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III Abstract

Ce travail de thése concerne la caractérisation de la structure spatio-temporelle des fortes précipitations
dans la région Cévennes-Vivarais. La région est soumise à des événements de pluie catastrophiques
dont la magnitude gouverne les conséquences à différentes échelles de temps et despace. La détermination
de la probabilité d’occurrence des orages est problématique à cause du caractère extrme des ces événements,
de leur dimension spatio-temporelle et du manque de données pluviométriques aux échelles dintérêt.
Nous proposons d’adopter des approches d’invariance d’échelles afin d’estimer la fréquence d’occurrence
de ces événements. Ces approches permettent d’extrapoler la distribution de la pluie à haute résolution
à partir de données d’intensité pluvieuse à plus faible résolution. La paramétrisation de ces modèles
étant fortement dépendante de l’incertitude de la mesure, nous avons d’abord caractérisé l’erreur com-
mise dans la mesure de la pluie par un réseau de pluviomètres à augets. Nous avons ensuite ex-
ploré le comportement des pluies extrêmes dans la région d’étude, identifiant les gammes d’invariance
d’échelles des extrêmes. Dans cette gamme d’échelles, nous présentons un modèle régional Intensité-
Durée-Fréquence qui prend en considération l’hétérogénéité spatiale des extrêmes dans la région. Étant
donné que le réseau pluviométrique ne permet pas de détecter les propriétés d’invariance d’échelle spa-
tiale des champs de pluie, nous avons adopté une méthode semi-empirique pour modéliser des intensités
de pluie intégrés sur des surfaces données (pluie surfacique) sur la base du concept de la mise en échelle
dynamique ( dynamic scaling ). Cette modélisation permet la construction d’un modèle régional Inten-
sité-Durée-Fréquence-Surface. Enfin, nous avons appliqué ce modèle à la construction des diagrammes
de sévérité pour trois événements marquants en région Cévennes-Vivarais, afin didentifier les échelles
spatio-temporelles critiques pour chaque événement. Grâce aux diagrammes de sévérité, nous avons
pu évaluer, pour ces mêmes événements, la performance d’un modèle météorologique de méso-échelle.



Abstract

The thesis is devoted to the characterization of the space-time structure of heavy rainfall events in the
Cvennes-Vivarais area (France). The region is prone to catastrophic storms whose magnitude governs
social and economic consequences at different space and time scales. The magnitude of an event cannot
be univocally related to a probability of occurrence. The determination of the occurrence probability
of storms is problematic because of their extreme character, of their complex space-time development
and of the lack of rainfall data at the spatial and temporal scales of interest. We propose to adopt scale-
invariant approaches in order to estimate the heavy rainfall frequency assessment. These approaches
allow to extrapolate the high resolution rainfall distribution based on low resolution rainfall intensity
data. The model estimation being heavily dependent of the data accuracy, the first step consists in the
characterization of the error committed in the point and spatial rainfall estimated by tipping-bucket
raingage networks. We then explore the extreme rainfall behavior in the region, detecting the range
where extremes are scale-invariant. In this range, we present a regional Intensity-Duration-Frequency
model for point rainfall maxima taking into account the heterogeneity of extremes in the region. We
demonstrate that the rainfall network does not allow to detect scale-invariant properties of extreme
rainfall fields, and then we adopt a semi-empirical method based on the concept of dynamic scaling
to build regional Intensity-Duration-Area-Frequency curves. Finally, we apply this model for the
determination of the severity diagrams for three significant storms in the Cvennes-Vivarais region,
with the aim to identify the critical space-time scales of each event. Based on severity diagrams, we
then evaluate, for the same events, the performances of a mesoscale meteorological model.



IV Introduction

Les événements extrêmes peuvent avoir un impact majeur sur la vie quotidienne. Bien que rares
par définition, ils impliquent un grand nombre de personnes et des biens, causant des dégâts impor-
tants en termes socioéconomiques et de vies humaines. Qu’ils soient inondations, sécheresses, vagues
de chaleur ou de froid, ouragans, séismes, incendies ou tsunamis, ils mettent en danger la société.
Ces dernières années, la communauté a ressenti la sensation d’augmentation de la fréquence de ces
événements. Cela est probablement du, au moins en partie, à la couverture médiatique accrue. Toute-
fois, la fréquence de certains phénomènes tels que les inondations, les sécheresses, les ouragans et les
incendies, peuvent avoir été intensifiés par les effets de l’activité de plus de 6 milliards de personnes. Le
réchauffement climatique se fait sentir dans plusieurs régions du globe, causant la désertification,
la fonte des calottes polaires ou des glaciers. L’augmentation générale de la température est souvent
désignée comme possible raison des l’incrément de la fréquence des phénomènes de précipitations in-
tenses dans les régions tempérées. Dans des régions comme les Cévennes, où la situation géographique
favorise l’occurrence d’événements de pluie intense en raison de la proximité de la mer Méditerranée et
de l’influence de la topographie, il y a eu ces dernières années une forte incidence de phénomènes des
pluies considérées comme “extrêmes”. L’objectif que nous nous fixons est de quantifier la fréquence
de ces phénomènes qui semblent être des “monstres météo-hydrologiques“.

Afin d’imaginer l’évolution des événements de pluie intense dans des scénarios de climats futurs,
il faut d’abord diagnostiquer l’intensité et la fréquence des pluies intenses de ces dernières décennies.
Pour cela, nous procedons à une analyse détaillée des intensités de pluies horaires et journalières en-
registrées maintenant depuis plusieurs décennies dans la région Cévennes-Vivarais. Des telles analyses
devraient être effectuées en considérant non seulement la pluie ponctuelle telle qu’elle est enregistrée
par les pluviomètres mais aussi son extension spatiale sur des zones correspondantes à des bassin hy-
drographiques. De la même manière que l’échelle spatiale, l’échelle temporelle est d’une importance
capitale pour la mesure de l’intensité de la pluie: les régions méditerranéennes sont soumises à des
événements de forte intensité qui durent quelques dizaines de minutes, tandis que les zones de mon-
tagne reçoivent des intensités plus faibles mais qui s’etallent sur plusieurs heures, avec des cumuls
élevés sur 24 heures.

Cette thèse est consacrée à examiner la question du changement d’échelle des précipitations
extrêmes dans l’espace espace-temps. Un des principaux aspects théoriques qui peuvent être utilisés
pour expliquer, comprendre et modéliser les phénomènes extrêmes à différentes échelles est le concept
d’invariance d’échelle. Dans les plages d’échelles où cette hypothèse est confirmée, ils existent des
techniques pour reconstruire un phénomène à une échelle différente de celle des mesures.

Le potentiel des approches qui traitent des phénomènes d’invariance d’échelle est énorme et d’un
point de vue applicatif beaucoup de problèmes peuvent être abordés du point de vue de l’invariance
d’èchelle. Bien que d’un grand potentiel, le concept d’invariance d’échelle souffre de la méconnaissance
de la physique qui lui est sous-jacente. Dans cette thèse, les fondements théoriques et les méthodes
d’applications de l’invariance d’échelle sont discutées et appliquées dans le contexte de la région
Cévennes-Vivarais. L’objectif est de diagnostiquer et décrire aussi précisément que possible l’invariance
d’échelle des intensités de pluies extremes.



La thèse est structurée de la façon suivante. La Partie I donne une description générale du
contexte de la thèse. Dans le Chapitre 1, nous présentons les questions scientifiques qui ont motivé
cette thèse. Ensuite, nous décrivons le contexte géographique, les principales entités hydrologiques
et les caractéristiques hydro-météorologiques marquantes de la région d’étude, avant de décrire les
caractéristiques principales des réseaux de mesures utilisés pour cette étude. Dans le Chapitre 2

nous nous focalisons sur la quantification de l’erreur commise en mesurant la pluie par le biais d’un
réseau de mesure au sol. Bien que le principe de la mesure de la pluie par pluviomètres à augets
basculants soit ancien (le premièr date de 1662) et qu’il ait fait l’objet d’études très précises qui
aboutissent reguliérement à des améliorations, nous montrons que la question de l’incertitude liée à
ces mesures est encore d’actualité. Une première partie analyse l’incertitude dans l’estimation de la
pluie ponctuelle: l’erreur due à l’échantillonnage peut être conséquente si la résolution de mesure est
proche de l’échelle d’analyse. Un autre partie de l’erreur est due à la façon dont l’instrument de mesure
(pluviomètre à auget) est conçu. La deuxieme partie traite de l’évaluation de l’erreur d’estimation
commise lors de la mesure de la lame d’eau spatiale maximale à partir de données pluviométriques.

La Partie II est le noyau de la thèse et présente un état de l’art des techniques qui sont utilisées
dans ce travail. Le Chapitre 3 est consacré à la théorie des valeurs extrêmes et ses conséquences
pour la modélisation des extrêmes. L’objectif est de donner au lecteur un aperçu du problème de
l’estimation de la fréquence d’occurrence des extrêmes. Nous montrons que quelle que soit la méthode,
la sélection d’un échantillon d’extrêmes est un délicat compromis entre robustesse et biais de l’estimation.
Le Chapitre 4 décrit les concepts de base de l’analyse géostatistique, pour l’interpolation des
données et l’analyse structurelle de champs n-dimensionnels. L’état de l’art de l’invariance d’échelle

est presenté dans le Chapitre 5. Nous décrivons les premières approches théoriques et des techniques
plus innovantes pour estimer les proprietées d’invariance d’échelle des champs géophysiques. Les
résultats principaux dans l’analyse de champs 1D, 2D et champs dans l’espace espace-temps sont
listés. Les méthodes de désagrégation par invariance d’échelle connues sous le nom de “cascades”

sont introduites en fin de chapitre. Un des objectif de la thèse étant la caractérisation de la pluie spa-
tiale, le Chapitre 6 reporte une série de méthodes empiriques ou semi-empiriques pour l’estimation
d’une lame d’eau extrême à partir de mesures ponctuelles.

La Partie III présente les principaux résultats obtenus pendant la thèse. Premièrement, Ils sont
présentés selon un parcours scientifiquement coherent. Premièrement, nous étudions les fréquences
d’occurrence des intensités extrêmes de pluies ponctuelles. Elles sont modélisées par des fonctions de
densité dites à queues lourdes (Chapitre 7). La connaissance des distributions de ces intensités
nous a permis d’établir des relations d’invariance d’échelle des précipitations extrêmes. Ces relations
nous ont permis de proposer un modèle de courbes Intensité-Durée-Frequence compatible avec
les différentes typologies d’invariance d’échelle des extrêmes dans la région d’étude (Chapitre 8).
Du coté de l’étude de la pluie spatiale, le Chapitre 9 montre que la pluie spatiale est invariante
d’échelle à plusieurs pas d’agrégation temporelle. De plus, on montre qu’une relation entre les échelles
spatio-temporelles peut être definie en accord avec le comportement des flux turbulents ( “dynamic

scaling”).
La détermination des courbes de réduction surfaciques des pluies (Areal Reduction Factors a

permis d’étendre le modèle d’invariance d’échelle ponctuel à la pluie spatialisée, obtenant les courbes



Intensité-Durée-Fréquence-Surface (IDAF) pour la région, basées sur le concept d’invariance
d’échelle dynamique. Avec ce modèle, il est possible de déterminer la fréquence de tous les évènements
de pluie dans la région par rapport à leur intensité, qu’elle soit ponctuelle ou surfacique. La fréquence
des intensités de pluies à différentes échelles spatio-temporelles est un diagnostique de la sévérité des
orages. Nous avons indentifié 3 événements qui sont à l’origine des crues rapides. Nous avons calculé
leur sévérité grâce d’une part aux mesures et d’autre part aux simulations de l’intensité de pluie par
le modèle météorologique méso-échelle MesoNH. La comparaison de la sévérité simulée et observée
par l’utilisation des Diagrammes de sévérité (Chapitre 10) constitue une approche innovante
pour la qualification des simulations numériques. L’usage de ces diagrammes a ensuite été testé sur
des simulations d’ensemble. L’objectif est la de mieux comprendre comment les perturbations dans le
conditions initiales/au contour du modèle puissent être choisis pour obtenir un ensemble statistique
fiable. L’usage des diagrammes de sévérité pour la qualification des simulations d’ensemble met en
valeur l’indication synthétique que cet outil fournit. En effet, il fournit dans un seul diagramme une
indication de la justesse des simulations sur une large gamme d’échelles spatio-temporelles et même
une indication sur la justesse de la localisation de l’événement.

La partie finale de la thèse, Partie IV, montre les conclusions principales du travail (Chapitre

11) et en décrit les perspectives (Chapitre 12).



Introduction

Extreme events can have a major impact on everyday life. Although rare by definition, they involve
a lot of people and goods, causing extensive damages from the socioeconomic point of view and in
terms of human lives. Taking the form of floods, droughts, heat or cold waves, hurricanes, earthquakes,
fires, tsunamis, they endanger the society. In the recent years, a widespread discussion concerns the
feeling that these events are becoming more frequent. This is due, at least in part, to the increase
of the media attention. However, the frequency of phenomena such as floods, droughts, hurricanes
and fires, may have been intensified by the effects of the activity of over 6 billion people. Global
warming is observed in many regions of the globe, causing desertification, melting of polar icecaps or
glaciers, and it is often designated as a likely reason for the increase of extreme precipitation frequency
in temperate regions. The Cévennes-Vivarais region, where the proximity to the Mediterranean Sea
and the rough topography favour the occurrence of heavy precipitation events, was submitted, in
the last decades, to a number of rainfall events that can be reasonably referred to as “extremes”.
is ideal for the precipitation development due to the proximity to the Mediterranean Sea and where
the topography favors the stabilization of rainfall phenomena, there has been in recent years a high
incidence of phenomena rainy considered “extremes”. Our purpose is to quantify the frequency of
these phenomena that could appear as ”meteo-hydrological monsters”.

In order to imagine the evolution of heavy rainfall events in a context of future climate scenarios,
one must firstly determine intensity and frequency of heavy rainfall events occurred in the past. For
this, we will perform a detailed analysis of hourly and daily rainfall intensities observed in the last
decades in the Cévennes-Vivarais region. This analysis must consider point rainfall recorded by rain
gauges as well as the rainfall falling over surfaces of different sizes: more than the rainfall amount
recorded at one gage, the spatial extent of an event is the actual responsible of basin floods. Similarly
to the the spatial scale, time scale is of fundamental importance: the Mediterranean areas are more
subject to intense events lasting few dozen minutes, while mountainous regions may be submitted to
stationary phenomena with weak intensity but significant rain accumulations over 24 hours.

This thesis is devoted to the characterization of the scaling of extreme precipitations in space
and time. One of the main theoretical aspects that can be used to explain, understand and model
the extreme events at different scales is the concept of “scale invariance”. In the ranges where this
assumption is confirmed by the empirical analysis, there are techniques to reconstruct a phenomenon
at scales not covered by direct measurements.

The potential of scale-invariant approaches is enormous and, in many practical problems, the
adoption a scale-invariant point of view can be useful. Despite this potential, the scale-invariance
concept suffers of the lack of knowledge relative to the underlying physics. In this thesis, the theoretical
foundations and application methods of scale invariance are discussed and applied in the Cévennes-
Vivarais region. The goal is to provide a description, as detailed as possible, of the relationships
between extreme precipitations and scale invariance.

The thesis is structured as follows. Part I is devoted to the description of the context of the
thesis. In Chapter 1 we present the scientific questions at the origin of the thesis. Afterwards, we
introduce the region of study, detailing the meteo-hydrological context with the description of the main



climatic features and the main hydrological entities. At last, we describe the measurement network
used throughout the thesis. Chapter 2 is devoted to the quantification of the error committed
in measuring rainfall with a ground measurement system. Even if the first tipping-bucket raingage
dates back to 1662 and several studies have been conducted on its mechanism leading to constant
improvements, we show that the issue of uncertainties related to the rainfall measurement still
exists. A first part focuses on the uncertainties of the point rainfall estimation: the estimation error
can be significant if the scale of analysis is close to the measurement resolution. Another error source
is due to the mechanical structure of the tipping-bucket rain gauge. The second part deals with the
evaluation of the estimation error in the spatial rainfall amount estimated from point measurements.

Part II is the core of the thesis and presents a detailed state of the art of the techniques used in the
thesis. Chapter 3 presents the extreme value theory and its consequences for the extreme mod-
elling. The aim is to provide the reader with a sensibility to the issue of extreme values estimation; we
show that, for a correct modeling of the extremes of limited samples, a compromise between robustness
and bias of the estimation must be found. Chapter 4 describes the basic concepts of geostatistical
analysis, used for the data interpolation and for the structural analysis of n-dimensional fields. The
state of the art of the scale-invariance is given in Chapter 5. We describe the earlier theoretical
approaches and the innovative techniques to estimate the scale-invariant properties of geophysical
fields. The main results in the analysis of 1D, 2D and space-time fields are listed. The scale-invariant
disaggregation methods known as “cascades” are presented at the end of the chapter. Since one
of the objectives of the thesis was the characterization of spatial rainfall, in Chapter 6 we report the
empirical and semi-empirical methods for the estimation of an extreme rainfall depth over a surface
from point measurements, namely Areal Reduction Factor (ARF).

Part III presents the results that have been found during the thesis. First of all, we study the
occurrence frequency of point-rainfall extreme intensities and verify if extremes exhibit heavy-tails.
We also determine if heavy rainfall intensities exhibit scale-invariance (Chapter 7). These findings
allow us to propose (Chapter 8) a scale-invariant Intensity-Duration-Frequency model that can
accommodate, in each sub-region, the different behavior of extremes. From the point of view of spatial
rainfall, the empirical computation of Areal Reduction Factors allows to fit a statistical scale-
invariant model of Intensity-Duration-Frequency-Area (IDAF) curves, based on the concept of
“dynamic scaling”. In addition, we show that spatial rainfall is scale-invariant at various temporal
aggregation scales (Chapter9). With the IDAF model we can determine the frequency of any spatial
or point rainfall event within the region. The determination of the occurrence frequency of a storm
at different space-time scales allows to draw Severity Diagrams, representing the maximum return
period of a storm at all space-time scales. For 3 events that originated flash-floods in the Cévennes-
Vivarais region, we computed the severity diagrams of the event as observed by the rain gauge network.
To test the performance of the MesoNH meteorological model, we compared the severity diagrams of
the observed event with those obtained for the MesoNH meteorological model simulations Chapter
10. This innovative approach for the multi-scale evaluation of numerical simulation has also been
tested for ensemble simulation. In this case, the aim is to better intervene in the choice of the
initial/boundary conditions of the model in order to obtain a statistically reliable ensemble. The use
of severity diagrams for the ensemble simulation evaluation give emphasis to the diagnostic capacity



offered by this intuitive indicator. In a single diagram, it gives elements on the extreme behavior of
the storm in a large range of space-time scales, offering additional indications on the capacity of the
model to predict the correct storm location.

The final part of the thesis, Part IV, reports the main conclusions of the work (Chapter 11)
and describe some of the short-term and long-term perspectives Chapter 12.
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1General context

Résumé

Ce premier chapitre est dedié à la présentation des problématiques que l’on aborde dans la thèse.
Dans la première section, nous detaillons les objectifs de la thèseLe chapitre donne ensuite les éléments
fondamentaux du contexte géographique et hydro-météorologique de la région d’étude (Cévennes-
Vivarais): description des principaux bassins hydrologiques et caractéristiques climatiques de base
de la région ( précipitation annuelle, mensuelle et intermittence pluviométrique, prédisposition aux
évènements extrêmes) sont détaillées. En conclusion de ce chapitre, nous decrivons sommairement les
bases de données utilisées dans l’étude, couvrant plusieurs échelles d’espace et de temps.

1.1 Purpose of the thesis

The present thesis has been developed at the LTHE, Laboratoire d’Études des Transferts en Hydrolo-
gie et Environnement de Grenoble, in the framework of the French project MEDUP ”Forecast and
projection in climate scenario of Mediterranean intense events: Uncertainties and Propagation on
environment”.

This thesis is developed to deal with the following points:

i. define the uncertainties in the rainfall measurement due to the measurement network in the
region;

ii. verify the presence of scale-invariance of heavy rainfall events (point and spatial rainfall) in the
region with the aim to improve the extreme events modeling at any spatial and temporal scale;

iii. explore the scale-invariant properties of space-time rainfall fields with the aim to model the
fine-scale variability of the rainfall process;

iv. quantify the impact of meteorological events over a region at each temporal and spatial scales
and the uncertainties associated with the ensemble forecasts.

In the following paragraphs, we describe these items.

1
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1.1.1 Rainfall measurement uncertainties

Before the XX century, rainfall was measured at monthly to daily resolution. The limited commu-
nication facilities prevented the construction of reliable rain gauge networks. With the industrial
revolution, the knowledge of the hydrological balance of basins began to be of interest for the hy-
droelectric production, and a series of (mainly daily, seldom hourly) gages was installed even in
mountainous regions. In the 70s, the massive urbanization, developing faster than even before, caused
significant changes in soil occupation and modifications in the drainage networks. Urban flash-floods
began to occur, characterized by very fast response times preventing the alert system to efficiently
work. To better observe these phenomena, high-resolution rainfall measurement devices (e.g. 1 hour
to 6 min resolution) began to spread in metropolitan regions; most of them are automatic, such as
tipping-bucket rain gauges (Figure 1.1). In the early 80s, the first radar installations allowed to make
the preliminary calibrations and comparison between radar measures and ground rainfall.

At the present time, except rare cases, series of automatized measures sufficiently long to perform
statistics without sampling size issues are not available, due to the technological limits of measure-
ment devices before the half of XX century. Even when long rainfall series are available, the rainfall
measurement at a point is submitted to a series of uncertainties that we will quantify in Section 2.

The estimation of spatial rainfall is usually done by interpolating point data. Therefore, the
interpolation error sums to the point-rainfall uncertainty. The interpolation error is related to the
spatial sampling and to the correlation structure of the rainfall field.

The study of the measure uncertainties (Section 2) is fundamental for determining the accuracy
of the measurement of point and spatial rainfall and by consequence for characterize the reliability of
the extreme analysis.

(a) (b)

Figure 1.1: a: An operational rain gauge device located in Le Pradel, Ardèche. b: the tipping bucket system
inside the rain gauge to record rainfall intensities.
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1.1.2 Scale-invariance of heavy space-time rainfall

The Cévennes-Vivarais region is submitted to intense flash-flood events causing severe social and eco-
nomic damages. We would like to describe the way in which extremes decrease with the involved
surface and with the accumulation time. Scale-invariance is an interesting framework to model pro-
cesses at ungaged scales. We will test the scale-invariant hypotheses on some reference series to infer
the general behavior of rainfall in the whole region. In this thesis we will show evidences of scale-
invariance of point and spatial heavy rainfall derived from the analysis of rain gauge and radar data
and we will define the validity range of scale-invariance.

Scale-invariant methods provide an innovative framework to infer the behavior of a variable at
scales where direct measurements are not available. Climatological studies need the analysis of long
series but, for instance, hourly rainfall records are not available except in the last 20-30 years and only
in some specific rain gauges. Applying scale-invariance, it would be possible to infer the behavior of
extreme hourly rainfall for very large return periods from observations at the daily scale.

1.1.3 Scale-invariance of rainfall fields in space-time

Rainfall is a strongly intermittent process. The scales of analysis have large influence in the rainfall
properties. Taking for example point rainfall, if one increases the temporal resolution of analysis, the
rainfall process becomes more and more intermittent (the proportion of zeros on the total increases)
and singular (in time series, for instance, the ratio between maximum and average rainfall increases).
The spatial and temporal scales have similar roles in the variability determination: the increase of the
integration window over which the rainfall amount is computed causes field smoothing and variability
reduction. Dealing with spatial data, at small spatial scales (few dozen meters) rainfall appears as a
very spiky phenomenon, while integrating over windows of increasing size the fields are smoothed and
their distributions get narrower.

The knowledge of the relations between rainfall in space and time at different scales is therefore
of primary importance to better understand how to interpret a series of point measurements and to
provide a reliable estimation of the rainfall depth over a basin, which is the main input of hydrological
models.

1.1.4 Multi-scale evaluation of the impact of meteorological events

One of the main interests of the hydrological community is to quantify the social and economic impact
of storms, mainly determining its recurrence interval. The main factor determining the impact of an
event is the rainfall depth produced by the storm; the basin response is a subordinate factor. For this
reason, we think that a better characterization of floods cannot prescind from a better characterization
of storms.

To identify the potential danger engendered by storms, we propose to determine their magnitude
at each space-time scale. Establishing the occurrence probability of the event we may be able to
determine if the event are common, rare or extreme and at which scales. The pre-requirement is the
knowledge of the behaviour of point and spatial rainfall-intensity extremes in the region of analysis.
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In this thesis we propose to quantify the impact of heavy rainfall events occurred in the Cévennes-
Vivarais region through the use of Severity Diagrams, a tool designed to display the magnitude of an
event in a range of spatial and temporal scales. The tool provide all the elements for an objective
multi-scale comparison between the extreme features of storms occurred in the same region or in
different regions.

We propose an innovative usage of this tool for the qualification of the mesoscale simulation
capability to reproduce the space-time structure of three storms occurred within the region of analysis.

1.2 Geographical context

The Cévennes-Vivarais region is located on the south-eastern side of Massif Central. It is easterly
bounded by the Rhône river, westerly bounded by the Massif Central, and southerly by the Mediter-
ranean Sea shore. The mountainous part of the region is included in the Cévennes National Park,
created in 1970.

The size of the region is 160 km in the E-W direction and 200 km in the N-S direction, for a total
surface of 32000 km2.

The elevation in the domain raises the 1699 m (Mt. Lozère). The main mountain ridge of the
Massif Central is oriented SSW-NNE, and it can be approximately detected in Figure 1.2 by drawing
a straight line joining Mont Aigoual (1565m height), Mont Lozère (1699 m), Mont Gerbier de Jonc
(1551m) and Mont Mezenc (1753m). A number of fine-scale structures are present, including a series
of “shoulders”, perpendicular to the main ridge and delineating the valleys, most of which are oriented
NW-SE. These valleys present common features, such as their depth (about 500 meters) and length
(in the order of 10 km). Their separation distance (20 km) is a significant feature for the triggering
of rainfall events (Miniscloux et al., 2001).

The region presents several rivers, either tributary of the Rhône or directly flowing into the Mediter-
ranean Sea.

1.3 Meteo-hydrological context

In 1999, the the INSU-CNRS (Institut National des Sciences de l’Univers) and by the OSUG (Observa-
toire de Sciences de l’Univers de Grenoble) created the OHMCV (Observatoire Hydro-Météorologique
Cévennes-Vivarais), devoted to the study of extreme rainfall and flash-floods in this region prone to
extremely intense events.

The technological development in the last decades is at the base of the recent improvement of the
media diffusion of the OHMCV data: most of the measurements and data are available through a por-
tal called SevNol (Système d’Extraction et de VisualisatioN des données de l’OHMCV en Ligne1).
OHMCV (Figure 1.4) is born to gather the measurement networks and to enforce the consulta-
tion among the socio-hydro-meteorological communities through a series of workshops and multi-
disciplinary projets.

1http://sevnol.ohmcv.fr/Sevnol2/?lang=en
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(a) (b)

Figure 1.2: a: Location of the Cévennes-Vivarais region. b: Elevation map of the Cévennes region (in meters
above sea level), main rivers, mountain peaks and cities.

In the recent years, the international HyMeX (HYdrological cycle in the Mediterranean EXperi-
ment) programme, aiming at a better understanding of the hydrological cycle in Mediterranean Re-
gions, has been defined. Similarly to the AMMA project, involving the African monsoon, it is a
long-term project.

HyMeX share with OHMCV the integrated approach regrouping social sciences, economics, meteo-
hydrology and hydraulics.

LTHE members are involved in the project HyMeX, with important tasks concerning the Working
Group 3 on “Heavy rainfall, flash-floods and floods” and the Working Group 5, on “Societal and
economic impacts“.

1.3.1 Climatic features

All along the thesis we adopt the thematic cartography to describe the features of the region. The map
covers the Cévennes-Vivarais region, whose boundaries have conventionally been fixed in the extended
Lambert II projection, as the rectangle of coordinates X=[650 km,810 km],Y=[1830 km, 2030 km].
The region is therefore 160x200 km2.

We can summarize the climatic features of the region by 2 main indicators. The average annual
rainfall depth is the first indicator, it is independent of the scale of analysis and it gives a preliminary
description of the main climatic patterns of the region. In Figure 1.5 the average annual rainfall,
obtained by geostatistical interpolation (see Section 4), is reported. From the map it is evident that
the drier sub-regions are located along the Mediterranean shore, while the highest rainfall depth are
recorded along the Massif Central mountain ridge, oriented SW-NE, roughly obtainable by joining
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(a) (b) (c)

Figure 1.3: The OHMCV survey network. a: hourly rain gauge network. b: daily rain gauge network; c:
limnimeter network;. From the SevNol website, OHMCV.

the Mt. Aigoual to the Serre de la Croix de Bauzon. These two locations feature the largest rainfall
accumulation, with more than 2 m of equivalent rainfall depth per year.

Another relevant indicator of the climatic behavior of the region is the number of rainy days. From
the map in Figure 1.6, we see that the Rhône Valley and the Mediterranean shore feature the driest
climate, while over the mountainous region of the Cévennes plateau, in the NW corner, it rains almost
50% of the days.

The climatic pattern take different spatial organization depending on the analyzed season. In
Appendix B we draw some maps describing the monthly rainfall regime in the region, with the aim to
show some peculiar characteristics of the rainfall regime. In sequence, we show the average monthly
rainfall, its proportion with respect to the total annual depth in order to highlight the months in
which a dry/wet regime is observed, followed by the montly intermittency (proportion of wet days to
the total).

Further information on the climatological behavior in the Cévennes-Vivarais region, with particular
interest on the orographic effect on the rainfall regime, can be found in Molinié et al. (2010).

1.3.1.1 Flash-Floods

The Cévennes-Vivarais region is naturally prone to very intense storms, for two reasons:

• its position, located at few dozens of kilometers from the Mediterranean Sea, source of warm
and humid air masses;

• its complex topography: i) the main mountain ridge oriented 90◦ to the SSE flux generating
heavy precipitation events; ii) narrow parallel valleys evenly separated, ideal conditions for the
band convection triggering.
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Figure 1.4: Comprehensive vision of the OHMCV survey. The super-site of Le Pradel and the new super-sites
defined in the framework of the HyMeX project are reported. From the SevNol website.

The very fast storms that are produced in this zone are known as “Cévenols”. Three particular
synoptic conditions have been identified, leading to a generalized southern flow that, depending on
the flow incidence, may involve the Aude sub-region (as in the 1999 event) or the northern Gard
subregion (as in the 2002 event). With this configuration, the low and warm layers coming from
the Mediterranean are advected towards the Cévennes relief. These layers are extremely charged
especially during the fall months, enforcing the atmosphere instability from the sea shore to the
Cévennes foothills. The complex topography in the relief region is then a factor for the convection
triggering and for the moist flux convergence (Ducrocq et al., 2008).

In some particular situations, the convection becomes stationary because of several concomitant
ingredients: the relief forces the conditionally unstable and moist low-level jet to raise, generating
stable systems that remain in the same location until changes in the synoptic conditions occur. A
similar situation, not directly related to the orography, is called “cold-pool”, and is generated by the
precipitation evaporation. This phenomenon is at the origin of the catastrophic flood occurred in 2002
over the Gard region (Delrieu et al., 2005).

1.4 Hydrological context

The hydrographic network of the region is composed, excepted the Vidourle river, by right tributaries
of the Rhône River (Figure 1.7-a). The main basins interested by Flash-Floods and covered by the
measurement devices of the OHM-CV survey system are shown in Figure 1.7-b.
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Figure 1.5: Average annual rainfall in the Cévennes-Vivarais region (mm yrs−1).

In the next paragraphs, we briefly describe some physiographical features of the main basins located
in the Cévennes-Vivarais region. Most of them have been repeatedly interested by flash-floods events
in the last decades, and we report the main floods that have been therein recorded.

1.4.1 Ardèche basin

The Ardèche basin is the larger of the 4 basins interested by the flash-flood phenomena involving the
region. With a surface of 2429 km2, it raises the elevation of 1700 m. The Ardèche river is 120 km
long, with an average flow at the confluence estimated in 65 m3 s−1. In Figure 1.8-a,b the elevation
map and the hypsographic map are represented.

In some exceptional floods, such as in 1827, 1890 et 1924, the maximum flow reached more than
7000 m3 s−1.

1.4.2 Cèze basin

The Cèze basin is characterized by a surface of 1329 km2. The Cèze river is 128 km long, with an
average flow at the confluence estimated in 22 m3 s−1. In Figure 1.9-a and 1.9-b the elevation map
and the hypsographic curve are represented, respectively.

The maximum flow recorded at the station of La Roque-sur-Cèze was 2010 m3 s−1, on 1 October
1977.
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Figure 1.6: Average number of rainy days in one year in the Cévennes Vivarais region.

1.4.3 Gard basin

The Gardon river (also known as Gard) features two main branches: the Anduze Gardon and the
Alès Gardon. The basin is characterized by a surface of 2200 km2. The river length is 127 km, with
an average flow at the confluence of 32 m3 s−1. In Figure 1.9-a and 1.9-b the elevation map and the
hypsographic map are represented, respectively.

The basin was submitted to two major floods in 1958 and in 2002, September the 8-9th.

1.4.4 Vidourle basin

The Vidourle basin is the southern of the 4 basins mainly interested by the “Cévenoles” events. Its
surface is 1335 km2, with an average flow at the estuary of 20 m3 s−1.

A series of catastrophic floods have been recorded: 15 September 1575, 3 July 1684, October 1689,
1-3 October 1723, 18 November 1745, 6 October 1812, 17 September 1858, 1891, 26 September 1907,
16 October 1907, 27 September 1933, 4 October 1958 and 8-9 September 2002.

1.5 Measurement network

The analysis of rainfall at different scales is the main objective of the work. Consequently, the use of
different databases (possibly spatially and temporally overlapped) is required.

We will make use of three kinds of data:
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(a) (b)

Figure 1.7: a: Main hydrographic network of OHM-CV. b: Main hydrographic basins of the OHM-CV region.

• Point-rainfall data at the rain gauges

• Radar-estimated rainfall fields

• Disdrometer data

In the next subsections, we briefly describe the main properties of each database, observation
period and number of available devices.

1.5.1 Point-rainfall data

The N̂ımes flood in 1950 highlighted the need of a densely instrumented survey system. Since then,
the Cévennes-Vivarais region has been densely gaged, focusing on the measurement of the rainfall
produced by deep convective events and on the orographic events occurring over the southeasterly-
exposed Massif Central foothills.

In Figure 1.12 we report the locations of the hourly and daily rain gauge stations. Except for
rough terrain zones where the density is lower (between Millau and Mount Aigoual for example), the
rain gauge density is spatially homogeneous. The rain gauge distribution as a function of the elevation
is showed in Figure 1.13, in which the surface of the relative elevation ranges are reported. The rain
gauge density per elevation range is approximately constant. The area higher than 1600 m represents
a very small proportion of the total surface and, due to accessibility issues and maintenance costs, it
is poorly gaged.

In the next subsection, we analyze the daily rainfall database with particular interest to the
availability of long series, a mandatory requirement for a reliable estimation of the extreme behaviour
of rainfall.
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Figure 1.8: Ardèche basin. a: Elevation map. b: Hypsography.
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Figure 1.9: Ceze basin. a: Elevation map. b: Hypsography.
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Figure 1.10: Gard basin. a: Elevation map. b: Hypsography.
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Figure 1.11: Vidourle basin. a: Elevation map. b: Hypsography.
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Figure 1.12: Raingage networks in the region of analysis: elevation above sea level (gray scale), hydrographic
network on the right of Rhône River (solid line), the five highest mountain peaks (triangles), main cities
(diamonds), the daily (circles) and the hourly (crosses) rain gauge network.

1.5.1.1 Daily Rainfall

The daily rainfall database is provided by Météo-France and covers the period 1958-2000. About 400
rain gauges are available, and among these, 225 rain gauges feature more than 30 years of data. Some
rain gauges are outside the OHMCV window; they are kept to provide reliable estimations at the
region boundaries.

The hourly series for the period 2000-2008 have been aggregated to 24 hours in order to extend
the daily series to the period 1958-2008. Two stations are gathered when:

• the horizontal distance is lower than 2 km;

• the difference in elevation does not exceed 100 m.

When two close rain gauges were operational at the same time, we take the average of the two
stations, increasing the reliability of the measurements. Knowing that elevation has a strong influence
in the determination of the pluviometric regime, the vertical distance has been taken as 100 m.

This merging allows to increase the sample size of 75 stations, for which we have 51 years of data.

1.5.1.2 Hourly Rainfall

Three different hourly databases are available; the 3 databases consistently differ among each other.



14 GENERAL CONTEXT 1.5

Figure 1.13: Histogram of the surface elevation (grey boxes, left vertical axis); rain gauge density as function
of the elevation. The rain gauge density is expressed as the ratio of the rain gauge number to the area of the
relative altitude band: long dashed lines for the daily rain gauge network and dashed-line for the hourly one
(right axis).

i. 1972-1992: event-based database in the Cévennes region. The hourly rainfall has been recorded
at about hundred rain gauges in a discontinuous manner, mainly in the fall season (more precisely,
from August, 15th, to December, the 15th);

ii. 1993-2000: continuous database provided by OHMCV;

iii. 2000-2008: continuous database provided by Météo-France.

The database 1972-1992 has been used for long time with the aim to estimate the frequency of
rainfall extremes (Bois et al. (1997); Lebel et al. (1987); Lebel and Laborde (1988) among others). The
rain events occurring during the fall season were recorded, since fall was considered the only season
featuring heavy rainfall events. Nevertheless, it is not possible to exclude a priori that some extreme
meteorological events could occur in late spring: the frequency estimation could be affected by this
assumption (some evidences of this are shown in Molinié et al. (2010)).

1.5.2 Radar-estimated rainfall fields

The use of radar imagery for the analysis of the meteorological events developed after the 2nd World
War. It allows to characterize the water content within the scanned volume, and this information can
be integrated over a vertical profile to obtain a rainfall accumulation. In addition, information on the
spatial structure of the storm can be drawn; worthy insights on the rainfall generation mechanisms
have been discovered.

The radar measurement of rainfall is based on the following principles:

• the radar reflectivity is measured as the ratio between the energy received by the antenna and
the energy emitted by the source.
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• the reflection is proportional to the sixth power of the rain droplets diameter.

Due to its tremendous variability range, the reflectivity is usually expressed in decibel, an adimen-
sional ratio of the reflectivity with respect to the reference z = 1 mm6m−3:

Z = 10 log10

(
z(mm6mm−3)
1(mm6mm−3)

)
dBZ (1.1)

The state of the precipitation sensibly affects the reflectivity. It is fundamental to detect if the
precipitation is liquid or solid. In addition, to simplify the relation between droplets diameter and
water volume, the droplets are usually supposed spherical. Other issues related to the rainfall detection
are due to the phase change of precipitation. At high levels in the atmosphere, precipitation appears
as snowflakes. Falling to lower levels, the snowflakes melt developing a water coating. Water being
an order of magnitude more reflective than ice, large wet snowflakes have large reflectivity (“bright
band” effect).

A formula expressing the reflectivity to the rainfall intensity (usually referred to as “Z-R” rela-
tionship) is used, conditional on the precipitation type. It has the form:

R = aZb (1.2)

where R is expressed in mm h−1, and a,b are coefficients usually derived from the Drop Size Dis-
tribution (DSD), measured with a disdrometer (Section 1.5.3). Some Z-R relations valid for US are
provided in Table 1.2.

To obtain a reliable quantitative estimation, a radar/rain gauge merging algorithm must be applied
in order to reduce the quantitative errors. The merging is usually performed by means of geostatistical
techniques.

The data used in this study derives from the the radar located in Boll̀ene. The radar scans the
same volume once every 5 minutes; for each orientation angle the scan is performed at 8 elevation
angles. The radar image is scanned over a polar grid, and the transformation to a 2D grid involves
three issues: i) the fact to transform a volumetric measure such as reflectivity in a 2D field; ii) the
radar scanned volume increases with the distance between target and radar but the 2D grid size is
a constant; iii) the beam elevation changes with the distance (and this leads to scan over several
elevation angles to compose an image). Table 1.1 reports the main features of the Boll̀ene radar. In
Figure 1.14-a the radar locations and covered ranges in the Cévennes-Vivarais region are shown; the
Boll̀ene radar is shown in Figure 1.14-a.

The heaviest event ever occurred since the Hydro-Meteorological survey exists is the September
8-9th, 2002 storm. Of this event, we dispose of a reliable radar imagery sequence, derived from the
Bolĺene radar scan. The event is of large interest for evaluating the structure of heavy meteorological
events. An example of two instantaneous 2D fields derived from the radar scan of Boll̀ene is shown in
Figure 1.15.



16 GENERAL CONTEXT 1.5

(a) (b)

‘

Figure 1.14: a: Radar measurement network in the region of study and relative covered distance. b: Bollène
radar.

Table 1.1: Main features of the Bollène radar scan of the event of 2002, 8-9th September.

Radar Name Boll̀ene
Administration Name Météo-France
Location (Lambert II) X=793.658 km; Y=1927.770 km
Location (Polar Coordinates) Lat=44.32◦; Lon=4.76◦

Elevation 327 m
Emitted Power 600 kW
Frequency 2.80 GHz
Pulse Length 2 µs
Power Gain 42.5 dB
Opening 3dB 1.28◦

Number of Elevation Angles 8
Revisit time 5 min

Table 1.2: Recommended Z-R relationship from NOAA - US National Oceanic and Atmospheric Administration
Relationship Recommended for
Z = 200R1.6 General stratiform precipitation
Z = 75− 130R2 Winter stratiform precipitation - Orographic Rain
Z = 300R1.4 Summer deep convection
Z = 250R1.2 Tropical convective systems
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(a) 08.09.2002 22:35 UTC (b) 09.09.2002 04:20 UTC

Figure 1.15: Instantaneous radar-rainfall scan (Bollène radar) for the event of 2002, September the 8-9th. a:
Instantaneous scan, September the 8th at 22:35 UTC. b: Instantaneous scan, September the 9th at 04:20 UTC.
The rainfall intensity values (mm · h−1) have been logarithmically transformed for the plot.

1.5.3 Disdrometer data

The rain gauge demonstrated reliable for the measure of point-rainfall at durations in the range 10 min
- 24 h (Marsalek , 1981). For smaller durations, the rain gauge can exhibit problems in the measure
of the rainfall intensity due to the extreme rainfall variability, and the rain gauge can be efficiently
substituted by an optical disdrometer (Krajewski et al., 2006). In addition, the drop size distribution
(DSD) provided by disdrometer is of central importance for the radar calibration: the relations of
reflectivity factor (Z) and rain rate R (Equation 1.2) significantly change with DSD.

The laser optical disdrometers (Figure 1.16) consists in a laser beam of few cm2 that scans a
volume of few dozens cm3. A receiver measures the proportion of the emitted signal that is reflected
by the rain drops. This value is proportional to the water volume crossing the beam. The disdrometer
can measure the fallen rainfall amount, the intensity as well as the particle size (down to 0.1 mm) and
the velocity of precipitation.
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Figure 1.16: Laser optical disdrometer for the measure of the Drop Size Distribution (DSD).



2Uncertainties in the extreme rainfall

measurement

Résumé

Au début du XXe siècle, la mesure du taux de précipitations commence à susciter l’intérêt dans
la communauté scientifique internationale. Grâce aux premiers dispositifs électromécaniques, les
précipitations peuvent être mesurées automatiquement.

La thèse repose principalement sur la mesure des précipitations obtenues par pluviomètres à

auget basculant. Avant d’entreprendre toutes analyses de ces données, il est recommandé de vérifier
que la mesure des extrêmes par ce type de dispositif soit fiable tant pour les précipitations ponctuelles
que pour l’estimation des précipitations spatiales.

Le pluviomètre à auget basculant (Figure 2.1) se compose d’un entonnoir de section donnée qui
collecte la précipitation pour remplir un des 2 augets. Une fois le premier auget rempli, l’auget
tourne, le système d’augets bascule, fermant ainsi un contact électrique. L’information fournie par
l’implusion électrique est enregistrée soit sous forme graphique (avant les années 1980), soit sous
forme électronique.

La création des réseaux pluviométriques a été la première étape pour la connaissance de l’étendue
spatiale des épisodes de pluies: la collecte d’informations à permis de connaitre la hauteur de pluie
tombée dans un bassin.

La mesure de pluie au sol est encore la méthode d’estimation la plus fiable pour la mesure des
précipitations. Néanmoins, une série de sources d’incertitudes cause un écart entre les précipitations
mesurées et les précipitations réelles. Pour être en mesure de détecter et de éventuellement corriger
ces biais, chaque pluviomètre doit être caractérisé en termes de:

• résolution d’échantillonnage des données enregistrées: l’étude peut donner des résultats
erronés si la résolution d’échantillonnage des données est proche de l’échelle souhaitée pour
l’analyse. Pour analyser les extrêmes horaires, par exemple, une série de précipitations de
résolution de 6 minutes pourrait être suffisante.
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• erreur maximum de la mésure d’intensité: chaque pluviomètre a une gamme d’intensités
de précipitations pour laquelle l’erreur de mesure est inférieure à 1-3%. En dehors de cette
plage, la mesure est fausse et ainsi l’analyse des extrêmes.

• Saturation de l’entonnoir: L’entonnoir attent la saturation lorsqu’il reçoit une intensité de
précipitations superieure à une certaine valeur (par exemple, 150 mm h−1): telle intensité peut
apparâıtre considérable à la résolution de l’heure, mais elle est facilement atteinte à la résolution
6-min (Section 2.3). La mise en charge du collecteur peut engendrer une réduction de l’intensité
de pluie mesurée qui ne peut pas être corrigée.

Enfin, pour ce qui est de l’évaluation de la sous-estimation spatiale des précipitations et éventuellement
de sa correction, il faut aussi connâıtre la densité du réseau pluviométrique.

Le chapitre est organisé comme suit: la Section 2.2 est consacrée à une brève introduction sur
la détermination des erreurs dans la mesure des processus ponctuels en fonction de la résolution
d’échantillonnage. La Section 2.3 présente une description technique du fonctionnement du plu-
viomètre à auget: grâce à une simulation numérique qui consiste en un processus de désagrégation
des pluies, nous estimons le biais induit par le dispositif de mesure sur l’estimation correcte des
précipitations extrêmes et sur les cumuls de précipitation. On propose une méthode pour corriger les
données historiques et des directives sur les caractéristiques ideales des nouveaux appareils. La section
2.4 est dediée à l’analyse des incertitudes liées à l’estimation spatiale de la pluie. Nous montrerons
que l’estimation correcte de la hauteur de pluie est fortement biaisée lorsque la densité du réseau plu-
viométrique est du même ordre de grandeur que la structure de corrélation des phénomènes pluvieux.
Il apparâıt aussi que, quel que soit le processus d’interpolation, la hauteur maximale des précipitations
est systématiquement sous-estimée.

2.1 Introduction

In the beginning of twentieth century the measure of the rainfall rate begins to gain interest in the
international scientific community. With the advent of electro-mechanical equipment, the rainfall
record could be automatized.

The thesis mainly relies on rainfall measurements obtained through tipping-bucket rain gauges.
Before to undertake any study on this kind of data, it is recommended to verify the reliability of tipping
bucket rain gauge data for the study of spatial and temporal properties of rainfall intensities.

The tipping-bucket rain gauge (Figure 2.1) consists of a collector of known area forcing the pre-
cipitation to fill a bucket. Once the first volume full, the bucket rocks. The tipping date is recorded
either on a rotating paper (up to 1980) or on an electronic device. Tipping bucket rain gauges are
equipped with two twin buckets, so that the second bucket is presented to the flux after the first has
tipped.

The rain gauge is still the most reliable estimation method for the ground measurement of rainfall.
Nonetheless, a series of uncertainty sources cause the measured rainfall to show deviations with respect
to the actual rainfall. To be able to detect and possibly correct these biases, each single rain gauge
must be characterized in terms of:
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Figure 2.1: Schematic diagram of the electro-mechanical tipping-bucket rain gauge. The right bucket is being
filled with rain water. During the tipping, an electrical current impulse (upper right panel) is traduced into
a rainfall amount as shown in the lower right panel. The mechanism generating the impulse is the ampoule
oscillation, during which the mercury puts in contact 2 electrodes.

• sampling resolution of the recorded data: strong underestimations of the extreme rainfall
intensities occur if the data resolution is close to the desired scale of analysis. For the analysis
of hourly extreme intensities, for example, a rainfall series at the resolution of 6-min could be
adequate.

• maximum sampling error: each rain gauge has a range of rainfall intensity values for which
the bias is lower than 1-3%. Outside this range, the measure is not reliable.

• saturation of the rain gauge collector: when receiving very intense rainfall amounts (e.g.
higher than 100 mm min−1), the rain gauge collector may saturate preventing the exact mea-
surement of the instantaneous intensity. This rainfall intensity value may appear tremendous
at hourly resolution, but it could be easily attained at the 6-min resolution (Section 2.3). A
water charge in the collector may appear, laminating the output flow and, therefore, generating
underestimation of the measured rainfall intensity.

The points above detailed concern point rainfall. The spatial rainfall estimation is submitted to
additional errors. The underestimation committed measuring spatial rainfall underestimation depends
on the ratio between rain gauge network density and storm characteristic size.

The chapter is organized as follows: Section 2.2 is devoted to a brief introduction on the de-
termination of a proper scale of analysis of point rainfall intensities as a function of the sampling
frequency. Section 2.3 presents a technical description of the functioning of the tipping-bucket rain
gauge: through a numerical simulation consisting in a rainfall disaggregation process, we will estimate
the bias induced by the measurement device on extreme rainfall and rainfall depth measurements.
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Section 2.4 extends the analysis of uncertainties to the spatial estimation of rainfall: we will show that
the correct estimation of the rainfall depth is strongly biased when the rain gauge density is of the
same magnitude order of the correlation structure of the fields or lower. We will demonstrate that,
whatever the interpolation process, the maximum rainfall depth is systematically underestimated.

2.2 Role of the sampling frequency on the statistics of extremes

The sampling frequency of the measure has wide importance in the determination of the statistics of
extremes. The longest rainfall time series are those at the daily resolution (an operator each day at 6
a.m. recorded the rainfall accumulated during the last 24 h). These series allows to estimate extreme
quantiles with a good precision. On the other hand, any analysis on daily extremes conducted using
this data is submitted to a systematic underestimation, due to the identity between the scale of the
analysis and the sampling frequency. The arbitrary choice of the hour of the day at which the measure
is recorded causes the events occurring in the first hour of the day to be cut. In Section 2.2.2, we
analyze this underestimation source in detail.

2.2.1 Moving-window and fixed-window sampling

We must define here the concepts of fixed-window record and moving-average record. In Figure 2.2
the sampling schemes for fixed-window and moving-average are shown for the aggregation process of
a 6-h series to a 24-h series.

Depending on the information we want to extract from the data, one sampling technique is prefer-
able respect to the other.

• fixed window: a window of size equal to the scale of analysis is moved of a step corresponding to
the scale of analysis. The fixed window sampling must be used when the aim is drawing statistics
on the whole sample, such as average, standard deviation or intermittency. The observations in
this case are not overlapping. The daily rainfall measurements at a rain gauge can be seen as a
24-h fixed window sampling.

• moving average: a window of size equal to the scale of analysis is moved of a step corresponding
to the sampling frequency. On this kind of data, no overall statistics can be computed on the
series due to the partial overlapping of the data (high interdependence of data). Nevertheless,
the sample is useful for the extraction of maxima/minima over a block of fixed size. In the
example of Figure 2.2 it appears that the fixed-window sampling did not detect nor the actual
maximum (40) neither the minimum (18) at 24 h, correctly detected with the moving window
sample.

2.2.2 Uncertainties associated to the measurement resolution

In this section we aim to quantify the uncertainty associated with the measurement resolution. Very
often, the study of the extremes of time series is done at the scale corresponding to the measurement
resolution. For example, the daily rainfall maxima are estimated based on daily rainfall series. Even
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Figure 2.2: Illustration of the fixed-window and moving-window sampling technique for obtaining 24-h data
starting from a 6-h database.

though the average and variance of the series are correctly estimated, the statistics concerning extreme
observations are systematically underestimated by the fixed window sampling. It is common experience
that the extreme rainfall at the duration of 24 h is underestimated of at least 10% if daily time series
are used. In the next paragraphs we quantify this underestimation. Section 2.2.2.1 uses the 52-years
hourly series of Montpellier to assess the underestimation of the extreme behavior of the series due
to resolution issues. In Section 2.2.2.2 we extend the analysis to the whole rain gauge network. The
absence of long hourly series prevent this computation. To compute the global underestimation due
to sampling issues we reconstruct 4-hour data from daily series, by applying a disaggregation scheme.
The results of the two sections are comparable, leading to an average underestimation of extreme
quantiles of 13 %.

2.2.2.1 Assessment on real data

We can evaluate the systematic underestimation induced by fixed-window sampling by analyzing
the rainfall series of Montpellier, in which hourly rainfall has been measured for over 50 years. By
subsequent aggregation of the data, we may determine the underestimation error committed in de-
termining the rainfall intensity maxima at the scale D=24h based on the data at the resolution of
λsample = 1, 2, 4, 8, 12 and 24 h, respectively.

In Figure 2.3-a we plot the expected value of the annual maxima for D=24h at various sample
resolutions, divided by the 24-h maxima evaluated at the 1-hour resolution in order to show the
underestimation induced by the sampling resolution. A clear underestimation of the maxima average
(higher than 10%) is found when the sample resolution is close to the resolution of analysis. The
diamonds show the empirical standard deviation of annual maxima for D=24h as a function of the
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sample resolution λ, normalized by their maximum, obtained for D=1h. Even in this case, the lower
the ratio between the scale of analysis and the sample resolution, the higher the underestimation.

The first two empirical moments of rainfall intensity maxima (average and standard deviation) are
the needed parameters for a first approximation of the extreme rainfall return levels (see details in
Section 3.5). We show in Figure 2.3-b that the sampling resolution seriously affects the estimation of
these first two moments: the estimation based on daily data leads to an underestimation of 13% of
the 100-year return level for the 24-h rainfall.
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Figure 2.3: a: Effects of sampling resolution on the statistics of daily annual rainfall maxima. White circles:
ratio between average daily-rainfall maxima computed with degraded resolution and computed at the sample
resolution of 1 h. White diamonds: ratio between standard-deviation of daily-rainfall maxima computed with
degraded resolution and computed at the sample resolution of 1 h. b: Effects of the rainfall sampling resolution
on the extreme value statistics for the 24-h duration (return level rainfall depth for 100 years).

This is a clear example of how statistics even on apparently well-known variables such as daily
rainfall can be perturbed by resolution issues.

2.2.2.2 Assessment thanks to self-similar cascades

Anticipating one of the scale-invariance applications for meteo-hydrology, we use self-similar cascades
(Section 5.12) to test the effect of fixed-window maxima extraction at the daily scale. We implemented
a disaggregation scheme (Over and Gupta, 1996; Schmitt et al., 1998) whose parametrization is based
on the scale-invariant series of daily data in the range 1 h - 7 days. Our objective is to generate
series at 4-hours resolution and then compute the annual maxima of the daily series obtained using a
moving-average scan. The fixed-window and moving-average daily maxima will then be compared in
their main indicators, average and standard deviation, in order to quantify systematic underestimation
due to the fixed-window data sampling.
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The analysis is performed on the 225 daily rain gauge stations featuring at least 30 years of
continuous observations in the period 1958-2008.

Figure 2.4 shows a comparison of the fixed-window and moving average sampling methods through
a quantile-quantile plot. The graph shows a linear relation between fixed-window and moving-average
annual maxima. Table 2.1 gives the regression features, indicating that the correlation coefficient R2

is very close to the unit. Figure 2.4-b reports the relation between the empirical standard deviation
computed by fixed-window and moving-average, respectively. The underestimation of the actual aver-
age as well of the actual standard deviation due to the fixed-window sampling is of about 13%. This
result is in agreement with the underestimation of rainfall extremes computed on the observed rainfall
series of Montpellier 2.2.2.1.
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Figure 2.4: Effect of the rainfall sampling resolution on the statistics of annual maxima. a: q-q plot of the
average annual-rainfall maxima at the daily scale. b: q-q plot of the empirical standard deviation of annual-
rainfall maxima.

Table 2.1: Relation between fixed and moving window daily annual maxima in terms of sample mean and
sample variance.

Linear regression formula R2

E[x]mov = (1.127 ± 0.003) · E[x]fix 0.999
s2
mov = (1.132 ± 0.006) · s2

fix 0.993
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2.3 Tipping-bucket rain gauge measurement

In preparation for Journal of Hydrology
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1. Introduction

The tipping bucket rain gauge is a mechanical system for measuring rainfall intensities. The device

basically intercepts the rain flux and drives the collected water to monitored tipping buckets recording the

time of occurrence of rainfall quantums. The number of tippings in a given period of time (a few minutes

to a day) is proportional to the average rainfall intensity.

Despite the apparent simplicity of the system, the measurement of rainfall rates or accumulations is

subject to many errors. As pointed out by Molini et al. (2005a), the measurement is basically affected by a

deficit of rain water entering the collector due to wind, evaporation (Sevruk, 1972) or drop splash effects,

besides the issue of solid precipitation. The evaluation of this kind of errors is out of the scope of the present

paper.

