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Preface

This thesis is the final work of my Ph.D. study at the Labonatuithe Informatics Research (LRI),
University of Paris South, XI, France. It serves as docuatemt of my work during the study,
which has been made from autumn 2006 until spring 2010. Tudydias been funded by the EU
through the FP6 IST project 516933 WSDIAMOND (Web Servicéadnosability, MONitoring
and Diagnosis) [138], national ANR (Agency of National Resh) project WEBMOV (Web ser-
vices Modeling and Verification), national ANR project DI®SIRE (DIAgnostic of the FOnctions
REparation), and national ANR project Docflow (analysis,nitaying, and optimization of Web
documents and services).

The thesis consists of seven chapters. Four chapters (ihrg®) are the integration of the
papers that are accepted by or intended for an internatjonaial or proceedings. These chapters
illustrate a research of the CPN model-based diagnosis.eXperiments and conclusion are given
in the later chapters. The first and second chapters give ergleimtroduction to model-based
diagnosis and a survey of the new scientific results relatéiis thesis.
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Chapter 1

Introduction

From the point view of the system theory, a system is a settefanting or interdependent entities
forming an integrated whole. Structure, behavior, andriotenectivity are keywords to define
a system. Nowadays we rely more and more on the large systednkrnet for the facilities
of the human daily life. That is the reason artificial inigdince is more and more applied in the
system construction and maintenance process. As a robdstehable large system (e.g. plant
system, power system, aerospace system, Web serviceajgpl)cshould be fault tolerant, self-
healing (which is able to automatically recover possiblkifas) systems have been studied quite
a lot during the last decade. So diagnosis, as mandatoryobtgif-healing system design, has a
significant importance.

As a system contains a set of components (sub-systems)etfugmpance of the whole system
relies on the performance of each individual component dlsas@n the quality of the interaction
between the components, which can be abnormal. The abnbehalior of a component of a sys-
tem is in many cases due to the occurrence of a fault withicdingponent itself or due to abnormal
behavior that is propagated via the interactions betweemdmponents. There are normally three
different stages of diagnosis: fault detection, discawgmvhether a fault occurred; fault isolation,
what kind of fault occurred; and fault explanation, whathis tause of a fault. For the convenience
and cost saving, diagnosis is done locally, and if necessiagyoverall (global) diagnosis can be
integrated based on the local diagnoses.

The existing works seldom clearly and directly illustrabe abnormal data when diagnosing
the abnormal behaviors of the system. while the abnorma idatjuite easy to be detected and
isolated, especially in the software systems. In this thege focus on a software system which
is a set of interacting distributed Web services applicati&ach Web service has no knowledge



CHAPTER 1. INTRODUCTION 2

of the structures of its sibling Web services because ofibiged privacy policies. We tackled
the abnormal behavior of a software system caused by thermbhaput data, control and/or the
abnormal behaviors of the system components, instead ¢ditts in the programming codes. We
make an important assumption:

Assumption 1. The diagnosability is ensured by the sufficient observatiarhich are the logs of
the Web service execution engine.

There are normally three categories of diagnosis for agydaditional, model-based, machine-
learning based. The traditional approach is mainly ruleebdamethod, which replies on expert
knowledge and historical data and is usually implementeahaexpert system. The rule-based di-
agnosis usually works under the principle set in form of {frgotom(s) then fault(s)”. But it cannot
be practically applied to large and complex systems sine&riowledge acquisition is difficult and
time cost is expensive. The rules set grows exponentiatlggathe system size. And as it cannot
well handle the plant structure changes, it is hard to maminta

While the model-based diagnosis (MBO) _[109] approach caarally overcome these draw-
backs, which is why we choose the MBD approach in this th&geshave a model that describes an
abstraction of the structure and behavior of the systemghlwt@n be incomplete. Given observa-
tions of the system, the diagnostic system simulates thersyssing the model, and compares the
observations actually made to the observations predictatidosimulation. The task of the diag-
nosis system is to detect, isolate and explain the fault bgistency-based or abductive reasoning.
The overall system model is simply adjusted when its streabn behaviors change by adjusting the
model of the modified components instead of updating a hugdbdse of rules. We refer to [31] for
an extensive classification of the model-based diagnogisoaphes. More specifically, we chose
Colored Petri net (CPN)[_[64] as a model which unifies the dztatrol and the communications
between the system components.

Machine learning methods are data-based and used when licitédoghavioral model is avail-
able (black-box model). They require a lot of observatiormslenon the system and thus cannot be
implemented at design stage. These methods can also benudexddase-based reasoning frame-
work or, together with model-based approaches, for grey+#hodels, applied to the diagnostic
knowledge itself: the previous successful or failed diags) together with the available domain
data, are used to automatically and continually improveesygperformance. This can be a nice
improvement approach of the diagnosis, but is not the rekeaterest in the thesis.
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1.1 Abnormal behavior of software system

A software system is a system based on software forming partomputer system (a combination
of hardware and software), by focusing on their major coreptg The system theory, in software
engineering context, is often used to study the large angasoftwares, which focus on their
major components and the interactions between each otkemides of software systems include
computer reservations systems, air traffic control sofaamilitary command and control systems,
telecommunication networks, web browsers, content managesystems, database management
systems, expert systems, spreadsheets, theorem provmisywmsystems, word processors, etc.

As in other complex systems, two approaches can be adoptedailyzing the behavior of
a software system: the continuous dynamic one, and theetlisdynamic one. The continuous
dynamic system changes its states as the continuous tipeeslavhile the state change of a discrete
event system is driven by the discrete event occurrence.ftva® system is naturally suitable to
be analyzed in a discrete dynamic way. As the state of themsysan be represented by the state
of all the data used by the system, while the evolution of tt@ det is driven by the events or the
pre-defined processes in the system.

1.1.1 Communication between the components

The nature of the software system structure within an omgdioin has yielded a choice between
control (centralization) or coordination decentralizatioh A system that is partially centralized
and partially decentralized is termedistributedsystem, which is more representative in the real
world.

As all the complex systems, we have plenty of reasons to ulahig software systems in a
distributed environment (for robustness, for efficiency, dost control, for privacy protection, for
concurrency, for autonomy, etc), which means the comperemet distributed on different network
hosts. So the data transmission protocols for softwaresysare usually network-based, such as,
HTTP, FTP, Telnet, SSH, POP3, SMTP, IMAP, SOAP, PPP, etc.

Different from the centralized software system, distrdfalisoftware systems expose their inter-
nal component communication on the network, which risesenaballenges to face when modeling
and diagnosing them. For example, from the point view oftfaahdling, how to diagnose the fault
comes from other components, how to minimize the fault itidecin case of malfunction, how to
handle the local faults without the additional informatfoom the other components, etc.
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1.1.2 Data and activities flow

For a complex software system, both the data set which reptethe system status and the system
structure which defines the system status evolution can implizated. The data set is defined as
a structured object, and the system is organized by the gradh like components (or modules,
structured processes, functions) within the structureegaences, parallels, choices, etc. The data
is independently encapsulated within the functional safghese components. And the communi-
cations between them are performed by sending messagies (icgdut/output), which are a sort of
pre-defined data structures, too. When the components eatetbon different sites, the software
systems become distributed ones.

Data transforming activities

Within each component, data transformation is achieveddrfopming the pre-defined structured
activities. And the legal order of the activities is decidycthe topological structure and the choice
of the path within the structure, which we call control. Satrol can be viewed as the dynamic
system information, which is another kind of data of thesafe system.

The components communicate with each other by sending/negalata (messages) while con-
trol information is handled in two ways: synchronous or a&syonous. In the synchronous commu-
nication, the sender component sends a message to theeremeil/waits until the receiver returns
before continuing, during which the control is temporallpdked and the whole process might
be stuck. In the asynchronous communication, after theegsesmmponent sends the messages, it
continues to execute until the process needs the recergtlmning message. So during the asyn-
chronous communication, the control is not blocked, whialids the "stuck” bottleneck.

Dependency of Data

The general purpose of a software system is data manipwjatibich means to compute the new
system status according to existing data, which we call épeddency of data. Once the existing
system status (called variables) contains faults, thesfanduld spread to other variables or other
components. How the faults spread depends on how the neabiggiare manipulated from the
existing ones. So itis necessary to define the data depentespecify the way of fault spreading.
Moreover, beside the system variables, there are depeerddratween the controls of the com-
ponents. And sometimes, the controls, especially the ebad the paths, rely on both the former
control information and the current system status. As botttrol and system variables are data,
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the data dependency between the control and system varigdotebe classified just as that between
the system variables.

1.1.3 Faulty state

As an artificial object, the abnormal behavior (either \isior invisible) of a software system can
be caused by the design flaws, abnormal hardware or softweair®ement, faulty inputs, or misin-
terpretation among the components. Not all the abnormad\bets can be ignored or immediately
solved by the system. In worse cases, in a large and compdéarsywhich may have long-term life
cycle, tiny abnormal behaviors can cause serious conseesieery late.

In addition of the programming mistakes which can be detkatel corrected at the compiling
stage, there are two categories of runtime abnormal befsawie can detect in a software system.
The first category igrror, an irrecoverable condition occurring at runtime, whicpeleds dynam-
ically on architecture, OS and server configuration (e.gt abisystem memory). The only way
to recover it is to modify the system structure, replace ¢dty module(s), or change the runtime
environment configuration. The judged or hypothesizedeatian error is dault. A failure occurs
when an error "passes through” the system-user interfadeatiacts the service delivered by the
system which is detected as the second categxegption an error condition that changes the nor-
mal flow of control in a software system (e.g. attempting &dran unavailable file, divide by zero,
etc.). A signal that indicates an error condition is namedraalarm (alert). Both exceptions and
alarms are calledymptomsAn exception can be recovered probably by first requestiagorrect
inputs and then rolling back or restarting the softwareaystWe assume there is no clear distinc-
tion between the exception and error. A tiny mistake, whizhusd be caught as an exception can
easily cause serious irrecoverable error, so we don’'t médferehce between exception and error
in this thesis, and we call both of them as exceptions.

From the point view of the discrete dynamics, the informatal a software system which
contains faults is #aulty state Theoretically it is a complete set of the properties of aeys but
in practice, not all the properties are significant for dieging the faults. So we study only the
significant property set and we name one configuration ofrafgignt property set as a faulty state,
similarly we name an abnormal event which cause the exggp)ias a faulty event.
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1.2 Problematic of MBD for software systems

Diagnosis as a term is used in medical domains for diseasegniion on the basis of physical
symptoms. "Technical diagnosis, as a knowledge domain mZoer Science, and in particular in
Artificial Intelligence, started developing 30 years agad.thfe beginning, the objects of diagnostic
interests were only mechanical machinery and devices. Sgtifias been successively completed
with electric devices, electronic systems, complex tetdgiocal devices and recently with manu-
facturing and chemical processes as well as control systefts

1.2.1 The choice of abstract model

For an abstract model for diagnosis, a good model shoul@sept as much as possible the system
properties related to the diagnosis but in a simple way. & pegperties related to MBD are:

¢ all the data and control information handled by the softweytsiem, which can be labeled as
correct or faulty.

¢ all the discrete events, which can behave correctly andyfa@bnsidering the possible fron-
tiers of the distributed components because of the physiqaivacy limits, the discrete event
systems should allow to be composed and decomposed witludatig the diagnosis result.

e all the data and control manipulation and data dependendigsh reflect which data or
event(s) is responsible for the symptoms.

e all kind of symptoms which can be reported by the differemtnponents of the software
system: the clients, the monitoring components, or thewdi@t components.

So to find a model with rich capability of representation and@rful mathematical or logical
properties is always an important task for MBD.

1.2.2 The observation for diagnosis

The observations, as the information collection of theayss$tates, should contain the information
such that:

o the standardized event description, or standardizeddgatziptions: the values of the system
variables;

e when: the time stamps of the events or states;
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e where: the location of the events or states;
e how: the pre and post conditions (system states) of the &vibret order of the events.

This process of information collection is called monitgrif-ortunately, the software system is
much more easier to be monitored than the mechanical systeithe system data access does not
require sensors and the software systems have no memoty 6iminonitoring. For example, the
execution engine of a Web service application logs the vafule input, output variables, if the
activities defined in the Web service are successfully éeelgtthe alarms and exceptions during the
execution. So it is easy to achieve the all the informatiomtinaeed above.

Imperfectness of observations

The large software systems consist of the components frfferafit sites and providers and thus
observations are geographically distributed; gettingeokeion may also require authorization. An-
other problem is the clock synchronization of the differgiteés. Thus even if the monitoring of the
software systems can offer rich observation informatitwe, abservation quality should be ques-
tioned. In case of components with limited authorizationess, the observation could be missing
or limited. And for observations from different sites withaynchronized clocks, the observation
may be onlypartially ordered In the software systems, whether the functions are exeé@ate be
observed but the execution modes (correctly or faulty) oabe observed.

Exception assertion

The exception assertion in the software system can come tiworparts: the system execution
exceptions or the feedback from the users. The exceptiamsgdile system execution are aroused
when the pre or post conditions (input or output variablethefsystem) of the pre-defined activities
are not satisfied. These violations concern the value antués of the variable data. From the
aspect of the faulty data value, it could be like the inpuialdes are not (correctly) initialized,
and so the output are not successfully evaluated. From thecasf the faulty data attributes,
the input/output could arrive or be generated within thengrdelay, from the wrong cooperating
components, etc. The feedback from the clients or any masgaktion can be a source of exception
assertion, which means any violation of the anticipatedesysbehaviors can generate a system
exception.

As mentioned above in sectign 1.1, each component must k@ptbwith a quality contract
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that can be expressed as a set of constraints. Violating foim@e constraints will result in trig-
gering an alarm. The alarms will be redirected to the diagnosmponent and/or to a database in
order to be treated as effectively as possible. So we wilehavelaborate high-level alarms (or
symptoms) which can be processed by the diagnosis component

These alarms can be classified according to their corregmprdcurrence level. We can dis-
tinguish infrastructure and middleware alarms due to fagun the underlying infrastructure (hard-
ware, network); communication alarms due to failures in gonent invocation and organization
(they are mainly application-specific alarms) and apglicatlarms due to data mismatches, actor
faults, coordination failures.

A diagnosis component is triggered by one or several sympteyported by its associated mon-
itoring component to search backward the diagnosis basetthieoata and control information
recorded by the monitoring logs.

1.2.3 Minimal diagnosis

Based on all the former limitation for diagnosing the softevaystems, the diagnosis could be not
accurate enough to discard all the unreal reasons. Theatisgean give a super set which includes
all the possible reasons which satisfy the known diagnasiglitions: the observation and symptom
description. A minimal diagnosis is a diagnosis set thategiain all the symptoms while any of
its subsets cannot. Two pieces of parsimony criteria aegriedl in this description: the relevancy
(causal association among initial causes and symptoms)reettindancy (no proper subset of
initial causes is itself a minimal diagnosis). So in thisrem#, to find a minimal explanation for a
complicated symptom is a chief object.

In this thesis, we contributed to calculate the minimal dizgls based on the partial ordered
observations which is enough to explain the symptoms. Bdbés not means a superset of a
minimal diagnosis is also a diagnosis.

1.3 Our contribution

Our contribution lies in two aspects: a compact and poweahsdtract model based on Colored
Petri Net (CPN) [[64] for a software system and an effectigehtaic diagnosis approach based
on backward reasoningd [4] approach. The application istéian the European research project:
WSDIAMOND.



CHAPTER 1. INTRODUCTION 9

1.3.1 Model construction

The CPN model combines the strength of Petri néts [99], thelspnization of concurrent pro-

cesses, with that of the programming languages, data tygfestiobn, and data values manipulation.
In this thesis, the CPN model is used to define a unified framewhich combines the data and
control flow for dealing with the normal and abnormal behewviof the software system. The basic
ideas of using CPN as fault model are as follows:

e using places to represent data (and control), using transito represent the activities, and
using arcs expressions to represent the data dependencies;

e using the places types (colors sets) to represent the @ats stn the Web service application,
we limit the colors as just three ones: corrupted data, codata, and status unknown status
data. But theoretically, more colors are allowed in the CRignbosis framework.

e using transitions modes to represent the correct or cadugpttivities;

Furthermore, the functional CPN subnets are defined toseptehe distributed components of
a software system for diagnosis.

1.3.2 Diagnosis approach

The aim of diagnosis is, based on the CPN models and the Ipadidered observations, starting
from the symptoms marking, to explain the symptoms with aimmirm set of explanations. That
is, to find out the transitions behaved in faulty mode and th&sible faulty tokens in the initial
marking, which means the faults from outside of the subsyst®©ur diagnosis approach has two
following advantages:

e profiting from the CPN mathematical properties to diagndme symptoms by solving the
symbolic inequations systems;

e defining a method that generates semi-automatically a CBN rfzodel directly from the
CPN model of a system;

e allowing the observation of the system to be partially oedexithout decreasing the diagnosis

precision.



CHAPTER 1. INTRODUCTION 10

1.3.3 Decentralized topology

In this thesis, the application is a set of interacting W3=BRVeb Service Business Process Execu-
tion Language, see [90]) services located on differens sWéS-BPEL is used as the starting point
to generate a model of the services that represents, at@eiffievel of granularity, the data depen-
dencies between activities (processing and control &esyiwithin one service and also between
the involved partners services. Finalldacentralizeddiagnosis algorithm, based on the exploita-
tion of the data dependencies, is proposed for the exptanptiocess. Within this approach, some
assumptions are made that can be considered as realidtie imésent development of the Web ser-
vices framework. The fault detection is based on exceptishéch means that one of the partners
services will notify the dysfunction and start the diagspsind in addition the exception mecha-
nism of WS-BPEL is enough rich to support detailed des@iptf the dysfunction so as to provide
a good starting point for the diagnostic process. The exjsiVS-BPEL execution platforms, i.e.,
the Active WS-BPEL platform used in this project, offer thaspibility to log data at each step of
the instance execution. To finish, the proposed diagnogitim is decentralized by considering
local diagnosers, one diagnoser for each partner seni@egding with one supervisor, or, more
generally, a hierarchy of supervisors, which is a suital#bitecture in the case of orchestrated Web
services.

Therefore a decentralized diagnosis architecture is maghavhich allows backward inference
among the local CPN models which communicate through thddsed places. The equivalence
between the global centralized diagnosis and the deceelalliagnosis is proved.

1.3.4 Application: WSDIAMOND project [138]

WSDIAMOND, Web Services - DIAgnosabiIEL/ MON:itoring and Diagnosis is a project of the
Sixth Framework Program Priority2 - Information Societychirologies. It's a Specific Targeted
Research or Innovation Project.

The possibility of creating self-healing software in ortleguarantee reliability and availability
of software systems and services is one of the main chakefuyeresearch The WSDIAMOND
project is a first step towards self-healing software andifipally self-healing Web Services.

A self-healing Web Service is able to monitor itself, to diage the causes of a failure and to

!Diagnosability analysis is a part of the design stage an@sed on models of the system. Diagnosability analysis
provides information about the classes of faulty behaviathe system that can be diagnosed, which is a mandatory
step in self-healing system design. Diagnosability canvaduated at design time and may be involved in the software
validation criteria.
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recover from it, where a failure can be either functionathsas the inability to provide a given ser-
vice, or non-functional, such as a loss of service qualigif-Bealing can be performed at the level
of a single service, and at a more global level, with supmoidentify critical misbehavior of groups

of services and to provide Web Services with reaction mashato global level failures. The focus
of WSDIAMOND is on composite and conversationally complegb\Services, where composite
means that a Web Service relies on the integration of vaother services, while conversationally
complex means that during service provision a Web Servieds® carry out a complex interaction
with the consumer application, where several conversaltimmns are exchanged between them.

In the project we tackled two main issues:

e On-line support: developing an operational framework felf-eealing service execution
of conversationally complex Web Services, where monitpridetection and diagnosis of
anomalous situations, due to functional or non-functiarabrs, is carried on and repair/re-
configuration is performed, thus guaranteeing reliabditgl availability of Web Services;

e Off-line analysis: designing a methodology and tools foviee design that guarantee effec-
tive and efficient diagnosability/repairability duringesution;

In order to achieve these goals, it carries on research fiereift areas such as Semantic Web
languages (for describing service properties, i.e., n®)dsérvice composition techniques (for de-
scribing service interaction, i.e. WS-BPEL) as well as nididessed reasoning and diagnosis. This
thesis is an extended work of the diagnosis part of the prajet the CPN model and the diagnosis
approach are applied on study case of the WSDIAMOND project.

The report is organized as follows: chapiér 2 is a state oéithef the Model-based diagnosis
of discrete event systems, which introduce the main moglelivd diagnosis approaches; chafdiérs 3
and4 define our CPN model and diagnosis approach; cHaptercgms the application and adapts
the CPN model for the interacting Web services; chdpter énel the diagnosis approach into a
distributed system architecture and proposes a decematiiagnosis protocol; chapfer 7 is the

conclusion and perspective of the thesis.



Chapter 2

Model based diagnosis of discrete event
systems

2.1 Introduction

In the real world, scientists and engineers always facetatiat an artificial system (even human
being himself) can never be guaranteed to be malfunctian freother words, there may be some
FAULT in the system. So one of their tasks for facing this diffty is to answer to three questions:
did any fault occur (detection)? if any, how many, where, whdt kind of fault it is (isolation/iden-
tification)? and why and how did the fault(s) happen (expiang? We call the answers to these
guestions afault diagnosis

Because of the growth of the complexity of artificial autoimatystems, which is especially
stimulated by the development of computer and Internett thagnosis approach becomes more
and more complex. Nevertheless the manmade nature of thei@rsystems, it should be easy to
get the explicit model of the system configuration and bedrawi guide a diagnostic inference. So
in this thesis, we follow the direction of model basic diagisgMBD) which is well-developed and
quite mature for industrial application.

2.1.1 Model based diagnosis

As an application of abductive reasonimg|[94], the researtimodel-based diagnosis developed
since the mid 70's.[65, 30, 40] and led to several new methomies$, solutions and applications,

12
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mainly applied to static systems. Those systems, with auemgn-changing state, supposed instan-
taneous observations, fault effects visible in the diagnagndow and no evolution of the system
in this window. Associated methods resulted in timelessmia$ons of the systems. Figure 2.1
illustrates the basic perspective of MBD.

Observation

l

MBD
Engine

System

—]
description

pDiagnosis

Component
model library

Figure 2.1: Basic perspective of MBD

Two distinct and parallel research communities have beekingindependently in MBD field:
the FDI community and the DX community that have evolved eeipely in the fields of Automatic
control and statistical decision theory, and artificiatligence and computer science. Readers are
referred to[[25] for more details.

2.1.2 Discrete event system

Systems can be modeled as continuous, discrete, or hylmiddaeg to their dynamics of variables

along the time line. Naturally there are two parallel reskatirections according to modeled sys-
tems: Continuous Systems (CS), modeled as algebro-diffateequations or qualitative abstrac-
tions, and Discrete Event Systems (DES), modeled as firdte frmalisms[[128]. Some work (

[136,(66/ 53 88, 11]) concerns the hybrid system as themsystedel, In this thesis, we model the
software system as a DES.

"A Discrete Event System (DES) is defined as a dynamic systatretvolves in accordance with
abrupt occurrences, at possibly unknown, irregular itispof physical events [106]. The model-
based diagnosis of DES has received a lot of consideratientbe past few years being applied in
various technological areas. Besides the "naturally dis¢rsystems (e.g. software systém [142, 5,
[20,[78]), the quantization of the variables’ change of thetiooious ([116, 91, 83, 29]) and hybrid
(like telecommunication networks [98,197,112] 37], powesteyns [[8[ 47, 56], plant systems [58],
and production systemss [14,[7, 146]) systems makes theetlisgrodeling possible.
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2.1.3 Dining philosophers example

To illustrate and compare the different approaches of DE§rtisis, we use the example of three
dining philosophers:N philosophers (ranging ovdr- - - n) sit around a table, one plate with one
fork in it is placed between each two philosophers. So thezeVaplates (ranging over - - - n)
and N forks (ranging oved - - - n) on the round table. We consider a safe version of the problem
where each philosopher takes and then releases both fatkes seame time. In order to introduce a
diagnosis problem, we consider two types of philosophegst-arganized and unorganized ones. A
well-organized philosopher stops thinking when eatindyefore he/she eats, he/she takes the forks
and verifies whether the series numbers of the forks cornesfinthe series numbers of the plates
at his/her left and right sides, if not, he/she will not eath #norganized philosopher never stops
thinking. So he/she takes the forks on both sidesrarverifies serial numbers. He/she mixes
eating and thinking, so he/she might exchange the forkssitnéii left and right hand when he/she
crosses his/her hands during thinking. And this "excharaggion isunobservable Then he/she
releases the forks to the wrong plates without conscieneee e consider a 3-dining-philosophers
problem (abbreviated as 3-d-p, see fiuré 2.2) where pipless1 and2 are unorganized.

In the example, the activities of each philosopher takindy@utting forks are observable, while
the activity exchanging is unobservable. The series nurobtte forks are not observable except
after the Philosophed takes the forks and finds the forks’ series numbers are wrong.

In figure[2.2, the circles and the rectangles representcéggly the plates and the actions (take
t;, and release; with 1 < 7 < 3). Note that "exchange” action is not observable and "eatibac
is omitted as it has no relation to the diagnosis problem. drhaws linking the plates and actions
represent the corresponding relations between them. Theblez; («}) labeled on the arrows
represents the series number of the fork in the platken (released) by the philosophers. The
variablesz;; andz;; (with 1 < i < 3,1 < j < 3, andj # 1) represent the fork series numbers
in the right and left hand of philosopheérafter "taking” and before "releasing”. So the sensors
are placed on the actiorts andr; and the variables;, z;, x;;, andz;; which concern the series
numbers of the forks during the system execution.

2.2 DES models

In this section, different DES are defined formally. Firstr®ocommon terms are given as follows:
let . be aset L* denotes thdinite sequences seter L, ¢ denotes thempty sequencd.” rep-
resents thénfinite sequences sever L. L™ = L*\e represents thaonempty sequences .s€or
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Figure 2.2: A three dining philosophers problem

sequences, p € L*, o is aprefixof p, denoted as C piff p = o0’, for somes’ € L*. And thus
o’ is asuffixof p.
2.2.1 Labeled transition system and automata

When we are interested in studying a system dynamics whisteHanite states and events set, a
finite Labeled Transition System (LT$) [63] (or Automata\@jen final states set is distinguished),
which is a directed graph with labels on the edges, is inelitipreferred, especially when the state
space is small.

Definition 1 (LTS). Alabeled transition system is a tuple(Q, qo, L, T'):
e () is a set of states,
e (o is the initial state,

e Lis afinite set of events, with= L,uUL,,andL,NL,, = 0. L, andL,,, are the observable

and unobservable event sets.
e T C () x L x @ is afinite transition relation set.
Definition 2 (LTS path) Let A be a LTS, then

e a path (or trajectory) in A is a finite or infinite sequencé = ¢ia1q2---q, S.t. V1 < i
(gi,ai,qi+1) € T. Denote byaths(q) the set of all paths that start from the state ¢ and
by paths(A) the set of all paths i, i.e. paths(A) = paths(q;). Denoteg € § to represent
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the stateg is in the sequence a gz - - - ¢, anda € 0 to represent that the eventis in the
sequence;aiqs - - - ¢, Moreover, denote biust(d) = ¢, the last state o and by|é| = n
the amount of states ih

e Atraceo of a pathd, denotedtrace(d), is the sequence = ajas---a, Of events inL
occurring ind, and denotedrace,(9) is the sequence of the observable evenfsaccurring
in J. Writetraces(A) = {trace(d)|0 € paths(A)} for the set of all traces i, particularly
denotetraces™(A) as the set of infinite traces of. Write traces,(A) = {trace,(5)|0 €
paths(A)} for the set of all the observable tracesin Moreover, in case is finite, let|o]|
denote the number of events occurring in the tracee. |o| = n.

e Write ¢ 5 ¢ if the stateg’ can be reached from statgvia the traces, i.e. if there is a path
0 € paths(q) s.t. last(d) = o andtrace(d) = o. We writeq — ¢/, if there exists a trace
st.q > ¢, g —, if there exists a statg s.t.¢ — ¢/, andq - if ¢ is the final state of.

e Given any tracer € traces(A), denote by its prefix-closurei.e. 6 = {p € traces(A)|p C
o} and byg its postlanguagei.e. ¢ = {p € traces(A) | o C p}. Moreover, for a given
natural numberk € N, denote bys* its postlanguage with only words with length longer
thank,i.e.of = {pca||o|+k < |pl}.

Definition 3 (Alive LTS). A LTS isaliveiff Vg € Q,3a € L, ¢’ € Q,s.t.q = ¢, i.e. iffg —.
Definition 4 (Convergent LTS) A LTS isconvergentiff #ig € Q : ¢ LN gandé € L;,.
In this thesis, only the alive and convergent LTS are comsitle

Definition 5 (Synchronous product of LTS hesynchronous produ¢br concurrent composition)
Ay x Ag (or A;||Ag) of two labeled transition systems products a ITS (Q1 x Q2, L1U Lo, qo, X
qo,, T), whereT is defined as(q1, 92). 1, (¢}, ¢5)) € T iff

o Vic Ll N L2 A (q17l>qi) € Tl A ((]2717(15) € T2;
eVielLi—LiNLyA (ql,ll,qi) el A iﬂqé € QQ, S.t. (QQ,Z,Qé) €Ty,
e Vle Ly— LiN Loy, (QQ,lg,qé) SN EWAN ﬂqi € Ql, S.t. (ql,l,qi) e Ty.

The LTS example of the dining philosophers (presented iptendl sectioh 2.113) is given in
figured 2.b.
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2.2.2 Petri nets

Petri nets offer a graphical notation for stepwise proces$isat include choice, iteration, and con-
current execution. Petri nets have an exact mathematidalitcen of their execution semantics,
with a well-developed mathematical theory for processyaisl

Definition 6 (Petri net graph) A Petri Net grapt99] (P/T' Net) is atriple N = (P, T, W), where
e P is afinite set of places;

e T'=1T,UT,, is afinite set of transitiong,P? N T = (). LetT, is the observable transitions
set,T,,, is the unobservable transitions set, dfgdn 7, = 0;

e W C (P xT)U(T x P)is the incidence (flow) relation that specifies the arcs frdatgs
to transitions (Pre) and from transitions to places (Post): = Pre U Post: Pre(p,t) :
Wo(P x T) — NandPost(t,p) : W,,(T x P) — N, where:

— Pre(p,t) € N gives the weight that is associated with the arc directethfidacep to
transitiont;

— Post(t,p) € N gives the weight that is associated with the arc directethftansition
t to placep;

We represent bz = {y € PUT|(y,x) € W} andz® = {y € PUT|(x,y) € W} respectively
as the input and output places or transitions: 0T he incidence relation®re and Post are in fact
the P x T matrixes ofN.

To illustrate the dynamics of a Petri net, we define its exenwvith the notion of marking and a
set of rules of marking evolution (transition firing). A marg is a distribution of tokens on places.

Definition 7 (Marking). A markingM of a net\ is a|P|-vector that assigns to each plapgef P
a non-negative number of tokefs : P — N.

M (p) denotes the number of tokens presenp in the marking)/. Markings are also called
configurations When we have a net with a marking, we have a net system.

Definition 8 (Petri net system)A Petri net systent (N, M) is a couple of a PN graph and an
initial marking.

The execution of a net system is based on the transition fiviles.
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Definition 9 (Enabled transition)Let .S = (N, M) be a Petri net system and be a marking of
S. We say that a transitionis enabledn M, if Vp €° t, M (p) > Pre(p,t).

When a transition is enabled, it can fire. The firing of a trémsiis the core concept of the
execution of a Petri net.

Definition 10 (Firing). Let S be a Petri net system\/ a marking ofS, andt a transition enabled
in M. The resulting marking/’ of ¢ firing from A (denoted as\/ N M), is defined as:

M’ = M — Pre(-,t) + Post(t,-)

by assumingPre(-,t) and Post(t, -) are the| P|-vectors whose elemepis Pre(p, t), respectively
Post(t,p).

The definitio 10 can be extended to a sequence of transitions
Definition 11 (Firing sequence)A sequence ofiring transitionsis defined as a trace:
=M 5 My 2 By,

where inductively fori = 1,2,--- ,v — 1, M; > Pre(-,t;). SoM; — M, (named adegal
trace denotes that fires atM; yielding M,,. The set of all legal traces i\, M) is denoted by
Ly (Mo).

Definition 12 (Reachable set)GivenS = (N, M), thereachable seRy(My) = {M|37 €
L (My)s.t.My = MY} is the set of all reachable markings.

Definition 13 (Characteristic vector)The characteristic vectolr associated with a legal trace
o € L (My) is aT-vector whose element that corresponds with transitiore 7" is given by
1o (t;) that is the number of appearancestpin the legal traces.

Definition 14 (Marking equation) If A7; % M, then themarking equatiorholds:
Mi+W.-o =M
(with the incidence relatiom = Post — Prein a P x 1" matrix representation).

Definition 15 (Marking graph) Given a PN systerfi = (N, M), the marking graph of isa LTS
MG = (Ry(My), T, My, A) with A € Ry (Mp) x T x Ry (M) s.t. V(M,t,M') € Afiff tis
enabled inM. SoM > Pre(e,t) and M’ = M — Pre(e,t) + Post(t,e).

Definition 16 (Bounded PN) S = (N, My) is boundedff 3k € Ns.t.Vp € P,VM € Ry (M),
M (p) < k. ThenS is said to be k-bounded. if= 1, S is said to be a 1-safe PN.
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2.3 Modeling diagnosis with DES

DES, as a dynamic system whose state changes with an evemtastze, can model the compli-
cate man-made systems whose behaviors are hard to predicffanthe possibility to perform the

automated fault diagnosis during the system execution. r@amty the faults are modeled as un-
observable events and observation is modeled as a tracistoan®f observable events. The DES
diagnosis performs in two steps: deriving the legal tracbglvconsistent with the observations;
then make the assertian [115]:

o if all the traces include a same fault transitions, the failieclared to have happened for
sure

e if none of the legal traces include a fault event, the diagn@sult isnormalt

e if the legal traces set includes traces that include diffefault transitions and/or do not
include fault transitions, the diagnosis resultiicertain

2.3.1 Fault representation

In some DES, faults sdt can be alternatively represented as forbidden systenssfatdty behav-
ior modes of components, or unobservable events. In morglazated cases, unobservable events
are categorized bfault type which simplifies the fault representation. In this chapferot claimed

in advance, each fault label has a different typeFsis a subset of events set. A represents
the normal state of DES.

Definition 17 (LTS fault model) A LTSA = (@, qo, L, T") is a fault model if a set of fault events
are distinguished from the unobservable events 3ét.C L,,. The faulty events are ranged over

by usingj;.

Definition 18 (PN fault model) A Petri net\' = (P, T, W) is a fault model if a set of fault events
are distinguished from the unobservable events 3ét.C T,,. The faulty events are ranged over

by usingf;.

3-d-p example 1. The dining philosopher example consists of 6 modules: tlilesuphersph,
pha, phs; and the forksforky, forks, forks. As LTS does not support the real concurrent activity
execution, each philosopher can perform the activitieketput the left/right fork, or exchange (the
forks in both hands). So there are 6 different pairs of pdesileries numbers of forks in the left or
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right hands of each philosopher in case philosophexnd 2 are unorganized: 1/2, 2/1, 1/3, 3/1,
213, 3/2.

1

1 hlpl§

Figure 2.3: Dining philosophers: LTS of philosopher; .

