

Par

Y INGMIN LI

Diagnosis of Large Software Systems Based on

Colored Petri Nets

Thèse soutenue le 9 Décembre 2010 devant le jury composé de:

M. Albert Benveniste, Directeur de recherche, INRIA/INSIARapporteur

M. Luca Concole, Professeur, Université Turin, Italie Rapporteur

Mlle.Fatiha Zaidi, Maı̂tre de conférence, Université Paris sud Examinatrice

M. Serge Haddad, Professeur, ENS Cachan Examinateur

M. Phillipe Dague, Professeur, Université Paris sud Directeur de thèse

M. Tarek Melliti, Maı̂tre de conférence, Université Evry Encadrant de thèse

Laboratoire de Recherche en Informatique, INRIA Saclay-Île-de-France, U.M.R. CNRS 8623,

Université Paris-Sud, 91405 Orsay Cedex, France

Preface

This thesis is the final work of my Ph.D. study at the Laboratory of the Informatics Research (LRI),

University of Paris South, XI, France. It serves as documentation of my work during the study,

which has been made from autumn 2006 until spring 2010. The study has been funded by the EU

through the FP6 IST project 516933 WSDIAMOND (Web Services DIAgnosability, MONitoring

and Diagnosis) [138], national ANR (Agency of National Research) project WEBMOV (Web ser-

vices Modeling and Verification), national ANR project DIAFORE (DIAgnostic of the FOnctions

REparation), and national ANR project Docflow (analysis, monitoring, and optimization of Web

documents and services).

The thesis consists of seven chapters. Four chapters (threeto six) are the integration of the

papers that are accepted by or intended for an internationaljournal or proceedings. These chapters

illustrate a research of the CPN model-based diagnosis. Theexperiments and conclusion are given

in the later chapters. The first and second chapters give a general introduction to model-based

diagnosis and a survey of the new scientific results related to this thesis.

2

Acknowledgments

I wish to take this opportunity to express my gratitude to my supervisor professor Philippe Dague

for introducing me to the area of Discrete Event System (DES)diagnosis, patiently instructing for

the meaningful direction, and formulating the main workinghypothesis for this thesis, although he

allowed me the freedom to wander off. Thanks, Philippe for good support, advice, and encourage-

ment through ups and downs all those years.

I also want to express my appreciation to the co-supervisor Dr. Tarek Melliti. He spent a lot of

time to work with me, inspired me for the new research direction and approach, and always gave

me a hand when I was stacked.

I¡¯m grateful for the financial support from the research project WSDIAMOND, WebMov, Di-

afore, and Docflow.

A number of colleagues and fellow students, although most ofthem have left the laboratory,

have greatly contributed to good inspiring working and social environment; especially Mr. Omar

Aaouatif, Winwise company, for developing the monitoring platform - thanks. Special thanks for

always helping out goes to our laboratory assistant Marie Dominique, celine Halter, Geneviève

Sabater, and Martine lelievre.

I also wish to thank Dr. Yuhong Yan for the in-deep and fruitful discussion on the automata

diagnosis and diagnosability properties.

My sincere thanks go to my mother Yuehua Hao and brother Yingqing Li for their deep love

and sincere support for me. My love goes on with you.

3

Contents

Preface 2

Acknowledgments 3

List of Tables 9

List of Figures 11

List of Definitions 1

1 Introduction 1

1.1 Abnormal behavior of software system 3

1.1.1 Communication between the components 3

1.1.2 Data and activities flow .. . 4

Data transforming activities . 4

Dependency of Data . 4

1.1.3 Faulty state . 5

1.2 Problematic of MBD for software systems 6

1.2.1 The choice of abstract model 6

1.2.2 The observation for diagnosis 6

Imperfectness of observations .7

Exception assertion . 7

1.2.3 Minimal diagnosis . 8

1.3 Our contribution 8

1.3.1 Model construction .. 9

1.3.2 Diagnosis approach .. 9

4

1.3.3 Decentralized topology 10

1.3.4 Application: WSDIAMOND project [138] 10

2 Model based diagnosis of discrete event systems 12

2.1 Introduction .. . 12

2.1.1 Model based diagnosis .. 12

2.1.2 Discrete event system .. . 13

2.1.3 Dining philosophers example 14

2.2 DES models . 14

2.2.1 Labeled transition system and automata 15

2.2.2 Petri nets . 17

2.3 Modeling diagnosis with DES 19

2.3.1 Fault representation 19

2.3.2 Observation . 24

Observation absence . 24

Partially ordered observation .. 25

2.3.3 Diagnosis of DES . 25

2.4 Diagnosis methods .. . 26

2.4.1 Diagnoser . 26

2.4.2 PN unfolding . 28

2.4.3 PN backward reachability analysis 30

2.5 Architecture of DES diagnosis 31

2.5.1 Centralized diagnosis 32

2.5.2 Decentralized diagnosis 32

2.5.3 Distributed diagnosis 35

2.6 Conclusion .37

I Theory 40

3 Colored Petri net model for MBD 42

3.1 Introduction .. . 42

3.2 Structure and dynamic 43

3.2.1 Structure of CPN . 43

3.2.2 Dynamic of CPN . 48

3.3 CPN as a fault model for software systems 50

3.3.1 The CPN fault model structure 51

Places types: data status . 51

Arcs expressions: abstract data dependency 51

Transition modes: faults . 52

CPN fault model definition . 53

3.3.2 The CPN fault model dynamic .55

3.3.3 Partial observation of CPN fault model 56

3.4 Related works .. 58

4 CPN diagnosis based on inequations system 60

4.1 Diagnosis problem .. . 60

4.2 Diagnosis of CPN by inequations system solving 64

4.2.1 Inequations system .. 65

4.2.2 Algorithms . 67

getImpossibleSols function . 68

Diagnosis inferring . 71

Multiple faults diagnosis . 73

4.3 The minimality of CPN diagnosis 74

4.4 Related work .76

II Application 79

5 Web services Application 81

5.1 Introduction .. . 81

5.2 SOA and Web service .. 81

5.2.1 SOAP . 83

5.2.2 UDDI . 84

5.2.3 WSDL . 85

5.3 BPEL services .. 86

5.3.1 BPEL . 86

5.3.2 Cooperation of BPEL and WSDL .87

5.3.3 ActiveBPEL engine .88

5.4 Case study: foodshop 88

5.4.1 Partners interactions 89

5.4.2 BPEL services execution processes 91

Customer . 91

Shop service . 91

Realsupplier service . 93

Warehouse service and LocalSupplier service 94

5.5 Translate from BPEL to CPN 94

5.5.1 Translating static BPEL features to CPNs 95

5.5.2 Translation from basic Web service to CPN 96

Basic Web service . 96

Receive(m,X) . 96

Invoke(X,Y) . 98

Reply(Y,m) . 100

Expression(C, V) . 101

Assign(X,Y) . 101

Throw/Rethrow(faultName, [faultV ariable]) 102

Wait(duration|until) . 103

Empty . 104

Exit . 105

5.5.3 Structured operators translation 105

Sequence operatorsequence(N1, N2) . 105

Conditional operatorSwitch({(coni(Xi, Vi),Ni)}i∈I) 106

Iterative operatorwhile(con(X,V), S1) 106

Message triggering operatorPick({Mi, Si}i∈I) 107

Parallel operatorflow({Si}i∈I) . 107

Conditional operatorIf({(coni(Xi, Vi),Si)}i∈I) 107

Conditional operatorRepeatUntil({(coni(Xi, Vi),Si)}i∈I) 109

5.5.4 sub process with enclosed environment: Scope 109

Fault handlers . 111

EventHandlers . 112

CompensationHandler andTerminationHandler 112

Conditional operatorForEach({(coni(Xi, Vi),Si)}i∈I) 114

5.6 Case study: the CPN model of foodshop 114

5.7 Related works .. 115

6 Decentralized architecture for CPN based diagnosis 121

6.1 Introduction .. . 121

6.2 Decentralized system 122

6.3 Diagnosis problem of decentralized system 123

6.4 Diagnosis approach 125

6.4.1 Diagnosis protocol .. 125

6.4.2 Diagnosis algorithm .. 128

6.4.3 Example: dining philosophers 131

6.5 Proof of global consistency of decentralized diagnosis. 134

6.5.1 Functional CPN definition .. . 134

6.5.2 Fundamental equations of functional subnets 135

6.6 Decentralized diagnosis of orchestrated BPEL services. 138

6.7 Case study:foodshop 140

6.7.1 Exceptions . 140

CUSTomer exceptions: . 140

SHOP exceptions: . 141

SUPPLIER exceptions: . 141

WAREHOUSE exceptions: . 141

6.7.2 Fault scenarios .142

6.7.3 Diagnosis . 145

7 Conclusion 151

7.1 Future work .153

Bibliography 2

A The foodshop file list 2

List of Tables

3.1 Pre andPost matrixes . 45

3.2 Dining philosophers: incidence matrix 48

3.3 Dining philosophers: a characteristic vector 49

3.4 Dining philosophers: a characteristic vector of a transition sequence 49

3.5 Dining philosophers: incidence equation 50

3.6 Dining philosophers: incidence matrix with abstract data dependency 54

3.7 I/O data dependency ofmt . 55

3.8 Dining philosophers: the incidence matrix 57

3.9 Partial observation example 57

4.1 Dining philosophers: an initial markingM0 . 63

4.2 Dining philosopher: a symptom markinĝM . 63

4.3 Dining philosophers: a characteristic vector
−⇀
δ 63

4.4 Dining philosophers: a transition characteristic vector
−⇀
δ T 64

4.5 Dining philosopher: inequations system in form of matrix calculation 66

4.6 Dining philosopher: symptom markinĝM with multiple faults 74

4.7 Incidence matrix of the example illustrated in figure 4.4. 75

4.8 Initial, symptom marking and characteristic vector of the example in figure 4.4 . . 75

5.1 Pre andPost tables of a basic Web service . 97

5.2 Pre andPost tables of an asynchronousInvoke activity 99

5.3 Pre andPost tables of a synchronousInvoke activity 99

5.4 Pre andPost tables ofAssign activity . 102

5.5 Pre andPost tables ofThrow activity . 103

5.6 Pre andPost tables ofWait activity . 104

9

5.7 Pre andPost tables ofThrow activity . 104

5.8 Pre andPost tables ofExit activity . 105

6.1 Dining philosopher: inequations system in form of matrix calculation onS3 133

6.2 Dining philosopher: inequations system in form of matrix calculation onS1 133

6.3 Dining philosopher: inequations system in form of matrix calculation onS2 133

6.4 The activity names abbreviation ofShop service 145

6.5 The activity names abbreviation ofRealSupplier service 145

6.6 The activity names abbreviation ofWarehouse service 146

6.7 The activity names abbreviation ofLocalSupplier service 146

6.8 The communication messages shared by the partners 146

6.9 foodshop example: decentralized diagnosis process 147

List of Figures

2.1 Basic perspective of MBD 13

2.2 A three dining philosophers problem 15

2.3 Dining philosophers: LTS of philosopherPH1 20

2.4 Dining philosophers: LTS offork1 . 21

2.5 Dining philosophers: LTS offork1 × PH1 × fork2 × PH2 × fork3 × PH3 . . 22

2.6 PN model of Dining philosophers 23

2.7 Dining philosophers: diagnoser ofPH1. The initial state ofPH1δ is s0. 27

2.8 Dining philosophers:UN × obs for diagnosis . 30

2.9 Coordinated decentralized architecture of DES 33

3.1 A CPN graph example .45

3.2 Dining philosophers: CPN model 47

3.3 Dining philosophers: CPN with abstract data dependencyrelations 54

3.4 Dining philosophers: CPN model for diagnosis 56

4.1 A solution for a CPN diagnosis problem 65

4.2 Apply the diagnosis algorithm with dining philosophersexample 70

4.3 Apply diagnosis algorithm on 3-d-p example 74

4.4 Minimal diagnosis example 75

5.1 Composite Web service structure 82

5.2 The relations between the roles and protocols 82

5.3 SOAP structure .. 83

5.4 WSDL document structure 85

5.5 Interactivities between BPEL and WSDL protocols 88

11

5.6 The partners of the foodshop example 90

5.7 The workflow of customer .. . 92

5.8 basic place/transition representations 95

5.9 CPNs of the basic activity 97

5.10 Pre andPost tables of aReceive activity . 98

5.11 CPNs of the receive activity 98

5.12 CPN model of invoke activity: the thick-line places represent the remote places . . 100

5.13 Pre andPost tables of aReply activity . 101

5.14 CPNs of the reply activity 101

5.15 Pre andPost tables ofExpression activity . 102

5.16 CPNs of the expression activity 102

5.17 CPNs of the assign activity 102

5.18 CPNs of the throw/Rethrow activity 103

5.19 CPNs of the wait activity 104

5.20 CPNs of theEmpty activity . 104

5.21 CPNs of theExit activity . 105

5.22 CPNs of the sequence activity 106

5.23 AdditionalPrei andPosti tables . 107

5.24 CPNs of the switch activity 107

5.25 CPNs of the While, Pick, Flow, and If activities 108

5.26 CPNs of theRepeatUntil operator . 109

5.27 CPNs of thefaultHandlers activity . 110

5.28 CPNs of theeventHandler operator . 111

5.29 CPNs of the compensationHandler and TerminationHandler 112

5.30 CPNs of thescope operator . 113

5.31 CPN model of forEach activity: the thick-line places represent the remote places . 114

5.32 A small BPEL process LocalSupplier 115

5.33 The CPNs model of LocalSupplier 116

5.34 The CPNs model of SHOP process 117

5.35 The CPNs model of WAREHOUSE process 118

5.36 The CPNs model of the SUPPLIER process 119

6.1 Dining philosopher: as three distributed partsS1, S2, S3 122

6.2 Place-bordered CPN model in a decentralized architecture 123

6.3 Decentralized diagnosis architecture of place-bordered CPNs 124

6.4 The flowchart of the local diagnoser 126

6.5 The flowchart of the coordinator 127

6.6 Dining philosophers: decentralized diagnosis process. 132

6.7 The partners of the foodshop example 148

6.8 INCORRECT ASSEMBLE OF PARCEL. 149

List of Definitions

1 LTS . 15

2 LTS path . 15

3 Alive LTS . 16

4 Convergent LTS . 16

5 Synchronous product of LTS .. . 16

6 Petri net graph .17

7 Marking . 17

8 Petri net system .17

9 Enabled transition .. . 18

10 Firing . 18

11 Firing sequence .. 18

12 Reachable set .18

13 Characteristic vector 18

14 Marking equation .. 18

15 Marking graph . 18

16 Bounded PN . 18

17 LTS fault model .19

18 PN fault model . 19

19 Observable sequence .. . 25

20 Diagnosis of DES .25

21 Minimal Diagnosis .. 25

22 Diagnoser . 26

23 Diagnosis of LTS diagnoser 27

24 PN Homomorphism . 28

25 Occurrence net .28

14

26 Cut . 29

27 Configuration .29

28 Branching process .. . 29

29 Unfolding . 29

30 Diagnosis of PN unfolding 29

31 Multi-set .43

32 Multi-set expression 43

33 CPN graph . 44

34 Well-formed CPN Graph .. 46

35 Incidence Matrix of CPN .. . 46

36 Fault model of CPN .46

37 CPN marking . 48

38 CPN system . 48

39 CPN mode enabling rules .. . 48

40 CPN mode firing rules .48

41 CPN mode sequence firing rules 49

42 CPN reachability .. 49

43 CPN characteristic vector 49

44 FW function . 52

45 SRC function . 52

46 EL function . 52

47 CPN fault model graph .. 53

48 Partial order observation 57

49 Partial order observation specificity 57

50 Partial order observation union 58

51 Minimal partial ordered observation 58

52 Minimal partial order observation function 58

53 CPN symptom markings .61

54 CPN diagnosis problem .. . 61

55 Covering relation .. . 61

56 CPN diagnosis . 62

57 CPN minimal diagnosis .. . 62

58 Multi fault operator 73

59 CPN fault model for basic WS .. . 96

60 CPN fault model forReceive activity . 97

61 CPN fault model for an asynchronousInvoke activity 98

62 CPN fault model for a synchronousInvoke activity 99

63 CPN fault model forReply activity . 100

64 CPN fault model for expression 101

65 CPN fault model forAssign . 101

66 CPN fault model forThrow . 103

67 CPN fault model forWait . 103

68 CPN fault model forEmpty . 104

69 CPN fault model forExit . 105

70 Bordered places set .. . 122

71 CPN Partnership .123

72 Decentralized CPN diagnosis problem 125

73 Decentralized CPN diagnosis 125

74 Functional CPN .134

75 Subnet of CPN . 134

76 Minimal subnet of CPN .. 134

77 Communicating functional subnet union 137

Chapter 1

Introduction

From the point view of the system theory, a system is a set of interacting or interdependent entities

forming an integrated whole. Structure, behavior, and inter-connectivity are keywords to define

a system. Nowadays we rely more and more on the large systems and Internet for the facilities

of the human daily life. That is the reason artificial intelligence is more and more applied in the

system construction and maintenance process. As a robust and reliable large system (e.g. plant

system, power system, aerospace system, Web service application) should be fault tolerant, self-

healing (which is able to automatically recover possible failures) systems have been studied quite

a lot during the last decade. So diagnosis, as mandatory stepof self-healing system design, has a

significant importance.

As a system contains a set of components (sub-systems), the performance of the whole system

relies on the performance of each individual component as well as on the quality of the interaction

between the components, which can be abnormal. The abnormalbehavior of a component of a sys-

tem is in many cases due to the occurrence of a fault within thecomponent itself or due to abnormal

behavior that is propagated via the interactions between the components. There are normally three

different stages of diagnosis: fault detection, discovering whether a fault occurred; fault isolation,

what kind of fault occurred; and fault explanation, what is the cause of a fault. For the convenience

and cost saving, diagnosis is done locally, and if necessary, the overall (global) diagnosis can be

integrated based on the local diagnoses.

The existing works seldom clearly and directly illustrate the abnormal data when diagnosing

the abnormal behaviors of the system. while the abnormal data is quite easy to be detected and

isolated, especially in the software systems. In this thesis, we focus on a software system which

is a set of interacting distributed Web services application. Each Web service has no knowledge

1

CHAPTER 1. INTRODUCTION 2

of the structures of its sibling Web services because of distributed privacy policies. We tackled

the abnormal behavior of a software system caused by the abnormal input data, control and/or the

abnormal behaviors of the system components, instead of thefaults in the programming codes. We

make an important assumption:

Assumption 1. The diagnosability is ensured by the sufficient observations, which are the logs of

the Web service execution engine.

There are normally three categories of diagnosis for a system: traditional, model-based, machine-

learning based. The traditional approach is mainly rule-based method, which replies on expert

knowledge and historical data and is usually implemented asan expert system. The rule-based di-

agnosis usually works under the principle set in form of ”If symptom(s) then fault(s)”. But it cannot

be practically applied to large and complex systems since the knowledge acquisition is difficult and

time cost is expensive. The rules set grows exponentially along the system size. And as it cannot

well handle the plant structure changes, it is hard to maintain.

While the model-based diagnosis (MBD) [109] approach can naturally overcome these draw-

backs, which is why we choose the MBD approach in this thesis.We have a model that describes an

abstraction of the structure and behavior of the system, which can be incomplete. Given observa-

tions of the system, the diagnostic system simulates the system using the model, and compares the

observations actually made to the observations predicted by the simulation. The task of the diag-

nosis system is to detect, isolate and explain the fault by consistency-based or abductive reasoning.

The overall system model is simply adjusted when its structure or behaviors change by adjusting the

model of the modified components instead of updating a huge database of rules. We refer to [31] for

an extensive classification of the model-based diagnosis approaches. More specifically, we chose

Colored Petri net (CPN) [64] as a model which unifies the data,control and the communications

between the system components.

Machine learning methods are data-based and used when no explicit behavioral model is avail-

able (black-box model). They require a lot of observations made on the system and thus cannot be

implemented at design stage. These methods can also be used in the case-based reasoning frame-

work or, together with model-based approaches, for grey-box models, applied to the diagnostic

knowledge itself: the previous successful or failed diagnoses, together with the available domain

data, are used to automatically and continually improve system performance. This can be a nice

improvement approach of the diagnosis, but is not the research interest in the thesis.

CHAPTER 1. INTRODUCTION 3

1.1 Abnormal behavior of software system

A software system is a system based on software forming part of a computer system (a combination

of hardware and software), by focusing on their major components. The system theory, in software

engineering context, is often used to study the large and complex softwares, which focus on their

major components and the interactions between each other. Examples of software systems include

computer reservations systems, air traffic control softwares, military command and control systems,

telecommunication networks, web browsers, content management systems, database management

systems, expert systems, spreadsheets, theorem provers, window systems, word processors, etc.

As in other complex systems, two approaches can be adopted inanalyzing the behavior of

a software system: the continuous dynamic one, and the discrete dynamic one. The continuous

dynamic system changes its states as the continuous time elapses, while the state change of a discrete

event system is driven by the discrete event occurrence. A software system is naturally suitable to

be analyzed in a discrete dynamic way. As the state of the system can be represented by the state

of all the data used by the system, while the evolution of the data set is driven by the events or the

pre-defined processes in the system.

1.1.1 Communication between the components

The nature of the software system structure within an organization has yielded a choice between

control (centralization) or coordination (decentralization). A system that is partially centralized

and partially decentralized is termed adistributedsystem, which is more representative in the real

world.

As all the complex systems, we have plenty of reasons to design the software systems in a

distributed environment (for robustness, for efficiency, for cost control, for privacy protection, for

concurrency, for autonomy, etc), which means the components are distributed on different network

hosts. So the data transmission protocols for software systems are usually network-based, such as,

HTTP, FTP, Telnet, SSH, POP3, SMTP, IMAP, SOAP, PPP, etc.

Different from the centralized software system, distributed software systems expose their inter-

nal component communication on the network, which rises more challenges to face when modeling

and diagnosing them. For example, from the point view of fault handling, how to diagnose the fault

comes from other components, how to minimize the fault infection in case of malfunction, how to

handle the local faults without the additional informationfrom the other components, etc.

CHAPTER 1. INTRODUCTION 4

1.1.2 Data and activities flow

For a complex software system, both the data set which represents the system status and the system

structure which defines the system status evolution can be complicated. The data set is defined as

a structured object, and the system is organized by the smallparts like components (or modules,

structured processes, functions) within the structure as sequences, parallels, choices, etc. The data

is independently encapsulated within the functional scopeof these components. And the communi-

cations between them are performed by sending messages (called input/output), which are a sort of

pre-defined data structures, too. When the components are located on different sites, the software

systems become distributed ones.

Data transforming activities

Within each component, data transformation is achieved by performing the pre-defined structured

activities. And the legal order of the activities is decidedby the topological structure and the choice

of the path within the structure, which we call control. So control can be viewed as the dynamic

system information, which is another kind of data of the software system.

The components communicate with each other by sending/receiving data (messages) while con-

trol information is handled in two ways: synchronous or asynchronous. In the synchronous commu-

nication, the sender component sends a message to the receiver and waits until the receiver returns

before continuing, during which the control is temporally blocked and the whole process might

be stuck. In the asynchronous communication, after the sender component sends the messages, it

continues to execute until the process needs the receiver’sreturning message. So during the asyn-

chronous communication, the control is not blocked, which avoids the ”stuck” bottleneck.

Dependency of Data

The general purpose of a software system is data manipulation, which means to compute the new

system status according to existing data, which we call the dependency of data. Once the existing

system status (called variables) contains faults, the faults could spread to other variables or other

components. How the faults spread depends on how the new variables are manipulated from the

existing ones. So it is necessary to define the data dependency to specify the way of fault spreading.

Moreover, beside the system variables, there are dependencies between the controls of the com-

ponents. And sometimes, the controls, especially the choices of the paths, rely on both the former

control information and the current system status. As both control and system variables are data,

CHAPTER 1. INTRODUCTION 5

the data dependency between the control and system variables can be classified just as that between

the system variables.

1.1.3 Faulty state

As an artificial object, the abnormal behavior (either visible or invisible) of a software system can

be caused by the design flaws, abnormal hardware or software environment, faulty inputs, or misin-

terpretation among the components. Not all the abnormal behaviors can be ignored or immediately

solved by the system. In worse cases, in a large and complex system which may have long-term life

cycle, tiny abnormal behaviors can cause serious consequences very late.

In addition of the programming mistakes which can be detected and corrected at the compiling

stage, there are two categories of runtime abnormal behaviors we can detect in a software system.

The first category iserror, an irrecoverable condition occurring at runtime, which depends dynam-

ically on architecture, OS and server configuration (e.g. out of system memory). The only way

to recover it is to modify the system structure, replace the faulty module(s), or change the runtime

environment configuration. The judged or hypothesized cause of an error is afault. A failure occurs

when an error ”passes through” the system-user interface and affects the service delivered by the

system which is detected as the second categoryexception, an error condition that changes the nor-

mal flow of control in a software system (e.g. attempting to read an unavailable file, divide by zero,

etc.). A signal that indicates an error condition is named asanalarm (alert). Both exceptions and

alarms are calledsymptoms. An exception can be recovered probably by first requesting the correct

inputs and then rolling back or restarting the software system. We assume there is no clear distinc-

tion between the exception and error. A tiny mistake, which should be caught as an exception can

easily cause serious irrecoverable error, so we don’t make difference between exception and error

in this thesis, and we call both of them as exceptions.

From the point view of the discrete dynamics, the information of a software system which

contains faults is afaulty state. Theoretically it is a complete set of the properties of a system, but

in practice, not all the properties are significant for diagnosing the faults. So we study only the

significant property set and we name one configuration of a significant property set as a faulty state,

similarly we name an abnormal event which cause the exception(s) as a faulty event.

CHAPTER 1. INTRODUCTION 6

1.2 Problematic of MBD for software systems

Diagnosis as a term is used in medical domains for diseases recognition on the basis of physical

symptoms. ”Technical diagnosis, as a knowledge domain in Computer Science, and in particular in

Artificial Intelligence, started developing 30 years ago. At the beginning, the objects of diagnostic

interests were only mechanical machinery and devices. Thisset has been successively completed

with electric devices, electronic systems, complex technological devices and recently with manu-

facturing and chemical processes as well as control systems”. [1].

1.2.1 The choice of abstract model

For an abstract model for diagnosis, a good model should represent as much as possible the system

properties related to the diagnosis but in a simple way. These properties related to MBD are:

• all the data and control information handled by the softwaresystem, which can be labeled as

correct or faulty.

• all the discrete events, which can behave correctly and faulty. Considering the possible fron-

tiers of the distributed components because of the physicalor privacy limits, the discrete event

systems should allow to be composed and decomposed without violating the diagnosis result.

• all the data and control manipulation and data dependencieswhich reflect which data or

event(s) is responsible for the symptoms.

• all kind of symptoms which can be reported by the different components of the software

system: the clients, the monitoring components, or the execution components.

So to find a model with rich capability of representation and powerful mathematical or logical

properties is always an important task for MBD.

1.2.2 The observation for diagnosis

The observations, as the information collection of the system states, should contain the information

such that:

• the standardized event description, or standardized statedescriptions: the values of the system

variables;

• when: the time stamps of the events or states;

CHAPTER 1. INTRODUCTION 7

• where: the location of the events or states;

• how: the pre and post conditions (system states) of the events, the order of the events.

This process of information collection is called monitoring. Fortunately, the software system is

much more easier to be monitored than the mechanical systemsas the system data access does not

require sensors and the software systems have no memory limits of monitoring. For example, the

execution engine of a Web service application logs the valueof the input, output variables, if the

activities defined in the Web service are successfully executed, the alarms and exceptions during the

execution. So it is easy to achieve the all the information mentioned above.

Imperfectness of observations

The large software systems consist of the components from different sites and providers and thus

observations are geographically distributed; getting observation may also require authorization. An-

other problem is the clock synchronization of the differentsites. Thus even if the monitoring of the

software systems can offer rich observation information, the observation quality should be ques-

tioned. In case of components with limited authorization access, the observation could be missing

or limited. And for observations from different sites with unsynchronized clocks, the observation

may be onlypartially ordered. In the software systems, whether the functions are executed can be

observed but the execution modes (correctly or faulty) cannot be observed.

Exception assertion

The exception assertion in the software system can come formtwo parts: the system execution

exceptions or the feedback from the users. The exceptions during the system execution are aroused

when the pre or post conditions (input or output variables ofthe system) of the pre-defined activities

are not satisfied. These violations concern the value and attributes of the variable data. From the

aspect of the faulty data value, it could be like the input variables are not (correctly) initialized,

and so the output are not successfully evaluated. From the aspect of the faulty data attributes,

the input/output could arrive or be generated within the wrong delay, from the wrong cooperating

components, etc. The feedback from the clients or any manualassertion can be a source of exception

assertion, which means any violation of the anticipated system behaviors can generate a system

exception.

As mentioned above in section 1.1, each component must be provided with a quality contract

CHAPTER 1. INTRODUCTION 8

that can be expressed as a set of constraints. Violating one of those constraints will result in trig-

gering an alarm. The alarms will be redirected to the diagnosis component and/or to a database in

order to be treated as effectively as possible. So we will have to elaborate high-level alarms (or

symptoms) which can be processed by the diagnosis component.

These alarms can be classified according to their corresponding occurrence level. We can dis-

tinguish infrastructure and middleware alarms due to failures in the underlying infrastructure (hard-

ware, network); communication alarms due to failures in component invocation and organization

(they are mainly application-specific alarms) and application alarms due to data mismatches, actor

faults, coordination failures.

A diagnosis component is triggered by one or several symptoms reported by its associated mon-

itoring component to search backward the diagnosis based onthe data and control information

recorded by the monitoring logs.

1.2.3 Minimal diagnosis

Based on all the former limitation for diagnosing the software systems, the diagnosis could be not

accurate enough to discard all the unreal reasons. The diagnosis can give a super set which includes

all the possible reasons which satisfy the known diagnosis conditions: the observation and symptom

description. A minimal diagnosis is a diagnosis set that canexplain all the symptoms while any of

its subsets cannot. Two pieces of parsimony criteria are inferred in this description: the relevancy

(causal association among initial causes and symptoms) andirredundancy (no proper subset of

initial causes is itself a minimal diagnosis). So in this scenario, to find a minimal explanation for a

complicated symptom is a chief object.

In this thesis, we contributed to calculate the minimal diagnosis based on the partial ordered

observations which is enough to explain the symptoms. But itdoes not means a superset of a

minimal diagnosis is also a diagnosis.

1.3 Our contribution

Our contribution lies in two aspects: a compact and powerfulabstract model based on Colored

Petri Net (CPN) [64] for a software system and an effective algebraic diagnosis approach based

on backward reasoning [4] approach. The application is taken from the European research project:

WSDIAMOND.

CHAPTER 1. INTRODUCTION 9

1.3.1 Model construction

The CPN model combines the strength of Petri nets [99], the synchronization of concurrent pro-

cesses, with that of the programming languages, data types definition, and data values manipulation.

In this thesis, the CPN model is used to define a unified framework which combines the data and

control flow for dealing with the normal and abnormal behaviors of the software system. The basic

ideas of using CPN as fault model are as follows:

• using places to represent data (and control), using transitions to represent the activities, and

using arcs expressions to represent the data dependencies;

• using the places types (colors sets) to represent the data status. In the Web service application,

we limit the colors as just three ones: corrupted data, correct data, and status unknown status

data. But theoretically, more colors are allowed in the CPN diagnosis framework.

• using transitions modes to represent the correct or corrupted activities;

Furthermore, the functional CPN subnets are defined to represent the distributed components of

a software system for diagnosis.

1.3.2 Diagnosis approach

The aim of diagnosis is, based on the CPN models and the partially ordered observations, starting

from the symptoms marking, to explain the symptoms with a minimum set of explanations. That

is, to find out the transitions behaved in faulty mode and the possible faulty tokens in the initial

marking, which means the faults from outside of the subsystem,. Our diagnosis approach has two

following advantages:

• profiting from the CPN mathematical properties to diagnose the symptoms by solving the

symbolic inequations systems;

• defining a method that generates semi-automatically a CPN fault model directly from the

CPN model of a system;

• allowing the observation of the system to be partially ordered without decreasing the diagnosis

precision.

CHAPTER 1. INTRODUCTION 10

1.3.3 Decentralized topology

In this thesis, the application is a set of interacting WS-BPEL(Web Service Business Process Execu-

tion Language, see [90]) services located on different sites. WS-BPEL is used as the starting point

to generate a model of the services that represents, at a sufficient level of granularity, the data depen-

dencies between activities (processing and control activities) within one service and also between

the involved partners services. Finally adecentralizeddiagnosis algorithm, based on the exploita-

tion of the data dependencies, is proposed for the explanation process. Within this approach, some

assumptions are made that can be considered as realistic in the present development of the Web ser-

vices framework. The fault detection is based on exceptions, which means that one of the partners

services will notify the dysfunction and start the diagnosis, and in addition the exception mecha-

nism of WS-BPEL is enough rich to support detailed description of the dysfunction so as to provide

a good starting point for the diagnostic process. The existing WS-BPEL execution platforms, i.e.,

the Active WS-BPEL platform used in this project, offer the possibility to log data at each step of

the instance execution. To finish, the proposed diagnosis algorithm is decentralized by considering

local diagnosers, one diagnoser for each partner service, dialoguing with one supervisor, or, more

generally, a hierarchy of supervisors, which is a suitable architecture in the case of orchestrated Web

services.

Therefore a decentralized diagnosis architecture is proposed which allows backward inference

among the local CPN models which communicate through the bordered places. The equivalence

between the global centralized diagnosis and the decentralized diagnosis is proved.

1.3.4 Application: WSDIAMOND project [138]

WSDIAMOND, Web Services - DIAgnosability1, MONitoring and Diagnosis is a project of the

Sixth Framework Program Priority2 - Information Society Technologies. It’s a Specific Targeted

Research or Innovation Project.

The possibility of creating self-healing software in orderto guarantee reliability and availability

of software systems and services is one of the main challenges for research The WSDIAMOND

project is a first step towards self-healing software and specifically self-healing Web Services.

A self-healing Web Service is able to monitor itself, to diagnose the causes of a failure and to

1Diagnosability analysis is a part of the design stage and is based on models of the system. Diagnosability analysis
provides information about the classes of faulty behavior of the system that can be diagnosed, which is a mandatory
step in self-healing system design. Diagnosability can be evaluated at design time and may be involved in the software
validation criteria.

CHAPTER 1. INTRODUCTION 11

recover from it, where a failure can be either functional, such as the inability to provide a given ser-

vice, or non-functional, such as a loss of service quality. Self-healing can be performed at the level

of a single service, and at a more global level, with support to identify critical misbehavior of groups

of services and to provide Web Services with reaction mechanism to global level failures. The focus

of WSDIAMOND is on composite and conversationally complex Web Services, where composite

means that a Web Service relies on the integration of variousother services, while conversationally

complex means that during service provision a Web Service needs to carry out a complex interaction

with the consumer application, where several conversational turns are exchanged between them.

In the project we tackled two main issues:

• On-line support: developing an operational framework for self-healing service execution

of conversationally complex Web Services, where monitoring, detection and diagnosis of

anomalous situations, due to functional or non-functionalerrors, is carried on and repair/re-

configuration is performed, thus guaranteeing reliabilityand availability of Web Services;

• Off-line analysis: designing a methodology and tools for service design that guarantee effec-

tive and efficient diagnosability/repairability during execution;

In order to achieve these goals, it carries on research in different areas such as Semantic Web

languages (for describing service properties, i.e., models), service composition techniques (for de-

scribing service interaction, i.e. WS-BPEL) as well as model-based reasoning and diagnosis. This

thesis is an extended work of the diagnosis part of the project and the CPN model and the diagnosis

approach are applied on study case of the WSDIAMOND project.

The report is organized as follows: chapter 2 is a state of theart of the Model-based diagnosis

of discrete event systems, which introduce the main modeling and diagnosis approaches; chapters 3

and 4 define our CPN model and diagnosis approach; chapter 5 concerns the application and adapts

the CPN model for the interacting Web services; chapter 6 extends the diagnosis approach into a

distributed system architecture and proposes a decentralized diagnosis protocol; chapter 7 is the

conclusion and perspective of the thesis.

Chapter 2

Model based diagnosis of discrete event

systems

2.1 Introduction

In the real world, scientists and engineers always face a fact that an artificial system (even human

being himself) can never be guaranteed to be malfunction free. In other words, there may be some

FAULT in the system. So one of their tasks for facing this difficulty is to answer to three questions:

did any fault occur (detection)? if any, how many, where, andwhat kind of fault it is (isolation/iden-

tification)? and why and how did the fault(s) happen (explanation)? We call the answers to these

questions asfault diagnosis.

Because of the growth of the complexity of artificial automatic systems, which is especially

stimulated by the development of computer and Internet, fault diagnosis approach becomes more

and more complex. Nevertheless the manmade nature of the artificial systems, it should be easy to

get the explicit model of the system configuration and behavior to guide a diagnostic inference. So

in this thesis, we follow the direction of model basic diagnosis (MBD) which is well-developed and

quite mature for industrial application.

2.1.1 Model based diagnosis

As an application of abductive reasoning [94], the researchon model-based diagnosis developed

since the mid 70’s [65, 30, 40] and led to several new methodologies, solutions and applications,

12

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 13

mainly applied to static systems. Those systems, with a unique non-changing state, supposed instan-

taneous observations, fault effects visible in the diagnosis window and no evolution of the system

in this window. Associated methods resulted in timeless descriptions of the systems. Figure 2.1

illustrates the basic perspective of MBD.

M B D
E n g i n e

S y s t e m

d e s c r i p t i o n

O b s e r v a t i o n

C o m p o n e n t
m o d e l l i b r a r y

D i a g n o s i s

Figure 2.1: Basic perspective of MBD

Two distinct and parallel research communities have been working independently in MBD field:

the FDI community and the DX community that have evolved respectively in the fields of Automatic

control and statistical decision theory, and artificial intelligence and computer science. Readers are

referred to [25] for more details.

2.1.2 Discrete event system

Systems can be modeled as continuous, discrete, or hybrid according to their dynamics of variables

along the time line. Naturally there are two parallel research directions according to modeled sys-

tems: Continuous Systems (CS), modeled as algebro-differential equations or qualitative abstrac-

tions, and Discrete Event Systems (DES), modeled as finite state formalisms [128]. Some work (

[136, 66, 53, 88, 11]) concerns the hybrid system as the system model, In this thesis, we model the

software system as a DES.

”A Discrete Event System (DES) is defined as a dynamic system that evolves in accordance with

abrupt occurrences, at possibly unknown, irregular intervals, of physical events” [106]. The model-

based diagnosis of DES has received a lot of consideration over the past few years being applied in

various technological areas. Besides the ”naturally discrete” systems (e.g. software system [142, 5,

20, 78]), the quantization of the variables’ change of the continuous ([116, 91, 83, 29]) and hybrid

(like telecommunication networks [98, 97, 12, 37], power systems [8, 47, 56], plant systems [58],

and production systems [14, 7, 146]) systems makes the discrete modeling possible.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 14

2.1.3 Dining philosophers example

To illustrate and compare the different approaches of DES diagnosis, we use the example of three

dining philosophers:N philosophers (ranging over1 · · · n) sit around a table, one plate with one

fork in it is placed between each two philosophers. So there are N plates (ranging over1 · · · n)

andN forks (ranging over1 · · · n) on the round table. We consider a safe version of the problem

where each philosopher takes and then releases both forks atthe same time. In order to introduce a

diagnosis problem, we consider two types of philosophers: well-organized and unorganized ones. A

well-organized philosopher stops thinking when eating, sobefore he/she eats, he/she takes the forks

and verifies whether the series numbers of the forks correspond to the series numbers of the plates

at his/her left and right sides, if not, he/she will not eat. An unorganized philosopher never stops

thinking. So he/she takes the forks on both sides andneververifies serial numbers. He/she mixes

eating and thinking, so he/she might exchange the forks in his/her left and right hand when he/she

crosses his/her hands during thinking. And this ”exchange”action isunobservable. Then he/she

releases the forks to the wrong plates without conscience. Here we consider a 3-dining-philosophers

problem (abbreviated as 3-d-p, see figure 2.2) where philosophers1 and2 are unorganized.

In the example, the activities of each philosopher taking and putting forks are observable, while

the activity exchanging is unobservable. The series numberof the forks are not observable except

after the Philosopher3 takes the forks and finds the forks’ series numbers are wrong.

In figure 2.2, the circles and the rectangles represent respectively the plates and the actions (take

ti, and releaseri with 1 ≤ i ≤ 3). Note that ”exchange” action is not observable and ”eat” action

is omitted as it has no relation to the diagnosis problem. Thearrows linking the plates and actions

represent the corresponding relations between them. The variable xi (x′i) labeled on the arrows

represents the series number of the fork in the platei taken (released) by the philosophers. The

variablesxii andxij (with 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, andj 6= i) represent the fork series numbers

in the right and left hand of philosopheri after ”taking” and before ”releasing”. So the sensors

are placed on the actionsti andri and the variablesxi, x′i, xii, andxij which concern the series

numbers of the forks during the system execution.

2.2 DES models

In this section, different DES are defined formally. First some common terms are given as follows:

let L be aset, L∗ denotes thefinite sequences setoverL, ε denotes theempty sequence, L$ rep-

resents theinfinite sequences setoverL. L+ = L∗\ε represents thenonempty sequences set. For

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 15

t 3

t 2 t 1

r 3

r 2 r 1

x 3 2

x 2 2 x 2 1

x 3 3 x 1 3

x 1 1

1

2

3
x 1x 3

x 1x 3

x 2 x 2

x2 ’ x2 ’

x3 ’

x3 ’

x1 ’

x1 ’

Figure 2.2: A three dining philosophers problem

sequencesσ, ρ ∈ L∗, σ is aprefixof ρ, denoted asσ v ρ iff ρ = σσ′, for someσ′ ∈ L∗. And thus

σ′ is asuffixof ρ.

2.2.1 Labeled transition system and automata

When we are interested in studying a system dynamics which has a finite states and events set, a

finite Labeled Transition System (LTS) [63] (or Automata [6]when final states set is distinguished),

which is a directed graph with labels on the edges, is intuitively preferred, especially when the state

space is small.

Definition 1 (LTS). A labeled transition systemA is a tuple〈Q, q0, L, T 〉:

• Q is a set of states,

• q0 is the initial state,

• L is a finite set of events, withL = Lo∪Luo andLo∩Luo = ∅. Lo andLuo are the observable

and unobservable event sets.

• T ⊆ Q× L×Q is a finite transition relation set.

Definition 2 (LTS path). LetA be a LTS, then

• a path (or trajectory) inA is a finite or infinite sequenceδ = q1a1q2 · · · qn s.t. ∀1 6 i,

(qi, ai, qi+1) ∈ T . Denote bypaths(q) the set of all paths that start from the stateq ∈ Q and

bypaths(A) the set of all paths inA, i.e. paths(A) = paths(q1). Denoteq ∈ δ to represent

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 16

the stateq is in the sequenceq1a1q2 · · · qn anda ∈ δ to represent that the eventa is in the

sequenceq1a1q2 · · · qn. Moreover, denote bylast(δ) = qn the last state ofδ and by|δ| = n

the amount of states inδ.

• A traceσ of a pathδ, denotedtrace(δ), is the sequenceσ = a1a2 · · · an of events inL

occurring inδ, and denotedtraceo(δ) is the sequence of the observable events inL occurring

in δ. Write traces(A) = {trace(δ)|δ ∈ paths(A)} for the set of all traces inA, particularly

denotetraces∞(A) as the set of infinite traces ofA. Write traceso(A) = {traceo(δ)|δ ∈

paths(A)} for the set of all the observable traces inA. Moreover, in caseσ is finite, let|σ|

denote the number of events occurring in the traceσ, i.e. |σ| = n.

• Write q
σ
→ q′ if the stateq′ can be reached from stateq via the traceσ, i.e. if there is a path

δ ∈ paths(q) s.t. last(δ) = σ and trace(δ) = σ. We writeq → q′, if there exists a traceσ

s.t. q
σ
→ q′, q →, if there exists a stateq′ s.t. q → q′, andq 9 if q is the final state ofσ.

• Given any traceσ ∈ traces(A), denote bŷσ its prefix-closure, i.e. σ̂ = {ρ ∈ traces(A)|ρ v

σ} and byσ̌ its postlanguage, i.e. σ̌ = {ρ ∈ traces(A) | σ v ρ}. Moreover, for a given

natural numberk ∈ N, denote by̌σk its postlanguage with only words with length longer

thank, i.e. σ̌k = {ρ ∈ σ̌ | |σ|+ k 6 |ρ|}.

Definition 3 (Alive LTS). A LTS isalive iff ∀q ∈ Q,∃a ∈ L, q′ ∈ Q, s.t.q
a
→ q′, i.e. iff q →.

Definition 4 (Convergent LTS). A LTS isconvergentiff @q ∈ Q : q
δ
→ q andδ ∈ L∗

uo.

In this thesis, only the alive and convergent LTS are considered.

Definition 5 (Synchronous product of LTS). Thesynchronous product(or concurrent composition)

A1×A2 (orA1‖A2) of two labeled transition systems products a LTSΓ = 〈Q1×Q2, L1∪L2, q01×

q02 , T 〉, whereT is defined as((q1, q2), l, (q′1, q
′
2)) ∈ T iff :

• ∀l ∈ L1 ∩ L2 ∧ (q1, l, q
′
1) ∈ T1 ∧ (q2, l, q

′
2) ∈ T2,

• ∀l ∈ L1 − L1 ∩ L2 ∧ (q1, l1, q
′
1) ∈ T1 ∧ @q′2 ∈ Q2, s.t. (q2, l, q′2) ∈ T2,

• ∀l ∈ L2 − L1 ∩ L2, (q2, l2, q′2) ∈ T2 ∧ @q′1 ∈ Q1, s.t. (q1, l, q′1) ∈ T1.

The LTS example of the dining philosophers (presented in chapter 1 section 2.1.3) is given in

figures 2.5.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 17

2.2.2 Petri nets

Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and con-

current execution. Petri nets have an exact mathematical definition of their execution semantics,

with a well-developed mathematical theory for process analysis.

Definition 6 (Petri net graph). A Petri Net graph[99] (P/TNet) is a tripleN = 〈P, T,W 〉, where

• P is a finite set of places;

• T = To ∪ Tuo is a finite set of transitions,(P ∩ T = ∅). LetTo is the observable transitions

set,Tuo is the unobservable transitions set, andTo ∩ Tuo = ∅;

• W ⊆ (P × T) ∪ (T × P) is the incidence (flow) relation that specifies the arcs from places

to transitions (Pre) and from transitions to places (Post):W = Pre ∪ Post: Pre(p, t) :

Wn(P × T) → N andPost(t, p) :Wn(T × P) → N, where:

– Pre(p, t) ∈ N gives the weight that is associated with the arc directed from placep to

transition t;

– Post(t, p) ∈ N gives the weight that is associated with the arc directed from transition

t to placep;

We represent by•x = {y ∈ P ∪T |(y, x) ∈W} andx• = {y ∈ P ∪T |(x, y) ∈W} respectively

as the input and output places or transitions ofx. The incidence relationsPre andPost are in fact

theP × T matrixes ofN.

To illustrate the dynamics of a Petri net, we define its execution with the notion of marking and a

set of rules of marking evolution (transition firing). A marking is a distribution of tokens on places.

Definition 7 (Marking). A markingM of a netN is a |P |-vector that assigns to each placep of P

a non-negative number of tokensM : P → N.

M(p) denotes the number of tokens present inp in the markingM . Markings are also called

configurations. When we have a net with a marking, we have a net system.

Definition 8 (Petri net system). A Petri net systemS〈N ,M0〉 is a couple of a PN graph and an

initial marking.

The execution of a net system is based on the transition firingrules.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 18

Definition 9 (Enabled transition). LetS = 〈N ,M0〉 be a Petri net system andM be a marking of

S. We say that a transitiont is enabledin M , if ∀p ∈• t,M(p) ≥ Pre(p, t).

When a transition is enabled, it can fire. The firing of a transition is the core concept of the

execution of a Petri net.

Definition 10 (Firing). LetS be a Petri net system,M a marking ofS, andt a transition enabled

in M . The resulting markingM ′ of t firing fromM (denoted asM
t

−→M ′), is defined as:

M ′ =M − Pre(·, t) + Post(t, ·)

by assumingPre(·, t) andPost(t, ·) are the|P |-vectors whose elementp is Pre(p, t), respectively

Post(t, p).

The definition 10 can be extended to a sequence of transitions:

Definition 11 (Firing sequence). A sequence offiring transitionsis defined as a traceτ :

τ =M1
t1−→M2

t2−→ · · ·
tv−1

−→Mv

where inductively fori = 1, 2, · · · , v − 1, Mi ≥ Pre(·, ti). SoM1
τ

−→ Mv (named aslegal

trace) denotes thatτ fires atM1 yieldingMv. The set of all legal traces in〈N ,M0〉 is denoted by

LN (M0).

Definition 12 (Reachable set). GivenS = 〈N ,M0〉, the reachable setRN (M0) = {M |∃τ ∈

LN (M0)s.t.M0
τ
→M} is the set of all reachable markings.

Definition 13 (Characteristic vector). The characteristic vector−⇀σ associated with a legal trace

σ ∈ LN (M0) is a T -vector whose element that corresponds with transitionti ∈ T is given by

µσ(ti) that is the number of appearances ofti in the legal traceσ.

Definition 14 (Marking equation). If M1
σ
→M , then themarking equationholds:

M1 +W · −⇀σ =M

(with the incidence relationW = Post− Pre in aP × T matrix representation).

Definition 15 (Marking graph). Given a PN systemS = 〈N ,M0〉, the marking graph ofS is a LTS

MG = 〈RN (M0), T,M0,∆〉 with ∆ ⊆ RN (M0) × T × RN (M0) s.t. ∀(M, t,M ′) ∈ ∆ iff t is

enabled inM . SoM > Pre(•, t) andM ′ =M − Pre(•, t) + Post(t, •).

Definition 16 (Bounded PN). S = 〈N ,M0〉 is boundediff ∃k ∈ N s.t. ∀p ∈ P , ∀M ∈ RN (M0),

M(p) ≤ k. ThenS is said to be k-bounded. Ifk = 1, S is said to be a 1-safe PN.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 19

2.3 Modeling diagnosis with DES

DES, as a dynamic system whose state changes with an event occurrence, can model the compli-

cate man-made systems whose behaviors are hard to predict and offer the possibility to perform the

automated fault diagnosis during the system execution. Commonly the faults are modeled as un-

observable events and observation is modeled as a trace consisting of observable events. The DES

diagnosis performs in two steps: deriving the legal traces which consistent with the observations;

then make the assertion [115]:

• if all the traces include a same fault transitions, the faultis declared to have happened for

sure;

• if none of the legal traces include a fault event, the diagnosis result isnormal;

• if the legal traces set includes traces that include different fault transitions and/or do not

include fault transitions, the diagnosis result isuncertain.