Our study focuses on the specific errors linked to the use of tipping-buckets. Several antecedent studies

(Calder and Kidd, 1978; Niemczynowicz, 1986; Sevruk, 1987, 1996; Humphrey et al., 1996; Wood et al.,

2000; Habib et al., 2001; Ciach, 2003) analyzed the systematic underestimation of rainfall rates due to the

principle of measurement of tipping-buckets. They show that for high intensities a correction is needed to

reduce the measurement bias resulting from the discretization of the rain flux. The indoor calibration of

the gauge for selected rainfall rates is a reliable way to establish the amplitude of this bias. Nevertheless,

this type of calibration is not sufficient for the proper correction of tipping bucket errors in real conditions

when the rainfall rate varies at short time scale. In order to characterize and subsequently correct the re-

sponse of a tipping-bucket gauge we propose a numerical simulation approach following the path proposed

by Molini et al. (2005b). We use statistical cascades to build high-resolution time series of rainfall rates

that we consider to be the true rainfall. To compute the corresponding tipping-times, we simulate the func-

tioning of the tipping-bucket including in the computation the effects of the water storage in the collector.

Subsequent aggregations yield series of measured intensities and accumulations. According to the same

authors, the lack of a proper correction of the measured rainfall can result in a global underestimation of the

extreme quantiles. They estimate that, with a simple linear correction, the 100-years return period rainfall

is underestimated by 45-65% and 25-40%, respectively for hourly and daily rainfall.

Email address: jean-dominique.creutin@ujf-grenoble.fr (Creutin, J.D.)

Preprint submitted to Journal of Hydrology November 25, 2010



A detailed analysis of the biases induced by the small-scale rainfall variability on the total accumulation

and on the estimated rainfall intensity is therefore needed to understand how to correct historical series and

how to realize an optimal design of rain gauges.

The paper is structured as follows. In Section 2 we describe the principles of the rainfall estimation by

tipping-bucket rain gauge and we detail on the rain gauge features. Section 3 presents the analyzed rainfall

series and the simulation method that will be used for the disaggregation. In Section 4 we present three

formulas for the correction of the raw rainfall measurements. The results of the correction application to the

simulated data series are presented in Section 5. Section 6 provides some further elements that will serve

as guidelines for historical data correction and for future rain gauge dimensioning.

2. Tipping-bucket measurement errors

The sampling mechanism of tipping-buckets leads to several errors in the measurement of the rainfall

intensity. Concerning small to moderate rainfall rates, the main tangible sampling error is when the active

bucket remains partially filled at the end of a rain event. The corresponding rainfall amount is then allocated

to the subsequent rainfall event, unless the water stored into the bucket evaporates, in which case the rainfall

amount is lost. The resulting error is less than the rainfall quantums corresponding to a full bucket, but it

can turn to a few tens of mm in terms of annual accumulation for instance. Concerning high rainfall rates

(say more than 20 mm · h−1) the problem of underestimation is more critical and mainly related to the lack
of measurement during the tipping of the buckets. Every time the tipping volume is reached, the device

rocks under the weight of the full bucket and presents the empty bucket to the water flux coming from

the collector. During the corresponding period of time the water flux coming from the collector is partly

lost leading to the above-mentioned underestimation. In this study we try to describe and model this last

category of problems, related to the measurement of high rainfall rates.

The bias due to the tipping time is a function of the actual rainfall intensity Ia, of the tipping time ∆t

and of the nominal rainfall depth quantum per tip hn which depends on the ratio between the tipping volume

and the surface of the collector. According to Marsalek (1981) the bias can be expressed as:

Ir

Ia
=

hn

hn + Ia∆t
, (1)

where Ir is the recorded rainfall rate.

Usual values of the bucket volume and the collector surface give values of hn ranging from 0.1 to 0.5

mm. Reducing the collector surface may decrease water losses but this solution degrades unacceptably the

precision of the gauge at low and moderate rain rates. Keeping the flow from the collector below a chosen

threshold may also limit the water losses. In many rain gauges the size of the bottom hole of the collector

is designed to evacuate rainfall rates up to, for instance, 150 mm · h−1. Beyond this value, a water height
establishes in the collector and the output flow is laminated. This solution improves the measurement

of the rainfall accumulation over long periods but clearly affects the measurement of high intensities at

small durations. The tipping time ∆t depends on several factors. It is basically related to the distance

travelled by the buckets to rock from one position to the other one. It depends on the angular velocity of

the buckets during the tilt that is sensitive to the quality of the bearing mechanism and to the pressure of the

incoming water flux on the buckets. This last factor depends on the position of the water flux in regard of

the barycenter of the bucket. Conscious of this issue, some manufacturers designed a small device located

above the bucket that reduces the tipping time by increasing the momentum generated by the water flow

(see Figure 1).
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Molini et al. (2005a) highlight that, in Equation 1, the actual rainfall is equal to the measured rainfall

either if Ia = 0 or if tipping time ∆t = 0. While the latter condition is far to be achieved, the former

condition implies that only the measurements of null rainfall are unbiased. In other words, all the positive

rainfall values are underestimated. We see in Section 4 that a slight modification of Equation 1 allows to

set the optimal functioning of the gauge at a rainfall value higher than zero.

In our study the simulated rain gauge is of the tipping-bucket model, with a measurement resolution

of 0.2 mm. The reversal time has been estimated at 0.2 s, averaging the experimental values obtained with

a video camera able to capture 1200 frames per second. The rainfall falling within a circular surface of

0.1 m2 is poured into a container with a conical hollow bottom. The bottom hole diameter is 50 mm long.

The geometry of the conical bottom is approximately such as the height equals the diameter. A series of

indoor experiments with constant rainfall intensity has been carried out in order to define the minimum

rainfall intensity needed to put in charge the collector. According to these measures, for rainfall intensities

higher than 150 mm · h−1 the collector starts laminating the flow. For these intensities and above, our
numerical simulation uses a time step of 1 s to compute the height of water contained in the collector and

the corresponding outflow, determined through the Torricelli’s law:

Q = CcA
√
2 · g · h (2)

where Q is the flow in m3 · s−1, A the bottom hole area (m2), g the gravity constant 9.81 m · s−2, h the water
height (m) and Cc an adimensional term expressing the reduction of the output flow area due to the . In our

case the term Cc must be empirically estimated since is takes account of the pressure drop due to the pollen

filter located on top of the hole. Our empirical estimation yields A ·Cc = 0.173 cm.

3. Data set used and rainfall disaggregation by bounded cascade

The rain gauge data set used in this study is from the station of Montpellier Bel-Air, among the longest

hourly rainfall series in France. The hourly series has been obtained by digitization of the analogical pluvio-

graphic measurement. The considered period covers the years 1920-1972, in which the station never moved

and very rarely was malfunctioning. The rainfall resolution is 0.2 mm. The maximum hourly rainfall ever

recorded at this station is 69.7 mm · h−1. The average annual rainfall is 715 mm, corresponding to 0.082
mm · h−1. The variability of rainfall at hourly resolution is high: the ratio between maximum and mean

hourly rainfall is 850.

To reproduce the quasi instantaneous rainfall variability we implemented a downscaling method similar

to those proposed by Over and Gupta (1996) or Schmitt et al. (1998). These scale-invariant stochastic

models for rainfall time series are based on the separate modeling of rainfall intermittency and of rainfall

intrinsic variability. As illustrated by Figure 2-a for the series of Montpellier, the scale-invariance of intrinsic

rainfall is verified in the range 2 - 100 h. In this range the statistical moments are aligned, but for durations

lower than 1-2 hours, the process deviates from scale invariance. Therefore the statistical disaggregation

through a self-similar cascade can not be implemented and we are led to model the range in which the

process is not self-similar by a bounded cascade in which the rainfall variability depends on the scale

(Menabde, 1998).

For a sound downscaling, not only the rainfall depth but also the rain intermittency should be rescaled.

As for intrinsic rain variability, rainfall intermittency (showed in Figure 2-b for the rainfall series of Mont-

pellier) is scale-invariant in the range 2-100 hours, but deviates from scale invariance for durations lower

than 1 hour.
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The cascade model we propose uses the parametrization in Veneziano and Furcolo (2002) fixing α = 2,
so that the cascade is log-normal with an atom at zero:

K(q) = Cβ(q − 1) +C1(q2 − q) (3)

where K(q) is the moment scaling function, q the moment order, Cβ and C1 the two model parameters

describing the fractal dimension of the support (the intermittency) and the mean codimension of the process,

respectively. The variance of the series at each step n of the cascade is related to the variance of the series

at the step n − 1 through the scale relationship

σ2n = m
K(2) · σ2

n−1 (4)

where m is the multiplicity of the cascade (i.e. the number of elements at scale n that originate from one

element at scale n − 1).
The parameters for the series of Montpellier have been determined month by month by applying the

method described in Schmitt et al. (1998) and are reported in Table 1.

For each step n of the cascade, we compute the intermittency P(In > 0) based on the coefficient Cβ as:

P(In > 0) = P(In−1 > 0) ∗ m−Cβ (5)

Consequently, the “inner” intermittency, i.e. the average proportion of zero observations obtained ap-

plying the disaggregation to a positive rainfall value is

P(In = 0|In−1 > 0)inv = 1 − [P(In−1 > 0) − P(In > 0)] (6)

where the index inv indicates that the relation is valid for scale-invariant intermittency process.

For durations lower than 1 hour we model the deviation from scaling by introducing a correcting term

into the inner intermittency definition, depending on the scale d0 where inner intermittency is supposed to

disappear (in our case we fixed d0 = 1 s):

P(In = 0|In−1 > 0)dev = P(In = 0|In−1 > 0)inv ·
log((d/d0)

log((D/d0)
(7)

where D is the larger scale of the cascade. The index dev indicate deviations from scaling.

We disaggregated the hourly rainfall series of 52 years recorded in Montpellier down to the 15 second

time step following the above showed disaggregation scheme. Figure 3-a and Figure 3-b display the moment

analysis of the disaggregated series in terms of intrinsic variability and intermittency, respectively. The time

resolution of 15 seconds is too coarse to correctly model the water level in the reservoir under extreme

intensities. For this reason, the 15 s rainfall intensity is equally spread to the 1 second resolution needed for

the simulation.

We simulated the rain gauge functioning over the 52-years, for a total of 30 different stochastic simula-

tions. We stored a number of variables. The actual rainfall is directly produced by the stochastic disaggre-

gation. We also archived the lost rainfall (i.e. that has been lost during the rocking time), the water height

in the collector and the corresponding stored volume.

The measured rainfall intensity is computed from the number of tippings derived from the tipping bucket

simulation. We used the correction formulas described in the next section to transform measured into cor-

rected rainfall rates. The observations are subsequently aggregated, obtaining series at coarser resolutions

(typical values are 5, 10, 15, 20, 30, 45, 60 min).
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4. Rainfall correction methods

The rain gauge is usually calibrated by fixing an optimal rainfall value for which the rainfall intensity

measure is unbiased. Depending on the aim of the measure, one may have interest in fixing a low or high

optimal rainfall value. If the tipping bucket volume is chosen as the nominal rainfall increment per tip, the

unbiased rainfall value is 0 mm · h−1, and Equation 1 describes the relation between actual and measured
rainfall intensities. In alternative, the tipping bucket volume of the rain gauge can be optimized for a positive

rainfall value (the tipping bucket volume can thus be obtained subtracting from the nominal rainfall depth

per increment the rainfall volume fallen during the reversal time at the optimum rainfall intensity). Figure

4 shows the basics to set the rain gauge for measuring an optimum rainfall value.

A generalization of Equation 1 can be proposed for positive optimum rainfall intensities:

Ir

Ic
=

hn

(hn − Iopt∆t) + Ic∆t
(8)

where Iopt is the optimum value for which the rain gauge measurement is unbiased, Ic is the corrected

rainfall and Ir the recorded value. Obviously when Ic = Iopt then Ir = Ic.

Independently from the optimum rainfall value, a choice must be done: take the raw measurements, af-

fected by significant under/overestimations, or apply a correction algorithm in order to reduce the estimation

errors when the rainfall intensity is far from the optimum value. Three correction methods have been ap-

plied to the simulated measurements: two of them are empirical and the third one reflects the measurement

principle of tipping-buckets, described by Equation 8.

The linear model is the simplest empirical correction, consisting in multiplying the measured rainfall

by a constant to obtain the corrected rainfall:

Ic = α1 · Ir (9)

where α1 is an empirical parameter. The second empirical correction is a power-law formula which is often
referred to as “dynamic correction” because it better fits with the non linearity of Equation 1 linked to the

water loss:

Ic = β1 · Iβ2r (10)

where β1 and β2 are empirical parameters. This formula better corrects heavy rainfall intensities respect to
the linear one, but in some cases its application induces an underestimation of the total rainfall depth.

The parameters (α1, β1 and β2) in Equation 9 and 10 are estimated through indoor calibration. Using
a reservoir with constant water level, constant water flows can be injected into the rain gauge collector,

corresponding to given rainfall intensity values. Each value of rainfall intensity is kept for several minutes.

During this time, the flow is measured by the tipping-bucket rain gauge and the output collected into a

graduate cylinder. When a significant water amount has flown through the rain gauge, the total water volume

into the cylinder is compared with the volume corresponding to the number of tippings of the bucket. The

operation is repeated for various intensity levels (e.g. from 10 mm · h−1 to 150 mm · h−1 with a step of 10
mm · h−1) until a sufficient number of calibration points are available.

In Table 2 numerically-determined coefficients for the linear and the dynamic correction for the simu-

lated rain gauge are respectively shown, for two values of the optimum rainfall (0 and 50 mm · h−1).
The third method respects the physics of the tipping-bucket mechanism, and is obtained by inversion of

Equation 8:
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Ic = Ir
hn − Iopt∆t
hn − Ir∆t

(11)

The volume for the bucket tipping hn and Iopt can be only approximately set by manually turning the

screws in Figure 4. For a reliable estimation of hn and Iopt it is suitable to apply the indoor calibration

similarly to the previously detailed correction methods.

The time step at which the correction is implemented is of primary importance. At the 1-min time step

it may be frequent that extreme instantaneous rainfall cause the increase of the water level in the collector,

leading to lamination of the output flow. In addition, since the rainfall amount falling in 1-min is often

lower than the gauge resolution (0.2 mm), significant sampling errors may occur(Molini et al., 2005a). The

time step of 5 minutes has a twofold advantage. On the one side, the probability to have lamination of the

extreme intensities compared to the 1-min time step is very low and, at the same time, the correction can

be applied discriminating more than 60 discrete values within the range 2.5-150 mm · h−1 (Figure 5-a). The
hourly time step is less favorable because the aggregation reduces the average rainfall intensity and gathers

heavy and common rainfall event smoothing the rainfall variability. Figure 5-b shows that the sampling is

dense for intensities higher than 20 mm · h−1 although very few observations are recorded in this range.
Before to move to the study of the simulations, it is necessary to analyze the relative error of the raw

measurements in an idealized case of constant rainfall rate and to quantify the improvement given to the

estimation by each of the correction algorithms presented above. By definition, only one rainfall intensity

value yields unbiased measurements. Figure 6-a and 6-b display the measurement bias of low to high rainfall

rates obtained by calibrating the optimum rainfall value at 0 mm · h−1 and at 50 mm · h−1, respectively.
The application of Equation 11 leads to a perfect correction of the raw measurements (in the ideal

case of I = const ≤ 150 mm · h−1 and accumulation time T → ∞). The measurement error ( for

I = const ≤ 150 mm · h−1) is in the order of 6% imposing the rain gauge optimum at 0 mm · h−1 (dots
in Figure 6-c). Setting (as in the most of European gauges) an optimum rainfall value of 50 mm · h−1 re-
duces the maximum raw measurements error to about 4% (dots in Figure 6-d). Significant improvement

of the maximum raw measurement errors are obtained applying the linear and the dynamic correction (the

corrections yield maximum errors of 1.5 %, and 0.5%, respectively). The problem with the dynamical

correction when the optimum rainfall value is higher than 0 is that all the measurements lower than the

optimum are overestimated (Figure 6-d, solid line). Since weak rainfall intensities represent the majority of

the total observations, the risk is to have incongruous total rainfall depth estimated by tipping-bucket device

respect to the graduate cylinder. The solution is to apply the correction in Equation 9 and 10 only when the

optimum rainfall is set to zero.

The linearly and dynamically corrected curves reported in Figure 6-c,d do not show substantial differ-

ences imputable to the optimum rainfall choice: the correction provides equal results whatever the choice

of the optimum rainfall value.

From the graphs in Figure 6-c,d it is clear that an optimal calibration strategy may differ as a function

of the usage of the device. If one is mostly interested in rainfall accumulations and uses linear or dynamic

correction, a null optimum rainfall value is recommended. If one is only interested in extreme intensities,

one may either fix a zero threshold applying one of the correction formulas or fix a positive threshold

using the formula in 11. If no correction is planned, it is better to fix a high optimum rainfall value. If

one is interested either in rainfall accumulations or in extreme intensities, the use of the physically based

correction formula in 11 is recommended; the optimum rainfall choice does not affect the accuracy of the

measure.

Up to this point, the functioning of the rain gauge has been tested with constant rainfall intensities. The

response of the device to the natural rainfall variability can be very different from the ideal case of constant
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rainfall rates. This point is explored in the next section.

5. Analysis of simulation results

The performed simulations allow to analyze raw and corrected tipping-bucket measurement both in term

of “instantaneous” rainfall rates including extreme intensities and long term rainfall accumulations. We will

analyze each of these measurements in detail.

We recall that, when the instantaneous rainfall intensity is higher than 150mmh−1, the rain gauge starts
laminating the output flow, with a twofold consequence: the correction formulas shown in Section 4 do not

yield correct results and the collector lamination delays the output flow. Both effects lead to underestimating

the actual rainfall intensity. Our simulation shows that an average of about 0.5 event per year presents

instantaneous rainfall intensity higher than 150 mm · h−1. Figure 7-a reports the results for a randomly
chosen simulation, and Figure 7-b shows the whole set of simulations.

5.1. Total rainfall accumulation

The sum of tipping-bucket measurements over a long period (i.e. a year) is sometimes used for esti-

mating the total rainfall. Usually, the water ejected by the tipping buckets is collected to measure the total

rainfall amount (e.g. by weighting or reading a graduate cylinder). Due to the mechanical errors men-

tioned above, the total collected volume often differs from the sum of the rainfall quantums observed by the

tipping-bucket device.

Table 3 displays the average annual-rainfall amounts obtained with and without correction. In order to

understand these results we must keep in mind that most of the cumulated rainfall intensities are weak. The

accumulation of raw measurements gives an excellent estimation of annual accumulations when the gage

is calibrated for low intensities (Iopt = 0 mm · h−1). The linear correction, resulting in a constant factor
higher than the unit (Table 3), produces an overestimation of the total rainfall amount. For low Ir values, the

power-law relationship (Table 3) of the dynamical correction (Equation 10) is close to a linear relationship

with slope lower than 1 (Figure 5-a,b). The application of the physically-based correction formula reported

in Equation 11 leads to the most accurate total.

5.2. Extreme rainfall

In order to examine the case of large return-period rainfall rates, we assume that the rainfall maxima

can be modeled with the 2-parameter Gumbel distribution. We estimate, for durations of 5, 10 , 15, 20,

30, 45 and 60 minutes, the 100 year return period rainfall based on a sample of extracted annual maxima.

The average results for 30 simulations are shown in Table 4 and in Figure 8. The three correction methods

have substantially equivalent skills in correcting the measured maximum. The best result is provided by

the rigorous correction, and the dynamic correction provides significant improvements respect to the linear

one. The use of correction methods is thus recommended in the case of Iopt = 0 mm · h−1, because the raw
measurements are systematically underestimated. The choice of a positive rainfall optimum improves the

raw measurement, without affecting the correction method skills.

Analyzing the error in the estimation of extremes we can state that, as expected, the strong singularities

are smoothed by the temporal aggregation and the error decreases with the accumulation period.
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6. Conclusive remarks

The paper dealt with the uncertainty of rainfall measurement using a tipping-bucket rain gauge. We

used a statistical disaggregation of hourly data measurements in order to reproduce the fine-scale variability

of the rainfall process. This rainfall disaggregation down to the scale of 15 seconds allowed us to show the

influence of the small-scale rainfall variability on rain gauge measurement accuracy. The functioning of a

tipping-bucket gauge, including the flow lamination by the collector, has been numerically reproduced.

For the station that we have analyzed, located in Montpellier (France), we found that in average once

every two years the collector enters in charge due to instantaneous rainfall intensities over 150mm·h−1. This
has consequences on the rainfall measurement at very high temporal resolutions (less than 5 minutes) and

leads to underestimated rainfall intensities. This lead to say that, designing a new rain gauge, the first and

most important step is to determine the maximum rainfall intensity that can occur at the desired temporal

resolution in order to obtain a correct dimensioning of the collector area and of the bottom hole. The main

problem with historical rain gauge series is that the devices were designed to measure rainfall at a scale and

later the attention moved to finer resolutions, for which these problems may occur.

We verified that the small-scale variability does not significantly affect this underestimation of extreme

rainfall for accumulation periods higher than 5 min. Different from what Molini et al. (2005b) found, our

analysis did not show large deviations in the estimation of extreme quantiles. This result is partly due to the

lamination effect of the collector, which, on the other hand, affects the measurement of very high intensities

for accumulation periods lower than 5 min. Another reason is the location of the analyzed rain gauge

station: rain gauges located in regions with different climatic features may lead to higher instantaneous

rainfall intensity and, consequently, to significant deviations.

It is well known that the rain gauge calibration may improve the raw measurement of the rainfall in-

tensity. For this reason, most of the European rain gages are set to an optimal rainfall value that is higher

than 0 mm · h−1. We demonstrated that the choice of an optimum intensity value at 50 mm · h−1 instead of 0
mm · h−1 leads to the decrease of the maximum raw-measurement error from 6% to about 4%.

To furtherly reduce the measurement error, the application of correction formulas is a necessary step.

Having series at very-high resolution (for instance 1 or 5 min), the correction can be directly applied on

data. In cases where hourly data is the only available series, the correction can be applied on a synthetic

series generated at finer scale by applying cascade disaggregation of the low-resolution series.

Three methods have been used for the correction of rainfall observations: the standard empirical cor-

rections (a linear and a so-called dynamic correction) and a physically-based correction. The empirical

corrections work well for heavy rainfall observations, but they provide underestimation of the annual rain-

fall amount. The inversion of the physically-based formula proposed by Marsalek (1981) is coherent with

the principle of the tipping-bucket mechanism and it actually demonstrated to be the best correction method

for either the maximum intensities and total accumulations. The number of parameters to be estimated does

not increase, but the equation is slightly more complex. The advantage is that, when the parameters α,
β1 and β2 of the linear and dynamic transformations (Equation 10) have no physical meaning, hn and iopt
of Equation 11 are instrinsic properties of the device (namely, the tipping-bucket volume and the rainfall

intensity for which the measure is unbiased).

Extracting samples of maxima from the true rainfall series, raw measurement and corrected series, we

compared the 100 year return period rainfall at various accumulation periods. The comparison revealed

that the raw measurements can give underestimation in the order of 5% in the rainfall for TR = 100y for

D=5 min, decreasing with the accumulation duration. Any of the correction methods provide a sensible

improvement of the extreme-rainfall estimation, but the rigorous correction (Equation 11) is the only that,

in addition, yields a reliable total rainfall amounts.
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From a methodology view point our conclusion is that the analysis of the small-scale variability of

rainfall is a necessary step for having reliable high-resolution ground rainfall measurements. This step

concerns both historical records and new rain gauges design.

Concerning historical records, the raw hourly data could be corrected by applying the correction in

Equation 8 to a 5-min disaggregated series obtained from the original hourly data. The direct correction

at the hourly scale is not recommended, leading to errors higher than the measure bias. To perform a

reliable correction, the knowledge of the rain gauge features (e.g. optimum rainfall value) is mandatory.

Concerning the design of new rain gauges, one must decide if a correction of data will be undertook or not.

If no correction is planned, the best optimum depends on the aim of the measurement. If other measures

of rainfall depth are available, a relatively high optimum (in the order of 50mm h
−1) allows to obtain low

biases in the raw measurements of extreme rainfall. This however generates a systematic overestimation of

low rainfall intensities. If corrections are planned, the choice of the optimum rainfall value does not affect

the correction. The best is to fix the optimum as the (supposed) value of average positive rainfall, so that the

sum of the underestimations and over-estimations is balanced. The best correction method is the application

of Equation 11 directly obtained by inversion of the Equation 1 at the time scale of 5 min. The two other

methods yield acceptable errors in the estimation of rainfall extremes but give spurious results in term of

accumulated rainfall.

Extending the results to the rainfall network of the OHMCV (Hydro-meteorological Cévennes-Vivarais

observatory), it seems that further analyses should be conducted especially in zones prone to deep convective

events, in which the maximum rainfall depth may exceed 100 mm in 1 hour, differently from what happens

in Montpellier, where the maximum hourly intensity recorded in over 50 years of data is in the order of 70

mm.

A short-term perspective of the work is to perform a sensitivity analysis of the different disaggregation

methods (namely the disaggregation method proposed by Molini et al. (2005b)), to verify the reliability of

the results shown in this paper.
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Table 1: Monthly parametersCβ andC1 of the beta-lognormal model for the series of Montpellier Bel-Air. The parameter α, Levy’s
stability index, is fixed to 2 in order to have log-normal distribution of the weights.

Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cβ 0.43 0.46 0.41 0.50 0.51 0.59 0.67 0.62 0.56 0.47 0.46 0.43

C1 0.035 0.036 0.040 0.050 0.059 0.062 0.093 0.059 0.079 0.059 0.050 0.041

Table 2: Rain gauge correction formula for the linear correction (Equation 9) and dynamic correction (Equation 10) for optimum

values of 0 and 50 mm · h−1.
Optimum rainfall value Linear correction Dynamic correction

iopt = 0 mm h−1 Ia = 1.032 · Ir ia = 0.924 · I1.024r

iopt = 50 mm h−1 Ia = 1.018 · Ir ia = 0.909 · I1.024r

Table 3: Comparison of actual and measured (raw and corrected) rainfall maximum for Iopt = 0 mm · h−1 and Iopt = 50 mm · h−1.
Meas: raw measurements; Lin: linear correction; Dyn: dynamic correction; PhyB: Physically-based correction (Equation 11). The

result is the average of 30 stochastic simulations of 52-year series.

Actual raindepth Iopt = 0 mm h−1

(mm y−1) Meas. Lin. Dyn. PhyB

715 713 (-0.3%) 734 (+2.7%) 684 (-4.3%) 713 (-0.3%)

Actual raindepth Iopt = 50 mm h−1

(mm y−1) Meas. Lin. Dyn. PhyB

715 722 (+1%) 735 (+2.8%) 683 (-4.5%) 714 (-0.1%)
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Figure 1: Detail of a tipping-buket mechanism for rainfall measurement. As it can be seen in a standard recording rain gauge, a

small device deployed above the bucket is designed to drive the water flow beyond the barycenter of the system, helping the filled

bucket to rock.
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Figure 2: Hourly rainfall series of Montpellier (1920-1972). a: Statistical moments for scales in the range 1 hour - 1 week. b:

Rainfall intermittency in the range 1 hour - 1 week.
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Table 4: Comparison of true versus observed (and corrected) maximum rainfall intensity (mm · h−1) for durations ranging from 5 to
60 min. The two calibration scenarios (Iopt = 0 mm · h−1 and Iopt = 50 mm · h−1) are succesively reported. The result is the average
of 30 stochastic simulations of 52 years series.

Accum. period Rain intensity Iopt = 0 mm h
−1

(min) (mmh−1) Measured Linear Dynamic Physically-based

5 min 156.4 151.0 155.8 155.6 155.4

10 min 127.2 123.4 127.3 126.7 126.4

15 min 108.9 106.1 109.4 108.6 108.4

20 min 103.9 101.3 104.5 103.6 103.5

30 min 92.4 90.2 93.0 92.0 92.0

45 min 80.6 78.7 81.2 80.2 80.2

60 min 70.0 68.5 70.7 69.6 69.6

Accum. period Rain intensity Iopt = 50 mm h
−1

(min) (mmh−1) Measured Linear Dynamic Physically-based

5 min 156.5 153.1 155.8 155.6 155.4

10 min 127.2 125.1 127.4 126.7 126.5

15 min 108.9 107.5 109.4 108.5 107.5

20 min 103.9 102.7 104.5 103.5 103.5

30 min 92.4 91.4 93.1 92.0 92.0

45 min 80.6 79.8 81.3 80.2 80.2

60 min 70.0 69.5 70.7 69.7 69.7
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Figure 3: 15-sec disaggregation of the rainfall series of Montpellier for the simulation #30 (period 1920-1972). a: Statistical

moments for scales in the range 15 sec - 1 day. b: Rainfall intermittency in the range 15 sec - 1 day.
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Figure 4: Scheme of the tipping bucket device with indications on the bucket volume to assign in order to get unbiased measure-

ments of the optimum rainfall value.
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Figure 5: Discretization of the rain gauge measurement due to the resolution of the rain gauge tipping-bucket device: comparison

between rainfall frequency distribution (density line) and discretized rainfall as seen by the rain gauge (histogram). a: 5 min, b: 60

min.
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Figure 6: Illustration of tipping bucket gage calibration and corrections. For two optimal rainfall values Iopt = 0 mm · h−1 (a and
c) and Iopt = 50 mm · h−1 (b and d) the graphs report raw measured rainfall intensities (dots) and correction formulas (dashed line
for linear and solid line for dynamic correction formulas and solid line for dynamic correction) for a set of control rainfall rates (0

to 150 mm · h−1 with steps of 10 mm · h−1. The top and bottom graphs give, respectively, the corresponding relationships and the
relative differences with respect to the control rainfall.
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(a) (b)

Figure 7: a: Water height in the collector when the rain rate exceeds its evacuation capacity. In this simulation, 25 events over the

52 years featured instantaneous intensities higher than 150 mm h
−1 causing the collector to enter in charge. b: histogram of the

number of events with I > 150 mm h
−1 for the 30 simulations covering 52 years ofdata.
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Figure 8: Percent error showing the effect of rainfall correction on the estimation of the 100 year return period rainfall for two

optimal rainfall values Iopt = 0 mm · h−1 (a) and Iopt = 50 mm · h−1 (b). The dashed line represents the actual rainfall used as
reference, circles identify the results when applying the physically based correction, the squares when applying linear correction

and the diamonds when applying dynamic correction. The triangles represent the raw (uncorrected) measurements.
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2.4 Ground measurement network for spatial estimations: limits

The rain gauge network is a collection of point measures that are often utilized for the estimation of
the spatial rainfall. The rain gauge network is more or less able to catch the actual behavior of the
field, and this capacity basically depend on the ratio between the density of the rain gauge network
and correlation structure of the rainfall fields. An infinitely dense rain gauge network is not realizable
in practice, and therefore one must rely on a sparse ground measurement network or, where possible,
on the radar measured rainfall field, derived from the transformation of the rainfall reflectivity into
rainfall intensity. The issues relative to the use of radar fields are described in Section 1.5.2.

Skoien and Blöschl (2006) define the sampling scale triplet of spacing, extent and support to
define the spatial dimensions of a monitoring network, examining the random error introduced for
the estimation of mean, spatial variance as a function of the various configurations of the sampling
triplet. The results indicated that the estimation error and the variable can be of the same order of
magnitude.

Intuitively, since the interpolation is a combination of observed values, the rain gauge network
must be able to catch the main features of the rainfall field, namely its average, variance, maximum.
In the following we use an academic example to verify the capability of different rainfall networks to
detect the maximum of rainfall fields.

Several numerical simulation have been performed to estimate the uncertainty in the measure of
spatial rainfall by means of a rain gauge network. A series of log-normal fields have been generated1.
The log-normality of spatial rainfall is supported by numerous studies (for example, Kedem and Chiu
(1987)) and empirical evidences.

Log-normal fields with two different correlation structures (for further details on the correlation
structure of spatial variables, go to Section 4) have been generated: in the simulation I, 100 independent
log-normal fields characterized by a spherical correlation structure with decorrelation distance of 20 km
(approximately the hourly-rainfall correlation distance); in the simulation II, the correlation distance
is 100 km (approximately the daily-rainfall correlation distance).

Five different rain gauge networks have been randomly generated, characterized by an increasing
density of 81, 100, 144, 196, 324 rain gauges per 10000 km2. The simulated rain gauge measurements
have been interpolated by appropriate geostatistical techniques (Section 4). The structure of the fields
have been reconstructed and the maxima corresponding to different aggregations surfaces (from 1 to
300 km2) have been computed. Figure 2.5 show an idealized 1-D example of how the field maxima
can be underestimated in case of data undersampling.

An example of the rainfield reconstruction for the simulation I is reported in Figure 2.6. We
represented the synthetically generated field (Figure 2.6-a), and the reconstruction with networks of
increasing densities (Figure 2.6-b:f). Figure 2.7 reports the analogous rainfall field reconstruction for
daily rainfall, characterized by approximate decorrelation distance of 100 km (simulation II).

1using the R package “RandomFields”
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We summarize the results of the 100 simulations by representing the average value of the indicator
E[Ẑmax/Zmax] (Figure 2.8). The plot shows that the hourly spatial rainfall can not be efficiently
measured unless having an extremely dense rain gauge network (only the network composed by 324
rain gauges provides satisfactory results). For areas lower than 200 km2 the inference of spatial rainfall
is strongly biased. Figure 2.8-b shows that the same measurement networks give more reliable results
in measuring spatial rainfall when the rainfall correlation structure is extended up to 100 km.

As we have seen, the rain gauge network does not suffice for the estimation of spatial rainfall
excepted for very large surfaces. A slight improvement can be realized by choosing an appropriate
rain gauge distribution.

To determine if a regular rain gauge network grid may improve the rain gauge estimation, we have
realized a second set of simulations, distributing the rain gauges according to a “random stratified”
pattern (Figure 2.9), a pattern resulting from the general tendency to add gauges in order to fill the
non gauged sub-regions. It consists in dividing the area in a number of squares equal to the desired
number of gauges, and then to randomly locate one rain gauge in one square.

The comparison of Figure 2.8 and 2.10 show that the stratified random sampling has a positive
influence in the determination of the spatial rainfall amount, especially when the sampling density
is very low. The effect is practically neglectable in the densest networks. Configurations similar to
that of OHM-CV survey (density: 1/100 km−2) lead to considerable (higher than 10% in average)
underestimations of the maximum spatial rainfall amount for surfaces lower than 200 km2 for hourly
rainfall and 100 km2 for daily rainfall. We have to remember that, since we have considered the rain
gauge as representative of the surface of 1 km2, an additional underestimation due to the small-scale
rainfall variability could affect the rainfall measurement. According to Journel and Huijbregts (1978),
however, this error is practically neglectable.

2.5 Conclusion

The tipping-bucket rain gauge has numerous advantages for the measure of ground rainfall, among
them the most important is that each measure is automatic and perfectly repeatable. Nevertheless,
the measure of rainfall is submitted to several errors. The error related to the environment and

Figure 2.5: Interpolation error in the estimation of the field maximum Zmax due to the spatial undersampling.



44 UNCERTAINTIES IN THE EXTREME RAINFALL MEASUREMENT 2.5

20 40 60 80 100

2
0

4
0

6
0

8
0

1
0
0

(a) Simulation

X (km)

Y
 (

k
m

)

5

10

15

20

25

30

20 40 60 80 100

2
0

4
0

6
0

8
0

1
0
0

(b) Raingage density 1/200 km
2

X (km)

Y
 (

k
m

)

1

2

3

4

5

20 40 60 80 100

2
0

4
0

6
0

8
0

1
0
0

(c) Raingage density 1/100 km
2

X (km)

Y
 (

k
m

)

5

10

15

20 40 60 80 100

2
0

4
0

6
0

8
0

1
0
0

(d) Raingage density 1/67 km
2

X (km)

Y
 (

k
m

)

5

10

15

20 40 60 80 100

2
0

4
0

6
0

8
0

1
0
0

(e) Raingage density 1/50 km
2

X (km)

Y
 (

k
m

)

2

4

6

8

10

12

14

20 40 60 80 100

2
0

4
0

6
0

8
0

1
0
0

(f) Raingage density 1/33 km
2

X (km)

Y
 (

k
m

)

5

10

15

Figure 2.6: Simulated rainfall field and reconstruction by kriging interpolation for different rain gauge densities.
The rain gauge repartition is randomly chosen. Decorrelation distance = 20 km (close to that of hourly rainfall)
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Figure 2.7: Simulated rainfall field and reconstruction by kriging interpolation for different rain gauge densities.
The rain gauge repartition is randomly chosen. Decorrelation distance = 100 km (close to that of daily rainfall)
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Figure 2.8: Effect of sparseness of the rain gauge network on the spatial rainfall measurements: for 100 sim-
ulations, average of the ratio between simulated spatial-rainfall maxima and observed spatial-rainfall maxima.
a: Log-normal fields with spherical variogram (range 20 km). b: Log-normal fields with spherical variogram
(range 100 km).

local effects are not discussed here. Supposing that the rain gauge is correctly located and properly
maintained, mechanical errors remain. Due to the intrinsic structure of the device and to resolution
issues, the measured rainfall can be under/overestimated.

The analysis of series at a scale close to the resolution of the measure leads to an underestimation
of the magnitude of the extremes. At certain scales, the analysis of extreme observations is affected by
systematic errors due to the intrinsic properties of the measuring device, such as the collector storage
effect on the instantaneous rainfall intensity measurement in case of instantaneous rainfall amounts
higher than 100-200 mm h−1, as observed for the Cévennes rain gauge network.

Figure 2.9: Random Stratified sampling pattern. Each pluviometer is located into a square. The hatched area
identifies the maximum ungaged area.
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Figure 2.10: Effect of stratified random sampling on the spatial rainfall measurements: for 100 simulations,
average of the ratio between simulated spatial-rainfall maxima and observed spatial-rainfall maxima. a: Log-
normal fields with spherical variogram (range 20 km). b: Log-normal fields with spherical variogram (range 100
km).

The extreme measurements through tipping-bucket device are affected to systematic errors in
the order of 5 % at the 5-min resolution, lower at the hourly resolution. Due to the presence of a
single optimum rainfall value for which the rainfall is correctly measured, a correction is needed to
avoid incongruences between the annual or monthly rainfall depth measured by tipping-bucket and
by graduate cylinder. Only the data correction through appropriate theoretical formulas can provide
acceptable results in the total rainfall depth measurement. In case the correction algorithm is not
implemented and the tipping-bucket is expected to work as a totalizing rain gauge as well, to minimize
the total error the optimum should be fixed at a value corresponding to the average of positive rainfall
intensity values.

Besides the point-rainfall errors, the rain gauge network density is often too coarse to correctly
detect the rainfall structure. The consequence is that even the most refined interpolation technique
to obtain an estimation of the spatial rainfall amount will result in strong underestimations of the
rainfall maxima.
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Résumé

Les chapitres qui suivent sont dédiés à la description du cadre théorique de la thèse. L’objectif du
travail de thèse étant la caractérisation de la pluie extrême et de ses propriétés d’invariance d’échelle
dans l’espace et dans le temps, le cadre théorique est composé des sujets suivants:

• Statistique des extrêmes: comment estimer la fréquence d’occurrence ou l’intensité de vari-
ables qui sont rarement observées? Combien est l’estimation robuste?

• Géostatistique: comment peut-on définir la structure spatiale (2D) d’un champ de pluie?

• Invariance d’échelle: comment peut-on estimer la distribution d’une variable dans des échelles
différentes de l’échelle d’observation?

• Extrêmes de pluie spatiale : comment coupler les statistique de la pluie spatiale avec le
comportement des extrêmes?

Introduction

The following chapters are devoted to the theoretical background of the thesis. The aim of the thesis is
the characterization of extreme rainfall and its scaling in space and time. In this thesis, the theoretical
framework lies on:

• Statistics of extremes: how to estimate the intensity or the frequency of extreme observations?
How robust are these estimations?

• Geostatistics: how to define the 2D spatial structure of rainfall fields?

• Scaling: how to estimate probability density functions at scales different from the observed
ones?

• Spatial Rainfall Extremes: how to generalize the extreme value theory for the study of spatial
rainfall?
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3Statistics of extreme point-rainfall

intensities

Résumé

Dans cette section, nous décrirons la théorie des extrêmes et les méthodes pour modeliser les
précipitations extrêmes ponctuelles. L’objectif de l’analyse des valeur extrêmes est de déduire le com-
portement des extrêmes à partir d’un échantillon limité de données. La conception d’ouvrages, par
exemple, exige que les structures ( ponts, barrages) puissent résister aux phénomènes extrêmes (inon-
dations) se produisant tous les 200, 500, 1000 ans. Malheureusement, les données disponibles (pluie
ou débit de la série) ne sont pas suffisamment longues pour estimer ces quantités directement par
extraction du relatif quantile de l’échantillon, la plus longue série ayant 50-100 ans de données.

Grâce à l’analyse des valeurs extrêmes, en supposant que tous les extrêmes soient independentes
et tirées de la même distribution, il est possible d’extrapoler le modèle des extrêmes pour prédire la
valeur maximale que la variable peut vraisemblablement atteindre une fois tous les 200, 500 ou 1000
ans.

L’analyse des valeurs extrêmes est soumise à une série de limitations: i) si la longueur des
données est limitée, l’extrapolation produit très grandes incertitudes (quantifiées au travers du concept
d’intervalle de confiance), ii) l’indépendance des extrêmes doit être assurée; iii) toutes les observa-
tions doivent être tirées de la même distribution; iv) les séries doivent être stationnaires. Enfin, il faut
considérer que, malgré les lois de valeurs extrêmes soient valables en théorie, les vraies observations
sont soumises à problèmes d’échantillonage et peuvent être bien loins du comportement ideale.

Aprs̀ une brève introduction sur les concepts de période de retour et quelques définitions, le trois
méthodes pour l’analyse des valeurs extrêmes généralement adoptés seront décrits dans cette section:

• l’analyse des maxima par blocs;

• l’analyse des excès par rapport à un seuil;

• la méthode du processus ponctuel de Poisson.

Enfin, des considérations á propos de la stationnarité des séries temporelles seront tirées.
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3.1 Introduction

In this section we will describe the theory of extremes and the methods to model point-rainfall
extremes. The objective of the extreme value analysis is to infer the behavior of extremes based on
a limited sample of data. The engineering design, for example, requires the structure (a bridge or a
dam) to resist to events (floods) occurring every 200, 500, 1000 years. Unfortunately, the available
data (rainfall or flow series) are not sufficiently long to estimate the extremes behavior directly on the
sample since the longest series features 50-100 years of data.

The extreme analysis consists in the appropriate selection of a sample of independent and identically-
distributed (i.i.d.) sample of extremes from the original distribution, with the aim to extrapolate the
behavior of a series of extremes for predicting the value that the variable can presumably attain once
every 200, 500 or 1000 years.

The extreme value theory is submitted to a series of limitations: if the sample size is limited,
the extrapolation will produce very large uncertainties (quantified through the confidence interval
concept); the independence of the extremes has to be ensured; all the observations must be drawn
from the same distribution. In addition, one has to consider that, despite the extreme value laws are
valid in theory, real-life data may show large deviations.

After a brief introduction about the concepts of return period and some definitions, the three
methods for the extreme value analysis will be described in this section:

• the block maxima analysis;

• the Peaks Over Threshold analysis;

• the Point Process Analysis.

Some considerations about the stationarity of time series will follow.

3.2 Frequency and return period: definitions

Extreme events are, by definition, rare. We can quantify their likelihood of occurrence in terms of
frequency, but in hydrology it is usually preferable to work in terms of return period, defined as
“The average number of years that last between the reference event and another event of the same
magnitude or higher” .

We quantify the likelihood of occurrence F (x) or equivalently the return period TR = 1/(1−F (x)).
Hydrologist are familiar with the latter concept: the classic extreme analysis, based on the extraction
of annual maxima of series, expresses the occurrence of rainfall events in terms of return period.

Table 3.1 shows typical values of return periods and their correspondent frequency level.

Table 3.1: Equivalence between cumulative distribution function F (x) of annual maxima and return period TR

for some significant values of the return period TR.
F (x) 0.9 0.95 0.98 0.99 0.995 0.998 0.999
TR (yrs) 10 20 50 100 200 500 1000
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3.3 Extreme Value Theory

The Central Limit Theorem (CLT) defines the conditions under which the mean of a sufficiently large
number of independent random variables will be approximately normally distributed.

Let X1,X2, . . . ,XN be a set of N independent random variables and each Xi have an arbitrary
probability distribution P (x1, . . . , xN ) with mean µi and a finite variance σ2

i .
The variable

X =
1
N

N∑

i=1

xi (3.1)

is normally distributed with µX = µx and σX = σx/
√

n.
If CLT gives the asymptotic law of the mean, the extreme value theorem (Gnedenko, 1943) gives

similar results for the maximum.
Let X1,X2 . . . ,XN be a sequence of N independent and identically-distributed random variables

with common distribution F , let Mn = max{X1, . . . ,Xn}. We can define a sequence of normalization
parameters (an, bn) such that each an > 0 and

lim
n→∞

P

(
Mn − bn

an
≤ y

)
= Fn(any + bn)→ G(y) (3.2)

If G is a non degenerate distribution function, it belongs to the Generalized Extreme Value distri-
bution class (GEV), defined as:

{
G(y) = exp(−(1 + ξ

σ (y − µ))−1/ξ
+ ) for ξ %= 0

G(y) = exp(− exp(− y−µ
σ )) for ξ = 0

(3.3)

where ξ is the extreme value index (also known as the shape parameter) and h+ = max(h, 0).
The theorem states that the maximum of a sample of i.i.d. random variables after proper renor-

malization converges in distribution to one of 3 possible attraction domains.
The ξ value identifies the attraction domain for extremes:

• ξ < 0: Weibull attraction domain;

• ξ = 0: Gumbel attraction domain;

• ξ > 0: Fréchet attraction domain;

In Equation 3.2 we dealt with sample maxima. An expression similar to Equation 3.2 can be
derived for the values exceeding a threshold. Pickands (1975) showed that if X is a random variable
for which Equation 3.2 holds, then:

P [X ≤ y|X > up]→ H(y) (3.4)

if the threshold up approaches the endpoint µend, H(y) is the Generalized Pareto Distribution (GPD),
defined as:
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{
H(y) = 1− (1 + ξp

βp
(y − up))

−1/ξp
+ for ξp %= 0

H(y) = 1− exp(y−up

βp
) for ξp = 0

(3.5)

where H(y) is the cumulative distribution function, h+ = max(h, 0), up is the position parameter (the
imposed threshold), βp is the scale parameter and ξp is the shape parameter.

These two asymptotic results motivate the modeling of block-maxima with GEV distribution and
the peaks over threshold with GPD distribution.

It is worthy to notice that the three attraction domains for extreme do not depend on the extraction
protocol, therefore they are defined based on the ξ value both for GEV and for GPD.

In Figure 3.1 an intuitive scheme shows the relationships between parent distributions and attrac-
tion domains for the Gumbel and Fréchet attraction domain.

Figure 3.1: The attraction domains of interest in rainfall: Fréchet and Gumbel are the natural attractors of the
extremes extracted from the parent distribution. Intuitive scheme inspired to Mestre (2008).

3.4 The role of independence in Extreme value analysis

The extreme value analysis requires the sample to be composed by independent and identically dis-
tributed (i.i.d.) data. This is the main factor limiting the sample set size. Working with synthetic
data, it is easy to produce a large number of i.i.d. observations, but this is not the case when dealing
with real data.

Let us analyze the i.i.d. hypothesis in detail:

• Independence. Whatever the extreme value model adopted (see section 3.5 and 3.6), the deriva-
tion of the probability density function of extreme random variables assumes the independence
of their realizations. A practical method to assess independence between observations is to ana-
lyze the auto-correlation function (ACF) 1. The Auto-Correlation function of a random variable
X(t) of mean µ and variance σ2 is defined, for the time lag τ , as:

1This can be done using the function {acf} in the {base} R package.
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ACF (τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(3.6)

where the symbol E[ ] denotes expected value. The Auto-Correlation Function for the daily
series obtained by aggregation of the hourly series at the rain gauge of Montpellier (1920-1972)
is reported in Figure 3.2. The independence among observations is ensured for events separated
by time lags such that ACF is close to 0 (approximately 100 hours in this case). Since the ACF
function (Equation 3.6) is based on the sample mean µ and variance σ2, one must take care in
examining the auto-correlation function at large time lags (e.g. months, years): the stationarity
of data is affected by the seasonal behavior or by climatic trends, and therefore the mean µ as
well as the variance σ2 of the signal variate with the time t.

• The second hypothesis to correctly model extremes is that realizations must be drawn from the
same parent distribution. This implies that extremes should be selected among the observations
belonging to the same weather type. This condition has several consequences: i) the annual
maxima could reasonably be considered as identically-distributed in regions where rainfall events
are generated by one prevailing synoptic condition; ii) in regions where two or more weather types
could be responsible of extreme events, this condition could be achieved taking into account
extremes originated by the same weather type; taking more than one maxima per year could
result in a mix of realizations drawn from different weather types that lead to spurious results.
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Figure 3.2: Auto-correlation function of the 24-h aggregated series of Montpellier.

3.5 Block-maxima analysis

The block-maxima analysis is the most known approach to model point-rainfall extremes. It consists
in extracting the maximum value within a window of fixed size, one year for example (Figure 3.3).
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This approach corresponds to the practical application of the extreme value theorem (Equation 3.2),
stating that a sample of i.i.d. maxima is distributed as a GEV (Equation 3.3).

Figure 3.3: Selection of annual maxima (dots). The dashed vertical lines define the blocks. One maximum per
block is selected.

The value of ξ determines the distribution limits:






−∞ < x ≤ µ− σ
ξ for ξ < 0

µ− σ
ξ ≤ x < +∞ for ξ > 0

−∞ ≤ x < +∞ for ξ = 0
(3.7)

The three configurations of Equation 3.7 are illustrated. For ξ < 0 (ξ = −0.2 in this case) the
random variable is bounded above by a limiting value (Weibull). For ξ = 0 the random variable can
take any positive value. In the case where ξ > 0 (Fréchet density function), the random variable has a
lower bound. If µ and σ are equal, a positive ξ (Fréchet) gives higher probabilities of extreme values
compared to the Gumbel (ξ = 0) case.

The block maxima analysis 2 is illustrated here on the 52-year long series collected at the station of
Montpellier Bel-Air. In order to reduce the sampling resolution effect (Section 2.2), the hourly rainfall
rates have been aggregated using a moving-average scan to produce a series of daily rainfall rates.

The method is applied as follows:

• for each year of measures, the absolute 24-hour maximum is retained, obtaining a sample of 52
maxima.

• a first guess of the GEV parameters is done through the application of the method of moments,
knowing that

2The package {ismev} of R, with the functions “gev.fit” and “gev.diag”, allows to perform a Maximum Likelihood
Estimation of the GEV parameters and to plot the diagnostic graphs.
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Figure 3.4: Density function of samples belonging to the three attraction domains of GEV-distribution. The
three samples have µ = 10 and σ = 5. The solid blue line identifies a Gumbel sample (ξ = 0), the dashed red
line a Fréchet sample (ξ = 0.2) and the dash-dotted green line a Weibull sample (ξ = −0.2).

{
µ = E[x] + σ

ξ −
σ
ξ Γ(1− ξ)

σ2 = s[x]2ξ2

(Γ(1−2ξ)−Γ(1−ξ)2)

(3.8)

imposing ξ = 0. The Gamma function is defined as Γ(x) =
∫ +∞
0 tx−1etdt.

• the fitting is refined by application of the Maximum Likelihood Estimation, taking as initial
values the first guess obtained by the moments method.

• the MLE method allows to determine the estimated values as well as the standard error of the
estimation.

The estimated parameters are µ̂m = 69.80 ± 3.8, σ̂m = 24.15 ± 3.10, ξ̂m = 0.205 ± 0.127.
Through a series of graphs (Figure 3.5) the results of the fitting can be visually examined.

• The probability plot compares empirical CDF and modeled CDF. The ideal condition is that all
the points lie on the bisector (solid line). This plot indicates that the data distribution follows
a GEV.

• The quantile plot (or q-q plot) compares observed and modeled values corresponding to the same
quantile. This plot helps in verify if the large values have been correctly modeled or if some
outliers are present. In this case, it seems that the common as well as the extreme values are
well represented.

• If the previous two plots provide satisfactory results, we can rely on the results shown by the
return level plot. The critical aspect in the analysis of the Montpellier series is that 52 maxima are
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not a sufficient number for a reliable estimation of the shape parameter. The shape parameter ξ

influence on the estimation of the extreme behavior increases as the return period to be estimated
increases. In the plot, it determines whether the black line will be straight (ξ = 0), convex (ξ > 0)
or concave (ξ < 0). In this case, since few observations exceed the 10-years return period, the
95 % confidence levels (blue line) of the estimation are far from the average estimation (black
line), indicating a longer sample is needed for a reliable estimation. The confidence interval
(vertical distance between the two blue lines) is extremely large at 100 years, with a span of over
one magnitude order. It is therefore difficult to define the return level corresponding to return
periods higher than 50 years, taking such model and with this sample size.

• The density plot gives an idea of the distribution of the data: the observations appear to be
concentrated around the distribution mode; few values can be really considered as extremes. An
histogram shows if the empirical data fits well with the model (represented through a density
line).

In this example, the shape parameter is positive, indicating Fréchet (hyperbolic tailed) maxima.
Nevertheless, the ξ estimation is very sensitive to the outliers. Longer samples would be needed to
obtain a reliable estimation of ξ. This is a delicate point, since ξ is the more significant parameter in
the determination of the return levels in the extrapolation range (i.e. for TR higher than the length of
the series). The need of larger samples is one of the motivation for the use of Peaks-Over-Threshold
method (Section 3.6).
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Figure 3.5: GEV summary plot for the 24-h series of Montpellier in the period 1920-1972. In clockwise order
from the top left: probability plot, q-q plot, return level plot, density plot.
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3.6 Analysis of exceedances: POT

The exceedances analysis, also referred to as Peaks-Over-Threshold (POT), is a method to characterize
the probability distribution of extremes by selecting a number of observations exceeding a given
threshold. The method consists in selecting the approapriate sample for the application of Equation
3.4 and 3.5. POT can be preferred to the block maxima analysis because it allows to select a higher
number of observations.

As one can intuitively expect, the selection method (block-maxima or POT) does not modify the
intrinsic behavior of the data. For this reason, the three attraction domains described for the block-
maxima analysis illustrated in Figure 3.1 are still valid in the POT framework. The Gumbel attraction
domain for ξp = 0 refers to exponentially-tailed exceedances; the Fréchet attraction domain models
exceedances with hyperbolic (power-law) tails; the Weibull attraction domain models exceedances
characterized by a higher bound.

Block-maxima and POT approaches have in common not only the presence of three attraction
domains: the ξ parameter is exactly the same for the two methods. The two remaining parameters
are related among each others by direct relations. The substantial equivalence of the two approaches
is at the base of the point process approach (Section 3.8).

3.6.1 GPD fitting on synthetic series

Imagine to generate a random normal series. In this example, we generate 105 i.i.d. samples with
µ = 2 and σ = 1. The distribution of the variable is shown by the histogram in Figure 3.6.
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Figure 3.6: Histogram of the synthetic normal series (n = 105) with µ=2 and σ = 1.

According to the theory, the observations exceeding a threshold should be GPD distributed. In
addition, since the sample is normal, we expect the sample set to belong to the Gumbel attraction
domain, with ξp ∼ 0 (see Figure 3.1).
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The first operation is the threshold selection. In synthetic series, only numerical criteria are used
for the threshold choice. The “mean residual life plot” (Davison and Smith, 1990; Coles, 2001) is the
graphical representation of the locus of points

(u,
1
nu

nu∑

i=1

(xi − u)), (3.9)

where u is the varying threshold and nu the number of exceedances above u. If the exceedances are
distributed according to a GPD, the mean residual life plot should be approximately linear in u > u0

(Coles, 2001). The Mean Residual life plot for the synthetic series is shown in Figure 3.7-a in the
range 4-6, indicating a reliable threshold (linearity of MRL plot) in the range 4.5-5.5.

The second threshold-selection procedure (Coles, 2001) is the estimate of the model at a range
of thresholds. Above a level u0 at which the asymptotic hypothesis of GPD are acceptable, the
estimation of the shape parameter (Figure 3.7-b upper plot) should be constant and the estimation of
the scale parameter should be linear in u3. Poorly speaking, the threshold should be sufficiently high
to incorporate only extremes and sufficiently low to have a sufficient number of values such to limit
the estimation variance.

The graphs in Figure 3.7-b show the maximum likelihood estimates and confidence intervals of the
shape and scale parameters over the threshold range, chosen in the range 2-6. In the case of Figure
3.7-b the graphs suggest to select the threshold within the range 4-4.8, where both the hypotheses (ξp

constant and σp linear) are satisfied. A good compromise between the results derived from the two
methods can be the value 4.8.
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Figure 3.7: a: Mean residual life plot for the synthetic normal series of 100000 realizations with µ=2 and σ = 1.
The grey lines indicate the confidence interval of the estimation. b: Fitting of GPD model over a range of
thresholds. The dots are the estimation and the vertical line identifies the confidence interval of the estimation.