According to this different cases, the LTS (see figurk 2.8poh philosophet has 6 different
groups of states. Each group starts from stéife ends withS0 and performs in the activities order:
take rightph;tr7), take lef(ph;ti}), start to make mistakeptional f;), put righ(ph;pr?), and put
|eft(phipli) fork 7 from/into platek (see top left part of figufe 2.3). For example, the activitieain,

So, S2, S211, S212 and Sy, represents the philosophértakes the fork from the plate2 with his
right hand, takes the fork from the platel with his left hand, starts to make mistake, puts the fork
2 into his right hand in the platé on his left side, then puts the fotkin his left hand into the plate

2 on his right side (see bottom left part of figlire]2.3). For aestg, i represents the forkin the left
hand of philosopher. For a statg;, i represents the forkin the right hand of philosopher and fork

J in his/her left hand. For a state;;;, < and j have the same meaning with thatspf, and different
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values ofk represents the different intermediate states. The indiate of LTS i, which means
the philosopher stands bhy.

phipr %

phip(r/1)],

(a) LTS of Fork (b) LTS of Fork1

Figure 2.4: Dining philosophers: LTS gbrk;.

Without considering the series numbers and left/right dide LTS of the fork is just a circle of
being taken and put (see figlire 2.4a). Considering the sariatbers and left/right side, each fork
may be placed in three different plategk = 1,2, or 3) and be taken or put by three philosopheérs
(k = 1,2, or 3). As the relative positions of the plates and philosopheesfized, the LTS of fork
has three different groups of states which concern the thiates and three philosophers (see figure
[2.41). For a states ;;, j represent the fork series numbgrepresents the plate series number. For
example, the initial state of LTS ig; which means the fork is in the platel. For a states;y;,

i represents the series number of phiIQsopher, which meanphiiosopheri has taken the for

.. hitry, . . . .
from the platek. So a transitions P s;ki represents the philosophétakes with his/her right

hand the forkj from the platek, like s1; phitﬁ s113 and sy phitﬁ s111 (see figuré¢ 2.4b). The fork
cannot make mistakes so, there isfa@vents in the LTS of the fork. But the three groups of states
are connected by the activities when the philosopher 1 andikzmistakes.

So the synchronization product ¢brk; and PH; (i € {1,2,3}) fork; x PH; x forks x
PH, x forks x PHsis the LTS of the dining philosophers (see fiduré 2.5).
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Figure 2.5: Dining philosophers: LTS ¢brk; x PHy x forky x PHy x forks x PHs with 358
states and 58 events (wifh, f2, and f3 three unobservable faulty events).

Note that there are some other kinds of fault representditienviolation of event execution
conditions [46], violation of constraints on the targetta$a[93], or logical propositions defined
over a set of variables that comprise both events and s&gs |

3-d-p example 2. We can model the dining philosophers example with PN modblthe places
represent the plates, the tokens in the places represerfotke (see figuré 2.6a). Places and

po represent the plate$ and 2 in each which have one fork. Placgs, and ps; represent the
plate 1 and 2 without fork. Transitiong, ex; andr; represent the activities "take”, "exchange”
and "put” forks. As PN model allows the concurrent events taking, exchanging and putting
forks happen concurrently. The other two philosoptieesnd 3 can model in the same way, and by
composing the three PN models, we can get the PN model ofrtimg gihilosophers example (see

figure[2.6D).

As addressed in examglé 1, the combination of series nunalbéng forks in the left and right
hands of the philosophers has 6 cases and these 6 kinds efdomkbinations can be "taken” by
either of the philosophers through activitigs ¢, and¢s. To totally isolate these cases in the fault
model of PN, including the correct (3) and faulty (15) oné®ré are 18 different kinds of "take”
activities (transitions). Each "take” transition has igmsequential "exchange” and "put” activities
and corresponding places (see fidure]2.6a).

Figure[2.6t illustrated the PN fault model of the dining pedphers example. Placp;}uswith
j,k € {1,2,3} represent the cases, fofkin platek. Transitionst’*, /%, andex!* with j, k,i €

A A
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(a) PN model of philosopher (b) PN model of dining philosophers

(c) PN fault model of dining philosophers

Figure 2.6: PN model of Dining philosophers
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{1,2,3} andj # k represent activities of philosophértake”, "put” and "exchange” the forkg
andk in his/her left and right hands. To make the figure visible onky draw only 3 different cases
t2! (philosopherl behaves well)t? (philosopher3 does not detect fault) and® (philosopher3
detect the fault) and omit the other 15 cases. Note the remt gl represents an alarm, which
means philosopher finds the fork series number in his lefdhamvrong. The dotted eclipses
circle all the possible series numbers of forks in plate

2.3.2 Observation

The observation of DES is retrieved from the monitoring eystwhich supervises the running of the
system. Once it captures a symptom, the diagnosis procegggiered. The observation offered by

the monitoring system is event-observations (as observatace) and the partial state-observation
(as symptom).

Assumption 2. Unless otherwise stated, we make an important assumption:

the fault cannot be in the monitoring components that logrf@mation, which means the
observations is accurate.

For DES, the most common observation is the occurrence oftgvdn reality, the sensors
or monitoring platform in charge of the observations can l@functioning. So the observation
sequence can be inaccurate, incomplete, partially ordeted In fact, many works effort to com-
pletely or partially release these assumptions to meegthdife request from the industrial areas.

Observation absence

Due to the limitation of the observation, there could be aseolation absence, e.g., some states
or events occurrence are naturally hard or too expensivegtue. Then the diagnosis problem is
explored in two directions: to improve the diagnosis confaewith available observation, or to
carefully configure the sensors with higher diagnosis cenfié and lower cost.

As to the diagnosis confidence improvemeht, [113] studiedctse of partial observation of
system states and observable events in form of Petri netsars{tion) labeled Petri net is defined.
And a label function is defined to transform the combinatibrstate observation and observable
event into a transition label. And finally the diagnosis peobis defined as a PN reachability graph
search with the help of stochastic information.
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Partially ordered observation

An asynchronous system, much like an object-oriented soéwnd a telecommunications network
management system, is a system operating under distribatecbl, local time, global supervision,
and components communication. Each local sensor has ordytialprziew of the system, and its
local time is not synchronized with that of other sensors.

Even if the order of events may be correctly observed lodallgach individual sensor, commu-
nicating alarm events via the network causes a loss of sgnidation: as a result, the interleaving
of events communicated to the supervisanasdeterministic

So we formally define the observation &BS as follows:

Definition 19 (Observable sequencepiven an observable sét,, a (partially ordered) observable
sequence is defined as:

obs ::= ¢levent < obs|obs || obs, with event € L,

with e represents the empty observatiehand|| represent respectively the precedent and parallel
relations between the events.

2.3.3 Diagnosis of DES

So generally, the diagnosis of DES) s can be informally defined as follows:

Definition 20 (Diagnosis of DES) The diagnosis of a DES is a functidhpgs : traces,(A) —
22" with:

e traces,(A) is the set of observable traces;
e F'is the set of fault typesy represents the normal state of the DES;

Definition 21 (Minimal Diagnosis) A minimal diagnosiss a diagnosisA p s such that/A’, . ¢ C
Apgs, Al g is not a diagnosis.

Following the principle of parsimony, minimal diagnose® aften the preferred ones and
proved, in particular cases (the weak fault model [32]), ¢cshfficient to characterize all the di-
agnoses. The proposition does not hold for the strong faatteli32], which is our case. In this
thesis, each minimal diagnosis in the minimal diagnosisssatfficient to explain the symptom.
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2.4 Diagnosis methods

DES diagnosis methods are based on observing system evehtaaking inferences about the
system state. The basic idea is that the occurrence of aviduljenerate a unique sequence of
observable events that will establish the presence of tile fa

The classical diagnosis approach is to synchronize thersysiodel for diagnosis and the ob-
served traces for computing all compatible trajectoriesdatermining whether these trajectories (a
sequence of states and transitions) are normal. The systetal fior diagnosis can be represented
as:

e synchronization product of DES model and fault types (diesgn) [115] 116, 147, 129, 120]
and PN diagnoser [8];

e PN unfolding [12[37] and backward unfoldirig [58].
e Petri net reachability graphl[4, 100,[3,131] 46,41, 17];

In this section, the above approaches are introduced angarech There are other diagno-
sis approaches which are not widely used like consisteasgd([49] 82, 126, 142, 141,150, 144]
and Algebraic approach based on Petri nets([76] 108, 72,3/547[110] which are summarized
separately.

2.4.1 Diagnoser

Assume faults are represented as unobservable event§ andL,, is the fault types set (see
definition[1). Given a LTS, the composition product of theteys states and the possible faults
types can represent off-line the diagnosis states of thersysiamed as diagnoser [115,116]. So a
diagnosis can be got by synchronizing the diagnoser and seradble trace.

Definition 22 (Diagnoser) Given a LTSA = (Q, qo, L,T), a diagnoser based od is a LTS
As = (Qs, o5, Ls, Ts) with:

e Q5 C Qo x 2" M withQ, = {go} U{q:3(¢,a € Lo,q) € T};
e qo, = (g0, {N}) is aninitial state;

e L5 = L, is the set of observable eventsAif
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e T5 C Qs x Ls x Qs is the finite transition setg, F) % (¢/, F') s.t.q 2% ¢ witho € L%,
a€ L, F'=FU{f; € F|fi€o}

Definition 23 (Diagnosis of LTS diagnoser)The diagnosis of LTS diagnoser is an implementation
of Arrs on the DESA; || Traceso(A). Lett € Traces,(A), Arrs(T) = Vo, S.t. (gs, ¢i) €

(As || 7) A (g5, di) -

Diagnosis with diagnosers is very efficient because prauogss) observation sequence can be
done in linear time in the length of the sequence. Howeverctnstruction of the diagnoser may
be extremely expensive because the diagnoser may havethaize exponential in the number of
states in the system, which is famous asdtate-space explosigoroblem.

3-d-p example 3. Take the LTS of the philosopher AH; as example, its diagnosefH;; is
illustrated as in figuré& 2]7.

Figure 2.7: Dining philosophers: diagnoserfofl;. The initial state ofPH;, is so.

As the number of the unobservable faulty events is far meeetlgan that of the observable
ones, it is obvious that the size of the diagnodgris close to the size of the LTS of the dining
philosophers (omitted).

Given an observationbs = phqtipit1, phitrpate, phiplps f1, phiprpi fo, photlpits, photrpsts,
phoplps fa, phoprpi f3, phstipits, phstrpsty which is followed byrror, the diagnosis can be gen-
erated by simulating the diagnoser and the observationD&ay,.,., = {{f1, f2}} which means
the only explanation of the symptom is both the first and skpbilosophers exchanges their forks.
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[115], [11€] described a modeling and diagnosis frameworlsystems in the DES framework.
A diagnoser based on the system model functions as an extefderver that provides estimates
of the system state under non-faulty and faulty conditions.

[118] proposed a diagnoser approach by combining each ntavkith its exclusive diagnosis
information, and got diagnosis by synchronizing the diagmnavith the observations. [118] requires
the PN model to be more specific so that each marking correlspeither to a correct state or to
one type of fault.

[103] improved the diagnoser approach [of [115] by consingchondeterministiadiagnosers
off-line and theon-line diagnosis is performed by maintaining a sinfleachset and updating it
upon each observation.

2.4.2 PN unfolding

Net unfolding [87] is a technique of structural analysiseduce the state-space explosion problem
which the reachability analysis approaches suffer frone Uiifolding of a system fully describes its
concurrent behavior in a single branching structure, sapréing all the possible computation steps
and their mutual dependencies, as well as all reachablessttite effectiveness of the approach
lies in the use of partially ordered runs, rather than ieterings, to store and handle explanations
extracted from the system model.

The unfolding definitions are taken from ]12] and slightlyjusded.

Definition 24 (PN Homomorphism) Given two PN graph$ = (P, 7, W) and S’ = (P', T", W"),
a homomorphism fromto s’ is defined agp : PUT — P’ U T’ s.t.,

e p(P)C P andp(T)C T’
e Vx e PUT, p(*z) =* ¢(x) andp(z®) = ¢(x)*®

Definition 25 (Occurrence net)Given a PN graptt = (P, T, W), two nodese, =" are in conflict,
noted asefa’, if 3t,¢' € T, st.*tN*t' # P andt < =, t' < 2/ wherex is a reflexive transitive
closure ofl¥. A nodex is in self-conflictif zfz. An occurrence ne® = (B, E, W) satisfies:

e B, a set of conditions;
e I, a set of transitions;

e < is the causality relation;
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e Vz € BU E : —[zfz] (acyclic);

e V€ BUE : —[x < xl;

eVxe BUE : {y:y <z} <

e Vb€ B:|*| < 1, each place has at most one input transition (no backwardlicty
We denotenin(O) C B as the minimﬂ node set 0O for .

Definition 26 (Cut). Two nodesr, 2’ are concurrent, denoted as L 2’ if neitherz < 2/, nor
z' < x, nor zfiz’. A maximum concurrent conditions (or pairwise nodes) satcist

Definition 27 (Configuration) A configurationC = (B, E¢, <1) of O is defined as follows:
e C C O,Cis asub-net 00
e Va,be (Be x Ec)U (Ec x Be) = —(ath), C is conflict-free;
e Vbe BeUEer:a€ Banda <1 b= a € B¢ U Eg, C is up-warded closed;
e ming(C) = ming(O), C andO have the same starting nodes.
We denote as the configurations set @1.

Definition 28 (Branching process)Given a Petri net systerfi, a branching process is a pair
(O, ») whereQ is an occurrence net angd is a homomorphism fro® to .S, with:

e min(O) = My = ¢(min(O)) = My
e Ve, e E,%e="e Nyp(e)=p(c)=e=¢

Definition 29 (Unfolding). Given a Petri net systerfi = (N, M), the unfolding U/ (M) is a
branching proces8 = (O, p) s.t. VB = (O', ¢') C Bwhere3’ is a prefix of3, 3a homomorphism
¢: B — B,s.t.g(min(B')) = min(B) andp o ¢ = ¢'.

SoUn(My) maximally unfoldsS and configurations are the adequate representations of the
firing sequences df.
So the diagnosis based on Petri net unfolding can be defined as

Yming(X) = {z € X|(z' € X Az’ < x) = &’ =z} is the minimal element ok .
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Definition 30 (Diagnosis of PN unfolding) Given a diagnosis probleni{r, obs) with U, the
unfolding of a Petri net syste = (N, My), the diagnosis iSDiaguPN = {tuoltuo € Tuo, AT IS
an observable trace 0¥/, s.t. 7 is consistent witld{ys x obs}.

3-d-p example 4.Figure[Z.8 illustrates a part of unfolding bf 2J6¢ which iswsistent with an obser-
vationobs = t17tarots and symptom with placg! is marked. Sdiagy,, = {{ex1,ex2}} which
means the only explanation of the symptom is both the firss@aoohd philosophers exchanges their

P PP} }ng

forks.

()
a

Or!

Figure 2.8: Dining philosopherd4s x obs for diagnosis: the superscripts and subscripts of the
intermediate places and the superscripts of the transitos omitted.

[12] used a net unfolding approach for designing an on-lsyaehronous diagnoser. The state
explosion is avoided but the on-line computation can be Higgto the on-line building of the PN

structures by unfolding.

2.4.3 PN backward reachability analysis

Reachability analysis has been successively developedtedly by taking into account forward

reachability. While backward reachability analysis istahiie for the diagnostic problem solving
[4,58,[121[18]. The backward reachability analysis staais the final marking which represents
a symptom and calculates backwardly according to the backsaearching rules to detect all the
traces that cover it. So the backward calculation can be agarforward calculation in the reverse
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PN obtained by reversing the direction of the arcs in theimaigPN and modifying the enabling
and firing rule of a transition.

[4] [100] proposed the backward reachability analy8s/\ analysi$ approach to model the
behavior of a system to be diagnosed. The states of the systenepresented as places, and the
inferring relations between the states are representedrastions. So the PN model represents all
the possible logical inferring paths of the system statée BFW analysigs to start from the final
marking which is the observed symptom, and search backyatidihe consistent paths to decide
the possible initial markings.

[58] adapted the PN unfolding method for backward searchiing set of minimal explanations
is calculated backwards starting from the observation anigidg traces that lead back to the initial
marking. The diagnoser explores different state spacesaauthe advantage that it does not depend
on the size of the PN model but only on the size of the largdstnat in the model that includes
only unobservable transitions. Moreover and very impartaa set of complete explanations can
be calculated from the set of minimal explanations whenthstris required.

[41] studied the minimal diagnosis of unobservable-trizmss-acyclic PN. A diagnosis ap-
proach named abasic reachability tred@s proposed which is in fact an automaﬁrdiagnosis
based on marking graph of Petri net. |[17] studied the realityaraph diagnosis approach based
on bounded PN model. The observations are transferredjustification-vectorto improve the
efficiency.

[131] introduced a method for modification of reachabilityets in order to detect failure transi-
tions. A symbokz means an infinite set of positive integers, so an infinite ¢mesisting of infinite
reachable markings is approximated by a finite tree (redlifyatvee). Two kinds of diagnosers
(difference markingo-diagnoser and refined- diagnoser) were proposed. For observable places
whose token numbers are replaceddyn the reachability trees, the former diagnoser calculates
difference between token numbers before and after pgroaerved markings change, and detects
failures. In the latter diagnoser is refined to distingutsiieachable markings by normal and faulty
behaviors.

[46] used PN models to introduce redundancy into the systehadditional P-invariants (places
set whose tokens number produced/consumed by the 1/0 aagaal) allow the detection and
isolation of faulty markings.

The convergent (unobservable-transitions-acyclic) eriypmakes sure the generated automaton is diagnosable.
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2.5 Architecture of DES diagnosis

The large DES systems are usually designed as a set of intercting subsystems with differ-
ent topological architecture, which can be roughly dividgeddecentralized and distributed ones.
So decentralized and distributed diagnostic protocol®imecnecessary to deal with diagnosis in
distributed systems where the information is separatelstta.

The model-based diagnosis of DES can be classified in thmatlite from a topological point of
view as centralized, decentralized, and distributed agures.

2.5.1 Centralized diagnosis

There is one centralized diagnoser that derives the systgnakis based on its (complete) knowl-
edge of the overall system model and the overall system wadits@n. The centralized approach can
be further classified as:

e diagnoser approach [115] where a diagnoser automaton iieedenff line and the on-line
analysis is carried out by eliminating the diagnoser-stdi@t are not consistent with the
system observation.

e active system approachl! [8] where the diagnosis result igetba posteriori when the system
is in a quiescent state (out of work or idle).

The main disadvantage of a centralized approach is its hoghpatational complexity. It re-
quires a centralized model and generates a centralizedaiag Since the diagnoser-automaton
can be viewed as a special observer-automaton its size ntaymigetoo large to be practically
stored[[107]. Even if a centralized diagnoser can be coctstiit has the following disadvantages

[125]:

e weak robustness: when the centralized diagnoser is brake,dbe whole system is not able
to be diagnosed.

e low maintainability: a change in the system structure nexgua complete re-calculation of a
new centralized diagnoser, which can be a serious problethdéalynamic systems.
2.5.2 Decentralized diagnosis

The decentralized diagnosis problem is first considered®B] ih which the local diagnosers com-
municate with the coordinator through the no-delay chanimestead of with each other. Figdire]2.9
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illustrates the coordinated decentralized architectutk two local sites and communicating with
a coordinator. There is one coordinating agent receivasrimdtion from several local diagnosers,
each of which performs some local diagnosis of the systeimiwttomplete knowledge (e.g. based
on a sub-set of sensor readings or a partial knowledge ofvbelb model). The local diagno-

sis results are compiled in a consistent diagnosis resuthfooverall system by the coordinating

diagnoser e.g.. [33, 97,134,198/ 13].

System Model

Local Observations E H Local Observations
H

) ; .
Local Diagnostics H E Local Diagnostics
H

Com¥unication cogltraints

Coordinator
(memory and processing constraints)

Failure Jinformation

Failure Recovery module

Figure 2.9: Coordinated decentralized architecture of DES

There are two different decentralization levels:

e [33], or its extended version [34, 120], employ a global systmodel which is built from
component models automatically via synchronous or asyncus composition. After off-
line diagnosability verification, which may cause statelesipn problem, the online diagno-
sis decisions can be computed. These decisions may or mdyeriosed on a coordinating
site, according to the properties of the architecture. &lo@ordination protocols are pro-
posed in[[38] that realize the proposed architecture antyzm#he diagnostic properties of
these protocols.

e [8,197,[71/96] and [139] (synchronous automata) proposedéicentralized system model as
asynchronougommunicating automata (or FSMgB] solved off-line a diagnosis problem
a posteriorj while [71] mixed a diagnoser approac¢h [120] 97] with an ed&sl version of
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the decentralized model df![8] by computing on-line only theresting parts of a central-
ized diagnoser to avoid computing the global model.] [9&joidtced the temporal window
to improve the on-line diagnosis efficiency and the globabdbosis is built by dynamically

merging the local ones to eliminate the inconsistent tracés the partial order reduction

technique and incremental diagnosis on sound temporalowiad Recent works on this ap-
proach [26] used decentralized or factored representatmnepresent the set of all trajecto-
ries more compactly without enumerating all of them.

While decentralized models could potentially reduce tlagesspace exponentially, the actual
complexity of the diagnosis algorithms relies on the pariiof the system model and the selection
of communicating events between local models.

[111] investigated the necessariness of asynchronous coiation for fault diagnosis. It
modeled the asynchronous communications between two thaghosers with timed automata.
Then the problem of determining the states of each of the titmoncunicating diagnosers into the
problems of factorization of the observation map and conttin of an observer for a timed DES.
The diagnosers can be formulated directly from the obssrver

[13] studied the problem of synthesizing communicationt@rols and failure diagnosis algo-
rithms for decentralized failure diagnosis of DES with gpsbmmunication between diagnosers.
The costs on the communication channels may be describednivs tof bits and complexity. The
costs of communication and computation force the tradéetiiveen the control objective of failure
diagnosis and that of minimization of the costs of commuitacaand computation.

[44] proposed a modular diagnosis architecture (brokgyalole of merging diagnoses provided
by local diagnosers and to enrich their formalism with sypalzation constraints. The global
diagnoser algorithm manages a diagnosis tree by querymdottal diagnosers to complete the
pending paths. Each candidate diagnosis is represente@dif feading to a constraintless node in
the diagnosis tree.

The decentralized approaches overcome the high compkaxityhe low maintainability limita-
tions of the centralized approach by calculating locakssalaces (of size a lot smaller than the size
of the overall) that are maintained consistent by a cemtdlstructure (agent). But the existence of
a centralized agent does not eliminate the disadvantagevefila robustness.

[103] introduced a notiorrodiagnosabilityto describe a requirement that any failure can be
diagnosed within bounded delay by at least one local disgmasing it's own observations of the
system execution. Theodiagnosabilityproperty is stronger thasdiagnosabilityunder the aggregate
observations, which declaimed a possibility that a syssecemtrally diagnosable but not decentrally
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diagnosable.

[68,/69] focused on solving the ambiguity of several localgtiosis towards the global diagno-
sis (introduced and discussed in_[134] and its extendedoref$35]). [69] proposed a framework
for performing diagnosis in a decentralized setting. A glatiagnosis decision is taken to be a
winninglocal diagnosis decision, which is tagged with a certainignity level. The work showed
that the codiagnosability introduced in [103] was the sam@-mference-diagnosability; the condi-
tional codiagnosability introduced in_[134] and [135] watype of 1-inference-diagnosability; and
the class of higher-index inference-diagnosable systérictys subsumed the class of lower-index
ones. The author of [135] claimed their architecture carelaéized in a distributed environment.

2.5.3 Distributed diagnosis

In a distributed diagnosis environment, the overall systemsists of different components, and
associated with each component, there is a local agentn@iagagent) that derives the local di-
agnosis of its component. Each local agent only knows theehafcthe local component and of
its interactions with its neighbors. Each local agent meee@nly receives signals from the mon-
itoring system for the local events. No centralized strieefa assumed to coordinate the results of
the local agents but from time to time the local agents mah&xge messages over communication
channels linking them. Thus the local agents derive theilblised diagnosis by local calculations
and by information exchanges, e.@., [124,(56, 12559, 33,/47,105/ 36].

Generally speaking, distributed architectures for diaggaliffer from decentralized ones in
terms of the local models used at the different sites for mbdsed inferencing and in terms of the
ability for local diagnosers to communicate among eachratheeal-time.

For a distributed system without coordinator, the consisteheck between the local diagnoses
is merely important. Thiocal consistencyequires that all local diagnoses agree on their mutual in-
terfaces. While thglobal consistency123]) requires the local diagnoses are the projectedoress
of the global diagnosis, which needs a global system modameSworks, e.g., [ [101] transform
the topology of the system into a junction tree where eactexeepresents a subsystem. Local
consistency between the diagnoses of these subsystemesgtabal consistency due to the tree
structure.

[104], extended from [103] defined a new observation masleémh local observer that com-
bined the effect of it's own observation and the boundedydelbmmunication received by other
diagnosers. The local diagnosers communicate with eadr ading theimmediate observation
passing protocol Thus the distributed diagnosis problem is reduced to ardestzed diagnosis
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one. The further extended work [105] reduce the compleXityneline diagnosis at each local site
to be linear with the number of sites by proposing a new dhigted diagnosis protocol.

[124,125[ 12B] proposed an automaton-based distributédhi@narchal diagnosis architecture.
Each local component has its own local diagnoser, which it iased only on knowledge about
this component. The stored size of the overall diagnosenlig the sum of state sizes of the lo-
cal diagnosers, hence spatial complexity is kept underabnEach local diagnoser is connected
with other local diagnosers based on the input/outputicglatamong associated local components.
Adding new components, taking components out of the systechanging the input/output rela-
tions among local components only affects the local diagrsothat are directly associated with
the altered components. A hierarchical computationalgutooe and multi-resolution diagnosis ap-
proach are introduced in_[123] to overcome the shortcomafgsigh time complexity and poor
scalability of the distributed ones.

[110,35/37. 36, 39] discussed the distributed diagnosiblpm based on PN model.

[37, [36] based on the work of [110, 112] discussed the digeitbunonitoring and diagnosis
problems of the asynchronous subsystems with partial eddebservations. The idea here is that
when concurrent subsystems are composed, there may be avémt alphabets of the subsystems
whose relative order is not important. Therefore, padiaer techniques reduce the complexity of
a model by not capturing all the permutations of the orderiofythese events| [36] proposed and
discussed different kinds of data structures (executiee, tunfolding, trellis, etc.) of representing
the asynchronous communication, real concurrency aniapartlered events for the distributed
diagnosis. The necessariness of defining partial orderasgly insisted in this work.

[35] modeled a distributed system as a graph of interactigpystems, with the appropriate
semantics of trajectories and stochastic framework. Araéméd supervisor, collecting all obser-
vation from the system and knowing a model of the whole systaay not be affordable, so they
advocate instead a processing by parts, and extend theoidaesds a completely distributed super-
visor architecture, with one local supervisor on the topaaftesubsystem, coordinating its activity
with the supervisors in its neighborhood.

In [118], distributed diagnosis for Petri nets with synaiwas communication is studied. The
authors extend the notion of DESj s diagnosers to PNj ®atrdlized and distributed diagnosers
are designed. The centralized approach presents the sabiems of combinational explosion than
the original based on FSM and the distributed approach &scas the problem of communication
between the diagnosers.

[58] proposed a distributed diagnosis based on place-bdaPiN models, which are bounded,



CHAPTER 2. MODEL BASED DIAGNOSIS OF DISCRETE EVENT SYSTEMS 37

ordinary and known initial marking. A fault in a PN model igpresented by a choice transition.
The case of unobservable interactions between componeatsyalic communications are consid-
ered. The minimal explanations are derived by backwardeniee on each local diagnoser based
on the local partial ordered observations. 1[58] concermeddiagnosis of plant systems, so the
system model is assumed to be global clock scheduled insfeagknt-driven. A local diagnoser
first searches for thminimal configuratiorto decide the initial marking wittvackward unfolding
approach then infers forwardly for the possible local ekttekens to update the state of its neighbor
diagnosers. The global consistency is verified by compdhiagausal relations of the communicat-
ing events between the different sites with the observatidihe state explosion problem is partially
controlled with partial observation.

2.6 Conclusion

The correctness and efficiency of MBD depends mainly on thtements: the system model, the
fault representation, and the diagnosis approach. On tle ¢¢ system model, LTS (automata)
is suitable for monotonic system with smaller states setlargkr events set; PN is suitable for
real concurrent system. On the level of fault representafiaulty states and events are normally
adopted separately. On the level of diagnosis approadiesljdgnoser, unfolding, and (backward)
reachability approaches all suffer a lot from synchromizat The PN algebraic approach can help
to improve the efficiency while the fault representationdmees difficult and complicated.

While there is no absolute adequate standard, the final€ligpends on the system character-
istics and the aim of diagnosis.

The thesis dedicates to diagnose the dysfunctions of lafiware systems, as discussed in
chapter 1, which has the following properties:

1. Besides unobservable faulty events, faulty input cambesource of faultalone

2. Except in a real concurrent model, the complicate datasflewch as the parallel and cyclic
ones, cause the state space explosion;

3. The calculation of global model and observation shouldvmed because of the authorizing
limits and asynchronous clocks of the subsystems;

4. Effective on-line diagnosis is preferred but the comipyextf-line diagnoser generation should
be under control because of item 2;
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5. A decentralized diagnosis architecture is preferrecbse of item 3.

Based on the above analysis, a model-based diagnosis appsith following properties can
be an adequate choice:

1. both correct/faulty data and data propagation eventdiegetly represented in the model,
2. the control of the data flow could be modeled in similar way;

3. the model should support different topological architees.

So in the chaptdr]3, we introduce a Colored Petri net modetiwtgpresents both the correct
and faulty data (places) and events (transitions). The digt@ndency relation is introduced as an
arc expression to represent the data propagation. Theotaftthe data flow is represented with
activation places, and the algebraic diagnosis approacked to calculate the minimal diagnosis
based on the data propagation and incidence matrix equation
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Chapter 3

Colored Petri net model for MBD

3.1 Introduction

Colored Petri net (CPN)L[70] is an extension of PN with theadsipe (named asolor se) defi-
nition on the places of PN. The creation and development & GBs driven by the requirement
of an abstract model which is theoretically well-founded &arsatile enough to represent the large
and complex industrial systems. The CPN model combinesttargth of Petri nets, the synchro-
nization of concurrent processes, with that of the programgrianguages, data types definition and
data values manipulation.

Comparing to other formal models, like process algebra,, B mata, or PN, CPN model has
the following advantages for diagnosing the compositeesyst

e CPN is more compact than PN thanks to theldr’ definition;

e CPN model integrates both data manipulations and procegsot¢including synchroniza-
tion, concurrency, and structure hierarchy);

e CPN supports transition mode definition which makes the fegresentation more flexible;

o CPN keeps the mathematical properties, formal analysisadstof PN like incidence equa-
tion, state space place invariant analysis, and the asatysupported by the powerful CPN

tools [54/84[ 137].

With all the above complicate properties, CPN is in paracwiell suited for the systems em-
phasize in communication, synchronization, and resouneeirsy. The classical applications are

42
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communication protocol$ [60, 28,186], distributed syst¢&i5[22], imbedded systems [89], power
systems[[2/7, 112], automated production/conytol syst&iig,[62], work flow analysis [16], and
VLSI chips [119]. The readers are referred(tol[67] for mor&aitie

3.2 Structure and dynamic

3.2.1 Structure of CPN

In comparison with classical Petri nets the Colored Petti([8®Ns) introduces the notion of token
types, namely tokens are differentiated by colors, whicly bmarbitrary data values. Each place
has an associated type determining the kind of data thatl#oe pay contain. The marking of
a given place is a multi-set of values of the associated tyjes constraint are expressions that
extract or produces multi-sets by respect to the sourceargetttypes. For CPNs we use terms
like types, values, operation, expression, variable, ibgnénd evaluation and they have the same
meanings as in programming languages. In order to give aitileffirof the CPN, we give here,
without loose of generality, a simple syntax and semantiefpression.

e Types : noted byl, we range over by using;. Types are defined by the set of values that
compose ity = {w, ..., v, ... }. Also types can be defined by applying set operation on types.

e Variables : noted byt', we range over by;. Variables are typed and as usual we Tigge( )
to obtain the type of.

e Function : denoted by, for a functionf € F with f : 7 — 7’ we use€l'ype(f) to define its

range type.

Definition 31 (Multi-set). Let E be a set, anulti-setm on E is an applicationm : £ — 7Z (we use

the formal sum notation for a multi-sety = " gje;,n > 0 whereg; = m(e;)). We useM(E)
0<i<n

to define the set of finite multi-sets frdtito Z, and M ™ (E) if we restrict it toN. Sum and subtract
operators between two multi-sets are defined a5 in [64].

Note that for a typer, M(7) is the type of multi-set of values.

Definition 32 (Multi-set expression)Let 7« be a types,f a function andy a variable, a multi-set
expressiony is defined as follows:

i ¢ZZ:VEW‘X‘f(V,--- 7X7)’ z q;wl

0<ig<n
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We usel to denote the set of expression and we range over ugingnd V() is the expression
set of typer.

For a given multi-set expressiah € ¥ we define the following notations :
e Var(vy) denote the set of variables that appears.in

e A binding 8 of a set of variabled” is an association to each variabjec V a value of
Type(x) (B(x) € Type(x))-

o % denote the valuation af under the bindingg.

e Type(1)) denote the type of the expression Withype(v)) = 7 iff V3,¢% € M(x). U(x)is
used to denote the set of expression of type

Here after we give a general definition of CPN in n-uplet farnha our definition we consider
both places and transition types. We call colors the typgdaafes and modes the types of transi-
tions. Also we are in the case open expressioarcs annotation (in opposition tmnstant arcs
expressioh

Definition 33 (CPN graph) A Colored Petri Net graph (CPN graph) is a tupéé= (X, T", P, T', cd,
Pre, Post), where:

() X is a set of no-empty types, also callenlor sets
(i) T'is set of mode types;
(i) P is aset of labeled places;
(iv) T is a set of labeled transitions;
(V) cd: P— %
(Vi) md : T — I" withmd(t) =t - m;

(vii) Pre (resp.post) € BIPXITI . 'whereB = |J [y — \I'(a>]E|, are forward (resp. backward)
ceXyel
matrices withPre[p, t] (resp. Post[p, t]): md(t) — ¥{cd(p)).

! we use the notationD — D'] to represent the set of all application frabnto D’
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@) The set of types determines the data values and the emesatnd functions that can be used
in the net expressions (i.e., arc expressions). If desihedtypes (and the corresponding operations
and functions) can be defined by means of a many-saitgda algebrgas in the theory of abstract
data types). We assume that each type has at least one elseeBkamplel5).

(@) The color functioncd maps each place, to a typecd(p). Intuitively, this means that each
token onp must have a data value that belongsd¢p).

(vii) Each expression of typB must evaluate to multi-sets over the type of the adjacemrepla
p. We allow a CPN diagram to have an expressiapr of type cd(p), and consider this to be
a shorthand foi‘exzpr. [64]. While we consider transition mode each input (resptpot) arc
between a place and transitiont (Pre[p,t] # 0 resp. Post[p,t] # (), we will have as many
extraction (resp. production) expressions as modes irrdimsitiont. That explains the format of
Pre (resp. Post) matrix which is defined on functions from the product of gla@nd transitions
modes type to the multi-set expressiois:e[p, t] (resp.Post[p, t]) is a vector ofl (cd(p)) indexed
by the modes of (denote ag - m).