2.3.1 Fault representation

In some DES, faults setF can be alternatively represented as forbidden system states, faulty behav-

ior modes of components, or unobservable events. In more complicated cases, unobservable events

are categorized byfault type, which simplifies the fault representation. In this chapter, if not claimed

in advance, each fault label has a different type, soF is a subset of events set. AndN represents

the normal state of DES.

Definition 17 (LTS fault model). A LTSA = 〈Q, q0, L, T 〉 is a fault model if a set of fault events

are distinguished from the unobservable events set:∃F ⊆ Luo. The faulty events are ranged over

by usingfi.

Definition 18 (PN fault model). A Petri netN = 〈P, T,W 〉 is a fault model if a set of fault events

are distinguished from the unobservable events set:∃F ⊆ Tuo. The faulty events are ranged over

by usingfi.

3-d-p example 1. The dining philosopher example consists of 6 modules: the philosophersph1,

ph2, ph3; and the forksfork1, fork2, fork3. As LTS does not support the real concurrent activity

execution, each philosopher can perform the activities: take/put the left/right fork, or exchange (the

forks in both hands). So there are 6 different pairs of possible series numbers of forks in the left or

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 20

right hands of each philosopher in case philosopher1 and 2 are unorganized: 1/2, 2/1, 1/3, 3/1,

2/3, 3/2.

s3

s1

s0

s211

s212s132

s312

s13

s310

s311

s12

s131 s130 s121

s122

s320

s321

s322

s32s31

s2

s21 s23

s230s210

s232

s231s120

phitr
j
k

ph1tl
j
k

fi

ph1pr
j
k

ph1pl
j
k

ph1pl
1
2

ph1pl
1
2

ph1pl
1
1

ph1pl
1
1

ph1pr
1
2ph1pr

1
2

ph1pr
1
1ph1pr

1
1

ph1pl
3
1ph1pl

3
1

ph1pr
2
2ph1pr

2
2

ph1pr
3
1ph1pr

3
1

ph1pl
2
2

ph1pl
2
2

ph1tl
1
1

ph1tl
1
1

ph1tl
2
1

ph1tl
2
1

ph1tl
3
1ph1tl

3
1

ph1tr
1
2 ph1tr

2
2

ph1tr
3
2

ph1pr
3
2 ph1pr

3
2

f1f1

f1 f1

f1f1

ph1pl
3
2ph1pl

3
2

ph1pr
2
1ph1pr

2
1

ph1pl
2
1

ph1pl
2
1

Figure 2.3: Dining philosophers: LTS of philosopherPH1.

According to this different cases, the LTS (see figure 2.3) ofeach philosopheri has 6 different

groups of states. Each group starts from stateS0, ends withS0 and performs in the activities order:

take right(phitr
j
k), take left(phitl

j
k), start to make mistake(optional fi), put right(phipr

j
k), and put

left(phipl
j
k) fork j from/into platek (see top left part of figure 2.3). For example, the activitieschain,

S0, S2, S211, S212 andS0, represents the philosopher1 takes the fork2 from the plate2 with his

right hand, takes the fork1 from the plate1 with his left hand, starts to make mistake, puts the fork

2 into his right hand in the plate1 on his left side, then puts the fork1 in his left hand into the plate

2 on his right side (see bottom left part of figure 2.3). For a statesi, i represents the forki in the left

hand of philosopher. For a statesij, i represents the forki in the right hand of philosopher and fork

j in his/her left hand. For a statesijk, i andj have the same meaning with that ofsij , and different

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 21

values ofk represents the different intermediate states. The initialstate of LTS iss0 which means

the philosopher stands by.

phit(r/l)
j
k

phip(r/l)
j
k

(a) LTS of Fork

S11

S113

S132

S122

S111

S13

S12

S133

S121

ph1pr
1
2

ph1pr
1
1

ph2pl
1
2

ph2pl
1
3

ph3pr
1
1

ph3pr
1
3

ph1pl
1
1

ph1pl
1
2ph3tl

1
3 ph2tr

1
3

ph1tl
1
1ph3tr

1
1

ph1tr
1
2ph2tl

1
2

ph2pr
1
3

ph2pr
1
2

ph3pl
1
3

ph3pl
1
1

(b) LTS of Fork1

Figure 2.4: Dining philosophers: LTS offork1.

Without considering the series numbers and left/right side, the LTS of the forkj is just a circle of

being taken and put (see figure 2.4a). Considering the seriesnumbers and left/right side, each fork

may be placed in three different platesk (k = 1, 2, or 3) and be taken or put by three philosophersi

(k = 1, 2, or 3). As the relative positions of the plates and philosophers are fixed, the LTS of forkj

has three different groups of states which concern the threeplates and three philosophers (see figure

2.4b). For a statesjk, j represent the fork series number,k represents the plate series number. For

example, the initial state of LTS iss11 which means the fork1 is in the plate1. For a statesjki,

i represents the series number of philosopher, which means the philosopheri has taken the forkj

from the platek. So a transitionsjk
phitr

j
k→ sjki represents the philosopheri takes with his/her right

hand the forkj from the platek, like s11
ph3tr

1

1→ s113 ands11
ph1tr

1

1→ s111 (see figure 2.4b). The fork

cannot make mistakes so, there is nofi events in the LTS of the fork. But the three groups of states

are connected by the activities when the philosopher 1 and 2 make mistakes.

So the synchronization product offorki andPHi (i ∈ {1, 2, 3}) fork1 × PH1 × fork2 ×

PH2 × fork3 × PH3 is the LTS of the dining philosophers (see figure 2.5).

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 22

Figure 2.5: Dining philosophers: LTS offork1 ×PH1 × fork2 ×PH2 × fork3 ×PH3 with 358
states and 58 events (withf1, f2, andf3 three unobservable faulty events).

Note that there are some other kinds of fault representationlike violation of event execution

conditions [46], violation of constraints on the target states [93], or logical propositions defined

over a set of variables that comprise both events and states [55].

3-d-p example 2.We can model the dining philosophers example with PN model with the places

represent the plates, the tokens in the places represent theforks (see figure 2.6a). Placesp1 and

p2 represent the plates1 and 2 in each which have one fork. Placesp11 and p21 represent the

plate1 and2 without fork. Transitionst1, ex1 andr1 represent the activities ”take”, ”exchange”

and ”put” forks. As PN model allows the concurrent events, sotaking, exchanging and putting

forks happen concurrently. The other two philosophers2 and3 can model in the same way, and by

composing the three PN models, we can get the PN model of the dining philosophers example (see

figure 2.6b).

As addressed in example 1, the combination of series numbersof the forks in the left and right

hands of the philosophers has 6 cases and these 6 kinds of forks combinations can be ”taken” by

either of the philosophers through activitiest1, t2 andt3. To totally isolate these cases in the fault

model of PN, including the correct (3) and faulty (15) ones, there are 18 different kinds of ”take”

activities (transitions). Each ”take” transition has its consequential ”exchange” and ”put” activities

and corresponding places (see figure 2.6a).

Figure 2.6c illustrated the PN fault model of the dining philosophers example. Placespjk with

j, k ∈ {1, 2, 3} represent the cases, forkj in platek. Transitionstjki , rjki , andexjki with j, k, i ∈

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 23

•

p1

•

p2

p11p21

t1

r1

ex1

(a) PN model of philosopher1

•

p1

•

p2

•
p3

p11

p21p22

p32

p13p33

t1t2

t3

r1r2

r3

ex1ex2

(b) PN model of dining philosophers

p3

1
p2

1

•

p1

1
p1

2

•

p2

2
p3

2

p1

3

p2

3

• p3

3

pl 21

1
pr 21

1

f l 21

1
f r 21

1

pl 13

3

pr 13

3

f 23

3

t 12

1

ex21

1
r 21

1

r ′21

1

r 13

3

t 13

3

t 23

3

p2

p1

p3

(c) PN fault model of dining philosophers

Figure 2.6: PN model of Dining philosophers

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 24

{1, 2, 3} andj 6= k represent activities of philosopheri ”take”, ”put” and ”exchange” the forksj

andk in his/her left and right hands. To make the figure visible, weonly draw only 3 different cases

t211 (philosopher1 behaves well),t133 (philosopher3 does not detect fault) andt233 (philosopher3

detect the fault) and omit the other 15 cases. Note the red place f233 represents an alarm, which

means philosopher finds the fork series number in his left hand is wrong. The dotted eclipsespk

circle all the possible series numbers of forks in platek.

2.3.2 Observation

The observation of DES is retrieved from the monitoring system, which supervises the running of the

system. Once it captures a symptom, the diagnosis process istriggered. The observation offered by

the monitoring system is event-observations (as observation trace) and the partial state-observation

(as symptom).

Assumption 2. Unless otherwise stated, we make an important assumption:

the fault cannot be in the monitoring components that log theinformation, which means the

observations is accurate.

For DES, the most common observation is the occurrence of events. In reality, the sensors

or monitoring platform in charge of the observations can be malfunctioning. So the observation

sequence can be inaccurate, incomplete, partially ordered, etc. In fact, many works effort to com-

pletely or partially release these assumptions to meet the real-life request from the industrial areas.

Observation absence

Due to the limitation of the observation, there could be an observation absence, e.g., some states

or events occurrence are naturally hard or too expensive to capture. Then the diagnosis problem is

explored in two directions: to improve the diagnosis confidence with available observation, or to

carefully configure the sensors with higher diagnosis confidence and lower cost.

As to the diagnosis confidence improvement, [113] studied the case of partial observation of

system states and observable events in form of Petri nets. A (transition) labeled Petri net is defined.

And a label function is defined to transform the combination of state observation and observable

event into a transition label. And finally the diagnosis problem is defined as a PN reachability graph

search with the help of stochastic information.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 25

Partially ordered observation

An asynchronous system, much like an object-oriented software and a telecommunications network

management system, is a system operating under distributedcontrol, local time, global supervision,

and components communication. Each local sensor has only a partial view of the system, and its

local time is not synchronized with that of other sensors.

Even if the order of events may be correctly observed locallyby each individual sensor, commu-

nicating alarm events via the network causes a loss of synchronization: as a result, the interleaving

of events communicated to the supervisor isnondeterministic.

So we formally define the observation setOBS as follows:

Definition 19 (Observable sequence). Given an observable setLo, a (partially ordered) observable

sequence is defined as:

obs ::= ε|event ≺ obs|obs ‖ obs, with event ∈ Lo

with ε represents the empty observation,≺ and‖ represent respectively the precedent and parallel

relations between the events.

2.3.3 Diagnosis of DES

So generally, the diagnosis of DES∆DES can be informally defined as follows:

Definition 20 (Diagnosis of DES). The diagnosis of a DES is a function∆DES : traceso(A) →

22
F∪{N}

, with:

• traceso(A) is the set of observable traces;

• F is the set of fault types,N represents the normal state of the DES;

Definition 21 (Minimal Diagnosis). A minimal diagnosisis a diagnosis∆DES such that∀∆′
DES ⊂

∆DES, ∆′
DES is not a diagnosis.

Following the principle of parsimony, minimal diagnoses are often the preferred ones and

proved, in particular cases (the weak fault model [32]), to be sufficient to characterize all the di-

agnoses. The proposition does not hold for the strong fault model[32], which is our case. In this

thesis, each minimal diagnosis in the minimal diagnosis setis sufficient to explain the symptom.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 26

2.4 Diagnosis methods

DES diagnosis methods are based on observing system events and making inferences about the

system state. The basic idea is that the occurrence of a faultwill generate a unique sequence of

observable events that will establish the presence of the fault.

The classical diagnosis approach is to synchronize the system model for diagnosis and the ob-

served traces for computing all compatible trajectories and determining whether these trajectories (a

sequence of states and transitions) are normal. The system model for diagnosis can be represented

as:

• synchronization product of DES model and fault types (diagnoser) [115, 116, 147, 129, 120]

and PN diagnoser [8];

• PN unfolding [12, 37] and backward unfolding [58].

• Petri net reachability graph [4, 100, 3, 131, 46, 41, 17];

In this section, the above approaches are introduced and compared. There are other diagno-

sis approaches which are not widely used like consistency-based [49, 82, 126, 142, 141, 50, 144]

and Algebraic approach based on Petri nets [76, 108, 72, 75, 73, 74, 110] which are summarized

separately.

2.4.1 Diagnoser

Assume faults are represented as unobservable events andF ⊆ Luo is the fault types set (see

definition 1). Given a LTS, the composition product of the system states and the possible faults

types can represent off-line the diagnosis states of the system, named as diagnoser [115, 116]. So a

diagnosis can be got by synchronizing the diagnoser and an observable trace.

Definition 22 (Diagnoser). Given a LTSA = 〈Q, q0, L, T 〉, a diagnoser based onA is a LTS

Aδ = 〈Qδ, q0δ , Lδ, Tδ〉 with:

• Qδ ⊆ Qo × 2F∪{N} withQo = {qo} ∪ {q : ∃(q′, a ∈ Lo, q) ∈ T};

• q0δ = (q0, {N}) is an initial state;

• Lδ = Lo is the set of observable events ofA;

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 27

• Tδ ⊆ Qδ × Lδ × Qδ is the finite transition set(q, F)
a
→ (q′, F ′) s.t. q

σa
→ q′ with σ ∈ L∗

uo,

a ∈ Lo, F
′ = F ∪ {fi ∈ F |fi ∈ σ}.

Definition 23 (Diagnosis of LTS diagnoser). The diagnosis of LTS diagnoser is an implementation

of ∆LTS on the DESAδ ‖ Traceso(A). Let τ ∈ Traceso(A), ∆LTS(τ) = ∨φi s.t. (qδ, φi) ∈

(Aδ ‖ τ) ∧ (qδ, φi) 9.

Diagnosis with diagnosers is very efficient because processing an observation sequence can be

done in linear time in the length of the sequence. However, the construction of the diagnoser may

be extremely expensive because the diagnoser may have a sizethat is exponential in the number of

states in the system, which is famous as thestate-space explosionproblem.

3-d-p example 3. Take the LTS of the philosopher 1PH1 as example, its diagnoserPH1δ is

illustrated as in figure 2.7.

S212, f2

S0, N

ph1plp1t2

S132, f2

ph1plp3t2

S210, N

ph1plp1t1

S312, f2

ph1plp1t2

S13, N

ph1prp1t1

S130, N

ph1prp1t2

S310, N

ph1plp1t1

S12, N

S122, f2

ph1prp1t1

S120, N

ph1prp1t2

S21, N

ph1prp2t1

ph1prp2t2

ph1plp3t1 ph1plp2t2

S230, N

ph1plp3t1

S23, N

ph1prp2t2

S232, f2

ph1prp2t1

S320, N

ph1plp2t1

S322, f2

ph1plp2t2

S3, N

S32, N

ph1tlt2f1

S31, N

ph1tlt1f1

S2, N

ph1tlt1f1 ph1tlt3f1

S1, N

ph1tlt3f1 ph1tlt2f1

ph1trt3f2ph1trt2f2ph1trt1f2

ph1prp3t2 ph2plp3t3ph2plp3t3 ph1prp3t1 ph1prp3t2

ph1plp3t2ph1plp2t1

Figure 2.7: Dining philosophers: diagnoser ofPH1. The initial state ofPH1δ is s0.

As the number of the unobservable faulty events is far more less than that of the observable

ones, it is obvious that the size of the diagnoserAδ is close to the size of the LTS of the dining

philosophers (omitted).

Given an observationobs = ph1tlp1t1, ph1trp2t2, ph1plp2f1, ph1prp1f2, ph2tlp1t2, ph2trp3t3,

ph2plp3f2, ph2prp1f3, ph3tlp1t3, ph3trp2t1 which is followed byError, the diagnosis can be gen-

erated by simulating the diagnoser and the observation. SoDiagUPN
= {{f1, f2}} which means

the only explanation of the symptom is both the first and second philosophers exchanges their forks.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 28

[115], [116] described a modeling and diagnosis framework for systems in the DES framework.

A diagnoser based on the system model functions as an extended observer that provides estimates

of the system state under non-faulty and faulty conditions.

[118] proposed a diagnoser approach by combining each marking with its exclusive diagnosis

information, and got diagnosis by synchronizing the diagnoser with the observations. [118] requires

the PN model to be more specific so that each marking corresponds either to a correct state or to

one type of fault.

[103] improved the diagnoser approach of [115] by constructing nondeterministicdiagnosers

off-line and theon-line diagnosis is performed by maintaining a singleReachset and updating it

upon each observation.

2.4.2 PN unfolding

Net unfolding [87] is a technique of structural analysis to reduce the state-space explosion problem

which the reachability analysis approaches suffer from. The unfolding of a system fully describes its

concurrent behavior in a single branching structure, representing all the possible computation steps

and their mutual dependencies, as well as all reachable states; the effectiveness of the approach

lies in the use of partially ordered runs, rather than interleavings, to store and handle explanations

extracted from the system model.

The unfolding definitions are taken from [12] and slightly adjusted.

Definition 24 (PN Homomorphism). Given two PN graphsS = 〈P, T,W 〉 andS′ = 〈P ′, T ′,W ′〉,

a homomorphism froms to s′ is defined asϕ : P ∪ T → P ′ ∪ T ′ s.t.,

• ϕ(P) ⊆ P ′ andϕ(T) ⊆ T ′

• ∀x ∈ P ∪ T , ϕ(•x) =• ϕ(x) andϕ(x•) = ϕ(x)•

Definition 25 (Occurrence net). Given a PN graphS = 〈P, T,W 〉, two nodesx, x′ are inconflict,

noted asx]x′, if ∃t, t′ ∈ T , s.t. •t ∩• t′ 6= ∅ and t 4 x, t′ 4 x′ where4 is a reflexive transitive

closure ofW . A nodex is in self-conflictif x]x. An occurrence netO = (B,E,W) satisfies:

• B, a set of conditions;

• E, a set of transitions;

• ≺ is the causality relation;

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 29

• ∀x ∈ B ∪ E : ¬[x]x] (acyclic);

• ∀x ∈ B ∪ E : ¬[x ≺ x];

• ∀x ∈ B ∪ E : |{y : y ≺ x}| <∞;

• ∀b ∈ B : |•b| ≤ 1, each place has at most one input transition (no backward conflict).

We denotemin(O) ⊆ B as the minimal1 node set ofO for W .

Definition 26 (Cut). Two nodesx, x′ are concurrent, denoted asx ⊥ x′ if neither x 4 x′, nor

x′ 4 x, nor x]x′. A maximum concurrent conditions (or pairwise nodes) set isa cut.

Definition 27 (Configuration). A configurationC = 〈BC , EC ,41〉 ofO is defined as follows:

• C ⊆ O, C is a sub-net ofO;

• ∀a, b ∈ (BC × EC) ∪ (EC ×BC) ⇒ ¬(a]b), C is conflict-free;

• ∀b ∈ BC ∪ EC : a ∈ B anda 41 b⇒ a ∈ BC ∪EC , C is up-warded closed;

• min4(C) = min4(O), C andO have the same starting nodes.

We denoteC as the configurations set ofO.

Definition 28 (Branching process). Given a Petri net systemS, a branching processB is a pair

(O, ϕ) whereO is an occurrence net andϕ is a homomorphism fromO to S, with:

• min(O) =M0 ⇒ ϕ(min(O)) =M0

• ∀e, e′ ∈ E, •e =• e′ ∧ ϕ(e) = ϕ(e′) ⇒ e = e′

Definition 29 (Unfolding). Given a Petri net systemS = 〈N ,M0〉, the unfolding UN (M0) is a

branching processB = (O, ϕ) s.t.∀B′ = (O′, ϕ′) v B whereB′ is a prefix ofB, ∃ a homomorphism

φ : B′ → B, s.t.φ(min(B′)) = min(B) andϕ ◦ φ = ϕ′.

SoUN (M0) maximally unfoldsS and configurations are the adequate representations of the

firing sequences ofS.

So the diagnosis based on Petri net unfolding can be defined as:

1min4(X) = {x ∈ X|(x′ ∈ X ∧ x′ 4 x) ⇒ x′ = x} is the minimal element ofX.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 30

Definition 30 (Diagnosis of PN unfolding). Given a diagnosis problem〈UN , obs〉 with UN the

unfolding of a Petri net systemS = 〈N ,M0〉, the diagnosis isDiagUPN
= {tuo|tuo ∈ Tuo,∃τ is

an observable trace ofN , s.t.τ is consistent withUN × obs}.

3-d-p example 4.Figure 2.8 illustrates a part of unfolding of 2.6c which is consistent with an obser-

vationobs = t1r1t2r2t3 and symptom with placef213 is marked. SoDiagUN = {{ex1, ex2}} which

means the only explanation of the symptom is both the first andsecond philosophers exchanges their

forks.

• p2

2
• p1

1
• p3

3

p1

2
p2

1

f 21

3

t1 t2

ex1 ex2

r1 r2

t3

Figure 2.8: Dining philosophers:UN × obs for diagnosis: the superscripts and subscripts of the
intermediate places and the superscripts of the transitions are omitted.

[12] used a net unfolding approach for designing an on-line asynchronous diagnoser. The state

explosion is avoided but the on-line computation can be highdue to the on-line building of the PN

structures by unfolding.

2.4.3 PN backward reachability analysis

Reachability analysis has been successively developed essentially by taking into account forward

reachability. While backward reachability analysis is suitable for the diagnostic problem solving

[4, 58, 121, 18]. The backward reachability analysis startsfrom the final marking which represents

a symptom and calculates backwardly according to the backward searching rules to detect all the

traces that cover it. So the backward calculation can be seenas a forward calculation in the reverse

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 31

PN obtained by reversing the direction of the arcs in the original PN and modifying the enabling

and firing rule of a transition.

[4, 100] proposed the backward reachability analysis (B-W analysis) approach to model the

behavior of a system to be diagnosed. The states of the systemare represented as places, and the

inferring relations between the states are represented as transitions. So the PN model represents all

the possible logical inferring paths of the system states. TheB-W analysisis to start from the final

marking which is the observed symptom, and search backwardly all the consistent paths to decide

the possible initial markings.

[58] adapted the PN unfolding method for backward searching. The set of minimal explanations

is calculated backwards starting from the observation and deriving traces that lead back to the initial

marking. The diagnoser explores different state spaces buthas the advantage that it does not depend

on the size of the PN model but only on the size of the largest sub-net in the model that includes

only unobservable transitions. Moreover and very important the set of complete explanations can

be calculated from the set of minimal explanations wheneverthis is required.

[41] studied the minimal diagnosis of unobservable-transitions-acyclic PN. A diagnosis ap-

proach named asbasic reachability treeis proposed which is in fact an automaton2 diagnosis

based on marking graph of Petri net. [17] studied the reachability graph diagnosis approach based

on bounded PN model. The observations are transferred to ajustification-vectorto improve the

efficiency.

[131] introduced a method for modification of reachability trees in order to detect failure transi-

tions. A symbol$ means an infinite set of positive integers, so an infinite treeconsisting of infinite

reachable markings is approximated by a finite tree (reachability tree). Two kinds of diagnosers

(difference marking$-diagnoser and refined$- diagnoser) were proposed. For observable places

whose token numbers are replaced by$ in the reachability trees, the former diagnoser calculates

difference between token numbers before and after partially observed markings change, and detects

failures. In the latter diagnoser is refined to distinguish the reachable markings by normal and faulty

behaviors.

[46] used PN models to introduce redundancy into the system and additional P-invariants (places

set whose tokens number produced/consumed by the I/O arcs are equal) allow the detection and

isolation of faulty markings.

2The convergent (unobservable-transitions-acyclic) property makes sure the generated automaton is diagnosable.

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 32

2.5 Architecture of DES diagnosis

The large DES systems are usually designed as a set of interconnecting subsystems with differ-

ent topological architecture, which can be roughly dividedas decentralized and distributed ones.

So decentralized and distributed diagnostic protocols become necessary to deal with diagnosis in

distributed systems where the information is separately located.

The model-based diagnosis of DES can be classified in the literature from a topological point of

view as centralized, decentralized, and distributed approaches.

2.5.1 Centralized diagnosis

There is one centralized diagnoser that derives the system diagnosis based on its (complete) knowl-

edge of the overall system model and the overall system observation. The centralized approach can

be further classified as:

• diagnoser approach [115] where a diagnoser automaton is derived off line and the on-line

analysis is carried out by eliminating the diagnoser-states that are not consistent with the

system observation.

• active system approach [8] where the diagnosis result is derived a posteriori when the system

is in a quiescent state (out of work or idle).

The main disadvantage of a centralized approach is its high computational complexity. It re-

quires a centralized model and generates a centralized diagnoser. Since the diagnoser-automaton

can be viewed as a special observer-automaton its size may become too large to be practically

stored [107]. Even if a centralized diagnoser can be constructed it has the following disadvantages

[125]:

• weak robustness: when the centralized diagnoser is broke down, the whole system is not able

to be diagnosed.

• low maintainability: a change in the system structure requires a complete re-calculation of a

new centralized diagnoser, which can be a serious problem for the dynamic systems.

2.5.2 Decentralized diagnosis

The decentralized diagnosis problem is first considered in [33] in which the local diagnosers com-

municate with the coordinator through the no-delay channels in stead of with each other. Figure 2.9

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 33

illustrates the coordinated decentralized architecture with two local sites and communicating with

a coordinator. There is one coordinating agent receives information from several local diagnosers,

each of which performs some local diagnosis of the system with incomplete knowledge (e.g. based

on a sub-set of sensor readings or a partial knowledge of the overall model). The local diagno-

sis results are compiled in a consistent diagnosis result for the overall system by the coordinating

diagnoser e.g., [33, 97, 34, 98, 13].

L o c a l O b s e r v a t i o n s

L o c a l D i a g n o s t i c s

C o o r d i n a t o r
(m e m o r y a n d p r o c e s s i n g c o n s t r a i n t s)

F a i l u r e R e c o v e r y m o d u l e

L o c a l O b s e r v a t i o n s

L o c a l D i a g n o s t i c s

C o m m u n i c a t i o n c o n s t r a i n t s

S i t e 1 S i t e 2

F a i l u r e i n f o r m a t i o n

S y s t e m M o d e l

Figure 2.9: Coordinated decentralized architecture of DES

There are two different decentralization levels:

• [33], or its extended version [34, 120], employ a global system model which is built from

component models automatically via synchronous or asynchronous composition. After off-

line diagnosability verification, which may cause state explosion problem, the online diagno-

sis decisions can be computed. These decisions may or may notbe fused on a coordinating

site, according to the properties of the architecture. Three coordination protocols are pro-

posed in [33] that realize the proposed architecture and analyze the diagnostic properties of

these protocols.

• [8, 97, 71, 96] and [139] (synchronous automata) proposed the decentralized system model as

asynchronouscommunicating automata (or FSMs). [8] solved off-line a diagnosis problem

a posteriori, while [71] mixed a diagnoser approach [120, 97] with an extended version of

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 34

the decentralized model of [8] by computing on-line only theinteresting parts of a central-

ized diagnoser to avoid computing the global model. [96] introduced the temporal window

to improve the on-line diagnosis efficiency and the global diagnosis is built by dynamically

merging the local ones to eliminate the inconsistent traceswith the partial order reduction

technique and incremental diagnosis on sound temporal windows. Recent works on this ap-

proach [26] used decentralized or factored representations to represent the set of all trajecto-

ries more compactly without enumerating all of them.

While decentralized models could potentially reduce the state space exponentially, the actual

complexity of the diagnosis algorithms relies on the partition of the system model and the selection

of communicating events between local models.

[111] investigated the necessariness of asynchronous communication for fault diagnosis. It

modeled the asynchronous communications between two localdiagnosers with timed automata.

Then the problem of determining the states of each of the two communicating diagnosers into the

problems of factorization of the observation map and construction of an observer for a timed DES.

The diagnosers can be formulated directly from the observers.

[13] studied the problem of synthesizing communication protocols and failure diagnosis algo-

rithms for decentralized failure diagnosis of DES with costly communication between diagnosers.

The costs on the communication channels may be described in terms of bits and complexity. The

costs of communication and computation force the trade-offbetween the control objective of failure

diagnosis and that of minimization of the costs of communication and computation.

[44] proposed a modular diagnosis architecture (broker) capable of merging diagnoses provided

by local diagnosers and to enrich their formalism with synchronization constraints. The global

diagnoser algorithm manages a diagnosis tree by querying the local diagnosers to complete the

pending paths. Each candidate diagnosis is represented by apath leading to a constraintless node in

the diagnosis tree.

The decentralized approaches overcome the high complexityand the low maintainability limita-

tions of the centralized approach by calculating local state spaces (of size a lot smaller than the size

of the overall) that are maintained consistent by a centralized structure (agent). But the existence of

a centralized agent does not eliminate the disadvantage of aweak robustness.

[103] introduced a notioncodiagnosabilityto describe a requirement that any failure can be

diagnosed within bounded delay by at least one local diagnoser using it’s own observations of the

system execution. Thecodiagnosabilityproperty is stronger thandiagnosabilityunder the aggregate

observations, which declaimed a possibility that a system is centrally diagnosable but not decentrally

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 35

diagnosable.

[68, 69] focused on solving the ambiguity of several local diagnosis towards the global diagno-

sis (introduced and discussed in [134] and its extended version [135]). [69] proposed a framework

for performing diagnosis in a decentralized setting. A global diagnosis decision is taken to be a

winning local diagnosis decision, which is tagged with a certain ambiguity level. The work showed

that the codiagnosability introduced in [103] was the same as 0-inference-diagnosability; the condi-

tional codiagnosability introduced in [134] and [135] was atype of 1-inference-diagnosability; and

the class of higher-index inference-diagnosable systems strictly subsumed the class of lower-index

ones. The author of [135] claimed their architecture can be realized in a distributed environment.

2.5.3 Distributed diagnosis

In a distributed diagnosis environment, the overall systemconsists of different components, and

associated with each component, there is a local agent (diagnoser-agent) that derives the local di-

agnosis of its component. Each local agent only knows the model of the local component and of

its interactions with its neighbors. Each local agent moreover only receives signals from the mon-

itoring system for the local events. No centralized structure is assumed to coordinate the results of

the local agents but from time to time the local agents may exchange messages over communication

channels linking them. Thus the local agents derive the distributed diagnosis by local calculations

and by information exchanges, e.g., [124, 56, 125, 59, 37, 118, 57, 105, 36].

Generally speaking, distributed architectures for diagnosis differ from decentralized ones in

terms of the local models used at the different sites for model-based inferencing and in terms of the

ability for local diagnosers to communicate among each other in real-time.

For a distributed system without coordinator, the consistency check between the local diagnoses

is merely important. Thelocal consistencyrequires that all local diagnoses agree on their mutual in-

terfaces. While theglobal consistency([123]) requires the local diagnoses are the projected versions

of the global diagnosis, which needs a global system model. Some works, e.g., [101] transform

the topology of the system into a junction tree where each vertex represents a subsystem. Local

consistency between the diagnoses of these subsystems ensures global consistency due to the tree

structure.

[104], extended from [103] defined a new observation mask foreach local observer that com-

bined the effect of it’s own observation and the bounded-delay communication received by other

diagnosers. The local diagnosers communicate with each other using theimmediate observation

passing protocol. Thus the distributed diagnosis problem is reduced to a decentralized diagnosis

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 36

one. The further extended work [105] reduce the complexity of on-line diagnosis at each local site

to be linear with the number of sites by proposing a new distributed diagnosis protocol.

[124, 125, 123] proposed an automaton-based distributed and hierarchal diagnosis architecture.

Each local component has its own local diagnoser, which is built based only on knowledge about

this component. The stored size of the overall diagnoser is only the sum of state sizes of the lo-

cal diagnosers, hence spatial complexity is kept under control. Each local diagnoser is connected

with other local diagnosers based on the input/output relations among associated local components.

Adding new components, taking components out of the system or changing the input/output rela-

tions among local components only affects the local diagnosers that are directly associated with

the altered components. A hierarchical computational procedure and multi-resolution diagnosis ap-

proach are introduced in [123] to overcome the shortcomingsof high time complexity and poor

scalability of the distributed ones.

[110, 35, 37, 36, 39] discussed the distributed diagnosis problem based on PN model.

[37, 36] based on the work of [110, 12] discussed the distributed monitoring and diagnosis

problems of the asynchronous subsystems with partial ordered observations. The idea here is that

when concurrent subsystems are composed, there may be events in the alphabets of the subsystems

whose relative order is not important. Therefore, partial-order techniques reduce the complexity of

a model by not capturing all the permutations of the orderings of these events. [36] proposed and

discussed different kinds of data structures (execution tree, unfolding, trellis, etc.) of representing

the asynchronous communication, real concurrency and partial ordered events for the distributed

diagnosis. The necessariness of defining partial order is strongly insisted in this work.

[35] modeled a distributed system as a graph of interacting subsystems, with the appropriate

semantics of trajectories and stochastic framework. A centralized supervisor, collecting all obser-

vation from the system and knowing a model of the whole system, may not be affordable, so they

advocate instead a processing by parts, and extend the idea towards a completely distributed super-

visor architecture, with one local supervisor on the top of each subsystem, coordinating its activity

with the supervisors in its neighborhood.

In [118], distributed diagnosis for Petri nets with synchronous communication is studied. The

authors extend the notion of DES¡¯s diagnosers to PN¡¯s and centralized and distributed diagnosers

are designed. The centralized approach presents the same problems of combinational explosion than

the original based on FSM and the distributed approach focuses on the problem of communication

between the diagnosers.

[58] proposed a distributed diagnosis based on place-boarded PN models, which are bounded,

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 37

ordinary and known initial marking. A fault in a PN model is represented by a choice transition.

The case of unobservable interactions between components and cyclic communications are consid-

ered. The minimal explanations are derived by backward inference on each local diagnoser based

on the local partial ordered observations. [58] concerned the diagnosis of plant systems, so the

system model is assumed to be global clock scheduled insteadof event-driven. A local diagnoser

first searches for theminimal configurationto decide the initial marking withbackward unfolding

approach then infers forwardly for the possible local exited tokens to update the state of its neighbor

diagnosers. The global consistency is verified by comparingthe causal relations of the communicat-

ing events between the different sites with the observations. The state explosion problem is partially

controlled with partial observation.

2.6 Conclusion

The correctness and efficiency of MBD depends mainly on threeelements: the system model, the

fault representation, and the diagnosis approach. On the level of system model, LTS (automata)

is suitable for monotonic system with smaller states set andlarger events set; PN is suitable for

real concurrent system. On the level of fault representation, faulty states and events are normally

adopted separately. On the level of diagnosis approaches, the diagnoser, unfolding, and (backward)

reachability approaches all suffer a lot from synchronization. The PN algebraic approach can help

to improve the efficiency while the fault representation becomes difficult and complicated.

While there is no absolute adequate standard, the final choice depends on the system character-

istics and the aim of diagnosis.

The thesis dedicates to diagnose the dysfunctions of large software systems, as discussed in

chapter 1, which has the following properties:

1. Besides unobservable faulty events, faulty input can be the source of faultsalone;

2. Except in a real concurrent model, the complicate data flows, such as the parallel and cyclic

ones, cause the state space explosion;

3. The calculation of global model and observation should beavoid because of the authorizing

limits and asynchronous clocks of the subsystems;

4. Effective on-line diagnosis is preferred but the complexity off-line diagnoser generation should

be under control because of item 2;

CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 38

5. A decentralized diagnosis architecture is preferred because of item 3.

Based on the above analysis, a model-based diagnosis approach with following properties can

be an adequate choice:

1. both correct/faulty data and data propagation events aredirectly represented in the model;

2. the control of the data flow could be modeled in similar way;

3. the model should support different topological architectures.

So in the chapter 3, we introduce a Colored Petri net model which represents both the correct

and faulty data (places) and events (transitions). The datadependency relation is introduced as an

arc expression to represent the data propagation. The control of the data flow is represented with

activation places, and the algebraic diagnosis approach isused to calculate the minimal diagnosis

based on the data propagation and incidence matrix equation.

Part I

Theory: a CPN model for diagnosis in a

distributed environment

40

Chapter 3

Colored Petri net model for MBD

3.1 Introduction

Colored Petri net (CPN) [70] is an extension of PN with the data type (named ascolor set) defi-

nition on the places of PN. The creation and development of CPN was driven by the requirement

of an abstract model which is theoretically well-founded and versatile enough to represent the large

and complex industrial systems. The CPN model combines the strength of Petri nets, the synchro-

nization of concurrent processes, with that of the programming languages, data types definition and

data values manipulation.

Comparing to other formal models, like process algebra, LTS, automata, or PN, CPN model has

the following advantages for diagnosing the composite systems:

• CPN is more compact than PN thanks to the ”color” definition;

• CPN model integrates both data manipulations and process control (including synchroniza-

tion, concurrency, and structure hierarchy);

• CPN supports transition mode definition which makes the fault representation more flexible;

• CPN keeps the mathematical properties, formal analysis methods of PN like incidence equa-

tion, state space place invariant analysis, and the analysis is supported by the powerful CPN

tools [54, 84, 137].

With all the above complicate properties, CPN is in particular well suited for the systems em-

phasize in communication, synchronization, and resource sharing. The classical applications are

42

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 43

communication protocols [60, 28, 86], distributed systems[81, 22], imbedded systems [89], power

systems [27, 112], automated production/conytol systems [127, 62], work flow analysis [16], and

VLSI chips [119]. The readers are referred to [67] for more details.

3.2 Structure and dynamic

3.2.1 Structure of CPN

In comparison with classical Petri nets the Colored Petri Net (CPNs) introduces the notion of token

types, namely tokens are differentiated by colors, which may be arbitrary data values. Each place

has an associated type determining the kind of data that the place may contain. The marking of

a given place is a multi-set of values of the associated type.Arcs constraint are expressions that

extract or produces multi-sets by respect to the sources or target types. For CPNs we use terms

like types, values, operation, expression, variable, binding and evaluation and they have the same

meanings as in programming languages. In order to give a definition of the CPN, we give here,

without loose of generality, a simple syntax and semantic for expression.

• Types : noted byΠ, we range over by usingπi. Types are defined by the set of values that

compose it,π = {ν0, ..., νi, ...}. Also types can be defined by applying set operation on types.

• Variables : noted byX , we range over byχi. Variables are typed and as usual we useType(χ)

to obtain the type ofχ.

• Function : denoted byF , for a functionf ∈ F with f : π → π′ we useType(f) to define its

range type.

Definition 31 (Multi-set). LetE be a set, amulti-setm onE is an applicationm : E → Z (we use

the formal sum notation for a multi-set,m =
∑

0<i6n

q8iei, n > 0 whereqi = m(ei)). We useM(E)

to define the set of finite multi-sets fromE toZ, andM+(E) if we restrict it toN. Sum and subtract

operators between two multi-sets are defined as in [64].

Note that for a typeπ, M(π) is the type of multi-set ofπ values.

Definition 32 (Multi-set expression). Let π be a types,f a function andχ a variable, a multi-set

expressionψ is defined as follows:

• ψ ::= ν ∈ π|χ|f(ν, · · · , χ, · · ·)|
∑

0<i6n

q8iψi

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 44

We useΨ to denote the set of expression and we range over usingψi, andΨ(π) is the expression

set of typeπ.

For a given multi-set expressionψ ∈ Ψ we define the following notations :

• V ar(ψ) denote the set of variables that appears inψ.

• A binding β of a set of variablesV is an association to each variableχ ∈ V a value of

Type(χ) (β(χ) ∈ Type(χ)).

• ψβ denote the valuation ofψ under the bindingβ.

• Type(ψ) denote the type of the expression withType(ψ) = π iff ∀β, ψβ ∈ M(π). Ψ〈π〉 is

used to denote the set of expression of typeπ

Here after we give a general definition of CPN in n-uplet format. In our definition we consider

both places and transition types. We call colors the types ofplaces and modes the types of transi-

tions. Also we are in the case ofopen expressionarcs annotation (in opposition toconstant arcs

expression).

Definition 33 (CPN graph). A Colored Petri Net graph (CPN graph) is a tupleN=〈Σ, Γ, P , T , cd,

Pre, Post〉, where:

(i) Σ is a set of no-empty types, also calledcolor sets;

(ii) Γ is set of mode types;

(iii) P is a set of labeled places;

(iv) T is a set of labeled transitions;

(v) cd : P → Σ;

(vi) md : T → Γ withmd(t) = t ·m;

(vii) Pre (resp.post) ∈ B|P |×|T | :, whereB =
⋃

σ∈Σ

⋃

γ∈Γ
[γ → Ψ〈σ〉]1, are forward (resp. backward)

matrices withPre[p, t] (resp.Post[p, t]): md(t) → Ψ〈cd(p)〉.

1 we use the notation[D → D′] to represent the set of all application fromD toD′.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 45

(i) The set of types determines the data values and the operations and functions that can be used

in the net expressions (i.e., arc expressions). If desired,the types (and the corresponding operations

and functions) can be defined by means of a many-sortedsigma algebra(as in the theory of abstract

data types). We assume that each type has at least one element(see example 5).

(v) The color functioncd maps each place,p, to a typecd(p). Intuitively, this means that each

token onp must have a data value that belongs tocd(p).

(vii) Each expression of typeB must evaluate to multi-sets over the type of the adjacent place,

p. We allow a CPN diagram to have an expressionexpr of type cd(p), and consider this to be

a shorthand for18expr. [64]. While we consider transition mode each input (resp. output) arc

between a placep and transitiont (Pre[p, t] 6= ∅ resp. Post[p, t] 6= ∅), we will have as many

extraction (resp. production) expressions as modes in the transitiont. That explains the format of

Pre (resp.Post) matrix which is defined on functions from the product of places and transitions

modes type to the multi-set expressions.Pre[p, t] (resp.Post[p, t]) is a vector ofΨ〈cd(p)〉 indexed

by the modes oft (denote ast ·m).

3-d-p example 5.A CPN graph with 2 placesp1, p2, each of which has two different colors, and 1

transition t1, in whicht1 has two modesγ1 andγ2.

p1 σ1 = cd(p1) = {a,b}

p2 σ2 = cd(p2) = {b,c}

t1 md(t1) = {γ1,γ2}

γ1 : 1‘a +1‘b γ1 : 2‘a

γ2 : 1‘b +1‘c γ1 : 2‘c

Figure 3.1: A CPN graph example

Pre
t1

γ1 γ2
p1 18a+ 18b 18b+ 18c

p2

Post
t1

γ1 γ2
p1
p2 28a 28c

Table 3.1:Pre andPost matrixes

We extend here the usual matrices notations:

• Pre[., t] (resp.Post[., t]) is sub matrix ofPre (resp.Post) Matrix obtained by the projection

of the columns only ont modes.

• Pre[p, .] (resp. Post[p, .]) is a row vector ofcd(p) expressions indexed by the union of all

the transition modes.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 46

For a given transitiont and one of its modet ·m, we use the following notation :

• Pre[p, t ·m] (resp.Post[p, t ·m]) for Pre[p, t](t ·m) (resp. forPost[p, t](t ·m))

• Pre[., t ·m] ((resp.Post[., t ·m]) for Pre[., t][., t ·m] (resp. forPost[., t][., t ·m])

WhilePre[., t ·m] is vector of expression we extendsV ar(Pre[., t ·m]) =
⋃

p∈P
V ar(Pre[p, t ·

m]). Also for a bindingβ Pre[., t ·m]β = (..., ψβ
i , ...) for i = 1...|P | is the resulted vector after the

application ofβ for each expression ofPre[., t ·m]

Definition 34 (Well-formed CPN Graph). A CPN graphN = 〈Σ,Γ, P, T, cd,md, Pre, Post〉 is

well formediff:

• ∀t ∈ T, p ∈ t•, t ·m ∈ md(t) : V ar(Post[p, t ·m]) ⊆ V ar(Pre[., t ·m]) with V ar(Pre[., t ·

m]) =
⋃

p′∈•t

V ar(Pre[p′, t ·m]).

• ∀p, t : ∃t ·m ∈ md(t), P re[p, t ·m] 6= 0 ⇒ ∀t ·m′ ∈ md(t), P re[p, t ·m′] 6= 0.

• ∀p, t : ∃t ·m ∈ md(t), Post[p, t ·m] 6= 0 ⇒ ∀t ·m′ ∈ md(t), Post[p, t ·m′] 6= 0.

For a given transition and one of its mode we restrict that theoutput arc expressions variables

must be a subset of the variables which are in the input arcs expressions of the same mode. modes

represents the scopes of variable names. In addition we impose that modes respect the structure of

the Petri Net ; if a palace is an input place of transition so itis for all its modes. Thus, we use the

usual notation•t andt• for the input and output places set of transitiont and•p andp• for the input

and output transitions set of placep.

Definition 35 (Incidence Matrix of CPN). To each CPN graph, we associate its terms incidence

Matrix C = Post− Pre (see table 3.2).

Definition 36 (Fault model of CPN). Thefault modelof a CPN is a functionFM :
⋃

γi∈Γ
→ {OK,KO}

(i.e., item 2 of example 6).

3-d-p example 6.The dining philosophers in form of CPN (in figure 3.2) can be defined as follows:

1. Σ = {F = {©1 , ©2 , ©3 }}: The type forks (F) contains three series numbers of forks.

2. Γ = {WO = {co}, UO = {co, sw}}: two types of transitions; the Well-Organized (WO)

type which has only one modeco (Correctly put the forks down), correspond to the classical

transition, and the Un-Organized (UO) type which behaves either correctly (co) or switches

the forks (sw) .

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 47

1

p1

2
p2

3 p3

p11

p21

p22

p32

p13p33

t1t2

t3

r1r2

r3

χp1

1‘©1

χp2
χp2

χp3

1‘©3

co:put (χp13
)co:put (χp33

)

co:put (χp11
)

sw :put (χp21
)

co:put (χp21
)

sw :put (χp11
)

co:put (χp32
)

sw :put (χp22
)

co:put (χp22
)

sw :put (χp32
)

co:put (χp1
)

co:put (χp2
)

co:put (χp3
)

co:put (χp2
)

co:put (χp1
)co:put (χp3

)

χp11

χp21

χp32

χp22

χp13
χp33

Figure 3.2: Dining philosophers: CPN model

3. P = {p1, p2, p3, p11, p12, p22, p23, p33, p31}: pi is the series number of plate on the right

side of philosopheri before he/she takes the forks. Placespii andpji (j 6= i) represent the

intermediate places after philosopheri takes the forks.

4. T = {t1, t2, t3, r1, r2, r3}: ti andriis for the take (both forks) transition of the philosopheri

andri is for the release (of both) transition of philosopheri.

5. Variablesχi on the input arc of transitionsti represent the fork series numbers.

6. Variablesχii and χji (j 6= i) on the output arc of transitionsti represent the fork series

numbers in the right and left hands of philosopheri after he/she takes the forks.

7. ∀p ∈ P, cd(p) = F .

8. if t ∈ {r1, r2} thenmd(t) ∈ UO elsemd(t) ∈WO.

9. A function put:Σ → Σ represents the action ”putting down the forks” after a philosopher

eats. Formd(r1) ∈ UO andmd(r2) ∈ UO, the arc expressions on the left and right output

arcs ofr1 andr2 are reversed from the input ones.

Table 3.2 illustrates the incidence matrix of the 3-d-p example. Each table element represents

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 48

an arc expression which is either an expression, variable, or function of multi-set. The blank ones

represent there is no arc.

C
t1 t2 t3 r1 r2 r3

t1 : co t2 : co t3 : co r1 : sw r1 : sw r2 : co r2 : sw r3 : co

p1 −χp1 −χp1 put(χp11) put(χp21) put(χp31)

p2 −χp2 −χp2 put(χp21) put(χp11) put(χp22) put(χp32)

p3 −χp3 −χp3 put(χp32) put(χp22) put(χp33)

p11 put(χp1) −χp11 −χp11

p21 put(χp2) −χp21 −χp21

p22 put(χp2) −χp22 −χp22

p32 χp3 −χp32 −χp32

p31 χp1 −χp31

p33 χp3 −χp33

Table 3.2: Dining philosophers: incidence matrix

3.2.2 Dynamic of CPN

Dynamic properties characterize the behavior of individual CPN, e.g., whether it is possible to reach

a marking in which no step is enabled. In the following, we define the behaviors (the dynamics) of

a CPN System.

Definition 37 (CPN marking). A markingM of a CPN graph is a multi-set vector indexed byP ,

where∀p ∈ P ,M(p) ∈ M+(cd(p)). We useMN to denote the set of all marking of a netN .

Definition 38 (CPN system). A Colored Petri Net System(CPN-S) is a pairS=〈N,M〉 whereN

is a CPN graph andM is one of its marking.

Definition 39 (CPN mode enabling rules). LetS=〈N,M〉 be a CPN system,t be a transition inN

andm be one of its modes,m ∈ md(t) :

• A modet ·m is enabled, notedM [t ·m〉, iff ∃β, withM ≥ Pre[., t ·m]β.

• A transitiont is enabled, noted byM [t〉, iff ∃t ·m ∈ md(t),M [t ·m〉.

Definition 40 (CPN mode firing rules). Let S=〈N,M〉 be a CPN-S,t a transition andm one of

its mode, withM [t · m〉 for someβ. The firing of the transitiont under modem changesS to

S′ = 〈N,M ′〉 with M ′ = M + C(., t)(t ·m)β. We denote the firing asM [t ·m〉βM ′ and some

times we can abstract from the binding.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 49

Definition 41 (CPN mode sequence firing rules). We extend the definition 40 to a sequence of modes

δ ∈Mod∗ (withMod =
⋃

t∈T
md(t)) in usual way :

• M [δ〉M if δ is the empty sequence;

• M [δ〉M ′ if ∃M ′′ ∈ M, δ′ ∈Mod∗, t ∈ T, t·m ∈ md(t) such thatM [δ′〉M ′′ andM ′′[t·m〉M ′

with δ = δ′ ·m

Definition 42 (CPN reachability). Let S=〈N,M〉 be a CPN system, we note the set of reachable

marking fromM , [M〉 = {M ′ ∈ M|∃δ ∈Mod∗,M [δ〉M ′}

Definition 43 (CPN characteristic vector). Let δ ∈ Mod∗ be a sequence of modes of a net, its

characteristic vector
−⇀
δ : Mod → N 2 with

−⇀
δ (m) is the number of occurrence ofm in δ. For each

δ, we associate a transition sequenceδT ∈ T ∗ s.t. ∀i ∈ 1, · · · , |δ|, T [i] = md−1(δT [i]). So its

characteristic vector is
−⇀
δT : T → N. Note that:

−⇀
δT (t) =

∑

t·m∈md(t)

−⇀
δ (t ·m).