3The MLE estimation by interactive threshold selection can be performed by using the function gpd.fitrange in the
package {ismev}
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Once selected the threshold, the GPD fitting can be performed through a MLE estimate4. The
fitting results in a scale parameter βp = 0.284 ± 0.034 and in a shape parameter ξp = −0.060 ± 0.084.

Similarly to Section 3.5, it is possible to draw graphs indicating the quality of fitting and the
behavior of extremes (Figure 3.8). In the present case, the probability plot and the quantile plot
well behave, the empirical observations perfectly lie on the bisector. Supposing that our sample was
composed of hourly observations, we can draw the return level plot. It shows a slight concavity of the
model (ξ = −0.06). This has no consequences for small return periods, but it can affect the estimation
for large return periods. Having generated a Gaussian sample, we expected a null shape parameter.
Finally, the density plot shows how the sample is apparently well fitted to the model.
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Figure 3.8: Result of the fitting of a GPD on the exceedances (x ≥ ud = 5) of Gaussian sample of n=100000,
µ = 1 and σ = 1.

The POT analysis on a Gaussian sample is easy because the sample tends to have exponentially-
tailed extremes (maxima will be Gumbel distributed and exceedances will be negative exponentially
distributed). More awkward is the case of positively skewed samples (e.g. log-normal), where the
convergence of the tails to exponential is extremely slow and can lead to spurious values of ξp, even
with very large samples.

4For example, the function {gpd.fit} of the {ismev} package do this kind of estimation. gpd.diag allows to draw the
diagnostic plots.
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3.6.2 GPD fitting on real series

In order to compare the block maxima and POT method on a practical application, the POT method
is hereafter illustrated using the rainfall series of Montpellier (52 years) to estimate the extreme daily
rainfall intensities or frequencies. Suppose that we want to estimate the extremes behavior for the
accumulation duration of 24 h. We can build a 24-h observations database by means of a moving-
average scan.

The main difference with the analysis on a synthetic series is the dependence among observations.
Many of the extreme observations appear clustered; this is in contrast with the implicit hypothesis of
independence between observations.

Figure 3.2 shows that for the analyzed series, two observations are practically uncorrelated for time
lags higher than 100 hours. We can use this information for the POT analysis5: only the independent
observations separated by a lag higher than the decorrelation time will be retained.
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Figure 3.9: Selection of observations exceeding a selected threshold of 44.4 mm/day (horizontal line) correspond-
ing to an average of 3 events per year. a: Particular of the de-clustering process for removing the dependent
peaks: only the solid red observation is retained. b: Selection of data above a threshold and separated by a lag
of 100 h.

The threshold choice could be the result of a numerical analysis, similarly to Section 3.6.1. Figure
3.10 reports the mean residual life plot for the station of Montpellier for thresholds higher than 1 mm.
The grey lines represent the 95 % confidence level for the estimate.

According to Figure 3.10, it exists a range of up (30-75 mm) where the MRL plot is linear. The
threshold should be detected in this range.

5The Peaks-Over-Threshold analysis here shown is performed by using the package POT (Ribatet, 2007); the prelim-
inary de-clustering is performed by means of the function {clust} in the same package.
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Figure 3.10: Mean Residual Life Plot of the i.i.d. exceedances for the accumulation duration of 24 h - Rain
Gauge series of Montpellier.

Again, we can fit the GPD over a range of thresholds (Figure 3.11) in order to determine the value
for which the estimation bias and variance reach the better compromise. In the range 44-65 mm d−1,
the parameters up and βp are relatively stable and exhibit low estimation variance.

The Mean Residual Life plot and the fitting of the GPD over a range of thresholds provide in-
formation about the range in which the threshold should be selected. This threshold corresponds to
an average of 2-4 events per year. A good compromise can be to choose the threshold as the value
corresponding to 3 events per year (ûp = 44.4mm day−1).

Once fixed the threshold, the maximum likelihood estimator for GPD can be used6. The estimation
gives β̂p = 24.79 ± 3.42 and ξ̂p = 0.118 ± 0.102.

The results can be evaluated by means of 4 different graphs, similar to those reported in Figure
3.5: probability plot, q-q plot, return level plot, density plot. See 3.5 for a detailed description of each
plot.

3.7 Comparison Block-Maxima - POT

In the previous chapters, we described the two widespread approaches for the modeling of extreme
values. The two methods (Block-Maxima and Peaks-Over-Threshold) are the practical application of
the extreme value theorem for modeling the maxima and the exceedances-over-threshold of a sample,
respectively. The extreme value theorems state that a series of i.i.d. maxima of a random sample
are GEV-distributed, while a series of exceedances over a fixed threshold is GPD-distributed. The
two approaches are intimately related: (Salvadori and De Michele, 2001) show that the GEV and the
GPD parameters can be related through the following equalities:

6function fitgpd{POT}
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Figure 3.11: GPD fit of the parameters σp and ξp as a function of the threshold up.






µ = up − βp

ξ (1− nξ)
σ = βpnξ

ξ = ξp

(3.10)

where n is the average number of events over a block (i.e. a year) selected in the Peaks-Over-Threshold
method. If one value is taken in average for each block (n = 1), we have µ = up, σ = βp and ξ = ξp.
However, practical tests on synthetic series show that the transformation actually provide different
results respect to the direct estimation. The two estimation methods do not give perfectly coincident
results either in case of extremely long series.

In order to compare the two extreme modeling methods, we examine the results obtained at the
rain gauge station of Montpellier (featuring 52 years of hourly records) at the time scale of 24 h.

Table 3.2 shows a summary of the obtained results from which we can draw interesting conclusions:
since the number of samples is consistently smaller in the Block-Maxima approach, we expect the
estimation variance to be higher, as for the ξ parameter. A single outlier can sensibly modify the
estimation of GEV parameters, while in GPD its influence is less marked. The deviation of the
GPD ξp parameter towards 0 can be a consequence of gathering regular observations into the extreme
sample. The return level for TR = 100 yrs shows a good agreement between the two methods. The
POT return level is lower than the Block-Maxima result, presumably because of the insertion of
regular values into the sample, leading to higher biases in the estimation of the extreme behaviour.
However, the 3-parameter GEV fitting with a sample of only 52 realization is unsafe, leading to higher



3.7 COMPARISON BLOCK-MAXIMA - POT 65

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability Plot

Empirical

M
o

d
e

l

50 100 150 200

5
0

1
0

0
1

5
0

2
0

0

Quantile Plot

Model

E
m

p
ir

ic
a

l

1e!01 1e+00 1e+01 1e+02 1e+03

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Return Level Plot

Return period (years)

R
e

tu
rn

 l
e
v
e

l

Density Plot

x

f(
x
)

50 100 150 200 250

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Figure 3.12: Results of the POT analysis on the rain gauge series of Montpellier for D=24h, taking an average
of 3 events per year.
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estimation variance. For this reason, the use of Peaks-Over-Threshold method should be preferred
dealing with limited samples.

In general terms, we can detect the main advantages/drawbacks of block-maxima versus the Peaks-
Over-Threshold method for the determination of the behavior of extremes:

• theoretical framework. The two approaches are both theoretically correct and intimately related:
direct relation exists between the GEV and GPD parameters.

• infinite sample size. At the limit of infinite sample size, the two methods are totally equivalent
giving equal results in terms of return levels;

• finite sample size. Block-maxima approach is limited to one sample per block, excluding possible
extremes occurring in the same block; in some cases the sample size of the sample maxima does
not allow a reliable estimation;

• reliability of the estimation: practical tests demonstrated that the minimum sample size for
having reliable estimation of the GEV parameters is 100;

• arbitrariness. Block-maxima approach is objective and perfectly repeatable while POT approach
is submitted to the choice of the threshold by the operator (even though helped by indicators
such as the mean residual life plot or by physical reasoning);

• dependence among data. The block-maxima approach implicitly removes dependent observa-
tions; Peaks-Over-Threshold approach can be performed in real series only after de-clustering of
data.

• appropriate data use. With block-maxima approach most of the information is discarded; Peaks-
Over-Threshold approaches allows a better use of the information contained in the database
increasing the sample size;

• bias. Taking one sample per year, block-maxima samples is likely to contain only extremes; POT
samples may contain regular values and then the estimation may be biased towards the regular
values;

• variance. The size of samples is such that the block-maxima approach result in very high variance
estimation (unless to fix a priori one parameter, e.g. ξ = 0 or to establish relations between
variables, µ and σ for instance); the POT estimation variance is generally lower.

Method Distrib. Sample Size Position (mm) Scale (mm) Shape TR = 100
Block-Maxima GEV 52 µ=69.8±3.8 σ=24.5 ± 3.10 ξ=0.205± 0.127 257 mm
Peaks-Over-Threshold GPD 156 up= 44.4 (fixed) βp=24.79 ± 3.42 ξp=0.118± 0.102 247 mm

Table 3.2: Comparison block-maxima and Peaks-Over-Threshold methods for the modeling of rainfall extremes
at the station of Montpellier Bel-Air, duration 24 h. The data is relative to the period 1920-1972, where no
significant climatic change evidences have been detected.



3.9 POINT PROCESS: AN UNIFIED FRAMEWORK FOR EXTREME ANALYSIS 67

3.8 Point process: an unified framework for extreme analysis

In the previous sections we have seen that the Block-Maxima method directly provides results as a
function of the return period and therefore it is easy to be managed; POT method gives more robust
estimations because it is possible to select a larger number of observations. Since the two approaches
have more than one common property, the interest of the scientific community was to find an unified
approach.

The point process (PP) theory (Coles, 2001) is a recent and elegant formulation that provides an
interpretation of extreme value theory unifying the classic models. Some basic concepts were early
introduced by Pickands (1975). The models described in Section 3.5 and 3.6 can be derived from
particular cases of the point process theory. We consider noteworthy to report the outline of the point
process theory as a necessary step for an unified theory of extremes.

As highlighted by Coles (2001), the main advantage of using a point process model is to obtain more
robust samples than the block-maxima approach, keeping the easy formulation and parametrization
of GEV in which the probability can be directly related to the return period through the relation
P = 1− 1/TR.

The derivation of the point-process theory is based on the consideration that the number of events
exceeding a sufficiently high threshold u is Poisson distributed and their intensity is given by the
extreme value theory.

In practice, if block-maxima approach models the sample composed by the maxima of each block,
and POT models the exceedances over a given threshold, PP models the number of exceedances over
a threshold within a block (Figure 3.13), knowing that the intensity can be modeled with GPD and
the number of exceedances through a Poisson process.

Figure 3.13: Scheme of the point-process theory. The number of observations (red dots) that exceed a given
threshold (horizontal black line) within a block (yellow dashed line) is Poisson-distributed.

Coles (2001) gives the mathematical derivation of the PP model and the maximum likelihood
function.
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3.9 Stationarity of the rainfall series

The increasing concentration of atmospheric carbon dioxide in the last decades has almost certainly
led to changes in the global mean temperature. If there are incontestable evidences of the temperature
increase after 1970, the effects or climate change on the precipitation is less clear.

As shown in many papers (Palmer and Räisänen, 2002; Zhang et al., 2008; Naidu et al., 2009;
Allamano et al., 2009; Costa and Soares, 2009), the detection of trends in rainfall or river flow series
is a tough work due to the rainfall variability and series availability. Rarely, such analyses have
highlighted a significant trend in the rainfall series.

Having a database covering about 15 years of hourly rainfall data (1993-2008), we are unable to
detect a drift in the behavior of heavy rainfall.

For longer series, such as the reference series of Montpellier, we can apply methods to estimate
the behavior of extremes for two disjoint sub-periods. If a trend is detected, the extreme value theory
cannot be applied anymore unless expressing the drift of parameters with time.

To verify that no significant trend is present on the rainfall series, we analyze the rainfall excesses
through a POT analysis. To have a robust sample without including common observations, we fix
the number of excesses in 4 per year. We fix the shape parameter equal to zero, due to the poor
number of i.i.d. observations (considering that we just want to check the stationarity, we may fix this
constraint).

We compute the GPD parameters for 11-year moving windows, as suggested by Naidu et al. (2009)
(Figure 3.14).

In the period 1920-1972, no significant trends are observed.
In any case, the estimation of large return levels can be done only after verification of the station-

arity hypotheses. The MLE estimation methods allow to modify the expression in order to take into
account possible trends in the behavior of extremes due to climatic change.

Figure 3.14: Temporal evolution of the threshold (a) and of the scale (b) parameters of the GPD from a POT
analysis of the Montpellier rainfall series. The parameters are computed over 11-year sliding periods. An
average of 4 excesses per year are selected.
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3.10 Conclusion

In this chapter, we described the theory and the practical methods to model the extremes of a pro-
cess. The modeling of extremes is submitted to a series of hypothesis to be respected, such as the
independence of observations and the identical distribution of the parent process.

The commonly used methods have a common origin and lead to the same results in terms of
estimation of the return levels, even if they involve different sample-extraction methods and a different
law for the extremes. Each model has some advantages and drawbacks and we gave insights on the
method to be preferred as a function of the data size and data dependence. Applying the main
methods for the modeling of the daily extremes7 of a rainfall series covering 52 years of data, we found
similar results both in terms of parameter ξ and of return level for TR = 100.

In the final part we provide some elements concerning the stationarity of rainfall series. The
classic extreme analysis can’t be applied in non-stationary series. The extreme value parameters, in
this case, must be expressed as a function of the time. Due to the evidences of thermal increase after
1970, a modification of the weather types and a consequent modification of the extreme precipitation
events is expected. Nevertheless, the precipitation series, especially at the hourly resolution, are not
long enough to establish whether a precipitation modification has occurred in the last decades due to
climatic change.

7in Appendix C we provide a tutorial on how to perform a generic extreme analysis on synthetic or real data with R.
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4Geostatistics

Résumé

Cette section est consacrée à la description des techniques d’analyse spatiale et des techniques d’interpolation
connues sous le nom “géostatistique”. La géostatistique est largement utilisée dans les géosciences
pour caractériser la structure spatiale des variables aléatoires ou des champs aléatoires tels que les
dépôts minéraux, l’hauteur piézométrique d’une nappe phréatique, les précipitations sur un bassin,
la température et la pression dans l’atmosphère, la concentration de polluants. La variabilité de ces
phénomènes empêche de les décrire aver des fonctions mathématiques simples, telles que la régression
linéaire.

Le chapitre est organisé de la façon suivante: dans le premier paragraphe, nous définissons les pro-
priétés que un champ aléatoire doit présenter afin de pouvoir utiliser la géostatistique pour son analyse
spatiale. Aprés, nous présentons brièvement la théorie de l’analyse variographique montrant les
applications 1D et 2D, y compris des cas particuliers de champs avec dérive, champs anisotropes,
présence de co-variables. Enfin, nous présentons l’outil d’interpolation géostatistique “krigeage”,
qui exploite les informations contenues dans le variogramme pour effectuer la meilleure estimation
linéaire de la valeur d’un champ à des endroits non instrumentés

4.1 Introduction

This section is devoted to the review of the spatial analysis and spatial interpolation techniques known
as geostatistics. Geostatistics is widely used in geosciences to characterize either the time or space
structure of random variables or random fields such as grade of mineral deposit, depth of piezometric
heights, rainfall depth, temperature and pressure in the atmosphere, pollutants concentration.

The chapter is organized as follows: in the first paragraph, we define the properties that a field must
exhibit in order to use geostatistics for its spatial analysis. After, we briefly present the variogram
theory showing 2D applications including special cases of drifted fields, anisotropic fields, multi-field
analysis and presence of co-variables. Finally, we present the geostatistical interpolation tool known as
kriging, that exploits the information contained in the variogram to perform the best linear estimation
of the value of a field at ungaged locations.
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4.2 Stationarity of random functions

The structural analysis of a random field is differently conducted depending on the kind of stationarity
that the field exhibits. We discuss in the following the concepts of strict stationarity, first and second-
order stationarity, intrinsic hypothesis and ergodic hypothesis.

A random function Z(X1, . . . ,Xh) is strict-sense stationary (Chiles and Delfiner , 1999) where its
finite-dimensional distributions are invariant under any arbitrary translation:

P [Z(x1) < z1, . . . , Z(xk) < zk] = P [Z(x1 + h) < z1, . . . , Z(xk + h) < zk] (4.1)

poorly speaking, a random function is strict-sense stationarity when its probability distribution does
not vary with the location of the xn points.This equality is valid for the whole statistical distribution,
and therefore it concerns all the quantiles and moments. In many cases, instead to the whole distri-
bution, we may be interested to a limited number of moments. Limiting the analysis to the first two
moments of the distribution, the field is second-order stationary (wide-sense stationary) if the mean
m is constant and the covariance C only depends on the separation h:

{
E[Z(x)] = m

E[(Z(x) −m)(Z(x + h)−m)] = C(h)
(4.2)

The structural analysis can be conducted even if the mean of the process Z is not a constant but
linearly increasing/decreasing with x. In this case the stationarity criteria are applied to the increments
Yh(x) = Z(x + h) − Z(x). Z(x) is called an “intrinsic random function”, and its statistical moments
are defined as:

{
E[Z(x)] = 〈a, h〉
V ar[(Z(x + h)− Z(x)] = 2γ(h)

(4.3)

where 〈a, h〉 is the linear drift of the intrinsic random function and γ(h) is the variogram function
(Section 4.3).

The ergodic property is another insightful concept in geostatistics. The realization ω of the random
function Z at the generic point x is noted Z(x,ω). In case of ergodicity (of the mean), one can infer the
mean of a random function Z even if only one realization at the point xi is known. Poorly speaking,
the time average of the process Z(x,ω) function along the trajectories is related to its spatial average.

A stationary random function Z(x,ω) is ergodic in the mean if the spatial average of Z(x,ω) over
a domain V ⊂ Rn converges to the expected value m = E[Z(x,ω)] when V tends to infinity:

lim
V→∞

1
|V |

∫

V
Z(x,ω)dx = m (4.4)

4.3 Theoretical variogram

Let us consider a (wide-sense) stationary random function Z(x) characterized by its mean m and its
covariance function C(h):
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{
m = E[Z(x)]
C(h) = E[(Z(x)−m)(Z(x + h)−m)]

(4.5)

The covariance function describes the spatial correlation of the field as a function of the separation
distance h. It can be computed only in case the mean is stationary (i.e. stationary random functions).
If the mean is not constant (as in intrinsic random functions) , the variogram γ can be a diagnostic
of the spatial structure of Z:

γ(h) =
1
2
V ar[Z(x + h)− z(x)] (4.6)

Both the covariance and the theoretical variogram are even functions (γ(h) = γ(−h) and C(h) =
C(−h)). The covariance function as well as the variogram are definite positive. If Z is a stationary
random function, the variogram and covariance are strictly related:

γ(h) = C(0)− C(h) (4.7)

where C(0) is the theoretical variance of the process measured at 2 points with h→ 0.
The variogram gives indications about the correlation structure of a variable in space. In totally

uncorrelated fields (e.g. white noise), the correlation is independent of the spatial lag, therefore the
variogram will be a constant. A constant field will have null variogram whatever the lag.

4.4 Sample variogram

The theoretical variogram (Matheron, 1965) defines the correlation of the process at two points sepa-
rated by a lag h. Working with real data, the variogram of the process can be estimated more or less
accurately depending on the sampling features.

In one-dimensional case, the sample variogram of Z can be computed for each couple of points xn

and xn+1:

γ(hn,n+1) = [z(xn)− z(xn+1)]2 (4.8)

where hn,n+1 is the spatial lag between the two points (in 1-D corresponds to |xn−xn+1|). An example
of application to real data is reported in Figure 4.1. The sample is composed by 50 equally-spaced
measures of a Gaussian process (Figure 4.1-a).

Representing all the obtained values of γ respect to the distance h, we obtain the “variogram
cloud” (Figure 4.1-b).

The variogram cloud presents difficult interpretation: the sample variability is high and it is
difficult to find a regular behavior of the points. In order to include a sufficient number of points in
the variogram computation, the sample variogram is usually calculated for distance classes with center
h, as:

γ̂(h) =
1

2Nh

∑

|xi−xj |%h

[z(xi)− z(xj)]2 (4.9)



74 GEOSTATISTICS 4.4

Averaging the sample variogram by regularly spaced classes of distances, an efficient description
of the spatial structure of the process can be obtained (Figure 4.1-c).

This definition can be generalized to data in +D with D=1,2,3; the sample variogram at each
points is computed as in Equation 4.8; the 1-D coordinate x is substituted by the coordinate vector
x.

Let us now take an example of a 2D Gaussian spatial field defined over a grid of size 100x100
km2, with decorrelation distance equal to 50 km (Figure 4.2-a)1. The field has unitary variance. The
sample variogram of the field is computed for classes of distances whose centers are separated by 10
km (Figure 4.2-b) 2.

From Figure 4.2-b we can extract elements about the meaning of sample variogram. The empirical
variogram, in this case, shows limh→0 γ(h) = 0, meaning that points that are close in distance are
well-correlated. This is not always the case with empirical variograms. γ(0) > 0 may indicate that
either the sample variogram has missed the small-scale variability (under-sampling) of the field or
the point estimation is submitted to a significant sampling uncertainty. In this case, the empirical
variogram is said to have a “nugget” (the term is related to the first field of application of variograms,
mining engineering). A white noise is referred to as ”pure nugget process”. If the empirical variogram
reaches an asymptotic value, as in Figure 4.2-b, this is called “sill” and corresponds to the variance
of the field. The distance for which the asymptotic value is reached is referred to as “range”, i.e.
the decorrelation distance of the field. Two points further than the variogram range are likely to be
completely uncorrelated.

In some cases, the sample variogram does not reach a finite asymptotic value: this can be due
to the limited window size (in this case, in addition, the variance of the field will not correspond to
the maximum value of the variogram), or to the presence of a drift (the field has not constant mean,
Equation 4.2). In the latter case, a de-trended variogram can remove this effect. In other cases, an
unlimited variogram could indicate the presence of long-range correlation (Section 5.9.1).
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Figure 4.1: a: Simulation of a Gaussian process in one dimension, measured at 50 equally spaced points. b:
Variogram cloud obtained representing the variogram of each couple as a function of the couple distance h. c:
Sample variogram obtained averaging the variogram for a finite number (15) of distance classes.

1The fields are simulated in R with the GaussRF function in the package RandomFields with the following code:
x=1:100; y=1:100; FIELD=GaussRF(x,y,grid=TRUE,model=”spherical”,param=c(0,1,0,50))

2The function EmpiricalVariogram in the R package RandomFields is used: EmpricalVari-
ogram(data=FIELD,x=1:100,y=1:100,grid=TRUE,bin=seq(0,100,10))
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Figure 4.2: a: Generation of a random field with decorrelation distance of 50 km over a 200x200 km grid. b:
Empirical variogram of the field for lags up to 100 km, for classes of width 10 km.

4.4.1 Anisotropic variogram

In spatial data, we often have to face with elongated structures, where the correlation distance is likely
to be higher along one particular orientation axis. In these situations, it may be useful to compute the
variogram by taking into account the orientation of the considered couple with respect to the North,
and to regroup the observations by angle classes. The resulting variograms are not only function of
|h| but also of the orientation of the h vector, and they are said to be anisotropic.

Evidences of elongated structures are common studying rainfall. This is the case, for example, of
the orographic band highlighted in Miniscloux et al. (2001) that contributes up to 40% to the total
rainfall amount recorded in mountainous regions (Godart , 2009).

We show here an example of anisotropic instantaneous rainfall field. The radar scan of 08 Septem-
ber 2002 at 22:45 UTC shows an elongated structure towards NNE, i.e. 30◦ with respect to the North
(Figure 4.3-a). We compute the anisotropic variogram for 4 angles: 30, 75, 120, 165◦ (Figure 4.3-b),
showing that, for 30◦, the sill is far to be reached while, for 120◦, an asymptotic value is reached for
distances in the range 20-25 km.

4.4.2 Variogram of an intrinsic random function

Previously, we have seen that the unknown mean is a limit for the determination of the covariance
function (e.g. Equation 4.2), and that in these cases variogram shall be used. However, the use of
variograms may lead to several issues: when the field is the sum of a second-order stationary random
field but the mean depends on the spatial coordinates, the variogram does not provide a reliable
description of the structure of the field (Matheron (1972) describes this problem). Goovaerts (1997)
demonstrated that removing the field drift we can then perform simple variogram on the residuals.
This technique is called detrended variogram.

A simple example of the utility of detrended variograms is shown in Figure 4.4. A mono-
dimensional variable has a clear drift (Figure 4.4-a), i.e. the average of the process depends on the x
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Figure 4.3: a: Instantaneous radar scan recorded on 08 September 2002 at 22:45 UTC. b: histogram of the
logarithm of the field. b: Anisotropic variogram for 30, 75, 120 and 165◦.

coordinate. This behavior causes that the points separated by large distances have large variograms;
in particular, the variogram takes a parabolic behavior (Figure 4.4-b solid line) because the variogram
is proportional to [Z(x) − Z(x + h)]2. To remove this artifact, a detrended variogram is computed.
The operation corresponds to the variogram computation on the field obtained by removing the drift.
As we can see, the de-trended variogram (red dashed line) reaches a sill differently from the simple
variogram.

In Figure 4.5-a, a 2D drifted field is reported. The presence of a trend is difficultly detected when
the field is represented as an image. Nevertheless, the empirical variogram (Figure 4.5-a, solid circles)
shows a parabolic increase. De-trending the variogram as a function of the coordinates X and Y solves
this issue, depurating the drift effect and showing that actually an asymptotic value of the variogram
is reached.

4.4.3 Indicator variogram

The rainfall spatial structure can be dependent on the intensity level. Varying the intensity threshold
the spatial conformations or anisotropy conditions may vary leading to different variogram models.
Journel (1983) and Goovaerts (1994, 1997) introduced the concept of indicator variograms to deal
with this property of natural processes. Barancourt et al. (1992) discussed about the possibility to
deal with rainfall fields separating the rain-no rain intermittency from the rainfall variability. They
demonstrated that this separation is possible, and these two processes could be defined by two different
variograms. The “Indicator variogram” method uses the intensity of a process as the discriminant
factor for computing different spatial analyses. In Figure 4.6-c, the composition of two different fields
for rain-no rain intermittency (a) and positive rainfall (b) is shown. Figure 4.6-d reports the indicator
variogram for the intermittency field and for the positive rainfall field.
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Figure 4.4: Effects of a drift on the variogram computation. a: 1-D process stochastic process (correlation
distance = 100) with a drift. b: Simple and de-trended variograms of the field.
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Figure 4.5: a: Gaussian random field with trend (dependent on X and Y axis) over a 200x200 km grid. b:
Empirical variogram of the field for lags up to 100 km, for classes of width 10 km; black dots= simple variogram;
diamonds=de-trended variogram.
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(a) (b)

(c) (d)

Figure 4.6: a: Rain-no rain intermittent field (decorrelation range=50 km). b: Positive rainfall field (decorre-
lation range = 20 km). c: Composite rainfall field obtained by product of the two previous fields. d: Indicator
variograms: rain-no rain variogram (squares), positive rainfall variogram (circles).
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The indicator variogram can be generalized to a number of intensity levels: generally, the higher
the intensity of the field, the smaller the correlation range (and the larger the singularity degree).

4.4.4 Climatological variogram

Originally, variograms were conceived for the use in mining engineering. In this context, the observa-
tions constitute a single-realization field of the random variable. The extension of geostatistical meth-
ods to atmospheric multi-fields data requires an adaptation: the determination of the spatial structure
of highly intermittent random variables such as the storm rainfall through the spatial analysis of single
fields can lead to spurious results. This motivates the earlier studies concerning the definition of an
average variogram (Delhomme and Delfiner , 1973). Lebel and Bastin (1985) introduced the concept of
scaled climatological variogram with the intention to diagnose the spatial structure of K realizations
of a random function Z. Its implementation consists in dividing each realization by its standard de-
viation. The climatological variogram is then determined averaging the resulting variograms for each
distance class h:

γ̂(h) =
1

2KNh

∑

xi−xj∼h

∑

k=1:K

[zk(xi)− zk(xj)]2

sk
(4.10)

where N(h) is the number of points within the distance class h, K is the number of events, sk the
sample standard deviation of the field.

In this way, each field has unit variance and therefore has the same weight in determining the
resulting variogram, which has been referred to as “climatological”. The climatological variogram
has been extensively used (Bastin et al., 1984; Lebel and Bastin, 1985; Lebel and Laborde, 1988) for
determining the spatial structure of monthly rainfall maxima for limited surfaces (up to 400 km2)
providing also a framework for the frequency-evaluation of extreme spatial-rainfall events.

Figure 4.7 reports a practical example of the normalization required to evaluate a climatological
variogram based on three realizations of a random function with the same spatial structure but different
range of intensity and therefore different variances of the field. The three fields in Figure 4.7-a,b,c
have different ranges of intensity. The variogram computation (Figure 4.7-d) gives insights on the
structure of the field but the magnitude of the variogram is extremely different in the three cases. By
normalizing each difference as reported in Equation 4.10 by the observed standard deviation of the
field, the variogram is defined in the range 0-13 (Figure 4.7-d). Averaging the three normalized fields
in Figure 4.7-e we may obtain indications about the average spatial structure of the random variable.

4.4.5 Variogram models

Sample variograms give a representation of the correlation between point separated by a lag h. The
sample variogram is provided at a discrete number of points, corresponding to the center of classes.
To give a schematized picture of the spatial structure of the fields, it is frequent to fit the empirical

3The sill=1 is reached when the correlation range is r << d where d is the size of the domain. In the other case, due
to the under-estimation of the variance in case of correlated data, the variogram sill can be higher than 1 (Delclaux and
Thauvin, 1993).



80 GEOSTATISTICS 4.4

(a) (b) (c)

0 10 20 30 40 50

0
5

1
0

1
5

Lag h (km)

E
m

p
ir

ic
a

l 
V

a
ri

o
g

ra
m

 (
!

)

Realization n.3

Realization n.2

Realization n.1

(d)

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Lag h (km)

E
m

p
ir

ic
a

l 
V

a
ri

o
g

ra
m

 (
!

)

Realization n.3

Realization n.2

Realization n.1

Climatological

(e)

Figure 4.7: Contour-plot of three random fields characterized by the same spatial structure but different intensity
range (a,b,c). d: Empirical variogram of the three fields. e: Empirical variogram of the fields normalized by
their standard deviation and climatological variogram (black line).
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variograms to variogram models. These purely statistical models can be used to replace the physi-
cal models when the latter are too complex to be efficiently represented (very often in atmospheric
sciences). In addition, the use of variogram models is mandatory for the geostatistical interpolation,
being the main input of the kriging interpolation.

Many variogram models are proposed in literature; Chiles and Delfiner (1999) report the most
used. Generally, variogram models can be chosen according to two criteria: i) physical significance; ii)
ease of use and parameter readability. In Figure 4.8 the 4 models we schematically plot the 4 models
detailed in the following.

Figure 4.8: Schematic example of exponential, gaussian, power-law and spherical variogram model.

The exponential model issues from an analytical derivation of the covariance function of a continuous-
time Markov processes possessing the property of conditional independence between the past and the
future when the present is known.

γ(h) = n + s(1− (exp(−h/a))) (4.11)

where a expresses the lag for which the variogram reaches the 0.63 of the sill. The model has range
r →∞, and at about 3a we can define the practical range, as the lag for which the 95% of the sill is
reached (Chiles and Delfiner , 1999).

Two other physically-based models merit to be mentioned. the Gaussian model

γ(h) = n + s(1− (exp(−h2/a2))) (4.12)

which is associated with an infinitely differentiable stationary random function, and the power-law
model

γ(h) = n + s(xαp) (4.13)
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which is of particular interest since it satisfies the property of self-similarity. For αp = 1 the linear
variogram is obtained.

Although the spherical variogram model is not the result of a particular kind of process, many
natural phenomena show empirical evidence of this correlation structure. It is one of the most used
variogram models, mainly because of the fact that the three parameters are directly readable from the
sample variogram plot. The spherical variogram can be expressed as:

{
γ(h) = n + s(1− (1− 3r

2h + r3

2h3 )) for h ≤ r

γ(h) = n + s for h ≥ r
(4.14)

where h is the lag, and r is the lag for which the variogram reaches its asymptotic value, otherwise
called range. The range r corresponds to the decorrelation distance of the process. The parameter
n is the so-called nugget (its properties and practical interest have been discussed in Section 4.8),
corresponding to γ(0) and s is the sill, the difference between the variogram for h > a (the average
variance of the field) and the nugget n. Figure 4.9 shows how the three parameters can be visually
detected.

Figure 4.9: Spherical variogram model and graphical parameters determination. In the plot, the nugget n, the
sill s and the range r of the variogram, can be graphically determined.

The nugget n indicates that the observations for lags h → 0 are not completely correlated. This
behavior has two possible origins: i) the process has a small-scale variability not catched by the
measurement network due to its sparseness; ii) the point measurements are affected by uncertainty. In
practice, rarely the nugget is found equal to 0. The practical implication of n %= 0 for the interpolation
process is that the interpolation function will not pass exactly through the observed points.

4.5 Interpolation of point data

In this section the most known methods for the interpolation of spatial data are briefly presented,
focusing on their advantages and drawbacks.
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The interpolation methods can be divided in two categories (Arnaud and Emery, 2000):

• deterministic methods (barycentric methods, space-partitioning methods and splines)

• stochastic methods (regression, local regression and kriging).

The barycentric methods infer the value at unknown points based on a weighted sum of the value
at close points. The most known example is the inverse distance interpolation for which the estimation
at a point s0 takes the form:

ẑ(s0) =
∑

i∈V (s0)

|si − s0|−d

∑
i∈V (s0)|si−s0|−d

z(si) (4.15)

where d > 0 is the inverse distance power. For d = 2 the weight associated to z(si) decreases with the
square of the distance from s0.

The space-partitioning methods infer the value at the unknown point as the value at a point
supposed to have similar features. The nearest neighbour interpolation assigns to the unknown point
the value of the closest known observation. The Thyessen polygons determine, for each known point,
an area of influence; each point is considered the best estimator for its area of influence.

The splines are expressions of the intrinsic tendency of nature to minimize the energy of a system.
The idea behind splines is to assimilate the field to the behavior of a thin metal plate forced to pass
through a series of control points. In one dimensional fields, the cubic spline consists in fitting a 3rd
order polynomial in each interval between two points, with the following constraints: i) the function
must pass for the two points ii) the function must be continuous and derivable iii) the first derivative
must be continuous iv) at the boundaries, the second derivative has to be null. The 2D case is the
generalization of the 1D cubic spline, in which the number of parameters needed to interpolate a set
of K parameters is 2(K + 3) (Hastie and Tibshirani , 1990). The main drawback of splines is that
they have very poor skills in the inference of the field properties outside the boundaries: since the null
second derivative is the only boundary condition, the field can exhibit drifts and the values could be
affected by the bending in proximity to the last point of measure (in signal processing, this effect is
referred to as “Gibbs phenomenon”).

4.5.1 Kriging

Kriging (Krige, 1951; Matheron, 1962; Cressie, 1993; Chiles and Delfiner , 1999) is an unbiased geosta-
tistical interpolation method. It is based on the statistical modeling of the spatial correlation structure
of a field.

The main difference between kriging and the other interpolation methods is that kriging is based
on a statistical model of a process rather than on an interpolation function (Chiles and Delfiner , 1999).
Similarly to the Inverse Distance Weighting, it consists in inferring the value of a random variable
at a point based on a weighted sum of neighbours. Kriging is the best linear interpolator and it is
unbiased: at each point, the estimation is made by means of an error minimization. By construction,
kriging is designed to yield the error committed by the interpolation at each point.
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Suppose to have a multi-field realization of a random field Z(x,ω) in space-time (Figure 4.10). We
know the field values at some points x1, . . . , xN and we want to estimate, based on the information
collected at all the realizations ω, the values at the point xo for which we do not have estimates.

The weights λi associated with the point xo are chosen with respect the following conditions:

• the estimator is linear: Ẑ(x0,ω) =
∑N

i=1 λi(xo)Z(xi,ω);

• the estimator must be, in an expected value sense, the best estimator;

• the estimator is not biased: Ẑ(x0,ω) must correspond (in average) to Z(x0,ω). For each real-
ization, the expected value of the error E[ε(x0,ω)] is null. This corresponds to: E[Z(xo,ω)] =
E[Ẑ(x0,ω)] = E[

∑N
i=1 λi(xo)Z(xi,ω)];

• The error variance

σ2
ε(xo,ω) = E[(Z(x0,ω)− Ẑ(x0,ω)2)] (4.16)

must be minimized.

Mainly, three types of kriging are available, depending on the properties of the mean of the process:

• Simple kriging: the mean of the process µ(s) = m is a known constant;

• Ordinary kriging: the mean of the process µ(s) = µ is an unknown constant;

• Universal kriging: the mean of the process depends on the position s through a linear combination
µ =

∑p
j=0 fj(s)βj .

In the next sections, some additional details for each of these methods are provided.

Figure 4.10: Example of 3 realizations of the random process Z(x,ω).
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4.5.2 Simple kriging

The simplest kriging application is when the field is stationary (i.e. the mean does not depend on the
location) and the mean is known. Since the mean is constant and known, simple kriging (Matheron,
1970) can be equally expressed in terms of covariance or variogram. Since the covariance function can
be evaluated only when the mean of the process is known (and stationary), simple kriging is rarely
suitable for practical problems.

In simple kriging the mean is known. It is possible to subtract the mean to the field in order to
obtain, at each point, a distribution with null mean: µ(x) = 0.

In this case, the non bias condition is trivial since E[Z(x0,ω)] and E[Z(xi,ω)] are equal to zero.
Let us deal with the minimization of the error variance. The error variance can be written σ2

ε(x0,ω) =
V ar[ε(xo,ω)] = E[(Z(x0,ω)− Ẑ(x0,ω)2)]; developing the right hand side of the equation we obtain:

σ2
ε(xo,ω) = E[Z(x0,ω)2 − 2

N∑

i=1

λi(x0)Z(xi,ω)Z(x0,ω) +
N∑

i=1

N∑

j=1

λiλjZ(xi,ω)Z(xj ,ω)] (4.17)

where the first member is equal to E[Z(x0)]2 that is the variance of the process; the remaining terms
can be expressed in terms of the covariance:

σ2
ε(xo,ω) = V ar[Z(xo,ω)]− 2

N∑

i=1

λi(x0)Cov[Z(xi), Z(x0)] +
N∑

i=1

N∑

j=1

Cov[Z(xi), Z(xj)] (4.18)

The minimization of the error variance corresponds to impose

{

∂
σ2

ε(xo)

∂λk
= 0 (4.19)

It is demonstrated (Obled , 2007) that the development of this partial derivative system leads to
the following equation:




∂
σ2

ε(xo)

∂λk
= −2Cov[Z(xk)Z(x0)] + 2

N∑

j=1

λjCov[Z(xk)Z(xj)] = 0 (4.20)

For each k we can thus write the kriging system in matrix form:





Cx1,x1 Cx1,x2 · · · Cx1,xN

...
... . . .

...
Cxk,x1 Cxk,x2 · · · Cx2,xN

...
... . . . ...

CxN ,x1 CxN ,x2 · · · CxN ,xN





·





λi
...

λk
...

λn





=





Cx1,x0

...
Cxk,x0

...
CxN ,x0





(4.21)
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This example was the simplest since the mean is known. In ordinary kriging, the optimization
is conditioned to the fact that the weights sum is unit and therefore requires the use of Lagrange
multipliers, with increased complexity.

4.5.3 Ordinary kriging

With a small increase in complexity, the kriging interpolation can be generalized for cases where
the mean is stationary but unknown. This interpolation is called “ordinary kriging” (Matheron,
1970). Instead of the covariance function, the variogram function (Section 4.3) expresses the spatial
correlation as a function of the distance lag, h. In this case, the random variable Z(x) is required to
be stationary of second order.

The non-bias condition is expressed by fixing the weight sum to the unit:
∑N

i=1 λi(x0) = 1. The
error variance

σ2
ε(xo,ω) = −γ(x0, x0)−

N∑

i=1

N∑

j=1

λiλjγ(xi, xj) + 2
N∑

i=1

γ(xi, x0) (4.22)

must be minimized. In this case, the mean is unknown and therefore we can not directly express the
covariance term. We add to the system the condition

∑N
i=1−1 = 0. The system to be minimized is

then subject to a constraint and the method of Lagrange multipliers must be used. This method is a
necessary condition for the optimization in constrained problems, and allows for finding the maxima
and minima of the constrained function.

The system becomes





∂[σε(x0)−2ν(PN
i=1 λi−1)]

∂λk
= 0

∂[σε(x0)−2ν(PN
i=1 λi−1)]

∂ν = 0
(4.23)

that, in matrix form, can be expressed as





γx1,x1 · · · γx1,xN 1
... . . . ...

...
γxN ,x1 · · · γxN ,xN 1

1 1 · · · 0




·





λi
...

λn

ν




=





γx1,x0

...
γxN ,x0

1




(4.24)

An example of the kriging interpolation method is shown in Figure 4.11. We prefer to show how
kriging works in a mono-dimensional case. Suppose to have a series of daily rainfall observations, along
a line, where stations are separated by 5 km. We aim to interpolate the points in order to obtain a
continuous surface.

The first operation is to evaluate the variogram of the daily rainfall amounts for each couple
and to average the obtained values for class of distances. Then, a variogram model is fitted to the
sample variogram. In Figure 4.11-a, a Gaussian variogram seems to be adapted to describe the spatial
structure of the field. An automatic fitting procedure has been applied. Kriging is then applied to
estimate the value of the field at intermediate points (Figure 4.11-b). In this case, a point every 2
km is estimated. The adopted variogram model has nugget n %= 0. It means that either the measures
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are affected by a systematic error or the process exhibits small-scale variability that a coarse network
is not capable to detect. We now check the influence of a correct nugget estimation. Figure 4.11-b
shows the interpolated rainfall intensity for two kriging schemes. The blue curve corresponds to a
kriging without nugget while a positive nugget is introduced in the kriging scheme leading to the red
curve. Imposing a null nugget, the interpolated intensity exactly matches the known data points but
displays a rough curve when close data points have close intensities. When kriging includes a nugget,
the curve of the interpolated intensity is smoother but does not exactly match the data.
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Figure 4.11: a: Sample variogram for the example rainfall field. b: Observed rainfall field (an observation every
5 km), Gaussian variogram model (red line), Gaussian model with imposed zero nugget (blue line).

In Appendix D a code for the 1D kriging is proposed.

4.5.4 Universal kriging

The variogram formulation has been modified for dealing with particular situations where the mean
of the field changes as a function of the spatial coordinates. When the stationarity of the mean (upon
which ordinary and simple kriging are based) is not verified, the “Universal Kriging” method, also
known as kriging with an external drift, can be used. Kriging with an external drift (Goovaerts, 1997;
Wackernagel , 1998) consists in associating to the primary variable Z, known at few locations, an
auxiliary variable Y , available everywhere in the spatial domain. For the application of the method
the second-order stationarity must be verified. The use of universal kriging is of particular interest in
mining engineering or in hydrogeology. In this latter field, for example, it is common to have a drift
in the piezometric height, and the sample variogram show the behavior illustrated in Figure 4.5. In
atmospheric sciences, the use of universal kriging is limited to low-variability fields, such as monthly
or annual rainfall. In high-variability fields (such as instantaneous rainfall), there is high probability
of introducing an erroneous drift that can lead to anomalous results.

An example of kriging with an external drift is the use of the elevation as an auxiliary variable for
mapping the annual rainfall in the Cévennes-Vivarais region 4.12. The assumption is that the rainfall
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depth at the monthly or annual accumulation time is locally correlated with the elevation (Gottardi ,
2009). Even if an overall trend rainfall depth versus elevation can not be established in the region, the
method uses the local information to detect local linear trends of the rainfall depth with the elevation.
Goovaerts (2000) showed that kriging with an external drift is the best method for taking into account
the local information provided by elevation.
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Figure 4.12: a: Annual rainfall-depth map (in mm) using ordinary kriging. b: Annual rainfall-depth map using
elevation as external drift.

4.6 Conclusion

This section has been devoted to a basic description of the structural analysis and spatial interpolation
methods known as geostatistics. In the first paragraph a short description of the main properties of
random fields has been reported. We discussed about stationarity, intrinsic hypothesis and ergodic
hypothesis. These properties of the fields will intervene in the choice of the structural tool needed
for their characterization and of the best interpolation method for the estimation of the field value at
ungaged locations.

We introduced the use of variograms as a descriptor of spatial fields. Variogram is more flexible
than covariance to describe the properties of random fields, in the sense that variogram just need
stationarity of the mean of the field (while for computing covariance the mean must be known). The
use of variograms can also be extended to fields that do not obey to the second order stationarity, i.e.
fields with a linear drift of the mean. Detrended variograms can be used for these purposes. Indicator
variograms have been proposed for deal with fields presenting different correlation structures as a
function of the intensity range (e.g. rain-no rain intermittency and rainfall variability). The need of
atmospheric sciences to detect a multi-field behavior of a random variable and the impossibility to
draw significant information from a single storm justify the introduction of climatological variograms.
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The empirical variograms evaluated from data can be suitably fitted with variogram models ex-
pressing with a continuous function the correlation structure of the fields. The variogram model can
be seen as a purely statistical modeling of the random variable at different scales. In addition, it is
the basic ingredient for the kriging interpolation, a stochastic interpolation method widely used for
inferring the value of a random variable at ungaged locations. The advantages of kriging are that i)
it is the best linear interpolator and ii) it provides the uncertainty of the estimation at each point.
Similarly to variograms, different kriging techniques exist for taking into account of the properties
of the analyzed fields: known stationary mean, unknown stationary mean, linear drift of the mean,
presence of an auxiliary variable or of a co-variable.
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5Scale invariance and self-similarity

Résumé

La définition “analyse multi-échelle” peut faire référence à deux analyses différentes. Generale-
ment ce terme indique que l’étude est conduite de façon indépendante pour plusieurs échelles d’intêret.
Dans notre cas, l’analyse multi-échelle consiste à définir les relations entre les échelles, avec l’objectif
de déterminer les lois qui expriment la “relation d’échelle”. Un grand nombre de processus na-
turels possède des propriétés invariantes-d’échelle, notamment leur propriétés statistiques sont auto-
similaires à toutes échelles.

L’invariance d’échelle à été détectée dans certains objets géometriques ainsi que dans une multitude
de processus naturels, de la géophysique à l’économie, de la biologie à la géographie. La complexité et
l’absence d’une formulation mathématique rigoureuse ont limité la diffusion de l’analyse de l’invariance
d’échelle, malgré les nombreuses évidences physiques de son existence.

Le chapitre est consacré à la description de l’état de l’art sur l’étude de l’invariance d’échelle de la
pluie. Dans une première partie, nous introduisons la théorie de l’invariance d’échelle. On présente
en suite les principales approches pour analyser l’invariance déchelle des processus géophysiques et le
cadre mathématique qui amène aux différentes formulations.

En conclusion, nous présentons une description des principaux travaux dans la modélisation de
l’invariance d’échelle dans trois contextes différentes: invariance déchelle spatiale, invariance

déchelle temporelle, invariance déchelle dans l’éspace éspace-temps.

5.1 Introduction

The definition “multi-scale analysis” may refer to two different analyses. Generally this term
signifies that the studies are conducted, separately, at more than one scale of interest. In our case,
the term refers to the studies that define the relationships between the scales, with the aim to define
the law governing the scale transition (the so-called “scaling relation”). Many processes exhibit
scale-invariant properties, i.e. their statistical properties are similar whatever the scale.

Scale-invariance has been detected in the geometrical properties of abstract entities as well as in
the statistical properties of a multitude of processes, from geophysics to economics, from biology to

91
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Figure 5.1: Construction of the first six iterations of a cantor set. The segments have been depicted as bars of
fixed width.

geography. The general complexity and the lack of a rigorous mathematical formulation has limited
the acceptance and the massive usage of scale-invariance, despite the physical evidences.

This chapter is devoted to the description of the state of the art regarding the scale-invariance of
rainfall. In the first part, a brief introduction on the scale-invariant theory is given. The two main
approaches to verify the scale-invariance of geophysical processes are reviewed, with a description of
the various types of scaling that have been found in natural processes. We give some details on the
mathematical framework leading to the different formulations.

In conclusion, we present a description of the main works in the modeling of scale invariance in
three different context: spatial scaling, temporal scaling, space-time scaling.

5.2 Scaling in geometry: fractals

According to the definition of Mandelbrot (1967), a fractal is ”a rough or fragmented geometric shape
that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole”.

Many decades before the definition of the “fractal” concept, objects with unusual properties
(namely the fractional dimension) were studied by Cantor, Koch, Peano, Sierpinski and Levy (Man-
delbrot , 1982). The Cantor ternary set (1894, Figure 5.1) could be a good example to understand
these unusual properties: it is created by repeatedly deleting the open middle thirds of a set of line
segments. If the segment line is defined in the interval (0, 1), the first step is the deletion of the middle
third (1/3, 2/3). The second step is the removal of the middle third of each of the two remaining
segments, (1/9, 2/9) and (7/9, 8/9). The process is iterated for an infinite number of steps k.

It is well known that points have geometrical dimension 0, lines have unit geometrical dimension,
and plane have geometrical dimension 2. Fractals are characterized by the fact to present fractional
dimension: the Cantor set, for example, is generated by fragmentation of a segment, of dimension
D = 1, that in turn is composed by an infinite number of points (D=0, for this reason the Cantor set
is also referred to as “Cantor dust”).

The fractal dimension of the set is defined as:

D = lim
ε→0

log N(ε)
log 1

ε

(5.1)
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where N(ε) is the number of self-similar structures of size ε needed to cover the whole structure. In
the case of Cantor dust,

D = lim
k→+∞

log 2k

log 1
1/3k

= lim
k→+∞

log 2k

log 3k
= 0.6309... (5.2)

where k is the step number.
The fractal dimension is an important property of geometrical objects but it does not univocally

define a geometrical object; sets with the same fractal dimension but different appearance can be built.

5.3 Fractals in nature

Since the second half of XX century, numerous natural and anthropogenic objects have been discovered
to have fractal properties. Starting from the second half of XX century, analyzing economic as well as
natural observations, unexpected properties of real series related to “fractality” have been discovered.

One of the first findings concerns the measure of the objects length. “How long is the Coast
of Britain”, contained in Mandelbrot (1967) clearly expresses the concept of fractal objects. Let us
imagine to measure the length of a coastline drawn on a 2D surface, between two limits. Its length is
at least equal to the distance measured along the straight line connecting its beginning and its end.
If we take supports of smaller size, it is possible to notice that the coastline length increases with the
dimension of the support. The approximate length of objects with the dimension of the support varies
following a straight line in log-log plot.

As an application, let us determine the length of a river included in the study region: the Allier
river in the Auvergne department shown in Figure 5.2-d. With rulers of decreasing length, we measure
the length of the river on a map (Figure 5.2-a,b,c). The ruler length corresponds to the values of 32,
16, 8, 4, 2 and 1 km. The measures are reported in Figure 5.2-e. It is worthy to notice not only
that the length of the river increases with the inverse of the ruler length, but also that the relation
is approximately linear in double logarithmic plots. To highlight the log-log linear relationship, the
regression line (R2 = 0.94) is drawn. The log-log slope of the regression line in Figure 5.2-e represents
the Hurst exponent H (also known as the fractal exponent). Therefore, the genetic processes of the
Allier riverbed acted building a seemingly fractal object.

From this example it is clear that the properties of a variable change with respect to the resolution
of analysis and that some of these properties change in a regular and predictable way. Mandelbrot
(1982) performed the same analysis for a number of geographical variables, finding different Hurst
exponents (Figure 5.3). In the next sections we will move from geographical to geophysical variables.
For most of the geophysical variables we will see that a single exponent (the fractal dimension) is not
enough to describe the scaling features of a variable and a continuous spectrum of exponents should
be adopted. The main scope of the scaling analysis is to determine this spectrum of exponents (also
referred to as “singularity spectrum”) of a geophysical variable.
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(a) (b) (c)

(d) (e)

Figure 5.2: Allier River, effect of the ruler size on the measure of the river length. On panel a,b,c and d the
gray line shows the Allier river course as given by 1 km digital terrain model. The red segments are juxtaposed
rulers of lengths: a: 16 km; b: 8 km; c:4 km. d: Localisation of the Allier River within the study region. e:
Log-Log Plot of the estimated river length as a function of the ruler scale and regression line.
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Figure 5.3: Fractal analysis on the coastline length in several regions of the world, from Mandelbrot (1982).
The slope in log-log axes gives the fractal dimension of the set.

5.4 The origin of scaling in nature: turbulence

The first evidences of scaling in natural processes are relative to the study of turbulence. In turbulence,
the most of kinetic energy is contained in the large scale structures and the energy flux cascades down
from the large scale structures to smaller ones, creating smaller and smaller structures which produce
a hierarchy of eddies. By means of a dimensional analysis, Kolmogorov (1941) demonstrated that the
energy spectrum function can be defined as

E(k) = Cε2/3
d k5/3 (5.3)

where k is the wave number, εd the energy dissipation rate, C is a constant.
The power-law function expressed in Equation 5.3 implies that all the scales equally contribute

to define the variability of the eddies; no characteristic scale is present and turbulence is statistically
self-similar at different scales. Many experiments (Frisch, 1995) demonstrated the validity of Equation
5.3.

We can depict the contribution of each scale to the variability of the process through the energy
spectrum. The energy spectrum describes how the energy of a signal f(t) is distributed with the
frequency ω. For a continuous signal, we can define the spectral density Φ(ω) as:

Φ(ω) =
∣∣∣∣

1√
2π

∫ ∞

−∞
f(t)e−iωt dt

∣∣∣∣
2

=
F (ω)F ∗(ω)

2π
(5.4)

where F (ω) is the continuous Fourier transform and F ∗(ω) is its complex conjugate1.
1In cases when the function to study is not square integrable (i.e.

R +∞
−∞ |f(x)|2dx ≤ +∞, the Fourier transform

can not be computed. Thanks to the Wiener-Khinchine theorem it is possible to compute the spectral density of a
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The energy spectrum can also be interpreted as the distribution of the variance at different scales,
and therefore indicates the contribution of each scale to the variability of the process. A flat spectrum
means that the variability is not distributed across the spectrum, but concentrated at one scale: an
example is given by the white noise (Figure 5.4-a). A signal with no characteristic scale is linear as a
function of the frequency in double logarithmic plot (like in Figure 5.4-b, for frequencies corresponding
to the range 2 hours-1 week).

(a) (b)

Figure 5.4: a: Power spectrum of a white noise. b: Power spectrum of the rainfall series of Montpellier
(time resolution=1h). In both cases, a smoothing has been performed in order to reduce the variability of the
spectrum.

As reported in Schertzer and Lovejoy (1987), the initial purpose of the scale-invariance studies was
the improvement of the numerical modeling of atmospheric processes. In particular, they argue that
the model sub-grid parametrizations could be different from one scale to another, making questionable
the physical coherence of the variables. In contrast, many fundamental equations are invariant under
scale transformations. The Navier-Stokes equations, for instance (Frisch and Parisi , 1985):

{
∂tu + u∇u = −∇p + ν∇2u

∇v = 0 + w
(5.6)

are formally invariant under the group of transformations

r → λr, v → λhv, t → λ1−ht, for λ > 0 (5.7)

where w is a constant including boundary and initial conditions, ν is the fluid viscosity, p the pressure
and u the turbulent velocity.

signal. The theorem states that, if and only if the signal is a wide-sense stationary process (all the moments are finite
and stationary), the spectral density can be computed by Fourier transform of the Auto-Correlation Function (ACF,
Equation 3.6):

Φ(ω) =

Z +∞

−∞
ACF (τ ) exp−i2πωτ dτ (5.5)
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Similar scale-invariant relations could be used to improve the description of numerous physical
phenomena, in the range of validity of scale-invariance. At least two methods for the assessment of
the scaling have been proposed, providing complementary information. They are described in the next
section.

5.5 Generalization of the fractal concept: Multifractals

The simple scaling hypothesis is the result of additive processes and it is rarely verified in nature.
Strong nonlinearities have been detected in natural phenomena; these deviations were predicted by
Frisch and Parisi (1985) and stem from multiplicative processes (Schertzer and Lovejoy, 1985). In
simple scaling, a single scaling exponent suffices to describe the behavior of the statistical moments
at different scales. In contrast, multiple scaling requires multiple exponents (e.g. mean and variance
of the process scale differently) and it is therefore more general. In terms of probability distribution,
we typically observe that the fractal dimension decreases as the threshold is increased. Such processes
are referred to as “multifractals” (Frisch and Parisi , 1985).

In the previous sections, we have seen that the scale invariance of a random variable can be
qualitatively detected through the spectral density analysis. If the spectral density is linear in double
logarithmic plots, the process has not characteristic scale. The absence of a characteristic scale is the
first requirement of scale-invariance.

However, the power density slope can not provide sufficient information about the kind of scale-
invariance. Two concurrent methods have been developped to quantitatively describe the scale-
invariance of a process: the Generalized Structure Function ζ(q) (Frisch and Parisi , 1985; Harris
et al., 2001) and the Moment Scaling Function τ(q) (or a related function K(q)) (Schertzer and
Lovejoy, 1987; Gupta and Waymire, 1990). The two approaches are related but have significant dif-
ferences: ζ(q) is computed by evaluating differences of the field at increasing distances; τ(q) deals with
the subsequent averaging of the field over scales λ.

