
HAL Id: tel-00551724
https://theses.hal.science/tel-00551724

Submitted on 4 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Intermediate Model for the Verification of
Asynchronous Real-Time Embedded Systems: Definition

and Application of the ATLANTIF language
Jan Stöcker

To cite this version:
Jan Stöcker. An Intermediate Model for the Verification of Asynchronous Real-Time Embedded
Systems: Definition and Application of the ATLANTIF language. Modeling and Simulation. Institut
National Polytechnique de Grenoble - INPG, 2009. English. �NNT : �. �tel-00551724�

https://theses.hal.science/tel-00551724
https://hal.archives-ouvertes.fr

Institut Polytechnique

de Grenoble

Collège doctoral

École doctorale MSTII

An Intermediate Model for the Verification of
Asynchronous Real-Time Embedded Systems:

Definition and Application of the ATLANTIF language

THÈSE

présentée et soutenue publiquement le 10 décembre 2009

pour l’obtention du

Doctorat de Grenoble INP

(spécialité informatique)

par

Jan STÖCKER

Composition du jury

Président : Roland GROZ

Rapporteurs : Elie NAJM
François VERNADAT

Examinateur : Alain GRIFFAULT

Co-Directeur de thèse : Frédéric LANG

Co-Directeur de thèse : Hubert GARAVEL

Institut National de Recherche en Informatique et en Automatique

i

Remerciements

Tout d’abord, je remercie mon directeur de thèse Frédéric Lang pour m’avoir proposé
le sujet de thèse et de m’y avoir guidé à travers les discussions très intéressantes que
nous avons eues. Je tiens à le remercier aussi pour sa patience (ce qui n’était toujours
pas facile avec moi) et sa bonne humeur. Je remercie aussi Hubert Garavel pour m’avoir
acceulli dans son équipe-projet VASY de l’INRIA et pour m’avoir donné beaucoup d’idées
importantes.

Les collaborateurs de l’équipe VASY – Olivier, Anton, Marie et tous les autres ont
rendu mon temps à l’INRIA agréable et plein de bons souvenirs. L’aide apportée par les
assistantes de l’équipe, et surtout par Helen, concernant tous les grands et petits soucis
administratifs, a eu une valeur immense pour moi.

Merci beaucoup aux membres de mon jury, d’avoir accepté ce travail, merci surtout
aux rapporteurs pour leurs remarques constructives et leurs idées pour l’amélioration de
ce manuscrit.

Beaucoup de mes amis, dont plusieurs que j’ai eu la chance de rencontrer pendant mes
trois années passées à Grenoble, ont été à mes côtés dans des temps difficiles et dans des
temps agréables. Loin de ma propre famille, mes colocataires ont été une deuxième famille
pour moi.

Chaleureusement je dis merci – Herzlichen Dank ! – à mes parents et aux autres mem-
bres de ma famille, pour m’avoir toujours encouragé, pour les visites mutuelles et pour
beaucoup de petites et grandes choses.

ii

iii

Pour ma mère,

parce qu’elle m’a fait découvrir les mathématiques.

iv

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 General context . 1

1.1.2 Abstract modelling . 2

1.2 Overview of this thesis . 6

2 Notation 9

3 Overview and classification of formal models 15

3.1 Semantic models . 16

3.1.1 Timed labelled transition systems 16

3.1.2 Alternative semantic models . 21

3.2 Graphical models . 22

3.2.1 Overview . 22

3.2.2 Timed automata . 23

3.2.3 Time Petri nets . 28

3.2.4 Other models . 32

3.3 High-level languages . 33

3.3.1 Languages based on CCS . 34

3.3.2 Languages based on CSP . 35

3.3.3 Languages based on LOTOS . 35

3.3.4 E-LOTOS and LOTOS NT . 36

3.3.5 Other high-level languages . 36

3.4 Intermediate models . 37

3.4.1 IF and IF-2.0 . 37

3.4.2 BIP . 38

3.4.3 AltaRica . 39

v

vi Table of Contents

3.4.4 MoDeST . 39

3.4.5 Promela . 40

3.4.6 NTIF . 40

3.4.7 Fiacre . 40

3.5 Summary and observations . 41

3.5.1 Possible approaches: a summary . 41

3.5.2 Observations from the comparison 48

4 The syntax and semantics of ATLANTIF 51

4.1 Syntax and semantics notation . 51

4.2 Overview of ATLANTIF . 52

4.3 Basic constructs . 56

4.3.1 Types, functions, and constructors 56

4.3.2 Expressions . 56

4.3.3 Patterns . 58

4.3.4 Offers . 60

4.4 Units . 60

4.4.1 Overview . 60

4.4.2 Actions . 61

4.4.3 Unit semantics . 72

4.4.4 Subunits . 73

4.5 Synchronizers . 75

4.5.1 Syntax description . 75

4.5.2 Static semantics . 76

4.5.3 Dynamic semantics . 77

4.6 Modules . 78

4.6.1 Syntax description . 78

4.6.2 Static semantics . 79

4.6.3 Dynamic semantics . 81

4.7 Properties of the semantics . 86

4.7.1 Examples and remarks on the formal definitions 86

4.7.2 Properties of the generated TLTS 90

4.7.3 Analysis of the rules . 95

4.8 Conclusion . 103

4.8.1 Suitability as an intermediate format 103

vii

4.8.2 Possible extensions . 104

5 Translating high-level constructs into ATLANTIF 107

5.1 Introduction . 107

5.2 Combination of sequential and parallel composition 108

5.2.1 Statement . 108

5.2.2 Translation to ATLANTIF . 108

5.3 Delay and timed communication . 111

5.3.1 Statement . 111

5.3.2 Translation to ATLANTIF . 111

5.4 Latency . 113

5.4.1 Statement . 113

5.4.2 Translation to ATLANTIF . 113

5.5 Synchronization vectors and generalized parallel composition 114

5.5.1 Statement . 114

5.5.2 Translation to ATLANTIF . 116

5.6 Asynchronous termination . 118

5.6.1 Statement . 118

5.6.2 Translation to ATLANTIF . 119

5.7 Exception handling . 120

5.7.1 Statement . 120

5.7.2 Translation to ATLANTIF . 121

5.8 Lossy buffer . 125

5.8.1 Statement . 125

5.8.2 Translation to ATLANTIF . 125

6 Translating ATLANTIF to graphical models 129

6.1 Timed automata . 129

6.1.1 Motivation and principles . 129

6.1.2 Restrictions . 132

6.1.3 Definition of the translator . 135

6.1.4 Discussion . 143

6.2 Time Petri nets . 148

6.2.1 Motivation and principles . 148

6.2.2 Restrictions . 153

viii Table of Contents

6.2.3 Definition of the translator . 155

6.2.4 Discussion . 168

6.3 Fiacre . 174

6.3.1 Motivation and principles . 174

6.3.2 Intuition of the translation approach 174

6.4 Tool implementation . 175

7 Example: a lift 179

7.1 Modelling in ATLANTIF . 179

7.1.1 The lift example . 179

7.1.2 Representation in ATLANTIF . 181

7.2 Translation to TINA . 183

7.3 Verification . 188

7.3.1 State space construction . 188

7.3.2 Model checking . 189

7.4 Conclusion . 191

8 Conclusion 193

8.1 Contribution . 193

8.1.1 Language features . 193

8.1.2 Comparison of ATLANTIF with related work 194

8.1.3 Extension of the possibilities to use formal verification 197

8.2 Perspectives . 198

8.2.1 Advancements of ATLANTIF . 198

8.2.2 Extension of the translations . 199

8.2.3 Development of FIACRE . 199

8.2.4 Using ATLANTIF on more complex specifications 200

Bibliography 201

A Additional algorithms and proofs 213

A.1 Static semantics . 213

A.1.1 Unicity of communication, undelayed next state reachability 213

A.1.2 Equivalent definition of validity-stable synchronizers 215

A.1.3 Variable initialization . 217

A.2 Translation to graphical models . 222

ix

A.2.1 Translation of an ATLANTIF unit to a TINA TPN 222

A.3 Translation to Fiacre . 231

A.3.1 The Fiacre model . 231

A.3.2 Problems to overcome . 233

A.3.3 Restrictions . 234

A.3.4 Definition of the translator . 234

A.3.5 Discussion . 241

B Additional examples 245

B.1 Application of the generalized parallel composition 245

B.2 Timed semantics in synchronization chains 247

B.3 Lamp . 250

C Complete syntax 251

D An extended summary in French 259

x Table of Contents

List of Figures

3.1 Tlts with zeno behaviour . 19
3.2 Strict zeno Tlts . 20
3.3 Different Lts extensions (time domain IN) 22
3.4 Two timed automata describing a lamp (left) and a person (right) 27
3.5 A time Petri net describing a bus and a passenger 30

4.1 Atlantif program describing a light switch 55
4.2 Example of a well-accessible shared variable 74
4.3 Independent synchronizations . 82
4.4 Machine with error detections, illustrating chains 87
4.5 Subsystem started by an auxiliary subsystem (chain with starting) 88
4.6 Subsystem started by two auxiliary subsystems (chain with real time) . . . 88
4.7 An Atlantif specification describing the simplest form of zeno behaviour 92
4.8 An Atlantif specification with a timelock 94

5.1 E-Lotos code for semi-ordered redistribution 108
5.2 Atlantif translation for semi-ordered redistribution 110
5.3 E-Lotos code for different real-time constructs 112
5.4 Atlantif translation for Fig. 5.3 . 112
5.5 Syntax of synchronization vectors (EXP.OPEN 2.0) 115
5.6 Generalized parallel composition – simplified 115
5.7 Generalized parallel composition – complete 116
5.8 ET-Lotos code for an example of asynchronous termination 119
5.9 Atlantif translation for the ET-Lotos code of Fig. 5.8 119
5.10 Schema of the semantics of the ET-Lotos example 120
5.11 Schema of the semantics of the Atlantif code of Fig. 5.9 120
5.12 Lotos NT code representing simple exception handling 121
5.13 Lotos NT code representing complex exception handling 122
5.14 Atlantif code representing simple exception handling 123
5.15 Atlantif code representing complex exception handling 126
5.16 ET-Lotos code representing a lossy buffer 127
5.17 Atlantif code representing a lossy buffer 128

6.1 Pseudocode defining the function transitions and locations 138
6.2 The mapping trans . 139

xi

xii List of Figures

6.3 Fragments of an Atlantif module with multiway synchronization 141
6.4 Translation fragments in Uppaal TAs . 142
6.5 Translation fragments in Uppaal TAs – advanced emulation 147
6.6 Translation fragments in Uppaal TAs – advanced emulation with clocks

and discrete variables . 147
6.7 Example for a TPN extended with predicate-/action-transitions 150
6.8 Example for the composition of untimed Petri nets 152
6.9 Composition of time Petri nets (sketch) . 152
6.10 The mapping transp . 156
6.11 Case 2: schema for “wait n; G may in [m,...[” (with n + m > 0) . . . 158
6.12 Case 3: schema for “wait n; G may in]m,...[” (with n + m ≥ 0) . . . 158
6.13 Case 4: schema for “G may in [0,k]” (with k ≥ 0) 159
6.14 Case 5: schema for “G may in [0,k[” (with k > 0) 159
6.15 Case 6: schema for “G must in [0,k]” (with k ≥ 0) 160
6.16 Schema for “wait n; G may in [m,k]” (with n + m > 0, k ≥ 0) 161
6.17 Schema for “wait n; G may in]m,k[” (with n + m ≥ 0, k > 0) 161
6.18 Schema for “wait n; G must in [m,k]” (with n + m > 0, k ≥ 0) 162
6.19 Translation for branching action (not optimized) 163
6.20 Optimization for the translation of Fig. 6.19 163
6.21 Translation for unit Irregular Sender (wrong) 163
6.22 Translation for unit Irregular Sender (corrected) 164
6.23 Algorithm for composition of transitions in TPNs from Atlantif units . . 167
6.24 Pseudocode to resolve offers into assignments and a condition (two return

values) . 168
6.25 Very simple sender/receiver model . 169
6.26 Translation of the very simple sender/receiver model 170
6.27 Very simple sender/receiver model (variant) 171
6.28 Translation of the very simple sender/receiver model (variant) 171
6.29 Component hierarchy of a generated Fiacre program (schema) 175
6.30 Schema for the application of the prototype atlantif tool 175
6.31 The two generated Uppaal TA for the light switch example 176
6.32 The generated Tina time Petri net for the light switch example 177

7.1 Atlantif code describing the lift . 182
7.2 The file lift.net . 185
7.3 The generated Tina TPN of the lift . 187

A.1 Unicity of communication and undelayed next state reachability 214
A.2 Function local edges . 218
A.3 Pseudocode for variable usage graph construction 220
A.4 Pseudocode for fix-points of variable definitions in the variable usage graph 221
A.5 Pseudocode for the second step of the translation from a unit to a TPN (1) 223
A.6 Pseudocode for the second step of the translation from a unit to a TPN (2) 224
A.7 Pseudocode for the second step of the translation from a unit to a TPN (3) 225
A.8 Pseudocode for the second step of the translation from a unit to a TPN (4) 226

xiii

A.9 Pseudocode for the second step of the translation from a unit to a TPN (5) 227
A.10 Pseudocode for the second step of the translation from a unit to a TPN (6) 228
A.11 Pseudocode for the second step of the translation from a unit to a TPN (7) 229
A.12 Pseudocode for the second step of the translation from a unit to a TPN (8) 230
A.13 Function ATLANTIF action to FIACRE 240
A.14 2 among 3 synchronization formula in the context of an Atlantif module 241
A.15 Generated Fiacre program for the module of Fig. A.14 242
A.16 Generated Fiacre program for untimed asynchronous termination 243

B.1 Atlantif code for Open Distributed Processes 246
B.2 Atlantif program for semantics example 248
B.3 Atlantif module describing a light switch 250

D.1 Règles pour la sémantique dynamique des unités 273
D.2 Programme Atlantif qui décrit un interrupteur 274
D.3 Schéma pour l’utilisation de l’outil prototype atlantif 283

xiv List of Figures

Chapter 1

Introduction

1.1 Motivation

1.1.1 General context

In the year 2009, the world is more dependent than ever on computer systems, and this
dependency is likely to grow in the future. Money that only exists electronically, the
virtual elimination of distances by cellphones and the Internet, and many other charac-
teristics of the fundamental changes in our culture are nowadays accepted as a normal
part of life.

Technically, much of this has become possible by broad usage of embedded systems i.e.,
very specialised computer systems integrated in electric or electronic devices and control-
ling these devices. The tasks they perform are usually too complex to be carried out by
human beings (e.g., fast calculations on large amounts of input data), or too dangerous
(e.g., on-board control of space vessels, manipulations in nuclear reactors or chemical
factories), or simply too tedious (e.g., control of traffic lights). Often, many embedded
systems are connected and communicate with each other.

Obviously, these numerous dependencies induce risks and vulnerabilities, as failures of
critical systems can lead to serious effects (e.g., unnecessary traffic jams) or even disastrous
consequences (e.g., aircraft crashes). To avoid this, a developer cannot rely exclusively on
common sense, because the parallel execution of several embedded systems easily reaches
a complexity that goes beyond the scope of human imagination.

Therefore, it is essential to find a systematic means to ensure that hard- and software
systems work correctly. When a failure during the usage cannot be risked, it is clear
that these means have to be placed in the design process of such a system. Among the
approaches that exist to this end is to apply a formal method such as model checking .

Model checking begins by describing a system’s behaviour, which includes aspects such
as what messages sends to other systems or to human users, what messages it receives,
how the input data is proceeded, and how much time elapses before a next step is taken.

1

2 Chapter 1. Introduction

Writing this description is done using a standardized notation, which may either be purely
textual, or a mixture of textual and graphical elements, and which is defined with unam-
biguous, formal semantics.

The next step is to state the properties that must be satisfied in the system e.g., “It is
impossible that the pedestrian light A and the car traffic light B are green at the same
time.”, “When the plane’s speed is greater than 400 km/h, then the flaps must not be
extended.”, or “A warning light has to be lit in the plane’s cockpit if the last weather
forecast received by radio is older than 30 minutes.”. These properties are also given in a
formal language with an unambigous semantics.

Given the formal behaviour description and formulas expressing a required property, algo-
rithms check whether the system satisfies the property: First, they generate a complete set
of all configurations (“states”) that may be reached by the system’s description, including
information on which states may succeed a given state. Then, all possible sequences of
states are checked to see whether the property is true for them or not. This procedure
is repeated for every property. Thus, model checking verifies firmly and, most notably,
exhaustively that the system behaves as it should.

1.1.2 Abstract modelling

Data, concurrency, and real time. Textual languages and graphical models that
are used for system descriptions in model checking must be simple enough to enable
the use of efficient verification algorithms. However, when the objective is to perform
formal verification of realistic systems, simple languages are not appropriate to model
these systems.

For the concerns of this thesis, the term “realistic” refers to three aspects that must be
provided in a suitable language: complex data structures, concurrency, and activity in
real time. These three aspects are discussed below.

To handle complex data structures, a modelling language must cover both representation
and manipulation of data:

• Representation: Simple data types (such as booleans, integers, and enumerated
types) and structured data types (such as arrays, records, lists, unions, sets, and
trees) can occur as parameters in systems we wish to model. Therefore, a suitable
language must offer the possibility of user-defined data types.

For instance, a system describing a mobile phone mast controller might have a data
type client defined as an array containing phone number, service provider, etc., and
another data type connections , defined as a set of client arrays.

• Manipulation: Mathematical functions need to be represented. These may be prede-
fined for standard data types (e.g., addition of integers), but obviously, user-defined
types only make sense when functions also can be user-defined.

For instance, given a variable current clients of type connections , update functions

1.1. Motivation 3

are necessary to represent new clients entering or current clients leaving the range
of the mast.

To handle concurrency i.e., to describe systems that are composed of two or more inde-
pendent subsystems (which we call processes in the following), a modelling language must
cover communication between processes and process activation and deactivation.

• Communication: When several processes are executing concurrently, interaction
between them has to be possible. For instance, in a system describing a plane, a
cockpit process sends a message to the flaps process to order their extension.

A communication between processes can be asynchronous (i.e., one process sends a
message, then one or several other processes receive the message) or synchronized
(i.e., all processes involved in the communication participate simultaneously). For
synchronous communication, we do not need to identify the sender and the receivers.

• Activation/Deactivation: During the execution of a system, the set of concurrent
processes is not necessarily static: New processes may be created, old ones may
disappear.

For instance, the arrival and the departure of different mobile phone users in the
range of the mobile phone mast can be represented by the activation and deactivation
of several processes, each of which corresponds to one user.

A model of a process expresses the order in which it performs its communications. How-
ever, sometimes such a qualitative description is not sufficient, and it is necessary to
provide quantitative information on how much time elapses during the execution. To
handle real time, a modelling language must cover delays, urgency, and latency.

• Delays: A suitable language must be able to express inaction of a process during
some time. This is usually an abstract representation of an activity that takes time
to be executed, like a physical displacement e.g., the time it takes to extend the
flaps.

• Urgency: When a process is ready to perform a certain communication, it can make
sense to force the immediate execution of this communication, instead of allowing
time to elapse.

For instance, when a mobile phone receives a message from the mobile phone mast
process that there is an incoming call, then the ring tone is played immediately.

• Latency: A further refinement of this idea is to indicate that a limited amount of
time can elapse before a communication becomes urgent.

In the previous example, it could take the mobile phone process an indefinite but
very limited time to decide which ring tone to play.

4 Chapter 1. Introduction

Complex data structures, concurrency, and activity in real time are not independent as-
pects of a system. Combining these aspects requires that we consider additional concepts:

• Transmission of values: In a language that combines data and concurrency, it must
be possible to express that data generated in one process can be used in another
process.

For instance, the process representing the airspeed indicator of a plane must transmit
the value of the current speed to the process representing the autopilot.

• Timeout: In a language that combines time and concurrency, communications may
depend on the elapsing of time. When the system allows for two or more processes
to communicate by a synchronization, the model should be able to express that once
a process is ready to perform the synchronization, it does not wait arbitrarily, but
becomes unavailable for the communication after a certain amount of time.

For instance, after the mobile phone mast has sent a message of an incoming call to
a mobile phone, it only waits one minute for the mobile phone to accept this call.

The need for intermediate models. The description and verification of systems cov-
ering data, concurrency, and time has been a very active research subject for already more
than two decades. In the late 1980s and the 1990s, many approaches belonged to one of
the two following categories:

• High-level languages provide a purely textual and highly expressive syntax that en-
ables very concise descriptions. Most notably, process algebras [97], already provid-
ing concise representations of complex data and concurrency, were extended with
real-time constructs. Process algebras describe the behaviour of a system as an
ordering of communication events , representing how the system is perceived ex-
ternally, while the internal behaviour is abstracted from. Such atomic events are
combined with mathematical operators e.g., expressing that two things happen one
after another (sequential composition) or that two behaviours execute independently
(parallel composition).

Among the process algebras extended with real-time constructs are ACP/SAT [10],
ATP [100], CCS with time [125], ET-Lotos [91], µCRL [29], RT-Lotos [47],
Timed CSP [108, 50, 103], Timed Lotos [31]. Various aspects from these languages
converged into the E-Lotos language standardized by Iso [83].

• Graphical models on the other hand combine textual descriptions with a visual
component, thus enabling a more intuitive application. Most notably, models like
automata networks and Petri nets that already provide intuitive representations of
concurrency were extended with data and real-time constructs. The most famous
of these models are timed automata [4] and time Petri nets [95].

Based on simpler syntax and semantics rules than the process algebras mentioned
above, such graphical models enabled the development of successful algorithms and
software tools for simulation and formal verification.

1.1. Motivation 5

Experiences with these two approaches in the modelling of systems with data, concurrency,
and time, revealed complementary strengths and weaknesses:

• High-level languages are very expressive and concise, but their elaborate structure
makes formal verification tools hard to design. In some cases, even the formal
description of their semantics becomes very complex.

• Graphical models serve as input languages for several verification tools, but are of
limited capability for concise descriptions: The representation of a complex system
can easily become unstructured and unreadable due to a large number of overlapping
edges.

To overcome these problems, intermediate models have been developed during the last few
years, with a design inspired from both approaches and aiming to combine the strengths
of each. Ideally, it is then possible to specify a system in a high-level language, then to
translate the specification into an intermediate model, and finally to translate this to a
graphical model, where tools can be applied to perform model-checking, simulation, etc.
The major difficulty in such a translation chain is preservation of semantics: One can use
the results from the graphical model level to reason about the initial specification only if
the semantics of the initial specification are preserved.

A proposition for a new intermediate format. The purpose of this thesis is the
introduction of the new intermediate model Atlantif (Asynchronous Timed Language
Amplifying Ntif). Although several propositions for intermediate models have been made
during the last few years, all of them lack important constructs required to support recent
high-level languages:

• Several industrial models based on model-driven tool developement (e.g., Aadl [57],
SysML [72], and Uml/Marte [56]) have only a semi-formal definition. Therefore
they are insuitable for exhaustive formal verification.

• Many approaches consisted of models for the efficient compilation of concurrent sys-
tems with data, yet without real-time constructs. For instance, the OPEN/CAESAR
framework [60] in the Cadp toolbox enables formal verification and simulation for
models in different input formats. Similarly, the Nips compiler [124] translates
from different high-level modelling languages to a byte-code model enabling model
checking.

• Other models provide formal semantics and real-time constructs, but are limited
to processes whose behaviour is defined by simple transitions instead of high-level
constructs; for instance the AltaRica [45] model and the Bip [11] model.

• The If-2.0 [38] model does not provide communication by synchronization. Other
models, such as MoDeST [30], do not provide complex synchronization operators.

6 Chapter 1. Introduction

• Efforts have been made to integrate high-level constructs into sequential processes
of intermediate models, for instance in the Ntif (New Technology Intermediate
Form) [61] model. Partially based on Ntif, the Fiacre [17] model also provides
concurrency and real-time constructs.

However, the real-time constructs provided by Fiacre only can express time con-
straints on a global level i.e., related to a synchronization among several processes
that are ready to communicate. High-level languages like E-Lotos, on the other
hand, can express time constraints on a local level i.e., processes themselves may
have a limited availability for synchronizations.

Our objective for the definition of Atlantif is to overcome these restrictions and to
provide translations to verification tools.

1.2 Overview of this thesis

Chapter 2 will fix the conventions of the notation that is used in this thesis. The remainder
consists of two main parts, described in the following.

Definition of ATLANTIF. Chapters 3 and 4 describe the design of Atlantif.

The basis for this design is established in Chapter 3, which presents and analyzes existing
high-level languages, graphical models, and intermediate models along with tool imple-
mentations. A focus will lie on the choices that have to be made when defining a new
model.

Based on this analysis, Chapter 4 formally defines the syntax and semantics of Atlantif.
This new model is based on Ntif: The definition of untimed sequential processes with
complex data handling is essentially identical.

Atlantif extends Ntif with real-time constructs, expressing delays and time restrictions
in processes as well as urgency. Atlantif also introduces concurrency constructs, which
enable the parallel execution and synchronization of processes.

Application of ATLANTIF as intermediate format. Chapters 5, 6, and 7 show
how Atlantif can indeed be used as an intermediate model. They describe connections
from high-level languages to Atlantif and from Atlantif to graphical models.

Chapter 5 lists several examples of constructs typically occurring in high-level languages
(e.g., exception handling and asynchronous termination) and shows how each of them can
also be represented in Atlantif.

Chapter 6 presents two translations from subsets of Atlantif to other models, timed
automata (Uppaal) and time Petri nets (Tina).

As an application of Chapters 5 and 6, Chapter 7 provides an example: We model in
Atlantif a lift and demonstrate how this specification is translated into a Tina time

1.2. Overview of this thesis 7

Petri net on which model checking is performed.

The conclusion in Chapter 8 compares Atlantif with other intermediate models, under-
lining that the range of constructs it provides is not covered by any of them, and thus
showing that Atlantif is indeed a contribution for the high-level modelling of systems.
We discuss how Atlantif extends the class of systems that can practically be formally
verified, and end with some perspectives for the future of Atlantif.

The appendixes contain some additional algorithms and proofs (Appendix A), additional
examples (Appendix B), the complete syntax of Atlantif as it is implemented in our
tool (Appendix C), and an extended summary of this thesis in French (Appendix D).

8 Chapter 1. Introduction

Chapter 2

Notation

The following notation is used throughout this thesis, particularly Chapters 4 and 6. Most
of this notation is in common usage.

• To distinguish the definition of a specific set, a function, etc., we use the notation

X
def
= Y , where the object named X is defined by the term Y .

• 1..n and 0..n with n ∈ IN are shorthand notations for the sets {i ∈ IN | 1 ≤ i ≤ n}
and {i ∈ IN | i ≤ n} respectively. Note that 0 ∈ IN.

• Let ϕ, ϕ′ : X → X ′ be partial functions:

– dom(ϕ) denotes the domain of ϕ i.e., the subset of X on which ϕ is defined.

– image(ϕ), image(ϕ′) are the images of these function i.e., the subsets of X ′ in
which they take values.

– We define the update operator ⊘ and the restriction operator ⊖ for elements
x1, . . . , xn ∈ X by:

ϕ⊘ ϕ′ def
= ϕ′′ where ϕ′′ : X → X ′, dom(ϕ′′) = dom(ϕ) ∪ dom(ϕ′),

and (∀x ∈ dom(ϕ′′)) ϕ′′(x) =

{
ϕ′(x) if x ∈ dom(ϕ′)

ϕ(x) otherwise

ϕ⊖ {x1, . . . , xn} def
= ϕ′′ where ϕ′′ : X → X ′, dom(ϕ′′) = dom(ϕ) \ {x1, . . . , xn},

and (∀x ∈ dom(ϕ′′)) ϕ′′(x) = ϕ(x)

– If the domain of ϕ is a finite set {y1, . . . , yn} and ϕ(y1) = y′
1, . . . , ϕ(yn) = y′

n,
then we also may write ϕ in the form [y1 7→ y′

1, . . . , yn 7→ y′
n]. If the domain of

ϕ is empty, then we also may write it ∅.

• Q≥0 denotes the set of non-negative rationals and IR≥0 denotes the set of non-
negative reals.

9

10 Chapter 2. Notation

• For arbitrary expressions E1, E2, and a variable V , we note [E1/V]E2 for the ex-
pression that is obtained when each occurrence of V in E2 is replaced by E1.

• For a set X, card(X) denotes the number of elements (or cardinality) of X. In the
context of this work, this only applies to finite sets.

• For a set X, P(X) denotes the power set of X i.e., the set containing all subsets of
X.

Many definitions are given throughout this thesis. To allow a fast access, the locations of
these definitions are given in the following tables:

Function Definition Page
accept 60
act 61
tl off 140
label 86
new guard 140
new limit 141
reach 214
sense 136
shift 29
tag 75
trans 139
transp 156
transitions and locations 138
type (on expressions) 56
type (on offers) 60
type (on patterns) 58
ucuns 214
update exp 140
update exp’ 155
θ 81
π 81
ρ 57
⊖ 9
⊘ 9
+ (on labels) 69
+ (on (U→ D)×D) 86

Table 2.1: List of function definitions

11

Set Definition Page
accessible(V) 75
D 16
decl(u) 60
def (O) 60
def (P) 58
G 55
L1 61
L′

1 81
L2 81
match(v, ρ, P) 59
read(A) 61
read(E) 57
read(O) 60
read(P) 59
read(u) 72
read(W) 65
shadow(U) 215
start(G) 76
stop(G) 76
sync(G) 78
S,Su 55
S 81
T 81
use(E) 57
use(O) 60
use(P) 58
U 55
U0 79
U 55
Val 57
write(A) 61
write(O) 60
write(P) 59
write(u) 72
0..n, 1..n 9

Table 2.2: List of set definitions

12 Chapter 2. Notation

Predicate Definition Page
emission(G, i, u0) 136
enabled(S, l, µ, S ′) 85
eval(E, ρ, v) 57
next α(α,U , G, α′) 85
next θ(θ,U , t0, G, θ′) 84
next π(π, π1, G, π′) 84
next ρ(ρ, ρ1,U , G, ρ′) 85
relaxed(S) 85
synchronizing((S, α), l, µ, (S ′, α′)) 83
up lim(Q, D, t) 67
validity stable(G) 77
validity stable ′(G) 215
valid active(U) 77
win eval(W, ρ, D) 66
def
= 9

(A, d, ρ)
l

=⇒ σ 62
≻ 73
� 73

Table 2.3: List of predicate definitions

13

Term Definition Page
binary synchronization 25
blocking condition 62
clock 23
chain 82
dense time 17
discrete time 17
discrete transition 17
execution path 72
graphical model 22
high-level language 33
intermediate model 37
labelled transition system 16
local state 62
maximal progress of urgent actions 18
modality 65
phase 62
run 19
store 57
strong deadline 46
time additivity 18
time determinism 18
time domain 16
time Petri net 28
time window 65
timed automaton 23
timed labelled transition system 17
timed transition 17
timing option 79
timelock 19
unit affection 83
validity-stability 77
weak deadline 46
well-binding 59
well-activatedness 80
well-accessible 74

Table 2.4: List of terms introduced

14 Chapter 2. Notation

Dynamic semantics rule Definition Page
(assignd) 62
(assignn) 63
(case) 69
(comm) 67
(if 1) 70
(if 2) 70
(null) 72
(rdv) 85
(reset) 64
(select) 71
(seq1) 69
(seq2) 69
(stop) 68
(time) 86
(to) 67
(wait) 64
(while1) 71
(while2) 71
(ε-elim) 73

Table 2.5: List of semantic rules

Chapter 3

Overview and classification of formal
models

Abstract To be of use, an intermediate model should have an expressive power
that covers the most important constructs of commonly used high-level languages,
while having structural similarities to lower-level models, making them accessible for
translations from the intermediate model. Therefore, this chapter provides a detailed
analysis of existing formats, which starts with presenting common semantic models,
then discusses the most important graphical models, several high-level languages,
and finally several intermediate models. A comparison of these formats at the end
of this chapter concludes that the definition of a new intermediate format is justified.

In this chapter, we make a detailed analysis of existing formal models and languages that
combine expressive power regarding data, concurrency, and real time.

We begin by discussing semantic models i.e., simple models used by other models and
languages to define their formal semantics, thus providing a basis for further comparisons.

We then discuss graphical models, which are situated on a higher level of abstraction. We
define two such models, namely timed automata and time Petri nets, give an overview of
their dialects, and then mention further graphical models. We also list various software
tools that have been developed to perform formal verification on the models presented.

Then, we proceed to high-level languages, by presenting different families of process alge-
bras, which provide more concise notations than graphical models. Only a few software
tools are available to perform formal verification directly on models written in high-level
languages.

With the differences between graphical models and high-level languages identified, we
then explain the need for intermediate models i.e., models using structures and constructs
of graphical models as well as of high-level languages and situated on an intermediate
abstraction level. We then present several existing intermediate models and describe
their expressive power.

15

16 Chapter 3. Overview and classification of formal models

The conclusion of this chapter gives an overview of criteria that can be used to compare
the different models and languages. These criteria represent the choices that have to be
made when defining a new model. Against the background of these choices, we will see
that several combinations of constructs are not provided by any of the existing interme-
diate models, and that therefore the definition of a new intermediate format is justified.
Chapter 4, which gives such a definition, takes the choices identified here as a basis for
the new intermediate format Atlantif.

3.1 Semantic models

3.1.1 Timed labelled transition systems

Definitions

This section provides the definition of the timed labelled transition system (Tlts) model,
which most other formalisms in the remainder of this chapter will use to define their
semantics. Thus, it represents a simple, language-independent model and a common
basis for a reasonable comparison between different formal models.

The Tlts model extends the untimed “labelled transition systems” (Lts) by including
information on time elapsing. We develop the definition through three steps: First, we
formally define the LTS model, which itself is used as a semantic model of untimed systems.
Second, we define a “time domain” structure, which will be used to quantify time. Third,
we combine those two definitions to obtain the Tlts model.

Definition 3.1. A labelled transition system (Lts) is a 4-tuple (Σ, A,→, S0), defined as
follows:

• Σ is a (possibly infinite) set of states, written S, S ′, S0, S1, etc.

• S0 ∈ Σ is called the initial state.

• A is a (possibly infinite) set of discrete labels, written a, a′, a0, a1, etc. It contains
one special element written τ , called the silent label.

• The set of triples → ⊆ (Σ × A × Σ) is called the transition relation. Following
common practice, we will write S

a−→ S ′ instead of (S, a, S ′) ∈ →.

Definition 3.2. A time domain is a structure (D, 0, <, +) satisfying the following:

• The carrier set D is finite or infinite. We write t, t′, t1, t2, etc. for its elements.

• < is a total order on D.

• 0 is a minimal element w.r.t. the order < (i.e., (∀t ∈ D) 0 = t ∨ 0 < t).

3.1. Semantic models 17

• + is an associative and commutative operation, totally defined on D×D→ D, and
accepting 0 as neutral element.

• Each element can be complemented to each bigger element. Formally:

(∀t1, t2 ∈ D) (t1 < t2 ⇔ (∃t3 ∈ D) t3 6= 0 ∧ t1 + t3 = t2)

• < is stable by constant addition. Formally:

(∀t, t′) 0 < t⇒ t′ < t + t′

As it is common usage, the term time domain will often simply refer to the carrier set D.

We say that the time domain is dense if the carrier set is infinite and dense w.r.t. < i.e.,
(∀t1, t2 ∈ D) t1 < t2 ⇒ (∃t3 ∈ D) t1 < t3 < t2. We say that the time domain is discrete if
the carrier set is discrete w.r.t < i.e., (∀t1 ∈ D) (∃t2 ∈ D) t1 + t2 is the smallest element
greater than t1 (thus, each element has a direct successor).

Clearly, being discrete and being dense are mutually exclusive. Examples for dense time
domains are the non-negative rationals Q≥0 and the non-negative reals IR≥0. An example
for a discrete time domain are the natural integers (IN, 0, <, +); all other discrete time
domains are isomorphic to this structure. The set {0} is neither discrete nor dense;
obviously this is the only possible example where D is finite.

Definition 3.3. A timed labelled transition system (Tlts) is a 5-tuple (Σ, A, D,→, S0),
defined as follows:

• Σ, S0, and A are defined as in Definition 3.1 above.

• D is the carrier set of a time domain such that A∩D = ∅. We write l, l′, l0, l1, etc.
for the elements of A ∪ (D \ {0}).

• The set of triples → ⊆ (Σ × (A ∪ (D \ {0})) × Σ) is called the transition relation.

We will also write S
l−→ S ′ for a triple (S, l, S ′) ∈ →. If l ∈ D, we call (S, l, S ′) a

timed transition; if l ∈ A we call it a discrete transition1.

Intuitively, a timed transition (S, t, S ′) represents the elapsing of t time units, and a
discrete transition represents a communication action of the system, either hidden (if
labelled τ) or visible (otherwise).

For given S ∈ Σ, l ∈ A ∪ (D \ {0}), we may use the shorthand S
l−→ instead of writing

(∃S ′ ∈ Σ) S
l−→ S ′.

By the condition A∩D = ∅, it is assured that each transition is either timed or discrete,
not both. Thus, we impose the assumption that discrete transitions have a duration of zero

1Note that we use the word“discrete”at the same time to distinguish time domains (which can either be
dense or discrete) and to distinguish transitions in Tlts (which can either be timed or discrete), because
in both cases it is the commonly used term. For a given Tlts, the time domain is fixed, therefore it is
always clear by the context in which sense “discrete” is used.

18 Chapter 3. Overview and classification of formal models

time units. In [100], it has been argued that this assumption does not go against generality
and that it is a useful simplification. [98] even uses a quantum-mechanical argument in
favor of this assumption, by stating that discrete transitions represent energy changes of
a system, which cannot be measured simultaneously with time.

Note that in the literature, a Tlts is sometimes also called timed transition system (Tts)
or labelled timed transition system. Note also that if we choose a time domain such that
D = {0}, then for practical purposes the definition of a Tlts coincides with the definition
of an Lts.

Properties of TLTSs

In the literature concerning the Tlts model, different authors (e.g., [99, 91]) describe
three properties of well-timedness that a Tlts should satisfy to be intuitively consistent:

Definition 3.4. A Tlts (Σ, L, D,→, S0) is called well-timed, if and only if the following
three conditions are all true:

1. Time additivity: Two succeeding timed transitions are equal to their sum. Formally,
for each S1, S2 ∈ Σ, t1, t2 ∈ (D \ {0}):

S1
t1+t2−−−→ S2 iff (∃S3 ∈ Σ) S1

t1−→ S3
t2−→ S2

2. Time determinism: From a given state, the elapsing of a given duration cannot lead
to different states. Formally, for each S1, S2, S3 ∈ Σ, t ∈ (D \ {0}):

if S1
t−→ S2 and S1

t−→ S3, then S2 = S3

3. Maximal progress of urgent actions: Assuming a set U ⊆ A of labels that are called
urgent. A state allowing a discrete transition with an urgent label must not allow a
timed transition. Formally, for each S1 ∈ Σ, l ∈ A, t ∈ (D \ {0}):

if l ∈ U and S1
l−→ , then ¬

(
S1

t−→
)

Intuitively, time additivity expresses that time progress is independent of observation.
Time determinism expresses that time can only advance in one direction. More technically,
the mere elapsing of time does not put constraints on which discrete actions may follow
i.e., it does not resolve any choices. Maximal progress often supposes that the set of urgent
(i.e., undelayable) actions corresponds to the singleton containing the hidden action τ .
Our semantics definition in Chapter 4 will use a different set.

Note that the combination, the definition details and the naming of well-timedness prop-
erties are not entirely consistent in the literature e.g., time additivity is called stutter
closure in [75], and it is described as two properties in [20].

Other interesting properties of Tltss have been defined. An important one is the so-called
non zenoness , which is discussed in the literature with many variations in terminology
and formal definition, for instance in [75], in [100] (called well-timedness there), or in [90].

3.1. Semantic models 19

Definition 3.5. (i) A run in a Tlts (Σ, A, D,→, S0) is an infinite sequence of elements
of Σ alternating with elements of →, such that it begins with S0 and it has the form
S0, (S0, l0, S1), S1, (S1, l1, S2), S2, . . . (with S1, S2, . . . ∈ Σ, l0, l1, . . . ∈ A ∪ D). A finite run
is the prefix of a run, such that this prefix ends with an element of Σ.

(ii) The duration of a run or a finite run is the sum of all timed labels occurring in it. A
run is diverging if this sum tends to infinity.

(iii) A Tlts is called zeno if it allows a finite run which is not the prefix of a diverging
run. Otherwise, it is called non zeno.

Intuitively, non zeno means that the system represented by the Tlts may always continue
in a way where time may elapse indefinitely. A zeno behaviour can be caused by two
different reasons:

1. The Tlts contains a state that does not have any outgoing transitions. Such a state
is called a timelock state.

2. The Tlts contains a state the runs starting from which have a finite duration (either
because they only contain a finite number of timed transitions, or because their sum
does not diverge). Such a case is shown in Fig. 3.1: There, only one run is possible
and its duration is one time unit; but no finite prefix can reach this duration. Clearly,
such a Tlts describes an unrealistic behaviour.

1
4S1

1
2S0

a
S′

0 . . .
1

2n+1

Sn

a
S′

1

a
S′

n . . .

Figure 3.1: Tlts with zeno behaviour

This definition is a rather general variation of the definitions for zeno behaviour that can
be found in the literature. For our analysis in the following chapter, a tighter definition
will therefore be useful (where a reachable state is a state that is contained in at least one
run):

Definition 3.6. We suppose a dense time domain.

A Tlts is called strict zeno if there is a t ∈ D and a reachable state S satisfying all of
the following:

• There is a run S0, (S0, l0, S1), S1, . . . with S = Sn for some n ∈ IN, such that for all
i ≥ n, li is a timed label and

∑
i≥n li = t.

• For each run S0, (S0, l0, S1), S1, . . . with S = Sn for some n ∈ IN: For all i ≥ n, li
is a timed label and

∑
i≥n li ≤ t (i.e., the maximal duration after S is limited by t).

• There is no finite run S0, (S0, l0, S1), . . . , Sm with Sn = S for some n < m and∑
n≤i<m li = t (i.e., the t time units cannot elapse in finitely many steps).

20 Chapter 3. Overview and classification of formal models

Intuitively, the runs that are decisive for the definition of strict zeno are those that ap-
proach infinitesimally close the bound t without being able to reach it by a finite number
of steps. Note that Tltss with timelock states are not necessarily strict zeno, nor is the
Tlts from Fig. 3.1 strict zeno. Thus, zeno does not imply strict zeno. On the other hand,
strict zeno clearly implies zeno.

1
2n+1

Sn
1
4

1
8S1 S2

1
2S0

Figure 3.2: Strict zeno Tlts

A simple example for a strict zeno Tlts is shown in Fig. 3.2. The duration of the only
possible run in this example is Σn≥1

1
2n = 1, but no finite run of duration 1 is possible. Note

that the satisfaction of time additivity does not prohibit strict zenoness: If we extend the
Tlts of Fig. 3.2 to its time additive closure (i.e., we add the minimum of additional states
and transitions such that it becomes time additive), it still does not contain a transition
from S0 labelled by 1, because the criterion of time additivity is restricted to sums of two
transitions. By multiple application, this extends to any finite number of transitions, but
not to infinitely many.

Differences between discrete and dense time domains. A Tlts with a discrete
time domain behaves differently from one with a dense time domain. Discrete time is
obviously easier to define, but it is also less intuitive, as it opposes the human perception
of time in reality that can be arbitrarily divided2. Note that discrete time can be adjusted

in its granularity: A run S0

1

3−→ S1
a−→ S2

2

3−→ S3
a−→ S4

1

3−→ S5
a−→ S6

2

3−→ . . . is not
necessarily from a Tlts with a dense time domain like Q≥0, it can also appear in a
Tlts with a discrete time domain {0, 1

3
, 2

3
, 1, 11

3
, . . .}. Nevertheless, not every system can

be “discretized” in this way, as shown in [41]. Thus discrete time domains are strictly less
expressive than dense time domains.

A detailed comparison between discrete and dense time domains can be found in [39].

Differences between Q≥0 and IR≥0. Regarding dense time domains, both Q≥0 and
IR≥0 are used in the literature. From a practical point of view however, there is almost
no difference:

• Neither set is “denser” than the other, because Q≥0 lies dense in IR≥0 and vice versa
i.e., for all x, y ∈ IR≥0 with x < y, there is a z ∈ Q≥0 such that x < z < y (and
conversely).

• Moreover, model theory shows that (Q≥0, 0, <, +) and (IR≥0, 0, <, +) satisfy elemen-
tary equivalence i.e., each first order logic formula satisfied in one of these structures

2Note that this opinion is not unopposed e.g., [98] states discrete time to be more intuitive, because
system states in a computer change discretely.

3.1. Semantic models 21

is also satisfied in the other3.

Timed properties discussed in formal verification are normally expressed in first
order logic formulas, extended with additional constants. In theory, a formula in
the real numbers structure could express for instance that “precisely

√
2 time units

elapse” (such examples are discussed in [90]). In practice however, we talk about
automated formal methods, and computers have no means to efficiently represent
irrational numbers4; therefore this difference is without real impact for us.

Model checking on TLTS

The semantic model (e.g., in form of a Tlts) of a formal specification can be the basis
for model checking, which consists in verifying that a formula given in a temporal logic,
such as µ-calculus, Ctl, or Ltl, is satisfied by the semantic model of the specification.
Although the cited temporal logics are named “temporal”, they do not express real-time
aspects such as the precise time that elapses between two events, but merely the order
(relative to time elapsing) of events. Therefore, timed extensions to temporal logics have
been defined, such as Tctl (timed Ctl) [3] which also provide constructs to express how
much time may or may not elapse between events.

The model checking algorithms defined for Tltss differ from those defined for Ltss: If the
time domain is infinite, the Tlts is usually, but not necessarily, of infinite size (if the time
domain is dense, then only Tltss without timed transitions can be smaller than infinite).
Thus, an algorithm has to use symbolic techniques that enable the representation of a
Tlts as a finite structure.

Some of the syntax restrictions that occur in the graphical models (cf. Section 3.2) are
due to the fact that these models have been developed along with verification algorithms
that use such symbolic representations (e.g., [3]).

3.1.2 Alternative semantic models

Tltss are a natural extension of Ltss. Although they are the most frequently used
semantic model for timed systems, alternative approaches exist.

Labels with actions and absolute time stamps. The timed model proposed in [9,
85] extends the Lts model by transitions labelled with expressions of the form a(t), where
a is a (discrete) label, and t a time value. Time is represented in an absolute way i.e.,
the time value expresses how much time has passed between the beginning of the run and
this occurrence of a.

3Elementary equivalence is a less strict relation than isomorphism, the latter obviously not being
satisfied.

4Even if some programming languages denote them as “reals”, floating point numbers are always
rationals.

22 Chapter 3. Overview and classification of formal models

Fig. 3.3 (ii) shows such a semantic model, beside the identically behaving Tlts model in
(i).

a[1]

(iii)

a(1) a(2) a(3)
. . .

(ii)

1

a

(i)

Figure 3.3: Different Lts extensions (time domain IN)

Labels with actions and relative time stamps. A similar approach [49] uses relative
values instead of absolute values. Transitions are also labelled by expressions of the form
“a(t)”, where a is a (discrete) label, and t a time value, but here, t expresses how much
time has passed between the last transition and the current occurrence of a. This model
is illustrated in Fig. 3.3 (iii).

Note that in a model using labels with action and time stamp (absolute or relative), the
properties of time additivity and time determinism (cf. Definition 3.4) are automatically
satisfied, because there are no isolated timed transitions.

Relations between different semantic models. As the last remark indicates, mod-
els using labels with actions and time stamps can only define graphs that satisfy time
additivity and time determinism. Thus, not everything that can be expressed in the
Tlts model can be expressed in the alternative models. On the other hand, given that
a Tlts that does not satisfy time additivity and time determinism lacks intuition, this
difference in the expressive power can be seen as irrelevant.

More generally, a translation from labelled transition systems with absolute or relative
time stamps into a corresponding Tlts is always possible, simply by splitting up each
time stamp transition into one timed transition and one discrete transition (or only one
discrete transition if no time elapses). The inverse is not true; for instance, a Tlts only
containing timed transitions has obviously no correspondent in a time stamp model.

3.2 Graphical models

3.2.1 Overview

In this work the term graphical models will refer to models that have been traditionally
defined using a finite graphical notation (despite their possibly infinite behaviour). This
finite representation is realized using symbolic notations, which represent sets of possible
values e.g., by a formula that imposes constraints on the value of a variable. Such notations
are in particular useful to represent real-time behaviour: For instance, when an arbitrary
amount of time may elapse, this amount could be represented symbolically on a single

3.2. Graphical models 23

transition by an interval [0,∞[; a semantic model would instead define an infinite number
of transitions. Moreover, graphical models have formally defined and simple semantics.

Graphical models are appropriate to model simple systems. Their strength is the existence
of algorithms that transform graphical models into symbolic representations of Tltss [19,
5], which enables model checking to be performed.

In this section, we will discuss two main types of graphical models, namely timed exten-
sions of the automata model and timed extensions of the Petri net model. Several other
models, all of which have been developed along with one specific verification tool, will
also be discussed briefly.

3.2.2 Timed automata

Formal definition

The network of timed automata model is used in several tools for simulation and formal
verification, such as Uppaal [89], Red [123], Sgm [80], Cmc [88], Kronos [126], or
Rabbit [27].

Timed automata were originally defined by Alur and Dill [4, 5] and appeared later in
the literature in a large number of variations (such as [75, 12]). The following definitions
represent a common standard among the different definitions.

Definition 3.7. (i) A clock X is a variable that has values ranging in IR≥0.

(ii) A clock constraint δ is an expression recursively defined by one of the following forms:
“X ≤ c”, “c ≤ X”, “X − Y ≤ c”, “c ≤ X − Y ”, “¬δ”, or “δ1 ∧ δ2”, where c ∈ IN and X, Y
are clocks. For a set X of clocks, we write ΦX the set of clock constraints built with clocks
from X .

Clocks are used to represent the elapsing of time: All clocks then evolve continously and
with a constant speed that is the same for all clocks.

Definition 3.8. A timed automaton (TA) is a 6-tuple (X , A, L, E, inv , l0), where:

• X is a set of clocks.

• A is a finite set of labels.

• (L, E) is a finite directed graph, where the elements of the set L of nodes are called
locations5 and the elements of the set E of edges are called transitions. Each such
transition is a 5-tuple e = (l1, δ, a, {X1, . . . , Xn}, l2), where

– l1, l2 ∈ L

5When we speak of “locations”, we already apply a vocabulary oriented towards the translation to the
Uppaal tool (cf. Section 6.1). Although in other dialects, locations are called, for instance, “modes” (in
the tools Red and Sgm) or “nodes” (in Cmc), Uppaal is not the only dialect using the term “locations”.
For the remainder of Section 3.2.2, we will continue to use Uppaal vocabulary.

24 Chapter 3. Overview and classification of formal models

– the formula δ ∈ ΦX is called the guard

– a ∈ A

– {X1, . . . , Xn} ⊆ X is called the clock reset

• inv : L→ ΦX is a function distributing an invariant to each location.

• l0 is the initial location.

Semantics. Given a set X of clocks, a function µ : X → IR≥0 is called a clock interpre-
tation. A clock constraint δ ∈ ΦX is satisfied by µ, if the expression obtained by replacing
in δ each clock variable X by the value µ(X) evaluates to true.

The semantics of a timed automaton (X , A, L, E, inv , l0) is defined by a Tlts
(Σ, A, IR≥0

,→, (l0, µ0)), where Σ,→ are the smallest sets satisfying:

• The states of Σ are tuples of the form (l, µ), where l ∈ L and µ is a clock interpre-
tation on X .

• The initial state is (l0, µ0) ∈ Σ, where µ0 is the function that constantly returns
zero.

• Timed transition: If (l, µ) ∈ Σ, t ∈ IR≥0, then (l, µ′) ∈ Σ and (l, µ)
t−→ (l, µ′) if the

following are true:

– µ′ is a clock interpretation such that for each X ∈ X , µ′(X) = µ(X) + t. We
use the shorthand notation µ′ = µ + t.

– For each t′ ∈]0, t], inv(l) is satisfied by µ + t′ i.e., the invariant formula of l
holds during the entire time elapsing.

• Discrete transition: If (l, µ) ∈ Σ, (l, δ, a, {X1, . . . , Xn}, l′) ∈ E, then (l′, µ′) ∈ Σ and
(l, µ)

a−→ (l′, µ′) if the following are true:

– δ is satisfied by µ.

– µ′ is a clock interpretation such that for each X ∈ X , µ′(X) = 0 if X ∈
{X1, . . . , Xn} and µ′(X) = µ(X) otherwise.

– inv(l′) is satisfied by µ′.

Note that the original TA definition of [5] does not contain invariants. The reason for
introducing invariants was to prevent a TA from idling indefinitely in one location. With
this aim, [5] uses Büchi or Muller acceptance conditions, thus forcing a run to contain
infinitely many discrete transitions. But this is a somehow artificial construction, thus
less appropriate for modelling than using invariants.

3.2. Graphical models 25

Parallel composition. The semantics of a network of n timed automata

(X1, A, L1, E1, inv1, l
0
1), . . . , (Xn, A, Ln, En, inv1, l

0
n)

is defined by a Tlts (Σ, A, IR≥0
,→, ((l01, . . . , l

0
n), (µ

0
1, . . . , µ

0
n))), where Σ,→ are the small-

est sets satisfying:

• The states of Σ are tuples of the form ((l1, . . . , ln), (µ1, . . . , µn)), where l1 ∈ L1, . . . ,
ln ∈ Ln and µ1, . . . , µn are clock interpretations on the sets X1, . . . ,Xn respectively.

• The initial state is ((l01, . . . , l
0
n), (µ

0
1, . . . , µ

0
n)) ∈ Σ, where µ0

1, . . . , µ
0
n are the functions

that constantly return zero.

• Timed transition: Time can elapse in the composition if it can elapse in each single
automaton. Formally:

If ((l1, . . . , ln), (µ1, . . . , µn)) ∈ Σ, t ∈ IR≥0, and (∀i ∈ 1..n) (li, µi)
t−→ (li, µ

′
i), then

((l1, . . . , ln), (µ′
1, . . . , µ

′
n)) ∈ Σ and ((l1, . . . , ln), (µ1, . . . , µn))

t−→ ((l1, . . . , ln), (µ′
1, . . . , µ

′
n)).

• Discrete transition: In the parallel composition of timed automata, two different
kinds of discrete transition exist. The first kind corresponds to a discrete transition
on the silent label τ ∈ A in a single automaton, while the others remain unchanged.
Formally:

If ((l1, . . . , ln), (µ1, . . . , µn)) ∈ Σ and (∃i ∈ 1..n) (li, µi)
τ−→ (l′i, µ

′
i),

then ((l1, . . . , l
′
i, . . . , ln), (µ1, . . . , µ

′
i, . . . , µn)) ∈ Σ and

((l1, . . . , ln), (µ1, . . . , µn))
τ−→ ((l1, . . . , l

′
i, . . . , ln), (µ1, . . . , µ

′
i, . . . , µn)).

The second kind of discrete transition is the synchronization among several timed
automata. For the semantics of synchronizations, several different definitions exist
in the literature, varying in particular about how many TAs synchronize. The three
major approaches are the following:

1. Global discrete synchronization [5]: All automata execute simultaneously the
same action a ∈ (A \ {τ}). Formally:

If ((l1, . . . , ln), (µ1, . . . , µn)) ∈ Σ and (∀i ∈ 1..n) (li, µi)
a−→ (l′i, µ

′
i),

then ((l′1, . . . , l
′
n), (µ′

1, . . . , µ
′
n)) ∈ Σ and

((l1, . . . , ln), (µ1, . . . , µn))
a−→ ((l′1, . . . , l

′
n), (µ′

1, . . . , µ
′
n)).

2. Binary synchronization [12]: The set of visible actions (A \ {τ}) is composed
of actions of the form “!c” and co-actions of the form “?c”.

In a synchronization, one automaton executes an action, and another automa-
ton executes simultaneously the corresponding co-action, while the other au-
tomata remain unchanged. Formally:

If ((l1, . . . , ln), (µ1, . . . , µn)) ∈ Σ

and (∃i, j ∈ 1..n, i 6= j) (li, µi)
!c−→ (l′i, µ

′
i) ∧ (lj , µj

?c−→ (l′j , µ
′
j),

then ((l′1, . . . , l
′
n), (µ′

1, . . . , µ
′
n)) ∈ Σ (where l′k = lk, µ

′
k = µk for each k 6= i, j) and

((l1, . . . , ln), (µ1, . . . , µn))
c−→ ((l′1, . . . , l

′
n), (µ′

1, . . . , µ
′
n)).

26 Chapter 3. Overview and classification of formal models

3. Maximal event synchronization [126]: The set of visible actions (A\{τ}) is the
power set of a finite set E of events i.e., each transition in the timed automata
is labelled by a set of one or several events. In a synchronization, several
automata each execute one such event set simultaneously, where (i) every event
must occur in at least two event sets, and (ii) the set of synchronizing automata
must be maximal i.e., if an automaton can execute an event set containing an
occurring event, then it must be among the synchronizing TAs. The other
automata remain unchanged. Formally:

If ((l1, . . . , ln), (µ1, . . . , µn)) ∈ Σ, and

(∃i1, . . . , im ∈ 1..n pairwise distinct) (∀j ∈ 1..m) (lij , µij)
aj−→ (l′ij , µ

′
ij

),

then ((l′1, . . . , l
′
n), (µ′

1, . . . , µ
′
n)) ∈ Σ and

((l1, . . . , ln), (µ1, . . . , µn))

S

1≤j≤m aj−−−−−−−→ ((l′1, . . . , l
′
n), (µ′

1, . . . , µ
′
n)),

where the following are true:

– l′k = lk, µ
′
k = µk for each k 6= i1, . . . , im

– (∀j ∈ 1..m ∀e ∈ aj) (∃j′ ∈ 1..m, j′ 6= j) e ∈ aj′

– (∀j ∈ 1..m ∀e ∈ aj) (¬∃i0 ∈ ({1, . . . , n} \ {i1, . . . , im})) (li0 , µi0)
a0−→ ∧ e ∈ a0

Example 3.1. We illustrate the definitions of timed automata by a variation on an ex-
ample commonly found in the literature, shown in Fig. 3.4. It consists of a network of
two TAs, one modelling a lamp, the other one a person. Each automaton uses one clock,
called X for the lamp and Y for the person. We suppose a composition by binary syn-
chronization using the labels “!Push” and “?Push”, representing a light switch button being
pressed.

The lamp has three levels of brightness, modelled by the three locations Off, Low, and
Bright, where Off is the initial location (indicated in Fig. 3.4 by the double ring). When the
lamp is off (location Off), pushing the button switches it on with low brightness (location
Low). If the next push happens within less than 5 time units then the lamp gets brighter
(location Bright). If it happens after 5 time units then the lamp is switched off.