3-d-p example 7.A characteristic vector
−⇀
δ (see table 3.3) which means philosopher1 ate twice,

once put the forks down correctly but another time wrong (
−⇀
δ (t1co) = 2,

−⇀
δ (r1co) = 1, and

−⇀
δ (r1sw) = 1); philosopher2 ate normally (

−⇀
δ (t2co) = 1,

−⇀
δ (r2co) = 1, and

−⇀
δ (r2sw) = 0),

thus philosopher3 stopped eating when he/she found the fault (
−⇀
δ (t3co) = 1 and

−⇀
δ (r3co) = 0).

The corresponding characteristic vector of transition sequence
−⇀
δT (see table 3.4) is a vector of the

occurrence sums of all the modes of each transition.

t1co r1co r1sw t2co r2co r2sw t3co r3co
〈 2 , 1 , 1 , 1 , 1 , 0 , 1 , 0〉

Table 3.3: Dining philosophers: a characteristic vector
−⇀
δ .

t1 r1 t2 r2 t3 r3
〈2 , 2 , 1 , 1 , 1 , 0〉

Table 3.4: Dining philosophers: a characteristic vector ofa transition sequence
−⇀
δT .

GivenS = 〈N,M〉 a CPN-S and modes sequence,σ ∈ Mod∗ with M [σ〉, then the reached

markingM ′ after the firing ofσ isM ′ =M + C ×−⇀σ .

2−⇀ represents a vector, which is a column of elements of the sametype domain

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 50

3-d-p example 8.Given an initial markingM0 and a characteristic vector
−⇀
δT (see table 3.3), know

the incidence matrixC (see table 3.2), we can calculate the final markingMn of the CPN-s based

on the equation above (see table 3.5).

Mn = M0 + C×
−⇀
δT

p1: ∅ 18 ©1 t1 · co: 2
p2: 18 ©1 18 ©2 t2 · co: 1
p3: ∅ 18 ©3 t3 · co: 1
p11: ∅ ∅ r1 · co: 1
p21: ∅ = ∅ + C× r1 · sw:1
p22::∅ ∅ r2 · co: 1
p32: ∅ ∅ r2 · sw:0
p31: 18 ©2 ∅ r3 · co: 0
p33: 18 ©3 ∅

Table 3.5: Dining philosophers: incidence equation

3.3 CPN as a fault model for software systems

As claimed before, the thesis focuses on the diagnosis of thesoftware systems which means the

systems are composed by data and the activities over data. CPN is a rich model usually used to

design and check such software systems. Mainly, when using CPN for software modeling, data are

represented as places while transitions are used for activities. The CPN structure also codes the data

dependency by the arcs and also the nature of the dependency by the arcs expressions. In this thesis,

the CPN model is used to define a fault model for the software systems. This basic idea of using

CPN as fault model are as follows:

• using places to store data, transition to represent the activities, and arcs expressions to repre-

sent the data dependency under different transition modes;

• using the places types to represent the data status like corrupted data, correct data, etc.

• using transition modes to represent the corrupted and correct activities;

• profiting from the CPN properties to perform diagnosis;

• finally, defining a method that generates semi-automatically a CPN fault model directly from

the CPN model of a system.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 51

In the sequel of this section, we details in the different parts that define the CPN fault model and

we finish this section by giving a method to transform any system to a CPN model as a fault model.

3.3.1 The CPN fault model structure

The CPN as fault model has the same structure as any CPN exceptwith some restriction on the

places types, the arcs expressions, and the transition modes. Here after we motivate such restrictions.

Places types: data status

When a system crashes due to some wrong variable value, the diagnosis consists in locating the

variable that causes the crash but not its realvalue. Consider the 3-d-P example, the philosopher

number3 expects the fork number1 in his left when he founds the fork number3 or number2, he

believes the place1 has a corrupted fork value. So for each place no matter what the type of data is,

when performing diagnosis, we focus only on its correctnessstatus. Thus in the CPN fault model,

all the places share the same type: the color status type. Theplaces color status type is defined by

three values to represent the correctness status of each token (data):

• red (r) marks a place with faulty data value;

• black (b) marks a place with correct data value;

• unknown color (∗) marks a place with the data value of unknown correctness.

We note the color status type asΣ = {status = {r, b, ∗}}.

Of course to respect the quantitative constraints that define the dynamic of a CPN some places

can be typed by a multi-set ofΣ

Arcs expressions: abstract data dependency

To specify the causality between the input and output placesin CPN, we use the multi-set expression

on the input and output arcs of each transition. Again, when dealing with diagnosis, the value of the

retrieved and produced tokens is not relevant. If a variablecontains corrupted data, diagnosis is to

decide if it is possible that the corruption is due to the update of a variable by using other corrupted

data. So we need in a CPN fault model to code two information, the dependencies relations between

data and the nature of that dependencies. In our CPN model, the dependency between data is nat-

urally represented by the precedent structural relations (Pre andPost). The nature of dependency

is defined by the multi-set expression over arcs.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 52

For the input arcs we restrict that the multi-set expressions are only over status color constants

and color variables, no function is allowed. This allows to define the quantitative constraints that

defines the dynamic of the CPN and the abstraction from the real data values (only the number and

the status are important). LetΨPre
C be the set of multi-set expressions defined only on the status

color constants and variables, the pre-condition matrix ofCPN fault model isPre ∈ B|P |×|T | :

whereB =
⋃

γ∈Γ
[γ → ΨPre

C] (i.e., see the arc expressions ofp1 → t3 andp13 → r3 in figure 3.2

which are respectively18 ©1 andχp13).

Concerning the output arcs, we are interested to store the nature of dependency between the

produced output tokens and the consumed input tokens. Threeabstract dependency functions are

defined as follows:

Definition 44 (FW function). A FW functionFW : X → X with ∀x ∈ X, FW (x) = x.

Definition 45 (SRC function). A SRCfunctionSRC : ∅ → X.

Definition 46 (EL function). AnEL functionEL : Xn → Y with n ∈ N.

SoFW andSRC functions are two special cases ofEL function.

• When an output token coincides with an input parameter, we say that the transitionforwards

(FW for short) the input to the output;

• When an output parameter is created during an activity, we say the activity is thesource

(SRC) for it.

• When an output parameter is computed by the activity from oneor more inputs, we say that

it is the result of anelaboration(EL).

LetΨPost
C denotes the multi-set defined over the status constants, status variables, and the three

classes of functionsFW , SRC, EL. The post-condition matrix of CPN fault model isPost ∈

B|P |×|T | : whereB =
⋃

γ∈Γ
[γ → ΨPost

C].

Transition modes: faults

Generally in MBD using DES, faults are represented as unobservable events which means some-

thing goes wrong that we cannot observe. When dealing with the software systems, such represen-

tation of fault can be far from the reality. To explain our purpose, we suppose a functionf to divide

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 53

a natural number by 2. When we input an odd number, we get a correct answer and otherwise we

go a wrong result. In fact,f implements an entire division. Here we define the dysfunction as an

unobservable event that occur each time with an even number.Also the functions can be interpreted

as working in two modes: a correct modef : OK, or a faulty modef : KO, but onlyf is ob-

served. So we don’t violate the parsimony principal that thepossibly faulty transition can act under

two modes, which we cannot observe. Given an observation of transitions, the diagnosis consists in

determining the modes of transitions that explain the symptoms.

In CPN fault model, we keep the modes types which conform to the correct and faulty behaviors

of the system. We add also a flag functionF that maps to each mode its correct (OK) or fault (KO)

status. So for a set of modes typesΓ, we defineF :
⋃

γ∈Γ
γ → {OK,KO}.

CPN fault model definition

We can now give the definition of CPN Fault Model graph.

Definition 47 (CPN fault model graph). A CPN is a tupleN=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

(i) Σ is the status colors type;

(ii) Γ is set of mode types;

(iii) P is a set of labeled places of typeΣ: ∀p ∈ P , cd(p) ∈ Σ;

(iv) T is a set of labeled transitions;

(v) md : T → Γ;

(vi) Pre ∈ B|P |×|T | : is the forward matrices, whereB =
⋃

γ∈Γ
[γ → Ψ〈σ〉];

(vii) Post ∈ B|P |×|T | : is the backward matrices;

(viii) F :
⋃

γ∈Γ
γ → {OK,KO}.

3-d-p example 9.Figure 3.3 illustrates the example with the abstract data dependency relations.

Note that for the transitions underOK mode, the abstract data dependency isFW as output is

equal to input, while for those inKO modes, the data dependency isEL.

Table 3.6 illustrates the incidence matrix of the example with the abstract data dependency.

Each table element represents an arc expression which is either an expression, variable, or abstract

data dependency of multi-set.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 54

1

p1

2
p2

3 p3

p11

p21p22

p32

p13p33

t1t2

t3

r1r2

r3

χp1

1‘©1

χp2
χp2

χp3

1‘©3

OK :F W (χp13
)OK :F W (χp33

)

OK :F W (χp11
)

K O:EL(χp21
)

OK :F W (χp21
)

K O:EL(χp11
)

OK :F W (χp32
)

K O:EL(χp22
)

OK :F W (χp22
)

K O:EL(χp32
)

OK :F W (χp1
)

OK :F W (χp2
)

OK :F W (χp3
)

OK :F W (χp2
)

OK :F W (χp1
)OK :F W (χp3

)

χp11

χp21

χp32

χp22

χp13
χp33

Figure 3.3: Dining philosophers: CPN with abstract data dependency relations

C
t1 t2 t3 r1 r2 r3

t1 · OK t2 · OK t3 ·OK r1 · OK r1 ·KO r2 ·OK r2 ·KO r3 · OK
p1 −χp1

−χp1
FW (χp11

) EL(χp21
) FW (χp31

)
p2 −χp2

−χp2
FW (χp21

) EL(χp11
) FW (χp22

) EL(χp32
)

p3 −χp3
−χp3

FW (χp32
) EL(χp22

) FW (χp33
)

p11 FW (χp1
) −χp11

−χp11

p21 FW (χp2
) −χp21

−χp21

p22 FW (χp2
) −χp22

−χp22

p32 χp3
−χp32

−χp32

p31 χp1
−χp31

p33 χp3
−χp33

Table 3.6: Dining philosophers: incidence matrix with abstract data dependency

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 55

3.3.2 The CPN fault model dynamic

The concepts defined for the CPN are steel valid for CPN fault model such as bindings, firing rules,

production rules etc. Except that we did’nt give yet a semantic to the abstract dependency functions

under a correct or faulty mode. The semantic of theFW ,EL, andSRC is given based on the color

propagation execution.

Tables represent the diagnosis properties of each abstractdata dependency relation of I/O of a

transition for different modes (OK, KO). In each table,mt represents the transition mode,c•t/ct•

represents the color of the token in the input/output place.

As illustrated in table 3.7c, the diagnosis properties ofFW do not change along with the modes:

the correctness of output is always same with that of the input. ForEL (see table 3.7a) andSRC

(which can be seen asELs with no (unknown) input, see table 3.7b), the diagnosis properties can

be stated as:

• in theOK mode, if one of the inputs is faulty (r), the output must be faulty (r), if all the inputs

are either correct (b) or unknown (∗), the output is unknown (∗), while if the inputs are all

correct (b) then also the output is correct;

• in theKO mode, the output is faulty (r) if there is no unknown (∗) input, otherwise, the output

is unknown (∗).

So the output ofSRC relation is correct (b) underOK mode and faulty underKO mode (∗).

EL
mt c•i t c•j t ct•

OK b b b
OK r b r
OK ∗ b ∗
OK ∗ ∗ ∗
OK ∗ r r
KO b b r
KO r b ∗
KO ∗ b ∗
KO ∗ ∗ ∗
KO ∗ r ∗

(a) EL

FW
mt c•t ct•

OK/KO b b
OK/KO r r
OK/KO ∗ ∗

(b) FW

SRC
mt ct•

OK b
KO r

(c) SRC

Table 3.7: I/O data dependency ofmt for CPN diagnosis:c•1 t andc•2 t are two input places oft.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 56

1

p1

2

p2

3

p3

p11

p21p22

p32

p13p33

t1t2

t3

r1r2

r3

χp1

χp1

χp2
χp2

χp3

χp3

OK :F W (χp13
)OK :F W (χp33

)

OK :F W (χp11
)

K O:r

OK :F W (χp21
)

K O:r

OK :F W (χp32
)

K O:r

OK :F W (χp22
)

K O:r

OK :F W (χp1
)

OK :F W (χp2
)

OK :F W (χp3
)

OK :F W (χp2
)

OK :F W (χp1
)OK :F W (χp3

)

χp11

χp21

χp32

χp22

χp13
χp33

Figure 3.4: Dining philosophers: CPN model for diagnosis

The semantic of each of the abstract data dependency relation is defined based on the color

propagation rules to represent the data status (faulty, correct, or unknown status) production. The

color propagation function is equivalent to the tables .

With the color set and color propagation function definitions, the diagnosis properties are for-

mally introduced into the literature of CPN.

3-d-p example 10.Figure 3.4 illustrates the example with the diagnostic datadependency relations.

For the transitions inOK mode, the abstract data dependency is FW as output color is equal to

input color, while for those inKO modes, the data dependency is EL and the output color is always

r.

Table 3.8 illustrates the incidence matrix of the diagnostic model of the 3-d-p example. Each

table element represents a diagnostic arc expression whichis either an expression, variable, or

color propagation function of multi-set.3

3.3.3 Partial observation of CPN fault model

As we explained before, in CPN fault models, correct and fault events are flagged withOK andKO

as the modes of each transition. Following the principal of unobservabilitiy of faults, we consider

3Variablesχpi , χpii , andχpij (i 6= j) represent the diagnostic color set variables here.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 57

C
t1 t2 t3 r1 r2 r3

t1 · OK t2 · OK t3 ·OK r1 · OK r1 ·KO r2 · OK r2 ·KO r3 · OK
p1 −χp1

−χp1
FW (χp11

) r FW (χp31
)

p2 −χp2
−χp2

FW (χp21
) r FW (χp22

) r
p3 −χp3

−χp3
FW (χp32

) r FW (χp33
)

p11 FW (χp1
) −χp11

−χp11

p21 FW (χp2
) −χp21

−χp21

p22 FW (χp2
) −χp22

−χp22

p32 χp3
−χp32

−χp32

p31 χp1
−χp31

p33 χp3
−χp33

Table 3.8: Dining philosophers: the incidence matrix

that only the transitions are observable but not their modes. Also due to the concurrency in the

semantic of PN in general, the observed transitions can be partially ordered.

Definition 48 (Partial order observation). LetN be a CPN (fault model),T be a multi-set of tran-

sitions. A partial order observation ofN is a couple(S(T),C) for someσT , where:

• S(T) = {tki |1 6 k 6 T (ti)} is a set of transitions withk represents the occurrence order of

transition ti;

• C ⊆ (S(T) × S(T)) is a partial order relation, which is transitive and pre-order relation

overS(T) s.t∀t ∈ T , ∀i, j ∈ {1, · · · , |T (t)|} : (ti, tj) ∈ C∗.

3-d-p example 11.Given a set of transitions sequenceσT = t1r1t2r2t1r1t3, the corresponding

S(T) andσ (modes sequence) are listed in table 3.9. The multi-set of the transitions occurrence

is T = 28t1 + 28r1 + 18t2 + 18r2 + 18t3. We have a partial relationC = {(t
(1)
1 , r

(1)
1), (t(1)2 , r

(1)
2),

(t
(2)
1 , r

(2)
1)}.

S(T) t
(1)
1 r

(1)
1 t

(1)
2 r

(1)
2 t

(2)
1 r

(2)
1 t

(1)
3

σ t1 ·OK r1 ·KO t2 · OK r2 · OK t1 ·OK r1 ·OK t3 · OK

Table 3.9: Partial observation example

Definition 49 (Partial order observation specificity). Let T be a sequence of multi-set and let

(S(T),C1) and (S(T),C2) be two partial order observations over the same multi-setT . C1 is

less specificthanC2 iff C1 ⊂ C2.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 58

Definition 50 (Partial order observation union). Let (S(T1),C1) and (S(T2),C2) be two partial

order observations, their union(S(T1),C1) ∪ (S(T2),C2) = (S(T1) ∪ S(T2),C1 ∪C2).

Now consider CPN net system〈N,M〉 and letM ′ be marking reachable fromM by the means

of a traceτ , we denote by[−⇀τ]MM ′ = {τ ′ ∈ T ∗|M
τ

−→M ′ ∧−⇀τ =
−⇀
τ ′}.

Definition 51 (Minimal partial ordered observation). LetT be a multi-set of observations between

two markingsM andM ′, theminimum partial ordered observationbetweenM andM ′ is defined

asCM
T
→M ′

min : T × T s.t.∀C′, which has the same observable transition sequence withC, C is less

specific thanC′.

3-d-p example 12.Suppose a principle of ”taking first and then putting down theforks” and the

activities of each philosopher are collected by different monitoring components, and given sev-

eral partially ordered observations(S(T1),C1) = ({t
(1)
1 , r

(1)
1 , t

(2)
1 , r

(2)
1 }, {(t(1)1 , r

(1)
1), (t(1)2 , r

(1)
2)}),

(S(T2),C2) = ({t
(1)
2 , r

(1)
2 }, {(t(1)2 , r

(1)
2)}), and(S(T3),C3) = ({t

(1)
3 }, {∅} with the global initial

and final markings asM andM ′, the minimum partial ordered observation of the global system

CM
T
→M ′

min = C1 ∪C2 ∪C3.

Minimal partial order observation (w.r.t a multi-setT and two markingM andM ′) stores the

minimum information on the order between occurrences for all traces with the same characteristic

vector and confluent between a source and a target marking.

In this work, we suppose the CPN fault model only has the minimum of information about the

order of transition (not modes).

Definition 52 (Minimal partial order observation function). Given a CPN fault modelN , we define

observation functionObs : (MN ×MN)×M(T) → (T × N)× (T ×N) with

Obs((M,M ′),T) = (S(T), CM
T
→M ′

) if ∃τ ∈ T ∗ with M
τ

−→ M ′ ∧ −⇀τ = T and undefined

otherwise.

3.4 Related works

There are several works which use CPN as the model for diagnose. In most works, the colored

tokens are normally used to model the system descriptions, so the places represent the faulty states

and the diagnosis task is to reconstruct the possible paths which are consistent with the ordered

observations.

CHAPTER 3. COLORED PETRI NET MODEL FOR MBD 59

[19] defined a CPN model, the color set includes an integer represents the severity level as the

guard (the firing conditions for transitions) and a token identity represents control of system. The

correct and faulty states are represented as places. The MBDdiagnosis is formulated by hidden state

history reconstruction, from event (e.g. alarm) observations. The paper modeled the asynchronous

system and the on-the-fly diagnosis result is retrieved withCPN unfolding method.

[21] concerned the diagnosis problem caused by the change ofsystem structure (e.g. add or

delete components). So the dynamic components are represented as tokens and alarm are rep-

resented as the new tokens emitted by a transition through the ”reading arcs” (arcs do not con-

sume/product any token). An unfolding approach is proposedfor the CPN model by inferring the

causal dependencies between the observed events, which means by eliminating the conflict events

during unfolding the CPN. So the diagnosis problem can be expressed as the computation of an

unfolding constrained by the observations, in order to retain the trajectories that explain the obser-

vations.

[127] proposed an intelligent event-oriented diagnosis methodology and diagnostic system ar-

chitecture. The system descriptions (variables) are defined as the token colors (multi-sets). The

faulty events are represented as the unobservable transitions in CPN model. The diagnosing ap-

proach is to construct the possible event sequences according the observations. The preconditions

of the event set are described in arule table, and the effect and consequences of the event itself is

encoded in achange table. The dynamic model of the system is assumed to be partially unknown

and it is refined using the observed event sequences by a learning method. The real-time diagno-

sis operates on the CPN model of the system and on the expectedoperating procedures comparing

observed event sequences to the model-based prediction.

[89, 122] describe the modeling and use of CPN model for faultdiagnosis and recovery re-

spectively in power system and embedded control systems. The CPN model has the complex token

types based on sets or complex sets containing the structured information for error handling. The

diagnosis is achieved by marking graph reachability approach.

Chapter 4

CPN diagnosis based on inequations

system

Given a DES, the diagnosis is to compare the observed behavior of the real system and the simulated

behavior of its abstract model to detect, isolate, and explain the exceptions ([49]). So to find an

adequate abstract model which can simulate and represent the normal and abnormal behaviors of

the system is a fundamental step. In chapter 3, we have formally defined a CPN fault model which

includes the data and transitions faults. The observationsis considered as a trace of the transitions

without mode. The status of the system during the evolution is represented as the markings. In

this chapter, based on the CPN model and the observed trace, we study how to retrieve the faults

to explain the observed symptoms in an algebraic way. The diagnosis approach is based on the

reachability property of the CPN model, and realized by backward inferring.

4.1 Diagnosis problem

When a fault occurs at some moment, an exception or an alarm isobserved, what we call in diagnosis

literature, a symptom. Symptoms are presented due to some inconsistency concerns either the I/O

interfaces or control flow faults. Those symptoms, in our CPNfault model, are represented as red

tokens. When symptom(s) are detected by the monitoring component(s), the software system can

continue running, and the diagnoser(s) are triggered. So our diagnosis approach can run online

but when cooperating with the repairing components, it needto be stopped for performing possible

repairing actions, which is required in the WSDIAMOND [138]project.

In some cases, some data is declaimed to be correct, thus the corresponding token colors are

60

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 61

black. And for the data that no correct or fault information is reported, the corresponding tokens

colors stay unknown. So a symptom can be represented as a marking where the faulty data (or flow

control) is marked as red tokens and the others can be marked either as black or unknown ones.

Definition 53 (CPN symptom markings). A markingM is a symptom (exception) markingiff ∃p,

M(p)(r)6=01, which is denoted aŝM .

Given a CPN model, a diagnosis problem is a 3-tuple of an initial marking, an observed (partially

ordered) transitions trace, and a symptom marking, which contains the reported exception(s): the

red (r) token(s), the possible correct data/control(s): the black (b) token(s) and the status unknown

data/control(s): the∗ token(s).

Definition 54 (CPN diagnosis problem). Given a CPN graphN , a diagnosis problem forN is a

tupleD= 〈M0, (S(T),C), M̂ 〉:

• M0 is an initial marking of a CPN system;

• (S(T),C) is a partially ordered observation;

• M̂ is a symptom marking of a CPN system.

In real life, only the detected faulty places are marked as a red token in a symptom marking,

and the places, of which the token color are unknown, are marked as∗. We say a marking which

contains the color unknown tokens ”covers” the markings that contain the color known tokens in all

the same places. Thus a covering relation is introduced as follows:

Definition 55 (Covering relation). A covering relation< between colorsstatus = {r, b, ∗} (status ∈

Σ is a color set) is a reflective, transitive, but not symmetricrelation where any color covers itself

and the∗ color covers all colors (i.e<={(r, r), (b, b),(∗, ∗),(∗, r),(∗, b)}). We extend the color

covering relation to the multisets and markings as follows:

• let m,m′ ∈ M+(Σ), we havem′ < m iff
∑

c∈Σ
m(c)=

∑

c∈Σ
m′(c) ∧ ∀c 6= ∗, m′(c) > 0 ⇒

m(c) > m′(c)

• letM,M ′ be two markings, we haveM ′ <M iff ∀p ∈ P ,M ′(p) <M(p)

3-d-p example 13.Givenm1 = 28 ∗ +28b, m2 = 18 ∗ +18r + 28b andm3 = 28 ∗ +18r + 18b, we

havem1 < m2 but nom1 < m3.

1RememberM(p) is the color of placep in markingM (see definition 37 in chapter 3)

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 62

There is a causality relation between the initial and symptom markings (M0 + C × −⇀σ = Mn,

see section 3.2.2 in chapter 3). While in symptom markingM̂ , the correct/fault status information

is less than the real final markingMn. In the literature of the CPN diagnosis model, we say the

symptom marking ”covers” the final marking (̂M < Mn). By applying this ”covering relation” to

the incidence matrix equation of the CPN model, we get an inequations system (see equation 4.1).

M̂ <M0 + C ×
−⇀
δ (4.1)

Consider our CPN fault model, intuitively, the faults can beeither the faulty inputs or theKO

modes of the transitions which are sufficient to reach the symptom marking through the observed

trace. So a diagnosis solution should contain two parts: a subset of the place setP , of which the

token colors are red in the initial marking; a subset of the transitions modes with the fault model

KO: FM−1(KO) (see definitions 33 for CPN graph and 36 for fault model of CPNFM in chapter

3). We give now a definition of a diagnosis:

Definition 56 (CPN diagnosis). Let D=〈M0, (S(T),C), M̂ 〉 be a diagnosis problem for a CPN

graphN , a diagnosis is defined asDiag(D) ⊆ 2FM−1(KO)∪P s.t. ∀Sol ∈ Diag(D), we have

∃δ ∈Mod∗ and∃M0 <M ′
0, s.t.:

(i) ∀m ∈ Sol,
−⇀
δ (m) 6= 0 ∧

−⇀
δ T = T ∧C ⊆ δT ;

(ii) ∀p ∈ Sol,M ′
0(p) = r ∧ M̂ <M ′

0 + C ×
−⇀
δ .

(i)
−⇀
δ T = T defines the limit of the occurrence for each observed transition which can behave

in different modes.C ⊆ δT represents the observed partial ordered (C) trace should be consistent

with the transition traceδT of the modes traceδ.

(ii) indicates we are looking for a possible initial markingM ′
0 with M ′

0 < M0 and the inequa-

tions system (see equation 4.1) still holds.

Note that once transitiont behaves underKO mode (
−⇀
δ (m) > 0), it should be included in

diagnosis. So in this case, the real value of
−⇀
δ (m) is not important for diagnosis (i.e., givenm =

t1 ·KO, no matter
−⇀
δ (t1 ·KO) = 1 or

−⇀
δ (t1 ·KO) = 2, t1 ∈ Diag(D)).

Definition 57 (CPN minimal diagnosis). LetD=〈M0, (S(T),C), M̂ 〉 be a diagnosis problem for

a CPN modelN , ∀Sol ∈ Diag(D), Sol is minimal iff∀Sol′ ⊂ Sol, Sol′ /∈ Diag(D). Diag is

minimal iff∀Sol ∈ Diag(D), Sol is minimal.

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 63

p1 p2 p3 p11 p21 p22 p32 p13 p33
〈 ∗ , ∗ , ∗ , 0 , 0 , 0 , 0 , 0 , 0〉

Table 4.1: Dining philosophers: an initial markingM0

3-d-p example 14.Assume a scenario that each fork is in one plate, but we have noidea of their

positions which means the initial markingM0 contains only the unknown tokens (see table 4.1).

Then the philosophers1, 2, and3 ate in order; then the philosopher 3 took the forks and found

the fork series number in his right hand (suppose to be3) is correct but the fork series number

in his left hand (suppose to be1) is wrong. We have no idea about the series number of the third

fork. So we get a symptom markinĝM (see table 4.2) in which the placep33 contains a black

token,p13 contains a red token, andp2 contains an unknown token. Meanwhile a transition trace

δT = t1r1t2r2t3 is observed by the monitoring component, and the corresponding partially ordered

observation is denoted as(T1,C1) with T1 = {18t1, 18r1, 18t2, 18r2, 18t3} andC1 = {(t1, r1),

(t2, r2)}. The corresponding characteristic vector
−⇀
δ and the transition characteristic vector

−⇀
δ T

are illustrated in tables 4.3 and 4.4. Note that the sum of theoccurrence of modesOK andKO of

transitionr1 is 1 and the sum of the occurrence of modesOK andKO of transitionr2 is 1.

p1 p2 p3 p11 p21 p22 p32 p13 p33
〈 0 ,∗ , 0 , 0 , 0 , 0 , 0 , r , b〉

Table 4.2: Dining philosopher: a symptom markinĝM

t1 · OK r1 ·OK r1 ·KO t2 · OK r2 ·OK r2 ·KO t3 · OK r3 ·OK
〈 1 , n1 , n2 , 1 , n3 , n4 , 1 , 0 〉

Table 4.3: Dining philosophers: a characteristic vector
−⇀
δ with the transitions occurrence constraints

n1 + n2 = 1 andn3 + n4 = 1

As an intuition, each diagnosis solutionSol of the diagnosisDiag(D) is a subset of{p1, p2,

p3, md(r1), md(r2)} which includes all the places that are initially marked and all the transitions

modes which can behave inKO modes. We first give the answer to the diagnosis problemD

that the diagnosisDiag(D) should be{{p1}, {md(r1)}} which means there are two solutions to

explain the diagnosis problemD: either the fork number in the placep1 is faulty ({p1}), or the

philosopher 1 has done something wrong ({md(r1)}, means he did the release activity wrong).

More specifically, for diagnosis solution{p1}, concerning a diagnosis solutionSol (for example

Sol = {p1, p2,md(r1)}, which satisfies{p1} ⊆ Sol ⊆ {p1, p2, p3,md(r1)}, we have: for any

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 64

t1 r1 t2 r2 t3 r3
〈1,1 ,1,1 ,1,0〉

Table 4.4: Dining philosophers: a transition characteristic vector
−⇀
δ T

possible mode sequenceδ which is consistent with the partially observed trace(S(T1),C1) and for

all the initial markingsM0 <M ′
0.

• ∀m ∈ Sol,
−⇀
δ (m) 6= 0 (md(r1) = 1), and

−⇀
δ T = T1 andC1 ⊆ δT ;

• ∀p ∈ Sol, M ′
0(p) = r, s.t.,M̂ < M ′

0 + C ×
−⇀
δ , which, in this example, isM ′

0(p1) = r and

M ′
0(p2) = r;

And similar for the diagnosis{md(r1)}, any Sol, that satisfies the conditions{md(r1)} ⊆

Sol ⊆ {p1, p2, p3,md(r1),md(r2)}, satisfies the definition of the CPN diagnosis (see definition

56).

In the next section, we explain how to solve the diagnosis problem by satisfying these two

conditions.

4.2 Diagnosis of CPN by inequations system solving

Given a CPN diagnosis problemD = 〈M0, (S(T),C), M̂ 〉, a solution (see the part inside the

dashed line frame in figure 4.1) forD is to check if there exists aM ′
0 ∈ MN , a δ ∈ Mod′, with

M ′
0[δ〉M

′, s.t.: (i)M0 <M ′
0; (ii) M̂ <M ′; (iii) S(T) = S(

−⇀
δT)

This means that we seek for an initial marking, which is covered byM0, and a trace of transitions

that leads to a markingM ′ that is covered by the symptom̂M . The solution is the set of places,

which appear inM0 as∗ and inM ′
0 asr, and the set of all transitionsti that behave under faulty

mode and appear in the run. SoSol of D is the set of all the possible solutions explained above,

which is also the solutions of the inequations system 4.1. Tosolve inequations system, which

contains a set of constraints of the transitions occurrence, is similar to solve Constraint Satisfaction

Problems (CSP, [130]). While besides the transition modes occurrence constraints, the multi-set

of enumerate token colors, data dependency functions and covering relations are not defined in the

CSP solvers, so in this section, we propose the CSP-like diagnosis algorithms to solve the CPN

diagnosis problems.

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 65

Figure 4.1: A solution for a CPN diagnosis problem, which consists of an initial markingMOi
and

a traceδ. MOi
andδ′ cannot be a solution because

−⇀
δ′T 6= T

4.2.1 Inequations system

According to the definition of diagnosis for CPN model (see definition 56), a diagnosis problem is

transferred to a inequations system solving problem (see equation 4.2).

Q
M̂































































OCtj :
∑

m∈
−⇀
δ (md(tj))

m =
−⇀
δ (tj)

· · ·

Eqp1 : M̂ (p1) <M0(p1) + C(p1, .)
−⇀
δ

· · ·

Eqpi : M̂(pi) <M0(pi) + C(pi, .)
−⇀
δ

· · ·

Eqpn : M̂(pn) <M0(pn) + C(pn, .)
−⇀
δ

(4.2)

n = |P | represents the number of the places. If a transitiont is allowed to behave either in

OK or KO mode, an occurrence constraint equationsOCt is associated to make sure the sum of

the occurrence ofOK andKO modes is equal to the sum of the occurrence of transitiont in the

observed trace. So in factOCt contains two variables which represent the modes occurrence ofOK

andKO of transitiont.

Each placep corresponds to an inequationEqp where the left part isl(Eqp)=M̂(p) and the right

part isr(Eqp)=M0(p) + C(p, .) ×
−⇀
δ . Eachr(Eqp) consists of the items which have the similar

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 66

structures:itemi =
−⇀
δ (mi) × Ψ(cd(p′)) with p′ ∈ P (Note thatM0(p) can be seen as18M0(p)).

The occurrence
−⇀
δ (mi) can be a constantnj or a variablevj, and the color expressionΨ(cd(p′))

can be a constant colorr, b, ∗, a variableχp′ , which represents the color of placep′, or a data

dependency function which can beFW (χp′), EL(χp′
1
, · · · , χp′n

), orSRC(t). Denoter(Eqp)+ as

the not negative items on the right side of the inequationEqp.

3-d-p example 15.Concerning the diagnosis problem, an inequations systems,which is got by

matrix calculation (see table 4.5), should be satisfied.

M̂ < M0+

C t1 t2 t3
r1 r2 r3

OK KO OK KO

p1 −χp1 −χp1 FW (χp11) r FW (χp13)
p2 −χp2 −χp2 FW (χp21) r FW (χp22) r

p3 −χp3 −χp3 FW (χp32) r FW (χp33)
p11FW (χp1) −χp11 −χp11

p21FW (χp2) −χp21 −χp21

p13 FW (χp1)
p33 FW (χp3)
p22 FW (χp2) −χp22 −χp22

p32 FW (χp3) −χp32 −χp32

×

t1: 1
r1.OK: n1

r1.KO: n2

t2: 1
r2.OK: n3

r2.KO: n4

t3: 1
r3: 0

Table 4.5: Dining philosopher: inequations system in form of matrix calculation

The inequations system of the three dining philosophers is shown in equation 4.3. And for

example, in an inequationEqp1, the items on the right side are:∗, −18χp1, −18χp1, n81FW (χ11),

andn82r. r(Eqp)
+ includes the items∗, n81FW (χ11), andn82r.















































































































OCr1 : n1 + n2 = 1

OCr2 : n3 + n4 = 1

Eqp1 : 0 < ∗ − 18χp1 − 18χp1 + n81FW (χ11) + n82r

Eqp2 : ∗ < ∗ − 18χp2 − 18χp2 + n81FW (χp21) + n82r + n83FW (χp22)+

n84r

Eqp3 : 0 < ∗ − 18χp3 − 18χp3 + n83FW (χp32) + n84r

Eqp11 : 0 < 0 + 18FW (χp1)− n81χp11 − n82χp11

Eqp21 : 0 < 0 + 18FW (χp2)− n81χp21 − n82χp21

Eqp13 : r 3 0 + 18FW (χp1)

Eqp33 : b 3 0 + 18FW (χp3)

Eqp22 : 0 3 0 + 18FW (χp2)− n83χp22 − n84χp22

Eqp32 : 0 3 0 + 18FW (χp3)− n83χp32 − n84χp32

(4.3)

According to the token colors in the symptom markinĝM , the inequationsQ
M̂

is divide into

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 67

three exclusive subsets:̂M = Qr
M̂

∪Qb
M̂

∪Q∗
M̂

which are defines as follows:

Qr
M̂

= {Eqp|l(Eqp) = r} (4.4)

Qb

M̂
= {Eqp|l(Eqp) = b} (4.5)

Q∗
M̂

= {Eqp|l(Eqp) = ∗ ∨ l(Eqp) = 0} (4.6)

Qr

M̂
represents an inequations set in which the left side of the inequation is a red (r) token;

Qb
M̂

represents the inequations set in which the left side of the inequation is a black (b) token;Q∗
M̂

represents the inequations set in which the left side of the inequation is an unknown (∗) token or no

token.

3-d-p example 16.The inequations system (see equation 4.3) can be divided as:Qb
M̂

= {Eqp33},

Qr
M̂

= {Eqp13}, andQ∗
M̂

= {Eqp1 ,Eqp2, Eqp3,Eqp11 ,Eqp21 , Eqp22, Eqp32}.

In the MBD theory, the more information is considered in the symptom, the more precisely the

diagnosis is. In the CPN model for diagnosis, the black token(s) in the symptom marking is helpful

to reduce the number of the possible diagnosis results. Whatwe do is to integrate this ”black

token(s)” information into other inequations to form an updated inequations system.

4.2.2 Algorithms

To solve the inequations system, there are two steps to follow:

(i) to start from the inequations ofQb

M̂
, to infer the possible related black toke(s) and transi-

tion(s) behave underOK mode, and to update the inequations system if necessary (function

getImpossibleSols, see algorithm 2);

(ii) to start from the inequations ofQr

M̂
and to infer the diagnosis in the set ofQ∗

M̂
without violate

the transition occurrence constraints (functiongetDiag, see algorithm 4).

(i) The inferring process starts from the left side of an inequation ofQb
M̂

. To make sure the

black token ”covers” the color expressions on the right side, it is obliged to make sure that on the

right side of the inequation, there is at least one positiveb. The functiongetImpossibleSols has the

following sketch: to solve the inequations system by recursively calling functioninferOneBlack,

which solves one inequation ofQb
M̂

, backward along the data dependency functions.

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 68

(ii) To make sure the red token on the left side ”covers” the expressions on the right side, it

sufficient to have at least oner token on the right side. That is, all the combinations of the value of

the items
−⇀
δ (mi) × Ψ(cd(p′)), which has at least oner, are sufficient to propagate ar token on the

left side. So the inferring result of each inequation can be represented as a set of places that ”might”

contain a red token, and a set of transitions modes that ”might” beKO. The functiongetDiag has

the following sketch: to solve the inequations system by recursively calling functioninferOneRed,

which solves one inequation ofQr
M̂

, backward along the data dependency functions.

getImpossibleSols function

To solve one inequation ofQb
M̂

(by functioninferOneBlack), there are two kinds of inequations

to consider:

(i) the inequations have no negative items, as ther tokens cannot be consumed, the value of each

the nonnegative item should beb. So the related occurrence constraints can be updated and

the tokens it depends on in the data dependency functions should beb.

(ii) the inequations have negative items, so there are many possible combinations of the value of

the unknown variables. And there is only one impossible situation: its initial marking isr,

and all its input transitions behave each time underKO mode. This information can help to

reduce the diagnosis result only if all the following conditions are satisfied: its initial marking

is known to ber, each of its input transitions is fired only once, and there isa diagnosis solution

which says all its input transitions behave underKO mode. In this case, this solution should

be deleted from the diagnosis (see example 17).

3-d-p example 17.Given an inequationEqp1 : b < r−28χp1+n
8
1FW (χp2)+n

8
2r+n

8
3FW (χp3)+

n84r, and occurrence constraintsn1+n2 = 1 and dn3+n4 = 1 if there is a solutionsol = {p2, p3}

in the diagnosis result, we should delete it.

(i) For the each item ofr(Eqp), there are two cases: (see algorithm 1):

• v8jr (line 2), then the occurrence variablevj must be 0;

• v8jχp or v8jfunc with func is a data dependency function (line 3), ifvj > 0, then the color

variable (including the variables infunc), χp must beb;

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 69

3-d-p example 18.Consider the inequationEqp33 ∈ Qb
M̂

, to apply the function

getImpossibleSols(Eqp33), there are two no negative items:0 and18FW (χp3), so the only pos-

sible to propagate ab token on the left side is thatFW (χp3) = b (the third case), which infers

χp3 = b.

Algorithm 1 inferOneBlack(Eqp): solve oneQb
M̂

inequation to get a constraint

Input: Eqp: oneQb
M̂

inequation concerns a placep;
1: if r(Eqp) has no negative itemthen
2: updateOC with conditionti.KO = 0;
3: return all color variablesχp′ (including the variables in the data dependency functions)for

further inferring;
4: else ifr(Eqp) has negative itemsthen
5: if M0(p) = r and all the related transitions occurrences are constrained to be1 then
6: return all theKO modes of which transitions inEqp as an impossible solution;
7: end if
8: end if

(ii) To retrieve the impossible solutions set for one inequation in Qb

M̂
, the idea is to start from

each black token inM̂ , and infer backward recursively (line 8) through all the color variables. In

algorithm 2, two kinds of the inequations during the furthersolving are considered:

• to further solve a inequationEqp′ ∈ Q∗
M̂

with the left part is∗ (line 8),Eqp′ is transformed

into a new inequation inQb

M̂
by evaluating the∗ on the left side of the inequation asb;

• to further solve a inequationEqp′ ∈ Q∗
M̂

with the left part is0 (line 10),Eqp′ is transformed

into a new inequation inQb

M̂
by adding a color variableχp′ on both sides of the inequation

and evaluating the left one asb.

Thus a new inequations system is constructed for further constraint solving and the ”covering

relation” of the inequationEqp′ is not violated.

3-d-p example 19.As a continue of the example, functiongetImpossibleSols starts fromEqp33 ,

which calls the functioninferOneBlack(Eqp33) and leads toχp3 = b. Then the recursion starts.

As l(Eqp3) = 0, we addχp3 on both sides ofEqp3 and evaluate the one on the left side asb (we

denote the new inequation asEq′p3). ButM0(p3) = ∗, there is no impossible solution forEq′p3 (see

figure 4.2(a)).

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 70

χp33
= b

χp3
= b

∅
(a)χp33 = b

χp13
= r

χp1
= r

χp11
= r

n1 = 0∧n2 = 1

(b) diagnosis

Figure 4.2: Dining philosopher: apply functiongetImpossibleSols (algorithm 2) orgetDiag (al-
gorithm 4) as a processes top-down, which means to search backward along the data dependency
functions, and stops when reaching stable status.

Algorithm 2 getImpossibleSols(Q
M̂
): get the impossible solutions forQ

M̂

Input: Q
M̂

: the inequations system;
1: ImpossibleSols = ∅ as the set of the impossible solutions;
2: ForEachEqp ∈ M̂ b do
3: apply algo 1 and store the returns inImpossibleSols;
4: denoteQb′

M̂
as the set of the inequations need to solve further;

5: end for
6: ForEachEqp ∈ Qb′

M̂
do

7: if l(Epp) = 0 then
8: replaceEqp with b < χp + r(Eqp);
9: else if l(Epp) = ∗ then

10: replaceEqp with b < r(Eqp);
11: end if
12: Recursion:
13: apply algo 1;
14: updateM̂∗ andM̂ b;
15: end for
16: return ImpossibleSols;

During the diagnosis inferring, each impossible solution should be considered, so the impossible

solutions set is the union of the impossible solutions for each inequation inQb
M̂

(line 3 in algorithm

2).

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 71

Diagnosis inferring

The diagnosis algorithm executes backward reasoning recursively for each inequationEqp ∈ Qr

M̂

and then combines all the diagnosis results (algorithm 4). The impossible solutions setImpossibleSols

should be considered to reduce the diagnosis result.

So the inferring principles ofinferOneRed(Eqp) with Eqp ∈ Qr

M̂
can be described as: for

each positive itemitem+
j on the right sider(Eqp), its valuemightber. In algorithm 3, two cases

of the expression items are considered:

• v8jr (line 2), then the occurrence variablevj must be larger than 0;

• v8jχpj or v8jfunc with func is a data dependency function (line 3), ifvj > 0, then all the

color variablesχpj (including the variables infunc) might ber;

3-d-p example 20.Consider the inequationEqp13 ∈ Qr

M̂
, by applying the functioninferOneRed

(Eqp13), there are two no negative items:0 and18FW (χp1). So the only possibility to propagate a

r token on the left side is thatFW (χp1) = r (the third case), which infersχp1 = r.

Algorithm 3 inferOneRed(Eqp): partially solve aQr

M̂
inequation

Input: Eqp: oneQr
M̂

inequation concerns a placep;
Output: Diag: Diagnosis set;

1: ForEach positive item inl(Eqp) do
2: Diag.add(mni

) if mni
/∈;

3: Diag.add(p′) if χp′ is a color variable (includes the variables in the data dependency func-
tions);

4: end for
5: return Diag;

The part on the right side of an inequation is an expression composed by data dependency

functions, constants, and the corresponding place variables which may have positive or negative oc-

currences. Solving the inequation consists in canceling the negative terms in the right part, keeping

the positive color functions, and evaluating the positive occurrenceni of red tokens (r) asni > 0 to

explain the red token on the left side of the inequation (see algorithm 3). Algorithm 3 looks for, in

one inequation, the possible diagnosis corresponding to one symptom placep in a symptom mark-

ing. And at the same time, it looks for the candidate inequations which can explain further how the

red token is propagated. So to completely solve a red token inthe symptom marking, a searching

algorithm to recursively back reason by reconstructingQr
M̂

andQ∗
M̂

(algorithm 4).

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 72

To retrieve the diagnosis for one inequation inQr
M̂

, the idea is to recursively infer to other

inequations for further solving through the data dependency functions and the color variables. In

algorithm 4, two kinds of the inequations during the furthersolving are considered:

• to further solve a inequationEqp′ with the left part is0 (line 5),Eqp′ is transformed into a

new inequation inQr
M̂

by adding a color variableχp′ on both sides of the inequation and

evaluating the left one asr.

• to further solve a inequationEqp′ with the left part is∗ (line 7),Eqp′ is transformed into a

new inequation inQr
M̂

by evaluating the∗ on the left side of the inequation asr;

Thus a new inequations system is constructed for further diagnosis solving and the ”covering

relation” of the inequationEqp′ is not violated.

Algorithm 4 getDiag(Q
M̂
): Diagnosis with constraints

Input: Q
M̂

: the inequations system;
Output: Diag: diagnosis set;

1: Diag = ∅;
2: ForEachEqp ∈ M̂ r do
3: apply algo 3
4: ForEachEqp ∈ M̂∗ do
5: if p ∈ Diag andl(Epp) = 0 then
6: replaceEqp with r < χp + r(Eqp);
7: else ifp ∈ Diag andl(Epp) = ∗ then
8: replaceEqp with r < r(Eqp);
9: end if

10: Recursion:
11: apply algo 3;
12: updateQ∗

M̂
andQr

M̂
;

13: merge theDiag and denote asDiagp;
14: end for
15: end for
16: Diag =

∪
× Diagp \ ImpossibleSols;

17: return Diag;

3-d-p example 21.As a continue of the example, functiongetDiag(Q′′
M̂

starts,χp1 = r call the

function inferOneRed(Eqp13), and getEqp1, which needs to solve further. And then function

inferOneRed(Eqp1) is called in recursion. Asl(Eqp1) = 0, we addχp1 on both sides ofEqp1
and evaluate the one on the left side asr (we denote the new inequation asEq′p1). Then we infer

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 73

among the no negative items∗, 18χp1 (the new item added during the former step),n81χp11, andn82r.

Meanwhile we should consider the occurrence constraintOCr1 : n1 + n2 = 1. To make sure to

propagate ar token on the left side ofEqp1, we have three possibilities:χp1 = r; χp11 = r ∧ n1 =

1∧n2 = 0 (which meansr1 behaves inOK mode); orn1 = 0∧n2 = 1 (which meansr1 behaves in

KO mode). So up to now,DiagP = {p1, p11}, andDiagM = {md(r1)}. Note thatM0(p11) = 0,

soEqp11 need to solve further.

Then we can construct a new inequations systemQ′′
M̂

with Q′′b
M̂

= {Eqp33 , Eq′p3, Eq′p32},

Q′′r
M̂

= {Eqp13 ,Eq′p1}, andQ′′∗
M̂

= {Eqp2, Eqp21, Eqp22, Eqp11}.

Similarly,Eqp11 is transformed toEq′p11 by addingχp11 on both sides ofEqp11 and evaluating

the one on the left side asr. Then we get the resultEqp1 = r (or DiagP = {p1}). As there is

no more inequation to infer, the functiongetDiag(Q′′
M̂
) returns the resultDiag = {p1,md(r1)}.

The recursive process of calculatinggetDiag(Q
M̂
) by applying algorithm 4 is illustrated in figure

4.2(b).

Multiple faults diagnosis

The diagnosis should be able to explain all the possibilities that how the symptom marking is gener-

ated. That is, each item in the diagnosis is a possible explanation for each red token in the symptom

marking. Algorithm 4 (lines 1 to 15) calculate all the possible explanations for one red token. The

union set of all the single faults (one red token) is a diagnosis solution for the inequations systems

Q
M̂

. We use amulti fault operator
∪
× to integrate the solutions (line 16 in algorithm 4).

Definition 58 (Multi fault operator).
∪
× is an operator that calculates the Cartesian product and

then keeps the minimal subsets.

3-d-p example 22. Still consider the same diagnosis problem, as it is a single fault diagnosis

problem (Qr
M̂

= {Eqp13} which has only one inequation), we need not to use
∪
× operator to cal-

culate the diagnosis for multiple faults. So the diagnosisDiag(D) of the diagnosis problemD is

{p1,md(r1)}. It means there are only two explanations: either the initial value ofp1 is faulty, or

philosopher 1 has made a mistake when he released the forks.

3-d-p example 23.Now consider a multiple faults scenario, in which the symptom marking has

red tokens in placep13 and p33 (see table 4.6). The initial marking and observed trace keeps

unchanged (see tables 4.1 and 4.3). So the 3th philosopher finds faulty forks in both hands, which

meansχf13 = r and χf33 = r. By applying the diagnosis algorithm, the diagnosis process is

illustrated in figure 4.3.

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 74

p1 p2 p3 p11 p21 p22 p32 p13 p33
〈 0 ,∗ , 0 , 0 , 0 , 0 , 0 , r , r〉

Table 4.6: Dining philosopher: symptom markinĝM with multiple faults

χp13
= r

χp3
= r

χp11
= r n2 > 0 (or md(r1) = KO)

(a) Diag forχp13 = r

χp33
= r

χp3
= r

χp32
= r n4 > 0 (or md(r2) = KO)

(b) Diag forχp33 = r

Figure 4.3: Dining philosopher diagnosis: apply the diagnosis algorithm 4 as a processes top-down,
which means to search backwards along the data dependency functions, and stop when arriving to
a node which has been visited.

The diagnosis is show in the following equation (equation 4.7), which means 4 diagnosis solu-

tions can explain the symptom marking:{p1, p3}: the forks 1 and 3 were not in the right plates at

the beginning;{p1,md(r2)}: fork 1 was not in the right plate and philosopher 2 made a mistake

when he released the forks;{md(r1), p3}: philosopher 1 made a mistake when he released the forks

and fork 3 was not in the right plate; and{md(r1),md(r2)}: philosophers 1 and 3 made mistakes

when they released their forks.