5.5.1 Scaling of the Generalized Structure Function ζ

The self-similarity concept is strictly related to the findings of Kolmogorov (1941) regarding the power-
law relation in Equation 5.3. In their pioneering work regarding the fully developed turbulence, Frisch
and Parisi (1985) have proposed a description of the longitudinal velocity signal u(x). They found
that the local scaling behavior of the velocity increment δu(x0, l) around x0, for l → 0, can be fully
characterized by the expression

δu(x0 + l) = [u(x0 + l)− u(x0)] ∼ lh(x0) (5.8)

where h(x0) is called local singularity exponent.
The singularity spectrum D(h) of the field is then defined as the function that gives, for a fixed

h, the fractal dimension of the set of points x for which the exponent h(x) is equal to h. Frisch
and Parisi (1985) proposed an experimental method for estimating the D(h) spectrum based on the
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scaling exponent ζ(p) derived from the computation of the expected value of the pth power of the
turbulent velocity u fluctuations as a function of the displacement l (i.e. the scale):

E[|u(x + l)− u(x)|p] ∼ lζ(p) (5.9)

ζ(p) is the scaling function of the Generalized Structure; when this power-law relationship is verified
the field is said to be self-similar. ζ(1) corresponds to the Hurst exponent.

The relation between ζ(p) and D(h) is given by the Legendre transform

D(h) = min
p

(ph− ζ(p) + 1) (5.10)

Equation 5.9 has important consequences:

• the Generalized Structure Function E[|u(x + l)u(x)|p] has a power-law relationship with the
separation distance l, expressing the scale-invariance;

• the existence of the ζ(p) function, non linear with l, models the deviation from simple scaling;

• the scale-invariance could be determined in non-stationary fields, but they must have stationary
increments;

In few cases, the function ζ(p) is linear with p. This condition regards, for instance, Brownian
motion.

5.5.2 Moment scaling analysis

The moment scaling analysis significantly differs from Generalized Structure Function analysis in that,
instead of looking at the variability of the fine-scale field variability at different separation lags l, it
models its ensemble moments as a function of the scale.

Simple scaling is the simplest kind of scaling. The mathematical description of the simple scaling
is provided by Gupta and Waymire (1990): an arbitrary random field Y in +d is simple scaling if,
for each λ, there is a scale function Cλ such that the following equality holds for any arbitrary set of
points x1, · · · ,xn:

P [C−1
λ Yλ1(x1) < y1, · · · , C−1

λ Yλ1(xn) < yn] = P [Yλ2(x1) < y1, · · · , Yλ2(xn) < yn] (5.11)

where λ is an index that is function of the ratio λ1
λ2

.
We can express the same equality in probability distribution in the contracted form as:

C−1
λ Yλ1(x) d= Yλ2(x) (5.12)

The only acceptable form of the scaling function Cλ is Cλ = λc (Gupta and Waymire, 1990;
Sornette, 2004).

Therefore, simple scaling of the distributions of the same random variable Y at two scales λ1 and
λ2 can be expressed as:
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Yλ1

d= λ−cYλ2 (5.13)

where c is a parameter referred to as co-dimension function and λ = λ1
λ2 is the scale ratio.

Gupta and Waymire (1990) demonstrate that Equation 5.13 involves a similar relation in terms of
the ensemble moments; this property is known as “wide-sense simple scaling”:

E[Y q
λ1

] = λ−τE[Y q
λ2

] (5.14)

where q is the moment order and λ is the scale ratio; τ is called the “moment scaling function”. In
simple scaling, it is linear with q. Gupta and Waymire (1990) specify that the transition from “strict”
to “wide” scaling is verified only if the statistical moments of the distribution exist. The inverse
relation is always true, i.e. “wide sense” implies “strict sense” scaling. The relation in Equation 5.14
is a power-law relationship: the scaling of ensemble moments occurs when the ensemble moments
exhibit linearity in log-log axes as a function of the scale λ.

The parameters c and τ of the relations 5.13 and 5.14 are inter-dependent and define the type of
scaling:

• when the function c in Equation 5.13 is a constant and τ in Equation 5.14 is linear with the
moment order q, the relation is called “simple scaling”: this phenomenon is rarely observed in
geophysics.

• more frequently c depends on the intensity and it is function of the “singularity strenght” γs; the
moment scaling function and the codimension c are related through the relation γs(q) = dK(q)

dq ;
the moment scaling function τ(q) is not linear with the moment order q. In this case, we have
“multiple scaling”.

In Figure 5.5 we show the differences between simple and multiple scaling of the distributions. In
simple scaling (Figure 5.5-a), the probability distribution undergoes a simple contraction/expansion,
i.e. it is multiplied by a constant scaling factor; in multiple scaling the probability distribution shape
may change because each quantile and moment scale in a different manner.

Figure 5.5: Scheme of simple (left) and multiple (right) scaling of probability distribution functions. In simple
scaling, a single factor is needed to transform the pdf at different scales (shape conservation); in multiple scaling
an infinite number of factors are needed, modifying the pdf shape.



100 SCALE INVARIANCE AND SELF-SIMILARITY 5.5

5.5.2.1 Applicability of the moment scaling analysis: Statistical self-affinity

Schertzer and Lovejoy (1987) state that the use of moment-scaling analysis when the process is not
conservative leads to spurious results. A process is conservative if, in the Fourier space, the power
spectrum slope (in log-log) of a n-dimensional process is steeper than n. When the process is not
conservative, the moment scaling may not be verified on the field itself and a differentiation is required
to detect scale-invariance (Schertzer and Lovejoy, 1987). The differentiation can be of integer or
fractional order. Processes that exhibit scale-invariance after fractional differentiation are called “self-
affine”. Through the convolution of the original field Y with a specific filter (a log-log straight line in
the Fourier space), it is possible to obtain a conservative field φ, apt for the moment scaling analysis.

If β is the spectral slope of the process Y , the fractional derivation order required to obtain a
conserved process is (Tessier et al., 1993):

H =
β − 1 + K(2)

2
(5.15)

H is the Hurst exponent, also computed as ζ(q) in Equation 5.9 for q = 1. To fractionally derive
a process, one may work in the frequency domain. If F (ω) is the Fourier transform of the function
f(x), the Fourier transform of the H th order derivative, f (H)(x) is equal to (iw)HF (ω). When H is
negative, the transformation is a fractional integration, i.e. the inverse process required to return to
the non-conservative process from the conservative one. An example of fractional differentiation, for
the 30-min wind-speed station of Luzern, Switzerland, is shown in Figure 5.6. The power spectrum
of the series is reported in Figure 5.6-a, showing a power-law slope of 1.18. The fractional derivation
yields a field with unit slope (Figure 5.6-b); this field can be used to estimate the moment scaling
function. We must point out that the choice of the arbitrary unit in the y axes does not affect the
slope estimation, since log-log plots are used.
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Figure 5.6: Spectral densities (obtained by Equation 5.4) of 30-min wind-speed series of Luzern, Switzerland. a:
Spectral density plot of the original time series, β = 1.18. b: Spectral density of the fractionally differentiated
flux, β = 1.
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A simpler approach to construct a conservative field from a non-conservative one consists in taking
the field fluctuations. In this case, attention must be devoted to the finer resolution scale of the
analysis: due to sampling errors, deviations from scaling have been detected (de Montera et al., 2008).

5.5.2.2 Moment scaling function of conservative processes

In this section, the analysed random variable Y is conservative. We detail the computation of its
moment scaling function. The general scaling relation of ensemble moments known as Mandelbrot-
Kahane-Peyriere (MKP, Mandelbrot (1974); Kahane and Peyriere (1976)) is defined as:

τ(q) = 1− q + logb E[Y q] (5.16)

where q is the moment order and b the ratio between two successive scales of analysis (in the simplest
case, b = 2).

The main requirement is to have long enough series (N → +∞) to make the sample moments
1
N

∑N
i=1 Iq

λ converge to the ensemble moments E[I q] to which the scale-invariance applies. The scale-
invariance is verified when the moments lie on a straight line in log-log axes as a function of the scale
ratio λ.

Gupta and Waymire (1990) define a series of probability distributions that may fit with scale-
invariance. Gupta and Waymire (1993) derived the expression of τ(q) for different kinds of cascades:
for log-normal distributed fields (firstly introduced by Kolmogorov (1962) in the framework of the
statistical theory of turbulence), we have:

τ(q) =
σ2

2 log(b)
(q2 − q) (5.17)

With just one parameter (σ in Equation 5.17), one can model the infinite hierarchy of singularities
proper of log-normal multi-scaling processes in a continuum of scales. Gupta and Waymire (1993) also
demonstrate the possibility of using Levy-stable processes (Equation 5.55) to model scale-invariance
in case of fat tailed distributions; Levy-stable distribtuion is used in the Universal Multifractal Model
proposed by Schertzer and Lovejoy (1992).

5.5.2.3 Universal Multifractal Model

Schertzer and Lovejoy (1992) have developped the model referred to as “Universal Multifractal model”,
a generalization of the log-normal case in Equation 5.17 that accommodates exponential as well as
heavy tailed distributions. They assume that the fields are originated by a multiplicative cascade
where the weigths are distributed following Levy’s stable distribution, the only distribution with the
Gaussian to exhibit stability-upon-addition but, differently from the latter, characterized by hyperbolic
tails. As Gaussian distribution is a particular case of Levy distribution, with a single model is possible
to represent both hyperbolic and exponentially-tailed multiplicative processes.

The great innovation of the model is that it is conceived to be applied over a continuum of scales,
through scale-densification; differently from Equation 5.17, the parametrization does not depend on
the ratio between the resolution of two adjacent scales b.
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The Universal Multi-fractal model is defined through its moment scaling function K:

{
K(q) = −qH + C1

qα−q
α−1 for α %= 1

K(q) = −qH + C1q log(q) for α = 1
(5.18)

H is the Hurst exponent expressing the non-conservativity of the field (H=0 in conservative fields),
C1 is the mean co-dimension of the process (representing the degree of sparseness of the mean) and α

is the Levy’s stability index.
The expression of K(q) corresponds to −τ(q) introduced in Section 5.5.2; we find convenient to

report the two approaches separately, since i) they have been originated from two studies conducted
at the same time; ii) nowadays none of the two notations has prevailed over the other.

Knowing that γs(q) = dK(q)
dq , it is also possible to express the Universal Multifractal Model in

terms of the singularity strength γs, defined as

γs(q) =
dK(q)

dq
(5.19)

The moment scaling function K and the codimension function c are related through the Legendre
and inverse Legendre transform, respectively (Frisch and Parisi , 1985; Schertzer and Lovejoy, 1987):

K(q) = maxγs[qγs − c(γs)] (5.20)

and

c(γs) = maxq[qγs −K(q)] (5.21)

Figure 5.7 shows the duality between scaling in probability-distribution (through c(γs)) and scaling
in statistical-moments (through K(q)) for a 1D series, when H = 0. We see that while the first moment
(average of the process) does not vary with the scale (in fact K(1) = 0 in the Universal Multifractal
Model), the second moment varies with scale, in accordance with the changes in the distribution
variability (variance). A similar pattern concerns the third moment, that is related to the asymmetry
of the distribution.

The Universal Multifractal Model can be expressed as a function of the codimension c(γs), for
0 ≤ α ≤ 2 and for H %= 0:





c(γs + H) = C1

(
γs

C1α′ + 1
α

)α′

for α %= 1

c(γs + H) = C1 exp
(

γs
C1
− 1

)
for α = 1

(5.22)

where α′ = α/(α − 1). The derivation of the expression above, starting from the moment scaling
function, is reported in Appendix F for the case of α %= 0 and H = 0.

The relation between moment scaling function K(q) and codimension function c(γs) is shown in
Figure 5.8 for the case α = 1.75, C1 = 0.15 and H = 0. From these figures it appears clear the
meaning of the Legendre transform for relating the moment scaling function K and the codimension
c: it corresponds to the maximum distance between the function qγs (in both cases the dashed line
with zero intercept) and the function K(q) or c(γs), in Figure 5.8-a and b, respectively.
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Figure 5.7: Intuitive scheme of the probability distribution change with the scale in multi-scaling process. The
blue line identifies the probability distribution, while the orange line refers to the centred statistical moments
of the distribution.
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Figure 5.8: a: Moment scaling function K(q) of the Universal Fractal Model, relation between K(q), codimension
c and γs. b: Codimension function of the Universal Fractal Model and relations between c(γs), moment order
q and moment scaling function K(q). Taken from Tessier et al. (1993).
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The expression “Universal Multifractal” refers to the possibility to model multiplicative processes
characterized by either heavy or exponential tails. Actually, the approach followed by Gupta and
Waymire (1993), through application of the MKP expression (Equation 5.16), is more general: any
probability distribution can be implemented into the model.

5.6 Towards an unified multifractal formalism

The Generalized Structure Function theory (Section 5.5.1) and the Moment Scaling theory (Section
5.5.2) share several features:

• both originate from the generalization of the scaling of turbulent flows of Kolmogorov (1941);

• both are expression of the non-linearity of geophysical processes;

• a Legendre transform relates the GSF scaling function ζ(p) and the GSF singularity spectrum
D(h); the same relation establishes between the moment scaling function τ(q) and the codimen-
sion function c(γs);

Vainshtein et al. (1994) define the relation between the scaling functions of GSF and of the scaling
of the moments. Menabde et al. (1997) expresses this relation as:

τ(q) = ζ(1) · q − ζ(q)

The singularity spectrum D(h), estimated through Legendre transformation in Equation 5.10 as a
function of the scaling exponent of GSF, can be equally derived as a function of the moment-scaling
function τ(q), as:

D(h) = minq[qh− τ(q)] (5.23)

The derivation as a function of τ(q) is more general that the one in Equation 5.10, since τ(q) is,
in most cases, the exact Legendre transform of the D(h) singularity spectrum (Muzy et al., 1993).

5.7 Multifractal spectrum estimation

In this section we briefly define the methods for estimating the multifractal spectrum of a sample set.
We focus on the estimation of the moment-scaling function given by Schertzer and Lovejoy (1987) and
Lavallée (1991), and on an alternative technique based on wavelets proposed by Muzy et al. (1993),
succesfully developed by Venugopal et al. (2006a,b).

5.7.1 Moment-based estimation

To analyze the multi-fractal character of a finite sample, two methods have been successively imple-
mented: the Trace Moment and the Double Trace Moment. The moment analysis should be performed
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paying attention to the chosen moments: low order moments can be affected by the instrument res-
olution while, for high order moments, the strongest observation can be predominant2, leading to
linearity of the moment scaling function K(q) for q higher than a critical moment qs.

According to Schertzer and Lovejoy (1992) and Tessier et al. (1993), the critical moment qs is
defined as:

qs =
(

D + Ds

C1

)1/α

(5.24)

where D is the euclidean dimension of the field and Ds the sampling dimension, defined as

Ds =
log(NS)
log(Λ)

(5.25)

where Ns is the number of elements at the finer resolutions that compose the coarse-resolution field
and Λ is the ratio between large scale and small scale.

The moment scaling function K(q) can be computed by means of the Trace Moment (Section
5.7.1.1) and Double Trace Moment (Section 5.7.1.2) methods, as a function of the two multi-fractal
parameters α and C1.

5.7.1.1 The Trace Moment Method

The Trace Moment method (Schertzer and Lovejoy, 1987) consists in evaluating the scale invariance
of a process by applying a two-step algorithm. In a first step, one plots the statistical raw moments
of various orders on double logarithmic diagram as a function of the aggregation scale (Figure 5.9-a
reports a schematic example of the statistical moments of order ranging from 0.5 to 2); in the range of
log-log linearity of moments, the moment slope (K = K(q)) is calculated by least squares optimization.
In the second step the empirical slope K(q) is plotted as a function of the moment order q (Figure
5.9-b), and the Universal Multifractal law

K(q) = C1
qα − q

α− 1
(5.26)

is fitted to the empirical data. α is the Levy’s stability index and C1 the mean co-dimension of the
process. The main drawback of the method is that the correct fitting of the empirical moment scaling
function with a two-parameter function can be affected by the inverse dependence between α and C1.
A second drawback is the fact that, being a two-step process, the estimation uncertainties can not
be directly assessed by maximum likelihood expressions, and numerical estimations, such as jackknife
methods, need to be used.

5.7.1.2 The Double Trace Moment Method

The inter-dependence between C1 and α of the Trace Moment Method limites the accuracy of estima-
tion of the two multifractal parameters. Lavallée (1991) propose a new method for the characterization

2This phenomenon is referred to as “hard phase transition” by Schertzer and Lovejoy (1992)
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(a) (b)

Figure 5.9: Schematic of the Trace Moment estimation method. a: empirical moments as a function of the scale
λ. The slope of the straight line for each q corresponds to K(q). b: Moment scaling function K as a function
of the moment order q.

of the multifractal behavior of processes. The method has been referred to as “Double Trace Moment”
(DTM), because it uses an auxiliary moment η other than q.

The first step is to raise the initial field to a set of auxiliary moments η, obtaining a series of
different fields which will be separately analyzed with a two-step algorithm similar to the TM method.
For each raised field, the log-log slope of the moments K(q, η) is computed as a function of the scale λ

(in Figure 5.10-a). The last step is to plot log(K(q, η)) empirical moments as a function of η (Figure
5.10-b). For sufficiently small and high η values, the K(q, η) function does not depends on η. For η

close to the unit, the function has a linear behavior with respect to log(η), whose slope corresponds
to α. The moment scaling function K(q, η) can be expressed as a function of the moment scaling
function K(q) of the Universal Multifractal Method by the following Equation 5.27:

K(q, η) = ηαK(q). (5.27)

The C1 parameter is consequently evaluated by inverting Equation 5.26 for η = 1. The advantage of
the technique is that the Levy’s stability index α is obtained independently from C1. Compared to TM
method, the parameter estimation is improved by the double log-transformations that yield normally-
distributed residuals. The DTM provides a very efficient method for estimating the multifractal
parameters. Nevertheless, its implementation is submitted to arbitrary interpretations. Let us examine
such points in detail:

• the inflexion point of K(q, η), whose slope yields the α value, can appear relatively far from
η = 1; the inflexion point is found by imposing null second derivative of an arbitrary function
(e.g. a third order polynomial) that has been fitted to the empirical values of K(q, η);

• the choice of the set of η values upon which to perform the fitting is arbitrary;

• the choiche of q seems to affect the estimation of α. Given that for q = 1 the DTM can not
be evaluated, α is usually assessed taking arbitrary values of q higher than the unit and lower
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than qD (for q ≥ qD the moments diverge). For example, Ladoy et al. (1993) chose q = 1.5 and
Tessier et al. (1993) q = 2.

Despite these arbitrary choices, the DTM method provides the better multifractal estimation, and
therefore it should be preferred. Nevertheless, in case of intensive data analysis, such as in the case of
regionalization of rainfall data at a station, it is preferable to adopt a completely automatic process
working for all stations in the same way, similarly to Trace Moments method.

(a) (b)

Figure 5.10: Schematic of the Double Trace Moment estimation method. a: Empirical moments as a function
of the scale λ, for a given value of the auxiliary moment η. The slope of the straight line for each q corresponds
to K(q). b: Moment scaling function K as a function of the moment order q. The blue color identifies the value
η = 2, the orange η = 1.5. Both the plots are in double logarithmic scale.

5.7.2 Wavelet Estimation

The methods above cited (Equation 5.18, Equation 5.9) allows to obtain, after Legendre transfor-
mation, the singularity spectrum of the field. Venugopal et al. (2006a) established that traditional
techniques can result in spurious estimates of the spectrum of scaling exponents ζ(q) (Equation (5.9))
and consequently of the singularity spectrum D(γs) (equal to D − c(γs) where D is the euclidean
dimension of the field, e.g. 1 for time series). An alternate formalism based on wavelets is proposed
for the direct estimation of the singularity spectrum. The Wavelet Transform Modulus Maxima co-
efficients (WTMM, Muzy et al. (1993)) may provide a robust estimate of the singularity spectrum
D(γs). A great advantage of this technique compared to the Continuous Wavelet Transform and to
the moment analysis, is that the whole range of singularities is explored, including the decaying part of
the D(γs) curve (not possible with the moment analysis, due to the impossibility to explore negative
moments).

Particular attention is devoted to the integration order of the signal and its relationships with the
wavelet used for the analysis. For instance, Venugopal et al. (2006b) used wavelets of increasing order,
corresponding to increasing order of the moments; this allows to use integrated signals characterized
by various integration orders. The analysis performed using wavelets of increasing orders allows to
rely on the independence of the singularity spectrum relatively to the used wavelet.
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The process is implemented following four steps:

• the CWT (Continuous Wavelet Transform) is applied to the data series. The wavelet coefficients
for each time step and for each scale are provided. The maxima lines, or branches, illustrate the
hierarchical singularity structure.

• the WTMM analysis is performed. At each scale of analysis, a research of the relative maxima
is conducted. This allows to identify the trees, i.e. the series of maxima which are related at
different scales.

• only the wavelet coefficients relative to each branch are retained and the structure function ζ(q)
of these singularities is evaluated, considering that

Nλ < |Tλ(x)|p >∼ λζ(p) (5.28)

where Nλ is the number of maxima lines at the scale λ and the symbol <> denotes the ensemble
average of the field.

• through the Legendre transform in Equation 5.20, the ζ(p) structure function is used to determine
the singularity spectrum D(γs).

The main limit of this technique is the impossibility to estimate the rain-no rain fractal exponent
(i.e. the co-dimension of the support); therefore the technique is not suitable for dealing with rain-no
rain intermittency.

To illustrate this technique, we analyze a 10-hours event recorded in Ales, South-East of France by
a disdrometer. The temporal resolution is 1 min. The time series of the rainfall intensity is shown in
Figure 5.11-a. The wavelet spectrum with the main branches is reported in Figure 5.11-b, whereas the
consequent evaluation of the moment scaling function ζ and of the singularity spectrum is reported
in the Figure 5.11-c.

Comparing the results of the WTMM method with the structure-function techniques for the anal-
ysis of rainfall intensities, Venugopal et al. (2006b) found that structure function analysis provides
spurious results. They state that a proper small-scale analysis of rainfall intensity must be performed
through higher order vanishing moments, able to detect all the singularity of the signal. A rainfall
intensity series, for instance, cannot be analyzed through a Gaussian wavelet but rather by a Mexican
hat wavelet (2nd order derivative of the Gaussian).

This technique has been demonstrated to be reliable for the analysis of 1D signals respect to the
GSF or moment-scaling analyses. However, applications of WTMM method are, at the present day,
limited to 1D fields and the increase of complexity of the wavelet theory for n-dimensional fields may
limit these analyses.

5.8 Scale-invariance of spatial fields

The observation of geophysical variables such as rainfall and cloud cover by means of satellite imagery,
often limited in resolution but largely extended in space, made possible the multi-scale analysis of
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Figure 5.11: Disdrometer scan of an event lasting 700 hours measured at the Alés Disdrometer. a: Time series.
b: wavelet spectrum with respect of the time and of the scale. c: Moment scaling function ζ(q) and singularity
spectrum d(γs). A Mexican hat wavelet has been used.
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spatial fields. The gain respect to the older statistical methods for the modeling of rainfall events
(see Waymire and Gupta (1981) for a detailed review) is to provide a scale-free description of the
atmospheric phenomena. In one of the first applications, Lovejoy (1982) studied the geometrical
relations of rainy areas and cloud covering such as the ratio between area and perimeter of cloud and
rainfall fields. However, the main idea of scale-invariance analysis is to apply the scale-invariance
concepts introduced for turbulent fluxes by Frisch and Parisi (1985) for the large-scale analysis of
atmospheric spatial fields.

The earlier studies of the scale-invariance of spatial rainfall have been motivated by the evidence
that rainfall can be organized into embedded structures (Austin and Houze, 1972; Gupta and Waymire,
1979): small-scale clusters of high rainfall intensity are embedded within low-intensity meso-scale areas,
in turn embedded within larger area associated with lower intensities up to the synoptic scale (Figure
5.12).

Figure 5.12: Schematic depiction of sub-synoptic rainfall features (from Gupta and Waymire (1979))

The spatial scale invariance modeling has been the object of several studies (Schertzer and Lovejoy,
1987; Tessier et al., 1993; Olsson and Niemczynowicz , 1996; Olsson et al., 1999; Harris et al., 2001).
Schertzer and Lovejoy (1987) verified the moment scaling of radar reflectivity measured with the
volumetric radar of McGill Weather Radar, Canada. Based on these data, they developed empirical
techniques such as TM (Section 5.7.1.1) to detect the multiscaling behavior of spatial fields. Using
similar techniques, Tessier et al. (1993) showed that cloud and rainfall images taken from Landsat,
Meteosat and NOAA satellites are scale-invariant, adopting the DTM technique (Section 5.7.1.2).
The multifractality of “spatialized” (i.e. interpolated) point rainfall has been studied in Olsson and
Niemczynowicz (1996), by analyzing a uniform rain gauge network located in Southern Sweden; scale-
invariance in spatial scales ranging between 70 and 8000 km2 has been found. The effect of spatial
averaging on the multifractal behavior of daily rainfall has been examined in Olsson et al. (1999).
Harris et al. (2001) applied the GSF, as well as the spectrum analysis and the moment analysis,
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to compare the capability of the model forecasts to reproduce the scale-invariant structure of radar-
observed fields, which is verified for spatial resolutions in the range 1-15 km.

We have seen in Section 5 that the Fourier analysis may only provide a quantitative assessment
of scale-invariance. Showing several advantages, wavelets have been tested for the characterization of
the spatial scaling. In spatial fields, the early usages of wavelet analysis are relative to the studies of
Kumar and Foufoula-Georgiou (1993) and Perica and Foufoula-Georgiou (1996). Both studies focused
on the characterization of the self-similarity of rainfall fluctuations, by using the simplest wavelet, i.e.
the Haar Wavelet, defined as:

ψ(t) =






1, 0 ≤ x < 1
2

−1, 1
2 ≤ x < 1

0, otherwise
(5.29)

In practice, Perica and Foufoula-Georgiou (1996) described the “standardized rainfall fluctua-
tions”, defined as εm,i =

X′
m,i

X̄m
, where






Xm,1 = 1
4 [(X̄m−1(i, j) + X̄m−1(i, j + 1))− (X̄m−1(i + 1, j) + X̄m−1(i + 1, j + 1))]

Xm,2 = 1
4 [(X̄m−1(i, j) + X̄m−1(i + 1, j)) − (X̄m−1(i, j + 1) + X̄m−1(i + 1, j + 1))]

Xm,3 = 1
4 [(X̄m−1(i, j) − X̄m−1(i + 1, j)) − (X̄m−1(i, j + 1)− X̄m−1(i + 1, j + 1))]

(5.30)

are the 3 directional fluctuation components and

X̄m =
1
4
(Xm−1(i, j) + Xm−1(i, j + 1) + Xm−1(i + 1, j) + Xm−1(i + 1, j + 1)) (5.31)

is the local mean of the process. At each scale, the variable εm has an approximately gaussian
distribution and it is centered at 0, so that the only standard deviation of εm allows a complete
characterization of the rainfall fluctuations.

This approach has similarities with both the GSF and moment analysis, in that:

• the field is subsequently averaged and the statistics computed on the degraded fields;

• fluctuations are examined, but differently from GSF, only distances equal to the spatial resolution
are taken;

Through this kind of analysis, no statistical moments are explored but information on three fluc-
tuation components (“horizontal”, “vertical” and “diagonal”) is detected. In this approach, a field is
considered as the superposition of a mean field and of a fluctuation field. It is significant to notice
that this wavelet algorithm is commonly used in data compression algorithms.

5.9 Scale-invariance of time series

Up to this section, we examined the spatial scale invariance. The same approaches have been extended
to 1D random variables with similar results. As we highlight in Section 5.9.1, scale invariance and
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long-memory of the processes are concepts well known since centuries, but the first theoretical analyses
corroborated by empirical observations are relatively recent.

5.9.1 Long-range correlation: the first evidence of long-memory systems

Moving from geographical to geophysical variables, Mandelbrot and Wallis (1969a) surprisingly found
that most of the processes exhibit the so-called long-range dependence. This finding has very important
consequences on the perception of natural processes: they conserve the memory of their states for ages
or decades. References to the long-memory effect are present in the oral tradition. As reported by
Mandelbrot and Wallis (1969b), the biblical Joseph Effect expresses the fact that high or low levels in
rivers tend to persist “seven fat and seven lean years”. Similar concepts and observations are found,
among the others, in meteorology, geophysics, hydrology, physics and economics.

Let us introduce the concept of long-range dependence as defined by Mandelbrot and Wallis
(1969a). R(t, s) is the maximum difference between two values contained in the interval within t

and t + s, and it is defined as in Equation 5.32:

R(t, s) = max0≤u≤s[X(t + u)−X(t)− (u
s )(X(t + s)−X(t))]+

−min0≤u≤s[X(t + u)−X(t)− (u
s )(X(t + s)−X(t))]

(5.32)

S(t, s) is defined as the sample variance of the sub-record from time t + 1 to time t + s (Equation
5.33):

S2(t, s) = s−1
t+s∑

u=t+1

X2(u)− [s−1
t+s∑

u=t+1

X(u)]2. (5.33)

Figure 5.13: Construction of the sample range R(t,s) for a 1D process X reproduced from Mandelbrot and
Wallis (1969a).

According to Mandelbrot and Wallis (1969a,b), the deviation R(t, s), normalized by the variance
of the process S2, is 0.5 in Brownian motion, while it is higher in natural phenomena. Mandelbrot
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and Wallis (1969b) stress that an apparent long-range correlation can be given by the seasonality of
series, that should be removed before the computation.

5.9.2 Scaling range of rainfall time series

Thanks to an electromechanical disdrometer called “sonic gauge”, Fabry (1996) explored the scaling
features of high-resolution rainfall intensities. In this study, scales between 0.1 s and 1 hour are
explored by comparison with other measurements, such as the vertical-pointing radar of McGill or
some daily gauge series. Analyzing the power spectrum (Section 5.4) of the sonic gauge time series,
the presence of a scaling regime in the range 10 s-1000 s has been verified. The scaling behavior is
confirmed by the vertical-pointing radar analysis, for rainfall as well as solid precipitations (radar scan
at height = 3500 m).

In the study, Fabry (1996) expressed the temporal scale in terms of spatial scale, by assuming
constant advection in the order of 10 m s−1.

Figure 5.14 shows the results obtained by Fabry (1996) gathering the power spectrum of sonic
gauges with drop-counting and daily gauge devices. The graph shows at least three scaling regimes,
from 5 s to 1 h (Turbulence-driven structures), from 2 h to 15 days (baroclinic forcing) and from 15
days to some years (succession of weather systems), where the spectrum is flat.

Figure 5.14: Normalized power spectrum of precipitation rates derived from three sources (Fabry, 1996). The
range 0.1 s-10 min are results of the sonic gauge measurement in Florida and Colorado. Scales from 10 min to 1
day are given by a drop-counting rain gauge; scales larger than 1 day result from the analysis of the daily gauge
at McGill. The equivalent spatial scale has been computed considering the average speed of weather echoes in
Montreal as 13.2 m s−1.
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5.9.3 Point-rainfall scale-invariant models

5.9.3.1 Earlier studies

One of the earlier applications of multifractality to rainfall series is presented by Hubert and Carbonnel
(1989). The fractal dimension of two rainfall series located in Burkina Faso, specifically Dédougou
and Ouagadougou, was detected. A box-counting method has been applied to compute the fractal
dimension.

The station of Dédougou showed scale-invariance in the range 8-128 days (D=0.79) and another
scale-invariant regime in the range 256-16384 days (D=1.00). The Ouadgadougou station showed
three scaling regimes, 4-32 days (D=0.22), 64-256 days (D=0.74) and 512-4096 days (D=1.00).

The spatial rainfall analyses (Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990) demon-
strated that rainfall fields display an infinite number of fractal dimensions, depending on the intensity
level. The possibility to apply this intriguing property to rainfall time series has been tested in
numerous studies.

Hubert et al. (1993) explored the possibility to model the scaling behavior of rainfall series by using
the multi-fractal model, with the advantage to deal with heavy-tailed series. The basic equation of
multi-fractal fields states that

P (Rλ > λγ
s ) ∼ λ−c(γs) (5.34)

where λ is the scale ratio of two time intervals D/d, Rλ the intensity of the field at the scale ratio λ

and γs the singularity order.
The analysis took into account the rain-no rain intermittency as a particular value of the multi-

fractal field and determined values of the α Levy’s stable parameter (Section 5.5.2.3) close to 0.5 for
at least 4000 daily rainfall series all around the world. In particular, the study found scaling of point
rainfall intensities up to 16 days. The scaling has been verified also for infra-daily series at Réunion
island and in the Alps.

In the same year, Ladoy et al. (1993) described the temporal variability of rainfall observations at
the N̂ımes station, in southern France. They computed the parameters of the Universal Multi-fractal
model (Section 5.5.2.3) in the range 12 h to 16 days, finding α = 0.45 ± 0.05. C1 is estimated to be
0.6 ± 0.02.

The multi-fractal analysis of time series has been tested for different data sets (Fraedrich and
Larnder , 1993; Olsson et al., 1993; Kumar et al., 1994; Olsson, 1995, 1996; Tessier et al., 1996;
Svensson et al., 1996; Olsson, 1998).

Fraedrich and Larnder (1993) analyzed rainfall intensities from the point of view of the Generalized
Structure Function (GSF, Section 5.5.1) and of the power spectrum, finding, for continental European
stations, different scaling regimes (Figure 5.15). An interesting analysis on the distribution tails
confirms the hyperbolic shape of the survival probability.

Olsson et al. (1993), Olsson (1995) and Olsson and Niemczynowicz (1996) examined the rainfall
scaling from a multi-fractal point of view, detecting different scale-invariance ranges depending of
the analyzed location. A similar work has been proposed by De Lima et al. (2003). Kumar et al.
(1994) point out that the higher moment analysis (Section 5.5.2) could be biased due to moment
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Figure 5.15: The scaling regimes of time rainfall series with respect to the accumulation duration, for the
continental Europe (from Fraedrich and Larnder (1993)).

divergence proper of high-variable geophysical fields, and propose a Probability Weighted Moment
method. Tessier et al. (1996) showed that it is possible to relate the multi-fractal character of time
series to that of river flow series (in particular, the only changing parameter in Equation 5.18 is H),
giving the first elements of the hydrological applications of fractal analysis. Other studies on the river
flow multi-fractal analyses followed (as an example, Pandey et al. (1998)).

Svensson et al. (1996) used GSF method (Section 5.5.1) to detect the structure function ζ(q) of
the rainfall fluctuations for different storm typologies. Harris et al. (1996) evaluated the orographic
effects on the scaling behavior of rainfall series. Analyzing spectral density, Generalized Structure
Function, moment analysis and the CDF tail of a number of rain gauges along a section of increasing
elevation, they found a significant influence of elevation in the determination of the scaling character
of rainfall.

5.9.3.2 Dealing with rain-no rain intermittency

All the studies cited above considered the rain-no rain intermittency as a particular case of the mul-
tifractal field. Discordantly, Over and Gupta (1994) and Schmitt et al. (1998) demonstrated that
the rainfall variability and the rain-no rain intermittency are two separate processes and therefore
an appropriate modeling of intermittency was needed. Similar evidences of the independence be-
tween intermittency and rainfall variability have been found by Barancourt et al. (1992) through a
geostatistical approach.

These evidences prevent the application of classical multi-fractal cascades (Tessier et al., 1993;
Ladoy et al., 1993), in which the rainfall intermittency is obtained by fixing a threshold below which
the rainfall intensity is considered as zero. From a numerical point of view, this does not cause
problems to the multi-fractal analysis but, as pointed out by Schmitt et al. (1998), the Levy’s stability
index α is considerably underestimated leading to extremely heavy-tailed distributions.
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The estimation of the multifractal parameters in scale-invariant processes with an atom at zero
(i.e. the rain-no rain intermittency process is seen as a simple fractal process), is implemented by
Schmitt et al. (1998) with the aim to stochastically simulate rainfall series. This parsimonious model,
obtained by simply adding one parameter ruling the intermittency at different scales to the multifractal
formulation (Equation 5.18), can be written as:

K(q) = Cβ(q − 1) + C1
qα − q

α− 1
(5.35)

where Cβ is the co-dimension of the rain-no rain intermittency, expressing how it increases with the
resolution.

For pure multi-fractal processes, Lavallée (1991) demonstrated that DTM is the best method to
estimate the parameters of a multi-fractal process. DTM does not yield the expected results, since

K(q, η) = ηαK(q)− (q − 1)cβ , (5.36)

The solution proposed by Schmitt et al. (1998) is to evaluate the moment scaling function by the
TM method (Section 5.7.1.1). Figure 5.16 reports the statistical moments, the scaling moment function
of wet observations and the scaling moment function of the overall process relative to the study of the
rainfall series at Uccle, Belgium (from Schmitt et al. (1998)). Even if the moment scaling is verified
(Figure 5.16-a), the moment scaling function K must take into account the effect of intermittency and
Equation 5.36 must be adopted.

(a) (b)

Figure 5.16: From Schmitt et al. (1998), Figure 7. a: Trace moments as a function of the temporal scale. From
bottom to top, the moment orders increase from 0.5 to 3.5 by 0.5; b: Moment scaling function K obtained
taking into account the fractal support (open circles), and moment scaling function computed taking only the
positive observations.

The cascade modeling proposed by Schmitt et al. (1998) produces a rainfall series in which most
of the rainfall statistics are strictly similar to those of a real rainfall series. Average intermittency,
average intensity, variance as well as extreme behavior are correctly reproduced. Only the duration
of wet events is significantly underestimated. Similar stochastic methods have been adopted by Over
and Gupta (1996); Olsson (1998); Güntner et al. (2001); Rupp et al. (2009).
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5.10 Scale invariance of space-time rainfall

The development and validation of scale-invariance stochastic theories of rainfall focused firstly on
the spatial properties of rainfall fields (Gupta and Waymire, 1990, 1993; Tessier et al., 1993; Kumar
and Foufoula-Georgiou, 1993; Over and Gupta, 1994; Perica and Foufoula-Georgiou, 1996; Marani ,
2003) and later on their temporal properties (Hubert et al., 1993; Ladoy et al., 1993; Olsson, 1995;
Schmitt et al., 1998; Marani , 2005). Rarely the research has been devoted to the space-time scaling.
The space-time modeling is essential for at least two reasons:

i. they are the only models able to disaggregate single events respecting the coherency between
scales;

ii. it is well known (since Bras and Rodriguez-Iturbe (1976)) that a correct space-time modeling
can not deal with the spatial and temporal scales separately.

A number of studies (Zawadzki , 1973; Venugopal et al., 1999) show that the limits of the turbulent
space-time scaling of rainfall is limited in the range 30 min - 2 hours, and for spatial scales lower than
400 km2. This temporal limit is explained by the increasing effect of the advection component with
the increase of the accumulation time. The theory relating the spatial and temporal scales in a single
scaling framework is referred to as “Frozen Turbulence” and it is detailed in the next section.

5.10.1 The “Frozen Turbulence” hypothesis

The space-time scaling as interpreted by Zawadzki (1973); Gupta and Waymire (1987); Marsan et al.
(1996); Venugopal et al. (1999); Deidda (2000) corresponds to the Taylor hypothesis of frozen turbu-
lence (Taylor , 1938). It consists in reinterpreting the temporal variations at a fixed location as spatial
variations. This concept has been widely applied in turbulence to transform a time sequence of spatial
measures into a 3-dimensional homogeneous and isotropic process, where a measure on the third axis
λ corresponds to the time τ = λ/U , where U is the large-scale advection velocity, supposed constant
at all scales.

According to Gupta and Waymire (1987), a spatially homogeneous and temporally stationary
random field I(x,y,t), having finite second moment, satisfies Taylor’s hypothesis if the space-time
variogram

γI(τ, r) = E[I(t,x, I(t + τ,x + r)] (5.37)

respects the following condition:

γI(τ,0) = γI(0,uτ) (5.38)

where u is a velocity vector, x is a d-dimensional spatial coordinate and r is a spatial lag.
The application of Taylor’s hypothesis in Equation 5.38 and regarding increments, can be extended

to probability distributions (Lovejoy and Mandelbrot , 1985; Bras and Rodriguez-Iturbe, 1976), giving

I(t,x) = V (x− ut) (5.39)
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where V (x) is a spatially homogeneous random field. Equation 5.39 is referred to as the “frozen field
model” for I(t,x).

As highlighted by Deidda (2000), a more general formulation of the Taylor hypothesis is required
in case of self-affine processes. This is the behavior we can expect in natural processes and consists
of a scale-dependent velocity parameter Uλ ∼ λθ used to rescale the time variable. In fully-developed
turbulence, the velocity of a system decreases with the scale with an exponent θ ∼ 1/3.

5.10.2 The concept of dynamic scaling

The verification of the Taylor’s frozen-field hypothesis on empirical observations leads to the determi-
nation of the parameter relating spatial and temporal scales (Venugopal et al., 1999). This parameter
is usually denominated “dynamic scaling” parameter.

Assuming that the rainfall field is a multiplicative process, Venugopal et al. (1999) propose to
analyze the fluctuations of the logarithm of the field ∆ ln Ii,j,τ , defined as

∆ ln Ii,j,τ (L, t) = ln(IL
i,j(t + ∆t))− ln(IL

i,j(t)) (5.40)

where I is the rainfall intensity at the spatial coordinates i, j, time instant t and spatial scale L. In
this way the variable is approximately gaussian and independent of the background intensity.

The field ∆ ln I is studied at several spatial scales L and time lags ∆t. Venugopal et al. (1999)
study the statistical distribution of ∆ ln I, which is centered at 0 being fluctuations. Therefore, the
study of the statistical distribution ∆ ln I is limited to the study of its standard deviation.

The results of these studies are important: even if time-scaling and space-scaling do not hold by
themselves, the standard deviation of ∆ ln I varies with the scale of analysis; ∆ ln I is constant for
each couple of surface and accumulation period respecting the dynamic scaling rule A/∆tz, where A

is the surface, with z approximately estimated in the range 0.51-0.58.
The approach of Venugopal et al. (1999) suggests a discussion about the relations between accu-

mulation time and time lag. This approach is not exactly space-time in the sense that the time is
mainly seen as a time lag, while space is seen as an integration surface. A pure space-time study would
have studied the temporal and spatial lag influence for the fluctuation fields, or the fluctuations as a
function of the involved surface and accumulation duration.

In the first case, we would have seen that the decorrelation time of a storm is strictly dependent on
the size of the integration window (the larger the window, the more correlated the fields in time), in
agreement with Bell (1987) and Bell et al. (1990). This phenomenon can be related to the increase of
the decorrelation time with the decrease of resolution that we observe for time series (for instance, in
our region hourly data are generally correlated up to 12 hours in average, daily data up to 48 hours). In
the second case, we would have explored the multi-scaling character of rainfall in space-time, similarly
to Marsan et al. (1996); Deidda (2000) or De Michele and Bernardara (2005).

These hybrid approaches give us information about the decorrelation in time of spatial data,
suggesting how to disaggregate rainfall when one disposes of fields separated by a time lag.
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(a) (b)

Figure 5.17: Dynamic scaling evaluation for the event of 1993, December the 28th, in Darwin, Australia. a:
histograms of ∆ ln I for different spatial scales and time lag. b: Computation of the dynamic scaling parameter
z for different iso-standard deviation lines.

The use of this method, except for the determination of the dynamic scaling z, is however limited to
disaggregation scopes, differently from what has been observed for the Perica and Foufoula-Georgiou
(1996) approach, for example.

Deidda (2000) supports the validity of the Taylor hypothesis in space-time rainfall fields and
proposes a generalization to the self-affine case, where the scale-dependent velocity parameter is a
function of the spatial scale (Uλ ∼ λH)). Among the proposed space-time models, the study presented
by Castro et al. (2004) focused on the determination of the space-time singularity spectrum in a
small-scale precipitation field. This approach will be discussed in the Section 6.2.4.3 relatively to
the derivation of IDAF formulations. A space-time modeling based on the spectral analysis of rainfall
fields has been presented by De Michele and Bernardara (2005), based on the concept of dynamic
scaling. The approach is based on the fact that in the (x,y,z) domain, in case of isotropic random
field, the 3D spectral density assumes the power-law form:

S(ωx,ωy,ωz) ∝
1

(ω2
x + ω2

y + ω2
z)

δ+1
2

(5.41)

where ω represents the frequency in a given dimension.
For an anisotropic field, when the Taylor’s hypothesis is applied, we can define a dynamic scaling

exponent and the expression becomes

S(ωx,ωy,ωz) ∝
1

(α2ω2z
x + β2ω2z

y + ω2
t )

δ+1
2

(5.42)

where z is the dynamic scaling exponent.
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5.11 Scale invariance of extreme point-rainfall: IDF curves

Intensity - Duration - Frequency curves relate the rainfall intensity I, the duration D, and the frequency
of occurrence F otherwise expressed in terms of return period TR = 1

1−F . IDF curves are devoted
to the estimation of hazardous rainfall or flows. Empirical IDF curves are derived by fitting rainfall
intensities relative to the same return period as a function of the temporal scale. Following this
methodology, Bernard (1932) showed that IDF relationships have similar behavior in different regions
of the world. Since then, IDF expressions based on empirical analysis were adopted and used as a tool
for the engineering design.

More than sixty years later, Koutsoyiannis et al. (1998) showed that all the different formulation
proposed to describe IDF curves could be generalized through the expression

I =
ω

(dν + θ)η
(5.43)

where ω, ν, θ and η are non-negative coefficients with ν, η ≤ 1. Some of these variables have mutual
dependencies and restrictions, leading to a simpler formulation of IDF curves:

I =
a(TR)
b(D)

(5.44)

where TR is the return period and D the considered duration. b(d) is equal to (D + θ)η.
IDF curves seem to present an universal behaviour: whatever the location, extreme rainfall for a

given return period is linear in double logarithmic plot for a given range of durations, approximately
from 1-2 hours to 7-10 days. Figure 5.18-a presents DDF (Depth-Duration-Frequency) curves in linear
scale, showing that rainfall depth increases with duration. In Figure 5.18-b we report IDF curves for
Montpellier for different return periods, showing the linear behavior Figure 5.18-b in the range 2h - 7
days, and a non-linear decay for durations lower than the hour.

The linearity in log-log corresponds to a power-law behavior of IDF curves for a given return
period. Usually IDF curves in the linear range are defined as a function of two parameters a and n,
both dependent on the return period TR:

ID,TR = a(TR)Dn(TR) (5.45)

where the parameters a(TR) and n(TR) only depend on the return period TR. Equation 5.45 expresses
that rainfall intensity decreases when duration increases, for a fixed return-period.

Koutsoyiannis et al. (1998) provided a mathematical derivation of IDF relationships using dimen-
sional arguments. To obtain analytical IDF expressions for any return period, the scaling properties
of rainfall intensity must be coupled to the density function for rainfall extremes (block-maxima or
peaks-over-threshold). This allowed to provide a series of definition for IDF as a function of the dis-
tribution chosen to model the heavy rainfall observations. The IDF formulations for Gumbel, GEV,
Gamma, Log Pearson III, Log-normal and exponential distributions are provided.

The work of Koutsoyiannis et al. (1998) is insightful in the sense that, for the first time, a coupling
of the IDF empirical model to the extreme value theory is proposed, with the aim to provide IDF
expressions valid for the temporal validity range and for any return period.
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Figure 5.18: Rain gauge station of Montpellier, Southern France. a: Depth - Duration - Frequency curves. b:
Intensity - Duration - Frequency curves. The data is relative to the period 1920-1972.

5.11.1 IDF scaling

The work of Koutsoyiannis et al. (1998) has been completed in the following years by numerous studies
describing the scaling properties of IDF curves as a function of the different way in which heavy rainfall
observations are sampled and modeled.

Rosso and Burlando (1990) showed that IDF formulation are implicit forms of scale-invariant
relations. Burlando and Rosso (1996) presented a annual-maxima IDF model based on the log-
normal distribution of rainfall maxima. Even though log-normal distribution does not belong to
the Generalized Extreme Value distribution class for extremes, its difference between the Gumbel
distribution is limited and therefore the distribution can be suitable for low return periods. With
respect to the Gumbel distribution, log-normal has the advantage that it can accommodate multi-
scaling in the sense of Gupta and Waymire (1990). A schematic plot of simple scaling and multi-
scaling IDF curves is shown in Figure 5.19. On the other hand, Gumbel distribution is limited to
simple-scaling scale as needed in multi-scaling. For similar reasons, the GEV distribution as well is
not suitable for multiple scaling.

Bendjoudi et al. (1997) interpreted IDF curves in a multi-fractal sense. Based on the concept of
Universal Multi-fractal (Section 5.5.2.3), they demonstrate that the classical IDF formulation of the
type:

ITR =
KTm

R

Dn
(5.46)

where KT m
R corresponds to a(TR) in Equation 5.43, being a power-law relation can be studied under

the point of view of multifractality.
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Figure 5.19: Schematic representation of simple and multiple scaling IDF curves. Each curve represents the
rainfall intensity I as a function of the accumulation duration D for a specific return period TR.

The advantage with respect to the IDF formulations for maxima is that, in this context, the whole
sample is considered, providing an explanation of the relationship between common and heavy rainfall.

By performing a multi-fractal analysis on the rainfall series (by using Trace Moments or Double
Trace Moments method, Section 5.7.1.1 and 5.7.1.2 respectively), the multi-fractal parameters C1, αs

and the non-conservativity Hurst exponent H can be computed.
For moments q > qD a “multi-fractal phase transition” (Schertzer and Lovejoy, 1992) cause the

moment scaling function K(q) to be linear with the moment order q.
After mathematical development, Bendjoudi et al. (1997) derives multi-fractal IDF curves as:

ln(ITR) =
1
qD

ln(TR)− ln(D) + c (5.47)

where c is a constant and qD the minimum moment order for which moment divergence is obtained.
Menabde et al. (1999) show that simple-scaling of rainfall intensity maxima holds in temporal

ranges of hydrologic interest. Their approach associates the IDF concept described in Koutsoyiannis
et al. (1998) with the GEV-I (Gumbel) framework, in a context of scale-invariance.

Figure 5.20: Simple scaling behavior of rainfall maxima at Melbourne, Australia in the range 30 min - 48 hours.
From (Menabde et al., 1999)
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Let us assume that rainfall maxima follow EV-I (Gumbel) distribution and feature temporal simple-
scaling. The scaling exponent K(q) of the statistical raw moments (Equation 5.14) is a linear function
of the moment order q:

K(q) = H · q (5.48)

with constant H. This behavior has been verified in Menabde et al. (1999) on two significantly different
rain gauges in Australia and South Africa.

The Gumbel distribution is defined by two parameters, the location µ and the scale σ. As stated
in Menabde et al. (1999) and Borga et al. (2005), the strict sense scaling relationship (Equation 5.14)
allows to determine the distribution parameters at any duration D from a first guess at a reference
duration Dref :

µD =
(

D

Dref

)−K(1)

µDref (5.49)

σD =
(

D

Dref

)−K(2)
2

σDref (5.50)

In case of simple scaling of rainfall maxima (Equation 5.48), K(1) = K(2)/2 since K(q) is linear
with null intercept. From a practical point of view, the Gumbel parameters µ and σ are estimated
thanks to the sample mean E[x] and standard deviation s[x] following the relations:

µ̂ = E[x]− γσ̂ and σ̂ =
s[x]

√
6

π
(5.51)

where γ ∼ 0.5772 is the Euler constant.
Combining equations 5.50 and 5.51, the knowledge of the mean and standard deviation of maxima

at a particular scale is sufficient to estimate the Gumbel parameters at any duration.
In particular, if simple scaling holds, the maximum rainfall intensity at any duration D and return

period TR can be expressed by (Menabde et al., 1999):

ID,TR =
µ(Dref )− σ(Dref )ε

(
D

Dref

)−n (5.52)

where n = K(1) = K(2)/2.
Borga et al. (2005) adopt the same scale-invariant Gumbel framework to build regional maps of

the extreme rainfall behaviour. A similar scaling model for annual maxima has been used by Gerold
and Watkins (2005). A GEV scale-invariant model is proposed in Section 8.

5.12 Application of Multiplicative Cascades

The downscaling techniques allow to reproduce the fine-scale variability of a random field starting
from a large scale information. These techniques are used in hydro-meteorology in at least three
applications:
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• increase the resolution of meteorological models. Due to computational constraints, the opera-
tional meteorological models provide precipitation forecasts on scales of about 100 km2 and few
hours;

• disaggregate the rainfall satellite estimation, limited in spatial and temporal resolution;

• reproduce the variability of the rainfall observed by ground measurements for the hydrological
simulations. A deterministic hydrological simulation running based on average rainfall depth do
not provide reliable results due to the non-linearities of the basin response. This is one of the
aims of the MEDUP project.

5.12.1 Other downscaling techniques

A possible approach for filling in the scale gap between operational needs and resolution of the mea-
surements is based on the use of stochastic downscaling models. Downscaling is based on the imple-
mentation of a stochastic disaggregation algorithm able to reproduce some required features of rainfall
distributions such as its actual small-scale variability. The fine-scale distribution has to be consistent
with the known statistical properties of the small-scale rainfall distribution. The field resulting from
disaggregation is not the deterministic result of a physical downscaling, but rather a realization of a
statistically consistent rainfall field. Statistical downscaling models generate ensemble of realizations
at a relatively low computational cost, leading to the possibility of ensemble prediction.

The stochastic rainfall models are generally grouped in three categories:

i. individual precipitation cells;

ii. auto-regressive processes (geostatistical simultation);

iii. multiplicative cascades;

Individual Precipitation Cells: The earlier models of spatio-temporal precipitation downscaling
were based on stochastic point processes, following the fundamental work of Le Cam (1961). They
were based on the generation of individual rain cells, characterized by a given spatial structure and a
Poisson-distributed arrival time. Studying a series of apparently dissimilar storms, Austin and Houze
(1972) observed that they were composed of clearly definable patterns of precipitation area. Four
sizes of precipitation areas have been detected, from the synoptic to the small-scale cells (Figure
5.21). Based on the observations of Austin and Houze (1972), Waymire et al. (1984) presented a
stochastic model constituted by four embedded levels of precipitation areas. Rodriguez-Iturbe et al.
(1986) investigated the total rainfall depth generated at a point by simulating storms whose maxi-
mum intensity was exponentially distributed and whose inter-arrival time was Poisson-distributed or
clustered. Eagleson et al. (1987) compared three stochastic models showing the utility of point pro-
cess models for storms that are stationary in space. Northrop (1998) simulates rain-fields assuming
elliptical rain cells and Poisson arrival time. Similar spatial rainfall simulators are used by Wheater
et al. (2000), Willems (2001) and Cowpertwait et al. (2002).
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Figure 5.21: Precipitation patterns: Large Meso-scale Areas (LMSA), small meso-scale areas (SMSA) and cells.
Taken from Austin and Houze (1972).

Geostatistical Simulations: The geostatistical simulations (or auto-regressive processes) yield
stochastic rainfall fields featuring a given spatial correlation. This can be done i) directly, by im-
posing a correlogram function or a variogram function and then applying a geostatistical simula-
tion method such as Turning Bands Methods (Matheron, 1973; Mantoglou and Wilson, 1982; Wood
and Chan, 1995); ii) indirectly, by applying an inverse Fourier transform to a 2D spectrum with a
given amplitude distribution (circulant embedding methods, Dietrich and Newsam (1993); Chan and
Wood (1997)). In both cases, the methods provide linearly correlated Gaussian fields. To transform
Gaussian fields into the desired distribution, appropriate static nonlinear transformation can be used
(anamorphosis). Since derived by a transformation of Gaussian fields, the obtained fields are called
meta-Gaussian3. An example of use of meta-Gaussian geostatistical simulations is given in Guillot and
Lebel (1999). In case of space-time simulations, the earlier separable space-time models (see Kyriakidis
and Journel (1999) for a review) were not able to model the space-time interactions. Non-separable
space-time models must respect additional constraints. Stein (2005) overviews the space-time models
proposing a new class of space-time covariance models.

5.12.2 Multiplicative Cascades

The third main category of statistical downscaling techniques is known as multiplicative cascades.
Multiplicative cascade models have been proposed to describe the variability of natural processes
exhibiting scale-invariance. These models have been used in disparate fields, such as turbulence
(e.g. Kolmogorov (1941); Mandelbrot (1974); Frisch and Parisi (1985); Meneveau and Sreenivasan
(1987), internet traffic (Feldmann et al., 1998), stock prices (Mandelbrot , 1997), river flow (Gupta and
Waymire, 1990) and rainfall (Over and Gupta, 1996; Olsson, 1998; Menabde and Sivapalan, 2000;
Güntner et al., 2001; Veneziano et al., 2002; Badas et al., 2006; Gaume et al., 2007; Rupp et al.,
2009). They consists of splitting each large-scale observation in b sub-grid observations, where b is the
multiplicity of the cascade. Each sub-grid observation is actually obtained by multiplying the large
scale-observation by a random coefficient, called “cascade weight”. The random weights must respect
properties concerning the mass conservation (the weights sum to 1), and probability distribution. In
the following paragraphs we provide an overview of the main features of Multiplicative Cascades.

3In Appendix E an example of log-normal field generation is reported based on the package RandomFields of R.
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5.12.3 Bare and dressed quantities

By these colorful adjectives, Schertzer and Lovejoy (1987) depicted the two possible results of cascades.
The “bare” and “dressed” quantities originate from consistently different concepts. The bare quantities
are the result of a pure disaggregation process (Figure 5.22-a shows dyadic disaggregation scheme
for generating bare quantities). Assuming that natural processes are originated from multiplicative
cascades, observation of natural phenomena corresponds to dressed quantities, i.e. the result of the
aggregation of finer-scale processes at the instrument resolution. The output of multiplicative cascades
can be dressed quantities if an aggregation process follows the disaggregation process, as shown in
Figure 5.22-b. In these examples, the ki observations are split through multiplication by the weigths
ω(m)

i , where m is the cascade step.