The person has three different activities, each of which corresponds to a location: Dozing,
Working, and Phoning, where Dozing is the initial location. When the person is dozing,
he may either push the button once and then phone for at least 1,000 time units or he may
push the button twice fast (modelled by an intermediate location) and work for at least
1,000 time units. When he is finished phoning or working, he pushes the button once and
gets back dozing.

Tool implementations

Several tools that perform simulation and/or formal verification on timed automata have
been implemented since the 1990s, each with its own dialect. We briefly present some of
them in the following and describe how they extend the TA model of Definition 3.8:

• Uppaal [89] extends the TA model with data handling: It is possibile to define
local and global variables of simple types (integers and booleans) and structured

3.2. Graphical models 27

Off

Low

{X}
?Push

?Push
X < 5

?Push

Dozing

Working

!Push

!Push

Y ≤ 3

Y ≥ 1, 000

{Y }

!Push
{Y }

!Push

{Y }

Y ≥ 1

!Push
Y ≥ 1, 000

Bright

?Push
X ≥ 5

Phoning

Figure 3.4: Two timed automata describing a lamp (left) and a person (right)

types (arrays and records). Variables can be manipulated by transitions and/or
be used in the guard expression of transitions. Uppaal also introduces several
time-blocking constructs, such as urgent transitions, urgent locations, and commited
locations . Details of the syntax and semantics definition of this TA dialect are given
in Section 6.1.1 on page 130.

Uppaal is designed for simulation and Ctl model checking.

• Red [123] also adds local and global variables, but only of simple types (integers
and booleans). Communication is implemented using the binary synchronization
approach. Red performs Tctl model checking and bisimulation checking.

• Kronos [126] implements an important extension of clock resets during a transi-
tion: A clock can either be reset or it can be assigned the value of another clock,
which sometimes allows smaller descriptions e.g., the FDDI benchmark [51]. In one
automaton, several initial locations may be defined, from which one is chosen non-
deterministically. Kronos uses the maximal event synchronization and is designed
for Tctl model checking.

• Rabbit [26] encapsulates one or several timed automata in a module, from which
a hierarchical structure can be constructed. Communication is implemented using
the binary synchronization approach.

• Sgm [80] extends the transitions of timed automata with priorities and with different
kinds of urgency. Also, the definition of integer variables is possible. Communica-
tion is implemented using the binary synchronization approach. Sgm allows model
checking on Tctl formulas.

• The tool HyTech [74] applies to hybrid automata [73]. Although defined indepen-
dently, hybrid automata (HA) can be seen as a generalization of timed automata,

28 Chapter 3. Overview and classification of formal models

where clocks are replaced by hybrid variables, which can change their value arbi-
trarily (but possibly within the limits of certain constraints) during the elapsing of
time. Intuitively, hybrid variables can be used to represent “environmental” values,
such as temperature, pressure, etc. Note that clocks are then special cases of hybrid
variables, their value increasing linearly at the same rate as time.

Verification is possible, but only with strong restrictions on how hybrid variables
evolve [74, 8]; in HyTech, it is limited to reachability analysis.

• Cmc [88] applies to networks of timed automata using general discrete synchroniza-
tion extended with renaming functions. It performs model checking on properties
expressed in the timed modal logic Lν [87].

A variation of the tool, named Hcmc [44], applies to hybrid automata.

It should be noted that most of these tools are prototypes used to experiment model
checking algorithms rather than robust and mature software tools. The Uppaal tool
with its detailed documentation and its graphical user interface is the most important
exception to this observation.

3.2.3 Time Petri nets

Formal definition

Different extensions of the Petri net model are the basis for several tools for simulation
and formal verification e.g., Tina [16], Roméo [65], CPN Tools [107], Oris [113], and
others. We begin by presenting the most influential extension of the Petri net model,
initially defined by Merlin [95]. Its central idea is to associate a time interval with each
transition, expressing how much time can elapse before this transition is fired. Formally:

Definition 3.9. Let I be the set of intervals in (IR≥0 ∪{∞}). A time Petri net (TPN) is
a 7-tuple (P, T, in, out , m0, lab, Is), satisfying the following:

• (P, T, in, out , m0) is a standard Petri net i.e., P is a finite set of places, T is a
finite set of transitions, in, out are mappings from T to multi-sets in P indicating
the in-places and the out-places of a transition, and m0 is a multi-set in P , called
the initial marking.

• lab : T → A maps each transition to a label.

• Is is a mapping from T to I. For a transition r ∈ T , Is(r) is called the static firing
interval.

A TPN is 1-bounded if at any time, each place contains at most one token. Consequently,
such a net contains no transition that has two or more times the same in-place or the
same out-place. In this thesis, almost all TPNs we discuss will be 1-bounded nets. Given
this restriction, we will use the following (commonly used) conventions for the graphical
representation of TPNs:

3.2. Graphical models 29

• A circle represents a place.

• A dot in a circle represents a token in a place.

• A rectangular box represents a transition. Labels and static firing intervals will
occur within or right of the box. Firing intervals that are unbounded for their
maximum are written [x,∞[or]x,∞[.

• An arc (i.e., a directed edge) from a place to a transition represents the place being
an in-place of the transition. An arc from a transition to a place represents the place
being an out-place of the transition.

Semantics. We now define the semantics of a TPNR = (P, T, in, out , m0, lab, Is), where
we will use the following terms:

• A marking is a multi-set in P , where each element represents one token in the
corresponding place.

• A transition r ∈ T is enabled by a marking m if in(r) ⊆ m.

The semantics of R is defined by a Tlts of the form (Σ, A, IR≥0,→, (m0, I0)), where Σ,→
are the smallest sets satisfying:

• The states of Σ are tuples of the form (m, I), where m is a marking and I is a partial
function from P to I. The domain of I is given by the set of enabled transitions.

• (m0, I0) ∈ Σ, where I0 is the restriction of Is to the transitions enabled by m0.

• Timed transition: If (m, I) ∈ Σ, t ∈ IR≥0, and for each r ∈ dom(I), t is in or below

I(r), then (m, shift(I,−t)) ∈ Σ and (m, I)
t−→ (m, shift(I,−t)).

The auxiliary function shift : I × IR → I is used to shift an interval (closed, half-
open, or open) to the right (if the second argument is positive) or to the left (if the
second argument is negative), while in the second case the shift is limited by zero.
Formally (assuming ≀1, ≀2 ∈ {[,]}):

shift(≀1x, y≀2, z)
def
=






≀1x + z, y + z≀2 if x + z ≥ 0

[0, y + z≀2 if x + z < 0 and y + z > 0

[0, 0] otherwise

• Discrete transition: If (m, I) ∈ Σ, r ∈ T enabled by m and 0 ∈ I(r), then (m′, I ′) ∈
Σ and (m, I)

lab(r)−−−→ (m′, I ′), where m′ = (m \ in(r)) ∪ out(r) and I ′ is defined by
I ′(r′) = I(r′) if r′ ∈ dom(I) \ {r}, otherwise I ′(r′) = Is(r

′).

We say that r is fired .

30 Chapter 3. Overview and classification of formal models

Example. We illustrate the definition of time Petri nets by the example shown in
Fig. 3.5, describing a bus shuttle between stop A and stop B, and a passenger who
wants to take a bus from B to A. Initially, the token in the place “at home” indicates that
the passenger is at home (next to stop B), and the token in the place “A” indicates that
the bus is at stop A. At any moment, the passenger may go to stop B (token in the place
“B (passenger)”), where she waits five to ten minutes at maximum, before going back
home. If a bus arrives in that time, she may board it within one minute, and arrives at A
15 to 18 minutes later. The bus takes 10 to 12 minutes to go from A to B and waits up
to one minute before leaving B, either with (place “passenger in bus”) or without (place
“empty bus”) the passenger.

[0,∞[

[5, 10] [0, 1] [0, 1]

at home

(passenger)
B

passenger
in bus

empty
bus

[15, 18][15, 18]

[10, 12]

(passenger)
A

A (bus)

B (bus)

Figure 3.5: A time Petri net describing a bus and a passenger

It is possible to extend this example e.g., by initializing the net with several tokens in the
place at home. This corresponds to several passengers taking the bus independently.

Variations, extensions, and tool implementations

Several different approaches to extending (time) Petri nets exist:

• In [106], durations instead of time intervals are associated with transitions. Thus,
time elapsing occurs as a consequence of the firing of a discrete transition, whereas
in the TPN model time elapsing and discrete transitions are independent.

Such Petri nets with durations are called timed Petri nets, and this model is clearly
also intuitive. However, timed Petri nets are not compatible with the Tlts model,
and it seems difficult to introduce a notion of synchronization. Moreover, very few
theoretical results on verification exist, in contrast to the TPN model. Therefore,
we will not detail the timed Petri net approach.

• In [36], the authors propose to generalize the definition of TPN to three variations:
A T-TPN is a TPN as given in Definition 3.9, a P-TPN associates time intervals to

3.2. Graphical models 31

places (indicating at which time a token created in this place may be used to fire a
transition) instead of transitions, and an A-TPN associates time intervals to those
arcs representing in-places (indicating at which time a token in this in-place may be
used to fire this transition)6.

• There are two main possibilities for introducing priorities into a TPN: Either as a
partial order on the set T i.e., a transition may not be fired if a transition with higher
priority is enabled [109], or as a partial order on the set of labels i.e., a transition
with label l may not be fired if a transition with label l′ is enabled and l′ has higher
priority than l.

The first approach could for instance be applied in the bus example of Fig. 3.5: The
transition representing the bus leaving B with the passenger would have priority
over the transition representing the bus leaving B without the passenger i.e., the
passenger takes the bus when it is available.

• In [2], transitions are defined with inhibitor places in addition to their in- and out-
places. When there is a token in such an inhibitor place, the transition cannot be
fired.

Complementary to inhibitor places are test places : A transition with such a test
place can only be fired if the latter contains a token; firing the transitions, however,
does not consume the token.

It would be possible to extend this list. For instance in recent years, research efforts
have been made in defining and analysing TPN extensions such as Stopwatch-TPNs,
Scheduling-TPNs, Preemptive-TPNs, etc. [18, 65, 42], but these extensions are not of
direct interest in the context of this thesis, so are not discussed.

Several tools for verification on time Petri nets have been implemented since the 1980s.
The following list presents briefly some of them:

• The toolbox Tina [16] applies to TPNs extended with priorities on transitions, test
places, and inhibitor places. Moreover, it allows variable manipulation by external
C functions.

For verification, Tina provides model checking by an extension of Ltl [22]. It
also provides translations to several other model checking tools such as Mec [7]
and Cadp [63]. Details on the syntax and semantics definitions of the Tina TPN
dialect will be given in Section 6.2.1.

• The tool Roméo [65] applies to TPNs extended with test places, inhibitor places,
and stopwatches, and enables model checking either directly of Tctl [3] formulas
or indirectly by translations to timed automata.

6Unless if we want to point out this difference, we will continue to write “TPN” when we mean “T-
TPN”.

32 Chapter 3. Overview and classification of formal models

• The tool Oris [113] applies to TPNs extended with preemption and probabilistic
behaviour. It mainly targets scheduling problems, and enables model checking on
formulas of the temporal logic Rttl [102].

• Several tools, such as Cpn Tools [107] or Itcpn [1], perform verification on timed
extensions of the coloured Petri net model. In such a net, a data type is associated
with each place and a value (“colour”) of this type with each token created in this
place.

• The tool Ina [117] applies to a discrete time variant of the TPN model, extended
with coloured tokens. It provides model checking on Ctl [46] formulas.

3.2.4 Other models

Several other models have been defined that are situated at a similar abstraction level to
timed automata and time Petri nets, and which also have formal semantics based on the
Tlts model. In most cases these models are linked to one specific tool implementation.
In the following paragraphs, we give a brief overview of some models (note that it should
not be assumed that the corresponding tools are all still maintained).

TASM. The Tasm (Timed Abstract State Machines) [104] model is also based on the
idea of several automata (called machines) composed of states and transitions between
states.

Real-time behaviour is implemented by associating a duration with each transition, either
as a constant or as an interval. Concurrency is implemented by having several machines in
parallel. Between these machines, communication is possible by binary synchronization
(cf. Section 3.2.2). Data handling is implemented by either global or local variables,
whereas data transmission by synchronization is not possible.

The main objective of the Tasm language is the representation of resource consumption
e.g., to enable the calculation of the worst or best case execution time. The latter is
implemented by a translation of a subset of Tasm to Uppaal timed automata.

Verus. The Verus [43] model handles processes whose description is strongly inspired
from programming languages. In terms of automata-based languages, a Verus process has
a single state with a single transition, where the transition is expressed using a complex
syntax that combines (deterministic and non-deterministic) assignments (to boolean and
integer variables) and delay statements by conditional structures and loops.

Real-time behaviour is implemented in a simple and rigid way by constant delay state-
ments, using a discrete time domain. Concurrent processes can only communicate by
global variables.

Formal verification is defined on formulas of the temporal logic Rtctl [55], which is a
real-time dialect of Ctl.

3.3. High-level languages 33

Clocked Transition Modules. The Ctm [28] model, the input language for the tool
STeP, can be seen as a variation of networks of timed automata, in which no locations
are defined. Instead, each process (called a clocked transition system, Cts) is defined by
several transitions that can only be executed when a constraint formula on the variables
(discrete variables and clocks) is satisfied. These transitions are labelled and may contain
variable assignments.

The time domain is dense. Parallel composition between different Ctss is implemented
by a simple form of the maximal event synchronization (cf. Section 3.2.2), where each
label corresponds to a single event. Furthermore, communication is possible by global
variables.

I/O interval structures. I/O interval structures are the input model used by the
tool Raven [110]. In this model, each such structure is a very simple variant of a timed
automaton: The time domain is discrete, and each transition has a time constraint that
depends on the time elapsed since the last discrete transition. Time can only elapse if
a discrete transition is possible in the future (this is a rigid version of the “invariant”
construct from the TA model).

Communication between different I/O interval structures is only possible by boolean vari-
ables; there is no synchronization.

The tool implements formal verification by the temporal logic Cctl (which is an extension
of Ctl).

3.3 High-level languages

A graphical approach is rarely appropriate for modelling of realistic systems, for several
reasons. For example, in a graphical approach, the set of processes is static (no processes
can be created or terminated during execution), communication is limited to simple con-
cepts (binary or global synchronization, cf. Section 3.2.2), and the structure of states and
transitions is rigid and can be artificial. In short, the simplicity of the provided constructs
can make the modelling of complex systems a cumbersome task.

To palliate this, high-level modelling languages have been developed. Those languages
are purely textual and provide powerful constructs that enable modularity, composabil-
ity, and concise notations. In particular, they avoid a state/transition-structure, with the
benefit of a relatively free composition of statements for communication, along with con-
trol structures that allow different kinds of composition, such as sequential composition,
parallel composition, and repetition by recursion or by loop constructs.

Not all formal description techniques provide formal semantics, as pointed out in [40].
However, a formal semantics definition is clearly necessary to perform formal verification.
Therefore, we only consider high-level languages defined with a formal semantics.

Among these, process algebras [14] are a natural choice: The semantics of a process
algebra is given by a set of rules, each one transforming one syntax term into another

34 Chapter 3. Overview and classification of formal models

syntax term, where each transformation corresponds to a transition in a (timed) labelled
transition system i.e., syntax terms also correspond to semantic states. These rules are
usually defined in the simple style of Plotkin’s structural operational semantics [105].

Process algebras express the communication between concurrent processes in form of a
mutual synchronization, as opposed to buffer communication (where sending and receiving
of a message are two successive events) or shared variables (which opposes the intuition
of independent systems). Such a synchronization is considered to be performed simulta-
neously in two or more processes on a gate (or communicating port), which generalizes
the idea of labels as they appear in semantic and graphical models.

The expressive power of the first process algebras (around 1980) included control struc-
tures such as sequential and parallel composition of terms, choice between terms, and
recursion. During the 1980s, extensions introduced data representation and manipula-
tion, and finally real-time concepts were implemented in e.g. [108].

There are also well-known problems shared by all high-level languages, such as the steep
learning curve encountered by system designers (caused by the high level of abstrac-
tion) that still hinders broad industrial application. Therefore, some effort has been put
on defining languages considered as “next generation languages”, such as E-Lotos [83]
(which became an Iso standard in 2001) and Lotos NT [115], that combine the strong
theoretical foundations of process algebras with language features suitable for a wider in-
dustrial dissemination of formal methods. Such features include complex data structures,
a more flexible parallel composition, and exception handling.

In the remainder of this section, we will give short descriptions of those languages that
were, directly or indirectly, of influence for the definition of Atlantif.

3.3.1 Languages based on CCS

The seminal language CCS (Calculus of Communicating Systems) proposed by Milner [97]
is mainly aimed at studying theoretical problems. The syntax of CCS composes commu-
nication actions7 by constructs expressing e.g., concurrency, action prefixing, and choice.
Due to the simplicity of its syntax and semantics, CCS influenced most other high-level
languages, at least in parts. However, CCS does not include data and real-time aspects.

The first real-time extensions appeared around the year 1990. We only cite two of them:
Temporal CCS [98] introduces operators for either fixed or unspecified time delays, which
can be used to derive more complex constructs, such as time-outs (cf. 1.1.1). The time
domain is considered to be discrete.

Timed CCS [125] also provides fixed delays, but extends the unspecified delays by intro-
ducing a time capture operator “@”: The construct “µ@t.P” may delay a certain time,
then perform the action µ; afterwards, each occurrence of t in P (e.g., as parameter for
delays) is replaced by the delay elapsed before performing µ. Moreover, the time domain
is generalized to be either discrete or dense.

7[97] states that “the behaviour of a system is exactly what is observable, and to observe a system is
exactly to communicate with it”.

3.3. High-level languages 35

3.3.2 Languages based on CSP

The language CSP (Communicating Sequential Processes) was developed by Hoare [77]
around the same time as CCS, but with a stronger orientation towards industrial appli-
cations by a more pragmatic approach. CSP does not include data and real-time aspects.

Tcsp (Timed CSP) [108] extends CSP with an independent fixed delay action. It also
supposes a constant delay value that always elapses between two discrete transitions, thus
avoiding strict zeno behaviours (cf. Definition 3.6). Moreover, Timed CSP supposes an
orthogonal time concept i.e., elapsing of time has no influence on which actions can be
performed. The time domain used is the set of positive real numbers.

Tcsp was revised in [103], most notably by deleting the constant delay between two
discrete transitions; it also introduces a concept of “signals”. As in [108], this revision
does not introduce data-related constructs.

In [58], the language CSP-OZ is defined as a combination of CSP with Object-Z [53]. The
Object-Z part provides data in form of object-oriented type definitions. In [78], CSP-OZ-
DC is defined as a futher extension of CSP-OZ with a subset of Duration Calculus [127],
providing real-time constructs.

3.3.3 Languages based on LOTOS

The language Lotos [81] (Language Of Temporal Ordering Specification) is an ISO stan-
dard for formally describing concurrent and communicating systems. It also provides data
types, which can be either predefined or user-defined algebraic data types. Such type dec-
larations are strictly separated from the control part of a Lotos specification. The latter
is defined in the usual process algebra style, inspired from both CCS and CSP.

Like for CCS and CSP, many extensions of Lotos have been proposed, of which we only
cite the most relevant to this work. Regarding real time, the first extensions occurred
around 1990, e.g.,T-Lotos [31] and perhaps most influential, ET-Lotos (Enhanced
Timed Lotos) [91]. ET-Lotos reuses the idea of a time capture operator as defined
in Timed CCS (cf. Section 3.3.1), and at the same time, it extends this construct with
a second meaning: An action with an attached “@t” may optionally have also attached
a boolean formula SP , which expresses how much time may elapse before the action
occurs i.e., if d time units elapse, the action can only occur if [d/t]SP evaluates to true.
Furthermore, ET-Lotos provides a fixed delay operator and a generalized (i.e., either
discrete or dense) time domain.

RT-Lotos (Real Time Lotos) [47] is based on the ideas of ET-Lotos, but contains
several differences. First, the powerful but sometimes cumbersome time capture is re-
placed by a much simpler (and less expressive) constant time restriction of the form“{d}”
(corresponding in ET-Lotos to a formula SP = t ≤ d). Second, RT-Lotos intro-
duces a latency operator, which can delay urgent actions. Another further extension to
ET-Lotos is defined in [76], where a “suspend/resume” mechanism is proposed.

36 Chapter 3. Overview and classification of formal models

3.3.4 E-LOTOS and LOTOS NT

Different ideas on how to extend Lotos converged into E-Lotos (extended Lotos) [83],
also an ISO standard. The main objectives for this revision were to enhance the user
friendliness (e.g. with data definitions closer to programming languages), but also to
enhance the expressive power. The extensions include a generalized parallel composition
(a single construct that expresses for several gates and several processes the combination
of processes that can synchronize on which gates), symmetrical sequential composition
(both the left and the right side of a sequential composition can be arbitrary terms,
whereas the prefixed sequential composition of Lotos only permitted atomic actions on
the left side), exception handling (unexpected events may raise an exception, which leads
to the execution of a specially defined code, the exception handler), and of course real-time
constructs. The latter are mostly inspired from the ideas introduced in ET-Lotos.

The language Lotos NT (Lotos Nouvelle Technologie) [115], which has been developed
in parallel with E-Lotos, can be seen as a dialect with small differences in syntax and
semantics.

3.3.5 Other high-level languages

The language ACP (Algebra of Communicating Processes) [13] features in particular a
communication function, which defines the synchronization of concurrent processes inde-
pendently of the process terms, thus enabling a simpler notation of processes. Neither
data nor real-time constructs are provided.

Different timed extensions for ACP are defined and discussed in [85]. The ideas for the
additional constructs are similar to those discussed in the preceding sections i.e., fixed
delays, time restrictions, and urgency are provided, and the time domain is discrete. As
we already mentioned in Section 3.1.2, the semantics are defined by transition systems
providing labels with actions and absolute time stamp, instead of the Tlts model.

The language µCRL (micro Common Representation Language) [71] extends ACP with
abstract data types. In [29], a real-time extension is proposed, where the time domain is
discrete and time elapsing is represented by a special “tick” action, on which all processes
have to synchronize. The revised version mCRL2 [70] extends µCRL regarding data
representation and communication.

Another early timed language is ATP [100], which extends a process algebra (with simi-
larities to CCS and ACP) with a fixed delay (of one time unit), urgent actions, and time
restrictions for actions. The originally discrete time domain is later generalized into an
arbitrary time domain. Data types are not provided.

We finish this necessarily highly incomplete list by mentioning Timed χ [120], which
has the interesting characteristic of not being the extended but the simplified version of
another language: Timed χ restricts the hybrid variables provided by Hybrid χ [121] to
timed variables (cf. Section 3.2.2 on page 28), which enables the expression of delayable
and urgent actions, independent fixed delays, and a dense time domain.

3.4. Intermediate models 37

3.4 Intermediate models

Inconveniences in the approaches of graphical models and high-level languages have been
observed for several years, in particular the following:

• The development of verification tools for specifications given in high-level languages
providing concurrency, data, and time is difficult: The Tlts defined by such a speci-
fication is usually infinite, even in a simple case (cf. Section 3.1.1 on page 21). Thus,
symbolic representation techniques would have to be found for the tool. Moreover,
high-level languages have complex rules where a transition often depends on the
existence of other transitions (e.g., by urgency constraints as described in Defini-
tion 3.43.), which is not trivial to check in an infinite model.

In practice, verification tools for such high-level languages only apply to significantly
limited subsets of the languages [94]. Therefore, although high-level languages are
appropriate for modelling complex systems, their practical application for verifica-
tion purposes is restricted.

• Although graphical models basically share the problems of infinite semantic models,
their syntax and their semantics rules are much simpler, which makes the develop-
ment of verification tools posssible.

But at the same time, as discussed in the introduction of Section 3.3, modelling of
complex systems using graphical models is often difficult.

Thus, there is clearly a gap between the modelling in high-level languages and the verifi-
cation in tools conceived for graphical models. Several works [37, 61, 21] proposed to fill
this gap by intermediate models that satisfy the following:

• They have constructs of high-level languages, such as user-defined data types, choice
operators, complex communication definitions, or action-independent delays.

• They enable formal verification either indirectly (i.e., via a translation to another,
ususally graphical, model) or directly. Providing this possibility usually means that
the model has similarities to graphical models.

In the sequel, we briefly present the central ideas and the most distinctive features of a
few intermediate models. Complete definitions of their syntax and semantics are beyond
the scope of this work.

3.4.1 IF and IF-2.0

The If (Intermediate Format) model [37] extends networks of automata. A specification
consists of several processes that can communicate by sending and receiving signals and
by dynamically creating and deleting other processes. A communication by a signal corre-
sponds to two different discrete transitions: one for the emission and one for the reception.

38 Chapter 3. Overview and classification of formal models

The approach is therefore different from the communication by synchronization used in
most other models discussed in this chapter. The If model supports data, providing sev-
eral predefined types (booleans, integers, and floats), user-defined types (constructed by
enumerations, records, and arrays), and the possibility to import externally-defined data
types.

Each process contains several discrete states. Transitions between discrete states are
defined by a precondition (i.e., a condition that has to be satisfied before the transition is
taken) and an action (i.e., variable assignment, signal emission, signal reception, starting
of a process instance, or stopping of a process instance).

The revised version If-2.0 [38] introduces constructs for real-time behaviour in a very
similar way to timed automata i.e., using clocks (cf. Definition 3.7) that can be used in
preconditions and that can be reset in actions. Furthermore, a transition between discrete
states also contains a tag that expresses whether the transition is urgent. The time domain
is dense.

The formal semantics are defined using two relations: first a relation defining the discrete
transitions in a single process, and a second relation, defined using the first relation, for
discrete transitions of one process among many and for time elapsing in all processes.

The If model is conceived as a pivot language in translation chains from semi-formal
models, such as UML and SDL, to different tools such as Kronos (cf. Section 3.2.2) and
toolboxes such as Cadp [63] to perform verification and simulation. Therefore, the syntax
and semantics of If are designed to meet models as UML and SDL.

3.4.2 BIP

The Bip (Behaviour, Interaction, Priority) [11] model also supposes several concurrent
processes (called components). The central idea is to define specifications with a clear sep-
aration between three different levels [67]: First, behaviour of single components, second,
interaction between those components, and third, priorities that control the interactions.
Data can be defined in the form of local variables, where the available types are those of
the C programming language.

Each component contains several discrete states. Transitions between discrete states are
defined by a precondition, a label (called a port), and a variable update.

Communications between processes are defined using connectors, which can have the
form of either a rendezvous or of a broadcast. A rendezvous connector enables one, two,
or several components with a certain port each to synchronize. A broadcast connector
enables a single component (the emitter) with a certain port and an arbitrary set of other
components with certain ports (the receivers) to synchronize. A connector can also assign
local variables in the synchronizing components, possibly parameterized by local variables
of another synchronizing component.

Bip provides a modular structure: Instances of components can be grouped into com-
pounds , which themselves may also be part of another compound.

3.4. Intermediate models 39

Real-time behaviour can be defined for single components. Transitions in such components
may be defined as urgent. If no urgent transition is enabled, time may elapse (only on
a discrete domain). Hybrid variables can be defined in a timed component and therefore
change their values during the elapsing of time.

3.4.3 AltaRica

The Timed AltaRica [45] model shares many properties with If-2.0 and Bip: It is also
based on a set of concurrent processes (called components) with local variables. Simple
data types (booleans, integers, and enumerations) are provided, as well as user-defined
types (using records and arrays). Components can be grouped (into nodes) to achieve
modularity. Synchronizations in AltaRica correspond to the rendezvous communica-
tions of Bip. Priorities can be defined between transitions.

The real-time behaviour is implemented in a way similar to timed automata, using clocks,
clock constraints on transitions, and invariants on discrete states. The time domain is
dense.

In [45], a translation from Timed AltaRica to timed automata in the Uppaal dialect
is defined, thus enabling verification.

3.4.4 MoDeST

The MoDeST (Modelling and Description Language for Stochastic Timed systems) [30]
is also based on a set of concurrent processes. These sequential processes are defined in
the style of high-level languages i.e., atomic actions such as communications and variable
assignments are composed by operators such as sequential composition and choice. With
this structure, MoDeST is the only intermediate model presented here that is defined
without discrete states.

Moreover, MoDeST stands out as having several features not provided in the other inter-
mediate models: The choice between different actions can be extended to a probabilistic
choice, exception handling can be used, and variables can be assigned nondeterministi-
cally. Real-time syntax is defined by clocks, clock constraints on actions, and a concept
of urgency that is similar to the invariant construct of timed automata. Communica-
tion between parallel processes is provided by synchronization on gates (for each gate,
a synchronization is defined among all processes using this gate) and by shared (global)
variables.

The semantic model defined for MoDeST is a probablistic extension of the timed au-
tomata model.

40 Chapter 3. Overview and classification of formal models

3.4.5 Promela

The Promela (PROcess MEta LAnguage) [79] model is the input language for the model
checking tool Spin, which checks formulas of the temporal logic Ltl. The model general-
izes the automata model, by defining processes which can be instantiated instead of rigid
automata.

Although based on the graphical intuition of states and transitions between states, the
syntax of Promela is purely textual and similar to programming languages like C. The
standard syntax of Promela does not provide constructs that express real-time aspects.
The Promela dialect defined in [35] provides an extension with real-time constructs,
where the time domain used in this model is discrete.

3.4.6 NTIF

The Ntif (New Technology Intermediate Form) [61] model has been conceived to rep-
resent sequential processes handling complex data structures. Ntif has no constructs
expressing concurrency or real time, but those were intended for future work (and this
thesis should be considered as a part of such future work).

An Ntif process is an automaton containing a set of control states. Each state is associ-
ated with a statement called a multibranch transition. Such transitions are defined using
high-level standard control structures (such as deterministic and nondeterministic vari-
able assignments, if-then-else and case conditionals, nondeterministic choice, and while
loops) and communication events. This approach enables a representation of processes
that is more compact than in models using condition/action transitions (i.e., transitions
defined by a precondition and a communication action or an assignment).

A translation from Ntif to the If model (cf. Section 3.4.1) has been defined. More
recently, Ntif has found industrial applications in the framework of the Topcased8

project led by Airbus.

3.4.7 Fiacre

The Fiacre (Format Intermédiaire pour les Architectures de Composants Répartis Em-
barqués) [17, 15] model is mainly based on the two models Ntif and V-Cotre. V-
Cotre [21] is also an intermediate model defined to compile higher-level specifications
into timed automata, time Petri nets, and transition systems.

A Fiacre process provides roughly the same constructs as an Ntif automaton, in partic-
ular the concept of discrete states associated with multibranch transitions. Several con-
current processes can be composed in a hierarchical structure (inherited from V-Cotre)
and communicate using synchronization vectors [6, 33], which enables synchronizations
on different gates among one, two, or several processes.

8http://www.topcased.org

3.5. Summary and observations 41

It is also in these synchronization vectors that real-time behaviour is implemented: Each
vector may define a time interval using an approach very similar to that of time Petri
nets (cf. Section 3.2.3), notably, reaching a limit of such an interval blocks the elapsing of
time. Note that timed constraints cannot be specified explicitely in sequential processes.

Fiacre is situated as a pivot element in translation chains. Translations into Fiacre have
been defined from the industrial models Aadl and Sdl, and translations from Fiacre
have been defined into the language Lotos (cf. Section 3.3.3), which creates a connection
to the Cadp [63] toolbox, and into the time Petri net dialect of the tool Tina [23] (cf.
Section 3.2.3).

Remark 3.1. It should be noted that a separation line between graphical and intermediate
models is not easy to draw; it is clearly debatable whether some models listed here would
be better in Section 3.2.4 or vice versa. As a rule of thumb, an intermediate model
corresponds to a graphical model that firstly is extended significantly with language features
borrowed from high-level languages and secondly provides a translation to one or several
tools based on graphical models for verification purposes. Detailed descriptions of such
approaches are given e.g., in [37, 61].

3.5 Summary and observations

3.5.1 Possible approaches: a summary

In this section, we give an overview of the choices that can be made when defining a
language or a model expressing data, concurrency, and real time, based on the analysis
of the models presented in this chapter. This overview will be the basis for the design
choices that we will make in the next chapter.

Moreover, it will allow us to understand more precisely what exactly is meant by data, by
concurrency, and by real time, which we only described on a more intuitive level before
(cf. Section 1.1.2). It can be seen that design choices may have an impact on the syntax,
on the semantics, or on both (in various relations).

Semantic Model

As we said above (cf. Section 3.1.1), we see the Tlts model as a common basis for the
more abstract models and languages presented in this chapter. Indeed, timed automata,
time Petri nets, and most of the other models define their semantics using Tltss. We
can conclude that one important assumption (described in the same section) of the Tlts
model is broadly agreed to: Discrete actions take no time.

Nevertheless, not all languages and models make this assumption, and they are thus
defined with other semantic models e.g., the different extensions of ACP mentioned in
Section 3.3.5. Moreover, I/O interval structures (cf. Section 3.2.4) suppose a duration of
one time unit for each communication action.

42 Chapter 3. Overview and classification of formal models

Data

Some of the models and languages described in this chapter do not handle data. For the
others, these are two of the most important differences in the approaches:

• Data types: Most models providing data also provide user-defined types. The
modelling of complex systems in a simple and concise way often requires grouping
of data in constructs such as arrays and records. This can be illustrated by simple
examples such as those given in Section 1.1.2.

• Operators and functions: All models with data handling provide basic operators
(like addition and multiplication) for the manipulation of variables. Some models
additionally provide the possibility of user-defined functions, either integrated in
the model’s syntax (e.g., in Uppaal timed automata, cf. Section 3.2.2) or imported
from another language such as C (e.g., in Tina time Petri nets, cf. Section 3.2.3).

Concurrency

Almost all models and languages described in this chapter provide concurrency between
processes. We list below some of the most important differences in the approaches used:

• Buffers and synchronizations: Most models provide the possibility to commu-
nicate via gates, in one of two different ways: First, by synchronization i.e., the
communication happens at the same time in all participating processes. Second,
by buffers i.e., one process sends, and afterwards, another one receives. The latter
approach is followed by the If-2.0 model (cf. Section 3.4.1). All the other models
with gate communication use synchronization.

Note that buffer communication is strictly less expressive than synchronization,
because a buffer can be expressed in a model that communicates by synchronization,
but not the other way around.

• Synchronization notation: For models and languages that use synchronization,
two approaches to represent synchronizations are mentioned in this chapter:

First, synchronizations can be described directly i.e., each possible occurrence of a
synchronization is represented by its own construct. This is the approach of Petri
nets, thus used in the TPN model (cf. Section 3.2.3).

Second, synchronizations can be described indirectly i.e., the processes are defined
with occurrences of gates, and how synchronizations between these gates is possible
is defined by another construct (which will be the subject of the next point below).
This approach is used by all synchronizing models and languages except the TPN
model.

• Synchronization syntax: For models and languages that use an indirect syn-
chronization notation, such notations have different expressive power. The simplest

3.5. Summary and observations 43

forms are the binary synchronization (synchronizing two processes) and the general
discrete synchronization (synchronizing all processes), already described in the con-
text of timed automata (cf. Section 3.2.2). Binary synchronization is used not only
in different dialects of the TA model, but also e.g., in the Promela and TASM
models (cf. Sections 3.4.5 and 3.2.4).

More complex forms of synchronization, which allow an arbitrary number of synchro-
nizing processes, exist in many different variations e.g., the connectors we already
described for the Bip model (cf. Section 3.4.2).

• Separation of sequential and parallel behaviour: All intermediate models
presented in Section 3.4 define sequential processes as rigid structures that can be
put in parallel to enable concurrency. In contrast, process algebras are more general
since they allow to freely combine sequential and parallel operators. This feature,
clearly useful for concise modelling, can be translated into graphical models for
the untimed case [59, 84]. In combination with real time however, a translation
preserving the semantics becomes a much more complex problem [115, 112].

• Starting and stopping: Some of the models presented provide constructs to start
and stop processes i.e., the set of processes that can interact may change dynami-
cally. For instance, this is possible in Promela (cf. Section 3.4.5) and in If-2.0 (cf.
Section 3.4.1).

• Data transmission: In languages and models providing concurrency and data han-
dling, two approaches are followed for transmitting data values between concurrent
processes.

First, data can be transmitted using global variables, which are written by one
process and read by another process. This approach is used in most graphical
models e.g., the Uppaal dialect of timed automata (cf. Section 3.2.2).

Second, data can be transmitted using gates extended with offers e.g., instead of
simply synchronizing on a gate G, we also exchange the values “5” and “true” at
the same time. Lotos and its variations (cf. Section 3.3.3) use this approach.
A variation of the offer approach can be found in the Bip model, where variable
assignments that may read and write variables of all synchronizing processes can be
executed during a synchronization.

Both approaches have inconveniences: Shared global variables can lead to access
conflicts, and offers need to be defined by additional language constructs. Note that
the Fiacre model even combines both global variables and synchronizations with
offers.

Real time

Most models and languages presented in this chapter provide constructs expressing quan-
titative time. Numerous aspects in the representation of time are treated by different
approaches, discussed in the following.

44 Chapter 3. Overview and classification of formal models

Time elapsing speed, absolute time, and relative time. In most models combining
concurrency and real time, time advances in every process with the same speed. Yet, two
intermediate models abstract from this idea: In a specification of the Bip model, a subset
of the processes may be described with only qualitative time (i.e., the order of events), and
in the Fiacre model, all sequential processes are only described with qualitative time,
while quantitative time constraints are described at the level of the parallel composition
of processes.

It is well-known that the assumption of time progressing everywhere at the same speed is
not entirely true in reality (because it contradicts general relativity [54]), but clearly, it
is still an intuitive abstraction. Note that hybrid models can easily express specifications
where the assumption is not satisfied.

For time that progresses everywhere at the same speed, two basic representation approches
can be thought of: Either it can be absolute i.e., counting from the beginning of the
system’s execution; or it can be relative i.e., counting from the last action.

For instance, the absolute time description “5 time units after the start do A, 8 time units
after the start do B” corresponds to the relative time description “after 5 time units do
A, after 3 more time units do B”. The vast majority of the models discussed here use
relative time. An interesting exception is the timed automata model (cf. Section 3.2.2),
which mixes the two approaches: A clock that is reset each time a discrete transition
is taken measures relative time, and a clock that is never reset measures absolute time.
A detailed discussion of the difference between absolute and relative time can be found
in [10].

Occurrence level of timed syntax. There are two levels at which real-time behaviour
can be described:

1. Within a process, the occurrence of delays and/or restrictions to discrete actions is
possible i.e., each synchronization between several processes is constrained by the
intersection of several individual restrictions. This approach, called “timed-action”
in [90], is used in timed automata, in all high-level languages extended with real
time presented here, and in all the intermediate models described above, except
Fiacre.

2. Time constructs are not defined in the individual processes, but in their parallel
composition. This approach, called “timed-interaction” in [90], is thus limited to
those models that communicate by synchronization. For instance, each static firing
interval in the TPN model (more precisely the T-TPN model, cf. Section 3.2.3
and Definition 3.9) is associated with one synchronization. Similar intervals are
associated with each synchronization vector of the Fiacre model.

However, many models and languages that use the timed-action approach also con-
tain constructs for timed-interaction, such as the possibility to hide a synchroniza-
tion in ET-Lotos (cf. Section 3.3.3), which makes it urgent and thus, introduces a

3.5. Summary and observations 45

time restriction on the synchronization level. The urgency defined in several dialects
of timed automata works similarly.

Depending on what is to be modelled, both approaches have a valid intuition, but using
both would obviously make syntax and semantics much more complex to define.

Clocks. A few models and languages use clocks (cf. Definition 3.7) e.g., timed automata,
clocked transition modules (cf. Section 3.2.4), and AltaRica (cf. Section 3.4.3). As
described in the semantics of timed automata (Section 3.2.2), clocks are variables whose
value increases by x after a timed transition that lets x time units elapse.

However, shifting values from one state to the next (by a timed transition) can also be
identified in all other models and languages that use a dense time domain. For instance,
in time Petri nets, the time intervals of a state would be shifted by x (cf. Section 3.2.3,
function shift), or in real-time process algebras, time-related terms would be rewritten
by a reduction of x. Thus, clock models do not really differ in semantics from non-clock
models.

Time domain. Concerning the time domain, two fundamental approaches exist: Some
real-time models enable a unique time domain (e.g., timed automata, timed AltaRica,
or ACPρ [9] with a dense domain, and Bip or temporal CCS with a discrete domain).
Some other models allow both in different specifications i.e., they do not make a choice
between a dense or a discrete domain. For instance, Timed CCS [125] and E-Lotos [83]
follow this approach.

Differences between a dense and a discrete domain were already discussed in Section 3.1.1.

Life reducers and time capture. Most models provide the concept of a life reducer
in one form or another i.e., a construct attached to a discrete action, which defines the
set of instants at which the action is possible. This set of instants can be defined using
different constructs, four of which are described in the following list:

• In the timed automata model, the life reducer takes the form of a guard formula
attached to a transition (cf. Definition 3.8).

• In the time Petri net model, the life reducer takes the form of a static firing interval
attached to a transition (cf. Definition 3.9).

• In the language RT-Lotos (cf. Section 3.3.3) the life reducer takes the form of a
single numeric value attached to a discrete action, and represents how long synchro-
nizing this action is possible. In combination with an independent delay construct,
this provides the definition of a time interval, as for time Petri nets, but with two
important differences: First, it operates on the process level (cf. the above para-
graph on the occurrence level of timed constructs), and second, only closed intervals
are possible i.e., open or half-open intervals are excluded. Other languages such as
ATP (cf. Section 3.3.5) use similar constructs.

46 Chapter 3. Overview and classification of formal models

• The language ET-Lotos provides discrete actions with a time capture “@t” and a
formula “[SP]” as described in Section 3.3.3. Similar to the guard formula of timed
automata, these constructs allow more complex constraints than mere intervals e.g.,
“t ≤ 3 ∨ t ≥ 5”.

As already described in Section 3.3.3, the time capture of ET-Lotos also has a second
function, similar to Timed CCS: The variable V remains assigned with time value after the
action, such that it can be used in further assignments, conditions, etc.; thus information
is kept that would be lost otherwise. Although such a construct easily expresses behaviour
that could not be expressed elegantly, if at all, in a language such as RT-Lotos, expe-
rience shows however that it is too powerful in the general case to define algorithms for
formal verification. Therefore we consider it of limited benefit.

Behaviour when a life reducer reaches its limit. In general, the set of instants
defined by a life reducer may contain a maximum, namely the latest instant at which the
communication action may happen. When this instant has been reached, two semantics
can be defined:

• Time cannot elapse anymore from the current state.

• Time may elapse, but the communication action can no longer occur in states reach-
able by timed transitions.

In the literature, different names have been given to these two approaches. We will speak
of a strong deadline in the first case and a weak deadline in the second case, inspired
by [36] that speaks of strong timed semantics and weak timed semantics . [90] speaks
of must timing policy and may timing policy , whereas the expressions of hard and soft
real-time properties are used e.g., in [40].

Several models and languages of this chapter allow constructs for strong deadlines as well
as constructs for weak deadlines. E.g., the If-2.0 model controls this by the urgency label
of a transition (cf. Section 3.4.1). Other approaches can also be found:

• The Fiacre model and the time Petri net model are restricted to strong deadlines.

• I/O interval structures (cf. Section 3.2.4) [110] implement a compromise between
weak and strong deadlines: From each discrete state, an outgoing transition t uses a
weak deadline if and only if another outgoing transition is possible after time elapses
beyond the time limit of t.

• In [92], it is observed that the semantics of a delay (forcing an amount of time to
elapse) is easy to define, whereas forcing an action to happen within a certain amount
of time is quite complex. Therefore, ET-Lotos (cf. Section 3.3.3) and other lan-
guages only allow strong deadlines for hidden synchronizations i.e., synchronizations
that are entirely independent of the environment, while other real-time constructs
are restricted to weak deadlines.

3.5. Summary and observations 47

The last point shows that urgency is a related topic of strong and weak deadlines. Further
discussions can be found in [32, 90].

Additivity, determinism, and maximal progress. Although most languages and
models use the Tlts semantic model, it is in general not always guaranteed that the
three “good properties” of time additivity, time determinism, and maximal progress given
in Definition 3.4 are satisfied, as discussed in the following remark:

Remark 3.2. The intuitive properties of well-timedness (1, 2, and 3 of Definition 3.4)
are often difficult to implement in the formal semantics definition of a language. For
instance, the following issues have to be considered:

• Most languages contain a construct for expressing a delay. For a delay of t time
units, time additivity obliges the semantics to not only define one transition labelled
t, but also a pair of additional transitions for each t1, t2 such that t = t1 + t2 (of
which there are an infinite number, if the time domain is dense).

Moreover, suppose three states S1, S2, S3 such that S1 → t1S2 → t2S3. Then, time

additivity imposes S1
t1+t2−−−→ S3 i.e., it obliges the semantics to “know” in S1 (before

the first delay) that in S2 another delay of duration t2 will be possible. More gener-
ally, because of the transitive closure of the timed transition relation, the semantics
must consider not only the time elapsing possible in a given state, but also the time
elapsing in (timed) successor states of a given state, in successor states of successor
states, etc.

• Most languages contain a construct for expressing nondeterministic choice. If time
elapses after such a choice, time determinism obliges the semantics to represent each
possible evolution following this choice. This makes state representation difficult.

For instance, consider a process that expresses that a variable x is nondeterminis-
tically assigned an arbitrary integer as value, followed by a delay of five time units.
The state that is reached after these five time units have elapsed must contain in-
formation about the value of x. This information could not be “x equals one” or
“x equals two”, because each of these cases would exclude all other cases (“x equals
three”, etc.). Thus, an infinite number of possible values for x must be expressed in
the state after the time elapsing.

• Syntax rules respecting the maximal progress of urgent actions must obviously con-
tain a restriction for the elapsing of time, expressing that time must not elapse, if
during the elapsing time an urgent transition might occur. Formally, this restriction
imposes rules with negative premises i.e., a hypothesis of the form “¬∃ϕ”, where ϕ
describes urgent transitions. As discussed in [68, 69], negative premises can cause
inconsistency in the semantic rules.

For instance, RT-Lotos does not satisfy time additivity, because its rules do not foresee
future time elapsing. E.g., the term “∆2∆2G{4}; stop|[G]|∆3∆2G{0}; stop” (which is a

48 Chapter 3. Overview and classification of formal models

parallel composition of one sequence “wait 2 – wait 2 – synchronize on G within 4 – stop”
with another sequence “wait 3 – wait 2 – synchronize on G at once – stop”) can be used to
derive a chain of timed transitions labelled 2, 1, 1, and 1, followed by a discrete transition
labelled G, but not a timed transition labelled 5 before a discrete transition labelled G.

Time determinism is nearly always satisfied, but sometimes e.g., in the Fiacre model,
it comes at the price of introducing additional τ -transitions in the Tlts. In other cases
e.g., in the E-Lotos language, it comes at the price of a large number of semantic rules.

The property of maximal progress of urgent actions (cf. Definition 3.4 (iii)) is situated
on a more technical level than the first two: Its satisfaction basically depends on whether
the model is defined with a notion of urgency or not. Most models do have urgency,
but it takes different forms. In several process algebras (e.g., Lotos NT), it is assumed
that τ -transition (i.e., hidden) equals urgent transition. RT-Lotos does not share this
assumption; instead it uses the refinement “hidden transition of which the latency time
has elapsed equals urgent transition”.

Other Aspects

It should be remembered that the differences between the languages and models described
in this chapter are not restricted to properties related to data, concurrency, and real time.
Other aspects such as hybrid variables, probabilities, etc. also appear in different ways in
a few models.

We consider these aspects to be out of the scope of this work and will not discuss them
further.

3.5.2 Observations from the comparison

The preceding sections showed that there are several fundamental differences in the ap-
proaches to how data, concurrency, and real time are implemented in high-level languages
and graphical models. Design problems caused by the combination of these three as-
pects, such as the occurrence level of timed syntax, illustrate the need for rather complex
semantic definitions.

Considering the different approaches and the complex rules, it is understandable that
approaches defining automated translations directly from high-level languages to graphical
models are very complex and raise problems of semantics preservation e.g., [111].

Therefore, it seems reasonable to define, instead, translations between formalisms with
smaller differences i.e., to follow the approach of intermediate models: High-level syntax
constructs (e.g., for data manipulation and synchronization) and high-level semantics
in intermediate models enable translation (manually or automatically) from high-level
languages to a convenient intermediate model. A structure similar to the automata model
used in most intermediate models enables (automatic) translations from intermediate
models to a convenient graphical model.

3.5. Summary and observations 49

However, it can be observed that existing intermediate models are not sufficient to in-
tuitively represent important concepts present in elaborate high-level languages such as
E-Lotos and Lotos NT (cf. Section 3.3.4)9:

• The If-2.0 model provides no synchronization.

• The Bip model only provides discrete time.

• The Ntif model is restricted to sequential untimed processes.

• All models except Fiacre and Ntif provide only transitions with a simple condi-
tion/action syntax, which does not enable efficient modelling and compilation.

• The Fiacre model uses timed syntax and semantics following different approaches
from most high-level languages, namely regarding the occurrence level of timed
syntax and the limitation to strong deadlines.

Therefore, it is justified to define a new intermediate model which is suited better for this
task. This will be the subject of the following chapter.

9The reason for this lack is that the definitions of those intermediate models are intended to represent
other languages than E-Lotos or Lotos NT e.g., UML and SDL for If-2.0 or probabilistic languages
for MoDeST.

50 Chapter 3. Overview and classification of formal models

Chapter 4

The syntax and semantics of
ATLANTIF

Abstract This chapter defines and discusses the Atlantif (Asynchronous Timed
Language Amplifying Ntif) intermediate format. It begins with a syntax overview
along with a brief description of semantics, showing our design choices, and then
describes formally each construct, namely its syntax, its static semantics restrictions,
and its dynamic semantics. Finally, semantic properties of Atlantif are analyzed
and discussed.

4.1 Syntax and semantics notation

Syntax metalanguage The syntax definitions of this chapter will use a variant of
Ebnf (Extended Backus-Naur Form [82]). The Ebnf metalanguage describes a language
by symbols and rules. Symbols can be the following:

• Terminal symbols can be keywords (written in bold type), key symbols (written in
true type font e.g., := and []), or generic terminal symbols representing identifiers
(written as single letters in italic font). Table 4.1 lists the generic terminal symbols
used throughout this chapter.

• Non-terminal symbols (written as single letters in italic font) represent those con-
structs defined by the rules. Table 4.2 lists the non-terminal symbols used through-
out this chapter.

In our variant of Ebnf, each non-terminal symbol H is defined by exacly one rule of the
form H ::= L, where L is a combination of terminal and non-terminal symbols, using the
following notation:

• Sequences are represented by a mere succession of symbols.

51

52 Chapter 4. The syntax and semantics of ATLANTIF

C: constructor identifier M : module identifier u : unit identifier
F : function identifier s : state identifier V : variable identifier
G: gate identifier T : type identifier

Table 4.1: Meaning of generic terminal symbols

A : action N : cardinality list U : unit
B : visibility specifier O : communication offer W : time window
D : type definition P : pattern X : module (axiom)
E : expression Q : semantic modality Y : function definition
K: synchronization formula R : synchronizer

Table 4.2: Meaning of non-terminal symbols

• Alternatives are separated by vertical bars in normal font (“|”).

• Optional parts are enclosed between square brackets in normal font (“[”, “]”).

• Let � be a key symbol (e.g., a comma) or a blank space and n ∈ IN. Then
α1� . . .�αn represents the repetition n times of the symbol α, separated by �s,
and α0� . . .�αn represents the repetition n+1 (i.e., at least one) times of the sym-
bol α, separated by �s. Instead of n, another letter may designate the maximal
index.

Sometimes, we recall a rule given before to discuss only a segment of L. In this case, we
use centered dots “· · · ” to indicate omissions.

For convenience, we will not always make a strict separation between objects and iden-
tifiers of objects i.e., instead of writing “a module X1 with the identifier M1”, we will
simply write “a module M1”. This lack of precision is common usage and of little practical
impact (one exception is discussed in Remark 4.15 on page 103).

Semantics definitions. The semantic rules in this chapter will be presented in Plotkin’s
SOS (Structural Operational Semantics) style [105]. It consists in rules divided by a
horizontal line into an upper and a lower part, where the upper part describes zero, one,
or several hypotheses, and the lower part one transition derivable from these hypotheses.

4.2 Overview of ATLANTIF

The complete syntax of Atlantif is summarized in Table 4.3. The remainder of this
section will contain informal explanations of the constructs. Formal definitions will then
be given along the remainder of this chapter.

4.2. Overview of ATLANTIF 53

Syntax of modules :
X ::= module M is

[(no | discrete | dense) time] (timing option)
type T1 is D1 . . . type Tn is Dn (type declarations)
function F1 is Y1 . . . function Fk is Yk (function declarations)
R1 . . . Rm (synchronizers , defined below)
init u0, . . . ,uj (initially active units)
U0 . . . Ul (unit definitions , defined below)
end module

Syntax of units :
U ::= unit u is

[variables V0:T0 [:= E0], . . . ,Vn:Tn [:=En]] (local variables)
from s0 A0 . . . from sm Am (list of transitions)
U1 . . . Ul (subunits)
end unit

Syntax of actions :
A ::= V0, . . . ,Vn := E0, . . . ,En (deterministic assignment)

| V0, . . . ,Vn := any T0, . . . ,Tn [where E] (nondeterministic assignment)
| reset V0, . . . ,Vn (variable reset)
| wait E (delay)
| G O1 . . . On [[must | may] in W] (gate communication)
| to s (jump to state)
| stop (unit stop)
| A1;A2 (sequential composition)
| if E then A1 else A2 end [if] (conditional)
| case E is P0->A0| . . . |Pn->An end [case] (deterministic choice)
| select A0[] . . . []An end [select] (nondeterministic choice)
| while E do A0 end [while] (loop)
| null (inaction)

Syntax of offers : Syntax of expressions :
O ::= !E (value emission) E ::= V (variable)

| ?P (value reception) | F(E1, . . .,En) (function)
| C(E1, . . . ,En) (constructor)

Syntax of patterns :
P ::= any T (anonymous variable) | P0 where E (condition) | (P0)

| V (variable) | C(P1, . . . ,Pn) (constructor)
Syntax of time windows:

W ::= [E1,E2] |]E1,E2] | [E1,E2[|]E1,E2[(bounded interval)
| [E1, ...[|]E1, ...[(unbounded interval)
| W1 or W2 | W1 and W2 | (W0) (combined interval)

Syntax of synchronizers :
R ::= sync G [: B] is K (synchronization formula)

[stop u1, . . .,um] [start u′
1, . . . ,u′

n] (stopped and started units)
end sync

Auxiliary syntax of synchronizers :
K ::= u (single unit) N ::= n (natural integer)

| K1 and K2 (synchronization) | N1 or N2 (choice)
| K1 or K2 (alternative)
| N among (K1, . . .,Km) B ::= visible | hidden
| (K0) | urgent | silent

Table 4.3: Complete Atlantif syntax

54 Chapter 4. The syntax and semantics of ATLANTIF

An Atlantif specification is called a module. In its header, a module defines whether it is
untimed or timed and in the latter case, which kind of time domain is used, namely dense
(corresponding to IR≥0) or discrete (corresponding to IN). The body of a module lists,
among other things, the two central kinds of constructs, called units and synchronizers.

Each unit represents one sequential process. It can contain subunits , representing sub-
processes, thus enabling a description of the unit with a higher granularity. A parallel
composition can be modelled by several units being active at the same time, where a unit
is called active if it is being executed, or inactive otherwise. The initial units are those
units active as soon as the execution of the module begins.

The syntax of a unit is an extension of the syntax of an Ntif process. A unit consists
of local variables (that can be shared with its subunits) and a list of discrete states,
the first of which is the initial state for this unit. To each discrete state is associated
an action, built using high-level language constructs and describing data manipulation
(deterministic and nondeterministic assignments, variable resets), gate communications,
time delays, and jumps to other discrete states, combined by sequential composition,
deterministic and nondeterministic choice, and loops. The action associated to a discrete
state thus defines a so-called multibranch transition that describes several different paths,
each of them representing one possible evolution of the unit from the current discrete
state to another discrete state.

Time in units is controlled by several new constructs:

• A delay action that was not part of Ntif enables the elapsing of a certain amount
of time.

• Life reducers are associated to gate communications, in the form of so-called time
windows , expressing by one or several intervals how much time can elapse between
arriving at this action and executing it. This direct representation of timing con-
straints makes it unnecessary to introduce clocks.

• The modalities may and must are associated to gate communications to express
whether the time window has a weak or a strong deadline i.e., whether the commu-
nication is optional or necessary.

In the syntax of actions, complex compositions are bracketed by keywords, such as
if · · · end if or select · · · end select. The repetition of the initial keyword follow-
ing end, helpful for the readability of nested actions, is optional in these constructs.

Each synchronizer represents the communication constraint associated to a given gate,
where the communication is, as the name indicates, a synchronization communication
(instead of e.g., a buffer communication). A synchronizer contains a single formula that
expresses which sets of units may synchronize. The approach to define this by a separate
and expressive construct is inspired by synchronization vectors. Additionally, a synchro-
nizer defines whether a synchronization will be visible, hidden (a τ -transition), or silent
i.e., not appear in the semantics at all. If silent, it can also be urgent i.e., it can prohibit

4.2. Overview of ATLANTIF 55

any idling when a synchornization on its gate is possible. Finally, synchronizers can stop
active units and start inactive units.

In gate communications, a list of offers enables data exchange between units. Each offer
is either an emission defined by an expression or a reception defined by a pattern.

Identifiers. Atlantif identifiers are regular expressions built from uppercase and low-
ercase letters, digits, and underscores. They must begin with a letter and are not allowed
to end with an underscore. E.g., “State1” and “ONE two 3” are valid identifiers, but
“4 a”, “Seti@Home”, and “A 2 ” are not.

Notation. For a given module, we write V the set of variable identifiers, G the set of
gates, and U the set of unit identifiers. The subsets of U are written U ,U ′,U0,U1, etc.

We also write S the set of discrete state identifiers. S contains two special elements written
δ and Ω, reserved for the semantics definitions. The element δ denotes the termination
of an action, thus enabling the execution of subsequent actions. The element Ω denotes
the termination of a unit. At last, for a given unit u, we write Su the set containing all
discrete state identifiers used in u, as well as δ and Ω.

Example 4.1. We still consider the behaviour described in Example 3.1 by two timed
automata and give in Fig. 4.1 the equivalent in Atlantif.

module Light is
dense time unit User is
sync Push is User and Lamp end sync from Dozing
init Lamp,User Push;

select to Phoning
unit Lamp is [] to Prepare Work

from Off end select
Push; to Low

from Phoning
from Low wait 1000; Push; to Dozing

select Push in [0, 5[;
to Bright from Prepare Work

[] Push in [5, ...[; wait 1; Push must in [0,2];
to Off to Working

end select
from Working

from Bright wait 1000; Push; to Dozing
Push; to Off end unit

end unit
end module

Figure 4.1: Atlantif program describing a light switch

56 Chapter 4. The syntax and semantics of ATLANTIF

4.3 Basic constructs

4.3.1 Types, functions, and constructors

As an intermediate model, Atlantif must be able to express standard data types, such
as booleans, integers, floating-point numbers, etc., and constructed data types, such as
lists, records, arrays, etc. Also, there should be the possibility of defining functions to
manipulate data.