Diag(D) = {{p1}, {md(r1)}}
∪
× {{p3}, {md(r2)}}

= {{p1, p3}, {p1,md(r2)}, {md(r1), p3}, {md(r1),md(r2)}} (4.7)

4.3 The minimality of CPN diagnosis

The diagnosis algorithms perform the algebraic approach, which is effective and capable for han-

dling the cyclic observation traces. But at the same time, the use of the characteristic vector loses

part of the execution order of the transition. In this case, how to ensure the minimality of the

diagnosis?

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 75

•

p1

•

p2

•

p3

• p4

p5

t1 t2

t3

χp1
χp2

OK:FW (χp2
)

KO:rFW (χp1
) χp3

χp3

χp3

χp4

EL(χp3
,χp4

)

Figure 4.4: an example of CPN in which the
execution order of transitiont1 and t2 may
effect the diagnosis result

C t1
t2 t3OK KO

p1 -χp1

p2 -χp2 -χp2

p3FW(χp1)− χp3FW(χp2)− χp3 r-χp3 -χp3

p4 -χp4

p5 EL(χp3, χp4)

Table 4.7: Incidence matrix of the example illustrated
in figure 4.4

Assume an small CPN as illustrated in figure 4.4, we have its incidence matrix as in table 4.7

and the initial and symptom marking in table 4.8.

M0

〈p1,p2,p3,p4,p5〉
b , b , b ,∗ , 0

M̂
〈p1,p2,p3,p4,p5〉

0 , 0 , 0 , 0 , r

−⇀σ
t1 · OK t2 · OK t2 ·KO t3 ·OK

1 n1 n2 1

Table 4.8: Initial, symptom marking and characteristic vector of the example in figure 4.4

Then instanced inequations system is shown in equation 4.8.



























































n1 + n2 = 1

p1 : 0 < b− 18χp1

p2 : 0 < b− n81χp2 − n82χp2

p3 : 0 < ∗+ 18FW (χp1)− 18χp3 + n81FW (χp2)− n81χp3 + n82r − n82χp3

−18χp3

p4 : 0 < ∗ − 18χp4

p5 : r < 0 + 18EL(χp3 , χp4)

(4.8)

Suppose a completely ordered observation({t1, t2, t3}, {(t2, t1), (t1, t3)}), its minimal diagno-

sis should beDiag(D) = {{p4}} if we compute with other diagnosis methods, like DES diagnoser

or PN unfolding. In fact,{{p4}, {md(t2)}} is the diagnosis for complete observation({t1, t2, t3},

{(t1, t2), (t2, t3)}) which generates the same symptom marking (in table 4.8).

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 76

In this CPN model, the execution order of transitionst1, t2 andt3 is not defined, andt1 andt2

can be fired in parallels. So its partial order relations setC = ∅. In this case, both the observations

({t1, t2, t3}, {(t1, t2), (t2, t3)}) and({t1, 1vt2, t3}, {(t2, t1), (t1, t3)}) are legal. And they corre-

sponds to a same characteristic vector as shown in table 4.8.By applying the algorithms 1-4 on the

inequations system 4.8, the diagnosis result is:Diag(D) = {{p4}, {md(t2)}}, which is a correct

minimal diagnosis for the CPN model.

So the loss of the partial events order cannot make sure the retrieved diagnosis is minimal but is a

supersetof the minimal diagnosis. As the observation is defined as partially ordered, the impossible

solutions for the observations is allowed to be minimal. In this case, the CPN model can fully

models the parallel or concurrent events. This is very useful for modeling the complicate systems,

like distributed systems (see chapter 6), of which observations are distributed also.

4.4 Related work

[144] proposes a decentralized model-based diagnosis algorithm based on the similar PNs model

([78]) by searching the possible trajectories backward. But in [144], local diagnoser does not support

iteration of the system execution.

[118] models a modular interacting system as a set of place-bordered Petri nets and proposes

a distributed online diagnosis which applies algebra calculations from the local models and the

communicating messages between them. But the fact that [118] models the state of a model as a

transition which causes the combinatorial explosion of thestate space.

In [4], the similar definition of PN model for diagnosis are defined: the colored token, the

covering relationships between different tokens. The diagnosis is retrieved by backward reachability

search. Like [118], its simple Petri nets definition are too limited to deal with the data aspects

A similar diagnosis approach has been proposed in [5], of which we use the same data de-

pendency relation. But [5] does not support loops in system process while we represent loops as

the occurrence in a characteristic vector. In such way, we solve the loops without extra cost. The

consistency-base diagnosis approach proposed in [5] is more abstract but loses the precision on the

modeling level.

To generate each occurrence constraint equation, the diagnoser need to parse the observation

trace to calculate the occurrence of each transition. Thus our diagnosis approach very slightly de-

pends on the length of observation trace. During the diagnosis process, although our approach

CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 77

contains recursive process, in worst case, each inequationis checked at most once. For each in-

equation concerning placep, the time of calculating depends on the number of the data dependency

functions defined in scope of•p, which is|Mod| in worst case, where|Mod| is the sum of modes.

So in the worst case, the time of the calculation of diagnosisis: |P | × (|Mod| + |T |), where|P |

is the number of places,|T | is the number of transitions. As|Mod| > |T |, so the complexity of

the diagnosis isO(|P | × |Mod|). But in the process which contain loops, the complexity of our

algorithm is much less than those of [141], [5], [144] (O(|P | · |δ|2), where|δ| is the length of a

trace).

Part II

Application: data fault diagnosis of

decentralizes Web services

79

Chapter 5

Web services Application

5.1 Introduction

In this chapter we give an overview of the service-oriented architecture (SOA) based on Web ser-

vices, and the related protocols of designing, composing, and executing Web services. A formal

method is given to translate the standard Web service protocols (like structured programming lan-

guages) into CPN model for diagnosis. A foodshop case study example is introduced. The related

works about the diagnosis approaches applied to Web services applications are discussed also.

5.2 SOA and Web service

The speeding increase of the information systems complexity makes it necessity to integrate the

different systems within multiple business domains and offers seamless services to the clients, which

is named as service-oriented architecture (SOA).

SOA defines how to integrate widely disparate applications for a world that is Web based which

use multiple implementation platforms. Rather than defining an API, SOA defines the interface in

terms of protocols and functionalities. An endpoint is the entry point for such an SOA implementa-

tion.

Web services can implement SOA by making functional building-blocks, which are accessible

over standard Internet protocols, independent of platforms and programming languages.

A Web service can be basic or composite, and the basic ones make up composite ones. Nor-

mally, we construct composite Web services in two ways: the orchestrated [9] (figure 5.1a) or

choreographed [61] (figure 5.1b), which differ in executability and control.

81

CHAPTER 5. WEB SERVICES APPLICATION 82

S

S1 S2 · · · Si

Si1 Si2 · · · Sim

· · · Sn

(a) Orchestrated

S1

S2

S3

S4

S41 S42 · · · S4n

(b) Choreographed

Figure 5.1: Composite Web service structure

An orchestrated Web service always represents control fromone party¡¯s perspective. There

is an orchestrating service which is in charge of communicate with all other service to perform a

process. The orchestration can be recursive so a set of orchestrated Web services can a tree-shape

organization structure.

Choreography ”tracks the message sequences among multipleparties and sources-typically the

public message exchanges that occur between Web services-rather than a specific business process

that a single party executes” [95]. So there is no central role for a set of choreographed Web services.

Choreography specifies a protocol for peer-to-peer interactions, defining, e.g., the legal se-

quences of messages exchanged with the purpose of guaranteeing interoperability. Such a protocol

is not directly executable, as it allows many different realizations.

There are three roles related to the Web services consummation: the requester (or clients),

services themselves, the inventory (registry). These three roles communicate between each other

through different protocols: UDDI, SOAP, WSDL. Figure 5.2 illustrates the relationships between

Web service related roles and the communication protocols.

Service
Registry

Requester Service

UDDI
for discovery

SOAP
at run time

UDDI
for exposure

WSDL
at design time

Figure 5.2: The relations between the roles and protocols

CHAPTER 5. WEB SERVICES APPLICATION 83

5.2.1 SOAP

Simple Object Access Protocol (SOAP) [43] is a protocol specification for exchanging structured

information in the implementation of Web Services in computer networks. It relies on XML as

its message format, and usually relies on other ApplicationLayer protocols (most notably Remote

Procedure Call (RPC) and HTTP) for message negotiation and transmission. SOAP can form the

foundation layer of a web services protocol stack, providing a basic messaging framework upon

which web services can be built.

SOAP consists of four parts:

1. The SOAP envelope construct defines an overall framework for expressing what is in a mes-

sage, which should deal with it, and whether it is optional ormandatory.

2. The SOAP encoding rules define a serialization mechanism that can be used to exchange

instances of application-defined data types.

3. The SOAP RPC representation defines a convention that can be used to represent remote

procedure calls and responses.

4. The SOAP binding defines a convention for exchanging SOAP envelopes between peers using

an underlying protocol for transport.

Figure 5.3: SOAP structure

Figure 5.3 illustrates the structure of SOAP. To simplify the specification, these four parts are

functionally orthogonal. A SOAP message could be sent to a Web service (for example, a house

price database) with the parameters needed for a search. Theservice would then return an XML-

formatted document with the resulting data (prices, location, features, etc). Because the data is

returned in a standardized machine-parsable format, it could then be integrated directly into a third-

party site.

CHAPTER 5. WEB SERVICES APPLICATION 84

In particular, the envelope and the encoding rules are defined in different namespaces. Table 5.1

illustrates an example for a SOAP message.

1 <so ap en v : En v e l o p e

xmlns:soapenv =” h t t p : / / schemas . xmlsoap . org / soap / en v el o p e / ”

3 xmlns:wsa=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 4 / 0 8 / a dd r e s s i n g ”

x m l n s : x s i=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

5 x s i : sch em aLo ca t i o n =” h t t p : / / schemas . xmlsoap . org / soap/ en v e l o p e / ”>

<so ap en v : H ead e r>

7 <wsa:ReplyTo>

<wsa:Address>h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 4 / 0 8 / a d d r e s s i n g / r ol e / anonymous</ wsa:Address>

9 </ wsa:ReplyTo>

<wsa:From>

11 <wsa:Address>h t t p : / / l o c a l h o s t : 8 0 8 0 / ax i s2 / s e r v i c e s / MyService</ wsa:Address>

</ wsa:From>

13 <wsa:MessageID>ECE5B3F187F29D28BC11433905662036</ wsa:MessageID>

</ so ap en v : H ead e r>

15 <soapenv :Body>

<r e q : e c h o x m l n s : r eq =” h t t p : / / l o c a l h o s t : 8 0 8 0 / ax i s2 / s e r vi c e s / MyService / ”>

17 <r e q : c a t e g o r y>c l a s s i f i e d s</ r e q : c a t e g o r y>

</ r e q : e c h o>

19 </ soapenv :Body>

</ so ap en v : En v e l o p e>

Listing 5.1: An XML fragment of response SOAP message

5.2.2 UDDI

Universal Description Discovery & Integration (UDDI) [23]is the definition of a set of services

supporting the description and discovery of

• businesses, organizations, and other Web services providers,

• the Web services they make available,

• the technical interfaces, which may be used to access those services.

Based on a common set of industry standards, including HTTP,XML, XML Schema, and SOAP,

UDDI provides an interoperable, foundational infrastructure for a Web services-based software en-

vironment for both publicly available services and services only exposed internally within an orga-

nization. 5.2 shows a piece of XML fragment of a Node BusinessEntity.

<b u s i n e s s E n t i t y bus inessKey =” u d d i : t e m p u r i . o r g : u d d i n o deb u s i n essK ey ” xmlns=” u r n : u d d i−o r g : a p i v 3 ”>

2 <name xml : lang=” en ”>A UDDI Node</ name>

<d e s c r i p t i o n xml : lang=” en ”> Th is r e p r e s e n t s a sample model o f how a UDDI node migh t r e p r e se n t i t s e l f i n UDDI

4 </ d e s c r i p t i o n>

<categoryBag>

6 <k ey ed Re f e r en ce tModelKey =” u d d i : u d d i . o r g : c a t e g o r i z a t io n : n o d e s ” keyValue =” node ” />

</ ca tegoryBag>

Listing 5.2: An XML fragment of UDDI entry

CHAPTER 5. WEB SERVICES APPLICATION 85

5.2.3 WSDL

WSDL is defined to describe the possible operations the basicWeb service offered and the address or

path to invoke it. WSDL is based on XML document, and specifiesthe Web Services in a machine-

understandable way. WSDL definesservice andoperation to describe the interfaces, definestype

andmessages to describe the data types, and definesport andbinding to describe the location of

Web Services, etc[42]. Figure 5.4 illustrates the structure of a WSDL document.

Definitions

1
Types

∗
Schema

∗
ComplexType

1
Sequence

∗
Element

∗
Element

∗
Message

∗
Part

∗
PortType

∗
Operation

1
Input

0 · · ·1
Output

∗
Binding

1
Binding

∗
Operation

1
Operation

1
Input

1
body

0 · · ·1
Output

1
body

1
Service

∗
Port

1
Address

Figure 5.4: WSDL document structure: the yellow arrows represent the further definitions of the
arrow sources, the red line separates the abstract definitions on the left from the concrete definitions
on the right

1 <?xml v e rs i o n=” 1 .0 ” encod ing =”UTF−8” ?>

<w s d l : d e f i n i t i o n s t a r g e t N am esp ace=” h t t p : / / l o c a l h o s t : 80 8 0 / a x i s / s e r v i c e s / d e l t a ” xmlns:wsd lsoap =” . . . ” xmlns:wsd l =” . . . ”>

3 <wsd l :message name=” c a l D e l t a R e q u e s t ”>

<w s d l : p a r t name=” i n 0 ” t y p e=” x s d : f l o a t ” /> . . .

5 </ wsd l :message>

<wsd l :message name=” ca l D e l t aResp o n se ”>

7 <w s d l : p a r t name=” c a l D e l t a R e t u r n ” t y p e=” x s d : f l o a t ” />

</ wsd l :message>

9 <w sd l : p o r t Ty p e name=” d e l t a ”>

<w s d l : o p e r a t i o n name=” c a l D e l t a ” p a r am e t e r O r d e r=” i n 0 . . .”>

11 <w s d l : i n p u t name=” c a l D e l t a R e q u e s t ” message=” i m p l : c a l D el t a R e q u e s t ” />

<w s d l : o u t p u t name=” ca l D e l t aResp o n se ” message=” i m p l : c a lD e l t aR e s p o n s e” />

13 </ w s d l : o p e r a t i o n>

</ w sd l : p o r t Ty p e>

15 <w s d l : b i n d i n g name=” d e l t aS o ap B i n d i n g ” t y p e=” i m p l : d e l t a”>

<w sd l so ap : b i n d i n g s t y l e =” r p c ” t r a n s p o r t =” . . . ” xmlns:wsdlsoap =” . . . ” />

17 <w s d l : o p e r a t i o n name=” c a l D e l t a ”>

<w s d l s o a p : o p e r a t i o n so ap A c t i o n=” ” xmlns:wsd lsoap = . . .>

19 <w s d l : i n p u t name=” c a l D e l t a R e q u e s t ”>

CHAPTER 5. WEB SERVICES APPLICATION 86

<wsd lsoap:body en co d i n g S t y l e =” . . . ” namespace=” h t t p : / / co n v e r t e r ” use=” encoded ”

21 xmlns:wsd lsoap =” . . . ” />

</ w s d l : i n p u t>

23 <w s d l : o u t p u t name=” ca l D e l t aResp o n se ”>

<wsd lsoap:body en co d i n g S t y l e =” . . . ” namespace=” . . . ” use=” encoded ” xmlns:wsd lsoap =” . . . ” />

25 </ w s d l : o u t p u t>

</ w s d l : o p e r a t i o n>

27 </ w s d l : b i n d i n g>

<w s d l : s e r v i c e name=” d e l t a S e r v i c e ”>

29 <w s d l : p o r t name=” d e l t a ” b i n d i n g =” i m p l : d e l t a S o a p B i n d i n g”>

<w s d l s o a p : a d d r e s s l o c a t i o n =” . . . ” xmlns:wsd lsoap =” . . . ” />

31 </ w s d l : p o r t>

</ w s d l : s e r v i c e>

33 </ w s d l : d e f i n i t i o n s>

Listing 5.3: The code of WSDL of a basic Web service which calculate the value of delta of a

quadratic equation

The listing 5.3 contains the WSDL file that describes a basic Web service that calculates the

delta value of a second degree equation. It defines the name ofthe service as ”deltaService”, the

service ”deltaService” offers an operation named ”calDelta” with the inputs ”in0”, ”in1”, ”in2”, and

the output ”calDeltaReturn”. It also defines the ”binding” to describe the functioning mechanism of

”deltaService”. WSDL acts as a communication protocol of network services. It follows the XML

grammar and also inherits extensible character of XML. So WSDL can be extended and enriched

when necessary.

5.3 BPEL services

Business Process Execution Language (BPEL), short for Web Services Business Process Execution

Language (WS-BPEL) is an OASIS standard executable language for specifying interactions with

Web Services.

5.3.1 BPEL

A BPEL definition, like a structured programming language, consists of several parts describing

partner links, process variables, correlation sets, the main process work-flow, the faults, and com-

pensations handling activities.

The partner link declarations are used to define the relationbetween the process and its partners.

It defines the role of the process in this relation (consumer or provider of an interface), and the

interfaces used/provided by that role. The interfaces, operations, as well as their parameters and

types, are specified in the corresponding WSDL documents.

CHAPTER 5. WEB SERVICES APPLICATION 87

The process variables are used to represent the state of the business process, they contain the

information received from or sent to the partners of the process. The variables may be of primitive

data types (e.g., strings, Boolean, integers) or of some complex types defined in a WSDL document.

The correlation sets define the parts of message data that areused to associate and route a par-

ticular message to a particular instance of the business process. Such information tokens uniquely

identify the instance of the business process.

The process flow is defined by a set of process activities. Theyspecify the operations to be

performed, their ordering, conditional logic, reactive rules, etc. We distinguish the following groups

of activities: basic activities, structured activities, and the specific operational blocks, namely faults

and compensations handlers.

Basic activities represent primitive operations performed by the process, such as message emis-

sion/reception (invoke, receive, and reply activities), data modification (assign), process termination

(terminate), waiting for a certain period of time (wait), ordoing nothing (empty).

Structured activities define the order in which a collectionof activities occurs. They compose the

basic activities into structures that express the control flow patterns. The structured BPEL activities

include sequence, switch, and while that model traditionalcontrol constructs; pick that models no

deterministic choice based on external events (i.e., message reception or timeout); flow activity that

models parallel execution of the nested activities. The structured activities can be recursively nested

and combined.

Fault handling in BPEL is thought of as a mode switch from the normal processing. It is in-

terpreted asreverse work, since it aims at undoing the unsuccessful work. The fault may arise on

reception of the fault message, or on explicit invocation ofthe throw activity. The fault handler

declaration specifies the activities to be performed when a fault arises.

The compensation handlers are used to reverse the effect of some unit of work that has com-

pleted with a fault. The compensation is always initiated within a fault handler, and may also require

a compensation of some nested, previously successful, activities. A compensation handler is always

associated with a work unit (BPEL scope), and is invoked (explicitly or implicitly) using the BPEL

compensating activity.

5.3.2 Cooperation of BPEL and WSDL

BPEL introduces the features, e.g. process, action, correlation, role, partner link, etc, needed to

describe the behavioral aspects of Web services. Figure 5.5shows a sub-set of those features of

interest in the context of this note and relationships between them.

CHAPTER 5. WEB SERVICES APPLICATION 88

A Web service may play multiple roles within a conversation.Usually, for each partner the Web

service may expose a different role. BPEL partner link type defines binary relationship between

roles. It specifies at most two roles that may communicate.

The BPEL is built on top of WSDL, which includes definitions ofport types, messages and data

types. Each role defined in the partner link type specifies exactly one WSDL port type it implements.

Figure 5.5: Interactivities between BPEL and WSDL protocols

5.3.3 ActiveBPEL engine

The ActiveBPEL engine [2] is an Open Source implementation of a BPEL engine, written in Java.

It reads BPEL process definitions (and other inputs such as WSDL files) and creates graphical

representations of each activities of BPEL processes. Whenan incoming message triggers a start

activity, the engine creates a new process instance and starts running. The engine takes care of

persistence, queues, alarms, and many other execution details. The ActiveBPEL engine runs in any

standard servlet container such as Tomcat.

5.4 Case study: foodshop

The foodshop example is a foodshop company sells and delivers food. The company has an online

SHOP (that does not have a physical counterpart) and severalwarehouses (WH1, · · · ,WHn, each

of which is associated with their LocalSuppliers) located in different areas that are responsible for

CHAPTER 5. WEB SERVICES APPLICATION 89

stocking imperishable goods and physically delivering items to customers, depending on the area

each customer lives in.

Customers (C1, · · · , Ck) interact with the foodshop company in order to place their orders, pay

the bills and receive their goods.

In case of perishable items, that cannot be stocked, or in case of out-of-stock items, the foodshop

company must interact with several suppliers (SUP1, . . ., SUPm).

Although most of the interactions in this example are electronic, and take place between Web

Services, in some cases there are physical actions and interactions that are performed by humans

(e.g. the sending of a package). These too are modeled in the context of Web Services.

5.4.1 Partners interactions

In each conversation the following partners take part:

• one CUSTomer (represented in green);

• the online SHOP (represented in pink);

• one WAREHOUSE (represented in yellow);

• one LocalSupplier (represented in gray);

• a variable number of SUPPLIERS, which could also be 0 (represented in gray).

Figure 5.6 illustrates the BPEL processes of the partners ofthe foodshop example. When a

CUSTomer places an order, the SHOP first selects the WAREHOUSE that is closest to the cus-

tomer’s address, and that will thus take part in the conversation. Ordered items are split into two

categories: perishable (cannot be stocked, so the warehouse cannot possibly have them in stock)

and imperishable (the warehouse might have them).

Perishable items are handled directly by the SHOP, while theWAREHOUSE handles the im-

perishable items. In case of the WAREHOUSE is out of stock, itcan ask one of its LocalSupplier

to fill the stock.

The first step is to check whether the ordered items are available, either in the warehouse or

from the suppliers (we have not considered items exchanges among different warehouses, in order

not to make the example too complicated). If they are, they are temporarily reserved in order to

avoid conflicts between several orders.

CHAPTER 5. WEB SERVICES APPLICATION 90

Figure 5.6: The partners of the foodshop example: the graphical representations run over the Ac-
tiveBPEL engine is much more specific and in detail.

CHAPTER 5. WEB SERVICES APPLICATION 91

Once the SHOP receives all the answers on availability, it can decide whether to give up with the

order (again, in order to keep things simple, this happens whenever there is at least one unavailable

item) or to proceed. In the former case, all item reservations are canceled and the conversation ends.

If the order goes on, the SHOP computes the total cost (items +shipping) with the aid of the

WAREHOUSE that provides the shipping costs. Then it sends the bill to the CUSTomer, that can

decide whether to pay or not. If the CUSTomer does not pay, allitem reservations are canceled and

the conversation ends here.

If the CUSTomer pays, then all item reservations are confirmed and all the SUPPLIERS (in

case of perishable or out-of-stock items) are asked to send the goods to the WAREHOUSE. The

WAREHOUSE will then assemble a package and send it to the CUSTomer.

5.4.2 BPEL services execution processes

We describe separately the execution processes of each partner, including its interactions with others

in the same composite process.

Customer

The customer workflow (figure 5.7) is abstract: we represent only its interface with the other ser-

vices, while we do not represent internal activities. The CUSTomer places an order (sendOrder)

communicating the items he/she is interested in (items) and its personal data (custInfo). Then it

waits for an answer from the SHOP: if some of the items are not available the conversation ends

(exit). Otherwise the user receives the bill and decides whether to pay (replyPay) sending its

payment to the SHOP.

If the CUSTomer decides not to pay the conversation ends (exit). Otherwise, he/she waits

for the parcel sent by one of the company’s WAREHOUSEs. Notice that the parcel shipment is a

physical transaction, while the others are all electronic transactions.

Shop service

On the contrary, the SHOP workflow (in figure 5.6) is detailed,and contains several internal activ-

ities.

When the SHOP receives an order (receiveOrder) with the ordered items and the CUSTomer

data (custInfo), it selects the WAREHOUSE that is closer to the user (selectWH) and splits

(splitOrder) the ordered items into the set of perishable items (ns items) and that of imperishable

CHAPTER 5. WEB SERVICES APPLICATION 92

Figure 5.7: The workflow of customer

CHAPTER 5. WEB SERVICES APPLICATION 93

items (s items). It then checks the availability of perishable items (checkAvail&reserve) with

the SUPPLIERS, asking to temporarily reserve them in case they are available. The SHOP receives

back the set of reserved items (ns resitems), the corresponding reservation codes (ns answers),

and the answers on availability (ns answers).

The list of imperishable items is instead sent to the WAREHOUSE (checkAvail), that sends

back a collective answer (s answers) on availability.

If any of the items is unavailable, the order is canceled. TheSHOP communicates this to the

CUSTomer, and cancels the reservations (unreserved) both with the SUPPLIERS and the WARE-

HOUSE.

If on the other hand all the items are available, the SHOP asksthe WAREHOUSE to compute

the ship cost (shipCost), which depends on the distance between the WAREHOUSE itself and the

user address, as well as the total weight of the ordered items(for this reason, the SHOP sends to the

WAREHOUSE both the list ofitems andcustInfo).

Then the SHOP computes the total cost (totalCost) and sends the bill to the CUSTomer, which

sends back a payment. if the CUSTomer decides not to pay, the SHOP cancels all the reservations

(unreserved) with the SUPPLIERS and the WAREHOUSE. If the payment is OK, the SHOP

forwards the order to the WAREHOUSE (fwOrder), which from now on is responsible for it, and

tells the SUPPLIERS to send the reserved items to the WAREHOUSE (requestSupply), providing

the reservation codes (ns rescodes) and the warehouse address (whInfo).

Realsupplier service

Like the CUSTomer workflow, the SUPPLIER workflow (in figure 5.6) is abstract since each sup-

plier may have a different internal workflow.

Of course, it is the same workflow independently from the Web Service that contacts the SUP-

PLIER. For this reason, the Web Service that buys the goods isgenerically called BUYER, while the

receiver of the products is generically called RECEIVER. Itis clear that in our context the BUYER

can be either the SHOP or the WAREHOUSE, while the RECEIVER isalways the WAREHOUSE.

The SUPPLIER is first asked by the user to verify the availability of some items and reserve

them (verify&reserve). The SUPPLIER sends back the set of reserved items (resitems), the

corresponding reservation codes (rescodes) and the answers on availability.

Then the BUYER can either cancel the reservation (unReserve) or ask the SUPPLIER to send

the items (supply) to the address (sendAddress) of the RECEIVER.

CHAPTER 5. WEB SERVICES APPLICATION 94

Warehouse service and LocalSupplier service

The WAREHOUSE first receives a request from the SHOP to check the availability of some items

(s items) and reserve them (reserveAvail). If some items are out-of-stock, the WAREHOUSE

contacts the LocalSuppliers in order to check for availability and to reserve them (findSuppliers),

receiving back the set of reserved items (s resitems), the corresponding reservation codes (s rescodes)

and the answers on availability (s answers).

The WAREHOUSE elaborates a collective answer on availability and sends it to the SHOP

(collectAnswers). Then it waits for one of the following things to happen: either the SHOP decides

to cancel the order, or to proceed.

In the first case the WAREHOUSE has to cancel its own reservations, and, in case some Local-

Suppliers were contacted, it must also cancel the reservations with the LocalSupplier (unreserved).

In the second case, the WAREHOUSE is asked by the SHOP to compute the shipment cost.

Then the SHOP tells the WAREHOUSE to proceed with the order. In case of out-of-stock items,

the WAREHOUSE asks the SUPPLIER to send the reserved items (requestSupply), by providing

the reservation codes (s rescodes) and its address (whInfo).

At this point the WAREHOUSE must assemble the package. In order to do this, it must wait

both for the (unperishable) items it reserved directly from the SUPPLIER, and for the (perishable)

items that were reserved by the SHOP from the SUPPLIER.

Once the parcel is ready, the WAREHOUSE asks a shipper (requestShipping) to send it to the

user.

5.5 Translate from BPEL to CPN

A BPEL process consists of basic activities and structured operators. The idea of modeling BPEL

to CPN is: to map each primitive data to a place, each basic activity to a transition (except that

a two-wayInvoke activity is mapped to two transitions to represent the interaction between the

partners). To each basic activity, local input and output activation placeain ∈ P andaout ∈ P

are associated to identify the local execution order; a remote input and/or output activation places

ainPA ∈ P and/oraoutPA ∈ P is added to allow the remote control, and a set of remotely shared data

placesP r ⊆ P (messages) are marked also. The fault (KO) mode(s) of transitions are added on

theT/P output arc expression to represent the unobservable faultyactivities either in basic Web

services or in BPEL services. The structured operators to sew up the structured sub-processes by

combining, disjointing, or generating the local activation places. Once a red token is generated by

CHAPTER 5. WEB SERVICES APPLICATION 95

the KO mode of a transition of a basic activity, the fault is passed along the execution trace through

the data dependency functions. Figure 5.8 illustrates the basic places and transitions we used for

translation from BPEL to CPN.

local activation
place

remote activation
place

local data
place

remote data
place

optional

place

deleted place

during composition

transition optional

transition

delete

arc
omitting

arc

Figure 5.8: basic place/transition representations

We assume the BPEL services studied in this thesis are basically debugged and ready to run, so

assumption 3 makes sure the CPN diagnosis is based on the well-formed CPN model:

Assumption 3. The BPEL processes are realized according to their specifications and basically

debugged .

In the following sections, we model dynamic features, the basic BPEL activities and structured

operators, with CPNs.

5.5.1 Translating static BPEL features to CPNs

BPEL processes manipulate a set of data, variables, and constants. Variables are typed either by

primitive types (int, float, string, etc.), or by structuredones (complex type structure of XML),

which are normally defined in the associated WSDL files.

To catch maximally the dependency between data (variables,constants, etc.), we decompose the

structured data types into their elementary parts, denotedby theleaves of their XML tree structure.

For a variableX of typem (resp. an Xpath expression), we usexi to range over theLeaves(m)

(resp. Leaves(X)) and denote thexi part ofX by a couple(X,xi). In our mapping, each data

variable and constant is represented by a unique place in CPNs.

CHAPTER 5. WEB SERVICES APPLICATION 96

5.5.2 Translation from basic Web service to CPN

Basic Web service

A basic Web service is a program, which publishes its invocation interface and can be remotely

called by other Web service, including a BPEL service. As it is called synchronously through its

WSDL interface and cannot be decomposed, we model it as a CPN system, which has a transition,

remote input/output activation places and a set of shared input/output data places (all the local

components are in the dotted line boxes). The data dependency between its input and output can

be FW , EL, and/orSRC, which should be offered by the basic Web service developers. The

CPN model of a basic Web service (see figure 5.9) is a transition tB , which can be inOK orKO

mode. They are triggered by the consummation of the token in the output activation place. Once

the transition is enabled and behaves inKO mode, there should be a fault in its output data place

and the fault can be passed to its invoker, a BPEL process, when it receives the response of the basic

Web service. So the formal definition of CPN fault model for a basic Web service is as follows:

Definition 59 (CPN fault model for basic WS). A CPN fault model for basic Web service is a tuple

NB=〈Σ, Γ, P , T , Pre, Post, F,〉, where1:

• P = {ain PA, aout PA, xi PA, yi PA|i ∈ I} is a set of labeled places of type{b, r, ∗}2;

• T = {tB};

• md(tB) = {OK,KO};

• Pre andPost are illustrated in table 5.1;

Receive(m,X)

Receive is an activity simply copies the values from a messagem sent from a partner service to a

local variableX. So the data dependency relation is defined adFW and there is noKO mode for

the transition. We modelReceive as the CPN presented in figure 5.11. Data places(m,mi), (x, xi)

are simplified asmi, which represents the shared message with its partnerPAi; andxi, which

represents the variable, which saves the value ofmi. A remote activation placeainPA is added to

1Without especially defined, the definition is same as the definition of the CPN fault model 33 in chapter 3
2In the following sections, not specially claimed, denoteain andaout as the input and output activation places,xi as

a local input data place,yi as a local output data place,mi as a remote input or output date place.PA is use to indicate
the remote place.

CHAPTER 5. WEB SERVICES APPLICATION 97

Pre
tB

OK KO

ain PA χain PA χain PA

aout PA

xi χxi
χxi

yi χyi
χyi

Post
tB

OK KO

ain PA

aout PA FW (χaout PA) FW (χaout PA)

xi χxi
χxi

yi F (χxi
) r

Table 5.1: Pre andPost tables of a basic Web service:F (χxi
) represents a data dependency

function, which can beFW , SRC, orEL. So forSRC, there is no input.

ain _PA
xi1

_PA xi2
_PA

aout _PA yi _PA

tB

χai n_PA

OK /KO : FW (χai n _PA)

χxi1
_PA

χxi2
_PA

χyi _PA
OK :EL(χxi1

_PA ,χxi2
_PA)

K O:r

Figure 5.9: CPNs of the basic activity: the thick-line places represent the remote places

activate theReceive activity. The color of the output activation placeaout is decided by the remote

activation input place, which means the wrong work flow is chosen. So the arc expression on the

arc (trec, aout) is FW (χain PA). To keep the liveness of the CPN, we add an arc from the output

placexi to the receive transitiontrec and its associated color functionχxi
is simply the color of the

output data placexi.

So the formal definition of CPN fault model for aReceive activity is as follows:

Definition 60 (CPN fault model forReceive activity). A CPN fault model forReceive activity is a

tupleNrec=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

• Γ = {OK};

• P = {ain PA, aout PA, ain, aout,mi PA, xi|i ∈

I};

• T = {trec};

• md(trec) = {OK};

• Pre and Post are illustrated in table

5.10;

CHAPTER 5. WEB SERVICES APPLICATION 98

Pre
trec

OK

ain PA χain PA

ain χain

aout

mi χmi

xi χxi

Post
trec

OK

ain PA

ain

aout FW (χain PA)

mi χmi

xi FW (χmi
)

Figure 5.10:Pre andPost tables of aReceive activity

a
ina

in _PAmi

a
out xi

tr ec

χ
ai n

χ
ai n_PA

OK :F W (χ
ai n_PA

)

χmi

OK :F W (χmi
)

χxi

Figure 5.11: CPNs of the receive activity:
the thick-line places represent the remote
places

Invoke(X,Y)

Invoke is an activity that calls another Web service, eithera basic or a composite one. It takes the

value of the variableX, sends a remote request to its partner, synchronously or asynchronously waits

for the response message, stores it in the variableY , or gets the response byReceive(m,Y). Y

can be infected by external faulty Web service (basic or composed), which is locally unobservable.

aKO mode of transitiontinv to model the faults caused by the external Web service.Invoke can

be a one-way call, which only sends a requestX to another Web service. In this case, the data

dependency between the input and output data isFW and the transition only hasOK mode. When

Invoke is a two-way call, it has both the local and remote input/output activation and data places.

When it invokes a composed Web service, the data dependencies between the remote places depend

on the invoked Web service. So the data dependencies betweenthe local and remote input places

areFW , such as between the local and remote output places. When it invokes a basic Web service,

the data dependency can be retrieved directly from the published WSDL interface of the basic Web

service. But the synchronousInvoke activity has both theOK andKO modes. The figure 5.12b

and 5.12a respectively illustrate the CPN model of a one-wayand two-wayInvoke activity.

So the formal definition of CPN fault model for an asynchronous Invoke activity is as follows:

Definition 61 (CPN fault model for an asynchronousInvoke activity). A CPN fault model for an

asynchronousInvoke activity is a tupleNasInv=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

CHAPTER 5. WEB SERVICES APPLICATION 99

• P = {aout PA, ain, aout, xi,m
out
i PA|i ∈

I};

• T = {tinv};

• Pre andPost are illustrated in table 5.2;

Pre
tinv

OK

ain χain

aout

aout PA

xi χxi

mout
i χmout

i

Post
tinv

OK

ain

aout FW (χain)

aout PA FW (χain)

xi χxi

mout
i χxi

Table 5.2:Pre andPost tables of an asynchronousInvoke activity

The formal definition of CPN fault model for a synchronousInvoke activity is as follows:

Definition 62 (CPN fault model for a synchronousInvoke activity). A CPN fault model for a

synchronousInvoke activity is a tupleNinv=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

• P = {ain PA, aout PA, ain, aout, xi, yi, xi PA, yi PA|i ∈ I};

• T = {tinv};

• Pre andPost are illustrated in table 5.3;

Pre
tinv

OK KO

ain χain χain

ain PA

aout PA χaout PA χaout PA

aout

xi χxi
χxi

xi PA χxi PA χxi PA

yi
χyi

χyi

χyi
χyi

yi PA χyi PA χyi PA

Post
tinv

OK KO

ain

ain PA FW (χain) FW (χain)

aout PA

aout FW (χaout PA) FW (χaout PA)

xi χxi
χxi

xi PA FW (χxi
) FW (χxi

)

yi
FW (χyi PA) FW (χyi PA)

F r

yi PA χyi PA χyi PA

Table 5.3:Pre andPost tables of a synchronousInvoke activity: F denotes the data dependency
function which depends on the invoked basic Web service

CHAPTER 5. WEB SERVICES APPLICATION 100

a
in

xi1
xi2

a
out

a
out _PA

m
out

i1

m
out

i2

tinv

χ
ai n

OK /K O:F W (χ
ai n)

OK /K O:F W (χ
ai n)

χxi1
χxi2

χxi1

χxi2

OK /K O:F W (χxi1
)

OK /K O:F W (χxi2
)

(a) synchronous

ain xi1
xi2

aout yi

ain _PA

xi1
_PA

xi2
_PA

aout _PA

yi _PA

tinv

χai n

OK /K O:F W (χaout _PA)

χxi1

χxi2

OK /K O:F W (χyi _PA)

or OK :F /K O:r (basicW S)

χyi

OK /K O:F W (χ
ai n)

χaout _PA

χxi1
_PA

χxi2
_PA

OK /K O:F W (χxi1
)

OK /K O:F W (χxi2
)

χyi _PA

(b) asynchronous

Figure 5.12: CPN model of invoke activity: the thick-line places represent the remote places

Reply(Y,m)

Reply is an activity that copies values from a variableY to a messagem for returning the response

of the BPEL service to its invoker. SoReply simply forwards (FW) values (figure 5.14) for theOK

mode and there is noKO mode. The data dependency function on the arc fromtrep to the remote

activation placeaoutPA is FW (χain
PA

), because the remote activation does not affect the activation

correctness of the local process. The formal definition of CPN fault model for aReply activity is as

follows:

Definition 63 (CPN fault model forReply activity). A CPN fault model forReply activity is a tuple

Nrep=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

• Γ = {OK};

• P = {aout PA, ain, aout, yi,mi PA|i ∈

I};

• T = {trep};

• md(trep) = {OK};

• Pre and Post are illustrated in table

5.13;

CHAPTER 5. WEB SERVICES APPLICATION 101

Pre
trep

OK

aout PA

ain χain

aout

yi χyi

mi χmi

Post
trep

OK

aout PA FW (χain)

ain

aout FW (χain PA)

yi χyi

mi FW (χyi
)

Figure 5.13:Pre andPost tables of aReply activity

aout

aout
PA

mi

ain yi

tr ep

χai n

OK :F W (χ
ai n)

OK :F W (χ
ai n)

χmi

OK :F W (χyi
)

χyi

Figure 5.14: CPNs of the reply activity:
the thick-line places represent the remote
places

Expression(C, V)

Expression is an internal activity to calculate a variablexi based on some constantscj and other

variablesvk. Expression is usually defined in assign activity and other structural operators which to

define the sub process choice conditions, like switch, while, if, etc. According to the assumption 3,

transitiontexp behave always inOK mode. The formal definition of CPN fault model (see figure

5.16) for a basic Web service is as follows:

Definition 64 (CPN fault model for expression). A CPN fault model for basic Web service is a tuple

Nexp=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

• P = {ain, aout, cj , vk, xi|i, j, k ∈ I};

• T = {texp};

• md(texp) = {OK,KO};

• Pre and Post are illustrated in table

5.15;

Assign(X,Y)

Assign is an activity that reorganizes the variable parts tocompose the new ones. So its model does

not containKO mode, remote activation, or shared data places. And the datadependency between

the input and output places isFW . The formal definition of CPN fault model (see figure 5.17) for

Assign is as follows:

Definition 65 (CPN fault model forAssign). A CPN fault model forAssign is a tupleNexp=〈Σ,

Γ, P , T , Pre, Post, F,〉, where:

CHAPTER 5. WEB SERVICES APPLICATION 102

Pre
texp

OK KO

ain χain χain

aout

cj χcj χcj

vk χvk χvk

xi χxi
χxi

Post
texp

OK KO

ain

aout FW (χaout) FW (χaout)

cj χcj χcj

vk χvk χvk

xi F r

Figure 5.15:Pre andPost tables ofExpression activity: F
represents a data dependency function, which can be eitherFW ,
SRC, orEL with the input(s) ascj and/orvk. ForSRC, there
is no input.

aout xi

ain c j vk

texp

χai n

OK /K O:F W (χ
ai n)

χxi

OK :F
K O:r

χc j χvk

Figure 5.16: CPNs of the expres-
sion activity

• P = {ain, aout, xi, yi|i ∈ I};

• T = {tass};

• md(tass) = {OK};

• Pre andPost are illustrated in table 5.4;

Pre
tass

OK

ain χain

aout

xi χxi

yi χyi

Post
tass

OK

ain

aout FW (χain)

xi χxi

yi FW (χxi
)

Table 5.4:Pre andPost tables ofAssign activity

aout yi

ain xi

tass

χai n

OK :F W (χ
ai n)

χyi

OK :F W (χxi
)

χxi

Figure 5.17: CPNs of the assign activity

In fact,Expressions are always defined inAssign to generate the temporal variables as the

input of theAssign activity. So the activitiesExpression andAssign can be united

Throw/Rethrow(faultName, [faultV ariable])

Throw and rethrow are activities to signal an internal fault explicitly. Theyprovide the name

for the fault, and can optionally provide data with further information about the fault. So their

input places can be the ”faultName”, and the optional ”faultVariable” and no output data places

are generated. The figure 5.18 illustrates the CPN model of athrow or a rethrow activity. Note

thatrethrow ignores the modifications to the fault data and throws the original message type data.

Rethrow can be used only within a fault handler (catch andcatchAll in section 5.5.4). The formal

CHAPTER 5. WEB SERVICES APPLICATION 103

definition of CPN fault model (see figure 5.18) forThrow (orRethrow) is as follows:

Definition 66 (CPN fault model forThrow). A CPN fault model forThrow is a tupleNthr=〈Σ,

Γ, P , T , Pre, Post, F,〉, where:

• P = {ain, aout, faultName, faultV ariable};

• T = {tthr};

• md(tthr) = {OK};

• Pre andPost are illustrated in table 5.5;

Pre
tthr

OK

ain χain

aout

faultName χfaultName

faultV ariable χfaultV ariable

Post
tthr

OK

ain

aout FW (χain)

faultName χfaultName

faultV ariable χfaultV ariable

Table 5.5:Pre andPost tables ofThrow activity

ainf aul t N amef aul tV ar i able

aout

tthr

χai n

χ f aul t Name

OK :F W (χ
ai n)

χ f aul tV ar i able

Figure 5.18: CPNs of the throw/Rethrow ac-
tivity: the dashed-line places represent the op-
tional places

Wait(duration|until)

The wait activity specifies a delay for a certain period of time or until a certain deadline is reached.

The time delay is modeled as a input data place, no input or output data place is defined. The figure

5.19 illustrates the CPN model of aWait activity. The formal definition of CPN fault model (see

figure 5.19) forWait is as follows:

Definition 67 (CPN fault model forWait). A CPN fault model forWait is a tupleNwait=〈Σ, Γ,

P , T , Pre, Post, F,〉, where:

• P = {ain, aout, duration|until};

• T = {twait};

• md(twait) = {OK};

• Pre andPost are illustrated in table 5.6;

CHAPTER 5. WEB SERVICES APPLICATION 104

Pre
twait

OK

ain χain

aout

faultName χduration|until

Post
twait

OK

ain

aout FW (χain)

faultName χduration|until

Table 5.6:Pre andPost tables ofWait activity

a
in dur ati on|unti l

a
out

tw ai t

χ
ai n

χdur ation|until

OK :F W (χ
ai n)

Figure 5.19: CPNs of the wait activity: the
dashed-line places represent the optional places

Pre
temp

OK

ain χain

aout

Post
temp

OK

ain

aout FW (χain)

Table 5.7:Pre andPost ta-
bles ofThrow activity

ain

aout

temp

χai n

OK :F W (χ
ai n)

Figure 5.20: CPNs of theEmpty activity: the dashed-line places rep-
resent the optional places

Empty

Definition 68 (CPN fault model forEmpty). TheEmpty activity does nothing, for example when

a fault needs to be caught and suppressed, or to provides a synchronization point in a synchronous

subprocess. So the CPN model ofEmpty activity has no data place. The figure 5.20 illustrates the

CPN model of anEmpty activity. The formal definition of CPN fault model (see figure5.20) for

Empty is as follows:

A CPN fault model forEmpty is a tupleNemp=〈Σ, Γ, P , T , Pre, Post, F,〉, where:

• P = {ain, aout};

• T = {temp};

• md(temp) = {OK};

• Pre andPost are illustrated in table 5.7;

CHAPTER 5. WEB SERVICES APPLICATION 105

Exit

TheExit activity immediately ends the business process instance, includes the synchronous sib-

lings. All currently running activities MUST be ended immediately without involving any termi-

nation handling, fault handling, or compensation behavior. So the CPN model ofExit has no

output activation place but may have the extra input activation places, which are the output activa-

tion places of their synchronous siblings processes. The figure 5.21 illustrates the CPN model of an

Exit activity. The formal definition of CPN fault model (see figure5.21) forExit is as follows:

Definition 69 (CPN fault model forExit). A CPN fault model forExit is a tupleNexit=〈Σ, Γ, P ,

T , Pre, Post, F,〉, where:

• P = {ain, aoutsib };

• T = {texit};

• md(texit) = {OK};

• Pre andPost are illustrated in table 5.5;

Pre
texit

OK

ain χain

aoutsib χaout
sib

Post
texit

OK

ain

aoutsib

Table 5.8:Pre andPost tables ofExit activity

a
ina

out

sib

texi t

χ
ai n

χ
a

out

si b

Figure 5.21: CPNs of theExit activity:
the dashed-line places represent the optional
places

5.5.3 Structured operators translation

Sequence operatorsequence(N1, N2)

Sequence connects different activities, and the execution order of these activities is the same as

their appearance order in the constructor. Given two sub-processesN1 N2 in a sequence structure,

with N1=〈Σ1, Γ1, P1, T1, Pre1, Post1, F1 〉, andN2=〈Σ2, Γ2, P2, T2, Pre2, Post2, F2 〉, So we

can generate the resulting sequence CPN by simply merging the local intermediate output and input

activation places of contractive CPNs (in figure 5.22.

CHAPTER 5. WEB SERVICES APPLICATION 106

a
in

1 a
in

2

a

a
out

1 a
out

2

χ
a

i n

1
χa

Figure 5.22: CPNs of the sequence activity: the red crosses represent the canceled arc

Conditional operator Switch({(coni(Xi, Vi),Ni)}i∈I)

Switch represents an alternative execution of the activitiesNi under the conditionsconi(Xi, Vi).

Xi andVi are respectively the variables and constants. For each sub processNi, we add a transition

coni to generate its activation place. Eachconi takes the common activation input place ofSwitch,

Xi, andVi as inputs to elaborate an input activation placeaini for sub processNi. Let Ni=〈Σi,

Γi, Pi, Ti, Prei, Posti, Fi 〉. We define the additional tablesPre′i for Prei andPost′i for Posti

in tables in 5.23. The CPN graph of the resulting activity isN=〈Σ, Γ, P , T , Pre, Post, F 〉

with: Σ=
⋃

i∈I Σi, Γ=
⋃

i∈I Γi, P=
⋃

i∈I(Pi\{a
out
i }∪ Xi∪Vi)∪ {ain,aout}, T=

⋃

i∈I(Ti∪{tconi
}),

F=
⋃

i∈I Fi, , Pre=
⋃

i∈I(Prei⊕Pre
′
i), Post=

⋃

i∈I(Posti⊕Post
′
i)

3 (in figure 5.24.

Iterative operator while(con(X,V), S1)

While iterates the activityS1 execution until the breaking off of the conditionscon(X,V). The

CPN graph ofWhile is similar toSwitch in which the activation input place of the sub process

S1 is elaborated by the activation input place ofWhile, X, andV . But inWhile, theaout of the

iterative sub process is alsoain of tcon.

Note thattcon represents the transition if conditioncon is true andtcon represents the transition

if condition con is false (in figure 5.25a).

3C ⊕ C′ means to updateC with C′ by adding places’ rows and transitions’ columns)

CHAPTER 5. WEB SERVICES APPLICATION 107

Pre′i coni

ain χain

Xi χXi

Vi χVi

Post′i coni

aini ELc(ain, χXi
, χVi

)

Xi χXi

Vi χVi

Figure 5.23: Additional
Prei andPosti tables

ain xi vj

ain1 ain2

aoutaout1 aout2

χain
χain

χxi
χxi

χvj
χvj

EL(χain , χxi
, χvj) EL(χain , χxi

, χvj)

χain
1

χain
2

Figure 5.24: CPNs of the switch activity: the red crosses represent the
canceled arc

Message triggering operatorPick({Mi, Si}i∈I)

Pick triggers one sub processSi by the arriving of a messageOnMessage(Mi) from partnerPAi,

which is represented as the remote activation placeainPAi
. SoPick operator is a combination of a

set ofOnMessage activities (in figure 5.25b).

Parallel operator flow({Si}i∈I)

Flow executes the activitiesSi in parallel. It terminates when all the activities are finished (fork-

join). So we addain, aout, tin, andtout to compose the sub processes together in parallel (in figure

5.25c).

Conditional operator If({(coni(Xi, Vi),Si)}i∈I)

If activity provides conditional behavior likeSwitch. It consists of an ordered list of one or more

conditional branches defined by theif and optionalelseif elements, followed by an optionalelse

element. The figure 5.25d illustrates the CPN model of anif activity.