3-d-p example 5.A CPN graph with 2 places,, p2, each of which has two different colors, and 1
transitionty, in whicht; has two modes; and~s,.

p1 (o1 =cd(p)) = (a,b} t
Pre
gi! Y2
v1:l'a+1'b  y1:2a ) Pa+1% | 10+1'
P2
n -md(tl) ={ru,v2}
31
v2:1'b+1c y1:2°% Post v | 7
pP1
p2 ()02 =cd(pz) = {b,c} pa | 2'a | 2'¢
Figure 3.1: A CPN graph example Table 3.1:Pre and Post matrixes

We extend here the usual matrices notations:

e Pre[.,t] (resp.Post|[.,t]) is sub matrix ofPre (resp. Post) Matrix obtained by the projection
of the columns only om modes.

e Pre[p,.| (resp. Post[p,.]) is a row vector ofcd(p) expressions indexed by the union of all
the transition modes.



CHAPTER 3. COLORED PETRINET MODEL FOR MBD 46

For a given transition and one of its mode- m, we use the following notation :

e Prelp,t-m] (resp.Post[p,t - m]) for Pre[p,t](t - m) (resp. forPost[p, t|(t - m))
e Pre|.,t-m]|((resp.Post[.,t - m]) for Pre|.,t|[.,t - m] (resp. forPost|., t][.,t - m])

While Prel.,t - m] is vector of expression we extendsur(Pre|.,t-m|) = |J Var(Prelp,t-
peEP

m]). Also for a binding3 Pre[.,t-m]? = (..., wf, ...) for i = 1...| P| is the resulted vector after the
application ofg for each expression dfre].,t - m|

Definition 34 (Well-formed CPN Graph)A CPN graphN = (X,T, P, T, cd, md, Pre, Post) is
well formediff:

o VtcT pet® t-memd(t): Var(Post[p,t-m]) C Var(Pre[.,t-m]) with Var(Pre|.,t-
m])= U Var(Prep/,t-m)).

pet

e Vp,t:3t-m € md(t), Pre[p,t-m] # 0= Vt-m' € md(t), Pre[p,t-m'] # 0.
e Vp,t:3t-m € md(t), Postlp,t -m| #0=Vt-m' € md(t), Postp,t-m'] #0.

For a given transition and one of its mode we restrict thatbtlhtput arc expressions variables
must be a subset of the variables which are in the input aqmessions of the same mode. modes
represents the scopes of variable names. In addition wesienih@t modes respect the structure of
the Petri Net ; if a palace is an input place of transition de for all its modes. Thus, we use the
usual notatiortt and¢® for the input and output places set of transiticand®p andp® for the input
and output transitions set of plage

Definition 35 (Incidence Matrix of CPN) To each CPN graph, we associate its terms incidence
Matrix C' = Post — Pre (see tablé3]2).

Definition 36 (Fault model of CPN) Thefault modelof a CPN is a functiodM: | J — {OK, KO}
vi €l

(i.e., itenT2 of exampl€ 6).

3-d-p example 6.The dining philosophers in form of CPN (in figlire]3.2) can bingel as follows:

1. ¥ ={F ={® @ ®G)}}: The type forks ¥) contains three series numbers of forks.

2.1 = {WO = {co},UO = {co,sw}}: two types of transitions; the Well-Organized (WO)
type which has only one mode (Correctly put the forks down), correspond to the classical
transition, and the Un-Organized (UO) type which behavéisegicorrectly ¢o) or switches
the forks éw) .
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co:put(ypsz) » co:put(¥p3)

co:put[}(pl)
co:put(}(,,n)
P sw:put(Xpy;)

co:put(x,m)
sw:put(Ypy,)

co:putfyp,)

Xpu

co:put()(pzz) ca:put(xml)
sw:put()(,,32) sw:put()(,,“)

Figure 3.2: Dining philosophers: CPN model

w

. P = {p1,p2,p3,p11, P12, P22, P23, P33, P31} p; IS the series number of plate on the right
side of philosophet before he/she takes the forks. Plaggsandp;; (j # i) represent the
intermediate places after philosophetakes the forks.

4. T = {ty,t9,t3,71, 72,73} t; andris for the take (both forks) transition of the philosoplier
andr; is for the release (of both) transition of philosopher

5. Variablesy; on the input arc of transitions; represent the fork series numbers.

6. Variablesy;; and x;; (j # ) on the output arc of transitions; represent the fork series
numbers in the right and left hands of philosopheafter he/she takes the forks.

7.Vp e Pycd(p) = F.
8. ift € {ry1,m2} thenmd(t) € UO elsemd(t) € WO.

9. A function put:X — X represents the action "putting down the forks” after a plsidgher
eats. Formd(r;) € UO andmd(re) € UO, the arc expressions on the left and right output
arcs ofr; andr, are reversed from the input ones.

Table[3.2 illustrates the incidence matrix of the 3-d-p eplmEach table element represents
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an arc expression which is either an expression, variablduonction of multi-set. The blank ones
represent there is no arc.

o 131 lo l3 r1 2 r3
t1:co to : co t3 : co 1 SWw 1 Sw T9 I CO T I SW 3 1 CO

h —Xp1 —Xp1 pUt(Xpu) pUt(Xpm) pUt(Xp:ﬂ)

P2 —Xp2 —Xp2 pUt(X:Dzl ) pUt(X:Dll ) pUt(X:Dzz ) pUt(X:Dsz )

p3 —Xps —Xps pUt(Xpsz) pUt(szz) pUt(XIDSS)

P11 pUt(Xpl) —Xp11 —Xp11

P21 pUt(Xm) —Xp21 —Xp21

P22 pUt(Xm) —Xpa22 —Xpa2

P32 Xp3 —Xps2 — Xps2

P31 Xp1 — Xps1

P33 Xps —Xpas

Table 3.2: Dining philosophers: incidence matrix

3.2.2 Dynamic of CPN

Dynamic properties characterize the behavior of individiRN, e.g., whether it is possible to reach
a marking in which no step is enabled. In the following, we mkethe behaviors (the dynamics) of
a CPN System.

Definition 37 (CPN marking) A marking M of a CPN graph is a multi-set vector indexed By
whereVp € P, M(p) € M*(cd(p)). We uséVy to denote the set of all marking of a n&t

Definition 38 (CPN system) A Colored Petri Net SystefCPN-S) is a pairS=(N, M) where N
is a CPN graph and\/ is one of its marking.

Definition 39 (CPN mode enabling rules) et S=(N, M) be a CPN systent,be a transition in’\V
andm be one of its modesy € md(t) :

e Amodet - m is enabled, noted/[t - m), iff 33, with M > Pre].,t - m]®.
e Atransitiont is enabled, noted by/|[t), iff 3¢t - m € md(t), M|t - m).

Definition 40 (CPN mode firing rules)Let S=(N, M) be a CPN-S¢{ a transition andm one of
its mode, withM [t - m) for somefS. The firing of the transitiort under moden changesS to

S' = (N, M’y with M' = M + C(.,t)(t - m)®. We denote the firing as/[t - m)® M’ and some
times we can abstract from the binding.
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Definition 41 (CPN mode sequence firing ruled)e extend the definiti@n 40 to a sequence of modes

d € Mod* (with Mod = |J md(t)) in usual way :
teT

e MI6)M if § is the empty sequence;

o M[OYM'ifIM" € M, 0" € Mod*,t € T, t-m € md(t) suchthatM[6') M" andM" [t-m) M’
witho =¢"-m

Definition 42 (CPN reachability) Let S=(V, M) be a CPN system, we note the set of reachable
marking fromM, [M) = {M' € M|3§ € Mod*, M[6)M'}

Definition 43 (CPN characteristic vector)Leté € Mod* be a sequence of modes of a net, its
characteristic vectop : Mod — NH with ?(m) is the number of occurrence of in 6. For each
§, we associate a transition sequenge € T* s.t. Vi € 1,---,|8|, T[i] = md~1(5r[i]). So its
characteristic vector ifT : T — N. Note that:@(t) = > ?(t -m).

t-memd(t)
3-d-p example 7. A characteristic vector? (see tablé_3]3) Which means philosopheate twice,
once put the forks down correctly but another time wronﬁ‘g(z(lm) = 2, ?(rlm) = 1, and
5 (ri,,) = 1); philosopher2 ate normally (5 (t2.,) = 1, 5 (re,,) = 1, and ?(T’st) = 0),
thus philosopheB stopped eating when he/she found the faﬁi(z(gw) = 1 and ?(Tgco) = 0).
The corresponding characteristic vector of transition mupeé? (see tablé_3]4) is a vector of the
occurrence sums of all the modes of each transition.

Ueo Tleo Tlsw 1200 T200 T2 t3co T3c0

(2,1,1,1,1,0,1,0

Table 3.3: Dining philosophers: a characteristic vec?ior

tyritaratsyrs
<2,2,111;1,Q

Table 3.4: Dining philosophers: a characteristic vectax tnsition sequenog.

Given S = (N, M) a CPN-S and modes sequeneec Mod* with M[o), then the reached
marking M’ after the firing ofc is M’ = M + C x o .

2_. represents a vector, which is a column of elements of the $gmeedomain
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3-d-p example 8.Given an initial marking)/, and a characteristic vectaﬁ (see tablé3]3), know
the incidence matrix’ (see tablé_3]2), we can calculate the final markiig of the CPN-s based
on the equation above (see table]3.5).

M, = My + Cx  or
p1: 0 1' @ t1 - co: 2
p2: 1'Q@ 1'® ty - co:l
p3: 0 1'® t3-co: 1l
p11: 0 0 ry-co.l
por: 0 = 0 + Ox rp-swil
p22iil) 0 r9 - co.l
P32- @ @ r9 - sw:0
P31- 1! @ 0 rg-co.0
P33 1'® 0

Table 3.5: Dining philosophers: incidence equation

3.3 CPN as a fault model for software systems

As claimed before, the thesis focuses on the diagnosis ofdftevare systems which means the
systems are composed by data and the activities over dathl. i<C& rich model usually used to
design and check such software systems. Mainly, when udiig fGr software modeling, data are
represented as places while transitions are used fortasivirhe CPN structure also codes the data
dependency by the arcs and also the nature of the dependgtity &rcs expressions. In this thesis,
the CPN model is used to define a fault model for the softwaséegys. This basic idea of using
CPN as fault model are as follows:

e using places to store data, transition to represent thetégi and arcs expressions to repre-
sent the data dependency under different transition modes;

e using the places types to represent the data status likepted data, correct data, etc.
e using transition modes to represent the corrupted andat@otivities;
e profiting from the CPN properties to perform diagnosis;

e finally, defining a method that generates semi-automagieaPN fault model directly from
the CPN model of a system.
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In the sequel of this section, we details in the differentgptrat define the CPN fault model and
we finish this section by giving a method to transform anyeaysto a CPN model as a fault model.

3.3.1 The CPN fault model structure

The CPN as fault model has the same structure as any CPN exitbpgome restriction on the
places types, the arcs expressions, and the transitionanbléee after we motivate such restrictions.

Places types: data status

When a system crashes due to some wrong variable value, dgaddiis consists in locating the
variable that causes the crash but not its realue Consider the 3-d-P example, the philosopher
number3 expects the fork numbdrin his left when he founds the fork numb&ior number2, he
believes the place has a corrupted fork value. So for each place no matter whdtte of data is,
when performing diagnosis, we focus only on its correctrsstis. Thus in the CPN fault model,
all the places share the same type: the color status typepl@bes color status type is defined by
three values to represent the correctness status of ez (d#ta):

e red (r) marks a place with faulty data value;
e black (b) marks a place with correct data value;

e unknown color £€) marks a place with the data value of unknown correctness.

We note the color status type Bs= {status = {r, b, x}}.
Of course to respect the quantitative constraints that eléfie dynamic of a CPN some places
can be typed by a multi-set &f

Arcs expressions: abstract data dependency

To specify the causality between the input and output plec€®N, we use the multi-set expression
on the input and output arcs of each transition. Again, wheadidg with diagnosis, the value of the
retrieved and produced tokens is not relevant. If a variablgains corrupted data, diagnosis is to
decide if it is possible that the corruption is due to the updd a variable by using other corrupted
data. So we need in a CPN fault model to code two informattomdependencies relations between
data and the nature of that dependencies. In our CPN modetlgfhendency between data is nat-
urally represented by the precedent structural relatiéhe @nd Post). The nature of dependency
is defined by the multi-set expression over arcs.
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For the input arcs we restrict that the multi-set expresseme only over status color constants
and color variables, no function is allowed. This allows &filge the quantitative constraints that
defines the dynamic of the CPN and the abstraction from tHelata values (only the number and
the status are important). Lé{é’ "¢ be the set of multi-set expressions defined only on the status
color constants and variables, the pre-condition matriCBN fault model isPre € BIPI*ITI .

whereB = |J [y — UL (i.e., see the arc expressionsaf — t3 andpi3 — r3 in figure[3:2
el
which are respectively' @andyx,, ).

Concerning the output arcs, we are interested to store theenaf dependency between the
produced output tokens and the consumed input tokens. Hinsteact dependency functions are
defined as follows:

Definition 44 (FW function) AFW functionFW : X — X withVz € X, FW (z) = x.
Definition 45 (SRC function) A SRCfunctionSRC : ) — X.
Definition 46 (E'L function) AnEL functionEL : X™ — Y withn € N.

So F'IW andSRC functions are two special casesiof. function.

e When an output token coincides with an input parameter, weted the transitioriorwards
(FW for short) the input to the output;

e When an output parameter is created during an activity, wetlsa activity is thesource
(SRC) for it.

e When an output parameter is computed by the activity fromamaore inputs, we say that
it is the result of arelaboration(EL).

Let \Ifg ost denotes the multi-set defined over the status constantss stariables, and the three
classes of functiong'W, SRC, EL. The post-condition matrix of CPN fault model Rost €
BIPXITI: whereB = | [y — WEos].

~yel

Transition modes: faults

Generally in MBD using DES, faults are represented as umelike events which means some-
thing goes wrong that we cannot observe. When dealing wittsdiftware systems, such represen-
tation of fault can be far from the reality. To explain our pose, we suppose a functigrto divide
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a natural number by 2. When we input an odd number, we get aat@answer and otherwise we
go a wrong result. In factf implements an entire division. Here we define the dysfuncéie an
unobservable event that occur each time with an even nurlserthe functions can be interpreted
as working in two modes: a correct mode: OK, or a faulty modef : KO, but only f is ob-
served. So we don't violate the parsimony principal thatgbssibly faulty transition can act under
two modes, which we cannot observe. Given an observatiamiesitions, the diagnosis consists in
determining the modes of transitions that explain the spmpgt

In CPN fault model, we keep the modes types which conformeathirect and faulty behaviors
of the system. We add also a flag functiBrthat maps to each mode its correct (OK) or fault (KO)
status. So for a set of modes tydeswe definef': |J v — {OK, KO}.

~vel

CPN fault model definition
We can now give the definition of CPN Fault Model graph.
Definition 47 (CPN fault model graph)A CPN is a tupleN=(3, T", P, T, Pre, Post, F,), where:

(i) X isthe status colors type;

(i) T is set of mode types;
(i) Pis a set of labeled places of type Vp € P, cd(p) € %;
(iv) T is a set of labeled transitions;

V) md: T —T;

(vi) Pre e BIPIXITl ;s the forward matrices, whei® = J [y — ¥(0)];
el

(vii) Post € BIPI*ITI . is the backward matrices;
(viii) F: |Jv— {OK,KO}.
~yel

3-d-p example 9. Figure[3.3 illustrates the example with the abstract datpetelency relations.
Note that for the transitions undeép K’ mode, the abstract data dependency® as output is
equal to input, while for those iK' O modes, the data dependencyis.

Table[3.6 illustrates the incidence matrix of the exampléhthe abstract data dependency.
Each table element represents an arc expression whichhisredin expression, variable, or abstract
data dependency of multi-set.
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OK:FW (¥ pg) OK:FW (xp,5)
OK:FW (xp3,) OK:FW (xp,)
KO:EL(Ypy) KO:EL(¥py,)
OK:FW (¥ py) OK:FW (py)
KO:EL(Xps,) KO:EL(xp,,)
Figure 3.3: Dining philosophers: CPN with abstract dateedejency relations
C tl tQ t3 1 T2 T3
tl'OK tg-OK tg'OK T‘1'OK Tl'KO TQ-OK T‘Q'KO 7‘3-OK
b1 —Xp: —Xp1 FW(XPII) EL(XPm) FW(XPsl)
P2 —Xpe —Xp2 FW(Xle ) EL(XP]] ) FW(XPzz) EL(XP?,z)
D3 —Xps —Xps FW(XPsz) EL(XP22) FW(XPss)
P11 FW(XZN) —Xpu —Xp1
P21 FW(XP2) — Xpa1 —Xpa1
D22 FW(XPz) —Xpao —Xpaz
D32 Xps —Xps2 —Xps2
P31 Xp1 — Xpsi
D33 Xps ~—Xpss

Table 3.6: Dining philosophers: incidence matrix with aést data dependency
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3.3.2 The CPN fault model dynamic

The concepts defined for the CPN are steel valid for CPN faattehsuch as bindings, firing rules,
production rules etc. Except that we did’'nt give yet a seimdatthe abstract dependency functions
under a correct or faulty mode. The semantic of #i&, F' L., andS RC'is given based on the color
propagation execution.

Tables represent the diagnosis properties of each abdatecdependency relation of 1/0O of a
transition for different modes{K, KO). In each tablem, represents the transition mode;/c;.
represents the color of the token in the input/output place.

As illustrated in tabl€3.7c, the diagnosis properties’ & do not change along with the modes:
the correctness of output is always same with that of thetinpor £L (see tablé 3.7a) ansiRC
(which can be seen d@Ls with no (unknown) input, see talile 3.7b), the diagnosipenties can
be stated as:

e intheOK mode, if one of the inputs is faulty), the output must be faulty), if all the inputs
are either correctb or unknown §), the output is unknownsj, while if the inputs are all
correct p) then also the output is correct;

e intheKO mode, the output is faulty-J if there is no unknownx) input, otherwise, the output
is unknown ).

So the output o RC relation is correctt) underO K mode and faulty undel O mode §).

EL

me Ceit Cejy Cte

OK b b b

OK r b r

OK * b * — FWC c SRC

t ot to

OK * * * OK/KO | b b me | Cpe

OK * r r OK | b
OK/KO

KO b b r KO | r
OK/KO

KO | « b * (b) FW

KO * * *

KO * r *

(@) EL

Table 3.7: 1/0 data dependencyaf for CPN diagnosisce;; andcs»; are two input places af
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OK:FW (1 pgs) OK:FW (xpy5)

OK:FW (X p3)
KO:r

OK:FW (xp,,)
Ko:r

OK:FW (Xpyy) OK:FW (Xpy,)
KO:r KO:r

Figure 3.4: Dining philosophers: CPN model for diagnosis

The semantic of each of the abstract data dependency reiatidefined based on the color
propagation rules to represent the data status (faultyecipror unknown status) production. The
color propagation function is equivalent to the tables .

With the color set and color propagation function definigipthe diagnosis properties are for-
mally introduced into the literature of CPN.

3-d-p example 10.Figure[3.4 illustrates the example with the diagnostic dé#pendency relations.
For the transitions inO K mode, the abstract data dependency is FW as output colorual ¢q
input color, while for those ik O modes, the data dependency is EL and the output color is alway
T.

Table[3.8 illustrates the incidence matrix of the diagmostiodel of the 3-d-p example. Each
table element represents a diagnostic arc expression wiidither an expression, variable, or
color propagation function of multi-sgt.

3.3.3 Partial observation of CPN fault model

As we explained before, in CPN fault models, correct and farénts are flagged with K and K O
as the modes of each transition. Following the principalrahservabilitiy of faults, we consider

Variablesx,. , Xp;:» andx,,; (1 # j) represent the diagnostic color set variables here.
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C tl tg t3 T1 T2 T3
tl'OK tQ-OK t3'OK T‘1'OK Tl-KO TQ-OK T‘Q'KO T‘3'OK

P1 —Xp1 —Xp1 FW(XPII) r FW(XPSI)

P2 ~—Xp2 —Xp2 FW(Xle) r FW(XPzz) r

P3 ~—Xps ~—Xps FW(Xpsz) r FW(XPSS)

P11 FW(XPI) —Xp1: —Xpu

D21 FW(XPz) —Xp21 —Xp21

P22 FW(XPz) ~—Xp22 ~—Xp22

P32 Xps —Xps2 —Xps2

p31 Xp1 —Xps1

P33 Xps —Xpss

Table 3.8: Dining philosophers: the incidence matrix

that only the transitions are observable but not their moddso due to the concurrency in the
semantic of PN in general, the observed transitions can thialpaordered.

Definition 48 (Partial order observation)et NV be a CPN (fault model)] be a multi-set of tran-
sitions. A partial order observation df is a couple(S(7T), <) for someo, where:

e S(T)={th|1 <k < T(t;)} is a set of transitions witlk represents the occurrence order of
transitiont;;

e < C (S(T) x S(T)) is a partial order relation, which is transitive and pre-adrelation
overS(T)stvt € T,Vi,j € {1,--- ,|T@®)|}: (¢, ) € <*.

3-d-p example 11.Given a set of transitions sequenege = tiritarot171t3, the corresponding
S(T) ando (modes sequence) are listed in tablel 3.9. The multi-seteofrémsitions occurrence
is T = 2t + 271 + 1'5 + 1'ro + 1't3. We have a partial relationa = {(£, ("), (#{", #{"),
), ri)}.

I L U U L G
g tl'OK rl-KO tQ'OK T‘Q-OK tl-OK T‘l'OK tg-OK

Table 3.9: Partial observation example

Definition 49 (Partial order observation specificity et 7 be a sequence of multi-set and let
(S(T),<1) and (S(T), <12) be two partial order observations over the same multiget<; is
less specifithan <1s iff <11 C <s.
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Definition 50 (Partial order observation union )et (S(71), <1) and (S(7z), <2) be two partial
order observations, their uniofS(71), <1) U (S(72), <2) = (S(T1) U S(T2), <1 U <2).

Now consider CPN net systet, M) and letM’ be marking reachable frod/ by the means
of a tracer, we denote by7 |M, = {7/ € T*|M — M' AT = 7’}

Definition 51 (Minimal partial ordered observation) et 7 be a multi-set of observations between
two markingsM and M’, theminimum partial ordered observatidietween)/ and M’ is defined
as <M—>M : T x T s.t. V<, which has the same observable transition sequence<with is less

min

specific than<’.

3-d-p example 12.Suppose a principle of "taking first and then putting down theks” and the
activities of each philosopher are collected by differerEInitDring components and given sev-
eral partially ordered observation(sS(ﬂ), 1) = ({tgl), ), 1 ), 1 Y {(t(1 ) (t(l) (1 ))}),
(S(T3),<i2) = ({703, 1V #{D)1), and (S(T3), 3) = ({t}, {0} Wlth the global initial
and final markings aM and M, the minimum partial ordered observation of the global egst
QMDM 41 gy U <.

min

Minimal partial order observation (w.r.t a multi-sgtand two markingl/ and M) stores the
minimum information on the order between occurrences farates with the same characteristic
vector and confluent between a source and a target marking.

In this work, we suppose the CPN fault model only has the miminof information about the
order of transition (not modes).

Definition 52 (Minimal partial order observation functionfsiven a CPN fault modeV, we define
observation functiobs : (My x My) x M(T) — (T x N) x (T x N) with

Obs((M, M), T) = (S(T), <M>M') if 3r € T* with M > M’ A7 = T and undefined
otherwise.

3.4 Related works

There are several works which use CPN as the model for diagnimsmost works, the colored
tokens are normally used to model the system descriptionhesplaces represent the faulty states
and the diagnosis task is to reconstruct the possible patichvare consistent with the ordered
observations.
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[19] defined a CPN model, the color set includes an integeesemts the severity level as the
guard (the firing conditions for transitions) and a tokemiitg represents control of system. The
correct and faulty states are represented as places. ThedvégDosis is formulated by hidden state
history reconstruction, from event (e.g. alarm) obseovesi The paper modeled the asynchronous
system and the on-the-fly diagnosis result is retrieved @RIN unfolding method.

[21]] concerned the diagnosis problem caused by the changgstém structure (e.g. add or
delete components). So the dynamic components are refgdsas tokens and alarm are rep-
resented as the new tokens emitted by a transition througtiréfading arcs” (arcs do not con-
sume/product any token). An unfolding approach is propdsethe CPN model by inferring the
causal dependencies between the observed events, whicis imgaliminating the conflict events
during unfolding the CPN. So the diagnosis problem can beessed as the computation of an
unfolding constrained by the observations, in order toimetse trajectories that explain the obser-
vations.

[127] proposed an intelligent event-oriented diagnosithodology and diagnostic system ar-
chitecture. The system descriptions (variables) are difirsethe token colors (multi-sets). The
faulty events are represented as the unobservable toanssith CPN model. The diagnosing ap-
proach is to construct the possible event sequences acgdith observations. The preconditions
of the event set are described imube table and the effect and consequences of the event itself is
encoded in &hange table The dynamic model of the system is assumed to be partiakpawn
and it is refined using the observed event sequences by anganethod. The real-time diagno-
sis operates on the CPN model of the system and on the expaumteating procedures comparing
observed event sequences to the model-based prediction.

[89,[122] describe the modeling and use of CPN model for fdiaignosis and recovery re-
spectively in power system and embedded control systenesCPN model has the complex token
types based on sets or complex sets containing the strddnfimation for error handling. The
diagnosis is achieved by marking graph reachability apgroa



Chapter 4

CPN diagnosis based on inequations
system

Given a DES, the diagnosis is to compare the observed belahtloe real system and the simulated
behavior of its abstract model to detect, isolate, and axpke exceptions [([49]). So to find an
adequate abstract model which can simulate and represenbtimal and abnormal behaviors of
the system is a fundamental step. In chapter 3, we have fiyrahefined a CPN fault model which
includes the data and transitions faults. The observat®osnsidered as a trace of the transitions
without mode. The status of the system during the evolutiorepresented as the markings. In
this chapter, based on the CPN model and the observed tracstudy how to retrieve the faults
to explain the observed symptoms in an algebraic way. Thgndiis approach is based on the
reachability property of the CPN model, and realized by hback inferring.

4.1 Diagnosis problem

When a fault occurs at some moment, an exception or an alabsé&ved, what we call in diagnosis
literature, a symptom. Symptoms are presented due to saugedistency concerns either the I/O
interfaces or control flow faults. Those symptoms, in our GRNt model, are represented as red
tokens. When symptom(s) are detected by the monitoring ocoemi(s), the software system can
continue running, and the diagnoser(s) are triggered. Sdali@agnosis approach can run online
but when cooperating with the repairing components, it nedm stopped for performing possible
repairing actions, which is required in the WSDIAMOND [138pject.

In some cases, some data is declaimed to be correct, thusittesmonding token colors are

60



CHAPTER 4. CPN DIAGNOSIS BASED ON INEQUATIONS SYSTEM 61

black. And for the data that no correct or fault informatisnréported, the corresponding tokens
colors stay unknown. So a symptom can be represented as amqathkere the faulty data (or flow
control) is marked as red tokens and the others can be maitked &s black or unknown ones.

Definition 53 (CPN symptom markings)A marking M is a symptom (exception) markinidf dp,
M (p)(r)#0, which is denoted as/.

Given a CPN model, a diagnosis problem is a 3-tuple of araimitarking, an observed (partially
ordered) transitions trace, and a symptom marking, whictiatos the reported exception(s): the
red () token(s), the possible correct data/control(s): thelb{actoken(s) and the status unknown
data/control(s): the token(s).

Definition 54 (CPN diagnosis problem)Given a CPN graphV, a diagnosis problem folN is a
tuple D= (Mo, (S(T), <), M):

e My is an initial marking of a CPN system;
e (S(7),<) is a partially ordered observation;
e ) is a symptom marking of a CPN system.

In real life, only the detected faulty places are marked asdatoken in a symptom marking,
and the places, of which the token color are unknown, are edaals«. We say a marking which
contains the color unknown tokens "covers” the markings ¢batain the color known tokens in all
the same places. Thus a covering relation is introducedllasvio

Definition 55 (Covering relation) A covering relation= between colorstatus = {r, b, x} (status €
) is a color set) is a reflective, transitive, but not symmetelation where any color covers itself
and thex color covers all colors (i.e=={(r,r), (b,b),(*,%),(x,7),(%,b)}). We extend the color
covering relation to the multisets and markings as follows:

e letm,m’ € M™(X), we havem’ = m iff > m(c)=> m/(c) AVec # %, m/(c) > 0 =

ceY ceX
m(c) = m/(c)

e let M, M’ be two markings, we hav®l’ = M iff Vp € P, M'(p) = M(p)

3-d-p example 13.Givenm; = 2' * +2'b, mg = 1' x +1'r + 2'b andmg = 2' * +1'r + 1'b, we
havem; = ms but nom; = ms.

'RemembenV (p) is the color of place in marking M (see definitiofi.37 in chaptEl 3)
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There is a causality relation between the initial and symptoarkings (4, + C x o = M,,
see sectiof 3.2.2 in chapfgr 3). While in symptom markifigthe correct/fault status information
is less than the real final marking,,. In the literature of the CPN diagnosis model, we say the
symptom marking "covers” the final marking4 = M,,). By applying this "covering relation” to
the incidence matrix equation of the CPN model, we get anuagons system (see equatfon]4.1).

N o= My+Cx 8 (4.)

Consider our CPN fault model, intuitively, the faults candimer the faulty inputs or th& O
modes of the transitions which are sufficient to reach thepsgm marking through the observed
trace. So a diagnosis solution should contain two parts:baefwof the place sa?, of which the
token colors are red in the initial marking; a subset of tlamgitions modes with the fault model
KO: FM~'(KO) (see definitions 33 for CPN graph dnd 36 for fault model of GPN in chapter
[3). We give now a definition of a diagnosis:

Definition 56 (CPN diagnosis) Let D= (M, (S(T), <), M) be a diagnosis problem for a CPN
graph N, a diagnosis is defined aBiag(D) C 2FM '(KOWUP st \Sol € Diag(D), we have
30 € Mod* and3M, = M|, s.t.:

(i) Vm € Sol, 5 (m) #0A o7 =T A< C 6p;
(i) Vp e Sol, M{(p) = AN = M} +Cx 5.

@ ?T = T defines the limit of the occurrence for each observed tiansithich can behave
in different modes.<t C ér represents the observed partial orderedi ttace should be consistent
with the transition tracé; of the modes tracé.

(i) indicates we are looking for a possible initial markifg), with M/, = M, and the inequa-
tions system (see equatibn}4.1) still holds.

Note that once transition behaves undeK'O mode (?(m) > 0), it should be included in
diagnosis. So in this case, the real value?oﬁm) is not important for diagnosis (i.e., given =
t;1- KO, no matter?(tl -KO)=1or ?(tl - KO) = 2,t; € Diag(D)).

Definition 57 (CPN minimal diagnosis)Let D= (M, (S(T), <), M) be a diagnosis problem for
a CPN modelN, VSol € Diag(D), Sol is minimal iff V.Sol’ C Sol, Sol’ ¢ Diag(D). Diag is
minimal iff V.Sol € Diag(D), Sol is minimal.
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P1 P2 P3 P11 P21 P22 P32 P13 P33
<*’*’*1O’010101010>

Table 4.1: Dining philosophers: an initial markiid,

3-d-p example 14.Assume a scenario that each fork is in one plate, but we haveeaaoof their
positions which means the initial markidd, contains only the unknown tokens (see téblé 4.1).
Then the philosophers, 2, and3 ate in order; then the philosopher 3 took the forks and found
the fork series number in his right hand (suppose ta3pés correct but the fork series number
in his left hand (suppose to kg is wrong. We have no idea about the series number of the third
fork. So we get a symptom markiflg (see tabld 4]2) in which the plages contains a black
token,p13 contains a red token, angh contains an unknown token. Meanwhile a transition trace
o = tyritorats is observed by the monitoring component, and the correspgrgirtially ordered
observation is denoted d97, <1) with 73 = {1't1, 1'rq, 1'ta, 1're, 1't3} and <1 = {(t1,71),
(t2,72)}. The corresponding characteristic vectar and the transition characteristic vectof T
are illustrated in table§ 413 arld 4.4. Note that the sum ofateurrence of mode® K and KO of
transitionr is 1 and the sum of the occurrence of modds and K O of transitionrs is 1.

P1 P2 P3 P11 P21 P22 P32 P13 P33
(0,¥,0,0,0,0,0,r,b

Table 4.2: Dining philosopher: a symptom markihg

tl'OK7“1-OKTl-KOtQ-OKTQ'OKTQ'KOtg'OKT;J,-OK
«(*r,m, m, 1 , »n,n, 1 , 0)

Table 4.3: Dining philosophers: a characteristic vectowith the transitions occurrence constraints
ny+no=1landns +ng =1

As an intuition, each diagnosis solutigivl of the diagnosisDiag(D) is a subset ofpy, po,
ps, md(ry), md(rz)} which includes all the places that are initially marked aritite transitions
modes which can behave IO modes. We first give the answer to the diagnosis proldem
that the diagnosigiag(D) should be{{p;}, {md(r1)}} which means there are two solutions to
explain the diagnosis probler®: either the fork number in the plage is faulty ({p;}), or the
philosopher 1 has done something wrodgn(d(r1)}, means he did the release activity wrong).
More specifically, for diagnosis solutiofp; }, concerning a diagnosis solutiofiol (for example
Sol = {p1,p2,md(r1)}, which satisfiegp;} C Sol C {p1,p2,ps, md(r1)}, we have: for any
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tirntrotyrs
(1,1,1,1,1,0

Table 4.4: Dining philosophers: a transition charactkeﬂ%ctor?cp

possible mode sequengevhich is consistent with the partially observed trdé&7; ), <11 ) and for
all the initial markingsi/y = M.

o Wm € Sol, 6 (m) # 0 (md(r) = 1), and 0 7 = 7; and <1; C o7

e Vp € Sol, M(p) = r, s.t.,M = M)+ C x ? which, in this example, i87/(p;) = r and
Mg(p2) = 7;

And similar for the diagnosigmd(ry)}, any Sol, that satisfies the conditiongnd(ry)} C
Sol C {p1,p2,p3,md(r1),md(re)}, satisfies the definition of the CPN diagnosis (see definition
[56).

In the next section, we explain how to solve the diagnosiblpro by satisfying these two
conditions.

4.2 Diagnosis of CPN by inequations system solving

Given a CPN diagnosis proble® = (M, (S(T), <), M), a solution (see the part inside the
dashed line frame in figufe'4.1) f@ is to check if there exists &) € My, ad € Mod', with
MAS)M?, s.t.: (i) Mo = My (i) M = M'; i)y S(T) = S(57)

This means that we seek for an initial marking, which is ceddsy M|, and a trace of transitions
that leads to a marking/’ that is covered by the symptoftY. The solution is the set of places,
which appear inV/, as= and inM/, asr, and the set of all transitions that behave under faulty
mode and appear in the run. So!l of D is the set of all the possible solutions explained above,
which is also the solutions of the inequations sysiem 4.1.sdlge inequations system, which
contains a set of constraints of the transitions occurres@milar to solve Constraint Satisfaction
Problems (CSP[[130]). While besides the transition moaesimence constraints, the multi-set
of enumerate token colors, data dependency functions arating relations are not defined in the
CSP solvers, so in this section, we propose the CSP-likendgg algorithms to solve the CPN
diagnosis problems.
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My
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I-___\
Mo, - \ My, -+ Mo,

1
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’ wof 1 T
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|

Figure 4.1: A solution for a CPN diagnosis problem, whichsists of an initial marking\/o, and
atraced. Mo, andd’ cannot be a solution becausg # T

4.2.1 Inequations system

According to the definition of diagnosis for CPN model (seéinikion 56), a diagnosis problem is
transferred to a inequations system solving problem (seatemn[4.2).

oC,: Y m=0()

me s (md(t;))

~

Eqp, : M(p1) = Mo(p1) + C(p1,.) 0
Qury ... (4.2)

Eqp, - M(pi) = Mo(pi) + C(pi, ) 6

Eqp, : M(py) = Mo(pn) + C(pp,.) 6

n = |P| represents the number of the places. If a transitimallowed to behave either in
OK or KO mode, an occurrence constraint equatioits; is associated to make sure the sum of
the occurrence o® K and KO modes is equal to the sum of the occurrence of transttionthe
observed trace. So in faGC; contains two variables which represent the modes occlerei@ K
and K O of transitiont.