We consider types and functions to be out of the scope of this work, because they have
already been the subject of related work (cf. e.g., Lotos NT [115] or Fiacre [24]).
Also, to a large extend, they are orthogonal to concurrent and real-time aspects, thus
it is possible to restrict them here to a minimum without harming the consistency of
the language10. Thus, the syntax and semantics of types, functions, and constructors
presented here only covers the minimum needed for the following sections.

Syntax description. Type declarations are of the form “type T is D”, where T is
an identifier and D a type definition (not detailed). We suppose the existence of the
predefined types “bool”, “int”, and “float” in their usual sense. Each type T is defined
by one or several constructors, which are used to create instances T . Each constructor C
is defined by a (possibly empty) list of types, corresponding to the parameters that are
used by C.

Function declarations are of the form “function F is Y ”, where F is an identifier and
Y a function definition. The function definition is not detailed here, but we suppose it
describes a function with a prototype of the form “T1 × . . .× Tn → T”, where T1, . . . , Tn

are the parameter types and T the return type. We suppose the existence of predefined
arithmetical functions such as “+”, “−”, and “∗” and boolean operators such as “=”, “≥”,
and “<”, defined on the predefined types with their usual meaning. For convenience, we
will use the usual infix notation for these predefined functions.

4.3.2 Expressions

E ::= V (variable)
| F(E1, . . . ,En) (function expression)
| C(E1, . . . ,En) (constructor expression)

Note that this definition includes constant values as the special case of constructor calls
without parameters.

Static semantics. An expression E is well-typed if it can be given a unique type. We
define a function type on the set of producible expressions and we write type(E) = T if

10In Section 3.5.1, we discussed exceptions to this orthogonality. Therefore, the indicated “minimum”
covers our solutions regarding these exceptions.

4.3. Basic constructs 57

one of the following is true:

• E consists of a variable of type T .

• E is a function expression of the form F(E1, . . . ,En), where F has the prototype
T1 × . . .× Tn → T and for each i ∈ 1..n, type(Ei) = Ti.

• E is a constructor expression of the form C(E1, . . . ,En), where C is a constructor of
T with parameters of respective types “T1, . . . , Tn” and for each i ∈ 1..n, type(Ei) =
Ti.

For each expression E, we define the set use(E) containing all variables that need to have
a value assigned before an evaluation of E as follows:

use(V)
def
= {V }

use(F(E1, . . . ,En))
def
=

⋃
i∈1..n use(Ei)

use(C(E1, . . . ,En))
def
=

⋃
i∈1..n use(Ei)

We also define the set read(E) containing all variables that are read in an evaluation of
E as follows:

read(E)
def
= use(E)

Dynamic semantics. We assume a set Val containing all values defined by the declared
types. Values are written v, v′, v0, v1, etc. The values of variables are given by partial
functions on V → Val , called stores and written ρ, ρ′, ρ0, ρ1, etc.

The semantics of expressions is given by a predicate eval(E, ρ, v) that is true if and only
if the evaluation of expression E in store ρ yields a value v. Formally:

eval(E, ρ, v) iff






E = V and ρ(V) = v

E = C(E1, . . . ,En), eval(E1, ρ, v1), . . . , eval(En, ρ, vn),

and C(v1, . . . , vn) = v

E = F(E1, . . . ,En), eval(E1, ρ, v1), . . . , eval(En, ρ, vn),

and F (v1, . . . , vn) = v

Remark 4.1. Functions are well-defined i.e., deterministic. For each expression E, store
ρ and values v1, v2, we have: If eval(E, ρ, v1) and eval(E, ρ, v2), then v1 = v2.

58 Chapter 4. The syntax and semantics of ATLANTIF

4.3.3 Patterns

Values can be assigned to patterns using pattern-matching. A value can be matched
against a pattern if both the value and the pattern have the same shape. In that case,
the variables contained in the pattern get assigned with appropriate values. Note that
in the case of a constructor pattern with several parameters, pattern-matching operates
sequentially, from the left to the right.

P ::= V (variable)
| any T (anonymous variable)
| C(P1, . . . ,Pn) (constructor pattern)
| P0 where E (conditional pattern)
| (P0)

Static semantics. A pattern P is well-typed if it can be given a unique type. We write
type(P) = T if one of the following is true:

• P consists of a variable V , where type(V) = T .

• P consists of an anonymous variable any T and T is a type.

• P is a constructor pattern of the form C(P1, . . . ,Pn), where C is a constructor
of a type T , with parameters of respective types T1, . . . , Tn, and for each i ∈ 1..n,
type(Pi) = Ti.

• P is a conditional pattern of the form P0 where E, where type(P0) = T and
type(E) = bool.

For each pattern P , we define the set use(P) containing all variables that need to have a
value assigned before a pattern-matching against P , along with a set def (P) containing
all variables that are necessarily assigned a value after a pattern-matching against P as
follows:

use(V)
def
= ∅ def (V)

def
= {V }

use(any T)
def
= ∅ def (any T)

def
= ∅

use(C(P1, . . . , Pn))
def
=

⋃
i∈1..n use(Pi) def (C(P1, . . . , Pn))

def
=

⋃
i∈1..n def (Pi)

use(P0 where E)
def
= def (P0 where E)

def
= def (P0)

(use(E) \ def (P0)) ∪ use(P0)

We also define the set read(P) containing all variables that may be read during a pattern-
matching against P , and the set write(P) containing all variables that may be written
during a pattern-matching against P as follows:

4.3. Basic constructs 59

read(V)
def
= ∅ write(P)

def
= def (P)

read(any T)
def
= ∅

read(C(P1, . . . , Pn))
def
=

⋃
i∈1..n read(Pi)

read(P0 where E)
def
= read(E) ∪ read(P0)

Each pattern has to be well-bound i.e., the variables defined by this pattern have to
be assigned unambiguously. Patterns of the form V and any T are always well-bound.
“P0 where E” is well-bound if P0 is well-bound. C(P1, . . . , Pn) is well-bound if every
variable is defined at most once in P1, . . . , Pn and if no variable is used before being
defined, patterns being matched from left to right. Formally, a constructor pattern of the
form C(P1, . . . , Pn) is well-bound if the following are all satisfied:

(i) (∀i ∈ 1..n) Pi is well-bound
(ii) (∀i, j ∈ 1..n, i 6= j) def (Pi) ∩ def (Pj) = ∅
(iii) (∀i, j ∈ 1..n, i < j) use(Pi) ∩ def (Pj) = ∅

For instance, given a binary constructor C, and two variables V1, V2, this means:

• C(V1, V1) is not well-bound, because it twice assigns a value to V1 i.e., the value
of the second assignment destroys the value of the first assignment. Neither is
C(V1 where V1 = V2, V2) well-bound, because the condition V1 = V2 is evaluated
before the assignment of V2. Thus, the condition is ambiguous.

• C(V1, V2 where V1 = V2) and “C(V1, V2) where V1 = V2” are well-bound, as their
conditions do not depend on variables that are undefined or that may change value
during further pattern-matching: In both cases, both V1 and V2 are assigned a new
value before being compared.

Dynamic semantics. We define a pattern-matching function match(v, ρ, P) that re-
turns either fail if the value v does not match the pattern P in a context defined by the
store ρ, or else a new store ρ′ corresponding to ρ in which the variables of P have been
assigned by the matching sub-terms of v. Formally:

match(v, ρ, V)
def
= ρ⊘ [V 7→ v]

match(v, ρ,any T)
def
= ρ

match(C(v1, . . . , vn), ρ0, C(P1, . . . ,Pn))
def
=






ρn if (∃ρ0, . . . , ρn) (∀i ∈ 1..n)

match(vi, ρi−1, Pi) = ρi 6= fail

fail otherwise

match(v, ρ, P0 where E)
def
=

{
ρ′ if match(v, ρ, P0) = ρ′ 6= fail and eval(E, ρ′, true)

fail otherwise

match(v, ρ, P)
def
= fail if none of the above conditions hold

60 Chapter 4. The syntax and semantics of ATLANTIF

4.3.4 Offers

Value exchanges between processes are expressed by offers, which have the following form:

O ::= !E (emission of the value of E)
| ?P (reception of a value matching P)

Static semantics. An offer O is well-typed if it can be given a unique type. We write
type(O) = T if one of the following is true:

• O is an emission offer of the form !E and type(E) = T .

• O is a reception offer of the form ?P and type(P) = T .

The sets use , def , read , and write defined above for patterns and expressions are extended
to offers as follows:

use(!E)
def
= use(E) def (!E)

def
= ∅ read(!E)

def
= read(E) write(!E)

def
= ∅

use(?P)
def
= use(P) def (?P)

def
= def (P) read(?P)

def
= read(P) write(?P)

def
= write(P)

Dynamic semantics. The semantics of an offer O is given by a function accept(v, ρ, O)
that returns either fail if in a context given by the store ρ, the value v does not match
the offer O, or a new store ρ′ otherwise. Formally:

accept(v, ρ, !E)
def
= if eval(E, ρ, v) then ρ else fail

accept(v, ρ, ?P)
def
= match(v, ρ, P)

4.4 Units

4.4.1 Overview

Each process of a system is represented by a unit , using the following syntax:

U ::= unit u is
[variables V0:T0 [:=E0], . . . ,Vn:Tn [:=En]] (variable declarations)
from s0 A0 . . . from sm Am (list of multibranch transitions)
U1 . . . Ul (subunits)
end unit

The variables used in a unit have to be declared a type, and an optional initial value. We
write decl(u) the set of variables declared in u.

4.4. Units 61

Static semantics. Types with the identifiers T0, . . . , Tn have to be declared. The iden-
tifiers V0, . . . , Vn have to be pairwise distinct. The declarations have to be well-typed (cf.
Section 4.3.2) i.e., the optional initial values must be well-typed constant expressions of
the corresponding type.

The list of multibranch transitions has the form “from s0 A0 . . . from sm Am”, where
s0, . . . , sm are the discrete states of the unit and with each discrete state si (i ∈ 0..m) is

associated an action Ai. We define the function act by act(si)
def
= Ai and act(Ω)

def
= null

(act(δ) is not defined). The discrete state s0 is the initial state of u.

4.4.2 Actions

Atlantif inherits the action syntax of the intermediate format Ntif [61], and extends
it with real-time constructs. The syntax of actions is given as follows, where shading
indicates additions that were made in Atlantif with respect to Ntif:

A ::= V0, . . . ,Vn := E0, . . . ,En (deterministic assignment)
| V0, . . . ,Vn := any T0, . . . ,Tn [where E] (nondeterministic assignment)
| reset V0, . . . ,Vn (variable reset)
| wait E (delay)
| G O1 . . . On [[must | may] in W] (gate communication)
| to s (jump to state)
| stop (unit stop)
| A1;A2 (sequential composition)
| if E then A1 else A2 end [if] (conditional branching)
| case E is P0->A0| . . . |Pn->An end [case] (deterministic choice)
| select A0[] . . . []An end [select] (nondeterministic choice)
| while E do A0 end [while] (loop)
| null (inaction)

In the remainder of this section, we will discuss each action separately.

Static semantics. An action has to satisfy well-binding i.e., variable assignments made
along this action have to be unambiguous. It also has to satisfy well-typing. Details on
these two criteria are given with each action description in the remainder of this section.

A variable V may be read during an evaluation of an action A if A contains an expression
containing V ; V may be written during an evaluation of A if A contains a pattern writing
V or an assignment to V . In each action description below, the formal definition of the
corresponding sets read(A) and write(A) will be given.

Dynamic semantics. For the semantics of actions, we define the set of local labels

L1
def
= {G v1 . . . vn | G ∈ G, v1, . . . , vn ∈ Val} ∪ {ǫ}. ε is a special label, which represents

transitions without communication actions.

62 Chapter 4. The syntax and semantics of ATLANTIF

The dynamic semantics of actions describes transitions between one action towards one

discrete state. In Ntif, such transitions were defined by a relation of the form (A, ρ)
l

=⇒
(s, ρ′), where A is an action, ρ, ρ′ are stores, s ∈ S is a discrete state, and l ∈ L1 is a

label [61]. Atlantif extends this to a relation of the form (A, d, ρ)
l

=⇒ (s, d′, ρ′), where
(s, d′, ρ′) is called a local state (also written σ, σ′, σ0, σ1, etc.) and d, d′ are tuples of the
form (t, µ), described as follows:

• t ∈ D is called a phase. Intuitively, the phase represents the time difference between
the local state of a unit and the global semantic state of the module (which we will
define in Section 4.6.3). From the perspective of within a unit, the phase therefore
corresponds to the time that may elapse in this unit until the next communication.

Technically, the phase indicates how much time has elapsed (in the whole module)
since the unit made its last (non-silent) communication. This value is reduced by
the values of all wait actions, that were executed since then.

• µ ∈ {true, false} is called a blocking condition. It is equal to true if and only if
time is not allowed to elapse further than given by the phase t, thus representing a
strong deadline.

“(A, d, ρ)
l

=⇒ (s, d′, ρ′)”means that the action A in the context defined by d and ρ evolves,
in a transition labelled by l, to the local state (s, d′, ρ′).

The formal definitions are given below with each action.

Deterministic assignment

A ::= V0, . . . ,Vn := E0, . . . ,En

| · · ·

This action simultaneously assigns the values of E0, . . . , En to V0, . . . , Vn respectively.

Static semantics. The deterministic assignment action is well-bound if the variables
V0, . . . , Vn are pairwise distinct. It is well-typed if for each i ∈ 0..n, type(Vi) = type(Ei).
The sets read and write are defined as follows:

read(V0, . . . ,Vn := E0, . . . ,En)
def
=

⋃
i∈0..n read(Ei)

write(V0, . . . ,Vn := E0, . . . ,En)
def
= {V0, . . . , Vn}

Dynamic semantics. Deterministic assignments define local transitions as follows:

(assignd)
eval(E0, ρ, v0) ∧ . . . ∧ eval(En, ρ, vn)

(V0, . . . ,Vn := E0, . . . ,En, d, ρ)
ε

=⇒ (δ, d, ρ⊘ [V0 7→ v0, . . . , Vn 7→ vn])

4.4. Units 63

Note that the semantics indeed describes a simultaneous assignment. For instance, in
“V1,V2 := V2,V1”, the two variables swap their values, which is obviously different from a
sequence of two assignments, namely “V1 := V2” followed by “V2 := V1”.

Nondeterministic assignment

When a system cannot be specified in all details, abstractions have to be made, for instance
by the introduction of nondeterminism in variable assignments.

A ::= · · ·
| V0, . . . ,Vn := any T0, . . . ,Tn [where E]
| · · ·

This action assigns to each variable V0, . . . , Vn an arbitrary value so that the condition E
evaluates to true. If unspecified, we suppose E to be of the form true.

Static semantics. The nondeterministic assignment action is well-bound if the vari-
ables V0, . . . , Vn are pairwise distinct. It is well-typed if type(E) = bool and for each
i ∈ 0..n, type(Vi) = Ti. Remark 4.14 on page 103 discusses further restrictions on E. The
sets read and write are defined as follows:

read(V0, . . . ,Vn := any T0, . . . ,Tn where E)
def
= read(E)

write(V0, . . . ,Vn := any T0, . . . ,Tn where E)
def
= {V0, . . . , Vn}

Dynamic semantics. To each variable Vi (i ∈ 0..n) a new value of type Ti is assigned,
such that the condition E (possibly depending on V0, . . . , Vn) is satisfied.

(assignn)
v0 ∈ T0, . . . , vn ∈ Tn ∧ ρ′ = ρ⊘ [V0 7→ v0, . . . , Vn 7→ vn] ∧ eval(E, ρ′, true)

(V0, . . . ,Vn := any T0, . . . ,Tn where E, d, ρ)
ε

=⇒ (δ, d, ρ′)

Variable reset

A ::= · · ·
| reset V0, . . . ,Vn

| · · ·

A variable reset performs the un-assignment of the values currently assigned to the vari-
ables V0, . . . , Vn. This can for instance be used to emulate variables with a limited scope:
The reset action then represents the end of this scope, after which the variables become
unavailable.

64 Chapter 4. The syntax and semantics of ATLANTIF

Static semantics. A reset action is always well-bound and well-typed. The sets read
and write are defined as follows:

read(reset V0, . . . ,Vn)
def
= ∅ write(reset V0, . . . ,Vn)

def
= ∅

Dynamic semantics. Reset actions define local transitions as follows:

(reset)
(reset V0, . . . , Vn, d, ρ)

ε
=⇒ (δ, d, ρ⊖ {V0, . . . , Vn})

Note that a variable among V0, . . . , Vn may already have no value assigned, in which case
nothing happens to this variable. Note also that the Atlantif reset is an operation
different from the “clock reset” of timed automata (cf. Section 3.2.2), which does not
remove values, but replaces them by zero.

Delay

A ::= · · ·
| wait E
| · · ·

The wait action implements a time delay (of E time units) that is independent of com-
munication actions. It thus provides an intuitive means to represent e.g., processing time
within one unit. Such a construct appears in similar shapes in different formalisms, such
as in Tcsp [108].

Static semantics. Delay actions must not occur in modules with the timing option no
time.

A delay action is always well-bound. It is well-typed if type(E) = int in discrete time
or type(E) = float in dense time. The sets read and write are defined as follows:

read(wait E)
def
= read(E) write(wait E)

def
= ∅

Dynamic semantics. Delays define local transitions as follows:

(wait)
eval(E, ρ, v) ∧ t ≥ v ≥ 0

(wait E, (t, µ), ρ)
ε

=⇒ (δ, (t− v, µ), ρ)

This rule is the only one in the action semantics that modifies the phase t of a local state.
Recalling that the phase t indicates how much the unit differs from other units regarding
time elapsing, then it is clear that this phase is updated by a delay in this single unit.

4.4. Units 65

Gate communication

A ::= · · ·
| G O1 . . . On [[Q] in W]
| · · ·

W ::= [E1,E2] |]E1,E2] | [E1,E2[|]E1,E2[(bounded interval)
| [E1, ...[|]E1, ...[(unbounded interval)
| W1 or W2 | W1 and W2 | (W0) (combined intervals)

Q ::= must | may

This action invokes a gate communication, whose syntax components are as follows:

• G is the gate on which the synchronization is made.

• O1, . . . , On are the offers (cf. Section 4.3.4). A combination of emission offers (!E)
and reception offers (?P) is possible.

• W is a time window , defined using intersections (and) and unions (or) of open or
closed intervals, where “...” represents infinity and and binds more strongly than
or11. The communication may happen when the time elapsed since the communi-
cation action has been reached belongs to the time window. If W is unspecified, it
is taken to be “[0,...[” (i.e., no restriction is assumed).

• Q is a modality . must indicates that the communication must occur before the end
of the time window (which is called the deadline), and may indicates that time can
elapse indefinitely, without the communication ever occurring. If unspecified, Q is
taken to be may. In our classification inspired by [36], may corresponds to a weak
deadline, whereas must corresponds to a strong deadline.

Static semantics. If the modality is must, then all intervals contained in W must
either be unbounded (i.e., have a right-hand side of the form “,...[”) or right-closed
(i.e., have a right-hand side of the form “,E2]”). This restriction ensures the correct
functioning of the blocking condition (cf. page 62), which becomes true when the phase
of the unit has reached the deadline of a communication with must modality. Without
this restriction, such a limit could not be defined. In particular, this restriction is coherent
with the intuitive idea that at any moment, the maximal amount of time that can elapse
can be determined. Further static semantics restrictions on time windows depend on the
type of the synchronizer and will be defined in Section 4.6.2.

The set read is extended to time windows as follows:

read(W)
def
=






read(E1) ∪ read(E2) if W has the form [E1,E2], [E1,E2[,]E1,E2],

or]E1,E2[

read(E1) if W has the form [E1,...[or]E1,...[

read(W1) ∪ read(W2) if W has the form (W1 and W2) or (W1 or W2)

11I.e., “W1 and W2 or W3” equals “(W1 and W2) or W3”.

66 Chapter 4. The syntax and semantics of ATLANTIF

Well-binding for a communication action G O1 . . . On Q in W requires that variable as-
signments in offers are unambiguous and that the time window must not depend on the
offers. Formally:

(i) (∀i ∈ 1..n) If Oi has the form ?P , then P has to be well-bound
(ii) (∀i, j ∈ 1..n, i 6= j) def (Oi) ∩ def (Oj) = ∅
(iii) (∀i, j ∈ 1..n, i < j) use(Oi) ∩ def (Oj) = ∅
(iv)

(⋃
i∈1..n def (Oi)

)
∩ read(W) = ∅

Restriction (iv) prohibits “pathological” code like “G ?V must in [0,V]”. Our semantics
definition depends on determining for each time window with the modality must how
much time to elapse it permits, which is not possible when the time window depends on
offers. Moreover, we consider time windows depending on offers as unintuitive, because
the question of whether the communication action is available or not would depend on a
data reception in the future and could thus not be answered before the communication is
executed. Also, it is not clear in what cases such code would be useful.

A communication action is well-typed if each offer is well-typed and if each expression
appearing in W has type int in discrete time or type float in dense time. If the timing
option is “no time”, time windows must not be used. The sets read and write are defined
on communications as follows:

read(G O1 . . . On Q in W)
def
= read(W) ∪

⋃
i∈1..n read(Oi)

write(G O1 . . . On Q in W)
def
=

⋃
i∈1..n write(Oi)

Dynamic semantics. The semantics of a time window is defined by the predicate
win eval(W, ρ, D) that is true if and only if the evaluation of W in store ρ yields a
(possibly infinite) set of time instants D, where D is a subset of the time domain D.
Formally:

win eval([E1,E2], ρ, D)
def
=

(∃v1, v2) eval(E1, ρ, v1) and eval(E2, ρ, v2) and D = [v1, v2] ∩ D
(similarly for [E1,E2[,]E1,E2], and]E1,E2[)

win eval([E1, ...[, ρ, D)
def
=

(∃v1) eval(E1, ρ, v1) and D = D \ ([0, v1[)
(similarly for]E1, ...[)

win eval(W1 and W2, ρ, D)
def
=

(∃D1, D2) win eval(W1, ρ, D1) and win eval(W2, ρ, D2) and D = D1 ∩D2

win eval(W1 or W2, ρ, D)
def
=

(∃D1, D2) win eval(W1, ρ, D1) and win eval(W2, ρ, D2) and D = D1 ∪D2

The time window thus has the role of a life reducer , similar to that found in different
timed process algebras such as RT-Lotos [47].

4.4. Units 67

We also define a predicate up lim(Q, D, t) that is true if and only if Q = must and the
set D has a maximum equal to t12. This means that t time units in the future will be the
last moment when the communication can be performed.

Because of Remark 4.1 on page 57 (i.e., in an expression eval(E, ρ, v), v is uniquely
determined by E and ρ), there is a unique D for given W, ρ in win eval(W, ρ, D) and
up lim is thus well-defined.

The semantics of the communication action is given by the following rule:

(comm)
(∀j ∈ 1..n) accept(vj, ρj , Oj) = ρj+1 6= fail ∧ win eval(W, ρn+1, D) ∧ t ∈ D

(G O1 . . . On Q in W, (t, µ), ρ1)
G v1...vn=⇒ (δ, (t, up lim(Q, D, t)), ρn+1)

Note that the evaluation of the time window is done with the store ρn+1 instead of ρ1.
Because of the static semantics restriction on windows being independent of offers, this
makes no difference. Note also that in a first draft of Atlantif, the timed condition had
been realized by a time capture variable and a constraint formula depending on this vari-
able (cf. Section 3.3.3). Given that time capture is less adapted to formal verification [52],
we replaced it by a time window.

Jump

A ::= · · ·
| to s
| · · ·

This action executes a jump to the discrete state s.

Static semantics. A jump action is always well-bound and well-typed. The discrete
state s has to be defined among the discrete states of the current unit i.e., s ∈ (Su\{δ, Ω}).
The sets read and write are defined as follows:

read(to s)
def
= ∅ write(to s)

def
= ∅

Dynamic semantics. Jumps define local transitions as follows:

(to)
(to s, d, ρ)

ε
=⇒ (s, d, ρ)

12This being the only semantic consequence of the must, it can be seen that this keyword has no effect
if the time window is unbounded.

68 Chapter 4. The syntax and semantics of ATLANTIF

Stop

A ::= · · ·
| stop
| · · ·

stop ends the sequential behaviour defined by a unit by jumping to the termination
state Ω, where the unit cannot perform any communications. Note that this is a regular
termination and not a timelock (cf. page 19) state, because the elapsing of time is not
affected by a unit being in Ω.

Static semantics. A stop-action is always well-bound and well-typed. The sets read
and write are defined as follows:

read(stop)
def
= ∅ write(stop)

def
= ∅

Dynamic semantics. Stop actions define local transitions as follows:

(stop)
(stop, d, ρ)

ε
=⇒ (Ω, d, ρ)

Note that this is the only rule using the special discrete state Ω.

Sequential composition

A ::= · · ·
| A1;A2

| · · ·

This action symmetrically composes two actions sequentially: A2 starts as soon as A1

terminates, except if A1 executes a jump to another discrete state or stops, in which
case A2 is ignored. The symmetrical composition is an alternative to the action-prefix
notation, which restricts the left-hand side of a composition to atomic actions (used in
e.g., CSP [77], CCS [96], Lotos [81]).

The symbol “;” is also used for symmetrical sequential composition in other languages,
such as Lotos NT [115] and Promela [79].

Static semantics. A1;A2 is well-bound if both A1 and A2 are well-bound, and well-
typed if both A1 and A2 are well-typed. The sets read and write are defined as follows:

read(A1;A2)
def
= read(A1) ∪ read(A1) write(A1;A2)

def
= write(A1) ∪ write(A1)

4.4. Units 69

Dynamic semantics. Each of the actions A1 and A2 define a transition between local
states. Those transitions are merged into a single transition, by using the binary operator

+ defined as a partial function on L1 × L1 → L1 by l + ε
def
= l, ε + l

def
= l. If both its

operands are different from ε, it is undefined13.

The semantics of sequential composition is then given by the following two rules:

(seq1)
(A1, d, ρ)

l1=⇒ (δ, d′, ρ′) ∧ (A2, d
′, ρ′)

l2=⇒ σ

(A1;A2, d, ρ)
l1+l2=⇒ σ

(seq2)
(A1, d, ρ)

l
=⇒ (s, d′, ρ′) ∧ s 6= δ

(A1;A2, d, ρ)
l

=⇒ (s, d′, ρ′)

Nested symmetrical sequential composition can be ambiguous, unless it is associative. We
will prove associativity in Proposition 4.5 on page 96.

Deterministic choice

A ::= · · ·
| case E is P0->A0| . . . |Pn->An end [case]
| · · ·

This action performs one of the actions Ai (i ∈ 0, . . . , n), if the corresponding pattern Pi

(cf. Section 4.3.3) is the first one that matches the expression E.

Static semantics. The case-action is well-bound if for each i ∈ 0..n, Pi and Ai are
well-bound. It is well-typed if for each i ∈ 0..n, Ai is well-typed and type(Pi) = type(E).
The sets read and write are defined as follows:

read(case E is P0->A0| . . . |Pn->An end)
def
= read(E) ∪⋃

i∈0..n(read(Pi) ∪ read(Ai))

write(case E is P0->A0| . . . |Pn->An end)
def
=

⋃
i∈0..n(write(Pi) ∪ write(Ai))

Dynamic semantics. The patterns P0 to Pn are evaluated one after another, until a
Pi is found to match the expression E. Then, the action Ai is executed.

(case)

eval(E, ρ, v) ∧ (∀j < k) match(v, ρ, Pj) = fail ∧
match(v, ρ, Pk) = ρk 6= fail ∧ (Ak, d, ρk)

l
=⇒ σ

(case E is P0->A0| . . . |Pn->An end, d, ρ)
l

=⇒ σ

13In Section 4.4.3 however, we will introduce a static semantics restriction that guarantees that one of
the operands equals ε.

70 Chapter 4. The syntax and semantics of ATLANTIF

As the static semantics does not oblige the patterns to be exhaustive on the type of E, it
may be that no local transition at all can be derived from a case action (for a given ρ or
in general).

Conditional action

For several imaginable applications, the case action is cumbersome e.g., when there are
at most two alternatives and the conditions do not need pattern-matching to be checked.
Thus, Atlantif also provides a simple conditional action.

A ::= · · ·
| if E then A1 [else A2] end [if]
| · · ·

If the optional else-branch is unspecified, then we suppose it to be equivalent to “else
null”.

Static semantics. The if-action is well-bound if both A1 and A2 are well-bound. It is
well-typed if type(E) = bool and if both A1 and A2 are well-typed. The sets read and
write are defined as follows:

read(if E then A1 else A2 end)
def
= read(E) ∪ read(A1) ∪ read(A2)

write(if E then A1 else A2 end)
def
= write(A1) ∪ write(A2)

Dynamic semantics. A1 is executed, if E evaluates to true, and A2 otherwise.

(if 1)
eval(E, ρ, true) ∧ (A1, d, ρ)

l
=⇒ (s, d′, ρ′)

(if E then A1 else A2 end, d, ρ)
l

=⇒ (s, d′, ρ′)

(if 2)
eval(E, ρ, false) ∧ (A2, d, ρ)

l
=⇒ (s, d′, ρ′)

(if E then A1 else A2 end, d, ρ)
l

=⇒ (s, d′, ρ′)

Note that the if-action is case-exhaustive, as the else-branch is always explicitly or im-
plicitly declared.

Nondeterministic choice

A ::= · · ·
| select A0[] . . . []An end [select]
| · · ·

In the select action, any action Ai (i ∈ 0..n), may be executed.

4.4. Units 71

Static semantics. The select-action is well-bound if for each i ∈ 0..n, Ai is well-bound.
It is well-typed if for each i ∈ 0..n, Ai is well-typed. The sets read and write are defined
as follows:

read(select A0[] . . . []An end)
def
=

⋃
i∈0..n read(Ai)

write(select A0[] . . . []An end)
def
=

⋃
i∈0..n write(Ai)

Dynamic semantics. Select actions define local transitions as follows:

(select)
k ∈ 0..n ∧ (Ak, d, ρ)

l
=⇒ σ

(select A0[] . . . []An end, d, ρ)
l

=⇒ σ

Loop

A ::= · · ·
| while E do A0 end [while]
| · · ·

This action repeatedly executes A0, as long as the condition E is satisfied.

Static semantics. The while-action is well-bound if A0 is well-bound. It is well-typed
if type(E) = bool and if A0 is well-typed. The sets read and write are defined as follows:

read(while E do A0 end)
def
= read(E) ∪ read(A0)

write(while E do A0 end)
def
= write(A0)

Dynamic semantics. While actions define local transitions as follows:

(while1)
eval(E, ρ, true) ∧ (A0;while E do A0 end, d, ρ)

l
=⇒ σ

(while E do A0 end, d, ρ)
l

=⇒ σ

(while2)
eval(E, ρ, false)

(while E do A0 end, d, ρ)
ε

=⇒ (δ, d, ρ)

As the semantics rules enable only finite derivations, only finite loops actually have se-
mantics.

72 Chapter 4. The syntax and semantics of ATLANTIF

Inaction

A ::= · · ·
| null

The null action simply executes; without changing variable values or the phase, and
without invoking a communication gate.

Static semantics. A null action is always well-bound and well-typed. The sets read
and write are defined as follows:

read(null)
def
= ∅ write(null)

def
= ∅

Dynamic semantics. null actions define local transitions as follows:

(null)
(null, d, ρ)

ε
=⇒ (δ, d, ρ)

Obviously, the null action is a neutral element for sequential composition.

4.4.3 Unit semantics

Static semantics. Discrete state names have to be pairwise distinct within one unit.
Different units may contain states with the same name.

An execution path of a multibranch transition“from s A” is a succession of atomic actions
(i.e., assignments, resets, delays, communications, jumps, stops, and null). For each
multibranch transition, we demand the unicity of communication and undelayed next state
reachability . The unicity of communication expresses that on each execution path, there is
at most one communication action. The undelayed next state reachability expresses that
each path containing a communication action ends with a jump to another state, without
time being enabled to elapse between the communication and the jump. This constraint
is necessary to ensure that, after a synchronization, a unit is always immediately in a new
discrete state. Functions formally defining this criterion are given in Appendix A.1.1.

The sets read(u) and write(u) contain all variables that are respectively read and written
in the multibranch transitions from s0 A0 . . . from sm Am of the unit u. They are
defined as follows:

read(u)
def
=

⋃
i∈0..m read(Ai) write(u)

def
=

⋃
i∈0..m write(Ai)

4.4. Units 73

Dynamic semantics. The dynamic semantics of units is formally defined by a rela-

tion (A, d, ρ)
l

=⇒ (s, d′, ρ′), which is the same notation as the semantics of actions (cf.
Section 4.4.2). A transition corresponds to a succession of execution paths, the last of
which is the only path to contain a gate communication. Transitions labelled ε have to
be eliminated i.e., merged with a following transition, because only those transitions that
are labelled by a gate communication allow synchronizations with other units. These
successions are implemented by the rule (ε-elim) as follows:

(ε-elim)
(A, d, ρ)

ε
=⇒ (s, d′, ρ′) ∧ s 6= δ ∧ (act(s), d′, ρ′)

l
=⇒ (s′, d′′, ρ′′)

(A, d, ρ)
l

=⇒ (s′, d′′, ρ′′)

Note that before, the rule (seq1) introduced the elimination of ε-transitions in a single
execution path. The same idea is applied here to a succession of execution paths by the
rule (ε-elim).

4.4.4 Subunits

U ::= unit u is
· · ·
U1 . . . Ul

end unit

U1, . . . , Ul are the subunits of u. They also may contain subunits themselves, thus defining
a hierarchy of units.

Static semantics

Hierarchical order. The concept of subunits enables the definition of a partial order
“≻” on U, by u ≻ u′ if and only if u′ is a direct or indirect subunit of u. We write u � u′

for u ≻ u′ or u = u′.

Variables defined in u can be read and/or written in the subunits of u, thus enabling
sharing of variables between units. Therefore, variable identifiers have to be globally
unique (we will detail this point in Section 4.6.2 and in Remark 4.15). We say that u
is well-bound if and only if the multibranch transition actions A0, . . . , An are well-bound
and for each variable V in read(u)∪write(u), there exists a u′ � u such that V ∈ decl(u′).

Variable scope. Each variable V has a scope, given by the set accessible(V), that
defines the units in which V can be read and/or written. Scopes ensure that a unit that
may write V cannot be active at the same time as another unit that may read and/or write
V (i.e., the sharing of V is limited by its scope). The variable will be called well-accessible
if and only if such a scope can be defined.

For instance, let u1 be a unit declaring a variable V0 and let u2, u3 be subunits of u1.
If u2 contains a multibranch transition “from s1 V0 := 5; G; to s2” and u3 contains

74 Chapter 4. The syntax and semantics of ATLANTIF

a multibranch transition “from s3 V0 := 3; G; to s4”, then a synchronization on G by
these transitions would assign the values 5 and 3 to V0 at the same time. Such ambiguities
have therefore to be prohibited.

According to the idea that subunit hierarchy represents a process at different levels of
granularity (cf. Section 4.2), it is an intuitive restriction to require that for two units u, u′

such that u ≻ u′, at most one of them may be active at the same time. This restriction,
called well-activatedness , which will be detailed in Section 4.6.2, is the key element in the
verification of whether a correct scope can be defined.

A variable V , declared in u, written in the units u1, . . . , un (i.e., these are exactly those
units such that V ∈ write(ui) with i ∈ 1..n), and read in the units u′

1, . . . , u
′
m (i.e., exactly

those units such that V ∈ read(ui) with i ∈ 1..m) is well-accessible, if it satisfies the
following two constraints:

• To avoid write/write conflicts, in any moment at most one of the units u1, . . . , un

may be active. Supposing the module is well-activated, it is sufficient to require
that the set {u1, . . . , un} is totally ordered by ≻.

• To avoid read/write conflicts, if a unit u′
i with 1 ≤ i ≤ m and u′

i /∈ {u, u1, . . . , un}
is active in a given moment, no unit of {u, u1, . . . , un} may be active at the same
time. Supposing the module is well-activated, it is sufficient to require that the set
{u′

i, u0, u1, . . . , un} is totally ordered by ≻.

An example of a well-accessible shared variable is shown in Fig. 4.2, where each circle
represents one unit and the arcs represent a direct subunit relation; thus the figure shows
the unit hierarchy of a module.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

unit with
read/write

read-only

access to V:

access

access

unit with

access to V
unit without

u

u1

u2

u′

1

u′

2

u′

3

Figure 4.2: Example of a well-accessible shared variable

4.5. Synchronizers 75

If the variable V is well-accessible, we can define the set accessible(V) ⊆ U of all units in
which V may be read and/or written. Formally (using u, u1, . . . , un as defined above):

accessible(V)
def
= {u′ ∈ U | u � u′ ∧ {u′, u1, . . . , un} is totally ordered by ≻}

Note that accessible(V) can be a strict superset of the set of units in which V actually
occurs. Intuitively it is the maximal set of units in which using V is allowed.

We use the notation ρ↾U to restrict the domain of store ρ to those variables that are

accessible in a unit set U , formally ρ↾U
def
= ρ⊖ {V | (∀u ∈ U) u /∈ accessible(V)}.

Example 4.2. We suppose a module that models the control systems of a car, containing
(among others) a unit Brakes with two subunits Front Brakes and Rear Brakes.

When unit Brakes prepares a braking operation, it writes a variable Target Speed, which
is read by its two subunits. Moreover, Brakes writes a variable Front RPM that is also
written in unit Front Brakes. Symmetrically, there is a variable Rear RPM written in
Brakes and Rear Brakes. Thus, the access-sets of these variables are as follows:

accessible(Target Speed) = {Brakes ,Front Brakes ,Rear Brakes}
accessible(Front RPM) = {Brakes ,Front Brakes}
accessible(Rear RPM) = {Brakes ,Rear Brakes}

4.5 Synchronizers

4.5.1 Syntax description

A synchronizer has the form

sync G[:B] is K [stop u1, . . . ,um] [start u′
1, . . . ,u′

n] end sync,
where:

• G is the name of the gate that triggers the synchronizer (by communication actions
on G).

• B is an optional tag attached to G, written tag(G), which may take one of four
different values: visible induces a transition labelled by G and the offers exchanged
on G; hidden induces an internal transition labelled by τ ; urgent behaves like the
latter, but also blocks time when a synchronization is possible; and silent indicates
that the communication does not induce a transition. If no tag is specified, the
synchronizer is visible.

• K is a formula consisting of unit identifiers and boolean operators, which denotes
combinations of units that must synchronize, each such combination being called a
synchronization set , defined after the following grammar:

76 Chapter 4. The syntax and semantics of ATLANTIF

K ::= u (single unit)
| K1 and K2 (synchronization)
| K1 or K2 (alternative)
| N among (K1, . . . ,Km)

| (K0)

N ::= n (natural integer)
| N1 or N2 (choice)

• “stop u1, . . . , um” and “start u′
1, . . . , u

′
n” are optional constructs indicating that the

units u1, . . . , um become inactive and u′
1, . . . , u

′
n become active when the synchro-

nizer is triggered. We write stop(G) = {u1, . . . , um} and start(G) = {u′
1, . . . , u

′
n}.

If the lists are unspecified, we assume stop(G) = ∅ and start(G) = ∅ respectively.

While avoiding an explosion of the number of transitions (cf. Section 3.5.1), synchronizers
are general enough to express the following:

• Competition between synchronizing processes can be expressed by synchronizers
denoting several synchronization sets e.g., in the formula “u1 and (u2 or u3)”, u2

and u3 compete to synchronize with u1.

• Multiway synchronization can be expressed by synchronization sets containing more
than two units e.g., in “u1 and u2 and u3”, the three units u1, u2, and u3 must
synchronize altogether.

• The generalized parallel composition operators of [64] can also be expressed by syn-
chronizers. For instance, the composition “par G#2, G#3 in u1||u2||u3 end par”,
which means that either two or three processes among u1, u2, and u3 synchronize
on G, can be expressed by “sync G is 2 or 3 among (u1, u2, u3) end sync”. This
feature will be detailed in Section 5.5.

• Processes can be started and stopped by themselves or by concurrent processes. For
instance, “sync G is u1 and u2 stop u1, u2 start u3, u4 end sync” means that
units u1, u2 are stopped as soon as they synchronize on gate G , and that u3, u4 are
started at the same moment.

4.5.2 Static semantics

Each synchronizer must have a unique gate. Therefore, a gate can be seen as a synchro-
nizer’s identifier. Furthermore, we require that each unit occurring in the formula K or in
the lists of started and stopped units is declared within the same module. A synchronizer
must not be tagged urgent if the module has the timing option no time.

4.5. Synchronizers 77

Validity-stable synchronizers

In this section, we define the property of validity-stability for synchronizers, which intu-
itively assures that the starting of units by this synchronizer never leads to a state in
which an active unit is a (direct or indirect) subunit of another active unit.

First, we define the predicate valid active on P(U), which expresses that no unit in a set
is a subunit of another unit in the same set. Formally:

valid active(U)
def
= (∀u, u′ ∈ U) u 6≻ u′

When a synchronization on a gate G leads from a set of active units U with valid active(U)
to a set of active units U ′, it has to be guaranteed that valid active(U ′) is true. To this
aim, it is sufficient to require the following:

• A unit that is in U can only be started by G if it is also stopped by G.

• The union of U and the units started by G, without the units stopped by G, must
be valid active.

Formally, this is given by the following predicate, where the set U corresponds to the units
active in S:

validity stable(G)
def
=

(∀U ⊆ U) (valid active(U) ∧ (∃U ′ ⊆ U) U ′ ∈ sync(G)
⇒ (U \ stop(G)) ∩ start(G) = ∅ ∧ valid active((U \ stop(G)) ∪ start(G)))

To define a synchronizer that satisfies this predicate, the list of stopped units should
therefore contain each unit that can be in conflict with one of the started units. The
predicate is defined by a quantification on the power set of U, thus a näıve implementation
would have an exponential complexity. In practice, an alternative but equivalent predicate
can be implemented, which induces an algorithm of polynomial complexity. Moreover, if a
synchronizer is not validity-stable, this algorithm automatically reports which units have
to be stopped, in order to establish validity-stability. A description of this alternative
definition, along with a formal proof of equivalence, can be found in Appendix A.1.2.

4.5.3 Dynamic semantics

The dynamic semantics of a synchronizer G defines a set of synchronization sets, written
sync(G). Each synchronization set is a set of units and represents the possibility of a
synchronization14 on G between all units of this set. Formally:

14If this set is a singleton, it is of course not entirely appropriate to speak of a “synchronization”, which
intuitively should include at least two units. However, for the sake of simplicity, we will use the term
“synchronization” in the more general sense that also includes a communication performed by a single
unit.

78 Chapter 4. The syntax and semantics of ATLANTIF

sync(u) = {{u}}
sync(K1 and K2) = {S1 ∪ S2 | S1 ∈ sync(K1) ∧ S2 ∈ sync(K2)}
sync(K1 or K2) = sync(K1) ∪ sync(K2)
sync(n among (K1, . . . , Km)) = sync(K ′

1 or . . .or K ′
k), where

{K ′
1, . . . , K

′
k} = {(Ki1 and . . .and Kin) | 1 ≤ i1 < . . . < in ≤ m}

sync(n1 or . . .or nl among (K1, . . . , Km)) =
sync(n1 among (K1, . . . , Km) or . . .or nl among (K1, . . . , Km))

The predicate sync will be used in the module semantics defined in Section 4.6.3.

Remark 4.2. Note that the semantics of the or does not correspond to the “or”of classical
logic because e.g., {u1, u2} /∈ sync(u1 or u2), nor does it correspond to the exclusive
or (“xor”) because e.g., {u1} ∈ sync(u1 or u1). Instead, it corresponds to the additive
conjunction “&” of linear logic [66], which represents one of the common usages of the
word “or” in natural language, as for instance on the menu card of a restaurant, where
the starter might be “soup or salad”.

Example 4.3. We consider again the car brakes from Example 4.2, where Brakes corre-
sponds to the brakes of a car, and Front Brakes and Rear Brakes are its subunits. When-
ever the car is driving without braking, unit “Brakes” is active, and the two subunits
otherwise. Such a behaviour is expressed by the following two synchronizers:

sync Begin Braking : silent is Brakes
stop Brakes start Front Brakes ,Rear Brakes end sync

sync Finish Braking : silent is Front Brakes and Rear Brakes
stop Front Brakes ,Rear Brakes start Brakes end sync

4.6 Modules

4.6.1 Syntax description

Modules are the top level construct of Atlantif and defined as follows:

X ::= module M is
[(no | discrete | dense) time]
type T1 is D1 . . . type Tn is Dn

function F1 is Y1 . . . function Fk is Yk

R1 . . . Rm

init u0, . . . , uj

U0 . . . Ul

end module

This definition is composed of the following:

• M is the module’s identifier.

4.6. Modules 79

• The optional timing option of the form no time, discrete time, or dense time
indicates which time domain applies for this module. If no timing option is specified,
it is taken to be no time.

Note that no time merely indicates that time is abstracted from in the model i.e.,
it does not mean that no time elapses in the modeled system.

• T1, . . . , Tn are type identifiers, D1, . . . , Dn are type definitions, F1, . . . , Fk are func-
tion identifiers, and Y1, . . . , Yk are function definitions (cf. Section 4.3.1).

• R1, . . . , Rm are synchronizers, as defined in Section 4.5.

• The list u0, . . . , uj identifies the initially active units. We write the set U0
def
=

{u0, . . . , uj}.

• U0, . . . , Ul are units (possibly containing additional subunits), as defined in Sec-
tion 4.4.

4.6.2 Static semantics

Unique identifiers. Each of the following sets of constructs must have a separate name
space i.e., it must not contain two constructs that have the same identifier:

• types

• constructors and functions

• units (including subunits)

• synchronizers

• variables

Additionally, syntax keywords as well as identifiers of predefined types and functions may
not be chosen as identifiers in general. Appendix C on page 257 contains a full list of
these reserved keywords.

The elements of the list of initial units must be pairwise distinct.

Well-declaredness. All initial units must be declared i.e., U0 ⊆ U. Also, all functions,
all synchronizers, and all units have to be well-declared.

80 Chapter 4. The syntax and semantics of ATLANTIF

Well-initialized variables. The module must be well-initialized i.e., each time a vari-
able is read, it has been written previously and not reset since the last writing. An
algorithm implementing a sufficient criterion for a single unit is presented in [61], but it
does not consider variable sharing or starting and stopping of units, both concepts pro-
vided by Atlantif. Therefore, Atlantif uses a new algorithm, which is described in
Appendix A.1.3. In short, it creates a finite directed graph where each node corresponds
to a set of states of the Atlantif semantics and each edge to a set of possible transitions
between these states, which has three variable sets associated:

• the variables that are written during this transition

• the variables read during this transition but not being defined earlier on the same
transition

• the variables that are reset during this transition

Given this graph, a minimal fixpoint of the variables defined in each node is calculated.
Then, the module is well-initialized if for each edge, the second variable set is a subset of
the minimal fixpoint set of its source node.

Well-activatedness. An Atlantif module must be well-activated i.e., at any moment
of an execution, the set of active units cannot contain two units such that one is a (direct
or indirect) subunit of another. This follows the idea that subunits represent the same
system at a finer granularity.

Well-activatedness is satisfied if both the following are true:

• its set of initially active units U0 satisfies valid active(U0) (cf. Section 4.5.2)

• each synchronizer G satisfies validity stable(G) (cf. Section 4.5.2)

Correct usage of silent and urgent synchronizers. Time windows control the time
elapsing between two discrete (i.e., visible, hidden, or urgent) synchronizations. Thus,
if G is a silent synchronizer, communication actions using G must not have a time window.
Instead, the silent synchronization is understood to happen as early as possible. Note that
time can elapse before a silent synchronization, if a wait action occurs.

If G is an urgent synchronizer, then each interval occurring in the time window W of a
communication action using G must be left-closed. This restriction is necessary to avoid
timelocks: Supposing a synchronizer “sync G :urgent is u end sync” and the unit u
containing a communication action“G in]x,...[”in a module with a dense time domain.
Then, when x time units have elapsed, a communication by G is still not possible, because
x is below the time window; but a further time elapsing by any t time units is not possible
either, because an urgent communication would have been possible earlier (e.g., after t/2
time units).

4.6. Modules 81

4.6.3 Dynamic semantics

Modules being the top-level constructs of Atlantif, their dynamic semantics are the
semantics of an entire system modelled in Atlantif. Thus, this section will “assemble”
all semantics definitions from the above section into the rules defining a timed labelled
transition system from an Atlantif module.

Semantic model. The time domains we consider in the semantics definition are {0} if
the timing option is no time, IN if the timing option is discrete time, and IR≥0 if the
timing option is dense time (cf. Section 3.1.1 for a discussion on the differences between
IR≥0 and Q≥0). Indicating a “time domain” for specifications tagged as untimed might
seem strange, but this will allow us to have only one definition for (timed) semantics,
in which untimed behaviour can be seen as a special case (cf. Remark 4.3). Like in
Definition 3.2, we write D for the time domain.

Note that our choice for a time domain will not affect the semantics rules.

The dynamic semantics of an Atlantif specification is given by a Tlts (cf. Definition 3.3)
of the form (S, L′

1, D, T, S0), where:

• S is a set of global states (or sometimes simply states) of the form (π, θ, ρ) (written
S, S ′, S0, S1, etc.), where:

– π : U→ S is a partial function, called state distribution, that maps each active
unit u to its current discrete state in Su

– θ : U → (D × Bool) is a partial function, called time distribution, that maps
each active unit to its current real-time status (phase and blocking condition),
as described in the unit semantics (cf. Section 4.4.2)

– ρ is a store i.e., a partial function that maps the currently assigned variables
to their values (cf. Section 4.3.2)

Note that the set of active units is given by dom(π) and dom(θ), with dom(π) =
dom(θ).

When time elapses and no gate communication is performed, we do not consider
what else happens in the unit (which is a black box). For this reason, we represent
a unit in the module semantics basically by two pieces of information, which are the
state of the unit directly after its last gate communication (provided by the function
π), and the amount of time that elapsed since then (the phase, cf. Section 4.4.2).

• L′
1

def
= (L1 \ {ε}) ∪ {τ} is the set of discrete labels. It contains gates with values as

well as the label τ , which represents discrete transitions by hidden gates.

• T is a set of transitions defined as a relation in S×L2×S, where L2
def
= L′

1∪(D\{0}).

• S0 ∈ S is the initial state, which is defined by S0
def
= (π0 ⊖ Ū0, θ0 ⊖ Ū0, ρ0↾U0

), where:

82 Chapter 4. The syntax and semantics of ATLANTIF

– π0 is a function that maps each unit to its initial discrete state (defined implic-
itly as the first discrete state in the corresponding unit).

– θ0 is the function that constantly returns (0, false) for each unit.

– ρ0 is the store that maps each variable to its initial value, if any.

– Ū0
def
= U \ U0 i.e., Ū0 is the complementary set of U0. Thus, π0 ⊖ Ū0, θ0 ⊖ Ū0

denote respectively the restriction of π0 and θ0 to the domain U0.

ρ0↾U0
denotes the restriction of a store to the variables accessible in U0 i.e., ρ0↾U0

=
ρ0 ⊖ {V | (∀u ∈ U0) u /∈ accessible(V)}, as formally defined in Section 4.4.4.

Chains of synchronizations. As we indicated in the definition of synchronizers (cf.
Section 4.5.1), only synchronizations by visible, hidden, and urgent synchronizers induce
discrete transitions. Thus, a discrete transition corresponds to a chain of zero or more
silent synchronizations, followed by a non-silent synchronization (hereafter called a chain).
A chain executes without time elapsing.

As observed in [59] for a very similar context, it would be incorrect to explore all possible
chains. For instance, suppose that at a given moment two units u1, u2 could either syn-
chronize on a silent synchronizer G1 or on a visible synchronizer G2 (both excluding the
other possibility), and at the same time, two units u3, u4 could synchronize on a visible
synchronizer G3 (cf. Fig. 4.3).

u1 u2 u3 u4

G1

G2
G3

Figure 4.3: Independent synchronizations

Then, a chain only consisting in a synchronization on G3 and a chain consisting in a
synchronization on G1, followed by a synchronization on G3 would both seem equal to an
external observer. However, in the first case, a synchronization on G2 would be possible
afterwards, but not in the second case, which is clearly not intuitive: When the only
observable event (G3) occurred independently of the units u1 and u2, then nothing should
change within u1 and u2. Therefore, there should be a restriction to those chains, where
each silent synchronization is directly or indirectly necessary for the non-silent synchro-
nization. More precisely, we demand that a silent synchronization is allowed in a chain
only if at least:

• one of the synchronizing and not stopped units or

• one of the started units

are also synchronizing in another synchronization later in the chain. The idea behind these
two conditions will be further illustrated by the Examples 4.4 to 4.6 in Section 4.7.1.

4.6. Modules 83

To formally describe the chains that should be explored, we define the unit affection
of a synchronization as the set containing those units one of which must be relevant
for another synchronization in the remainder of the chain i.e., the set consisting of the
synchronizing and not stopped units and of the started units. We call an incomplete chain
any strict prefix of a chain and we construct for each incomplete chain the set α of unit
affections corresponding to synchronizations in the incomplete chain, no unit of which has
synchronized later in the incomplete chain. Only those chains ending with an empty set
of unit affections must be explored.

Predicates used in the module semantics. In the following, we define several pred-
icates that will be used in the Tlts rules.

The predicate synchronizing((S, α), l, µ, (S ′, α′)), defined on (S×P(P(U)))× (L′
1 \{τ})×

Bool× (S×P(P(U))), is true if and only if the following are all true:

• A transition labelled l may occur in global state S and leads to global state S ′.

• The disjunction of the blocking conditions in the local states reached via this tran-
sition equals µ.

• A set of unit affections α evolves to α′ via this synchronization.

Formally:

synchronizing(((π, θ, ρ), α), G v1 . . . vn, µ, ((π′, θ′, ρ′), α′))
def
=

(∃{u1, . . . , um} ∈ sync(G))
{u1, . . . , um} ⊆ dom(π) ∧
(∀i ∈ 1..m) ((act(π(ui)), θ(ui), ρ↾{ui})

G v1...vn=⇒ (si, (ti, µi), ρi) ∧ si 6= δ) ∧
µ =

∨
i=1..m µi ∧

next π(π, [ui 7→ si | i ∈ 1..m], G, π′) ∧
next θ(θ, {u1, . . . , um},mini∈1..m(ti), G, θ′) ∧
next ρ(ρ, [V 7→ ρi(V) | ui ∈ accessible(V)], dom(π′), G, ρ′) ∧
next α(α, {u1, . . . , um}, G, α′),

where next π, next θ, next ρ, and next α are defined below.

Note that ρi(V) in the second argument of the predicate next ρ is indeed well-defined (cf.
Remark 4.6). Note also that this definition requires the offers “v1 . . . vn” to be the same
in all local transitions i.e., they need to match in number, types, and values.

Intuitively, the predicate synchronizing corresponds to a possible synchronization that
leads from one global state (extended with a unit affection) to another. It “picks up”
transitions of the action semantics (relation “=⇒”, cf. Section 4.4.2) and combines them
following the semantics of the applying synchronizer (set sync(G), cf. Section 4.5.3). Only
those local transitions that correspond to execution paths that end with a jump action or
a stop action are picked up; other paths being ignored.

84 Chapter 4. The syntax and semantics of ATLANTIF

Moreover, synchronizing uses the two mappings act (providing the action associated with
a unit’s discrete state) and accessible (providing the set of units in which a variable can be
read and/or written), which we formally defined in Sections 4.4.1 and 4.4.4 respectively.

The predicates next π, next θ, next ρ, and next α are defined as follows:

• The predicate next π(π, π1, G, π′) defines the new state distribution after a syn-
chronization. The argument π corresponds to the state distribution before the
synchronization, π1 to the state distribution in the synchronizing units after the
synchronization, G to the synchronizer (determining unit stopping and starting by
the sets stop(G) and start(G)), and π′ to the new state distribution.

next π(π, π1, G, π′)
def
=

π′ = ((π ⊘ π1)⊖ stop(G))⊘ [u 7→ π0(u) | u ∈ start(G)]

• The predicate next θ(θ,U , t0, G, θ′) defines the new time distribution after a syn-
chronization. The arguments θ and θ′ correspond to the old and the new time
distribution respectively, U corresponds to the set of synchronizing units, and G to
the applying synchronizer.

The synchronizer is needed not only to determine the domain of θ′, but also to
determine the new values, using its visibility tag(G): If the synchronization was
silent, the new phase t0 of the affected units is given by the minimum of the phases
of the synchronizing units. This corresponds to the unit(s) in which the longest
delay took place i.e., the unit(s) for which the other synchronizing units had to wait
(which will be further illustrated in Example 4.6). Otherwise, the new phase of the
affected units is set to 0.

next θ(θ,U , t0, G, θ′)
def
=

θ′ =






((θ ⊘ [u 7→ (t0, false) | u ∈ U]))⊖ stop(G)

⊘ [u 7→ (t0, false) | u ∈ start(G)] if tag(G) = silent

((θ ⊘ [u 7→ (0, false) | u ∈ U])⊖ stop(G))

⊘ [u 7→ (0, false) | u ∈ start(G)] otherwise

• The predicate next ρ(ρ, ρ1,U , G, ρ′) defines the new store after a synchronization.
The arguments ρ and ρ′ correspond to the old and the new store respectively, ρ1

corresponds to the store that maps each variable accessible in the synchronizing
units to its value after the synchronization, U corresponds to the set of units that
are active after the synchronization, and G to the applying synchronizer.

The domain of ρ′ is restricted according to U . For each started unit declaring a
variable V with an initial value (given by the set decl(u)), the new store is extended
by [V 7→ ρ0(V)].