CHAPTER 5. WEB SERVICES APPLICATION 108

ain xi vj

ain1

aout1

Con NotCon

χain

χain

χxi
χxi

χvj
χvj

EL(χain , χxi
, χvj)

EL(χain , χxi
, χvj)

χain
1

FW (χan
)

(a) While

ainm1 m2
ainPA1

ain1χ1 χ2

ainPA2

ain2

aoutaout1 aout2

OM1 OM1

χain

χain
PA1

χain
PA2

χainχm1
χm2

FW (χain
PA1

)

FW (χain
PA2

)

FW (χm1
)

χc1

FW (χm2
)

χc1 χc2

χc2

FW (χain
n1

) FW (χain
n2

)

χain
1

χain
2

(b) Pick

ain

ain1 ain2

aout

aout1 aout2

flowin

flowout

χain

χaout
1

χaout
2

FW (χain) FW (χain)

χain
1

χain
2

EL(χaout
1
, χaout

2
)

(c) Flow

ain xi vj

ain1 aink ainn

aout

aout1 aoutk aoutn

χain
χain

χain χxi

χxi

χxi

χvj

χvj
χvj

EL(χain , χxi
, χvj)

EL(χ
ain ,

χxi
,χvj

) EL(χain , χxi
, χvj)

χain
1

χain
n

χain
k

(d) If

Figure 5.25: CPNs of the While, Pick, Flow, and If activities: the dashed-line places represent the
optional places, the twill-style filled transitions represent the optional transitions, and the red crosses
represent the canceled arcs

CHAPTER 5. WEB SERVICES APPLICATION 109

Conditional operator RepeatUntil({(coni(Xi, Vi),Si)}i∈I)

ain1

xi vj

aout

aout1

Con NotCon

χaout
1

χaout
1

χxi

χxi

χvj
χvj

EL(χaout
1
, χxi

, χvj)

EL(χaout
1
, χxi

, χvj)

χain
1

Figure 5.26: CPNs of theRepeatUntil operator

TheRepeatUntil activity provides for repeated execution of a contained activity. The con-

tained activity is executed until the given Booleancondition becomes true. The condition is tested

after each execution of the body of the loop. In contrast to the while activity, therepeatUntil

loop executes the contained activity at least once. The figure 5.26 illustrates the CPN model of a

repeatUntil activity.

5.5.4 sub process with enclosed environment: Scope

A Scope provides the context which influences the execution behavior of its enclosed activities,

which can be arbitrary depth nested and structured. This behavioral context includes variables,

partner links, message exchanges, correlation sets, and optional syntactic constructs, such as event

handlers, fault handlers, a compensation handler, and a termination handler. Note that in WS-BPEL

2.0, Invoke can be defined also like scope, which contains the optional syntactic constructs for

event handling. In section 5.5.4, we will introduce first thehandlers and then how to composite

them in a scope.

CHAPTER 5. WEB SERVICES APPLICATION 110

a
in

n1v1 n2 v2

a
in

1

a
out

1

a
in

2

a
out

2

a
in

3

a
out

3

a
out

tcat1
tcat2 tcat All

χ
ai n

χ
ai n

χ
ai n

χn1
χn2

OK /K O:F W (χ
a

i n
1

)

χ
a

i n

1

OK /K O:F W (χ
a

i n
2

)

χ
a

i n

2

OK /K O:F W (χ
a

i n
3

)

χ
a

i n

3

χv1
χv2

Figure 5.27: CPNs of thefaultHandlers activity which contains twocatch and onecatchAll
activities: the dashed-line places represent the optionalplaces, the crossed places represented the
deleted places, the twill-style filled transitions represent the optional transitions, and the red crosses
represent the canceled arcs. ThecatchAll activity has no data input place

CHAPTER 5. WEB SERVICES APPLICATION 111

Fault handlers

Explicit fault handlers, if used, attached to ascope provide a way to define a set of custom fault-

handling activities, defined bycatch andcatchAll constructs.Catch andcatchAll are the fault

handling activities which correspond tothrow andrethrow. They can be defined infaultHandlers.

Eachcatch with the attributes ”faultName”, and/or ”faultVariable”.construct is defined to intercept

a specific kind of fault. AcatchAll clause can be added to catch any fault not caught by a more

specific fault handler. The figure 5.27 illustrates the CPN model of afaultHandler activity. There

are various sources of faults in BPEL. A fault response to aninvoke activity is one source of faults,

where the fault name and data are based on the definition of thefault in the WSDL operation. A

throw or rethrow activity is another source, with explicitly given name and/or data.

ainainPAmPA

rE f |u

ain1x

aout1

ain2

ainsco2

aout2

aout

tOnEvent

tsco1

tOnAlarm

trepeat tNoRepeat

tsco2

χain

χain

χain
PA

χrE χrE

OK/KO:FW (χmPA
)

χx

χx

OK/KO:FW (χ
ain
PA

)

χain
1

OK/KO:FW (χ
ain)

χain
2

OK/KO:EL(χ
ain
2

,

χf|u,χrE)

OK/KO:EL(χ
ain
2

,

χf|u,χrE)

χmPA

χf |u

χf |u

Figure 5.28: CPNs of theeventHandler operator: placerE: repeatEvery, the alarm repeat
interval; f |u: for|unti, the start or end point of alarm repeat. The dashed-line places represent
the optional places, the crossed places represented the deleted places, the thick-line places represent
the remote places, the twill-style filled transitions represent the optional transitions, the red crosses
represent the canceled arcs.

CHAPTER 5. WEB SERVICES APPLICATION 112

EventHandlers

These event handlers can run concurrently and are invoked when the corresponding event occurs.

The child activity within an event handlermustbe ascope activity. There are two types of events.

First, events can be inbound messages that correspond to a WSDL operation. Second, events

can be alarms, that go off after user-set times. The figure 5.28 illustrates the CPN model of a

eventHandler activity.

ain

ain1

aout1

tcom

χain

OK/KO:FW (χain)

χain
1

Figure 5.29: CPNs of the compensationHandler and TerminationHandler

CompensationHandler and TerminationHandler

BPEL allows scopes to delineate that part of the behavior that is meant to be reversible in an

application-defined way by specifying a compensation handler. Termination handlers provide the

ability for scopes to control the semantics of forced termination to some degree. An arbitrary depth

nested and structured activity is capsulated in the handlers. The figure 5.29 illustrates the CPN

model of aCompensationHandler or terminationHandler activity. Thecompensate activity

is used to start compensation on all inner scopes that have already completed successfully, in default

order. A compensation handler can be invoked by using thecompensateScope or compensate.

The compensateScope activity is used to start compensation on a specified inner scope that has

already completed successfully. Both these two activitiesmustonly be used from within a fault

handler (incatch or catchAll), another compensation handler, or a termination handler.

Figure 5.30 represents the CPN model ofScope. Additional activation placeaout′throw is added

to link the transitionthrow with the correspondingfaultHandler, placeaout′com is added to link the

transitioncompensate with the correspondingcompensationHalder, and placeaout′sco is added to

CHAPTER 5. WEB SERVICES APPLICATION 113

ain

ain1aout′throw

aoutcom

aout1

ain2

aout2

ain3aout′com

aout3

aout′sco

ain4

aoutsco

aout4

aoutthrow

aout

tsco

FH

tcom

EH CH

tsco

tthrow

χain

OK/KO:FW (χ
ain)

χain
1

χain
2

OK/KO:FW (χ
ain)

χain
3

OK/KO:FW (χ
ain)

χain
4

Figure 5.30: CPNs of thescope operator: the crossed places represented the deleted places, the
red crosses represent the canceled arc. ThecatchAll activity has no data input place. Additional
activation placesaout′throw, aout′com, andaout′sco link the handlers with the primary scope process

CHAPTER 5. WEB SERVICES APPLICATION 114

make sure thecompensationHalder only compensate the completely executedscope before the

throw activity.

ain S F

ain1

aout1

For EndFor

tfor

χain

χain

χS χS

χF

χF

EL(χain , χS , χF)

EL(χain , χS , χF)

χain
1

FW (χan
)

(a) serial

ain S F

ain1 ain2

aout

aout1 aout2

forin

forout

χS

χF

χain

χaout
1

χaout
2

OK/KO:EL(χ
ain ,

χS ,χF)

OK/KO:EL(χ
ain ,

χS ,χF)

χain
1

χain
2

EL(χaout
1
, χaout

2
)

(b) parallel

Figure 5.31: CPN model of forEach activity: the thick-line places represent the remote places

Conditional operator ForEach({(coni(Xi, Vi),Si)}i∈I)

TheforEach activity will execute its containedscope activity exactly N+1 times where N equals

the finalCounterV alue minus thestartCounterV alue. The attributeparallel defines if the

scope activity contained inforEach should be executed in parallel or not. SoforEach should

be modeled in two ways. The figure 5.31a and 5.31b respectively illustrate the CPN model of a

forEach activity in case of serial and parallel.

5.6 Case study: the CPN model of foodshop

Figure 5.32 illustrates a small BPEL service LocalSupplierwhich communicates with the BPEL

service WAREHOUSE. It contains three basic activities in a sequence: a receive activityRecWHrequest

CHAPTER 5. WEB SERVICES APPLICATION 115

Figure 5.32: A small BPEL process LocalSupplier which offers order items for BPEL service
WAREHOUSE

receive the item request from the WAREHOUSE, an assign activity ”prepares” the item (in a

true() function), and an invoke activityInvWHresponse confirms and ”sends back”the item to

the WAREHOUSE. Figure 5.33 is its CPN model. The bolded activation placescPInPNNet PA

(in gray color), represents the remote activation place forreceive activity

RecWHrequest. The local activation placecPInPNNet is represented as a place in gray color

without bold. The bolded data placesmsgP0 andmsgP1 represent the remote data places

Request/asyncData PA andRequest/PID PA, which are the name of the requested item

and the process ID. The data dependencies are illustrated onthe arc of the corresponding output

arc expressions. Then the assign activityD2B0L2T4Assign assigns the datatrue() and the or-

derRequest/PID to variablecallbackResponse asmsgP7 (callbackResponse/callbackData)

andmsgP8 (callbackResponse/PID) which are the input variables of the asynchronous in-

voke activityD2B0L3T4Invoke. So transitionD2B0L3T4Invoke has two activation places

D2B0L3cPOut4Invoke andD2B0L2cPOut4Assign PA to respectively represent the local and

remote output activation places.

Figures 5.34, 5.35, and 5.36 illustrate the CPN model of the SHOP, WAREHOUSE, and

SUPPLIER processes.

5.7 Related works

Petri nets have an intuitive graphical representation of BPEL processes and a brand of analysis tools

could be used. In most of existing work, places are used to represent the system (a BPEL process)

states and transitions are used to represent activities. The Petri nets models of BPEL services are

CHAPTER 5. WEB SERVICES APPLICATION 116

D2B0L1T4Receive

D2B0L1cPOut4Rec

FW(cPInPNNet)

msgP2

FW(Request/asyncData_PA)

msgP3

FW(Request/PID_PA)

cPInPNNet

X_cPInPNNet

cPInPNNet_PA

X_cPInPNNet_PA

D2B0L2T4Assign

X_D2B0L1cPOut4Rec

msgP0

X_Request/asyncData_PA

msgP1

X_Request/PID_PA

X_Request/PID

D2B0L2cPOut4Assign

FW(D2B0L1cPOut4Rec)

msgP5

FW(D2B0L2true)

msgP6

FW(Request/PID)

D2B0L3T4Invoke

X_D2B0L2cPOut4Assign

msgP4

X_D2B0L2true

X_callbackResponse/callb
ackData

X_callbackResponse/PID

D2B0L2cPOut4Assign_PA msgP7

FW(callbackResponse/call
backData)

msgP8

FW(callbackResponse/PID)

D2B0L3cPOut4Invoke

FW(D2B0L2cPOut4Assign)

Figure 5.33: The CPNs model of LocalSupplier

CHAPTER 5. WEB SERVICES APPLICATION 117

D2B0L1T4Receive

D2B0L1cPOut4Rec

FW(cPInPNNet)

msgP3

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID_PA)

msgP4

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/CustInfo_1_PA)

msgP5

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/String_2_PA)

cPInPNNet

X_cPInPNNet

cPInPNNet_PA

X_cPInPNNet_PA

D2B0L2T4Assign

X_D2B0L1cPOut4Rec

msgP0

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID_PA

msgP1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1_PA

msgP2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2_PA

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D2B0L4T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D2B0L5T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D8B0L19T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D8B0L21T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D8B0L23T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D8B0L27T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D8B1L19T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

D8B1L24T4Assign

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/PID

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/CustInfo_1

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

X_ShopWSSEI_receiveOrder
/parameters/receiveOrder

/String_2

D2B0L2cPOut4Assign

FW(D2B0L1cPOut4Rec)

msgP6

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP7

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

D2B0L3invoke

X_D2B0L2cPOut4Assign
X_receiveOrder1Request/P

ID
X_receiveOrder1Request/I

temList

D2B0L3cPOut4Invoke_PA

X_D2B0L3cPOut4Invoke_PA

D2B0L2cPOut4Assign_PA

FW(D2B0L3cPOut4Invoke_PA
)

msgP11

FW(receiveOrder1Request/
PID)

msgP12 D2B0L3cPOut4Invoke

FW(D2B0L2cPOut4Assign)

msgP13

FW(receiveOrder1Response
/PIDOfD2B0L3invoke_PA)

msgP14

msgP15

msgP8

X_receiveOrder1Response/
PIDOfD2B0L3invoke_PA

msgP9

X_receiveOrder1Response/
PerishableListOfD2B0L3in

voke_PA

msgP10

X_receiveOrder1Response/
UnPerishableListOfD2B0L3

invoke_PA

X_D2B0L3cPOut4Invoke
X_receiveOrder1Response/

PID

X_receiveOrder1Response/
PID

X_receiveOrder1Response/
PerishableList

X_receiveOrder1Response/
PerishableList

D8B0L25T4Assign

X_receiveOrder1Response/
PerishableList

X_receiveOrder1Response/
UnPerishableList

X_receiveOrder1Response/
UnPerishableList

X_receiveOrder1Response/
UnPerishableList

X_receiveOrder1Response/
UnPerishableList

D2B0L4cPOut4Assign

FW(D2B0L3cPOut4Invoke)

msgP16

FW(receiveOrder1Response
/PID)

msgP17

FW(receiveOrder1Response
/PerishableList)

msgP18

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

X_D2B0L4cPOut4Assign

D6B0L12T4Invoke

X_SupplierWSSEI_checkAva
ilReserve/PID

X_SupplierWSSEI_checkAva
ilReserve/ItemList

X_SupplierWSSEI_checkAva
ilReserve/CustInfo

D2B0L5cPOut4Assign

FW(D2B0L4cPOut4Assign)

msgP19

FW(receiveOrder1Response
/PID)

FW(receiveOrder1Response
/PID)

FW(receiveOrder1Response
/PID)

msgP20msgP21

D4B0L10tHeadFlow

X_D2B0L5cPOut4Assign

D6B1L12T4Invoke

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl
iercheckAvailReserve/Str

ing_1

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/Cus
tInfo

D5B0L11cPOut4FlowHead

FW(D2B0L5cPOut4Assign)

D5B1L11cPOut4FlowHead

FW(D2B0L5cPOut4Assign)

X_D5B0L11cPOut4FlowHead X_D5B1L11cPOut4FlowHead

D5B0L11cPOut4FlowHead_PA msgP22

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo)

msgP23 msgP24 D6B0L12cPOut4Invoke

FW(D5B0L11cPOut4FlowHead
)

msgP25 msgP26msgP27 msgP28msgP29

D6B0L13T4Receive

X_D6B0L12cPOut4Invoke

D6B0L13cPOut4Rec

FW(D6B0L12cPOut4Invoke)

msgP33

FW(RealSupplierAnswerMSG
/Availability_PA)

msgP34

FW(RealSupplierAnswerMSG
/unReservedItems_PA)

msgP35

FW(RealSupplierAnswerMSG
/PID_PA)

D6B0L12cPOut4Invoke_PA

X_D6B0L12cPOut4Invoke_PA

D4B0L14tEndFlow

X_D6B0L13cPOut4Rec

msgP30

X_RealSupplierAnswerMSG/
Availability_PA

msgP31

X_RealSupplierAnswerMSG/
unReservedItems_PA

msgP32

X_RealSupplierAnswerMSG/
PID_PA

D4B0L15T4Assign

X_RealSupplierAnswerMSG/
Availability

D8B1L22T4Assign

X_RealSupplierAnswerMSG/
unReservedItems

D5B1L11cPOut4FlowHead_PA msgP36

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/St

ring_1)

msgP37 msgP38 D6B1L12cPOut4Invoke

FW(D5B1L11cPOut4FlowHead
)

msgP39msgP40 msgP41 msgP42msgP43

D6B1L13T4Receive

X_D6B1L12cPOut4Invoke

D6B1L13cPOut4Rec

FW(D6B1L12cPOut4Invoke)

msgP47

FW(WHAnswerMSG/Availabil
ity_PA)

msgP48

FW(WHAnswerMSG/unReserve
dItems_PA)

msgP49

FW(WHAnswerMSG/PID_PA)

D6B1L12cPOut4Invoke_PA

X_D6B1L12cPOut4Invoke_PA

X_D6B1L13cPOut4Rec

msgP44

X_WHAnswerMSG/Availabili
ty_PA

msgP45

X_WHAnswerMSG/unReserved
Items_PA

msgP46

X_WHAnswerMSG/PID_PA

X_WHAnswerMSG/Availabili
ty

X_WHAnswerMSG/unReserved
Items

D4B0L14cPOut4FlowEnd

EL(D6B0L13cPOut4Rec,D6B1
L13cPOut4Rec)

X_D4B0L14cPOut4FlowEnd

D4B0L15cPOut4Assign

FW(D4B0L14cPOut4FlowEnd)

msgP50

FW(RealSupplierAnswerMSG
/Availability)

msgP51

FW(WHAnswerMSG/Availabil
ity)

D5B0L16Case

X_D4B0L15cPOut4Assign

D5B1L16Case

X_D4B0L15cPOut4AssignX_TempV2 X_TempV2 X_TempV3 X_TempV3

D5B0L16cPCaseOut

EL(D4B0L15cPOut4Assign,T
empV2,TempV3)

X_D5B0L16cPCaseOut

D5B1L16cPCaseOut

EL(D4B0L15cPOut4Assign,T
empV2,TempV3)

X_D5B1L16cPCaseOut

D8B0L19cPOut4Assign

FW(D5B0L16cPCaseOut)

msgP52

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP53

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP54

FW(receiveOrder1Response
/UnPerishableList)

D8B0L20T4Invoke

X_D8B0L19cPOut4Assign
X_WarehouseWSSEI_confirm

Order/PID
X_WarehouseWSSEI_confirm

Order/CustInfo_2
X_WarehouseWSSEI_confirm

Order/String_1

D8B0L19cPOut4Assign_PA msgP55

FW(WarehouseWSSEI_confir
mOrder/String_1)

msgP56 msgP57D8B0L20cPOut4Invoke

FW(D8B0L19cPOut4Assign)

X_D8B0L20cPOut4Invoke

D8B0L21cPOut4Assign

FW(D8B0L20cPOut4Invoke)

msgP58

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP59

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

D8B0L22T4Invoke

X_D8B0L21cPOut4Assign X_ConfirmMSG/CustInfoX_ConfirmMSG/PID

D8B0L21cPOut4Assign_PA msgP60

FW(ConfirmMSG/PID)

msgP61D8B0L22cPOut4Invoke

FW(D8B0L21cPOut4Assign)

X_D8B0L22cPOut4Invoke

D8B0L23cPOut4Assign

FW(D8B0L22cPOut4Invoke)

msgP62

FW(receiveOrder1Response
/PerishableList,receiveO

rder1Response/UnPerishab
leList)

msgP63

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

D8B0L24invoke

X_D8B0L23cPOut4Assign
X_CalculateTotalPriceReq

uest/ItemList
X_CalculateTotalPriceReq

uest/PID

D8B0L24cPOut4Invoke_PA

X_D8B0L24cPOut4Invoke_PA

D8B0L23cPOut4Assign_PA

FW(D8B0L24cPOut4Invoke_P
A)

msgP66

FW(CalculateTotalPriceRe
quest/ItemList)

msgP67D8B0L24cPOut4Invoke

FW(D8B0L23cPOut4Assign)

msgP68

FW(CalculateTotalPriceRe
sponse/PriceOfD8B0L24inv

oke_PA)

msgP69

msgP64

X_CalculateTotalPriceRes
ponse/PriceOfD8B0L24invo

ke_PA

msgP65

X_CalculateTotalPriceRes
ponse/PIDOfD8B0L24invoke

_PA

X_D8B0L24cPOut4Invoke

X_CalculateTotalPriceRes
ponse/Price

D8B0L25cPOut4Assign

FW(D8B0L24cPOut4Invoke)

msgP70

FW(receiveOrder1Response
/PerishableList,receiveO

rder1Response/UnPerishab
leList)

D8B0L26invoke

X_D8B0L25cPOut4Assign
X_GetItemNameListRequest

/getItemNameListRequest

D8B1L23invoke

X_GetItemNameListRequest
/getItemNameListRequest

D8B0L26cPOut4Invoke_PA

X_D8B0L26cPOut4Invoke_PA

D8B0L25cPOut4Assign_PA

FW(D8B0L26cPOut4Invoke_P
A)

msgP72

FW(GetItemNameListReques
t/getItemNameListRequest

)

D8B0L26cPOut4Invoke

FW(D8B0L25cPOut4Assign)

msgP73

FW(GetItemNameListRespon
se/getItemNameListRespon
seOfD8B0L26invoke_PA)

msgP71

X_GetItemNameListRespons
e/getItemNameListRespons

eOfD8B0L26invoke_PA

X_D8B0L26cPOut4Invoke
X_GetItemNameListRespons
e/getItemNameListRespons

e

X_GetItemNameListRespons
e/getItemNameListRespons

e

D5B0L16cPOutEndSwitchmsgP74

FW(GetItemNameListRespon
se/getItemNameListRespon

se)

msgP75

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP76

FW(CalculateTotalPriceRe
sponse/Price)

D2B0L29T4Reply

X_D5B0L16cPOutEndSwitch
X_ShopWSSEI_reply2Client

/IncomingItems
X_ShopWSSEI_reply2Client

/PID
X_ShopWSSEI_reply2Client

/replyMsg

D8B1L19cPOut4Assign

FW(D5B1L16cPCaseOut)

msgP77

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP78

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

msgP79 msgP80msgP81

FW()

D8B1L20T4Invoke

X_D8B1L19cPOut4Assign

D8B1L21T4Invoke

X_SupplierWSSEI_unReserv
e/parameters/unReserve/P

ID

X_WarehouseWSSEI_unReser
ve/PID

X_SupplierWSSEI_unReserv
e/parameters/unReserve/S

tring_1

X_SupplierWSSEI_unReserv
e/parameters/unReserve/C

ustInfo

X_WarehouseWSSEI_unReser
ve/String_1

D8B1L19cPOut4Assign_PA msgP82

FW(WarehouseWSSEI_unRese
rve/String_1)

msgP83

D8B1L20cPOut4Invoke

FW(D8B1L19cPOut4Assign)

X_D8B1L20cPOut4Invoke

D8B1L20cPOut4Invoke_PA msgP84

FW(SupplierWSSEI_unReser
ve/parameters/unReserve/

String_1)

msgP85 msgP86D8B1L21cPOut4Invoke

FW(D8B1L20cPOut4Invoke)

X_D8B1L21cPOut4Invoke

FW(RealSupplierAnswerMSG
/unReservedItems,WHAnswe

rMSG/unReservedItems)

D8B1L22cPOut4Assign

FW(D8B1L21cPOut4Invoke)

X_D8B1L22cPOut4Assign

D8B1L23cPOut4Invoke_PA

X_D8B1L23cPOut4Invoke_PA

FW(GetItemNameListRespon
se/getItemNameListRespon
seOfD8B1L23invoke_PA)

D8B1L22cPOut4Assign_PA

FW(D8B1L23cPOut4Invoke_P
A)

msgP88

FW(GetItemNameListReques
t/getItemNameListRequest

)

D8B1L23cPOut4Invoke

FW(D8B1L22cPOut4Assign)

msgP87

X_GetItemNameListRespons
e/getItemNameListRespons

eOfD8B1L23invoke_PA

X_D8B1L23cPOut4Invoke

FW(GetItemNameListRespon
se/getItemNameListRespon

se)

FW(ShopWSSEI_receiveOrde
r/parameters/receiveOrde

r/PID,ShopWSSEI_receiveO
rder/parameters/receiveO

rder/CustInfo_1,ShopWSSE
I_receiveOrder/parameter
s/receiveOrder/String_2)

FW()

D2B0L29cPOut4Reply_PA

FW(D5B0L16cPOutEndSwitch
)

msgP89

FW(ShopWSSEI_reply2Clien
t/replyMsg)

msgP90

FW(ShopWSSEI_reply2Clien
t/IncomingItems)

msgP91

FW(ShopWSSEI_reply2Clien
t/PID)

Figure 5.34: The CPNs model of SHOP process

CHAPTER 5. WEB SERVICES APPLICATION 118

D2B0L1T4Receive

D2B0L1cPOut4Rec

FW(cPInPNNet)

msgP3

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/St

ring_1_PA)

msgP4

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/Cu

stInfo_PA)

msgP5

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D_PA)

cPInPNNet

X_cPInPNNet

cPInPNNet_PA

X_cPInPNNet_PA

D2B0L2T4Assign

X_D2B0L1cPOut4Rec

msgP0

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl
iercheckAvailReserve/Str

ing_1_PA

msgP1

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/Cus
tInfo_PA

msgP2

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID
_PA

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl
iercheckAvailReserve/Str

ing_1

D5B1L19T4Assign

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl
iercheckAvailReserve/Str

ing_1

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/Cus
tInfo

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/Cus
tInfo

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

D2B0L9T4Assign

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

D5B2L23T4Assign

X_WarehouseWSSEI_checkAv
ailable/parameters/Suppl

iercheckAvailReserve/PID

D2B0L2cPOut4Assign

FW(D2B0L1cPOut4Rec)

msgP6

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D)

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D)

msgP7

D2B0L3invoke

X_D2B0L2cPOut4Assign
X_CheckLocalAvailability

1Request/PID
X_CheckLocalAvailability

1Request/parameters

D2B0L3cPOut4Invoke_PA

X_D2B0L3cPOut4Invoke_PA

D2B0L2cPOut4Assign_PA

FW(D2B0L3cPOut4Invoke_PA
)

msgP11

FW(CheckLocalAvailabilit
y1Request/PID)

msgP12D2B0L3cPOut4Invoke

FW(D2B0L2cPOut4Assign)

msgP13

FW(CheckLocalAvailabilit
y1Response/PIDOfD2B0L3in

voke_PA)

msgP14

msgP15

msgP8

X_CheckLocalAvailability
1Response/PIDOfD2B0L3inv

oke_PA

msgP9

X_CheckLocalAvailability
1Response/UnPerishableLi

stOfD2B0L3invoke_PA

msgP10

X_CheckLocalAvailability
1Response/AvailabilityOf

D2B0L3invoke_PA

D3B0L4Case

X_D2B0L3cPOut4Invoke

D3B1L4Case

X_D2B0L3cPOut4Invoke

X_CheckLocalAvailability
1Response/UnPerishableLi

st

X_CheckLocalAvailability
1Response/UnPerishableLi

st

D6B0L7T4Assign

X_CheckLocalAvailability
1Response/Availability

X_CheckLocalAvailability
1Response/Availability

D3B0L4cPCaseOut

EL(D2B0L3cPOut4Invoke,tr
ue)

X_D3B0L4cPCaseOut

msgP16

X_true X_true

D3B1L4cPCaseOut

EL(D2B0L3cPOut4Invoke,tr
ue)

D6B1L7T4Invoke

X_D3B1L4cPCaseOut

D3B0L4cPOutEndSwitch

msgP17

FW(CheckLocalAvailabilit
y1Response/Availability)

X_D3B0L4cPOutEndSwitch

D2B0L10T4Invoke

X_WHAnswerMSG/Availabili
ty

D3B1L4cPCaseOut_PA msgP18

FW(Request1/asyncData)

msgP19 D6B1L7cPOut4Invoke

FW(D3B1L4cPCaseOut)

msgP22 msgP23 msgP24 msgP25msgP26 msgP27

D6B1L8T4Receive

X_D6B1L7cPOut4Invoke

msgP20

X_Request1/asyncData

msgP21

X_Request1/PID

msgP30

FW(callbackResponse/call
backData_PA)

msgP31

FW(callbackResponse/PID_
PA)

D6B1L7cPOut4Invoke_PA

X_D6B1L7cPOut4Invoke_PA

msgP28

X_callbackResponse/callb
ackData_PA

msgP29

X_callbackResponse/PID_P
A

FW(CheckLocalAvailabilit
y1Response/Availability)

D2B0L9cPOut4Assign

FW(D3B0L4cPOutEndSwitch)

msgP32

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D)

msgP33

FW(CheckLocalAvailabilit
y1Response/UnPerishableL

ist)

X_D2B0L9cPOut4Assign X_WHAnswerMSG/PID
X_WHAnswerMSG/unReserved

Items

D2B0L9cPOut4Assign_PA msgP34

FW(WHAnswerMSG/Availabil
ity)

msgP35 msgP36D2B0L10cPOut4Invoke

FW(D2B0L9cPOut4Assign)

msgP37msgP38 msgP39 msgP40 msgP41 msgP42 msgP43 msgP44 msgP45 msgP46 msgP47 msgP48 msgP49 msgP50

D3B0L12pickHead

X_D2B0L10cPOut4Invoke

D2B0L11cPoutPick0

FW(D2B0L10cPOut4Invoke)

D2B0L11cPoutPick1

FW(D2B0L10cPOut4Invoke)

D4B1L0T4Receive

X_D2B0L11cPoutPick0

D4B2L0T4Receive

X_D2B0L11cPoutPick1

D4B1L0cPOut4Rec

FW(D2B0L11cPoutPick0)

msgP54

FW(WarehouseWSSEI_confir
mOrder/String_1_PA)

msgP55

FW(WarehouseWSSEI_confir
mOrder/CustInfo_2_PA)

msgP56

FW(WarehouseWSSEI_confir
mOrder/PID_PA)

D2B0L11cPoutPick0_PA

X_D2B0L11cPoutPick0_PA

D5B1L14T4Assign

X_D4B1L0cPOut4Rec

msgP51

X_WarehouseWSSEI_confirm
Order/String_1_PA

msgP52

X_WarehouseWSSEI_confirm
Order/CustInfo_2_PA

msgP53

X_WarehouseWSSEI_confirm
Order/PID_PA

X_WarehouseWSSEI_confirm
Order/String_1

X_WarehouseWSSEI_confirm
Order/CustInfo_2

X_WarehouseWSSEI_confirm
Order/PID

D5B1L14cPOut4Assign

FW(D4B1L0cPOut4Rec)

msgP57msgP58

FW(WarehouseWSSEI_confir
mOrder/PID)

FW(WarehouseWSSEI_confir
mOrder/PID)

msgP59

FW(WarehouseWSSEI_confir
mOrder/CustInfo_2)

FW(WarehouseWSSEI_confir
mOrder/CustInfo_2)

D6B1L18invoke

X_D5B1L14cPOut4Assign
X_ReservationRequest/par

ameters
X_ReservationRequest/PID

X_ReservationRequest/Cus
tInfo

D6B1L18cPOut4Invoke_PA

X_D6B1L18cPOut4Invoke_PA

D5B1L14cPOut4Assign_PA

FW(D6B1L18cPOut4Invoke_P
A)

msgP63

FW(ReservationRequest/pa
rameters)

msgP64msgP65D6B1L18cPOut4Invoke

FW(D5B1L14cPOut4Assign)

msgP66

FW(ReservationResponse/P
IDOfD6B1L18invoke_PA)

msgP67 msgP68

msgP60

X_ReservationResponse/PI
DOfD6B1L18invoke_PA

msgP61

X_ReservationResponse/Un
PerishableListOfD6B1L18i

nvoke_PA

msgP62

X_ReservationResponse/Av
ailabilityOfD6B1L18invok

e_PA

X_D6B1L18cPOut4Invoke

D5B1L19cPOut4Assign

FW(D6B1L18cPOut4Invoke)

msgP69

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D)

msgP70

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/St

ring_1,WarehouseWSSEI_ch
eckAvailable/parameters/

SuppliercheckAvailReserv
e/CustInfo,WarehouseWSSE

I_checkAvailable/paramet
ers/SuppliercheckAvailRe

serve/PID)

D5B1L20T4Invoke

X_D5B1L19cPOut4Assign
X_SupplierWSSEI_Shipping

Request/PID
X_SupplierWSSEI_Shipping

Request/ShippingData

D5B1L19cPOut4Assign_PAmsgP71

FW(SupplierWSSEI_Shippin
gRequest/ShippingData)

msgP72 D5B1L20cPOut4Invoke

FW(D5B1L19cPOut4Assign)

msgP73 msgP74

D3B0L12pickEnd

X_D5B1L20cPOut4Invoke

D4B2L0cPOut4Rec

FW(D2B0L11cPoutPick1)

msgP77

FW(WarehouseWSSEI_unRese
rve/String_1_PA)

msgP78

FW(WarehouseWSSEI_unRese
rve/PID_PA)

D2B0L11cPoutPick1_PA

X_D2B0L11cPoutPick1_PA

X_D4B2L0cPOut4Rec

msgP75

X_WarehouseWSSEI_unReser
ve/String_1_PA

msgP76

X_WarehouseWSSEI_unReser
ve/PID_PA

D5B2L23cPOut4Assign

FW(D4B2L0cPOut4Rec)

msgP79

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D)

FW(WarehouseWSSEI_checkA
vailable/parameters/Supp
liercheckAvailReserve/PI

D)

msgP80 msgP81

D5B2L24invoke

X_D5B2L23cPOut4Assign
X_UnReservationRequest/P

ID
X_UnReservationRequest/p

arameters
X_UnReservationRequest/C

ustInfo

D5B2L24cPOut4Invoke_PA

X_D5B2L24cPOut4Invoke_PA

D5B2L23cPOut4Assign_PA

FW(D5B2L24cPOut4Invoke_P
A)

msgP84

FW(UnReservationRequest/
parameters)

msgP85msgP86

D5B2L24cPOut4Invoke

FW(D5B2L23cPOut4Assign)

msgP87

FW(UnReservationResponse
/ResultOfD5B2L24invoke_P

A)

msgP88

msgP82

X_UnReservationResponse/
ResultOfD5B2L24invoke_PA

msgP83

X_UnReservationResponse/
PIDOfD5B2L24invoke_PA

X_D5B2L24cPOut4Invoke

D3B0L14cPOut4PickEnd

FW(D5B1L20cPOut4Invoke)

Figure 5.35: The CPNs model of WAREHOUSE process

CHAPTER 5. WEB SERVICES APPLICATION 119

D2B0L1T4Receive

D2B0L1cPOut4Rec

FW(cPInPNNet)

msgP3

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo_PA)

msgP4

FW(SupplierWSSEI_checkAv
ailReserve/ItemList_PA)

msgP5

FW(SupplierWSSEI_checkAv
ailReserve/PID_PA)

cPInPNNet

X_cPInPNNet

cPInPNNet_PA

X_cPInPNNet_PA

D2B0L2T4Assign

X_D2B0L1cPOut4Rec

msgP0

X_SupplierWSSEI_checkAva
ilReserve/CustInfo_PA

msgP1

X_SupplierWSSEI_checkAva
ilReserve/ItemList_PA

msgP2

X_SupplierWSSEI_checkAva
ilReserve/PID_PA

D6B1L12T4Assign

X_SupplierWSSEI_checkAva
ilReserve/CustInfo

D6B2L16T4Assign

X_SupplierWSSEI_checkAva
ilReserve/CustInfo

D6B2L19T4Assign

X_SupplierWSSEI_checkAva
ilReserve/CustInfo

X_SupplierWSSEI_checkAva
ilReserve/ItemList

X_SupplierWSSEI_checkAva
ilReserve/PID

X_SupplierWSSEI_checkAva
ilReserve/PID

X_SupplierWSSEI_checkAva
ilReserve/PID

X_SupplierWSSEI_checkAva
ilReserve/PID

D2B0L2cPOut4Assign

FW(D2B0L1cPOut4Rec)

msgP6

FW(SupplierWSSEI_checkAv
ailReserve/PID)

FW(SupplierWSSEI_checkAv
ailReserve/PID)

msgP7

D2B0L3invoke

X_D2B0L2cPOut4Assign
X_CheckLocalAvailability

1Request/PID

X_CheckLocalAvailability
1Request/PID

X_CheckLocalAvailability
1Request/parameters

X_CheckLocalAvailability
1Request/parameters

D2B0L3cPOut4Invoke_PA

X_D2B0L3cPOut4Invoke_PA

D2B0L2cPOut4Assign_PA

FW(D2B0L3cPOut4Invoke_PA
)

msgP11

FW(CheckLocalAvailabilit
y1Request/parameters)

msgP12 D2B0L3cPOut4Invoke

FW(D2B0L2cPOut4Assign)

msgP13

FW(CheckLocalAvailabilit
y1Response/AvailabilityO

fD2B0L3invoke_PA)

msgP14 msgP15

msgP8

X_CheckLocalAvailability
1Response/AvailabilityOf

D2B0L3invoke_PA

msgP9

X_CheckLocalAvailability
1Response/UnPerishableLi

stOfD2B0L3invoke_PA

msgP10

X_CheckLocalAvailability
1Response/PIDOfD2B0L3inv

oke_PA

D2B0L4T4Assign

X_D2B0L3cPOut4Invoke
X_CheckLocalAvailability

1Response/Availability

X_CheckLocalAvailability
1Response/UnPerishableLi

st

X_CheckLocalAvailability
1Response/PID

D2B0L4cPOut4Assign

FW(D2B0L3cPOut4Invoke)

msgP16

FW(CheckLocalAvailabilit
y1Response/Availability)

msgP17

FW(CheckLocalAvailabilit
y1Response/UnPerishableL

ist)

msgP18

FW(CheckLocalAvailabilit
y1Response/PID)

D2B0L5T4Invoke

X_D2B0L4cPOut4Assign
X_RealSupplierAnswerMSG/

Availability
X_RealSupplierAnswerMSG/

unReservedItems
X_RealSupplierAnswerMSG/

PID

D2B0L4cPOut4Assign_PA msgP19

FW(RealSupplierAnswerMSG
/Availability)

msgP20 msgP21 D2B0L5cPOut4Invoke

FW(D2B0L4cPOut4Assign)

msgP22 msgP23 msgP24 msgP25 msgP26 msgP27 msgP28 msgP29 msgP30 msgP31 msgP32 msgP33 msgP34 msgP35msgP36 msgP37 msgP38 msgP39 msgP40 msgP41

D4B0L10pickHead

X_D2B0L5cPOut4Invoke

D3B0L9cPoutPick0

FW(D2B0L5cPOut4Invoke)

D3B0L9cPoutPick1

FW(D2B0L5cPOut4Invoke)

D5B1L0T4Receive

X_D3B0L9cPoutPick0

D5B2L0T4Receive

X_D3B0L9cPoutPick1

D5B1L0cPOut4Rec

FW(D3B0L9cPoutPick0)

msgP45

FW(SupplierWSSEI_unReser
ve/parameters/unReserve/

String_1_PA)

msgP46

FW(SupplierWSSEI_unReser
ve/parameters/unReserve/

PID_PA)

msgP47

FW(SupplierWSSEI_unReser
ve/parameters/unReserve/

CustInfo_PA)

D3B0L9cPoutPick0_PA

X_D3B0L9cPoutPick0_PA

X_D5B1L0cPOut4Rec

msgP42

X_SupplierWSSEI_unReserv
e/parameters/unReserve/S

tring_1_PA

msgP43

X_SupplierWSSEI_unReserv
e/parameters/unReserve/P

ID_PA

msgP44

X_SupplierWSSEI_unReserv
e/parameters/unReserve/C

ustInfo_PA

X_SupplierWSSEI_unReserv
e/parameters/unReserve/S

tring_1

X_SupplierWSSEI_unReserv
e/parameters/unReserve/P

ID

X_SupplierWSSEI_unReserv
e/parameters/unReserve/C

ustInfo

D6B1L12cPOut4Assign

FW(D5B1L0cPOut4Rec)

msgP48

FW(SupplierWSSEI_checkAv
ailReserve/PID)

FW(SupplierWSSEI_checkAv
ailReserve/PID)

msgP49

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo)

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo)

msgP50

D6B1L13invoke

X_D6B1L12cPOut4Assign
X_UnReservationRequest/P

ID
X_UnReservationRequest/C

ustInfo
X_UnReservationRequest/p

arameters

D6B1L13cPOut4Invoke_PA

X_D6B1L13cPOut4Invoke_PA

D6B1L12cPOut4Assign_PA

FW(D6B1L13cPOut4Invoke_P
A)

msgP53

FW(UnReservationRequest/
parameters)

msgP54 msgP55

D6B1L13cPOut4Invoke

FW(D6B1L12cPOut4Assign)

msgP56

FW(UnReservationResponse
/ResultOfD6B1L13invoke_P

A)

msgP57

msgP51

X_UnReservationResponse/
ResultOfD6B1L13invoke_PA

msgP52

X_UnReservationResponse/
PIDOfD6B1L13invoke_PA

D4B0L10pickEnd

X_D6B1L13cPOut4Invoke

D5B2L0cPOut4Rec

FW(D3B0L9cPoutPick1)

msgP60

FW(ConfirmMSG/PID_PA)

msgP61

FW(ConfirmMSG/CustInfo_P
A)

D3B0L9cPoutPick1_PA

X_D3B0L9cPoutPick1_PA

X_D5B2L0cPOut4Rec

msgP58

X_ConfirmMSG/PID_PA

msgP59

X_ConfirmMSG/CustInfo_PA

D6B2L16cPOut4Assign

FW(D5B2L0cPOut4Rec)

msgP62msgP63

FW(SupplierWSSEI_checkAv
ailReserve/PID)

FW(SupplierWSSEI_checkAv
ailReserve/PID)

msgP64

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo)

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo)

D6B2L17invoke

X_D6B2L16cPOut4Assign
X_ReservationRequest/par

ameters
X_ReservationRequest/PID

X_ReservationRequest/Cus
tInfo

D6B2L17cPOut4Invoke_PA

X_D6B2L17cPOut4Invoke_PA

D6B2L18T4Receive

X_D6B2L17cPOut4Invoke_PA

D6B2L16cPOut4Assign_PA

FW(D6B2L17cPOut4Invoke_P
A)

msgP68

FW(ReservationRequest/pa
rameters)

msgP69msgP70 D6B2L17cPOut4Invoke

FW(D6B2L16cPOut4Assign)

msgP71

FW(ReservationResponse/P
IDOfD6B2L17invoke_PA)

msgP72 msgP73

msgP65

X_ReservationResponse/PI
DOfD6B2L17invoke_PA

msgP66

X_ReservationResponse/Un
PerishableListOfD6B2L17i

nvoke_PA

msgP67

X_ReservationResponse/Av
ailabilityOfD6B2L17invok

e_PA

X_D6B2L17cPOut4Invoke

D6B2L18cPOut4Rec

FW(D6B2L17cPOut4Invoke)

msgP76

FW(SupplierWSSEI_Shippin
gRequest/ShippingData_PA

)

msgP77

FW(SupplierWSSEI_Shippin
gRequest/PID_PA)

X_D6B2L18cPOut4Rec

msgP74

X_SupplierWSSEI_Shipping
Request/ShippingData_PA

msgP75

X_SupplierWSSEI_Shipping
Request/PID_PA

X_SupplierWSSEI_Shipping
Request/ShippingData

D6B2L19cPOut4Assign

FW(D6B2L18cPOut4Rec)

msgP78

FW(SupplierWSSEI_Shippin
gRequest/ShippingData)

msgP79

FW(SupplierWSSEI_checkAv
ailReserve/PID)

msgP80

FW(SupplierWSSEI_checkAv
ailReserve/CustInfo)

D6B2L20invoke

X_D6B2L19cPOut4Assign
X_ArrangeShippingRequest

/ItemList
X_ArrangeShippingRequest

/PID
X_ArrangeShippingRequest

/CustInfo

D6B2L20cPOut4Invoke_PA

X_D6B2L20cPOut4Invoke_PA

D6B2L19cPOut4Assign_PA

FW(D6B2L20cPOut4Invoke_P
A)

msgP83

FW(ArrangeShippingReques
t/ItemList)

msgP84msgP85 D6B2L20cPOut4Invoke

FW(D6B2L19cPOut4Assign)

msgP86

FW(ArrangeShippingRespon
se/ResultOfD6B2L20invoke

_PA)

msgP87

msgP81

X_ArrangeShippingRespons
e/ResultOfD6B2L20invoke_

PA

msgP82

X_ArrangeShippingRespons
e/PIDOfD6B2L20invoke_PA

X_D6B2L20cPOut4Invoke

D4B0L12cPOut4PickEnd

FW(D6B1L13cPOut4Invoke)

Figure 5.36: The CPNs model of the SUPPLIER process

CHAPTER 5. WEB SERVICES APPLICATION 120

usually used for the composition verification, validation,feasibility checking, dead path elimination,

and controlability criterion checking [92, 117, 48, 85, 52,79, 80].

There are also some work modeling BPEL services with high level Petri nets [143, 150]. [143]

represents Web service composition description languageswith CPN in terms of WSCI (Web Ser-

vice Choreography Interface) for Web service composition verification. [150] models Web service

with CPN to verify the closure, availability, and security of Web service.

Modeling BPEL services as algebra processes is for orchestration and choreography study [133,

114, 38], dead-path-elimination [132], and ambiguity behavior verification [45] of Web service. We

refer the reader to [10] and [140] for the surveys of formal methods of for Web services modeling.

For monitoring and diagnosing a DES which is modeled with Petri nets, the major method is

to detect all the reachable trajectory according to orderedobservations ([8, 96, 110]) which suffers

from the state explosion problem. [144] proposes a decentralized model-based diagnosis algorithm

based on the PNs model in [78] by inferring backward along thedata dependency paths. But in

[144], the diagnosis algorithms for local BPEL process doesnot support processes contain loops.

There are some other works using different models to do diagnosis. [20] proposed a CPN model

and unfolding algorithm for the supervision and diagnosis of Web service, but focused on the change

of the system components (which are modeled as tokens) and itdid not offer the direct translation.

In [24], a system is modeled with process algebra containingfaulty behavior models. The diagnosis

is to compare all possible action traces with the observations. All the faulty actions on the matched

traces are the diagnosed faults. [141] models BPEL servicesas synchronizing automata pieces, and

builds the behavioral models from the process description.

Chapter 6

Decentralized architecture for CPN

based diagnosis

6.1 Introduction

The system distribution offers an effective solution for large complex systems because of its advan-

tages such as, resource sharing, openness, concurrency, scalability, fault tolerance, and transparency.

Meanwhile the maintenance of the distributed systems, including diagnosis, is much more demand-

ing.

According to the distribution topologies that we discussedin chapter 2 section 2.5, two archi-

tectures, decentralized and distributed, should be fully studied when the Web services applications

are concerned. The decentralized architecture [33, 97, 34,98, 13] is more effective for the Web

service applications located on different hosts but the interface data is not confidential. While the

distributed architecture [102, 124, 56, 125, 59, 37, 118, 57] is more suitable for those applications,

of which the authorizations of the components are limited.

In this chapter, we discuss the decentralized diagnosis, the communication protocols and diag-

nosis algorithms are given. The global consistency of the decentralized diagnosis is proposed, which

is inspired by [149]. The same example of the dining philosophers will be discussed in a distributed

architecture: each philosopher is represented as a system component as illustrated in figure 6.1.

121

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 122

S3

S2 S1

1

p1

2

p2

3

p3

p11

p21p22

p32

p13p33

t1t2

t3

r1r2

r3

Xp1

Xp1

Xp2
Xp2

Xp3

Xp3

FW (Xp13
)FW (Xp33

)

OK :FW (Xp11
)

K O:EL(Xp21
)

OK :FW (Xp21
)

K O:EL(Xp11
)

OK :FW (Xp32
)

K O:EL(Xp32
)

OK :FW (Xp22
)

K O:EL(Xp32
)

FW (Xp1
)

FW (Xp2
)

FW (Xp3
)

FW (Xp2
)

FW (Xp1
)FW (Xp3

)

Xp11

Xp21

Xp32

Xp22

Xp13
Xp33

Figure 6.1: Dining philosopher: as three distributed partsS1, S2, S3

6.2 Decentralized system

The decentralized diagnosis architecture is inspired by [5] and [144]. We consider a system com-

posed by a set of interacting software components inside a system. The CPN models (see figure

6.2) can be seen as a set of CPNs (a CPN for each component), which share a set of places called

bordered places(see definition 70). These place-bordered CPNs are called CPN partnership (see

definition 71).

Definition 70 (Bordered places set). LetN be a set of CPNs we range over usingNi, we define the

following notations:

1. RPi = Pi ∩
⋃

j 6=i

Pj is the set of bordered places ofNi;

2. RPij = RPi ∩RPj is the set of bordered places betweenNi andNj;

3. RP in
i = {rp ∈ RPi|P

• ⊆ Ti ∧
• P ∩ Ti = ∅} is the set of input bordered places ofNi;

4. RP out
i = {rp ∈ RPi|P

• ∩ Ti = ∅ ∧• P ⊆ Ti} is the set of output bordered places ofNi;

5. RP in
i→j = RP in

i ∩RP out
j is the set of input bordered places betweenNi andNj ;

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 123

C P N 1 C P N 2

C P N nC P N i

S u b S y s t e m 1 S u b S y s t e m 2

B o r d e r e d P l a c e s

Figure 6.2: Place-bordered CPN model in a decentralized architecture

6. RP out
i→j = RP out

i ∩RP in
j is the set of output bordered places betweenNi andNj.

Note{p|p ∈ Pi \RPi} are the inner places set ofNi and fori→ j, we callNi the source CPN

andNj the target CPN.

Definition 71 (CPN Partnership). LetN be a set of CPNsNi, we callN a CPN partnershipiff

• RP in
i ∪RP out

i = RPi;

• ∀i, j ∈ N ,RP in
i ∩RP in

j = ∅ ∧RP out
i ∩RP out

j = ∅.

EachNi is a partner inN .

6.3 Diagnosis problem of decentralized system

The software system (seen as a whole large CPN) can be diagnosed with the approach proposed in

chapter 4 in a centralized way. While sometimes, with the authority limit of some components, it is

not allowed to get the whole CPN for diagnosis. So it is necessary to extend the existing centralized

diagnosis approach to such kind of system. The idea is to locate a diagnoser in each component

and to add a specific coordinator to handler the cooperation between the local diagnosers (see figure

6.3). To avoid the large amount of communications between the components of the components of

the software systems, the coordinator keeps only the bordered places information of the partners to

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 124

coordinate the necessary communication between the local diagnosers. A local diagnosis compo-

nent takes the local CPN model and local observation to generate the local diagnostics for the local

recovery component. Each local diagnosis component processes locally.