Each place corresponds to an inequatidfy, where the left part i$( £'q,)=M (p) and the right
part isr(Eq,)=My(p) + C(p,.) x 6. Eachr(Eg,) consists of the items which have the similar
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structures:item; = ?(mi) x W(ed(p')) with p’ € P (Note that)M,(p) can be seen asMy(p)).
The occurrences (m;) can be a constant; or a variablev;, and the color expressiofi(cd(p’))
can be a constant colart, b, *, a variabley,,, which represents the color of plagg or a data
dependency function which can B&8V (x;/ ), EL(xp;. * » Xp,, ), OF SRC(1). Denoter(Eq,)" as
the not negative items on the right side of the inequatigp.

3-d-p example 15.Concerning the diagnosis problem, an inequations systevhgh is got by
matrix calculation (see table 4.5), should be satisfied.

71 T2

¢ b f2 fs OK [KO | OK [KO " _

P1| —Xpi —Xp1 [FW(xp)| T FW (Xp13) tl'OK. 1

P2| —Xpa —Xp2 FW (Xpor )| T F'W (Xp2s) " KO: 1
R P3 —Xp3 —Xps W (Xpss) r F'W (Xpas) :1 ' 73_2
M = Mo+ p11[F W (xp, ) —Xp11 |"Xp11 X 7”2 OK: n-

p21|F' W (xps) —Xp21  |"Xpo1 7”2 KO: ni

P13 FW (Xpy ) te 1

P33 F'W (Xps) _ 0

P22 FW (Xps) —Xpa2 —Xpa2

P32 FW (Xps) —Xp32 —Xp32

Table 4.5: Dining philosopher: inequations system in fofrmatrix calculation

The inequations system of the three dining philosopher$iasvs in equatiori 413. And for
example, in an inequatiofq,, , the items on the right side are;, —1'x,,, —1'xp,, 7Y FW (x11),
andnyr. r(Eqy,)™ includes the items, ny FW (x11), andnyr.

OC,, :ni+ng=1

OCy, :nz+nyg =1

Eqy, 0= % —1'xp, — I'Xp, + Y FW (x11) + nyr

Eqy, % = % — 1'Xp, — 1'Xpy + DY EW (Xpyy ) + 17 + n5FW (Xpoy )+

nyr

Eqp, 0= % — 1'Xps — 1'Xps + n5EFW (Xpgy) + 1yr 4.3)
Egp, 0= 0+ 1'FW(xp) — Ri1Xpi — "5Xp1i

Eqp,, 0= 0+ 1'FW(Xpy) — R Xpar — "5 Xpar

Eqp,, :

r
Eqp,, 0 b
Eqp,, : 0= 04 1'FW (xp,
Eqp, : 0>

\ \
— N3 Xp22 — My Xpao

\ \
— N3Xpsz — M4 Xpaz

According to the token colors in the symptom markikfy, the inequations) ;, is divide into
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three exclusive subseta7 = Q?v] U Qf]’vj U Q*M which are defines as follows:

Qy = {Eq[l(Eq) =r} (4.4)
Ql])\/[ = {Eql|l(Eqy) = b} (4.5)
Qy = {Bap|l(Eqy) =V I(Egp) = 0} (4.6)

Q’]”VY represents an inequations set in which the left side of thquation is a redr{ token;
Qlj’\Z represents the inequations set in which the left side ofrtbguation is a blackb) token;Q*M
represents the inequations set in which the left side ofrtbguation is an unknowr) token or no
token.

3-d-p example 16.The inequations system (see equafion 4.3) can be divide@%}s:: {Eqps, }
Q' = {Ep; }, and Q@ = {Eqp,, Eqpy Eqpsy Eqpyys Edpyy s Epyys Eqpy, }-

In the MBD theory, the more information is considered in thmptom, the more precisely the
diagnosis is. In the CPN model for diagnosis, the black tRein the symptom marking is helpful
to reduce the number of the possible diagnosis results. Whado is to integrate this "black
token(s)” information into other inequations to form an afatl inequations system.

4.2.2 Algorithms

To solve the inequations system, there are two steps tanollo

() to start from the inequations @?{4’ to infer the possible related black toke(s) and transi-
tion(s) behave undep K mode, and to update the inequations system if necessargti(ion
getImpossibleSols, see algorithn12);

(i) to start from the inequations (@7]}4 and to infer the diagnosis in the set@jw without violate
the transition occurrence constraints (functignDiag, see algorithril4).

@ The inferring process starts from the left side of an umépn on?w. To make sure the
black token "covers” the color expressions on the right sitis obliged to make sure that on the
right side of the inequation, there is at least one positiveEhe functionget I'mpossibleSols has the
following sketch: to solve the inequations system by reealg calling functionin ferOneBlack,
which solves one inequation 0}‘]}4, backward along the data dependency functions.
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() To make sure the red token on the left side "covers” thpregsions on the right side, it
sufficient to have at least ongtoken on the right side. That is, all the combinations of thkie of
the items?(m,—) x W(cd(p')), which has at least one are sufficient to propagateraoken on the
left side. So the inferring result of each inequation cardpeeasented as a set of places that "might”
contain a red token, and a set of transitions modes that "thiigh/CO. The functionget Diag has
the following sketch: to solve the inequations system burgeely calling functionn ferOne Red,
which solves one inequation @h, backward along the data dependency functions.

getI'mpossibleSols function

To solve one inequation a@?w (by functionin ferOneBlack), there are two kinds of inequations
to consider:

() the inequations have no negative items, agthakens cannot be consumed, the value of each
the nonnegative item should bbe So the related occurrence constraints can be updated and
the tokens it depends on in the data dependency functionsgdsheb.

(i) the inequations have negative items, so there are masgilple combinations of the value of
the unknown variables. And there is only one impossibleasibn: its initial marking isr,
and all its input transitions behave each time und& mode. This information can help to
reduce the diagnosis result only if all the following coratits are satisfied: its initial marking
is known to be-, each of its input transitions is fired only once, and theeedignosis solution
which says all its input transitions behave undé&® mode. In this case, this solution should
be deleted from the diagnosis (see exarhple 17).

3-d-p example 17.Given an inequatiotEq,, : b = r—2'x,, +ny FW (xp, ) +n5r+n5 FW (Xps )+
nyr, and occurrence constrainis; +n, = 1 and dng+n4 = 1 if there is a solutiorsol = {p2, p3}
in the diagnosis result, we should delete it.

(@i) For the each item of (Eq,), there are two cases: (see algorifhim 1):
° v}r (linef2), then the occurrence variahlemust be 0;

° v}xp or v}func with func is a data dependency function (life 3)pif > 0, then the color
variable (including the variables ifunc), x, must beb;
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3-d-p example 18.Consider the inequatiot'q,,,, < Q‘]’W, to apply the function
getImpossibleSols(Eq,,, ), there are two no negative item8:and 1'F'W (), so the only pos-
sible to propagate & token on the left side is that (x,,) = b (the third case), which infers

Xps = b

Algorithm 1 in ferOneBlack(Eqg,): solve onle]’VI inequation to get a constraint

Input: Egy: onte]’v inequation concerns a plage
1: if 7(Eqp) has no negative itertihen
2. updateOC with conditiont;. KO = 0;
3:  return all color variablesy,, (including the variables in the data dependency functiéms)
further inferring;
4: else ifr(EFq,) has negative itemthen
5. if My(p) = r and all the related transitions occurrences are consttambel then

6: return all the KO modes of which transitions i, as an impossible solution;
7. endif
8: end if

(@) To retrieve the impossible solutions set for one indpmain Q?\Z’ the idea is to start from
each black token i/, and infer backward recursively (lifié¢ 8) through all theazatariables. In
algorithm[2, two kinds of the inequations during the furteelving are considered:

e to further solve a inequatiof'q,, € Q}[ with the left part is« (line[@), Eq, is transformed
into a new inequation irjglj’w by evaluating the: on the left side of the inequation as

e to further solve a inequatiof'g,, € Q}[ with the left part isO (line[10), Eq, is transformed
into a new inequation il@lj’vj by adding a color variablg,, on both sides of the inequation
and evaluating the left one &s

Thus a new inequations system is constructed for furthestcaint solving and the "covering
relation” of the inequatior/q,, is not violated.

3-d-p example 19.As a continue of the example, functiget ImpossibleSols starts fromEg,..,
which calls the functiorin ferOneBlack(Eq,,,) and leads toy,, = b. Then the recursion starts.
Asl(Eqy,,) = 0, we addy,, on both sides of/g,, and evaluate the one on the left sidetalgve
denote the new inequation &3y,,.). But M (p3) = *, there is no impossible solution féfq,,, (see
figure[4.2(a)).
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Xpss = b
l Xpis =T
— b / \
Xp?’l Ap =T n=0Any=1
(Z) Xpu =T
(@) xpss = (b) diagnosis

Figure 4.2: Dining philosopher: apply functigmtImpossibleSols (algorithm[2) orget Diag (al-
gorithm[4) as a processes top-down, which means to sear&waat along the data dependency
functions, and stops when reaching stable status.

Algorithm 2 getImpossibleSols(Q ;). get the impossible solutions f6y

Input: @ ,: the inequations system;
1: ImpossibleSols = () as the set of the impossible solutions;
2: ForEach Eq, € M" do
apply algd 1 and store the returnslimpossibleSols;
4 denote@l]’é as the set of the inequations need to solve further;
5. end for
6: ForEach Eg, € Q%j do
7
8
9

if [(Epp) = 0then
replacelq, with b = x, + r(Eqp);
else ifi(Ep,) = * then

10: replaceEq, with b = r(Eq,);
11:  endif

12:  Recursion:

13: apply algd1;

14: updateM* and M?;

15: end for

16: return ImpossibleSols;

During the diagnosis inferring, each impossible solutioowdd be considered, so the impossible
solutions set is the union of the impossible solutions fahdaequation irQl]’\Z (line[3 in algorithm

D).
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Diagnosis inferring

The diagnosis algorithm executes backward reasoningsiely for each inequatiorq,, < Q}[
and then combines all the diagnosis results (algorithm K& ifpossible solutions sétnpossibleSols
should be considered to reduce the diagnosis result.

So the inferring principles ofn ferOneRed(Eq,) with Eq, € Q?\Z can be described as: for
each positive item'ztem;r on the right side*(Eg,), its valuemightber. In algorithm[3, two cases
of the expression items are considered:

° v}r (linef2), then the occurrence variahlemust be larger than 0;

® viXp, OF v; func with func is a data dependency function (line 3)wif > 0, then all the
color variablesy,, (including the variables iffunc) might ber;

3-d-p example 20.Consider the inequatiofg,,,, € Q?\Z’ by applying the functioin ferOneRed
(Eqp,,), there are two no negative item@and 1'F'W (x,, ). So the only possibility to propagate a
r token on the left side is th&t 1V (x,, ) = r (the third case), which inferg,, = r.

Algorithm 3 in ferOneRed(Eq,): partially solve EQ?\Z inequation

Input: Eg,: oner[ inequation concerns a plage
Output: Diag: Diagnosis set;
1: ForEach positive item inl(Eq,) do
Diag.add(my,) if m,, ¢;
Diag.add(p') if x, is a color variable (includes the variables in the data dégecy func-
tions);
end for
return Diag;

AN

The part on the right side of an inequation is an expressionposed by data dependency
functions, constants, and the corresponding place vasabhich may have positive or negative oc-
currences. Solving the inequation consists in canceliagdgative terms in the right part, keeping
the positive color functions, and evaluating the positigeuwsrencen; of red tokens (r) as; > 0to
explain the red token on the left side of the inequation ($gerighm[3). Algorithm[3 looks for, in
one inequation, the possible diagnosis corresponding ésspmptom place in a symptom mark-
ing. And at the same time, it looks for the candidate ineguatiwhich can explain further how the
red token is propagated. So to completely solve a red tokémeisymptom marking, a searching

algorithm to recursively back reason by reconstruc% andQ}[ (algorithm[4).
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To retrieve the diagnosis for one inequation%, the idea is to recursively infer to other
inequations for further solving through the data depengduactions and the color variables. In
algorithm(4, two kinds of the inequations during the furteelving are considered:

e to further solve a inequatiofq,, with the left part isO (line3), Eq, is transformed into a
new inequation irQ;"W by adding a color variable,, on both sides of the inequation and
evaluating the left one as

e to further solve a inequatiofg,, with the left part is« (line[7), Eq,/ is transformed into a
new inequation irQ%[ by evaluating the: on the left side of the inequation as

Thus a new inequations system is constructed for furtheyndisis solving and the "covering
relation” of the inequatiort/q,, is not violated.

Algorithm 4 get Diag(Q ;): Diagnosis with constraints

Input: @ ,: the inequations system;
Output: Diag: diagnosis set;

1: Diag = 0;

2: ForEach Eq, € M" do
apply algdB
4:  ForEach Eg, € M* do
5: if p € Diag andl(Ep,) = 0 then
6: replaceEq, with r = x, + r(Eqp);
7
8
9

else ifp € Diag andl(Ep,) = * then
replaceEq, with r = r(Eq,);

: end if
10: Recursion:
11: apply algd’3;
12: update@}k\Z andQ%[;
13: merge theDiag and denote a®iag,,;
14:  end for
15: end for

U
16: Diag =X Diag, \ ImpossibleSols;
17: return Diag;

3-d-p example 21.As a continue of the example, functigetDz‘ag(Q;’vAj starts, x,, = r call the
function in ferOneRed(Eq,,,), and getEg,,, which needs to solve further. And then function
inferOneRed(Eqy, ) is called in recursion. A$(Eg,,) = 0, we addy,, on both sides ofg,,
and evaluate the one on the left sidera@ve denote the new inequation Es?g;,l). Then we infer
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among the no negative itemsl'y,, (the new item added during the former step)x,,,, andnyr.
Meanwhile we should consider the occurrence constréiat., : n; + ny = 1. To make sure to
propagate a- token on the left side dfq,, , we have three possibilities,, = r; xp,, =7 An1 =
1Ang = 0 (which meansg; behaves itO K mode); orn; = 0Ans = 1 (which meansg; behaves in
KO mode). So up to nowiagP = {p1,p11}, andDiagM = {md(r1)}. Note thatMy(p11) = 0,
S0 Eqgy,, need to solve further.

Then we can construct a new inequations sys@(@ with Q’ZS = {Eqps;, Eq,,, Eq),,},
QY =A{Eapy;, Eqp, }, and Q' = {Eqp,, Eqpy,, Eqpas, Egpy, }-

Similarly, Fq,,, is transformed toEq;11 by addingy,,, on both sides otg,,, and evaluating
the one on the left side as Then we get the resuliq,, = r (or DiagP = {p:1}). As there is
no more inequation to infer, the functigrtDiag(Q", ) returns the resultDiag = {pi, md(r1)}.
The recursive process of calculatingt Diag(Q ;) by applying algorithni 4 is illustrated in figure
42(b).

Multiple faults diagnosis

The diagnosis should be able to explain all the possilslitiat how the symptom marking is gener-
ated. That is, each item in the diagnosis is a possible eafianfor each red token in the symptom
marking. Algorithni4 (lineg]l tb15) calculate all the possibxplanations for one red token. The
union set of all the single faults (one red token) is a diagnsslution for the inequations systems
Q ;- We use anulti fault operator>Li to integrate the solutions (limell6 in algoritfiin 4).

_— , U, :
Definition 58 (Multi fault operator) x is an operator that calculates the Cartesian product and
then keeps the minimal subsets.

3-d-p example 22. Still consider the same diagnosis problem, as it is a singlét fdiagnosis
problem Q?\Z = {Eqgy,, } which has only one inequation), we need not to ﬁseperator to cal-
culate the diagnosis for multiple faults. So the diagndsisg(D) of the diagnosis probler® is
{p1,md(r1)}. It means there are only two explanations: either the ihiiaue ofp, is faulty, or
philosopher 1 has made a mistake when he released the forks.

3-d-p example 23.Now consider a multiple faults scenario, in which the symptoarking has
red tokens in place;3 and p33 (see tabld_4]6). The initial marking and observed trace &eep
unchanged (see tables #.1 dndl4.3). So the 3th philosoplukr fanilty forks in both hands, which
meansy s, = r and xy, = r. By applying the diagnosis algorithm, the diagnosis prsciss
illustrated in figurd 4.B.
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P1 P2 P3 P11 P21 P22 P32 P13 P33
<01*’01010’0101rlr>

Table 4.6: Dining philosopher: symptom marking with multiple faults

Xpis =T Xpss =T
Xps =T Xps =T
Xpn =T  m2>0 (ormd(r)=KO) Xps =T ny >0 (or md(rz) = KO)
(a) Diag forxp,s = r (b) Diag forxpss =7

Figure 4.3: Dining philosopher diagnosis: apply the digimalgorithni# as a processes top-down,
which means to search backwards along the data dependeratiohs, and stop when arriving to
a node which has been visited.

The diagnosis is show in the following equation (equaifiof),4vhich means 4 diagnosis solu-
tions can explain the symptom marking,, ps}: the forks 1 and 3 were not in the right plates at
the beginning;{p1, md(r2)}: fork 1 was not in the right plate and philosopher 2 made a akist
when he released the forkEnd(r ), p3 }: philosopher 1 made a mistake when he released the forks
and fork 3 was not in the right plate; andnd(r, ), md(r2)}: philosophers 1 and 3 made mistakes
when they released their forks.

Diag(D) = {{p1},{md(r)}} X {{ps}, {md(r2)}}
= {{p1,ps} {1, md(r)}, {md(r), s}, {md (1), md(r2)}} (A7)

4.3 The minimality of CPN diagnosis

The diagnosis algorithms perform the algebraic approattichwis effective and capable for han-
dling the cyclic observation traces. But at the same time ude of the characteristic vector loses
part of the execution order of the transition. In this casey o ensure the minimality of the
diagnosis?
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P D2
Xp1 Xp2
OK:FW(xpy)
FW (xpy) Xp3 KO:r
ps / Xps ;
P4 2

o n OK [KO| 3

Xps

XP4 pl 'Xpl
2 “Xp2 “Xp2
EL(Xp3:Xpa) Ps3 FW(XPl ) — Xp3 FW(XP2) — Xps[l-Xps “Xp3

P4 “Xpa

st p5 EL(Xp:w Xp4)

Figure 4.4: an example of CPN in which theraple 4.7: Incidence matrix of the example illustrated
execution order of transitiom, and¢; may in figure[4.2
effect the diagnosis result

Assume an small CPN as illustrated in figlrel 4.4, we have dislémce matrix as in table 4.7
and the initial and symptom marking in tablel4.8.

M, M i
(P1,P2,P3,P1,P5) (P1,P2,P3,P1,P5) t1-OK ty-OK t3-KO t3-0OK
b,b,b,x,0 0,0,0,0,r 1 m Ny 1

Table 4.8: Initial, symptom marking and characteristictoeof the example in figurie 4.4
Then instanced inequations system is shown in equitidon 4.8.

ni+ng =1

p1:03=0—1%p,

P21 0= b—nyXps — MHXpo

p3:0 =%+ 1 FW(xp,) — I'Nps + Ny FW (Xpy) — N Xps + NS — N Xps (4.8)
—1'Xps

pa: 0= % — 1y,

P57 =04+ 1'EL(Xps, Xpa)

Suppose a completely ordered observation, to, ts}, {(t2, t1), (t1,t3)}), its minimal diagno-
sis should bé)iag(D) = {{p4}} if we compute with other diagnosis methods, like DES diagnos
or PN unfolding. In fact{{p4}, {md(t2)}} is the diagnosis for complete observatidn,, ¢, t3},
{(t1,12), (t2,t3)}) which generates the same symptom marking (in fable 4.8).
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In this CPN model, the execution order of transitianst, and¢s is not defined, and;, and¢s
can be fired in parallels. So its partial order relations<set (). In this case, both the observations
({t1, ta, ts}, {(t1,t2), (ta2,t3)}) and({t1, lvte, ts}, {(t2,t1), (t1,t3)}) are legal. And they corre-
sponds to a same characteristic vector as shown in[fabl&¥.8pplying the algorithmslI}4 on the
inequations systein 4.8, the diagnosis resulfisag(D) = {{p4}, {md(t2)}}, which is a correct
minimal diagnosis for the CPN model.

So the loss of the partial events order cannot make surettievesl diagnosis is minimal but is a
supersebf the minimal diagnosis. As the observation is defined asghigrordered, the impossible
solutions for the observations is allowed to be minimal. His tcase, the CPN model can fully
models the parallel or concurrent events. This is very ugefumodeling the complicate systems,
like distributed systems (see chagter 6), of which obsematare distributed also.

4.4 Related work

[144] proposes a decentralized model-based diagnosisitalgobased on the similar PNs model
([78]) by searching the possible trajectories backward.iB[i44], local diagnoser does not support
iteration of the system execution.

[118] models a modular interacting system as a set of placeeoed Petri nets and proposes
a distributed online diagnosis which applies algebra ¢atmns from the local models and the
communicating messages between them. But the fact[tha} fdd8els the state of a model as a
transition which causes the combinatorial explosion ofstia¢ge space.

In [4], the similar definition of PN model for diagnosis arefided: the colored token, the
covering relationships between different tokens. Thertags is retrieved by backward reachability
search. Like[[118], its simple Petri nets definition are fiatited to deal with the data aspects

A similar diagnosis approach has been proposedlin [5], otlwkie use the same data de-
pendency relation. But]5] does not support loops in systemagss while we represent loops as
the occurrence in a characteristic vector. In such way, Wwegbe loops without extra cost. The
consistency-base diagnosis approach proposéd in [5] ie afmstract but loses the precision on the
modeling level.

To generate each occurrence constraint equation, theatiagmeed to parse the observation
trace to calculate the occurrence of each transition. Thusliagnosis approach very slightly de-
pends on the length of observation trace. During the didgnm®cess, although our approach
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contains recursive process, in worst case, each inequigticmecked at most once. For each in-
equation concerning plage the time of calculating depends on the number of the datardigmcy
functions defined in scope 0p, which is|Mod| in worst case, wherg\ od| is the sum of modes.
), where|P|

is the number of places]’| is the number of transitions. Ad/od| > |T|, so the complexity of
the diagnosis i$)(|P| x |Mod|). But in the process which contain loops, the complexity af ou
algorithm is much less than those bf [141], [5], [L44)((P] - |6]?), where|d| is the length of a
trace).

So in the worst case, the time of the calculation of diagnssisP| x (|Mod| + |T
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Chapter 5

Web services Application

5.1 Introduction

In this chapter we give an overview of the service-orientaethiéecture (SOA) based on Web ser-
vices, and the related protocols of designing, composingd,executing Web services. A formal
method is given to translate the standard Web service mistglike structured programming lan-
guages) into CPN model for diagnosis. A foodshop case styayple is introduced. The related
works about the diagnosis approaches applied to Web serapaications are discussed also.

5.2 SOA and Web service

The speeding increase of the information systems complexitkes it necessity to integrate the
different systems within multiple business domains andrsffeamless services to the clients, which
is named as service-oriented architecture (SOA).

SOA defines how to integrate widely disparate applicationgfworld that is Web based which
use multiple implementation platforms. Rather than defjirin API, SOA defines the interface in
terms of protocols and functionalities. An endpoint is th&yepoint for such an SOA implementa-
tion.

Web services can implement SOA by making functional bugelitocks, which are accessible
over standard Internet protocols, independent of platfoand programming languages.

A Web service can be basic or composite, and the basic ones appkomposite ones. Nor-
mally, we construct composite Web services in two ways: tlehestrated[[9] (figuré_5.la) or
choreographed [61] (figufe 5]1b), which differ in execuigband control.

81



CHAPTER 5. WEB SERVICES APPLICATION 82

(a) Orchestrated (b) Choreographed

Figure 5.1: Composite Web service structure

An orchestrated Web service always represents control menpartyj s perspective. There
is an orchestrating service which is in charge of commuaiedth all other service to perform a
process. The orchestration can be recursive so a set ofstratesl Web services can a tree-shape
organization structure.

Choreography "tracks the message sequences among mpkhiples and sources-typically the
public message exchanges that occur between Web seraites-than a specific business process
that a single party execute$” [95]. So there is no centralfiaria set of choreographed Web services.

Choreography specifies a protocol for peer-to-peer intierax, defining, e.g., the legal se-
guences of messages exchanged with the purpose of guangritgeroperability. Such a protocol
is not directly executable, as it allows many different iilons.

There are three roles related to the Web services consunmimatie requester (or clients),
services themselves, the inventory (registry). Thesesthwies communicate between each other
through different protocols: UDDI, SOAP, WSDL. Figure5li2strates the relationships between
Web service related roles and the communication protocols.

Service
Registry

UDDI UDDI

for discovery for exposure

WSDL
at design time
Requester SOAD Service
at run time

Figure 5.2: The relations between the roles and protocols
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5.2.1 SOAP

Simple Object Access Protocol (SOAP) [43] is a protocol #jmation for exchanging structured
information in the implementation of Web Services in congpuietworks. It relies on XML as
its message format, and usually relies on other Applicdtiayer protocols (most notably Remote
Procedure Call (RPC) and HTTP) for message negotiation ramgrnission. SOAP can form the
foundation layer of a web services protocol stack, progdinbasic messaging framework upon
which web services can be built.

SOAP consists of four parts:

1. The SOAP envelope construct defines an overall framevasr&xXpressing what is in a mes-
sage, which should deal with it, and whether it is optionain@andatory.

2. The SOAP encoding rules define a serialization mechartisthcan be used to exchange
instances of application-defined data types.

3. The SOAP RPC representation defines a convention that earsdd to represent remote
procedure calls and responses.

4. The SOAP binding defines a convention for exchanging SO®Elepes between peers using
an underlying protocol for transport.

(~ SOAP-ENV: Envelope

SOAP-ENV: Header

SOAP-ENV: Body

N /

Figure 5.3: SOAP structure

Figure[5.3 illustrates the structure of SOAP. To simplifg gpecification, these four parts are
functionally orthogonal. A SOAP message could be sent to b $eevice (for example, a house
price database) with the parameters needed for a searchsefviee would then return an XML-
formatted document with the resulting data (prices, largtifeatures, etc). Because the data is
returned in a standardized machine-parsable format, idldben be integrated directly into a third-
party site.



© N 00 W P

11
13
15
17
19

CHAPTER 5. WEB SERVICES APPLICATION 84

In particular, the envelope and the encoding rules are dakfindifferent namespaces. Tablels.1
illustrates an example for a SOAP message.

<soapenv:Envelope
xmins:soapenv="http: //schemas.xmlsoap.org/soap/daope/”
xmlns:wsa="http: //schemas.xmlsoap.org/ws/2004/08deelssing”
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchemdnstance”
xsi:schemalLocation="http: //schemas.xmlsoap.org/sbapvelope/>
<soapenv:Header
<wsa:ReplyTo
<wsa:Addresshttp: //schemas.xmlsoap.org/ws/2004/08/addressindéranonymous/wsa:Address
</wsa:ReplyTo
<wsa:From>
<wsa:Addresshttp: //localhost:8080/axis2/services/MyServitevsa:Address
</wsa:From>
<wsa:MessagelDECE5B3F187F29D28BC11433905662@36wsa:MessagelD
<l/soapenv:Header
<soapenv:Body
<reqg:echo xmlns:req="http://localhost:8080/axis2/sésgs/MyService/>
<reg:categoryclassifieds</req:category
<lreq:echp
</soapenv:Body
</soapenv:Envelope

Listing 5.1: An XML fragment of response SOAP message

5.2.2 UDDI

Universal Description Discovery & Integration (UDDI)_[28 the definition of a set of services
supporting the description and discovery of

e businesses, organizations, and other Web services preyide
e the Web services they make available,
e the technical interfaces, which may be used to access teogees.

Based on a common set of industry standards, including HXVIR, XML Schema, and SOAP,
UDDI provides an interoperable, foundational infrastunetfor a Web services-based software en-
vironment for both publicly available services and sersioaly exposed internally within an orga-
nization.[5.2 shows a piece of XML fragment of a Node Busirtestty.

<businessEntity businessKey="uddi:tempuri.org:uddirddisinessKey” xmlns="urn:udeéiorg:api.v3"™>
<name xml:lang="en">A UDDI Node</name>
<description xml:lang="en"> This represents a sample model of how a UDDI node might repmes itself in UDDI
</description>
<categoryBag
<keyedReference tModelKey="uddi:uddi.org:categorizaninodes” keyValue="node” >
</categoryBag

Listing 5.2: An XML fragment of UDDI entry



© N 00 W P

11
13
15
17
19

CHAPTER 5. WEB SERVICES APPLICATION

5.2.3 WSDL

85

WSDL is defined to describe the possible operations the Wéslcservice offered and the address or

path to invoke it. WSDL is based on XML document, and spectfiesiVeb Services in a machine-

understandable way. WSDL defines-vice andoperation to describe the interfaces, defingse

andmessages to describe the data types, and defipest andbinding to describe the location of

Web Services, etc[42]. Figute 5.4 illustrates the strgctfra WSDL document.

Definitions
1 * * * 1
Types Message PortType Binding Service
* * * 1 * *
Schema Part Operation Binding Operation Port

* *
ComplexType Element

Sequence

*
Element

1
Input

0--1 1 1 0.1 1
Output Operation Input Output Address

1 1
body body

Figure 5.4: WSDL document structure: the yellow arrows espnt the further definitions of the
arrow sources, the red line separates the abstract defmitio the left from the concrete definitions

on the right

<?xml version="1.0" encoding="UTF8"?>

<wsdl:definitions targetNamespace="http://localhos®®0/axis/services/delta” xmlns:wsdlsoap="..."

<wsdl:message name="calDeltaRequest”

<wsdl:part name="in0" type="xsd:float™ ...

</wsdl:message
<wsdl:message name="calDeltaResponse”

<wsdl:part name="calDeltaReturn” type="xsd:float®/

</wsdl:message
<wsdl:portType name="deltg¥

<wsdl:operation name="calDelta” parameterOrder="in0 ">.
<wsdl:input name="calDeltaRequest” message="impl:calbeERequest”t
<wsdl:output name="calDeltaResponse” message="implzaltaResponse™t

</wsdl:operation-
</wsdl:portType-

<wsdl:binding name="deltaSoapBinding” type="impl:delta

<wsdlsoap:binding style="rpc” transport="..." xmlns:wkxbap="..."5
<wsdl:operation name="calDelta"
<wsdlsoap:operation soapAction="" xmlns:wsdlsoap =>..

<wsdl:input name="calDeltaRequest”

xmlnsal="...">




21
23
25
27
29
31
33

CHAPTER 5. WEB SERVICES APPLICATION 86

<wsdlsoap:body encodingStyle="..." namespace="http: éhwerter” use="encoded”
xmlns:wsdlsoap="..."%
</wsdl:input>
<wsdl:output name="calDeltaResponse”
<wsdlsoap:body encodingStyle="..." namespace="..." u%emcoded” xmlIns:wsdlsoap="..."%
</wsdl:output
</wsdl:operation-
</wsdl:binding>
<wsdl:service name="deltaService”
<wsdl:port name="delta” binding="impl:deltaSoapBindifyg
<wsdlsoap:address location="..." xmlns:wsdlsoap="..>"/
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Listing 5.3: The code of WSDL of a basic Web service which gl the value of delta of a
guadratic equation

The listing[5.3 contains the WSDL file that describes a basib \&ervice that calculates the
delta value of a second degree equation. It defines the naithe gkrvice as "deltaService”, the
service "deltaService” offers an operation named "cal®eltith the inputs "in0”, "in1”, "in2”, and
the output "calDeltaReturn”. It also defines the "binding"describe the functioning mechanism of
"deltaService”. WSDL acts as a communication protocol dfwoek services. It follows the XML
grammar and also inherits extensible character of XML. SdW§8an be extended and enriched
when necessary.

5.3 BPEL services

Business Process Execution Language (BPEL), short for Welicgs Business Process Execution
Language (WS-BPEL) is an OASIS standard executable lamgfoagpecifying interactions with
Web Services.

5.3.1 BPEL

A BPEL definition, like a structured programming languagengists of several parts describing
partner links, process variables, correlation sets, thie pracess work-flow, the faults, and com-
pensations handling activities.

The partner link declarations are used to define the rel&titween the process and its partners.
It defines the role of the process in this relation (consurmegsrovider of an interface), and the
interfaces used/provided by that role. The interfacesratjpms, as well as their parameters and
types, are specified in the corresponding WSDL documents.



CHAPTER 5. WEB SERVICES APPLICATION 87

The process variables are used to represent the state ofisheess process, they contain the
information received from or sent to the partners of the @ssc The variables may be of primitive
data types (e.g., strings, Boolean, integers) or of sometmatypes defined in a WSDL document.

The correlation sets define the parts of message data thasedeo associate and route a par-
ticular message to a particular instance of the businesepso Such information tokens uniquely
identify the instance of the business process.

The process flow is defined by a set of process activities. FEpegify the operations to be
performed, their ordering, conditional logic, reactivées) etc. We distinguish the following groups
of activities: basic activities, structured activitieagethe specific operational blocks, namely faults
and compensations handlers.

Basic activities represent primitive operations perfaidrbg the process, such as message emis-
sion/reception (invoke, receive, and reply activitiegltadmodification (assign), process termination
(terminate), waiting for a certain period of time (wait),dwing nothing (empty).

Structured activities define the order in which a collectbactivities occurs. They compose the
basic activities into structures that express the contal flatterns. The structured BPEL activities
include sequence, switch, and while that model traditiaasitrol constructs; pick that models no
deterministic choice based on external events (i.e., gesgeption or timeout); flow activity that
models parallel execution of the nested activities. Thectilired activities can be recursively nested
and combined.

Fault handling in BPEL is thought of as a mode switch from tbemal processing. It is in-
terpreted aseverse worksince it aims at undoing the unsuccessful work. The faulf axégse on
reception of the fault message, or on explicit invocatiorthaf throw activity. The fault handler
declaration specifies the activities to be performed whexul &rises.

The compensation handlers are used to reverse the effeotraf anit of work that has com-
pleted with a fault. The compensation is always initiatethimia fault handler, and may also require
a compensation of some nested, previously successfulit@sti A compensation handler is always
associated with a work unit (BPEL scope), and is invoked l{eiXly or implicitly) using the BPEL
compensating activity.

5.3.2 Cooperation of BPEL and WSDL

BPEL introduces the features, e.g. process, action, etioe| role, partner link, etc, needed to
describe the behavioral aspects of Web services. Figufehadws a sub-set of those features of
interest in the context of this note and relationships betwbem.
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A Web service may play multiple roles within a conversatibisually, for each partner the Web
service may expose a different role. BPEL partner link typénaés binary relationship between
roles. It specifies at most two roles that may communicate.

The BPEL is built on top of WSDL, which includes definitionspafrt types, messages and data
types. Each role defined in the partner link type specifiestgxane WSDL port type it implements.