4.6. Modules 85

next ρ(ρ, ρ1,U , G, ρ′)
def
=

ρ′ = ((ρ⊘ ρ1)⊖ {V | (∀u ∈ U) u /∈ accessible(V)})
⊘ [V 7→ ρ0(V) | V ∈ dom(ρ0) ∧ (∃u ∈ start(G)) V ∈ decl(u)]

• The predicate next α(α,U , G, α′) formally defines the new unit affections after a
synchronization, as described above. The arguments α and α′ correspond to the old
and the new unit affections respectively, U corresponds to the set of synchronizing
units, and G is the applying synchronizer. To derive α′ from α, first those unit
affections from which at least one unit has synchronized are deleted, and then, if
the synchronization was silent, a new set is added, containing all synchronizing and
not stopped units and all started units.

next α(α,U , G, α′)
def
=

α′ =






(α \ {U ′ ∈ α | (∃u ∈ U) u ∈ U ′}) ∪ {(U \ stop(G)) ∪ start(G)}
if tag(G) = silent

α \ {U ′ ∈ α | (∃u ∈ U) u ∈ U ′} otherwise

The predicate enabled(S, l, µ, S ′), defined on S× (L′
1 \{τ})×Bool×S, is true if and only

if there is a chain that satisfies the restrictions on silent synchronizers described above,
starting in global state S and ending in global state S ′, whose visible synchronization is
labelled l and where the blocking condition equals µ. Formally:

enabled(S, l, µ, S ′)
def
= (∃S1, . . . , Sk, α1, . . . , αk, l1, . . . , lk, µ1, . . . , µk)

synchronizing((S, ∅), l1, µ1, (S1, α1)) ∧ . . . ∧ synchronizing((Sk, αk), lk, µk, (S
′, ∅)) ∧

tag(l1) = . . . = tag(lk−1) = silent ∧ tag(lk) 6= silent ∧ lk = l ∧ µk = µ

Time cannot elapse in a global state if an urgent communication is enabled i.e., a chain
terminates with a communication on a gate whose synchronizer is tagged urgent or a
chain terminates with a communication with a strict deadline that has been reached (i.e.,
µ = true). The predicate relaxed(S), defined on S, is true if and only if time can elapse
in S. Formally:

relaxed(S)
def
= (∀G v1 . . . vn, µ, S ′)

enabled(S, G v1 . . . vn, µ, S ′)⇒ (¬µ ∧ tag(G) 6= urgent)

Discrete and timed transitions. Discrete transitions are defined by rule (rdv) as
follows:

(rdv)
enabled((π, θ, ρ), G v1 . . . vn, µ, (π′, θ′, ρ′))

(π, θ, ρ)
label(G v1...vn)−−−−−−−−−→ (π′, θ′, ρ′)

where function label transforms a label of L′
1 \ {τ} into a discrete label of L2:

86 Chapter 4. The syntax and semantics of ATLANTIF

label(G v1 . . . vn)
def
=

{
G v1 . . . vn if tag(G) = visible

τ otherwise

Timed transitions are defined by rule (time), which allows t units of time to elapse as
long as no urgent communication is enabled. The new state is calculated by increasing all

relative times by t, using“+”defined by (∀u) (θ+t)(u)
def
= (tu+t, µu) where θ(u) = (tu, µu).

(time)
t > 0 ∧ (∀t′ < t) relaxed((π, θ + t′, ρ))

(π, θ, ρ)
t−→ (π, θ + t, ρ)

With this semantic approach, we respect the standard property that time must elapse at
the same speed in all units, implemented by the definition of the operation “θ + t”.

Remark 4.3. At the beginning of this section, we stated that untimed Atlantif spec-
ifications use the same semantic rules as the timed ones. This is possible, because rule
(time) requires that t > 0. As the timing option “no time” induces D = {0}, obviously
rule (time) can never apply. Therefore, the untimed case can be presented as a subcase of
the general (timed) semantics.

Furthermore, as the following section shows, this semantics has the suitable properties
mentioned in Section 3.1.1.

4.7 Properties of the semantics

4.7.1 Examples and remarks on the formal definitions

Synchronization chains. The three following examples will illustrate the idea behind
the conditions we imposed on synchronization chains. Furthermore, the third one will
also illustrate the application of the predicate next θ.

Example 4.4. The module of Fig. 4.4 describes an industrial machine with three sub-
systems for error-detection, each one for an error A, B, and C respectively. Error A is
not problematic unless it happens too often (normal discard), error B is not problematic
for itself, but is a possible cause for error C, where the latter can cause critical situations
that damage the machine. Therefore, in a case of C, we have to analyze how many Bs
occurred.

In the module, one unit is defined for each error detection subsystem, and one silent syn-
chronizer for each of the three error occurrences. In unit Detect A, each communication
on A occurs increases the variable Count A by 1; when Count A reaches or passes beyond
100, a communication by Too many A is made. In unit Detect B, each communication
on B occurs increases the variable Count B by 1; at any time there can also be a commu-
nication on gate After C , where the value of Count B is transmitted by an offer. In unit

4.7. Properties of the semantics 87

module Machine Error Detection is no time unit Detect B is
sync A occurs:silent is Detect A end sync variables Count B : int := 0
sync B occurs:silent is Detect B end sync from BS1
sync C occurs:silent is Detect C end sync select B occurs;
sync Too many A is Detect A end sync Count B:=Count B + 1;
sync After C is Detect B and Detect C end sync to BS1

[] After C !Count B;

init Detect A,Detect B,Detect C to BS1 end select
end unit

unit Detect A is
variables Count A : int := 0 unit Detect C is
from AS1 from CS1

A occurs; Count A:=Count A + 1; C occurs; to CS2
if (Count A < 100) then to AS1 from CS2

else to AS2 end After C ?any int; to CS1
from AS2 end unit

Too many A; to AS1
end unit end module

Figure 4.4: Machine with error detections, illustrating chains

Detect C , a communication on C occurs is followed by a synchronization with Detect B
using After C .

Different chains ending with After C are possible, each of which contains arbitrarily many
synchronizations on A occurs and on B occurs and one synchronization on C occurs
in any possible order. Thus, C occurs must necessary happen before After C , and the
occurrences of B occurs determine the offer of the communication on After C (cf. the
highlighted assignment in unit Detect B). At the same time, occurrences of A occurs
influence neither the possibility nor the offers of a communication on After C .

Therefore, chains ending with After C should not contain A occurs (which only concerns
unit Detect A), but these chains may contain B occurs and C occurs, which are the
communications situated in those units performing the synchronization on After C .

Example 4.5. This example considers the influence of starting and stopping to chains.
We suppose a module (given in Fig. 4.5) describing very schematically a system consisting
of one subsystem (unit Main System) performing repeatedly some task (synchronizer Job),
and another subsystem (unit Activator), which is the only unit active in the beginning and
that can perform the silent communication Activate that starts Main System and stops
Activator .

Clearly, in the beginning only one chain is possible, which is a silent communication on
Activate followed by a communication on Job. Although Activate comes from a different
unit than Job, it nevertheless must necessarily occur before it, otherwise Main Unit would
not be active. More generally, the chains we should explore are not restricted to silent syn-
chronizations with those units performing the non-silent synchronization, but also include
silent synchronizations that start units in which communications occur later in the chain.

88 Chapter 4. The syntax and semantics of ATLANTIF

module External Activation 1 is no time
sync Activate:silent is Activator stop Activator unit Main Unit is

start Main Unit end sync from Ready
sync Job is Main Unit end sync Job; to Ready

end unit
init Activator

end module
unit Activator is

from Launch
Activate; stop

end unit

Figure 4.5: Subsystem started by an auxiliary subsystem (chain with starting)

Example 4.6. This example considers chains with timed constructs and the developement
of their phases. It extends the former example into a timed system, where we now sup-
pose that two subsystems (units Activator 1 and Activator 2) are necessary to start the
Main System. One needs 3 seconds to prepare this activation, the other needs 5 seconds.
After the activation, as before, the Main System can repeatedly perfom the task “Job”.

module External Activation 2 is discrete time
sync Activate:silent is Activator 1 and Activator 2 unit Activator 2 is

stop Activator 1,Activator 2 from Launch
start Main System end sync wait 5; Activate; stop

sync Job is Main System end sync end unit

init Activator 1,Activator 2 unit Main System is
from Ready

unit Activator 1 is Job; to Ready
from Launch end unit

wait 3; Activate; stop end module
end unit

Figure 4.6: Subsystem started by two auxiliary subsystems (chain with real time)

Again, only one chain is possible in the beginning, containing a silent communication on
Activate followed by a communication on Job. Obviously, at least five seconds have to
elapse before the synchronization on Activate, because until then, the unit Activator 2
would not be ready to participate. Thus, these five seconds are relevant for the calculation
of the phase of Main System when it is started. Note that the rule (comm) (cf. page 67)
does not change the phase.

Example 4.7. Application of the rules. We illustrate the semantics by deriving two
Tlts transitions for the light switch shown in Example 4.1, page 55. We show that when

4.7. Properties of the semantics 89

User is in state Prepare Work with phase zero and Lamp in state Low also with phase

zero, three time units may elapse before the button is pushed. Formally: (π, θ, ∅)
3−→

(π, θ + 3, ∅)
Push−−−→ ([User 7→ Working,Lamp 7→ Bright], θ, ∅), where π

def
= [User 7→

Prepare Work ,Lamp 7→ Low], and θ
def
= [User 7→ (0, f),Lamp 7→ (0, f)] (where f is a

shorthand for false; similarly we will write t for true).

First, (π, θ, ∅)
3−→ (π, θ + 3, ∅) comes from the following derivation:

3 > 0 ∧ (∀t′ < 3) relaxed((π, θ + t′, ∅))

(π, θ, ∅)
3−→ (π, θ + 3, ∅)

(time)

Second, (π, θ + 3, ∅)
Push−−−→ ([User 7→Working,Lamp 7→ Bright], θ, ∅) comes from:

{User ,Lamp} ∈ sync(Push) ∧ (act(Prepare Work), (3, f), ∅)
Push
=⇒ (Working , (2, t), ∅) ∧

(act(Low), (3, f), ∅)
Push
=⇒ (Bright , (3, f), ∅)

(π, θ + 3, ∅)
Push−−−→ ([User 7→Working ,Lamp 7→ Bright], θ, ∅)

(rdv)

The premise (act(Prepare Work), (3, f), ∅)
Push
=⇒ (Working , (2, t), ∅) comes from the fol-

lowing, recalling that act(Prepare Work) = wait 1; Push must in [0,2]; to Working:

eval(1, ∅, 1) ∧ 3 ≥ 1

(wait 1, (3, f), ∅)
ε

=⇒ (δ, (2, f), ∅)
(wait)

(Push must in [0,2];to Working , (2, f), ∅)
Push
=⇒ (Working , (2, t), ∅)

(act(Prepare Work), (3, f), ∅)
Push
=⇒ (Working , (2, t), ∅)

(seq1)

Finally, the premise (Push must in [0,2];to Working, (2, f), ∅)
Push
=⇒(Working, (2, t), ∅)

comes from:

win eval([0,2], ∅, [0, 2]) ∧ 2 ∈ [0, 2]

(Push must in [0,2], (2, f), ∅)
Push
=⇒ (δ, (2, t), ∅)

(comm)
(to Working , (2, t), ∅)

ε
=⇒ (Working , (2, t), ∅)

(to)

(Push must in [0,2];to Working , (2, f), ∅)
Push
=⇒ (Working , (2, t), ∅)

(seq1)

The derivation by rule (comm) calculates up lim(must, [0, 2], 2) = true.

The premise (act(Low), (3, f), ∅)
Push
=⇒ (Bright , (3, f), ∅) is derived similarly by the rules

(comm), (to), (seq1), and (select).

The two following remarks further illustrate the concept of unit affections in chains.

Remark 4.4. “Dead-end” silent synchronizers are dead code:

Supposing a specification contains a synchronizer of the form

“sync H:silent is U1 stop U1 end sync”.
Any chain prefix containing a synchronization by H causes the unit affection set α to
contain the set ({U1} \ stop(H)) ∪ start(H) = ∅. Recalling that a continuation of a

90 Chapter 4. The syntax and semantics of ATLANTIF

chain prefix can only delete sets in α if they contain certain units, an empty set can thus
never be deleted. Therefore, the predicate enabled cannot apply to a chain containing a
synchronization by H, just as we intuitively expect it.

Note that it is not impossible to terminate a unit silently: As long as the termination
includes the synchronization with a unit that is not stopped and/or another unit is started,
silent synchronizers can be used to stop units.

Remark 4.5. Bounds on sets of unit affections:

A unit affection set α is a subset of P(U), but it cannot be as big. First, the elements of
α can only be such U for which valid active(U) holds; this is a consequence of each syn-
chronizer satisfying validity-stability. Second, the elements of α are necessarily disjoint.
This can easily be derived from the definition of the predicate next α.

From the second observation, we can conclude that the upper bound for the cardinality of
α is card(U) + 1 (instead of 2card(U)).

Remark 4.6. We show that the predicate synchronizing is indeed well-defined.

The formal definition contains the term

next ρ(ρ, [V 7→ ρi(V) | ui ∈ accessible(V)], dom(π′), G, ρ′),
whose second argument could seem to be ambiguous: The argument [V 7→ ρi(V) | ui ∈
accessible(V)] is a function that maps each variable accessible in the synchronizing units
u1, . . . , um to its value after the synchronization. It is possible that there are j, k ∈ 1..m
with j 6= k and a variable V such that the set accessible(V) contains both uj and uk. The
possible ambiguity lies in this case i.e., in the simultaneous application of V 7→ ρj(V) and
V 7→ ρk(V).

But in fact, we know by uj, uk ∈ sync(G) and validity stable(G) that uj 6� uk and uk 6� uj,
and thus, with V being well-accessible, we can deduce that V is not defined (i.e., assigned a
value) in uj or uk i.e., ρj(V) = ρk(V). Therefore, there is no ambiguity, and the predicate
synchronizing is well-defined.

Note that the same argument could be used to shorten the definition of the predicate
synchronizing: In the third line, the store is restricted to the term ρ↾{ui}. Keeping ρ
instead of ρ↾{ui} would not alter the semantics, but the predicate’s intuition benefits from
keeping the store restriction.

4.7.2 Properties of the generated TLTS

Additivity, determinism, and maximal progress

Proposition 4.1. A Tlts constructed by the Atlantif formal semantics satisfies time
additivity :

(∀S1, S2 ∈ S, t1, t2 ∈ (D \ {0})) S1
t1+t2−−−→ S2 iff (∃S3 ∈ S) S1

t1−→ S3
t2−→ S2

(cf. Definition 3.4 (i)).

4.7. Properties of the semantics 91

Proof. Let S1 be a global state and t1, t2 ∈ (D \ {0}). We define S1
def
= (π, θ, ρ). We

note that time can only elapse using the (time) rule, which does not modify π and ρ and
increases θ by some delay. Therefore, the above statement can be rephrased as:

(π, θ, ρ)
t1+t2−−−→ (π, θ + (t1 + t2), ρ)

iff (π, θ, ρ)
t1−→ (π, θ + t1, ρ) and (π, θ + t1, ρ)

t2−→ (π, (θ + t1) + t2, ρ)

Given the definition of +, it is obvious that θ +(t1 + t2) = (θ + t1)+ t2. From the premise
of rule (time), we can reduce the above goal to the obvious following statement:

(∀t′ < t1 + t2) relaxed((π, θ + t′, ρ))
iff (∀t′ < t1) relaxed((π, θ + t′, ρ)) and (∀t′ < t2) relaxed((π, θ + (t1 + t′), ρ))

Proposition 4.2. A Tlts constructed by the Atlantif formal semantics satisfies time
determinism:

(∀S1, S2, S3 ∈ S, t ∈ (D \ {0})) if S1
t−→ S2 and S1

t−→ S3, then S2 = S3

(cf. Definition 3.4 (ii)).

Proof. Let S1, S2, S3 be global states, and t ∈ (D \ {0}), such that S1
t−→ S2 and S1

t−→ S3.
Let S1 = (π1, θ1, ρ1).

As in the proof of Proposition 4.1, only rule (time) allows one to derive the timed tran-

sitions S1
t−→ S2 and S1

t−→ S3. The “+” in (time) being well-defined, we thus have
S2 = (π1, θ1 + t, ρ1) = S3.

Proposition 4.3. A Tlts constructed by the Atlantif formal semantics satisfies max-
imal progress of urgent actions, where the set U of urgent labels (cf. Definition 3.4 (iii))
consists of those labels representing discrete synchronizations on urgent synchronizers.

Formally, let S1 be a global state allowing an urgent synchronization i.e., there exists a syn-
chronizer G declared urgent, and v1, . . . , vn, µ, S2 such that enabled(S1, G v1 . . . vn, µ, S2).

We state that for t ∈ (D \ {0}), there is no S3 such that S1
t−→ S3.

Proof. Let t ∈ (D \ {0}), and suppose that there is an S3 such that S1
t−→ S3.

Such a transition could only be derived from rule (time), thus the predicate relaxed((π, θ+
0, ρ)) (with S1 = (π, θ, ρ)) needs to be satisfied. By definition of relaxed , this is in direct
contradiction with the hypothesis and thus not possible; therefore time cannot elapse in
S1.

Remark 4.7. In spite of the difficulties stated in Remark 3.2, the proofs of Proposi-
tions 4.1, 4.2, and 4.3 are relatively simple, which has two reasons. First, only the rule
(time) describes timed transitions, whereas other languages e.g., E-Lotos, have several
rules for time elapsing. Second, the modus operandi of the rule (time) is purely symbolic:
It represents an elapsing of t time units in the module by increasing the phase for all active

92 Chapter 4. The syntax and semantics of ATLANTIF

units by t i.e., by a simple shift of t in the time distribution θ (instead of, for instance,
calculating for each active unit its state t time units in the future). By this intuition, it
is clear why time additivity and time determinism are proven so easily. We recall that a
unit’s phase expresses how much time has elapsed since the last visible communication of
this unit.

This (to our knowledge original) approach is inspired from the time determinism property
itself: As we explained in Remark 3.2, a semantics satisfying time determinism has to
represent the successor state of a timed transition by all possible evolutions during the
elapsed time. One possibility to do this would be a set containing all correponding states,
but if nondeterministic constructs are evaluated, such a set might become large or even
infinite. Therefore, it makes sense to only have a single state that represents all evolutions
symbolically. Atlantif expresses this by the phase.

Non zenoness

The Atlantif semantics do not satisfy non zenoness as presented in Definition 3.5, as
the following example shows:

Example 4.8. Consider the module of Fig. 4.7:

module Zeno Behaviour is dense time
sync G:urgent is U1 end sync
init U1
unit U1 is

from S1
G; to S1

end unit
end module

Figure 4.7: An Atlantif specification describing the simplest form of zeno behaviour

This specification corresponds to a Tlts with a single state and a single discrete transition
labelled G. Obviously, in such a Tlts, only one run is possible, and that run is not
diverging.

To avoid the kind of zeno behaviour shown in the previous example (called“spin behaviour”
in [90]), the semantics must somehow prohibit infinite successions of discrete transitions:
Either it could allow unbounded finite successions of discrete transitions, or it could fix a
maximal number of consecutive discrete transitions (e.g., one, if a duration is associated
with each event like in [108]). Neither of these approaches is intuitive, because both
question the independence of timed and discrete transitions, which we suppose by choosing
Tlts as a semantics model. Furthermore, rules that prohibit zeno behaviour completely
are likely to be more complex than the rules we gave for Atlantif.

4.7. Properties of the semantics 93

Thus, it seems to make more sense to accept the possibility of zeno behaviour, and to
leave it to formal verification to detect it. Nevertheless, if we cannot exclude cases like in
Example 4.8, we can still state the following:

Proposition 4.4. (i) The Tlts generated from a discrete time Atlantif specification
cannot contain a timelock state (i.e., in every state, either time elapsing or a discrete
action is possible).

(ii) The Tlts generated from a dense time Atlantif specification where all timed
expressions are constant values cannot contain a timelock state. (Recall that “timed
expressions” are those occurring as parameters of wait actions and time windows.)

(iii) The Tlts generated from a dense time Atlantif specification where all timed
expressions are constant values cannot be strict zeno (cf. Definition 3.6 on page 19).

Proof. (i) Suppose S to be a state in the Tlts of a discrete time Atlantif module
M . It has to be shown that S is no timelock state.

Case 1: There is a discrete label l, a blocking condition µ, and a state S ′ such that

enabled(S, l, µ, S ′). Then, by rule (rdv), we have S
l−→ S ′, thus S is not a timelock

state.

Case 2: There are no l, µ, S ′ as in the above case. Thus, rule (rdv) cannot apply,
and therefore we have to show that rule (time) can apply. Thus, we have to show
that there is a t > 0 such that (∀t′ < t) relaxed((π, θ + t′, ρ)) (where we suppose
S = (π, θ, ρ)).

By case hypothesis, we know that relaxed((π, θ + 0, ρ)), because the definition of
this predicate contains as a condition the existence of such l, µ, S ′ (cf. page 85).
Therefore, as the time domain is discrete, the statement is satisfied by t = 1.

(ii) Suppose S to be a state in the Tlts of a dense time Atlantif module M such
that all timed expressions are constants. It has to be shown that S is not a timelock
state.

There is only a finite number of wait actions in M , we note their expressions
(which are constants by hypothesis) c1, . . . , cn. There is a finite number of non-
silent synchronizers in M , and for each G among them there is a finite number
of occurrences; we note the minima and the infima of the according time windows
(which are also constants by hypothesis) cG

1 , . . . , cG
m. Then, it is possible to define a

set ∆G as follows:

∆G
def
= {x1 · c1 + . . . + xn · cn + cG

i | i ∈ 1..m, x1, . . . , xn ∈ IN}
Moreover, it is possible to define a subset ∆̃G ⊆ ∆G as follows:

∆̃G
def
= {x1 · c1 + . . . + xn · cn + cG

i | i ∈ 1..m, x1, . . . , xn ∈ IN,
there is a path from S to a communication on G,
corresponding to x1, . . . , xn, c

G
i }

The set ∆G, and therefore also ∆̃G, is totally ordered, left-bounded, and most
importantly, discrete. Thus ∆̃G has a minimum we note tG, and which represents

94 Chapter 4. The syntax and semantics of ATLANTIF

the time that can elapse without G imposing a time blocking. If ∆̃G is empty (i.e.,
there is to path), then we suppose tG =∞.

For those synchronizers that are urgent, we can now determine the value t1 as
the minimum among the according tG (and t1 = ∞ if no urgent synchronizers
exist); thus t1 represents the time that can elapse before urgency blocks further
time elapsing.

In a similar fashion, we can determine the value t2, which represents the time that
can elapse before a must time window blocks further time elapsing (which also may
be infinite).

We calculate t3
def
= min(t1, t2).

Case t3 = 0: Then the corresponding synchronization is enabled, thus S is not a
timelock state.

Case t3 > 0: Then S is relaxed, and a timed transition labelled t′ (t′ ≤ t3 ∧ t′ <∞)
can be taken, thus S is not a timelock state.

(iii) Suppose S to be a state in the Tlts of a dense time Atlantif module M such that
all timed expressions are constants. Following Definition 3.6, we suppose moreover
that all transitions that may follow S are only timed transitions. If no such S exists,
it is already excluded by the definition that M ’s Tlts could be strict zeno. Let TS

be the set containing all the timed labels of these outgoing transitions. Because of
time additivity (cf. Proposition 4.1), it is sufficient to show that the set TS is either
unbounded or that it has a maximum (and not only a supremum).

But this is already obvious, because as in (ii), we can calculate the time t3 that can
elapse maximally from S on, thus t3 is this maximum. Therefore, the Tlts of M is
not weak zeno.

Example 4.9. In the general case, when timed expressions may contain variables, time-
lock-freeness is not satisfied by the semantics, as the module of Fig. 4.8 shows:

module Timelock Example is dense time
sync G is U1 end sync
init U1
unit U1 is

variables V :int
from S1

V := any int; G must in [1
V
, 1

V
]; stop

end unit
end module

Figure 4.8: An Atlantif specification with a timelock

4.7. Properties of the semantics 95

The initial state ([U1 7→ S1], [U1 7→ (0, false)], ∅) of this module does not allow a discrete
transition, because for each value of V that can be chosen, the phase of U1 has to be 1

V
, and

thus bigger than zero in order to execute the communication action G must in [1
V
, 1

V
].

The initial state does not allow a timed transition either, because for each t ∈ (D \ {0}),
by definition of a dense time domain, there exists an integer n such that 1

n
< t, thus:

¬relaxed(([U1 7→ S1], [U1 7→ (1
n
, true)], ∅)).

Therefore, the premise of rule (time) cannot be satisfied.

Remark 4.8. The restriction in the cases (ii) and (iii) of Proposition 4.4 can be weakened:
Instead of only permitting constant timed expressions, we could also allow any timed
expression that has a minimal value, because the proofs of cases (ii) and (iii) basically
depend on whether the value t3 can be calculated, which is still possible with the weakened
restriction.

For instance, in Example 4.9, the expression “ 1
V
” does clearly not allow a minimum. If the

time window would be “[V 2,V 2]” instead, then no timelock could occur, because “V 2” has
the minimum zero. Note that the timelock of Example 4.9 could be avoided if the calcula-
tion of V and the communication on G were in two different discrete steps: Suppose a new
synchronizer H (visible, hidden, or urgent) and unit U1 to be extended with two discrete
states “from S1 V := any int; H; to S2” and “from S2 G must in [1

V
, 1

V
]; stop”,

then the minimum could be calculated statically after the communication by H.

In our opinion, the restriction to timed expressions with minimal values hardly excludes
any realistic behaviour, but only artificial specifications as the one in the previous example.

Remark 4.9. Stopping of all units

It is possible that no unit of an Atlantif module is active (because each unit that was
active has been stopped by a synchronizer), which corresponds to the Tlts state (∅, ∅, ∅).

In this case, the premise of rule (time) is satisfied for all t, leading to the same state (as
∅ + t = ∅), and therefore, an unbounded elapsing of time is possible.

4.7.3 Analysis of the rules

A syntax definition usually induces an intuitive meaning, which should ideally be congru-
ent with the formal semantics definition. In this section, we show several points concerning
this congruence i.e., we discuss whether the semantics rules behave as they are intended
to behave.

Consistency and negative premises

In the definition of rule (time) (cf. page 86), the hypothesis contains the predicate relaxed ,
which is true if certain transitions are not derivable. As explained in Remark 3.2 on
page 47, such a so-called negative premise is inevitable to assure maximal progress of
urgent actions.

96 Chapter 4. The syntax and semantics of ATLANTIF

Regarding the possibility of consistency problems mentioned in Remark 3.2, in [68, 69],
a method called stratification is proposed to verify that a set of derivation rules contain-
ing negative premises is consistent. Concerning real-time formal semantics, [91] reduces
stratification to the verification of the following two conditions:

• Rules used to derive discrete transition do not have negative premises, nor premises
on timed transitions.

• Rules used to derive timed transitions have only negative premises on discrete tran-
sitions.

The Atlantif semantics only contain one rule of each type. Rule (rdv) depends on the
predicate enabled , which itself depends on the predicate synchronizing . None of these
predicates contain negative premises on transitions, or premises on timed transitions in
general.

Rule (time) depends on the predicate relaxed . If relaxed is replaced by its definition (cf.
page 85), the following writing of the rule is obtained:

t > 0 ∧ (∀t′ < t, G v1 . . . vn, µ, S ′)
enabled((π, θ + t, ρ), G v1 . . . vn, µ, S ′)⇒ (¬µ ∧ tag(G) 6= urgent)((π, θ + t′, ρ))

(π, θ, ρ)
t−→ (π, θ + t, ρ)

As the logical implication is defined by “A ⇒ B
def
= ¬A ∨ B”, rule (time) thus contains

negative premises on the predicate enabled . As stated above, enabled does not depend
on timed transitions. Thus, the two conditions are satisfied, and therefore, the negative
premises do not introduce inconsistencies in the Atlantif semantics.

Equivalences

Definition 4.1. Two Atlantif actions A1, A2 are semantically equivalent, written A1 h
A2, if for each phase t, blocking condition µ, store ρ, local label l and state σ, we have

(A1, (t, µ), ρ)
l

=⇒ σ iff (A2, (t, µ), ρ)
l

=⇒ σ.

Proposition 4.5. The sequential composition is associative i.e., for all actions A1, A2, A3:

(A1;(A2;A3)) h ((A1;A2);A3)

(Note that the parentheses are not a syntax construct, but only used here to visualize the
statement.)

Proof. The proof is purely technical and quite similar in both directions. Thus, we only
show “⇒”.

4.7. Properties of the semantics 97

Let d, ρ, l, σ be such that ((A1;(A2;A3)), d, ρ)
l

=⇒ σ.

It has to be shown that (((A1;A2);A3), d, ρ)
l

=⇒ σ. Two main cases have to be distin-
guished:

Case 1: Rule (seq1) applies to the first composition i.e., (∃l1, l2, d′, ρ′) (A1, d, ρ)
l1=⇒

(δ, d′, ρ′) (hyp. 1) and ((A2;A3), d
′, ρ′)

l2=⇒ σ (hyp. 2) and l = l1 + l2. Two subcases can
apply for (hyp. 2):

Case 1.1: Rule (seq1) applies i.e., (∃l3, l4, d′′, ρ′′) (A2, d
′, ρ′)

l3=⇒ (δ, d′′, ρ′′) (hyp. 3) and

(A3, d
′′, ρ′′)

l4=⇒ σ (hyp. 4) and l2 = l3 + l4.

By (hyp. 1) and (hyp. 3), with rule (seq1) we derive ((A1;A2), d, ρ)
l1+l3=⇒ (δ, d′′, ρ′′). From

this derivation and (hyp. 4), with rule (seq1) we then derive (((A1;A2);A3), d, ρ)
(l1+l3)+l4

=⇒
σ. The operator “+” is associative, thus (l1 + l3) + l4 = l1 + (l3 + l4) = l.

Case 1.2: Rule (seq2) applies i.e., (∃s 6= δ, d′′, ρ′′) (A2, d
′, ρ′)

l2=⇒ σ (hyp. 5) and σ =
(s, d′′, ρ′′).

By (hyp. 1) and (hyp. 5), with rule (seq1) we derive ((A1;A2), d, ρ)
l1+l2=⇒ σ. From this

derivation, with rule (seq2) we derive (((A1;A2);A3), d, ρ)
l1+l2=⇒ σ.

Case 2: Rule (seq2) applies to the first composition i.e., (∃s 6= δ, d′, ρ′) (A1, d, ρ)
l

=⇒ σ
(hyp. 6) and σ = (s, d′, ρ′).

By (hyp. 6), with rule (seq2) we derive ((A1;A2), d, ρ)
l

=⇒ σ. From this derivation, with

further application of rule (seq2) we derive (((A1;A2);A3), d, ρ)
l

=⇒ σ.

Proposition 4.6. Some time windows can be decomposed.

(i) For each gate G, offers Ō (short for O1 . . . On), and time windows W1, W2:

G Ō may in W1 or W2 h select G Ō may in W1 [] G Ō may in W2 end.

(ii) For each gate G, offers Ō , and time windows W1, W2, if for all ρ, D1, D2

with win eval(W1, ρ, D1), win eval(W2, ρ, D2), the inequation sup(D1) > sup(D2)
holds (where sup is as usual the function mapping to the least upper bound of a
set), then:

G Ō must in W1 or W2 h select G Ō must in W1 [] G Ō may in W2 end.

Proof. Both statements are proved in a similar way. Therefore, we only show the proof
of the second statement:

“⇒”: Let be t, µ, ρ, l, µ′, ρ′ such that (G Ō must in W1 or W2, (t, µ), ρ)
l

=⇒ (δ, (t, µ′), ρ′).

Then, by hypothesis of rule (comm), there exists a set D ⊆ D such that we have the
predicate win eval(W1 or W2, ρ, D) and t ∈ D.

98 Chapter 4. The syntax and semantics of ATLANTIF

By definition of the predicate win eval , we therefore know that there exist sets D1, D2

that satisfy win eval(W1, ρ
′, D1), and win eval(W2, ρ

′, D2), and D = D1 ∪ D2. By the
condition of the statement, we thus have sup(D) = sup(D1).

Thus, it is possible that up lim(must, D1, t) is true, but up lim(must, D2, t) is neces-
sarily false. We can deduce that up lim(must, D, t) = up lim(must, D1, t) and that
up lim(must, D2, t) = up lim(may, D2, t). This last equation is the key element of the
proof.

Clearly, t ∈ D1 or t ∈ D2. Thus, by rule (comm), we have

(G Ō must in W1, (t, µ), ρ)
l

=⇒ (δ, (t, up lim(must, D1, t)), ρ
′)

or we have

(G Ō must in W2, (t, µ), ρ)
l

=⇒ (δ, (t, up lim(must, D2, t)), ρ
′).

The second case is equivalent to

(G Ō may in W2, (t, µ), ρ)
l

=⇒ (δ, (t, up lim(may, D2, t)), ρ
′).

By definition of rule (select), we thus can deduce that

(select G Ō must in W1 [] G Ō may in W2 end, (t, µ), ρ)
l

=⇒
(δ, (t, up lim(must, D, t)), ρ′).

“⇐”: Let be t, µ, ρ, l, µ′, ρ′ such that

(select G Ō must in W1 [] G Ō may in W2 end, (t, µ), ρ)
l

=⇒ (δ, (t, µ′), ρ′).
Again, by definition of win eval , we know that there exist D1, D2 that satisfy D = D1∪D2,
win eval(W1, ρ

′, D1), and win eval(W2, ρ
′, D2).

Also again, we state that sup(D) = sup(D1) and it is possible that up lim(must, D1, t)
is true, but up lim(must, D2, t) is necessarily false; and thus we can now deduce that
up lim(must, D2, t) = up lim(may, D2, t).

By this, we are able to inversely apply the same argumentation as above.

Proposition 4.7. The action semantics of Atlantif satisfy the following:

(i) wait 0 h null

(ii) (Associativity of select)
Nested select-actions behave the same as flattened select-actions i.e. for all actions
A1, A2, A3:

select select A1 [] A2 end [] A3 end h
select A1 [] select A2 [] A3 end end h select A1 [] A2 [] A3 end.

(iii) Actions behind a jump action are“dead code”i.e., for each action A, for each discrete
state s:

to s; A h to s

4.7. Properties of the semantics 99

(iv) Actions behind a stop action are also “dead code” i.e., for each action A:

stop; A h stop

Proof. All statements are consequences of the action semantics. Thus, for each case let
t, t′ be phases, µ, µ′ blocking conditions, ρ, ρ′ stores and l a local label.

(i) Clearly, eval(0, ρ, 0) and t ≥ 0 ≥ 0 are always true. Therefore:

(wait 0, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)
iff l = ε, s = δ, t = t′, µ = µ′, ρ = ρ′ and eval(0, ρ, 0) and t ≥ 0 ≥ 0
iff l = ε, s = δ, t = t′, µ = µ′, ρ = ρ′

iff (null, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

(ii) Obviously, the select action satisfies commutativity. Therefore, we can restrict
ourselves e.g., to the second “h”.

(select A1 [] select A2 [] A3 end end, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

iff (A1, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

or (select A2 [] A3 end, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

iff (A1, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′) or (A2, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

or (A3, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

iff (select A1 [] A2 [] A3 end, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

(iii) By static semantics, we know that s 6= δ.

(to s; A, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)
iff l = ε, t = t′, µ = µ′, ρ = ρ′

iff (to s, (t, µ), ρ)
l

=⇒ (s, (t′, µ′), ρ′)

(iv) The same reasoning as in (iii) applies here:

(stop; A, (t, µ), ρ)
l

=⇒ (Ω, (t′, µ′), ρ′)
iff l = ε, t = t′, µ = µ′, ρ = ρ′

iff (stop, (t, µ), ρ)
l

=⇒ (Ω, (t′, µ′), ρ′)

Remark 4.10. The seven equivalences stated in the Propositions 4.5, 4.6, and 4.7 have
different applications: The equivalence of Proposition 4.5 is necessary to assure that the
semantics are well-defined, the equivalences of 4.6 will be refered to in Sections 6.1.4 and
6.2.4, and the equivalences of 4.7 can be seen as indications that the semantics work as
intuitively intended.

100 Chapter 4. The syntax and semantics of ATLANTIF

Derived Constructs

The Atlantif syntax of Table 4.3 is not minimal i.e., there are a few constructs that
could be deleted from the syntax definition without loss of expressive power, because it
is possible to derive them from other constructs. The most important cases are shown in
the following propositions and remarks.

Proposition 4.8. The if action can be derived from the case action. Formally, for A1, A2

actions and E an expression of boolean type:

if E then A1 else A2 end
def
= case E is true -> A1 | any bool -> A2 end

Proof. It has to be shown that left-hand-side and right-hand-side of the above definition
are semantically equivalent. Let therefore d be a phase and blocking condition, ρ be a
store, l a local label, and σ a local state. Two cases have to be distinguished:

(i) case eval(E, ρ, true): Then we can derive the following:

(if E then A1 else A2 end, d, ρ)
l−→ σ

iff (A1, d, ρ)
l−→ σ

iff match(true, ρ, true) = ρ 6= fail and (A1, d, ρ)
l−→ σ

iff (case E is true -> A1 | any bool -> A2 end, d, ρ)
l−→ σ

(ii) case eval(E, ρ, false): Then we can derive the following:

(if E then A1 else A2 end, d, ρ)
l−→ σ

iff (A2, d, ρ)
l−→ σ

iff match(false, ρ, true) = fail and match(false, ρ, any bool) = ρ 6= fail

and (A2, d, ρ)
l−→ σ

iff (case E is true -> A1 | any bool -> A2 end, d, ρ)
l−→ σ

Remark 4.11. The stop action is a derived construct: Supposing a unit u in which
“terminus” is not among the identifiers of discrete states i.e., terminus /∈ Su. Then, if a
new discrete state

from terminus null
is added, then in the context of this unit, a jump “to terminus” behaves like a “stop”.
We do not have stop h to terminus (because they lead to different states), but given that
act(Ω) = act(terminus) = null, this difference is irrelevant.

In particular, for d = (0, false) and any ρ, in both cases we can only derive a single
transition on the unit level (by application of rule (null)):

(null, d, ρ)
ε

=⇒ (δ, d, ρ)
Thus, if the unit u is in a discrete state like Ω, it cannot occur in the synchronization
set of a synchronization as described by the predicate synchronizing. By definition of the

4.7. Properties of the semantics 101

predicate relaxed, only the possibility of synchronizations may block the elapsing of time,
therefore u may idle indefinitely.

Clearly, it is always possible to define an additional discrete state like terminus, therefore
the statement that stop is a derived construct holds.

Remark 4.12. The among construct in synchronization formulas (cf. Section 4.5.3) is
a derived construct. This is obvious from the formal definition of the set sync(G) for a
synchronizer G, where the dynamic semantics of a synchronization formula using among
is given based on synchronization formulas built from and and or formulas. Thus, an
among-formula is purely for conveniently expressing complex synchronizations.

Remark 4.13. Variable initialization is not a derived construct.

Suppose for instance the following unit:

unit Sender is
variables Package:int := 3
from Ready

Transmission !Package in [2,...[; stop
end unit

In this case, it is possible to construct unit Sender in another way, without the variable
initializations:

unit Alternative Sender is
variables Package:int
from before Ready

Package := 3; to Ready
from Ready

Transmission !Package in [2,...[; stop
end unit

It is clear from the semantics definition that from both units we can derive the same
semantics: a succession of timed transitions of duration at least two, possibly followed by
a discrete transition labelled “Transmission 3”.

However, in the general case it is not possible to replace variable initializations by such
a preliminary discrete state, as it can be seen from the following extension of the initial
unit with two subunits:

102 Chapter 4. The syntax and semantics of ATLANTIF

unit Extended Sender is
variables Package:int := 3
from Ready

Transmission !Package in [2,...[; stop

unit Sub Sender 1 is
from Ready1

Check !Package; stop
end unit
unit Sub Sender 2 is
from Ready2

Compare !Package; stop
end unit

end unit

If we suppose now the module to be defined with Extended Sender as an initial unit, with
another initial unit Controller, and with the following synchronizer:

sync Activate Sub Senders is Controller stop Extended Sender
start Sub Sender 1, Sub Sender 2 end sync

Then a preliminary discrete state as in Alternative Sender would not be allowed by the
static semantics, as such a module would not be well-initialized (cf. Section 4.6.2): If
the synchronization Activate Sub Senders occurs before Transmission, then the variable
Package, would not be initialized although it would need to be.

Neither is it possible to define a preliminary state in each of the units Extended Sender,
Sub Sender 1, and Sub Sender 2, because then the variable Package would not be well-
accessible (cf. Section 4.4.4 and the algorithm A.3 on page 220): Both Sub Sender 1 and
Sub Sender 2 can be active at the same time, thus it is not permitted that they both define
Package.

Thus, because of the possibility accessing variables in subunits and the related restrictions
in the static semantics, it is not possible to derive the variable initialization.

Further derivable constructs. There are other syntax constructs that do not occur
in the definition of Table 4.3, but that could easily be derived from the existing ones. We
show two examples:

• for loops can be derived, for instance in the following way:

for V in E1..E2 do A0 end [for]
def
= V :=E1;

while V ≤ E2 do A0; V :=V + 1 end
We suppose V, E1, E2 to be of integer type.

4.8. Conclusion 103

• It is also possible to derive if actions with multiple branches, for instance in the
following way:

if E1 then A1 elseif E2 then A2 . . . elseif En then An else An+1 end
def
=

if E1 then A1 else if E2 then A2 . . .
else if En then An else An+1 end . . . end︸ ︷︷ ︸

n times
We suppose all expressions to be of boolean type and n ≥ 2.

Remark 4.14. Undecidable conditions

Supposing a more detailed definition of the data part of Atlantif, a more sophisticated
definition of the static semantics could be established, where only decidable or only effi-
ciently decidable condition expressions are allowed. For instance, there is presumably no
algorithm to decide whether the action

V1,V2,V3,n := any int, int, int, int where V1 > 0 ∧ V2 > 0 ∧ V3 > 0 ∧ n >
2 ∧ (V1

n + V2
n = V3

n)
can be executed15. A possible solution would be a restriction of condition expressions to
Presburger arithmetics [101].

Remark 4.15. In Section 4.4.4, we stated that variable identifiers have to be globally
unique. This restriction is due to two reasons: First, without this restrictions there could
be overlapping and thus ambiguity in the scopes of two variables. Second, stores are defined
on variable identifiers; the store of a global state cannot have two equally named variables
in its domain.

The second reason can be overcome, permitting us to weaken the restriction. To this end,
stores have to be defined in another way that assures well-definedness: Such extended
stores are partial functions ρ̃ : V × U → Val, where a tuple (V, u) can only be in the
domain of ρ̃, if V ∈ decl(u). Then, it is sufficient to require that if two variables with
the same identifier V are declared in two different units u, u′, then we have u 6� u′ and
u′ 6� u.

Given that the restriction to unique names for variables is however without any impact
on the expressive power of Atlantif, we keep it for the sake of simplicity.

4.8 Conclusion

4.8.1 Suitability as an intermediate format

High-level syntax constructs and semantics. In Section 3.3, we analysed a wide
range of high-level constructs. Our choices for Atlantif are based on this analysis, aimed
to cover a reasonably large part of this range. For instance, life reducers, communication-

15Observed from a theoretical point of view. In practice, formal verification tools like the Cadp toolbox
would simply enumerate a limited number of possible values and then conclude that there is no solution.

104 Chapter 4. The syntax and semantics of ATLANTIF

independent delays, flexible offers, intuitive but expressive synchronization, etc. were
integrated in Atlantif.

Nevertheless, some constructs that sometimes appear in high-level languages were delib-
erately not introduced in Atlantif, for example the following:

• time capture variables or clocks (both somehow similar concepts)

• arbitrary combination of sequential and parallel composition

• recursion

The reason for not implementing such ideas is that the language should not be overloaded
with scarcely intuitive constructs, and regarding usability, intuition is more important
than maximal expressive power. Moreover, the expressive power is not gravely reduced
without such constructs as the Chapters 5 and 7 will illustrate.

In addition, Atlantif is intended to be semantically close to high-level languages, in
particular, we continued the approach of [61] to provide big-step semantics i.e., seman-
tics that only define discrete transitions for synchronizations of communication actions,
and not for technical events such as assignments or the evaluation of conditions. This
is achieved by three different mechanisms that eliminate ε-transitions: the rule (seq1)
(page 69), the rule (ε-elim) (page 73), and the predicate enabled (page 85). This is a
central condition for the preservation of the semantics we required in the introduction.

Graphical model structures. Like in most graphical models, Atlantif has a struc-
ture of processes (units) with discrete states, which are defined independently of interac-
tions. This enables us to define translations to graphical models in a quite natural way,
as the intuition behind an Atlantif discrete state is practically the same as behind the
location of a timed automaton or the place in a time Petri net (as we will see in more
detail in Chapter 6). Moreover, it is also an intuitive approach that we will use to split
up the concise multibranch transitions into “condition/action” transitions as they appear
in graphical models.

4.8.2 Possible extensions

Not everything that can be expressed in some high-level or intermediate languages can be
expressed in Atlantif. This section presents several ideas on how our model could be
extended, each time with a discussion of whether we consider this extension desirable.

Constants. Declaring constants in the file containing an Atlantif module, to which
expressions can refer, would obviously be very convenient in order to modify or to reuse
parts of this module. Such an extension would be a stricly technical one, as there is no
real impact on the semantics or the expressive power.

4.8. Conclusion 105

Indeed, the tool implementation of Atlantif allows the user to define constants along
with the definitions of types and functions. This is already used in the example module
of Chapter 7 (cf. Fig 7.1). An exact syntax definition for constants can be found in
Appendix C.

Priorities. As explained in Section 3.4, other intermediate models enable the definition
of priorities e.g., Fiacre and Bip. For the time being, such a construct does not exist in
Atlantif.

Several approaches seem possible to implement priorities e.g.:

• on the module level, with a partial order between the synchronizers (such is the
approach of Fiacre and most other models),

• within each synchronizer, by a new operator in the synchronization formula that
induces a partial order on the synchronization sets,

• or within the action syntax, by a modified select that defines an order on its alter-
native branches.

It remains to be seen whether priorities are indeed useful, and which variant should be
chosen, depending on applications of Atlantif.

Broadcast. Broadcast synchronizations exist e.g., in the Uppaal TA dialect (cf. Sec-
tion 3.2.2) and in the Bip model (cf. Section 3.4.2). They do not exist in Atlantif,
because we decided our synchronization would be undirected instead of implementing a
directed synchronization (i.e., where a sender and a receiver can be identified); thus the
intuition behind our definition of offers could not be coherent with such an extension.

Note that behaviour similar to a broadcast on a channel G from a unit S, receivable from
the units R1 to Rn could be expressed as follows:

sync G is S and 0 or . . . n among (R1, . . . ,Rn) end sync
This does not behave exactly like the broadcast of Uppaal or Bip, as it does not neces-
sarily synchronize a maximum of receivers. This could be achieved using priorities (with
the second of the approaches above).

106 Chapter 4. The syntax and semantics of ATLANTIF

Chapter 5

Translating high-level constructs into
ATLANTIF

Abstract In this chapter, we present how several typical high-level constructs from
different languages may be represented in Atlantif, either in a general fashion, or
with a concrete example.

We also show informally that the semantics of the high-level constructs are preserved
by the Atlantif representation.

5.1 Introduction

In this chapter, we will analyze the expressive power of Atlantif by giving several
examples of constructs typically provided by high-level languages, followed in each case
by one possible solution for an Atlantif module with the same behaviour. The choice of
constructs discussed covers a broad range of aspects related to concurrency and real time
(data-related aspects and corresponding examples have already been discussed in [61]).

It is not our objective here to give formal translations from high-level languages to At-
lantif, but instead to informally demonstrate that Atlantif has indeed a high expres-
sive power, which is close to high-level languages. This is a key feature and desirable in
any intermediate model, because this adjacency may ultimatively enable us to perform
systematic translations of high-level constructs, notably constructs used in Lotos NT
and in E-Lotos. Moreover, high expressive power makes Atlantif also appropriate as
an alternative specification language.

It should be noted that the exact behaviours of some of the constructs discussed in the
remainder of this chapter depend on the context in which they occur. This means firstly
that not all of our translations can be generalized in a “mechanical” and simple way.
Secondly, it also means that we will not be able to give formal proofs of our translations
being correct, because the semantics of Atlantif is defined only for complete modules.
Instead, we will reason schematically and on a more informal level to show the stability
of the semantics during the translation.

107

108 Chapter 5. Translating high-level constructs into ATLANTIF

In the remainder of this chapter, we will sometimes mention possible derivations of tran-
sitions modulo equivalence by time additivity (or shorter “modulo time additivity”). Given
two finite paths whose last transitions are discrete and all other transitions are timed, we
say that they are equivalent by time additivity if the following are equal in both paths:
their first states, their penultimate states, their final states, the sums of their timed labels,
and their discrete labels. Formally, two paths

S1
t1−→ . . .

tn−→ S2
a−→ S3 and S ′

1

t′
1−→ . . .

t′
n′−→ S ′

2
a′

−→ S ′
3

are equivalent if S1 = S ′
1, S2 = S ′

2, S3 = S ′
3, Σi∈1..nti = Σi∈1..n′t′i, and a = a′. Clearly,

if one such finite path is derivable, by Proposition 4.1 (page 90) each path equivalent by
time additivity is also derivable. Thus, we make an abstraction that enables us to discuss
possibly infinite sets of paths by a single representative.

5.2 Combination of sequential and parallel composi-

tion

5.2.1 Statement

Some high-level languages enable sequential and parallel composition to be freely com-
bined, for instance the process shown in Fig. 5.1, written in E-Lotos.

process Semi Ordered Redistribution [In:package,Out 1a:package,
Out 1b:package,Out 2:package] is

var X:package in
In (? X:package);
(Out 1a (!X)

|||

Out 1b (!X));

Out 2 (!X)

end var
end process

Figure 5.1: E-Lotos code for semi-ordered redistribution

The process Semi Ordered Redistribution , inspired from a similar example in [122], de-
scribes a protocol for data transmission. First, the process receives a value of the data
type “package” on the gate “In”, then makes a redistribution in three directions: It begins
with one of the two gates “Out 1a” or “Out 1b”, followed by the other one, and finishes
with an output on the gate “Out 2”.

5.2.2 Translation to ATLANTIF

Atlantif, in contrast, does not enable parallel composition within a unit (cf. Sec-

5.2. Combination of sequential and parallel composition 109

tion 4.4.1). We translate the process Semi Ordered Redistribution into Atlantif by
creating one unit for each fragment of sequential behaviour and by defining synchronizers
that start and/or stop these units, which controls the parallel composition. The resulting
code is shown in Fig. 5.2.

In this translation, we have defined one unit around each of the four communications.
First, only Main Unit is active. When it synchronizes with the environment on In and
a value in X is received, control is passed to the units Direction 1 and Direction 2 .
After each one of these two units has synchronized on its gate (Out 1a and Out 1b
respectively), they pass control to the unit Direction 3 by a silent synchronization on
CP . With a synchronization on Out 2 , the behaviour ends.

This example has a longer description in Atlantif than in E-Lotos. This is due to
the composition of sequential and parallel behaviour, which is necessarily difficult to
implement in an automata-based model i.e., a model that represents sequential behaviour
on one level and then parallel behaviour on a higher level.

Correctness of the translation. Following E-Lotos semantics [83], the discrete tran-
sitions that can be derived from the process Semi Ordered Redistribution are the follow-
ing: a transition labelled“In v”(for v an arbitrary value from the sort of package), followed
by two transitions labelled “Out 1a v” and “Out 1b v” (in any order), and finally a transi-
tion labelled “Out 2 v”. As the scope of X ends when this action ends, the state reached
by that last discrete transition has no value for X. We now explain that the Atlantif
semantics define the same behaviour, by giving details on two essential aspects for value
assignments on X. Note before that by the semantics definition, we have

accessible(X) = {Main Unit ,Direction 1 ,Direction 2 ,Direction 3}.
Thus, whenever at least one of these four units is active, X can have a value assigned.

First we show that the variable X keeps its value during the control passage by the syn-
chronizer In. By the unit semantics we can derive in Main Unit the following transition:

(act(s1a), (t0, f), ∅)
In v
=⇒ (Ω, (t0, f), [X 7→ v])

t0 is an arbitrary time value and v is an arbitrary value generated by the reception offer;
the mapping [X 7→ v] is added to the store by application of the function accept .

Then we can apply the predicate next ρ as follows:

next ρ(ρ, [X 7→ v], {Direction 1 ,Direction 2}, In, ρ′)
which by definition is equivalent to

ρ′ = ((ρ⊘ [X 7→ v])⊖ {V | (∀u ∈ U) u /∈ accessible(V)})
⊘ [V 7→ ρ0(V) | V ∈ dom(ρ0) ∧ (∃u ∈ start(In)) V ∈ decl(u)]

= ((∅⊘ [X 7→ v])⊖∅)⊘∅
= [X 7→ v].

With this, we can apply the predicate synchronizing to represent the first synchronization
as follows:

synchronizing(((π, θ, ρ), ∅), In v, f , ((π′, θ′, ρ′), ∅))
We have π = [Main Unit 7→ s1a], π′ = [Direction 1 7→ s112b,Direction 2 7→ s113b],

110 Chapter 5. Translating high-level constructs into ATLANTIF

module Semi Ordered Redistribution is
dense time
type package is . . .
sync In is Main Unit stop Main Unit start Direction 1,Direction 2 end sync
sync Out 1a is Direction 1 end sync
sync Out 1b is Direction 2 end sync
sync Out 2 is Direction 3 end sync
sync CP:silent is Direction 1 and Direction 2

stop Direction 1,Direction 2 start Direction 3 end sync

init Main Unit

unit Main Unit is
variables X:package

from s1a
In ?X; stop

unit Direction 1 is
from s112a

Out 1a !X; to s112b
from s112b

CP; stop
end unit -- Direction 1
unit Direction 2 is

from s113a
Out 1b !X; to s113b

from s113b
CP; stop

end unit -- Direction 2
unit Direction 3 is

from s11a
Out 2 !X; reset X; stop

end unit -- Direction 3

end unit -- Main Unit
end module

Figure 5.2: Atlantif translation for semi-ordered redistribution

5.3. Delay and timed communication 111

ρ = ∅ and ρ′ = [X 7→ v] as derived before; θ, θ′ are not relevant here. Therefore:

(π, θ, ∅)
In v−−−→ (π′, θ′, [X 7→ v])

Thus X is indeed defined after the control passage.

Second we show that after the synchronization on Out 2 , the variable X has no longer a
value assigned. As above, in the unit Direction 3 the following transition can be derived
(showing this time how the reset deletes the assignment to X):

(act(s11a), (t1, f), [X 7→ v])
Out 2 v
=⇒ (Ω, (t1, f), ∅)

This finally leads to the Tlts transition:

([Direction 1 7→ s112b ,Direction 2 7→ s113b], θ′′, [X 7→ v])
Out 2 v−−−−−→

([Direction 3 7→ Ω], [Direction 3 7→ (0, f)], ∅)

Note that θ′′ depends on how much time elapsed, which we can ignore as there are no
time constraints. We can see that in the state following the transition, X has no value
assigned.

5.3 Delay and timed communication

5.3.1 Statement

In this section, we compare the real-time constructs of Atlantif with the real-time
constructs of E-Lotos. We consider the E-Lotos process of Fig. 5.3, which describes
the nondeterministic choice between two gates G and H . Gate G is hidden and delayed by
eight time units. Note that in E-Lotos, communication on hidden gates automatically
becomes urgent. A communication on gate H , due to its time constraint, can occur only if
more than five time units have elapsed. Note that the time capture construct of E-Lotos
used in this example is very similar to ET-Lotos (cf. Section 3.3.3).

5.3.2 Translation to ATLANTIF

The translation to Atlantif of the example of Fig. 5.3 is given in Fig. 5.4. It uses
real-time constructs of Atlantif very similar to E-Lotos.

In this translation, the urgency of G is represented by an urgent synchronizer. Note that
there is little difference in size between the E-Lotos and the Atlantif code.

Correctness of the translation. Modulo time additivity, two sucessions of transitions
can be derived from the Atlantif code. First, for t1 ≥ 8, we can derive in U1 that

(act(S1), (t1, f), ∅)
G

=⇒ (Ω, (t1, f), ∅), which leads to the following:

112 Chapter 5. Translating high-level constructs into ATLANTIF

process Delay and Timed Communication [G:none,H :none] is
(

hide G:none in
wait 8; G

end hide
[]

var X:time in H @?X [X > 5] end var
)

end process

Figure 5.3: E-Lotos code for different real-time constructs

module Delay and Timed Communication is
dense time
sync G : urgent is U1 end sync
sync H is U1 end sync
unit U1 is

from S1
select

wait 8; G; stop
[]

H in]5,...[; stop
end select

end unit
end module

Figure 5.4: Atlantif translation for Fig. 5.3

5.4. Latency 113

([U1 7→ S1], [U1 7→ (0, f)], ∅)
t1−→ ([U1 7→ S1], [U1 7→ (t1, f)], ∅)

τ−→ ([U1 7→ Ω], [U1 7→
(0, f)], ∅)

Second, for t2 > 5, we can derive in U1 that (act(S1), (t2, f), ∅)
H

=⇒ (Ω, (t2, f), ∅), which
leads to the following:

([U1 7→ S1], [U1 7→ (0, f)], ∅)
t2−→ ([U1 7→ S1], [U1 7→ (t2, f)], ∅)

H−→ ([U1 7→ Ω], [U1 7→
(0, f)], ∅)

Clearly, these are exacly the same two successions of transitions derivable in the E-Lotos
process.

5.4 Latency

5.4.1 Statement

The expressive power of Atlantif is not restricted to constructs occurring in E-Lotos
or in its dialect Lotos NT. To illustrate this, this section discusses latency , a concept
elaborated with the language RT-Lotos [48]. In the general case, latency behaviour
cannot be expressed in E-Lotos or Lotos NT.

The following fragment of RT-Lotos code shows a typical case of latency:

. . .
hide G in
(delay(3) latency(2) G;

stop)
. . .

Semantically, this example begins with the elapsing of three time units (“delay(3)”).
Then, the communication on G can occur at any time during the following 2 time units
(“latency(2) G”). As G is hidden, this communication becomes a τ -action. Note that
the urgency that comes with the hiding does not influence the latency time; instead G
becomes not urgent until the 2 time units have elapsed.

5.4.2 Translation to ATLANTIF

It is not practicable to declare G as an urgent synchronizer (as we did for the hidden
G in Section 5.3). Thus, we have to declare G as a hidden synchronizer. To ensure the
communication at the last instant possible after a period where it is optional, we use the
must modality in the communication action, which produces the following Atlantif
code fragment:

114 Chapter 5. Translating high-level constructs into ATLANTIF

. . .
sync G:hidden is U1 end sync
. . .
unit U1 is

from S1
wait 3;
G must in [0,2];
stop

end unit
. . .

It can be seen that this translation has a very similar syntax structure as the initial
RT-Lotos code.

Correctness of the translation. Modulo time additivity, again two successions of two
transitions each can be derived from the Atlantif code. First, for 3 ≤ t1 < 5, we can

derive that (act(S1), (t1, f), ∅)
G

=⇒ (Ω, (t1, f), ∅), which leads to the following:

([U1 7→ S1], [U1 7→ (0, f)], ∅)
t1−→ ([U1 7→ S1], [U1 7→ (t1, f)], ∅)

τ−→ ([U1 7→ Ω], [U1 7→
(0, f)], ∅)

Second, for t2 = 5, we can derive that (act(S1), (5, f), ∅)
G

=⇒ (Ω, (5, t), ∅), which leads
to the following:

([U1 7→ S1], [U1 7→ (0, f)], ∅)
5−→ ([U1 7→ S1], [U1 7→ (5, t)], ∅)

τ−→ ([U1 7→ Ω], [U1 7→ (0, f)], ∅)

Note that this example illustrates once more the mode of operation of the blocking con-
dition, which becomes true after the elapsing of five time units. Note further that for this
reason it is not possible that more than five time units elapse.