C P N 1 C P N 2

C P N nC P N i

S u b S y s t e m 1 S u b S y s t e m 2

B o r d e r e d P l a c e s

L D 1L O 1

C o o r d i n a t o r

L D iL O i

L D 2 L O 2

L D n L O n

Figure 6.3: Decentralized diagnosis architecture of a set of place-bordered CPNs:LD represents
the local diagnoser,LO represents the local observation.

The local diagnosis problem can adapted asLDi=〈M0i , (S(T)i,Ci),Mi〉 according to the def-

inition of the centralized diagnosis problem (see definition 54 in chapter 4).Mi represents a final

marking on a local site, but it is not necessary to be a symptommarking. But the bordered places

cannot have conflict markings in two communicating CPN model(see assumption 1), otherwise

this conflict is ignored. More specifically, the marking of the target CPNcoversthe marking of the

source CPN.

Proposition 1. Given a CPN partnershipN , its markingM = {Mi} satisfies the constraint:

∀rp ∈ RP in
i→j = RP out

i→j,Mj(rp) <Mi(rp).

This proposition means that during the communication of twopartner CPNs, the marking of the

bordered places set of the target CPN model always covers that of the source one. This proposi-

tion ensures that we can decompose a CPN diagnosis problem into its CPN partnership diagnosis

problems.

Proof. The proof is obvious based on the definitions of partnership 71 and covering relation 55

because∀rp ∈ RP in
i→j = RP out

i→j , rp is just the same place which is the border of two CPNs.

Then we can define the decentralized diagnosis problem as follows:

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 125

Definition 72 (Decentralized CPN diagnosis problem). Given a CPN partnershipN , each CPN

partnerNi has a local diagnosis problemLDi, a decentralized diagnosis problem ofN is D =

{LDi|∃!̂i ∈ I,∃p ∈ Pî,Mî(p)=r}.

Definition 73 (Decentralized CPN diagnosis). Given a CPN diagnosis problemD, a decentralized

diagnosisDiag(D) is defined as∃D′ = {LD′
i}, s.t., for eachLD′

i = 〈M ′
0i
, (S(T)′i,C

′
i),M

′
i〉, :

(i) M0i =M ′
0i

, S(T)′i = S(T)i, C′
i = Ci,Mi <M ′

i ;

(ii) ∀rp ∈ RP out
i→j = RP in

i→j,M
′
j(rp) <M ′

i(rp).

SoDiag(D) =
⋃

i∈I
Diag(LDi) \

⋃

i∈I
RPi.

3-d-p example 24.Consider the scenario in figure 6.1, we can solve the global diagnosis problem

by solving three local diagnosis problems:LD1, LD2, andLD3, each of which has its own local

observation and initial, final markings. Note the bordered places for each two partners, which are

placespi, their final markingsM ′
j(pi) = 0 which satisfy condition (ii) of the decentralized diagnosis

73.

6.4 Diagnosis approach

According to the assumption 1, symptom occurs on one local site, then the local diagnoser is trig-

gered. When the local diagnoser needs to communicate with the partner(s), it sends request(s)

through the coordinator. This process continues when the coordinator confirms there is no more

diagnosis request to proceed. Then the coordinator integrates the diagnosis results by substituting

the intermediate diagnosis results backward. In this section, we explain in detail the protocols and

algorithms of the local diagnosers and the coordinators

6.4.1 Diagnosis protocol

A request (or response) represents the information emittedfrom a local diagnoser to the coordinator

(or from the coordinator to a local diagnoser). The local diagnosers communicate with the coordi-

nator through sending and receiving requests and responds,which are queued separately. So both a

local diagnoser and the coordinator have two queues: one forrequests, and the other for responds.

Both the local diagnosers and the coordinator handle the calculation of impossible diagnosis so-

lutions (name as counter-diagnosis for convenience) and diagnosis requests and responds in turn.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 126

To distinguish the different instances of the same diagnoser and the different local diagnosers, the

requests and responses contain at least the information of its local diagnoser id, instance id, the

counter-diagnosis/fault flag, the bordered places, and thefaulty transition modes. In this section, we

define the workflow and the communicating protocols between the local diagnoser (figure 6.4) and

the coordinator (figure 6.5).

Init

getCounterDRequest

isEndCounterD getDiagRequest

getImpossibleSols isEndDiag

sendCounterDResponse getDiag End

sendDiagResponse

No

Yes

No
Yes

Figure 6.4: The flowchart of the local diagnoser:getImpossibleSols and getDiag are local
counter-diagnosis and diagnosis generation functions which are explained in chapter 4.

A local diagnoser is initiated by the symptom detected on itshost local component and keeps

alive waiting for the requests from the coordinator. In firstcase, when one or more than one ex-

ception is caught, the local diagnoser performs the diagnosis algorithm to generate one primary

counter-diagnosis set by functiongetImpossibleSols (and one diagnosis set by functiongetDiag)

which contains the local bordered places that need to infer further and the local counter-diagnosis

(and faulty transitions modes). Then the local diagnoser sends the counter-diagnosis and the pri-

mary diagnosis result together to the coordinator as the first diagnosis request. In the second case,

the local diagnoser keeps active during the inferring process until it receives a terminating request

from the coordinator. Then it starts the diagnosis process and keeps activate until it receives another

terminating request from the coordinator. Figure 6.4 illustrates the flowchart of the local diagnoser.

When the coordinator receives this request, it first handlesthe counter-diagnosis, and then the

primary diagnosis result. According to the bordered placesinformation, the coordinator invokes the

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 127

getCounterDRequest
getDiagRequest

sendEndCounterD

isCounterDPrimary isDiagPrimary

isInResuestHistory isInRequestHistory

addtoRequestHistory addtoRequestHistory Evaluate

getRequestTarget getRequestTarget End

sendCounterDResponse sendDiagResponse

getAllCounterDResponse getAllDiagResponse

getCounterDRequest getDiagRequest

Yes

No

No

Yes

Yes

No

No

No

Yes

Figure 6.5: The flowchart of the coordinator:isCounterDPrimary andisDiagPrimary mean
if the request needs to be inferred further;isInCounterDHistory andisInDiagHistory mean if
the request is received before;getRequestTarget finds the corresponding local diagnoser to send
request for further inferring;Evaluate evaluates the first primary diagnosis/counter-diagnosis with
the further diagnosis/counter-diagnosis result and calculate the global diagnosis.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 128

local diagnosers of the source CPNs to infer their own local counter-diagnosis, waits and records

the responds. If there are the bordered places to handle in the respond, the coordinator calls their

corresponding local diagnosers of the source CPNs. To avoidredundant request, the coordinator

records all the requests, when it receives a request existedin the history, it does not handle it. The

counter-diagnosis inferring process terminates when no new counter-diagnosis in the local diagnosis

response. The coordinator sends a terminating signal to each local diagnoser to inform them. The

coordinator proceeds with the primary diagnosis requests in the same routine.

The last step, the coordinator substitutes the bordered places in the primary diagnosis and

counter-diagnosis with the further solved result, which wecall it ”evaluate”, and computes the

minimal diagnosis with the operator
∪
×.

6.4.2 Diagnosis algorithm

Algorithm 5 LDS({pi}): local diagnosis forQ
M̂

Input: 〈CFFlag, PSet〉: a counter-diagnosis/fault places flag and a places set as symptoms;
Output: D: local counter-diagnosis/diagnosis (to solve further);

1: if 〈CFFlag, PSet〉 is from local then
2: CounterD = getImpossibleSols(Q

M̂
);

{calculate the counter-diagnosis (see algorithm 2 in chapter 4)}
3: D = getDiag(Q

M̂
);

{calculate the diagnosis (see algorithm 4 in chapter 4)}
4: return D ;
5: else if〈CFFlag, PSet〉 is notENDCounterD orENDDiag then
6: Q

M̂
= getInequSys(CFFlag, PSet,Q

M̂
); {update the inequations system, algorithm 6}

7: if CFFlag = C then
8: CounterD = CounterD ∪ getImpossibleSols(getInequSys(CFFlag, PSet,Q

M̂
));

9: else ifCFFlag = F then
10: D=getDiag(Q

M̂
);{DO NOT execution line 16}

11: end if
12: else if〈CFFlag, PSet〉 isENDCounterD then
13: return CounterD ∩RP in;
14: else if〈CFFlag, PSet〉 isENDDiag then
15: return D ∩RP in;
16: end if

The decentralized diagnosis algorithm consists the local diagnoser algorithmLDS (see algo-

rithm 5) and the coordinator diagnoser algorithmGDS (see algorithm 7). They both pop a request

from theInQueue and push the response to theoutQueue.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 129

Algorithm LDS illustrates the process of the local diagnoser after popping a request from the

InQueue and before pushing the responses to theoutQueue. According to the information con-

tained in theInQueue, three situations are considered:

• if the request is from the local monitoring component, compute a primary counter-diagnosis

and a primary diagnosis based on the current inequations system (line 1 to line 4);

• if the request is a counter-diagnosis request for further solving, compute a local counter-

diagnosis based on the updated inequations system (line 7 toline 8);

• if the request is a diagnosis request, compute a local diagnosis based on the counter-diagnosis

and then updated the inequations system (line 9 to line 10).

Algorithm 6 getInequSys: update the inequations system with new information

Input: CFFlag: CFFlag = C/F meansPSet is counter-diagnosis/faults;
PSet: a places set;
Q

M̂
: current inequations system;

Output: Q
M̂

: the updated inequations system;
1: if CFFlag = C then
2: ForEach p ∈ PSet ∩ P do
3: if Eqp ∈ Q∗

M̂
then

4: r(Eqp) = r(Eqp) + b− l(Eqp);
5: l(Eqp) = b;
6: else ifEqp ∈ Qr

M̂
then

7: Exit; {ignore the conflict information}
8: end if
9: end for

10: else ifCFFlag = F then
11: ForEach p ∈ PSet ∩ P do
12: if Eqp ∈ Q∗

M̂
then

13: r(Eqp) = r(Eqp) + r − l(Eqp);
14: l(Eqp) = r;
15: else ifEqp ∈ Qb

M̂
then

16: Exit; {ignore the conflict information}
17: end if
18: end for
19: end if
20: return Q

M̂
;

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 130

Algorithm 7 GDS: global diagnosis solution

Input: CounterD0: a set of primary counter-diagnosis;
D0: a set of primary diagnosis;

Output: Diag: the global integrated diagnosis set;
1: add each bordered placep of the element ofCounterD0 into theoutQueue;
2: CounterDList.add(CounterD0); {CounterDList the list of counter-diagnosis to solve}
3: add each bordered placep of the element ofD0 into theoutQueue;
4: DList.add(D0); {DList the list of diagnosis to solve}
5: while inQueue 6= ∅ do
6: pop out a response frominQueue;
7: add the response toCounterDList or DList as the further inferring result of request con-

cernsp;
8: updaterequestHistory concernsp;
9: end while

10: if all counter-diagnosis request are respondedthen
11: ForEach i ∈ I do
12: outQueue.add(i, ENDCounterD); {terminate the counter-diagnosis inferring on the

LDs}
13: end for
14: end if
15: if all diagnosis request are respondedthen
16: ForEach i ∈ I do
17: outQueue.add(i, ENDDiag); {terminate the diagnosis inferring on the LDs}
18: end for
19: Diag = Evaluate(CounterDList,DList);
20: end if
21: return Diag;

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 131

FunctiongetInequSys is called byLDS for regrouping the inequations ofQ
M̂

according

to counter-diagnosis/places flagCFFlag during the life cycle of the local diagnoser. For each

unknown-token (∗) inequation labeled by a place of the input place set, the inequation is adjusted

and removed to either the black-token (line 1-9 of algorithm6) or red-token (line 10-18 of algorithm

6) inequations sub set. To adjust an inequation, is to make sure the marking on the left side of the

inequation to beb (line 1-5 of algorithm 6)(orr (line 10-14 of algorithm 6)) without violating the

covering relation of the inequation by add a residual on the right side of the inequation.

The coordinator algorithm (GDS in algorithm 7) proceeds in two steps: first, to coordinate the

counter-diagnosis and diagnosis requests by sending the requests (and receiving the responds) to the

local diagnosers of (and from) the source (and target) CPNs of the bordered places (line 1 to line 9);

second, to substitute the responds of further inferring request backward and integrate them to get

the final diagnosis (functionEvaluate listed in the algorithm 8).

Algorithm 8 Evaluate: to evaluate the diagnosis/counter-diagnosis result and calculate the global
diagnosis

Input: CounterDList: the list of the primary counter-diagnosis and the further inferred counter-
diagnosis; DList: the list of the primary diagnosis and the further inferred diagnosis;

Output: Diag: the integrated diagnosis;
1: Diagp = DList.pop;{Diagp: the further explain concern symptom bordered placep}
2: while Diagp 6= Diag0 do
3: ForEachDiag ∈ DList do
4: replace allp ⊆ Diag with Diagp;
5: end for
6: Diagp = DList.pop;
7: end while
8: calculate the counter-diagnosis setCounterDList in the same way;

9: Diag =
∪
× diagi \ CounterDList

10: return Diag;

6.4.3 Example: dining philosophers

3-d-p example 25.Suppose the 3 dining philosophers are located on three localsites,S1, S2, and

S3, then there are three local bordered placesp1, p2, andp3. For Si, RP in
i = RP out

i = {pj, pk}

with i 6= j 6= k and i, j, k ∈ {1, 2, 3}. Furthermore,RP in
1→2 = RP out

1→2 = RP in
2→1 = RP out

2→1 =

{p2}; RP in
2→3 = RP out

2→3 = RP in
3→2 = RP out

3→2 = {p3}; RP in
1→3 = RP out

1→3 = RP in
3→1 = RP out

3→1 =

{p1}.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 132

S3

Cor

S2 S1

1 : Diag = {p1}
∪
× {p3}

2 : Diag(p1)

3 : Diag(p3)

6 : evaluate(Diag)

4 : Diag(p1) = {p1,md(r1)}

5 : Diag(p3) = {p3,md(r2)}

Figure 6.6: Dining philosophers: decentralized diagnosisprocess

The diagnosis process (see figure 6.6) starts onS3 wheret3 detect a symptom on placep13

andp33. So the local diagnoserLD3 on S3 constructs an inequations system (algorithm 6.1) by

applying the incidence equation (algorithm 6.1). By performing the local diagnosis algorithm 5

LDS, the primary local diagnosisD0 is {p1}
∪
× {p3} in whichRP in

1→3 = {p1} andRP in
2→3 =

{p3}. D0 is then sent to theinQueue of the coordinator for further diagnosis (algorithm 7GDS).

The coordinator pope this request from itsinQueue and separatesD0 as {p1} and {p3} then

send the diagnosis requests〈p1,LD1〉 and〈p3,LD2〉 to the corresponding partnersLD1 andLD2

(algorithm 7GDS line 3).

So onLD1 andLD2, two inequations systems are constructed as illustrated intables 6.2 and

6.3 by applying the incidence equations illustrated in tables 6.2 and 6.3. Then the coordinator

receives the Local diagnosisD1 = {p1,md(r1)} andD2 = {p3,md(r2)} from LD1 andLD2

(algorithm 7GDS line 6).

To calculate the minimal diagnosis, the coordinator applies the functionEvaluate. The mini-

mal diagnosis is show in the equation 4.7 in chapter 4, which is the same diagnosis result as using

the centralized diagnosis algorithm.



























p1 : 0 < ∗ − 18χp1

p3 : 0 < ∗ − 18χp3

p13 : r 3 0 + 18FW (χp1)

p33 : r 3 0 + 18FW (χp3)

(6.1)

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 133

p1 : ∗
p3 : ∗
p13 r
p33 r

<

p1 : ∗
p3 : ∗
p13 0
p33 0

+

C t3 r3
p1 -χp1 FW(χp13)

p3 -χp3 FW(χp33)

p13 FW(χp1) -χp13

p33 FW(χp3) -χp33

×
t3 : 1
r3 : 0

Table 6.1: Dining philosopher: inequations system in form of matrix calculation onS3

p1 : r
p2 : ∗
p11 0
p21 0

<

p1 : ∗
p2 : ∗
p11 0
p21 0

+

C t1
r1

OK KO
p1 -χp1 FW(χp11) r
p2 -χp2 FW(χp21) r
p11 FW(χp1) -χp11 -χp11

p21 FW(χp2) -χp21 -χp21

×
t1 : 1
r1.OK : n1
r1.KO : n2

Table 6.2: Dining philosopher: inequations system in form of matrix calculation onS1



































n1 + n2 = 1

p1 : r < ∗ − 18χp1 + n81χ11 + n82r

p2 : ∗ < ∗ − 18χp2 + n81FW (χp21) + n82r

p11 : 0 < 0 + 18FW (χp1)− n81χp11 − n82χp11

p21 : 0 < 0 + 18FW (χp2)− n81χp21 − n82χp21

(6.2)

p2 : ∗
p3 : r
p22 0
p32 0

<

p2 : ∗
p3 : ∗
p22 0
p32 0

+

C t2
r2

OK KO
p2 -χp2 FW(χp22) r
p3 -χp3 FW(χp32) r
p22 FW(χp2) -χp22 -χp22

p32 FW(χp3) -χp32 -χp32

×
t2 : 1
r2.OK : n3
r2.KO : n4

Table 6.3: Dining philosopher: inequations system in form of matrix calculation onS2



































n3 + n4 = 1

p2 : ∗ < ∗ − 18χp2 + n83FW (χp22) + n84r

p3 : r < ∗ − 18χp3 + n83FW (χp32) + n84r

p22 : 0 3 0 + 18FW (χp2)− n83χp22 − n84χp22

p32 : 0 3 0 + 18FW (χp3)− n83χp32 − n84χp32

(6.3)

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 134

6.5 Proof of global consistency of decentralized diagnosis

The proof equivalence of the decentralized and centralizeddiagnosis is inspired by [149], in which

the definition of functional Petri net and contact places is introduced. We extend these definitions

into our CPN fault model.

6.5.1 Functional CPN definition

Definition 74 (Functional CPN). A functional CPNis a tripleZ = 〈N,RP in, RP out〉, whereN is

a CPN graph,RP in ⊆ P is a set of bordered input places,RP out ⊆ P is a set of bordered output

places, at that sets of input and output places do not intersect: RP in ∩ RP out = ∅, and places

of setQ = P \ (RP in ∪ RP out) will be named an internal and placesC = RP in ∪ RP out as a

contact set.

Definition 75 (Subnet of CPN). A CPNN ′ = 〈Σ′, Γ′, P ′, T ′, Cd′, Pre′, Post′, F ′ 〉 is asubnetof

CPNN if Σ′ ⊆ Σ, Γ′ ⊆ Γ, P ′ ⊆, T ′ ⊆ T , Cd′ ⊆ Cd, Pre′ ⊆ Pre, Post′ ⊆ Post, F ′ ⊆ F .

Functional netZ = 〈N ′, RP in, RP out〉 is named asfunctional subnetof CPNN and denoted

asZ � N if CPNN ′ is a subnet of CPNN .

Definition 76 (Minimal subnet of CPN). Functional subnetZ ′ � N is minimal if it does not contain

any other functional subnet of CPN of the source CPNN .

In global view of the decentralized diagnosis architecture, the complete CPN for diagnosis is

naturally composed of functional subnet of CPN, and the contact set is the union of the input/output

bordered places set. And we can now enumerate the most significant properties of functional subnets

of CPN:

1. Functional CPN subnet is generated by the set of its own transitions.

2. Set of minimal functional CPN subnetsZ = {Zj} , Zj � N defines the partition of setT

into nonintersecting subsetsT j, s.t.T =
⋃

j

T j, T j ∩ T k = ∅, j 6= k.

3. Each functional CPN subnetZ ′ of an arbitrary CPN N is the sum (union) of finite number of

minimal functional CPN subnets. Union of subnets may be defined with the aid of operation

of contact places fusion.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 135

4. Each contact place of decomposed CPN has no more than one input minimal functional CPN

subnet and no more than one output minimal functional CPN subnet (the corresponding prop-

erty of PN is proved in [148]).

5. For a bordered places setRP in
j→i = RP out

j→i ⊆ C in a distributed environment,∀p ∈ RP in
j→i,

M0i(p) =M0j(p) +C(p, ·)×
−⇀
δ j which means the initial color ofp in the functional subnet

Zi is decided by the firing of functional subnetZi.

6.5.2 Fundamental equations of functional subnets

Consider an inequations system:

M̂ <M0 + C ×
−⇀
δ (6.4)

Each equationEqpi : M̂(pi) < M0(pi) + C(pi, .)
−⇀
δ whereC(pi, .) represents the row ofpi in

the incidence matrixC. Therefore the system 6.4 may be represented as:

Eq=Eqp1 ∧ Eqp2 ∧ · · · ∧ Eqpn . (6.5)

Theorem 1. Solution
−⇀
δ′ of inequations systemEq (see equation 6.5) for CPNN is the solution of

inequations system for each of its functional CPN subnetsEqpi .

Proof. As
−⇀
δ′ is the solution of inequations system for CPNN , so

−⇀
δ′ is a CPN diagnosis solution

of system 6.5 and consequently
−⇀
δ′ is a CPN diagnosis solution for each of equationsEqpi . Thus

−⇀
δ′ is a solution for an arbitrary subsetEqpi . According to property 1, a functional CPN subnetZ ′

, Z ′ � N is generated by the set of its own transitionsT ′. Thus, an inequation corresponds to a

transition of subnet has the same formEqpi as for the entire net, so subnet contains all the incident

places of source net.

Therefore the inequations system for functional subnetZ ′ , Z ′ � N is a subset of set{Eqpi}

and vector
−⇀
δ′ is its solution. Consequently

−⇀
δ′ is the solution of inequations system for functional

subnetZ ′. Arbitrary choice of subnetZ � N in above reasoning proves the theorem.

Theorem 2. Inequations system of Petri net is solvable if and only if it is solvable for each minimal

functional subnet and a common solution for contact places exists.

Proof. According to property 2, a set of minimal functional subnetsZ = {Zj} , Zj � N of an

arbitrary CPNN defines a partition of setT into nonintersecting subsetsTj . Let number of minimal

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 136

functional CPN subnets equalsk. As mentioned in the proof of theorem 1, the equations contain

the terms for all the incident places. Therefore,

L⇔ L1 ∧ L2 ∧ · · · ∧ Lk. (6.6)

whereLj is a subsystem for a minimal functional CPN subnetZj, Zj � N .

To solve the inequations systemQ
M̂

which are composed byLj, two conditions should be

satisfied as follows:

(i) for the corresponding equations|Lj| which considers the token number, the left and right sides

of each equation are equal;

(ii) for the inequations systemQ
M̂

, the covering relations (<) must hold for each inequation.

So the proof of the correctness of the distributed diagnosis, the two conditions should be both

proved:

(i) The number of token of multi-set for CPN satisfy the property 2, too. So the equation 6.7

holds.

|L| ⇔ |L1| ∧ |L2| ∧ · · · ∧ |Lk|. (6.7)

where|Lj| represents the token number of the corresponding functional subnetLj .

Note that if |Lj| has not solutions, than|L| has not solutions, too. Let a general solution for

each functional CPN subnet has the form

x̄j = x̄′j + uj ·Gj (6.8)

whereuj · Gj is the general solution of homogeneous system,x̄′j ∈ X ′j , whereX ′j is the set

of minimal particular solution of nonhomogeneous system ofequations.

According to equations 6.7 and 6.8:

|L| ⇔ x̄′1 + u1 ·G1 = x̄′2 + u2 ·G2 = · · · = x̄′k + uk ·Gk (6.9)

Therefore system

x̄ = x̄′1 + u1 ·G1 = x̄′2 + u2 ·G2 = · · · = x̄′k + uk ·Gk (6.10)

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 137

is equivalent to source system

|M̂ | = |M0|+ |C| ×
−⇀
δ (6.11)

We need to demonstrate the solution of system 6.10 requires smaller quantity of equations.

Consider a set of places of CPNN with the set of minimal functional subnets{Zj|Zj � N}:

P = Q1 ∪Q2 ∪ · · · ∪Qk ∪ C (6.12)

whereQj is a set of internal places of subnetZj andC is a set of contact places. According

to definition each internal placep ∈ Qj is incident only to transitions from setT j. Thusxp corre-

sponding to this places is contained only in systemLj. Consequently, it is only necessary to solve

the equations for contact places from setC.

Now construct equations for the contact places of netp ∈ C, so they are only incident more

than one subnet. According to property 4, each contact placep ∈ C is incident not more than two

functional subnets. Therefore, we get equation:

x̄′jp + uj ·Gj
p = x̄′lp + ul ·Gj

l (6.13)

wherej, l is the numbers of minimal functional subnets incident to contact placep ∈ C andGj
p

is a column of matrixGj corresponding to placep. Equation 6.13 may be transformed as:

uj ·Gj
p − ul ·Gj

l = x̄′lp − x̄′jp (6.14)

Thus system

{

xp = x̄′jp + uj ·Gj
p, p ∈ Qj ∨ p ∈ C,

uj ·Gj
p − ul ·Gj

l = x̄′lp − x̄′jp , p ∈ C
(6.15)

is equivalent to the source system 6.11.

(ii) Given two communicating functional subnetsZj and Z l, which communicate through

rpoutj→l, which means subnetZj sends a messageCj→l = rpoutj→l to Z l. The diagnosis results of

these two functional subnets are respectivelyDiagj andDiagl. To get the union of the diagnosis of

two communicating functional subnet, a communicating functional subnet union operator is defined

as follows:

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 138

Definition 77 (Communicating functional subnet union).
∪
×
C

is a communicating functional subnet

union operator which define as follows:

(i) if Cl
j→l = ∅,Diagl

∪
×
C
Diagj = Diagl ∪Diagj ,

(ii) if Cl
j→l 6= ∅,Diagl

∪
×
C
Diagj = Diagl

M̂ l\M̂(Cj→l)

∪
×Diagj,l

M̂ (Cj→l)

∪
×Diagj

M̂ (Cj→l)

with M̂ j andM̂ l represent the symptom markings of functional subnetZj andZ l. M̂(Cj→l)

represents the symptom marking which can inferred to the setof Cj→l. Diagj,l represents the

diagnosis of the union of functional subnetsZj andZ l. Diagj,l
M̂ (Cj→l)

represent the diagnosis of

union of the functional subnetsZj andZ l concerns the symptom markingŝM(Cj→l).

According to the decentralized diagnosis algorithm, the global diagnosis is calculated asDiag=
∑

Cl
j→l

6=∅

Diagl
∪
×
C
Diagj1. The principle of the diagnosis processes is to start from the symptom

and compute the diagnosisDiagl, and continue to infer according to the bordered communication

placesCl
j→l, and corresponding expressions concerns a bordered placesp in Diagj is −χp , a

negative item which is ignored during the diagnosis process. So the global inequations system can

be separated as the local inequations systems. Each local inequations system includes two parts: a

set of inequations of a bordered place, which are in form of0 < ∗ − 18χp on the local diagnoserl

(which leads to∅ during the diagnosis process); and a set of inequations concern the internal places

on the local diagnoserj. Then the diagnosis concerns the bordered places computed by the local

diagnoserj is equivalent to that of by the global diagnoser. Thus the communicating functional

subnet union of all the local diagnosis is equal to the globaldiagnosis.

The equivalence of the global counter-diagnosis with the union of the local counter-diagnosis

can be proved in the same way.

6.6 Decentralized diagnosis of orchestrated BPEL services

In order to enhance fault management in complex services with the capability of reasoning on global

failures of the overall service, we propose to:

• Associate with each basic service a local diagnoser to provide the coordinator with the infor-

mation needed for identifying causes of an exception.

1The local diagnosis are based on the updated local inequations system according to the counter-diagnosis

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 139

• Provide a coordinator, which is not tied to any specific service, but is able to invoke local

diagnosers and relate the information they provide, in order to reach a diagnosis for the overall

complex service. In case the supply chain has several levels, several coordinators may form a

hierarchy, where a higher-level coordinator sees the lowerlevel ones as local diagnosers.

Each local diagnoser interacts with its Web Service and withthe coordinator. The coordinator

interacts only with local diagnosers. More precisely, the interaction follows this pattern:

• During service execution, each local diagnoser should monitor the activities carried out by its

Web Service, logging the messages it exchanges with the other peers. The diagnoser exploits

an internal ”observer” component collecting the messages and locally saving them for later

inspection. Notice that when a Web Service composes a set of sub-suppliers, the coordinator

of the sub network of cooperating services must fill the localdiagnoser role. On the other

hand, a Web Service can have a basic local diagnoser that doesnot need to exploit other

lower-level diagnosers in order to do its job. Local diagnosers need to exploit a model of

the Web Service in their care, and is able to construct an inequations system to perform local

diagnosis task.

• When a local diagnoser receives an alarm message, it starts reasoning about the problem to

identify its possible causes, which may be internal to the Web Service or external (erroneous

inputs from other services). The diagnoser can do this by analyzing the messages it previously

logged.

• The local diagnoser informs the coordinator about the alarmit received and the hypotheses

it made on the causes of the error. The coordinator starts invoking other local diagnosers

(following a diagnostic reasoning pattern, detailed in section 6.4.1) and relating the different

answers, in order to reach one or more global candidate diagnoses that are consistent with

reasoning performed by local diagnosers.

From the communication point of view, the inclusion of localand global diagnosers in the archi-

tecture of a complex Web Service is relatively seamless because diagnosers can be implemented as

Web Services (local/coordinator WS) interacting with the other peers via WSDL messages. Specif-

ically:

• Local diagnosers must offer a WSDL operation (logMessage (String wsdlMsg)) for the re-

ception of the messages to be logged.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 140

• Each Web Service must send copies of the inbound and outboundmessages to its local diag-

noser. To this purpose, each Web Service must be equipped with a ”logging service” proxy

which interceptWSDL messages and sends a copy of each message to Local Diagnoser WS

through the ”logMessage” port.

• The coordinator must offer a WSDL operation to be used by local diagnosers to trigger the

global diagnostic process.

• Local diagnosers must offer a WSDL operation to be used by thecoordinator in order to

invoke them.

The proposed approach is modular and supports a seamless introduction of advanced fault rea-

soning in the management of complex Web Services. The key point is that local diagnosers can

exploit specialized reasoning techniques without imposing the same techniques on any of the in-

volved Web Services. Although we require that Web Services notify local diagnosers about (normal

and fault) messages they receive from or send to other services, this feature can be added to the

invoked services without changing their internal structure. Moreover, if one of the involved services

does not have a local diagnoser, or the model of the service exploited by the local diagnoser is very

rough, the coordinator can still perform its job but the results may be less precise (e.g., it may not

be possible to rule out the non-diagnosed service as the cause for the error).

6.7 Case study:foodshop

6.7.1 Exceptions

Theoretically, four classes of exceptions are possible during the whole foodshop process.

CUSTomer exceptions:

• WrongBillException. CUST checks the bill and realizes thatthere is something wrong (miss-

ing and/or unwanted items) (just beforereplyPay activity in figure 5.7)

• TimeOutException. CUST is waiting for some feedback from the shop (either an unavail-

ability notification, or a request for payment) but none of the two takes place (just before

replyPay activity in figure 5.7).

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 141

• WrongParcelException. CUST receives a parcel with missingand/or unwanted items (upon

receive in figure 5.7).

• TimeOutException. CUST never receives the parcel (just beforereceive in figure 5.7).

SHOP exceptions:

• WrongAnswerException. For some items the answer from WAREHOUSE/SUPPLIER is

missing, or the answer is about a different item than asked for (uponReplyAllIsAvailable

in figure 5.6).

• TimeOutException. The SHOP never receives an answer on itemavailability either from the

WAREHOUSE or from the SUPPLIERs. (in the middle ofSupplier : CheckAndReserve

andWarehouse : CheckAndReserve in figure 5.6 which are in fact respectively consist of

an invoke and a receive activity).

• HighShipCostException. The shipping cost sent from the WAREHOUSE is higher than an

expected threshold.

• TimeOutException. The SHOP never receives an answer on the ship cost from the WARE-

HOUSE (just beforeSendCustomerPackage in Warehouse process in the figure 5.6).

• TimeOutException. The SHOP never receives an answer from the CUSTomer on whether

he/she wants to pay or not (just before Paid in figure 5.7).

SUPPLIER exceptions:

– WrongResCodeException. The reservation code is not recognized by SUPPLIER (ei-

ther upon the activityCancelOrder or uponConfirmOrder of supplier in figure 5.6).

– TimeOutException. The buyer (SHOP or WAREHOUSE) never tells SUPPLIER whether

to cancel the order or proceed with it (afterCancelOrder of shop or warehouse in figure

5.6).

WAREHOUSE exceptions:

– TimeOutException. Some answers on item availability neverarrive from the SUPPLI-

ERs. (just beforeReturnUnavailableList of warehouse in figure 5.6).

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 142

– WrongAnswerException. For some items the answer from the SUPPLIERs is missing,

or the answer is about a different item than asked for (uponAssembleShipment of

warehouse in figure 5.6).

– TimeOutException. The WAREHOUSE never receives from the SHOP an answer on

whether to cancel the reservation or to proceed computing the ship cost (after

ReturnUnavailableList of warehouse in figure 5.6).

– TimeOutException. After providing the ship cost, the WAREHOUSE never receives

an answer from the SHOP on whether to cancel or to proceed withthe order (after

ReturnUnavailableList of warehouse in figure 5.6).

– WrongSupplyException. Some items that arrive from the suppliers are wrong (upon

assemble).

– TimeOutException. Some items never arrive from the SUPPLIERs (upon

AssembleShipment of warehouse in figure 5.6).

6.7.2 Fault scenarios

In this section we highlight some failure situations withinthe process. In the following section, we

will describe a sample diagnostic process for each of these situations.

We will study three situations that are started by an exception:

1. When computing the bill (activityCalculateTotalCost), the SHOP realizes that the ship cost

sent by the WAREHOUSE is higher than the expected threshold (HighShipCostException

of the SHOP).

2. When receiving the bill, the CUSTomer realizes that some ordered item is wrong

(WrongBillException of the CUSTomer).

3. When assembling the package, the WAREHOUSE realizes thatit received (activity) a wrong

item from one of the SUPPLIERs (WrongSupplyException of the WAREHOUSE).

From the point of view of diagnosis, exceptions are symptomsof faults. There can be several

possible causes for an exception; diagnosis must discard those that cannot have happened (based on

observations), possibly reducing the possibilities to theone that took place.

1. There can be two causes for aHighShipCostException in the shop: either the SHOP

selected the wrong warehouse (thus choosing one that is far from the customer address), or

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 143

the warehouse itself made a mistake (activityPrepareCustomerPackage) in computing the

ship cost. Diagnostic reasoning can find these two possible causes with backward reasoning,

but without adding any observable data or test action it is not possible to discriminate between

the two.

2. AWrongBillException is caused by someone reserving the wrong item, either the WARE-

HOUSE (activityAvailability)) or one of the SUPPLIERs (activityAvailability). By fol-

lowing backwards the path of the wrong item data, it is possible to discover who reserved that

particular item and correctly diagnose the problem.

3. Let us look at the possible causes for aWrongSupplyException. Apparently there are three

possibilities:

(a) the SUPPLIER reserved (activityAvailability) the wrong item from the beginning;

(b) the SUPPLIER reserved the correct item but then made a mistake in updating its internal

order DB, writing the wrong item code (behind the activityAvailability) ;

(c) the SUPPLIER did everything correct but sent (activitySnedShipment) the wrong

parcel to the WAREHOUSE.

However, possibility 3a can be discarded by observing that it would have produced an error in

the bill, if the bill is asserted as correct. Thus only possibilities 3b and 3c remain as candidates.

The SUPPLIER could discover the source of the error by comparing the reservation codes it

sent to the SHOP with those it wrote down in its DB: if they are the same then 3c holds;

otherwise 3b holds. It is worth noting that this further check is not included in our CPN

model, so we cannot distinguish the faults 3b and 3c.

Assume a customer selects a food ware from the on-line site, and that his request includes

the phases of food checking for availability (service activated by the customer), food selection

from a warehouse (service activated by the shop service), book shipping (service executed by the

shipper service), and payment (service by an external payment service). Suppose that the Shipper,

Warehouse, and Supplier belong to a trust circle, that is, that no security faults can occur in the

messages exchanged among these three services. Faults thatmay arise in the trust circle are a

resource-booking fault, due to mismatch of resource reservation to execute the application. An

internal data fault may occur when the Shop sends order data to the Warehouse (e.g., a wrong ID).

Another fault, of type Unavailable goods may occur during the execution of the Warehouse

service, needing to store a log that asks to postpone the goods search process until a new event (Good

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 144

in Stock) arises to signal that the Warehouse has been refilled. If we view the whole application as

a workflow composed of three phases: Selection-and-Booking, Payment, and Delivery, a fault of

type phase time out occurs if one phase exceeds the foreseen time schedule; a session fault occurs

if a connection is lost among the phases, and the collected data are lost.

Finally, consider that food reservation, payment, and shipping are regarded as services that have

been orchestrated and attached to the customer context through e.g., the customer’s mobile device

or browser. If the shipping service arises a fault, e.g., a missed delivery due to a delayed delivery

time, we regard this fault as a QoS violation in terms of delivery service time fault, which is not

discussed in this thesis.

An important aspect that has to be considered in this exampleis the presence of many actors,

each with its own database. Since the partners are involved in the same business, databases could

overlap and thus be affected by data misalignments. There could be database misalignments be-

tween shop and Warehouse and consequently the shop has out ofdate catalogues. In some cases

this fault might imply the mismatch of customers’ requirements. In fact, it could happen that a

warehouse does not communicate to the shop price variations. In this case, shop, along the cus-

tomers’ requirements and the available information contained in its own databases, might select that

warehouse but the new prices do not satisfy the request. Customer would receive a bill higher than

the requested one. The error is due to the low values of timeliness associated with data owned by

the shop. Misalignments between shop and other actors’ databases can also cause completeness

problem. The partners need therefore to analyze their communication processes and adopt efficient

synchronization mechanisms by choosing the most suitable time interval to perform the periodic

realignment among databases.

The Diagnosis on WRONG PRICE determines the possible wrong components and actions,

such as:

• Wrong computation by SHOP

• Wrong ship cost by WAREHOUSE

• Wrong data in catalogue by SHOP/WAREHOUSE (low data quality)

• Wrong formulation of problem by CUSTOMER

• Wrong communication (dialog) e.g. 20$ or 20

Considering as a final example the fault:INCORRECT ASSEMBLE OF PARCEL, we have the

following schema:

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 145

Diagnosis: before assemble of parcel action Possible wrong components:

• Wrong synchronization by SUPPLIER (e.g., goods are reserved but not available)

• Wrong parts by SUPPLIER

• Wrong reservation by SUPPLIER

• Missing parts by SUPPLIER

• Wrong parcel composition by WAREHOUSE

6.7.3 Diagnosis

This section applies the decentralized diagnosis approachfor the fault INCORRECT ASSEMBLE

OF PARCEL. The activity names of the foodshop are abbreviated as in tables 6.4- 6.7. Table 6.8

lists the communicating messages (a band of bordered places) between the partners CUSTomer,

SHOP, SUPPLIER, WAREHOUSE, and LocalSupplier.

ReceiveOrder t1 StoreOrder t2 SplitOrder t3
Supplier::

CheckAndReserve
t4

Warehouse::
CheckAndReserve

t5 CalculateTotalCost t6

ReplyAllIsAvailable t7
ReceiveConfirmation

FromCustomer
t8 ForwardOrder t9

Supplier::
ConfirmOrder

t10
Warehouse::

ForwardOrder
t11 CancelOrder t12

Supplier::
CancelOrder

t13
Warehouse::
CancelOrder

t14
ReplyCustomer
Confirmation

t15

MergeUnavailableList t16
ReplySomething
IsNotAvailable

t17

Table 6.4: The activity names abbreviation ofShop service

CheckAndReserve t18 CancelOrder t19 Availability t20
Return

UnavailableList
t21 ConfirmOrder t22 AssembleShipment t23

SendShipment t24

Table 6.5: The activity names abbreviation ofRealSupplier service

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 146

CheckAndReserve t25 Availability t26
ReserveOn

LocalSupplier
t27

ReceiveLocalSupplier
Shipment

t28
Return

UnavailableList
t29 CancelOrder t30

ForwardOrder t31
ReceiveSupplier

Shipment
t32

PrepareCustomer
Package

t33

SendCustomer
Package

t34

Table 6.6: The activity names abbreviation ofWarehouse service

ReceiveOrderFrom
Wharehouse

t35
PrepareLocalSupplier

Shipment
t36

SendLocalSupplier
Shipment

t37

Table 6.7: The activity names abbreviation ofLocalSupplier service

Source
Message

Target
Service Activity Activity Service

CUSTomer unknown ShopWSSEI receiveOrder t1 SHOP
SHOP t4 SupplierWSSEI checkAvailReserve t18 SUPPLIER

SUPPLIER t21 RealSupplierAnswerMSG t4 SHOP
SHOP t5 WarehouseWSSEI checkAvailable t25 WAREHOUSE

WAREHOUSE t29 WHAnswerMSG t5 SHOP
SHOP t10 ConfirmMSG t22 SUPPLIER
SHOP t11 WarehouseWSSEI ForwardOrder t31 WAREHOUSE
SHOP t13 SupplierWSSEI unReserve t19 SUPPLIER
SHOP t14 WarehouseWSSEI unReserve t30 WAREHOUSE

SUPPLIER t24 SupplierWSSEI ShippingRequest t32 WAREHOUSE
WAREHOUSE t27 ReservationRequest t35 LocalSupplier
LocalSupplier t37 ReservationResponse t28 WAREHOUSE

SHOP t17 ShopWSSEI reply2Client unknown CUSTomer

Table 6.8: The communication messages shared by the partners

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 147

From to Diag name Diag value

Mon3 LD3 Diag0 Diag(p1)
∪
× Diag(p12)

∪
× Diag(p3)

LD3 Cor Diag
(1)
3 {md(t34)}

{md(t33), p4}
∪
× {{p5}

∪
× {p6, p7}}

Cor LD2 Diag(p4)
Cor LD1 Diag(p5)
Cor LD1 Diag(p6)
Cor LD4 Diag(p7)

LD2 Cor Diag
(1)
2 Diag(p4) = {md(t24),md(t23),md(t20), p11}

LD1 Cor Diag
(1)
1 Diag(p5) = {md(t5), p8}

LD1 Cor Diag
(2)
1 Diag(p6) = {md(t5), p9}

LD4 Cor Diag
(1)
4 Diag(p7) = {md(t36), p10}

Cor LD1 Diag(p11)
Cor LD1 Diag(p8)
Cor LD1 Diag(p9)

LD1 Cor Diag
(3)
1 Diag(p11) = {md(t4), p12}

LD1 Cor Diag
(4)
1 3 Diag(p8) = {p13}

LD1 Cor Diag
(5)
1 Diag(p9) = {p14}

Cor LD3 Diag(p10)

LD3 Cor Diag
(2)
3 Diag(p10) = {md(t26),md(t9)}

Cor Cor Diag = {{md(t34)}, evaluate({md(t33), p4}
∪
× {{p5}

∪
× {p6, p7}})

Table 6.9: The decentralized diagnosis process of foodshopexample for exception INCORRECT
ASSEMBLE OF PARCEL

Concerns the fault scenario INCORRECT ASSEMBLE OF PARCEL, the distributed observa-

tion can beAs there is not loop in each BPEL service, the occurrence of each activity is 1, which is

omitted:

Onshop service (S1), the partial order observation(S(T1),C1)=((t1, t2, t3, t4, t5, t6, t7, t8, t9,

t10, t11, t15), ((t1,t2), (t2,t3), (t3,t4), (t3,t5), (t4,t6), (t5,t6), (t6,t7), (t7,t8), (t8,t9), (t9,t10), (t10,t11),

(t11,t15)).

OnRealSupplier service (S2), the partial order observation(S(T2),C2)=((t18, t20, t21, t22,

t23, t24),((t18,t20), (t20,t21), (t21,t22), (t22,t23), (t23,t24)).

OnWarehouse service (S3), the partial order observation(S(T3),C3)=((t25, t26, t27, t28, t29,

t30, t31, t32, t33, t34),((t25,t26), (t26,t27), (t27,t28), (t28,t29), (t29,t30), (t29,t31), (t31,t32), (t32,t33),

(t33,t34)).

OnLocalSupplier service (S4), the partial order observation is in fact a complete order one:

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 148

(S(T4),C4)=((t35, t36, t37), ((t35,t36), (t36,t37)).

So the symptom marking is arisen by the CUSTomer of the Foodshop service and is projected

on the output variable partArrangeShippingResponse/IncomingItems, which is a set of bor-

dered data placesp1 (perishable food ”White bread” instead of ”Brown bread”),p2 (imperishable

food ”Orange juice” instead of ”Lemon juice”) andp3 (imperishable food ”Green tea” instead of

”Indian tea”) in the CPN model of the reply activityt34. The local diagnoserLD3 is triggered by

this symptom marking and get the primary diagnosisDiag
(1)
3 , the diagnosis stops after a series of

local diagnosers invocations and coordinations (see table6.9). Figure 6.7 illustrates the partners

of the Foodshop example and the bordered date places in the circled numbers, which concerns the

diagnosis.

Figure 6.7: The partners of the foodshop example

Thus the diagnosis can be evaluated asDiag = {{md(t34}), {md(t33)},D1

∪
× D2} withD1 =

{md(t24),md(t23),md(t20), p12} andD2 = {{p13}
∪
× D3} with D3 = {p14,md(t36),md(t26)}.

CHAPTER 6. DECENTRALIZED ARCHITECTURE FOR CPN BASED DIAGNOSIS 149

Diag

Diag
(1)
3

p1, p2, p3

Diag
(1)
2

p4

Diag
(3)
1

p11

Diag
(1)
1

p5

Diag
(4)
1

p8

Diag
(2)
1

p6

Diag
(5)
1

p7

Diag
(2)
3

p10

p9

Figure 6.8: The diagnosis tree of for faultINCORRECT ASSEMBLE OF PARCEL: the labels on the
edges represent the bordered data places need to solve further

While the input places ofShop servicep12, p13, andp14 are confirmed to be correct by the CUS-

Tomer, they are discarded from the diagnosis. Figure 6.8 illustrates the local diagnosis computed

on the local diagnosers. Then the diagnosis can be classifiedas (see figure 6.7):

• Wrong synchronization by SUPPLIER (e.g., goods are reserved but not available):md(t23);

• Wrong reservation/shipment by SUPPLIER:md(t20)/md(t24);

• Missing parts by SUPPLIER:md(t20);

• Missing parts by Warehouse:md(t26);

• Wrong parcel composition/shipment by WAREHOUSE:md(t33)/md(t34);

• Wrong reservation by LocalSupplier:md(t36);

Chapter 7

Conclusion

This research is motivated by the interest of designing distributed fault diagnosis for the models

of workflows. These workflows are created according to the existing standard and languages that

are used for web-services workflow modeling, and heuristic descriptions of failure situations within

workflow. The workflows can be composed as a large and complex software system in which the

components are located in different sites and communicate with each other by visible sent/received

messages. The diagnosis problem is viewed in this thesis as part of a broader supervisory architec-

ture taking into account that the diagnosis result is used for taking repair/reconfiguration actions to

realize the ”self-healing” Web services applications. Thedistributed setting that we considered is

very general considering that the software system comprises several components that are associated

with the local monitoring components and are the local diagnosis components are coordinated by

the decentralized coordinator to manage the information exchange and global diagnosis calculation.

To the best of our knowledge, it is new to model the distributed software system with the CPNs

to represent both the control and data for diagnosing algebraically. In [60, 51, 86, 28, 150, 145,

77, 15], the CPNs model is used to model the Workflow from the aspects of data. The control is

normally modeled as the ”guards” (the transition firing conditions) with depend much on the value

of data. To diagnosis Web service based on the CPNs model is discussed in [143, 112] (CPN)

and [87, 12, 4, 58, 121, 18, 41, 17, 131, 46] (PN). A distributed setting based on PN models was

considered in [8, 97, 71, 97, 96]. While most of them handle the repeating processes in a meticulous

way: to unfold the execution according to the observation, which is time/space consuming. Another

difficulty comes from the incomplete knowledge of system status and the observation order. [113,

96, 12, 110] discussed the diagnosis of the partially observation of system states and observable

events in form of Petri nets

151

CHAPTER 7. CONCLUSION 152

In this thesis, a novel algebraic backward diagnosis approach is proposed to handle the repeating

and partial order observation (section 4.3) more effectively without loosing the diagnosis precision.

Meanwhile the incomplete system status is represented as an”unknown” color (section 3.3.1), and

the complexity of the diagnosis algorithm does not increase.

In our CPN model, the faults are of two sources: the faulty input places, or the faulty transition

modes. The symptoms are represented as a symptom marking which contains the exclusive correc-

t/faulty/unknown status of each system variable. The task of diagnosis is to explain the symptom

marking by assigning to each CPN input place a correctness status and to each transition a series

of modes. As a workflow process can be very complicate, sometimes choosing a wrong path can

cause exceptions same as receiving faulty input data. So to unify this case, both the system data

and control are modeled as the places of CPN model. The data dependency expressions between

the input/output places, which are defined on the arcs of the CPNs, defines the fault transformation

paths (section 3.3.1). Thus by defining the data dependencies between the control and data places,

the different sorts of faults (data/control faults caused by data, control, or both) are naturally unified

(section 5.5.2). In this way, the CPN model is in fact a complicate and complete cause-and-effect

paths net between the input and output places.

From the point view of PN diagnosis, our task is to explain therelation between the initial and

final markings, which both are a (incomplete) system variables assignments. We define a ”covering”

relationship to represent the effect-and-cause relation between the symptom marking and the initial

marking. And thanks to the mathematical properties of CPN, this relationship can be represent in an

algebraic way: the incidence equation. So our diagnosis approach transforms the diagnosis problem

as solving an inequations system. As the symptom marking contains more assured information, so

the backward inferring algorithms are designed which starts from the final symptom marking and

search for all reasonable assignment for the input places and transition modes (section 4.2). In case

of multiple faults occur in the symptom marking, a multi fault operator
∪
× is defined to integrate the

diagnosis results of each single fault. The pure numeric incidence equation of PN loses the order

of the transitions, while in the incidence equation of the CPNs model, the partial orders are kept in

the data dependency functions. Thus the algebraic approachdoes not violate the minimality of the

diagnosis for the partial ordered observation.