BPEL [BPEL/Partner Link Type

Process
Partner Link Type |

Action || Partner 1
L —
,-! _ Role Il

Link
\

/ 4
\ B
\ Port Type ‘/

Operation |

P R | i} . Message ‘
,_TT———P
]

Output A Message Part
Fault ; CE——=—
S WSDL

Figure 5.5: Interactivities between BPEL and WSDL protscol

5.3.3 ActiveBPEL engine

The ActiveBPEL engin€ 2] is an Open Source implementatiom BPEL engine, written in Java.
It reads BPEL process definitions (and other inputs such aBMes) and creates graphical
representations of each activities of BPEL processes. Vdhancoming message triggers a start
activity, the engine creates a new process instance ang st@ning. The engine takes care of
persistence, queues, alarms, and many other executiafsdé&tae ActiveBPEL engine runs in any
standard servlet container such as Tomcat.

5.4 Case study: foodshop

The foodshop example is a foodshop company sells and deliwed. The company has an online
SHOP (that does not have a physical counterpart) and sevarahousesW H1, - --, W H,,, each
of which is associated with their LocalSuppliers) locatedlifferent areas that are responsible for
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stocking imperishable goods and physically deliveringhgelo customers, depending on the area
each customer lives in.

Customers(, - - -, Cy) interact with the foodshop company in order to place thedecs, pay
the bills and receive their goods.

In case of perishable items, that cannot be stocked, or enafasut-of-stock items, the foodshop
company must interact with several supplie$é/(P;, . .., SU P,,).

Although most of the interactions in this example are etattr, and take place between Web
Services, in some cases there are physical actions anddtiters that are performed by humans
(e.g. the sending of a package). These too are modeled imitiiext of Web Services.

5.4.1 Partners interactions

In each conversation the following partners take part:
e one CUSTomer (represented in green);
e the online SHOP (represented in pink);
o one WAREHOUSE (represented in yellow);
e one LocalSupplier (represented in gray);
e avariable number of SUPPLIERS, which could also be 0 (remtesl in gray).

Figure[5.6 illustrates the BPEL processes of the partnetheofoodshop example. When a
CUSTomer places an order, the SHOP first selects the WAREHEOH& is closest to the cus-
tomer’s address, and that will thus take part in the contiersaOrdered items are split into two
categories: perishable (cannot be stocked, so the warettamnot possibly have them in stock)
and imperishable (the warehouse might have them).

Perishable items are handled directly by the SHOP, whileMAREHOUSE handles the im-
perishable items. In case of the WAREHOUSE is out of stoc&ait ask one of its LocalSupplier
to fill the stock.

The first step is to check whether the ordered items are alajlaither in the warehouse or
from the suppliers (we have not considered items exchanges@different warehouses, in order
not to make the example too complicated). If they are, theyt@mporarily reserved in order to
avoid conflicts between several orders.
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> RecaiveOrder

ChedkAndReserve
Availability
Return
UnavailableList

Y
> Cancelorder | >Confim10rderJ

Shop Supplier

Warehouse

Supplier::
CheckAndReserve

{++] no
Available? v
[calamterowicost| | MergeUnavailableList

ReplyAllls
Available

JRecelveConfirmaton
FromCustomer

LocalSupplier

ReplySomething ™
IsNotAvailable

Confirmation

Figure 5.6: The partners of the foodshop example: the gcaphépresentations run over the Ac-
tiveBPEL engine is much more specific and in detail.
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Once the SHOP receives all the answers on availabilitynideide whether to give up with the
order (again, in order to keep things simple, this happereneter there is at least one unavailable
item) or to proceed. In the former case, all item reservateme canceled and the conversation ends.

If the order goes on, the SHOP computes the total cost (itestgpping) with the aid of the
WAREHOUSE that provides the shipping costs. Then it sendbithto the CUSTomer, that can
decide whether to pay or not. If the CUSTomer does not pajteatl reservations are canceled and
the conversation ends here.

If the CUSTomer pays, then all item reservations are confirared all the SUPPLIERS (in
case of perishable or out-of-stock items) are asked to dengdods to the WAREHOUSE. The
WAREHOUSE will then assemble a package and send it to the G&i

5.4.2 BPEL services execution processes

We describe separately the execution processes of eadepamntiuding its interactions with others
in the same composite process.

Customer

The customer workflow (figule 3.7) is abstract: we represeitt its interface with the other ser-
vices, while we do not represent internal activities. TheSTomer places an ordesendOrder)
communicating the items he/she is interestediangs) and its personal dataystin fo). Then it
waits for an answer from the SHOP: if some of the items are waitable the conversation ends
(exit). Otherwise the user receives the bill and decides whetheay (eply Pay) sending its
payment to the SHOP.

If the CUSTomer decides not to pay the conversation end#); Otherwise, he/she waits
for the parcel sent by one of the company’s WAREHOUSEs. Ndtiat the parcel shipment is a
physical transaction, while the others are all electror@ingactions.

Shop service

On the contrary, the SHOP workflow (in figufe 55.6) is detail@al contains several internal activ-
ities.

When the SHOP receives an ordeedeiveOrder) with the ordered items and the CUSTomer
data ¢ustInfo), it selects the WAREHOUSE that is closer to the useidctWWV H) and splits
(splitOrder) the ordered items into the set of perishable itemsitems) and that of imperishable
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sendOrder

items
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all items are available)
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Figure 5.7: The workflow of customer
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items (_items). It then checks the availability of perishable itenagdck Avail&reserve) with
the SUPPLIERS, asking to temporarily reserve them in casedle available. The SHOP receives
back the set of reserved itemss(resitems), the corresponding reservation codes_gnswers),
and the answers on availability {_answers).

The list of imperishable items is instead sent to the WAREFBBUcheck Avail), that sends
back a collective answes (answers) on availability.

If any of the items is unavailable, the order is canceled. $H®OP communicates this to the
CUSTomer, and cancels the reservatiansreserved) both with the SUPPLIERS and the WARE-
HOUSE.

If on the other hand all the items are available, the SHOP ek WVAREHOUSE to compute
the ship cost4hipCost), which depends on the distance between the WAREHOUSE #@sdlthe
user address, as well as the total weight of the ordered ifmihis reason, the SHOP sends to the
WAREHOUSE both the list oftems andcustin f o).

Then the SHOP computes the total cast/Cost) and sends the bill to the CUSTomer, which
sends back a payment. if the CUSTomer decides not to payH@PSancels all the reservations
(unreserved) with the SUPPLIERS and the WAREHOUSE. If the payment is Gi¢ SHOP
forwards the order to the WAREHOUSE«Order), which from now on is responsible for it, and
tells the SUPPLIERS to send the reserved items to the WARESIBequestSupply), providing
the reservation codes{_rescodes) and the warehouse addressh(n o).

Realsupplier service

Like the CUSTomer workflow, the SUPPLIER workflow (in figuregpis abstract since each sup-
plier may have a different internal workflow.

Of course, it is the same workflow independently from the WetyiSe that contacts the SUP-
PLIER. For this reason, the Web Service that buys the goagenierically called BUYER, while the
receiver of the products is generically called RECEIVERSs ltlear that in our context the BUYER
can be either the SHOP or the WAREHOUSE, while the RECEIVER\imys the WAREHOUSE.

The SUPPLIER is first asked by the user to verify the availgbdf some items and reserve
them @erify&reserve). The SUPPLIER sends back the set of reserved itemsitems), the
corresponding reservation codesq{codes) and the answers on availability.

Then the BUYER can either cancel the reservatiomReserve) or ask the SUPPLIER to send
the items §upply) to the addresssénd Address) of the RECEIVER.
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Warehouse service and LocalSupplier service

The WAREHOUSE first receives a request from the SHOP to chezlavailability of some items
(s_items) and reserve themréserveAvail). If some items are out-of-stock, the WAREHOUSE
contacts the LocalSuppliers in order to check for avaitghénd to reserve theny(ndSuppliers),
receiving back the set of reserved iterns-€sitems), the corresponding reservation codes ¢scodes)
and the answers on availability gnswers).

The WAREHOUSE elaborates a collective answer on avaitglbéind sends it to the SHOP
(collect Answers). Then it waits for one of the following things to happenheitthe SHOP decides
to cancel the order, or to proceed.

In the first case the WAREHOUSE has to cancel its own resenstiand, in case some Local-
Suppliers were contacted, it must also cancel the resengitvith the LocalSupplietgreserved).

In the second case, the WAREHOUSE is asked by the SHOP to dentipai shipment cost.
Then the SHOP tells the WAREHOUSE to proceed with the ordercake of out-of-stock items,
the WAREHOUSE asks the SUPPLIER to send the reserved itemsadstSupply), by providing
the reservation codes_{rescodes) and its addressu(hin fo).

At this point the WAREHOUSE must assemble the package. leraaldo this, it must wait
both for the (inperishable) items it reserved directly from the SUPPLIER, and for the-{shable)
items that were reserved by the SHOP from the SUPPLIER.

Once the parcel is ready, the WAREHOUSE asks a shipfet.€stShipping) to send it to the
user.

5.5 Translate from BPEL to CPN

A BPEL process consists of basic activities and structupetaiors. The idea of modeling BPEL
to CPN is: to map each primitive data to a place, each basiditgdio a transition (except that

a two-way Invoke activity is mapped to two transitions to represent the adton between the
partners). To each basic activity, local input and outptivation placea™ € P anda®* € P

are associated to identify the local execution order; a termput and/or output activation places
ait, € P and/ora®y € P is added to allow the remote control, and a set of remotelyeshdata
placesP” C P (messages) are marked also. The fault (KO) mode(s) of tramsiare added on
the 7'/ P output arc expression to represent the unobservable faatiyities either in basic Web
services or in BPEL services. The structured operatorsviougethe structured sub-processes by
combining, disjointing, or generating the local activatiglaces. Once a red token is generated by
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the KO mode of a transition of a basic activity, the fault issgd along the execution trace through
the data dependency functions. Figlre 5.8 illustrates #séckplaces and transitions we used for
translation from BPEL to CPN.

local activation remote activation local data
place place place
(e
remote data optional ™ deleted place
place arc place \) Om;g;mg during composition
_ 7/
transition optional delete

transition

Figure 5.8: basic place/transition representations

We assume the BPEL services studied in this thesis are basledugged and ready to run, so
assumptioi]3 makes sure the CPN diagnosis is based on théome#id CPN model:

Assumption 3. The BPEL processes are realized according to their spetifics and basically
debugged .

In the following sections, we model dynamic features, thedBPEL activities and structured
operators, with CPNs.

5.5.1 Translating static BPEL features to CPNs

BPEL processes manipulate a set of data, variables, andactss Variables are typed either by
primitive types (int, float, string, etc.), or by structuredes (complex type structure of XML),
which are normally defined in the associated WSDL files.

To catch maximally the dependency between data (variatbestants, etc.), we decompose the
structured data types into their elementary parts, dertptede/caves of their XML tree structure.
For a variableX of typem (resp. an Xpath expression), we useto range over thd.caves(m)
(resp. Leaves(X)) and denote the; part of X by a couple(X, z;). In our mapping, each data
variable and constant is represented by a unique place irsCPN



CHAPTER 5. WEB SERVICES APPLICATION 96

5.5.2 Translation from basic Web service to CPN
Basic Web service

A basic Web service is a program, which publishes its invonainterface and can be remotely
called by other Web service, including a BPEL service. As italled synchronously through its
WSDL interface and cannot be decomposed, we model it as a €&éhs, which has a transition,
remote input/output activation places and a set of sharpdtfoutput data places (all the local
components are in the dotted line boxes). The data depepdetween its input and output can
be FW, EL, and/orSRC, which should be offered by the basic Web service developé&te
CPN model of a basic Web service (see fiduré 5.9) is a trangitipwhich can be irOK or KO
mode. They are triggered by the consummation of the tokehdaroutput activation place. Once
the transition is enabled and behavedsih mode, there should be a fault in its output data place
and the fault can be passed to its invoker, a BPEL process) ivtexeives the response of the basic
Web service. So the formal definition of CPN fault model forasib Web service is as follows:

Definition 59 (CPN fault model for basic WS)A CPN fault model for basic Web service is a tuple
Np=(3,T, P, T, Pre, Post, F), Wherai

o P={a" PA,a® _PA,z; PA,y;_PAli € I} is a set of labeled places of tyge, r, *}H;
o ' = {tB};
e md(tg) = {OK, KO};

e Pre and Post are illustrated in tablé 5J1;

Receivém, X)

Receive is an activity simply copies the values from a messagent from a partner service to a
local variableX. So the data dependency relation is defined"&d and there is nd{O mode for
the transition. We moddkeceive as the CPN presented in figlre 3.11. Data pldeesn; ), (z, x;)
are simplified asn;, which represents the shared message with its pafagr and x;, which
represents the variable, which saves the valugpf A remote activation place?’, is added to

Iwithout especially defined, the definition is same as the ffiefinof the CPN fault moddI 33 in chapter 3

%In the following sections, not specially claimed, denete anda®"! as the input and output activation placesas
a local input data placey; as a local output data place,; as a remote input or output date placE.A is use to indicate
the remote place.
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Pre tp Post tp
OK KO OK KO
ain_PA Xain_PA Xain_PA ain—PA
a®_PA a®_ PA | FW(Xxqout_pa) | FW (Xqout_pa)
T Xz, Xz, L Xz, Xz,
Yi Xy Xy Yi F(Xz,) r

Table 5.1: Pre and Post tables of a basic Web service?(x,,) represents a data dependency
function, which can bé'W, SRC, or EL. So forSRC, there is no input.

a'™_PA

Oxi] _PA

Xxi_PA

xiz_PA
Xain_pa

Xxi,_PA

OK/KO:FW(x in_PA)

OK:EL()()CI-1 _PAXx;, _pA)
KO:r

y,;PA

Figure 5.9: CPNs of the basic activity: the thick-line pleicepresent the remote places

activate theReceive activity. The color of the output activation plaaé is decided by the remote
activation input place, which means the wrong work flow issgto So the arc expression on the
arc e, a®) is FW (x4in_pa)- To keep the liveness of the CPN, we add an arc from the output
placez; to the receive transitiot)... and its associated color functiggn, is simply the color of the
output data place;.

So the formal definition of CPN fault model forReceive activity is as follows:

Definition 60 (CPN fault model forReceive activity). A CPN fault model foReceive activity is a
tuple N,...=(3,T", P, T, Pre, Post, F,), where:

o I'={OK}; e md(tye.) = {OK},;
o P={a"_PA,a®_PA,a™, a® m;_PA, i €

I3, e Pre and Post are illustrated in table
o I'= {trec}; E:m,
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mi ai" _PA ain

Pre frec Post frec
: OK i OK OK:FW (Y 4in py) OK:FW (ym;)
a"_PA | Xqin pa a™_PA -
azn Xai" azn
aout aout FW(Xai"_PA) O aout Xi
mi X mi Xm;
= o 7 FW (xXm:) Figure 5.11: CPNs of the receive activity:

the thick-line places represent the remote
Figure 5.10:Pre and Post tables of aReceive activity places

Invoke(X,Y")

Invoke is an activity that calls another Web service, eithdasic or a composite one. It takes the
value of the variableX, sends a remote request to its partner, synchronously nclsynously waits
for the response message, stores it in the vari@hler gets the response Weceive(m,Y ). Y
can be infected by external faulty Web service (basic or amsag), which is locally unobservable.
a KO mode of transitiort;,,, to model the faults caused by the external Web sernviegoke can
be a one-way call, which only sends a requ&sto another Web service. In this case, the data
dependency between the input and output datelis and the transition only ha3 K mode. When
Invoke is a two-way call, it has both the local and remote input/atigtivation and data places.
When it invokes a composed Web service, the data dependdreti@een the remote places depend
on the invoked Web service. So the data dependencies bethvedocal and remote input places
are 'V, such as between the local and remote output places. Whamkds a basic Web service,
the data dependency can be retrieved directly from the ghaadi WSDL interface of the basic Web
service. But the synchronousivoke activity has both thé) K and KO modes. The figure 5.1Pb
and5.12h respectively illustrate the CPN model of a one-avaytwo-wayl nvoke activity.

So the formal definition of CPN fault model for an asynchranduvoke activity is as follows:

Definition 61 (CPN fault model for an asynchronolisvoke activity). A CPN fault model for an
asynchronoudnvoke activity is a tupleN,sr,,= (X, ', P, T, Pre, Post, F,), where:
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o P={a"_PA,a™, a® x;;m¢t _PAli € o T'={tim};
I}; : .
e Pre and Post are illustrated in tablé 5.12;
Pre Lin Post Liny
OK OK
i ain 4in
aout @ | FW(xain)
a’“t_PA a®_ PA | FW(xqin)
Ly X z; Xz;
mg" Xmgut mg! X

Table 5.2:Pre and Post tables of an asynchronous.voke activity

The formal definition of CPN fault model for a synchrondusvoke activity is as follows:

Definition 62 (CPN fault model for a synchronoukvoke activity). A CPN fault model for a
synchronoud nvoke activity is a tupleN;,,,= (%, I', P, T, Pre, Post, F,), where:

o P={a"_PA,a®_PA,a™, a® x;,y;,x;_PA,y; _PAli € T};
o I'= {tinv};

e Pre and Post are illustrated in tablé 5J3;

Pre Liny Post biny
OK KO OK KO
a’ Xain Xair a’
a™_PA a™_PA FW (xqin) FW (xqin)
a®_PA | Xaout_pa | Xaout_pa a®_PA
| FW (g pa) | FW (xaomepa)
T Xz Xz, Lq Xz, Xz,
x; PA Xa;_PA X PA x; PA FW(xz,) FW(Xz,)
" Xy Xy: " FW(xy..pa) | FW(xy.pa)
Xyi Xy F r
yi_PA Xy PA Xy:_PA yi-PA Xyi_PA Xy;-PA

Table 5.3: Pre and Post tables of a synchronouswoke activity: F' denotes the data dependency

function which depends on the invoked basic Web service
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Xxiz

OKIKO:FW (X 4in)

ai”_PA

OKIKO:FW (Y in)

anut_PA

OK/KO:FW(Xxil) Xain Xi;_PA

OKIKO:FW (xx,)

OK/KO:FW(x ,in)
Xxi,_PA

Xiy 7PA

OKIKO:FW (1x,,)

Xaout_pa

OK/KO:FW (Y gout_py)
a”“[PA

OK/KO:FW (yy, _pa) Xyi_PA

orOK:F/KO:r(basicWS)

Vi yl;PA

(a) synchronous (b) asynchronous

Figure 5.12: CPN model of invoke activity: the thick-lineapes represent the remote places

Reply(Y, m)

Reply is an activity that copies values from a variabléo a message: for returning the response
of the BPEL service to its invoker. SReply simply forwards W) values (figur€ 5.14) for thé K
mode and there is n&O mode. The data dependency function on the arc ftomto the remote
activation placen%’} is FW(Xqiz, ), because the remote activation does not affect the activati
correctness of the local process. The formal definition dl@&ilt model for aReply activity is as

follows:
Definition 63 (CPN fault model forReply activity). A CPN fault model foRReply activity is a tuple
Nyep=(3,T, P, T, Pre, Post, F,), where:

o I' = {OK}; o md(trep) = {OK};

o P = {a®“*_PA a™, a®, y;, m;_PA|i €

I} . .
1 e Pre and Post are illustrated in table

o I'= {trep}; m,
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OK:FW[Xui,,]

Pre gz Post gz aout

OK:FW (xy;)
n + OK:FW(x in) i

a’*_PA a’*_PA FW (xqin) “

ain Xain ain
a4t acvt FW(xXqin_pa) agut m;
Yi Xy Yi Xyi . .
m; o, e FW (xy,) Figure 5.14: CPNs of the reply activity:

the thick-line places represent the remote
Figure 5.13:Pre and Post tables of aReply activity places

ExpressionC, V')

Expression is an internal activity to calculate a variabjébased on some constantsand other
variablesv,. Expression is usually defined in assign activity and othreictural operators which to
define the sub process choice conditions, like switch, wHiletc. According to the assumptidh 3,
transitiont.,,, behave always ¥ X' mode. The formal definition of CPN fault model (see figure
[5.18) for a basic Web service is as follows:

Definition 64 (CPN fault model for expressionA CPN fault model for basic Web service is a tuple
Neap=(X,T, P, T, Pre, Post, F,), where:
o P={a" a"" cj vy, i, j,k € I}; o md(tesp) = {OK, KO},

e Pre and Post are illustrated in table
o I'= {te:vp}; E:B,

Assign(X,Y)

Assign is an activity that reorganizes the variable partotopose the new ones. So its model does
not containk’ O mode, remote activation, or shared data places. And thedeégendency between
the input and output places I8IV. The formal definition of CPN fault model (see figlire 5.17) for

Assign is as follows:

Definition 65 (CPN fault model forAssign). A CPN fault model fordssign is a tuple Neg,= (£,
I, P, T, Pre, Post, F,), where:
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Pre Leap Post eap in ci v
OK | KO OK KO ¢ ] ‘
ain Xaqin Xain ai”
aout aout FW(XaD”t) FW(Xaout)
Cj Xe, Xe, ¢j Xe; Xe;
Uk Xve | X Uk Xoy, Xy OK/KO:FW (Y in)
T Xas Xaz; T; F r ain

Figure 5.15: Pre and Post tables of Expression activity: I
represents a data dependency function, which can be éiflier
SRC, or EL with the input(s) as; and/orv;,. For SRC, therdrigure 5.16: CPNs of the expres-

Xi
aout Axi X

iS no input. sion activity
o P={a™, a® x;,yli € I}; e md(tyss) = {OK};
o T = {tuss}; e Pre and Post are illustrated in tablé 54;
aln xl
Xain
Pre Lass Post bass Xx;
OK OK
a Xa'in a OK:FW(Xam)
aout aout FW(Xai") OK:FW()(xi)
Tq Xz; £ Xz;
) . W Xyi .
Yi Xy Yi (Xml) alut Vi

Table 5.4:Pre and Post tables ofAssign activity  Figure 5.17: CPNs of the assign activity

In fact, Expressions are always defined idssign to generate the temporal variables as the
input of the Assign activity. So the activitiezpression and Assign can be united

Throw/Rethrow ( fault Name, [ faultV ariable])

Throw andrethrow are activities to signal an internal fault explicitly. Theyovide the name
for the fault, and can optionally provide data with furthaformation about the fault. So their
input places can be the "faultName”, and the optional "fgailtable” and no output data places
are generated. The figure 5118 illustrates the CPN modeltbf @v or arethrow activity. Note
thatrethrow ignores the modifications to the fault data and throws thgireal message type data.
Rethrow can be used only within a fault handlen(ch andcatch All in sectiof 5.54). The formal
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definition of CPN fault model (see figure 5]118) fBhrow (or Rethrow) is as follows:

Definition 66 (CPN fault model forT'hrow). A CPN fault model fofl’hrow is a tuple Ny,.= (X,
I, P, T, Pre, Post, F,), where:

o P ={a™, a®, faultName, faultVariable},® md(ty,) = {OK};

o T ={tu}; e Pre and Post are illustrated in tablé 515;
p Lihr faultVariable  faultName ain
re —_
oK O
a” Xain X faultName
aout
. Xgin
faultName X faultName XfaultVariable a

faultVariable | Xfquitvariable

Post benr
OK OK:FW(xam)
ain
aout FW(Xai") O a"”t
f(l’U/ltName X faultName
FaultVariable | X souity araoie Figure 5.18: CPNs of the throw/Rethrow ac-

tivity: the dashed-line places represent the op-
Table 5.5:Pre and Post tables of"hrow activity tional places

Wait (duration|until)

The wait activity specifies a delay for a certain period ofdiar until a certain deadline is reached.
The time delay is modeled as a input data place, no input @ubdata place is defined. The figure
[5.19 illustrates the CPN model ofi& ait activity. The formal definition of CPN fault model (see
figure[5.19) forlV ait is as follows:

Definition 67 (CPN fault model folV ait). A CPN fault model folV ait is a tuple N,q:= (%, T,
P, T, Pre, Post, F,), where:

o P ={a™, a® duration|until}; o md(twait) = {OK};

o T = {twait}; e Pre and Post are illustrated in tablé 5J6;



CHAPTER 5. WEB SERVICES APPLICATION 104

p ain duration|luntil
Pre wait O
OK
ain Xain 4 Xduration|until
aout Xa”’
faUltName Xduration\until
to
Post wait
DK OK:FW () in)
ain
aout FW(Xa“") O aout
faUltName Xduration\until

Figure 5.19: CPNs of the wait activity: the
Table 5.6:Pre and Post tables ofiV ait activity dashed-line places represent the optional places

am

. Xain
Pre |-—50P
OK i
a”™ | Xain temp
aout
Post |—tem» OK:FW ( yin)
OK
ain Y
aout FW(Xai") O aout
Table 5.7: Pre and Post tafigure 5.20: CPNs of th&mpty activity: the dashed-line places rep-
bles of T"hrow activity resent the optional places
Empty

Definition 68 (CPN fault model forEmpty). The Empty activity does nothing, for example when
a fault needs to be caught and suppressed, or to providescgymzation point in a synchronous
subprocess. So the CPN modelfbhipty activity has no data place. The figure 5.20 illustrates the
CPN model of anEmpty activity. The formal definition of CPN fault model (see fighr20) for

Empty is as follows:
A CPN fault model foempty is a tuple Ne,,,= (X, I, P, T, Pre, Post, F), where:

o P = {am, aout}; L md(temp) = {OK}'

o T ={temp}; e Pre and Post are illustrated in tablé 5l7;
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Exit

The Exit activity immediately ends the business process instancéydes the synchronous sib-
lings. All currently running activities MUST be ended imniegly without involving any termi-
nation handling, fault handling, or compensation behavio the CPN model oFxit has no
output activation place but may have the extra input actimgblaces, which are the output activa-
tion places of their synchronous siblings processes. Thedfi§.21 illustrates the CPN model of an
Exit activity. The formal definition of CPN fault model (see figlit@1) for Exit is as follows:

Definition 69 (CPN fault model forExzit). A CPN fault model fozxit is a tuple Ne,i:= (3, T, P,
T, Pre, Post, F,), where:

o P={a"™ a%}; o md(teyit) = {OK};
o T = {tewit}; e Pre and Post are illustrated in tablé 55;
t .
a;’ﬁo al
()
X gin
Xasty ’
Pre temit Post temit
OK OK
ain Xain ain
a2 | xgou acut Figure 5.21: CPNs of theEzit activity:
St Agip S

the dashed-line places represent the optional
Table 5.8:Pre and Post tables of Exit activity places

5.5.3 Structured operators translation
Sequence operatosequence(Ny, No)

Sequence connects different activities, and the execution orderheseé activities is the same as
their appearance order in the constructor. Given two sobgssesV; NV, in a sequence structure,
with N1=(31, I'y, P1, Th, Prey, Posty, Fy ), and No=(39, 'y, Py, Ty, Prey, Posts, F5 ), SO we
can generate the resulting sequence CPN by simply mergirigdhl intermediate output and input
activation places of contractive CPNs (in figre $.22.
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in in

Xai”
Xa

out

out
a,

a,

Figure 5.22: CPNs of the sequence activity: the red crogggesent the canceled arc

Conditional operator Switch({(con;(X;, Vi),N;) }ier)

Switch represents an alternative execution of the activifigaunder the conditionson;(X;, V;).
X, andV; are respectively the variables and constants. For eachreabgs/V;, we add a transition
con; to generate its activation place. Eae,; takes the common activation input placeSabitch,
X;, andV; as inputs to elaborate an input activation plaéféfor sub processV;. Let N;=(%;,
Iy, P, T;, Pre;, Post;, F; ). We define the additional tabld3re; for Pre; and Post, for Post;
in tables in(5.2B. The CPN graph of the resulting activityNis(>, I, P, T, Pre, Post, F)
with: X=U;c; 30, T=Uje; Tir P=Uje, (P \{a" }U X;UV;)U {a a3, T=U;e(TiWteon, }),
F={J;c; Fir, Pre={J;c;(Pre;Pre;), Post:Uiel(Posti@Post;)H (in figure[5.24.

Iterative operator while(con(X,V),S1)

W hile iterates the activityS; execution until the breaking off of the conditionsn (X, V). The
CPN graph ofi¥ hile is similar to Switch in which the activation input place of the sub process
S is elaborated by the activation input placel&fhile, X, andV. Butin W hile, the a®** of the
iterative sub process is alady* of t..,.

Note thatt.,, represents the transition if conditienn is true andizz represents the transition
if condition con is false (in figuré 5.25a).

3C @ ¢’ means to updat€' with C’ by adding places’ rows and transitions’ columns)
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EL(Xai"aszij) EL(Xai”aXziaij)
atn ) al )
Xai” Xaé”
e e
| |
I I
| |
Prel | con; | Post, con;
in Xain aén ELc(aina XXi?X‘/i)
Xi | xx; Xi XX
V; XV; Vvl XV; agut aout aSUt

Figure 5.23: Additiondfigure 5.24: CPNSs of the switch activity: the red crossesaesmt the
Pre; and Post; tables canceled arc

Message triggering operatorPick({M;, S;}icr)

Pick triggers one sub process by the arriving of a messagen M essage(M;) from partnerP A;,
which is represented as the remote activation pt&j@@i. So Pick operator is a combination of a
set ofOnM essage activities (in figurd 5.25b).

Parallel operator flow({S;}icr)

Flow executes the activitieS; in parallel. It terminates when all the activities are figdh(fork-
join). So we addi™*, a°*, t™*, andt°“* to compose the sub processes together in parallel (in figure

5.25¢).

Conditional operator I f({(con;(X;, V;),Si) }icr)

1 f activity provides conditional behavior lik&witch. It consists of an ordered list of one or more
conditional branches defined by theand optionaklsei f elements, followed by an optionalse
element. The figule 5.2bd illustrates the CPN model affaactivity.
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ij Xain Xain

NotCon FW (X, ) FVV(XaanA1 )
FW(Xagz,,)

'

Xa;"

EL(Xamv Xx;i» ij)

out aout agut

(a) While (b) Pick

in

Xain Xv;
Xain
flow;y,
FW (xqn) FW (Xain) EL(X,in,
EL(Xa”""vaia ij) XIHXC;]_) EL(Xa”""»Xxm ij)
ain O ai . oy oy
Xair Xai a" O ap" () ap't_)
— — Xain Xa in X ain
I I
l l = opo oo
afut a;ut
Xage Xaget ag"t (X agtt Xragut
aout
(c) Flow (d) If

Figure 5.25: CPNs of the While, Pick, Flow, and If activititke dashed-line places represent the
optional places, the twill-style filled transitions repeasthe optional transitions, and the red crosses
represent the canceled arcs
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Conditional operator RepeatUntil({(con;(X;,V;),Si) }Yier)

NotCon

Figure 5.26: CPNs of th&epeatUntil operator

The RepeatUntil activity provides for repeated execution of a containedviiet The con-
tained activity is executed until the given Booleamdition becomes true. The condition is tested
after each execution of the body of the loop. In contrast exthile activity, the repeatUntil
loop executes the contained activity at least once. Thed[§#6 illustrates the CPN model of a
repeatUntil activity.

5.5.4 sub process with enclosed environment: Scope

A Scope provides the context which influences the execution behadfigts enclosed activities,
which can be arbitrary depth nested and structured. Thisvietal context includes variables,
partner links, message exchanges, correlation sets, dimthalpsyntactic constructs, such as event
handlers, fault handlers, a compensation handler, andnértation handler. Note that in WS-BPEL
2.0, Invoke can be defined also like scope, which contains the optionahstic constructs for
event handling. In sectidn 5.5.4, we will introduce first thendlers and then how to composite
them in a scope.
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leat, N LcarAll
OK/KO:FW (Y jin) OK/KO:FW (Y jin) OK/IKO:FW (Y jin)
1 2 3
in in —, 4in
Oai Oal
Xui'n Xaén
* A\

Figure 5.27: CPNs of thg¢ault Handlers activity which contains twacatch and onecatchAll
activities: the dashed-line places represent the optiplagles, the crossed places represented the
deleted places, the twill-style filled transitions reprégbe optional transitions, and the red crosses
represent the canceled arcs. Theéch All activity has no data input place
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Fault handlers

Explicit fault handlers, if used, attached ta@pe provide a way to define a set of custom fault-
handling activities, defined byutch andcatch All constructs.Catch andcatch All are the fault
handling activities which correspond#orow andrethrow. They can be defined ifuult Handlers.
Eachcatch with the attributes "faultName”, and/or "faultVariable€onstruct is defined to intercept

a specific kind of fault. AcatchAll clause can be added to catch any fault not caught by a more
specific fault handler. The figuke 5127 illustrates the CPMlehof a fault Handler activity. There

are various sources of faults in BPEL. A fault response ttmanke activity is one source of faults,
where the fault name and data are based on the definition datittein the WSDL operation. A
throw or rethrow activity is another source, with explicitly given name andiata.

n .
mpa ap g aim

Xmpa Xatn
OK/KO:FW(Xmp4) tonEvent SN £ 0, Alarm
JOR/KOFW (x ) OK/KO:FW (x,in)
T C) a’i” (:) aé”
rk flu
Xair Xair | XrE S )

tscol

) ANANY
OK/KO.EL(Xaén, L NoRepeat
X flusXrE)

OK/KO:EL(X,in,
2
thuXrE)

aout

Figure 5.28: CPNs of thevent Handler operator: place E: repeatFvery, the alarm repeat
interval; f|u: for|unti, the start or end point of alarm repeat. The dashed-lineeplagpresent
the optional places, the crossed places represented #tediplaces, the thick-line places represent
the remote places, the twill-style filled transitions regenet the optional transitions, the red crosses
represent the canceled arcs.
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FEventHandlers

These event handlers can run concurrently and are invoket Wie corresponding event occurs.
The child activity within an event handlenustbe ascope activity. There are two types of events.
First, events can be inbound messages that correspond told WfSeration. Second, events
can be alarms, that go off after user-set times. The figur@ BiBstrates the CPN model of a

Xa”?
teom
OK/KO:FW (xin)

in
ay
X{L’i”
|
out
: ; ay

Figure 5.29: CPNs of the compensationHandler and Ternoimia&ndler

event Handler activity.

CompensationHandler and Termination Handler

BPEL allows scopes to delineate that part of the behaviar ithaneant to be reversible in an
application-defined way by specifying a compensation remdlermination handlers provide the
ability for scopes to control the semantics of forced teation to some degree. An arbitrary depth
nested and structured activity is capsulated in the hasdl@he figurd 5.29 illustrates the CPN
model of aCompensation Handler or termination H andler activity. Thecompensate activity
is used to start compensation on all inner scopes that heradgl completed successfully, in default
order. A compensation handler can be invoked by using-thvepensateScope or compensate.
The compensateScope activity is used to start compensation on a specified innepesthat has
already completed successfully. Both these two activitiestonly be used from within a fault
handler (incatch or catch All), another compensation handler, or a termination handler.
Figure[5.30 represents the CPN modelSebpe. Additional activation place?*! is added

throw

to link the transitionthrow with the corresponding ault Handler, placea?* is added to link the

com

transitioncompensate with the correspondingompensationHalder, and place:?“!’ is added to

sco
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OK/KO:FW(x,in)

out/
Athrow

FH

tcom

t
ag}fm tihrow

Figure 5.30: CPNs of thecope operator: the crossed places represented the deleteds pthee
red crosses represent the canceled arc. cilhéh All activity has no data input place. Additional
activation placea?? a2 anda?“’ link the handlers with the primary scope process

throw' “com? sco
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make sure theompensationHalder only compensate the completely executedpe before the
throw activity.