5.5 Synchronization vectors and generalized parallel

composition

5.5.1 Statement

This section shows how synchronization vectors and the generalized parallel composition
(GPC) operator defined in [64] can be expressed in Atlantif. Unlike for the other
constructs of this chapter, we give here general translations rather than illustrations by
examples.

5.5. Synchronization vectors and generalized parallel composition 115

gate par
GE 0

0 * . . . * GE n
0 -> G′

0, GE ::= G | _
. . . ,

GE 0
m * . . . * GEn

m -> G′
m

in B0 || . . . || Bn

end par

Figure 5.5: Syntax of synchronization vectors (EXP.OPEN 2.0)

Synchronization vectors. Synchronization vectors combine a concise notation of syn-
chronization possibilites with renaming of gates, provided for instance in the EXP.OPEN
2.0 language [86], using the syntax given in Fig. 5.5.

In this definition, each G and each G′
i denotes a gate, and each Bj a process. Semantically,

this operator means that the processes B0 to Bn are composed in parallel and that each
of the lines “GE 0

i * . . . * GE n
i -> G′

i” (i ∈ 0..m) describes a possible synchronization.
For each j ∈ 0..n, if GE j

i has the form“_”, then the process Bj does not participate in this
synchronization. Otherwise (i.e., GE j

i is a gate G), then the process Bj can participate
in this synchronization each time it is ready to perform a communication on G. When all
the Bj for which the latter case applies are ready, the synchronization can be performed,
resulting in a discrete transition labelled G′

i.

Generalized parallel composition. Representing a further generalization of synchro-
nization vectors, the GPC operator of [64] offers an even more concise notation for parallel
composition with complex synchronization possibilities (thus, the definitions always have
similar objectives to those we had for the synchronizers in Atlantif). It is defined as
an extension to Lotos and has been used in the definitions of Lotos NT and E-Lotos
(cf. Section 3.3.4).

We present the GPC operator in two steps (only briefly; a detailed description can be
found in [64]). In a simplified version, it takes the form shown in Fig. 5.6.

par

Ĝ1 -> B1

|| Ĝ2 -> B2

|| . . .

|| Ĝn -> Bn

endpar

Figure 5.6: Generalized parallel composition – simplified

Each Ĝi is a set of gates, each Bi a process. Semantically, the processes B1 to Bn are
composed in parallel and a synchronization of the processes Bi1 , . . . , Bik (1 ≤ i1 < . . . <
ik ≤ n) on a gate G is possible if the following are both true:

116 Chapter 5. Translating high-level constructs into ATLANTIF

• (∀i′ ∈ {i1, . . . , ik}) G ∈ Ĝi′

• (∀i′ ∈ {1, . . . , n} \ {i1, . . . , ik}) G /∈ Ĝi′

In its complete version, the GPC operator is defined as in Fig. 5.7.

par H1#m1, . . . ,Hp#mp in

Ĝ1 -> B1

|| Ĝ2 -> B2

|| . . .

|| Ĝn -> Bn

endpar

Figure 5.7: Generalized parallel composition – complete

H1, . . . , Hp are gates not occurring in any of the Ĝ1, . . . , Ĝn, and m1, . . . , mp are natural
numbers in 1..n. The complete version strictly extends the simplified version: For each
gate Hi, a synchronization on Hi is possible between any combination of mi processes
among B1, . . . , Bn.

5.5.2 Translation to ATLANTIF

Both operators have a twofold function: First, they put processes in parallel; second, they
describe how synchronization is possible between these processes. In Atlantif, units are
put in parallel by being active at the same time, thus no further translation of parallel
composition is necessary. Instead, we describe here how to represent the synchronization
possibilities by Atlantif synchronizers. We will suppose that the processes B0, . . . , Bn

used in the constructs have been translated to Atlantif units with the same identifiers.

Synchronization vectors. For our translation, we have to respect the following re-
striction: For each line “GE 0

i * . . . * GEn
i -> G′

i” (i ∈ 0..m), we suppose that for each
j ∈ 0..n, the term “GE j

i” has either the form “_” or it denotes the gate G′
i. This means

that we cannot translate gate renaming, which is not supported by Atlantif.

However, in some cases this restriction has no impact, if renaming can be used: For each
process Bj , each gate among GE j

0, . . . ,GE j
n may occur in different lines. If all these lines

define the same gate G′
i, the model could also be defined with those GE j

i′ renamed to G′
i

within Bj . If on the other hand a gate of a process appears in two lines with different gates
G′

i1
, G′

i2
, a translation by this schema would not be possible, but then a more appropriate

approach may exist.

For each gate G among G′
0, . . . , G

′
m, we create one synchronizer i.e., if there are i, j such

that i 6= j and G′
i = G′

j, both the ith and the jth line are represented within the same

synchronizer. At first, we suppose that there is one line“GE 0
i * . . . * GE n

i -> G′
i” such

that G = G′
i. Then, the synchronizer takes the form

5.5. Synchronization vectors and generalized parallel composition 117

sync G is Bj1 and . . . and Bjk
end sync,

where 0 ≤ j1 < . . . < jk ≤ m and {j1, . . . , jk} = {j′ | GE j′

i = G} (i.e., j1, . . . , jk are
exactly the indices of the processes synchronizing on G).

Now we suppose that there are several lines “GE 0
i * . . . * GEn

i -> G′
i” such that G =

G′
i. Then we create the synchronization formulas

(Bj1 and . . . and Bjk
), . . . , (Bj′

1
and . . . and Bj′

k
)

as above, and the synchronizer takes the following form:

sync G is (Bj1 and . . . and Bjk
) or . . . or (Bj′

1
and . . . and Bj′

k
) end sync

Generalized parallel composition. For simplicity, our translation for the GPC op-
erator of Fig. 5.7 uses three steps.

First, we construct the synchronizers for those gates G that occur in at least one of the
Ĝ1, . . . , Ĝn (i.e., those gates that can be represented by the simplified version of Fig. 5.6).
For each of them we define one synchronizer of the form

sync G is (Bi1 and . . . and Bik) or 1 among (Bj1, . . . ,Bjl
) end sync,

where:

• {i1, . . . , ik} def
= {i | G ∈ Ĝi′}

• {j1, . . . , jl} def
= {1, . . . , n} \ {i1, . . . , ik}

Note that those are precisely the conditions for a synchronization given above in the
GPC semantics. Note also that the “or 1 among (Bj1, . . . ,Bjl

)” illustrates a difference
between our approach (which also corresponds to the approach of synchronization vectors)
and the approach of [64]: We consider that each gate communication has to be defined
explicitly, including those of a single process (unit) with its environment, whereas the
latter are considered to be always possible in [64]. Thus, our synchronizers generally state
which synchronizations are accepted by the environment.

Second, we construct the synchronizers for those gates H that occur among the H1, . . . , Hp

(this can be done independently of the first step, since these two sets of gates are disjoint).
For each of them we define one synchronizer of the form

sync H is m′
1 or . . . or m′

q among (B1, . . . ,Bn) end sync,
where the occurrences of H in the first line of the GPC operator are H#m′

1, . . . , H#m′
q.

Third, for each H ′ that occurs as a gate in one of the B1, . . . , Bn but did not induce a
synchronizer by the first or the second step (i.e., it does not occur in the GPC construct
itself) we construct a synchronizer of the form

sync H ′ is 1 among (B1, . . . ,Bn) end sync.
As in the first step, where we added the “or 1 among (Bj1, . . . ,Bjl

)”, the third step
represents synchronizations with a single process, which have to be declared explicitly in
Atlantif.

118 Chapter 5. Translating high-level constructs into ATLANTIF

It should be noted that the synchronizer translation given in this chapter could be im-
proved, in order to obtain more concise synchronizers without changing the dynamic
semantics. For instance, the “or 1 among (Bj1, . . . ,Bjl

)” of the first step could obvi-
ously be deleted if the gate G does not occur in one of the Bj1, . . . , Bjl

, or else the list can
be shortened to those units where G actually occurs. Similarly, the list “(B1, . . . ,Bn)”
in the second step could be reduced to those units where the gate H actually occurs.

Synchronizers produced by such simplifications are not only more concise, but they also
indicate where synchronizers appear, thus they can provide an easier and more intuitive
reading of the code.

Illustration. The example given in Section 4.5.1 stated that a generalized parallel com-
position operator “par G#2, G#3 in B1 || B2 || B3 end par” can be expressed in
Atlantif by a synchronizer “sync G is 2 or 3 among (B1, B2, B3) end sync”.

By the dynamic semantics definition of synchronizers (cf. Section 4.5.3), we have

sync(2 or 3 among (B1, B2, B3)) = {{B1 ,B2}, {B1 ,B3}, {B2 ,B3}, {B1 ,B2 ,B3}}
Thus, precisely the same synchronizations as in the original code are possible. Moreover, it
can be seen that the Atlantif code is as concise as the Lotos NT code, while providing,
in our opinion, a more intuitive notation that is easier to read and to write.

A more complex example of how GPC constructs can be represented in Atlantif is given
in Appendix B.1 in form of a modelling of the Open Distributed Processes protocol.

5.6 Asynchronous termination

5.6.1 Statement

With asynchronous termination, we refer to an event in a parallel composition where one
of the composed processes is stopped by other processes i.e., the stopped process does
not contribute to trigger the stopping event. This opposes the concept of synchronous
termination, where a process stops itself. We expressed the latter behaviour e.g., in
the example of Section 5.2.2, where Main Unit stops itself by the synchronizer In and
Direction 1 ,Direction 2 stop themselves by the synchronizer CP .

In Lotos, asynchronous termination is expressed by the operator “[>”. As we wish
to show here a combination of asynchronous termination and real time, the following
example is written in the ET-Lotos language (where, for clarity, the delay expression
“∆x” of ET-Lotos will be written “wait (x)”):

This code describes two processes P1 and P2 running in parallel, which begin by waiting
at least three and five time units respectively, then synchronize on G, then restart. These
two parallel processes may loop arbitrarily often, until the action RedButton occurs, which
is possible at any moment.

5.6. Asynchronous termination 119

(P1[G] || P2[G]) [> RedButton; stop
where
P1[G] := wait (3) G; P1[G],

P2[G] := wait (5) G; P2[G]

Figure 5.8: ET-Lotos code for an example of asynchronous termination

5.6.2 Translation to ATLANTIF

In Atlantif, asynchronous termination is expressed by a synchronizer G with at least
one synchronization set U ∈ sync(G) that is not a superset of the synchronizer’s “stop-set”
stop(G). This can be seen in the translation shown in Fig. 5.9.

module Asynchronous Termination is
dense time
sync G is U1 and U2 end sync
sync RedButton is Supervisor stop U1,U2 end sync
init U1,U2,Supervisor
unit U1 is

from S1
wait 3; G; to S1

end unit
unit U2 is

from S2
wait 5; G; to S2

end unit
unit Supervisor is

from S3
RedButton; stop

end unit
end module

Figure 5.9: Atlantif translation for the ET-Lotos code of Fig. 5.8

The processes P1 and P2 are represented here by the units U1 and U2 respectively,
and the behaviour “RedButton; stop” is represented by the unit Supervisor . Note that
the latter unit is active from the beginning, otherwise the synchronization by RedButton
would not be possible. As in former examples, we can notice that the syntax structure is
very similar to the initial code.

Correctness of the translation. Schematically, the semantics modulo time additivity
(which is respected by the ET-Lotos semantics rules) of the ET-Lotos code is presented
in Fig. 5.10.

120 Chapter 5. Translating high-level constructs into ATLANTIF

RedButtonRedButton

G

(G; P1[G] || G; P2[G]) [> RedButton; stop

t0

stop

(P1[G] || P2[G]) [> RedButton; stop

Figure 5.10: Schema of the semantics of the ET-Lotos example

In this schema, t0 represents any time value such that t0 ≥ 5.

RedButtonRedButton

G

([U1 7→ S1 ,U2 7→ S2 ,SV 7→ S3],
[U1 7→ (0, f), U2 7→ (0, f),SV 7→ (0, f)], ∅)

([U1 7→ S1 , U2 7→ S2 ,SV 7→ S3]
[U1 7→ (t0, f), U2 7→ (t0, f), SV 7→ (t0, f)], ∅)

([SV 7→ Ω], [SV 7→ (0, f)], ∅)

t0

Figure 5.11: Schema of the semantics of the Atlantif code of Fig. 5.9

The translation to Atlantif has a schematized sematics as given in Fig. 5.11 (where SV
corresponds to the unit Supervisor). Clearly, the behaviour is not only the same, but the
states reached also express in both cases that the processes P1 and P2 (or the units U1
and U2 respectively) are terminated.

5.7 Exception handling

5.7.1 Statement

A few high-level languages provide constructs to express exception handling i.e., the in-
terruption of a behaviour, followed by the execution of another behaviour, called the
exception handler.

Simple exception handling. In Lotos NT, an exception is raised using the raise
statement, and exception handling is described in a trap statement. A simple example is
given in the fragment of Lotos NT code of Fig. 5.12, where x is an integer variable, G
a gate, and B an arbitrary behaviour.

This code begins by checking if the variable x is between 2 and 10, in which case it is
then reduced by 1. Otherwise, the exception “EX1” is raised, and parametrized by x.

5.7. Exception handling 121

trap exception EX1 is z: nat -> G!z in
if ((x > 1) and (x < 11)) then

x := x - 1
else

raise EX1!x
end if

end trap;
B

Figure 5.12: Lotos NT code representing simple exception handling

The exception handler consists simply of a gate communication by G, with an emission
offer having the parameter’s value. Both the regular behaviour and the exception handler
are followed by B.

Note that raising an exception in Lotos NT does not produce a discrete transition, but
a silent control passage to the exception handler.

Exception handling with sequential and parallel composition. When the scope
of a trap only covers sequential behaviour as above, its translation is relatively simple.
Therefore, we also discuss a more complex example, which also integrates parallel com-
position and has the Lotos NT code shown in Fig. 5.13, where x and y are integer
variables, G a gate, and B an arbitrary behaviour.

Within the scope of the trap, we now have almost the same code as above, but it is
followed (by sequential composition) by two other if statements, which are composed in
parallel.

5.7.2 Translation to ATLANTIF

Simple exception handling. In Fig. 5.14, we show those fragments of an Atlantif
module that correspond to the Lotos NT code of Fig. 5.12.

The normal behaviour is represented by Main Unit , the exception handler is represented
by the unit EH . We require that the units EH and Main Unit are always started at the
same time, and that the variable x is defined in a superunit of Main Unit . We suppose
Unit B to be a translation of the behavior B.

When Main Unit becomes active (and EH with it), it performs the same check on x
as the Lotos NT fragment: If x is indeed between 2 and 10, then it is reduced by 1
and Main Unit synchronizes with EH on Normal Termination. This synchronizer is an
auxiliary construct representing the end of the exception’s scope (the end trap in Lotos
NT). As end trap does not induce a discrete transition, Normal Termination is labelled
silent. Technically, Normal Termination implements the control passage from EH and
Main Unit to Unit B .

122 Chapter 5. Translating high-level constructs into ATLANTIF

trap exception EX1 is z: nat -> G!z in
if (x > 1) then

x := x - 1
else

raise EX1!x
end if;
par

if (x < 11) then
x := x - 1

else
raise EX1!x

end if
||

if (y < 11) then
y := y - 1

else
raise EX1!y

end if
end par

end trap;
B

Figure 5.13: Lotos NT code representing complex exception handling

5.7. Exception handling 123

. . .
sync EX1:silent is EH and Main Unit stop Main Unit end sync
sync Normal Termination:silent is EH and Main Unit

stop EH , Main Unit start Unit B end sync
sync Termination After Exception:silent is EH stop EH start Unit B end sync
sync G is EH end sync
. . .
unit EH1 is

from S1
select

EX1 ?z; to S2 [] Normal Termination; stop
end select

from S2
G!z; to S3

from S3
Termination After Exception; stop

end unit
unit Main Unit is

from S4
if ((x > 1) and (x < 11)) then

x := x - 1; Normal Termination; stop
else

EX1 !x; stop
end if

end unit
. . .

Figure 5.14: Atlantif code representing simple exception handling

124 Chapter 5. Translating high-level constructs into ATLANTIF

Raising an exception is represented by a synchronization on EX1 . As stated above, such
a synchronization has to be silent.

In unit EH , it can be seen that the discrete state S1 represents a stand-by state for an
exception to happen, or otherwise for being stopped by Normal Termination. The occur-
rence of an exception (i.e., a synchronization on EX1) stops Main Unit and sets EH to
the discrete state S2 , which represents the original exception handler itself, containing the
synchronization on G. The synchronization on Termination After Exception represents
the termination of the exception handler.

In Lotos NT, of course, it is possible that several raises of one exception are within
one “trap” environment. Our Atlantif code could easily be modified for such a case,
without modification of unit EH or the synchronizers.

Correctness of the translation. For the sake of simplicity, we suppose the specifica-
tion to be untimed, because the functioning of exceptions is not directly depending on
real-time aspects.

Depending on the value v of the variable x, the Lotos NT code only describes one of
the two following behaviours:

• “x := v - 1;B” if 1 < v < 11

• “G !v;B” otherwise

In Atlantif, from the global state S
def
= ([Main Unit 7→ S4 ,EH 7→ S1], θ, [x 7→ v]), the

following is possible:

• The predicate

synchronizing((S, ∅),Normal Termination , f , (([Unit B 7→ S5], θ′, ∅), {{Unit B}}))
is true if 1 < v < 11 (we suppose S5 to be the first discrete state of Unit B).
Thus, it represents an incomplete synchronization chain (cf. Section 4.6.3) that
could continue in Unit B .

• A discrete transition S
G v−−→ S ′ with S ′ = ([EH 7→ S3], θ′′, [z 7→ v]) can be taken if

v ≤ 1 or v ≥ 11. Similar as above, we then can construct an incomplete synchro-
nization chain beginning with

synchronizing((S′, ∅),Termination After Exception , f ,
(([Unit B 7→ S5], θ′, ∅), {{Unit B}}))

and continuing in Unit B .

θ, θ′, θ′′ do not need to be detailed, as the specification is untimed. Clearly, these two
semantics correspond to the two behaviours of the Lotos NT code, thus the translation
is correct.

Note also that by the synchronizer EX1 , the value v has been transferred from Main Unit
to EH . This is a simple way to represent raising an exception with parameters.

5.8. Lossy buffer 125

Exception handling with sequential and parallel composition. In Sections 5.2.2
and 5.6.2 we already saw that it is inevitable that Atlantif code becomes complex when
it is obtained by a translation from a combination of parallel and sequential code. The
Atlantif module shown in Fig. 5.15 is a possible translation of the Lotos NT code
fragment of Fig. 5.13.

Note that the static semantics rules for variable scopes (cf. Section 4.4.4) hold in this
example. We have accessible(x) ⊇ {Main Unit ,Parallel Unit 1} and accessible(y) ⊇
{Main Unit ,Parallel Unit 2} (where we suppose x, y to be declared in a superunit of
Main Unit).

Note also that this example is a case of a stop list in a synchronizer such that it is not
possible for all occurring elements to be stopped at the same time, because it is clearly not
possible for Main Unit , Parallel Unit 1 , and Parallel Unit 2 to be active at the same
time.

5.8 Lossy buffer

5.8.1 Statement

A lossy buffer is a communication medium between processes that transmits messages
which can get lost. Such media being a common problem encountered in formal modelling
and verification, lossy buffers often occur as examples in the literature, in many different
variations. For this reason, the If-2.0 model even provides one (derived) syntax construct
to express lossy buffers.

We will present here one variation of a lossy buffer expressed in the ET-Lotos language.
It is a simplified model with a capacity of only one message at a time.

Again, Fig. 5.16 gives only a fragment of the code which is thus restricted to the lossy
buffer itself (process LB) and the parallel composition of the different processes. The
processes Producer 1 to Producer 5 and Consumer 1 to Consumer 4 are not detailed
here; we only have the information that LB can synchronize on gate In with exactly one
of the producers and on gate Out with exactly one of the consumers.

The process LB describes an infinite loop that always begins with a synchronization on
gate In while receiving a data package by an input offer. After waiting five time units (the
minimal transmission time), it can then either synchronize within fewer than five more
time units on gate Out , emitting the data package by an output offer, or, if this limit is
reached, it signals by an internal action i that the data package is lost.

5.8.2 Translation to ATLANTIF

As in former examples, Fig. 5.17 gives only a fragment of the Atlantif code obtained
by translation of the ET-Lotos fragment of Fig. 5.16. More precisely, we describe the
synchronizers that express parallel composition as well as the unit that corresponds to

126 Chapter 5. Translating high-level constructs into ATLANTIF

. . .
sync EX1:silent is EH and (Main Unit or Parallel Unit 1 or Parallel Unit 2)

stop Main Unit, Parallel Unit 1, Parallel Unit 2 end sync
sync Control Passage:silent is Main Unit stop Main Unit

start Parallel Unit 1, Parallel Unit 2 end sync
sync Normal Termination:silent is EH and Parallel Unit 1 and Parallel Unit 2

stop EH , Parallel Unit 1, Parallel Unit 2 start Unit B end sync
sync Termination After Exception:silent is EH stop EH start Unit B end sync
sync G is EH end sync
. . .
unit EH1 is

from S1
select

EX1 ?z; to S2 [] Normal Termination; stop
end select

from S2
G!z; to S3

from S3
Termination After Exception; stop

end unit
unit Main Unit is

from S4
if ((x > 1) and (x < 11)) then

x := x - 1; Control Passage; stop
else

EX1 !x; stop
end if

unit Parallel Unit 1 is
from S5

if (x < 11) then
x := x - 1; Normal Termination; stop

else
EX1 !x; stop

end if
end unit
unit Parallel Unit 2 is

from S6
if (y < 11) then

y := y - 1; Normal Termination; stop
else

EX1 !y; stop
end if

end unit
end unit -- Main Unit
. . .

Figure 5.15: Atlantif code representing complex exception handling

5.8. Lossy buffer 127

(Producer 1[In] |||Producer 2[In] |||Producer 3[In] |||Producer 4[In] |||

Producer 5[In])

|[In]|
LB[In,Out]
|[Out]|

(Consumer 1[Out] |||Consumer 2[Out] |||Consumer 3[Out] |||

Consumer 4[Out])

where
LB[In,Out] := In ?data;wait (5)

(Out !data @t[t < 5];LB[In,Out]
�

wait (5) i;LB[In,Out])
· · ·

Figure 5.16: ET-Lotos code representing a lossy buffer

the process LB . As in Section 5.2, we suppose that a type package has been defined.

Again, this example shows that complex parallel composition, especially when includ-
ing multiway synchronization, can be expressed in a simple and intuitive way, with the
synchronization formulas of the synchronizers In and Out .

The unit LB translates the process of the same name and keeps a very similar syntax.
The most notable difference is that we have to introduce an urgent synchronizer Lost to
represent the internal action i.

Correctness of the translation. On an intuitive level, the correctness follows imme-
diately from the fact that the important constructs (nondeterministic choice and select
action) are used in practically the same way in both encodings. Technically, correctness
can be shown as for the preceding examples.

128 Chapter 5. Translating high-level constructs into ATLANTIF

· · ·
sync In is

LB and 1 among (Producer 1,Producer 2,Producer 3,Producer 4,Producer 5)
end sync
sync Out is

LB and 1 among (Consumer 1,Consumer 2,Consumer 3,Consumer 4)
end sync
sync Lost : urgent is LB end sync
· · ·
unit LB is

variables data:package
from Ready

In ?data;to Transporting
from Transporting

wait 5;
select Out !data in [0,5[[] Lost in [5,...[end select;
to Ready

end unit
· · ·

Figure 5.17: Atlantif code representing a lossy buffer

Chapter 6

Translating ATLANTIF to graphical
models

Abstract This chapter relates the Atlantif language to graphical models, by
defining translators from subsets of Atlantif to the timed automata dialect taken
as input by the tool Uppaal and to the time Petri net dialect taken as input by the
tool Tina. These translators enable simulation and formal verification of Atlantif
specifications. We also describe more succinctly a translator from untimed Atlantif
to the Fiacre language and a tool implementation of those three translators.

6.1 Timed automata

6.1.1 Motivation and principles

Choosing UPPAAL as target model

As described in Section 3.2.2, several tools perform simulation and/or formal verification
on timed automata, each of them using a particular dialect of the TA model. Among these
possible targets, we chose to translate from Atlantif to the TA dialect of the Uppaal
tool [89] for several reasons:

• The TA dialect used in Uppaal has a rich expressive power. For instance, it allows
user-defined variable types and functions, distinguishes between local and global
variables, and enables not only binary but also broadcast synchronization. The
translator makes use of some of these features, others could be useful in future
extensions of the translator.

Furthermore, the syntax features of Uppaal are well-documented and described
with semi-formal semantics. This is essential to make a translation possible. A
mostly undocumented TA dialect such as that used in the Red tool [123] would not
be suitable for our purpose.

129

130 Chapter 6. Translating ATLANTIF to graphical models

• Uppaal is a popular, widely-known tool, which is an important condition to ensure
tool maintenance in the future. Several tools taking timed automata as input that
were created during the last few years are no longer maintained (e.g., Kronos [126],
Rabbit [27]). Maintenance of a tool not only covers immediately useful aspects
such as bugfixes and porting to up-to-date operating systems, but also can include
extensions of the used TA dialect, which may be used for a wider or more efficient
translator in the future.

However, a translator of Atlantif to other TA-based tools is possible in principle and
should not be too different from the translator to Uppaal, if the other tool also uses the
binary synchronization approach.

The UPPAAL TA dialect

The model used by Uppaal is a network of timed automata as defined in Section 3.2.2.
Among the three approaches for the semantics of communications, it implements the
binary synchronization approach. In this section, a detailed definition is given, in order
to fix a terminology and to point out particularities of the Uppaal dialect.

An Uppaal network of timed automata is defined as a 3-tuple ({A1, . . . ,An},Vg, C),
where:

• A1, . . . ,An are timed automata, defined below.

• Vg is a set of global variables, each of which is defined by an identifier, a type, and
optionally an initial value. Clocks are also understood as variables and therefore Vg

also contains those clocks that can be accessed by all automata.

• C is a set of channels , which induces the possible transition labels: Given a channel
c ∈ C, “c!” denotes an emission on c and “c?” a reception on c. Optionally, a channel
can be declared urgent , meaning that time elapsing blocks when a synchronization by
this channel is possible. Independently, it can optionally be declared as a broadcast
channel, meaning that instead of binary synchronization, one emission synchronizes
with a maximal number (possibly zero) of receptions.

An Uppaal timed automaton A is defined by the following components:

• In addition to the global variables of the network (accessible in all TA), there is also
a set of local variables VA, declared in the same way as above. Note in particular
that each clock variable can be declared either locally or globally.

• The locations of a TA are quadruples of the form (l, s, F, tag), where l is a unique
location identifier, s is the location’s name (not necessarily unique), F is an in-
variant formula, and the tag may be “normal”, “urgent” or “commited”; exactly one
location is declared to be the initial location. If the current location of one TA is an

6.1. Timed automata 131

“urgent” one, then time cannot elapse in this TA (and thus in the whole network).
The “commited” tag behaves likewise, with the additional constraint that a discrete
transition must be taken in the corresponding TA.

• The transitions have the form (l, F, C, Z, l′), where:

– l is the origin location, l′ the target location (as in the standard case).

– F is the guard formula, defined as a conjunction of atomic formulas, where
atomic fomulas are those of Definition 3.8, plus arbitrary boolean conditions
on non-clock variables.

– C is either empty (corresponding to an internal τ -transition) or a label as in
Definition 3.8.

– Instead of a set of clocks to be reset (as in the standard case), Z is a list
of assignments on variables. They are executed in their given order when
the transition is taken. In particular, they can include the assignments of
integer values to clocks, and clock resets being expressed by assigning zero.
We note Z = (a1, . . . , an) for these assignments, and we will use the following

notation for the concatenation of two such lists: ((a1, . . . , an), (a
′
1, . . . , a

′
m))

def
=

(a1, . . . , an, a
′, . . . , a′

m).

Uppaal provides the predefined types “int” and “bool”, as well as arrays and records. It
also provides functions in a C-like syntax.

Problems to overcome

The following paragraphs list the three most important aspects of the Atlantif con-
structs for which no direct translation to Uppaal exists. Instead, emulations had to be
implemented. These issues concern aspects related to the Atlantif concurrent struc-
tures; the real-time constructs did not raise such problems.

Multiway synchronization. As described in Section 4.5.1, Atlantif allows synchro-
nization of one, two, or more than two processes at the same time. A synchronization on a
standard Uppaal channel however only features two participating processes. In the case
of a single process, a synchronizer invocation can be translated by using a broadcast
channel, which can be invoked by one emission without a counterpart. For more than
two processes, on the other hand, the usage of broadcast channels is not suitable, because
such channels do not ensure that all processes we wish to synchronize actually participate
in the synchronization (except for the one that is designated as emission process).

Therefore, it will be necessary to emulate the multiway synchronization by a succession
of binary synchronizations. A refinement of this idea is described in Section 6.1.4 on
page 145.

132 Chapter 6. Translating ATLANTIF to graphical models

Unit stopping and starting. In a network of timed automata, each TA is “running”
from the beginning and cannot be stopped. Atlantif units can be started and stopped,
and therefore excluded from participating in synchronizations. Therefore, timed automata
representing Atlantif units will be defined with an additional auxiliary location that
represents inactivity and from which only synchronizations that start this unit are possible.

Offers. The channels of Uppaal do not have communication offers. Atlantif commu-
nications using offers must therefore transfer data in another way, using global variables.

Intuition of the translation approach

Each unit u of an Atlantif module is mapped to a single TA, with each discrete state
of u being mapped to a TA location and an invariant being synthesized from the must
constraints of state’s action A.

A itself is decomposed into at least one TA transition for each branch of control. The
emulation of concurrent and multiway synchronization can induce multiplications of the
resulting TA transition. Data exchanges are emulated using TA shared variables. Starting
and stopping of units induces additional transitions.

In Section 6.1.3, this translation is defined formally.

6.1.2 Restrictions

Our Atlantif to Uppaal translator only works for a subset of Atlantif. This is for
two reasons:

• The expressive power of timed automata in general or of the Uppaal dialect in
particular is not sufficient for certain Atlantif constructs.

• The tool only is a prototype, and therefore it does not cover everything. In particu-
lar, some translation problems have an obvious solution that, however, complicates
the formal definitions; thus they are left out for the sake of readability.

General restrictions

• Only modules with dense time domain are translated, because timed automata use
dense time. Discrete time behaves differently in some cases, so cannot be translated.
Translating an untimed Atlantif module would however be possible – simply by
a network of “timed” automata without clocks.

• Function and type definitions are not translated, and only variables of type int and
bool are translated. This restriction is not necessary, as Uppaal has a concept of
user-defined types and functions similar to Atlantif. Within the framework of the

6.1. Timed automata 133

syntax that Uppaal offers for these constructs, a translation seems possible (and
easy).

Actions

• Non-deterministic assignments are not supported, because in general they would
induce an infinite number of transitions, which is not feasible. A translation would
be possible if the variable type(s) and/or the condition limited the number of possible
assigments to be finite.

• Simultaneous assignments to strictly more than one variable are not supported, al-
though they could be emulated by a succession of simple assignments, using auxiliary
variables.

• Each timed expression E (i.e., E occurring in a time window or as the parameter of
a wait action) must be an integer constant.

It is necessarily constant, because model-checking on timed automata depends on
clock regions that have to be determined statically. For this static evaluation, a
TA must not contain other variables than clocks in guard and invariant formulas.
Timed expressions in an Atlantif module however will obviously be translated to
such guard and invariant formulas, thus they must be constants.

It could be non-integer, although Uppaal also only accepts integer constants in
guard and invariant formulas. But as each float value is a rational number, it is
possible to redefine the duration of a time unit in order to obtain integer constants16.

• Time windows may only be intervals. A translation of intersections (“and”) would
be possible without problem, but given the restriction to constant timed expressions,
the usage of conjunctions makes no sense (because the intersection of two intervals
could be expressed by a single interval in the first place). A translation of unions
(“or”) would be possible, using the decompositions described in Proposition 4.6 on
page 97. It is necessary to refer to such an approach, as Uppaal only allows guard
formulas that are conjunctions.

• An execution path of a multibranch transition must not contain a condition ex-
pression E (i.e., the boolean expression that is evaluated in an if action) such that
use(E) contains a variable V that occurs as a reception offer “?V ” earlier on this ex-
ecution path. In Uppaal, conditions on a transition are always evaluated before the
assignments of this transition, thus the translation of a condition has to anticipate
earlier assignments statically. Such an anticipation is possible for a deterministic
assignment action (implemented by the function update exp, cf. page 140), but not
for a value reception, which is not deterministic in general.

16For instance, if a module contains two timed expressions“ 1
3” and“0.25”, we could replace them by the

integer expressions “4” and “3” respectively. As this means refining our time units by a factor of twelve,
possible timed expressions in formulas of timed temporal logic we wish to verify by model checking also
have to be multiplied by twelve.

134 Chapter 6. Translating ATLANTIF to graphical models

A future version of the translator could lift this restriction by dividing such paths
into two consecutive transitions.

• while loops are not translated, although this would not make theoretical difficulties
(cf. Section 6.1.4 on page 144).

• case actions are not translated, although again this would not make theoretical
difficulties (translations are described e.g., in [114]). Note also that if actions are
translated, those being a special case of case actions.

• An execution path containing a communication action that uses an urgent or a
silent synchronizer must not be time-constrained i.e., must not contain any wait
actions, and only time windows of the form “[0,...[”. This is because otherwise,
the translation would require clock constraints on transitions labelled with urgent
channels, which are prohibited in Uppaal. Although in some cases one could use
invariants instead of clock constraints on transitions, a general solution to lift this
restriction has not been found.

• Offers have to have one of the forms “?V ”, “?any T”, “!E”. The translation of
offers with constructor patterns is probably difficult, but possible when user-defined
types of Atlantif are translated to Uppaal (see above). A translation of offers of
the form “?(P where E)” seems also possible by adding constraints in the guard
formula.

• Variable assignments are not translated if they are (within an execution path) be-
hind a communication on a gate G such that stop(G) contains the current unit.
This restriction is due to the technical definition of the translator; but in practice,
assigning a variable after a “stopping synchronization” does not seem reasonable
anyway.

• Neither the then nor the else branch of an if action may contain a communication
action with a must time window. In timed automata, invariants in locations are
used to represent strong deadlines. Such invariants apply always, independently of
the satisfaction of data conditions of outgoing transitions. Therefore, it is a non-
trivial problem to generate a single transition with a data condition and a strong
deadline, a solution for which has not been found.

Synchronizers

• For each synchronizer G, all offer lists of communications on G must match in type
and cardinality. In our translator, offer synchronization is emulated by variable
assignments with a fixed number of variables of fixed types. Extending our translator
to accept different offer profiles on a single sychronizer could be possible, by defining
separate channels for each offer profile.

• For each synchronizer G, for each synchronization set U ∈ sync(G), there must be
exactly one unit u ∈ U such that:

6.1. Timed automata 135

– In each communication by G occurring in u, all offers are emissions.

– For each u′ ∈ (U \ {u}), in each communication by G occurring in u′, all offers
are receptions.

This condition ensures that in each synchronization that can be executed, exactly
one communication action only emits offers, and all the other communication ac-
tions only receive offers. Such a restriction is necessary to exclude three constructs
that are not supported: (1) synchronization of two or several emission offers, (2)
synchronization of reception offers without emission (i.e., a value would have to be
generated, which corresponds to a non-deterministic assignment), and (3) a mix of
reception and emission offers within the offer list of one communication action.

6.1.3 Definition of the translator

We suppose an Atlantif module M that satisfies the static semantics constraints of
Chapter 4 and the restrictions listed in Section 6.1.2. As in Chapter 4, we note G for the
set of synchronizers/gates, V for the set of variables, and U for the set of units.

Translation of one module into a network of TA

The network of timed automata obtained from the module M is defined as follows:

• For each u ∈ U, one TA Au is constructed as defined below (page 136).

• The set Vg of global variables is the disjoint union of two subsets. The first subset
contains one element for each variable in V (i.e., from all units of U), using the same
identifier, the same type, and (if applicable) the same initial value17.

The second subset contains auxiliary variables used for the emulation of offers: For
each gate G ∈ G that exchanges n > 0 offers in each of its synchronizations, we
define n variables written G aux 1, . . . , G aux n.

• The set C of channels is defined as described in the following paragraph.

Synchronizers. Each synchronizer G ∈ G translates to several channels, as follows:

• Let n be the number of unit sets in sync(G) (n = card(sync(G))). Then γG is
defined as a bijective function from the set 1..n into sync(G) (cf. page 78).

• For each i ∈ 1..n, one unit u0 is chosen from the set γG(i), where the following is
satisfied:

17This means that all variables get assigned their initial value, regardless of their unit being initial or
not. Given that in Uppaal, variables always have a value anyway (arbitrary, if no assignment has yet
occurred), this is not a problem.

136 Chapter 6. Translating ATLANTIF to graphical models

– If gate G uses offers, then u0 is the single unit in γG(i) where the offers are
emissions (as stated among the restrictions of Section 6.1.2).

– Otherwise, u0 is chosen arbitrarily18.

Then, for given G and i, we define the predicate emission(G, i, u) to be true if and
only if u = u0.

We define the function sense(G, i, u) : (G× IN× U)→ {!, ?} as follows

sense(G, i, u)
def
=

{
! if emission(G, i, u)

? otherwise

This function will be needed in the translation of actions.

• Let m be the number of units in γG(i) (m = card(γG(i))). Then γi
G is defined as

another bijective function, from the set {1, . . . , m−1} into (γG(i)\{u0}). Depending
on m, the synchronization set γG(i) translates to the following channels:

– If m = 1 (i.e., γG(i) = {u0}), then one broadcast channel named G i 1 is
defined (declared urgent in Uppaal if G is urgent or silent in Atlantif).

– If m = 2, then one normal channel named G i 1 is defined (declared urgent if
G is urgent or silent).

– If m > 2, then (m − 1) normal channels named G i 1, . . . , G i (m − 1) are
defined (declared urgent if G is urgent or silent).

Intuitively, a channel “G i j” thus represents the jth step of a synchronization by
the ith synchronization set of G.

• If the set stops(G) is not empty, then one broadcast channel named G stops is
defined. The translation of the units in the set stops(G) will be “stopped” by each
execution of this broadcast.

• If the set starts(G) is not empty, then one broadcast channel named G starts is
defined. The translation of the units in the set starts(G) will be “started” by each
execution of this broadcast.

Note that we consider silent synchronizers exactly like urgent synchronizers i.e., they
both translate to (Uppaal-)urgent channels. This lack of precision is discussed in Sec-
tion 6.1.4.

Translation of one unit into one timed automaton

A unit u ∈ U translates to a timed automaton Au as follows:

18In the tool implementation, u0 is chosen as the unit with the fewest occurrences of G; this choice
favors a smaller size of the translation.

6.1. Timed automata 137

• The set VAu
of local variables only contains one element “CLOCK u” of type clock.

• The set of transitions and the set of locations are both defined by the function
transitions and locations(u), described below. Among these locations, the initial
location is either l1 (i.e., the location corresponding to the first discrete state of u)
if u is an initial unit of the module M , or ld (i.e., the location corresponding to Ω)
otherwise.

Transitions and locations. The construction of transitions and locations is based
on the set of pre-transitions defined by u, each of which represents one execution path
(cf. page 72) in one of the multibranch transitions of u. A pre-transition has the form
(s, F, C, Z, s′, ∆, λ) and corresponds to an execution path as follows:

• The path originates from the discrete state s and terminates with a jump to the
discrete state s′ (if the path terminates with a stop action, then s′ = Ω).

• The path can only be executed if the boolean condition F is satisfied.

• The communication of the path translates to a label C (containing information on
the gate used, the synchronization set used, and whether it is an emission or a
reception); if the path does not contain a communication, then C is empty.

• The path induces the variable assignments Z.

• The wait actions occurring on the path (if any) describe a total delay of ∆.

• If the path contains a communication with a “must” time window, then its upper
limit equals λ, otherwise λ =∞.

The construction of these pre-transitions is performed by the function trans defined
page 139.

Given the pre-transitions, the function transitions and locations calculates all transitions
and locations for the translation of a unit u. It is defined by the pseudocode given in
Fig. 6.1.

Intuitively, it creates two sets L (locations, defined page 130) and T (transitions, defined
page 131) in three steps:

• First, L is initialized to contain one location for each discrete state s, and one
location named “disabled”, representing the state Ω. T is initialized empty.

• Second, transitions are defined for asynchronous termination (corresponding to
cases, where u is stopped by a synchronization in which it does not communicate)
and for starting by synchronizers. These are implemented by reception labels of the
form “G stops?” and “G starts?” respectively. No new locations are defined in this
step.

138 Chapter 6. Translating ATLANTIF to graphical models

transitions and locations(u)
def
=

let s1, . . . , sn be the discrete states of u
P ← ⋃

i∈1..n trans(act(si), (si, true, ∅, (), δ, 0,∞))
L← {(l1, s1, true, normal), . . . , (ln, sn, true, normal), (l1, . . . , ln, ld chosen pairwise distinct)

(ld,“disabled”, true, normal)}
T ← ∅
for each G ∈ G

if (∃U ∈ sync(G)) u /∈ U then (only asynchronous termination here)
if u ∈ stop(G) then

T ← T ∪ {(l, true, G stops?, (), ld) | (l, ·, ·, ·) ∈ L)}
end if
if u ∈ start(G) then

Zi
u ← assignments for initial variable values of u

T ← T ∪ {(ld, true, G starts?, Zi
u, l1)}

end if
end if

end for
loop while P 6= ∅

choose (s, F, C, Z, s′, ∆, λ) from P (by construction : ∆ = 0 or s′ = δ)
P ← P \ {(s, F, C, Z, s′, ∆, λ)}
find l, l′, F ′ such that (l, s, F ′, ·), (l′, s′, ·, ·) ∈ L
if λ 6=∞ then

replace (l, s, F ′, ·) in L
by (l, s, F ′ ∧ CLOCK u ≤ λ, normal)

end if
if s′ 6= δ then (filter paths without target state)

if C = ∅ then
T ← T ∪ {(l, F, ∅, append(Z,CLOCK u := 0), l′)}

else
let G, i, ≀ be such that C = G i≀
if ≀ =? then

j ← (γi
G)−1(u) (find position among synchronizations)

T ← T ∪ {(l, F, G i j?, append(Z,CLOCK u := 0), l′)}
else

m← max (1, card(γG(i))− 1)
Y ← (G i 1, . . . , G i m) (Y : list of channel identifiers)
if stop(G) \ γG(i) 6= ∅ then

Y ← append(Y, G stop)
end if
if start(G) \ γG(i) 6= ∅ then

Y ← append(Y, G start)
end if
k ← length(Y)
if k ≤ 1 then (no multiway syncr . emulation)

T ← T ∪ {(l, F, G i 1!, append(Z,CLK u := 0), l′)}
else (multiway syncr . emulation)

l′2 ← new location(), . . . , l′k ← new location()
T ← T ∪ {(l, F, Y [1]!, Z, l′2), (containing guard and assignments)

(l′2, true, Y [2]!, ∅, l′3), . . . ,
(l′k−1, true, Y [k − 1]!, ∅, l′k),
(l′k, true, Y [k]!, (CLOCK u := 0), l′)} (containing clock reset)

L← L ∪ {(l′2,AUX G i 2, true, commited), . . . ,
(l′k,AUX G i k, true, commited)} (addition of new locations)

end if
end if

end if
end if

end loop

Figure 6.1: Pseudocode defining the function transitions and locations

6.1. Timed automata 139

trans(null, (s, F, C, Z, δ,∆, λ))
def
= {(s, F, C, Z, δ,∆, λ)}

trans(reset V1, . . . ,Vn, (s, F, C, Z, δ,∆, λ))
def
= {(s, F, C, Z, δ,∆, λ)}

trans(V :=E, (s, F, C, Z, δ,∆, λ))
def
= {(s, F, C, (Z, (V := E)), δ, ∆, λ)}

trans(wait c, (s, F, C, Z, δ,∆, λ))
def
= {(s, F, C, Z, δ,∆ + c, λ)}

trans(G O1 . . . On Q in W, (s, F, C, Z, δ,∆, λ))
def
=





{(s, F ∧ new guard(CLOCK u, W, ∆,new limit(∆, Q, W)), G i≀,
(Z, tl off (G, O1 . . .On)), δ, 0) | u ∈ γG(i) ∧ sense(G, i, u) = ≀} if u /∈ stop(G)

{(s, F ∧ new guard(CLOCK u, W, ∆,new limit(∆, Q)), G i≀,
(Z, tl off (G, O1 . . .On)),“disabled”, 0) | u ∈ γG(i) ∧ sense(G, i, u) = ≀} if u ∈ (stop(G) \ start(G))

{(s, F ∧ new guard(CLOCK u, W, ∆,new limit(∆, Q)), G i≀,
(Z, tl off (G, O1 . . .On)), s1, 0) | u ∈ γG(i) ∧ sense(G, i, u) = ≀} else

trans(stop, (s, F, C, Z, δ,∆, λ))
def
=






∅ if C = ∅

{(s, F, C, Z,“disabled”, 0, λ)} if C 6= ∅, ∆ = 0

{(s, (CLOCK u ≥ ∆) ∧ F, C, Z,“disabled”, 0, λ)} otherwise

trans(to s′, (s, F, C, Z, δ,∆, λ))
def
=

{
{(s, F, C, Z, s′, 0, λ)} if ∆ = 0

{(s, (CLOCK u ≥ ∆) ∧ F, C, Z, s′, 0, λ)} otherwise

trans(A1; A2, (s, F, C, Z, δ,∆, λ))
def
=

(
⋃

(s,F ′,C′,Z′,δ,∆′,λ′)∈trans(A1,(s,F,C,Z,δ,∆,λ)) trans(A2, (s, F
′, C′, Z ′, δ, ∆′, λ′)))

∪ {(s, F ′, C′, Z ′, s′, ∆′, λ′) ∈ trans(A1, (s, F, C, Z, δ,∆, λ)) | s′ 6= δ}
trans(select A0 [] . . .[] An end, (s, F, C, Z, δ,∆, λ))

def
=⋃

i∈0..n trans(Ai, (s, F, C, Z, δ,∆, λ))

trans(if E then A1 else A2 end, (s, F, C, Z, δ,∆, λ))
def
=

trans(A1, (s, update exp(E, Z) ∧ F, C, Z, δ, ∆, λ)) ∪
trans(A2, (s, (¬update exp(E, Z)) ∧ F, C, Z, δ, ∆, λ))

Figure 6.2: The mapping trans

• Third, a loop on the set P of pre-transitions is performed. Each pre-transition
is either translated into a single transition in T , or is is expanded into a chain
of transitions using new auxiliary locations. The latter applies if the two following
conditions are both satisfied: (1) The current unit is the emission unit for the current
synchronization set, and (2) the synchronization set has more than two elements.
The auxiliary function new location() = l used in the pseudocode returns an as yet
unused location identifier “l”19. We will illustrate this expansion in Example 6.1.

Actions. Each action A translates to one or several pre-transitions, formally defined by
the mapping trans in Fig. 6.2. Technically, trans takes as input A and one pre-transition
representing an incomplete path. Then, it determines the pre-transition(s) corresponding
to this incomplete path followed by A20. Note that s1 refers to the first discrete state of
the unit u.

19Note that this is of course an informal notation, as new location obviously depends on the identifiers
already defined instead of being without parameters

20For this reason, trans is used in the pseudocode of the function transitions and locations with the
second parameter (si, true, ∅, (), δ, 0,∞), representing an empty path.

140 Chapter 6. Translating ATLANTIF to graphical models

Note that trans is defined only for those actions accepted by our translator (cf. Sec-
tion 6.1.2). In particular, it does not cover nondeterministic assignments and case ac-
tions.

The function trans makes use of the auxiliary functions tl off , update exp, new guard ,
and new limit , described in the following:

Offers. Offers of the form “O1 . . . Om” are translated by the function tl off (“translate
offers”) into a list of assignments. The function also uses the gate identifier G as an input
parameter, which is used to determine the auxiliary variables G aux 1, . . . , G aux m.

tl off (G, O1 . . . Om)
def
={

(G aux 1 := E1, . . . , G aux m := Em) if O1 . . . Om = !E1 . . . !Em

(V1 := G aux 1, . . . , Vm := G aux m) if O1 . . . Om = ?V1 . . . ?Vm

Expressions. The translation of expressions is purely syntactical; for instance, At-
lantif uses the equals sign “=” to express equality, whereas Uppaal uses the symbol
“==”. These translations are therefore trivial and thus not detailed here.

Atlantif expressions containing variables can be (partially) evaluated with respect to a
chain of assignments that concern the variables of the expression. For this evaluation, we
define the function update exp as follows:

update exp(E, (V1 := E1, . . . , Vn := En))
def
= [E1/V1] . . . [En/Vn]E

In this definition, the assignments are applied to E in inverse order, because the value
of a variable in Ei may be given by an assignment earlier in the list of assignments.
For instance, this is obvious with the assignment list (V := 1, V ′ := V) applied to the
expression V ′.

Time windows. By the function new guard(X, W, ∆), a time window W (which is
a mere interval due to the syntactic restrictions defined in Section 6.1.2) translates to
a boolean formula, which is afterwards integrated into the guard of the according pre-
transition. This translation also depends on the wait actions of the execution path i.e.,
it depends on the current delay ∆ of the incomplete path on which the communication
action follows. The parameter X is the clock identifier of the current unit’s translation.
Formally:

new guard(X, W, ∆)
def
=






X −∆ ≥ n ∧X −∆ ≤ m if W = [n,m]

X −∆ > n ∧X −∆ ≤ m if W =]n,m]

X −∆ ≥ n ∧X −∆ < m if W = [n,m[

X −∆ > n ∧X −∆ < m if W =]n,m[

X −∆ ≥ n if W = [n,...[

X −∆ > n if W =]n,...[

6.1. Timed automata 141

It can thus be seen that the delay induced by wait actions affects the pre-transition by
the function new guard , in the evaluation of a communication action. If an execution
path does not contain a communication action, then it can be seen from the definition of
trans that the ∆ is evaluated at the end of this execution path i.e., in the case of a stop
or a to action.

Strict time limits in communications. The limit of the time window of a com-
munication action with must modality translates to a value λ ∈ IN ∪ {∞} within a
pre-transition. Again, such a limit also depends on the wait actions of the execution path
i.e., a value ∆. Formally, this is defined by the function new limit as follows:

new limit(∆, Q, W)
def
=

{
∆ + m if Q = must and W is of the form [n,m] or]n,m]

∞ otherwise

Example 6.1. This example shows how the decompsition of multiway synchronizations
works in practice. Fig. 6.3 contains fragments of an Atlantif module with multiway
synchronization. We suppose four units that represent processes running in parallel, where
one among these processes coordinates the others. Under certain conditions, this unit
“Leader Process” may send an cancel message, along with an error code, to the three
other units.

(. . .)
sync Cancel is Leader Process and Process1 unit Process2 is

and Process2 and Process3 end sync (. . .)
(. . .) Cancel ?Error2
unit Leader Process is (. . .)

(. . .) end unit
from Processing unit Process3 is

(. . .) (. . .)
Cancel !Error Code in [10,...[; Cancel ?Error3
to Recovery (. . .)

(. . .) end unit
end unit (. . .)
unit Process1 is

(. . .)
Cancel ?Error1

(. . .)
end unit

Figure 6.3: Fragments of an Atlantif module with multiway synchronization

Fig. 6.4 shows the fragments of the translated timed automata corresponding to the code
of Fig. 6.3, one for each translated unit.

142 Chapter 6. Translating ATLANTIF to graphical models

in Process3:

in Process2:

in Process1:

Recovery

AUX_Cancel_1_3

AUX_Cancel_1_2

Processing

in Leader_Process:

Cancel_1_3 ?
Error3 = Cancel_aux_1
CLOCK_Process3 = 0

Cancel_1_2 ?
Error2 = Cancel_aux_1
CLOCK_Process2 = 0

Cancel_1_1 ?
Error1 = Cancel_aux_1
CLOCK_Process1 = 0

Cancel_1_3 !
CLOCK_Leader_Process = 0

Cancel_1_2 !

CLOCK_Leader_Process >= 10
Cancel_1_1 !
Cancel_aux_1 = Error_Code

Figure 6.4: Translation fragments in Uppaal TAs

The unit Leader Process is chosen such that emission(Cancel , 1,Leader Process) is true
(cf. page 136), because its offer on the gate Cancel is an emission (while the other units
only have reception offers). Thus, the emulation of the 4-ary synchronization is realized by
a succession of three transitions in the translation of Leader Process, and by one transition
each in the translation of the other units.

Note that the clock constraint that translates the time window “[10,...[” from unit
Leader Process appears in the resulting TA on the first transition among the three. The
two other transitions follow the first transition immediately (without delay), because of the
usage of Uppaal commited locations. Therefore, the synchronization chain can be started
once the constraint is satisfied, and it is then executed without time elapsing.

Note also that each occurrence of “Cancel” in an execution path of the unit Leader Process
induces three transitions and two auxiliary places, as shown in Fig. 6.4.

The example also illustrates the emulation of communication offers we implemented in
our translator: In the first of the three transitions in the translation of Leader Process,
the auxiliary variable Cancel aux 1 is assigned with the value of Error Code, which cor-
responds to the emission offer in the Atlantif module. In each translation of the other
units, the variable Error i (i ∈ 1..3) is assigned with the value of Cancel aux 1 , which
corresponds to the reception offers in the Atlantif module.

The semantics of Uppaal define that in a synchronization on a gate G, first the assign-
ments on the transition labelled “G!” are evaluated, then the assignments on the transi-
tion labelled “G?”. Thus, the value of Error Code is correctly transmitted to the vari-
ables Error1,Error2,Error3: The first synchronization (labelled “Cancel 1 1”) executes
first the assignment “Cancel aux 1 := Error Code”, then the assignment “Error1 :=
Cancel aux 1”. As Error Code does not change its value during the following two tran-
sitions, Error2 and Error3 also receive the correct value.

6.1. Timed automata 143

6.1.4 Discussion

Impact of the restrictions

The list presented in Section 6.1.2 defining the subset of Atlantif that can be translated
into timed automata is not as restrictive as its length might suggest. First, several of the
restrictions can be avoided by alternative constructs, for instance in the following cases:

• Simultaneous assignments to several variables can always be represented by a suc-
cession of assignments to single variables (possibly using auxiliary variables). For
instance, the variable swap“V1,V2 := V2,V1”we mentioned on page 62 can be defined
by “V ′ := V1; V1 := V2; V2 := V ′”, where V ′ is an auxiliary variable.

• Non-integer time constants can be represented by changing the granularity of time
units, as described in Section 6.1.2 on page 133.

Besides such merely technical restrictions, actual limitations are caused by those restric-
tions applying to offers, to urgent synchronizers, and to must communications within
if actions. None of the examples in Chapter 5 (which intends to explore the expressive
power of Atlantif and provides therefore a broad choice of examples) would be excluded
by the restrictions on offers or on must communications, but two examples apply timing
constraints to urgent synchronizers. In both cases however, the same behaviour could be
produced using must timing constraints instead of urgency.

Therefore, the impact of the restrictions seems reasonably small.

Imprecision problems of the translator

A more serious problem than the restrictions just discussed are those translations that
do not entirely preserve the semantics. This concerns minor technical issues such as not
taking notice of variable resets, but also more complex matters, discussed below:

Multiway synchronization emulation. One of the central ideas of the translator
from Atlantif to Uppaal is the emulation of multiway synchronizations by a chain of
binary synchronizations. Given the restriction of Uppaal to binary synchronizations, the
emulation by such a chain is clearly inevitable, therefore no translation approach could
keep the semantics.

However, we consider the impact of this problem as small. By using the “commited”
location construct provided by Uppaal, the chain of n synchronizations always results in
a succession of n corresponding discrete transitions in the semantic model, such that it
cannot be interrupted by timed transitions nor by discrete transitions with other labels.
Therefore, an obvious analogy exists between the behaviour of the Atlantif module and
the behaviour of its translation.

Note that in some cases the translator may introduce timelocks that do not exist before.
A solution for this inconvenience is sketched below on page 145.

144 Chapter 6. Translating ATLANTIF to graphical models

Paths without communication action and silent synchronizers. Two similar
problems concern transitions labelled with ε (which are eliminated by the Atlantif
semantics but that occur in the translation’s semantics).

The first problem is that our translator produces for each path in a multibranch transition
one transition in a timed automaton, independent of whether there is a communication
action on this path. The Atlantif semantics would normally eliminate paths without
communication actions by the rule (ε-elim) (cf. page 73).

The second problem is that our translator produces for each synchronization at least
one transition in each participating automaton, even if the synchronizer is defined as
silent (the translator treats silent synchronizers like urgent synchronizers). But in the
Atlantif semantics, silent synchronizations are eliminated by the predicate enabled .

The examples of Chapter 5 indicate that silent synchronizers may occur often when an
Atlantif module models e.g., control passages, interleavings of parallel and sequential
behaviour, or exceptions.

In the general case, it is inevitable for a translator to have these problems: Regarding the
first problem, the alternative would be a translator that explores from each discrete state
all successions of multibranch transition paths until one contains a communication. But
then, the number of transitions could not only explode, but even become infinite if paths
without communications are forming a loop. Regarding the second problem, an alterna-
tive translator that respects the elimination would have similar trouble with exploding
numbers of transitions and loops. Moreover, chains of synchronizations can include sev-
eral units, thus we still would be obliged to emulate a translated synchronization chain
by several binary synchronizations.

Therefore, it seems indicated to use a translation approach like the one we proposed, in
spite of the semantic problems. If the Atlantif code satisfies certain conditions, these
imprecisions have no impact on properties expressed in the linear time temporal logic
(LTL−X): This is the case if taking an ε-transition never resolves a choice. For this, it
is sufficient to demand that in each multibranch transitions that contains a path without
gate communication or a path with a gate communication by a silent synchronizer, no
select action may occur.

Possible improvements and extensions

Translation of while actions. There are at least two possible ways to translate while
actions:

First, by translating each multibranch transition path containing a while action not to a
single transition in the resulting TA, but instead to one auxiliary location l (labelled as
“commited”) and three transitions: One transition from the original location of the path to
l, translating the actions occurring before the loop, one transition from l to l, translating
the actions occurring in the loop, and one transition from l to the path’s target, translating
the actions occurring after the loop. Of course, the two last transitions need to have a
guard representing the loop condition.

6.1. Timed automata 145

The inconvenience of such an approach lies in the case of a communication action occurring
after the loop: When no other automaton would be ready to perform the according co-
action, then already the first of the three transitions should not be taken. “Not being ready
to synchronize” however, is not implementable as a boolean condition on a transition.