(a) (b)

Figure 5.22: Schematic of bare cascades (a) and dressed cascades (b) in a dyadic cascade scheme.

5.12.4 Canonical and Micro-canonical cascades

The difference between canonical and micro-canonical cascades is the way in which the mass is con-
served through the scales: at each level, the expected value of the sum of weights is equal to unit in
canonical cascades ( i.e. the overall mass is conserved, but the local aggregations will not correspond
to the original values). This scheme is typically used in prediction, where initial mass acts as an
initialization value and the aim is to obtain a statistically correct behavior at the finer scales. The
canonical cascade scheme is depicted in Figure 5.23-a, where one can see that no constraint is imposed
for the choice of the weights except the overall unit average.

For the disaggregation of historical series, when the mass should be conserved throughout the
scales, micro-canonical cascades are used, in which the weights are chosen such that their sum is equal
to the unit. In dyadic cascades, it can be written as ω1 + ω2 = 1. The micro-canonical cascade
scheme is represented in Figure 5.23-b. The advantage of microcanonical cascades, as reported by
(Mandelbrot , 1974), is the moments convergence.
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(a) (b)

Figure 5.23: Schematic of canonical and micro-canonical cascades.

5.12.5 Discrete and continuous cascades

The multiplicative process is usually imagined as a discrete cascade. At each disaggregation step, the
number of element in which original observations are split is equal to the multiplicity level m. In
general, when m ≥ 2, the cascade is discrete. Dyadic cascades have m = 2. The first cascade models
proposed by Gupta and Waymire (1993); Over and Gupta (1996) were discrete. They assume that
the cascade multiplicity does not affect the behavior of the cascade after a large number of steps.
Schertzer et al. (1995) proposed a continuous cascade process, i.e. the multiplicity of the cascade m

tends to 1. The number of steps is densified, reaching a continuum of scales. The real advantage
of this kind of disaggregation is to remove the spurious correlation encountered for small lags and
highlighted by Carsteanu and Foufoula-Georgiou (1996) as a consequence of the independent weight
choice. The drawbacks of continuous cascades are their complexity and the limitation to canonical
processes: fixing an arbitrary multiplicity m → 1, it is not possible to exactly split an observation in
m observations, therefore continuous cascades can only be canonical.

5.12.6 Cascade Implementation

Since the cascade weights distribution has influence in the fine-scale distribution of the disaggregated
field, the implementation of the cascade requires the choice of an appropriate weights distribution,
respecting the actual rainfall distribution. Gupta and Waymire (1993) proposed cascade models by
choosing a number of different distributions. For the application of multiplicative cascades, only
distributions satisfying the following conditions can be adopted:

i. the weights distribution must have unit mean, to respect the mass conservation;

ii. the distribution must be close to the variable distribution;

iii. the distribution should be stable or (relaxed case) infinite-divisible.

The Gaussian distribution is stable and it is the most frequent distribution encountered in nature.
However, many natural processes (among them, rainfall) do not follow Gaussian distribution. The
accuracy of the operational point measurement devices ( e.g. rain gauges, see Section 2) does not help
in detecting the actual distribution of rainfall values. Depending on the scale and on the climatology
of the site, the rainfall distribution can be closer to an exponential (Todorovic and Woolhiser , 1975),
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to a 2-parameters Gamma (Buishand , 1978), to a mixed exponential (Chapman, 1998) rather than to
a Weibull mixture (Suhaila and Jemain, 2007).

The recent introduction of radar imagery for the quantitative estimation of rainfall can be useful
for the analysis of spatial rainfall. Thanks to the GATE program, Kedem and Chiu (1987) were
able to study radar-measured rainfall fields. They verified that rainfall-rates approximately follow a
log-normal distribution at spatial scales ranging from 16 to 1600 km2.

This finding has large importance for the interpretation of the mechanisms involved in the rainfall
generation: log-normal distribution possesses intriguing properties. In particular, the conservation of
log-normality of a variable through a range of scales is the indication that the process is multiplicative.
Additive processes are generated by the sum of the effect of various fluxes, while multiplicative pro-
cesses are generated by the product of the various fluxes (e.g. energy) at various scales. Multiplicative
processes that conserve the probability distribution throughout the scales are self-similar, i.e. the
distribution of the rainfall at one scale can be derived from the distribution at another scale by means
of scaling relationships.

To be scale-invariant and additive, a process should follow, at all scales, a stable-upon-addition
distribution. A random variable has stable distribution if the linear combination of n independent
copies of the variable X preserves the same distribution:

X1 + X2 + ... + Xn
d= cnX + dn (5.53)

where cn and dn are two constants, and cn = n1/αs where αs is the Levy’s stable parameter, defined
in the range 0 < αs ≤ 2. The symbol d= means equality in distributions. Stability upon addition is
a restrictive property. The Levy’s Stable is the only distribution class possessing this feature. The
normal distribution is the simplest case of Levy’s stable process and it is defined as

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5.54)

where µ and σ are the mean and the variance of the distribution, respectively.
The stable distribution, featuring heavy tails, has no explicit form but is defined by its characteristic

function4 (Nolan, 2009):

f(x,αs,βs, cs, µs) =
1
2π

∫ +∞

−infty
exp[itµs − |cst|αs (1− iβssgn(t)φs)] (5.55)

In Equation 5.55, φs = tan(παs/2) when αs %= 1 and φs = −(2/π)log|t| when αs = 1. The αs parame-
ter is the Levy’s stability index, expressing the heavy-tail behavior of the distribution. The distribution
hyperbolically decays as 1/αs for large x except when αs = 2 (that is the normal distribution). The
case αs = 1 is the well-known Cauchy distribution, widely used in physics.

The stability-upon-multiplication is verified when the product of n independent copies of the
variable X preserves the same distribution:

4The characteristic function provides an alternative way for describing a random variable. In case the variable admits
a density function, the characteristic function is the Fourier transform of the density function. Differently from the
density function, the characteristic function of a distribution always exists. For a random variable X, it is defined as
φX(t) = E[eitX ]
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Y1 · Y2 · ... · Yn
d= Y en + exp(fn) (5.56)

It easy to verify that if Yn is a function of the type exp(X), one can take the logarithms obtaining

X1 + X2 + ... + Xn
d= enX + fn (5.57)

where en and fn are two constants. A log-stable distribution can be thus derived from the exponentia-
tion of a stable distribution. The extension of the classical central limit states that the normed product
of a set of random variables (characterized by having finite variance) will asymptotically approach a
log-stable distribution as the number of variables increases.

The semilogarithmic plot in Figure 5.24-a shows that stable distributions have heavier tails com-
pared to Gaussian distributions, i.e. very large extremes are relatively frequent. If we represent a
random walk, a Levy walk results in extremely large jumps compared to the Gaussian case (Figure
5.24-b).
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Figure 5.24: Comparison Gaussian versus max-stable distributions. a: Density plot of max-stable distribution
for various αs values, βs = 0 and cs = 1. Legend: solid black, αs = 2 (Gaussian distribution), dashed dark
blue, αs = 1.9, dotted blue, αs = 1.8, dash-dotted cyan, αs = 1.6, long-dashed green αs = 1.4. b: 1D random
walk for the Gaussian case (αs = 2), red line, and for a max-stable process with αs = 1.4, black line.

The stability is a restrictive property. Moreover, issues concerning the use of Levy’s stable dis-
tribution arise. In particular, the variance diverges for any Levy’s stable distributed variable. This
means that, due to the “wild” character of such series, whatever the sample length a new observation
can sensibly modify the second moment of the distribution. Another indicator of the “wildness” of this
distribution concerns the divergence of the mean for α < 1. The character of such series is extremely
singular, meaning that the use of Levy’s stable series is limited. The estimate of the Levy’s stable
parameters is awkward, and few reliable estimator techniques seem to be the available. Among these,
the maximum-likelihood function proposed by Nolan (2001).

Infinite divisibility can be suitable for scale-invariance modeling (Waymire and Gupta, 1981). It
is a relaxed property compared to stability-upon-multiplication. A random variable X is said to be
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infinitely divisible if for every n ∈ N the following equality in distribution is verified (Steutel and
Van Harn, 2003):

X
d= Xn,1 + ... + Xn,n (5.58)

where Xn,1, ...,Xn,n are independent with Xn,j
d= Xn for all j and some Xn, the n-th order factor of

X.
Distributions exhibiting infinite divisibility are the Poisson, the exponential, the negative binomial,

the geometric, the Gamma, the Student’s t distributions, besides normal and stable distribution
families. Some of them have been used in geophysical applications (She and Waymire, 1995; Deidda,
2000), even though with ambiguous results (Schertzer et al., 1995).

5.12.7 Implementation of the multiplicative cascades

Gaussian and Levy’s stable cascades The mathematical properties of Levy’s stable distributions
have been widely studied in Zolotarev (1986) and in Samorodnitsky and Taqqu (1994). Veneziano and
Langousis (2005) propose a parametrization suitable to express the parameters of the Levy’s stable
generator as a function of the multi-fractal parameters C1 and αs. If the cascade has multiplicity m,
the generator of log-stable cascade must respect the following parametrization:






αs = αs

β = −1
µ = C1

1−αs

σ = C1/αs
1 [ln(m)](1−αs)/αs

[
cos(παs

2 )
1−αs

]1/αs

(5.59)

when αs %= 1. The β parameter is fixed to −1 in cascades.
In the particular case αs = 1, the µ and σ parameters become

{
µ = −C1 ln ln(m)
σ = πC1

2

(5.60)

In case of normal generators (αs = 2) the parameters are:

{
µ = −C1

σ = 2C1 ln(m)
(5.61)

In the Gaussian case, β has no influence while σ corresponds to the standard deviation of the distri-
bution.

Poisson cascade As reported in Section 5.12.6, Poisson distribution is not stable but it possesses
a relaxed property: the infinite divisibility. She and Waymire (1995) and Deidda (2000) generated
Poisson cascades. The Poisson random generator η is:

η = eAβy (5.62)
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where A and β are constant parameters and y is a Poisson distributed random variable. A poissonian
variable y is defined as a function of Λ , that is the expected number of occurrences in an interval.
The probability that there are exactly m occurrences (m being a non-negative integer, m = 0, 1, 2, ...)
is equal to

p(m = Λ) =
Λme−Λ

m!
(5.63)

where e is the base of the natural logarithm (e ∼ 2.71828), m! is the factorial of k and Λ is a positive
real number, equal to the expected number of occurrences that occur during the given interval.

5.13 Conclusion

The rainfall generation process is a complex atmospheric phenomenon whose multi-scale mechanisms
are still partially unknown. The behavior of rainfall distributions at different scales is still an open
subject and different answers have been adressed to this problem in literature. The fact that rainfall
is the result of the action of several atmospheric phenomena pushes to find analogies with the small-
scale turbulence, for which we have seen that the power-spectrum is log-linear, meaning that no
characteristic scale of turbulence exists. The scale-invariant approaches offer the possibility to guess
the distribution of a random field at scales that differ from the observation scale.

The main objective of scale-invariant analysis is to determine the singularity spectrum, i.e. the
function allowing to rescale each quantile of a statistical distribution. Two main approaches are
available: i) the Generalized Structure Function approach, consisting in analyzing the pth power
of the fluctuations of a field at increasing lags l, and in determining the scaling function ζ(p); ii)
the moment analysis, consisting in analyzing the qth power of a subsequently degraded field and in
finding the scaling function τ(q) or K(q) that defines the moment scaling. We have seen that the
two approaches (i) and (ii) may lead to the same singularity spectrum D(h), and that therefore the
two formalisms are substantially equivalent. On the other hand, depending on the kind of available
data, one technique could be recommended respect to the other. In case of non-stationary fields,
the Generalized Structure Function could be biased by the drift, similarly to what happens for the
variographic analysis in Section 4.4.2. The moment scaling analysis is more general than GSF since
the τ(q) function exactly corresponds to the Legendre transform of D(h). The moment analysis can
be strongly biased for large q by heavy observations, and for small q by the measure precision. A
relatively new approach analyzes the scaling of a derived product of the wavelet analysis, the Wavelet
Transform Modulus Maxima (WTMM), to compute the singularity spectrum. Due to the complexity
of the method, few analyses in this sense have been done up to this moment.

The implementation of these methods allows to diagnose the scale invariant features of: i) spatial
rainfall ii) temporal rainfall iii) space-time rainfall. One of the most interesting results has been the
verification of the Taylor hypothesis of “frozen turbulence” on space-time rainfall fields, for limited
spatial and temporal scales.

In conclusion, the state of the art on the rainfall scaling highlighted that:
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• scale-invariance in space is usually verified for small scales (maximum 400 km2) and therefore
its application for the region of interest (16000 km2) could be strongly limited; its application
for the analysis of singular rainfall events may allow to obtain precipitation fields reproducing
the fine-scale variability at resolutions higher than the observation scale;

• scale-invariance in time is usually found for singular rainfall events for durations lower than
5 minutes; long series often exhibit scale-invariance in the range 2h-15 days, which can be of
interest for determining the behavior of high-resolution rainfall based on daily data.

• space-time rainfall is verified for singular storms and in temporal windows for which the sta-
tionarity of the mean and variance is ensured; fixing a dynamic scaling parameter, it is possible
to treat the temporal coordinate as a third spatial coordinate, simplifying the parametrization
and allowing to manage the space-time anisotropy; this behavior is however broken for temporal
scales higher than 40 minutes and 100 km2.

• in many regions of the world the rainfall maxima seem to scale with a simple scaling relation; this
property allows to build models coupling the laws of extremes with scale-invariance, providing
a robust framework for the modeling of Intensity-Duration-Frequency (IDF) curves.

In the final part of the chapter, we introduced the stochastical modeling methods and in particular
the scale-invariant stochastic modeling. We highlighted the advantages and drawbacks of the use of
Levy’s stable, Gaussian and Poisson cascade generators.



6Spatial Rainfall Extremes

Résumé

Le chapitre présente l’état de l’art des principales méthodes empiriques et semi-empiriques utilisées
pour quantifier la relation entre les plus fortes intensités de pluie et la surface d’agrégation (Areal

Reduction Factors ou ARF). La plupart de ces méthodes sont fondées sur le fait que la pluie était
à l’origine mesurée par un réseau pluviométrique au sol. Ce type de mesure est encore aujourd’hui
la méthode la plus fiable pour la mesurer. L’estimation quantitative de la pluie par radar (QPE), en
effet, est aujourd’hui encore sujette à nombreuses sources d’incertitude. En général, toutes les méthodes
pour définir les ARF suivent les mêmes contraintes: i) en augmentant la surface d’agrégation,

l’intensité du maximum baisse; ii) en augmentant la durée d’accumulation, le rapport

entre pluie spatiale et pluie ponctuelle va vers 1. En particulier, nous décrirons la méthode
présentée par De Michele et al. (2001) qui met en relation l’échelle d’agrégation spatiale et temporelle
par le biais d’un coefficient de “dynamique d’échelle”. L’origine de ce concept vient de la physique
des petites échelles (Zawadzki, 1973; Venugopal et al., 1999; Deidda, 2000) et à été adapté à des
surfaces de 1 à plusieurs milliers km2 et à des echelles de temps de l’ordre de 10 minutes au jour.

6.1 Introduction

This chapter presents a state of the art of the main empirical and semi-empirical methods for quanti-
fying the relations between heavy rainfall intensities and the aggregation surface (Areal Reduction
Factors also known as ARF). All these methods originate from the fact that rainfall was originally
measured by means of a ground measurement network; this is still, at the present time, the most
reliable measurement of rainfall. The quantitative rainfall estimation by radar, in fact, is submitted
to a series of uncertainty sources. In general, all the methods follow at least two constraints related to
the rainfall behavior: the larger the surface, the lower the rainfall intensity; the larger the
accumulation period, the closer the areal maximum is to the point maximum. In partic-
ular, we describe the method presented by De Michele et al. (2001) consisting in relating the spatial
and temporal aggregation scales through a “dynamic scaling” ratio. This concept, originated from
the small-scale physics (Zawadzki , 1973; Venugopal et al., 1999; Deidda, 2000), is adapted for surfaces
and time scales of hydrologic interest (1 to 10000 km2 and 10 min to 24 hours).

133
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6.2 From point to spatial maxima: ARF

6.2.1 Background

The estimation of the frequency of spatial rainfall events is necessary in the engineering design: the
design of hydraulic structures requires the estimation of the rainfall amount that can possibly fall over
a catchment. Dealing with point-rainfall, the intensity of the design rainfall event is provided by the
rainfall frequency analysis, such as IDF curves (Section 5.11). The occurrence frequency of a given
rainfall amount over an area larger than the rain gauge sampling area (∼ 1000cm2) is more difficult to
estimate as the small-scale rainfall variability is not known and the point-rainfall network density is
usually insufficient to obtain reliable estimates of the spatial rainfall amounts (Section 2.4). Several
studies (Obled et al. (1994); Arnaud et al. (2002), among the others) highlighted that the knowledge of
the average rainfall depth could be sufficient for hydrological purposes, the influence of rainfall spatial
variability being of lower importance dealing with extreme events .

Therefore, a tool for the evaluation of the rainfall depth associated with a given return period falling
over a surface can be sufficient for hydrological purposes. This motivates the creation of empirical
curves referred to as Areal Reduction Factors.

Areal Reduction Factors, as defined by the Natural Environmental Research Council (NERC ,
1975), are factors applied to point rainfall values characterized by a specified duration and return
period to obtain the areal rainfall values characterized by the same duration and return period.

Two types of Areal Reduction Factors are commonly used: storm-centered ARFs, defined for
concentric windows as the ratio of the average areal rainfall to the maximum point rainfall (the point
center) for given storms; fixed-area ARFs, where the same ratio is computed scanning a surface with
a moving-window. The example reported in Figure 6.1-a shows the spatial rainfall maxima of a given
rainfall field recorded in a storm-centered and in fixed-area approach, respectively. While in the
storm-centered approaches the spatial maximum locations are concentric to the point maximum, in
the fixed-area approaches the spatial maxima are selected within a climatically homogeneous region.
The ARF that derive from these two approaches can be consistently different, as shematically shown
in Figure 6.1-a.

Storm centered implementation could be difficult, for example in presence of multi-cellular storms
(Asquith and Famiglietti , 2000). Its statistical significance is questioned by Omolayo (1993), since
point and areal rainfall maxima are often generated by different storm types: point maxima are
generated by deep convective events while areal maxima are consequence of stationary convective
systems. Sivapalan and Blöschl (1998) argue that storm-centered ARFs are systematically smaller
than fixed-area ARF: scanning the entire window for seeking the maximum, it is almost sure that a
higher rainfall depth, not concentric to the storm, could be observed.

According to Omolayo (1993), ARF can be calculated by dividing the maximum areal rainfall by
the average T-year rainfall of the gauges within the same area:

ARF (A,D, Tr) =
IA(D,TR)

1P
i wi

∑
i wiI0(D,TR)

(6.1)
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(a)

(b)

Figure 6.1: a: Maxima-selection process for a rainfall field with the aim of determining ARF curves. Left:
storm-centered spatial rainfall selection. Right: fixed-area spatial rainfall selection. b: Comparison of the ARF
curves obtained for the same field with the two methods.
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The U.S. Weather bureau (U.S. Weather Bureau, 1958) developed an empirical method, disre-
garding the return period effect on the ARF, relating the mean of the annual maximum areal rainfall
series to the mean of the annual maximum point measurements at all stations. Indicating with I0 the
point maxima and with IA the concurrent point measurements that yield the spatial maximum, ARF
are expressed, for a database of J years of observations at I rain gauges, as:

ARF (A,D) =
∑

j

∑
i wiIA,ij∑

j

∑
i I0,ij

(6.2)

where j = 1, . . . , J refers to the year and i = 1, . . . , I is the rain gauge index. The weights wi were
originally determined by the Thiessen polygons method.

The fixed-area method adopted in the UK (NERC , 1975) considers the effect of the return period,
for extreme events, of secondary importance for the ARF determination. For each region of area A
and for each duration D, the ARF is computed according to the following expression

ARF (A,D) =
1

IJ

∑

j

∑

i

IA,ij

I0,ij
(6.3)

The method is a computational simplification of 6.2 and consists in evaluating the ARF as the
average ratio between the areal rainfall maxima and average point rainfall. In the report, the ARF
return period is indicated to be approximately 2-3 years (it depends on the law of extremes; the return
period of the average annual value for a gumbel-distributed variable is ∼ 2.35).

In Figure 6.2 two plots showing the ARF results for UK are shown. In Figure 6.2-b the ARF are
multiplied by 100, expressing the percentage of the areal rainfall with respect to the point rainfall.

(a) (b)

Figure 6.2: ARF curves according to NERC (1975), taken (a) from Svensson (2007) and (b) from Langousis
(2005).

Figure 6.2-b shows that ARF are approximately constant for D ∼ A0.7. Koutsoyiannis (1997)
derived an analytical expression for the NERC ARFs:
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ARF (A,D) = max

(

1− 0.048A0.36−0.01 ln(A)

D0.35
, 0.25

)

(6.4)

The Bell (1976) approach is the first fixed-area method in which the ARF are computed with
respect of the return time. ARFs are computed as the ratio of the areal rainfall of return period TR

to the weighted average of the point rainfall of return period TR:

ARF (A,TR) =
IA,TR

1
N

∑N
i=1 wiIi,TR

(6.5)

The above-showed approaches are totally empirical. The computation of ARF curves can be done
only at given durations and the semi-analytical expressions are derived in a totally empirical way.
In the next sections we analyze the main methods proposed in literature for the determination of
semi-empirical ARF curves.

6.2.2 Geostatistically-based ARF approaches

In this section we describe three approaches consisting in combining statistics of point-rainfall series
and geostatistics of spatial fields with the aim to build semi-empirical ARF curves. The first contri-
bution in this context has been provided by Roche (1963) who constructed the bivariate probability
density function for pair of rain gauges separated by a given distance.

The basic hypothesis to use geostatistical approaches are: i) second-order stationarity of data; ii)
the variance of the rainfall fields exists iii) point and spatial distribution of rainfall intensities belong to
the same distribution class. Concerning the latter point, Rodriguez-Iturbe and Mej́ıa (1974) assumed
normally-distributed intensities, Lebel and Laborde (1988) derived ARF for Gumbel-distributed rainfall
maxima, Sivapalan and Blöschl (1998) assumed exponentially distributed point rainfall and associated
to it Gamma-distributed spatial rainfall.

Even though geostatistical approaches are attractive frameworks to combine the spatial structure
of events with the point distribution of rainfall series, the resulting ARF relations are calibrated based
on a correlation structure computed event-by-event, and therefore these methods can be classified as
storm-centered. Storm-centered methods are of easy computation but they are i) not conservative (they
systematically underestimate ARF compared to fixed-area methods) ii) not statistically significant
(Omolayo, 1993).

6.2.2.1 Rodriguez-Iturbe and Mej́ıa approach

Rodriguez-Iturbe and Mej́ıa (1974) assumed that the rainfall field is a stationary Gaussian process.
The stationarity implies that the areal rainfall average is equal to the average of point measurements;
the Areal Reduction Factor can be expressed as a variance reduction factor κ. They show that:

κ(A) =
√

E[ρ(u, u′)] (6.6)
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where κ(A) is the value to which the point variance σp should be multiplied to obtain the variance of
the areal rainfall. ρ(u, u′) is the correlation coefficient between two generic points u and u′ contained
within the area A.

ARF are proven to be dependent on the duration D and on the return period TR. In this approach,
no explicit dependences are shown. Nonetheless, it is well-known that the correlation structure of the
field changes with the accumulation duration (the range of a rainfall field passes from about 20 km
to about 100 km for the 1-hour and 24-hour rainfall, respectively) and with the return period (the
higher the intensity of the event, the smaller its spatial extent and the steeper the ARF curves). The
main issues concern the stationarity of the field in case of extreme events, which is not ensured, and
the gaussianity of the field (denied by the analysis of radar images, not available at that time).

6.2.2.2 Lebel and Laborde approach

Lebel and Laborde (1988), similarly to the Rodriguez-Iturbe and Mej́ıa (1974) approach, coupled geo-
statistical analysis of rainfall fields with a model for rainfall extremes. The annual and monthly
rainfall maxima are supposed to be Gumbel distributed. Assuming Gumbel-distributed maxima, the
sample mean and variance completely define the maxima distribution. To describe spatial maxima,
the Gumbel distribution is coupled to a covariance function in which, similarly to Rodriguez-Iturbe
and Mej́ıa (1974), the variance of the areal process decreases as a function of the integration surface.

An innovation in this context is the introduction of the climatological variogram (Section 4.4.4) as
a tool for determining the average correlation structure of a series of fields characterized by different
magnitude (and therefore different asymptotic variance).

The average of areal rainfall maxima and areal-maxima variance are given as a function of the
point maxima average µz and variance σ2

z by the relationships:

{
µA = µz

σ2
A = σ2

z

∫ ∫
A γ(u, u′)dudu′

(6.7)

where u and u′ are two generic points within the domain A, and γ is the variogram function expressing
the covariance between two points.

Lebel and Laborde (1988) derived the spatial-maxima probability distribution assuming that the
point as well as spatial maxima distribution are Gumbel. The Gumbel spatial parameters Θ1A and
Θ2A are defined as:

{
Θ1A = 0.78

(
σ2

z − 1
a2

∫ ∫
A γ(u, u′)dudu′

)

Θ2A = µA − 0.577Θ1A
(6.8)

leading to the following distribution of spatial rainfall maxima:

F (z) = exp− exp−(z−Θ1A)/Θ2A (6.9)

The variance reduction factor for the Gumbel distribution is evaluated as:

κ(A,TR) =
C−1

V + r(A)(0.78(z −Θ2)/Θ1 − 0.45)
C−1

V + 0.78(z −Θ2)/Θ1 − 0.45
(6.10)
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in which r(A) is a function of surface and of the climatological variogram:

r(A, γ) =

√

1− 1
A2σ2

z
−

∫ ∫

A
γ(u, u′)dudu′ (6.11)

6.2.2.3 Sivapalan and Blöschl approach

The approach of Sivapalan and Blöschl (1998) is similar to the Lebel and Laborde (1988) one. The
main difference is that Sivapalan and Blöschl (1998) model the overall rainfall distribution instead
of the extreme distribution. They consider that point rainfall is an exponentially-distributed vari-
able featuring an exponentially-decaying correlation structure, and that the areal rainfall is Gamma
distributed. The Gamma distribution is a generalization of the exponential case whose parameters
are directly related to the exponential distribution parameters through the variance reduction factor
previously seen in Rodriguez-Iturbe and Mej́ıa (1974) and Lebel and Laborde (1988).

The Areal Reduction Factors with this approach can be computed as:

ARF (κ2(A/λ2), TR,D) =
b(TR)c(TR)κ2f2(κ−2)− κ

f1(κ−2) ln[ln( TR
TR−1)]

b(TR)c(TR) ln[ln( TR
TR−1)]

(6.12)

where b and c are empirically determined as a function of the return period and f1,f2 are empirically
determined as a function of the parameter kA of the gamma distribution, knowing that kA is related
to the variance reduction factor according to the relationship kA = κ−2.

In Figure 6.3, the ARF curves for a particular weather regime in Austria are shown. Figure 6.3
shows that the ARF decrease with the increase of the return period; for return periods higher than
10 years the ARF dependence on the return period is weaker.

Figure 6.3: ARF curves for the K-45 weather regime in Austria, from Sivapalan and Blöschl (1998).

6.2.3 Stochastic approaches
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6.2.3.1 Bacchi and Ranzi ARF approach

Bacchi and Ranzi (1996) present a stochastic derivation of the ARF based on the crossing properties
of random fields. With the term “crossing properties”, the authors refer to the local behaviour of
the spatial and temporal derivatives of the fields at points where a given threshold is exceeded. The
number of exceedances of threshold levels is assumed to converge to the Poisson-distribution and a
hyperbolic tail of the probability of exceedances of rainfall intensity has been adopted.

This approach assumes stationarity of the rainfall fields and homogeneity of the crossings in space.
The ARF expression presents a number of fitting parameters that have to be inferred from data. The
derived ARF curves assume power-law decay with respect to integration surface and duration of the
storm.

Bacchi and Ranzi (1996) found a small decrease of the ARF with increasing TR.

6.2.3.2 Asquith and Famiglietti

The annual-maxima centered approach proposed by Asquith and Famiglietti (2000) specifically con-
siders the distribution of concurrent precipitation surrounding an annual-precipitation maxima. The
advantage of the approach is the ease of computation, since it does not require the estimation of spatial
rainfall averages or the determination of spatial correlation coefficients.

The proposed ARF model is less conservative than the TP-29 approach (U.S. Weather Bureau,
1958), in which the dependence on the return period TR is taken into account.

The method focuses on point annual rainfall maxima. The ratio between these values and the
precipitation depth recorded at the surrounding (“concurrent”) stations is evaluated.

The mean ratio in concentric rings surrounding the maxima is evaluated for the entire database.
The method requires stationarity of the rainfall-maxima moments (stationary mean and variance).
Although the method is easy and computationally cheaper, it is close to storm-centered approaches.
It is useful for determining a design storm rather than to evaluate a statistically-significant value of
spatial-rainfall.

6.2.4 Scale-invariant ARF

In this section we describe continuous ARF models based on the space-time scale invariance of rainfall
intensity. The models previously discussed were mainly semi-empirical and scale-dependent. They do
not allow to define an ARF parametrisation as a function of duration.

6.2.4.1 Dynamic scaling of space-time rainfall maxima

The approach proposed by De Michele et al. (2001) consists in adopting the concept of “dynamic
scaling” proposed by Venugopal et al. (1999) at scales of hydrological interest. This hypothesis,
physically consistent for scales lower than 45 min and 100 km2 as a consequence of the Taylor’s frozen
hypothesis (Taylor , 1938), cannot be extended to larger scales, because the advection component at
larger temporal scales is not negligible. The dynamic scaling assumption is taken in this context in
a statistical sense: for particular ratios of temporal and spatial scales, the probability distribution of
rainfall maxima is scale-invariant.
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The analysis starts from the concept that the distribution of rainfall maxima is scale-invariant in
a statistical sense:

I(λaD,λbA) d= λ−HI(λaD,λbA) (6.13)

where a and b are two parameters expressing the rainfall intensity decay increasing the temporal
and spatial aggregation, respectively. According to Gupta and Waymire (1990) (Section 5.5.2), the
equality is also valid in “wide sense”, that is in the sense of moments and quantiles. The expected
value of annual maxima, for example, could be expressed as:

E[I(λaD,λbA)] d= λ−HE[I(λaD,λbA)] (6.14)

where H is linear with q in case of simple-scaling.
De Michele et al. (2001) propose to describe the Intensity-Duration-Frequency-Area curves IDAF

as the product of IDF and Areal Reduction Factor:

I(D,A, TR) = I(D,TR) · ARF (A,D, TR) (6.15)

where the IDF formulation takes the form:

I(D,TR) = a1(TR)D−v(TR) (6.16)

The IDAF expression is determined by respecting the following asymptotic considerations:

i. the general ARF form should be function of Aa and Db;

ii. when A → 0 (approaching the rain gauge scale), ARF → 1;

iii. when A →∞, the mean rainfall intensity tends to zero;

iv. when T →∞, the areal rainfall equates the point rainfall.

By means of dimensional analyses, De Michele et al. (2001) found a suitable expression for IDAF
curves:

I(D,A, TR) = a1(TR)D−v(TR)

[
1 + ω

(
Az

D

)b
]−v(TR)/b

(6.17)

where z = a/b is the dynamic scaling ratio. Since a and b represent the power-law exponent defining
the ARF decay with area and duration, respectively, z can be seen as the ratio between the spatial
and temporal decay rate of ARF curves.

The influence of the return period is implicit in v, scaling exponent of the IDF formulation. Re-
moving, in Equation 6.17, the IDF part (the same as Equation 6.16), one obtains the ARF expression:

ARF (D,A, TR) =

[

1 + ω

(
Az

D

)b
]−v(TR)/b

(6.18)
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De Michele et al. (2002) propose to couple this IDAF model with a distribution for extremes. To
take into account multi-scaling, according to Burlando and Rosso (1996), a log-normal distribution
for extremes has been chosen. In a multiple scaling context, v varies with the return period. The
log-normal density function accommodates the multiple scaling requirements, but it is not a density
function for extreme value distributions. The multi-scaling IDAF model is therefore suitable for low
return periods, far from the asymptotic conditions where extreme value theory is applicable. For
higher return periods, maxima are GEV distributed (Section 3.5). GEV distribution only fits with
the simple-scaling framework.

The model of De Michele et al. (2001) has been applied to the region of Milan, a region featuring
16 rain gauges for a surface of 300 km2 (one rain gauges approximately every 20 km2 ). The 8-years
data series has been spatialized by kriging interpolation and the annual maxima for each window size
have been recorded. The IDF model parameters, and subsequently the ARF model parameters have
been estimated, allowing to build IDAF curves. The results obtained by De Michele et al. (2001) are
reported in Figure 6.4-a.

(a) (b)

Figure 6.4: a: Intensity - Duration - Area - Frequency curves for TR = 2.35 (corresponding to the average
annual rainfall maxima) for the Milan urban area. b: Comparison of empirical ARF proposed by NERC (1975)
with the result of De Michele et al. (2001) (the graphs are both taken from De Michele et al. (2001)).

According to the evidences shown in Section 2.4 it seems that the rain gauge density is too sparse
to evaluate the spatial rainfall for areas lower than 10 km2. To catch the structure of the storm, a
rain gauge network must have density considerably higher than the characteristic storm size. For this
reason, it seems more appropriate to fit this model for durations larger than 1 hour (for which the
storm characteristic size is larger than the inverse of the rain gauge density) and for surfaces higher
than the inverse of the rain gauge density, so that at least two rain gauges are taken into account in
the computation of the spatial rainfall.

The comparison with the results empirically determined by NERC (1975) show a good agreement
of the two approaches (Figure 6.4-b).
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6.2.4.2 Advection effects in ARFs

As stated in Section 6.2.4.1, the advection component is not negligible for durations higher than 40 min
and areas larger than 100 km2 (Deidda, 2000). Therefore the Taylor’s frozen hypothesis is not valid
beyond these scales. If physical assumptions behind this model are not applicable for singular storms,
the “dynamic scaling” concept can be successfully applied in a statistical sense (De Michele et al.,
2001), assuming that incoming directions of storms advected in the study domain are homogeneous
in space, leading to a null-average advection velocity.

If one wants to analyze the effects of single storms within a basin, the scale-invariant climatological
ARF curves, assuming no advection, are not really useful. In single storms, advection affects the decay
of rainfall depth with the area implying anisotropy of ARFs and dependence of ARFs on the basin
shape.

Veneziano and Langousis (2005) deal with this issue, proposing an IDAF model obtained by
coupling the scale-invariant IDF model proposed by Veneziano and Furcolo (2002) with perfect mul-
tifractality in space-time. They consider that the advection velocity, similarly than in Taylor’s frozen
turbulence, can be used as a factor to rescale the temporal coordinate in order to obtain a space-time
isotropic model. They propose equations describing IDAF and ARF curves for very elongated basins
and regularly shaped basins.

The results Veneziano and Langousis (2005) have been succesfully compared to the empirical
results of NERC (1975) and (Bell , 1976) and with the theoretical model presented by De Michele
et al. (2001). However, it seems that the basic hypothesis of Taylor’s frozen turbulence that allows to
rescale the temporal dimension, considering it as a third spatial dimension, can not be assumed for
scales larger than the turbulence one.

6.2.4.3 IDAF in small space-time rainfall

A small-scale experiment has been conducted by Castro et al. (2004) to study the space-time structure
of rainfall in order to derive IDAF relationships. Rainfall has been filmed in a spatial cube of 1.2 m 1.2
m 1.2 m, at a rate of 30 images/s. Drop sizes have been inferred from vertical velocities. The 2Dx1D
singularity spectrum has been evaluated considering rainfall as a multi-fractal process in (x,y,t).

The rainfall intensity i is considered dependent on duration D, area A and return period TR

following the relation:

i(A < D < TR) ∝ D−1A−z/2T δ
R (6.19)

fitting Equation 6.19 with experimental data allows to determine the following empirical formula:

i ∝ TR(I(d,A) > i)1.227d−1A−0.581 (6.20)

6.3 Max-stable spatial-maxima modeling

A relatively new framework for the modeling of rainfall extremes in space is the Max-Stable theory. It
represents a generalization of the extreme value theory valid for point series (Section 3) and bivariate
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extreme analysis (Herr and Krzysztofowicz , 2005; Renard and Lang , 2007) to multivariate data, such
as the rainfall measured at a network of rain gauges.

The extreme value theory (Smith, 1990) states that a sample of i.i.d. point-maxima is GEV-
distributed (Section 3.5). Differently from what has been assumed in Lebel and Laborde (1988);
Sivapalan and Blöschl (1998), spatial extremes are distributed according to Max-Stable distributions,
describing the joint distribution of maxima at several locations.

To apply max-stable theory, the rainfall maxima Y at one location, distributed following GEV,
should be transformed into a Unit Fréchet random variable Z through the transformation:

Z =
(

1 + ξ
Y − µ

σ

)1/ξ

(6.21)

The max-stable theory aims to model the joint distribution P (Z(x1) ≤ z, . . . , Z(xn) ≤ z).
Two interpretations are given to the concept of continuous max-stable fields, the Smith’s model

(Smith, 1990) and the Schlater model (Schlater , 2002).
The Smith’s model defines a max-stable random process Z(x) as:

Z(x) D= maxk (Ukf(x− Tk)) (6.22)

where Uk can be interpreted as the storm sizes, f the shape of the storm centered at Tk. Figure
6.5 shows an intuitive interpretation of the Smith’s model as the envelop of the absolute maxima of
different storms.

Figure 6.5: Representation of the Smith’s model for a max-stable field.

When Z is a unit-Fréchet point-process, its cumulative density function is:

P (Z ≤ z) = exp(
1
z
) (6.23)

The cumulative joint probability is given by:

P (Z(x1) ≤ z, . . . , Z(xn) ≤ z) = exp
(

θ

z

)
(6.24)
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where θ is called “extremal coefficient”, indicating the degree of mutual dependence of the N stations.
θ takes values between 1 and N and provides a measure of the degree of spatial dependence between
stations1. More precisely, the extremal coefficient θ depends on the correlation function and has two
different analytical expressions for the Smith’s and the Schlater’s model. It can be computed starting
from variograms, but a more general estimation requires the computation of the first order general-
ized structure function, called “madogram” (Cooley et al., 2006; Matheron, 1987). The madogram
computation only requires that the first order moment (i.e. the mean) of the random field to be finite.

The madogram is defined as

ν(h) =
1
2
E[|Z(x)− Z(x + h)|] (6.25)

where Z is a stationary random field with finite mean and h the separation lag between stations.
Cooley et al. (2006) derived the expression relating the extremal coefficient θ and the madogram

ν:

θ(h) =





µβ(µ + ν(h)

γ(1−ξ) ) if ξ < 1

exp
(

ν(h)
σ

)
if ξ = 0

(6.26)

where µ,σ, ξ are the GEV distribution parameters, γ the Gamma function and µb is given by:

µβ =
(

1 + ξ
x− µ

σ

)1/ξ

(6.27)

The method, theoretically consistent, represents without doubt a significant advance in the field
of spatial extremes estimation. Nonetheless, a series of remarks should be highlighted:

• the extremal coefficient θ is an indicator of the spatial dependence between all stations. On the
other hand, the madogram, used for estimating the extremal coefficient, is a pairwise indicator
of the correlation. A consistent estimator based on a multivariate indicator should be preferred.

• the madogram is evaluated on maxima that are not concurrent (therefore it is not physically
based);

• the normalization of maxima to Unit Fréchet is not sufficient to get rid of their spatial hetero-
geneity. The approach is, again, limited to homogeneous (i.e. relatively small) area.

• the transformation of GEV into Unit Fréchet and the fitting of a max-stable model are two
necessary steps to determine the spatial extremes behaviour. Padoan (2008) proposes a direct
fitting of GEV and spatial dependence in a single step so that the estimation error could be
determined, but its use is limited to gauged sites. The use of response surface (describing the
spatial dependence of the GEV parameters on the location) could help in solving this problem
in regions where the drifts are easy to be modeled. In Cévennes-Vivarais region, the GEV
parameters are strongly influenced by the orography, preventing the use of response surfaces.

1Poorly speaking, it can be seen as the number of independent stations as a function of the lag h.
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6.4 Conclusion

This chapter provides an overview of the main methodologies described in literature to deal with the
extreme rainfall intensity decrease as a function of the spatial scale.

In the earlier approaches, the so-called Areal Reduction Factor (ARF) curves have been empirically
determined. Basically, it is expressed as the ratio between the spatial rainfall associated to a given
return period to the point rainfall associated to the same return period. ARFs express the factor
respect to which the areal rainfall should be divided to obtain the point rainfall characterized by the
same occurrence.

In the context of storm-centered approaches, semi-empirical models have been proposed, based on
the spatial correlation of rainfall extremes. They rely on the definition of an average or climatological
variogram, that should correctly model the average spatial structure of extremes. The statistical
significance of storm-centered ARFs has been questioned by Omolayo (1993). In addition, the law of
spatial extremes can not be seen as a simple extension of the law of extremes for point rainfall.

A statistically self-similar approach has been presented by De Michele et al. (2001). Of easy
application, it relies on the relation between spatial and temporal scales under the concept of “dynamic
scaling”. As it has been defined, at scales beyond the validity range of the Taylor frozen hypothesis
(Section 5.10.1), the “dynamic scaling” concept is intended in a purely statistical sense.

Finally, we briefly summarized the main points of the max-stable maxima modeling, representing
the extension of the extreme value theorem for spatial rainfall.
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7Heavy tails of rainfall distributions

Résumé

Le but de cette étude est d’évaluer les propriétés d’invariance d’echelle temporelle des précipitations
extrêmes ponctuelles. Dans la région d’intérêt, les queues des distributions de probabilité des pluies
horaires montrent linéarité en log-log, une caractéristique des distributions à queues lourdes. La conser-
vation de cette propriété aux differentes échelle est compatible avec l’invariance d’échelle des extrêmes,
et a été verifié pour une longue série pluviometrique dans la gamme d’accumulations 1-24 h. Dans
l’article on propose une méthode objective pour estimer les deux paramètres qui definissent la queue
hyperbolique d’une distribution. L’application de méthodes d’estimation non biaisés nous a permis
d’attendre une réduction significative de la variabilité dans l’estimation des paramètres de la queue
hyperbolique. Ce résultat nous permet d’attendre deux objectifs: i) verifier la presence d’invariance
d’échelle en analysant les queues hyperboliques d’une série pour differentes durées d’accumulation; ii)
obtenir une structure spatiale coherente et parvenir à la régionalisation de ces paramètres par méthodes
géostatistiques. Les cartes montrent que les queues de distribution sont hyperboliques dans la zone de
plaine du Rhône entre le bord de mer et les contreforts. De plus, l’exposant de la loi de puissance est
pratiquement constant avec la durée, alors que dans le piémont et sur la créte du massif des Cévennes
les queues sont plûtot exponentielles (réjet de la loi de puissance). Nous discutons les raisons physiques
pour les résultats et les conséquences pour la modélisation statistique de fortes pluies. Un point de vue
novateur pour la compréhension des précipitations extrêmes dans un cadre d’invariance d’échelle est
offert.

L’article tente de fournir des éléments pour élucider deux des questions liées au comportement des
fortes pluies:

i. est le comportement de fortes précipitations différent en fonction de l’échelle temporelle?

ii. sont les queues de précipitations hyperboliques ou exponentielles?

Examinons ces points en détail. Il est bien connu que les maxima journaliers sont généralement
modélisés avec la distribution de Gumbel. Cette hypothèse, raisonnable dans la plupart des cas,
correspond à supposer les extrémes distribués de façon exponentielle. L’avantage est de simplifier
l’estimation de la loi des extrêmes (le modèle est défini par 2 paramètres au lieu de 3). Cette hypothèse
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ne peut pas se vérifier directement sur les données, en raison de la longueur limitées des séries. Un
deuxième point pertinent est que, lorsque l’on tente de modéliser les maxima infra-journalier, les queues
de distribution sont systematiquement plus lourdes que prévu par le modèle Gumbel. Habituellement,
les données infra-journalieres sont modélisés en utilisant une distribution Fréchet (GEV-II). Toutefois,
l’utilisation de deux lois distinctes pour modéliser les maxima journaliers et infra-journaliers est en
contraste avec les evidences de la continuité du comportement des précipitations (moyenne, variance,
quantiles) dans la gamme d’accumulations 1 h - 15 jours. Comme il n’y a aucun moyen d’estimer le
comportement des queues directement à partir de la distribution des maxima, nous proposons dans cet
article d’examiner la totalité de la distribution de probabilité et de vérifier si cette continuité à travers
des échelles est vérifiée ou non.

En considerant toute la distribution, il est possible d’avoir davantage de données, mais les hy-
pothèses pour l’application de la théorie des valeurs extrêmes ne sont plus valables (notamment les
hypothèses de i.i.d.). Par conséquence, l’analyse de la distribution de probabilité peut servir qu’à
l’évaluation du comportement hyperbolique ou exponentiel des données et à la vérification des pro-
priétés d’invariance d’échelle, ne permettant pas une estimation directe des quantités extrêmes.

7.1 Introduction

The article deals with heavy rainfall observation and tries to provide elements to elucidate two of the
questions related to the behavior of heavy rainfall events:

i. is the behavior of heavy rainfall different at various temporal scales?

ii. are the rainfall tails hyperbolic or exponential?

Let us examine these points in detail. It is well known that daily maxima are usually modeled with
the Gumbel distribution. This assumption, reasonable in the most of cases, corresponds to consider
exponentially-tailed extremes. The advantage is to simplify the estimation of the law of extremes (the
model is defined by 2 parameters instead of 3), but this assumption could not be directly verified on
data, due to the limited series length. A second point is that, when one attempts to model infra-daily
maxima, the distribution tails are sistematically thicker then exponential. Usually, infra-daily data
are modeled using a Fréchet (GEV-II) distribution. However, the evidences of the continuity of the
rainfall behavior (mean, variance, quantiles) throughout the scales 1 h - 2 weeks make surprising that
two consistently different laws model must be used to model daily and infra-daily maxima. Since there
is no way to estimate the tails behavior directly from the maxima distribution, we propose in this
article to examine the parent probability distribution and to check whether this continuity throughout
the scales is verified or not.

Taking the entire distribution, it is possible to have more data, but the assumptions for the appli-
cation of extreme value theory such as the i.i.d. hypothesis do not hold anymore. By consequence, the
analysis of probability distribution may serve only for the assessment of the hyperbolic or exponential
behavior of data and for the verification of the scale-invariance properties and does not allows a direct
estimation of extreme quantities.
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Abstract. The aim of this paper is to assess the scaling properties of heavy point rain-
fall with respect to duration. In the region of interest, the probability distribution tails
of hourly to daily rainfall display log-log linearity. The log-log linearity of tails is a fea-
ture of fat-tailed distributions. The conservation of this property throughout the scales
will be investigated in the framework of scale-invariant analysis. Evidences of the scal-
ing of heavy rainfall are shown for one particularly long rainfall series through the con-
servation of the survival probability shape at durations in the range 1-24 hours. An ob-
jective method is implemented to estimate the hyperbolic-tail parameters of rainfall dis-
tributions. This method is automatized and detects the lower bound above which the
distributions exhibit power-law tails and determines the power-law exponent α using a
maximum likelihood estimator. The application of unbiased estimation methods and scale-
invariant properties for the estimation of the power-law exponent provides a significant
reduction of the inter-gage power-law variability. This achievement is essential for a cor-
rect use of geostatistical approaches to interpolate the power-law parameters at ungaged
sites. The method is then applied to the raingage network in the Cévennes-Vivarais re-
gion, a Mediterranean mountainous region located in Southern France.

The maps show thicker rainfall-distribution tails in the flat area between the sea shore
and the foothill. It is shown that in a flat region closer to the Mediterranean Sea the
rainfall distribution tails are hyperbolic and the power-law exponent is quasi constant
with duration whereas, over the mountain, the power-law behavior is less defined. The
physical reasons for such results and the consequences for the statistical modeling of heavy
rainfall are then discussed, providing an innovative point of view for the comprehension
of the rainfall extremes behavior at different temporal scales.

1. Introduction

During the last thirty years, a considerable body of in-
vestigations analyzed the scale-invariance of rainfall, demon-
strating that rainfall fields have intrinsic scaling properties
within a specified range of scales. A physical process is
scale-invariant if its probability distribution, once applied a
rescaling factor, does not change under scale magnification
or contraction within a given range.

Frisch and Parisi [1985] provided fundamental insights
into the multi-scaling behavior of processes. Analyzing
the average value of the q-th power of the change in the
turbulent velocity for different time lags, they found that
|v(h) − v(h + l)|q varies as the power-law lζ(q), where ζ is
non linear with q. The non-linearity of ζ(q) indicates that
the velocity fluctuations display multifractal scaling. A Leg-
endre transform allows to switch from the moment scaling
function to the codimension function c(γ), describing the
scaling in terms of probability distribution. The singularity
order γ in the codimension function expression is the dual
of the moment order q in the moment scaling function.

A particular case of scaling, referred to as simple-scaling,
occurs when the scaling exponent ζ(q) is linear with q.
In simple-scaling processes the probability distribution is
rescaled from a scale to another by means of a single scal-
ing exponent, while in multifractality the scaling exponent
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depends on the degree of singularity of the process. The
distribution equality between two probability distributions
at different scales is referred to as “strict sense scaling”. A
weaker property is usually adopted for assessing the scaling
behavior of a process: the equality of moments, referred to
as “wide sense scaling” [Gupta and Waymire, 1990].

First evidences of the multiscaling behavior of meteoro-
logical fields were shown by Schertzer and Lovejoy [1987]
analyzing meteorological radar reflectivities. Gupta and
Waymire [1990] evaluated and detailed the different types
of scaling of instantaneous radar rainfall with respect to the
surface. The multiscaling concept can be also applied to
time series of raingage data over a wide range of temporal
scales. Ladoy et al. [1993] analyzed a pluviometric series
located in Nı̂mes (France) covering 50 years of data char-
acterized at a 12 hours time resolution. They have been
able to determine the multifractal parameters of the rain-
fall series finding scale-invariance in the range 12 hours -
16 days. Hubert et al. [1993] analyzed data from different
regions at temporal scales of 6-min at the Reunion Island
(Indian Ocean), of 15-min in the French Alps, of one day at
Nı̂mes and at Dédougou (Burkina Faso, West Africa). They
found out multiple scaling behavior of point rainfall rates
from one to several days (16 - 30 days depending on the
location).

The scale-invariance of rainfall maxima has been the
topic of several studies. Bendjoudi et al. [1997] derived
a multifractal based Intensity-Duration-Frequency formula-
tion showing that a multi-fractal phase transition implies
algebraic tails above a given singularity level. From the
direct analysis of rainfall data series, Burlando and Rosso
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[1996]; Menabde et al. [1999]; Borga et al. [2005] showed that
the annual maxima are approximately simple scaling in the
range 0.5-24 hours. It is worth mentioning that Burlando
and Rosso [1996] and Menabde et al. [1999] processed data
series from different climatic regions. In Burlando and Rosso
[1996], one raingage station is located in a flat area whereas
the second is a mountainous station. Menabde et al. [1999]
dealt with a midlatitude temperate region of Australia and
with a semiarid region of South Africa.

The usual approach for the analysis of heavy rainfall is
based on the extreme value theory. This theory considers
events exceeding a given threshold (Peak Over Threshold -
POT) or maxima during a given period (annual or shorter
periods, see Kotz and Nadarajah [2000] for more details), re-
sulting in two distribution classes: Generalized Pareto Dis-
tributions (GPD) and Generalized Extreme Value (GEV)
distributions. The GEV distribution class involves three
types of maxima: hyperbolic-tailed (GEV-II), exponential
(GEV-I) and bounded maxima (GEV-III). Maxima rainfall
rates usually follow GEV-I (Gumbel) or GEV-II (Fréchet)
distributions [Kottegoda and Rosso, 1997], depending on the
decay of the probability distribution (respectively exponen-
tial and hyperbolic tailed, hyperbolic tails being thicker than
exponential ones). Daily rainfall maxima are often mod-
eled with Gumbel distributions [Gumbel , 1958; Koutsoyian-
nis et al., 1998]. Nevertheless, infra-daily rainfall can show
thicker tails and the improper use of GEV-I distribution
leads to a generalized underestimation of extreme events
for high return periods. The choice between the two ap-
proaches (hyperbolic or exponential tailed-distributions) has
been justified only by empirical evidence on the distribution
of maxima.

Few studies on heavy-rainfall scaling focused on the prop-
erties of the underlying probability distributions. Hubert
and Bendjoudi [1996] studied the distribution of heavy
rainfall in Dédougou over scales ranging from one day to
one year. Analyzing the power-law exponent α in double-
logarithmic plot, they showed that the hyperbolic tail of the
pdf does not change with the accumulation period, resulting
in simple-scaling of rainfall extremes. Approximate simple
scaling is also illustrated in Table 3 of Sivakumar [2000] ana-
lyzing the hyperbolic tail of the probability distributions for
accumulation durations between 6 hours and 7 days for two
rainfall series at Singapore and Leaf River Basin (Mississippi
- USA).

In this paper, our purpose is to give a regional descrip-
tion of heavy rainfall statistics. According to our knowl-
edge, no study focused on the inter-gage properties of the
probability distribution tails. Many papers focused on the
behavior of single raingages, not representative of a complex-
relief region. Applying an objective method for determining
the power-law exponent α, and a scale-invariant relationship
that involves the hyperbolic tail of the distribution, our aim
is to reduce the inter-gage variability of the power-law pa-
rameters. According to our experience, the determination
of the power-law parameters using an arbitrary-threshold
based method prevents a robust parameter estimation and
thus the comparison between gages and the regionalization
of the variable. Applying the method to about two hundred
stations, we show that a coherent interpolation process is
now possible as well as the prediction of the tail behavior at
ungaged sites.

The paper is structured as follows: we first show evidence
of hyperbolic behavior of heavy rainfall at specific stations
and we describe the objective method implemented in order
to determine the hyperbolic model parameters (Section 2).
In Section 3, we use a reference rainfall series (50 years) to
check for the simple scaling properties of distribution tails
between 1 and 24 hours. The goal of Section 4 is to map the
model parameters of heavy rainfall. A comparison of the
power-law exponent α at accumulation durations from 1 h
to 8 h allows us to identify sub-regions where α is approxi-
mately constant. The results related to the rainfall-forcing
processes and to the extreme-value theory are discussed in
Section 5.

2. Heavy point rainfall behavior

In this section, we characterize the positive rainfall rates
by their survival probability (complement to 1 of the cu-
mulative distribution function). The decay of the survival
probability gives information about the underlying law of
extremes. An example of the survival probability of hourly
point rainfall is plotted in Figure 2 for the raingage station
of Colognac, about 30 km SW of Alés, France (see Figure
1). As we are interested in heavy rainfall, the plot is limited
to the upper 5% of the observations. The survival proba-
bility tail is hyperbolic. It can be parametrized by a decay
rate α and by a lower bound xmin. In practice, the decay
rate is usually estimated by fitting a power-law to the data
(i.e. a straight line on a log-log plot) and calculating its
slope. However, this particular fitting process is influenced
by the empirical estimation of the survival probability. One
can see that the empirical survival probability of the high-
est observations on the log-log plot in Figure 2 diverges from
the straight line. As illustrated in the following simple exer-
cise, this can be interpreted as a consequence of the mode of
computation of the highest empirical frequencies (outliers).
Taking N=100 realizations of a random variable X, the em-
pirical survival probability can be defined, if we take the
Weibull plotting-position expression, by:

P (X > x) = 1 −
i

N + 1
, (1)

where i is the rank of a sorted sample x, varying from
1 to N . Let us consider to add one further observation to
the series. If this observation is the highest of the sample, it
will be ranked 101 in the sorted sample. The survival prob-
ability of the 100-ranked sample will be modified by 100%,
passing from 0.01 to about 0.02. At the same time, the
survival probability of the 50-ranked sample will be modi-
fied by only 0.5%, passing from about 0.5 to about 0.495.
This exercise highlights that empirical survival probabilities
are robustly estimated when looking at usual probability
levels, but strongly biased when dealing with extreme quan-
tiles. The bias of a plotting-position formula depends on
the probability distribution of the sample. More adapted
expressions for the determination of the plotting position in
positively skewed data are available for several probability
distributions [Kottegoda and Rosso, 1997], and the exercise
above can be easily generalized for any of these.

This example highlights that any power-law fitting
method based on the plotting of empirical cumulative den-
sity function is affected by large uncertainties, which in-
crease in presence of outliers in the probability distribution.
Goldstein et al. [2004] showed the inaccuracy of some of
these graphical methods by calculating the bias in the esti-
mation of the power-law exponent α of samples composed by
10000 realizations. They found out that the Maximum Like-
lihood Estimator (MLE) provides a better estimate α̂ than
other methods, including Least-Squares Linear Regression
(LSq). The MLE estimator (Equation 2) is equivalent to
the Hill estimator adopted in extreme value theory.