Xain
forin

OK/KO:EL(X in
XF XS,XF)

OK/KO:EL(X in
XS,XF)

EL(Xai"LaXSaXF)

(a) serial (b) parallel

Figure 5.31: CPN model of forEach activity: the thick-linkwges represent the remote places

Conditional operator ForEach({(con;(X;,V;),S:)}ier)

The for Each activity will execute its containedcope activity exactly N+1 times where N equals
the finalCounterValue minus thestartCounterValue. The attributeparallel defines if the
scope activity contained infor Each should be executed in parallel or not. $orEach should
be modeled in two ways. The figure 5.81a and 5.31b respectilastrate the CPN model of a
forEach activity in case of serial and parallel.

5.6 Case study: the CPN model of foodshop

Figure [5.32 illustrates a small BPEL service LocalSuppltich communicates with the BPEL
service WAREHOUSE. It contains three basic activities inguence: areceive activilfecy, H,.equest
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| SEQUENCE
I
{" Rec_WH_request

-ﬂ assign
|

T

('5 I _WvH_response

Figure 5.32: A small BPEL process LocalSupplier which afferder items for BPEL service
WAREHOUSE

receive the item request from the WAREHOUSE, an assign ipctiprepares” the item (in a
true() function), and an invoke activitynvy H,esponse confirms and "sends back’the item to
the WAREHOUSE. Figuré_5.833 is its CPN model. The bolded atitm places PInPN Net_P A
(in gray color), represents the remote activation placedoeive activity
Recy Hrequest. The local activation placePInPN Net is represented as a place in gray color
without bold. The bolded data placessg P0 andmsgP1 represent the remote data places
Request/asyncData_PA and Request/PID_PA, which are the name of the requested item
and the process ID. The data dependencies are illustratéidecsrc of the corresponding output
arc expressions. Then the assign activit§B0L2T'4Assign assigns the datarue() and the or-
der Request/PI1D to variablecallback Response asmsgP7 (callback Response/callback Data)
and msgP8 (callbackResponse/PID) which are the input variables of the asynchronous in-
voke activity D2B0L3T4Invoke. So transitionD2B0L3T4Invoke has two activation places
D2B0L3cPOut4Invoke andD2B0L2cPOut4 Assign_P A to respectively represent the local and
remote output activation places.

Figures [5.34,[5.35, and_5136 illustrate the CPN model of tHOB WAREHOUSE, and
SUPPLIER processes.

5.7 Related works

Petri nets have an intuitive graphical representation dBprocesses and a brand of analysis tools
could be used. In most of existing work, places are used t@sept the system (a BPEL process)
states and transitions are used to represent activities.PElri nets models of BPEL services are
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cPInPNNet_PA

X_cPInPNNet\X_cPInPNNet_PAX_Request/asyncData_P/

X_Request/PID_P/

D2BOL1T4Receive]

FW(cPInPNNetJFW(Request/asyncData_PPRW(Request/PID_PA)

msgP4 D2B0OL1cPOut4Rec

X_D2BO0L2true

D2BOL2T4Assign

_callbackResponse/call

X_D2B0L2cPOut4Assig ackData

D2BOL3T4Invoke

FW(callbackResponse/ca|l

backData) FW(callbackResponse/PID)\ FW(D2BOL2cPOut4Assign)

< D2BOL2cPOut4Assign_PA

Figure 5.33: The CPNs model of LocalSupplier
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Figure 5.34: The CPNs model of SHOP process
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s

Figure 5.35: The CPNs model of WAREHOUSE process
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Figure 5.36: The CPNs model of the SUPPLIER process
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usually used for the composition verification, validatiegsibility checking, dead path elimination,
and controlability criterion checking [92, 117,148] 59,80].

There are also some work modeling BPEL services with higél IBetri nets[[143, 150][ [143]
represents Web service composition description languaghsCPN in terms of WSCI (Web Ser-
vice Choreography Interface) for Web service compositierification. [150] models Web service
with CPN to verify the closure, availability, and securitiMieb service.

Modeling BPEL services as algebra processes is for orctigstrand choreography study [133,
[114)38], dead-path-elimination [132], and ambiguity hedaverification [45] of Web service. We
refer the reader td [10] and [140] for the surveys of formathods of for Web services modeling.

For monitoring and diagnosing a DES which is modeled withriiRetts, the major method is
to detect all the reachable trajectory according to ordelervations (8, 96, 110]) which suffers
from the state explosion problen). [144] proposes a deda@damodel-based diagnosis algorithm
based on the PNs model in_[78] by inferring backward alongdéia dependency paths. But in
[144], the diagnosis algorithms for local BPEL process dugissupport processes contain loops.

There are some other works using different models to do disign[20] proposed a CPN model
and unfolding algorithm for the supervision and diagno§i/eb service, but focused on the change
of the system components (which are modeled as tokens) didtlribt offer the direct translation.
In [24], a system is modeled with process algebra contaifsintfy behavior models. The diagnosis
is to compare all possible action traces with the obsematid\ll the faulty actions on the matched
traces are the diagnosed faulfs. [141] models BPEL seragaynchronizing automata pieces, and
builds the behavioral models from the process description.



Chapter 6

Decentralized architecture for CPN
based diagnosis

6.1 Introduction

The system distribution offers an effective solution foglcomplex systems because of its advan-
tages such as, resource sharing, openness, concurreglefikty, fault tolerance, and transparency.

Meanwhile the maintenance of the distributed systemsiidtiet) diagnosis, is much more demand-

ing.

According to the distribution topologies that we discussechapter[2 sectiofi 2.5, two archi-
tectures, decentralized and distributed, should be faligied when the Web services applications
are concerned. The decentralized architecturé[[33, 979&8413] is more effective for the Web
service applications located on different hosts but therfate data is not confidential. While the
distributed architecture [102, 124,156, 125] 59,37, 118 jHimore suitable for those applications,
of which the authorizations of the components are limited.

In this chapter, we discuss the decentralized diagnogs;aimmunication protocols and diag-
nosis algorithms are given. The global consistency of tleeliealized diagnosis is proposed, which
is inspired by[[148]. The same example of the dining phildswp will be discussed in a distributed
architecture: each philosopher is represented as a sysiaponent as illustrated in figufe_6.1.

121
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OK:FW(Xpg,)
KO:EL(Xpg)

OK:FW(Xp;;)
KO:EL(Xpyy )

Sz Sl

OK:FW(Xpy,) OK:FW(Xpy;)
KO:EL(Xpgy) KO:EL(Xp;,)

Figure 6.1: Dining philosopher: as three distributed p&aitsSs, S

6.2 Decentralized system

The decentralized diagnosis architecture is inspired ppifd [144]. We consider a system com-
posed by a set of interacting software components insidest@rsy The CPN models (see figure
[6.2) can be seen as a set of CPNs (a CPN for each component sidre a set of places called
bordered placegsee definitiod_70). These place-bordered CPNs are callédl 2itnership (see
definition[71).

Definition 70 (Bordered places set). et N be a set of CPNs we range over usiNg we define the

following notations:

1. RP; = P;n | P; is the set of bordered places bf;
J#i

2. RP;; = RP; N RP; is the set of bordered places betwe¥nand V;;
3. RP" = {rp € RP|P* C T; A* PN T, = 0} is the set of input bordered places &F;

4. RP?"" = {rp € RP;}|P* NT; = O A* P C T;} is the set of output bordered places/df;

5. RP"

11—

= RP/"N RPf“t is the set of input bordered places betwéénand NV,;;
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Bordered Places
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Figure 6.2: Place-bordered CPN model in a decentralizddtaoture

6. RP, = RPN RP™ is the set of output bordered places betwéégrand N;.

=7

Note{p|p € P; \ RP;} are the inner places set &f and fori — j, we call N; the source CPN
andN; the target CPN.

Definition 71 (CPN Partnership)Let A" be a set of CPN3/;, we call A" a CPN partnershijiff
° RPZ?'" URPZ-O“t — RP;:
o Vi,j € N, RPj" N\ RP!" = ) A RP{"™ N RP = ).

EachN; is a partner in\.

6.3 Diagnosis problem of decentralized system

The software system (seen as a whole large CPN) can be deyndth the approach proposed in
chaptef# in a centralized way. While sometimes, with thlauity limit of some components, it is
not allowed to get the whole CPN for diagnosis. So it is nesngs® extend the existing centralized
diagnosis approach to such kind of system. The idea is tadazaliagnoser in each component
and to add a specific coordinator to handler the cooperagbtmeen the local diagnosers (see figure
[6.3). To avoid the large amount of communications betweertéimponents of the components of
the software systems, the coordinator keeps only the bedddaces information of the partners to
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coordinate the necessary communication between the |eghasers. A local diagnosis compo-
nent takes the local CPN model and local observation to géméne local diagnostics for the local
recovery component. Each local diagnosis component pgesdscally.

Bordered Places

| Fm |
S
| |

.

.

.
.
;
.

LO1 LD1 CPN1 4—'—» O id—] cPn2 LD2 LO2
20| I
". ,.

LOi LDi CPNi Y O : CPNn LDn LOn

Figure 6.3: Decentralized diagnosis architecture of a tptawe-bordered CPNsLD represents
the local diagnoset, O represents the local observation.

The local diagnosis problem can adapted’@=(M,., (S(7):, <;), M;) according to the def-
inition of the centralized diagnosis problem (see defini@ in chaptetl4).//; represents a final
marking on a local site, but it is not necessary to be a sympi@rking. But the bordered places
cannot have conflict markings in two communicating CPN mddeke assumptiold 1), otherwise
this conflict is ignored. More specifically, the marking oéttarget CPNoversthe marking of the
source CPN.

Proposition 1. Given a CPN partnershipV, its markingM = {M;} satisfies the constraint:
Vrp € RPfﬁj = RPY, Mj(rp) = Mi(rp).

This proposition means that during the communication ofpraxiner CPNs, the marking of the
bordered places set of the target CPN model always coversthle source one. This proposi-
tion ensures that we can decompose a CPN diagnosis probleritsrtCPN partnership diagnosis

problems.

Proof. The proof is obvious based on the definitions of partnersBi@d covering relatioh 55
becaus&/rp € RP" . = RP?“, rpis just the same place which is the border of two CPNs[]

i—] i—7

Then we can define the decentralized diagnosis problem lag/fol
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Definition 72 (Decentralized CPN diagnosis problenGiven a CPN partnership\’, each CPN
partner N; has a local diagnosis problemiD;, a decentralized diagnosis problem &fis D =
{£D;|i e I,Ip e P, My

=r

Definition 73 (Decentralized CPN diagnosisiiven a CPN diagnosis problef, a decentralized
diagnosisDiag(D) is defined asiD’ = {LD;}, s.t., for eachL D] = (Mg, (S(T);, <), M), :

(i) Mo, = M, S(T); = S(T )i < = <, M; = M];

F

(i) Vrp € RP?. = RP"

i—] i—7!

Mj(rp) = M{(rp).
SoDiag(D) = |J Diag(LD;) \ |JRP;.

i€l iel
3-d-p example 24.Consider the scenario in figute 6.1, we can solve the gloaimtisis problem
by solving three local diagnosis problem&D,, L D5, and L D3, each of which has its own local
observation and initial, final markings. Note the borderdalcps for each two partners, which are
placesp;, their final markingij’- (pi) = 0 which satisfy conditiori_{ii) of the decentralized diagrsosi
[73.

6.4 Diagnosis approach

According to the assumptidd 1, symptom occurs on one lota| thien the local diagnoser is trig-
gered. When the local diagnoser needs to communicate wétlpdntner(s), it sends request(s)
through the coordinator. This process continues when tbedawator confirms there is no more
diagnosis request to proceed. Then the coordinator irntegthe diagnosis results by substituting
the intermediate diagnosis results backward. In this @ective explain in detail the protocols and
algorithms of the local diagnosers and the coordinators

6.4.1 Diagnosis protocol

A request (or response) represents the information enfitbeda local diagnoser to the coordinator
(or from the coordinator to a local diagnoser). The locafjdi@sers communicate with the coordi-
nator through sending and receiving requests and respahilsh are queued separately. So both a
local diagnoser and the coordinator have two queues: onedpiests, and the other for responds.
Both the local diagnosers and the coordinator handle thmuledilon of impossible diagnosis so-
lutions (name as counter-diagnosis for convenience) aaghdsis requests and responds in turn.
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To distinguish the different instances of the same diagnased the different local diagnosers, the
requests and responses contain at least the informatiais Wfcal diagnoser id, instance id, the
counter-diagnosis/fault flag, the bordered places, antithiey transition modes. In this section, we
define the workflow and the communicating protocols betwaerldcal diagnoser (figufe .4) and
the coordinator (figure_6l.5).

— getCounterDRequeIFt
—_ risEndCounterDﬂ — getDiagRequeg
No
getlmpossibIeSoI!s isEndDiag

Yes

’ sendCounterDResponlse

sendDiagResponie

Figure 6.4: The flowchart of the local diagnosejetimpossibleSols and get Diag are local
counter-diagnosis and diagnosis generation functionsiwduie explained in chapter 4.

A local diagnoser is initiated by the symptom detected omatst local component and keeps
alive waiting for the requests from the coordinator. In fease, when one or more than one ex-
ception is caught, the local diagnoser performs the diagredgorithm to generate one primary
counter-diagnosis set by functigat/mpossibleSols (and one diagnosis set by functiget Diag)
which contains the local bordered places that need to infiihér and the local counter-diagnosis
(and faulty transitions modes). Then the local diagnosedse¢he counter-diagnosis and the pri-
mary diagnosis result together to the coordinator as thiediagnosis request. In the second case,
the local diagnoser keeps active during the inferring pgsaetil it receives a terminating request
from the coordinator. Then it starts the diagnosis procedkeaeps activate until it receives another
terminating request from the coordinator. Figlre] 6.4 itaies the flowchart of the local diagnoser.

When the coordinator receives this request, it first hanitlescounter-diagnosis, and then the
primary diagnosis result. According to the bordered plagfsmation, the coordinator invokes the
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getCounterDRequest
getDiagRequest

—— sendEndCounterb

——==—___ isCounterDPrimary = isDiagI%%
Yes Yes
No
@estmstory . @estmstow _
No No
Yes|
|addtoRequestHistofy |addtoRequestHistofy ~ Evaluatg‘

etRequestTargét etRequestTarget End)
g q 9} g q 9} :

Yes
| sendCounterDResponIse | sendDiagRespon:ie
— getAIIC0unt®J QEtAIIDia@J
No No

| getCounterDRequeI}t getDiagRequeit

Figure 6.5: The flowchart of the coordinatagCounter D Primary andisDiag Primary mean

if the request needs to be inferred furthiatfnCounter D History andisIn DiagHistory mean if
the request is received beforgst RequestTarget finds the corresponding local diagnoser to send
request for further inferringFvaluate evaluates the first primary diagnosis/counter-diagnogis w
the further diagnosis/counter-diagnosis result and tatleuhe global diagnosis.
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local diagnosers of the source CPNs to infer their own locainter-diagnosis, waits and records
the responds. If there are the bordered places to handle ireipond, the coordinator calls their
corresponding local diagnosers of the source CPNs. To aeodidndant request, the coordinator
records all the requests, when it receives a request existbé history, it does not handle it. The
counter-diagnosis inferring process terminates when nocoeinter-diagnosis in the local diagnosis
response. The coordinator sends a terminating signal toleaal diagnoser to inform them. The
coordinator proceeds with the primary diagnosis requedisa same routine.

The last step, the coordinator substitutes the bordereceplan the primary diagnosis and
counter-diagnosis with the further solved result, which cedl it "evaluate”, and computes the
minimal diagnosis with the operatg«.

6.4.2 Diagnosis algorithm

Algorithm 5 LDS({p;}): local diagnosis for) ,,

Input: (C'FFlag, PSet): a counter-diagnosis/fault places flag and a places sengstsins;
Output: D: local counter-diagnosis/diagnosis (to solve further);
1: if (CFFlag, PSet) is from local then
2. CounterD = getImpossibleSols(Q ;)
{calculate the counter-diagnosis (see algorifhim 2 in ché&pte
D = getDiag(Q ;);
{calculate the diagnosis (see algorithin 4 in chdgtér 4)
4 return D ;
5: else if (CFFlag, PSet) is not EN DCounterD or EN D Diag then
6.  Qy = getInequSys(CFFlag, PSet,Q,;); {update the inequations system, algoritfin 6
7
8
9

w

if CFFlag = C then
CounterD = CounterD U getImpossibleSols(getInequSys(CFFlag, PSet,Q ;));
. elseifCFFlag = F then
10: D=getDiag(Q,;);{DO NOT execution ling_Tp
11:  endif
12: else if (CF Flag, PSet) is EN DCounterD then
13:  return CounterD N RP™;
14: else if (CF Flag, PSet) is EN DDiag then
15.  return D N RP™:;
16: end if

The decentralized diagnosis algorithm consists the loegrebser algorithml. DS (see algo-
rithm[3) and the coordinator diagnoser algoriti S (see algorithn]7). They both pop a request
from the InQueue and push the response to theQueue.
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Algorithm L DS illustrates the process of the local diagnoser after p@ppinequest from the
InQueue and before pushing the responses todh&)uecue. According to the information con-
tained in thelnQueue, three situations are considered:

o if the request is from the local monitoring component, coteprimary counter-diagnosis
and a primary diagnosis based on the current inequatiomsrsy#ne[1 to lind 4);

e if the request is a counter-diagnosis request for furthériregy compute a local counter-
diagnosis based on the updated inequations systeni {linénaig);

e ifthe request is a diagnosis request, compute a local d&gbased on the counter-diagnosis
and then updated the inequations system [line 9 td lihe 10).

Algorithm 6 getInequSys: update the inequations system with new information

Input: CFFlag: CFFlag = C/F meansPSet is counter-diagnosis/faults;
PSet: aplaces set;
Q- current inequations system;
Output: @, the updated inequations system;
1. if CFFlag = C then
ForEachp € PSetn P do
if Eq, € Q’;\Z then
r(Eqy) = r(Eqp) +b—U(Egp);
l(Eqy,) = b;
else ifEq, € Q’]“\Z then
Exit; {ignore the conflict informatioh
end if
end for
10: else ifCFFlag = F then
11: ForEachp € PSetn P do

N

12: if Eq, € Q’;\Z then

13: r(Eqy) =r(Eqy) +r—U(Eqp);

14: (Eqy) =13

15: else if Eg, € Q" then

16: Exit; {ignore the conflict informatioh
17: end if

18:  end for

19: end if

20: return Qs
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Algorithm 7 GDS' global diagnosis solution

Input: Counter Dy: a set of primary counter-diagnosis;
Dy a set of primary diagnosis;

Output: Diag: the global integrated diagnosis set;
: add each bordered plapeof the element o€ ounter Dy into theoutQueue;
Counter D List.add(CounterDy); {Counter D List the list of counter-diagnosis to solye
: add each bordered plapeof the element o) into theoutQueue;
DList.add(Dy); {DList the list of diagnosis to solje
while inQueue # () do

pop out a response fromQueue;

No g~ whR

cernsp;
. updaterequest History concerns;
9: end while
10: if all counter-diagnosis request are respornithenh
11: ForEachi € I do

12: outQueue.add(i, EN DCounterD); {terminate the counter-diagnosis inferring on the
LDs}

13:  end for

14: end if

15: if all diagnosis request are respondieedn
16: ForEachi € I do

17: outQueue.add(i, EN D Diag); {terminate the diagnosis inferring on the LDs
18:  end for

19:  Diag = Evaluate(CounterDList, DList);

20: end if

21: return Diag;

add the response tGounter D List or D List as the further inferring result of request con-
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Function getInequSys is called by LDS for regrouping the inequations @p,, according
to counter-diagnosis/places flagF F'lag during the life cycle of the local diagnoser. For each
unknown-token %) inequation labeled by a place of the input place set, thguagon is adjusted
and removed to either the black-token (link]1-9 of algori@ror red-token (lin€-10-18 of algorithm
[6) inequations sub set. To adjust an inequation, is to matetee marking on the left side of the
inequation to bé (line {3 of algorithn{6)(or (line [13E14 of algorithni16)) without violating the
covering relation of the inequation by add a residual on itjiet iside of the inequation.

The coordinator algorithm®D S in algorithm [T) proceeds in two steps: first, to coordinate th
counter-diagnosis and diagnosis requests by sendingdbests (and receiving the responds) to the
local diagnosers of (and from) the source (and target) CRPN®dordered places (liné 1 to lihg 9);
second, to substitute the responds of further inferringigstjbackward and integrate them to get
the final diagnosis (functioitvaluate listed in the algorithn(18).

Algorithm 8 FEwaluate: to evaluate the diagnosis/counter-diagnosis result almliate the global
diagnosis
Input: CounterD List: the list of the primary counter-diagnosis and the furtiméerred counter-
diagnosis; D List: the list of the primary diagnosis and the further inferréabdosis;
Output: Diag: the integrated diagnosis;
. Diag, = DList.pop;{ Diag,: the further explain concern symptom bordered place
: while Diag, # Diago do
ForEach Diag € DList do
replace alp C Diag with Diagy;
end for
Diag, = D List.pop;,
end while
calculate the counter-diagnosis §&tunter D List in the same way;

U
. Diag =x diag; \ CounterD List
return Diag;

© © N aRwNR

=
e

6.4.3 Example: dining philosophers

3-d-p example 25.Suppose the 3 dining philosophers are located on three kited, S, So, and
Ss, then there are three local bordered plages ps, andps. For S;, RP™ = RP?“ = {p;, p}
withi # j # k andi, j, k € {1,2,3}. Furthermore,RP{",, = RP{“, = RP{", = RPJ", =
{p2}: RP{",y = RP{"y = RPY", = RP{", = {ps}; RP{",y = RP{", = RP{",, = RP{", =
{p1}.
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¥

1: Diag = {p1} X {ps}

s

6 : eyaluate(Diag)
5: Diag(ps) = {ps, md(rz2)}

/ 3 : Diag(ps)
4 : Diag(p1) = {p1,md(r1)}

Figure 6.6: Dining philosophers: decentralized diagnpsixess

2 : Diag(p1)

The diagnosis process (see figlrel 6.6) startsSgrwheret; detect a symptom on plages
and p33. So the local diagnose£D3 on S3 constructs an inequations system (algoritim] 6.1) by
applying the incidence equation (algorithin_16.1). By perforg the local diagnosis algorithrii] 5
LDS, the primary local diagnosigy is {p1} x {ps} in which RP/", = {p1} and RP{",, =
{ps}. Dy is then sent to thénQueue of the coordinator for further diagnosis (algorithid @D.S).
The coordinator pope this request from itsQueue and separated), as {p1} and {p3} then
send the diagnosis requesis , £D;) and (p3, LD-) to the corresponding partne$D; and LD,
(algorithm [ZG DS line [3).

So onLD; and LDs, two inequations systems are constructed as illustratedhtes [6.2 and
by applying the incidence equations illustrated in ¢sb[6.2 and[6]3. Then the coordinator
receives the Local diagnosi®; = {pi,md(r1)} and Dy = {p3,md(r2)} from LD; and LD,
(algorithm [Z2G DS line [@).

To calculate the minimal diagnosis, the coordinator appliee functionFvaluate. The mini-
mal diagnosis is show in the equation]4.7 in chapler 4, whidihé same diagnosis result as using
the centralized diagnosis algorithm.

P1:0 = x — 1y,
P3 * — 1'Xp,
Pz :r =04+ 1FW(xp,)
P33 i =04+ L' EFW (xp,)

: 0
: 0

S\

(6.1)
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pr:
Ps:

P13
P33

- = ¥ ¥
N\

P1:
P3 :
P13
P33

o O * *

Table 6.1: Dining philosopher

p1:
P2 :
P11
P21

o o * -
N
°
=
=

C t3 I3
P1 “Xp1 FW(XPlS)
+ P3 “Xp3 FW(XPSS)
P3| FWOG) | Xpus
P33 | FW(xps) “Xps3

: inequations system in fofrmatrix calculation onSs

Table 6.2: Dining philosopher

P2 :
P3 :
P22
P32

* P2 :
r Ps:
07| P2
0 P32

ny+ng =

: inequations system in fofrmatrix calculation onS;

1

p1ir =k — 'y +nYxin +nyr

P2k =k — I\ng + n\1FW(Xp21) + n\QT

p11:0>=0+ 1\FW(XP1) - n\1XP11 - n\QXpll

po1:0 =0+ 1\FW(Xp2) - n\1Xp21 - n\2X:D21

ra

L ¢ B OK | KO

* + P2 “Xp2 FW(sz) r

0 Ps3 “Xps FW(xps,) r

0 P22 | FW(x},) “Xp22 “Xpa2
P32 | FW(xps) “Xps2 “Xpa2

Table 6.3: Dining philosopher

n3 +ng =

. inequations system in fofrmatrix calculation onS,

1

P2tk =k — Ixp, + Ny FW (Xpy,) + nyr

p3 T o=k — 1\Xp3 + n\i’aFW(Xp32) + nﬁlr

P22 : 0
p32: 0

=04+ 1 FW (Xps) — 75 Xpe2 — 74 Xpas
=0+ 1FW (Xps) — 13 Xpsa — 14 Xpso

N
< | © f OK KO
* + P1 “Xp1 FW(X:DM ) r %
0 P2 “Xpa FW(Xle ) r
0 P11 FW(XZH ) “Xp11 “Xp11
P21 FW(XPz) “Xpa1 “Xpa1

X

tl .
rh.OK :
rl.KO :

tgl

r,OK :
rQ.KO :

t31
3 :

1
Ny
15)

N3
ny

133

(6.2)

(6.3)
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6.5 Proof of global consistency of decentralized diagnosis

The proof equivalence of the decentralized and centralizaghosis is inspired by [149], in which
the definition of functional Petri net and contact placesisoduced. We extend these definitions
into our CPN fault model.

6.5.1 Functional CPN definition

Definition 74 (Functional CPN) A functional CPNis a triple Z = (N, RP™, RP°“!), whereN is
a CPN graph,RP™ C P is a set of bordered input placegP°" C P is a set of bordered output
places, at that sets of input and output places do not intérsB P N RP°“* = (), and places
of setQ = P\ (RP™ U RP°“) will be named an internal and plac€s = RP™ U RP°* as a
contact set.

Definition 75 (Subnet of CPN)A CPNN' = (3, T, P!, T', Cd', Pre’, Post’, F') is asubnetof
CPNNIifY CS, IVYCI,PC, T"CT,Cd C Cd, Pre’ C Pre, Post' C Post, F' C F.

Functional netZ = (N’, RP™, RP°“!) is named agunctional subnebf CPN N and denoted
asZ » N if CPN N’ is a subnet of CP\WV.

Definition 76 (Minimal subnet of CPN)Functional subneZ’ = N is minimal if it does not contain
any other functional subnet of CPN of the source C®N

In global view of the decentralized diagnosis architecttine complete CPN for diagnosis is
naturally composed of functional subnet of CPN, and theamirget is the union of the input/output
bordered places set. And we can now enumerate the mostsagifiroperties of functional subnets
of CPN:

1. Functional CPN subnet is generated by the set of its owsitians.

2. Set of minimal functional CPN subnels= {Z’} , Z7 = N defines the partition of s&f

into nonintersecting subsety, s.t.7 = | JT7, TV NT* = 0, j # k.
J

3. Each functional CPN subngt of an arbitrary CPN N is the sum (union) of finite number of
minimal functional CPN subnets. Union of subnets may be ddfinith the aid of operation
of contact places fusion.
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4. Each contact place of decomposed CPN has no more thanparnienimimal functional CPN
subnet and no more than one output minimal functional CPNetulthe corresponding prop-
erty of PN is proved in[148]).

5. For a bordered places sléPfﬁi: RP{Y; C Cin adistributed environmentp € RP;",,

Mo;(p) = Moj(p) +C(p,-) x ¢ j which means the initial color gf in the functional subnet
Z' is decided by the firing of functional subnégt.

6.5.2 Fundamental equations of functional subnets

Consider an inequations system:
M=My+Cx 6 (6.4)

Each equatiorfg,, : M(pi) = My(p;) + C(pi,.) & whereC(p;,.) represents the row gf; in
the incidence matrixC. Therefore the systerh_6.4 may be represented as:

Eg=Eq, A Eqp, A--- A Eqp,. (6.5)

Theorem 1. Solutiond’ of inequations systetfiq (see equatiod_6l5) for CPN is the solution of
inequations system for each of its functional CPN subpgts.

Proof. As ? is the solution of inequations system for CPN, so? is a CPN diagnosis solution
of system[6.b and consequent?y is a CPN diagnosis solution for each of equatidng,. Thus
? is a solution for an arbitrary subs&l,,. According to property[]1, a functional CPN subugt
, Z' = N is generated by the set of its own transitidifs Thus, an inequation corresponds to a
transition of subnet has the same foffy,, as for the entire net, so subnet contains all the incident
places of source net.

Therefore the inequations system for functional suliffetZ’ - N is a subset of sefFEq,, }
and vector? is its solution. Consequently is the solution of inequations system for functional
subnetZ’. Arbitrary choice of subnef - N in above reasoning proves the theorem. O

Theorem 2. Inequations system of Petri net is solvable if and only & galvable for each minimal
functional subnet and a common solution for contact plaséstse

Proof. According to property[12, a set of minimal functional subngts- {Z7} , Z7 = N of an
arbitrary CPNV defines a partition of séf into nonintersecting subsef$. Let number of minimal
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functional CPN subnets equats As mentioned in the proof of theorefd 1, the equations contai

the terms for all the incident places. Therefore,

L& LMANLPA---ANLF. (6.6)

whereL’ is a subsystem for a minimal functional CPN sub#ét Z7 - N.
To solve the inequations syste@,;, which are composed by, two conditions should be

satisfied as follows:

(i) forthe corresponding equatiohs’| which considers the token number, the left and right sides

of each equation are equal;

(ii) forthe inequations systei® ,,, the covering relationsx) must hold for each inequation.

So the proof of the correctness of the distributed diagndisestwo conditions should be both

proved:
@ The number of token of multi-set for CPN satisfy the pndp€Z, too. So the equatioh_6.7

holds.

|L| < |LY A L2 A--- A LR (6.7)

where| L7| represents the token number of the corresponding fundtsormetr’.
Note that if|L7| has not solutions, thai.| has not solutions, too. Let a general solution for
each functional CPN subnet has the form

#=7" 4+ &Y (6.8)

whereu’ - G7 is the general solution of homogeneous systethc X'/, whereX" is the set
of minimal particular solution of nonhomogeneous systeracfations.
According to equation$ 6.7 arid b.8:

Llez'+ut Gt=7"+u®- GP=... =%+ 4" GF (6.9)

Therefore system

T="+u G =7+ P = . =FF 4+ G (6.10)
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is equivalent to source system

|M| = |Mo| + |C| x 6 (6.11)

We need to demonstrate the solution of sysiem16.10 requinedles quantity of equations.
Consider a set of places of CPN with the set of minimal functional subnefs’/|Z7 ~ N}:

P=Q'uQ*u---uQrfuc (6.12)

where(’ is a set of internal places of subngt andC is a set of contact places. According
to definition each internal plage€ @ is incident only to transitions from sét’. Thuszx, corre-
sponding to this places is contained only in systein Consequently, it is only necessary to solve
the equations for contact places from et

Now construct equations for the contact places ofnet C, so they are only incident more
than one subnet. According to propeffy 4, each contact plae€ is incident not more than two
functional subnets. Therefore, we get equation:

—1j e I R
)+ -Gy =z, +u - GY (6.13)
wherej, [ is the numbers of minimal functional subnets incident totacnplacep € C andG{,
is a column of matrixG“ corresponding to place Equation[6.13 may be transformed as:

u - Gg; —ul- G{ = :Eg - a‘cg (6.14)

Thus system

{xp:x;?+uj~G§,,peQJVpe<c, (6.15)

uj-G%—ul-G{:a_cg—i"g,pGC
is equivalent to the source systdm_6.11.

@@ Given two communicating functional subnef’ and Z!, which communicate through
rpg™,, which means subnet’ sends a message; ,; = rp5*, to Z'. The diagnosis results of
these two functional subnets are respectivly.g’ andDiag’. To get the union of the diagnosis of
two communicating functional subnet, a communicating fiomal subnet union operator is defined

as follows:
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Definition 77 (Communicating functional subnet union¥ is a communicating functional subnet
C
union operator which define as follows:

@) if CL

j—l —

U ) .
0, Diag' x Diag’ = Diag' U Diag?,
C

@] . U . U .
ey - l . l . . l . ,l .
(i) if C;_,, # (0, Diag é Diag’ = Dzang X Dzag?vy X Dzag?vy

\M(C;_1) (Cj) (Cj)

with /7 and M' represent the symptom markings of functional subigand Z'. M(C;_,;)
represents the symptom marking which can inferred to thefsé&t;_,;. Diag’! represents the
diagnosis of the union of functional subneté and Z'. Dmg%(cﬁl) represent the diagnosis of
union of the functional subnetd’ andZ' concerns the symptom marking%((cj_)l).

According to the decentralized diagnosis algorithm, ttebagl diagnosis is calculated &&ag=

S Diag! % DiangI. The principle of the diagnosis processes is to start froensfmptom
CL_,#0
aJndl compute the diagnosi3iag’, and continue to infer according to the bordered commuioicat
pIaces(Cé._ﬂ, and corresponding expressions concerns a bordered place®iag’ is —y, , a
negative item which is ignored during the diagnosis prac8ssthe global inequations system can
be separated as the local inequations systems. Each lecplations system includes two parts: a
set of inequations of a bordered place, which are in form gf « — 1'x,, on the local diagnoser
(which leads td) during the diagnosis process); and a set of inequationsecortice internal places
on the local diagnosef. Then the diagnosis concerns the bordered places compwyttub hocal
diagnoser; is equivalent to that of by the global diagnoser. Thus theroomicating functional
subnet union of all the local diagnosis is equal to the gloldnosis.

The equivalence of the global counter-diagnosis with theruof the local counter-diagnosis
can be proved in the same way.

O

6.6 Decentralized diagnosis of orchestrated BPEL services

In order to enhance fault management in complex servicédsthgt capability of reasoning on global
failures of the overall service, we propose to:

e Associate with each basic service a local diagnoser to geeavie coordinator with the infor-
mation needed for identifying causes of an exception.

The local diagnosis are based on the updated local inegsagistem according to the counter-diagnosis
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e Provide a coordinator, which is not tied to any specific sgrvbut is able to invoke local
diagnosers and relate the information they provide, inm@eeach a diagnosis for the overall
complex service. In case the supply chain has several |es@lsral coordinators may form a
hierarchy, where a higher-level coordinator sees the Idsved ones as local diagnosers.

Each local diagnoser interacts with its Web Service and thighcoordinator. The coordinator
interacts only with local diagnosers. More precisely, titeriaction follows this pattern:

e During service execution, each local diagnoser should taotiie activities carried out by its
Web Service, logging the messages it exchanges with the jpees. The diagnoser exploits
an internal "observer” component collecting the messageési@cally saving them for later
inspection. Notice that when a Web Service composes a sabesigppliers, the coordinator
of the sub network of cooperating services must fill the latiagnoser role. On the other
hand, a Web Service can have a basic local diagnoser thatndbawed to exploit other
lower-level diagnosers in order to do its job. Local diagimesneed to exploit a model of
the Web Service in their care, and is able to construct arugt@ans system to perform local
diagnosis task.

e When a local diagnoser receives an alarm message, it stagsning about the problem to
identify its possible causes, which may be internal to thé \Bfervice or external (erroneous
inputs from other services). The diagnoser can do this blyzing the messages it previously
logged.

e The local diagnoser informs the coordinator about the alameceived and the hypotheses
it made on the causes of the error. The coordinator startkimg other local diagnosers
(following a diagnostic reasoning pattern, detailed irtisec[6.4.1) and relating the different
answers, in order to reach one or more global candidate oéagnthat are consistent with
reasoning performed by local diagnosers.