Therefore, the second way is to translate a path containing a while action as usual
to a single transition, and to translate the loop to an Uppaal assignment of the form
“V0 := F0()”, where V0 is only a dummy variable, and F () is an Uppaal function which
contains a corresponding while loop. An important restriction of this approach is that it
could only be applied if the loop does not contain any wait actions.

Definition of local variables. In our translator, all variables of a given Atlantif
module are translated into global variables of the resulting network of timed automata.
This solution would not be satisfactory if we were to weaken the restriction of unique
variable identifiers, as discussed in Remark 4.15.

In the general case however, it is necessary to translate variables as global, because the
Atlantif semantics provides access to a variable by different units i.e., different timed
automata in the translation may access the same variable. Nevertheless, it could make
sense to translate those variables that are only accessed in a single unit into a local variable
of the TA corresponding to that unit.

Advanced emulation of multiway synchronizations. One inconvenience in our
emulation of multiway synchronization is that the resulting chain of Uppaal synchro-
nizations may start as soon as the first of its synchronizations becomes possible. For
instance, we suppose an Atlantif module containing a synchronization on G of the
units u1, u2, u3, which is emulated by two transitions labelled G 1 1! and G 1 2! in the
automaton Au1 (the translation of u1), one transition labelled G 1 1? in Au2, and one
transition labelled G 1 2? in Au3. If the transition on G 1 2? in Au3 has a guard for-
mula (on clocks and/or on data) which is not satisfied at the beginning of a chain of
synchronizations, then a timelock occurs after the first synchronization.

This section sketches an approach that avoids this by strictly extending the translation
defined above with additional locations, transitions, channels, and priorities. The basic
idea of this approach is to define a “way back” which is automatically taken when a
timelock would occur by our “normal” translator.

Suppose an n-ary synchronization on G (more precisely, we speak in the following about
the ith synchronization set of G, which has the cardinality n > 2). This is translated
as defined in Section 6.1.3: There is one timed automaton containing a chain of auxil-
iary transitions G i 1!, . . . , G i (n− 1)!, beginning in a location s1 and continuing along
auxiliary commited locations AUX G i 2, . . . ,AUX G i n. What we need is a way back
that could start from any auxiliary location. This way back cannot use the given aux-
iliary locations, because then we would not be able to define the direction that must
be taken from such a location on. Thus, we define the auxiliary commited locations
AUX G i 2 back , . . . ,AUX G i (n− 1) back .

146 Chapter 6. Translating ATLANTIF to graphical models

Then, transitions must be defined as follows, using these new locations for the way back:

• For each j ∈ {3, . . . , (n−1)}, we define one transition from the location AUX G i j
to the location AUX G i (j − 1) back , labelled “Back G i (j − 1)!” and without
guards or assignments.

These transitions are used to initiate the way back.

• For each j ∈ {3, . . . , (n − 2)}, we define one transition from AUX G i j back to
AUX G i (j − 1) back , labelled “Back G i (j − 1)!” and without guards or assign-
ments.

These transitions are used to continue along the way back.

• We define one transition from AUX G i 2 back to s1, labelled “Back G i 1!” and
without guards or assignments.

This transition concludes the way back.

• We define one transition from AUX G i 2 to s1, labelled“Back G i 1!”and without
guards or assignments.

This transition is used in case of a blocking in the first auxiliary location, when
initiating and concluding the way back are done in a single step.

The other (n − 1) timed automata participating in the synchronization chain obviously
also need to be extended with auxiliary transitions, with the exception of the automaton
containing the last synchronization. In each of them, for each transition labelled G i j?
(j ∈ 1..(n− 2)) between a location s′1 and a location s′2, we define a transition from s′2 to
s′1, labelled “Back G i j?” and without guards or assignments.

As it is clear from the preceding definitions, our extension needs to define (n − 2) new
auxiliary channels, named Back G i 1, . . . ,Back G i (n − 2). Furthermore, we must
ensure that the way back can only be initiated if the synchronization chain is actually
blocked. Therefore, a prioritiy has to be given to the normal continuation of the chain
over a transition leading back. Uppaal provides the possibility of defining priorities on
channels. Thus, we define for all j ∈ 1..(n− 2): G i (j + 1) > Back G i j.

When we apply these modifications (which do not yet consider clocks and discrete vari-
ables) to the Example 6.1 on page 141, we obtain a translation as shown in Fig. 6.5.
Furthermore (and not visible in Fig. 6.5), the channel Cancel 1 2 has priority over the
channel Back Cancel 1 1, and Cancel 1 3 has priority over Back Cancel 1 2.

During the execution of a synchronization chain, clocks are reset and discrete variables
are assigned. But if we take the way back before finishing the chain, we obviously want
the clocks and variables to have exactly the values they had before starting the chain.
Regarding the discrete variables, we can preceed an assignment to a variable V by another
assignment “Backup V := V ”, where Backup V is an auxiliary variable only defined for
this aim; then a corresponding transition in the inverse direction would have the inverse

6.1. Timed automata 147

AUX_Cancel_1_2_back

in Process3:

in Process2:

in Process1:

Recovery

AUX_Cancel_1_3

AUX_Cancel_1_2

Processing

in Leader_Process:

Back_Cancel_1_2 ?

Back_Cancel_1_1 ?

Back_Cancel_1_1 !

Back_Cancel_1_1 !

Back_Cancel_1_2 !

Cancel_1_3 ?

Cancel_1_2 ?

Cancel_1_1 ?

Cancel_1_3 !

Cancel_1_2 !

Cancel_1_1 !

Figure 6.5: Translation fragments in Uppaal TAs – advanced emulation

assignment “V := Backup V ”, giving V back its old value. Note that this is not necessary
for the assignments of auxiliary variables that are used in the emulation of offers.

A similar approach cannot be used for clocks, because the Uppaal TA dialect does not
provide the possibility of assigning to a clock the value of another clock (as it is possible
e.g., in Kronos). Instead, assignments that reset clocks to zero have to be made during
the last synchronization of the chain i.e., after the last possibility to initiate a way back.
For this, it is necessary to define all clocks globally (which is possible in Uppaal).

With these modifications to clock and variable assignments, the final version of the trans-
lation from Example 6.1 would be as shown in Fig. 6.6.

AUX_Cancel_1_2_back

in Process3:

in Process2:

in Process1:

Recovery

AUX_Cancel_1_3

AUX_Cancel_1_2

Processing

in Leader_Process:

Back_Cancel_1_2 ?
Error2 = Error2_Backup

Back_Cancel_1_1 ?
Error1 = Error1_Backup

Back_Cancel_1_1 !

Back_Cancel_1_1 !

Back_Cancel_1_2 !

Cancel_1_3 ?
Error3 = Cancel_aux_1

Cancel_1_2 ?
Error2_Backup = Error2,
Error2 = Cancel_aux_1

Cancel_1_1 ?
Error1_Backup = Error1,
Error1 = Cancel_aux_1

Cancel_1_3 !

CLOCK_Leader_Process = 0,
CLOCK_Process1 = 0,
CLOCK_Process2 = 0,
CLOCK_Process3 = 0

Cancel_1_2 !

CLOCK_Leader_Process >= 10

Cancel_1_1 !

Cancel_aux_1 = Error_Code

Figure 6.6: Translation fragments in Uppaal TAs – advanced emulation with clocks and
discrete variables

A simpler solution? To solve the problem of synchronization chains that may timelock,
instead of the solution we just sketched, one might think that it would be a simpler
approach to combine all constraints in one of the transitions for the first synchronization.
This is not possible, because synchronization chains are not statically linked to certain
transitions, but may take different transitions in each synchronizing TA. Those transitions

148 Chapter 6. Translating ATLANTIF to graphical models

may of course have different guard formulas, therefore a combined guard formula for one
chain can not be determined statically.

Another idea considered but discarded was to define for each possible chain a global
boolean variable that takes the value true if and only if all guard formulas are satisfied,
and then one transition in the first synchronization has a guard depending on this variable.
Such a solution is also not practicable, because the satisfaction of guard formulas may
change with the elapsing of time. The TA model cannot assign a new value to a discrete
variable after the elapsing of time, only during discrete transitions. Therefore, such a
variable could not be realized.

6.2 Time Petri nets

6.2.1 Motivation and principles

Choosing TINA-TPN as target model

As described in Section 3.2.3, several tool implementations exist that perform simulation
and/or formal verification on the different timed extensions of Petri nets. As in the case
of timed automata (cf. Section 6.1.1), each of these tools defines a different dialect for its
input language. Among these possible targets, we chose to translate from Atlantif to
the TPN dialect of the Tina tool [16] for several reasons:

• Among the extensions of Petri nets, Tina uses time Petri nets . As explained on
page 30, this approach is the most suitable to express timing aspects.

• The TPN dialect used in Tina has a rich expressive power. It provides several
constructs that will be used by the translator, such as

– inhibitor arcs,

– priorities on transitions, and

– data manipulation.

• Tina is a popular, widely known tool, which is an important condition to ensure
tool maintenance in the future. Other tools operating on time Petri nets that were
created during the last few years are no longer maintained (e.g., Ina [117]).

However, a translator from Atlantif (at least without data) to other TPN dialects is
possible in principle and should not be too different from the one to Tina, if the other
tools also provide inhibitor arcs and priorities on transitions. Clearly, additional features
used in other tools like the reset arc of the Roméo TPN dialect [93] could also improve
the translator.

6.2. Time Petri nets 149

The TINA TPN dialect

The definition of a TPN in Tina is a strict extension of Definition 3.9 i.e., a Tina-TPN is
a 11-tuple (P, T, in, out , inh, test , m0, lab, Is,Pr , (VP ,Prec,Ac, ρ0)) such that the following
is satisfied.

• (P, T, in, out , m0, lab, Is) is a TPN as in Definition 3.9.

• inh and test are mappings from T to subsets of P , indicating the inhibitor-places
and the test-places of a transition.

Graphically, for each tuple (p, t) such that p ∈ inh(t), we draw between p and t an
arc, whose end pointing to t has a small circle.

• Pr ⊆ T × T is a strict partial order relation on the transitions21.

Graphically, for each (t1, t2) ∈ Pr (i.e., t1 has priority over t2), we draw a directed
arc with a dotted line from t1 to t2.

• The 4-tuple (VP ,Prec,Ac, ρ0) extends the TPN into a Predicate-/Action-TPN . VP

is a set of (global) variables. We write RP for the set of all possible stores (stores
are defined as for Atlantif, cf. Section 4.3.2) on VP .

Then the mapping Prec : T → (RP → {true, false}) defines for each transition
a predicate on the values of VP . Intuitively, this establishes a precondition on the
variable values that has to be satisfied in order to take this transition.

The mapping Ac : T → (RP → RP) defines for each transition a variable up-
date. Intuitively, each transition is associated with a function that may redefine the
variable values depending on the former values.

ρ0 is the initial store on VP .

Note that Tina also provides other TPN-extensions, notably stopwatches and weighted
inhibitor- and test-arcs. But not all extensions are supported by all tools of the Tina
toolbox, and we need not detail features we will not use.

Semantics. A time Petri net with inhibitor arcs, test arcs, priorities, and predicate-
/action-transitions basically extends the semantics definition given in Section 3.2.3. There-
fore, in the following we will give the entire definition and indicate the extensions with
grey background.

The semantics of a net (P, T, in, out , inh, test , m0, lab, Is,Pr , (VP ,Prec,Ac, ρ0)) is defined
by a Tlts of the form (Σ, A, IR≥0,→, (m0, I0)), where Σ,→ are the smallest sets satisfying:

21Note that in textual as well as in graphical definitions of Tina-TPNs, this relation is only partly
defined, for convenience reasons: For a given relation Pr ′, Pr is defined as the smallest partial order
containing Pr ′.

150 Chapter 6. Translating ATLANTIF to graphical models

• The states of Σ are triples of the form (m, I, ρ), where m is a marking (i.e., a multi-
set in P), I is a partial function from P to I, and ρ is a store on VP . The domain
of I is given by the enabled transitions i.e., the transitions r such that the following
holds:

– in(r) ⊆ m

– inh(r) ∩m = ∅

– test(r) ⊆ m

– (Prec(r))(ρ) = true

• (m0, I0, ρ0) ∈ Σ, where I0 is the restriction of Is to the enabled transitions.

• Timed transition: If (m, I) ∈ Σ, t ∈ IR≥0, and for each r ∈ dom(I), t is in or below

I(r), then (m, shift(I,−t)) ∈ Σ and (m, I)
t−→ (m, shift(I,−t)).

• Discrete transition: If

– (m, I) ∈ Σ,

– r ∈ T enabled with m and 0 ∈ I(r), and

– for all r′ ∈ (T \{r}) enabled with m and 0 ∈ I(r), the predicate Pr(r′,r) does
not hold,

then (m′, I ′) ∈ Σ and (m, I)
lab(r)−−−→ (m′, I ′), where m′ = (m \ in(r)) ∪ out(r) and I ′

is defined by I ′(r′) = I(r′) if r′ ∈ dom(I) \ {r}, otherwise I ′(r′) = Is(r
′).

Note that, by definition of dom(I), the elapsing of time can only be blocked by enabled
transitions at the end of their firing interval. If, for instance, the predicate (i.e., the
data condition) of transition t1 in the net displayed in Fig. 6.7 is not satisfied for the
current store ρ i.e., (Prec(t1))(ρ) = false, then time can elapse beyond two time units,
and t2 might later be fired, which would not be possible in a standard TPN without
preconditions.

[0, 2] [3,∞[

s

t1 t2

Figure 6.7: Example for a TPN extended with predicate-/action-transitions

In a similar way, priorities apply to a pair of transitions only if both are enabled and
within their firing interval.

6.2. Time Petri nets 151

Implementation of predicate-/action-transitions in TINA. Important for our
translator, the Tina tool implements predicate-/action-transitions by C code, in a file
separate from the TPN (including the inhibitor and test arcs and the priorities) itself.
The 4-tuple (VP ,Prec,Ac, ρ0) is represented as follows:

• The set VP corresponds to a single variable of a structured type “key”, with one field
for each V ∈ VP .

• The mapping Prec corresponds to one C function for each Prec(t) (t ∈ T), with a
single input parameter of type key and a return value of type bool . For those t ∈ T
where Prec(t) is constantly true (i.e., the transition does not have a condition), no
C functions need to be defined.

• The mapping Ac corresponds to one C function for each Ac(t) (t ∈ T), with a single
input parameter of type key and also a return value of type key . For those t ∈ T
where Ac(t) is the identity function (i.e., the transition does not manipulate data),
no C functions need to be defined.

• The initial store ρ0 corresponds to one C function without parameters and a return
value of type key .

Problems to overcome

The following paragraphs list the two most important aspects of the Atlantif constructs
for which no direct translation to Tina exists. Instead, emulations had to be implemented.
Both problems concern aspects related to the Atlantif timed structures; the concurrency
related constructs did not raise similar difficulties.

Composition of time Petri nets. Necessarily, our translator will compose Petri nets
representing units to a Petri net representing a whole module. In the untimed case, the
composition of Petri nets consists of carrying over all places and calculating the product
of transitions for each label i.e., if the first net contains two transitions r1 and r2 with
the same label G, and the second net contains one transition r3 labelled G (as well as
transitions with other labels), then the composition contains two (2 ∗ 1 = 2) transitions
labelled G: One with in-places in(r1)∪in(r3) and out-places out(r1)∪out(r3), and another
one with in-places in(r2)∪ in(r3) and out-places out(r2)∪ out(r3). Fig. 6.8 shows a small
example for such a composition.

A composition of time Petri nets is not a trivial extension of the untimed case, given that
firing intervals in T-TPN (cf. Section 3.2.3 on page 30) already represent a concurrent
structure. For instance, suppose we want to compose the two transitions shown in Fig. 6.9
(i) (where “|[G]|” means that the composition is defined by a synchronization on G;
following the notation borrowed from Lotos).

One could intuitively think that Fig. 6.9 (ii) is a possible solution for such a composition,
where just the intersection of the two intervals [3,∞[and [0, 5] is calculated for a composed

152 Chapter 6. Translating ATLANTIF to graphical models

s1

G

s2

G

s3

s4

s5

G H H

s1

s2

s3

s4

s5

H H

G

Gr1

r2

r3

r1,3

r2,3

Figure 6.8: Example for the composition of untimed Petri nets

[5, 5][3,∞[[0,∞[
G

s1 s2

(iii)

G

s1 s2s2

G
[0, 5]

s1

G
[3,∞[

(i) (ii)

|[G]|
[3, 5]

Figure 6.9: Composition of time Petri nets (sketch)

transition. It is easy to see that such a construction would only be correct if tokens in s1

and in s2 always arrive at the same time. For instance, if a token arrives in s2 six time
units before a token arrives in s1, then a synchronization should not be possible. But the
solution of (ii) would allow a synchronization after three more time units, which is wrong.

Generally speaking, the problem is that firing intervals in T-TPN (cf. Section 3.2.3 on
page 30) as they are used in Tina already represent a concurrent structure, which differs
from the approach of Atlantif (cf. Section 3.5.1 on page 44). It is therefore neces-
sary to introduce auxiliary unlabelled transitions and auxiliary places that represent time
constraints of the unit level.

This intuition has been formalized in [20], where the authors prove in their Theorem 1
that a composition of several TPNs with priorities is possible if each of them satisfies the
two following conditions:

1. No labelled transition has a firing interval other than [0,∞[.

2. No priority relation may be defined between two labelled transitions.

Therefore, we have to find a solution for a translation of units that satisfies these condi-
tions; the result is sketched in Fig. 6.9 (iii).

Expressing weak deadlines by strong deadlines. In Tina, the firing intervals have
strong deadlines (cf. Section 3.5.1 on page 46), whereas Atlantif uses both strong and

6.2. Time Petri nets 153

weak deadlines. The problem of correctly translating Atlantif constructs with weak
deadlines is solved at the same time as the problem of composition, where constructions
using priorities and inhibitor arcs on the additional unlabelled transitions allow to express
weak as well as strong deadlines.

Intuition of the translation approach

An Atlantif module is translated into a single TPN. To this end, each unit is translated
into a preliminary TPN, then all TPNs are composed according to the synchronizers.

In each unit, each discrete state s is mapped to a TPN place (also named s) and the
corresponding action act(s) is decomposed into several TPN transitions, one for each exe-
cution path and with a label corresponding to the communication action of this execution
path if any.

Time constraints are represented by auxiliary places and unlabelled transitions, while the
labelled transitions themselves are not constrained in time. The idea for such a separation
is taken from [20]. Starting and stopping by synchronizers is translated by modifications
in the out-places of the according transitions.

Note that all TPN obtained by the translation of units are 1-bound i.e., none of them can
have a place containing more than one token.

6.2.2 Restrictions

Our Atlantif to Tina translator only works for a subset of Atlantif. The reasons are
similar to those described in Section 6.1.2 for Uppaal. However, the subset of Atlantif
that can be translated to Tina-TPNs is different from the subset that can be translated
to Uppaal, as the following list shows:

General restrictions

• Only modules with dense time domains are translated, because time Petri nets in
the Tina dialect use dense time. Translating an untimed Atlantif module would
however be possible – simply by a “time” Petri net without firing intervals.

• Function and type definitions have only a limited translation: The Atlantif code
may use external declarations in C code (cf. the syntax definition in Appendix C), in
which case these declarations are simply copied. Otherwise, variables are limited to
the types int and bool. However, within the limits of what can be expressed in C,
user-defined types and functions of Atlantif could also be translated. Very similar
translations already exists, for instance the Traian tool for Lotos NT [116].

154 Chapter 6. Translating ATLANTIF to graphical models

Actions

• Non-deterministic assignments are not supported, because, in general, they would
induce an infinite number of transitions, which is not feasible. A translation would
be possible if the variable type(s) and/or the condition limited the number of possible
assigments to be finite.

• Each timed expression E (i.e., E occurring in a time window or as the parameter of
a wait action) must be an integer constant (although non-integer constants could
also be accepted, using the same argument as in Section 6.1.2).

• Time windows may only be intervals. A translation of intersections (“and”) would
be possible without problem, but given the restriction to constant timed expressions,
the usage of conjunctions makes no sense (because the intersection of two intervals
could be expressed by a single interval in the first place). A translation of unions
(“or”) would be possible, using the decompositions described in Proposition 4.6 on
page 97.

• For the same reasons as given in Section 6.1.2, an execution path of a multibranch
transition must not contain a condition expression E such that use(E) contains a
variable V that occurs as a reception offer “?V ” earlier on this execution path.

• while loops must not contain wait actions. This restriction is due to the fact that
timed constraints must be constants, whereas the number of cycles taken in a while
loop is clearly variable. It could be partially lifted by decomposing execution paths
with while loops into several transitions.

• In an execution path, there must not be a case or an if action after a while loop,
because such a loop could modify variables on which the condition of a case or an
if action depends. In this case, it would not be possible to statically calculate a
precondition for the execution path.

• case actions are only translated if all patterns are integer constants. Again, a more
complete translation would not make theoretical difficulties.

• Offers have to have one of the forms “?V ”, “?any T”, “!E”. The translation of
offers with constructor patterns is probably difficult, but possible when user-defined
types of Atlantif are translated to Tina. A translation of offers of the form
“?(P where E)” seems also possible by extending the conditions of translated
transitions.

Synchronizers

• For each synchronizer G, all offer lists of communications on G must match in
type and cardinality. Releasing this restriction would be possible, but is not yet
implemented in the translator.

6.2. Time Petri nets 155

• For each synchronization set U ∈ sync(G) of a synchronizer G with offer cardinality
n, for each i ∈ 1..n, there must be exactly one unit u ∈ U in which the ith offer of
every communication by G is an emission offer.

This restriction ensures that in each synchronization on an offer, the synchroniza-
tion value can be calculated deterministically. Otherwise, it would be necessary to
generate each possible value, which raises the same problems as a non-deterministic
assignment.

• Asynchronous termination cannot be translated i.e., for each synchronizer G, for
each u ∈ stop(G), there must be u ∈ U for each U ∈ sync(G).

This restriction is not strictly necessary, but a translation of asynchronous termina-
tions would require an exponential number of auxiliary transitions.

6.2.3 Definition of the translator

We suppose an Atlantif module M that satisfies the static semantics constraints of
Chapter 4 and the restrictions listed in Section 6.2.2. As in Chapter 4, we note G for the
set of synchronizers/gates, V for the set of variables, and U = {u1, . . . , um} for the set of
units.

Translation of one unit into one time Petri net

This section defines the translation of a unit u to a TPN Ru. We suppose the discrete
states of u to be s0, . . . , sm. The construction of Ru is performed in two steps.

Step one: The TPN main structure. We begin by defining the function

transp : A× (Su×Su×L1× I×Bool×E ×A)→ P((Su×Su×L1× I×Bool×E ×A)),
which evaluates the execution paths of multibranch transitions similar to the function
trans defined for timed automata. The sets A, E contain all actions and expressions
respectively that can be constructed from the Atlantif grammar (cf. Table 4.3). The
elements (I, O, l, w, x, E, A) of (Su × Su × L1 × I × Bool × E × A) each represent one
execution path of a multibranch transition, from which we will derive one TPN transition:
I and O will correspond to the input- and output-places, l to the label, w to the timing
constraint, x to the semantic modality (true for must and false for may), E to the
path’s condition, and A to the actions concerning data manipulation. We will also simply
write Π for these 7-tuples. transp is formally defined by cases on its first argument, as
shown in Fig. 6.10.

Note that transp is defined only for those actions accepted by our translator (cf. Sec-
tion 6.2.2). In particular, it does not cover nondeterministic assignments and communi-
cation actions with composed time windows.

The auxiliary function update exp ′ is almost identical to the function update exp in the
case of timed automata (cf. Section 6.1.3): Instead of list of assignments, the second

156 Chapter 6. Translating ATLANTIF to graphical models

transp(null, Π)
def
= {Π}

transp(V0, . . . ,Vn := E0, . . . ,En, (I, O, l, w, x, E, A))
def
=

{(I, O, l, w, x, E, A;V0, . . . ,Vn := E0, . . . ,En)}
transp(reset V0, . . .,Vn, Π)

def
= {Π}

transp(wait n, (I, O, l, w, x, E, A))
def
= {(I, O, l, shift(w, n), x, E, A)}

transp(G O1 . . . On must in W, (I, O, l, [m, m], x, E, A))
def
=

{(I, O, G, shift(W, m), true, E, A;G O1 . . .On)}
transp(G O1 . . . On may in W, (I, O, l, [m, m], x, E, A))

def
=

{(I, O, G, shift(W, m), false, E, A;G O1 . . . On)}
transp(to s′, (I, O, l, w, x, E, A))

def
= {(I, {s′}, l, w, x, E, A)}

transp(stop, (I, O, l, w, x, E, A))
def
=

{
{(I, ∅, l, w, x, E, A)} if l 6= ε

∅ otherwise

transp(A1;A2, Π)
def
= {transp(A2, (I, O, l, w, x, E, A)) | (I, O, l, w, x, E, A) ∈ transp(A1, Π), O = ∅} ∪
{(I, O, l, w, x, E, A) ∈ transp(A1, Π) | O 6= ∅}

transp(select A0[] . . .[]An end, Π)
def
=

⋃
i∈0..n transp(Ai, Π)

transp(case E0 is P0->A0| . . .|Pn->An end, (I, O, l, w, x, E, A))
def
=⋃

i∈0..n transp(Ai, (I, O, l, w, x, Ẽ, A))

(where Ẽ = E ∧ (update exp′(E0, A) = Pi)
∧

j∈0..(i−1) ¬update exp′(E0, A) = Pj)

transp(if E0 then A1 else A2 end, (I, O, l, w, x, E, A)))
def
=

transp(A1, (I, O, l, w, x, (E ∧ update exp′(E0, A)), A)) ∪
transp(A2, (I, O, l, w, x, (E ∧ ¬update exp′(E0, A)), A))

transp(while E0 do A end, (I, O, l, w, x, E, A))
def
= {(I, O, l, w, x, E, A;while E0 do A end)}

Figure 6.10: The mapping transp

6.2. Time Petri nets 157

argument is a sequential composition of assignments, communication actions, and loops.
Because of the restrictions listed in Section 6.2.2, the latter two can be ignored. Therefore,
the update of an expression can be calculated as above in update exp.

With the function transp, it is possible to define the set

Tu
def
=

⋃
i∈0..m transp(act(si), ({si}, ∅, ε, [0, 0], false, true,null)),

which corresponds to all possible execution paths in unit u. Then, the time Petri net
R′

u = (P ′
u, T

′
u, in

′
u, out

′
u, m0

′
u, lab

′
u, Is

′
u) is defined as follows (cf. Definition 3.9):

• The set of places P ′
u contains one element for each discrete state among s0, . . . , sm,

using the same identifier.

• The set of transitions T ′
u contains one element tΠ for each element Π ∈ Tu.

• The mappings in ′
u, out ′u, and lab ′

u are defined by in ′
u(tΠ)

def
= I, out ′u(tΠ)

def
= O, and

lab′u(tΠ)
def
= l respectively (with Π = (I, O, l, w, x, E, A)).

The value of Is
′
u(tΠ) depends on the value of l: If l 6= ε, then Is

′
u(tΠ)

def
= [0,∞[,

otherwise Is
′
u(tΠ)

def
= w.

• If u is among the initial units of M , then the multi-set m0
′
u equals {s0}; otherwise

it is empty.

Clearly, in the general case, the TPN R′
u does not correctly represent the timed behaviour

of the unit u′, because it always uses strong deadlines (cf. Section 3.5.1), even if u′ does
not. For this reason, we also continue to refer to the set Tu, which contains information
about u that is not yet included in the TPN.

Step two: The TPN auxiliary structures. The TPN Ru is obtained by extending
R′

u with additional places and transitions with respect to two objectives:

• Emulation of weak deadlines

• Externalizing firing intervals i.e., expressing time constraints with auxiliary transi-
tions and thus enabling the labelled transitions to be defined with intervals [0,∞[.

As we indicated above (page 151), the second objective will be essential for the com-
position. The construction of auxiliary places and transitions is done for each element
Π = (I, O, l, w, x, E, A) ∈ Tu such that l 6= ε22. Depending on w (the timing constraint,
which has the form of an interval) and x (the semantic modality), six basic cases have to
be distinguished (supposing I = {s} with s ∈ P ′

u):

22Those elements with l = ε do not induce auxiliary transitions. By construction, w = [m, m] with
m ∈ IN, and by definition of R′

u, Is
′
u(tΠ) = w

158 Chapter 6. Translating ATLANTIF to graphical models

1. w = [0,∞[, x arbitrary:

Thus, no time restriction applies, and therefore, no auxiliary constructs have to be
created.

2. w = [n′,∞[, n′ > 0, x arbitrary:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time window “[m,...[” (where
n′ = n+m). In order to externalize this constraint, we define a new place s1, which
always gets a token at the same time as s gets a token (i.e., each transition with s
as an out-place gets also s1 as an out-place), and a new unlabelled transition t with
the firing interval [n′,∞[, s1 as in-place and no out-places. Moreover, transition tΠ
receives s1 as inhibitor-place (cf. Section 6.2.1). Schematically, this case is shown in
Fig. 6.11.

[0,∞[[n + m,∞[

s s1

s′

G

Figure 6.11: Case 2: schema for “wait n; G may in [m,...[” (with n + m > 0)

It can be seen that the inhibitor arc prevents transition tΠ from firing for at least
n′ time units.

3. w =]n′,∞[, x arbitrary:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time window “]m,...[” (where
n′ = n + m). In order to externalize this constraint, similarly to the case before, we
define a new place s1, which always gets a token at the same time as s gets a token,
and a new unlabelled transition t with the firing interval]n′,∞[, s1 as in-place and
no out-places. Moreover, transition tΠ receives s1 as inhibitor-place. Schematically,
this case is shown in Fig. 6.12.

[0,∞[]n + m,∞[

s s1

s′

G

Figure 6.12: Case 3: schema for “wait n; G may in]m,...[” (with n + m ≥ 0)

6.2. Time Petri nets 159

4. w = [0, k], x = false (may modality):

This case applies, for instance, if the corresponding execution path contains no wait
action and a communication with a time constraint “may in [0,k]”. In order to
externalize this constraint, we define a new place s1, which always gets a token at
the same time as s gets a token, and a new unlabelled transition t with the firing
interval]k,∞[, s1 as in-place and no out-places. Moreover, transition tΠ receives s1

as in-place and a priority (cf. Section 6.2.1 on page 149) lower than t. Schematically,
this case is shown in Fig. 6.13.

[0,∞[]k,∞[

s s1

s′

G

Figure 6.13: Case 4: schema for “G may in [0,k]” (with k ≥ 0)

It can be seen that transition tΠ can only be fired during k time units; afterwards
the priority hinders tΠ from being fired until t is fired, and then tΠ cannot be fired
because there is no token in s1. Note that time elapsing is never blocked in this
construction, thus correctly emulating the weak deadline.

5. w = [0, k[, k > 0, x = false (may modality):

This case applies, for instance, if the corresponding execution path contains no wait
action and a communication with a time constraint “may in [0,k[”. In order to
externalize this constraint, similarly to the case before, we define a new place s1,
which always gets a token at the same time as s gets a token, and a new unlabelled
transition t with the firing interval [k,∞[, s1 as in-place and no out-places. Moreover,
transition tΠ receives s1 as in-place and a priority lower than t. Schematically, this
case is shown in Fig. 6.14.

[0,∞[[k,∞[

s s1

s′

G

Figure 6.14: Case 5: schema for “G may in [0,k[” (with k > 0)

6. w = [0, k], x = true (must modality):

This case applies, for instance, if the corresponding execution path contains no wait
action and a communication with a time constraint “must in [0,k]”. In order to

160 Chapter 6. Translating ATLANTIF to graphical models

externalize this constraint, we define a new place s1, which always gets a token at the
same time as s gets a token, and a new unlabelled transition t with the firing interval
[k, k], s1 as in-place and no out-places. Moreover, t receives a priority not only lower
than tΠ, but lower than to all other auxiliary transitions of tΠ. Schematically, this
case is shown in Fig. 6.15.

[0,∞[[k, k]

s s1

s′

G

Figure 6.15: Case 6: schema for “G must in [0,k]” (with k ≥ 0)

It can be seen that as soon as k time unit have elapsed, t has reached its limit and
blocks the elapsing of time. If tΠ is enabled, the priorities hinder however t from
being fired, which is intended, because firing t would make it impossible to fire tΠ.
But this would be semantically incorrect, because time did not elapse beyond the
time window of the communication, thus firing tΠ still has to be possible.

If, on the other hand, tΠ is not enabled, then t can be fired, and time can continue
to elapse.

In [20], priorities are used to represent weak deadlines by time Petri nets. The solutions
given in the above list are partially inspired from this approach.

In an excution path with a communication action, either one of the basic cases or a
combination among them applies. The following such combinations are possible:

• Case 2 combined with case 4: w = [n + m, n + k] (where n + m > 0, k ≥ 0),
x = false:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time constraint “may in [m,k]”.
Then we create two auxiliary places s1, s2, which always get a token at the same time
as s gets a token, one new unlabelled transition t with the firing interval [n+m,∞[,
s1 as in-place, and no out-places, and another new unlabelled transition t′ with the
firing interval]n + k,∞[, s2 as in-place, and no out-places. Moreover, tΠ receives
s1 as inhibitor-place, s2 as in-place, and a priority lower than t′. Schematically, this
case is shown in Fig. 6.16.

• Case 3 combined with case 4: w =]n+m, n+k] (where n+m ≥ 0, k ≥ 0), x = false:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time constraint “may in]m,k]”.
Then we create two auxiliary places s1, s2, which always get a token at the same time

6.2. Time Petri nets 161

[n + m,∞[

s1

[0,∞[

s

s′

G

s2

]n + k,∞[

Figure 6.16: Schema for “wait n; G may in [m,k]” (with n + m > 0, k ≥ 0)

as s gets a token, one new unlabelled transition t with the firing interval]n+m,∞[,
s1 as in-place, and no out-places, and another new unlabelled transition t′ with the
firing interval]n + k,∞[, s2 as in-place, and no out-places. Moreover, tΠ receives s1

as inhibitor-place, s2 as in-place, and a priority lower than to t′.

• Case 2 combined with case 5: w = [n + m, n + k[(where n + m > 0, k > 0),
x = false:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time constraint “may in [m,k[”.
Then we create two auxiliary places s1, s2, which always get a token at the same time
as s gets a token, one new unlabelled transition t with the firing interval [n+m,∞[,
s1 as in-place, and no out-places, and another new unlabelled transition t′ with the
firing interval [n + k,∞[, s2 as in-place, and no out-places. Moreover, tΠ receives s1

as inhibitor-place, s2 as in-place, and a priority lower than to t′.

• Case 3 combined with case 5: w =]n+m, n+k[(where n+m ≥ 0, k > 0), x = false:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time constraint “may in]m,k[”.
Then we create two auxiliary places s1, s2, which always get a token at the same time
as s gets a token, one new unlabelled transition t with the firing interval]n+m,∞[,
s1 as in-place, and no out-places, and another new unlabelled transition t′ with the
firing interval [n + k,∞[, s2 as in-place, and no out-places. Moreover, tΠ receives s1

as inhibitor-place, s2 as in-place, and a priority lower than to t′. Schematically, this
case is shown in Fig. 6.17.

]n + m,∞[

s1

[0,∞[

s

s′

G

s2

[n + k,∞[

Figure 6.17: Schema for “wait n; G may in]m,k[” (with n + m ≥ 0, k > 0)

• Case 2 combined with case 6: w = [n+m, n+k] (where n+m > 0, k ≥ 0), x = true:

162 Chapter 6. Translating ATLANTIF to graphical models

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time constraint “must in [m,k]”.
Then we create two auxiliary places s1, s2, which always get a token at the same time
as s gets a token, one new unlabelled transition t with the firing interval [n+m,∞[,
s1 as in-place, and no out-places, and another new unlabelled transition t′ with the
firing interval [n + k, n+ k], s2 as in-place, and no out-places. Moreover, tΠ receives
s1 as inhibitor-place, s2 as in-place, and t′ a priority lower than to tΠ and to t.
Schematically, this case is shown in Fig. 6.18.

[n + m,∞[

s1

[0,∞[

s

s′

G

s2

[n + k, n + k]

Figure 6.18: Schema for “wait n; G must in [m,k]” (with n + m > 0, k ≥ 0)

• Case 3 combined with case 6: w =]n+m, n+k] (where n+m ≥ 0, k ≥ 0), x = true:

This case applies, for instance, if the corresponding execution path contains an
action “wait n” before a communication with a time constraint “must in]m,k]”.
Then we create two auxiliary places s1, s2, which always get a token at the same time
as s gets a token, one new unlabelled transition t with the firing interval]n+m,∞[,
s1 as in-place, and no out-places, and another new unlabelled transition t′ with the
firing interval [n + k, n+ k], s2 as in-place, and no out-places. Moreover, tΠ receives
s1 as inhibitor-place, s2 as in-place, and t′ a priority lower than to tΠ and to t.

Optimisation. Clearly, the multibranch transition of a discrete state s can induce up
to 2 ∗ n auxiliary places and transitions, with n being the number of execution paths.
Therefore, it makes sense to implement a simple optimisation: If two paths both induce
an auxiliary transition with the same time constraint, then they can share a single auxiliary
transition and its in-place. This is indeed a realistic case e.g., it applies for the state Low
of unit Lamp in Example 4.1 on page 55. Schematically, this case is shown in Fig. 6.19
(representing the action “select G1 may in [0,m[[] G2 may in [m,...[end select”
without optimisation) and in Fig. 6.20 (representing the same action with optimisation).

From the beginning, the transition labelled “G1” can be fired, but after m time units,
this becomes impossible, because of the priority for the auxiliary transition now firable.
Firing the auxiliary transition enables the transition labelled “G2”, thus the behaviour is
represented correctly.

Emptying. The definition of auxiliary transitions is still not completely correct, as the
following example shows:

6.2. Time Petri nets 163

G1
[0,∞[

s

s′

s2s1

[m,∞[[m,∞[

s′′

G2
[0,∞[

Figure 6.19: Translation for branching action (not optimized)

[m,∞[

s′′

G2
[0,∞[

G1
[0,∞[

ss1

s′

Figure 6.20: Optimization for the translation of Fig. 6.19

Example 6.2. Consider an Atlantif unit modelling a sender that consecutively sends
messages with four to less than ten time units elapsing between two emissions. If a message
is not sent, an error is signalled:

unit Irregular Sender is
from Ready

select Send in [4,10[; to Ready
[] Error must in [10,10]; stop end select

end unit

According to the preceding schemas, this unit translates to a TPN as shown in Fig. 6.21.

[10,∞[[0,∞[
Send

Ready2Ready

[4,∞[

Ready1

[10, 10]

Ready3

Error

Figure 6.21: Translation for unit Irregular Sender (wrong)

We suppose the following finite run: After an elapsing of five time units, the transition
below the place Ready1 is fired (consuming the token in Ready1). Directly afterwards

164 Chapter 6. Translating ATLANTIF to graphical models

(without time elapsing), the transition labelled “Send” is fired. This consumes the tokens
in Ready and in Ready2, and creates one new token each in Ready, Ready1, Ready2, and
Ready3. Thus, Ready3 then contains two tokens, which is not intended.

The example shows that it is necessary to empty all auxiliary places that might still
have a token after firing a transition corresponding to an execution path. Implementing
this is very straightforward, but necessitates the introduction of several more auxiliary
places, transitions, and priorities. We describe this with our example and a more general
intuition.

In the example, after the transition labelled“Send”, we add a new out-place. Then we must
distinguish between the cases where the token in Ready3 has or has not been consumed.
For both cases, we define a new transition that consumes the token in the new out-place
and either one token from Ready3 or not, and we give priority to the consumption. Both
new transitions have the out-places that belonged before to the transition labelled “Send”.
This correction is shown in Fig. 6.22.

[10,∞[[0,∞[
Send

Ready2Ready

[4,∞[

Ready1

[10, 10]

Ready3

Error

[0, 0] [0, 0]

Ready out 1

Figure 6.22: Translation for unit Irregular Sender (corrected)

More generally, if a discrete state s allows n execution paths, represented by Π1, . . . , Πn ∈
Tu, then for each i ∈ 1..n, the following has to be done:

• One new place s out i is created, which becomes the only out-place of the transition
tΠi

(instead of a set of out-places Oi as defined before).

• Let X be the set of auxiliary places created for the time constraints of the paths
Π1, . . . , Πi−1 and Πi+1, . . . , Πn (except those also used for Πi, following the above
optimisation). Then for each Y ⊆ X, one new unlabelled transition is created,
with in-places Y ∪ s out i, out-places Oi, and firing interval [0, 0]. Moreover, if
Y ⊂ Y ′ ⊆ X, then the new transition created for Y ′ has priority over the transition
created for Y (which always ensures that the transition that removes all tokens is
fired).

6.2. Time Petri nets 165

A more formal definition of the second step, including the optimisation and the emptying,
is provided in the Appendix A.2.1.

Expressions. Expressions can occur either as timed expressions or in conditions, as-
signments, and offers. By the restrictions (cf. Section 6.2.2), timed expressions are always
integer constants. The other kinds of expressions all concern aspects of data manipulation,
which, as already indicated, will be represented by C code.

Therefore, as in the translator to Uppaal (cf. Section 6.1.3), the translation of expressions
only concerns trivial syntactical aspects and is therefore not detailed.

Translation of one module into one time Petri net

The TPN RM = (P, T, in, out , inh, test , m0, lab, Is,Pr , (VP ,Prec,Ac, ρ0)) is defined as
follows:

• The set of places P is the union of all sets of places of Ru1
, . . . ,Rum

, where the
TPNs Ru1

, . . . ,Rum
are translations of the units u1, . . . , um as defined above in this

section (from page 155 on). Without loss of generality, the place and transition
identifiers are assumed to be globally unique23.

• The set of transitions T is defined as the union of the two following sets:

– T1, containing all unlabelled transitions from Ru1
, . . . ,Rum

. These correspond
to multibranch transition execution paths without communication, and to aux-
iliary transitions of the unit translation.

– T2, the composition of all labelled transitions from Ru1
, . . . ,Rum

, following an
algorithm using three concentric loops, shown in Fig. 6.23. Central element of
this algorithm are the mappings written C each of which corresponds to one
transition in the composition, like the transitions r1,3, r2,3 in the example of
Fig. 6.8.

• The functions in, out , inh, lab, Is,Prec,Ac24 are defined for each element of T1 as
before in the corresponding TPN among Ru1

, . . . ,Rum
. For the elements of T2,

they are defined as indicated in Fig. 6.23. The function test maps constantly to the
empty set.

• The set of initial places m0 is the union of all sets of initial places of Ru1
, . . . ,Rum

.

23Note that the Tina-TPN dialect allows two different places to have the same label, as long as their
(internal) identifiers are different.

24As described above, the mappings Prec and Ac are defined by C code in the Tina model. In our
translator, we therefore will generate C code from boolean formulas and from Atlantif assignment
actions and their compositions by “;” and by while loops. This is clearly a trivial task, thus for the sake
of readability we will continue to use Atlantif syntax in the remainder of Section 6.2.3.

166 Chapter 6. Translating ATLANTIF to graphical models

• The priority relation Pr extends the union of all these relations of Ru1
, . . . ,Rum

by
the following:

– Let T3 ⊆ T1 be the set of those transitions t such that Is(t) = [0, 0] and out(t) 6=
∅ (which means that t is an auxiliary transition used for place emptying, cf.
page 162). Then each transition from T3 has priority over each transition not
in T3.

– For each transition t ∈ T1 such that Is(t) = [k, k] (for any k ∈ IN), out(t) = ∅,
and in(t) = {p} (for any p ∈ P) such that there is a non-empty set T ′ = {t′ ∈
T2 | p ∈ in(t′)} (which means that t is an auxiliary transition for a must time
limit related to the transitions in T ′, cf. page 159), we add priorities as follows:
t receives lower priority than any other of those auxiliary transition for the
elements of T ′ that are expressing a delay or a may time limit.

These two extensions will be justified by the Examples 6.3 and 6.4.

• The set V of variables in M (restricted to integers and booleans) translates directly
to a set VP .

• The initial store ρ0 is the initial store of M according to the Atlantif semantics
(cf. Section 4.6.3).

The above definition of the composition extends the priority relation, by the emptying
having priority over everything else and by auxiliary transitions for must time windows
having lower priority than certain auxiliary transitions originating in other units. In the
Examples 6.3 and 6.4 we will show why this is necessary.

Refinement: unit stopping and starting

To simplify matters, the algorithm presented in Fig. 6.23 does not consider stopping and
starting of units. In the following, we describe how the integration of these features
modifies the composition.

We note initial(u) ⊆ Pu for the places of the TPN constructed for unit u that represent
the initial marking. It contains the place representing the first discrete state of u and the
auxiliary places for the firing intervals for the execution paths of this state. Thus, if u is
among the initial units of the module, then initial(u) = m0u.

For each transition t obtained by composition on a synchronizer G, we apply the following
modifications:

• For each u ∈ stop(G), eliminate the all elements of Pu from the out-places of t.

• For each u ∈ start(G), add all elements of initial(u) to the out-places of t (by
construction, this is a disjoint union).

25A′
i and A′′

i are (possibly empty) sequential compositions of assignments and while actions.

6.2. Time Petri nets 167

For each synchronizer G:
For each set U ∈ sync(G):

For each mapping C : U → ⋃
i∈1..n Tui

such that for each u ∈ U , C(u) ∈ Tu

and C(u) is labelled G:
Create a new transition as follows:

– The in-places are given by
⋃

u∈U in(C(u)), out- and inhibitor-places
correspondingly.
(see page 166 for a refinement related to starting and stopping)

– The label is G if gate(G) = visible, otherwise the transition is unlabelled.
– The firing interval is [0, 0] if gate(G) ∈ {urgent, silent},

otherwise it is [0,∞[
– Let A1, . . . , Al be the actions of the elements of image(C).

By definition of transp, they have the form
(∀i ∈ 1..l) Ai = A′

i;G O1
i . . . Ok

i ;A
′′
i .

25

Then the action of the new transition is given by:
A′

1; . . . ;A′
l;Resolve Offers(O1

1 . . . Ok
1 , . . . , O

1
l . . . Ok

l).action;A
′′
1; . . . ;A′′

l

(function Resolve Offers is defined in Fig. 6.24)
– Finally, the condition is given by

Resolve Offers(O1
1 . . . Ok

1 , . . . , O
1
l . . . Ok

l).condition ∧
(∧

u∈U Prec(C(u))
)

end for
end for

end for

Figure 6.23: Algorithm for composition of transitions in TPNs from Atlantif units

168 Chapter 6. Translating ATLANTIF to graphical models

Resolve Offers (O1
1 . . . Ok

1 , . . . , O
1
l . . . Ok

l)
def
=

action := null
condition := true
for each i ∈ 1..l

current offers := {O1
i , . . . , O

k
i }

choose one O′ from current offers that is an emission of the form “!E”
current offers := current offers \ {O′}
for each O′′ ∈ current offers

current offers := current offers \ {O′′}
which form has O′′?

when it is “?any T”, do nothing
when it is “?V ”, then action := action; V := E
when it is “!E ′”, then condition := condition ∧ (E = E ′)

end for
end for
return action
return condition

Figure 6.24: Pseudocode to resolve offers into assignments and a condition (two return
values)

Note that this approach does not cover asynchronous termination (i.e., synchronizers that
satisfy (∃U ∈ sync(G)) stop(G) \ U 6= ∅), which we therefore excluded in Section 6.2.2.
The translation of asynchronous termination is technically possible; it would necessitate
elimination of all tokens from the places representing the corresponding unit, similar to
the “emptying” defined above (cf. page 162). Clearly, a large number of extra transitions
would be needed for this deletion.

6.2.4 Discussion

Usage of priorities

Overview of the priorities used. In this paragraph, we will summarize the usage
of priorities by our translator and show that they define indeed a partial order. Our
translator uses priorities for three different reasons:

1. They ensure the correct functioning of weak deadlines (effective disabling of a la-
belled transition with the aid of a priority) and of strong deadlines (time-out only
when the synchronization is not possible, which is necessary for time determinism).

2. Emptying is always performed for all places that need to be emptied.

3. Emptying directly follows the corresponding labelled transition.

6.2. Time Petri nets 169

This usage of priorities is made in two different ways: First, “individual” priorities be-
tween single transitions are defined for reasons 1 and 2 above. Second, priorities between
different “families” of transitions are defined for reason 3 above. In our translator, we can
distinguish three such families:

• Tα: non-auxiliary transitions (labelled transitions, those constructed from execu-
tion paths without communication, and those corresponding to hidden or urgent
synchronizations)

• Tβ: auxiliary transitions for time limits and delays

• Tγ: auxiliary transitions for emptying

Between thoses families, the transitions of Tγ have priority over those from the two other
families i.e., in an informal notation, we could write this Tγ > (Tα ∪ Tβ).

We can see that the “individual” priorities are either between elements of Tα and Tβ or
within Tγ; thus the combination of all priorities (individual and family) cannot render
impossible the definition of a transitive closure of the priority relation, which is a partial
order.

The two following examples illustrate the modifications how our translator handles prior-
ities when composing translations of units into a single TPN.

Example 6.3. This example illustrates why “emptying transitions” need to have priority
over all other transitions, including those created for other units.

Supposing a very simple sender/receiver model that is given by the Atlantif module of
Fig. 6.25.

module Sender and Receiver is
dense time unit Receiver is
sync Get Rdy is Receiver end sync from Preparing
sync Reset is Receiver end sync select
sync Transmission is Sender and Receiver Get Rdy; to Receiving

end sync [] Reset in [0,10]; to Preparing
end select

init Sender, Receiver from Receiving
Transmission;

unit Sender is to Preparing
from Processing end unit

Transmission must in [0,5];
to Processing end module

end unit

Figure 6.25: Very simple sender/receiver model

In this specification, the unit Sender synchronizes repeatedly on gate Transmission, where
zero to five time units may elapse between two synchronizations. The unit Receiver may

170 Chapter 6. Translating ATLANTIF to graphical models

need an arbitrary time to Get Ready, but it can also Reset during the first ten time
units after its initialization. After a synchronization on Get Ready, the receiver may
synchronize on Transmission and then reinitialize.

By the Atlantif semantics we then can derive a run such as the following:

S0
5−→ S1

Get Rdy−−−−−→ S2
Transmission−−−−−−−→ S0

For this run, we suppose that S0 = ([Sen 7→ Pro,Rec 7→ Pre], [Sen 7→ (0, f),Rec 7→
(0, f)], ∅) (the initial state), that S1 = ([Sen 7→ Pro,Rec 7→ Pre], [Sen 7→ (5, f),Rec 7→
(5, f)], ∅), and finally that S2 = ([Sen 7→ Pro,Rec 7→ Rvg], [Sen 7→ (5, f),Rec 7→
(0, f)], ∅).

By our translator, this module is translated into the Tina-TPN shown in Fig. 6.26. In
particular, the translator defines the transition with time interval [5, 5] (originally from
unit Sender) to have lower priority than the two emptying transitions following the syn-
chronization on Get Ready (originally from unit Receiver).

Receiving

[0,∞[[5, 5]

ProcessingProcessing1

Transm.

Preparing out

[0,∞[[0,∞[
Get Rdy

Preparing1Preparing

]10,∞[
Reset

[0, 0] [0, 0]

Figure 6.26: Translation of the very simple sender/receiver model

Suppose that after the elapsing of five time units the transition labelled Get Rdy is fired.
Then, if the emptying transitions do not have priority over other transitions, the transition
on the lower left (the time-out) could be fired before the emptying transition with the in-
places Preparing and Preparing1. But in this case, a synchronization on Processing would
not be possible any more, although only five time units have elapsed.

Therefore, the priorities on the emptying are needed to ensure a translator in which the
semantics are stable.

6.2. Time Petri nets 171

Example 6.4. This example illustrates why auxiliary transitions for time windows with
modality must have priority over auxiliary transitions for time windows with modality
may that are created for the same multibranch transition.

Supposing an even more simple variant of the sender/receiver model from Example 6.3,
given by the Atlantif module of Fig. 6.27.

module Sender and Receiver is unit Sender is
dense time from Processing

Transmission must in [0,5]; to Processing
sync Transmission is end unit

Sender and Receiver end sync unit Receiver is
from Receiving

init Sender, Receiver Transmission may in [3,...[; to Receiving
end unit
end module

Figure 6.27: Very simple sender/receiver model (variant)

In this specification, the sender is the same as in the preceding example, but the receiver
is simplified to repeatedly (spaced by at least three time units) perform synchronizations
on the gate Transmission.

By our translator, this module is translated into the Tina-TPN shown in Fig. 6.28. In
particular, the translator defines the transition with time interval [5, 5] (originally from
unit Sender) to have lower priority than the transitions with time interval [3,∞[(origi-
nally from unit Receiver).

[5, 5]

ProcessingProcessing
1

Transm.

Receiving Receiving1

[3,∞[[0,∞[

Figure 6.28: Translation of the very simple sender/receiver model (variant)

Suppose that five time units elapse. If there was no priority between the two auxiliary
transitions, we could fire the transition with time interval [5, 5], thus making the firing of
the transition labelled Transmission impossible. But this would be wrong, because time did
not elapse beyond the strong deadline of five time units.

Because of the priorities, first the transition with time interval [3,∞[must fire, then the
transition labelled Transmission, which correctly represents the Atlantif semantics.

172 Chapter 6. Translating ATLANTIF to graphical models

Impact of the restrictions

Similar to our observation from Section 6.1.4, we can also state here that the list presented
in Section 6.2.2, defining the subset of Atlantif that can be translated into time Petri
nets is not as restrictive as its length might suggest. Again, it is possible to avoid several of
the restrictions by alternative constructs, as already indicated in Sections 6.1.4 and 6.2.2.

Besides such merely technical restrictions, actual limitations are caused by those restric-
tions applying to offers and to asynchronous terminations. As already in the case of the
Uppaal translator, none of the examples in Chapter 5 would be excluded by the restric-
tions on offers, but three examples use synchronizers with asynchronous termination. In
these cases however, an alternative is provided in form of a translation to Uppaal.

Again, the impact of the restrictions is thus limited.

Imprecision problems of the translator

As in the case of the translator to Uppaal, there are problems regarding the preservation
of semantics. Beside the same technical issue of ignoring variable resets, the introduc-
tion of unlabelled transitions in particular changes the semantics, by adding discrete
τ -transitions that are not intended by the semantics rules of Atlantif.

• As in the translator to Uppaal, execution paths (of a multibranch transition) with-
out communication action and synchronizations on silent synchronizers produce un-
labelled transitions.

• Moreover, additional unlabelled transitions are introduced by auxiliary transitions
expressing time constraints. But unwanted new behaviour (such as a timelock) is
avoided in our translator, mainly by the use of priorities (cf. Examples 6.3 and 6.4).

• Finally, additional unlabelled transitions are introduced by the emptying of auxiliary
places. With priorities and [0, 0] intervals, it is ensured that those transitions are
always fired at once (i.e., before time can elapse and before any other transition is
fired) when they can be fired.

Again, these imprecisions do not have an impact on properties expressed in LTL−X if the
Atlantif code ensures that taking an ε-transition never resolves a choice.

Comparison of the restrictions and the imprecisions

If we compare the subsets of Atlantif given by the different restrictions that we stated
for the Uppaal translator and for the Tina translator, we see that neither of them is a
subset of the other.

Two restrictions that we stated for the Uppaal translator are entirely released in the
Tina translator, as described in the following:

6.2. Time Petri nets 173

• Communication actions by synchronizers tagged as urgent may have timing con-
straints.

• Branches in if actions may contain must time windows.

Several restrictions that we stated for the Uppaal translator are partially released in the
Tina translator, as described in the following:

• Within one communication action, offers can be mixed between emissions and re-
ceptions, and a synchronization on an offer may contain more than one emission. In
both translators however, at least one emission is needed.

• case and while actions are allowed, although with a limited syntax.

• Functions can be translated, but also with a limited syntax.

Against these advantages of the Tina translator, there is one important shortcoming,
which is the absence of a translation for asynchronous termination.

Regarding the semantic imprecisions, the Tina translator does not have the problem of
multiple labelled transitions that represent a single synchronization. In particular, unit
starting and stopping (by synchronous termination) are translated in a more simple and
elegant way than in the Uppaal translator. Nevertheless, both translators introduce
auxiliary transitions for different reasons. Clearly, it depends on the Atlantif code to
be translated, which translator introduces more of them.

Possible improvements and extensions

The major starting points for improvements to the Tina translators are already given
along with some of the restrictions listed in Section 6.2.2 and summarized below:

• Similarly to the corresponding section regarding the Uppaal translator, a more
powerful translation of while actions could be based on decomposing execution
paths containing a loop into three different steps. Such an extension would provide
the translation of while actions containing wait actions.

• The restriction that all occurrences of a given gate must have offers that match in
type and cardinality could be lifted by using an approach similar to how Lotos offer
synchronizations are processed in the Cæsar tool [59]. Such an extension of the
algorithm shown in Fig. 6.23 is mainly a technical question in the implementation,
in which this algorithm would only be extended by an additional condition in the
head of the third loop.

• More expressive power can be given to patterns that are used in case actions and in
reception offers.

174 Chapter 6. Translating ATLANTIF to graphical models

6.3 Fiacre

The translator we defined to generate a Fiacre program from an Atlantif module is
still a prototype and contains important restrictions. Therefore, we only give an overview
in this section, while a more complete definition can be found in the Appendix A.3.

6.3.1 Motivation and principles

A translator to the Fiacre model (cf. Section 3.4.7) is interesting for three main reasons:

• Fiacre has been developed in the context of research projects such as Open-
EmbeDD and Topcased, which involve several industrial and academical partners.
This large participation indicates that future developement and maintenance of this
model will be ensured.

• A software tool called “flac” is already available for Fiacre. It translates an
untimed Fiacre specification into Lotos code, which can be verified using the
Cadp [63] (Construction and Analysis of Distributed Processes) toolbox. Thus,
verification of an Atlantif specification by Cadp becomes possible.26

• When we define a translator from Atlantif to Fiacre, we get a detailed under-
standing of the differences between these two models. Therefore, a better compari-
son of their expressive power becomes possible.

Due to fundamentally different approaches of Atlantif and Fiacre regarding real-time
syntax and semantics (cf. Sections 3.5.1 and 4.2), the translator we propose in this section
and in the Appendix A.3 is limited to untimed Atlantif.

6.3.2 Intuition of the translation approach

One Atlantif module M with U = {u1, . . . , un} translates to one Fiacre program. As
Fiacre processes and Atlantif units are very similar structures, we will translate each
unit of U into one process, with each Atlantif multibranch transition being translated
into a Fiacre multibranch transition (they share a very similar syntax). The unit hier-
archy is not represented in the translation, but instead, we introduce a new hierarchy by
regrouping several processes into Fiacre components, which is schematically shown in
Fig. 6.29 for an Atlantif module M .

It can be seen from this schema that all those processes representing unit translations are
on the lowest hierarchical level. Above, they are regrouped by one component l2 that
contains one synchronization vector which represents all synchronizers. On the topmost

26Another tool developed for Fiacre is “frac”, which translates Fiacre into Tina TPN, but this is
less interesting for us, because we have already a direct translator from Atlantif to Tina.