This algebraic diagnosis approach can be performed either in centralized or decentralized (sec-

tion 6.2) manner. In a distributed architecture, the whole system is looked as a set of place-bordered

CPNs models located on different sites. The data and controls are passed by the bordered places (re-

mote activation and data places) between the neighbor CPNs.On each site, the local diagnoser has

CHAPTER 7. CONCLUSION 153

its own CPN models and observations. A coordinator is in charge of managing the communications

between the local diagnosers through the knowledge of bordered places of the local CPN models.

The backward search is used in the decentralized algorithm for deriving the preliminary local cal-

culation of a component (Section 6.4.1). The coordinator will assemble the diagnosis results after

all the local reasoning terminate. As both the CPN model and observations are locally independent,

the decentralized diagnosis architecture can be easily scale up in an hieratical manner.

In section 6.5, the equivalence of the decentralized diagnosis and the global one is proved. In

this section, the definition of ”functional CPN subnet” is introduced to represent the place-bordered

CPNs. The equivalence between the ”functional CPN subnets”and the global CPNs is proved both

on the aspect of the token number and token color reasoning.

In the part of the application (chapter 5), we studied the extendable XML-based workflow de-

scription language WS-BPEL and translated all its basic activities (message communication, syn-

chronous/asynchronous remote WS invocation, etc) and structures operators (choice, loop, concur-

rency, etc) into our CPN model. The most subtle data dependencies between the places are retrieved

by the XPath parsing.

7.1 Future work

We plan to further extend the results of this thesis in the following ways:

1. to study the diagnosis protocol for the distributed architecture that each local diagnoser rec-

ognize its own neighbors and updates its diagnosis according to the diagnosis requests of its

neighborhoods.

2. to study the problem of diagnosability of the CPNs model bychecking the deterministic prop-

erties of the columns of the CPNs incidence matrix. If in two transitions modes are not deter-

minative in the incidence matrix, these two transitions cannot be determinately diagnosed.

3. to extend the fault prediction based on the data fault diagnosis. Once the faulty input data is

confirmed, the prediction for the following places that are not reported to be faulty is reliable.

The approach performs the forward reasoning on the CPNs model.

4. to introduce the time conception into the CPNs model by defining the ”guard” on the transi-

tions. The time stamps of the monitoring log can be used to improve the quality of diagnosis

but the clock synchronization between the different local sites need to be considered.

CHAPTER 7. CONCLUSION 1

5. to include probabilistic information to order diagnosisresult. The probabilistic information

can be calculated according to the long term QoS data or the qualifications of the components

providers.

Bibliography

[1] Fault Diagnosis: Models, Artificial Intelligence, Applications. Springer, 1 edition, February

2004.

[2] Inc. Active Endpoints. Active endpoints.http://www.activevos.com.

[3] M. Alcaraz-Mejia, E.Lopez-Mellado, A.Ramirez-Trevino, and I.Rivera-Rangel. Petri net

based fault diagnosis of des. InProc. IEEE-. SMC, pages 4730–4735, Washington, USA,

2003.

[4] Cosimo Anglano and Luigi Portinale. B-W analysis: a backward reachability analysis for

diagnostic problem solving suitable to parallel implementation. In Valette, R., editor,Lec-

ture Notes in Computer Science; Application and Theory of Petri Nets 1994, Proceedings

15th International Conference, Zaragoza, Spain, volume 815, pages 39–58. Springer-Verlag,

1994.

[5] Liliana Ardissono, Luca Console, Anna Goy, Giovanna Petrone, Claudia Picardi, Marino

Segnan, and Daniele Theseider Dupré. Enhancing web services with diagnostic capabilities.

In European Conference on Web Services, pages 182–191, Växjö, Sweden, 2005. IEEE CS.

[6] Salomaa Arto and Sneddon Ian N.Theory of Automata. Pergamon Press Reprint, 1969.

[7] J. Ashley and L.E.Holloway. Diagnosis of condition systems using causal structure. In

American Control Conference, volume 1, pages 716–721, 2002.

[8] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large active systems.Artif.

Intell., 110(1):135–183, 1999.

[9] Charlton Barreto, Vaughn Bullard, Thomas Erl, John Evdemon, Diane Jordan, Khan-

derao Kand, Dieter König, Simon Moser, Ralph Stout, Ron Ten-Hove, Ivana Trick-

ovic, Danny van der Rijn, and Alex Yiu. Web services businessprocess execution

2

http://www.activevos.com

BIBLIOGRAPHY 3

language version 2.0 primer. Technical report, OASIS, May 2007. http://www.oasis-

open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm.

[10] Maurice Beek, Antonio Bucchiarone, and Stefania Gnesi. A survey on service composition

approaches: From industrial standards to formal methods. Technical Report 2006TR-15,,

Istituto di Scienza e Tecnologie dell’Informazione/IMT Graduate School, Area della Ricerca

CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy, 2006.

[11] Emmanuel Benazera and Louise Travé-Massuyès. Set-theoretic estimation of hybrid system

configurations.Trans. Sys. Man Cyber. Part B, 39(5):1277–1291, 2009.

[12] Albert Benveniste, Eric Fabre, Claude Jard, and StefanHaar. Diagnosis of asynchronous

discrete event systems, a net unfolding approach.IEEE Trans. on Automatic Control, 48:714–

727, 2003.

[13] Rene K. Boel and Jan H. van Schuppen. Decentralized failure diagnosis for discrete-event

systems with costly communication between diagnosers. InInternational Workshop on Dis-

crete Event Systems, pages 175–181, 2002.

[14] A. Boufaied, A. Subias, and M. Combacau. Chronicle modeling by petri nets for distributed

detection of process failures. InSystems, Man and Cybernetics, 2002 IEEE International

Conference on, volume 4, Oct. 2002.

[15] Khouloud Boukadi, Chirine Ghedira, Zakaria Maamar, and Djamal Benslimane. Specifica-

tion and verification of views over composite web services using high level petri-nets. In

Jorge Cardoso, José Cordeiro, and Joaquim Filipe, editors, ICEIS (4), pages 107–112, 2007.

[16] Khouloud Boukadi, Chirine Ghedira, Zakaria Maamar, and Hanifa Boucheneb. Specification

and verification of views over composite web services using high level petri-nets. Techni-

cal Report RR-LIRIS-2006-014, LIRIS UMR 5205 CNRS/INSA de Lyon/Universit¨ Claude

Bernard Lyon 1/Université Lumiere Lyon 2/Ecole Centrale de Lyon, 2006.

[17] Maria Paola Cabasino.Diagnosis and Identification of Discrete Event Systems using Petri

Nets. PhD thesis, University of Cagliari, Italy, march 2009.

[18] J. Cardoso, L.A. Kunzle, and R. Valette. Petri net basedreasoning for the diagnosis of

dynamic discrete event systems. InIn 6th International Fuzzy Systemes Association World

Congress, page 333¨C336, July 1995.

BIBLIOGRAPHY 4

[19] Thomas Chatain and Claude Jard. Symbolic diagnosis of partially observable concurrent sys-

tems. In David de Frutos-Escrig and Manuel Nú nez, editors,FORTE, volume 3235 ofLec-

ture Notes in Computer Science, pages 326–342, Madrid Spain, September 2004. Springer.

[20] Thomas Chatain and Claude Jard. Models for the supervision of web services orchestration

with dynamic changes. InAdvanced Industrial Conference on Telecommunications / Service

Assurance with Partial and Intermittent Resources Conference / E-Learning on Telecommu-

nications Workshop, pages 446–451, Lisbon, Portugal, 2005. IEEE CS Press.

[21] Thomas Chatain and Claude Jard. Models for the supervision of web services orchestra-

tion with dynamic changes. InAICT/SAPIR/ELETE, pages 446–451. IEEE, IEEE Computer

Society, 2005.

[22] Ludmila Cherkasova, Al Davis, Vadim E. Kotov, and TomasRokicki. Colored petri net meth-

ods for performance analysis of scalable high-speed interconnects. InMASCOTS ’94: Pro-

ceedings of the Second International Workshop on Modeling,Analysis, and Simulation On

Computer and Telecommunication Systems, pages 401–402, Washington, DC, USA, 1994.

IEEE Computer Society.

[23] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. Uddi spec tech-

nical committee draft. Technical report, OASIS, October 2004. http://www.oasis-

open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

[24] Luca Console, Claudia Picardi, and Marina Ribaudo. Process algebras for systems diagnosis.

Artificial Intelligence, 142(1):19–51, November 2002.

[25] M.-O. Cordier, P. Dague, F. Levy, J. Montmain, M. Staroswiecki, and L. Trave-Massuyes.

Conflicts versus analytical redundancy relations: a comparative analysis of the model based

diagnosis approach from the artificial intelligence and automatic control perspectives.Sys-

tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions, 34(5):2163–2177, Oct.

2004.

[26] Marie-Odile Cordier and Alban Grastien. Exploiting independence in a decentralised and

incremental approach of diagnosis. In Manuela M. Veloso, editor, IJCAI, pages 292–297,

Hyderabad, India, 2007. Morgan Kaufmann.

[27] R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, and YunPeng. Modeling agent conver-

sations with colored petri nets, 1999.

BIBLIOGRAPHY 5

[28] R. Scott Cost, Ye Chen, Tim Finin, Yannis K Labrou, and Yun Peng.Using Colored Petri Nets

for Conversation Modeling, volume 1916 ofLecture Notes in AI, pages 178–192. Springer-

Verlag, September 2000.

[29] Matthew Daigle, Xenofon Koutsoukos, and Gautam Biswas. A discrete event approach to

diagnosis of continuous systems. InComputer Science, Vanderbilt University, pages 259–

266, 2007.

[30] Randall Davis. Diagnostic reasoning based on structure and behavior.Artif. Intell., 24(1-

3):347–410, 1984.

[31] de Kleer and J. Kurien. Fundamentals of model-based diagnosis. InIFAC-SafeProcess,

Washington (USA), 2003. Hindawi Publishing Corp.

[32] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characterizing diagnoses and

systems.Artificial Intelligence, 56(2-3):197 – 222, 1992.

[33] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. Coordinated decentralized

protocols for failure diagnosis of discrete event systems.Journal of Discrete Event Dynami-

cal Systems: Theory and Application, 10:33–86, 2000.

[34] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. On the effect of commu-

nication delays in failure diagnosis of decentralized discrete event systems.Discrete Event

Dynamic Systems, 13(3):263–289, 2003.

[35] E. Fabre, A. Benveniste, and C. Jard. Distributed diagnosis for large discrete event dynamic

systems. In15th IFAC World Congress, Barcelona, July 2002.

[36] Eric Fabre and Albert Benveniste. Partial order techniques for distributed discrete event

systems: Why you cannot avoid using them.Discrete Event Dynamic Systems, 17(3):355–

403, 2007.

[37] Eric Fabre, Albert Benveniste, Stefan Haar, and ClaudeJard. Distributed monitoring of

concurrent and asynchronous systems.Discrete Event Dynamic Systems, 15(1):33–84, 2005.

[38] A. Ferrara. Web services: a process algebra approach. In International Conference of Service

Oriented Computing, pages 242–251, NY, USA, 2004. ACM.

BIBLIOGRAPHY 6

[39] Emilio Garcı́a, Antonio Correcher Salvador, Francisco Morant, Eduardo Quiles Cucarella,

and Ramón Blasco Giménez. Modular fault diagnosis based on discrete event systems.Dis-

crete Event Dynamic Systems, 15(3):237–256, 2005.

[40] Michael R. Genesereth. The use of design descriptions in automated diagnosis.Artif. Intell.,

24(1-3):411–436, 1984.

[41] A. Giua and C. Seatzu. Fault detection for discrete event systems using petri nets with un-

observable transitions. In44th Int. Conf. on Decision and Control and European Control

Conference, pages 6323–6328, Seville, Spain, December 2005.

[42] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. Nielsen. Simple object ac-

cess protocol (soap) 1.1. Technical report, World Wide Web Consortium, may 2000.

http://www.w3.org/TR/SOAP/.

[43] Martin Gudgin, Marc Hadley, Jean-Jacques Moreau, and Henrik Frystyk Nielsen. Soap

version 1.2. Technical report, W3C, July 2001. http://www.w3.org/TR/2001/WD-soap12-

20010709/.

[44] Xavier Le Guillou, Marie-Odile Cordier, Sophie Robin,and Laurence Rozé. Chronicles for

on-line diagnosis of distributed systems. Research report, INARIA, 2008.

[45] Serge Haddad, Tarek Melliti, Patrice Moreaux, and Sylvain Rampacek. Modelling web ser-

vices interoperability. InInternational Conference on Information Systems, pages 287–295,

Virginia, USA, 2004. INSTICC.

[46] Christoforos N. Hadjicostis and George C. Verghese. Monitoring discrete event systems using

petri net embeddings. InProceedings of the 20th International Conference on Application

and Theory of Petri Nets, pages 188–207, London, UK, 1999. Springer-Verlag.

[47] C.N. Hadjicostis and G.C. Verghese. Power system monitoring based on relay and circuit

breaker information. InCircuits and Systems, 2001. ISCAS 2001. The 2001 IEEE Interna-

tional Symposium on, volume 3, pages 197–200 vol. 2, May 2001.

[48] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service com-

position. InAustralasian Database Conference, pages 191–200, Adelaide, Australia, 2003.

ACM.

BIBLIOGRAPHY 7

[49] Walter Hamscher, Luca Console, and Johan de Kleer.Readings in model-based diagnosis.

Morgan Kaufmann, San Francisco, USA, 1992.

[50] Xu Han, Zhongzhi Shi, Wenjia Niu, Fen Lin, and Donglei Zhang. An approach for diagnosing

unexpected faults in web service flows.Grid and Cooperative Computing, International

Conference on, 0:61–66, 2009.

[51] Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar,Les Miller, Yanxin Wang, Xia

Wang, and Natalia Stakhanova. Software fault tree and coloured petri net based specifica-

tion, design and implementation of agent-based intrusion detection systems.Int. J. Inf.

Comput. Secur., 1(1/2):109–142, 2007.

[52] Sebastian Hinz, Karsten Schmidt, and Christian Stahl.Transforming bpel to petri nets. In

International Conference on Business Process Management, pages 220–235, Nancy, France,

2005. Springer-Verlag.

[53] Michael W. Hofbaur and Brian C. Williams. Mode estimation of probabilistic hybrid sys-

tems. InHSCC ’02: Proceedings of the 5th International Workshop on Hybrid Systems:

Computation and Control, pages 253–266, London, UK, 2002. Springer-Verlag.

[54] Kurt Jensen, Lars Kristensen, and Lisa Wells. Colouredpetri nets and cpn tools for modelling

and validation of concurrent systems.International Journal on Software Tools for Technology

Transfer (STTT), 9(3):213–254, June 2007.

[55] Shengbing Jiang and Ratnesh Kumar. Failure diagnosis of discrete event systems with linear-

time temporal logic fault specifications. InIEEE Transactions on Automatic Control, pages

128–133, 2001.

[56] G. Jiroveanu and R. K. Boel. A distributed approach for fault detection and diagnosis based

on time petri nets.Math. Comput. Simul., 70(5):287–313, 2006.

[57] G. Jiroveanu and R.K. Boel. Distributed diagnosis of large interacting systems. InIn 16th

International Workshop on Principles of Diagnosis (DX¡¯05), Monterrey, CA, USA, 2005.

[58] George Jiroveanu.Fault diagnosis for large Petri nets. PhD thesis, Belguim, sep 2006.

[59] George Jiroveanu and Rene Boel. Distributed contextual diagnosis for very large sys-

tems. InProceedings of WODES2004, pages 1–8, sep 2004. InternalNote: Submitted by:

rene.boel@ugent.be.

BIBLIOGRAPHY 8

[60] Panagiotis Katsaros, Vasilis Odontidis, and Maria Gousidou-Koutita. Colored petri net based

model checking and failure analysis for e-commerce protocols. InDept. of Computer Science,

University of Aarhus, pages 267–283, 2005.

[61] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon, and

Charlton Barreto. Web services choreography description language version 1.0. Technical

report, W3C, November 2005. http://www.w3.org/TR/ws-cdl-10/.

[62] Samir Malpathak Kazuhiro Saitou and Helge Qvam. Robustdesign of flexible manufacturing

systems using, colored petri net and genetic algorithm.Journal of Intelligent Manufacturing,

13(5):149 – 176, 2002.

[63] Robert M. Keller. Formal verification of parallel programs.Commun. ACM, 19(7):371–384,

1976.

[64] K.Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use.

Springer, USA, 1997.

[65] Johan. De Kleer. Local methods for localizing faults inelectronical circuits.MIT-AI Memo,

page 394, 1976.

[66] Xenofon Koutsoukos, Feng Zhao, Horst Haussecker, Jim Reich, and Patrick Cheung. Fault

modeling for monitoring and diagnosis of sensor-rich hybrid systems. InIn Proc. of the 40th

IEEE Conference on Decision and Control, pages 793–801, 2001.

[67] Lars Michael Kristensen, Jens B03k J03rgensen, and Kurt Jensen. Application of coloured

petri nets in system development. InIn Lecture on Concurrency and Petri Nets, Jorg Desel,

Wolfgang Reisig and Grezegorz Rozenberg (Eds.), Springer,LNCS 3089, pages 626–685.

Springer-Verlag, 2004.

[68] R. Kumar and S. Takai. Inference-based ambiguity management in decentralized decision-

making: Decentralized control of discrete event systems.Automatic Control, IEEE Transac-

tions on, 52(10):1783 –1794, oct. 2007.

[69] R. Kumar and S. Takai. Inference-based ambiguity management in decentralized decision-

making: Decentralized diagnosis of discrete-event systems. IEEE T. Automation Science and

Engineering, 6(3):479–491, 2009.

BIBLIOGRAPHY 9

[70] Jensen Kurt and Rozenberg Grzegorz, editors.High-level Petri nets: theory and application.

Springer-Verlag, London, UK, 1991.

[71] G. Lamperti and M. Zanella. Diagnosis of active systems– principles and techniques. 741,

2003.

[72] D. Lefebvre. Firing sequences estimation in vector space over z3 for ordinary petri nets.

IEEE Transactions on Systems, Man, and Cybernetics, Part A, 38(6):1–1336, 2008.

[73] D. Lefebvre and C. Delherm. Diagnosis with causality relationships and directed paths in

petri net models. InIFAC World Congress, Prague, Czech Republic, 2005.

[74] D. Lefebvre and Abdellah El Moudni. Firing and enablingsequences estimation for timed

petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 31(3):153–162,

2001.

[75] Dimitri Lefebvre. Sensoring and diagnosis of des with petri net models.Fault Detection,

Supervision and Safety of Technical Processes, 6(1):1213 – 1218, 2007.

[76] Dimitri Lefebvre.Diagnosis of Discrete Event Systems with Petri Nets. I-Tech Education and

Publishing, Feb 2008.

[77] Xitong Li, Yushun Fan, Stuart Madnick, and Quan Z. Sheng. A pattern-based approach to

protocol mediation for web services composition.Information and Software Technology,

52(3):304 – 323, 2010.

[78] Yingmin Li, Tarek Melliti, and Philippe Dague. Modeling bpel ws for diagnosis: towards

self-healing ws. InWEBIST, pages 795–803, Bacelone, Spein, 2007. IEEE C.S.

[79] N. Lohmann. A feature-complete petri net semantics for ws-bpel 2.0 and its compiler

bpel2owfn, volume 4937 ofLecture Notes in Computer Science, pages 77–91. Springer,

Berlin/Heidelberg, frist edition, April 2008. This is a full INBOOK entry.

[80] Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing inter-

acting ws-bpel processes using exible model generation.Data and Knowledge Engineering,

64(1):38–54, January 2008.

[81] Irina A. Lomazova. On proving large distributed systems: Petri net modules verification.

In PaCT ’97: Proceedings of the 4th International Conference on Parallel Computing Tech-

nologies, pages 70–75, London, UK, 1997. Springer-Verlag.

BIBLIOGRAPHY 10

[82] J. Lunze and P. Supavatanakul. Diagnosis of timed automata with an application to industrial

actuators.Integrated Computer Aided Engineering, 11(1):25–36, 2004.

[83] Jan Lunze. Fault diagnosis of discretely controlled continuous systems by means of discrete-

event models.Discrete Event Dynamic Systems, 18(2):181–210, 2008.

[84] Marko Mäkelä. Maria: Modular reachability analyzerfor high-level Petri nets. InThe 5th

Workshop on Discrete Event Systems (WODES 2000), pages 477–478, Ghent, Belgium, Au-

gust 2000. Kluwer Academic Publishers, Boston, MA, USA.

[85] Massimo Mecella, Francesco Parisi Presicce, and Barbara Pernici. Modeling e-service or-

chestration through petri nets. InVLDB Workshop on Technologies for E-Services, pages

38–47, Hong Kong, China, 2002. Springer-Verlag.

[86] M. Merz, D. Moldt, K. Müller, and W. Lamersdorf. Workflow modeling and execution with

coloured petri nets in cosm. 1994.

[87] Nielsen Mogens, Plotkin Gordon D., and Winskel Glynn. Petri nets, event structures and

domains. InProceedings of the International Sympoisum on Semantics ofConcurrent Com-

putation, pages 266–284, London, UK, 1979. Springer-Verlag.

[88] S. Narasimhan and G. Biswas. Model-based diagnosis of hybrid systems. Systems, Man

and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 37(3):348–361, May

2007.

[89] E. Néth, I.T. Cameron, and K.M. Hangos. Diagnostic goal driven modelling and simulation

of multiscale process systems.Computers Chemical Engineering, 29(4):783 – 796, 2005.

Control of Multiscale and Distributed Process Systems.

[90] OASIS. Bpel 2.0 specification.http://docs.oasis-open.org/wsbpel/2.0/.

[91] Marie odile Cordier, Christine Largouët, and Christine Largou. Using model-checking tech-

niques for diagnosing discrete-event systems. InWorkshop on Principles of Diagnosis, pages

39–46, 2001.

[92] Chun Ouyang, Eric Verbeek, Stephen Breutel, Marlon Dumas, H. M. Arthur, and Ter Hof-

stede. Formal semantics and analysis of control flow in ws-bpel. Science of Computer Pro-

gramming, 67(2-3):162–198, July 2007.

http://docs.oasis-open.org/wsbpel/2.0/

BIBLIOGRAPHY 11

[93] C.M. Özveren and A.S. Willsky. Observability of discrete event dynamic systems.IEEE

Trans. on Aut. Control, 35(7):797–806, July 1990.

[94] Charles S. Peirce and Eisele Carolyn.Historical perspectives on Peirce’s logic of science : a

history of science / edited by Carolyn Eisele. Mouton Publishers, Berlin ; New York :, 1985.

[95] Chris Peltz. Web services orchestration and choreography. Computer, 36:46–52, 2003.

[96] Y. Pencolé and M.-O. Cordier. A formal framework for the decentralised diagnosis of large

scale discrete event systems and its application to telecommunication networks.Artificial

Intelligence, 164(1-2):121–170, May 2005.

[97] Yannick Pencolé. Decentralized diagnoser approach:application to telecommunication net-

works. In International Workshop on Principles of Diagnosis, Michoacen, Mexico, 2000.

Non.

[98] Yannick Pencole, Marie-Odile Cordier, and Laurence Roze. Incremental decentralized diag-

nosis approach for the supervision of a telecommunication network. InIEEE Conference on

Decision and Control, Las Vegas, Nevada, USA, 2002. IEEE.

[99] C. A. Petri. Concepts of net theory. InMFCS, pages 137–146, 1973.

[100] Luigi Portinale. Petri net reachability analysis meets model-based diagnostic problem solv-

ing. In In Proceedings IEEE International Conference on Systems, Man and Cybernetics,

pages 2712–2717, 1995.

[101] Kan-John Priscilla and Grastien Alban. Local consistency and junction tree for diagnosis of

discrete-event systems. InProceeding of the 2008 conference on ECAI 2008, pages 209–213,

Amsterdam, The Netherlands, The Netherlands, 2008. IOS Press.

[102] Gregory Provan. A model-based diagnosis framework for distributed systems, May 2002.

[103] W. Qiu and R. Kumar. Decentralized failure diagnosis of discrete event systems.IEEE

Transactions on Systems, Man Cybernetics Part A, 36(2):384–395, 2005.

[104] W. Qiu and R. Kumar. Distributed failure diagnosis under bounded delay using immediate

observation passing protocol. InAmerican Control Conference, Poland, 2005.

[105] Wenbin Qiu and R. Kumar. A new protocol for distributeddiagnosis. InAmerican Control

Conference, June 2006.

BIBLIOGRAPHY 12

[106] P. Ramadge and W. Wonham.Discrete event systems: concepts and basic results. Mouton

Publishers, Berlin ; New York :, 1985.

[107] Peter J. Ramadge. Observability of discrete event systems. InDecision and Control, 1986

25th IEEE Conference on, volume 25, pages 1108–1112, Dec. 1986.

[108] A. Ramirez-Trevino, E. Ruiz-Beltran, I. Rivera-Rangel, and E. Lopez-Mellado. Online fault

diagnosis of discrete event systems. a petri net-based approach. IEEE TRANSACTIONS ON

AUTOMATION SCIENCE AND ENGINEERING, 4(1):31–39, 2007.

[109] R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence, 32(1):57–95,

April 1987.

[110] Armen Aghasaryan Ren, Eric Fabre, Claude Jard, and Albert Benveniste. A petri net ap-

proach to fault detection and diagnosis in distributed systems. InIEEE Conference on Deci-

sion and Control, pages 702–731, San Diego, CA, 1997. IEEE CS Press.

[111] S. L. Ricker and K. Rudie. Decentralized failure diagnosis with asynchronous communica-

tion between supervisors. Technical report, In Proc. of theIEEE Conference on Decision and

Control (CDC, 2001.

[112] L. Rodriguez, E. Garcia, F. Morant, A. Correcher, and E. Quiles.Fault diagnosis for complex

systems using Coloured Petri Nets, Petri Nets Applications. Pawel Pawlewski, first edition,

2010.

[113] Yu Ru and Christoforos N. Hadjicostis. Fault diagnosis in discrete event systems modeled by

partially observed petri nets.Discrete Event Dynamic Systems, 19(4):551–575, 2009.

[114] G. Salaun, L. Bordeaux, and M. Schaerf. Describing andreasoning on web services using

process algebra. InInternational Conference on Web Services, page 43, California, USA,

2004. IEEE.

[115] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil-

ity of discrete event systems.IEEE Transactions on Automatic Control, 40(9):1555–1575,

sep 1995.

[116] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C. Teneketzis. Failure

diagnosis using discrete-event models.Control Systems Technology, IEEE Transactions on,

4(2):105–124, Mar 1996.

BIBLIOGRAPHY 13

[117] Karsten Schmidt and Christian Stahl. A petri net semantic for bpel4ws - validation and

application. InProceedings of the 11th Workshop on Algorithms and Tools forPetri Nets,

pages 1–6, University of Paderborn, Germany, 2004. University of Paderborn.

[118] S.Genc and S.Lafortune. Distributed diagnosis of place-bordered petri nets.Automation

Science and Engineering, IEEE Transactions, 4(2):206–219, April 2005.

[119] Robert M. Shapiro. Validation of a vlsi chip using hierarchical colored petri nets.Microelec-

tronics Reliability, 31(4):607 – 625, 1991.

[120] S.Lafortune, D. Teneketzis, M. Sampath, R. Sengupta,and K. Sinnamohideen. Failure diag-

nosis of dynamic systems: an approach based on discrete event systems. InAmerican Control

Conference, 2001. Proceedings of the 2001, volume 3, pages 2058–2071 vol.3, 2001.

[121] V.S. Srinivasan and M.A. Jafari. Fault detection/monitoring using timed petri nets.IEEE

Transactions On Systems Managment and Cybernetics, 23(4):1155¨C1162, 1994.

[122] A. Spiteri Staines. A compact colored petri net model for fault diagnosis and recovery in

embedded and control systems.INTERNATIONAL JOURNAL OF COMPUTERS, 3(2):222–

229, 2009.

[123] R. Su and W. M. Wonham. Hierarchical fault diagnosis for discrete-event systems under

global consistency.Discrete Event Dynamic Systems, 16(1):39–70, 2006.

[124] R. Su, W. M. Wonham, J. Kurien, and X. Koutsoukos. Distributed diagnosis for qualitative

systems. InWODES ’02: Proceedings of the Sixth International Workshopon Discrete Event

Systems (WODES’02), page 169, Washington, DC, USA, 2002. IEEE Computer Society.

[125] R. Su and W.M. Wonham. A model of component consistencyin distributed diagnosis.

In Proc.IFAC Workshop on Discrete Event Systems (WODES’04), pages 427–432, Reims,

France, 2004.

[126] P. Supavatanakul, J. Lunze, V. Puig, and J. Quevedo. Diagnosis of timed automata: Theory

and application to the damadics actuator benchmark problem. Control Engineering Practice,

14(6):609–619, 2006.

[127] A. Szücs, G. Gerzson, and KM. Hangos. An intelligent diagnostic system based on petri nets.

COMPUTERS CHEMICAL ENGINEERING, 22(9):1335–1344, 1998.

BIBLIOGRAPHY 14

[128] Louise Travé-Massuyès, Marie Odile Cordier, and Xavier Pucel. Comparing diagnosabil-

ity in continuous and discrete-event systems. InProceedings of the 6th IFAC Symposium

on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS’2006),

pages 1231–1236, Beijing, P.R. China, August-September 2006. IFAC.

[129] Stavros Tripakis. Fault diagnosis for timed automata. In Werner Damm and Ernst-Rüdiger

Olderog, editors,FTRTFT, volume 2469 ofLecture Notes in Computer Science, pages 205–

224, 2002.

[130] Edward Tsang. Foundations of constraint satisfaction, 1993.

[131] T. Ushio, L Onishi, and K. Okuda. Fault detection basedon petri net models with faulty

behaviors. InProc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pages 113–118, San

Diego, USA, October 1998.

[132] F. van Breugel and K. Mariya. Dead-path-elimination in bpel4ws. InInternational Confer-

ence on Application of Concurrency to System Design, pages 192–201, Turku, Finland, 2005.

IEEE CS Press.

[133] M. Viroli. Analyzing interacting ws-bpel processes using exible model generation.Electronic

notes in theoretical computer science, 105:51–71, December 2004.

[134] Y. Wang, T.S. Yoo, and S. Lafortune. New results on decentralized diagnosis of discrete-event

systems. InAnnual Allerton Conference, 2004.

[135] Yin Wang, Tae-Sic Yoo, and Stéphane Lafortune. Diagnosis of discrete event systems using

decentralized architectures.Discrete Event Dynamic Systems, 17(2):233–263, 2007.

[136] Brian C. Williams, P. Pandurang Nayak, and Urang Nayak. A model-based approach to

reactive self-configuring systems. InIn Proceedings of AAAI-96, pages 971–978, 1996.

[137] Petri Nets World. Pn tool database.http://www.informatik.uni-hamburg.de.

[138] WSDIAMOND. Wsdiamond project.http://wsdiamond.di.unito.it.

[139] He xuan Hu, Anne lise Gehin, and Mireille Bayart. A merge method for decentralized

discrete-event fault diagnosis.Internet Monitoring and Protection, International Conference

on, 0:119–124, 2008.

http://www.informatik.uni-hamburg.de
http://wsdiamond.di.unito.it

BIBLIOGRAPHY 1

[140] Yuhong Yan.Description Language and Formal Methods for Web Service Process Modeling.

M.E Sharpe Inc., Armonk USA, 2008.

[141] Yuhong Yan and Philippe Dague. Monitoring and diagnosing orchestrated web service pro-

cess web services. InInternational Conference on Web Services, pages 9–13, Utah, USA,

2007. IEEE C.S.

[142] Yuhong Yan, Philippe Dague, Yannick Pencolé, and Marie-Odile Cordier. A model-based

approach for diagnosing fault in web service processes.Int. J. Web Service Res., 6(1):87–

110, 2009.

[143] YanPing Yang, QingPing Tan, and Yong Xiao. Verifying web services composition based on

hierarchical colored petri nets. Inworkshop on Interoperability of Heterogeneous Information

Systems, pages 47–54, Bremen, Germany, 2005. ACM.

[144] Lina Ye and Philippe Dague. Decentralized diagnosis for bpel web services. InWEBIST,

pages 283–287, Portugal, 2008. INSTICC.

[145] Xiaochuan Yi and Krys J. Kochut. A cp-nets-based design and verification framework for

web services composition. InICWS ’04: Proceedings of the IEEE International Conference

on Web Services, page 756, Washington, DC, USA, 2004. IEEE Computer Society.

[146] S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in discrete-event sys-

tems: Framework and model reduction. Inin Proc. 1998 IEEE Conference on Decision and

Control (CDC¡¯98, pages 3769–3774, 1998.

[147] S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in finite-state automata

and timed discrete-event systems. InIn 38th IEEE Conference on Decision and Control,

1999.

[148] D. A. Zaitsev. Functional petri nets.Universite Paris-Dauphine, Cahier du Lamsade 224,

pages 62–pp, April 2005. http://www.lamsade.dauphine.fr/cahiers.html.

[149] D. A. Zaitsev. Solving the fundamental equation of petri net in the process of composition of

functional subnet.Artificial Intelligence, no. 1, 2005, pages 59–68, 2005. In Russian.

[150] Zhao-Li Zhang, Fan Hong, and Hai-Jun Xiao. A colored petri net-based model for web

service composition.Journal of Shanghai University (English Edition), 105(4):323–329,

2008.

Appendix A

The foodshop file list

1 <?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>

<!−−

3 BPEL Process D e f i n i t i o n

E d i t e d us ing Act iveBPEL (tm) Des igner Vers i on 2 . 1 . 0 (h t t p :/ / www. a c t i v e−e n d p o i n t s .

com)

5 −−>

<p r o c e s s xmlns=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3/ b u s i n e s s−p r o c e s s / ”

xmlns :abx =” h t t p : / /www. a c t i v e b p e l . org / bpe l / e x t e n s i o n” xmlns:bpws=” h t t p : / /

schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3 / b u s i n e s s−p r o c e s s / ” x m l n s : e x t =” h t t p : / /www.

a c t i v e b p e l . org / 2 . 0 / bpe l / e x t e n s i o n ” xm lns :ns1=” urn:ShopWS / wsdl ” xm lns :ns2=”

u r n : / WarehouseServer / ” xm lns :ns3=” u r n : / R e a l S u p p l i e r Se r v e r / ” xm lns :ns4=”

urn :Suppl ie rWS / t y p e s ” xm lns :ns5=” urn:ShopWS / t y p e s ” xmlns :ns6=”

urn:WarehouseWS / t y p e s ” xm lns :ns7=” urn:LocalShopWS1 / wsdl ” xm lns : xsd=” h t t p : / /

www. w3 . org / 2 0 0 1 / XMLSchema” name=” Shop ” s u p p r e s s J o i n F ai l u r e =” yes ”

t a rge tNamespace =” h t t p : / / Shop ”>

7 <p a r t n e r L i n k s>

<p a r t n e r L i n k myRole=” S hopP rov ide r ” name=”Shop−Shop2HumanClient ”

pa r t ne rL i nkTyp e =” ns1:Shop−Shop2HumanClient ” />

9 <p a r t n e r L i n k myRole=”WHCallBack ” name=”Shop−Shop2WH” par tne rL i nkTyp e =”

ns1:Shop−Shop2WH” p a r t n e r R o l e =” WarehouseProv ider ” />

<p a r t n e r L i n k myRole=” R e a l S u p p l i e r C a l l B a c k ” name=” Shop−S hop2Rea lS upp l i e r ”

pa r t ne rL i nkTyp e =” ns1:Shop−S hop2Rea lS upp l i e r ” p a r t n e r R o l e =”

R e a l S u p p l i e r P r o v i d e r ” />

11 <p a r t n e r L i n k name=”Shop−Shop2Loca lShopServ ice ” pa r t ne rL i nkTyp e =” ns1:Shop−

Shop2Loca lShopServ ice ” p a r t n e r R o l e=” L o c a l S h o p S e r v i c eP r o v i d e r ” />

< / p a r t n e r L i n k s>

13 <v a r i a b l e s>

2

APPENDIX A. THE FOODSHOP FILE LIST 3

<v a r i a b l e messageType =”ns1:WHAnswerMSG” name=”WHAnswerMSG” />

15 <v a r i a b l e messageType =” ns1:RealSuppl ierAnswerMSG ” name=”

RealSuppl ierAnswerMSG ” />

<v a r i a b l e messageType =” ns1:ShopWSSEIrece iveOrder ” name=”

ShopWSSEIreceiveOrder ” />

17 <v a r i a b l e messageType =” ns1 :S hopW S S EIrep l y2C l i en t ” name=”

ShopWSSEIrep ly2Cl ient ” />

<v a r i a b l e messageType =” ns3 :S upp l i e rW S S EIcheckAva i lRese rve ” name=”

S upp l i e rW S S EIcheckAva i lRese rve” />

19 <v a r i a b l e messageType =” ns2:WarehouseWSSEIcheckAva i lab le ” name=”

WarehouseWSSEIcheckAvai lable ” />

<v a r i a b l e messageType =” ns3 :S upp l i e rW SSEIunReserve ” name=”

Suppl ie rWSSEIunReserve ” />

21 <v a r i a b l e messageType =” ns3 :S upp l i e rW S S EIreques tS upp l y ” name=”

S upp l i e rW S S EIreques tS upp l y ” />

<v a r i a b l e messageType =” ns2:WarehouseWSSEIconf i rmOrder ” name=”

WarehouseWSSEIconf i rmOrder ” />

23 <v a r i a b l e messageType =” ns2:WarehouseWSSEIunReserve ” name=”

WarehouseWSSEIunReserve ” />

<v a r i a b l e messageType =” n s 7 : r e c e i v e O r d e r 1 R e q u e s t ” name=”

r e c e i v e O r d e r 1 R e q u e s t ” />

25 <v a r i a b l e messageType =” n s 7 : r e c e i v e O r d e r 1 R e s p o n s e ” name=”

rece i veOrde r1Re sp o ns e ” />

<v a r i a b l e messageType =” n s 7 : C a l c u l a t e T o t a l P r i c e R e q u e s t” name=”

C a l c u l a t e T o t a l P r i c e R e q u e s t ” />

27 <v a r i a b l e messageType =” n s 7 : C a l c u l a t e T o t a l P r i c e R e s p o n se ” name=”

C a l c u l a t e T o t a l P r i c e R e s p o n s e ” />

<v a r i a b l e name=”TempV2” t ype =” x s d : b o o l e a n ” />

29 <v a r i a b l e name=”TempV3” t ype =” x s d : b o o l e a n ” />

<v a r i a b l e messageType =” ns3:ConfirmMSG” name=”ConfirmMSG” />

31 <v a r i a b l e messageType =” ns1:ExternalProb lemMSG ” name=” ExternalProblemMSG ” />

<v a r i a b l e messageType =” ns1:ExternalProb lemsMSG−R e a l S u p p l i e r ” name=”

ExternalProblemsMSG−R e a l S u p p l i e r ” />

33 <v a r i a b l e messageType =” ns7 :Ge t I t emNameL i s tReques t ” name=”

Get I temNameL is tRequest ” />

<v a r i a b l e messageType =” ns7:Get I temNameL is tResponse ” name=”

Get I temNameL is tResponse” />

35 < / v a r i a b l e s>

<c o r r e l a t i o n S e t s>

37 <c o r r e l a t i o n S e t name=”CS1” p r o p e r t i e s =” n s 1 : S t C o r r e l a t io n ” />

< / c o r r e l a t i o n S e t s>

APPENDIX A. THE FOODSHOP FILE LIST 4

39 <sequence>

<r e c e i v e c r e a t e I n s t a n c e =” yes ” name=” RecFrom User ” o p e r a t i o n =” r e c e i v e O r d e r

” p a r t n e r L i n k =” Shop−Shop2HumanClient ” por tType =” ns1:ShopPT” v a r i a b l e =”

ShopWSSEIreceiveOrder ”>

41 <c o r r e l a t i o n s>

<c o r r e l a t i o n i n i t i a t e =” yes ” s e t =”CS1” />

43 < / c o r r e l a t i o n s>

< / r e c e i v e>

45 <a s s i g n>

<copy>

47 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID” va r i a b l e =”

ShopWSSEIreceiveOrder ” />

<t o p a r t =”PID” v a r i a b l e =” r e c e i v e O r d e r 1 R e q u e s t ” />

49 < / copy>

<copy>

51 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / S t r i ng 2 ” v a r i a b l e =

” ShopWSSEI receiveOrder ” />

<t o p a r t =” I t e m L i s t ” v a r i a b l e =” r e c e i v e O r d e r 1 R e q u e s t ” />

53 < / copy>

< / a s s i g n>

55 <i nvoke i n p u t V a r i a b l e =” r e c e i v e O r d e r 1 R e q u e s t ” name=”

I n v S p l i t O r d e r o n S h o p L o c a l S e r v i c e ” o p e r a t i o n =” r e c e i v e O r d e r 1 ”

o u t p u t V a r i a b l e =” rece i veOrde r1R esp o n se ” p a r t n e r L i n k =”Shop−

Shop2Loca lShopServ ice ” por tType =” ns7:Loca lShopPT” />

<a s s i g n name=” Assign−prepa reMS GforS upp l i e r ”>

57 <copy>

<f rom p a r t =”PID” v a r i a b l e =” rece i veOrde r1Res po n se ” />

59 <t o p a r t =”PID” v a r i a b l e =” S upp l i e rW S S EIcheckAva i lRese rve” />

< / copy>

61 <copy>

<f rom p a r t =” P e r i s h a b l e L i s t ” v a r i a b l e =” rece i veOrde r1Respo n se ” />

63 <t o p a r t =” I t e m L i s t ” v a r i a b l e =” S upp l i e rW S S EIcheckAva i lRese rve” />

< / copy>

65 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / C u s t In f o 1 ”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

67 <t o p a r t =” C u s t I n f o ” v a r i a b l e =” S upp l i e rW S S EIcheckAva i lRese rve” />

< / copy>

69 < / a s s i g n>

<a s s i g n name=” Assign−prepareMSGforWarehouse”>

71 <copy>

APPENDIX A. THE FOODSHOP FILE LIST 5

<f rom p a r t =”PID” v a r i a b l e =” rece i veOrde r1Res po n se ” />

73 <t o p a r t =”PID” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

< / copy>

75 <copy>

<f rom p a r t =” U n P e r i s h a b l e L i s t ” v a r i a b l e =” rece i veOrde r1Re sp o n se ” />

77 <t o p a r t =” p a r a m e t e r s ” query =” / n s 6 : c h e c k A v a i l R e s e r v e / S tr i n g 1 ”

v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

< / copy>

79 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / C u s t In f o 1 ”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

81 <t o p a r t =” p a r a m e t e r s ” query =” / n s 6 : c h e c k A v a i l R e s e r v e / C us t I n f o ”

v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

< / copy>

83 < / a s s i g n>

<scope v a r i a b l e A c c e s s S e r i a l i z a b l e =” no ”>

85 <e v e n t H a n d l e r s>

<onMessage o p e r a t i o n =” Externa lProb lemsManagement ” p a r tn e r L i n k =”Shop−

Shop2WH” por tType =” ns1:WHcal lbackPT ” v a r i a b l e =”

ExternalProblemMSG ”>

87 <c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =”CS1” />

89 < / c o r r e l a t i o n s>

<e x t : s u s p e n d name=” Suspendon WH Request ” />

91 < / onMessage>

<!−− MSG from S u p p l i e r−−>

93 <onMessage o p e r a t i o n =” Externa lProb lemsManagement−R e a l S u p p l i e r ”

p a r t n e r L i n k =”Shop−S hop2Rea lS upp l i e r ” por tType =”

n s 1 : R e a l S u p p l i e r c a l l b a c k P T ” v a r i a b l e =” ExternalProblemsMSG−

R e a l S u p p l i e r ”>

<c o r r e l a t i o n s>

95 <c o r r e l a t i o n s e t =”CS1” />

< / c o r r e l a t i o n s>

97 <e x t : s u s p e n d name=” S u s p e n do n R e a l S u p p l i e r R e q u e s t ” />

< / onMessage>

99 < / e v e n t H a n d l e r s>

<sequence>

101 <f low>

<sequence>

APPENDIX A. THE FOODSHOP FILE LIST 6

103 <i nvoke i n p u t V a r i a b l e =” S upp l i e rW S S EIcheckAva i lRese rve” name=”

I n v C h e c k A v a i l a R e s e r v eo n S u p p l i e r ” o p e r a t i o n =”

checkAva i lRese rve ” p a r t n e r L i n k =” Shop−S hop2Rea lS upp l i e r ”

por tType =” n s 3 : R e a l S u p p l i e r S e r v e r ”>

<c o r r e l a t i o n s>

105 <c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

< / c o r r e l a t i o n s>

107 < / i nvoke>

<r e c e i v e name=” RecSuppl ie rAnswer ” o p e r a t i o n =”

r e c e i v e R e a l S u p p l i e r A n s w e r ” p a r t n e r L i n k =”Shop−

S hop2Rea lS upp l i e r ” por tType =” n s 1 : R e a l S u p p l i e r c a l l b a ck P T ”

v a r i a b l e =” RealSuppl ierAnswerMSG ”>

109 <c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =”CS1” />

111 < / c o r r e l a t i o n s>

< / r e c e i v e>

113 < / sequence>

<sequence>

115 <i nvoke i n p u t V a r i a b l e =” WarehouseWSSEIcheckAvai lable ” name=”

Inv CheckAva i lab leon WH ” o p e r a t i o n =” c h e c k A v a i l a b l e ”

p a r t n e r L i n k =”Shop−Shop2WH” por tType =” ns2 :W arehouseS erve r ”>

<c o r r e l a t i o n s>

117 <c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

< / c o r r e l a t i o n s>

119 < / i nvoke>

<r e c e i v e name=”RecWHAnswerMSG” o p e r a t i o n =” rece i veAnswer ”

p a r t n e r L i n k =”Shop−Shop2WH” por tType =” ns1:WHcal lbackPT ”

v a r i a b l e =”WHAnswerMSG”>

121 <c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =”CS1” />

123 < / c o r r e l a t i o n s>

< / r e c e i v e>

125 < / sequence>

< / f low>

127 <a s s i g n>

<copy>

129 <f rom p a r t =” A v a i l a b i l i t y ” v a r i a b l e =” RealSuppl ierAnswerMSG ” />

<t o v a r i a b l e =”TempV2” />

131 < / copy>

<copy>

133 <f rom p a r t =” A v a i l a b i l i t y ” v a r i a b l e =”WHAnswerMSG” />

APPENDIX A. THE FOODSHOP FILE LIST 7

<t o v a r i a b l e =”TempV3” />

135 < / copy>

< / a s s i g n>

137 <s w i t c h>

<case c o n d i t i o n =” (b p w s : g e t V a r i a b l e D a t a (’TempV2 ’) and

b p w s : g e t V a r i a b l e D a t a (’TempV3 ’)) ”>

139 <sequence>

<a s s i g n>

141 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

143 < t o p a r t =”PID” v a r i a b l e =” WarehouseWSSEIconf i rmOrder ”

/>

< / copy>

145 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r /

C u s t I n f o 1 ” v a r i a b l e =” ShopWSSEIreceiveOrder ” />

147 < t o p a r t =” C u s t I n f o 2 ” v a r i a b l e =”

WarehouseWSSEIconf i rmOrder ” />

< / copy>

149 <copy>

<f rom p a r t =” U n P e r i s h a b l e L i s t ” v a r i a b l e =”

rece i veOrde r1Res po n se ” />

151 < t o p a r t =” S t r i n g 1 ” v a r i a b l e =”

WarehouseWSSEIconf i rmOrder ” />

< / copy>

153 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” WarehouseWSSEIconf i rmOrder ” name=”

Inv Conf i rmOrder on WH ” o p e r a t i o n =” con f i rmOrde r ”

p a r t n e r L i n k =”Shop−Shop2WH” por tType =”

ns2 :W arehouseS erve r ”>

155 <c o r r e l a t i o n s>

<c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

157 < / c o r r e l a t i o n s>

< / i nvoke>

159 <a s s i g n>

<copy>

161 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r /

C u s t I n f o 1 ” v a r i a b l e =” ShopWSSEIreceiveOrder ” />

< t o p a r t =” C u s t I n f o ” v a r i a b l e =”ConfirmMSG” />

163 < / copy>

APPENDIX A. THE FOODSHOP FILE LIST 8

<copy>

165 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

< t o p a r t =”PID” v a r i a b l e =”ConfirmMSG” />

167 < / copy>

< / a s s i g n>

169 <i nvoke i n p u t V a r i a b l e =”ConfirmMSG” name=”

I n v C o n f i r m o n R e a l S u p p l i e r ” o p e r a t i o n =” Conf i rm ”

p a r t n e r L i n k =”Shop−S hop2Rea lS upp l i e r ” por tType =”

n s 3 : R e a l S u p p l i e r S e r v e r ” />

<a s s i g n>

171 <copy>

<f rom e x p r e s s i o n =” c o n c a t (b p w s : g e t V a r i a b l e D a t a (’

r ece i veOrde r1Response ’ , ’ P e r i s h a b l e L i s t ’) ,& quot

; ,& quot ; , b p w s : g e t V a r i a b l e D a t a (’

r ece i veOrde r1Response ’ , ’ U n P e r i s h a b l e L i s t ’)) ” />

173 < t o p a r t =” I t e m L i s t ” v a r i a b l e =”

C a l c u l a t e T o t a l P r i c e R e q u e s t ” />

< / copy>

175 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

177 < t o p a r t =”PID” v a r i a b l e =” C a l c u l a t e T o t a l P r i c e R e q u e s t ” /

>

< / copy>

179 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” C a l c u l a t e T o t a l P r i c e R e q u e s t ” name=”

I n v C a l c u l a t e T o t a l P r i c eo n S h o p L o c a l S e r v i c e ” o p e r a t i o n =

” C a l c u l a t e T o t a l P r i c e ” o u t p u t V a r i a b l e =”

C a l c u l a t e T o t a l P r i c e R e s p o n s e ” p a r t n e r L i n k =”Shop−

Shop2Loca lShopServ ice ” por tType =” ns7:Loca lShopPT” />

181 <a s s i g n name=” PrepareMSG for Get I tem Name ”>

<copy>

183 <f rom e x p r e s s i o n =” c o n c a t (b p w s : g e t V a r i a b l e D a t a (’

r ece i veOrde r1Response ’ , ’ P e r i s h a b l e L i s t ’) ,& quot

; ,& quot ; , b p w s : g e t V a r i a b l e D a t a (’

r ece i veOrde r1Response ’ , ’ U n P e r i s h a b l e L i s t ’)) ” />

< t o p a r t =” ge t I t emNameL i s tReques t ” v a r i a b l e =”