From the communication point of view, the inclusion of loaat global diagnosers in the archi-
tecture of a complex Web Service is relatively seamlessusecdiagnosers can be implemented as
Web Services (local/coordinator WS) interacting with titfeeo peers via WSDL messages. Specif-
ically:

e Local diagnosers must offer a WSDL operation (logMessagen@BwsdIMsg)) for the re-
ception of the messages to be logged.
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e Each Web Service must send copies of the inbound and outboesdages to its local diag-
noser. To this purpose, each Web Service must be equippbdawibgging service” proxy
which interceptWSDL messages and sends a copy of each negsshgcal Diagnoser WS
through the "logMessage” port.

e The coordinator must offer a WSDL operation to be used byl ldizeynosers to trigger the
global diagnostic process.

e Local diagnosers must offer a WSDL operation to be used byctiwedinator in order to
invoke them.

The proposed approach is modular and supports a seamlextuiction of advanced fault rea-
soning in the management of complex Web Services. The keyt pothat local diagnosers can
exploit specialized reasoning techniques without imppshe same techniques on any of the in-
volved Web Services. Although we require that Web Serviagi$ynocal diagnosers about (normal
and fault) messages they receive from or send to other sspvibis feature can be added to the
invoked services without changing their internal struetuvloreover, if one of the involved services
does not have a local diagnoser, or the model of the servigeited by the local diagnoser is very
rough, the coordinator can still perform its job but the fissmay be less precise (e.g., it may not
be possible to rule out the non-diagnosed service as the ¢authe error).

6.7 Case study:foodshop

6.7.1 Exceptions

Theoretically, four classes of exceptions are possiblanduhe whole foodshop process.

CUSTomer exceptions:

e WrongBillException. CUST checks the bill and realizes tihatre is something wrong (miss-
ing and/or unwanted items) (just befareply Pay activity in figure[5.T)

e TimeOutException. CUST is waiting for some feedback from #fhop (either an unavail-
ability notification, or a request for payment) but none of tivo takes place (just before
reply Pay activity in figure[5.7).
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e WrongParcelException. CUST receives a parcel with misamdyor unwanted items (upon
receive in figure[5.7).

e TimeOutException. CUST never receives the parcel (justreefeceive in figure[5.T).

SHOP exceptions:

e WrongAnswerException. For some items the answer from WARBISE/SUPPLIER is
missing, or the answer is about a different item than askefufmon Reply AlllsAvailable

in figure[5.6).

e TimeOutException. The SHOP never receives an answer onat@itability either from the
WAREHOUSE or from the SUPPLIERS. (in the middle $fipplier : Check AndReserve
andWarehouse : Check AndReserve in figure[5.6 which are in fact respectively consist of
an invoke and a receive activity).

e HighShipCostException. The shipping cost sent from the \BENR®USE is higher than an
expected threshold.

e TimeOutException. The SHOP never receives an answer orhthecsst from the WARE-
HOUSE (just befor&SendCustomer Package in Warehouse process in the figlrel5.6).

e TimeOutException. The SHOP never receives an answer frenCthSTomer on whether
he/she wants to pay or not (just before Paid in figuré 5.7).

SUPPLIER exceptions:

— WrongResCodeException. The reservation code is not réoedjiby SUPPLIER (ei-
ther upon the activity’ancelOrder or uponCon firmOrder of supplier in figuré 56).

— TimeOutException. The buyer (SHOP or WAREHOUSE) neves ®lWUPPLIER whether
to cancel the order or proceed with it (aftéancel Order of shop or warehouse in figure

5.8).
WAREHOUSE exceptions:

— TimeOutException. Some answers on item availability neweve from the SUPPLI-
ERs. (just beforeReturnUnavailable List of warehouse in figurle 3.6).
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— WrongAnswerException. For some items the answer from theFSUERS is missing,
or the answer is about a different item than asked for (uAegembleShipment of
warehouse in figurie 5.6).

— TimeOutException. The WAREHOUSE never receives from th@©8Han answer on
whether to cancel the reservation or to proceed computieghip cost (after
ReturnUnavailableList of warehouse in figurle 5.6).

— TimeOutException. After providing the ship cost, the WARBHSE never receives
an answer from the SHOP on whether to cancel or to proceedthdttorder (after
ReturnUnavailable List of warehouse in figurle 5.6).

— WrongSupplyException. Some items that arrive from the Beggpare wrong (upon
assemble).

— TimeOutException. Some items never arrive from the SUPRIsIEipon
AssembleShipment of warehouse in figurle 5.6).

6.7.2 Fault scenarios

In this section we highlight some failure situations witkte process. In the following section, we
will describe a sample diagnostic process for each of thasatisns.
We will study three situations that are started by an exoapti

1. When computing the bill (activit¢'alculateT otalCost), the SHOP realizes that the ship cost
sent by the WAREHOUSE is higher than the expected threstidlgi{ShipCost Exception
of the SHOP).

2. When receiving the bill, the CUSTomer realizes that sordered item is wrong
(WrongBill Exception of the CUSTomer).

3. When assembling the package, the WAREHOUSE realized tleakived (activity) a wrong
item from one of the SUPPLIER$WrongSupply Exception of the WAREHOUSE).

From the point of view of diagnosis, exceptions are symptofrfaults. There can be several
possible causes for an exception; diagnosis must discase that cannot have happened (based on
observations), possibly reducing the possibilities todhe that took place.

1. There can be two causes forFaighShipCostException in the shop: either the SHOP
selected the wrong warehouse (thus choosing one that isofarthe customer address), or
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the warehouse itself made a mistake (actiiyepareCustomer Package) in computing the
ship cost. Diagnostic reasoning can find these two possélees with backward reasoning,
but without adding any observable data or test action itigoesible to discriminate between
the two.

2. AWrongBill Exception is caused by someone reserving the wrong item, either the VAR
HOUSE (activity Availability)) or one of the SUPPLIERS (activitjvailability). By fol-
lowing backwards the path of the wrong item data, it is pdeditbdiscover who reserved that
particular item and correctly diagnose the problem.

3. Letuslook at the possible causes fo¥aongSupply Exception. Apparently there are three
possibilities:

(a) the SUPPLIER reserved (activitwailability) the wrong item from the beginning;

(b) the SUPPLIER reserved the correct item but then madetakeign updating its internal
order DB, writing the wrong item code (behind the activityailability) ;

(c) the SUPPLIER did everything correct but sent (actiltyedShipment) the wrong
parcel to the WAREHOUSE.

However, possibility 3a can be discarded by observing tvabild have produced an error in
the bill, if the bill is asserted as correct. Thus only poiisiés [30 and 3k remain as candidates.
The SUPPLIER could discover the source of the error by com@dhe reservation codes it
sent to the SHOP with those it wrote down in its DB: if they ame same theh _Bc holds;
otherwise3b holds. It is worth noting that this further dhés not included in our CPN
model, so we cannot distinguish the fallli$ 3b add 3c.

Assume a customer selects a food ware from the on-line giig tlzat his request includes
the phases of food checking for availability (service aitd by the customer), food selection
from a warehouse (service activated by the shop servicek bhipping (service executed by the
shipper service), and payment (service by an external palyssevice). Suppose that the Shipper,
Warehouse, and Supplier belong to a trust circle, that &, itlo security faults can occur in the
messages exchanged among these three services. Faultsathatrise in the trust circle are a
resource-booking fault, due to mismatch of resource rasiervto execute the application. An
internal data fault may occur when the Shop sends order dalte tWarehouse (e.g., a wrong ID).

Another fault, of type Unavailable goods may occur during #xecution of the Warehouse
service, needing to store a log that asks to postpone thesgeadch process until a new event (Good
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in Stock) arises to signal that the Warehouse has been defifleve view the whole application as
a workflow composed of three phases: Selection-and-Bopkragment, and Delivery, a fault of
type phase time out occurs if one phase exceeds the foreseesdhedule; a session fault occurs
if a connection is lost among the phases, and the collectiedada lost.

Finally, consider that food reservation, payment, andhgpare regarded as services that have
been orchestrated and attached to the customer contexgtheng., the customer’s mobile device
or browser. If the shipping service arises a fault, e.g., ssed delivery due to a delayed delivery
time, we regard this fault as a QoS violation in terms of aalvservice time fault, which is not
discussed in this thesis.

An important aspect that has to be considered in this examle presence of many actors,
each with its own database. Since the partners are involvéteisame business, databases could
overlap and thus be affected by data misalignments. Tharkl ¢ database misalignments be-
tween shop and Warehouse and consequently the shop has dateafatalogues. In some cases
this fault might imply the mismatch of customers’ requirense In fact, it could happen that a
warehouse does not communicate to the shop price variationthis case, shop, along the cus-
tomers’ requirements and the available information cow@in its own databases, might select that
warehouse but the new prices do not satisfy the requesto@estwould receive a bill higher than
the requested one. The error is due to the low values of timsdi associated with data owned by
the shop. Misalignments between shop and other actorsbast¢a can also cause completeness
problem. The partners need therefore to analyze their cariwation processes and adopt efficient
synchronization mechanisms by choosing the most suitéble interval to perform the periodic
realignment among databases.

The Diagnosis on WRONG PRICE determines the possible wrangponents and actions,
such as:

e Wrong computation by SHOP

Wrong ship cost by WAREHOUSE

Wrong data in catalogue by SHOP/WAREHOUSE (low data quality

Wrong formulation of problem by CUSTOMER

e Wrong communication (dialog) e.g. 20$ or 20

Considering as a final example the faddMCORRECT ASSEMBLE OF PARCHELe have the
following schema:
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Diagnosis before assemble of parcel action Possible wrong compsnent

e \Wrong synchronization by SUPPLIER (e.g., goods are regdouénot available)

Wrong parts by SUPPLIER

Wrong reservation by SUPPLIER

Missing parts by SUPPLIER

Wrong parcel composition by WAREHOUSE

6.7.3 Diagnosis

This section applies the decentralized diagnosis apprmactie faultINCORRECT ASSEMBLE
OF PARCEL The activity names of the foodshop are abbreviated as la¢@b.4-[6.V. Table 618

lists the communicating messages (a band of bordered plheéseen the partners CUSTomer,
SHOP, SUPPLIER, WAREHOUSE, and LocalSupplier.

ReceiveOrder t StoreOrder ty SplitOrder t3
Supplier:: ¢ Warehouse::
CheckAndReserve | % | CheckAndReserve
ReceiveConfirmatior

ts | CalculateTotalCost tg

ReplyAlllsAvailable | t7 FromCustomer ts ForwardOrder tg
Supplier:: Warehouse::
ConfirmOrder to ForwardOrder | ! CancelOrder | t
Supplier:: ¢ Warehouse:: ¢ ReplyCustomer ¢
CancelOrder 13 CancelOrder 14 Confirmation 15
ReplySomething

ti7

MergeUnavailableList tg IsNotAvailable

Table 6.4: The activity names abbreviationfop service

CheckAndReserve tis | CancelOrder| tiq Availability ta0
Return
UnavailableList
SendShipment | ty,

to1 | ConfirmOrder| tys | AssembleShipment to3

Table 6.5: The activity names abbreviation®Rdal Supplier service
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I ReserveOn
CheckAndReserve | to; Availability tog LocalSupplier to7
ReceiveLocalSupplier Return
Shipment 8 | UnavailableList| 20 | C@ncelOrder | ts
ReceiveSupplier PrepareCustomer
ForwardOrder 31 Shipment t32 Package 33
SendCustomer i
Package 3
Table 6.6: The activity names abbreviationl@iurehouse service
ReceiveOrderFron ¢ PrepareLocalSupplier ¢ SendLocalSuppliel N
Wharehouse | °° Shipment 36 Shipment 87
Table 6.7: The activity names abbreviationlafcal Supplier service
Source Message Target
Service Activity 9 Activity Service
CUSTomer | unknown ShopW SSEI receiveOrder ty SHOP
SHOP ty SupplierW SSEI_check Avail Reserve t1g SUPPLIER
SUPPLIER to1 Real Supplier Answer M SG ta SHOP
SHOP ts5 WarehouseW SSEI_checkAvailable tos WAREHOUSE
WAREHOUSE tog W H Answer M SG ts SHOP
SHOP th CO’I’Lf’LT‘mMSG t22 SUPPLIER
SHOP t11 WarehouseW SSEI_ForwardOrder t31 WAREHOUSE
SHOP tis SupplierW SSEI_unReserve t1g SUPPLIER
SHOP ti4 WarehouseW SSEI_unReserve ts30 WAREHOUSE
SUPPLIER tog SupplierW SSEI_Shipping Request t30 WAREHOUSE
WAREHOUSE tor Reservation Request t3s LocalSupplier
LocalSupplier ty7 Reservation Response tog WAREHOUSE
SHOP t17 ShopW SSEI _reply2Client unknown| CUSTomer

Table 6.8: The communication messages shared by the martner
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From | to Diag name| Diag value
Mons | LDs | Diagg Diag(p1) X Diag(p12) X Diag(ps)
LDs | Cor Diagél) {md(ts4)}

{md(ts3),pa} X {{ps} X {pe,p7}}
Cor LD, Diag(py)
Cor LD, Diag(ps)
Cor LD, Diag(ps)
Cor LD, Diag(p7)
LDy Cor Diagél) Diag(py) = {md(ta4), md(ta3), md(ta0),p11}
LD, Cor Diaggl) Diag(ps) = {md(ts),ps}
LDy | Cor | Diag” | Diag(ps) = {md(ts),pe}
LD, | Cor | Diag{" Diag(pr) = {md(tss), P10}
Cor LD, Diag(p11)
Cor LD, Diag(ps)
Cor LD, Diag(pg)
LD, Cor Diagg?’) Diag(p11) = {md(t4),p12}
LD, | Cor Diag§4)3 Diag(ps) = {p13}
LD, Cor Dz’agf’) Diag(pg) = {p14}
Cor LD Diag(p1o)
LDs Cor Diag:(f) Diag(p1o) = {md(teg), md(tg)}

U U

Cor Cor Diag = {{md(ts4)}, evaluate({md(tss),ps} x {{ps} X {ps,p7}})

Table 6.9: The decentralized diagnosis process of foodskample for exception INCORRECT
ASSEMBLE OF PARCEL

Concerns the fault scenario INCORRECT ASSEMBLE OF PARCEe,distributed observa-
tion can beAs there is not loop in each BPEL service, the oenae of each activity is 1, which is
omitted:

On shop service 01), the partial order observatidib(77), <11)=((t1, t2, ts, ta, ts, te, t7, ts, to,
t10, t11, t15), ((E1,t2), (F2,23), (E3,ta), (t3,ts5), (tarte), (t5.t6), (eit7), (t7:ts), (tsite), (fot10), (t10:t11),
(t11.t15))-

On RealSupplier service §5), the partial order observatioft(7z), <2)=((t1s, t20, t21, t22,
t23, t24),((t18,%20), (20,t21), (t21,t22), (t22,t23), (t23.t24)).

On Warehouse service §3), the partial order observatidib(7s), <13)=((t25, t26, ta7, tas, t2g,
t30, t31, t32, tas, t34),((t2s,t26), (t26,t27), (t27,t2s), (f2s,t20), (t20,t30), (t20,t31), (E31.t32), (¢32.t33),

(t33,t34))-
On Local Supplier service 64), the partial order observation is in fact a complete ordes: o
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(S(T1), <4)=((t35, t36, t37), ((t35:t36), (t36.,t37))-

So the symptom marking is arisen by the CUSTomer of the Fagquishkrvice and is projected
on the output variable partrrangeShippingResponse/Incomingltems, which is a set of bor-
dered data places, (perishable food "White bread” instead of "Brown bread’), (imperishable
food "Orange juice” instead of "Lemon juice”) ang (imperishable food "Green tea” instead of
"Indian tea”) in the CPN model of the reply activity,. The local diagnosef.Dj is triggered by
this symptom marking and get the primary diagnd@i&ggl), the diagnosis stops after a series of
local diagnosers invocations and coordinations (see BBe Figurd 6.7 illustrates the partners

of the Foodshop example and the bordered date places inrthedchumbers, which concerns the
diagnosis.

ReceiveOrder

StoreCrder
SplicGrder

ChedcAndReserve

N iy
Availability s
'
Return
UnavailableList

Shop Supplier

Warehouse

Supplier::
CheckAndReserve

T Cancelorder | Confirm Order
[yes] ; [no] —
v Assem bleShipmed
Avaiable?
CalaulateTot Cost MergeUnavailableList

7N
Replyallls
Available

ReseveOnLosalSupplie

\ReseiveLocalSupplier
Shigrrient.

SendShipmeMNg
&

) Gancelorder | ©® SForwardorder |

LocalSupplier

supplier::
Cancelorder

_ Recevesupplier
ReceiveOrder /_ shipment.
FromWarehouse

Supplier::
CancelOrder

PrepareLacalSupplieN /
Siedis

ReplyCustomer
00| e > [

Figure 6.7: The partners of the foodshop example

Thus the diagnosis can be evaluateddsg = {{md(ts4}), {md(tss)}, D; X Dy} with Dy =
u :
{md(tas), md(tas), md(tao), p12} @nd Dy = {{p13} x D3z} with D3 = {p14, md(tzs), md(tz)}.
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Diag
P1,P2,P3
Diagél)
Pa Ps Pe
Diagél) Dia91 Dzag1
P11 Ps / \
Diagf) Diaq1 Dzaq Dzaq

149

Figure 6.8: The diagnosis tree of for falMCORRECT ASSEMBLE OF PARCHhe labels on the
edges represent the bordered data places need to solverfurth

While the input places a$hop servicepo, p13, andpy4 are confirmed to be correct by the CUS-

Tomer, they are discarded from the diagnosis. Figurk Gu8tithtes the local diagnosis computed

on the local diagnosers. Then the diagnosis can be clasa#iéske figurg 6.7):

e Wrong synchronization by SUPPLIER (e.g., goods are regdouénot available)md(tas);

Wrong reservation/shipment by SUPPLIERd(t20)/md(tas);

Missing parts by SUPPLIERnd(ta);

Missing parts by Warehouseud(tos);

Wrong parcel composition/shipment by WAREHOU Skxi(t33)/md(ts4);

Wrong reservation by LocalSuppliemd(tss);






Chapter 7

Conclusion

This research is motivated by the interest of designingildiged fault diagnosis for the models
of workflows. These workflows are created according to thetig standard and languages that
are used for web-services workflow modeling, and heurigtgcdptions of failure situations within
workflow. The workflows can be composed as a large and complgware system in which the
components are located in different sites and communicikeeach other by visible sent/received
messages. The diagnosis problem is viewed in this thesiarasfpa broader supervisory architec-
ture taking into account that the diagnosis result is usethfdng repair/reconfiguration actions to
realize the "self-healing” Web services applications. @istributed setting that we considered is
very general considering that the software system congseeeral components that are associated
with the local monitoring components and are the local diagncomponents are coordinated by
the decentralized coordinator to manage the informatieh@&xge and global diagnosis calculation.

To the best of our knowledge, it is new to model the distridugeftware system with the CPNs
to represent both the control and data for diagnosing adgeddly. In [60,[51/ 86 28, 150, 145,
[77,[15], the CPNs model is used to model the Workflow from thpeets of data. The control is
normally modeled as the "guards” (the transition firing dtinds) with depend much on the value
of data. To diagnosis Web service based on the CPNs modebdsisdied in[[143, 112] (CPN)
and [87[12[ W, 58,121, 18,141,117, 181] 46] (PN). A distridutetting based on PN models was
considered in[8, 97, 71, 97,96]. While most of them handéerépeating processes in a meticulous
way: to unfold the execution according to the observatidnictvis time/space consuming. Another
difficulty comes from the incomplete knowledge of systeniustaand the observation order. [113,
[96,[12,110] discussed the diagnosis of the partially olagienv of system states and observable
events in form of Petri nets

151
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In this thesis, a novel algebraic backward diagnosis aghrzproposed to handle the repeating
and partial order observation (sectlon]4.3) more effelstivéthout loosing the diagnosis precision.
Meanwhile the incomplete system status is represented ‘asmknown” color (sectio 3.3]1), and
the complexity of the diagnosis algorithm does not increase

In our CPN model, the faults are of two sources: the faultyitndaces, or the faulty transition
modes. The symptoms are represented as a symptom markiolg edritains the exclusive correc-
t/faulty/unknown status of each system variable. The tdskagnosis is to explain the symptom
marking by assigning to each CPN input place a correctnessssand to each transition a series
of modes. As a workflow process can be very complicate, samastichoosing a wrong path can
cause exceptions same as receiving faulty input data. Snoifp this case, both the system data
and control are modeled as the places of CPN model. The dpendency expressions between
the input/output places, which are defined on the arcs of < defines the fault transformation
paths (sectioh 3.3.1). Thus by defining the data dependebeigveen the control and data places,
the different sorts of faults (data/control faults causgddta, control, or both) are naturally unified
(section5.5.R). In this way, the CPN model is in fact a congié and complete cause-and-effect
paths net between the input and output places.

From the point view of PN diagnosis, our task is to explainrilation between the initial and
final markings, which both are a (incomplete) system vagesbkssignments. We define a "covering”
relationship to represent the effect-and-cause relatwden the symptom marking and the initial
marking. And thanks to the mathematical properties of CRid relationship can be represent in an
algebraic way: the incidence equation. So our diagnosisaph transforms the diagnosis problem
as solving an inequations system. As the symptom markingag@nmore assured information, so
the backward inferring algorithms are designed which stiam the final symptom marking and
search for all reasonable assignment for the input placg$ransition modes (sectidn 4.2). In case
of multiple faults occur in the symptom marking, a multi ﬂaqberator;i is defined to integrate the
diagnosis results of each single fault. The pure numericlémce equation of PN loses the order
of the transitions, while in the incidence equation of theNSnodel, the partial orders are kept in
the data dependency functions. Thus the algebraic appdmenot violate the minimality of the
diagnosis for the partial ordered observation.

This algebraic diagnosis approach can be performed eithegritralized or decentralized (sec-
tion[6.2) manner. In a distributed architecture, the whgstem is looked as a set of place-bordered
CPNs models located on different sites. The data and cerdrelpassed by the bordered places (re-
mote activation and data places) between the neighbor CBNgach site, the local diagnoser has
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its own CPN models and observations. A coordinator is ingdgnaf managing the communications
between the local diagnosers through the knowledge of beddalaces of the local CPN models.
The backward search is used in the decentralized algoritinrddriving the preliminary local cal-
culation of a component (Sectibn 64.1). The coordinatdragsemble the diagnosis results after
all the local reasoning terminate. As both the CPN model dsgivations are locally independent,
the decentralized diagnosis architecture can be easily apan an hieratical manner.

In sectior[ 6.6, the equivalence of the decentralized disigrand the global one is proved. In
this section, the definition of "functional CPN subnet” ifraduced to represent the place-bordered
CPNs. The equivalence between the "functional CPN subretd'the global CPNs is proved both
on the aspect of the token number and token color reasoning.

In the part of the application (chapf{er 5), we studied themkable XML-based workflow de-
scription language WS-BPEL and translated all its basiwvities (message communication, syn-
chronous/asynchronous remote WS invocation, etc) andtatas operators (choice, loop, concur-
rency, etc) into our CPN model. The most subtle data depemeehetween the places are retrieved
by the XPath parsing.

7.1 Future work

We plan to further extend the results of this thesis in thiefdhg ways:

1. to study the diagnosis protocol for the distributed adesfture that each local diagnoser rec-
ognize its own neighbors and updates its diagnosis ac@ptdithe diagnosis requests of its
neighborhoods.

2. to study the problem of diagnosability of the CPNs modethgcking the deterministic prop-
erties of the columns of the CPNs incidence matrix. If in tvamsitions modes are not deter-
minative in the incidence matrix, these two transitionsncairbe determinately diagnosed.

3. to extend the fault prediction based on the data faultrdiaig. Once the faulty input data is
confirmed, the prediction for the following places that aneneported to be faulty is reliable.
The approach performs the forward reasoning on the CPNsImode

4. to introduce the time conception into the CPNs model bynigfithe "guard” on the transi-
tions. The time stamps of the monitoring log can be used taomgthe quality of diagnosis
but the clock synchronization between the different lodaksneed to be considered.
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5. to include probabilistic information to order diagnosesult. The probabilistic information
can be calculated according to the long term QoS data or thldigations of the components
providers.
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Appendix A

The foodshop file list

1|<?xml version="1.0" encoding="UTF8"?>

<!—

3|BPEL Process Definition

Edited using ActiveBPEL(tm) Designer Version 2.1.0 (htipwww.active—endpoints .
com)

5|—

<process xmlns="http://schemas.xmlsoap.org/ws/2003MBsiness-process/”
xmlns:abx="http: //www. activebpel.org/bpel/extensidbmxmins:bpws="http://
schemas.xmlsoap.org/ws/2003/03/businepsocess/” xmlns:ext="http: //www.
activebpel.org/2.0/bpel/extension” xmlns:ns1="urno®WS/wsdl” xmlns:ns2="
urn:/WarehouseServer/” xmiIns:ns3="urn:/RealSupplier8er/” xmlns:ns4="
urn:SupplierWS /types” xmlns:ns5="urn:ShopWS/types” km:ns6="
urn:WarehouseWS /types” xmlns:ns7="urn:LocalShopWSkHW xmlns:xsd="http://
www.w3.0rg/2001/XMLSchema” name="Shop” suppressJoinlfiae="yes”
targetNamespace="http: //Shop”

7 <partnerLinks-

<partnerLink myRole="ShopProvider” name="Shefhop2HumancClient”
partnerLinkType="nsl:ShopShop2HumanClient ™

9 <partnerLink myRole="WHCallBack” name="Shefgphop2WH" partnerLinkType="
nsl:Shop-Shop2WH” partnerRole="WarehouseProvider?/

<partnerLink myRole="RealSupplierCallBack” name="Shephop2RealSupplier”
partnerLinkType="nsl:ShopShop2RealSupplier” partnerRole="
RealSupplierProvider™

11 <partnerLink name="ShopShop2LocalShopService” partnerLinkType="nsl:Shop

Shop2LocalShopService” partnerRole="LocalShopSerRcevider”/>
</ partnerLinks>
13 <variables
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17

19

21

23

25

27

29

31

33

35

37

APPENDIXA. THE FOODSHOP FILE LIST 3

<variable messageType="nsl:WHAnswerMSG"” name="WHANS&G" />

<variable messageType="nsl:RealSupplierAnswerMSG” rame
RealSupplierAnswerMSG ™4

<variable messageType="nsl:ShopWSSkdceiveOrder” name="
ShopWSSElreceiveOrder”%

<variable messageType="nsl:ShopWSSkelply2Client” name="
ShopWSSElreply2Client” />

<variable messageType="ns3:SupplierWSS&heckAvailReserve” name="
SupplierWSSEIcheckAvailReserve™#

<variable messageType="ns2:WarehouseWSSBEckAvailable” name="
WarehouseWSSEtheckAvailable” &

<variable messageType="ns3:SupplierWSS&EiReserve” name="
SupplierWSSElunReserve”$

<variable messageType="ns3:SupplierWSSEdquestSupply” name="
SupplierWSSElrequestSupply "¢

<variable messageType="ns2:WarehouseWSS®hfirmOrder” name=
WarehouseWSSEtonfirmOrder” />

<variable messageType="ns2:WarehouseWSSIEReserve” name="
WarehouseWSSEUnReserve”%

<variable messageType="ns7:receiveOrderlRequest” ndme=
receiveOrderlRequest®/

<variable messageType="ns7:receiveOrderlResponse” name
receiveOrderlResponse?/

<variable messageType="ns7:CalculateTotalPriceRequersame="

CalculateTotalPriceRequest®/
<variable messageType="ns7:CalculateTotalPriceResgdnaame="
CalculateTotalPriceResponse?/
<variable name="TempV2” type="xsd:boolean?/
<variable name="TempV3"” type="xsd:boolean?/
<variable messageType="ns3:ConfirmMSG” name="Confirm®S >
<variable messageType="nsl:ExternalProblemMSG” namesdeEnalProblemMSG "%
<variable messageType="nsl:ExternalProblemsMSRealSupplier” name="
ExternalProblemsMSGRealSupplier”t
<variable messageType="ns7:GetltemNameListRequest” exdm
GetltemNamelListRequest?/
<variable messageType="ns7:GetltemNamelListResponsererd
GetltemNamelListResponse®/
</variables
<correlationSets
<correlationSet name="CS1” properties="nsl:StCorrelail/>
</ correlationSets
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53
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57

59

61
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65

67

69

71

APPENDIXA. THE FOODSHOP FILE LIST 4

<sequence
<receive createlnstance="yes” name="R&com_User” operation="receiveOrde
" partnerLink="Shop-Shop2HumanClient” portType="ns1:ShopPT” variables
ShopWSSElreceiveOrder?
<correlations
<correlation initiate="yes” set="CS1"
</correlations
<lreceive>
<assign-
<copy>
<from part="parameters” query="/ns5:receiveOrder/PID"arMable="
ShopWSSElreceiveOrder "
<to part="PID"” variable="receiveOrderlRequest?/
</copy>

<copy>
<from part="parameters” query="/ns5:receiveOrder/Stgi2” variable=

"ShopWSSElLreceiveOrder”%
<to part="ItemList” variable="receiveOrderlRequest?/
</copy>
<lassign-
<invoke inputVariable="receiveOrderlRequest” name="
Inv_SplitOrderon_ShopLocalService” operation="receiveOrderl”
outputVariable="receiveOrderlResponse” partnerLinighop-
Shop2LocalShopService” portType="ns7:LocalShopP¥*"/
<assign name="AssighAprepareMSGforSuppliert®
<copy>
<from part="PID” variable="receiveOrderlResponse’/
<to part="PID” variable="SupplierWSSEtheckAvailReserve™
<l copy>
<copy>
<from part="PerishablelList” variable="receiveOrderlRemnse "
<to part="ItemList” variable="SupplierWSSEtheckAvailReserve™#
</copy>

<copy>
<from part="parameters” query="/ns5:receiveOrder/Cusftd_1"

variable="ShopWSSElreceiveOrder”%
<to part="Custinfo” variable="SupplierWSSEtheckAvailReserve™#
</copy>
</ assign>
<assign name="AssignaprepareMSGforWarehousg”

<copy>

r
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<from part="PID” variable="receiveOrderlResponse’”/
<to part="PID" variable="WarehouseWSSEd¢heckAvailable”t
</copy>

<copy>
<from part="UnPerishableList” variable="receiveOrder&Rponse "%

<to part="parameters” query="/ns6:checkAvailReserverfi®g_1"
variable="WarehouseWSSEtheckAvailable” &
</copy>
<copy>

<from part="parameters” query="/ns5:receiveOrder/Cusftd_1"
variable="ShopWSSElreceiveOrder”%

<to part="parameters” query="/ns6:checkAvailReserve/LTnfo”
variable="WarehouseWSSEtheckAvailable” &
</copy>
<lassign-

”

<scope variableAccessSerializable="no
<eventHandlers
<onMessage operation="ExternalProblemsManagement” partink="Shop-
Shop2WH” portType="nsl:WHcallbackPT” variable="
ExternalProblemMSG3
<correlations
<correlation set="CS1"%
</correlations>
<ext:suspend name="Susperxh-WH_Request”b
</onMessage
<l— MSG from Supplier—>
<onMessage operation="ExternalProblemsManagemdégalSupplier”
partnerLink="Shop-Shop2RealSupplier” portType="
nsl:RealSuppliercallbackPT” variable="ExternalPromleMSG—
RealSupplier®
<correlations
<correlation set="CS1"%
</correlations
<ext:suspend name="Suspenah_RealSupplierRequest®/
</onMessage
</eventHandlers
<sequence
<flow>
<sequence
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<invoke inputVariable="SupplierWSSEtheckAvailReserve” name=
Inv_CheckAvailaReserveon_Supplier” operation="
checkAvailReserve” partnerLink="Shefshop2RealSupplier”
portType="ns3:RealSupplierServes”
<correlations
<correlation pattern="out” set="CS1%/
</correlations
</invoke>
<receive name="RecSupplierAnswer” operation="
receiveRealSupplierAnswer” partnerLink="Shep
Shop2RealSupplier” portType="nsl:RealSuppliercallk®&d”
variable="RealSupplierAnswerMSG”
<correlations
<correlation set="CS1"%
</correlations
<lreceive>
</sequence
<sequence
<invoke inputVariable="WarehouseWSSElheckAvailable” name="
Inv_CheckAvailableon.WH” operation="checkAvailable”
partnerLink="Shop-Shop2WH” portType="ns2:WarehouseServer’
<correlations
<correlation pattern="out” set="CS1%/
</correlations
</invoke>
<receive name="Re®WHAnswerMSG” operation="receiveAnswer”
partnerLink="Shop-Shop2WH" portType="nsl:WHcallbackPT”
variable="WHAnswerMSG*
<correlations
<correlation set="CS1"%
</correlations
<lreceive>
</sequence
</ flow>
<assign>
<copy>
<from part="Availability” variable="RealSupplierAnsweMSG" />
<to variable="TempV2" 5
</copy>

<copy>
<from part="Availability” variable="WHAnswerMSG” &

i
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<to variable="TempV3" £t
</copy>
<lassigmn
<switch>
<case condition="(bpws:getVariableData ('TempV2’) and
bpws:getVariableData ('TempV3’) }*
<sequence
<assign>
<copy>
<from part="parameters” query="/ns5:receiveOrder/PI
variable="ShopWSSElreceiveOrder”#
<to part="PID"” variable="WarehouseWSSHKonfirmOrder”
/>
</copy>

<copy>
<from part="parameters” query="/ns5:receiveOrder/

Custinfo.1” variable="ShopWSSElreceiveOrder”#

<to part="CustIinfa2” variable="
WarehouseWSSEtonfirmOrder” />
</copy>
<copy>

<from part="UnPerishableList” variable="
receiveOrderlResponse?/
<to part="String.1” variable="
WarehouseWSSEtonfirmOrder” />
</copy>
</ assigmn
<invoke inputVariable="WarehouseWSSEbnfirmOrder” name="
Inv_ConfirmOrderon_.WH"” operation="confirmOrder”
partnerLink="Shop-Shop2WH" portType="
ns2:WarehouseServes”
<correlations
<correlation pattern="out” set="CS1%
</correlations
</invoke>
<assign>
<copy>
<from part="parameters” query="/ns5:receiveOrder/
Custinfo.1” variable="ShopWSSElreceiveOrder”#
<to part="Custinfo” variable="ConfirmMSG"#