6.4. Tool implementation 175

u1 u2 un

l2

M

. . .

Figure 6.29: Component hierarchy of a generated Fiacre program (schema)

level, one component ensures the renaming of auxiliary ports introduced in l2 , and ensures
the representation of hiding.

Following this structure, the translator is composed of three steps: The construction of
the topmost component, followed by an analysis of the synchronizers to determine the
emulations that have to be made and the construction of the component l2 with its
synchronization vector, and finally the translations of all units to processes. These steps
are detailed in the Appendix A.3.4.

6.4 Tool implementation

In this section, we give a brief overview of a prototype implementation of a tool we created
on the basis of the translators defined in this chapter. For convenience, in the following
we will write “atlantif” if we refer to this tool (whereas we write “Atlantif” when
referring to the model).

The implementation of atlantif uses the method proposed in [62] i.e., we used the
Syntax [34] system (currently 2, 193 lines of code) to encode the Atlantif grammar,
we used the Lotos NT [116] language (currently 13, 146 lines of code) to define the
data types and functions for the translators, and we embedded everything in a C main
program (currently 538 lines of code). The architecture of atlantif is illustrated in
Fig. 6.30, where bold arrows represent the translators provided by our tool.

specification

Uppaal

Tina

program

.ant input

1) static semantics check

2) translation

timed automata

time Petri net

Fiacre

& formal

Fiacre-to-Lotos
(flac)

simulation

verification

Atlantif

atlantif
tool

Figure 6.30: Schema for the application of the prototype atlantif tool

The input accepted by atlantif is one Atlantif module as defined in Section 4.2

176 Chapter 6. Translating ATLANTIF to graphical models

(Table 4.3). The complete grammar defined with Syntax is shown in Appendix C,
including a detailed definition of expressions and a preliminary encoding for types and
functions.

Given such an input, atlantif performs a verification of the static semantic constraints
defined in Sections 4.3 to 4.6. Among others, it uses the algorithms given in the Ap-
pendix A.1.

If the input satisfies the static semantics of Atlantif, one of the three translators defined
in this chapter is executed. Error messages are issued if the restrictions for the concerned
target language are not met.

We tested the tool on several common benchmark examples in order to further estimate
the impact of the restrictions and to compare the sizes of Atlantif code with its trans-
lations. These examples are the light switch presented in Fig. B.3 on page 250 (which
is a simplified version of the example of Fig. 4.1 from page 55), the CSMA/CD protocol
(inspired by [126]), a stop-and-wait protocol, implemented with one sender, one receiver
and two transmission channels (inspired by [111]), and a train gate controller (inspired
by [5]).

The translations into TA and TPN of the light switch example are shown in Fig. 6.31
and 6.32 respectively. These figures are screenshots of the display of the automated
translations in the graphical user interfaces of Uppaal and Tina (arranged and recoloured
for the sake of readability). Note that the priority in the TPN is represented by a grey
arrow instead of a dotted arrow.

Ready

(CLOCK_User>=1)
Button_1?

CLOCK_User = 0
Off Low

Bright

Button_1!
CLOCK_Lamp = 0

(CLOCK_Lamp>=5)
Button_1!

CLOCK_Lamp = 0

(CLOCK_Lamp<5)
Button_1!
CLOCK_Lamp = 0

Button_1!
CLOCK_Lamp = 0

Figure 6.31: The two generated Uppaal TA for the light switch example

Table 6.1 compares the size of Atlantif programs with the size of the corresponding
TA and TPN. It shows that Atlantif enables shorter descriptions, in particular due
to its concise syntax for time and its ability to define multiway synchronizations. Note
that the number of locations of the TA generated for the CSMA/CD is the same as in a
handwritten specification available on the web27.

The results suggest that the TA translator is efficient for programs with multiple occur-
rences of simple synchronizers (i.e., synchronizers involving at most two units), whereas
the TPN translator is efficient for limited occurrences of more complex synchronizers.

The successful application of the tool on those benchmarks is – in addition to the remarks
we made in Sections 6.1.4 and 6.2.4 – another indication that the restrictions we impose
leave reasonably big translatable subsets.

Note that the current version of the translator tool does not cover the possible extensions

27http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#CSMA

6.4. Tool implementation 177

p2 Low

t2

Button

t3

Button

t4

Button p3 Bright

t1

Button

p1 Off

p5 Ready_aux p4 Ready

t6

[1,ω[

p6 Low_aux

t7

[5,ω[

Figure 6.32: The generated Tina time Petri net for the light switch example

Atlantif Uppaal-TA Tina-TPN
disc. states trans. locations trans. places trans.

Light switch 4 4 4 5 6 6
CSMA/CD (3 Stations) 12 12 14 42 40 142
Stop-and-wait 10 10 10 12 29 56
Train Gate Controller 12 12 18 18 23 18

Table 6.1: Size comparison: Atlantif vs. generated Uppaal vs. generated Tina

178 Chapter 6. Translating ATLANTIF to graphical models

we listed in Sections 6.1.4 and 6.2.4. In particular, the advanced multiway synchronization
emulation for Uppaal is not yet implemented (and for this reason it was only sketched).

Conversely, the translator handles constructs that are not covered in this chapter, namely
the possibility to import C types and functions for a translator to Tina (given that C is
already Tina’s language for types and functions, they are simply copied). The application
example of Chapter 7 (that will also give a detailed illustration of the descriptions of this
section) will use this possibility.

Chapter 7

Example: a lift

Abstract This chapter uses an example of the formal description of a lift to show
how the Atlantif model and the atlantif tool can be used in practice. First, the lift
is (manually) modelled in Atlantif. Then, this model is automatically translated
into a Tina TPN, where formal verification is performed.

7.1 Modelling in ATLANTIF

7.1.1 The lift example

The example we discuss in this chapter is borrowed from [78], where it serves as an
illustration for the language CSP-OZ-DC. Based on initial motivations similar to ours
when we defined Atlantif, this language follows the approach of describing each different
component of a system in the most suitable language: Control and communication aspects
are expressed in CSP (cf. Section 3.3.2), data aspects are expressed in the Object-Z [53]
specification language, and real-time related aspects are expressed in a subset of the
Duration Calculus [127] logic. In the following, we will give details on these three aspects
in natural language.

Control and communication. At the beginning of an execution, the lift is immobile
and its control waits to be instructed by a user to move to another storey, which is
represented by a communication on the gate Newgoal . The control reacts by starting the
lift (gate Go), which then begins to move.

When moving, the lift cabin passes by different storeys. For each such a storey, two cases
are possible: Either it is not the intended target (represented by a communication on
the gate Passed), then the cabin continues to move; or the intended target is reached
(represented by a communication on the gate Halt), then the lift goes back into its initial
state.

179

180 Chapter 7. Example: a lift

Data. Three variables are used in the data part of the lift description of [78]: Two
integer variables current and goal represent the current storey of the cabin and its intended
target respectively28, and the variable dir , which takes values in {−1, 0, 1}, represents the
direction in which the cabin is currently moving (1 means “up”, −1 means “down”, 0
means “stationary”). Additionally, the constants Min and Max denote the lowest and the
highest storey in the building respectively.

Initially, current and goal are assigned the value of Min (the cabin is in the lowermost
basement and has not yet been instructed with a new target), and dir receives the value
zero (the cabin does not move). During the communications that may occur, some of the
variables are assigned new values, as described in the following:

• On each communication on the gate Newgoal , the variable goal receives an arbitrary
value, which must be at least Min and at most Max and also different from current
i.e., the target must be an existing storey that is not the current location of the
cabin.

• On each communication on the gate Go, the variable dir receives a new value: 1 if
goal > current , and −1 if goal < current i.e., during the starting, it is calculated
whether the travel goes up or down.

• On each communication on the gate Passed , the variable current receives as new
value the result of “current + dir”.

Moreover, we need the variables to satisfy the condition “goal = current” in order to
enable a communication on the gate Halt .

Real time. The real-time part of the lift specification consists of two conditions that
have to be satisfied by each execution of the lift model:

• The first condition is that at least three seconds29 elapse between two consecutive
communications on the gate Passed (the cabin needs at least three seconds to move
from one storey to another).

• The second condition is that as soon as the variables current and goal happen to have
the same value after having had a different value before, then the communication
Halt must occur within two seconds (when the cabin arrives, then it must stop).

28Note that we suppose a European numbering of the storeys i.e., the value 0 corresponds to the
ground floor. Consequently, positive numbers correspond to the upper floors, and negative numbers to
the basement floors.

29In the remainder of this chapter, we will consider the time units to be seconds.

7.1. Modelling in ATLANTIF 181

7.1.2 Representation in ATLANTIF

We will represent the lift in Atlantif by three different units: The first unit repre-
sents the Control of the lift (i.e., the central component), the second unit represents the
Floor Sensor (i.e., a component that observes the position of the cabin), and the third
unit represents the Cabin. Note that the initial specification of [78] does not contain such
a parallel composition of several processes30, but we consider the modelling with three
units to be more interesting and realistic.

We will define one synchronizer for each of the communication gates i.e., New Goal , Go,
Halt , and Passed . For technical reasons, we will also introduce another synchronizer,
named Arrival Signal .

Also, we note that variable sharing is not possible between three units that are active at
the same time. Thus, we will declare the variables corresponding to current , goal , and
dir locally in those units where they are necessary, and synchronize them by offers on the
relevant synchronizers.

This Atlantif module uses functions and constants, which are not formally defined
in Chapter 4. The syntax of these constructs can be found in Appendix C, and we
consider them self-explanatory. We give the values 0 and 3 to the constants Min and Max
respectively.

The complete specification is shown in Fig. 7.1.

In the unit Control , we emulate the user input for a new goal of the lift cabin by a
nondeterministic assignment to the variable Goal C . This is followed by a communication
on New Goal , where this new value is emitted as an offer. Afterwards, Control simply
participates in the synchronizations on Go and on Halt , before again being able to generate
a new value for Goal C . As the value generation for Goal C depends on the value of
Current C , the latter is updated by a reception offer during the synchronization on Halt .
The value generation is performed by the following action:

select Goal C := Current C + 1 [] Goal C := Current C + 2
[] Goal C := Current C + 3 end select;

Goal C := Goal C % 4;
.

where the operator “%” represents modulo, defined as in C and other programming lan-
guages. More formally, (x % y) is the smallest non-negative integer z such that z is
congruent to x modulo y.

In the unit Floor Sensor , the initial state Ready waits for either a synchronization on
New Goal to receive the goal in the variable Goal S or for a synchronization on Go. In
the latter case, the direction that the cabin will take is calculated by calling the function
Find Direction, then a jump is made to the state Active . The state Active enables two
different execution paths: A synchronization on the gate Passed (which emits the number
of the storey that is passed) leads to an update of the variable Current S and a jump back
to Active ; whereas a communication on the (urgent) gate Arrival Signal can only occur

30At least not directly: Indirectly, the Duration Calculus formulas are each translated into automata
which are then composed with the control part.

182 Chapter 7. Example: a lift

module Lift is unit Floor Sensor is

dense time variables Current S: int := Min,
Goal S: int,

constant Min: int is 0, Direction: int

Max: int is 3
from Ready

function Find Direction (Goal F: int, select

Current F: int) : int is New Goal ?Goal S; to Ready
variables Result: int []

Go;
if (Goal F > Current F) then Direction := Find Direction(Goal S,Current S);

Result := 1 to Active
else end select

if (Goal F < Current F) then from Active
Result := -1 select

else Passed !(Current S + Direction);
Result := 0 Current S := Current S + Direction;

end if to Active
end if []

if (Goal S = Current S) then

return Result Arrival Signal; to Arrived
end function end if

end select

sync New Goal is Control and Floor Sensor from Arrived
and Cabin end sync Halt !Current S; to Ready

sync Go is Control and Floor Sensor end sync end unit

sync Passed is Floor Sensor and Cabin end sync

sync Halt: urgent is Control and Floor Sensor unit Cabin is

and Cabin end sync variables Current B: int := Min,
sync Arrival Signal: urgent is Floor Sensor end sync Goal B: int

init Control,Floor Sensor,Cabin from Stationary
New Goal ?Goal B; to Moving

unit Control is from Moving
variables Current C:int := Min, select

Goal C:int wait 3; Passed ?Current B; to Moving
[]

from Main if (Current B = Goal B) then

select Goal C := Current C + 1 Halt ?any int must in [0,2]; to Stationary
[] Goal C := Current C + 2 end if

[] Goal C := Current C + 3 end select; end select

Goal C := Goal C % 4; end unit

New Goal !Goal C; to Starting
from Starting end module

Go; to Driving
from Driving

Halt ?Current C; to Main
end unit

Figure 7.1: Atlantif code describing the lift

7.2. Translation to TINA 183

if Current S equals Goal S , in which case there is a jump to the state Arrived before a
synchronization on Halt (emitting Current S).

The unit Cabin represents all the timed constraints that we stated above. Its first dis-
crete state is Stationary, from where it gets to the state Moving after a synchronization
on New Goal (also including the reception of the goal in the variable Goal B). When
the cabin is Moving , the corresponding multibranch transition assures that either three
seconds elapse before each following synchronization on Passed , as well as that when
the intended storey is reached, at most two time units elapse before it comes to a Halt
(necessarily, because of the must).

7.2 Translation to TINA

Decision for TINA

It is not possible to translate the lift example to timed automata in the Uppaal dialect,
because the restrictions we stated in Section 6.1.2 exclude specifications containing an
execution path with a time condition and a communication by an urgent synchronizer;
they also exclude specifications containing an execution path with a data condition and
a must communication action. Both occur in the Atlantif module we defined: In the
unit Cabin, in the multibranch transition from Moving , the execution path which takes
the second possibility in the select action violates the two restrictions.

It should be noted that the latter of those restrictions on our translator is not due to a
limitation of the translator itself, but instead due to a limitation of the timed automata
model: Strong deadlines (“must” communications) can only be expressed by invariant
formulas in locations in the TA model, and invariants always apply to all transitions of
the according location. A restriction of the invariant formula to transitions that satisfy a
certain boolean condition would not be possible.

Moreover, currently only the implementation of the translation to Tina contains a pro-
totype for the translation of functions, although it is not described in the translation
definition of Section 6.2. Clearly, it would be easily possible to rewrite the module to
obtain a version without a function, but this would also increase the number of execution
paths in the multibranch transition from Ready (unit Floor Sensor) and thus increase
the size of the translation.

Regarding the fact that our example is timed, of course the application of our translation
to Fiacre would not make sense at all. Therefore, we will continue to work on this
example with a translation to Tina.

Using atlantif

To translate the module of Fig. 7.1 (written in a file lift.ant) to Tina via the atlantif
tool, we execute the command

184 Chapter 7. Example: a lift

~/ATLANTIF/atlantif lift.ant -tt

to obtain the following output:

-- ATLANTIF 0.36 -- Jan Stöcker

-- (c) INRIA Grenoble Rhône-Alpes -- March 31 2009

Syntactical analysis sucessful.

Verification of the static semantics ...

done.

Translation to Tina into the file lift.net ...

Writing C code for data manipulation in file lift.c ...

done.

We see that the translation produces two output files, lift.net and lift.c. The first
file, lift.net, represents the resulting time Petri net itself and is shown in Fig. 7.2.

It expresses that the generated net has twelve places, each one with an identifier from
“p1” to “p12” and with a label. Three types of places can be distinguished:

• Each of the places p1 to p8 represents one of the eight discrete states of the Atlantif
module, and are therefore labelled with the corresponding discrete state’s identifier.
Among them, places p1, p4, and p7 (representing the initial discrete states of the
three units) contain initially one token each, the others being empty.

• Places p9 and p10 are auxiliary places for the place p8, used to express time con-
straints.

• Places p11 and p12 are auxiliary places for the transitions t26 and t8 respectively,
used for the emptying (cf. page 162) in the translation of unit Cabin.

Transitions are defined by their identifier, (optionally) their label, their time interval, their
in-places (left side of the arrow), their inhibitor places (left side of the arrow and with an
attached “?-1”), and their out-places (right side of the arrow). The generated net has 13
transitions, which again fall in three different groups:

• The first seven transitions represent synchronizations (in the sense of the Atlantif
semantics). For t9 and t26, the used synchronizers are Arrival Signal and Halt
respectively, thus their associated time interval is [0, 0] (because they are urgent)
and they are not labelled (because in Atlantif, urgency implies hiding). The
transitions t8, t4, t23, t24, and t25 on the other hand are generated from visible
synchronizers, thus they are labelled with the according synchronizer’s name and
are all defined with the time interval [0,∞[.

• The two next transitions t16 and t17 represent (together with the places p9 and
p10) the translation of timing constraints (corresponding to the cases 2 and 6 re-
spectively).

7.2. Translation to TINA 185

Automatic translation of the ATLANTIF module Lift

net Lift

pl p7 : Stationary (1)

pl p12 : Moving_out

pl p11 : Moving_out

pl p8 : Moving

pl p10 : Moving_aux

pl p9 : Moving_aux

pl p4 : Ready (1)

pl p5 : Active

pl p6 : Arrived

pl p1 : Main (1)

pl p2 : Starting

pl p3 : Driving

tr t9 [0,0] p5 -> p6

tr t26 [0,0] p10 p8 p6 p3 -> p11 p4 p1

tr t8 : Passed [0,w[p8 p5 p9?-1 -> p12 p5

tr t4 : Go [0,w[p4 p2 -> p5 p3

tr t23 : New_Goal [0,w[p7 p4 p1 -> p8 p10 p9 p4 p2

tr t24 : New_Goal [0,w[p7 p4 p1 -> p8 p10 p9 p4 p2

tr t25 : New_Goal [0,w[p7 p4 p1 -> p8 p10 p9 p4 p2

tr t16 [3,w[p9 ->

tr t17 [2,2] p10 ->

tr t18 [0,0] p11 -> p7

tr t19 [0,0] p9 p11 -> p7

tr t20 [0,0] p12 -> p8 p10 p9

tr t21 [0,0] p10 p12 -> p8 p10 p9

pr t19 > t18

pr t21 > t20

pr t21 t20 t19 t18 > t8 t9 t4 t23 t24 t25 t26 t16 t17

pr t26 > t17

Figure 7.2: The file lift.net

186 Chapter 7. Example: a lift

• The last four transitions are the emptying transitions following the places p11 and
p12 respectively31.

The last part of the translation describes the priorities. Again, three types of priority
occur:

• The two first couples (“t19 > t18” and “t21 > t20”) are part of the emptying con-
struct, ensuring that remaining tokens in the places p9 and p10 respectively are
always removed subsequent to the transitions t26 and t8 respectively.

• The next line ensures that the emptying is always finished at once when it be-
comes necessary, by giving emptying transitions priority over all other transitions,
as explained in the context of Example 6.3.

• The last couple (“t26 > t17”) ensures the correct translation of the must timing
constraint, as explained in the context of Example 6.4.

The Tina toolbox provides the transformation of textual descriptions as in Fig. 7.2 into
graphical representations. Therefore, we also display the graphical version of the lift TPN
in Fig. 7.3 (manually arranged for better readability). Note that Fig. 7.3 does not contain
the arrows representing priorities: As there are 39 of them, the net would become unclear
if they were displayed.

The other output file of the translation, lift.c, is shown here only in extracts. It contains
C code expressing the following:

• Variables: The set VP i.e., all variables of the module, is represented by a single
record type variable of the following form:

typedef struct {

int Current_S; int Goal_S; int Direction; int Current_C; int Goal_C;

int Goal_B; int Current_B;

} value;
Moreover, one function defines the initial values of the variable: For Current C ,
Current S , and Current B , this initial value is zero according to the module’s def-
inition. For the other variables (which do not have an initial value assigned in the
module), the default value is assigned, which is also zero.

• Function: There is a C translation of the function Find Direction, which is very
straightforward.

• Preconditions: Two boolean functions check the following:

– The precondition of transition t9: (Goal S = Current S)

31Note that the numbering of the transitions is not e.g., from t1 to t13, but seemingly much less
regular. This has technical reasons, as several transitions that are generated during the translation are
only temporary.

7
.2

.
T
ra

n
sla

tio
n

to
T

IN
A

187

p1 Main

p2 Starting

p3 Driving

t24

New_Goal

p4 Ready

t26

[0,0]

p6 Arrivedp5 Active

t9

[0,0]

t4

Go

p7 Stationary

p10 Moving_auxp8 Movingp9 Moving_aux

t17

[2,2]

p12 Moving_outp11 Moving_out

t16

[3,ω[

t20

[0,0]

t18

[0,0]

t19

[0,0]

t21

[0,0]

t8

Passed

t23

New_Goal

t25

New_Goal

F
igu

re
7.3:

T
h
e

gen
erated

T
in

a
T

P
N

of
th

e
lift

188 Chapter 7. Example: a lift

– The precondition of transition t26: (Current B = Goal B)

For instance, in the first case, this function takes the form

bool pre_0 (key s) {

value *old = lookup(s);

return ((old->Goal_S == old->Current_S));

}

,

where the data type key represents a record containing all variables of the model (cf.
Section 6.2.1), and the function lookup retrieves the current values of these variables.

Note that the other transitions do not have preconditions.

• Data manipulations: Six functions, associated to the transitions t26, t8, t4, t23,
t24, and t25 respectively perform modifications on the variables, each of which
corresponds either to an assignment action or to a reception offer.

For instance, in the function associated to the transition t23, the variable Goal C
is assigned the value Current C + 3 (assignment action in the third branch of the
select action), then Goal C is assigned the value Goal C % 4 (assignment action),
then Goal B is assigned the value of Goal C (reception offer), and then Goal S is
assigned the value of Goal C (reception offer).

In the generated C code, this function takes the following form:

key act_4 (key s) {

value *stored = lookup(s);

value old = {stored->Current_S, stored->Goal_S, stored->Direction,

stored->Current_C, stored->Goal_C, stored->Goal_B,

stored->Current_B};

old.Goal_C = (old.Current_C + 3);

old.Goal_C = (old.Goal_C % 4);

old.Goal_B = old.Goal_C;

old.Goal_S = old.Goal_C;

return store (make_value (old.Current_S, old.Goal_S, old.Direction,

old.Current_C, old.Goal_C, old.Goal_B, old.Current_B));

}
Note that transitions other than the aforementioned six do not manipulate the
variables.

As well as the elements just mentioned, the C code in the file lift.c also contains other,
more technical functions e.g., that determine how the variable values are displayed in the
output of the state space generation.

7.3 Verification

7.3.1 State space construction

A first step in the verification is the construction of the state space. The state space
is a symbolic representation of the Petri net’s semantics: A possibly infinite number of

7.3. Verification 189

semantic states is grouped into one class , thus the state space of the Petri net can be
finite, even if (which is virtually always true) the Tlts of the Petri net is infinite (cf. the
semantics definition in Section 6.2.1). Each class is defined by a marking of places, by the
values of the variables, and by a system of inequations that express time ranges for how
long the enabled transitions have been enabled.

When performing state space generation with the command

~/tina-2.9.2/bin/tina lift.tts
we obtain the following information about the TPN we generated:

• It is 1-bounded e.g., no place can contain more than one token at a time.

• It contains 192 classes and 248 transitions between classes.

• All the classes are “live” i.e., there is no timelock state.

• Two of the 13 TPN-transitions (t21 and t18) are “dead” i.e., neither of them is
ever fired in any possible run. Both of them are auxiliary transitions we defined for
emptying, and therefore their being dead is only a technical detail. Nevertheless, this
can be taken as an indication that further improvement is possible in the emptying
algorithm.

7.3.2 Model checking

Model checking is used to verify whether our lift model satisfies a given property. As
an example, we will check the property “Each time the lift is assigned a new target, it
eventually stops afterwards.”.

The Tina toolbox contains the tool selt [22], which performs verifications on formulas
given in a variation of LTL (linear temporal logic). In this logic, our property takes the
form

“[] ((t23 \/ t24 \/ t25) => (<> t26))”,
where this fomula is composed as follows:

• t23, t24, and t25 are those transitions corresponding to a synchronization on the
gate New Goal . The term (t23 \/ t24 \/ t25) expresses a disjunction between
them.

• t26 is the only transition corresponding to a synchronization on Halt . The term
(<> t26) expresses “eventually t26 occurs”.

• Then, the entire formula can be read as“On every path containing a synchronization
on New Goal , afterwards there will be eventually a synchronization on Halt .”.

Clearly, it is a drawback that we need to read the file lift.net in order to find the
identifiers of those transitions labelled New Goal and Halt respectively, but the current

190 Chapter 7. Example: a lift

version of selt does not support a high-level syntax that e.g., identifies transitions by
their labels.

We can check the formula by executing

> ~/tina-2.9.2/bin/tina lift.tts -ktz > lift.ktz

> ~/tina-2.9.2/bin/selt lift.ktz -f "[] ((t23 \/ t24 \/ t25) => (<> t26))"

and then obtain the result

Selt version 2.9.2 -- 05/02/08 -- LAAS/CNRS

ktz loaded, 192 states, 248 transitions

0.004s

FALSE

state 0: L.div p1 p4 p7

-t25 ... (preserving (- t26 /\ t23) \/ (- t26 /\ t25) \/ - t26 /\ t24)->

state 1: p10 p2 p4 p8 p9 Goal_S Goal_C Goal_B

-t17 ... (preserving - t26)->

* [accepting] state 4: L.div p3 p5 p8 Goal_S Direction Goal_C Goal_B

-time-divergence ... (preserving - t26)->

state 4: L.div p3 p5 p8 Goal_S Direction Goal_C Goal_B

0.002s

Thus, our lift model does not satisfy the property. The selt tool gives us the prefix of a
run that constitutes a counter-example for the property. Reading this prefix, we see that
from the initial state, the goal “storey one” is generated, then two seconds elapse, then
the auxiliary transition t17 reaches its limit and fires, and then time elapses indefinitely
without the firing of any transition.

Intuitively, we would suppose the lift to start (synchronizer “Go”), but as we can see in
the module of Fig. 7.1, there is no restriction for the elapsing of time at this configuration,
thus it is possible that the lift does not start. When looking further in Fig. 7.1, we see
a second, very similar, problem in the module: Before a synchronization on Passed , at
least three seconds must elapse, but there is no limit on this elapsing. Thus, another
infinite time elapsing is possible when a synchronization on Passed is expected i.e., when
the cabin moves from one storey to the next.

We can correct these two problems for instance by the following modifications to the lift
module:

• We declare the synchronizer Go to be urgent i.e., after the choice of a new goal,
the cabin starts to move at once.

• We modify the first branch of the select action of the multibranch transition of the
discrete state Moving in the unit Cabin from

wait 3; Passed ?Current B; to Moving
to

wait 3; Passed ?Current B must in [0,1]; to Moving
i.e., we now describe that the Cabin needs at least three, but at most four seconds
to get from one storey to the next.

7.4. Conclusion 191

When we translate the modified lift module to Tina and verify the corresponding LTL
formula (modulo a renumbering of the transitions), we get the following results:

> ~/tina-2.9.2/bin/selt lift2.ktz -f "((t31 \/ t32 \/ t33) => (<> t34))"

Selt version 2.9.2 -- 05/02/08 -- LAAS/CNRS

ktz loaded, 138 states, 152 transitions

0.005s

TRUE

0.002s

The Atlantif model with these modifications now satisfies the property expressed by
the formula.

7.4 Conclusion

In this chapter, we showed an example of the steps in using the Atlantif model and the
atlantif tool. In particular, we illustrated how the automatic translation tool can be
used to perform model-checking on an Atlantif module; and then to debug this module.
Although we only made a translation to the time Petri net dialect of Tina (because the
given Atlantif code only enabled to use the Tina translator), the basic approach would
be the same for other target languages.

Secondary, we demonstrated that the expressive power of Atlantif is not limited to
represent constructs from languages from the family of Lotos, which were dominating
Chapter 5, but our modelling in this chapter also indicated that, at least partially, a very
different model approach such as CSP-OZ-DC is also covered.

Also, we are able to compare the approach of CSP-OZ-DC to the Atlantif approach,
which is indeed interesting, because both share similar motivations. In our opinion, At-
lantif is more intuitive than CSP-OZ-DC, because of its more textual syntax, which is
easier to read and to write. Moreover, the user only has to know a single language instead
of three.

192 Chapter 7. Example: a lift

Chapter 8

Conclusion

8.1 Contribution

In this thesis, we introduced the new formal model Atlantif, designed to provide rich
expressive power to represent realistic systems, and situated as an intermediate model
between high-level languages and graphical models. Based on an analysis of existing
languages and models, we formally defined and discussed the syntax and the semantics
(expressed in the form of a Tlts) of our model.

Furthermore, we showed the suitability of Atlantif as an intermediate format: We
illustrated the expressive power of Atlantif by representing in our model typical high-
level constructs, and we provided translations to two graphical models.

8.1.1 Language features

In Chapter 1, we developed the objective to define an intermediate model with a rich
expressive power regarding data handling, concurrency, and real time, which is met by
the Atlantif model in the following way:

• Regarding data handling , Atlantif (as well as its structure of sequential processes)
is strongly based on the successful Ntif language. We did not need to define
extensions for this aspect, because Ntif already can successfully represent high-
level data handling.

• Regarding concurrency , Atlantif features the notion of synchronizers, which al-
lows in a concise, powerful, and intuitive way the representation of possible synchro-
nizations between units that are composed in parallel.

A synchronization generally yields a transition in the underlying Tlts, unless the
corresponding synchronizer was declared as silent. Silent synchronizers enable the
representation of powerful high-level constructs such as exception handling, while
preservaing their semantics.

193

194 Chapter 8. Conclusion

• Regarding real time, Atlantif introduces an independent delay action and a life
reducer extension to the communication action, which both enable to control time
elapsing and occur similarly in different existing high-level languages. Atlantif
also introduces the possibility to declare a synchronizer to be urgent. These con-
structs enable both weak and strong deadlines.

In the formal semantics definition, we introduced the new notion of the phase as a
key element to easily ensure the satisfaction of generally accepted good properties of
the semantics: time additivity, time determinism, and maximal progress of urgent
actions.

We defined a formal semantics for Atlantif in Chapter 4, using elaborate rules, which
highlight the consequences of combining data, real time, and concurrency in one model:
For instance, the distinction of several cases in the recalculation of a phase after a syn-
chronization (predicate next θ on page 84) is due to the combination of real time and
concurrency. Also, it can be observed that small simplifications of the syntax lead to a
considerable simplification of the semantics [118].

8.1.2 Comparison of ATLANTIF with related work

Several intermediate models have been defined with objectives similar to Atlantif’s. In
Section 3.4, we gave an overview describing the central ideas and characteristics of these
models. We now compare them with Atlantif systematically.

Table 8.1 indicates the differences between Atlantif and the other intermediate models
with respect to a few criteria discussed in Section 3.5.1 and briefly recalled them in the
following:

• “time domain” indicates whether the model accepts discrete, dense, or both time
domains (cf. Definition 3.2).

• “weak/strong deadlines” indicates whether the model can express weak deadlines,
strong deadlines, or both (cf. page 46).

• “clocks” indicates whether the model uses clocks like those in timed automata (cf.
Definition 3.7) or more abstract high-level constructs.

• “life reducers”indicates whether a communication can be associated with a construct
that describes the time instants at which the communication may happen.

• “delay constructs” indicates whether the model contains an explicit construct (such
as the wait action of Atlantif) that enables time to elapse independently of any
communication.

• “global variables”indicates whether the model provides variables that can be accessed
concurrently by different processes. This excludes models allowing a limited sharing
of local variables such as AltaRica and Atlantif. For instance, in Atlantif, a

8.1. Contribution 195

ti
m

e
d
om

ai
n

d
ea

d
li
n
es

sy
n
ch

ro
n
iz

at
io

n

d
en

se

d
is

cr
et

e

w
ea

k

st
ro

n
g

cl
o
ck

s

li
fe

re
d
u
ce

rs

d
el

ay
co

n
st

ru
ct

s

gl
ob

al
va

ri
ab

le
s

h
y
b
ri

d
va

ri
ab

le
s

h
ig

h
-l
v
l
tr

an
s.

si
m

p
le

co
m

p
le

x

st
ar

t/
st

op

p
ri

or
it

ie
s

p
ro

b
ab

il
it

ie
s

If-2.0 + − + + − + − + − − − − + (+) −
AltaRica + − + + + + − − − − + + − + −
Ntif − − − − + − − − − −
Fiacre + − − + − + − + − + + + − + −
Bip − + + + + + − − + − + + − + −
MoDeST + − + + + + − + − + + − − − +

Atlantif + + + + − + + − − + + + + − −

Table 8.1: Comparison of intermediate models

variable can be accessed in different subunits, but the static restrictions ensure that
a process can only write this variable if no other process that may read this variable
is running.

• “hybrid variables”indicates whether the model provides variables that evolve linearly
or non-linearly with the elapsing of time (cf. Section 3.2.2).

• “high-level transitions” indicates whether the model provides expressive and concise
notations such as the multibranch transitions of Ntif, as opposed to the approach
of “condition/action”-transitions (cf. Section 3.4.6).

• “simple synchronization”indicates whether the model provides gate synchornization.

• “complex synchronization” indicates whether the model provides for a given state
and a given gate a choice between different synchronization possibilities, as opposed
to simple sets of processes that can synchronize (for instance, containing either two
processes or all processes).

• “start/stop” indicates whether the model provides dynamic starting and stopping of
processes.

• “priorities” indicates whether the model provides priorities between the gates on
which the concurrent processes synchronize. In the case of If-2.0 (which does not

196 Chapter 8. Conclusion

provide synchronizations), a process can have priority for discrete actions over other
processes.

• “probabilities” indicates whether the model provides a choice that makes some alter-
natives more likely than others.

In addition to the schematic overview of Table 8.1, we discuss the main differences between
Atlantif and Bip, MoDeST, and Fiacre.

• Fiacre and Atlantif both use multibranch transitions, a notion inherited from
Ntif. Therefore, both models are very similar as regards processes (respectively
units), with the exception of real-time constructs: Atlantif units provide delays
and life reducers, while Fiacre processes do not provide real-time constructs. In-
stead, Fiacre provides life reduces associated with gates. Most high-level languages
also provide real-time constructs within processes, which favors Atlantif as an in-
termediate format.

Moreover, Atlantif provides real-time constructs both with strong and with weak
deadlines, whereas Fiacre only provides strong deadlines.

Also, Fiacre and Atlantif differ in the notation of synchronization: Fiacre uses
a variant of synchronization vectors that combine several process identifiers and
several gate identifiers within a single construct; Atlantif associates with each
gate exactly one synchronization formula. We consider these separated formulas of
the Atlantif approach to be a more concise and intuitive notation. Additionally,
only Atlantif provides dynamic starting and stopping of units.

Other than Atlantif, Fiacre features priorities between gates, which we consid-
ered not to be essential for an intermediate format.

• Bip and Atlantif both provide original constructs for complex gate synchroniza-
tions. However, the expressive power of these constructs is different, as Bip does not
provide dynamic starting and stopping of units. On the other hand, Bip provides
a broadcast communication construct, which is not included in Atlantif, because
it would introduce unintuitive and complex semantic rules.

An Atlantif unit provides the high-level syntax of multibranch transitions, where-
as Bip provides simple condition/action transitions. Therefore, Bip processes are
less concise and further from high-level languages than Atlantif units.

Other than Atlantif, Bip features priorities and hybrid variables. We consider the
latter to be not essential for modelling and verification of those systems for which
we designed Atlantif.

• MoDeST and Atlantif both provide process descriptions using high-level con-
structs, although Atlantif structures units by discrete states, which do not exist
in MoDeST. To describe complex processes, discrete states can simplify readability
and modelling. Also, time in MoDeST processes is implemented by clock variables,

8.1. Contribution 197

whereas Atlantif uses high-level constructs (wait and life reducer in communica-
tion).

The concept of different synchronization sets provided by Atlantif does not exist
in the parallel composition operator of MoDeST, nor the possibility to start and
stop processes.

Other than Atlantif, MoDeST extends the nondeterministic choice with proba-
bilities, which again is an aspect we do not consider to be essential for the objectives
of Atlantif.

In summary, we can see firstly that the expressive power of Atlantif is not covered by
the existing intermediate models, and secondly that Atlantif provides a syntax that is
particularily close to high-level languages.

8.1.3 Extension of the possibilities to use formal verification

Formal verification of reasonably big subsets of Atlantif can be done using the translator
tool presented in Chapter 6. The translations required to define emulations for some
constructs of Atlantif that have no direct correspondence in the target language, most
importantly the following:

• For Uppaal, we emulated multiway synchronization, unit stopping and starting,
and offers.

• For Tina, we emulated weak deadlines and time constraints on the process level.

The different translators cover different subsets of Atlantif, where neither is a subset
of the other. In practice, this enables us in many cases (as observed in Sections 6.1.4,
6.2.4, 7.2, and in Appendix A.3.5) to find a suitable translator for a given specification.
Therefore, the verifiable subset of Atlantif is considerable.

The central intention of this thesis was to bring closer the two tasks of expressive and
concise modelling and formal verification, with the objective to extend of the class of
systems that can be verified in practice. We consider this goal to be achieved, for the
following reasons:

• Compared to the high-level languages discussed in Section 3.3, Atlantif extends
the possibilities for verification, because it combines elements of high-level syntax
with a link to verification tools. Such a link is rarely provided for high-level lan-
guages, at least for those that combine concurrency with real time and data handling.

• Compared to other intermediate models, Atlantif extends the possibilities for ver-
ification, because, as we observed in Section 8.1.2, our model complements the other
models by proposing a new and unique combination of syntax features. While it
should be noted that Atlantif has neither a strictly larger nor a strictly smaller

198 Chapter 8. Conclusion

expressive power than other intermediate models32, it is designed to be close to pow-
erful process algebras such as E-Lotos and Lotos NT, and therefore a valuable
complement.

• Compared to graphical models, Atlantif extends the possibilities for verification,
because it provides concise constructs (such as synchronizers, offers, and multibranch
transitions) that enable users to easily describe systems that would be difficult
to describe directly in a graphical model. Using one of our translations, formal
verification is then possible.

Note that obviously the subsets of Atlantif that can be translated to graphical
models are not more expressive than the graphical models themselves. But for
instance, an Uppaal user wanting to design a system with multiway synchronization
or a Tina user wanting to design a system with weak deadlines will not easily find
the correct representation in these models. In Atlantif on the other hand, the user
can easily specify those aspects and translate to the desired model automatically.

8.2 Perspectives

8.2.1 Advancements of ATLANTIF

Syntax and semantics extensions. In Section 4.8.2, we discussed several extensions
that could be brought to Atlantif. The comparison with other models discussed in
Section 8.1.2 indicates that the introduction of a broadcast communication or of priorities
might make sense.

Another possible extension of Atlantif lies in the formal definition of syntax and seman-
tics (static and dynamic) for types, functions, and constants. The tool implementation
provides limited support for these constructs (as seen in Chapter 7), yet formal definitions
are still lacking.

Syntax modifications. Besides strict extensions, also modifications could be consid-
ered. In particular, this concerns the possibility of dynamic instantiation of units i.e., the
definition of units in the form of templates (possibly parameterized), where several copies
of such units could be active at the beginning of or during an execution. This approach
exists in the If-2.0 model.

The introduction of instantiation in Atlantif would create new and powerful usages
of the starting and stopping of units and enable a simple representation of the process
instantiation that exists in most high-level languages. However, to our knowledge neither
Uppaal nor any other tool based on timed automata supports dynamic instantiation,
thus a translation of this feature would not be possible; a translation to time Petri nets
would also be limited.

32Note that this statement still holds relative to the subsets of Atlantif that can be translated to
verification tools.

8.2. Perspectives 199

Therefore, it could make sense to introduce a static instantiation in the Atlantif syntax
i.e., all instances are defined before the execution of the model. This approach exists
e.g., in the intermediate models Bip and Fiacre, as well as in the Uppaal tool. Such a
modification would enable a shorter syntax in some cases (e.g., in Fig. A.14, where B1 ,
B2 , and B3 could be instances of the same unit), but the readability might be reduced.

Another interesting idea could be to introduce a graphical notation for the Atlantif
syntax to make it more intuitive.

8.2.2 Extension of the translations

In Sections 6.1.4, 6.2.4, and in Appendix A.3.5, we discuss how the existing translations
could be extended. More generally, it would be interesting to provide, even in a limited
way, a correct translation for silent synchronizers. Especially in those cases where no
loops of silent synchronizations are possible, a solution should exist.

Another direction that could be taken for an extension of the translation tool would be to
define a function that automatically checks which of the translations are possible in view
of the translation restrictions. In a second step, such a function could even do an analysis
of which target language (if several are possible) would be the most adapted for a given
model e.g., it would recommend Uppaal if many synchronizers occur often within one
unit, and Tina if several multiway synchronizations occur.

Finally, the translation could be extended to other dialects of timed automata (cf. Sec-
tion 6.1.1) and of time Petri nets (cf. Section 6.2.1), or even to other models. Such new
translations would make sense if they extend the subsets of Atlantif on which formal
verification could be performed.

8.2.3 Development of FIACRE

One intention in the development of Atlantif was to provide ideas on how the Fiacre
model could evolve in the future. The Fiacre model has been defined very recently33,
and it is possible that it will be revised in the future.

This idea is interesting, because both Atlantif and Fiacre are based on Ntif, and
both define extensions for real time and concurrency. Regarding the possible approaches
for such extensions (cf. Section 3.5.1), several decisions have been made in different ways
(not intentionally, though), causing fundamental differences as described in Section 8.1.2.

For instance, the introduction of timed constructs in processes could be one Atlantif-
inspired extension to Fiacre. Such an extension would not come at the price of reduced
possibilities for formal verification, because timed verfication on Fiacre programs is
currently implemented by a translation to the Tina dialect of time Petri nets, using the
“frac” tool, and in Section 6.2 we showed that the timed constructs of Atlantif can
also be translated to the Tina model. At the same time, new modelling opportunities in

33The first publications on Fiacre [24, 25] were in 2008.

200 Chapter 8. Conclusion

Fiacre would be established.

8.2.4 Using ATLANTIF on more complex specifications

An important objective in the further development of Atlantif is to generalize, at least
partially, the translations from high-level languages to our model. For many high-level
constructs such as those discussed in Chapter 6, a more general and systematic translation
should be possible, similar to the definitions already provided in Section 5.5.

Such a generalization would enable us to use Atlantif on more complex specifications
than for instance the lift example we discussed in Chapter 7, and to make use of the
advantages we discussed in Section 8.1.3.

Bibliography

[1] W. Aalst. Interval Timed Coloured Petri Nets and their Analysis. In Application
and Theory of Petri Nets, volume 691, pages 453–472. Springer-Verlag, 1993.

[2] T. Agerwala. A Complete Model for Representing the Coordination of Asynchronous
Processes. Hopkins Computer Research Report 32, Johns Hopkins University, Bal-
timore, July 1974.

[3] R. Alur, C. Courcoubetis, and D. L. Dill. Model-Checking for Real-Time Systems.
In LICS, pages 414–425, 1990.

[4] R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proc. of the
17th International Colloquium on Automata, Languages, and Programming ICALP,
volume 443 of LNCS, pages 322–335. Springer-Verlag, 1990.

[5] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183–235, April 1994.

[6] André Arnold. MEC: A System for Constructing and Analysing Transition Systems.
In Joseph Sifakis, editor, Proceedings of the 1st Workshop on Automatic Verification
Methods for Finite State Systems (Grenoble, France), volume 407 of Lecture Notes
in Computer Science, pages 117–132. Springer Verlag, June 1989.

[7] André Arnold. Systèmes de transitions finis et sémantique des processus communi-
cants. Masson, 1992.

[8] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science, 138(1):35–65,
1995.

[9] J. Baeten and J. Bergstra. Real time process algebra. Journal of Formal Aspects of
Computing Science, 3(2):142–188, 1991.

[10] J. Baeten and C. Middelburg. Process Algebra with Timing: Real Time and Discrete
Time. In Handbook of Process Algebra, chapter 10, pages 627–648. North-Holland,
2001.

[11] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Components
in BIP. In SEFM ’06: Proceedings of the Fourth IEEE International Conference

201

202 Bibliography

on Software Engineering and Formal Methods, pages 3–12. IEEE Computer Society,
2006.

[12] G. Behrmann, A. David, and K. Larsen. A Tutorial on Uppaal, 2004.

[13] J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communication.
Information and Computation, 60:109–137, 1984.

[14] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of Process
Algebra. Elsevier, 2001.

[15] B. Berthomieu, J. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad,
J. Stöcker, and F. Vernadat. The Syntax and Semantics of Fiacre – version 2.0.
Project deliverable F3.2.2 (updated), AESE (pôle de compétitivité mondial Midi-
Pyrénées & Aquitaine: Aéronautique, Espace et Systèmes Embarqués) project Top-
cased, April 2007.

[16] B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Transactions on Software Engineering, 17(3):259–273,
1991.

[17] B. Berthomieu, H. Garavel, F. Lang, and F. Vernadat. Verifying Dynamic Properties
of Industrial Critical Systems Using TOPCASED/FIACRE. ERCIM News, 75:32–
33, October 2008.

[18] B. Berthomieu, D. Lime, O. Roux, and F. Vernadat. Reachability Problems and
Abstract State Spaces for Time Petri Nets with Stopwatches. To appear, 2007,
August 2006.

[19] B. Berthomieu and M. Menasche. An enumerative Approach for analyzing Time
Petri nets. In IFIP, 1983.

[20] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between Timed Au-
tomata and Bounded Time Petri Nets. In FORMATS, LNCS 4202. Springer-Verlag,
2006.

[21] B. Berthomieu, P.O. Ribet, F. Vernadat, J. Bernartt, J.-M. Farines, J.-P. Bode-
veix, M. Filali, G. Padiou, P. Michel, P. Farail, P. Gaufillet, P. Dissaux, and J.-L.
Lambert. Towards the verification of real-time systems in avionics: the COTRE
approach. In Thomas Arts and Wan Fokkink, editors, Proceedings of the 8th Inter-
national Workshop on Formal Methods for Industrial Critical Systems FMICS’2003
(Trondheim, Norway), volume 80 of Electronic Notes on Theoretical Computer Sci-
ence, pages 201–216. Elsevier, June 2003.

[22] B. Berthomieu and F. Vernadat. Réseaux de Petri temporels : méthodes d’analyse et
vérification avec TINA, 2006. Ecole d’été temps réel , Nancy. Traité IC2 : Systèmes
temps réel 1 – techniques de description et de vérification.

203

[23] B. Berthomieu and F. Vernadat. Time Petri Nets Analysis with TINA. In 3rd
International Conference on The Quantitative Evaluation of Systems (QEST), 2006.

[24] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert
Garavel, Pierre Gaufillet, Frédéric Lang, and François Vernadat. FIACRE: an In-
termediate Language for Model Verification in the TOPCASED Environment. In
Jean-Claude Laprie, editor, Proceedings of the 4th European Congress on Embedded
Real-Time Software ERTS’08 (Toulouse, France). SIA (the French Society of Auto-
mobile Engineers), AAAF (the French Society of Aeronautic and Aerospace), and
SEE (the French Society for Electricity, Electronics, and Information & Communi-
cation Technologies), January 2008.

[25] Bernard Berthomieu, Hubert Garavel, Frédéric Lang, and François Vernadat. Verify-
ing Dynamic Properties of Industrial Critical Systems Using TOPCASED/FIACRE.
ERCIM News, 75:32–33, October 2008.

[26] D. Beyer. Formale Verifikation von Realzeit-Systemen mittels Cottbus Timed Au-
tomata. PhD thesis, BTU Cottbus, 2002.

[27] D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A Tool for BDD-based Verifica-
tion of Real-Time Systems. In 15th International Conference on Computer Aided
Verification CAV 2003, volume LNCS 2725, pages 122–125. Springer-Verlag, 2003.

[28] N. Bjørner, Z. Manna, H. Sipma, and T. Uribe. Deductive Verification of Real-time
Systems Using STeP. Theoretical Computer Science, 253:27–60, 2001.

[29] Stefan Blom, Natalia Ioustinova, and Natalia Sidorova. Timed verification with
µCRL. In Manfred Broy and Alexandre V. Zamulin, editors, Proceedings of the
5th Andrei Ershov International Conference on Perspectives of System Informatics
PSI’2003 (Novosibirsk, Russia), volume 2890 of Lecture Notes in Computer Science,
pages 178–192. Springer Verlag, July 2003. Also available as CWI Research Report
SEN-E0312, Amsterdam, December 2003.

[30] Henrik Bohnenkamp, Pedro R. d’Argenio, Holger Hermanns, and Joost-Pieter Ka-
toen. MoDeST: A Compositional Modeling Formalism for Real-Time and Stochastic
Systems. IEEE Transactions on Software Engineering, 32(10):812–830, 2006.

[31] T. Bolognesi and F. Lucidi. LOTOS-like Process Algebras with Urgent or Timed
Interactions. In Kenneth R. Parker and Gordon A. Rose, editors, Proceedings of the
4th International Conference on Formal Description Techniques FORTE’91. North-
Holland, 1991.

[32] S. Bornot, J. Sifakis, and S. Tripakis. Modelling Urgency in Timed Systems. In
COMPOS, LNCS, 1997.

[33] Amar Bouali, Annie Ressouche, Valérie Roy, and Robert de Simone. The Fc2Tools
set: a Toolset for the Verification of Concurrent Systems. In Rajeev Alur and

204 Bibliography

Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-
Aided Verification (New Brunswick, New Jersey, USA), volume 1102 of Lecture
Notes in Computer Science. Springer Verlag, August 1996.

[34] Pierre Boullier and Philippe Deschamp. Le système SYNTAX : Manuel d’utilisation
et de mise en œuvre sous Unix. http://www-rocq.inria.fr/oscar/www/syntax,
October 1997.

[35] D. Bošnački and D. Dams. Integrating Real Time into Spin: A Prototype Imple-
mentation. In FORTE/PSTV XVIII, pages 423–439. Kluwer Academic Publishers,
1998.

[36] M. Boyer and O. H. Roux. Comparison of the Expressiveness of Arc, Place and
Transition Time Petri Nets. In Petri Nets and Other Models of Concurrency –
ICATPN 2007, volume LNCS 4546, pages 63–82. Springer-Verlag, 2007.

[37] M. Bozga, S. Graf, and L. Mounier. Automated validation of distributed software
using the IF environment. In S. Stoller and W. Visser, editors, Workshop on Soft-
ware Model-Checking, associated with CAV’01, volume 55 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, July 2001.

[38] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. Tools and Applications II: The
IF Toolset. In SFM, 2004.

[39] M. Bozga, O. Maler, and S. Tripakis. Efficient Verification of Timed Automata
Using Dense and Discrete Time Semantics. In Conference on Correct Hardware
Design and Verification Methods, pages 125–141, December 1998.

[40] M. Broy. Formal Description Techniques - How Formal and Descriptive are they?
In FORTE, pages 95–110, 1996.

[41] J. A. Brzozowski and C-J. H. Seger. Advances in Asynchronous Circuit Theory - Part
II: Bounded Inertial Delay Models, MOS Circuits, Design Techniques. Bulletin of
the European Association for Theoretical Computer Science, 43:199–263, February
1991.

[42] G. Bucci, L. Sassoli, and E. Vicario. Oris: a tool for state space analysis of real-time
preemptive systems. In 1st International Conference on the Quantitative Evaluation
of Systems (QEST) 2004, 2004.

[43] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus: A Tool for Quantitative
Analysis of Finite-State Real-Time Systems. In Workshop on Languages, Compilers
and Tools for Real-Time Systems, 1995.

[44] F. Cassez and F. Laroussinie. Model-Checking for Hybrid Systems by Quotient-
ing and Constraints Solving. In A. Emerson and P. Sistla, editors, 12th Interna-
tional Conference on Computer Aided Verification (CAV 2000), volume 1855 of
Lecture Notes in Computer Science, pages 373–388, Chicago, Illinois, USA, July
2000. Springer-Verlag.

205

[45] F. Cassez, C. Pagetti, and O. Roux. A timed extension for AltaRica. Fundamenta
Informaticæ, 62(3-4):291–332, August 2004.

[46] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986.

[47] J.-P. Courtiat and R. Cruz de Oliveira. On RT-LOTOS and its Application to
the Formal Design of Multimedia Protocols. Annals of Telecommunications, 50(11-
12):888–906, Nov/Dec 1995.

[48] J.-P. Courtiat, C. A. S. Santos, C. Lohr, and B. Outtaj. Experience with RT-
LOTOS, a temporal extension of the LOTOS formal description technique. Com-
puter Communications, 23(12), 2000.

[49] P. D’Argenio and E. Brinksma. A Calculus for Timed Automata. In FTRTFT,
1996.

[50] J. W. Davies and S. A. Schneider. A Brief History of Timed CSP. Theoretical
Computer Science, 138(2):243–271, February 1995.

[51] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Systems
III, Verification and Control, pages 208–219, 1996.

[52] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with Kronos.
In 7th IFIP WG G.1 International Conference of Formal Description Techniques
FORTE’94, pages 227–242, 1994.

[53] R. Duke, G. Rose, and G. Smith. Object-Z: a Specification Language Advocated for
the Description of Standards. Computer Standards & Interfaces, 17(5-6):511–533,
1995.

[54] A. Einstein. Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17(891),
1905.

[55] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. In Computer-Aided Verification (CAV’90), volume 531 of LNCS, pages
136–145. Springer-Verlag, 1990.

[56] M. Faugère, T. Bourbeau, R. de Simone, and S. Gérard. MARTE: Also an UML
Profile for Modeling AADL Applications. In ICECCS. IEEE, 7 2007.

[57] P. Feiler, D. Gluch, and J. Hudak. The Architecture Analysis & Design Language
(AADL): An Introduction. Technical Note CMU/SEI-2006-TN-011, Carnegie Mel-
lon, 2 2006.

[58] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

206 Bibliography

[59] Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse de
Doctorat, Université Joseph Fourier (Grenoble), November 1989.

[60] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in Computer
Science, pages 68–84, Berlin, March 1998. Springer Verlag. Full version available as
INRIA Research Report RR-3352.

[61] Hubert Garavel and Frédéric Lang. NTIF: A General Symbolic Model for Com-
municating Sequential Processes with Data. In Doron Peled and Moshe Vardi,
editors, Proceedings of the 22nd IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems FORTE’2002 (Houston, Texas,
USA), volume 2529 of Lecture Notes in Computer Science, pages 276–291. Springer
Verlag, November 2002. Full version available as INRIA Research Report RR-4666.

[62] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compiler Construction us-
ing LOTOS NT. In Nigel Horspool, editor, Proceedings of the 11th International
Conference on Compiler Construction CC 2002 (Grenoble, France), volume 2304 of
Lecture Notes in Computer Science, pages 9–13. Springer Verlag, April 2002.

[63] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2006:
A Toolbox for the Construction and Analysis of Distributed Processes. In Werner
Damm and Holger Hermanns, editors, Proceedings of the 19th International Confer-
ence on Computer Aided Verification CAV’2007 (Berlin, Germany), volume 4590
of Lecture Notes in Computer Science, pages 158–163. Springer Verlag, July 2007.

[64] Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition Oper-
ator for Process Algebras. In Jianping Wu, Qiang Gao, and Samuel T. Chanson,
editors, Proceedings of the Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, and Protocol
Specification, Testing, and Verification FORTE/PSTV’99 (Beijing, China), pages
185–202. IFIP, Kluwer Academic Publishers, October 1999.

[65] G. Gardey, D. Lime, M. Magnin, and O. Roux. Roméo: A tool for analyzing
time Petri nets. In 17th International Conference on Computer Aided Verification
(CAV’05), Lecture Notes in Computer Science, July 2005.

[66] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.

[67] G. Gössler and J. Sifakis. Composition for component-based modeling. Science of
Computer Programming, 55(1-3):161–183, 2005.

[68] J. F. Groote. Transition system specifications with negative premises. In J. C. M.
Baeten and J. W. Klop, editors, CONCUR ’90, Theories of Concurrency: Unifica-
tion and Extension, number 458 in LNCS, pages 332–341. Springer-Verlag, 1990.

207

[69] J. F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118:263–299, 1993.

[70] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerdenburg.
The Formal Specification Language mCRL2. In Methods for Modelling Software
Systems. Dagstuhl Seminar Proceedings, 2007.

[71] J. F. Groote and A. Ponse. The Syntax and Semantics of µCRL. In A. Ponse, C. Ver-
hoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes’94,
Workshops in Computing Series, pages 26–62. Springer Verlag, 1995.

[72] M. Hause. The SysML Modelling Language. In Fifteenth European Systems Engi-
neering Conference, 9 2006.

[73] T. Henzinger. The Theory of Hybrid Automata. Verifications of Digital and Hybrid
Systems, 170:265–292, 2000.

[74] T. Henzinger, P. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hybrid
Systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[75] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for
Real-Time Systems. Information and Computation, pages 193–244, June 1994.

[76] Christian Hernalsteen. Specification, Validation and Verification of Real-Time Sys-
tems using ET-LOTOS. Thèse de Doctorat, Université Libre de Bruxelles, June
1998.

[77] C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666–677, August 1978.

[78] J. Hoenicke and P. Maier. Model-Checking of Specifications Integrating Data, Pro-
cesses and Time. In J. S. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005,
volume 3582 of LNCS, pages 465–480. Springer Verlag, 2005.

[79] Gerard J. Holzmann. Design and Validation of Computer Protocols. Software Series.
Prentice Hall, 1991.

[80] P. Hsiung, Y. Chen, and Y. Lin. Model Checking Safety-Critical Systems Using
Safecharts. IEEE Transactions on Computers, 56(5):692–705, 2007.

[81] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genève, September 1989.

[82] ISO/IEC. Syntactic metalanguage — Extended BNF. International Standard
14977:1996(E), International Organization for Standardization — Information Tech-
nology, Genève, December 1996.

208 Bibliography

[83] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization — Information Tech-
nology, Genève, September 2001.

[84] Günter Karjoth. Implementing LOTOS Specifications by Communicating State
Machines. In Proceedings of the third International Conference on Concurrency
Theory (CONCUR’92), volume 630 of Lecture Notes in Computer Science, pages
386–400. Springer Verlag, August 1992.

[85] A. Klusener. Models and axioms for a fragment of real time process algebra. PhD
thesis, TU Eindhoven, December 1993.

[86] Frédéric Lang. EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Com-
positional, and On-the-fly Verification Methods. In Jaco van de Pol, Judi Romijn,
and Graeme Smith, editors, Proceedings of the 5th International Conference on In-
tegrated Formal Methods IFM’2005 (Eindhoven, The Netherlands), volume 3771 of
Lecture Notes in Computer Science, pages 70–88. Springer Verlag, November 2005.
Full version available as INRIA Research Report RR-5673.

[87] F. Laroussinie and K. Larsen. Compositional Model-Checking of Real Time Systems.
In CONCUR’95, Philadelphia, USA, volume 962 of LNCS, pages 27–41. Springer-
Verlag, August 1995.