α̂ = 1 + n[

n∑

i=1

ln
xi

Xmin
]−1. (2)



The main advantage using MLE with respect to LSq is
that the method provides an unbiased estimate of the expo-
nent α̂, independently of the empirical cumulative distribu-
tion. We performed complementary simulations to extend
the numerical experiment of Goldstein et al. [2004] to shorter
series (sets of about 1000 realizations) drawn from a Pareto
distribution:

P (X ≥ x) = (
x

xmin
)−α, (3)

for all x ≥ xmin, where xmin is the so-called scale param-
eter and α the shape parameter. One hundred series with
xmin = 10 and α = 3 have been generated with N, the num-
ber of realizations, ranging from 100 to 10000. In Figure 3
the box-plots summarize the distributions of the estimated
α̂ computed using, respectively, the LSq and MLE meth-
ods. Considering a set of 10000 samples, we notice that LSq
provides far more scattered estimations of α̂ than MLE, in
agreement with Goldstein et al. [2004]; the dispersion of α̂
remains of the same order of magnitude whatever the sam-
ple set size. Moreover, the average of α̂ estimated by MLE
remains close to 3 (the actual value), while it is more fluc-
tuating when estimated by LSq. This confirms that MLE
is a more consistent estimator than LSq. Two reasons have
been highlighted in literature. First, LSq is more sensitive
to the presence of outliers in the distribution tails. Second,
the residuals of the linear fitting of log-reduced variables do
not follow a Gaussian distribution [Clauset et al., 2009].

After having defined an unbiased method for the estima-
tion of the power-law exponent of hyperbolic distributions,
the second major problem is to define the scale parameter
(xmin in Equation 3) i.e. the lower bound above which the
power-law holds. Considering an arbitrary bound, as we did
in Figure 2, is obviously not satisfactory. The determina-
tion of α̂ depends on the choice of the lower bound x̂min.
This bound can be different from one raingage to another,
because of the heterogeneity of the rainfall regime in the re-
gion. Clauset et al. [2009] derived a method to estimate the
lower bound x̂min.

The probability density function of a variable y assuming
discrete values and distributed as a power-law is defined as:
(Equation 4 [Goldstein et al., 2004]):

p(x) =
x−α

ζ(α, xmin)
(4)

where α is the power-law exponent and ζ(α, xmin) is the
generalized Zeta function, defined as:

ζ(α, xmin) =

∞∑

n=0

(n∆x + xmin)−α (5)

where xmin is the lower bound and ∆x is the raingage
accuracy (0.1 mm of rain depth for the analyzed raingage
database).

The estimated lower bound x̂min is determined by means
of the Kolmogorov-Smirnov (KS) statistics. Clauset et al.
[2009] have shown that this objective method is among the
most efficient for comparing two distributions. The D statis-
tics of the KS test is defined in Equation 6:

D = max
x≥x1

|S(x) − P (x)| (6)

where S(x) and P (x) are the cumulative probability dis-
tributions of the observed samples and of the model, above
a lower bound x1. Figure 4 shows the D statistics as a func-
tion of x1 for the raingage of Colognac. The value of x1

corresponding to the minimum of D provides the estimated
x̂min, 7.2 mm h−1 in the case shown in Figure 4. Therefore,
α̂ is estimated applying MLE to the X realizations higher or
equal to x̂min.

Figure 5 illustrates the sensitivity of α̂ to x1. For x1

higher than 20 mm h−1 the α̂ sensitivity to x1, as well as
the estimation uncertainty, is consistently high. This is the
result of the rapid decrease of the sample set size, and in
this method, as well as in other methods, α is never taken
in this range. For values of x1 close to the optimal value
x̂min, i.e. within the range 0.1−15 mm h−1, the sensitivity
of α̂ is considerably lower, varying of some decimals. How-
ever, it is worthy to notice that small variations of α̂ can
have relevant influence in the estimation of rainfall for very
high quantiles.

3. Scaling behavior of heavy rainfall

In the previous section, we stated that the tail distri-
bution of hourly rainfall behaves as a power-law at many
raingage stations and we described a method to estimate the
power-law parameters. In the current section, we investigate
the conservation of this property for temporal resolutions
ranging from 1 to 24 hours, for the longest hourly-raingage
series of the region, located in Montpellier (see Figure 1).
This raingage collected over 50 years of hourly data, in the
period 1920-1972. This raingage has been used for testing
some of the properties that we assume throughout the paper.
Rainfall rates for four durations (1, 4, 10 and 24 hours) have
been computed by aggregation within non-overlapping win-
dows. To make possible their scale-free inter-comparison,
the sample sets are firstly normalized by the mean rainfall
rate, subsequently, for each duration, a sample with fixed
size is chosen (2000 non-zero samples).

The assumption of data stationarity is often required to
analyze the heavy-rainfall behavior. On the other hand, the
sample set size has to be as long as possible to improve the
robustness of the statistics. These two requirements could
be incompatible. The stationarity of the rainfall intensities
of the 50-year long data set of Montpellier is thus question-
able. Therefore, we have checked this stationarity in com-
puting the survival probabilities displayed in Figure 6 for
two consecutive sub-periods lasting 25 years each. The two
sub-periods do not show considerable differences.

Figure 6 shows that the empirical survival probability ex-
hibits hyperbolic tails at durations of 1, 4, 10 and 24 h. The
lower bounds xmin and slopes α are computed using the
method described in Section 2. Figure 6 emphasizes that,
at any duration between 1 and 24 h, the hyperbolic tail has
an approximately constant slope, while the variability of the
series with respect to the mean decreases with the accumu-
lation duration. The lower bound xmin above which the
power-law behavior holds depends on the rainfall duration.
If xmin is the limit of the hyperbolic tail and the simple scal-
ing holds at this point, xmin should scale as a function of
the accumulation duration such that the absolute quantile
is a constant.

Therefore, the highest rainfall rates of this long series
display simple scaling properties for durations in between 1
and 24 hours. If the rainfall rate is a random process X(t)
(t ∈ $), we are able to magnify or contract by a factor λ
the highest rates without modifying the distribution shape
[Sornette, 2004, p. 148]. As stated by Gupta and Waymire
[1990], we can compute a scale function λθ ≥ 0 such that:

X(λt)
d
= λθX(t). (7)



The equality in distribution (Equation 7) is referred to
as “strict sense simple scaling”. It is obvious in Fig. 6
that the strict sense simple scaling does not apply to the
whole rainfall rate distribution (also stated by Gupta and
Waymire [1990]) which is rather multifractal ([Hubert et al.,
1993; Tessier et al., 1993]). However, this is not incom-
patible with the simple scaling behavior observed for the
highest rainfall rates. Several studies showed evidences of
the simple scaling behavior of very high quantiles, such as
annual maxima of the rainfall rate [Burlando and Rosso,
1996; Bendjoudi et al., 1997; Menabde et al., 1999; Borga
et al., 2005] while other authors reported a change in the
high rainfall-quantile behavior that Schertzer and Lovejoy
[1992] define as “Multifractal Phase Transition”.

4. Regionalization of the power-law exponent

4.1. Study region and data

The Cévennes-Vivarais region is located in the South-
East of France (see Figure 1). This region is prone to heavy
rainfall events causing flash floods [Jacq, 1994; Delrieu et al.,
2005]. Typical meteorological conditions have been detected
as triggering conditions for flash-floods, mainly the advec-
tion of warm-humid air from the South.

The region is southerly bounded by the Mediterranean
sea providing warm and humid air masses. The Alps mas-
sif to the East and the Massif Central to the West channel
the flow in the Rhône River valley (eastern boundary of the
study region). The Massif Central mountain range, approx-
imately oriented north-northwest, is impacted by low level
air masses from South and favors their lifting. The North-
Western part of the study region, usually less concerned by
severe rainfall events, is constituted by flat highlands.

The raingage network in the region has been installed
at the beginning of the previous century. However, digi-
tized hourly rainfall data are available only since 1993. In
this study, we used data from 1993 to 2008 provided by the
French Meteorological Service Météo-France. From 1993 to
2000 about 150 raingages were available; this number in-
creased to about 200 after the year 2000 (date of implemen-
tation of the Hydrometeorological survey service: OHMCV,
Delrieu [2004]). The raingage density is very fluctuating
from one place to another (see Fig. 1) and the mean rain-
gage density is approximately one per 150 square kilometers.

4.2. Methodology and implementation

The hyperbolic behavior and self-similarity of the distri-
butions of heavy rainfall intensities cumulated over periods
from 1 to 24 hours have been empirically assessed in Sec-
tion 3. In the current section, we regionalize the parameters
characterizing the self-similarity of heavy rainfall rates at
different durations.

The steps involved in the estimation of the power-law ex-
ponent α at a raingage are the following:

1. selection of a raingage having at least 2000 non-zero
observations at the duration D = 1h;

2. cumulate the raingage observations over higher accu-
mulation durations through a fixed-window process; we cu-
mulated at 2, 4 and 8 hours.

3. for D=1h, estimate xmin by minimizing the D statis-
tics of the Kolmogorov-Smirnov test (for each value of x1, a
value of α is computed and the statistics D is returned);

4. estimate the quantile of xmin in the complete rainfall
series (both zero and positive values)

5. for each duration D > 1h, Xmin is computed as the
value of xD corresponding to the same quantile as for D=1h;

6. compute α with the method proposed by Clauset et al.
[2009] taking Xmin as the lower bound, following Equation
2.

The interpolated exponent α̂1 of the point rainfall for the
1-hour duration is mapped in Figure 7-a, clearly showing
elongated structures corresponding to the mountain ridge.
The regionalization of α̂ is obtained by interpolation, per-
formed only if the variable has a definite correlation struc-
ture. The Universal Kriging method (described by Chiles
and Delfiner [1999]) has been chosen to interpolate the val-
ues of α̂ at different accumulation times. We emphasize that
even though the value of α̂1 has been spatially interpolated,
it remains a local measure. Since different mechanisms are
involved, the integration of α over a surface does not corre-
spond to the areal power-law exponent.

The interpolated α̂1 values can be altered by two kinds of
errors. One is due to the interpolation process; the second
is due to the assumption of hyperbolic behavior of rainfall
distribution tails and their fitting. The former is evaluated
through the kriging standard deviation displayed in Figure
9-a. This Figure shows that except in the domain fringe, the
kriging standard deviation is lower than 10% of α̂1 which
we consider as acceptable in comparison, for instance, to
the variation of 20% of α̂ across the region. The confidence
interval ∆α̂ efficiently assesses the latter error type (i.e. the
reliability of the point α̂ estimation). In Figure 8-a, the con-
fidence interval ∆α̂ for the 95% confidence level is mapped
for the region of interest. Figure 8-b shows that the confi-
dence interval roughly varies between 14% in the plain re-
gion to 26 % of α̂ in the northern part of the region of study.
The α estimation is the most reliable in the southern part
of the study region. The lowest α̂1 ∼ 2.6 are located at the
lowest altitude and increase gradually with altitude up to
the Cévennes-Vivarais mountain ridge (α̂1 ∼ 3.6) and the
Alps. In the Rhône river valley the gradient is weaker. We
have to point out that, in the mountainous sub-region, the
power-law model is less adapted to the series, as shown by
analyzing the confidence interval (Figure 8-b). In the next
section, we will evaluate the α exponent for the accumula-
tion periods of 2, 4 and 8 hours.

4.3. Regional rainfall scaling assessment

Following methodology described in the previous para-
graph, the assessment of the simple scaling assumption is
undertaken in the whole study region by evaluating the α be-
havior at different accumulation periods. At each raingage,
rainfall rates are aggregated over 2, 4 and 8-hour periods
using non-overlapping windows. The 4-hour limit guaran-
tees sufficiently long rainfall series (> 500) while, for the 8-h
interval, most of gages had been discarded due to the poor
sample set size.

Since the quantile of xmin is assumed to be scale-invariant
(Section 2), this property has been used to retrieve its val-
ues at the 2-, 4- and 8-hour durations from xmin computed
at the 1-hour duration. Using the Maximum Likelihood es-
timation method (2), α̂2, α̂4 and α̂8 are estimated (Sec-
tion 2) and mapped (Section 4.2, Figure 7-b,c,d).The inter-
polation variance associated to the α̂2, α̂4 and α̂8 kriging
is almost identical in pattern and displays increasing values
of the estimation error with duration (Figure 9-b,c,d). This
is due to the decreasing sample set size and to the reduced
number of available gages. Despite those sources of uncer-
tainties, α̂2, α̂4 and α̂8 remain approximately constant in
the sub-region corresponding to the lowest altitudes. On
the contrary, the fluctuations seem more consistent near the
mountain ridge and in the northwest plateau. This evidence
validates the scaling behavior of heavy rainfall for short du-
ration in this flat sub-region in agreement with Hubert and
Bendjoudi [1996]. In the sub-region at the North of the
Mont Lozère, α varies consistently with duration. The sim-
ple scaling hypothesis does not hold in this area.

Figure 10 shows the map of xmin for D=1h. In the plain
region and over the Massif Central, the lower bound xmin



is the lowest ( ∼ 4 mm h−1) and increases towards the
North-West over the mountain slope until the ridge up to
about 9 mm h−1 and towards the North up to 8 mm h−1.
Mountainous and north-eastern raingages show the small-
est proportion of events lying in the hyperbolic part of the
distribution. This is the main evidence of the effect of orog-
raphy on rainfall from the point of view of the probability
distribution.

5. Conclusive remarks

The paper has shown that an objective method can be
used to characterize the heavy rainfall distribution featuring
hyperbolic tails. The objective and unbiased determination
of the power-law exponent α is necessary for the region-
alization of the power-law behavior of rainfall series. This
process has been repeated at different accumulation periods,
leading to the definition of a sub-region where the power-law
exponent is approximately constant. Considering the rela-
tively short observation period (16 years), we assume that no
significant trends affecting the stationarity of the raingage
series are present.

In the next sub-section, we will interpret the results from
the point of view of the physical processes generating rain-
fall within the study region, and we will discuss the current
findings regarding the statistical analysis of extreme rainfall
events.

5.1. Physical interpretation of the results

The behavior of rainfall distribution tails is heterogeneous
in the region of interest. The regionalization of the rain-
fall variability (α values, Fig. 7), the agreement between
the power-law model and the tail distribution shape (confi-
dence interval, Fig. 8) and the proportion of observations
concerned by the power-law behavior (xmin values, Fig. 10)
delineate the differences between the flat area and the moun-
tainous region. In the South-East sub-region (between Alès,
Nı̂mes and Montpellier) the rainfall variability, i.e. the ra-
tio between maximum and average rainfall, is the highest at
short durations: it is the area where the power-law model is
the most adapted (lower confidence interval in Fig. 8) and
the number of observations exhibiting hyperbolic tails is the
highest (lower xmin in Fig. 10). The power-law exponent in
the region shows a relief-oriented gradient: both the Central
Massif and the Alps exhibit high α, corresponding to lower
rainfall variability compared to the flat areas. The signature
of the Rhône Valley is sharp for small accumulation periods,
decreasing for high accumulation periods.

Several studies [Sénési et al., 1996; Ducrocq et al., 2002;
Ricard , 2002; Ducrocq et al., 2003; Delrieu et al., 2005;
Nuissier et al., 2008] have shown that the heaviest rain-
fall are yielded by mesoscale-systems entering the region
from South and South-East. Grossly speaking, the relatively
warm and humid air masses coming from the Mediterranean
sea are lifted upward by an orographic barrier, the Massif
Central slopes, and by thermodynamical mechanisms (cold
pool, Nuissier et al. [2008]) which block the heaviest rainfall
in the South-East of the study region.

The South-North gradient, displayed by the statistical
properties of heavy rainfall in the Northern part of the study
area especially for accumulation periods higher than 2 hours,
is less linked to the relief. Both valley and mountain slopes
are present in the region. The lack of references concern-
ing the rainfall events occurring in this region allows only
hypothetical reasoning. The average increase of α values in
this region corresponds to a general decrease of rainfall vari-
ability compared to the southern portion. An interpretation
may be that, besides the relief effect, the distance from the
storm-triggering zone plays an important role on the weak-
ening of the storm convection, due to the ground friction.
In conclusion, the sheltering effect generated by the relief is
not the only factor limiting the rainfall variability.

5.2. Consequences for the extreme modeling

The representativity of the power-law exponent α for the
description of the variability of heavy rainfall is demon-
strated by two main results. First, α has a well-determined
spatial structure (Fig. 7). The interpolation process has
been easily performed since the variable has a definite em-
pirical variogram at any duration. Interesting properties
of α are that whatever the accumulation duration, α is al-
ways lower in the flat area; in addition, in the Southern por-
tion of the domain, α is approximately constant with the
accumulation duration, satisfying the necessary conditions
for the simple scaling of heavy rainfall. As recalled in Sec-
tion 1, the cumulative probability distributions of extreme
rainfall intensities are usually modeled either by General-
ized Extreme Value (GEV) or Generalized Pareto Distribu-
tions (GPD) [Kottegoda and Rosso, 1997; Sornette, 2004]
depending on the selection of heavy rainfall events (max-
ima or Peaks Over Threshold). Depending on their param-
eters, both the GEV and GPD distributions may display
exponential or power-law tails. Extreme rainfall analyses
related to design rainfall assessment in the South-East of
France [Guillot and Duband, 1967; Slimani and Lebel , 1986;
Nguyen Thao et al., 1993; Cernesson et al., 1996] and else-
where Zhang and Singh [2007], for instance, assumed that
infra-daily extreme rainfall intensities follow Gumbel distri-
butions (GEV-I) i.e. exponential survival probability tails.
Thick tail distributions have been found in space-time rain-
fall fluctuations [Kumar and Foufoula-Georgiou, 1993; Per-
ica and Foufoula-Georgiou, 1996].

Koutsoyiannis [2003] pointed out some reasons of the
GEV-I popularity in hydrology: design-rainfall studies are
based on maxima analyses, GEV-I exhibit linearity on Gum-
bel diagrams. on the log-log plot in Figure 2 Moreover,
GEV-II (Fréchet) distribution has one additional parameter
respect to GEV-I, giving larger uncertainties with limited
sample sets. However, several studies reported that GEV-I
underestimates actual extreme rainfall intensities (see Kout-
soyiannis [2003] for a detailed description). In this study
most of raingages shows hyperbolic tails at various dura-
tions: this is an evidence of the Fréchet behavior of maxima;
the exponential behavior of survival probability tails typical
of Gumbel distribution is not in agreement with our findings
concerning the Southern part of the study region. Consid-
ering the proportion of hyperbolically distributed samples
at the accumulation time of 1 hour, we observed that in
most of raingages they are no more than 5 % of the pos-
itive rainfall values. This value corresponds to the 0.1 -
0.3% of the whole observations, meaning that in a year, be-
tween 8 and 20 observations are hyperbolically-distributed.
However, the strong inter-dependence of most of these val-
ues further limits the number of independent data lying in
the hyperbolic tail. In addition, increasing the accumula-
tion period, the number of observations per year decreases,
reducing the number of hyperbolically-distributed samples.
In the case of the 24-h accumulation period, we should ob-
serve in average a hyperbolic sample every three years. In
our opinion, this explains why a limited sample set of daily
data better fits a GEV-I distribution rather than a GEV-II
one.

The most important result in this paper is the assess-
ment of the variability of α with duration (Fig. 11). The
variance among the α values at 1h ,2h, 3h, 4h is used as
indicator of the variability of the temporal scaling prop-
erties of heavy rainfall. The 8-hour accumulation period
has not been considered in this computation: many stations
have been discarded due to the poor sample set size. The
lower the variance, the higher the reliability in the temporal



simple-scaling behavior. Figure 11 shows that, in a large
sub-region covering both the flat area and a portion of the
foothill (Southern part of the study region), the variability
of α with the accumulation period is small (variance lower
than 0.06). In this zone α can be considered as a constant
with respect to duration. Since in the same sub-region the
confidence interval of the power-law estimation is lower than
20% of the value of α (Fig. 8), in these areas the rainfall
distribution can be considered approximately self-similar in
the power-law distributed part. In the framework of the
usual extreme value analysis, this means that the “extreme
value index” ξ, (which is 0 in GEV-I and equal to 1

α
in

GEV-II), would always be higher than 0 in this sub-region
and, even more noteworthy, it is constant with duration.
In regions where time simple-scaling of heavy rainfall holds,
the derivation of one of the three parameters of GEV-II by
means of scale-invariance relations can therefore determine
a considerable improvement in the fitting of limited samples
series with GEV-II distribution.
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Figure 1. a: Localisation of the region of interest. b:
Elevation map (gray shaded area in m above sea level)
in the region of interest. The crosses indicate the hourly
raingage network. The full line indicates the main hy-
drographic network. The main river in the region is the
Rhône river. It roughly represents the eastern boundary
of the region. The Mediterranean shore is the south-
ern boundary and the mountain ridge, oriented North-
Northwest, is the southern limit of the Massif Central
plateau.
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Figure 2. Log-log plot of the survival probability dis-
tribution of hourly rainfall for the raingage station of
Colognac, France.



Figure 3. Box-plots of the distribution of α̂ using the
Least Squares Fitting (a) and the Maximum Likelihood
Estimator (b) on 100 samples of different size. All the
samples were distributed following a Pareto distribution,
xmin=10, k=3.



Figure 4. Plot of the Kolmogorov-Smirnov D statis-
tics as a function of the lower bound x1 for the hourly
raingage station of Colognac, France (see Fig. 2). The
minimum of D corresponds to xmin, which is used in turn
to determine α.
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Figure 5. Power-law exponent α as a function of the
lower bound x1 for the raingage station of Colognac,
France (see Figure 2).
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Figure 6. Log-log plot of survival probability of the
normalized rainfall rate for durations of 1 h (solid line), 4
h (dash-dotted line), 10 h (dashed line) and 24 h (doubly
dashed line) hours at the raingage station of Montpellier
- Bel-Air. A solid circle marks the lower bounds xmin.
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Figure 7. Power-law exponent (α̂) map in the region of
interest for different accumulation periods. a: D=1h. b:
D=2h. c: D=4h. d: D=8h. The crosses represent the
considered raingage network at the corresponding dura-
tion. See Figure 1 for details on the background.
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Figure 8. Confidence interval of α̂1 for the 95% confi-
dence level. a: absolute confidence interval; b: relative
to α̂1 confidence interval. The maps have been obtained
by kriging interpolation.
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Figure 9. Kriging standard deviation map for the α exponent. a: D=1h. b: D=2h. c: D=4h. d: D=8h.
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Figure 10. Map of the power-law lower bound x̂min for D=1h.
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Figure 11. Stability of the power-law exponent: variance of the α̂ values at 1, 2, 3, 4 h.



8A scale-invariance

Intensity-Duration-Frequency model

Résumé

Dans cet article nous appliquons un modèle invariant d’échelle pour l’estimation des précipitations
extrêmes dans une région du sud de la France. Nous utilisons des observations de pluie journalière
pour montrer que la distribution des maxima ponctuels peut présenter à la fois des queues expo-
nentielles et hyperboliques, et par conséquence elle s’adapte à la distribution des valeurs extrêmes
généralisée (GEV) et non pas à une plus restrictive distribution de Gumbel. Grâce aux pluviomètres à
enregistrement (horaires), nous montrons que les précipitations maximales dans la zone d’étude sont
invariantes d’échelle au moins dans la gamme de durées 4 h à 100 h, et que l’invariance d’échelle
est du type “simple scaling”. Le modèle couple les courbes intensité-durée-fréquence (IDF) avec
la distribution généralisée des valeurs extrêmes. Le paramètre de forme de la loi des extrêmes (con-
stante en “simple scaling”) a une influence importante dans la détermination des précipitations pour
les périodes de retour élevées. L’amélioration de son estimation passe par l’adoption d’une méthode
des excès (Peaks-Over-Threshold). Les quatre paramètres du modèle sont ensuite cartographié,
et l’estimation des pluies extrêmes pour la période de retour de 50 et 100 ans est évaluée. Nous
mettons en évidence les différences avec le modèle Gumbel simple scaling. Nous discutons enfin sur
les phénomènes météorologiques sous-jacentes qui peuvent mener au comportement des précipitations
extrêmes dans la région d’étude.

8.1 Introduction

In this paper we apply a scale-invariant model for the estimation of rainfall maxima in a region of
Southern France. We use daily rainfall observations to show that the point distribution of rainfall
maxima over the study region can present exponential or hyperbolic tails, and consequently fit with the
Generalized Extreme Value (GEV) distribution framework (see also Ceresetti et al. (2011)). Thanks
to recording (hourly) rain gauges, we show that rainfall maxima in the study region display the simple-
scaling property at least over the range 4 h- 100 h. The model derives Intensity-Duration-Frequency
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168 A SCALE-INVARIANCE INTENSITY-DURATION-FREQUENCY MODEL 8.1

(IDF) curves coupling the temporal scale-invariance with the Generalized Extreme Value distribution.
The shape parameter (a constant in simple scaling) has large influence in the rainfall determination
for large return periods. We improve its estimation by adopting a Peaks-Over-Threshold method. The
4 model parameters are then mapped, and the return level rainfall intensities for the return period
of 50 and 100 years are computed and analyzed, highlighting the differences with the Gumbel simple
scaling model. We finally discuss about the underlying meteorological phenomena that may lead to
the extreme rainfall behavior over the region of study.
The paper relies on the considerations concerning the self-similarity of random variables (Section 5.5.2)
and the scaling of Intensity-Duration-Frequency curves (Section 5.11). To facilitate the article reading,
in the following we define L-moments. The estimation by L-moments (Hosking, 1990) is more adapted
than classical moments when dealing with high-variability observations such as rainfall maxima. L-
moments estimation, in fact, only requires that the mean of the distribution is finite; the higher-order
moments do not need to be finite. In addition, the computation of standard error only requires that
the distribution has finite variance. Furthermore, L-moments are less sensitive to outlying data values
(Vogel and Fennessey, 1993).

The L-moments are defined (Hosking, 1990) for a real valued random variable X with cumulative
distribution function F (x), for a random sample of size n drawn from the distribution of X, as:

Lr = r−1
r−1∑

k=0

(−1)k
(

r − 1
k

)
E[Xr−k:r] (8.1)

where X1:n ≤ X2:n ≤ . . . ≤ Xn:n is the order statistics of the random sample and r = 1, 2, . . . is the
moment order.

The first 4 L-moments are:

L1 = E[X] =
∫ 1
0 x(F )dF

L2 = 1
2E[X2:2 −X1:2] =

∫ 1
0 x(F )(2F − 1)dF

L3 = 1
3E[X3:3 − 2X2:3 + X1:3] =

∫ 1
0 x(F )(6F 2 − 6F + 1)dF

L4 = 1
4E[X4:4 − 3X3:4 + 3X2:4 −+X1:4] =

∫ 1
0 x(F )(20F 3 − 30F 2 + 12F − 1)dF

(8.2)

The L-moment ratios τr are defined as

τr =
Lr

L2
(8.3)

The Gumbel parameters are given as a function of the L-moments (Hosking, 1990):

µ = L2/ log(2)
σ = L1 − γσ

(8.4)

The GEV estimation requires the use of the Gamma function Γ:

µ = L1 + σ 1−Γ(1−ξ)
ξ

σ = −L2ξ
(1−2ξ)Γ(1−ξ)

(8.5)

where the Gamma function is defined as Γ(x) =
∫ +∞
0 tx−1etdt.
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The ξ parameter can be estimated from a data sample by inverting the equation in terms of the
third L-moment ratio τ3

τ3 = 2
(1− 3ξ)
1− 2ξ

− 3 (8.6)

The latter equation can not be explicitely expressed as a function of ξ, however an approximate
formula exists.

8.2 Article: Intensity-Duration-Frequency curves in a GEV scale-

invariant framework

Submitted to Water Resources Research, September 2010



Intensity - Duration - Frequency curves in a GEV

scale-invariant framework

D. Ceresetti, G. Molinié, J.-D. Creutin

LTHE, Laboratoire d’Etudes des Transferts en Hydrologie et Environnement - (CNRS,UJF,IRD,INPG),
Grenoble, France

Abstract.

In this paper we apply a scale-invariant model for the estimation of rainfall maxima
in a region of Southern France. We use daily rainfall observations to show that the point
distribution of rainfall maxima over the study region can present exponential or hyper-
bolic tails, and consequently fit with the Generalized Extreme Value (GEV) distribu-
tion framework. Thanks to recording (hourly) raingages, we show that rainfall maxima
in the study region display simple-scaling property at least over the range 4 h- 100 h.
The model derives Intensity-Duration-Frequency (IDF) curves coupling the temporal simple-
scaling with the Generalized Extreme Value distribution. The shape parameter (a con-
stant in simple scaling) has large influence in the rainfall determination for large return
periods. We improve its estimation by adopting a Peaks-Over-Threshold method. The
four model parameters are then mapped, and the estimation of the extreme rainfall for
the return period of 50 and 100 years is presented, highlighting the differences with the
Gumbel simple scaling model. We finally discuss about the underlying meteorological phe-
nomena that may lead to the extreme rainfall behavior over the region of study.

1. Introduction

The problem of the frequency estimation of extreme
hydro-meteorological events needs very long and station-
ary series that are seldom available. Climate change (an-
thropogenic or natural) gives doubts about the stationarity
of existing data bases. Practical problem always made the
availability of such data bases somewhat problematic. The
appropriate temporal scales for analyzing rainfall events are
not necessarily in agreement with the temporal resolution
of the rainfall records. The almost exclusive use of daily
raingages around the world makes impossible to correctly
assess the frequency of infra-daily events. In regions were
long series of infra-daily rainfall intensities are available, em-
pirical determinations of IDF relationships for different du-
rations can lead to incoherence between durations [Borga
et al., 2005], due to sampling effects on the aggregation of
rainfall intensities.

In the 90’s, following the dissemination of fractal sci-
ence in the hydro-meteorological research community, rain-
fall scale invariance issues have been addressed by various
authors [Schertzer and Lovejoy, 1987; Hubert and Carbon-
nel , 1989; Ladoy et al., 1993; Marsan et al., 1996; Bendjoudi
et al., 1997; Venugopal et al., 1999; Deidda et al., 1999; Har-
ris et al., 2001]. Pragmatic studies [Burlando and Rosso,
1996; Menabde et al., 1999; Veneziano and Furcolo, 2002;
Borga et al., 2005] have used the temporal scale-invariance
property of rainfall series to infer analytical expressions of
IDF relationships. Burlando and Rosso [1996] and Bend-
joudi et al. [1997] were the firsts to demonstrate that the
usual IDF relationships were expressions of the rainfall scale
invariance. At about the same time, thanks to the ex-
treme value (EV) theory, Koutsoyiannis et al. [1998] de-
scribed the mathematical framework for studying rainfall
Intensity-Duration-Frequency relationships. Menabde et al.
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[1999] showed that the simple-scaling framework (a particu-
lar case of the multifractal one) could be coupled with IDF
relationships, and presented a scaling IDF model assuming
Gumbel-distributed (EV-I) rainfall maxima.

Recently, the availability of long series allowed to show
that rainfall maxima may exhibit tails thicker than the
Gumbel model [Koutsoyiannis, 2003]. In a previous paper
we showed the need to generalize the behavior of rainfall
maxima in the framework of the Generalized Extreme Value
(GEV) distribution in the study region [Ceresetti et al.,
2010]. In this paper we propose a derivation of IDF re-
lationships in the context of GEV-distributed maxima by
means of a scale-invariant approach. Practically, we verify
the simple-scaling assumption for durations in the range 1-
100 h using hourly observations; then, using a daily rainfall
database, we determine the parameters of the scale-invariant
model.

The paper is organized in six sections. Section 2 focuses
on the classical expression of Intensity - Duration - Fre-
quency curves and on the implicit scale-invariance assump-
tion that this model implies taking a fixed return period. Af-
ter a description of the simple-scaling EV-I (Gumbel) model
for IDF curves (Section 2.1), the formulation of a simple-
scaling GEV model is presented including a L-moments for-
mulation (Section 2.2). A brief overview of the study region
and of the raingage networks follows in Section 3. The GEV
scale-invariant model is applied to the raingage network in
Section 4 with the aim to provide a continuous description
of the extremes behavior for accumulations over 1 and 100
h. In Section 5 a discussion concerning the advantages of
this parsimonious model, the implications and limits of the
simple-scaling assumption are reported, together with the
comparison of rainfall maps built with the Gumbel and the
GEV model for return periods TR of 50 and 100 years.

2. Intensity - Duration - Frequency curves
and scale-invariance

Intensity - Duration - Frequency curves relate the rainfall
intensity I , the duration over which the intensity is consid-
ered D, and the corresponding frequency of occurrence F

1



otherwise expressed in terms of return period TR = 1
1−F .

IDF curves are devoted to the estimation of design rain-
fall or flows. Empirical IDF curves are derived by fitting
the rainfall intensity relative to the same return period as a
function of the temporal scale. Following this methodology,
Bernard [1932] showed that IDF relationships have similar
behavior in different regions of the world. Since then, IDF
expressions based on empirical analysis were adopted in en-
gineering design. More than 60 years later, Koutsoyiannis
et al. [1998] provided a mathematical derivation of IDF re-
lationships using dimensional arguments:

ID,TR = a(TR)Dn(TR) (1)

where a(TR) and n(TR) < 0 are two parameters depend-
ing only on the return period TR. Equation (1) expresses
that rainfall intensity decreases when duration increases, for
a fixed return-period.

To obtain analytical IDF expressions for any return pe-
riod, the scaling properties of rainfall intensity must be
coupled to an extreme-value distribution (block-maxima
or peaks-over-threshold). A number of models coupling
extreme-value distributions and scale invariance of rainfall
maxima have been proposed [Burlando and Rosso, 1996;
Bendjoudi et al., 1997; Menabde et al., 1999; Borga et al.,
2005]. These models follow the concept of scaling proposed
by Gupta and Waymire [1990] that we briefly recall here-
after.

A process Y is strict sense scaling when its probability
distribution at the scale λ can be derived from the distri-
bution of the process at a reference scale λref through the
relationship:

Yλ
d
=

(

λ
λref

)

−H

Yλref (2)

When the scaling concept is applied to the maximum rain-
fall intensity I (mm h−1) as a function of the duration D (h),
Equation (2) becomes:

ID
d
=

(

D
Dref

)

−H

IDref (3)

Gupta and Waymire [1990] report that the scaling in
distribution (strict sense) implies a similar relation for the
statistical moments (property known as “wide-sense simple
scaling”):

E[Iq
D] =

(

D
Dref

)

−qH

E[Iq
Dref

] (4)

where q is the moment order. Equation (4) is valid if the
moments of the maximum rainfall intensity are defined. If
the scaling exponent H depends on q, the process is said
“simple scaling” otherwise it is “multiple scaling”.

A “wide sense” scaling relation is also available for quan-
tiles [Burlando and Rosso, 1996]:

ID,k =
D

Dref

−H

IDref ,k (5)

where k is the k-th quantile.
The identification of Equations (1) and (5) for a given

quantile leads to a(TR) = IDref ,TR . Thus a(TR) is the rain-
fall intensity for the reference duration Dref and the return
period TR = 1

1−F . The identification also indicates that

n(TR) − H . It follows that if the scaling exponent n of
Equation (1) varies with the probability level F (i.e. with
the return period TR ) we have multiple scaling and, if it
is constant, we have simple scaling. In both cases, the plot
I versus D displays straight lines in log-log scales (one for
each TR).

In order to explicit the return-period dependence in Equa-
tion (1), we introduce an extreme-value distribution for the
maximum rainfall intensity. The distributions of indepen-
dent and identically distributed (i.i.d.) maxima can be mod-
eled with the Generalized Extreme Value density function
(GEV, Kotz and Nadarajah [2000]). Three particular ex-
pressions (EV-I, EV-II and EV-III) are derived from the
GEV following the random variable property. The most rel-
evant property of GEV distribution in this context is that its
third and fourth moments (skewness and kurtosis) only de-
pend on the shape parameter and are constant in EV-I, i.e.
the distribution is unable to modify its shape according with
the multi-scaling framework; this implies incompatibility of
GEV with the multi-scaling modeling of rainfall maxima.

Rainfall maxima show slight deviations from the sim-
ple scaling behavior; Burlando and Rosso [1996] proposed
a multi-scaling model of log-normally distributed max-
ima. This model is adapted to define Intensity-Duration-
Frequency curves for small return periods, where the asymp-
totic conditions underlying the extreme-value theorem are
not completely fulfilled.

In our application, the deviation from simple scaling is
small, as shown in Section 2.2. Therefore, a theoretically
consistent simple-scaling model will be adopted. In this
framework, the shape parameter remains constant whatever
the scale.

In the two following paragraphs, IDF formulations are
derived in the simple-scaling framework, for Gumbel (Sec-
tion 2.1) and, more generally, GEV (Section 2.2) distributed
maxima.

2.1. Gumbel Simple-scaling IDF model

Let us assume that rainfall maxima follow an EV-I (Gum-
bel) distribution and feature temporal simple-scaling. The
moment scaling function K(q) of the statistical raw mo-
ments (Equation 4) is a linear function of the scaling ex-
ponent H and of the moment order q:

K(q) = H · q (6)

where H is a constant in simple scaling. The Gumbel
distribution, whose cumulative function is

F (x,µ, σ) = e−e−(x−µ)/σ

(7)

is defined by two parameters, the location µ and the scale
σ. As stated in Menabde et al. [1999]; Borga et al. [2005],
the strict sense scaling relationship (Equation 4) allows to
determine the distribution parameters at any duration D
from a first guess at a reference duration Dref :

µD =

(

D
Dref

)

−K(1)

µDref and σD =

(

D
Dref

)

−K(2)
2

σDref

(8)

In case of simple scaling of rainfall maxima, Equation (6)
applies and then K(1) = K(2)/2. This implies that the co-
efficient of variation CV, ratio of the standard deviation to
the mean, is independent of the duration. From a practical



point of view, the Gumbel parameters µ and σ are estimated
thanks to the sample mean m(x) and sample standard de-
viation s(x) following the relations:

µ̂ = m(x) − γσ̂ σ̂ =
s(x)

√
6

π
(9)

where γ ∼ 0.5772 is the Euler constant.
Combining Equations (8), (9) and knowing the mean and

standard deviation of the maxima at a particular scale al-
low to estimate the Gumbel parameters at any duration.
In particular, if simple scaling holds, the maximum rainfall
intensity at any duration D and return period TR can be
expressed by [Menabde et al., 1999]:

ID,TR =
µ(Dref ) − σ(Dref )ε

(

D
Dref

)

−n (10)

where n = K(1) = K(2)/2 and

ε = − log
(

1 −
1

TR

)

(11)

Comparing the IDF formulation in Equation (10) with
Equation (1), the numerator corresponds to a(TR) (i.e. the
value of the variable for the reference duration and for the
given return period) while the denominator is equal to D−n

if Dref = 1h. In simple scaling, n does not depend on TR.
The same expression has been derived by Borga et al. [2005]
considering, instead of the Gumbel location and scale pa-
rameters, the expected value of the annual maxima at Dref

and the coefficient of variation CV:

ID,TR = m(x)

{

1 −
CV

√
6

π
[γ + log(ε)]

}(

D
Dref

)n

(12)

As pointed out by the same authors, the Gumbel pa-
rameter estimation by L-moments [Hosking, 1990] is more
adapted than classical moments when dealing with high-
variability observations such as rainfall maxima. Different
from the above-quoted method involving classic statistical
moments, the L-moments estimation only requires that the
mean of the distribution is finite; the higher-order moments
do not need to be finite. In addition, the computation of
standard error only requires that the distribution has finite
variance. Furthermore, L-moments are less sensitive to out-
lying data values [Vogel and Fennessey, 1993].

The Gumbel parameters are given as a function of the L-
moments by Stedinger et al. [1993]. With respect to Equa-
tion (12), the first two sample moments m(x) and s(x) are
substituted by the first and second order L-moments L1 and
L2. The ratio of the two first order L-moments, called τ2,
has the same significance as the CV . Therefore, in the case
of maxima following a Gumbel distribution whose param-
eters are estimated using L-moments, the IDF relationship
becomes [Borga et al., 2005]:

ID,TR = L1

(

1 −
τ2

log(2)
(γ + log(ε))

)(

D
Dref

)n

(13)

where n and ε are the same as Equation (10).

2.2. GEV Simple-scaling IDF model

The Gumbel distribution is a particular case (EV-I) of
the more general GEV distribution. Recently Koutsoyian-
nis [2003] has demonstrated the appropriateness of the GEV
distribution in modeling daily rainfall maxima. The GEV

simple-scaling model can be derived from the inverse func-
tion of the cumulative probability density function:

F (x,µ, σ, ξ) = exp

{

−
[

1 + ξ
(

x − µ
σ

)]

−1/ξ
}

(14)

and from the expression of the first two GEV moments:

µ̂ = m(x) +
σ̂
ξ
−

σ̂
ξ
Γ(1 − ξ) (15)

and

σ̂2 =
s(x)2ξ2

Γ(1 − 2ξ) − Γ(1 − ξ)2
(16)

where Γ(z) =
∫

∞

0
tz−1 exp(−t)dt is the Gamma function,

and ξ $= 0. The case ξ = 0 corresponds to the Gumbel
density function detailed in the previous paragraph. From
Equation (4) (also in Salvadori and De Michele [2001] ), the
GEV parameters µ, σ and ξ scale as:















µD =
(

D
Dref

)

−H

· µDref

σ2
D =

(

D
Dref

)

−2H

· σ2
Dref

→ σD =
(

D
Dref

)

−H

· σDref

ξD = ξDref

(17)

The simple-scaling GEV model is defined, as a function
of E[x], CV , ξ and n by:

ID,TR = E[x]

(

1 +
CV

[

− (− log F )−ξ − Γ(1 − ξ)
]

√

Γ(1 − 2ξ) − Γ(1 − ξ)2

)

(

D
Dref

)n

.

(18)

The use of L-moments [Smithers and Schulze, 2004] im-
proves the parameters estimation as in the case of Gumbel
model. The first two GEV parameters are defined as a func-
tion of the first two L-moments (L1 and L2) as:

µ̂ = L1 + σ
1 − Γ(1 − ξ)

ξ
(19)

σ̂ =
−L2ξ

(1 − 2ξ)Γ(1 − ξ)
(20)

The combination of Equations (14) and (19) leads to the
simple scaling expression of the IDF relationship for GEV
distributed maxima:

ID,TR = L1



1 + τ2

(

1 − (− log F )−ξ

Γ(1−ξ)

)

(1 − 2ξ)





(

D
Dref

)n

(21)

Described in terms of classical moments or L-moments,
the GEV scale-invariant model provides a mathematically
coherent coupling between the power-law form that IDF
curves exhibit for each return period and the asymptotic dis-
tribution for block-maxima, the GEV distribution. In the
next sections, we apply this model to the rainfall database
located in the Cévennes-Vivarais region, in Southern France,
with the aim to better understand the behavior of extreme
rainfall events for ranges of accumulation of hydrological in-
terest.



3. Data

The studied region is located in the South-East of France.
It covers a window of about 160x200 km2, bounded by the
Rhone River to the East and by the Mediterranean Sea to
the South (Figure 1). The South-Eastern half is rather flat
and close to the sea level. The N-W half of the region is part
of the Massif Central. Oriented 30◦, the Massif Central ridge
reaches maximum elevations between 1500 and 1800 m.

The rainfall regime of the region combines the effects of
Mediterranean Sea and the mountainous topography. In
this context, the location and magnitude of the rainfall ex-
tremes vary with the accumulation period [Ceresetti et al.,
2010; Molinié et al., 2010]. Jacq [1994] reported 144 rain
events with daily precipitation amounts greater than 190
mm during the 1958-1994 period. They mainly involve the
southeasterly oriented foothills. On the other side, the flat
area is submitted to intense but relatively short showers (up
to 150 mm h−1). All the region is prone to flash floods.

The database is provided by the French meteo-
rological service Météo-France and managed by the
OHM-CV (Mediterranean Hydro-meteorological Observa-
tory Cévennes-Vivarais). The available raingages are rea-
sonably well distributed in the area. The average rain gage
density is about 2 stations per 100km2 (Figure 2). Only the
2% of the area with elevation above 1600 m is undersampled.

The hourly rainfall database is composed of about 150
tipping-bucket raingages series covering the period 1993-
2008.

The daily database includes about 300 series covering the
period 1958-2008. In order to better assess the rainfall ex-
treme behavior, this study uses the 225 daily raingages hav-
ing more than 30 years of continuous data.

4. Implementation of the IDF-scaling model

4.1. IDF simple-scaling exponent

The scale invariance of annual-maxima over a large range
of durations (1h to 100 h) is first tested thanks to the
longest rainfall series available in the study region: Mont-
pellier with 52 years of hourly observations. The box-plot
of Figure 3 summarizes the annual maxima distributions
for different durations. In the range 4-100 h, the annual-
maxima distributions scale linearly in a log-log diagram.
In agreement with Equations (3) and (4), the mean and
the median of the distributions exhibit log-linearity and the
distribution scattering (variance, inter-quantile distance) is
constant. For durations below 4 hours, the observed rain-
fall maxima are lower than the log-linear model prediction.
This could be due to sampling issues: stochastic simulations
[Molinié et al., 2010] show that maxima are underestimated
by up to 40% for durations lower than 4 hours when esti-
mated using clock hourly data instead of moving windows
designed to capture maxima from the continuous signal.

To verify if log-linearity of rainfall maxima can be as-
sumed in the study domain, hourly rainfall series have been
aggregated from 1 to 100 h in 169 stations with recording
raingages. Annual maxima are extracted and the scaling
behavior of their first sample moment (i.e. the average) is
assessed by computing its correlation (in log-log plot) with
the accumulation duration ( like in an analogous study by
De Michele et al. [2001]). In most of the cases the correlation
coefficient R2 statistics is close to one (Figure 4). To further
analyze the deviation from simple scaling in the region, let us
consider the moment scaling function defined in Equations
(6) and (8): Simple scaling is verified, at least for the first
two moments, when the ratio K(2)/(2K(1)) is equal to 1. In
Figure 5-a the histogram of K(2)/(2K(1)) shows that most
rain gages display ratios close to one (between 1 and 1.15)

and that slight deviations from simple scaling are present in
the region. Mapping the ratio K(2)/(2K(1)) (Figure 5-b),
we identify that the higher deviations from simple-scaling
are found close to the mountain ridge and in the Massif
Central plateau (NW from the ridge). The simple-scaling
model can therefore be safely adopted at least in the flat
area close to the Mediterranean Sea.

By means of the hourly rain gage database we have shown
that annual-maxima scale on the range 4h to 4 days and
we have, in general, small deviations from simple-scaling of
maxima. From a practical point of view, the estimation
of the scaling exponent can be performed with the daily
database, featuring longer series compared to the hourly
database. The first two L-moments of annual-rainfall max-
ima series in the range 1-4 days are computed and, for each
rain gage, a straight line is fitted in the double logarithmic
plot as reported in Figure 6. The slope of the straight line
provides an estimation of the scaling exponent n, first pa-
rameter of the GEV simple-scaling model, according with
Equation (21).

4.2. Hybrid extreme modeling at D = Dref

The identification of the maxima distribution at a refer-
ence scale is the first application step of the GEV simple
scaling model of Equation (21). The distribution parame-
ters are estimated from the daily database (see Section 3)
characterized by long series (30 to 50 years) and by a dense
rain gage network (225 gages).

As stated in Koutsoyiannis [2003], the inference of GEV
parameters requires very long series of maxima. This is due
to the GEV flexibility to accommodate heavy, exponential as
well as bounded tails. To overcome this issue, Koutsoyiannis
[2003] proposes to gather rainfall maxima between adjacent
gages, neglecting their mutual dependency.

An alternative solution to the classical selection of annual
maxima is the “Peaks-Over-Threshold” (POT) approach
[Reiss and Thomas, 1997]. It consists in selecting a given
number of independent observations above a threshold in
the whole rainfall series. The over-threshold observations
are then modeled with a Generalized Pareto Distribution
(GPD). Numerical studies made by the authors show that, in
synthetic series, about one hundred observations are needed
to obtain stability of the estimation. The drawback of the
GPD approach is that, defining an observation threshold
rather than a fixed-window period, the frequency is not di-
rectly expressed in years.

Coles [2001] presents an elegant solution for the modeling
of extremes using the “Point-Process” analysis. This theory
defines a common background to both block-maxima and
“Peaks-Over-Threshold” analyses. It has been successfully
used in fields other than rainfall, such as the modeling of
snowfall accumulation extremes [Blanchet et al., 2009]. The
method assumes that the number of observations exceeding
a threshold within a block is Poisson-distributed. It allows
to consider more than one maximum per year (similarly to
the POT method) with the advantage of estimating the same
parameters of GEV distribution.

In the context of scale-invariance, the GEV parameters
estimation should made by means of the statistical moments
(classic moments or L-moments). The need of expressing
the extreme behavior in terms of the statistical moments
justifies the use of an hybrid method combining the ease of
GEV formulation with the higher number of observations
provided by the Peaks-Over-Threshold method. This prac-
tical method will be described in the next section.

4.3. Estimation of GEV parameters at D = Dref

According with Equation (21) the estimation of the L-
moments L1 and L2 and of the shape parameter ξ is neces-
sary to describe the rainfall regime at D = Dref .



The main problem in the estimation of the GEV model
is the ξ parameter estimation. Taking the annual maxima,
the sample size does not allow a correct estimation of the
third statistical moment, which in turn is at the base of the
estimation of ξ. The ξ parameter has the larger importance
in the definition of the extremes behavior at large return pe-
riod. The extreme value theory [Reiss and Thomas, 1997;
Salvadori and De Michele, 2001; Coles, 2001] highlights that
the shape parameter ξ has the same meaning in the block-
maxima and POT approaches. We can therefore inject the
shape parameter determined by POT as a fixed value into
the GEV estimation.

The process begins with the selection of the Peaks-Over-
Threshold. To ensure independence between two extremes,
we fix the time lag for which the average auto-correlation
function of non-null rainfall is lower than a given value. In
our case the lag of 4 days seems adequate (Figure 7). The
declustering procedure consists in taking all the indepen-
dent observations exceeding a threshold. According with
empirical test not shown here, a correct estimation of the ξ
parameter can be done with no less than 90 observations.
For this reason, a threshold of 3 average events per year is
chosen at all stations, so that the shorter series had at least
90 observations and the longest over 150 observations.

We point out that our arbitrary NPY determination, con-
strained by the series length, yields results similar to those
obtainable at each gage with purely statistical threshold-
determination methods, such as the mean residual life plot
[Davison and Smith, 1990; Coles, 2001] or the GPD estima-
tion for a range of threshold [Coles, 2001].

Figure 8 shows a comparison between the shape parame-
ter ξ derived from the GEV and the GPD estimation. The
GPD estimation gives lower dispersion of ξ. The ξ param-
eter is, in average, slightly positive. A limited number of
gages have slightly negative ξ values, indicating bounded
extreme distributions. Many gages present ξ around zero,
which means Gumbel-distributed maxima. A significant
number of gages, mainly located in the flat area, have sig-
nificantly positive ξ values, indicating heavy-tailed extreme
distributions.

Estimations of large return periods are very sensitive to
the value of ξ. An additional validation has been performed,
checking the ξ sensitivity as a function of NPY. We do not
note any significant difference in the ξ estimation for NPY
equal to 2 or 4. Differences occur for NPY lower than 2
or equal or higher than 5. The first effect is due to limited
sample size, while the second, leading to shape-parameter
estimations biased towards zero, is due to the inclusion of a
consistent number of common observations into the extreme
sample set.

4.4. Mapping the model parameters

In order to infer the value of the model parameters over a
regular grid, an interpolation process is necessary. The ap-
plication of geostatistical interpolation require second-order
stationarity and gaussian distribution of each parameter
within the region. Kriging interpolation allows to infer the
values at ungaged stations by linear interpolation of the val-
ues at each station; the weight of each station is defined by
the covariance function and is chosen such to minimize the
error committed.

Figure 9-a and 9-b report the first two L-moments of the
annual-maxima distribution at D = Dref (the model pa-
rameters of Equation (21)). L1 and L2 represent the annual
average maximum-rainfall and its rainfall variability (related
to the standard deviation), respectively. The two first dis-
tribution moments are approximately linearly related, and
thus they display similar patterns, with a common maxi-
mum along the mountain ridge around the station of “Serre
the la Croix de Bauzon”.

In Figure 9-c, the shape parameter map shows that along
the mountain ridge, where the highest maximum rainfall

depths are recorded, no heavy-tails are found. This means
that extreme events in this zone have similar magnitudes. In
the highland zone, in the N-W half of the study domain, the
shape parameter is weakly positive. In the flat area close
to Alès and Nı̂mes, on the contrary, the shape parameter
is significantly positive indicating that extreme events have
different magnitude (i.e. heavy-tails). In the zone between
Mount Aigoual and the city of Millau, the positive value of
the shape parameter is probably an interpolation artifact
due to the relative sparseness of the network affecting the
parameter interpolation (see Figure 1).

We show in the next section that our GEV simple-scaling
model can be used to derive, from the daily-maxima, infra-
daily maxima with very different spatial patterns. The scal-
ing exponent plays the important role of relating the maxima
distribution moments at different temporal scales.

Figure 9-d shows the scaling exponent n for the GEV
simple-scaling model. Differently from the other parame-
ters, this parameter is independently derived from the ob-
servations at different scales and therefore it can be directly
interpreted. This parameter describes the scaling of the sta-
tistical moments from a time scale to another one, and it
is a good indicator of the influence of orography at differ-
ent accumulation periods. Along the crest line of the ridge,
the scaling exponent is minimal, meaning that the absolute
difference between extremes at different temporal scales is
lower.

5. Application example and meteorological
interpretation

A first application of the GEV simple scaling model is the
comparison of the Intensity- Duration- Frequency curves at
two locations characterized by considerably different behav-
ior of extremes: the city of Nı̂mes, close to the Mediter-
ranean Sea and located on the flat area, and the Mount
Lozère, where the orographic signature of rainfall is signifi-
cant. Figure 10 shows the IDF curves for the return period
of 10, 20, 50 and 100 years computed at the two locations
and superposed. It is easy to see that the precipitation in-
tensity for D < 2h is lower for the mountainous location,
probably because of the low probability of deep convective
events. On the other hand, for large accumulation peri-
ods, the stability of meso-scale convective system leads to
higher rain depths (and consequently higher rainfall inten-
sities) over the mountain. The main parameter determining
such a difference between locations is the scaling exponent n,
considerably lower in mountainous region (i.e. the extreme
rainfall intensity does not change too much with duration).

A second application of the GEV simple-scaling model is
reported in Figure 11. This figure shows the rainfall inten-
sity corresponding to a return period of 100 years computed
for durations of 1, 4, 8 and 24 hours from the IDF model
described in the previous sections. As already noted before,
the large uncertainties due to the shortness of infra-daily
rainfall series prevent the direct quantitative estimation of
hourly-rainfall extreme behavior.

However, the spatial patterns of the rainfall intensities for
D < 4h are in line with the few statistical indicators directly
derivable from the hourly database, such as the hourly rain-
fall maxima [Bois et al., 1997; Ceresetti et al., 2010; Molinié
et al., 2010].

The main achievement obtained from the implementation
of the GEV simple-scaling model is a continuous description
of the rainfall intensity as a function of the duration at each
point of the region. This is not an obvious result if the
intensity for a given return period is computed for differ-
ent durations in an independent manner. In addition, the



incoherence between durations can be amplified by the rain-
fall sampling measurement error (Habib et al. [2001]; Ciach
[2003] among others).

Figure 11 illustrates that, varying the accumulation pe-
riod, the localization of maximum rainfall intensities moves
in consequence of the combination of various storm typolo-
gies. Several case studies of heavy rainfall events produc-
ing flash floods in the Cévennes region [Sénési et al., 1996;
Ducrocq et al., 2002, 2003, 2008; Nuissier et al., 2008] have
shown that extreme rainfall events are due to meso-scale
convective systems blocked over the foothill alternatively by
the terrain elevation and by the formation of cold pools.
The contribution of the associated deep convection to the
extreme rainfall regime is visible at short durations (Figure
11-a). Over 100 mm h−1 patterns are clearly visible to the
North of Montpellier and Alès. As the duration increases,
the patterns related to deep convection progressively fades
out, replaced by a more elongated pattern along the moun-
tain ridge (Figure 11-b, 11-c, 11-d). These daily rainfall
extremes are generated by shallow convective clouds trig-
gered by relief shoulders and organized in orographic rain-
bands [Miniscloux et al., 2001; Anquetin et al., 2003]. These
bands are maintained stationary by specific meteorological
conditions [Godart et al., 2009].

More can be said regarding the possibility of GEV model,
compared to the Gumbel one, to leave the shape parameter
free to vary. The comparison between GEV and Gumbel
in terms of extreme rainfall are shown in Figure 12 for the
return periods of 50 and 100 yrs for durations of 2 and 24
h. The maximum difference in terms of rainfall amount for
TR = 100 yrs and D = 2h is 50 mm, which is about the
15% of the total rainfall amount predicted by these models.
For the return period TR = 50 yrs the difference in rain-
fall depth is 35mm corresponding to less than 10%. This
example shows that the influence of the shape parameter
increases with the return period.

Consequently, in every situations where the rainfall ex-
tremes in the region of interest features exponential as
well as hyperbolic tails, the GEV framework should be
recommended for the regionalization of Intensity-Duration-
Frequency curves in a scale-invariance context.