Get I temNameL is tRequest ” />

185 < / copy>

< / a s s i g n>

APPENDIX A. THE FOODSHOP FILE LIST 9

187 <i nvoke i n p u t V a r i a b l e =” Get I temNameL is tRequest ” name=” Inv−

GetI temNameList ” o p e r a t i o n =” Get I temNameList ”

o u t p u t V a r i a b l e =” Get I temNameL is tResponse” p a r t n e r L i n k=”

Shop−Shop2Loca lShopServ ice ” por tType =” ns7:Loca lShopPT” /

>

<a s s i g n>

189 <copy>

<f rom p a r t =” get I temNameL is tResponse ” v a r i a b l e =”

Get I temNameL istResponse” />

191 < t o p a r t =” IncomingI tems ” v a r i a b l e =”

ShopWSSEIrep ly2Cl ient ” />

< / copy>

193 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

195 < t o p a r t =”PID” v a r i a b l e =” ShopWSSEIrep ly2Cl ient ” />

< / copy>

197 <copy>

<f rom e x p r e s s i o n =” c o n c a t (& quot ; Thanks f o r t h e

shopping , t o t a l p r i c e i s " ; ,

b p w s : g e t V a r i a b l e D a t a (’ C a l c u l a t e T o t a l P r i c e R e s p o n s e

’ , ’ P r i ce ’)) ” / >

199 < t o p a r t =” replyMsg ” v a r i a b l e =” ShopWSSEIrep ly2Cl ient ”

/>

< / copy>

201 < / a s s i g n>

< / sequence>

203 < / case>

<o t h e r w i s e>

205 <sequence>

<a s s i g n>

207 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

209 < t o p a r t =”PID” v a r i a b l e =” Suppl ie rWSSEIunReserve ” />

< / copy>

211 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

213 < t o p a r t =”PID” v a r i a b l e =” WarehouseWSSEIunReserve ” />

< / copy>

APPENDIX A. THE FOODSHOP FILE LIST 10

215 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r /

C u s t I n f o 1 ” v a r i a b l e =” ShopWSSEIreceiveOrder ” />

217 < t o p a r t =” p a r a m e t e r s ” query =” / ns4 :unReserve / C u s t I n f o ”

v a r i a b l e =” Suppl ie rWSSEIunReserve ” />

< / copy>

219 <copy>

<f rom e x p r e s s i o n =”" ; prova" ; ” />

221 < t o p a r t =” S t r i n g 1 ” v a r i a b l e =”

WarehouseWSSEIunReserve ” />

< / copy>

223 <copy>

<f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

225 < t o p a r t =” p a r a m e t e r s ” query =” / ns4 :unReserve / PID”

v a r i a b l e =” Suppl ie rWSSEIunReserve ” />

< / copy>

227 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” WarehouseWSSEIunReserve ” name=”

Inv Unreserveon WH ” o p e r a t i o n =” unReserve ” p a r t n e r L i n k =

”Shop−Shop2WH” por tType =” ns2 :W arehouseS erve r ”>

229 <c o r r e l a t i o n s>

<c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

231 < / c o r r e l a t i o n s>

< / i nvoke>

233 <i nvoke i n p u t V a r i a b l e =” Suppl ie rWSSEIunReserve ” name=”

I n v U n r e s e r v eo n R e a l S u p p l i e r ” o p e r a t i o n =” unReserve ”

p a r t n e r L i n k =”Shop−S hop2Rea lS upp l i e r ” por tType =”

n s 3 : R e a l S u p p l i e r S e r v e r ”>

<c o r r e l a t i o n s>

235 <c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

< / c o r r e l a t i o n s>

237 < / i nvoke>

<a s s i g n>

239 <copy>

<f rom e x p r e s s i o n =” c o n c a t (" ; Not a v a i l a b l e i t e m s :

" ; , b p w s : g e t V a r i a b l e D a t a (’

RealSuppl ierAnswerMSG ’ , ’ unReservedI tems ’) ,& quot

; ,& quot ; , b p w s : g e t V a r i a b l e D a t a (’WHAnswerMSG’ , ’

unReservedI tems ’)) ” />

APPENDIX A. THE FOODSHOP FILE LIST 11

241 < t o p a r t =” ge t I t emNameL i s tReques t ” v a r i a b l e =”

Get I temNameL is tRequest ” />

< / copy>

243 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” Get I temNameL is tRequest ” name=” Inv−

GetI temNameList ” o p e r a t i o n =” Get I temNameList ”

o u t p u t V a r i a b l e =” Get I temNameL is tResponse” p a r t n e r L i n k=”

Shop−Shop2Loca lShopServ ice ” por tType =” ns7:Loca lShopPT” /

>

245 <a s s i g n>

<copy>

247 <f rom e x p r e s s i o n =”" ; s o r r y someth ing i s no t

a v a i l a b l e" ; ” />

< t o p a r t =” replyMsg ” v a r i a b l e =” ShopWSSEIrep ly2Cl ient ”

/>

249 < / copy>

<copy>

251 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 5 : r e c e i v e O r d e r / PID”

v a r i a b l e =” ShopWSSEIreceiveOrder ” />

< t o p a r t =”PID” v a r i a b l e =” ShopWSSEIrep ly2Cl ient ” />

253 < / copy>

<copy>

255 <f rom p a r t =” get I temNameL is tResponse ” v a r i a b l e =”

Get I temNameL istResponse” />

< t o p a r t =” IncomingI tems ” v a r i a b l e =”

ShopWSSEIrep ly2Cl ient ” />

257 < / copy>

< / a s s i g n>

259 < / sequence>

< / o t h e r w i s e>

261 < / s w i t c h>

<wa i t f o r =” ’PT10S ’ ” />

263 < / sequence>

< / scope>

265 <r e p l y name=” R e p l y t o c l i e n t ” o p e r a t i o n =” r e c e i v e O r d e r ” p a r t n e r L i n k =” Shop−

Shop2HumanClient ” por tType =” ns1:ShopPT” v a r i a b l e =”

ShopWSSEIrep ly2Cl ient ” />

< / sequence>

267 < / p r o c e s s>

Listing A.1: SHOP BPEL service

APPENDIX A. THE FOODSHOP FILE LIST 12

1 <?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>

<!−−

3 BPEL Process D e f i n i t i o n

E d i t e d us ing Act iveBPEL (tm) Des igner Vers i on 2 . 1 . 0 (h t t p :/ / www. a c t i v e−e n d p o i n t s .

com)

5 −−>

<p r o c e s s xmlns=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3/ b u s i n e s s−p r o c e s s / ”

xmlns:bpws=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3 / bu s i n e s s−p r o c e s s / ”

x m l n s : e x t =” h t t p : / /www. a c t i v e b p e l . org / 2 . 0 / bpe l / e x t e ns i o n ” xm lns :ns1=” u r n : /

R e a l S u p p l i e r S e r v e r / ” xm lns :ns2=” urn:ShopWS / wsdl ” xm lns :ns3=” urn :Suppl ie rWS /

t y p e s ” xm lns :ns4=” urn :Suppl ie rLocWS1 / wsdl ” xm lns :ns5=” u r n : / WarehouseServer / ”

xm lns : xsd=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema” name=” Re a l S u p p l i e r ”

s u p p r e s s J o i n F a i l u r e =” yes ” t a rge tNamespace =” h t t p : / / R ea l S u p p l i e r ”>

7 <p a r t n e r L i n k s>

<p a r t n e r L i n k myRole=” R e a l S u p p l i e r P r o v i d e r ” name=” R e a l Su p p l i e r−

Rea lS upp l i e r2S hop ” pa r t ne rL i nkType =” n s 1 : R e a l S u p p l i e r−Rea lS upp l i e r2S hop

” p a r t n e r R o l e =” R e a l S u p p l i e r C a l l B a c k ” />

9 <p a r t n e r L i n k myRole=” R e a l S u p p l i e r P r o v i d e r ” name=” R e a l Su p p l i e r−

RealSuppl ie r2WareHouse ” pa r t ne rL i nkTyp e =” n s 1 : R e a l S u pp l i e r −

RealSuppl ie r2WareHouse ” />

<p a r t n e r L i n k name=” R e a l S u p p l i e r−R e a l S u p p l i e r 2 R e a l S u p p l i e r L o c a l S e r v i c e ”

pa r t ne rL i nkTyp e =” n s 1 : R e a l S u p p l i e r−

R e a l S u p p l i e r 2 R e a l S u p p l i e r L o c a l S e r v i c e ” p a r t n e r R o l e =”

R e a l S u p p l i e r L o c a l S e r v i c e P r o v i d e r ” />

11 < / p a r t n e r L i n k s>

<v a r i a b l e s>

13 <v a r i a b l e messageType =” ns2:RealSuppl ierAnswerMSG ” name=”

RealSuppl ierAnswerMSG ” />

<v a r i a b l e messageType =” ns1 :S upp l i e rW S S EIcheckAva i lRese rve ” name=”

S upp l i e rW S S EIcheckAva i lRese rve” />

15 <v a r i a b l e messageType =” ns1 :S upp l i e rW S S EIreques tS upp l y ” name=”

S upp l i e rW S S EIreques tS upp l y ” />

<v a r i a b l e messageType =” ns1 :S upp l i e rW SSEIunReserve ” name=”

Suppl ie rWSSEIunReserve ” />

17 <v a r i a b l e messageType =” ns1 :S upp l i e rW S S EIS h ipp ingReques t ” name=”

S upp l i e rW S S EIS h ipp ingReques t ” />

<v a r i a b l e messageType =” n s 4 : C h e c k L o c a l A v a i l a b i l i t y 1 R e qu e s t ” name=”

C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e s t ” />

19 <v a r i a b l e messageType =” n s 4 : C h e c k L o c a l A v a i l a b i l i t y 1 R e sp o n s e ” name=”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” />

APPENDIX A. THE FOODSHOP FILE LIST 13

<v a r i a b l e messageType =” n s 4 : A r r a n g e S h i p p i n g R e q u es t ” name=”

Ar rangeS h ipp ingReques t ” />

21 <v a r i a b l e messageType =” ns4 :A r rangeS h ipp ingResp on se ” name=”

Ar rangeS h ipp ingResponse ” />

<v a r i a b l e messageType =” ns1:ConfirmMSG” name=”ConfirmMSG” />

23 <v a r i a b l e messageType =” n s 4 : R e s e r v a t i o n R e q u e s t ” name=” Re s e r v a t i o n R e q u e s t ” />

<v a r i a b l e messageType =” n s 4 : R e s e r v a t i o n R e s p o n s e ” name=”Reserva t i onRe sp o ns e ”

/>

25 <v a r i a b l e messageType =” ns4 :UnReser v a t i o n Re qu e s t ” name=”

UnReserva t i onReques t ” />

<v a r i a b l e messageType =” ns4 :UnReserva t i onResponse ” name=”

UnReservat ionResponse ” />

27 <v a r i a b l e messageType =” ns1:ExternalProblemManagementMSG” name=”

ExternalProblemManagementMSG” />

<v a r i a b l e messageType =” ns2:ExternalProb lemsMSG−R e a l S u p p l i e r ” name=”

ExternalProblemsMSG−R e a l S u p p l i e r ” />

29 < / v a r i a b l e s>

<c o r r e l a t i o n S e t s>

31 <c o r r e l a t i o n S e t name=”CS1” p r o p e r t i e s =” n s 1 : R e a l S u p p l i er C o r r e l a t i o n S e t ” />

< / c o r r e l a t i o n S e t s>

33 <sequence>

<r e c e i v e c r e a t e I n s t a n c e =” yes ” name=” RecRequest f rom Shop ” o p e r a t i o n =”

checkAva i lRese rve ” p a r t n e r L i n k =” R e a l S u p p l i e r−Rea lS upp l i e r2S hop ”

por tType =” n s 1 : R e a l S u p p l i e r S e r v e r ” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve”>

35 <c o r r e l a t i o n s>

<c o r r e l a t i o n i n i t i a t e =” yes ” s e t =”CS1” />

37 < / c o r r e l a t i o n s>

< / r e c e i v e>

39 <a s s i g n>

<copy>

41 <f rom p a r t =”PID” v a r i a b l e =” S upp l i e rW S SEIcheckAva i lRese rve ” />

<t o p a r t =”PID” v a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e st ” />

43 < / copy>

<copy>

45 <f rom p a r t =” I t e m L i s t ” v a r i a b l e =” S upp l i e rW S SEIcheckAva i lRese rve ” />

<t o p a r t =” p a r a m e t e r s ” v a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y1 R e q u e s t ” />

47 < / copy>

< / a s s i g n>

APPENDIX A. THE FOODSHOP FILE LIST 14

49 <i nvoke i n p u t V a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e s t” name=”

I n v C h e c k A v a i l a b i l i t y o n R e a l S u p p l i e r L o c a l S e r v i c e ” o p e r a t i o n =”

C h e c k L o c a l A v a i l a b i l i t y 1 ” o u t p u t V a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” p a r t n e r L i n k =” R e a l S up p l i e r−

R e a l S u p p l i e r 2 R e a l S u p p l i e r L o c a l S e r v i c e ” por tType =” ns4:S upp l i e rLocP T ” />

<a s s i g n>

51 <copy>

<f rom p a r t =” A v a i l a b i l i t y ” v a r i a b l e =” C h e c k L o c a l A v a i l a b il i t y 1 R e s p o n s e ”

/>

53 <t o p a r t =” A v a i l a b i l i t y ” v a r i a b l e =” RealSuppl ierAnswerMSG ” />

< / copy>

55 <copy>

<f rom p a r t =” U n P e r i s h a b l e L i s t ” v a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” />

57 <t o p a r t =” unReserved I t ems ” v a r i a b l e =” RealSuppl ierAnswerMSG ” />

< / copy>

59 <copy>

<f rom p a r t =”PID” v a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y 1 R e s po n s e ” />

61 <t o p a r t =”PID” v a r i a b l e =” RealSuppl ierAnswerMSG ” />

< / copy>

63 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” RealSuppl ierAnswerMSG ” name=”

Inv S upp l i e rAnswer on S hop ” o p e r a t i o n =” r e c e i v e R e a l S u p p l i e r A n s w e r ”

p a r t n e r L i n k =” R e a l S u p p l i e r−Rea lS upp l i e r2S hop ” por tType =”

n s 2 : R e a l S u p p l i e r c a l l b a c k P T ”>

65 <c o r r e l a t i o n s>

<c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

67 < / c o r r e l a t i o n s>

< / i nvoke>

69 <scope v a r i a b l e A c c e s s S e r i a l i z a b l e =” no ”>

< f a u l t H a n d l e r s>

71 <c a t c h A l l>

<sequence>

73 <a s s i g n>

<copy>

75 <f rom p a r t =”PID” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

<t o p a r t =”PID” v a r i a b l e =” ExternalProblemManagementMSG”/>

77 < / copy>

<copy>

79 <f rom e x p r e s s i o n =” ’ Genera l Problem ’ ” />

APPENDIX A. THE FOODSHOP FILE LIST 15

<t o p a r t =” ProblemCode ” v a r i a b l e =” ExternalProblemsMSG−

R e a l S u p p l i e r ” />

81 < / copy>

< / a s s i g n>

83 <i nvoke i n p u t V a r i a b l e =” ExternalProblemsMSG−R e a l S u p p l i e r ” name=

” Inv −Suspendon Shop ” o p e r a t i o n =”

Externa lProb lemsManagement−R e a l S u p p l i e r ” p a r t n e r L i n k=”

R e a l S u p p l i e r−Rea lS upp l i e r2S hop ” por tType =”

n s 2 : R e a l S u p p l i e r c a l l b a c k P T ” />

<e x t : s u s p e n d />

85 < / sequence>

< / c a t c h A l l>

87 < / f a u l t H a n d l e r s>

<e v e n t H a n d l e r s>

89 <onMessage o p e r a t i o n =” Externa lProb lemsManagement ” p a r tn e r L i n k =”

R e a l S u p p l i e r−RealSuppl ie r2WareHouse ” por tType =”

n s 1 : R e a l S u p p l i e r S e r v e r ” v a r i a b l e =” ExternalProblemManagementMSG”>

<c o r r e l a t i o n s>

91 <c o r r e l a t i o n s e t =”CS1” />

< / c o r r e l a t i o n s>

93 <sequence>

<e x t : s u s p e n d />

95 < / sequence>

< / onMessage>

97 < / e v e n t H a n d l e r s>

<p i ck>

99 <onMessage o p e r a t i o n =” unReserve ” p a r t n e r L i n k =” R e a l S u p pl i e r−

Rea lS upp l i e r2S hop ” por tType =” n s 1 : R e a l S u p p l i e r S e r v e r ”v a r i a b l e =”

Suppl ie rWSSEIunReserve ”>

<c o r r e l a t i o n s>

101 <c o r r e l a t i o n s e t =”CS1” />

< / c o r r e l a t i o n s>

103 <sequence>

<a s s i g n>

105 <copy>

<f rom p a r t =”PID” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

107 <t o p a r t =”PID” v a r i a b l e =” UnReserva t i onReques t ” />

< / copy>

109 <copy>

APPENDIX A. THE FOODSHOP FILE LIST 16

<f rom p a r t =” C u s t I n f o ” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

111 <t o p a r t =” C u s t I n f o ” v a r i a b l e =” UnReserva t i onReques t ” />

< / copy>

113 <copy>

<f rom p a r t =” p a r a m e t e r s ” v a r i a b l e =”

Suppl ie rWSSEIunReserve ” />

115 <t o p a r t =” p a r a m e t e r s ” v a r i a b l e =” UnReserva t i onReques t ” />

< / copy>

117 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” UnReserva t i onReques t ” name=”

I n v U n r e s e r v e o n R e a l S u p p l i e r L o c a l S e r v i c e ” o p e r a t i o n =”

UnReserva t i on ” o u t p u t V a r i a b l e =” UnReservat ionResponse”

p a r t n e r L i n k =” R e a l S u p p l i e r−

R e a l S u p p l i e r 2 R e a l S u p p l i e r L o c a l S e r v i c e ” por tType =”

ns4 :S upp l i e rLocP T ” />

119 < / sequence>

< / onMessage>

121 <onMessage o p e r a t i o n =” Conf i rm ” p a r t n e r L i n k =” R e a l S u p p l ie r−

Rea lS upp l i e r2S hop ” por tType =” n s 1 : R e a l S u p p l i e r S e r v e r ”v a r i a b l e =”

ConfirmMSG”>

<c o r r e l a t i o n s>

123 <c o r r e l a t i o n s e t =”CS1” />

< / c o r r e l a t i o n s>

125 <sequence>

<a s s i g n>

127 <copy>

<f rom p a r t =” p a r a m e t e r s ” v a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e s t ” />

129 <t o p a r t =” p a r a m e t e r s ” v a r i a b l e =” R e s e r v a t i o n R e q u e s t ” />

< / copy>

131 <copy>

<f rom p a r t =” C u s t I n f o ” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

133 <t o p a r t =” C u s t I n f o ” v a r i a b l e =” R e s e r v a t i o n R e q u e s t ” />

< / copy>

135 <copy>

<f rom p a r t =”PID” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

137 <t o p a r t =”PID” v a r i a b l e =” R e s e r v a t i o n R e q u e s t ” />

< / copy>

APPENDIX A. THE FOODSHOP FILE LIST 17

139 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” R e s e r v a t i o n R e q u e s t ” name=”

I n v R e s e r v eo n R E a l S u p p l i e r L o c a l S e r v i c e ” o p e r a t i o n =”

R e s e r v a t i o n ” o u t p u t V a r i a b l e =” Reserva t i onRe sp o n se ”

p a r t n e r L i n k =” R e a l S u p p l i e r−

R e a l S u p p l i e r 2 R e a l S u p p l i e r L o c a l S e r v i c e ” por tType =”

ns4 :S upp l i e rLocP T ” />

141 <r e c e i v e name=” RecShippingReqfrom WH ” o p e r a t i o n =”

A r rangeS h ipp ing ” p a r t n e r L i n k=” R e a l S u p p l i e r−

RealSuppl ie r2WareHouse ” por tType =” n s 1 : R e a l S u p p l i e r S er v e r ”

v a r i a b l e =” S upp l i e rW S SEIS h ipp ingReques t ”>

<c o r r e l a t i o n s>

143 <c o r r e l a t i o n s e t =”CS1” />

< / c o r r e l a t i o n s>

145 < / r e c e i v e>

<a s s i g n>

147 <copy>

<f rom p a r t =” S h ipp ingDa ta ” v a r i a b l e =”

S upp l i e rW S S EIS h ipp ingReques t ” />

149 <t o p a r t =” I t e m L i s t ” v a r i a b l e =” A r rangeS h ipp ingReques t ” />

< / copy>

151 <copy>

<f rom p a r t =”PID” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

153 <t o p a r t =”PID” v a r i a b l e =” A r rangeS h ipp ingReques t ” />

< / copy>

155 <copy>

<f rom p a r t =” C u s t I n f o ” v a r i a b l e =”

S upp l i e rW S S EIcheckAva i lRese rve” />

157 <t o p a r t =” C u s t I n f o ” v a r i a b l e =” A r rangeS h ipp ingReques t ” />

< / copy>

159 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =” A r rangeS h ipp ingReques t ” name=”

I n v A r r a n g e S h i p p i n go n R e a l S u p p l i e r L o c a l S e r v i c e ” o p e r a t i o n

=” A r rangeS h ipp ing ” o u t p u t V a r i a b l e =” A r rangeS h ipp ingResponse

” p a r t n e r L i n k =” R e a l S u p p l i e r−

R e a l S u p p l i e r 2 R e a l S u p p l i e r L o c a l S e r v i c e ” por tType =”

ns4 :S upp l i e rLocP T ” />

161 < / sequence>

< / onMessage>

163 < / p i ck>

APPENDIX A. THE FOODSHOP FILE LIST 18

< / scope>

165 < / sequence>

< / p r o c e s s>

Listing A.2: SUPPLIER BPEL service

<?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>

2 <!−−

BPEL Process D e f i n i t i o n

4 E d i t e d us ing Act iveBPEL (tm) Des igner Vers i on 2 . 1 . 0 (h t t p :/ / www. a c t i v e−e n d p o i n t s .

com)

−−>

6 <p r o c e s s xmlns=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3/ b u s i n e s s−p r o c e s s / ”

xmlns:bpws=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3 / bu s i n e s s−p r o c e s s / ”

x m l n s : e x t =” h t t p : / /www. a c t i v e b p e l . org / 2 . 0 / bpe l / e x t e ns i o n ” xm lns :ns1=” u r n : /

WarehouseServer / ” xm lns :ns2=” urn:ShopWS / wsdl ” xm lns :ns3=” u r n : /

L o c a l S u p p l i e r S e r v e r / ” xm lns :ns4=” urn:WarehouseWS / t y pe s ” xm lns :ns5=” u r n : /

R e a l S u p p l i e r S e r v e r / ” xm lns :ns6=” urn:LocalWHWS1 / wsdl ”xm lns :ns7=”

urn :AeAdminServ ices ” xm lns : xsd=” h t t p : / /www. w3 . org / 2 00 1 / XMLSchema” name=”

Warehouse ” s u p p r e s s J o i n F a i l u r e =” yes ” t a rge tNamespace =” h t t p : / / Warehouse ”>

<p a r t n e r L i n k s>

8 <p a r t n e r L i n k myRole=” L o c a l S u p p l i e r C a l l B a c k ” name=” Warehouse−

WH2LocalSuppl ier ” pa r t ne rL i nkTyp e =” ns1:Warehouse−WH2LocalSuppl ier ”

p a r t n e r R o l e =” L o c a l S u p p l i e r P r o v i d e r ” />

<p a r t n e r L i n k myRole=” WarehouseProv ider ” name=” Warehouse−WH2Shop”

pa r t ne rL i nkTyp e =” ns1:Warehouse−WH2Shop” p a r t n e r R o l e =” WHCallback2Shop” /

>

10 <p a r t n e r L i n k myRole=” S u p p l i e r C a l l B a c k ” name=” W arehouse2Rea lS upp l i e r ”

pa r t ne rL i nkTyp e =” ns1:Warehouse ” p a r t n e r R o l e =” R e a l S u pp l i e r P r o v i d e r ” />

<p a r t n e r L i n k name=”WH−WH2LocalWHService” pa r t ne rL i nkTyp e =”ns1:WH−

WH2LocalWHService” p a r t n e r R o l e =” Loca lWHServ iceProv ider ” />

12 < / p a r t n e r L i n k s>

<v a r i a b l e s>

14 <v a r i a b l e messageType =”ns2:WHAnswerMSG” name=”WHAnswerMSG” />

<v a r i a b l e messageType =” n s 3 : R e q u e s t ” name=” Request1 ” />

16 <v a r i a b l e messageType =” n s 1 : c a l l b a c k R e s p o n s e ” name=” c a ll b a c k R e s p o n s e ” />

<v a r i a b l e messageType =” ns1:WarehouseWSSEIcheckAva i lab le ” name=”

WarehouseWSSEIcheckAvai lable ” />

18 <v a r i a b l e name=” A l l a v a i l a b l e ” t ype =” x s d : b o o l e a n ” />

<v a r i a b l e messageType =” ns1:WarehouseWSSEIunReserve ” name=”

WarehouseWSSEIunReserve ” />

APPENDIX A. THE FOODSHOP FILE LIST 19

20 <v a r i a b l e messageType =” ns1:WarehouseWSSEIconf i rmOrder ” name=”

WarehouseWSSEIconf i rmOrder ” />

<v a r i a b l e messageType =” ns5 :S upp l i e rW S S EIS h ipp ingReques t ” name=”

S upp l i e rW S S EIS h ipp ingReques t ” />

22 <v a r i a b l e messageType =” n s 6 : C h e c k L o c a l A v a i l a b i l i t y 1 R e qu e s t ” name=”

C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e s t ” />

<v a r i a b l e messageType =” n s 6 : C h e c k L o c a l A v a i l a b i l i t y 1 R e sp o n s e ” name=”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” />

24 <v a r i a b l e messageType =” n s 6 : R e s e r v a t i o n R e q u e s t ” name=” Re s e r v a t i o n R e q u e s t ” />

<v a r i a b l e messageType =” n s 6 : R e s e r v a t i o n R e s p o n s e ” name=”Reserva t i onRe sp o ns e ”

/>

26 <v a r i a b l e messageType =” ns6 :UnReser v a t i o n Re qu e s t ” name=”

UnReserva t i onReques t ” />

<v a r i a b l e messageType =” ns6 :UnReserva t i onResponse ” name=”

UnReservat ionResponse ” />

28 <v a r i a b l e messageType =” n s 6 : R e s e r v e I t e m 1 F a u l t ” name=” F au l t V a r i a b l e ” />

<v a r i a b l e messageType =” ns2:ExternalProb lemMSG ” name=” ExternalProblemMSG ” />

30 <v a r i a b l e messageType =” ns5:ExternalProblemManagementMSG” name=”

ExternalProblemManagementMSG” />

<v a r i a b l e messageType =” ns1:ExternalProblemMSG−S u p p l i e r ” name=”

ExternalProblemMSG−S u p p l i e r ” />

32 < / v a r i a b l e s>

<c o r r e l a t i o n S e t s>

34 <c o r r e l a t i o n S e t name=”CS2” p r o p e r t i e s =” ns1:AAACor re la tion ” />

< / c o r r e l a t i o n S e t s>

36 <sequence>

<r e c e i v e c r e a t e I n s t a n c e =” yes ” name=” Recfrom Shop ” o p e r a t i o n =”

c h e c k A v a i l a b l e ” p a r t n e r L i n k =” Warehouse−WH2Shop” por tType =”

ns1 :W arehouseS erve r ” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ”>

38 <c o r r e l a t i o n s>

<c o r r e l a t i o n i n i t i a t e =” yes ” s e t =”CS2” />

40 < / c o r r e l a t i o n s>

< / r e c e i v e>

42 <a s s i g n>

<copy>

44 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 4 : c h e c k A v a i l R e s e r v e /S t r i n g 1 ”

v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

<t o p a r t =” p a r a m e t e r s ” v a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y1 R e q u e s t ” />

46 < / copy>

<copy>

48 <f rom p a r t =”PID” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

APPENDIX A. THE FOODSHOP FILE LIST 20

<t o p a r t =”PID” v a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e st ” />

50 < / copy>

< / a s s i g n>

52 <i nvoke i n p u t V a r i a b l e =” C h e c k L o c a l A v a i l a b i l i t y 1 R e q u e s t” name=”

I n v C h e c k L o c a l A v a i l a b i l i t y o n W H L o c a l S e r v i c e ” o p e r a t i o n =”

C h e c k L o c a l A v a i l a b i l i t y 1 ” o u t p u t V a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” p a r t n e r L i n k =”WH−WH2LocalWHService”

por tType =” ns6:LocalWHPT ” />

<s w i t c h name=” Swi tch−L o c a l S u p p l i e r I n v o c a t i o n ”>

54 <case c o n d i t i o n =” t r u e () ”>

<sequence>

56 <a s s i g n>

<copy>

58 <f rom p a r t =” A v a i l a b i l i t y ” v a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” />

< t o p a r t =” A v a i l a b i l i t y ” v a r i a b l e =”WHAnswerMSG” />

60 < / copy>

< / a s s i g n>

62 < / sequence>

< / case>

64 <o t h e r w i s e>

<sequence>

66 <i nvoke i n p u t V a r i a b l e =” Request1 ” name=”

I n v R e q u e s t t o l o c a l S u p p l i e r ” o p e r a t i o n =” asyncOpLoca lS upp l i e r

” p a r t n e r L i n k=” Warehouse−WH2LocalSuppl ier ” por tType =”

n s 3 : L o c a l S u p p l i e r S e r v e r ”>

<c o r r e l a t i o n s>

68 <c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS2” />

< / c o r r e l a t i o n s>

70 < / i nvoke>

<r e c e i v e name=” R e cA n s w e r f r o m l o c a l S u p p l i e r ” o p e r a t i o n =”

onResu l t ” p a r t n e r L i n k =” Warehouse−WH2LocalSuppl ier ” por tType =”

ns1 :W arehouseS erv e rC a l l b a ck ” v a r i a b l e =” c a l l b a c k R e s p on s e ”>

72 <c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =”CS2” />

74 < / c o r r e l a t i o n s>

< / r e c e i v e>

76 < / sequence>

< / o t h e r w i s e>

78 < / s w i t c h>

<a s s i g n>

APPENDIX A. THE FOODSHOP FILE LIST 21

80 <copy>

<f rom p a r t =”PID” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

82 <t o p a r t =”PID” v a r i a b l e =”WHAnswerMSG” />

< / copy>

84 <copy>

<f rom p a r t =” U n P e r i s h a b l e L i s t ” v a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” />

86 <t o p a r t =” unReserved I t ems ” v a r i a b l e =”WHAnswerMSG” />

< / copy>

88 <copy>

<f rom p a r t =” A v a i l a b i l i t y ” v a r i a b l e =” C h e c k L o c a l A v a i l a b il i t y 1 R e s p o n s e ”

/>

90 <t o p a r t =” A v a i l a b i l i t y ” v a r i a b l e =”WHAnswerMSG” />

< / copy>

92 < / a s s i g n>

<i nvoke i n p u t V a r i a b l e =”WHAnswerMSG” name=” InvAnswer to S hop on S hop ”

o p e r a t i o n =” rece i veAnswer ” p a r t n e r L i n k =” Warehouse−WH2Shop” por tType =”

ns2:WHcal lbackPT”>

94 <c o r r e l a t i o n s>

<c o r r e l a t i o n i n i t i a t e =” yes ” p a t t e r n =” ou t ” s e t =”CS2” />

96 < / c o r r e l a t i o n s>

< / i nvoke>

98 <p i ck>

<onMessage o p e r a t i o n =” con f i rmOrde r ” p a r t n e r L i n k =” Warehouse−WH2Shop”

por tType =” ns1 :W arehouseS erve r ” v a r i a b l e =”

WarehouseWSSEIconf i rmOrder ”>

100 <c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =”CS2” />

102 < / c o r r e l a t i o n s>

<sequence>

104 <a s s i g n>

<copy>

106 <f rom p a r t =” S t r i n g 1 ” v a r i a b l e =” WarehouseWSSEIconf i rmOrder

” />

< t o p a r t =” p a r a m e t e r s ” v a r i a b l e =” R e s e r v a t i o n R e q u e s t ” />

108 < / copy>

<copy>

110 <f rom p a r t =”PID” v a r i a b l e =” WarehouseWSSEIconf i rmOrder ” />

< t o p a r t =”PID” v a r i a b l e =” R e s e r v a t i o n R e q u e s t ” />

112 < / copy>

<copy>

APPENDIX A. THE FOODSHOP FILE LIST 22

114 <f rom p a r t =” C u s t I n f o 2 ” v a r i a b l e =”

WarehouseWSSEIconf i rmOrder ” />

< t o p a r t =” C u s t I n f o ” v a r i a b l e =” R e s e r v a t i o n R e q u e s t ” />

116 < / copy>

< / a s s i g n>

118 <scope v a r i a b l e A c c e s s S e r i a l i z a b l e =” no ”>

< f a u l t H a n d l e r s>

120 <c a t c h A l l>

<sequence>

122 <a s s i g n name=” P repa reMS G for S hop and S upp l i e r ”>

<copy>

124 <f rom p a r t =”PID” v a r i a b l e =”

WarehouseWSSEIcheckAvai lable ” />

< t o p a r t =”PID” v a r i a b l e =” ExternalProblemMSG ” />

126 < / copy>

<copy>

128 <f rom e x p r e s s i o n =” ’ g e n e r a l problem ’ ” />

< t o p a r t =” ProblemCode ” v a r i a b l e =”

ExternalProblemMSG ” />

130 < / copy>

<copy>

132 <f rom p a r t =”PID” v a r i a b l e =”

WarehouseWSSEIcheckAvai lable ” />

< t o p a r t =”PID” v a r i a b l e =”

ExternalProblemManagementMSG” />

134 < / copy>

<copy>

136 <f rom e x p r e s s i o n =” ’ g e n e r a l problems ’ ” />

< t o p a r t =” ProblemCode ” v a r i a b l e =”

ExternalProblemManagementMSG” />

138 < / copy>

< / a s s i g n>

140 <i nvoke i n p u t V a r i a b l e =” ExternalProblemMSG ” name=”

Inv S uspens ionon S hop ” o p e r a t i o n =”

Externa lProb lemsManagement ” p a r t n e r L i n k =”

Warehouse−WH2Shop” por tType =” ns2:WHcal lbackPT ” />

<i nvoke i n p u t V a r i a b l e =” ExternalProblemManagementMSG”

name=” I n v S u s p e n s i o no n S u p p l i e r ” o p e r a t i o n =”

Externa lProb lemsManagement ” p a r t n e r L i n k =”

W arehouse2Rea lS upp l i e r ” por tType =”

n s 5 : R e a l S u p p l i e r S e r v e r ”>

APPENDIX A. THE FOODSHOP FILE LIST 23

142 <c o r r e l a t i o n s>

<c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS2” />

144 < / c o r r e l a t i o n s>

< / i nvoke>

146 <e x t : s u s p e n d />

< / sequence>

148 < / c a t c h A l l>

< / f a u l t H a n d l e r s>

150 <e v e n t H a n d l e r s>

<onMessage o p e r a t i o n =” Externa lProb lemsManagement ”

p a r t n e r L i n k =” W arehouse2Rea lS upp l i e r ” por tType =”

n s 1 : S u p p l i e r C a l lB a ck P T” v a r i a b l e =” ExternalProblemMSG−

S u p p l i e r ”>

152 <c o r r e l a t i o n s>

<c o r r e l a t i o n i n i t i a t e =” yes ” s e t =”CS2” />

154 < / c o r r e l a t i o n s>

<e x t : s u s p e n d />

156 < / onMessage>

< / e v e n t H a n d l e r s>

158 <i nvoke i n p u t V a r i a b l e =” R e s e r v a t i o n R e q u e s t ” name=”

Inv Reserva t i onon Loca lW HS erv i ce ” o p e r a t i o n =” R e s e r v a t i o n ”

o u t p u t V a r i a b l e =” Reserva t i onRe sp o n se ” p a r t n e r L i n k =”WH−

WH2LocalWHService” por tType =” ns6:LocalWHPT ” />

< / scope>

160 <a s s i g n>

<copy>

162 <f rom p a r t =”PID” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

< t o p a r t =”PID” v a r i a b l e =” S upp l i e rW S SEIS h ipp ingReques t ” />

164 < / copy>

<copy>

166 <f rom p a r t =” p a r a m e t e r s ” query =” / n s 4 : c h e c k A v a i l R e s e r v e /

S t r i n g 1 ” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

< t o p a r t =” S h ipp ingDa ta ” v a r i a b l e =”

S upp l i e rW S SEIS h ipp ingReques t ” />

168 < / copy>

< / a s s i g n>

170 <i nvoke i n p u t V a r i a b l e =” S upp l i e rW S SEIS h ipp ingReques t ” name=”

I n v S h i p p i n g R e q u e s to n S u p p l i e r ” o p e r a t i o n =” A r rangeS h ipp ing ”

p a r t n e r L i n k =” W arehouse2Rea lS upp l i e r ” por tType =”

n s 5 : R e a l S u p p l i e r S e r v e r ”>

<c o r r e l a t i o n s>

APPENDIX A. THE FOODSHOP FILE LIST 24

172 <c o r r e l a t i o n i n i t i a t e =” yes ” p a t t e r n =” ou t ” s e t =”CS2” />

< / c o r r e l a t i o n s>

174 < / i nvoke>

< / sequence>

176 < / onMessage>

<onMessage o p e r a t i o n =” unReserve ” p a r t n e r L i n k =” Warehouse−WH2Shop”

por tType =” ns1 :W arehouseS erve r ” v a r i a b l e =” WarehouseWSSEI unReserve ”>

178 <c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =”CS2” />

180 < / c o r r e l a t i o n s>

<sequence>

182 <a s s i g n>

<copy>

184 <f rom p a r t =”PID” v a r i a b l e =” WarehouseWSSEIcheckAvai lable ” />

< t o p a r t =”PID” v a r i a b l e =” UnReserva t i onReques t ” />

186 < / copy>

<copy>

188 <f rom p a r t =” U n P e r i s h a b l e L i s t ” v a r i a b l e =”

C h e c k L o c a l A v a i l a b i l i t y 1 R e s p o n s e ” />

< t o p a r t =” p a r a m e t e r s ” v a r i a b l e =” UnReserva t i onReques t ” />

190 < / copy>

< / a s s i g n>

192 <i nvoke i n p u t V a r i a b l e =” UnReserva t i onReques t ” name=”

Inv Unrese rveon Loca lW HS erv i ce ” o p e r a t i o n =” UnReserva t i on ”

o u t p u t V a r i a b l e =” UnReservat ionResponse ” p a r t n e r L i n k =”WH−

WH2LocalWHService” por tType =” ns6:LocalWHPT ” />

< / sequence>

194 < / onMessage>

< / p i ck>

196 < / sequence>

< / p r o c e s s>

Listing A.3: WAREHOUSE BPEL service

1 <?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>

<!−−

3 BPEL Process D e f i n i t i o n

E d i t e d us ing Act iveBPEL (tm) Des igner Vers i on 2 . 0 . 0 (h t t p :/ / www. a c t i v e−e n d p o i n t s .

com)

5 −−>

APPENDIX A. THE FOODSHOP FILE LIST 25

<p r o c e s s name=” L o c a l S u p p l i e r ” s u p p r e s s J o i n F a i l u r e =” yes” t a rge tNamespace =” h t t p : / /

L o c a l S u p p l i e r ” xmlns=” h t t p : / / schemas . xmlsoap . org / ws /2 0 0 3 / 0 3 / b u s i n e s s−p r o c e s s

/ ” xmlns:bpws=” h t t p : / / schemas . xmlsoap . org / ws / 2 0 0 3 / 0 3/ b u s i n e s s−p r o c e s s / ”

xm lns :ns1=” u r n : / L o c a l S u p p l i e r S e r v e r / ” xm lns :ns2=” u r n: / WarehouseServer / ”

xm lns : xsd=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”>

7 <p a r t n e r L i n k s>

<p a r t n e r L i n k myRole=” L o c a l S u p p l i e r P r o v i d e r ” name=” L o c al S u p p l i e r−

Loca lS upp l i e r2W arehouse ” pa r t ne rL i nkType =” n s 1 : L o c a l Su p p l i e r−

Loca lS upp l i e r2W arehouse ” p a r t n e r R o l e =” WarehouseCal lBack ” />

9 < / p a r t n e r L i n k s>

<v a r i a b l e s>

11 <v a r i a b l e messageType =” n s 1 : R e q u e s t ” name=” Request ” />

<v a r i a b l e messageType =” n s 2 : c a l l b a c k R e s p o n s e ” name=” c a ll b a c k R e s p o n s e ” />

13 < / v a r i a b l e s>

<c o r r e l a t i o n S e t s>

15 <c o r r e l a t i o n S e t name=”CS1” p r o p e r t i e s =” n s 1 : L o c a l S u p p l ie r−C o r r e l a t i o n s ” />

< / c o r r e l a t i o n S e t s>

17 <sequence>

<r e c e i v e c r e a t e I n s t a n c e =” yes ” name=” RecWH request ” o p e r a t i o n =”

asyncOpLoca lS upp l i e r ” p a r t n e r L i n k =” L o c a l S u p p l i e r−

Loca lS upp l i e r2W arehouse ” por tType =” n s 1 : L o c a l S u p p l i e rS e r v e r ” v a r i a b l e =”

Request ”>

19 <c o r r e l a t i o n s>

<c o r r e l a t i o n i n i t i a t e =” yes ” s e t =”CS1” />

21 < / c o r r e l a t i o n s>

< / r e c e i v e>

23 <a s s i g n>

<copy>

25 <f rom e x p r e s s i o n =” t r u e () ” />

<t o p a r t =” c a l l b a c k D a t a ” v a r i a b l e =” c a l l b a c k R e s p o n s e ” />

27 < / copy>

<copy>

29 <f rom p a r t =”PID” v a r i a b l e =” Request ” />

<t o p a r t =”PID” v a r i a b l e =” c a l l b a c k R e s p o n s e ” />

31 < / copy>

< / a s s i g n>

33 <i nvoke i n p u t V a r i a b l e =” c a l l b a c k R e s p o n s e ” name=” InvWH response ” o p e r a t i o n =

” onResu l t ” p a r t n e r L i n k=” L o c a l S u p p l i e r−Loca lS upp l i e r2W arehouse ”

por tType =” ns2 :W arehouseS e rv e rCa l l b ac k ”>

<c o r r e l a t i o n s>

35 <c o r r e l a t i o n p a t t e r n =” ou t ” s e t =”CS1” />

APPENDIX A. THE FOODSHOP FILE LIST 26

< / c o r r e l a t i o n s>

37 < / i nvoke>

< / sequence>

39 < / p r o c e s s>

Listing A.4: LocalSupplier BPEL service

Abstract

This thesis studies the Model-Based Diagnosis focuses on a set of interacting software components. The

main idea is to use Colored Petri nets (CPNs) as a fault model,which presents several advantages for software

diagnosis. First, we can handel data by avoiding the infinityof their domain values, the data are represented

symbolically according to their status (faulty using red color tokens, correct using black and unknown using

star). Second, the transition modes are used to represent correct and faulty executions of activities without

explicit representation of faults as internal events. Finally, partially ordered observation is naturally expressed

in CPNs operational semantics. The main contribution of this thesis is the reduction of diagnosis problem

to an algebraic symbolic inequations system based on the fundamental equation of CPNs. This method

allows the diagnosis of looping processes and omits the trajectory calculation, without loosing the diagnosis

precision. Based on the notion of functional sub-nets, our method can be easily adapted to a decentralized

resolution of the inequations systems so as to diagnose the decentralized systems. Our work is applied to the

diagnosis of orchestration of Web services modeled as a set of place bordered colored Petri nets. A model

transformation from BPEL constructors to CPNs is given and acase study is detailed.

Résumé

Cette thèse porte sur le diagnostic à base de modèles. Nous focalisons notre intérêt sur le diagnostic d’un

ensemble interagissant de composants logiciels. L’originalité de ce travail se situe dans l’utilisation des

Réseaux de Petri Colorés (RdPC) comme modèle de faute. L’utilisation des RdPC est originale et avantageuse

à plusieurs titres. Premièrement, Les RdPC permettent lareprésentation des données, dans notre cas ceci

nous permet de manipuler les données de manière symbolique même si leur domaine de valeurs est infini

(seul le statut des données est représenté par des jetonscolorés : rouge pour fautif, noir pour correct et étoile

pour inconnu). Deuxièmement, chaque transition en RdPC peut avoir plusieurs modalités de franchissement,

nous avons donc défini pour chaque activité deux modalités de transition, fautif et correct, auxquelles on a

associé des fonctions de propagation de couleur. Finalement, La sémantique RdPC porte de manière implicite

la notion d’ordre partiel des observations. La contribution principale de cette thèse consiste à réduire le

problème de diagnostic à la résolution d’ un système d’inéquation algébrique en se fondant sur l’équation

fondamentale de la dynamique des RdPs. La résolution de ce système d’inéquation permet de calculer le

diagnostic sans dépliage de la trajectoire même dans les cas d’itération d’activités et ceci sans perte de la

précision du diagnostic. Nous avons également, en se fondant sur la notion de sous-réseaux fonctionnels,

proposé une version décentralisée de la résolution du système d’inéquation. La dimension applicative de

cette thèse concerne le diagnostic d’orchestration de services Web. Une traduction du langage d’orchestration

BPEL en RdPC a été donné ainsi qu’une application détaillée sur un scénario.

	Preface
	Acknowledgments
	List of Tables
	List of Figures
	List of Definitions
	1 Introduction
	1.1 Abnormal behavior of software system
	1.1.1 Communication between the components
	1.1.2 Data and activities flow
	Data transforming activities
	Dependency of Data

	1.1.3 Faulty state

	1.2 Problematic of MBD for software systems
	1.2.1 The choice of abstract model
	1.2.2 The observation for diagnosis
	Imperfectness of observations
	Exception assertion

	1.2.3 Minimal diagnosis

	1.3 Our contribution
	1.3.1 Model construction
	1.3.2 Diagnosis approach
	1.3.3 Decentralized topology
	1.3.4 Application: WSDIAMOND project urldiamond

	2 Model based diagnosis of discrete event systems
	2.1 Introduction
	2.1.1 Model based diagnosis
	2.1.2 Discrete event system
	2.1.3 Dining philosophers example

	2.2 DES models
	2.2.1 Labeled transition system and automata
	2.2.2 Petri nets

	2.3 Modeling diagnosis with DES
	2.3.1 Fault representation
	2.3.2 Observation
	Observation absence
	Partially ordered observation

	2.3.3 Diagnosis of DES

	2.4 Diagnosis methods
	2.4.1 Diagnoser
	2.4.2 PN unfolding
	2.4.3 PN backward reachability analysis

	2.5 Architecture of DES diagnosis
	2.5.1 Centralized diagnosis
	2.5.2 Decentralized diagnosis
	2.5.3 Distributed diagnosis

	2.6 Conclusion

	I Theory
	3 Colored Petri net model for MBD
	3.1 Introduction
	3.2 Structure and dynamic
	3.2.1 Structure of CPN
	3.2.2 Dynamic of CPN

	3.3 CPN as a fault model for software systems
	3.3.1 The CPN fault model structure
	Places types: data status
	Arcs expressions: abstract data dependency
	Transition modes: faults
	CPN fault model definition

	3.3.2 The CPN fault model dynamic
	3.3.3 Partial observation of CPN fault model

	3.4 Related works

	4 CPN diagnosis based on inequations system
	4.1 Diagnosis problem
	4.2 Diagnosis of CPN by inequations system solving
	4.2.1 Inequations system
	4.2.2 Algorithms
	getImpossibleSols function
	Diagnosis inferring
	Multiple faults diagnosis

	4.3 The minimality of CPN diagnosis
	4.4 Related work

	II Application
	5 Web services Application
	5.1 Introduction
	5.2 SOA and Web service
	5.2.1 SOAP
	5.2.2 UDDI
	5.2.3 WSDL

	5.3 BPEL services
	5.3.1 BPEL
	5.3.2 Cooperation of BPEL and WSDL
	5.3.3 ActiveBPEL engine

	5.4 Case study: foodshop
	5.4.1 Partners interactions
	5.4.2 BPEL services execution processes
	Customer
	Shop service
	Realsupplier service
	Warehouse service and LocalSupplier service

	5.5 Translate from BPEL to CPN
	5.5.1 Translating static BPEL features to CPNs
	5.5.2 Translation from basic Web service to CPN
	Basic Web service
	Receive(m,X)
	Invoke(X,Y)
	Reply(Y,m)
	Expression(C,V)
	Assign(X,Y)
	Throw/Rethrow(faultName,[faultVariable])
	Wait(duration|until)
	Empty
	Exit

	5.5.3 Structured operators translation
	Sequence operator sequence(N1, N2)
	Conditional operator Switch({(coni(Xi,Vi),Ni)}iI)
	Iterative operator while(con(X,V),S1)
	Message triggering operator Pick({Mi, Si}i I)
	Parallel operator flow({Si}iI)
	Conditional operator If({(coni(Xi,Vi),Si)}iI)
	Conditional operator RepeatUntil({(coni(Xi,Vi),Si)}iI)

	5.5.4 sub process with enclosed environment: Scope
	Fault handlers
	EventHandlers
	CompensationHandler and TerminationHandler
	Conditional operator ForEach({(coni(Xi,Vi),Si)}iI)

	5.6 Case study: the CPN model of foodshop
	5.7 Related works

	6 Decentralized architecture for CPN based diagnosis
	6.1 Introduction
	6.2 Decentralized system
	6.3 Diagnosis problem of decentralized system
	6.4 Diagnosis approach
	6.4.1 Diagnosis protocol
	6.4.2 Diagnosis algorithm
	6.4.3 Example: dining philosophers

	6.5 Proof of global consistency of decentralized diagnosis
	6.5.1 Functional CPN definition
	6.5.2 Fundamental equations of functional subnets

	6.6 Decentralized diagnosis of orchestrated BPEL services
	6.7 Case study:foodshop
	6.7.1 Exceptions
	CUSTomer exceptions:
	SHOP exceptions:
	SUPPLIER exceptions:
	WAREHOUSE exceptions:

	6.7.2 Fault scenarios
	6.7.3 Diagnosis

	7 Conclusion
	7.1 Future work

	Bibliography
	A The foodshop file list