</copy>
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<copy>
<from part="parameters” query="/ns5:receiveOrder/PI
variable="ShopWSSElreceiveOrder”#
<to part="PID"” variable="ConfirmMSG” 5
</copy>
<l assign>
<invoke inputVariable="ConfirmMSG” name="
Inv_Confirm_on_RealSupplier” operation="Confirm”
partnerLink="Shop-Shop2RealSupplier” portType="
ns3:RealSupplierServer?/
<assign>
<copy>
<from expression="concat( bpws:getVariableData(’
receiveOrderlResponse’, 'PerishablelList’) ,&quo
;,&quot; ,bpws:getVariableData(’
receiveOrderlResponse’, 'UnPerishableList’) »"/
<to part="ItemList” variable="
CalculateTotalPriceRequest?/
</copy>
<copy>
<from part="parameters” query="/ns5:receiveOrder/PI

variable="ShopWSSElreceiveOrder”#
<to part="PID” variable="CalculateTotalPriceRequest
>
</copy>
<l assign>
<invoke inputVariable="CalculateTotalPriceRequest” rei
Inv_CalculateTotalPriceon_.ShopLocalService” operationj
"CalculateTotalPrice” outputVariable="
CalculateTotalPriceResponse” partnerLink="Shop
Shop2LocalShopService” portType="ns7:LocalShopP*"/
<assign name="PreparMSG_for_Get.Item_Name™
<copy>
<from expression="concat( bpws:getVariableData(’
receiveOrderlResponse ', 'PerishablelList’) ,&quo
;,&quot;, bpws:getVariableData(’
receiveOrderlResponse ', 'UnPerishablelList’) »"/
<to part="getltemNamelListRequest” variable="
GetltemNamelListRequest?/
</copy>
</ assigmn

|

~

4
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<invoke inputVariable="GetltemNamelListRequest” namerih
GetltemNamelList” operation="GetltemNameList”
outputVariable="GetltemNamelListResponse” partnerL#ik
Shop-Shop2LocalShopService” portType="ns7:LocalShopPT
>

<assign-
<copy>

<from part="getltemNameListResponse” variable="
GetltemNamelListResponse®/

<to part="Incomingltems” variable="
ShopWSSElreply2Client” />
</copy>
<copy>

<from part="parameters” query="/ns5:receiveOrder/PI
variable="ShopWSSElreceiveOrder”#
<to part="PID” variable="ShopWSSEreply2Client” />
</copy>

<copy>
<from expression="concat(&quot;Thanks for the

shopping , total price is &quot;,
bpws:getVariableData (' CalculateTotalPriceRespon
", 'Price’) )"/>
<to part="replyMsg” variable="ShopWSSEiteply2Client”
/>
</copy>
<l assign>
</sequence
</ case-
<otherwise-
<sequence
<assign-
<copy>
<from part="parameters” query="/ns5:receiveOrder/PI
variable="ShopWSSElreceiveOrder "%
<to part="PID” variable="SupplierWSSELnReserve"#
</copy>

<copy>
<from part="parameters” query="/ns5:receiveOrder/PI

variable="ShopWSSElreceiveOrder”#
<to part="PID"” variable="WarehouseWSSHInReserve"%

</copy>

"/

5e

4

|

4
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<copy>
<from part="parameters” query="/ns5:receiveOrder/

Custinfo.1” variable="ShopWSSElreceiveOrder”#
<to part="parameters” query="/ns4:unReserve/Custinfo”
variable="SupplierWSSElunReserve”$
</copy>
<copy>
<from expression="&quot ; prova&quot ;™f
<to part="String.1” variable="
WarehouseWSSEuUnReserve”$
</copy>

<copy>
<from part="parameters” query="/ns5:receiveOrder/PI

variable="ShopWSSElreceiveOrder”#
<to part="parameters” query="/ns4:unReserve /PID”

|

variable="SupplierWSSElunReserve”"%
</copy>
<l assign>
<invoke inputVariable="WarehouseWSSkInReserve” name="
Inv_Unreserveon_.WH” operation="unReserve” partnerLinks
"Shop—Shop2WH” portType="ns2:WarehouseServer”
<correlations
<correlation pattern="out” set="CS1%
</correlations
</invoke>
<invoke inputVariable="SupplierWSSEuUnReserve” name="

Inv_Unreserveon_RealSupplier” operation="unReserve”
partnerLink="Shop-Shop2RealSupplier” portType="
ns3:RealSupplierServer”’
<correlations
<correlation pattern="out” set="CS1%
</correlations
<linvoke>
<assign-
<copy>
<from expression="concat( &quot;Not available items
&quot;,bpws:getVariableData(’
RealSupplierAnswerMSG ', 'unReservedltems’) ,&qud
;,&quot;, bpws:getVariableData ('WHAnswerMSG’, ’
unReservedltems ') )™

—
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<to part="getltemNamelListRequest” variable="
GetltemNamelListRequest®/
</copy>
<l assign>
<invoke inputVariable="GetltemNamelListRequest” namenrV}
GetltemNamelList” operation="GetltemNameList”
outputVariable="GetltemNameListResponse” partnerL#ik
Shop-Shop2LocalShopService” portType="ns7:LocalShopPT
>
<assign-
<copy>
<from expression="&quot;sorry something is not
available&quot ;" &
<to part="replyMsg” variable="ShopWSSEiteply2Client”
/>
</copy>
<copy>
<from part="parameters” query="/ns5:receiveOrder/PI
variable="ShopWSSElreceiveOrder”#
<to part="PID” variable="ShopWSSEreply2Client”/>
</copy>
<copy>
<from part="getltemNameListResponse” variable="
GetltemNamelListResponse?/
<to part="Incomingltems” variable="
ShopWSSElreply2Client” />
</copy>
</ assigmn
</sequence
</otherwise>
</switch>
<wait for="'PT10S’"/>
</sequence
</scope-
<reply name="Replyto_client” operation="receiveOrder” partnerLink="Shep
Shop2HumanClient” portType="nsl:ShopPT” variable="
ShopWSSElreply2Client” />
</sequence
</process

u/

)

Listing A.1: SHOP BPEL service
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1|<?xml version="1.0" encoding="UTF-8"?>

3|BPEL Process Definition

APPENDIXA. THE FOODSHOP FILE LIST 12

<

Edited using ActiveBPEL(tm) Designer Version 2.1.0 (htipwww.active—endpoints .
com)

<process xmlns="http://schemas.xmlsoap.org/ws/2003MBsiness-process/”
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/08éness-process/”
xmlns:ext="http: //www. activebpel.org/2.0/bpel/exteion” xmlns:nsl="urn:/
RealSupplierServer/” xmlns:ns2="urn:ShopWS/wsdl” xnstms3="urn:SupplierwS/
types” xmins:ns4="urn:SupplierLocWS1/wsdl” xmiIns:nsS#n:/WarehouseServer/’
xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema” name=€RISupplier”
suppressJoinFailure="yes” targetNamespace="http: /aRupplier™
<partnerLinks
<partnerLink myRole="RealSupplierProvider” name="Real®plier—
RealSupplier2Shop” partnerLinkType="nsl:RealSupplieRealSupplier2Shop
" partnerRole="RealSupplierCallBack?/
<partnerLink myRole="RealSupplierProvider” name="Real®plier—
RealSupplier2WareHouse” partnerLinkType="nsl:Realplipr—
RealSupplier2WareHouse®/
<partnerLink name="RealSupplietRealSupplier2RealSupplierLocalService”
partnerLinkType="ns1:RealSupplier
RealSupplier2RealSupplierLocalService” partnerRole="
RealSupplierLocalServiceProvider®/
</ partnerLinks>
<variables
<variable messageType="ns2:RealSupplierAnswerMSG” rmme
RealSupplierAnswerMSG ™
<variable messageType="nsl:SupplierWSS&hHeckAvailReserve” name="
SupplierWSSEIcheckAvailReserve™#
<variable messageType="nsl:SupplierWSSEdquestSupply” name="
SupplierWSSElrequestSupply "¢
<variable messageType="nsl:SupplierWSS&EiReserve” name="
SupplierWSSElunReserve”$
<variable messageType="nsl:SupplierWSSEhippingRequest” name="
SupplierWSSEIShippingRequest™
<variable messageType="ns4:CheckLocalAvailabilitylReegt” name="
CheckLocalAvailabilitylRequest™
<variable messageType="ns4:CheckLocalAvailabilitylPesse” name="

CheckLocalAvailabilitylResponse®/




21

23

25

27

29

31

33

35

37

39

41

43

45

47

APPENDIXA. THE FOODSHOP FILE LIST 13

<variable messageType="ns4:ArrangeShippingRequest” exdm
ArrangeShippingRequest®/
<variable messageType="ns4:ArrangeShippingResponseresd
ArrangeShippingResponse?/
<variable messageType="nsl:ConfirmMSG” name="Confirm®S >
<variable messageType="ns4:ReservationRequest” namesdvationRequest?/
<variable messageType="ns4:ReservationResponse” naReskrvationResponse
1>
<variable messageType="ns4:UnReservationRequest” ndme=
UnReservationRequest?/
<variable messageType="ns4:UnReservationResponse” name
UnReservationResponse?/
<variable messageType="nsl:ExternalProblemManageme&®M name="
ExternalProblemManagementMSG2/
<variable messageType="ns2:ExternalProblemsMSRealSupplier” name="
ExternalProblemsMSGRealSupplier”t
</variables
<correlationSets
<correlationSet name="CS1” properties="nsl:RealSupplerrelationSet”%
</correlationSets
<sequence
<receive createlnstance="yes” name="R&equestfrom_Shop” operation="
checkAvailReserve” partnerLink="RealSupplieRealSupplier2Shop”
portType="nsl:RealSupplierServer” variable="
SupplierWSSElcheckAvailReserve®
<correlations
<correlation initiate="yes” set="CS1™
</correlations
<l/receive>
<assign>
<copy>
<from part="PID"” variable="SupplierWSSEtheckAvailReserve™$
<to part="PID” variable="CheckLocalAvailabilitylReque&&/>
</ copy>
<copy>
<from part="ItemList” variable="SupplierWSSEtheckAvailReserve#
<to part="parameters” variable="CheckLocalAvailabilitRequest”f

</copy>
</ assign>

”



49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

APPENDIXA. THE FOODSHOP FILE LIST 14

<invoke inputVariable="CheckLocalAvailabilitylRequestname="
Inv_CheckAvailability.on_.RealSupplierLocalService” operation="
CheckLocalAvailabilityl” outputVariable="
CheckLocalAvailabilitylResponse” partnerLink="RealBplier—
RealSupplier2RealSupplierLocalService” portType="nS4dpplierLocPT"H
<assign>
<copy>
<from part="Availability” variable="CheckLocalAvailablitylResponse”
/>
<to part="Availability” variable="RealSupplierAnswerMS"/>
</copy>

<copy>
<from part="UnPerishableList” variable="

CheckLocalAvailabilitylResponse®/
<to part="unReservedlitems” variable="RealSupplierAnsM&G" />
</copy>

<copy>
<from part="PID"” variable="CheckLocalAvailabilitylRegmse"/

<to part="PID” variable="RealSupplierAnswerMSG 3%/
<l copy>
<lassign-
<invoke inputVariable="RealSupplierAnswerMSG"” name="
Inv_SupplierAnsweron_Shop” operation="receiveRealSupplierAnswer”
partnerLink="RealSupplierRealSupplier2Shop” portType="
ns2:RealSuppliercallbackP®”
<correlations
<correlation pattern="out” set="CS1%
</correlations
</invoke>

<scope variableAccessSerializable="no"
<faultHandlers>
<catchAlb>
<sequence
<assign>
<copy>
<from part="PID” variable="
SupplierWSSEIcheckAvailReserve™
<to part="PID"” variable="ExternalProblemManagementMSG”’
</copy>
<copy>

<from expression=""General Problem’>/
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<to part="ProblemCode” variable="ExternalProblemsMSG
RealSupplier”t
</copy>
<lassign-
<invoke inputVariable="ExternalProblemsMSE&RealSupplier” names
"Inv—-Suspendon_Shop” operation="
ExternalProblemsManagemenRealSupplier” partnerLink="
RealSupplierRealSupplier2Shop” portType="
ns2:RealSuppliercallbackP T3/
<ext:suspend*
</sequence
</catchAll>
</faultHandlers
<eventHandlers
<onMessage operation="ExternalProblemsManagement” partink="
RealSupplierRealSupplier2WareHouse” portType="
nsl:RealSupplierServer” variable="ExternalProblemMgementMSG>*
<correlations
<correlation set="CS1"%
</correlations>
<sequence
<ext:suspend*
</sequence
</onMessage
</eventHandlers
<pick>
<onMessage operation="unReserve” partnerLink="RealSlpp—
RealSupplier2Shop” portType="nsl:RealSupplierServevariable="
SupplierWSSEIunReserve?®
<correlations
<correlation set="CS1"%
</correlations>
<sequenceg
<assign>
<copy>
<from part="PID” variable="
SupplierWSSEIcheckAvailReserve™
<to part="PID” variable="UnReservationRequest?/
</copy>
<copy>




111

113

115

117

119

121

123

125

127

129

131

133

135

137

APPENDIXA. THE FOODSHOP FILE LIST 16

<from part="Custinfo” variable="
SupplierWSSElcheckAvailReserve™
<to part="Custinfo” variable="UnReservationRequest’/
</ copy>
<copy>
<from part="parameters” variable="
SupplierWSSEIunReserve”"$
<to part="parameters” variable="UnReservationRequest
<l copy>
<lassign-
<invoke inputVariable="UnReservationRequest” name="
Inv_Unreserveon_RealSupplierLocalService” operation="
UnReservation” outputVariable="UnReservationRespohse
partnerLink="RealSupplie+r
RealSupplier2RealSupplierLocalService” portType="
ns4:SupplierLocPT"%
</sequence
</onMessage
<onMessage operation="Confirm” partnerLink="RealSupeti-
RealSupplier2Shop” portType="nsl:RealSupplierServevariable="
ConfirmMSG™>
<correlations
<correlation set="CS1"%
</correlations
<sequenceg
<assign-
<copy>
<from part="parameters” variable="
CheckLocalAvailabilitylRequest™
<to part="parameters” variable="ReservationRequest”/
<l copy>
<copy>
<from part="Custinfo” variable="
SupplierWSSEIcheckAvailReserve™
<to part="Custinfo” variable="ReservationRequest?/
</copy>

<copy>
<from part="PID” variable="

SupplierWSSElcheckAvailReserve™
<to part="PID” variable="ReservationRequest?/

</copy>
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<lassign-
<invoke inputVariable="ReservationRequest” name="
Inv_Reserveon_REalSupplierLocalService” operation="
Reservation” outputVariable="ReservationResponse”
partnerLink="RealSupplie+r
RealSupplier2RealSupplierLocalService” portType="
ns4:SupplierLocPT"#
<receive name="RecShippingRegfrom_WH” operation="
ArrangeShipping” partnerLink="RealSupplier
RealSupplier2WareHouse” portType="nsl:RealSupplierser”
variable="SupplierWSSEIShippingRequest?
<correlations
<correlation set="CS1"#
</correlations
<lreceive>
<assign>
<copy>
<from part="ShippingData” variable="
SupplierWSSEIShippingRequest™
<to part="ItemList” variable="ArrangeShippingRequest?/
<l copy>
<copy>
<from part="PID"” variable="
SupplierWSSElcheckAvailReserve™
<to part="PID” variable="ArrangeShippingRequest?/
<l copy>
<copy>
<from part="Custinfo” variable="
SupplierWSSEIcheckAvailReserve™
<to part="Custinfo” variable="ArrangeShippingRequests/
<l copy>
<lassign-
<invoke inputVariable="ArrangeShippingRequest” name="
Inv_ArrangeShippingon_RealSupplierLocalService” operatio
="ArrangeShipping” outputVariable="ArrangeShippingRgonse
" partnerLink="RealSupplier
RealSupplier2RealSupplierLocalService” portType="
ns4:SupplierLocPT"%
</sequence
</onMessage
</ pick>

h
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</scope-
</sequence
</process

i
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Listing A.2: SUPPLIER BPEL service

<?xml version="1.0" encoding="UTF8"?>
<l—
BPEL Process Definition
Edited using ActiveBPEL(tm) Designer Version 2.1.0 (htipwww.active—endpoints .
com)
—_—
<process xmlns="http://schemas.xmlsoap.org/ws/2003MBsiness-process/”
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/08éness-process/”
xmlns:ext="http: //www. activebpel.org/2.0/bpel/exteion” xmlns:nsl="urn:/
WarehouseServer/” xmlns:ns2="urn:ShopWS/wsdl” xmIns3s"urn:/
LocalSupplierServer/” xmlns:ns4="urn:WarehouseWS /&gsd xmlns:ns5="urn:/
RealSupplierServer/” xmlns:ns6="urn:LocalWHWS1/wsdKRmlIns:ns7="
urn:AeAdminServices” xmlns:xsd="http: //ww.w3. org/®a/XMLSchema” name="
Warehouse” suppressJoinFailure="yes” targetNamespdbeétp: // Warehouse®
<partnerLinks-
<partnerLink myRole="LocalSupplierCallBack” name="Wdreuse-
WH2LocalSupplier” partnerLinkType="nsl:Warehous¥&/H2LocalSupplier”
partnerRole="LocalSupplierProvider?/
<partnerLink myRole="WarehouseProvider” name="Wareheds®¥/H2Shop”
partnerLinkType ="ns1l:Warehous&/H2Shop” partnerRole="WHCallback2Shop”
>
<partnerLink myRole="SupplierCallBack” name="WarehouealSupplier”
partnerLinkType="nsl:Warehouse” partnerRole="RealligrProvider”
<partnerLink name="WHWH2LocalWHService” partnerLinkType ="ns1:WH
WH2LocalWHService” partnerRole="LocalWHServiceProwd’/>
</partnerLinks>
<variables
<variable messageType="ns2:WHAnswerMSG"” name="WHANS&E" />
<variable messageType="ns3:Request” name="Requestl”/
<variable messageType="nsl:callbackResponse” name=ltceadkResponse™
<variable messageType="nsl:WarehouseWSSBEeckAvailable” name="
WarehouseWSSEtheckAvailable” &
<variable name="AllLavailable” type="xsd:boolean™
<variable messageType="nsl:WarehouseWSSIEReserve” name="
WarehouseWSSEUnReserve”%
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<variable messageType="nsl:WarehouseWSS®hfirmOrder” name="
WarehouseWSSEtonfirmOrder” />

<variable messageType="ns5:SupplierWSSEhippingRequest” name="
SupplierWSSEIShippingRequest™

<variable messageType="ns6:CheckLocalAvailabilitylReegt” name=
CheckLocalAvailabilitylRequest™

<variable messageType="ns6:CheckLocalAvailabilitylPesse” name="
CheckLocalAvailabilitylResponse®/

<variable messageType="ns6:ReservationRequest” namesdvationRequest?/

<variable messageType="ns6:ReservationResponse” naReskrvationResponse
/>

<variable messageType="ns6:UnReservationRequest” ndme=
UnReservationRequests/

”

<variable messageType="ns6:UnReservationResponse” name
UnReservationResponse?/

<variable messageType="ns6:ReserveltemlFault” name=llkdariable” />

<variable messageType="ns2:ExternalProblemMSG"” namexteEnalProblemMSG "%

<variable messageType="ns5:ExternalProblemManageme&®M name="
ExternalProblemManagementMSG2/

<variable messageType="nsl:ExternalProblemMS&upplier” name="
ExternalProblemMSGSupplier”

</variables
<correlationSets

<correlationSet name="CS2” properties="ns1:AAACorreilan”/>

</correlationSets
<sequenceg

<receive createlnstance="yes” name="Rémm_Shop” operation=’
checkAvailable” partnerLink="Warehous&V/H2Shop” portType="
nsl:WarehouseServer” variable="WarehouseWSSHEkeckAvailable >
<correlations
<correlation initiate="yes” set="CS2"}
</correlations
<lreceive>
<assign-
<copy>
<from part="parameters” query="/ns4:checkAvailReser\&tfting-1"
variable="WarehouseWSSEtheckAvailable” &
<to part="parameters” variable="CheckLocalAvailabilitRequest”$
</copy>

<copy>
<from part="PID” variable="WarehouseWSSEd¢heckAvailable”t
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<to part="PID"” variable="CheckLocalAvailabilitylReque&/>
</copy>
</ assign>
<invoke inputVariable="CheckLocalAvailabilitylRequestname="
Inv_CheckLocal_Availability_on_.WH_LocalService” operation="
CheckLocalAvailabilityl” outputVariable="
CheckLocalAvailabilitylResponse” partnerLink="WWH2LocalWHService”
portType="ns6:LocalWHPT "%
<switch name="Switch-LocalSupplierinvocation®
<case condition="true ()*
<sequence
<assign>
<copy>
<from part="Availability” variable="
CheckLocalAvailabilitylResponse®/
<to part="Availability” variable="WHAnswerMSG” &
</copy>
<l assign
</sequence
</case>
<otherwise>
<sequence
<invoke inputVariable="Requestl” name="
Inv_Requestto_localSupplier” operation="asyncOpLocalSupplie
" partnerLink="WarehouseWH2LocalSupplier” portType="
ns3:LocalSupplierServery
<correlations
<correlation pattern="out” set="CS2*%
<l/correlations
<linvoke>
<receive name="RecAnswer_from_local_Supplier” operation="
onResult” partnerLink="WarehouseNH2LocalSupplier” portType="
nsl:WarehouseServerCallback” variable="callbackRespe™
<correlations
<correlation set="CS2"%
</correlations
<l/receive>
</sequence
</otherwise>
</switch>
<assign>

=
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<copy>
<from part="PID” variable="WarehouseWSSEd¢heckAvailable”t

<to part="PID” variable="WHAnswerMSG"
</ copy>
<copy>
<from part="UnPerishablelList” variable="
CheckLocalAvailabilitylResponse®/
<to part="unReservedltems” variable="WHAnswerMSG?/
<l copy>
<copy>
<from part="Availability” variable="CheckLocalAvailablitylResponse”
/>
<to part="Availability” variable="WHAnswerMSG” &~
</copy>
<lassign-
<invoke inputVariable="WHAnswerMSG" name="In\Answer.to_.Shop.on_-Shop”
operation="receiveAnswer” partnerLink="Warehous&H2Shop” portType="
ns2:WHcallbackP T3
<correlations
<correlation initiate="yes” pattern="out” set="CS23%/
</correlations
</invoke>
<pick>
<onMessage operation="confirmOrder” partnerLink="Wapaise-WH2Shop”
portType="nsl:WarehouseServer” variable="
WarehouseWSSEtonfirmOrder™
<correlations
<correlation set="CS2"%
</correlations
<sequence
<assign>
<copy>
<from part="String.1” variable="WarehouseWSSEdonfirmOrder
">
<to part="parameters” variable="ReservationRequest”/
</copy>

<copy>
<from part="PID” variable="WarehouseWSSHKonfirmOrder” />

<to part="PID” variable="ReservationRequest3®/
</copy>
<copy>
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<from part="Custinfa2” variable="
WarehouseWSSEtonfirmOrder” >
<to part="Custinfo” variable="ReservationRequest’/

</copy>
<lassign>
<scope variableAccessSerializable="ne"
<faultHandlers
<catchAll>
<sequence
<assign name="Prepar®MSG_for_Shop.and.Supplier™
<copy>
<from part="PID"” variable="
WarehouseWSSELtheckAvailable” &>
<to part="PID” variable="ExternalProblemMSG ™/
</copy>
<copy>
<from expression=""general problem %/
<to part="ProblemCode” variable="
ExternalProblemMSG "#
</copy>
<copy>
<from part="PID" variable="
WarehouseWSSEtheckAvailable” &
<to part="PID"” variable="
ExternalProblemManagementMSG2/
</copy>
<copy>
<from expression=""general problems’'%/
<to part="ProblemCode” variable="
ExternalProblemManagementMSG2/
</copy>
<l assign>

<invoke inputVariable="ExternalProblemMSG" name="
Inv_Suspensionon_Shop” operation="
ExternalProblemsManagement” partnerLink="
WarehouseWH2Shop” portType="ns2:WHcallbackPT%/

<invoke inputVariable="ExternalProblemManagementMSG
name="lnv.Suspensionon_Supplier” operation="
ExternalProblemsManagement” partnerLink="
Warehouse2RealSupplier” portType="
ns5:RealSupplierServep”
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<correlations
<correlation pattern="out” set="CS2*%
</correlations
</invoke>
<ext:suspend*
</sequence
</ catchAll>
</faultHandlers
<eventHandlers
<onMessage operation="ExternalProblemsManagement”
partnerLink="Warehouse2RealSupplier” portType="
nsl:SupplierCallBackPT” variable="ExternalProblemMSG
Supplier™
<correlations
<correlation initiate="yes” set="CS2"}
</correlations
<ext:suspend*
</onMessage
</eventHandlers
<invoke inputVariable="ReservationRequest” name="
Inv_Reservationon_LocalWHService” operation="Reservation
outputVariable="ReservationResponse” partnerLink=2VH
WH2LocalWHService” portType="ns6:LocalWHPT %/
</scope>
<assign>
<copy>
<from part="PID” variable="WarehouseWSSEdheckAvailable”t
<to part="PID” variable="SupplierWSSEBhippingRequest™
</copy>

<copy>
<from part="parameters” query="/ns4:checkAvailReserve/

String_.1" variable="WarehouseWSSEtheckAvailable”
<to part="ShippingData” variable="
SupplierWSSEIShippingRequest™
</copy>
<lassign>
<invoke inputVariable="SupplierWSSE8&hippingRequest” name="
Inv_ShippingRequesbn_Supplier” operation="ArrangeShipping”
partnerLink="Warehouse2RealSupplier” portType="
ns5:RealSupplierServep”
<correlations

1
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<correlation initiate="yes” pattern="out” set="CS23%/
</correlations
<linvoke>
</sequence
</onMessage
<onMessage operation="unReserve” partnerLink="Warehlat§H2Shop”
portType="nsl:WarehouseServer” variable="Warehouse8E&unReserve®
<correlations
<correlation set="CS2"%
</correlations
<sequence
<assign>
<copy>
<from part="PID” variable="WarehouseWSSEdheckAvailable”t
<to part="PID"” variable="UnReservationRequest?/
</copy>

<copy>
<from part="UnPerishablelList” variable="

CheckLocalAvailabilitylResponse®/
<to part="parameters” variable="UnReservationRequest”/
</copy>
<lassign>
<invoke inputVariable="UnReservationRequest” name="
Inv_Unreserveon_LocalWHService” operation="UnReservation”
outputVariable="UnReservationResponse” partnerLinWe&-
WH2LocalWHService” portType="ns6:LocalWHPT %/
</sequence
</onMessage
</ pick>
</sequence
</process

Listing A.3: WAREHOUSE BPEL service

<?xml version="1.0" encoding="UTF8"?>

<l—

BPEL Process Definition

Edited using ActiveBPEL(tm) Designer Version 2.0.0 (htipwww.active—endpoints .
com)

rd
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<process name="LocalSupplier” suppressJoinFailure="ydargetNamespace="http:/
LocalSupplier” xmlns="http://schemas.xmlsoap.org/®9/03/03/businessprocess
/7 xmins:bpws="http: //schemas.xmlsoap.org/ws/2003/®8siness-process/”
xmlns:nsl="urn:/LocalSupplierServer/” xmlns:ns2="urhWarehouseServer/”
xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema”
<partnerLinks-
<partnerLink myRole="LocalSupplierProvider” name="Lot&upplier—
LocalSupplier2Warehouse” partnerLinkType="nsl:Local®lier—
LocalSupplier2Warehouse” partnerRole="WarehouseCaliB" />
</ partnerLinks>
<variables
<variable messageType="nsl:Request” name="Request”/
<variable messageType="ns2:callbackResponse” name=llreadkResponse™
</variables
<correlationSets
<correlationSet name="CS1” properties="nsl:LocalSupgl+Correlations”t
</correlationSets
<sequence
<receive createlnstance="yes” name="R¥&H_request” operation="
asyncOplLocalSupplier” partnerLink="LocalSupplier
LocalSupplier2Warehouse” portType="nsl:LocalSupplserver” variable="
Request®
<correlations
<correlation initiate="yes” set="CS1™
</correlations
<l/receive>
<assign>
<copy>
<from expression="true ()"
<to part="callbackData” variable="callbackResponse”/
</ copy>
<copy>
<from part="PID” variable="Request”#
<to part="PID” variable="callbackResponse®/
</ copy>
</ assign>
<invoke inputVariable="callbackResponse” name="I'WH_response” operation
"onResult” partnerLink="LocalSupplierLocalSupplier2Warehouse”
portType="ns2:WarehouseServerCallback”
<correlations>
<correlation pattern="out” set="CS1%
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<l/correlations
37 </invoke>
</sequence
39|</process

26

Listing A.4: LocalSupplier BPEL service






Abstract

This thesis studies the Model-Based Diagnosis focuses @t af snteracting software components. T
main idea is to use Colored Petri nets (CPNs) as a fault matiéth presents several advantages for softv
diagnosis. First, we can handel data by avoiding the infioiithheir domain values, the data are represe
symbolically according to their status (faulty using redbcaokens, correct using black and unknown ug
star). Second, the transition modes are used to represeattand faulty executions of activities withg
explicit representation of faults as internal events. lynpartially ordered observation is naturally expres
in CPNs operational semantics. The main contribution «f thesis is the reduction of diagnosis prob
to an algebraic symbolic inequations system based on thdafuantal equation of CPNs. This meth
allows the diagnosis of looping processes and omits thedi@jy calculation, without loosing the diagng
precision. Based on the notion of functional sub-nets, oethwd can be easily adapted to a decentra
resolution of the inequations systems so as to diagnosesttentralized systems. Our work is applied to

he
vare
nted
ing
ut
sed
em
od
sis
ized
the

diagnosis of orchestration of Web services modeled as af ggd@e bordered colored Petri nets. A mogel

transformation from BPEL constructors to CPNs is given andse study is detailed.

Résumeé

Cette thése porte sur le diagnostic a base de modeless fdoalisons notre intérét sur le diagnostic d

un

ensemble interagissant de composants logiciels. L'aalgénde ce travail se situe dans I'utilisation des
Réseaux de Petri Colorés (RdPC) comme modele de fautlidation des RAPC est originale et avantageuse

a plusieurs titres. Premierement, Les RAPC permettergpeesentation des données, dans notre cag
nous permet de manipuler les données de maniere symbati@me si leur domaine de valeurs est ir

Ceci
fini

(seul le statut des données est représenté par des getlongs : rouge pour fautif, noir pour correct et étoile
pour inconnu). Deuxiemement, chaque transition en RAREqwir plusieurs modalités de franchissement,

nous avons donc défini pour chaque activité deux modatigetransition, fautif et correct, auxquelles o

na

associé des fonctions de propagation de couleur. Finalgireesémantique RAPC porte de maniere implicite

la notion d’ordre partiel des observations. La contributgincipale de cette thése consiste a rédui

ele

probléme de diagnostic a la résolution d’ un systemeé&djuation algébrique en se fondant sur I'équation

fondamentale de la dynamique des RdPs. La résolution dgsténse d’inéquation permet de calcule

diagnostic sans dépliage de la trajectoire méme dansakesl'@ération d’activités et ceci sans perte de la

précision du diagnostic. Nous avons également, en seaftrgiir la notion de sous-réseaux fonctionn
proposé une version décentralisée de la résolutionygtéme d’inéquation. La dimension applicative
cette these concerne le diagnostic d’orchestration decesr\Web. Une traduction du langage d’orchestrd
BPEL en RdPC a été donné ainsi qu’une application dégdur un scénario.

tion




	Preface
	Acknowledgments
	List of Tables
	List of Figures
	List of Definitions
	1 Introduction
	1.1 Abnormal behavior of software system
	1.1.1 Communication between the components
	1.1.2 Data and activities flow
	Data transforming activities
	Dependency of Data


	1.1.3 Faulty state

	1.2 Problematic of MBD for software systems
	1.2.1 The choice of abstract model
	1.2.2 The observation for diagnosis
	Imperfectness of observations
	Exception assertion


	1.2.3 Minimal diagnosis

	1.3 Our contribution
	1.3.1 Model construction
	1.3.2 Diagnosis approach
	1.3.3 Decentralized topology
	1.3.4 Application: WSDIAMOND project  urldiamond


	2 Model based diagnosis of discrete event systems
	2.1 Introduction
	2.1.1 Model based diagnosis
	2.1.2 Discrete event system
	2.1.3 Dining philosophers example

	2.2 DES models
	2.2.1 Labeled transition system and automata
	2.2.2 Petri nets

	2.3 Modeling diagnosis with DES
	2.3.1 Fault representation
	2.3.2 Observation
	Observation absence
	Partially ordered observation


	2.3.3 Diagnosis of DES

	2.4 Diagnosis methods
	2.4.1 Diagnoser
	2.4.2 PN unfolding
	2.4.3 PN backward reachability analysis

	2.5 Architecture of DES diagnosis
	2.5.1 Centralized diagnosis
	2.5.2 Decentralized diagnosis
	2.5.3 Distributed diagnosis

	2.6 Conclusion

	I Theory
	3 Colored Petri net model for MBD
	3.1 Introduction
	3.2 Structure and dynamic
	3.2.1 Structure of CPN
	3.2.2 Dynamic of CPN

	3.3 CPN as a fault model for software systems
	3.3.1 The CPN fault model structure
	Places types: data status
	Arcs expressions: abstract data dependency
	Transition modes: faults
	CPN fault model definition


	3.3.2 The CPN fault model dynamic 
	3.3.3 Partial observation of CPN fault model

	3.4 Related works

	4 CPN diagnosis based on inequations system
	4.1 Diagnosis problem
	4.2 Diagnosis of CPN by inequations system solving
	4.2.1 Inequations system
	4.2.2 Algorithms
	getImpossibleSols function
	Diagnosis inferring
	Multiple faults diagnosis



	4.3 The minimality of CPN diagnosis
	4.4 Related work

	II Application
	5 Web services Application
	5.1 Introduction
	5.2 SOA and Web service
	5.2.1 SOAP
	5.2.2 UDDI
	5.2.3 WSDL

	5.3 BPEL services
	5.3.1 BPEL
	5.3.2 Cooperation of BPEL and WSDL
	5.3.3 ActiveBPEL engine

	5.4 Case study: foodshop
	5.4.1 Partners interactions
	5.4.2 BPEL services execution processes
	Customer
	Shop service
	Realsupplier service
	Warehouse service and LocalSupplier service



	5.5 Translate from BPEL to CPN
	5.5.1 Translating static BPEL features to CPNs
	5.5.2 Translation from basic Web service to CPN
	Basic Web service
	Receive(m,X)
	Invoke(X,Y)
	Reply(Y,m)
	Expression(C,V)
	Assign(X,Y)
	Throw/Rethrow(faultName,[faultVariable])
	Wait(duration|until)
	Empty
	Exit


	5.5.3 Structured operators translation
	Sequence operator sequence(N1, N2)
	Conditional operator Switch({(coni(Xi,Vi),Ni)}iI)
	Iterative operator while(con(X,V),S1)
	Message triggering operator Pick({Mi, Si}i I)
	Parallel operator flow({Si}iI)
	Conditional operator If({(coni(Xi,Vi),Si)}iI)
	Conditional operator RepeatUntil({(coni(Xi,Vi),Si)}iI)


	5.5.4 sub process with enclosed environment: Scope
	Fault handlers
	EventHandlers
	CompensationHandler and TerminationHandler
	Conditional operator ForEach({(coni(Xi,Vi),Si)}iI)



	5.6 Case study: the CPN model of foodshop
	5.7 Related works

	6 Decentralized architecture for CPN based diagnosis
	6.1 Introduction
	6.2 Decentralized system
	6.3 Diagnosis problem of decentralized system
	6.4 Diagnosis approach
	6.4.1 Diagnosis protocol
	6.4.2 Diagnosis algorithm
	6.4.3 Example: dining philosophers

	6.5 Proof of global consistency of decentralized diagnosis
	6.5.1 Functional CPN definition
	6.5.2 Fundamental equations of functional subnets

	6.6 Decentralized diagnosis of orchestrated BPEL services
	6.7 Case study:foodshop
	6.7.1 Exceptions
	CUSTomer exceptions:
	SHOP exceptions:
	SUPPLIER exceptions:
	WAREHOUSE exceptions:


	6.7.2 Fault scenarios
	6.7.3 Diagnosis


	7 Conclusion
	7.1 Future work

	Bibliography
	A The foodshop file list