6. Conclusion

The paper presents a scale-invariant model for deal-
ing with the estimation of rainfall maxima in a region of
Southern France. The model features Intensity- Duration-
Frequency curves obtained coupling scale-invariance and
extreme-value distribution of rainfall maxima (GEV distri-
bution). The aim of the work is twofold: i) to improve
the assessment of the frequency of extreme rainfall events
(return period equal or higher to 100 years), incorporating
the heavy-tail behavior of extremes (GEV); ii) to derive in-
fra daily estimation from long daily rainfall series (that are
commoner) by applying scaling.

The simple-scaling hypothesis applicability has been
tested in the region, highlighting that the largest deviations
occur in the mountainous regions to the right of Rhône River
and on the Massif Central highlands. Even if simple scaling
is convenient for dealing with rainfall extremes, it can lead
to biases in those areas. Unfortunately, multiple scaling can
not be correctly implemented using GEV distributions, due
to the incompatibility of the statistical-moments scaling.

The choice between Gumbel or GEV models is relevant
for the estimation of large return period rainfall, but is sub-
ordinated to the availability of large quantity of observa-
tions. Gumbel distribution has been widely used [Kout-
soyiannis, 2003], but in the region of interest its exponential
tail is not adequate in the flat sub-region, submitted to very
intense developed convection.

The GEV simple-scaling model is defined as a function of
4 parameters: the scaling exponent n, the GEV parameters

µ, σ and ξ. The formulation using L-moments proposed in
Equation (21) is easier to infer with high variability of se-
ries and outliers. A coupled method to estimate the shape
parameter ξ is presented with the purpose to decrease the
estimation variance without complicating the formulation.

From daily accumulation data, the model is able to pre-
dict the behavior of extreme rainfall for short durations in
coherence with previous more empirical studies analyzing
hourly intensities Bois et al. [1997].

This model is a new tool able to estimate the frequency
of an event at every temporal scale within the range 4h - 4
days. It can help to solve problems of design engineering.
Extending this model to extreme spatial rainfall in the re-
gion would allow to classify the severity of meteorological
events at all the temporal and spatial scales of hydrological
interest.
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to Météo-France and to OHM-CV observatory for providing the
meteorological data.

References

Anquetin, S., F. Miniscloux, and J. D. Creutin, Numerical simula-
tion of orographic rainbands, Journal of Geophysical Research,
108(D8), doi:10.1029/2002JD001593, 2003.

Bendjoudi, H., P. Hubert, and D. Schertzer, Interpreta-
tion multifractale des courbes intensité-durée-fréquence des
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Figure 1. Map of the region of analysis: elevation
above sea level (shaded surface), hydrographic network
(solid line), the five highest mountain peaks (triangles),
main cities (diamonds), the daily (circles) and the hourly
(crosses) raingage network.

Figure 2. Histogram of topography elevation of the
study area (grey boxes, reading on the vertical axis) and
rain gage density as function of the elevation. The rain
gage density is expressed as the ratio of the rain gage
number in a given altitude range to the ground surface
of this altitude. The long dashed lines represents the
daily rain gage network and the short-dashed line for the
recording raingage network ( reading on the right axis).
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Figure 3. Analysis of the rain gage station of Montpel-
lier (1920-1972): the annual rainfall maxima for different
accumulation durations is expressed in mm h−1. The
small dots represent the 53 individual values, the white
square is their mean value. The boxplot defines the lower
hinge (q25), the median (q50), the upper hinge (q75). Pos-
sible outliers are marked as white circles. A straight line
gathers the mean values; its slope represents the scaling
exponent of the mean.
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Figure 4. Analysis of 169 stations with recording rain-
gages spread over the study area. Histogram of the
squared correlation coefficient R2 relating the mean an-
nual maxima with the accumulation duration, evaluated
in the range 1-100 hours, on 169 recording rain gage sta-
tions having more than 4 continuous years of hourly ob-
servations.
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Figure 5. Deviation from simple scaling. a: Histogram
of ratios between the scaling exponent of the standard
deviation K(2)/2 and the scaling exponent of the mean
K(1). b: Map of the same index over the study region.
Ratio values close to the unit indicate simple scaling of
maxima.
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Figure 6. Computed L-moments for the station St.
Pierreville. Circles: empirical 1st L-moment L1; Solid
line: log-log fit of L1 versus accumulation time; Squares:
empirical 2nd L-moment L2; Dashed line: log-log fit of
L2 versus accumulation period. The slope of L1 and L2

versus time provide the values of K(1) and K(2) of Equa-
tion (8), respectively. Notice that K(1) = K(2)/2 = n in
simple scaling.
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Figure 7. Average temporal auto-correlation function
for daily rainfall series for the 225 stations of the daily
rainfall database.
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Figure 9. Maps representing the GEV simple scaling
model parameters over the study regions. a: Average
annual maximum rainfall (first L-moment L1 ). b: Sec-
ond L-Moment L2. c: Shape parameter ξ. d: Scaling
exponent n.
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Figure 11. Map of rainfall depth (mm) for a return
period of 100 yrs for different durations (a: 1h, b: 4h,
c: 8h, d: 24h) according with the GEV simple-scaling
model of Equation (21).
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Figure 12. Differences between GEV and Gumbel sim-
ple scaling model in terms of rainfall intensities (in mm)
for different couples accumulation-return period. a: Re-
turn periods 50 yrs and accumulation 2 h; b: Return
periods 50 yrs and accumulation 24 h; c: Return periods
100 yrs and accumulation 2 h; d: Return periods 100 yrs
and accumulation 24 h.



9Space-time scaling of rainfall events:

the September 2002 storm

Résumé

Ce chapitre présente les résultats d’une analyse effectuée dans le but de caractériser la structure

spatio-temporelle d’un événement de précipitation dans la région Cévennes-Vivarais. Nous nous
concentrons sur l’événement qui a concerné le département du Gard en Septembre 2002. Pour cet
événement, les images radar des précipitations instantanées ont été corrigées des erreurs systématiques
et accidentelles, et ensuite calibrées grâce au réseau pluviométrique au sol et aux mesures de terrain
issues du rétour d’experience effectué en 2003 (Delrieu et al., 2005) afin d’estimer quantitativement
les précipitations.

Nous analysons les données radar afin de détecter l’invariance d’échelle spatio-temporelle. La
Fonction de Structure du second ordre, liée la structure de corrélation du champ, est utilisé pour
indiquer la gamme d’échelles dont l’invariance d’échelle des champs de pluie mesurés par radar est
verifiée. Nous montrons que cette invariance d’échelle est limité à des surfaces inférieures à 100-
400 km2 en fonction de la période d’accumulation considérée. Ensuite, nous analysons l’événement
suivant le chemin proposé par Venugopal et al. (1999) qui conduit à la détermination d’un paramètre
d’échelle dynamique définissant la relation entre la résolution spatiale et la correlation temporelle.
En perspective, l’adoption systématique de cette analyse sur un certain nombre d’événements pluvieux
peut permettre de parvenir à un inventaire des caractéristiques d’invariance d’échelle des différentes
phénomènes météorologiques extrêmes.

9.1 Introduction

In this chapter we report the results of an analysis conducted with the aim to characterize the space-
time structure of rainfall events in the Cévennes-Vivarais region. We focus on the event occurred
on September 2002; the radar images of instantaneous rainfall for this event have been corrected from
systematic and accidental errors and subsequently calibrated (Delrieu et al., 2009) with respect to the
ground rainfall measuremements in order to quantitatively estimate the precipitation.
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We analyze the radar-estimated fields by means of scale-invariant methods. The second-order
Generalized Structure Funtion or variogram, related to the correlation structure of the field, is used
to show scale-invariance of the radar fields. We show that the spatial scale-invariance is limited to
surfaces up to 100-400 km2 depending on the considered accumulation period. Afterwards, we analyze
the event following the path proposed by Venugopal et al. (1999), leading to the determination of a
dynamic scaling parameter defining the relation between spatial scale and temporal correlation. In
perspective, the systematic development of this analysis on a number of storms can lead to build an
inventory of the scale-invariance features of different types of storm.

9.2 Outline of the study

The meteorological radar detects the reflectivity for a given spatial volume in a particular instant. Once
removed the numerous systematic and accidental errors affecting the measure (presence of buildings,
trees and mountains; accidental sources such as flying bodies, natural and anthropic; rainfall-related
effects such as the bright band phenomena), the reflectivity gives information about the water content
of the scanned volume. Often, a transformation is required to pass from polar multi-layer scans to
a regularly gridded field in 2D. Merging rain gauge data and radar information provides an efficient
evaluation of the rainfall amount fallen during an event.

Thanks to the reliability of this database, it is possible to study particular properties of the rainfall
process. This analysis can provide some worthy insights into the comprehension of the space-time
structure of rainfall.

The first analysis we carry out on the data is the study of the 2nd order Generalized Structure
Function (Section 5.5.1). If the GSF for a range of statistical moments is linear as a function of
the spatial lag in double logarithmic plot, the variable is scale-invariant. In this context we analyze
the analogies between the scale-invariance and the geostatistical analysis. We show that the scale-
invariance of GSF implies power-law variogram (Section 4.4); this property may lead to improvements
of the geostatistical modeling of rainfall fields at small spatial scales.

The second analysis we perform is the verification of space-time scaling of rainfall, according to
the approach followed by Venugopal et al. (1999). The underlying assumption is the validity of the
Taylor’s “frozen field” hypothesis (Section 5.10.1). In spatial-temporal ranges where the advection
effect is negligible, a space-time relation establishes, leading to a “dynamic scaling” space-time ratio.
Consequently, the temporal dimension can be rescaled and considered as a third spatial dimension.
Venugopal et al. (1999) focused on the spatio-temporal organization of rainfall at spatial scales of 2
to 20 km in space and 10 min to several hours in time, for a storm in Darwin, Australia. In Section
9.5 we will examine the underlying hypotheses and the meaning of the computation performed in
Venugopal et al. (1999). A series of analogies with concurrent theories can be drawn, and these can
have consequences in understanding the theoretical and empirical findings of multi-scale analysis and
geostatistical analysis.
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9.3 Data

The rainfall event analyzed occurred in 2002, September the 8-9th, in Southern France. It lasted
approximately 36 hours, with a cumulative rainfall amount higher than 600 mm over a 150 km2 area,
the largest among the events ever recorded in the region (Delrieu et al., 2005). The impressive rainfall
amount can be perceived considering that the mean annual rainfall in the region ranges from 700 to
2500 mm. The event has been detected both by rain gauge and radar so that a merging has been
possible providing reliable estimations of the rainfall depth and of the spatial structure of the event.

The radar scan, composed by 8 layers characterized by a different incidence angle and by a sampling
interval of 5 min, has been treated following the classical approaches: the radar reflectivity has been
cleaned from the bright band effects and from the soil echo effects, and after it has been converted
into rainfall following empirical Z-R relations. Finally, the 3D polar scan has been converted to a 2D
rainfall field, obtaining a 1x1 km2 grid. The scanned window is a square of size 100 km.

For the analysis we selected the 8-hour time window characterized by the highest intensity. As
suggested by Venugopal et al. (1999), the assumption of stationarity is necessary to perform any of
these analysis. We should choose the time window such as during the period the statistical moments do
not vary significantly. In absence of pure stationarity on data in the maximum rainfall period, we have
chosen a period including the highest rainfall intensity and where both average and the dispersion of
rainfall values were limited. Figure 9.1-a shows the entire storm behavior in terms of average nonzero
rainfall, while Figure 9.1-b shows the standard deviation of the nonzero rainfall field as a function of
time. A horizontal line indicates the time window considered for the analysis.
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Figure 9.1: Rainfall event of 2002, 08-09 of September on the Cévennes Region. a: Average nonzero radar-
estimated rainfall as a function of time. b: 2nd raw moment of the radar-estimated rainfall as a function of
time. The horizontal line identifies the time window chosen for the analysis.
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9.4 Scale Invariance: Generalized structure Function

The analysis of the average power spectrum is needed to determine which scale-invariant analysis
can be safely performed. We analyzed each of the 2D spatial fields and averaged the results. In
the present case, the average power density spectrum of the considered event (Figure 9.2) is linear
in double logarithmic plot, with slope higher than 2, meaning that the spatial multi-fractal analysis
(Section 5.5.2) can not be carried out on the observed field, but only on a field properly transformed
to obtain conservativity. In alternative, one can characterize the fluctuations of the fields through
the use of Generalized Structure Functions (Section 5.5.1), following the approach proposed by Harris
et al. (2001).
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Figure 9.2: Average spectral density power of the event of 2002, September the 8-9th over the Cévennes region.
The power spectrum slope is approximately 2.26.

In Figure 9.3 the average variogram (equivalent to the 2nd order SF) for the event of 2002 is
plotted, in linear axes, for different time lags, ranging from 5 to 60 min, and for spatial resolutions
up to 400km2. In the plot, it is easy to see that all the variograms reach the range (i.e. decorrelation
distance) at distances in the range 15-30 km. We can compare Figure 9.3 with Figure 9.4, representing
the same variograms but this time in double logarithmic axes. The variogram range is obviously the
same in the two graphs, and goes from about 10 km for the time lag of 5 minutes to about 20 km
for the time lag of 1 h. The variogram shape, on the contrary, is sensibly different. In linear axes,
for small lags the variograms present the shape of a spherical or exponential variogram for the small
accumulation times, while for higher accumulations it rather show Gaussian shape. Looking at the
log-log graph we notice that all the variograms are linear. Deviations from log-log linearity appear for
the spatial resolution of 1km2 and are probably due to sampling resolution issue (the field resolution
is 1 km). This finding is the evidence of a scale-invariant behavior of spatial rainfall for sizes lower
than 10-20 km. The spatial scale-invariance range (i.e. of power-law Generalized Structure Function)
increases with the time lag. For small lags, we observe that the variogram nugget (the intercept) is
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higher for small accumulation durations. This is expression of the small scale variability, higher in
instantaneous rainfall and smoothed in time-aggregated rainfall.

This analysis highlights that scale-invariance of spatial rainfall exists. However, due to the presence
of characteristic scales of rainfall processes (the concept of variogram range itself expresses presence of
a characteristic scale), the scale-invariance is limited to 100-400 km2 as a function of the accumulation
time. This may limit the applications of scale-invariant methods for hydrological purposes.

Figure 9.3: Mean variogram of normalized rainfall as a function of the distance between the observed data for
different time lags: solid line: 5 min; dashed line: 15 min; dotted line: 30 min; dash-dotted: 45 min; long-dotted:
60 min.

9.5 Scale invariance in Space-Time

The paper presented by Venugopal et al. (1999) showed, for the first time, that a direct analogy
between the temporal and the spatial domain could be found on high-resolution rainfall data such
as radar-estimated rainfall. They start by considering a period within a storm in which the main
characteristics of the field (average rainfall intensity, standard deviation) were, as more as possible,
stationary. This solution is necessary for the removal of drift effects due to non stationary data, similar
to those observed in the geostatistical analysis (Section 4.4.2).

Venugopal et al. (1999) showed that the rainfall fluctuation fields strongly depend on the back-
ground intensity of the field. They therefore suggest to deal with a normalized variable, such as the
field normalized by the average of the process. A possible solution is to use the variable ∆logIi,j,τ =
log(I ′)− log(I). The resulting variable, due to the non-linear transformation and being the expression
of fluctuations, is centered at zero and approximately gaussian-diftributed.
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Figure 9.4: Mean variogram of normalized rainfall as a function of the distance between the observed data in
double logarithmic axis for different time lags: solid line: 5 min; dashed line: 15 min; dotted line: 30 min;
dash-dotted: 45 min; long-dotted: 60 min.

9.5.1 Connections with Geostatistics

In their analysis, Venugopal et al. (1999) deal with the statistical characterization of the field

∆logIi,j,τ = logIL
i,j(t + τ)− logIL

i,j(t) (9.1)

where IL
i,j(τ) is the nonzero rainfall intensity at location (i, j) at the spatial scale L. ∆logIi,j,τ represent

fluctuations and therefore has null average. Therefore, the analysis performed by Venugopal et al.
(1999), consisting in studying the variance of ∆logIL

i,j,τ for different aggregation sizes L and time lag
τ . This exactly corresponds to the temporal variogram (Section 4.4) of a log-transformed spatial field
varying the spatial scale L and the time lag τ ;

V ar[∆logIL
i,j,τ ] = V ar

[
IL
i,j(t + τ)− logIL

i,j(t)
]

= γτ (log(IL)) (9.2)

where t is the time coordinate. Excepted for the use of logarithm, the V ar[∆logIL
i,j,τ ] computed by

Venugopal et al. (1999) is the dual of the spatial variogram for various accumulation periods that we
computed in Section 9.4.

For each spatial aggregation size L and for each time lag τ , we may compute the standard deviation
σ of the log-fluctuations ∆logIL

i,j,τ for the 2002, 8-9th September storm. This allows to draw iso-σ
maps, corresponding to iso-γτ lines.

9.5.2 Space-time scale-invariance

Following the approach of Venugopal et al. (1999), we focus our attention on the fluctuation of rainfall
fields in the same location (i, j) from the instant t to the instant t+τ . In order to analyze the evolution
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of the rainfall fluctuations at different scales, we averaged the rainfall evaluated by radar over a box
of size L× L centered around the location (i, j). Performing aggregation in space as well as in time,
we can observe the changes in the rainfall variability with the scale. We than compare the histograms
of these fluctuations (computed only on the positive observations) at different spatio-temporal scales.
If space-time scaling holds, we should expect straight lines in the log L versus log τ plot for all the
couples (L, τ) respecting a given ratio τ/Lz. If a unique z is found for all couples (L, τ), the “dynamic
scaling” ratio z could be computed as the average slope of these straight lines. The distribution of
∆logIL

i,j,τ is evaluated at different temporal and spatial scales and is shown in Figure 9.5. The figure
shows the histogram for 4 couples of surface and aggregation periods; it can be seen that the histogram
of ∆logIL

i,j,τ for the surface of 10 min and 4 km2 has approximately the same standard deviation as
that for 40 min and 36 km2. The same reasoning can be performed for any space-time combination
respecting the τ ∼ Lz expression.
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Figure 9.5: Histograms of ∆logIL
i,j,τ for different (τ, L) couples.
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9.5.3 Evaluation of dynamic scaling

Evaluating the standard deviation of ∆logIL
i,j,τ for any combination of aggregation time and sur-

faces, we can draw iso-standard deviation maps as a function of space and time. The diagram of
iso-standard deviation curves for the considered event is plotted in Figure 9.6. As we can easily see
from the graph, the iso-standard deviation curves are linear in log-log plot and have similar slope. It
means that a dynamic scaling relation, linking spatial and temporal rainfall, can be defined. From
Figure 9.6, we can define the temporal range of validity of the dynamic scaling assumption, limited to
approximately 45 minutes. Evaluating the slope of these iso-standard deviation curves we can estimate
the dynamic scaling exponent. Figure 9.7 shows the evaluation, for different iso-standard deviation
lines, of the dynamic scaling exponent by least-squares linear fitting. The slope of each iso-standard
deviation line is comparable; the dynamic scaling exponents evaluated for different iso-standard devi-
ation lines are reported in Table 9.1.
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Figure 9.6: Iso-contour diagram of σ[∆logIL
i,j,τ ] for each couple (τ, L).

9.6 Final remarks

The evaluation of the scale-invariant properties of radar rainfall fields for an extreme event occurred
in Southern France has been performed through the methods presented by Harris et al. (2001) and
Venugopal et al. (1999). The average spectral slope of the process indicates non-conservative fields and
prevents the use of universal multi-fractal unless a field transformation is performed. The Generalized
Structure Function analysis show that the spatial scale invariance holds up to the size of 20 km for
aggregation periods up to 45 min.

Examining the fluctuations of the log-transformed rainfall fields a dynamic scaling exponent z,
relating spatial aggregation size and time lag, has been found: the iso-standard deviation curves of
the field fluctations are linear in log-log plots if the scale ratio τ ∼ Lz is respected ( Figure 9.7). The
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Figure 9.7: Evaluation of the dynamic scaling exponent for several couples (τ, L).

Table 9.1: Dynamic scaling exponent evaluation. For different iso-σ lines, the spatial size corresponding to a
given time (columns) is reported. The values marked with a star are outside the graph of Figure 9.7. In the
bottom, the estimation of the dynamic scaling exponent, with the value of the standard deviation.

Time (min)
Iso-σ lines 5 10 20 40 50 z
1.2 1.5 2 3 4 4.5 0.48
1.1 1.5 3.5 5 6.5 7 0.63
1.0 3 5.5 8 9.5 10 0.50
0.9 4.5 7.5 10.5 12.5 13 0.45
0.8 6 9.8 13 16 17 0.44
0.7 8 12 16.5 20 22 0.43
0.6 9.5 13 18 24* 26* 0.44
0.5 11.5 18 - - - -
0.4 15 20 - - - -

ẑ 0.48 σ(ẑ) 0.07
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log-transformation of the fields is necessary in order to obtain approximately gaussian fields, with
null average, for which the standard deviation completely describes their probability distributions.
Following this approach, we obtain a dynamic scaling ratio (z = 0.48 ± 0.07) that can efficiently
describe the relation between spatial and temporal scales in spatial ranges up to 20 km and temporal
ranges up to 45 min.

9.7 Conclusion and perspectives

The merging of ground measurement with radar scans is a solution for generating a reliable radar-
rainfall fields. Radar imagery can be efficiently used to determine structural features of the rainfall
fields, such as the scale invariance. The aim of the chapter is to define the validity ranges of scale-
invariance in space and in space-time.

In this study, we have examined the 2nd order Structure Function, or variogram, of the rainfall
field, determining the correlation structure of the fields at various accumulation periods. We show that
the variogram of positive rainfall observations can be modeled with a power-law function, expression
of the scale invariance of rainfall in space.

Reproducing the study of Venugopal et al. (1999), focusing on the ratio between spatial and
temporal scales, we aimed to characterize the “dynamic scaling” ratio. We found evidences of a
constant dynamic scaling exponent throughout a single storm, based on the study of the fluctuations
of non-linearly transformed rainfall at different spatial and temporal aggregations. These findings
have been analyzed from the innovative point of view of the comparison with the geostatistical and
the multi-scale analysis.

The limitation of the work is that the event is not representative of the totality of rainfall events
in the region, and therefore the results cannot be generalized.

Even though the presence of a dynamic scaling ratio is promising, the results of this study are not
directly exploitable for the disaggregation of spatial rainfall data, due to the limited representativity
of the analyzed event with respect to the ensemble of the storm types in the region. In perspective,
repeating the same analysis for a number of storms in the region could give the elements for a proper
statistical downscaling of spatial rainfall fields such as radar or satellite imagery.



10Qualification of Meso-scale

meteorological simulations

Résumé

Une partie consistente de la thèse a été consacrée à la description des propriétés des pluies extrêmes
face aux changements d’échelle temporelle et spatiale. Un modèle continu Intensité-Durée-Fréquence
a été établi (Section 5.11) permettant la détermination de la probabilité d’occurrence des événement
de précipitation ponctuels se produisant dans la région Cévennes-Vivarais. Le couplage des courbes
IDF avec un modèle du facteur de reduction surfacique (ARF, Section 6) permet d’obtenir la fréquence
d’occurrence des pluie spatiales (modèle IDAF). Cette évaluation est possible dans la gamme d’échelles
où l’invariance d’échelle est confirmée: plage temporelle de 1-100 h et spatiale 0-3000 km2. Une appli-
cation dans le contexte du projet MEDUP (”Prévisions et projection des événements Méditerranéens
intenses dans le scénario climatique: incertitudes et propagation sur l’environnement) est la construc-
tion des diagrammes de sévérité (Ramos et al., 2005) dans la région Cévennes-Vivarais. Cet outil,
récemment développé, a été adopté pour détecter et comparer la sévérité des épisodes de pluie forte
dans des bassins versants en milieu urbain, son utilisation peut être étendue à une plus grande région
caractérisée par une densité plus faible et par une hétérogéneité du régime pluviométrique.

En particulier, nous proposons d’utiliser les diagrammes de sévérité comme une approche complémentaire
pour évaluer la capacité des modèles météorologiques à reproduire la structure de la pluie extrême à
toute les échelees spatio-temporelles. Dans la section suivante, la construction de diagrammes de
sévérité et leur utilisation et qualités sont détaillées.

10.1 Introduction

A consistent part of the thesis has been devoted to the description of the modifications that heavy
rainfall intensities undergo as a result of temporal and spatial scale changes. A continuous IDF model
has been established (Section 5.11), and the frequency of any point rainfall event occurring in the
region may be determined, for temporal ranges of 1-100 h. A continuous Areal Reduction Factor
(ARF, Section 6) model will be proposed, in order to estimate the occurrence frequency of spatial

195



196 QUALIFICATION OF MESO-SCALE METEOROLOGICAL SIMULATIONS 10.2

rainfall in the above cited temporal ranges and in the spatial range 0 - 3000 km2. An application in the
context of the MEDUP (”Forecast and projection in climate scenario of Mediterranean intense events:
Uncertainties and Propagation on environment”) project is the construction of Severity Diagrams
(Ramos et al., 2005) in the Cévennes-Vivarais region. This tool, recently developed, has been adopted
to detect and compare the severity of heavy rainfall events occurred in urban catchments, and now its
use can be extended to a larger region characterized by coarser rain gauge density and heterogeneous
climatic behavior.

In particular, we propose to use severity diagrams as a complementary tool to evaluate the perfor-
mance of meteorological models in reproducing the rainfall space-time structure. In the next section,
the construction of Severity Diagrams and their utility are detailed.

10.2 Severity Diagrams

The Severity Diagram is a multi-scale tool for the description of heavy meteorological events. Ramos
et al. (2005) proposed its use for discriminating between three storms occurred in the urban catchment
of Marseille, France. The three storms did not show significant differences in terms of maximum rainfall
intensity, total rainfall depth and duration to explain the marked difference in terms of damages that
them produced (Figure 10.1). Actually, these single-scale descriptors of the storms are not sufficient
to give all the necessary details, and in particular they do not focus on the critical scales of the event.
Storms can be of very different kinds in nature, from deep convective events lasting few minutes to
long stable convective systems characterized by weak instantaneous intensity but considerable rainfall
amounts. Each storm has a critical temporal and spatial scale.

(a) (b) (c)

Figure 10.1: Time distribution of mean areal precipitations for the storm events observed in Marseille. (a) 22-23
September 1993, (b) 7 September 1998, and (c) 19 September 2000. From Ramos et al. (2005)

Adopting severity diagrams (Figure 10.2), Ramos et al. (2005) characterized the magnitude of the
three events and give elements for the evaluation of the related damages. It consists in representing,
for each temporal and spatial scales (x and y axes), the maximum return period of the event (i.e. the
occurrence frequency of the event). The chronological order and the spatial location of the maxima are
lost, and the x and y axes represent the accumulation duration and the aggregation surface (and not
the time scale and the position in space), respectively. From the diagrams in Figure 10.2 it appears
that the event occurred in 2000 had the highest magnitude, interesting an extended zone and leading
to return periods higher than 40 years for extended surfaces (up to 200 km2). The urban catchment
was severely damaged by this event, leading to two fatalities and about 60 million euros damages.
This gives credit to severity diagrams as descriptors of the space-time structure of an extreme event.



10.2 SEVERITY DIAGRAMS 197

(a) (b) (c)

Figure 10.2: Severity diagrams for the storm events observed in Marseilles. (a) 22-23 September 1993, (b) 7
September 1998, and (c) 19 September 2000. From (Ramos et al., 2005)

The construction of severity diagrams is complex. It consists in the coupling of two widespread
engineering design tools, Intensity-Duration-Frequency curves and Areal Reduction Factors, Ramos
et al. (2005). IDF curves are generally used for determining the rainfall intensity that can fall in a
given interval of time with a given recurrence interval. ARF curves report the rainfall intensity decay
of rainfall extremes with the increase of the integration surface.

The process to create severity diagrams can be summarized in three steps:

i. the region of study is scanned with a moving window of given size, the spatial rainfall is derived
by arithmetically averaging the rainfall measurement included in the window (Figure 10.3); for
each aggregation surface and duration, the maximum rainfall intensity is recorded;

Figure 10.3: Moving window technique for detecting maximum rainfall. Different window sizes are shown: 36
km2 (orange), 64 km2 (yellow), 144 km2 (blue). The dots represent the ground rainfall measurement points.
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ii. using the Areal Reduction Factors, it is possible to estimate the “equivalent point rainfall” to
be associated with the areal rainfall value; the equivalent point rainfall and the areal rainfall are
characterized by the same probability of occurrence;

iii. using Intensity-Duration-Frequency curves with the equivalent point rainfall, the frequency of
the event is estimated and reported into the severity diagram.

In addition to the comparison between events, the visualization of storm severity can be an useful
indicator in an operational context for the real-time survey of urban catchments. The advantage is
that this tool provides an objective characterization of the storm, but its use is limited by the complex
implementation and by the relative difficulty to be understood by technical operators, due to the loss
of the chronological sequence and of the spatial location of the storm.

In our context, we propose the use of severity diagrams to qualify the performances of meteoro-
logical models in reproducing the actual space-time structure of extreme events.

10.3 Rainfall intensity diagrams: an indicator of the true model

resolution

Taking as a reference the event of September 2002 in the Cévennes Region (Anquetin et al., 2005),
Labalette (2009) performed a series of preliminary analyses on a series of meteorological models. The
aim was to verify the space-time structure of the rainfall fields predicted by the model.

As a preliminary analysis, we constructed the maximum intensity diagrams. They represent, at
each time accumulation and spatial scale, the maximum rainfall intensity recorded for a selected storm.
It corresponds to the step 1 indicated in Section 10.2 of the construction of Severity Diagrams.

The compared model are:

i. BOLAM: BOlogna Limited Area Model, hydrostatic model working in a nested framework and
forced by the ECMWF analysis, operating at 0.05 ◦ resolution;

ii. MOLOCH: non-hydrostatic high-resolution model that integrates the fully compressible set of
equations, nested into the higher resolution BOLAM simulation;

iii. RAMS: Regional Atmospheric Modeling System of LaMMA Meteorology laboratory at Florence
(Italy), whose output are provided on a 2 km grid.

iv. MM5: research non hydrostatic meso-scale model proposed by UIB, Spain, use a three two ways
nested grids at 54, 18 and 6 km resolution; the large-scale forcing is provided by NCEP analyses.

v. MesoNH: Atmospheric Simulated System (Lafore et al., 1998), realised by Météo-France with
CNRM (Centre National de Recherches Météorologiques) and Laboratoire d’Aerologie de Toulouse,
is a research tool for small and meso-scale atmospheric process, non-hydrostatic. In the specific
case, it runs over two two-way nested grids with resolution of 9.5 and 2.4 km, respectively. The
large-scale forcing is provided by the ARPEGE analysis.



10.3 RAINFALL INTENSITY DIAGRAMS: AN INDICATOR OF THE TRUE MODEL RESOLUTION 199

The construction of maximum intensity diagrams helps in detecting the true spatial resolution of
the model. In Figure 10.4 the diagrams are shown for the model Meso-NH, RAMS and BOLAM,
respectively. In Figure 10.4 it is possible to notice that RAMS works at a coarser spatial resolution
compared to MesoNH, because no difference in terms of rainfall intensity is seen for area lower than
500 km2.

Concerning the intensities, MesoNH predict a significant rainfall amount, resulting in a maximum
underestimation of 20-30 % compared to the model. Even if the result in terms of rainfall depth is
conforting, large underestimations in terms of return period are expected. The two other models,
whose diagrams are not shown here, are unable to reconstruct the maximum intensity pattern of the
event.

(a) (b) (c)

Figure 10.4: Maximum intensity diagrams for the event of 8-9 September 2002 for three research meso-scale
models. a: Meso-NH b: RAMS c: BOLAM. The dashed iso-lines represent the observed diagram, derived from
ground measurements.

As we have seen, the construction of maximum intensity diagram is a preliminary analysis that can
be conducted to characterize the the maximum rainfall observed at each scale. It gives information
on the over/under estimation of the rainfall intensity provided by the model and allows to detect the
actual model resolution. For instance, we have shown that the model RAMS is unable to reproduce
the space-time structure for areas lower than 1000 km2.



200 QUALIFICATION OF MESO-SCALE METEOROLOGICAL SIMULATIONS 10.4

10.4 Article. Severity diagrams: a new approach for the multi-scale

evaluation of extreme rainfall events

Submitted to Weather and Forecasting, November 2010



Generated using V3.0 of the official AMS LATEX template–journal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION!

Severity diagrams: a new approach for the multi-scale evaluation of extreme rainfall

events

Davide Ceresetti , Sandrine Anquetin ∗, Gilles Molinié
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ABSTRACT

The comparison between observations and simulations of relevant rainfall events is usually done
by analyzing i) the total rainfall depth produced by the event and ii) the location of the rainfall
maximum. We propose in this paper a challenging approach that compares meso-scale simulated
rainfall intensities with the ground rainfall observations in a multi-scale framework (i.e. the
severity diagram). The severity diagram displays the maximum occurrence frequency of the rainfall
intensities as a function of the spatial and temporal aggregation scale, highlighting the space-time
scales mainly concerned by the event. For the application in a complex-relief region, a generalization
of severity diagrams has been implemented in order to incorporate the regional behavior of heavy
rainfall events. To demonstrate the efficiency of this approach, three major storms that occurred
in the last decade over a Mountainous Mediterranean region of Southern France are analyzed and
compared with the MesoNH simulations outputs. Thanks to severity diagrams, it is possible to
detect the critical space-time scales of a rainfall event, and to compare them with those predicted
by the simulation. This validation approach can be easily adapted to evaluate the simulation
performance of various types of storm, even involving different regions.

1. Introduction

In the recent years, a relevant number of Mediterranean
storms caused serious social and economic damages in South-
ern Europe. These events hit different zones (coasts, foothill
or flat areas) and have involved disparate spatial and tem-
poral scales. Recent researches (Ramos et al. 2005; Ruin
et al. 2008) showed that fatalities related to extreme me-
teorological events occur both in small and large basins,
characterized by considerably different spatial and tempo-
ral characteristic scales. The variability of heavy rainfall
events changes with the scale of analysis: two events oc-
curred at two different scales can not be compared based
only on the average rainfall depth or rainfall intensity (Bous-
quet et al. 2006; Yates et al. 2007).

These considerations highlight the need of an objective
evaluation of the impact of storms at all spatial and tempo-
ral scales for a better understanding of i) storm structure,
ii) critical scales of the storm iii) hydrological impact of the
storm.

Similar considerations can be drawn in the context of

the evaluation of meteorological models: the performances
of meso-scale models is usually done comparing the sim-
ulated rainfall fields at a spatial resolution of the order
of 1 km2 to the ground measurements at the rain gauges.
A series of scores have been presented with the aim to
compare model outputs and observations. In literature
(Mason (1989); Ducrocq et al. (2002); Venugopal et al.
(2005) among others), scores derived from contingency ta-
bles like the probability of detection (POD) or false alarm
rate (FAR) mainly qualify the capability of the model to
simulate the rainfall depths and storm locations. Some of
these indicators focus on the extreme values or quantiles
and few of them on the capability to reproduce the whole
storm structure at all scales (Zepeda-Arce et al. 2000; Yates
et al. 2007).

Another objective evaluation approach allowing multi-
scale comparison of rainfall events has been presented by
Ramos et al. (2005). The aim of “Severity Diagrams” was
to represent the magnitude of a storm over a range of spa-
tial and temporal scales in a normalized framework adapted
for inter-event comparisons. Intending the “severity” in
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probabilistic terms, severity diagrams represent, for each
combination of aggregation time and integration surface,
the return period (expressed in years) of the storm.

In this paper we show that such an approach can be
efficiently used for the multi-scale comparison between the
meso-scale simulated rainfall intensities and point observa-
tions. The implementation of severity diagrams requires
the knowledge of the extreme-rainfall behavior in the re-
gion. We show that a preliminary comparison between
observations and simulations could be derived through the
analysis of an intermediate product of the severity diagram
implementation, the “maximum intensity diagrams”, rep-
resenting the maximum rainfall intensity for each spatial
and temporal scale. Maximum intensity diagrams could be
useful to compare events among them, but they are scale-
dependent. Severity diagrams, thanks to a transformation
of the maximum rainfall intensity at each scale into re-
turn period, allows either inter-scale comparisons of single
storms or comparison between storms, with an intuitive
representation in terms of return period.

In urban area target of the Ramos et al. (2005) study,
the dense high-resolution raingage network and the cli-
matic homogeneity are two main factors simplifying the
spatial-rainfall frequency estimation. Differently from the
application of Ramos et al. (2005), the present paper aims
at the characterization of storms occurred over a larger
region. The Cévennes-Vivarais region (Southern France)
features inhomogeneity of the extreme rainfall behavior; a
regional approach is therefore required. Due to its local-
ization, close to the Mediterranean Sea, and its complex
topography, this region is particularly prone to heavy rain-
fall events and flash-floods (Delrieu et al. 2005; Nuissier
et al. 2008; Ducrocq et al. 2008).

The construction of severity diagrams is based on the
coupled application of the Areal Reduction Factors (ARF)
(NERC 1975; Rodriguez-Iturbe and Mej́ıa 1974; Bacchi
and Ranzi 1996; Sivapalan and Blöschl 1998; Asquith and
Famiglietti 2000) and the Intensity-Duration-Frequency (IDF)
curves (Burlando and Rosso 1996; Koutsoyiannis et al.
1998).

The paper is structured as follows: the region and the
data set used for this study are presented in Section 2.
The methodology is fully developed in Section 3. Section
4 briefly introduces the three cases. In Section 5 the sever-
ity diagrams are drawn for the three storms using the ob-
served and simulated rain fields. For a particular rainfall
event, the analysis of the severity diagram aims at explor-
ing the hydrological effects of the storm. The discussion
is reported in Section 6 and aims at giving some inputs
on the advantages and limits of severity diagrams for the
evaluaton of meteorological models. Then, synthesis and
conclusion follow in Section 7.

2. Data description

a. Region of interest

The studied region is located between the Massif Cen-
tral and the Mediterranean Sea and is bounded by the
Rhône River in the Eastern side. The area covers a window
of about 160x200 km2, gathering a coastal zone, a large
plain, a mountainous region and a high plateau (Figure 1).

The rainfall regime in the region has been widely stud-
ied (Lebel and Laborde 1988; Bois et al. 1997; Molinié
et al. 2010). The region is prone to flash floods which
caused several social and economic damages in the last
decades. As an example, one of the heaviest event oc-
curred in 2002. It caused 50 million euros damages and
consistent human losses (Ruin et al. 2008). Relatively long
rainfall series have been recorded in the region by several
services (the French meteorological agency Météo-France,
water managemenet and power supply agencies, Electricité
de France). Since 2000, the Mediterranean Hydrometeoro-
logical Observatory Cévennes-Vivarais centralizes the data
and ensures a quality control. Two kinds of rainfall data
are used for this study: i) the observed rain gauge data
provided by OHMCV and ii) the rainfall fields simulated
by the Meso-NH model by Météo-France.

b. Raingage rainfall data

The data set includes hourly and daily rainfall intensity
series. The daily rainfall database (Figure 1) is composed
of 225 stations featuring more than 30 years of continu-
ous records. The hourly rainfall database is composed of
150 continuous raingage records over the 1993-2008 period.
Figure 2 reports the average density of the hourly and daily
raingage networks as a function of the elevation.

c. Simulated rainfall data

The simulated rainfall-intensity fields are available for
specific severe rainy events thanks to the research pro-
gram MedUP. They are the product of the cloud resolving
model MesoNH (Meso-scale Non-Hydrostatic, Lafore et al.
(1998)). MesoNH is run on two-way nested grids at 9.5-km
and 2.4-km resolution, respectively. The coarser MesoNH
domain is driven by the limited area model ALADIN. The
finer-scale MesoNH domain is centered over the northwest-
ern Mediterranean where the studied rainy events initiated
and includes the study region. The rainfall fields are pro-
vided at the spatial resolution and temporal resolution of
2.4 km 1 hour, respectively.

3. Methodology

The implementation of the severity diagram requires
three steps as schematized in Figure 3 and includes a study
on the spatial-rainfall extreme climatology. The first step
(Section 3.a) consists in building the spatial rainfall database
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by interpolation of the rain gauge observations. Thanks to
this database, we derive Areal Reduction Factors (ARF)
expressing the rainfall intensity decrease as the integration
surface increases (Section 3.b). As severity diagrams re-
quire to determine the frequency of occurrence of spatial
rainfall intensities at any accumulation period and surface,
a continuous ARF model has to be coupled to IDF relation-
ships. The IDF model adopted in this study is described
in Section 3.c.

a. Spatial rainfall database

The spatial rainfall database was built from the hourly
rainfall intensity database. The rainfall point observations
were cumulated over periods of 2, 4, 8, 12 and 24 h. For
each accumulation period, the spatial-rainfall database is
built following three steps:

i. Definition of rainy events: evaluate the number of
working raingages and the average rainfall depth mea-
sured by the network. When these two indicators are
lower than a fixed threshold, the field is rejected be-
cause the event is probably weak and local.

ii. Determination of the spatial structure of the rainfall
field: if the field is retained, compute the variogram
of the positive rainfall values; a spherical variogram
model is associated to the field; if the variogram has
singular behavior (it is the case when the number
of working raingages is low), force a “climatological
variogram” to the field (Lebel and Laborde 1988).

iii. Interpolation: using the variogram model above de-
fined, compute the kriging interpolation over a reg-
ular grid. A grid spacing of 2x2 km2 has been chosen,
in agreement with the resolution of the meteorological-
model output.

b. Areal Reduction Factors

The maximum rainfall intensity of a storm at a given
accumulation duration decreases with the surface. This
property can be used to derive a probable rainfall inten-
sity level for a given surface A when a single observation
is available, by applying Areal Reduction Factors. The
Areal Reduction Factor (ARF) is defined as the average
ratio of the areal-rainfall observation over the surface A to
the point-rainfall observation corresponding to the same
frequency level.

ARFs are equal to 1 for A → 0 and decrease with the
surface of aggregation. ARFs usually increase with the
accumulation period, as a consequence of the increase of
the characteristic size of the storm. The relation with the
return period TR is also intuitive: the higher the rainfall
intensity, the lower the ARFs (i.e. very intense events are
generally more localized).

The empirical ARF curves can be derived from the
spatial rainfall database. Omolayo (1993) showed that
statistically-significant ARF curves can be derived in a
fixed-area framework, while ARF based on a storm-centred
approach are significantly underestimated.

In practice, storm-centred ARFs evaluate the rainfall
intensity decay of selected events over concentric windows
of increasing size, while fixed-area ARF curves rely on the
maxima over moving windows of increasing size. In the
former approach the concomitance between the maxima
observations is not required. The loss of physical signifi-
cance of fixed-area ARF curves is compensated by the gain
in statistical significance.

According to empirical evidences (Bacchi and Ranzi
1996), ARF depends on the frequency of the events con-
sidered for its computation. The ARF computed heavy
rainfall events is steeper than the ARF computed gather-
ing heavy and regular rainfall events. Weak rainfall events
can be extended over large regions, leading to smoother
ARF curves, while for instance deep convective events are
rather localized, leading to steeper ARF curves. For this
reason, ARF is computed on a series of independent and
identically distributed (i.i.d.) events characterized by re-
turn period equal or higher to a fixed value. For this study,
an average of 2 events per year (return period = 0.5 years),
corresponding to 32 rainfall values for each considered sur-
face, have been selected.

The ARF curves are then computed as the ratio be-
tween areal rainfall and point rainfall for a given return
period TR:

ARF (A, D, TR) =
IA(A, D, TR)

I0(0, D, TR)
(1)

where IA is the areal rainfall over the area A, for the du-
ration D, and I0 is the point rainfall for the same duration
D. By definition, the fixed-area ARF curves are contin-
uously decreasing with the integration surface, and their
maximum is 1 (corresponding to the storm center A = 0,
where areal and point rainfall maxima are equal).

Due to the limited sample set size, the ARF dependence
on TR can not be assessed for large return period. In agree-
ment with previous studies (NERC (1975), for instance),
we assume that ARF curves are independent of the return
period TR:

ARF (A, D) =
IA(A, D)

I0(0, D)
(2)

Up to this point, the ARF curves are empirically com-
puted for a discrete number of surfaces and accumulation
durations. Since we are interested on the relation between
point and spatial rainfall at any accumulation periods and
surfaces, we adopt the ARF model proposed by De Michele
et al. (2001).
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De Michele et al. (2001) worked on a space-time self-
similar model of annual maxima. The model introduced
the use of a “dynamic scaling” coefficient, expressing the
relation between spatial and temporal scale in the defi-
nition of the rainfall intensity. The concept of dynamic
scaling, originally introduced by Venugopal et al. (1999)
in agreement with the Taylor hypothesis of “frozen tur-
bulence” (Taylor 1938), is physically consistent at small
space-time scales (size up to 100 km2 and accumulation
period lower than 1 hour). This hypothesis causes that the
temporal variation at fixed locations can be reinterpreted
as spatial variation (Deidda 2000). At larger scales, the
dynamic scaling is not related to the physics of the phe-
nomenon, conserving only its statistical significance.

The ARF formulation proposed by De Michele et al.
(2001) is:

ARF (D, A) =

[

1 + ω

(

Aa

Db

)]

−v/b

(3)

where v is the scaling exponent of point-rainfall with
time, ω a homogenization parameter, a and b express the
power-law decay of ARF curves with the integration surface
and with the duration; the dynamic scaling z is related to
this expression by the relation z = a/b.

The comparison of the application of Equation 3 with
the empirical results presented by NERC (1975) showed a
substantial agreement between the two studies. The fitting
of this model requires to take into account the possible un-
dersampling due to the raingage-network density. For these
reasons, considering that the average raingage density is of
1/50km−2, the fitting will not take into account surfaces
lower than 50 km2 and durations smaller than 2 h.

The regional heterogeneity of the extreme rainfall be-
havior is the main factor limiting the interpretation of
spatial rainfall occurrences for large surfaces. The orog-
raphy, in particular, forces the anisotropy and increases
the temporal persistence of the rainfall fields (Prudhomme
and Reed 1999; Haberlandt 2007; Berne et al. 2009; Go-
dart et al. 2009). To accurately compute ARF curves, it
is therefore proposed to split the region in two domains
supposed to be quasi-homogeneous in terms of extreme
rainfall behavior (Figure 1), according with the results of
previous studies (Ceresetti et al. 2010a): a flat sub-region
(Region 1) located in the South-East of the domain of in-
terest extended up to the foothills of the Cévennes massif,
and a mountainous sub-region (Region 2, composed by the
mountain ridge and the Massif Central highlands located
North-West). The anisotropy of ARF curves has not been
taken into account due to the limited sample set size. The
results of the fitting are shown in Table 1, and plotted in
Figure 4.

Figure 4 shows, as expected in both sub-regions, a reg-
ular decrease of Areal Reduction Factors with the involved
surface, and a corresponding increase of ARFs with time

(corresponding to a similar parameter a in the two regions).
The accumulation duration of 1 hour has not been used for
the fitting due to the above described undersampling is-
sues. Except for the 1h accumulation duration, the model
fits well with the experimental data. The main difference
between the mountainous sub-region and the flat area is
the effect of the accumulation duration on the trend of
ARF curves. The impact of the accumulation period on
ARF curves is significantly smaller in the mountainous sub-
region (the model shows differences in the value of the b
parameter in the two regions). This phenomenon could be
physically explained by the persistence of meso-scale con-
vective systems over the mountainous ranges (Sénési et al.
1996; Ducrocq et al. 2003; Molinié et al. 2010).

c. Intensity-Duration-Frequency curves

In order to implement the severity diagram construc-
tion, a continuous IDF model is required. For the con-
struction of a regional IDF model we use the daily rainfall
database. The IDF curves are used in this context to esti-
mate the frequency of given rainfall observations knowing
their intensity and accumulation duration. Dealing with
three uncommonly heavy events, the blocking point is the
capability to estimate large return periods for infra-daily
events: the longest daily series featuring 50 years of data,
the uncertainty in the estimation of return periods higher
than 100 years is too large to provide a reliable value of
the return period.

Following the works on the scale invariance of IDF and
Depth-Duration-Frequency curves (Burlando and Rosso 1996;
Bendjoudi et al. 1997; Menabde et al. 1999; Borga et al.
2005) it has been possible to implement a scale-invariant
model for IDF curves. The model is based on the assump-
tion that, for the region of interest, the maxima are dis-
tributed according to a Generalized Extreme Value dis-
tribution (GEV). Ceresetti et al. (2010b) showed that at
least in the range 4 - 100 h the scale-invariance of maxi-
mum rainfall intensities holds, and a GEV simple scaling
regional model has therefore been proposed by (Ceresetti
et al. 2010b).

Gathering the ARF dynamic scaling model fitting of
Section b and the simple-scaling IDF model of Ceresetti
et al. (2010b), we derive the Intensity-Duration-Area-Frequency
(IDAF) curves for the two sub-region of the domain in
agreement with De Michele et al. (2001). Figure 5 shows
the IDAF obtained from the 32 heaviest observations over
16 years of data, corresponding to a return period slightly
higher than 1 year. It is easy to see that the rainfall in-
tensity decreases with the area and with the accumulation
period, because of the smoothing introduced by the spatial
and temporal integration. The IDAF model satisfactorily
reproduces the empirical behavior of extremes in space and
time.

By means of the study presented in this section, we now
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have a continuous IDAF model able to provide an estima-
tion of the occurrence probability of any spatial rainfall
observation within the study region. We can now turn to
the description of the events analyzed in this study.

4. Description of the events

Three storms are studied: Event 1 occurred on Decem-
ber 3, 2003, Event 2 on September 6, 2005 and Event 3 on
September, 8-9, 2002. These events differ in their struc-
ture, extension and location of the rainfall intensity max-
ima. They therefore represent an assorted selection of the
extreme meteorological situations observed in the region.
For the three events, observed and simulated rainfalls are
analyzed.

The simulated rain fields are provided by Météo-France
and are the outputs of the MesoNH (Lafore et al. 1998)
meso-scale model simulations. The model configuration,
successfully tested for simulations of Mediterranean intense
rainfall events (Ducrocq et al. 2002), is the same for the 3
events. The simulated meteorological fields have been al-
ready deeply analyzed in Lebeaupin et al. (2006) for Event
1, Yan et al. (2009) for Event 2 and Nuissier et al. (2008)
for Event 3.

The rainfall output is provided on a regular grid in po-
lar coordinates (size of about 2.4 x 2.4 km2). It is regu-
larized in a Cartesian grid (2x2 km2) by nearest neighbour
interpolation.

In the following, the main synoptic features of each
event are given.

As explained in Lebeaupin et al. (2006), Event 1 lasted
in total 4 days, starting November, 30, 2003 and ending
December, 4, 2003. On December 1st, an upper level
low-pressure area centered over Spain favored an intense
southerly flow over Southern France. A cold surface front
established from Northern to Southeastern France. The
frontal perturbation formed a MCS that remained until
December 3. The 30-hours rainfall accumulation reached
300 mm over the Rhône Valley. The highest daily rainfall
amount was reached on December 3. This study focuses
on this specific day (from 0000 UTC to 2400 UTC). Dur-
ing this day, the upper level trough area associated with
the surface cold front began to turn slowly to a NW-SE
axis. After few hours over the Gulf of Lion, it progressed
westward in the late evening.

Event 1 mainly involved the Massif Central foothill and
mountain ridge (Figure 6-a). The total accumulation did
not exceed 200 mm, but the event was extremely extended
in space. Approximately 25000 km2 received more than
150 mm of precipitation, causing a major flood of the
Rhône river (13000 m3 s−1). The maximum rainfall is ob-
served on December, 3, and reached 150 mm. The low-level
winds intensified during this day, with easterly winds rush-
ing up to 150 km h−1, causing sea waves of almost 10 m.

The flood caused 7 fatalities in the region.
The large-scale pattern of Event 2 is detailed in Yan

et al. (2009). The authors showed that an upper-level cold
flow located over the near Atlantic generated a rapid cy-
clonic upper-level flow over Western France on September,
5, 2005. On September 7, the low-pressure system moved
towards the South-East. At lower levels, a low-pressure
over Eastern Spain deepened and generated a low-level
southerly flow over the Mediterranean. A frontal system
with embedded convection over Southern France was re-
sponsible for the heavy precipitation amount recorded on
5-6 September. This study focuses on an 18-hours window
(starting the 6th of September at 0000UTC up to 1800
UTC).

Between 5 and 9 September 2005, several precipitating
systems affected the South-East of France leading to an ac-
cumulated rainfall depth higher than 300 mm in most of the
region of interest. The night between September, 5 and 6,
heavy precipitations fell over the west of Gard department,
reaching over 300 mm in the city of Nı̂mes (Figure 6-c). De-
spite this important rainfall amount, the runoff process was
limited by the dry initial soil-moisture conditions. Weaker
precipitations were observed on September, 7, followed by
a precipitation event coming from the Mediterranean Sea
in the morning of September, 8, affecting the Gard depart-
ment. The intensity of the rainfall event reinforced during
the afternoon, reaching a total rainfall amount of 220 mm
near Nı̂mes. The high soil moisture level in this second part
of the event caused the runoff to be significantly higher.

As described in Delrieu et al. (2005) and Nuissier et al.
(2008), the first convective cells of Event 3 appeared over
the Mediterranean Sea around 0400 UTC on September,
8, 2002. Four hours later, the convection formed a meso-
scale convective system (MCS) just south of the Gard de-
partment and moving northward. The convective system
remained approximately 24 hours over the same region
(from 1200 UTC September, 8 to 1200 UTC September,
9). This temporal window is the one analyzed in this study.
During this period, a high-level cloud shield displayed a V
shape with the V tip facing the upper level southerly flow
(Nuissier et al. 2008). Beneath the cloud shield, the convec-
tive precipitations mainly affected the Gard region, while
stratiform precipitations extended further to the north. At
this time, the MCS assumed a southwest-northeast orien-
tation according to the the prevailing upper-level tropo-
spheric flow. In the late night of September, 8, the convec-
tive system oriented north-south and began a northwest-
ward motion. The precipitating system decayed during the
late morning of September, 9.

Event 3 was exceptional from many points of view. The
intensity of the event was extreme: the maximum precip-
itation was around 600 mm in 24 hours near Alès (Figure
6-e). The area affected by heavy precipitations was consid-
erable: more than 3000 km2, covering the whole Gard De-
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partment as well as the Massif Central foothills in Ardèche,
received at least 200 mm of rain. The river discharges were
exceptional, especially for the Gard and Vidourle rivers,
where peak discharges higher than twice the 10-year re-
turn period flow were recorded (Delrieu et al. 2005). The
event caused damages estimated to 1.2 billion US dollars
and led to 25 fatalities.

In the following, we compute the maximum intensity
diagrams and the severity diagrams of the 3 events. We
use Event 3 for testing the skills of the approach for assess-
ing the hydrological impact of a storm, isolating the basin
where the damages were the most important (i.e. the Gard
basin, 6-e).

In Figure 6, the observed and the simulated rainfall
depths are plotted for the three events. These figures sug-
gest the following general comments:

• the study domain is large enough to include the to-
tality of the event;

• the simulated rainfall depths are underestimated for
Event 2 and Event 3, whereas the model overesti-
mates the rainfall located in the mountainous area
(Event 1);

• the locations of the rainfall maxima are approximately
well estimated by the model for Event 1; less accurate
in Event 2 and 3;

• the spatial extent of the rainfall pattern is captured
by the model; nevertheless, the model does not cor-
rectly reproduce the intensity and the pattern of the
rainfall fields (Figure 6-e and 6-f).

In Table 2 the main thresholded scores (POD: Proba-
bility of Detection, FAR: False Alarm Ratio, ACC: Fore-
cast Accuracy) of the simulations are reported for the three
events. These scores origin from contingency tables (Yates
1984). The threshold levels have been chosen in agreement
with Yates et al. (2007) as the 70th, 80th and 90th per-
centiles. According to these statistics, Event I has been
modeled with good accuracy, even though a not negligible
False Alarm Ratio is found for the 90th percentile. Event
2 has been badly reproduced, with low POD and elevated
FAR for the three thresholds. For Event 3, it is clear that
the mislocated maximum rainfall depth has caused very
low scores for the 90th quantile. Considering that both
the POD and the ACC scores are very poor, it seems that
the extreme rainfall has been wrongly estimated for this
event. We emphasize the difficulty of using these scores in
a multi-scale framework and for hydrologic purposes.

5. Multi-scale evaluation of the simulated events

This section aims at bringing to the fore the interest of
a complete multi-scale evaluation of the simulated fields.

We first describe the maximum intensity diagrams. They
allow a preliminary multi-scale comparison between events
based on rainfall intensities.

We remind that the observed field is obtained by in-
terpolation of the ground measurements at the rain gages.
By consequence, the Maximum Intensity Diagrams and the
Severity Diagrams of observed fields are affected, in some
ranges, by undersampling errors of the measurement net-
work. The spatial undersampling affects areas in the range
0-50 km2, for which the raingage density is inadequate.
For duration lower than 4 hours, rainfall intensity data are
affected by uncertainties due to the resolution of the time
series (1 hour).

a. Maximum intensity diagrams

The maximum intensity diagrams report the maximum
rainfall intensity recorded during the event for each accu-
mulation duration and for each integration surface. The
maximum intensity diagrams relative to the rain gauge ob-
servations are given in Figure 7-a, 8-a, 9-a for the three
events, respectively. The corresponding diagrams relative
to the simulations are reported in Figure 7-b, 8-b, 9-b. The
diagrams of Figure 7 and 8 indicate that, in Event 1 and
2, the observed and simulated maximum intensities are in
good agreement at accumulation periods larger than 4h.
On the contrary, the maximum intensities of Event 3 (Fig-
ure 9-a) seems to be poorly reproduced by the simulation
at any scale.

Smaller spatial and temporal scales reveal interesting
features for Events 1 and 3. The maximum intensity dia-
grams of Figure 7-a, 9-a and 9-b present sharp singularities.
The Event 1 singularity for durations in the range 4-6 hours
and surfaces between 20 and 200 km2 is not present in the
diagram of the simulated field. Concerning Event 3, both
the diagram of simulation (Figure 9-b) and the diagram of
simulations (Figure 9-a) show small scale singularities, but
they appear at different scales.

b. Storm Severity: a forecast qualification approach

The severity diagrams allow to perform multi-scale com-
parisons in terms of return period. Figure 10-a displays the
severity diagram of observations for Event 1. The observed
severity presents a maximum higher than 300 years involv-
ing large temporal and spatial scales (time scales ranging
from 8 to 16 hours and for surfaces up to 400 km2). For
small surfaces and durations, the event did not provide sig-
nificant severities. The simulated fields provided by Meso-
NH yield a severity diagram similar to the observed one
(Figure 10-b). The maximum severity is of the same mag-
nitude order, as well as the spatial extent of the event.
In contrast, the critical time scale has been overestimated
(14-18 h against 10-12 h for the observations). In general,
the main features of the event seems to be well reproduced
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by the simulation.
Concerning Event 2, the severity diagram of observa-

tions (Figure 11-a) and simulation (Figure 11-b) are very
different in terms of magnitude. Figure 11-a shows that the
absolute severity maximum is recorded at scales lower than
4 hours and 50 km2. A similar pattern is found for the sim-
ulation (Figure 11-b). In addition, a secondary maximum
is observed for the duration of 8-12 h and for surfaces lower
than 500 km2, corresponding to a rainfall amount higher
than 200 mm. This severity peak has not been detected in
the simulated data.

From these two cases, the interest of drawing sever-
ity diagrams for atmospheric model evaluation is clearly
demonstrated. Differently from the maximum intensity di-
agrams, severity diagrams highlights the time and space
structure of the storm simplifying the multi-scale compar-
ison between observations and simulation outputs.

c. Hydrological aspects of storm severity: the case of 08-09

September 2002

Since the second half of XX th century, the studies on
extreme flood events evidenced that river flow data could
not provide reliable estimations for large quantiles (Guillot
and Duband 1967; Guillot 1993). Because of the limits of
flow measurements, it is preferable to study the occurrence
of the rainfall process. Even if the rainfall-runoff modifies
the impact of storms on a basin, for rainfall events charac-
terized by return periods higher than 10 years, the trans-
fer function between runoff and rainfall can be reasonably
considered equal to 1. This motivates the use of severity
diagrams for the assessment of the impact of a storm over
a basin.

From a practical point of view, in order to compute the
severity of an event within a basin, the method does not
change significantly: the only added step is to multiply the
rainfall-field matrix by a mask containing the value “1” in
the pixels within the studied basin, and the value “0” in
the external pixels.

In the present case we deal with the 2002 event (Event
3), involving the Gard basin. The severity is estimated
with respect to the Gard basin at the Remoulins outlet
(indicated in Figure 1), with a maximum surface of 2200
km2. The severity analysis will be conducted on spatial
scales lower than the basin surface.

Event 3 is far the largest storm in our records. Con-
sequently, the return period associated with the event can
not be correctly assessed due to the uncertainties involved
in the extrapolation of the extreme behavior for large re-
turn periods. The diagram has therefore been limited to
maximum severities of 500 years. The severity diagram
related to the observations is reported in Figure 12-a. De-
spite the large uncertainties in the evaluation of the return
period, the severity has a sharp increase with the accumu-
lation duration, reaching severities larger than 500 years

already for the 4-hour accumulation period. The critical
scales of the event are reached for the accumulation time
of 16-24 hours and a surface of 500 km2. It means that
a small sub-region within the basin (fortunately not cor-
responding to a catchment basin) received an impressive
amount of rainfall.

The severity diagram for the simulation is reported in
Figure 12-b. It is clear that the simulation provides lower
severities. The critical space-time scales of the event have
not been properly detected by simulation: in Figure 12-b,
the severities are negligible for surfaces higher than 50 km2.
This result is likely to be due to the wrong location of the
simulated rainfall maxima (as one can see looking at Figure
6-e and 6-f), leading to poor skills from a hydrological point
of view.

6. Discussion

The multiscale analysis of maximum rainfall intensities
and return periods (severity) reveals that severity diagrams
are most sensitive diagnostics than maximum intensity di-
agrams:

i. the simulated rainfall fields of events 1 and 2 are of
good quality in terms of maximum intensities in a
large range of scales (Figures 7 and Figure 8).

ii. the severity diagrams of these two events (Figure 10
and Figure 11) show significant differences between
simulated and observed rainfall fields.

These differences can have a double origin. The first
origin is the non linear transformation of rainfall intensity
into occurrence frequency. The return period is obtained
as 1/(1 − P ) where P is the cumulative density function
of the extreme value law, obtained by a double exponenti-
ation (in the simplest case) of the intensity (see Kotz and
Nadarajah (2000) for further information). Therefore a
small difference of maximum intensities is highly amplified
when transformed into return period.

The second is that the severity is highly dependent of
the location. Taking for example daily rainfall, Ceresetti
et al. (2010b) shows that the 100-year return level varies
from 100 mm (over the Massif Central plateau) to 400 mm
(over the mountain ridge and the southeastern foothill).
Therefore, the same storm occurred in two different loca-
tions can give very different severities. Severity diagrams
incorporate this effect and their analysis can be of interests
if one needs to investigate the consequences of the use of
simulated rainfall fields as input for hydrological models.

This analysis reveals also that the two diagnostics (sever-
ity and maxima diagrams) are complementary. The max-
imum intensity diagrams have highlighted singularities in
Event 1 and Event 3. Some of these sigularities are not
present in the corresponding severity diagrams. On the
other hand, severity diagrams are able to delineate the
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critical scales of an event giving additional elements to
compare the actual and simulated events. In Event 1, for
instance, the critical time scale has been slightly overes-
timated by the model (16 h instead of 12h). The spatial
extent of the event has been correctly modeled, since in
both panels of Figure 10 it is possible to detect severities
higher than 200 years, along a vertical cut, from 0 to 2000
km2. In Event 2, even though the observed and simulated
maximum intensity are similar (Figure 7), the severity have
an order of magnitude of difference which mean the simu-
lation essentially failed to identify the correct location of
rainfall cells.

Throughout our discussion, we did not expressly inter-
preted the diagrams for time scales lower than 2 hours and
spatial scales lower than 50 km2. The reason is that, at
these scales, the observation network is submitted to un-
dersampling problems leading to uncertainties in the mea-
surement of point rainfall and, in larger measure, spatial
rainfall. The same problems affect the simulated fields,
since the time resolution of the rainfall fields is 1 hour
and their spatial resolution is 6.25 km2. We must men-
tion that these undersampling problems affect not only the
event measurements, but also the estimation of IDF and
ARF curves that are needed to define the climatology of
extreme rainfall events.

7. Conclusion

The main purpose of the present work is to show the
utility of i) the multiscale assessment of simulated rainfall
fields and ii) the assessment of the severity (i.e. return
period) of rainfall events at multiple scales. This work
proposes an extension of severity diagrams (Ramos et al.
2005) to larger surfaces and accumulation durations. We
also introduce maxima intensity diagrams, a preliminary
diagnostic showing the maximum rainfall intensity of the
event at each space-time aggregation scale. The use of
severity diagrams in a regional context gives the possibility
to illustrate the effects of a wrong positioning of maxima or
over/underestimation of the maxima rainfall depth on the
severity of an event. It also detects the spatial/temporal
scales in which the model has low skills and gives a support
for evaluating whether the overall space-time patterns of
given storms have been correctly identified.

From these analyses, it is clear that the severity dia-
gram has mainly three merits: i) it is useful for comparing
in an objective way different space-time scales of a sin-
gle event, detecting its critical scales; ii) it is an useful
complementary indicator for the comparison between se-
vere events, as shown by Ramos et al. (2005); iii) it is
innovative in its ability to evaluate the meso-scale model
skills to reproduce the space-time structure of the rainfall
events; iv) its use is independent of the available measure-
ment network and can be succesfully adopted in case of

radar-estimated fields.
Despite their numerous skills, the use of severity dia-

grams presents some limits: i) the spatial heterogeneity of
the extreme rainfall distribution in the region may prevent
to assign an unitary and reliable severity value to spatially
extended rainfall observations; ii) the maximum occurrence
frequency that can be assigned to an observation strongly
depends on the available rainfall database, and should not
exceed the observation period; iii) in severity diagrams the
space-time coordinates are lost in favor of the multi-scale
description.

A first application on the qualification of the model
proficiency to predict the hydrological effects of a storm
has been performed for Event 3, showing that our approach
gives a number of information that were unknown before
the analysis.

Summarizing the results obtained by the severity di-
agram comparison for the three cases analyzed, we can
conclude that the meteorological model Meso-NH is able
to reproduce many of the features of the events. In some
cases, however, the model experiences i) rainfall underesti-
mation in the plain region; ii) rainfall overestimation over
the foothill due to orographic effects; iii) difficulties in re-
producing some of the small-scale features of the events;
iv) mislocation of the maxima leading to the impossibility
to apply the simulations in hydrology. We have shown that
severity diagrams can have interest for the hydrological
modeling: the comparison between the hydrological impact
of the storm by severity diagram and the frequency of the
related flood may provide information upon the rainfall-
runoff transfer function. Working with a probabilistic en-
semble, and by means of hydrological simulations, a de-
tailed analysis on the uncertainties propagation involved
in the rainfall-runoff process could be performed.

Concerning the short-term perspectives of the work, we
are currently carrying out severity analyses on the ensem-
ble forecasts for a specific event occurred in 2008 in the
same region. The first aim is to quantify, on an ensem-
ble forecast produced with the AROME operational model
(MétéoFrance) and composed by 17 members, the changes
in severity induced by modifications of initial and boundary
conditions of the simulation. At the light of the prelimi-
nary results, it seems that the severity diagrams could take
a relevant role in the production of statistically consistent
ensembles.
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first case study for the Cévennes-Vivarais Mediterranean
Hydro-meteorological Observatory. Journal of Hydrol-
ogy, 6 (1), 34–52.

Ducrocq, V., G. Aullo, and P. Santurette, 2003:
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Table 1. Scale-invariant Areal Reduction Factor model parameters ((De Michele et al. 2001) model) for region 1 (Flat
land) and region 2 (Mountainous region).

Region ω a b v
1 : Flat area 0.00632 0.55 0.34 0.84
2: Mountainous region 0.00234 0.52 0.14 0.64

Table 2. Contingency tables and definition of the thresholded statistics; thresholded statistics for the three events.
POD: Probability of Detection; FAR: False Alarm Ratio; ACC: Forecast Accuracy.

Forecast < Threshold Forecast ≥ Threshold

Ref. < Threshold a b
Ref. ≥ Threshold c d

POD = d

c+d
; FAR = b

b+d
; ACC = a+d

a+b+c+d
;

SCORE Event 1 Event 2 Event 3
Quantile 70% 80% 90% 70% 80% 90% 70% 80% 90%

POD 0.79 0.78 0.84 0.58 0.54 0.21 0.93 0.80 0.29
FAR 0.32 0.43 0.62 0.54 0.60 0.64 0.01 0.02 0.14
ACC 0.82 0.84 0.85 0.67 0.74 0.88 0.92 0.79 0.31
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Fig. 2. Raingage distribution in the Cévennes-Vivarais region. The histogram represents the surface associated to each
elevation band (left axis). The raingage density is shown as function of the elevation, and its value can be read in the
right axis. Daily raingage network: long-dashed line; Hourly network: dashed-line.
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Fig. 3. Diagram of the steps required to compute the severity of spatial rainfall.
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Fig. 4. Modeled ARF curves (lines) and empirical ARFs (dots) for different durations as a function of the area. a:
Region 1- flat land. b: Region 2 - Mountainous region. In both diagrams, the duration of 1 hour is not used for ARF
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Fig. 5. Intensity-Duration-Area-Frequency model obtained gathering IDF and ARF models: comparison between ob-
served events and modeled events following De Michele et al. (2001); from the top to the bottom the plotted accumulation
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Fig. 6. Comparison between observed and simulated rainfall depth for the three considered events. 2003.12.03 0000UTC
- 2003.12.04 0000UTC, a: Ground Rainfall, b: Meso-NH Simulation. 2005.09.05 1200UTC - 2005.09.05 0600UTC, c:
Ground rainfall, d: Meso-NH Simulation. 2002.09.08 1200 UTC - 2002.09.09 1200UTC, e: Ground rainfall; f: Meso-NH
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Fig. 7. Maximum intensity diagram for Event 1, from 03.12.2003 00h UTC to 04.12.2003 00 h UTC. a) Observed Hourly
Rainfall. b) Simulated rain fields.
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Fig. 8. Maximum intensity diagram for Event 2, from 06.09.2005 00h UTC to 06.09.2005 18 h UTC. a) Observed Hourly
Rainfall. b) Simulated rain fields.
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Fig. 9. Maximum intensity diagram over the Gard basin for Event 3, from 08.09.2002 12h UTC to 09.09.2002 12 h UTC.
a) Hourly Rainfall Network. a) Observed Hourly Rainfall. b) Simulated rain fields.
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Fig. 10. Severity diagram for Event 1, from 03.12.2003 00h UTC to 04.12.2003 00 h UTC. a) Observed Hourly Rainfall.
b) Simulated rain fields.
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Fig. 11. Severity diagram for Event 2, from 06.09.2005 00h UTC to 06.09.2005 18 h UTC. a) Observed Hourly Rainfall.
b) Simulated rain fields.
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Fig. 12. Severity diagram within the Gard basin for Event 3, from 08.09.2002 12h UTC to 09.09.2002 12 h UTC. a)
Observed Hourly Rainfall. b) Simulated rain fields. Due to the large uncertainties in the return period estimation, the
absolute severity value for return periods higher than 500 years is not reported.
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10.5 Severity diagrams and ensemble simulations

The article in Section 10.4 reports the use of severity diagrams to evaluate the capability of meso-scale
models to reproduce the actual space-time structure of extreme events. It is clear that this tool is able
to highlights the model drawbacks, but it can’t help in improve the meteorological modeling.

A secondary application concerns the ensemble simulations. Due to extreme variability of the
results even when the input is the same (butterfly effect, Lorenz (1963)), the probabilistic approaches
in meteorological modeling are preferable to the deterministic ones.

Ensemble simulation is a group of simulations that differ among each other by one or more prop-
erties. Each simulation is initialized with a series of initial and boundary conditions deriving from
direct measures. They are affected to sampling problems (weak resolution and measure uncertainties).
The ensemble is supposed to represent a database of situations likely to happen, obtained perturbing
i) the boundary conditions; ii) the initial conditions.

The event of 2008, November the 1st has been simulated by Météo-France using the operational
meteorological model AROME. The event lead to a total rainfall depth of over 350 mm, mainly located
over the foothill of Cévennes. Figure 10.5-a reports the total rainfall depth fallen in 24 h starting from
2008, November the 1st at 12h UTC.

Two different ensemble are created in order to separately determine the influence of boundary
conditions and initial conditions.

The severity diagrams are computed on the hourly rainfall extracted from the AROME simulation,
beginning the 01 Nov 2008 at 12 UTC and lasting 24 hours. The severity diagrams derived from the
model output are compared with the severity diagram relative to the ground observations, that is
shown in the next section.

10.5.1 Severity Diagram of observed fields

The reference diagram is the severity diagram computed based on the observations coming from the
recording rain gauge network of Météo-France. Figure 10.5-b reports the severity diagram computed
on this event. The maximum recorded severity is 600 years in a particular rain gauge, reaching about
200 years for surfaces of 100 km2. The severity peak is reached for 16-18 hours.

10.5.2 AROME ensemble 1: Variability of Boundary Conditions

In the first ensemble (PEARP-AROME), the model AROME is initialized with the boundary condi-
tions derived from the large-scale Arpège PEARP model. Apart from the unperturbed case (Figure
10.6-a), 10 simulations are generated, and are reported in Figure 10.6-b to 10.6-k.

Comparing each member of the ensemble with the observed severity diagram in Figure 10.5-b,
we find that only the members in Figure 10.6-a,b,c,i,k well represent the critical scales of the event.
In addition, the magnitude of the event 10.6-a,b,c,d is respected. The other members show different
behavior, with extremely underestimated magnitude like in Figure 10.6-f,j. The member whose severity
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Figure 10.5: Analysis of the storm occurred in 2008, November 1st event. a: Map of the rainfall depth between
01 Nov 2008 12 UTC and 02 Nov 2008 12 UTC. b: Severity diagram of the observed rainfall in the period
between 01 Nov 2008 12 UTC and 02 Nov 2008 12 UTC.

is shown in Figure 10.6-e yielded different critical scales and magnitude, resulting in an unreliable
sample. The diagrams in Figure 10.6-k and 10.6-i show severity overestimation even if they correctly
detect the critical scales of the event.

10.5.3 AROME ensemble 2: Variability of Initial Conditions

The second ensemble (PERTOBS-AROME) contains 6 simulations obtained by perturbing the initial
conditions of the model. Compared to the PEARP-AROME simulations, the PERTOBS-AROME
show lower variability. All the members in Figure 10.7 present a maximum severity at temporal
scales of 12-18 hours and spatial scales close to those highlighted in Figure 10.5. Unexpectedly, the
unperturbed simulation in Figure 10.7-a has the closest magnitude to the observed diagram (Figure
10.5). If confirmed by further analyses, it may suggest that the perturbations on the initial condition
does not respect the natural variability of the initial conditions.

10.6 Conclusion

In this chapter, we show two innovative applications of Severity Diagrams, the multi-scale evaluation
tool proposed by Ramos et al. (2005), for the evaluation of the meteorological model performances.
The first application consists in evaluating the quality of three deterministic simulations realized with
the model Meso-NH for three major events occurred in the Cévennes-Vivarais region in 2002, 2003,
2005. For the event occurred in 2002, September the 8-9th, the evaluation of the storm severity has
been limited to a particular basin, in order to detect the magnitude of the meteorological event that,
together with a particular basin response, generated a catastrophic flash-flood, with over 60 million
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Figure 10.6: Severity diagrams of each member of the ensemble PEARP-AROME, unperturbed simulation (0)
and perturbed simulations (a:j).
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Figure 10.7: Severity diagrams of each member of the ensemble PERTOBS-AROME, unperturbed simulation
(a) and perturbed simulations (b:g)
.
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euros damages and 2 fatalities. The article show that, despite the good agreement between model and
observations in terms of maximum rainfall intensity, the critical scales of the events are not always
caught by the model. In addition, the mislocation of the maximum rainfall depth, such as in the 2002
case, bring into question the reliability of mesoscale simulations at the scale of hydrological basins.

The second application concerns the use of severity diagrams to interpret the output of ensemble
simulations. With this tool it is possible to detect if the noise introduced in the initial/boundary
conditions is appropriated to represent the small scale variability of the physical variables. The tool
allows to critically evaluate the result of each simulation (critical space-time scales, event magnitude,
mislocated maxima) in a qualitative way.

In perspective, we think that this use of severity diagrams can contribute to a better selection of
the ensemble members providing a more realistic probabilistic representation of the storms.
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11Conclusion

Conclusion

L’objectif de la thèse est d’étudier l’estimation des précipitations extrêmes dans une large gamme
d’échelles spatio-temporelles, en combinant invariance d’échelle et analyse des valeurs extrêmes. Avant
de pouvoir rechercher des propriétés d’invariance d’échelle dans des séries réelles de pluie, il est
nécessaire d’évaluer la qualité de la mesure des précipitations ponctuelles ou intégrées dans l’espace.
Nous évaluons d’abord les incertitudes liées à la résolution temporelle de la série des précipitation.
Il est vérifié que, si le rapport entre fréquence d’échantillonnage et échelle d’analyse est proche de 1,
les pluies extrêmes peuvent être sous-estimées jusqu’au 15%. Cette valeur s’ajoute à l’erreur max-
imale de sous-estimation dûe à la structure mécanique du pluviomètre qui est du 5%. Pour ce qui
concerne la pluie intégrée dans l’espace, une ultérieure sous-estimation est causée par la densité in-
suffisante des réseaux pluviométriques. Cette estimation peut être quantifiée entre 15 et 40% pour les
résolutions temporelles de 1 jour à 1 heure. A partir de ces données, nous pouvons conclure que si
l’on examine les séries de précipitations ponctuelles, l’erreur maximale est limitée à 5%, à condition
que l’échelle danalyse soit plus grande que la résolution de mesure. Pour ce qui concerne la pluie
integrée dans l’espace, une série de simulations stochastiques appliquées à un réseau pluviomètrique
aléatoire montrent que, dans des réseaux pluviométriques peu denses, la sous-estimation des extrêmes
est systématique et peut attendre 50% en fonction de la taille caractéristique des phénomènes pluvieux
et de la densité du réseau de mesure. Cela limite considérablement la capacité d’extraire des données
statistiques fiables en particulier pour des durées inférieures à 4 heures. Ceci est dû au faible rapport
entre la taille caractéristique des phénomènes pluvieux et la densité moyenne du réseau pluviométrique.

La troisième partie de la thèse présente les résultats obtenus à l’aide de la base de données OHM-
CV. Le premier article analyse les série pluviométriques infra-journalières de la région, et vise à
déterminer le comportement des queues de distributions. L’étude a mis en évidence qu’un bon nombre
de pluviomètres de la région montrent des queues de distribution hyperboliques. Un résultat sur-
prennant est que le comportement des queues n’est pas influencé par la résolution temporelle. Les
distributions de pluie enregistrée dans la plaine du Rhône montrent un comportement hyperbolique
évident. D’autre part, les distributions de pluie relatives à la région montagneuse montrent plutôt des
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queues exponentielles, signe d’une moindre variabilité des précipitations (bien que les cumuls quotidi-
ens soient plus forts). Cette analyse est le point de départ pour la conception d’un modèle des intensités
de pluie extrêmes qui puisse représenter correctement le comportement des queues faibles ainsi que
des queues fortes, indépendamment de la durée. La deuxième étude a donc consisté à conçevoir un
modèle Intensité-Durée-Fréquence (IDF) pour précipitations ponctuelles qui répond aux deux condi-
tions mentionnées dans les études précédentes: invariance d’échelle et distribution GEV des maxima,
pour modéliser à la fois le comportement des pluie extrêmes en montagne et en plaine. L’invariance
d’échelle des maxima de pluie a été vérifié pour le durées allant de 4 à 100 h.

La troisième étude utilise ce modèle IDF couplé avec un modèle semi-empirique qui décrit la
décroissance de l’intensité de pluie en fonction de la surface (ARF). Ce couplage permet d’obtenir
un modèle Intensité-Durée-Surface-Fréquence (IDAF) qui donne la possibilité d’estimer la fréquence
des pluies integrées sur une surface donnée. Ce modèle est employé pour obtenir un diagramme (dia-
gramme de sévérité) qui montre la période de retour de l’événement dans une large gamme d’échelles
spatio-temporelles. En représentant la periode maximale de retour sur le diagramme de severite, les
hauteurs de pluie sont normalisees par rapport à la fréquence d’occurrence, de sorte de pouvoir i)
qualifier les échelles les plus critiques pour un événement; ii) comparer des événements co-localisés
entre eux; iii) après régionalisation, comparer des événements qui interessent différentes régions.
L’innovation de cette étude est l’utilisation des diagrammes de sévérité pour évaluer la qualité des
champs de pluie produits par simulation météorologique, effectuée grâce au modèle Méso-NH. Les
champs de pluie simulés reproduisent généralement assez bien l’événement dans une large gamme
d’échelles (1-2000 km2 et 1-24 heures). La période de retour ayant une dynamique plus marquée
que les intensités de pluie, le diagramme de sévérité s’est révélé un diagnostic intéressant pour la
compréhension et la comparaison de la structure spatio-temporelle des événements. Dans un’étude en
cours, les diagrammes de sévérité sont appliqués à la simulation d’ensemble.

Conclusion

The purpose of this thesis is to investigate the heavy rainfall events in a “free of scale” framework,
combining scale-invariance and extreme value analysis. Before to look at the scale-invariance properties
of rainfall series, we assess the quality of rainfall measurement of point and spatial-rainfall. In the
first part, we quantify the uncertainties on the measurement of rainfall intensities using rain gauges.
The first analysis quantified the uncertainty related to the temporal resolution of the series. It comes
out that when the ratio between the sampling frequency and the scale of analysis tends to 1, this
may cause up to 15% of underestimation of extreme rainfall. An additional 5% is the maximum
underestimation error of extremes related to the mechanical structure of rain gauge. Finally, if one
aims to estimate the spatial rainfall, a further underestimation due to insufficient rainfall network
density can be quantified in 15-40% for time resolutions ranging between 1 day and 1 hour. From
these data, we conclude that if we examine point rainfall series at a scale larger than the resolution of
the device (e.g. of one magnitude order), the error of measurement of extremes is limited to 5%.

Concerning the evaluation of areal integrated rainfall intensities, stochastic rainfall simulations
applied on a random rain gauge network show that sparse rain gauge networks lead to systematic
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under-sampling of maximum spatial rainfall intensities. The total underestimation may reach 50%
depending on the characteristic size of rainfall and of the density of rain gauges. For this reason,
the possibility to extract reliable statistics by interpolation of rainfall data is significantly limited for
durations lower than 4 hours, for which the characteristic size of the rainfall phenomena is lower than
the average density of the rain gauge network.

The third part shows the results of the analysis conducted using the database of the OHM-CV
survey. The first article analyzes the hourly time series of the region, and aims at determining
the behavior of the distribution tails. The study highlighted that many of the rainfall intensity
distributions in the region show hyperbolic tails. A surprising result is that the behavior of tails
does not change with the time resolution. The rainfall distributions related to rain gauges located
in the flat land show evidences of hyperbolic behaviour at various durations. On the other hand,
the mountainous intensity distributions show exponential tails, indicating a smaller rainfall variability
(though the daily amount is larger in average). This analysis is preliminary to the application of a
scale-invariant model of rainfall maxima that accommodates the extreme rainfall behavior in plain as
well as in mountainous areas. The second study concerns the design of a model of Intensity-Duration-
Frequency relations for point rainfall that meets the two conditions specified in the previous studies:
scale-invariance of rainfall intensities in the range 4-100 h, and GEV distributed maxima, modeling in a
comprehensive approach both the hyperbolic tails in the plain of the Rhône valley and the exponential
tails observed in mountainous areas. The third study uses the model of Intensity-Duration-Frequency
curves above described, together with a semi-empirical model that describes the decay of the rainfall
intensity with the area (ARF). The coupling of the two models provide an Intensity-Duration-Area-
Frequency (IDAF) model that can be used to estimate the frequency of any spatial rainfall event in the
region. We have applied the IDAF model to the implementation of a diagram (severity diagram) that
shows the magnitude of an event at a large range of space-time scales. Severity diagrams, transforming
the (scale-dependent) rainfall depth into (scale-independent) return period, allow comparisons between
different scales of a single event, or events occurred over different regions. The innovation of this thesis
is the use of severity diagrams to evaluate the performance of the rainfall intensity fields simulated by
a meso-scale model, MesoNH. The maximum intensities of the simulated rainfall satisfactorily match
the observed ones in a large range of scales (1-2000 km2 and 1-24 hours). Since return periods have
higher dynamics that rainfall intensities, severity diagrams indicate more accurately the differences
between simulated and observed fields, highlighting the space and time scales mainly hit by the storm.
In a last application, we apply the severity diagrams to ensemble simulations.
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Perspectives

Les études relatives aux erreurs dans l’estimation des précipitations ponctuelles et spatiales par plu-
viomètres menées dans cette thèse donnent un aperçu du problème de la mesure de la pluie. Ces
resultats ont permis d’établir la meilleure configuration pour un réseau expérimentale de pluviomètres.
Ces résultats préliminaires sont à la base de la mise en œuvre d’un nouveau super-site de mesure au
Pradel, Ardèche (HyMeX project).

Une deuxième application est liée à la mesure pluviométrique par radar. L’analyse des champs de
pluie relatifs à l’événement de Septembre 2002 a permis de vérifier que les champs issus de la mesure
radar sont invariants d’échelle dans l’espace. Cette propriété peut être exploitée afin de redéfinir des
relations entre la réflectivité radar et l’intensité des précipitations. La proposition est d’appliquer la
désagrégation par cascade. La technique devrait permettre d’obtenir des champs de réflectivité radar
à fine-échelle (de l’ordre de celle des pluviomètres) caractérisés par une reproduction de la variabilité
du phénomène proche de la realité. La conversion en intensité de précipitation qui s’en suit donne
des lames d’eau moyennes supérieures d’un 10-20% (en fonction de la variabilité du phénomène) par
rapport a la transformation effectuée à la grande échelle. La désagrégation donnerait un résultat ad-
ditionnel: il permettrait de se débarrasser des erreurs d’interpolation intrinsèques à la transformation
des données polaires en coordonnées carteśiennes. En effet, chaque scrutation du radar à un an-
gle donné (image de reflectivité courante) contient des données de réflectivit’es correspondant‘a des
intégrations spatiales effectuées sur des dizaines d’échelles différentes.

Les distributions des intensités extrêmes de pluie ont des queues de types soit hyperboliques, soit ex-
ponentielles qui ont la particularité de se conserver sur une gamme étendue de durées d’accumulation.
Grâce à la modélisation des relations IDF basée sur les fonctions de densités GEV et leur invariance
d’échelle, et aux facteurs de reduction empiriques ARF, il est maintenant possible d’attribuer une
fréquence d’occurrence à une intensité de pluie integrée sur une surface donnée.

De plus, l’implémentation des diagrammes de sévérité permet de mettre en évidence les échelles
critiques d’un’événement dans l’espace espace-temps. Une base de données elaborées contenant les dia-
grammes de sévérité des événements intenses survenus dans la région dans ces dernières décennies est
en projet. Un étude sur l’invariance d’échelle des événements pluvieux va être realisé dans le contexte
du projet AMMA-CATCH en analysant les pluies ponctuelles. Dans cette région, les aspets liés aux
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pluies integrées sur une surface ne peuvent pas être abordés en suivant la même méthodologie à cause
de la faible densité du réseau pluviométrique. Une solution à ce problème pourrait être l’utilisation de
la désagrégation statistique des champs de pluie satellitaires à faible résolution.

Une autre application des diagrammes de sévérité révélée lors des discussions au sein du projet
MEDUP, est la mise en place d’un diagnostique synthétique des simulations d’ensembles. Ces sim-
ulations génèrent des dizaines d’échéances pour plusieurs champs (variables) et pour chaque membre
(plusieurs dizaines parfois). L’analyse de ces champs, qu’on imagine laborieuse, doit permettre de
sélectionner les membres dont les produits tel que les champs d’intensité de pluie sont les plus perti-
nents. Comme ils donnent un diagnostique spatio-temporel prenant aussi en compte la localisation,
les diagrammes de sévérité pourraient étre utilisés pour la sélection ou au moins le tri des membres
dont les champs de sortie sont les plus réalistes.

L’analyse combinée de ces diagrammes de sévérité et des variables issues de avec la modélisation
hydrologique de ces mêmes événements, pourrait permettre de mieux comprendre les relations entre les
incertitudes de la simulation météorologique et les incertitudes de la reponse hydrologique des bassins.

Perspectives

The studies conducted in this thesis on the estimation errors of point and spatial rainfall by ground
measurement devices give insights into the identification of the best configuration of an experimental
rain gauge network. This is at the base of the new super-site that is under construction in the
framework of the HyMeX project in Le Pradel, Ardèche.

Regarding the radar, the scale-invariant properties of spatial rainfall allow a possible redefinition
of the relationships relating the radar reflectivity to the rainfall intensity. The proposition is to reduce
systematic radar underestimation by applying cascade disaggregation. This method is complementary
to the geostatistical studies currently developed at this purpose. A downscaling technique can be
adopted to obtain fine-scale radar reflectivity fields characterized by realistic variability. Once the
radar reflectivity Z and the raingauge rainfall rate R are at coherent spatio-temporal scales, Z-R
calibrations can be implemented. This will result in higher rainfall amounts.

The disaggregation may give another benefit: get rid of the interpolation errors related to the
transformation of polar data into a cartesian grid. In each grid mesh of a polar coordinate system,
the reflectivity value is integrated over a given volume. This volume is different from one mesh to the
next one. Therefore, a raw radar scan merges reflectivities integrated over dozens of spatial scales. If
the polar data is downscaled to a scale of interest (say 10 m) and then averaged to reach the map grid
resolution, the radar reflectivity maps will have homogeneous resolution.

The evidences that the extreme rainfall show either hyperbolic or exponential tails allow to elabo-
rate a scale-invariant GEV model valid for the entire region. Similar analysis on the scale-invariance
of rainfall events are going to be performed in the framework of the AMMA-CATCH survey, on point-
rainfall series. Concerning the spatial rainfall, the rain gauge density is too coarse to have reliable
estimations of the actual spatial rainfall depth in the AMMA-CATCH region. A possible solution to
this problem can be the use of statistical disaggregation on the coarse-resolution satellite data.
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Thanks to the scale-invariant IDF model and to the estimation of the Areal Reduction Factor
ARF, it is now possible to assign a frequency to a rainfall event. This study lead to the possibility
to determine the frequency of a spatial rainfall event, and to detect, through analysis of the severity
diagrams, its critital scales in space and time. A database containing the severity diagrams of the
intense events occurred in the region Cévennes-Vivarais is in project.

The utility of severity diagrams for the qualification of the meso-scale models performance has
been demonstrated. The comparison of different meso-scale models from the point of view of Severity
Diagrams allowed us to identify models that provide a good representation of the fine-scale variability
of the rainfall phenomenon. Great potential may result from the application of severity diagrams
to probabilistic meteorological simulations. In a small example, we have seen that severity diagrams
are able to characterize each member of the ensemble prediction under the point of view of severity.
By means of severity diagrams, we plan to investigate the initial/boundary conditions that affect the
simulations leading to unlikely rainfall fields. In addition, downscaling techniques could be used to
obtain fine-scale boundary conditions in which the variability of the variates is correctly reproduced.
These two propositions may help to reduce the range of variability of the forecast ensemble.

A last application concerns the project MEDUP: the application of severity diagrams to the me-
teorological ensemble simulations gave an idea of the uncertainties of the mesoscale simulation. Asso-
ciating these simulations with the hydrological modeling may allow to envision the relations between
uncertainty in the simulation of the rainfall events and uncertainty of the hydrological response of the
basin.
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Le Cam, L., A stochastic description of precipitation, in Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, 3, edited by C. J. Neyman, Berkeley, pp. 165–186, 1961.

Lebeaupin, C., V. Ducrocq, and H. Giordani, Sensitivity of torrential rain events to the sea surface
temperature based on high-resolution numerical forecasts, Journal of Geophysical Research, 2006.

Lebel, T., and G. Bastin, Variogram identification by the mean-squared interpolation error method
with application of hydrologic fields, Journal of Hydrology, 77 (1-4), 31–56, 1985.

Lebel, T., and J. P. Laborde, A geostatistical approach for areal rainfall statistics assessment, Stochas-
tic Hydrology and Hydraulics, 2 (4), 245–261, doi:10.1007/BF01544039, 1988.



12.0 BIBLIOGRAPHY 245

Lebel, T., G. Bastin, C. Obled, and J.-D. Creutin, On the accuracy of areal rainfall estimation: a case
study, Water Resources Research, 23, 2,123–2,138, 1987.

Lorenz, E., Deterministic non-periodic flow, Journal of the Atmospheric Sciences, 20, 130–141, 1963.

Lovejoy, S., Area-perimeter relation for rain and cloud areas, Science, 216 (4542), 185–187, 1982.

Lovejoy, S., and B. Mandelbrot, Fractal properties of rain, and a fractal model, Tellus, 37 (A), 209–232,
1985.

Mandelbrot, B., How long is the coast of britain? statistical self-similarity and fractional dimension,
Science, 156, 636–638, 1967.

Mandelbrot, B., Intermittant turbulence in self-similar cascades: Divergence of high moments and
dimension of the carrier, Journal of Fluid Mechanics, 62, 331–358, 1974.

Mandelbrot, B., The Fractal Geometry of Nature, W.H. Freeman, 1982.

Mandelbrot, B., Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, Springer-Verlag,
New York, 1997.

Mandelbrot, B., and J. Wallis, Some long-run properties of geophysical records, Water Resources
Research, 5 (2), 1969a.

Mandelbrot, B., and J. Wallis, Robustness of the rescaled range r/s in the measurement of noncyclic
long run statistical dependence, Water Resources Research, 5 (5), 967–988, 1969b.

Mantoglou, A., and J. Wilson, The turning bands method for simulation of random elds using line
generation by a spectral method., Water Resources Research, 18, 1379–1394, 1982.

Marani, M., On the correlation structure of continuous and discrete point rainfall, Water Resources
Research, 39 (5), 2003.

Marani, M., Non-power-law-scale properties of rainfall in space and time, Water Resources Research,
41 (W08413), doi::10.1029/2004WR003822,, 2005.

Marsalek, J., Calibration of the tipping bucket raingage, Journal of Hydrology, pp. 343–354, 1981.

Marsan, D., D. Schertzer, and S. Lovejoy, Causal space-time multifractal processes: Predictability and
forecasting of rain fields, Journal of Geophysical Research, 101, 26,333–26,346, 1996.

Mason, I., Dependence of the critical success index on sample climate and threshold probability, Aust.
Meteoro. Mag., 37, 75–81, 1989.
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APPENDIX A

List of Variables and symbols

α: Power-law decay exponent,
αs: Levy’s stability index
βp: Generalized Pareto scale parameter
β: spectral density slope in double logarithmic plot
βs: parameter of stable distribution
γs: Singularity order:
γe: Euler-Mascheroni constant ∼ 0.577
ε: (ln(1− 1/TR)) in GEV-formulation
ε: (ln(1− 1/TR)) in GEV-formulation
εd: energy dissipation rate in the Kolmogorov Theory
ζ(p): generalized structure function (Frisch and Parisi , 1985) as a function of the moment order p

κ: variance reduction factor relating point and areal rainfall
λ: scale ratio, ratio between large and small resolution
λi: kriging interpolation weights
µ: position parameter of GEV distribution
µs: parameter of stable distribution
ν: fluid viscosity in Navier-Stokes equation
ρ: correlation function
σ: scale parameter of GEV distribution
σ2

ε : error variance
τ : time scale in frozen-turbulence hypothesis
τ(q): moment scaling function
τ(r): L-moment ratio of order r

φ:trigonometric function of Levy’s stable characteristic function
ψ: haar wavelet
ω (geostatistics): realization number
ω (scaling theory): frequency coordinate in Fourier Analysis
Γ: Gamma function, generalization of factorial function for x ∈ +, Γ(x) =

∫ +∞
0 tx−1etdt

Θ: Gumbel parameters of spatial rainfall maxima (Lebel and Laborde, 1988)
Λ: expected number of occurrences within an interval in Poisson distribution
Φ: spectral density of a signal
a, b (introduction): empirical parameters of the Z-R relationship
a (geostatistics): exponential covariance range parameter
a(Tr) (scaling IDF): rainfall intensity for given TR and for the reference duration (usually D = 1h)
c(h), c(γ): codimension function
cs: parameter of stable distribution
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e:natural logarithm, e ∼ 2.71828
h: separation distance
(h): separation vector
i: generic loop index
j: generic loop index
k: generic loop index
m: cascade multiplicity
p: moment order in Generalized Structure Function
q: moment order in moment analysis
r: long-range correlation fluctuation
s: generic spatial coordinate
t: time coordinate
u: velocity component
up= threshold of Generalized Pareto Distribution
x= location vector
A: area (km2)
C1: mean co-dimension of the multi-fractal process
Cβ: fractal dimension of the beta model (intermittency)
D: Euclidean dimension
D(h): singularity spectrum of a signal
Ds: Sampling dimension of multifractal analysis
D: accumulation duration (hours)
H: Hurst exponent
I: rainfall intensity(mm h−1)
K: Moment scaling function of Universal Multifractal Model
L: 1D spatial scale
N : total number of observations
P(x): Cumulative Density Function
R: Rainfall depth (mm)
TR=return period TR = 1

1−f

U : large-scale advection velocity in the “frozen field” theory
X: generic random variate
Y : generic random variate
Z: generic random variate
Z: radar reflectivity
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APPENDIX B

Seasonality of rainfall regime

Monthly rainfall depth

(a) Jan (b) Feb (c) Mar (d) Apr

(e) May (f) Jun (g) Jul (h) Aug

(i) Sep (j) Oct (k) Nov (l) Dec

Figure 12.1: Monthly average rainfall in the Cévennes-Vivarais region.
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Proportion of monthly rainfall

(a) Jan (b) Feb (c) Mar (d) Apr

(e) May (f) Jun (g) Jul (h) Aug

(i) Sep (j) Oct (k) Nov (l) Dec

Figure 12.2: Proportion of monthly average rainfall on the total rainfall amount.
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Monthly intermittency

(a) Jan (b) Feb (c) Mar (d) Apr

(e) May (f) Jun (g) Jul (h) Aug

(i) Sep (j) Oct (k) Nov (l) Dec

Figure 12.3: Proportion of monthly average rainfall on the total rainfall amount.
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APPENDIX C

Extreme value analysis

### Packages

library(ismev)

library(VGAM)

### Random Generation of normal, lognormal, gumbel, GEV, GPD variates

rnorm(10000,0,1)

rlnorm(10000,0,1)

rgumbel(100,10,5)

rgev(100,10,5,0.1)

rgpd(100,10,5,0.1)

#### Gumbel (mu=10, sigma=5) quantile, probability and density function

dgumbel(1:100,10,5)

plot(dgumbel(1:100,10,5),type="l")

pgumbel(1:100,10,5)

plot(pgumbel(1:100,10,5),type="l")

qgumbel(seq(0.1,0.99,0.01),10,5)

plot(qgumbel(seq(0.1,0.99,0.01),10,5),type="l")

############### block maxima method

x=rgev(100,10,5,0)

x2=rgumbel(100,10,5)

y=gev.fit(x)

y2=gum.fit(x)

gev.diag(y)

gum.diag(y2)

############# POT method

###### autocorrelation real series

c<-rnorm(100) # insert a real series instead of rnorm(100)

acf(c) # choose based on this graph a decorrelation lag

##########

library(POT)

k=rlnorm(10000,0,1)

acf(k)

c2df=data.frame(obs=(k),time=1:length(k))

events0 <- clust(c2df, u = 1, tim.cond = 4, clust.max = TRUE) #tim.cond is the decorr. lag

k2=array(0,length(k))

k2[events0[,1]]=events0[,2]

k3=as.numeric(k2)

mrlplot(k3)

gpd.fitrange(k3,umin=5,umax=20,nint=50)

fitting <- gpd.fit(k2,10,npy=365)

gpd.diag(fitting)

############ Return levels for Tr=100yrs

#GEV:

qgev(0.99,10,5,0)

#GPD

npy=length(k2[k2>10])/(length(k2)/365)

p100=rp2prob(retper = 100, npy = npy)

qgpd(p100[3],10,6,0)

#############################################################
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APPENDIX D

1D kriging example

library(gstat)

# Definition of point vectors (X,Y and the observed value Z)

x=seq(1,131,5)

y=x*0 #1D case

z=c( 10.311789, 9.930269 , 15.175008, 14.258478 , 6.690640 , 7.455567,

10.017836, 12.011963 , 17.712395 , 33.429268 ,52.768895 , 88.653022, 146.218722,

173.169668, 147.796973 ,135.701460 ,140.147641 ,142.966831

,117.150382 , 70.210415 , 24.394139 , 3.971373 , 4.621377 , 5.568183,

6.917091 , 13.136782, 17.582994)

# creation of the interpolation grid

data=data.frame(x=x,y=y,z=z)

grid=expand.grid(x=seq(0.5,131.5,2),y=0)

# Sample variogram

v=variogram(z~x,~x+y,data,width=1)

# Variogram fitting

v2=fit.variogram(v,vgm(0,"Gau",30,1))

# Ordinary kriging

kri=krige(z~1,~x+y,model=v2,data=data,newdata=grid)

# Generation of 10 Conditional Simulations

kri3=krige(z~1,~x+y,model=v2,data=data,newdata=grid,nsim=10)

# Impose nugget=0 in variogram

v3=v2

v3$psill[1]=0

# Kriging with new variogram

kri2=krige(z~1,~x+y,model=v3,data=data,newdata=grid)

# plot of first kriging (red), second kriging (blue), experimental points (dots).

plot(kri$x,kri$var1.pred,type="l",col="red",lwd=2,ylim=c(0,170),xlab="Distance X (km)",

ylab=expression(paste("Rainfall intensity (mm h"^-1,")")))

points(kri2$x,kri2$var1.pred,type="l",col="blue",pch=19,lwd=2)

points(x,z,pch=19)

# plot of the conditional simulation results: experim. points (black), cond. simulations (black thin lines), kriging interp (red) and st.dev (green).

plot(x,z,pch=19,ylim=c(-20,170),xlab="Distance X (km)",ylab=expression(paste("Rainfall intensity (mm h"^-1,")")))

points(kri3$x,kri3$sim1,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim2,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim3,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim4,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim5,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim6,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim7,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim8,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim9,pch="19",cex=0.2,type="l",lwd=0.2)

points(kri3$x,kri3$sim10,pch="19",cex=0.2,type="l",lwd=0.2)

points(x,z,pch=19)

points(kri$x,kri$var1.pred,type="l",col="red",lwd=2)

points(kri$x,kri$var1.pred+sqrt(kri$var1.var),lwd=2,type="l",col="green")

points(kri$x,kri$var1.pred-sqrt(kri$var1.var),lwd=2,type="l",col="green")
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APPENDIX E

Conditioned simulation

#### Create 100 fields 100x100 km, resolution 1 km, spherical covariance range 20 km.

library(RandomFields)

x<-y<-1:100

ms0 <- exp(GaussRF(x, y, grid=TRUE, n=100,model="spherical", param=c(0,1,0,20),method="circ"))

############ Variogram (verification)

d=EmpiricalVariogram(x,y, data=ms0, grid=TRUE, bin=seq(0,40,1))

plot(d$centers,d$emp.vario)
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APPENDIX F

Derivation of the codimension function c(γ)

The Universal Multifractal Model can be expressed in terms of the singularity order γ, as a function either of the moment order q or of the

singularity order γ. Step by step, we substitute Equation 5.18 for the case α $= 1 and H = 0 in Equation 5.19 and develop:

γ(q) =
dK

dq
=

C1

α− 1
(αqα−1 − 1) (F1)

Knowing from the functional equation of Legendre transform (also in Veneziano and Furcolo (2002)) that c(q) = qγ(q) −K(q), we substitute the

values of γ(q) and K(q) obtaining

c(q) =
dK

dq
=

C1

α− 1
(αqα−1 − 1) (F2)

The inversion of Equation D1 yields

q(γ) =

„
1

α
+

γ(α − 1)

αC1

« 1
α−1

(F3)

and we can insert Equation D3 into D2, obtaining c(γ):

c(γ) = C1

„
1

α
+

γ

C1α′

«α′
(F4)

where α′ = α
α−1 .
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APPENDIX G

Statistical moments computation of 1D process

library(e1071)

############ 1. Definition of the scales and moment values

magni=trunc(log(length(c2)/4,2)) # maximum analyzed scale

size=2(0:magni) # list of the aggregation sizes

scale=size #

lambda=max(scale)/scale # definition of the scale lambda

q=seq(0.5,2.5,0.5) # analyzed moments (> 0.5 because of the measure resolution, <2.5 to have finite moments)

eta=1 # In double trace moments eta can be a sequence from 1.2 to 2.5

mom2=array(0,c(length(q),length(size),length(eta))) # array of moments

momzero=array(0,c(length(q),length(size),length(eta))) # array of positive-rainfall moments

zero_prop=array(0,length(scale)) # proportion of zeros vector

############ 2. Moments computation

for (i6 in 1: length(eta))

{ print("Elaborating moments: eta value=")

etaval=eta[i6]

print(etaval)

c3=((c2)^etaval)/mean((c2)^etaval,na.rm=TRUE) # DTM theory: the field is raised to the eta power and averaged

for (i in 1: length(size))

{ print(size[i])

for (i3 in 1: size[i])

{

dime=trunc(length(c2)/size[i])+1

c2[(length(c2)+1):(dime*size[i])]=NA

w=colMeans(matrix(c2,size[i],length(c2)/size[i])) #fasten the aggregation process

for (i4 in 1: length(q))

{

mom2[i4,i,i6]=mom2[i4,i,i6]+moment(w,order=q[i4],na.rm=TRUE)/size[i]

momzero[i4,i,i6]=momzero[i4,i,i6]+moment(w[w>0],order=q[i4],na.rm=TRUE)/size[i]

}

if (eta[i6]==1)

{zero_prop[i]=zero_prop[i]+length(sort(w))/length(sort(w[w>0]))/size[i]}

}

}

}

Cb2=coef(lm(log10(zero_prop)~log10(lambda))) # zero computation

Cb=Cb2[2]

print("Fractal intermittency exponent:")

print(Cb)

############ 3. Print plot

plot(scale,mom2[length(q),,which(eta==1)],pch=19,ylim=c(min(mom2[,,which(eta==1)],na.rm=TRUE),max(mom2[,,which(eta==1)],

na.rm=TRUE)),cex=0,log="xy",xlab="Aggregation Scale",ylab="Raw Moments")

for (i in 1:(length(q)))

{points(scale,mom2[i,,which(eta==1)],cex=0.7,pch=19+i)}

dev.off()
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APPENDIX H

Trace Moment Method
For the two following example, the results of the Appendix G are used, in particular the matrix mom2, the moment vectors q and η and the scale

vector λ.

mom=mom2

K=matrix(NA,length(q),length(eta))

for (i5 in 1: length(eta))

{

for (j5 in 1: length(q))

{

a=coef(lm(log10(mom[j5,,i5])~log10(lambda)))

#abline(lm(log10(mom[j5,,i5])~log10(lambda)))

K[j5,i5]=a[2]#######+q[j5]-1

#points(lambda,mom[j5,,i5])

}

}

# dev.off()

#xyz4=xyz[xyz$kz==1,]

azz<-coef(nls(K[,which(eta==1)]~(C1*(q^alpha-q)/(alpha-1)),

start=list(C1=0.025,alpha=1.8),upper=list(C1=1,alpha=2),lower=list(C1=0.0001,alpha=0.0001),algorithm="port",trace=TRUE))

postscript(paste("/Users/davideceresetti/Documents/results/multifractal/TMb_wind_Kq_",contatore,".eps",sep=""),width=6,height=6)

plot(q,K,xlab="Moment Order q",ylab="Moment scaling function K(q)",xlim=c(0,2.5))

print("TM COEFFICIENTS")

print(azz)

w=seq(0,2.5,0.1)

points(w,azz[1]*(w^azz[2]-w)/(azz[2]-1),type="l",lwd=1,lty=1)

dev.off()

alphaDTM=azz[2]

C1=azz[1]

Double Trace Moment Method
alpha_DTM=0

slope=0

###########NORMAL DTM

polyinflex=0

plot(eta,abs(K[length(q),]),log="xy",ylim=c(min(abs(K)),max(abs(K))),xlab=expression(paste(eta)),ylab=expression(paste("K(q,",eta,")",sep="")))

slope=0

qq=0

for (i in 1: length(q[q>1.1]))

{print(length(q)-i+1)

points(eta,abs(K[length(q[q>1.1])-i+1,]))

qq[i]=q[length(q[q>1.1])-i+1]

alpha_DTM[i]=(max(diff(log10(abs(K[length(q)-i+1,])))/diff(log10(eta))))

wcoeff=coef(lm(log10((K[length(q)-i+1,]))~I(log10(eta))+I(log10(eta)^2)+I(log10(eta)^3)))

points(eta,10^(wcoeff[1]+wcoeff[2]*log10(eta)+wcoeff[3]*log10(eta)^2-wcoeff[3]*log10(eta)^3),type="l")

poly=summary(wcoeff)#$coefficients[1:4]

polyinflex[i]=-2*wcoeff[3]/6/wcoeff[4]

lyinflex[i])^3),pch=19,col="red")

if ((polyinflex[i]>1.5)&(polyinflex[i]<1.5))

{

slope[i]=wcoeff[2]+2*wcoeff[3]*polyinflex[i]+3*wcoeff[4]*polyinflex[i]^2

} else

{ slope[i]=wcoeff[2]+2*wcoeff[3]*0+3*wcoeff[4]*0^2}

}

alphaDTM=max(slope,na.rm=TRUE)
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APPENDIX I

1D Multi-fractal cascade with atom at zero
We report in this section an example of 1D multi-fractal disaggregator of rainfall, according to (Over and Gupta, 1996; Schmitt et al., 1998)

library(e1071)

library(fBasics)

library(ismev)

################ Initializing values ######

exponent=0.6 ;alpha=2 ;C1=0.1; g=runif(10)

ss=disaggregate(g,24,0.4,2,0.1,method="Micro")

disaggregate<-function(g,lambda,atom,alpha,C1,method="Micro")

{

########### GUIDE

# lambda=maximum disaggregation scale

# atom= fractal exponent of rain-no rain intermittence (plot proportion of dry events as function of scale)

# alpha=levy’s alpha stable coefficient (alpha=2 normal cascade, alpha<2 levy’stable cascade)

# C1 mean codimension

# method "Micro"=microcanonical; "Canon"=Canonical

########## 1. Cascade steps definition ######### cascade at least branching number=3 because of intermittence

cont=0

divisor=0

num=lambda

while (num>1)

{ cont=cont+1

div=3

while (num-trunc(num/div)*div>0)

{ div=div+1

}

divisor[cont]=div

num=num/div

if (num==2)

{divisor[cont+1]=2

num=1}

}

disagg=divisor # defines the cascade

########## 2. Begin disaggregation

interm1=1 ;

for (i in 1 : length(g))

{

g3=g[i]

if (g3>0)

{

#################### 2a. disaggregation steps

for (i2 in 1: length(disagg))

{

g2=array(0,prod(disagg[1:i2]))

for (i4 in 1:length(g3))

{

########################### 2b. Intermittence definition

if (alpha==1) {alpha=0.99}

if (i2==1) ##### compute (partial) intermittency in disaggregating the positive observations

{

interm=interm1*disagg[i2]^-atom

interm2[i2]=(interm/interm1) #intermitt effettiva sui valori>0

} else {

interm=interm1*prod(disagg[1:i2])^-atom

interm2[i2]=(interm1*prod(disagg[1:i2])^-atom)/(interm1*prod(disagg[1:(i2-1)])^-atom) #intermitt effettiva sui valori>0

}

######################## end 2b

####################### 2c. levy-stable parameters

logvar=C1*2*log(disagg[i2])

if (C1>0) {sigma=C1^(1/alpha)*log(disagg[i2])^((1-alpha)/alpha)*(cos(3.141593*alpha/2)/(1-alpha))^(1/alpha) ;beta=-1 ; mu=C1/(1-alpha) } else {alpha=0.1}

####################### 2d. random generator intermittence

ciao=runif(disagg[i2])

ciao[ciao<(1-interm2[i2])]=0 # aggiungo alla probabilita’ anche il fatto che spesso ho tutti valori nulli e riestrarre mi distorce l’’estimatore

ciao[ciao>(1-interm2[i2])]=1

while (length(ciao[ciao>0])==0)

{ ciao=runif(disagg[i2])

ciao[ciao<(1-interm2[i2])]=0

ciao[ciao>(1-interm2[i2])]=1 }

gg=length(ciao[ciao>0])

if (gg==0)

{gg=1
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ciao[1]=1}

k=c(exp(rstable(gg,alpha=alpha,beta=beta,gamma=sigma,delta=mu,pm=2))) # in stable distr

###################### 2e. if k explose is possible regenerate

while (length(which(is.na(k)))>0)

{print("K diverges: rigeneration")

if (length(which(is.na(k)))>0)

{ k=c(exp(rstable(gg,alpha=alpha,beta=beta,gamma=sigma,delta=mu,pm=2))) #stable distr (not used)

}

}

while (sum(abs(k))==Inf)

{ k=c(exp(rstable(gg,alpha=alpha,beta=beta,gamma=sigma,delta=mu,pm=2))) #stable distr(not used)

}

ciao[ciao>0]=k

###################### 2f. normalization of positive rainfall to balance the dry periods

if (sum(ciao)>0)

{ k=ciao*disagg[i2]/gg

}else{k=c(1,1,1,1)} # in case of error, split exactly the rainfall

#################### 2g. Microcanonical cascade option

if (method=="Micro"){

k=k/mean(k) } # microcanonical cascade

for (i3 in 1: disagg[i2])

{g2[((i4-1)*disagg[i2])+i3]=g3[i4]*k[i3]

}

}

g3=g2 }

} else {g3=array(0,prod(disagg)) }

################### end disaggregation

################### 3. store new disaggregation in the vector g_fine at fine resolution

if (i==1)

{g_fine=g3} else {g_fine=c(g_fine,g3)}

}

return(g_fine) # output variable

}
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