[88] F. Laroussinie and K. Larsen. CMC: A Tool for Compositional Model-Checking
of Real-Time Systems. In FORTE XI, pages 439–456, Deventer, The Netherlands,
1998. Kluwer, B.V.

[89] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1 - 2):134–152, October 1997.

[90] L. Léonard. An Extended LOTOS for the Design of Time-Sensitive Systems. PhD
thesis, Université de Liège, 1997.

[91] L. Léonard and G. Leduc. A Formal Definition of Time in LOTOS. Formal Aspects
of Computing, pages 28–96, 1998.

[92] Luc Léonard and Guy Leduc. An Enhanced Version of Timed LOTOS and its
Application to a Case Study. In Richard L. Tenney, Paul D. Amer, and M. Umit
Uyar, editors, Proceedings of the 6th International Conference on Formal Descrip-
tion Techniques FORTE’93 (Boston, MA, USA), pages 483–498. North-Holland,
October 1993.

[93] D. Lime, O. Roux, C. Seidner, and L. Traonouez. Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches. In S. Kowalewski and A. Philippou,
editors, TACAS 2009, volume 5505 of LNCS, pages 54–57. Springer Verlag, 2009.

[94] C. Lohr and J.-P. Courtiat, 2002. From the specification to the scheduling of time-
dependent systems.

209

[95] P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,
University of California, Irvine, Dep. of Information and Computer Science, 1974.

[96] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer Verlag, 1980.

[97] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[98] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In
J.C.M. Baeten and J.W. Klop, editors, CONCUR ’90 (Theories of Concurrency:
Unification and Extension, volume 458 of LNCS, pages 401–415. Springer-Verlag,
August 1990.

[99] Xavier Nicollin and Joseph Sifakis. An Overview and Synthesis on Timed Process
Algebras. In K. G. Larsen and A. Skou, editors, Proceedings of the 3rd Workshop
on Computer-Aided Verification (Aalborg, Denmark), volume 575 of Lecture Notes
in Computer Science, Berlin, July 1991. Springer Verlag.

[100] Xavier Nicollin and Joseph Sifakis. The Algebra of Timed Processes ATP: Theory
and Application. Information and Computation, 114(1):131–178, 1994.

[101] D. C. Oppen. A 222
pn

Upper Bound on the Complexity of Presburger Arithmetic.
Journal of Computer and System Sciences, 16:323–332, 1978.

[102] J. S. Ostroff. Verification of safety critical systems using TTM/RTTL. In Real-
Time: Theory in Practice, volume 600 of LNCS, pages 573–602. Springer-Verlag,
June 1991.

[103] J. Ouaknine and J. Worrell. Timed CSP = closed timed ε-automata. Nordic Journal
of Computing, 10(2):99–133, 2003.

[104] M. Ouimet and K. Lundqvist. Verifying Execution Time using the TASM Toolset
and UPPAAL. Technical Report ESL-TIK-00212, MIT, 2008.

[105] G. D. Plotkin. A Structural Approach to Operational Semantics. Lecture Notes
DAIMI FN-19, Aarhus University, 1981.

[106] C. Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets. Technical Report TR-120, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1974.

[107] A. Ratzer, L. Wells, H. Lassen, M. Laursen, J. Qvortrup, M. Stissig, M. Westergaard,
S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating, and Analysing
Coloured Petri Net. In 24th International Conference of Applications and Theory
of Petri Nets, volume 2679 of LNCS, pages 450–462, 2003.

[108] G. M. Reed and A. W. Roscoe. A Timed Model for Communicating Sequential
Processes. Theoretical Computer Science, 58:249–261, 1988.

210 Bibliography

[109] S. Roch and P. Starke. INA – Integrated Net Analyzer – Version 2.2 – Manual.
Humbold-Universität Berlin, April 1999.

[110] J. Ruf and T. Kropf. Analyzing Real-Time Systems. In Conference on Design
Automation and Test in Europe. IEEE Computer Society Press, March 2000.

[111] T. Sadani. Vers l’utilisation des réseaux de Petri temporels étendus pour la vérifi-
cation de systèmes temps-réel décrits en RT-LOTOS. PhD thesis, INP Toulouse,
2007.

[112] T. Sadani, M. Boyer, P. Saqui-Sannes, and J.-P. Courtiat. Effective Representation
of RT-LOTOS Terms by Finite Time Petri Nets. In Formal Techniques for Net-
worked and Distributed Systems – FORTE 2006, pages 404–419, September 2006.

[113] L. Sassoli and E. Vicario. Analysis of real time systems through the ORIS tool. In
Quantitative Evaluation of Systems (QEST06), Riverside, sep 2006. IEEE Computer
Society Press.

[114] Philippe Schnoebelen. Refined Compilation of Pattern-Matching for Functional
Languages. Science of Computer Programming, 11:133–159, 1988.

[115] Mihaela Sighireanu. Contribution à la définition et à l’implémentation du langage
“Extended LOTOS”. Thèse de Doctorat, Université Joseph Fourier (Grenoble), Jan-
uary 1999.

[116] Mihaela Sighireanu. LOTOS NT User’s Manual (Version 2.6). INRIA project-
team VASY. ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z, Febru-
ary 2008.

[117] P. Starke and S. Roch. Ina et al. In Kjeld H. Mortensen, editor, Tool Demonstrations
21st International Conference on Application and Theory of Petri Nets, pages 51–
56, June 2000.

[118] J. Stöcker, F. Lang, and H. Garavel. Parallel Processes with Real-Time and Data:
The ATLANTIF Intermediate Format. In M. Leuschel and H. Wehrheim, editors,
Proc. of the 7th International Conference on integrated Formal Methods iFM, num-
ber 5423 in LNCS, pages 88–102. Springer-Verlag, February 2009. Shorter, therefore
incomplete version of [119].

[119] J. Stöcker, F. Lang, and H. Garavel. Parallel Processes with Real-Time and Data:
The ATLANTIF Intermediate Format. Research Report RR-6950, INRIA Grenoble
- Rhône-Alpes, June 2009. Extended (complete) version of [118].

[120] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers.
Syntax and Semantics of Timed Chi. Technical Report 05-09, TU Eindhoven, 2005.

[121] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers.
Syntax and Consistent Equation Semantics of Hybrid Chi. Journal of Logic and
Algebraic Programming, special issue on hybrid systems, 68(1–2), 2006.

211

[122] A. Verdejo. E-LOTOS Tutorial with Examples, April 2000.

[123] F. Wang. Symbolic Simulation Checking of Dense-Time Automata. In 5th Inter-
national Conference on Formal Modelling and Analysis of Timed Systems (FOR-
MATS), LNCS, Salzburg, Austria, October 2007. Springer-Verlag.

[124] M. Weber. An Embeddable Virtual Machine for State Space Generation. In D. Boš-
nački and S. Edelkamp, editors, 14th International SPIN Workshop, volume 4595
of LNCS, pages 168–185. Springer-Verlag, 2007.

[125] Wang Yi. CCS + Time = An Interleaving Model for Real Time Systems. In
Automata, Languages and Programming, 18th International Colloquium, volume
510 of LNCS, pages 217–228, 1991.

[126] S. Yovine. Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer, 1(1/2):123–133, October 1997.

[127] C. Zhou, C. Hoare, and A. Ravn. A calculus of durations. Information Processing
Letters, 40(5):269–276, 1991.

212 Bibliography

Appendix A

Additional algorithms and proofs

A.1 Static semantics

A.1.1 Unicity of communication, undelayed next state reacha-
bility

In Section 4.4.3, we introduced the static semantics constraint that each execution path
in a multibranch transition may only contain a single communication, and that each
execution path with a communication, this communication must be followed by a jump
or a stop, while it must not be followed by a delay. A similar criterion (without the
restriction on the delay and without the possibility of a stop) has already been formally
defined in Appendix A.4 of [61]; in this section we will extend it to the full Atlantif
syntax.

A discrete state “from s A” satisfies the unicity of communication and undelayed next
state reachability if ucuns(A) equals true, where ucuns is a boolean function defined in
Fig. A.1.

Note that the function reach uses the function exh to check the case exhaustivity of the
patterns of a case action, which is necessary to ensure the next state reachability after
a communication. The function exh is already formally defined in Appendix A.5 of [61]
and shall not be repeated here.

Clearly, this formal definition does not provide a necessary criterion, as it also excludes
actions such as

while false do G end; to s′,
which does not allow an execution path that violates the unicity of communication and
undelayed next state reachability as we defined it intuitively. However, only exotic cases
such as this example seem to be excluded.

213

214 Appendix A. Additional algorithms and proofs

ucuns(A) =




true if A has the form null, to s′, wait E, stop, to s′; A1,

or stop; A1

ucuns(A1) if A has the form A0; A1 where A0 has the form

V0, . . .,Vn := E0, . . .,En,

V0, . . .,Vn := any T0, . . . ,Tn where E,

reset V0, . . . ,Vn, wait E, or null

reach(A1) if A has the form G O1 . . . On Q in W; A1

ucuns(A1; A3) ∧ ucuns(A2; A3) if A has the form if E then A1 else A2 end; A3∧
i∈0..n ucuns(Ai; A′) if A has the form select A0[] . . . []An end; A′

or case E is P0->A0| . . . |Pn->An end; A′

ucuns(A1; A1; A2) ∧ ucuns(A2) if A has the form while E do A1 end; A2

false if A has the form G O1 . . . On Q in W

ucuns(A; null) otherwise

reach(A) =




true if A has the form to s′, stop, to s′; A1, or stop; A1

false if A has the form null, G O1 . . .On Q in W,

G O1 . . .On Q in W; A1,

while E do A0 end, while E do A0 end; A1, wait E,

or wait E; A1

reach(A1) if A has the form A0; A1 where A0 has the form

V0, . . . ,Vn := E0, . . . ,En,

V0, . . . ,Vn := any T0, . . .,Tn where E,

reset V0, . . .,Vn, or null

reach(A1; A3) ∧ reach(A2; A3) if A has the form if E then A1 else A2 end; A3∧
i∈0..n reach(Ai; A′) if A has the form select A0[] . . .[]An end; A′

exh({〈P0〉, . . . , 〈Pn〉})
∧ ∧

i∈0..n reach(Ai; A′) if A has the form case E is P0->A0| . . . |Pn->An end; A′

reach(A; null) otherwise

Figure A.1: Unicity of communication and undelayed next state reachability

A.1. Static semantics 215

A.1.2 Equivalent definition of validity-stable synchronizers

The definition of validity stable given in Section 4.5.2 uses a quantification over the power
set of U, therefore an algorithm which directly translates this definition would be of
exponential complexity. In this section we present an alternative definition, corresponding
to an algorithm of polynomial complexity.

First we define for each set U ∈ U its shadow i.e., the set of units to which the elements
of U are related by ≻. Formally:

shadow(U)
def
= {u ∈ U | (∃u′ ∈ U) u′ ≻ u or u ≻ u′}

This allows us to define the predicate validity stable ′ on the set of synchronizers by:

validity stable ′(G) iff valid active(start(G)) ∧
(∀u ∈ start(G),U ∈ sync(R)) valid active(U) ⇒

(({u} ∪ shadow({u})) \ shadow(U)) ⊆ stop(G)

Proposition A.1. Let be assumed that all synchronizers G satisfy (∃U0 ∈ sync(G))
valid active(U0). Then the predicates validity stable given in 4.5.2 and validity stable ′

given here are equal.

During the proof, we use two lemmas, which are direct consequences from the definition
of the predicate valid active:

Lemma A.1. Let U1,U2 ⊆ U be sets.
valid active(U1 ∪ U2)⇒ valid active(U1) ∧ valid active(U2)

Lemma A.2. Let U1,U2 ⊆ U be sets.
(valid active(U1) and (∀u ∈ U1) valid active(U2 ∪ {u}))⇒ valid active(U1 ∪ U2)

Proof. (of Proposition A.1)

We have to show for an arbitrary synchronizer G that

validity stable(G) iff validity stable ′(G)

“⇒”: Let be validity stable(G).

1. By assumption, there is a U0 ∈ sync(G) such that valid active(U0), and then by
hypothesis we have
valid active((U0 \ stop(G)) ∪ start(G)), thus by Lemma A.1 valid active(start(G)).

2. Let u ∈ start(G),U ∈ sync(G) be such that valid active(U).

Let u′ ∈ (({u} ∪ shadow({u})) \ shadow(U)). It has to be shown that u′ ∈ stop(G). To
this aim, we distinguish three possible cases:

• Case u′ = u: By u′ /∈ shadow(U), we know that valid active(U ∪ {u′}). Also, by
case hypothesis, u′ ∈ start(G). By definition of validity stable(G), we then have
u′ /∈ ((U ∪ {u′}) \ stop(G)), and thus u′ ∈ stop(G)

216 Appendix A. Additional algorithms and proofs

• Case u′ ∈ shadow({u}) and u′ ∈ U : Thus we have u ≻ u′ or u′ ≻ u, and then
¬valid active({u′, u}). Meanwhile, by condition and Lemma A.1, we know valid-
ity active((U ∪ {u}) \ stop(G)), and thus validity active((U ∪ {u, u′}) \ stop(G)).
From this we conclude u′ ∈ stop(G).

• Case u′ ∈ shadow({u}) and u′ /∈ U : As we have u′ /∈ shadow(U), we can con-
clude valid active(U ∪ {u′}). Also, we always have ¬valid active({u′, u}), thus, by
definition of validity stable(G), we get u′ ∈ stop(G).

“⇐”: Let be validity stable ′(G).

Let the set U ⊆ U be such that valid active(U) and the set Us ∈ sync(G) be such that
Us ⊆ U . (By Lemma A.1, we notice that valid active(Us).) Now two statements, given
by the definition of validity stable, then have to be shown:

First, we need to show that (U \ stop(G)) ∩ start(G) = ∅. Let us assume that there is
u ∈ ((U \ stop(G)) ∩ start(G)).

As we must have u ∈ U , we clearly have also u /∈ shadow(Us). By u ∈ start(G), the defini-
tion of validity stable ′(G) states then that u ∈ stop(G), which contradicts the assumption;
it is thus impossible.

Second, we need to show that valid active((U \ stop(G)) ∪ start(G)).

As we already know that valid active(start(G)), Lemma A.2 tells us that it is sufficient
to show for an arbitrary u0 ∈ start(G) that valid active((U \ stop(G)) ∪ {u0}).
Thus, we have to show that, if there is a u1 ∈ U such that u1 ≻ u0 or u0 ≻ u1, we
then also have u1 ∈ stop(G). The hypothesis “u1 ≻ u0 or u0 ≻ u1” is equivalent to
“u1 ∈ shadow({u0})”.
Case u1 ∈ Us: By definition of shadow , we have u1 /∈ shadow(Us), and thus by the second
conclusion of the definition of validity stable’ we deduce u1 ∈ stop(G).

Case u1 /∈ Us: By valid active(U) we see that valid active(Us ∪ {u1}), and thus that
u1 /∈ shadow(Us), thus (as above) u1 ∈ stop(G).

Remark A.1. The assumption used in Proposition A.1 does not impose a real restriction,
as a synchronizer not satisfying it could obviously not be used in a discrete transition, thus
the dynamic semantics of a module is equal for the two predicates used in a dynamics se-
mantics restriction. The proposition does not hold without the restriction, as the following
example shows:

Let “sync G is u and u′ start u, u′ end sync” be a synchronizer with u, u′ units such
that u ≻ u′. Then validity stable(G), but not validity stable ′(G).

Example A.1. We illustrate the defintion of validity stable ′ by recalling the synchronizer
Finish Braking of Example 4.3 on page 78. Here, we suppose that our unit Brakes is a
subunit (possibly among others) of a unit named Car Control , which itself is not a subunit.

To verify if validity stable ′(Finish Braking) is satisfied, we begin by checking the predicate
valid active(start(Finish Braking)). As start(Finish Braking) is the singleton {Brakes},
this is clearly true.

A.1. Static semantics 217

Next, we have to check the condition that quantifies over all u ∈ start(Finish Braking)
and U ∈ sync(Finish Braking). This is simple, as there is only one element each i.e.,
u = Brakes and U = {Front Brakes ,Rear Brakes}. The set U is valid active, therefore
we have to check if the following is satisfied:

(({Brakes} ∪ shadow({Brakes})) \ shadow({Front Brakes ,Rear Brakes})) ⊆
{Front Brakes ,Rear Brakes}

By the definition above, we have

shadow({Brakes}) = {Car Control ,Front Brakes ,Rear Brakes}
and

shadow({Front Brakes ,Rear Brakes}) = {Car Control ,Brakes}.
Thus, the inequation simplifies to

({Car Control ,Brakes ,Front Brakes ,Rear Brakes} \ {Car Control ,Brakes}) ⊆
{Front Brakes ,Rear Brakes}

which is clearly true.

A.1.3 Variable initialization

The following algorithm, already briefly described in Section 4.6.2, verifies for a given
Atlantif module if each variable is assigned a value before being read. It is composed
of three steps as follows:

First step: We begin by constructing for each unit u one directed graph, called local
variable usage graph. Each discrete state s in u maps to a node (also named s) in the graph.
The multibranch transition associated with s maps to zero or more edges, the set of which

is formally defined by state local edges(s)
def
= {(Vo,Va,Vr, l, s

′) ∈ local edges(act(s)) | s′ 6=
δ} where function local edges is formally defined in Fig. A.2. Each (Vo,Va,Vr, l, s

′) ∈
state local edges(s) represents one possible execution path of act(s) that terminates with
a jump to s′34. It corresponds to an edge from s to s′, with label l ∈ (G∪ {ε}), and three
associated sets of variables as follows:

• The set Vo contains those variables that need to have a value assigned before this
path is taken.

• The set Va contains those variables that are necessarily defined at the end of this
path.

• The set Vr contains those variables that are potentially reset at the end of this path.

Intuitively, the first two of these sets extend to execution paths the sets use and def we
defined in Section 4.3 for expressions, patterns, and offers.

34With the exception of paths containing a while loop, which are not split up into different paths,
given that there are in general infinitely many.

218 Appendix A. Additional algorithms and proofs

local edges(null)
def
= {(∅, ∅, ∅, ε, δ)}

local edges(wait E)
def
= {(use(E), ∅, ∅, ε, δ)}

local edges(V0, . . . , Vn := E0, . . . , En)
def
= {(⋃i∈0..n use(Ei), {V0, . . . , Vn}, ∅, ε, δ)}

local edges(V0, . . . , Vn := any T0, . . . , Tn where E)
def
=

{(use(E), {V0, . . . , Vn}, ∅, ε, δ)}
local edges(reset V0, . . . , Vn)

def
= {(∅, ∅, {V0, . . . , Vn}, ε, δ)}

local edges(G O1 . . . On Q in W)
def
=

{(⋃i∈1..n(use(Oi) \ (
⋃

j∈1..(i−1) def (Oj))) ∪ read(W),
⋃

i∈1..n def (Oi), ∅, G, δ)}
local edges(to s′)

def
= {(∅, ∅, ∅, ε, s′)}

local edges(select A0[] . . . []An end)
def
=

⋃
i∈0..n local edges(Ai)

local edges(case E is P0->A0| . . . |Pn->An end)
def
=⋃

i∈0..n{(Vo ∪ use(E) ∪ use(Pi),Va ∪ def (Pi),Vr, l, s
′) |

(Vo,Va,Vr, l, s
′) ∈ local edges(Ai)}

local edges(if E then A1 else A2 end)
def
=

{(Vo ∪ use(E),Va,Vr, l, s
′) | (Vo,Va,Vr, l, s

′) ∈ local edges(A1) ∪ local edges(A2)}
local edges(while E do A0 end)

def
= {(use(E) ∪⋃

i∈0..n V i
o, ∅,

⋃
i∈0..n V i

r, ε, δ)}
where local edges(A0) = {(V i

o,V i
a,V i

r, ε, δ) | i ∈ 0..n}
local edges(A1;A2)

def
= {(Vo ∪ (V ′o \ Va), (Va \ V ′r) ∪ V ′a, (Vr \ V ′a) ∪ V ′r, l1 + l2, s2) |

(Vo,Va,Vr, l1, δ) ∈ local edges(A1), (V ′o,V ′a,V ′r, l2, s2) ∈ local edges(A2)} ∪
{(Vo,Va,Vr, l1, s1) ∈ local edges(A1) | s1 6= δ}

raise error, if Vr ∩ V ′o 6= ∅

Figure A.2: Function local edges

A.1. Static semantics 219

Note that the function local edges already notices a trivial case of variable initialization
errors (and raises an exception), which is the case of a sequential composition A1;A2 such
that A1 resets a variable that is read in A2.

Second step: The local variable usage graphs of the units are then composed into a
single (global) variable usage graph, where each node represents a state distribution func-
tion and each edge represents either a multibranch transition path in a single unit without
communication action taken, or one or several paths in one unit each with communication
action G such that the set of these units is in sync(G). During the latter case, units may
be stopped and/or started, according to G.

The algorithm given in Fig. A.3 shows the construction of the global variable usage graph,
where the latter is written as a set VUG . For each node π, VUG contains one tuple (π,K),
where K is the set of edges from node π. Each (Vo,Va,Vr, π

′) ∈ K is an edge from π to π′

and with the three variable sets as above. The algorithm starts in node (π0), defined as
in Section 4.6.3 on page 81. It uses the predicate next π from Section 4.6.3.

Third step: Given a variable usage graph VUG with initial node π0 and the corre-
sponding tuple n0 = (π0,K0), a greatest fix-point algorithm, formally defined in Fig. A.4,
calculates for each of its tuples n = (π,K) a set of variables set before(n). This set corre-
sponds to the smallest possible set of variables that are defined in a global state with the
state distribution π. At the same time, the algorithm checks for all outgoing edges (i.e.,
edges in K), if the variables that need to be defined for these edges are always defined in
π i.e., if the set Vo of each edge is a subset of set before(n). If not, this means that there
is possibly a path where an undefined variable is used.

The module is well-initialized, if the algorithm terminates without raising an error and
set before(n0) is a subset of dom(ρ0).

Proposition A.2. The algorithm defined in this section is sufficient to detect in an At-
lantif module any variable that may be used without being defined, but is not necessary.

Proof. Sufficient : Suppose M is a module allowing a run in which a variable V is used
without being assigned a value. Three different reasons are possible:

• There is a unit and a multibranch transition allowing an execution path where V is
reset before being used.

• V has neither an initial value nor any assignement was made to V before it should
be used.

• V has an initial value and/or an assignement was made to V before it should be
used, but it has been reset since by a reset action or by a unit desactivation.

In the first case, the function local edges will raise an error during the construction of the
local variable usage graph (last case of the definition in Fig. A.2).

220 Appendix A. Additional algorithms and proofs

VUG ← ∅
Tmp ← {(π0)}
while (Tmp 6= ∅) do

new edges ← ∅
choose (π) from Tmp
Tmp ← Tmp \ {(π)}
to sync ← ∅
for each u ∈ dom(π)
E ← state local edges(π(u))
Eu ← ∅
for each (Vo,Va,Vr, l, s) ∈ E

if l = ε then
new edges ← new edges ∪ {(Vo,Va,Vr, (π ⊘ [u 7→ s]))}
if ((π ⊘ [u 7→ s]) not in VUG) then Tmp ← Tmp ∪ {(π ⊘ [u 7→ s])}

else
Eu ← Eu ∪ {(Vo,Va,Vr, l, s)}

end if
end for
to sync ← to sync ∪ {Eu}

end for
for each synchronizer G

for each U ′ ∈ sync(G)
if (U ′ = {u1, . . . , un} ⊆ dom(π)) then

lost by disabling ←
{V | (∄u ∈ ((dom(π) \ stop(G)) ∪ start(G))) u ∈ accessible(V)}

init by enabling ← {V | V ∈ dom(ρ0) ∧ (∃u ∈ start(G)) V ∈ decl(u)}
for each choice of (V1

o ,V1
a ,V1

r , G, s1) ∈ Eu1
, . . . ,

(Vn
o ,Vn

a ,Vn
r , G, sn) ∈ Eun with Eu1

, . . . , Eun ∈ to sync
next node ← (π′) where next π(π, [ui 7→ si | i ∈ 1..n], G, π′)}
new edges ← new edges ∪ {(⋃i∈1..n V i

o,
⋃

i∈1..n V i
a ∪ init by enabling ,⋃

i∈1..n V i
r ∪ lost by disabling ,next node)}

if (next node not in VUG) then Tmp ← Tmp ∪ {next node}
end for

end if
end for

end for
VUG ← VUG ∪ {(π,new edges)}

end while

Figure A.3: Pseudocode for variable usage graph construction

A.1. Static semantics 221

for each n ∈ VUG
set before(n)← V
explored (n)← false

end for
set before(n0)← ∅
while ((∃n ∈ VUG)explored (n) = false)

choose n ∈ VUG with explored (n) = false
explored (n) = true
for each (Vo,Va,Vr, π

′) ∈ K (where n = (π,K))
if ((∃V ∈ Vo) V /∈ set before(n) then raise error end if
find n′ = (π′,K′) ∈ V UG (for the π′ given above)
Tmp ← set before(n′) ∩ ((set before(n) \ Vr) ∪ Va)
if ((Tmp 6= set before(n′)) or (explored (n′) = false)) then

set before(n′)← Tmp
explored (n′)← false

end if
end for

end choose
end while

Figure A.4: Pseudocode for fix-points of variable definitions in the variable usage graph

In the two other cases, the run has a corresponding path in the global variable usage
graph (VUG). In the second case, this path starts from the initial node n0 of VUG . It
goes by the nodes n1, . . . , nk, where nk corresponds to the state in the run that directly
preceeds V being used. By the definition of Fig. A.4, we then have set before(nk), thus
set before(nk−1), . . ., thus set before(n0). Therefore, M is not well-initialized, because
set before(n0) 6⊆ dom(ρ0).

In the third case, we can apply the same argumentation as in the second case, except for
ignoring the beginning of the path in VUG until nl is reached, which is the node following
directly the last reset of V .

Not necessary : The following counterexample shows that the algorithm is not necessary.
We suppose a module with a single unit and the according synchronizers, the unit begin-
ning with the following multibranch transitions:

from s1

reset V1; V2 := true; to s3

from s2

V1, V2 := 5, false; to s3

from s3

if (not V2) then V3 := V1 end; to s4

Then our algorithm will require the variable V1 to have a value assigned each time the
state s3 is reached, which is not satisfied by the execution path of s1, therefore an error
will be raised. However, because of the assignment made to V2 following s1, the execution
path of s3 that reads V1 could not be taken, thus it cannot happen in the example that
the variable V1 is used without being assigned a value.

222 Appendix A. Additional algorithms and proofs

Note that false errors raised by our algorithm can not only be caused by non-considering
of data constraints, but also by non-considering of timing constraints or by considering
invalid chains of silent synchronizers. These imprecisions are due to abstractions we made
in the definition of the global variable usage graph in order to limit its size.

Differences to NTIF. The static semantics definition of Ntif also requires all variables
to be well-initialized and applies an algorithm (cf. Appendix A.3 of [61]) sharing important
ideas. However, changes were made regarding the scope of the algorithm and the efficiency.

Regarding the scope, the new algorithm consideres constructs that do not exist in Ntif,
namely a limited variable sharing and unit starting and stopping (also delay actions and
time windows, but those are, for the concerns of this section, trivial extensions). The
possibility of sharing variables makes it necessary for our algorithm to consider the module
as a whole (instead of verifying one by one the units), and the starting and stopping
represents a new source of variable assignments and variable resets.

Regarding the efficiency, the Ntif-algorithm applied the evaluation of multibranch tran-
sitions (finding execution paths, finding assigned, read, and reset variables) in each step
of the minimal fix-point search; where the number of those steps may be exponential de-
pending on the number of discrete states. Our algorithm applies the same fix-point search
(which is thus also of exponential complexity), but it does not contain the evaluation of
multibranch transitions, which is done during the construction of the variable usage graph
i.e., each multibranch transition is only evaluated once.

A.2 Translation to graphical models

A.2.1 Translation of an ATLANTIF unit to a TINA TPN

In this section, we will provide more detailed definitions for the translation given in
Section 6.2.3. There, we translate Atlantif units to prelaminary TPN by two main
steps, the first of which is to evaluate all execution paths of the unit (mainly defined
by the function trans p, given in Fig. 6.10 on page 156). The second step is to create
auxiliary construct that represent the timing constraints, including the “emptying” i.e.,
the introduction of more auxiliary constructs that delete tokens from auxiliary places.
The algorithm of the second step is given by the pseudocode in Fig. A.5 to A.12.

In the pseudocode, each place is represented by a triple, build from a unique identifier, a
list of (the identifiers of) auxiliary places, and a label (e.g., the identifier of the correspond-
ing Atlantif discrete state). Depending on the context, we identify a place either such
a triple (id ,AP , p) or simply by p or id . Each transition is represented by a 6-tuple, build
from a unique identifier, a list of in-places, a list of inhibitor-places, a list of out-places, a
label (a gate or ε), and a static firing interval.

The generation of identifiers for places and transitions used in the algorithm is under-
stood to produce unique identifiers. In the translator implementation of the atlantif tool

A.2. Translation to graphical models 223

given a set of places P ′
u, a set of transitions T ′

u, and a set of execution path evaluations Tu
P ← ∅, T ← ∅,Pr ← ∅
for all (id , ∅, p) ∈ P ′

u

Tnew ← ∅, P̃aux ← ∅
find Tp ⊆ T ′

u by Tp = {t ∈ Tp | in(t) = {p}} (note that all in-sets are singletons)
for all t ∈ Tp

find in Tu the Π = (I,O, l, w, x,E,A) according to t (i.e., tΠ = t)
in case the tuple (w, x) (i.e., interval and modality) is the following:

([0, k], false) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε,]k,∞[)

yes →
modify Π : add id ′

1 as in-place and set w to [0,∞[
add priority id ′

2 > id to Pr
no →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]k,∞[)}
modify Π : add id1 as in-place and set w to [0,∞[
add priority id2 > id to Pr
Tβ ← Tβ ∪ {id2}

([0, k], true) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε, [k, k])

yes →
modify Π : add id ′

1 as in-place and set w to [0,∞[
no →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [k, k])}
modify Π : add id1 as in-place and set w to [0,∞[
add priority id > id2 to Pr
Tβ ← Tβ ∪ {id2}

(continued in Fig. A.6)

Figure A.5: Pseudocode for the second step of the translation from a unit to a TPN (1)

224 Appendix A. Additional algorithms and proofs

([m,k], false) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε, [m,∞[)

yes →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε,]k,∞[)

yes →
modify Π : add id ′

3 as in-place, id ′
1 as inhibitor-place, and set w to [0,∞[

add priority id ′
4 > id to Pr

no →
generate new place identifier id3 and new transition identifier id4

P ← P ∪ {(id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id3}
Tnew ← Tnew ∪ {(id4, {id3}, ∅, ∅, ε,]k,∞[)}
modify Π : add id3 as in-place, id ′

1 as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id4}

no →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε,]k,∞[)

yes →
generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[)}
modify Π : add id ′

3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priority id ′

4 > id to Pr
Tβ ← Tβ ∪ {id2}

no →
generate new place identifiers id1, id3 and new transition identifiers id2, id4

P ← P ∪ {(id1, ∅, p aux), (id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1, id3}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[), (id4, {id3}, ∅, ∅, ε,]k,∞[)}
modify Π : add id3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id2, id4}

(continued in Fig. A.7)

Figure A.6: Pseudocode for the second step of the translation from a unit to a TPN (2)

A.2. Translation to graphical models 225

([m,k], true) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε, [m,∞[)

yes →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε, [k, k])

yes →
modify Π : add id ′

3 as in-place, id ′
1 as inhibitor-place, and set w to [0,∞[

add priorities id > id ′
4, id

′
2 > id ′

4 to Pr
no →

generate new place identifier id3 and new transition identifier id4

P ← P ∪ {(id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id3}
Tnew ← Tnew ∪ {(id4, {id3}, ∅, ∅, ε, [k, k])}
modify Π : add id3 as in-place, id ′

1 as inhibitor-place, and set w to [0,∞[
add priorities id > id4, id

′
2 > id4 to Pr

Tβ ← Tβ ∪ {id4}
no →

check if there is a t′′ ∈ Tnew such that t′′ = (id ′
4, {id ′

3}, ∅, ∅, ε, [k, k])
yes →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[)}
modify Π : add id ′

3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priorities id > id ′

4, id2 > id ′
4 to Pr

Tβ ← Tβ ∪ {id2}
no →

generate new place identifiers id1, id3 and new transition identifiers id2, id4

P ← P ∪ {(id1, ∅, p aux), (id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1, id3}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[), (id4, {id3}, ∅, ∅, ε, [k, k])}
modify Π : add id3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priorities id > id4, id2 > id4 to Pr
Tβ ← Tβ ∪ {id2, id4}

([0, k[,any bool) → (note that by Atlantif static semantics x = false)
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε, [k,∞[)

yes →
modify Π : add id ′

1 as in-place and set w to [0,∞[
add priority id ′

2 > id to Pr
no →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [k,∞[)}
modify Π : add id1 as in-place and set w to [0,∞[
add priority id2 > id to Pr
Tβ ← Tβ ∪ {id2}

(continued in Fig. A.8)

Figure A.7: Pseudocode for the second step of the translation from a unit to a TPN (3)

226 Appendix A. Additional algorithms and proofs

([m,k[,any bool) → (note that by Atlantif static semantics x = false)
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε, [m,∞[)

yes →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε, [k,∞[)

yes →
modify Π : add id ′

3 as in-place, id ′
1 as inhibitor-place, and set w to [0,∞[

add priority id ′
4 > id to Pr

no →
generate new place identifier id3 and new transition identifier id4

P ← P ∪ {(id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id3}
Tnew ← Tnew ∪ {(id4, {id3}, ∅, ∅, ε, [k,∞[)}
modify Π : add id3 as in-place, id ′

1 as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id4}

no →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε, [k,∞[)

yes →
generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[)}
modify Π : add id ′

3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priority id ′

4 > id to Pr
Tβ ← Tβ ∪ {id2}

no →
generate new place identifiers id1, id3 and new transition identifiers id2, id4

P ← P ∪ {(id1, ∅, p aux), (id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1, id3}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[), (id4, {id3}, ∅, ∅, ε, [k,∞[)}
modify Π : add id3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id2, id4}

([0,∞[,any bool) →
do nothing

([m,∞[,any bool) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε, [m,∞[)

no →
modify Π : add id ′

1as inhibitor-place and set w to [0,∞[
no →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε, [m,∞[)}
modify Π : add id1as inhibitor-place and set w to [0,∞[
Tβ ← Tβ ∪ {id2}

(continued in Fig. A.9)

Figure A.8: Pseudocode for the second step of the translation from a unit to a TPN (4)

A.2. Translation to graphical models 227

(]m,k], false) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε,]m,∞[)

yes →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε,]k,∞[)

yes →
modify Π : add id ′

3 as in-place, id ′
1 as inhibitor-place, and set w to [0,∞[

add priority id ′
4 > id to Pr

no →
generate new place identifier id3 and new transition identifier id4

P ← P ∪ {(id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id3}
Tnew ← Tnew ∪ {(id4, {id3}, ∅, ∅, ε,]k,∞[)}
modify Π : add id3 as in-place, id ′

1 as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id4}

no →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε,]k,∞[)

yes →
generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[)}
modify Π : add id ′

3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priority id ′

4 > id to Pr
Tβ ← Tβ ∪ {id2}

no →
generate new place identifiers id1, id3 and new transition identifiers id2, id4

P ← P ∪ {(id1, ∅, p aux), (id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1, id3}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[), (id4, {id3}, ∅, ∅, ε,]k,∞[)}
modify Π : add id3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id2, id4}

(continued in Fig. A.10)

Figure A.9: Pseudocode for the second step of the translation from a unit to a TPN (5)

228 Appendix A. Additional algorithms and proofs

(]m,k], true) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε,]m,∞[)

yes →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε, [k, k])

yes →
modify Π : add id ′

3 as in-place, id ′
1 as inhibitor-place, and set w to [0,∞[

add priorities id > id ′
4, id

′
2 > id ′

4 to Pr
no →

generate new place identifier id3 and new transition identifier id4

P ← P ∪ {(id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id3}
Tnew ← Tnew ∪ {(id4, {id3}, ∅, ∅, ε, k, k])}
modify Π : add id3 as in-place, id ′

1 as inhibitor-place, and set w to [0,∞[
add priorities id > id4, id

′
2 > id4 to Pr

Tβ ← Tβ ∪ {id4}
no →

check if there is a t′′ ∈ Tnew such that t′′ = (id ′
4, {id ′

3}, ∅, ∅, ε, [k, k])
yes →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[)}
modify Π : add id ′

3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priorities id > id ′

4, id2 > id ′
4 to Pr

Tβ ← Tβ ∪ {id2}
no →

generate new place identifiers id1, id3 and new transition identifiers id2, id4

P ← P ∪ {(id1, ∅, p aux), (id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1, id3}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[), (id4, {id3}, ∅, ∅, ε, [k, k])}
modify Π : add id3 as in-place, id1 as inhibitor-place, and set w to [0,∞[
add priorities id > id4, id2 > id4 to Pr
Tβ ← Tβ ∪ {id2, id4}

(continued in Fig. A.11)

Figure A.10: Pseudocode for the second step of the translation from a unit to a TPN (6)

A.2. Translation to graphical models 229

(]m,k[,any bool) → (note that by Atlantif static semantics x = false)
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε,]m,∞[)

yes →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε, [k,∞[)

yes →
modify Π : add id ′

3 as in-place, id ′
1as inhibitor-place, and set w to [0,∞[

add priority id ′
4 > id to Pr

no →
generate new place identifier id3 and new transition identifier id4

P ← P ∪ {(id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id3}
Tnew ← Tnew ∪ {(id4, {id3}, ∅, ∅, ε, [k,∞[)}
modify Π : add id3 as in-place, id ′

1as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id4}

no →
check if there is a t′′ ∈ Tnew such that t′′ = (id ′

4, {id ′
3}, ∅, ∅, ε, [k,∞[)

yes →
generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[)}
modify Π : add id ′

3 as in-place, id1as inhibitor-place, and set w to [0,∞[
add priority id ′

4 > id to Pr
Tβ ← Tβ ∪ {id2}

no →
generate new place identifiers id1, id3 and new transition identifiers id2, id4

P ← P ∪ {(id1, ∅, p aux), (id3, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1, id3}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[), (id4, {id3}, ∅, ∅, ε, [k,∞[)}
modify Π : add id3 as in-place, id1as inhibitor-place, and set w to [0,∞[
add priority id4 > id to Pr
Tβ ← Tβ ∪ {id2, id4}

(]m,∞[,any bool) →
check if there is a t′ ∈ Tnew such that t′ = (id ′

2, {id ′
1}, ∅, ∅, ε,]m,∞[)

no →
modify Π : add id ′

1as inhibitor-place and set w to [0,∞[
no →

generate new place identifier id1 and new transition identifier id2

P ← P ∪ {(id1, ∅, p aux)}
P̃aux ← P̃aux ∪ {id1}
Tnew ← Tnew ∪ {(id2, {id1}, ∅, ∅, ε,]m,∞[)}
modify Π : add id1as inhibitor-place and set w to [0,∞[
Tβ ← Tβ ∪ {id2}

end for (loop on execution paths from p)
(continued in Fig. A.12)

Figure A.11: Pseudocode for the second step of the translation from a unit to a TPN (7)

230 Appendix A. Additional algorithms and proofs

if (id , ∅, p) represents the initial discrete state of u then the

initial marking of Ru is {id} ∪ P̃aux

P ← P ∪ {(id , P̃aux , p)}
if (P̃aux 6= ∅) then (begin emptying construction)

for each labelled transition t with p as in-place
find in Tu the Π = (I,O, l, w, x,E,A) according to t (i.e., tΠ = t)

P̃toempty ← P̃aux \ {id ′ | id ′ denotes the in-place of an auxiliary transition of t}
(we suppose this set P̃toempty to be ordered)

m← card(P̃toempty)
if (m > 0) then (i.e., are there actually places to empty?)

k ← 2m − 1; j ← 0
generate new place identifier id1

P ← P ∪ {(id1, ∅, p out)}
loop on j by increasing it by 1 each step, until (j = k) included

new in ← id1; l← m; j′ ← j
loop on l by decreasing it by 1 each step, until (l = 1) included

if (j′ ≥ 2(l−1)) then

new in ← new in ∪ {(the lth element of P̃toempty)}
j′ ← j′ − 2(l−1) end if

end loop on l
generate new transition identifier id2

Tnew ← Tnew ∪ {(id2,new in, ∅, out(t), ε, [0, 0])}
Tγ ← Tγ ∪ {id2}
if (j < k) then add priority successor(id2) > id2 to Pr end if

end loop on j
modify Π : set id1as the only out-place

end if
end for

end if (end emptying construction)
T ← T ∪ Tnew

update in T all transition containing id as outplace by adding P̃aux to its out-places
end for (loop on places in P ′

u)

Figure A.12: Pseudocode for the second step of the translation from a unit to a TPN (8)

A.3. Translation to Fiacre 231

(cf. Section 6.4), we produce them by successive numerotations p1, p2, . . . and t1, t2, . . .
respectively.

Note that the pseudocode we show here also includes the optimisation as defined on
page 162, which enables the multiple using of auxiliary transitions. This is implemented
by the code “check if there is t′/t′′ ...”.

The transition families Tα, Tβ, Tγ are defined as in Section 6.2.4, to better illustrate which
priorities will be introduced in the composition of the different unit-TPNs (cf. Fig. 6.23
on page 167).

A.3 Translation to Fiacre

This section presents the prototype translator from Atlantif to the Fiacre model,
which we already motivated and outlined in Section 6.3.

A.3.1 The Fiacre model

In this section, we give an overview of the syntax of Fiacre as defined in [15]. A Fiacre
program consists of declarations of types , constants , channels , processes, and components ,
and terminates by an identifier of one of the declared processes and components. This
last identifier denotes the main process (or component).

Type declarations follow the same ideas as in Atlantif; they will not be detailed here.
Constant declarations will not be detailed either, because they do not create additional
expressive power.

A Fiacre port corresponds to a gate in Atlantif and most other formats. Each port is
associated with a channel declaration, which describes cardinality and types of the offers
that are exchanged via this port.

Processes. A process declaration in Fiacre consists of a header and a body. The
process header contains the synchronization interfaces of the process (i.e., a list of ports
with applying channels) and the data parameters (i.e., a list of typed variables). The
process body consists of the following:

• a list of discrete state identifiers

• an optional declaration of local variables (where each declaration may optionally
contain an initial value)

• an optional statement (Fiacre statements correspond to Atlantif actions) to be
executed during the initialization of the process

• a list of multibranch transitions

232 Appendix A. Additional algorithms and proofs

The multibranch transitions of Fiacre are very similar to those of Atlantif (unsurpris-
ingly, because both models inherited them from Ntif): The keyword from is followed by
a discrete state identifier (which has to be declared in the discrete state list above) and
then by a statement. Fiacre statements are defined by the grammar given in Table A.1,
where the occurring ports must be among those appearing in the header of the process.

statement ::=
null (inaction)
| P0, . . . ,Pn := E0, . . . ,En (deterministic assignment)
| V0, . . . ,Vn := any [where E] (nondet . assignment)
| while E do statement0 end [while] (while-loop)
| foreach V do statement0 end [foreach] (loop over values)
| if E0 then statement0 [elsif E1 then statement1

. . . elsif En then statementn] else statementn+1 end [if] (conditional)
| select statement0[] . . . []statementnend [select] (nondeterministic choice)
| case E of P0 -> statement0| . . . |Pn -> statementn end [case] (deterministic choice)
| to s (jump to discrete state)
| statement1 ; statement2 (sequential composition)
| port [?P0, . . . ,Pn [where E] | !E0, . . . ,En] (port communication)

Table A.1: Syntax of Fiacre statements

Note that there are several small differences between Atlantif actions (cf. Table 4.3
on page 53) and Fiacre statements: Unlike Atlantif, Fiacre does not have wait,
reset, or stop actions, nor does it provide communication actions with time constraints
or mixed (emissions and receptions) offers. Unlike Fiacre, Atlantif does not have an
“elsif” construct (cf. the discussion on possible extensions of Atlantif in Section 4.7.3
on page 103), assignments with patterns on the left, or a foreach loop.

As in Ntif and Atlantif, the first discrete state in the list of multibranch transitions
is the initial discrete state of the process.

Components. Similar to a process declaration, a component declaration in Fiacre
consists of a header and a body. The header is defined exactly as for processes; the body
contains the following elements, each of which is optional:

• A declaration of local variables (as in processes).

• A declaration of local ports. Unlike the ports listed in the header, the elements of
this list may each optionally also be defined with a time interval (not detailed here,
as we only consider untimed Fiacre in this translator).

• A partial order on the set of the ports occurring in the header and in the local
declarations.

• An initial statement (as in processes).

A.3. Translation to Fiacre 233

• A parallel composition of processes and components, defined according to the fol-
lowing grammar:

composition ::=
par [(* | port1| . . . |portn) in][(

* | port11, . . . ,port1m1

)
->

]
compblock1

|| . . . ||[(
* | portk

1, . . . ,portk
mk

)
->

]
compblockk

end [par]

A “compblock” is either another composition or an instantiation of a process or a
component. It can be seen that this parallel composition is similar to synchroniza-
tion vectors such as those described in Section 5.5.1.

The composition operator describes the parallel execution of k structures (processes,
components, and compositions) and the possible synchronizations among them, us-
ing a slight variation of the generalized parallel composition operator defined in
Fig. 5.7 on page 116, without the “among” construct “#m” i.e., a synchroniza-
tion on one of the ports port1, . . . , portn can only occur among all those structures
(compblock1, . . . , compblockk) at the same time.

A.3.2 Problems to overcome

The following list contains the most important aspects of untimed Atlantif for which no
direct translation to Fiacre exists. Instead, emulations had to be implemented. These
problems concern above all aspects related to the Atlantif synchronizers, which in
Fiacre have to be expressed using synchronization vectors.

• The stopping and starting of units has no corresponding concept in Fiacre. There-
fore, we will emulate this in a similar way as in the Uppaal translator i.e., by
introducing additional discrete states that represent inaction of a process.

• In particular, asynchronous termination does not exist in Fiacre: The only way to
transform a process into the discrete state representing inaction is a synchronization
in which the process to be stopped participates. Therefore, asynchronous termina-
tion has to be emulated by a synchronization (as we also did in the translator to
Uppaal).

• The Fiacre synchronization vectors provide only a single combination of processes
that can synchronize on a given port. Therefore, to translate the different syn-
chronization sets of Atlantif we will define one port for each synchronization set.
Subsequently, a renaming situated on a higher hierarchical level will regroup those
different ports again into the according gate names.

234 Appendix A. Additional algorithms and proofs

A.3.3 Restrictions

For the translator presented in this section, the following restrictions apply (in addition
to the limitation to untimed Atlantif mentioned above):

• Variables occurring in units other than the one where they are declared i.e., the
usage of the limited variable sharing that Atlantif provides, are not supported.
In Fiacre, read/write-conflicts and write/write-conflicts on shared variables are
excluded by a very restrictive usage of such variables within one multibranch transi-
tion, whereas in Atlantif, variables that can be accessed in different units can be
used in transitions like any other variables, but restrictions exist on which units may
read and/or write these variables (cf. Section 4.4.4). It seems possible to overcome
these differences in a translator to Fiacre, but it is clearly not a trivial problem.

• Type declarations and function declarations being not yet formalized in Atlantif,
they are not covered by this translator.

• Offers in communication actions must be of type integer. This restriction is due to
the fact that Fiacre ports are typed, while Atlantif gates are not typed. Thus,
a translator would have to contain an algorithm that determines for each gate the
types of the offers used with this gate. Such an algorithm has not yet been developed
for Atlantif.

• Another consequence of the typed ports in Fiacre is that for each gate G, all
communication actions using G must have the same offer cardinality. It should be
possible to overcome this restriction by the introduction of auxiliary constructs e.g.,
by extending all communication offers to a maximum.

• Offers in one communication action must not be mixed (i.e., containing emissions
as well as receptions), because mixed offers are not supported by Fiacre.

• For each synchronizer G such that there exists a unit u which is in some, but not
in all, synchronization sets of G (cf. the definition of sync(G) on page 78), this unit
must not be stopped by G. In our translator, the approaches applied to emulate
different synchronization sets and to emulate unit stopping (cf. Section A.3.2) are
similar; and because of this similarity they cannot be mixed. It is possible that
other emulation approaches can avoid this problem.

A.3.4 Definition of the translator

We suppose an Atlantif module M defined by the units u1, . . . , un and the synchronizers
G1, . . . , Gm. The translation of M into a Fiacre program consists of the three following
steps.

A.3. Translation to Fiacre 235

Step one: main component. The main component renames the auxiliary ports that
will be defined in the component l2 back to the identifers of the corresponding synchronizer
identifiers, and it is itself defined as follows:

• The main component’s identifier is the module M ’s identifier.

• For each visible (i.e., neither hidden nor silent) synchronizer G among G1, . . . , Gm,
the list of ports in the header contains one port also named G declared with the
according channel (i.e., the channel we identified for G during step one).

• The list of parameters is empty.

• For each hidden or silent synchronizer G among G1, . . . , Gm, the list of local port
declarations contains one port also named G declared with the according channel.
Thus, in an instanciation of the main component these ports will be hidden.

• The parallel composition operator is defined as follows: Let ci (for each i ∈ 1..m)
denote the cardinality of sync(Gi). Then the parallel composition has the form

par * in l2 [G1, . . . ,G1︸ ︷︷ ︸
c1 times

, . . . ,Gm, . . . ,Gm︸ ︷︷ ︸
cm times

] end par
.

Thus, ports in the header of l2 that represent different synchronization sets of the
same synchronizer are given the same name (the synchronizer’s identifier) on this
level.

• Other than local port declarations and the parallel composition, the component
body is empty i.e., it does not contain any variable declarations or priorities, nor an
initial statement.

Step two: synchronizer analysis and parallel composition. For each i ∈ 1..m, we
determine by the multibranch transitions of u1, . . . , un which types and numbers of offers
are exchanged via Gi. According to the above restrictions, there exists a ti ∈ IN such
that Gi always occurs with ti integer type offers. Thus, the channel that applies for our
translation of Gi will be, in the Fiacre notation, int# . . . #int︸ ︷︷ ︸

ti times

(or empty, if ti = 0).

Moreover, we need to analyze for Gi and each j ∈ 1..n how exactly the unit uj interacts
by Gi (i.e., if uj is started and/or stopped by Gi and if uj participates always, some-
times, or never in a synchronization on Gi). Nine cases are distinguished in this analysis,
depending on which we define two functions sync card and usage , both with domain
G × U (the gates and the units in M) and having values respectively in IN and a set
of tags {NOTHING ,ONLY SYNC , SYNC N STOP ,ASY TERM , SYNC N RESET ,
ASY RESET , STARTING}.

(0) uj /∈ start(Gi), uj /∈ stop(Gi), (∀U ∈ sync(Gi)) uj /∈ U .

We define usage(Gi, uj)
def
= NOTHING and sync card(Gi, uj)

def
= 0.

236 Appendix A. Additional algorithms and proofs

(1) uj ∈ start(Gi), uj /∈ stop(Gi) (by static semantics: (∀U ∈ sync(Gi)) uj /∈ U).

We define usage(Gi, uj)
def
= STARTING and sync card(Gi, uj)

def
= card(sync(Gi)).

(2) uj /∈ start(Gi), uj /∈ stop(Gi), (∃U ∈ sync(Gi)) uj ∈ U .

We define usage(Gi, uj)
def
= ONLY SYNC and sync card(Gi, uj)

def
= card({U ∈

sync(Gi) | uj ∈ U}).

(3) uj /∈ start(Gi), uj ∈ stop(Gi), (∀U ∈ sync(Gi)) uj ∈ U .

We define usage(Gi, uj)
def
= SYNC N STOP

and sync card(Gi, uj)
def
= card(sync(Gi)).

(4) uj /∈ start(Gi), uj ∈ stop(Gi), (∃U ,U ′ ∈ sync(Gi)) uj ∈ U ∧ uj /∈ U ′.
According to the restrictions listed above, this case is excluded.

(5) uj /∈ start(Gi), uj ∈ stop(Gi), (∀U ∈ sync(Gi)) uj /∈ U .

We define usage(Gi, uj)
def
= ASY TERM and sync card(Gi, uj)

def
= card(sync(Gi)).

(6) uj ∈ start(Gi), uj ∈ stop(Gi), (∀U ∈ sync(Gi)) uj ∈ U .

We define usage(Gi, uj)
def
= SYNC N RESET

and sync card(Gi, uj)
def
= card(sync(Gi)).

(7) uj ∈ start(Gi), uj ∈ stop(Gi), (∃U ,U ′ ∈ sync(Gi)) uj ∈ U ∧ uj /∈ U ′.
According to the restrictions listed above, this case is excluded.

(8) uj ∈ start(Gi), uj ∈ stop(Gi), (∀U ∈ sync(Gi)) uj /∈ U .

We define usage(Gi, uj)
def
= ASY RESET and sync card(Gi, uj)

def
= card(sync(Gi)).

The number sync card(Gi, uj) expresses how many synchronization sets of Gi concern the
unit uj. This does not always mean those synchronization sets contain uj e.g., in the cases
(1), (5), and (8), sync card(Gi, uj) is not zero although uj is not in any synchronization
set. Instead, we extend our perspective to the starting and/or stopping of uj by Gi.

It is for this reason that we excluded the cases (4) and (7), because there uj is concerned
in two different ways by the synchronization sets: By some sets, it is synchronizing and
stopped, by other sets it is only stopped.

Given this analysis of the synchronizers, we now define a structure that represents the
composition. This structure will be given by a Fiacre component named “l2” (indicating
that this component is situated on a second level above the processes) and defined as
follows:

• The list of ports in the header contains for each i ∈ 1..m a sucession of k (with
k = card(sync(Gi))) ports Gi l2 1, . . . , Gi l2 k with the according channel. Given
this, we have a one-to-one correspondance between all synchronization sets of M
and the ports of l2 , which was already prepared by the port parameters of the
instanciation of l2 in the main component.

A.3. Translation to Fiacre 237

• The list of parameters is empty.

• The component body does not contain any variable declarations, port declarations,
or priorities, nor an initial statement.

• The parallel composition operator is defined as follows: Let for each j ∈ 1..n,
portj

1, . . . , portj
kj

be those port identifiers (as defined in l2 ’s header) corresponding
to synchronization sets concerning the unit uj. Then the parallel composition has
the form

par
port11, . . . ,port1k1

-> Pu [port1
1, . . . ,port1k1

]

|| . . . ||

portn
1, . . . ,portn

kn
-> Pu [portn

1, . . . ,portn
kn
]

end par.

Our construction of the parallel composition operator ensures that each process synchro-
nizes on exactly those synchronization sets that concern the corresponding unit, either by
being in the synchronization set or by being started and/or stopped by the corresponding
synchronizer. Examples A.2 and A.3 will further illustrate this approach.

Step three: unit translations. For each j ∈ 1..n, the unit uj is translated into one
Fiacre process Puj

. As described above in Section A.3.1, a process consists of six parts,
which we define as follows:

• The list of ports used by the process contains one element for each synchronization
set concerning uj: For each i ∈ 1..m such that sync card(Gi, uj) = m > 0, we thus
have the ports Gi uj 1, . . . , Gi uj m, each defined with the channel that applies for
Gi.

• The list of data parameters is empty.

• The list of discrete state identifiers contains all discrete state identifiers occurring
in uj. Additionally, it contains a state “stop state”, if one or more of the following
is true:

– (∃i ∈ 1..n) usage(Gi, uj) = ASY TERM ∨ usage(Gi, uj) = SYNC N STOP
i.e., at least one synchronizer stops uj without immediately restarting it.

– uj is not among the initial units of M .

– One multibranch transition of uj contains a stop action.

• The list of local variables contains all variables of uj, declared with their types and,
if applicable, their initial values.

238 Appendix A. Additional algorithms and proofs

• The initial statement of Puj
is defined by a jump to the discrete state in which the

process starts: If uj is among the initial units of M , then the initial statement is
“init to s0”, otherwise it is “init to stop state” (where s0 is the first discrete state
of uj).

• The list of multibranch transitions contains one element for each discrete state i.e.,
for multibranch transition “from s A” in uj. Two cases have to be distinguished:

Case one: There is no G such that usage(G, uj) ∈ {ASY TERM ,ASY RESET}.
Then the corresponding multibranch transition in the process Puj

is defined by

“from s ATLANTIF action to FIACRE(A)”
where ATLANTIF action to FIACRE is a function defined in Fig. A.13.

Case two: There are gates G′
1, . . . , G

′
k′ tagged with ASY TERM and G′

k′+1, . . . , G
′
k

tagged with ASY RESET (k > 0) for this unit. Then the corresponding multibranch
transition in the process Puj

is defined by

from s
select
G′

1 uj 1 ?any, . . . ,any︸ ︷︷ ︸
o1 times

;to stop state [] . . . [] G′
1 uj m1 ? any, . . . ,any︸ ︷︷ ︸

o1 times

;to stop state

[] . . . []

G′
k′ uj 1 ?any, . . . ,any︸ ︷︷ ︸

o
k′ times

;to stop state [] . . . [] G′
k′ uj mk′ ? any, . . .,any︸ ︷︷ ︸

o
k′ times

;to stop state

[]

G′
k′+1 uj 1 ?any, . . . ,any︸ ︷︷ ︸

o
k′+1 times

;to s0 [] . . . [] G′
k′+1 uj mk′+1 ?any, . . . ,any︸ ︷︷ ︸

o
k′+1 times

;to s0

[] . . . []

G′
k uj 1 ? any, . . .,any︸ ︷︷ ︸

ok times

;to s0 [] . . .[] G′
k uj mk ? any, . . .,any︸ ︷︷ ︸

ok times

;to s0

[] ATLANTIF action to FIACRE(A)
end select

where s0 is the first discrete state of uj and for each i ∈ 1..k, mi = sync card(G′
i, uj)

and oi is the offer cardinality of G′
i.

After translating the discrete states of uj, the process Puj
possibly also needs to be

defined with the discrete state stop state (if it is declared above). Then again, we
have to distinguish two cases:

Case one: uj is not affected by synchronizations in other units i.e., there is no G
such that usage(G, uj) ∈ {ASY TERM ,ASY RESET , STARTING}. Then the
last multibranch transition in the process Puj

is defined by “from stop state null”.
This means that once Puj

is in this state, it stays there.

Case two: There are gates G′
1, . . . , G

′
k′ tagged with ASY TERM and G′

k′+1, . . . , G
′
k

tagged with ASY RESET or with STARTING (k > 0) for this unit. Then the last
multibranch transition in the process Puj

is defined by

A.3. Translation to Fiacre 239

from stop state
select
G′

1 uj 1 ?any, . . . ,any︸ ︷︷ ︸
o1 times

;to stop state [] . . . [] G′
1 uj m1 ? any, . . .,any︸ ︷︷ ︸

o1 times

;to stop state

[] . . . []

G′
k′ uj 1 ?any, . . . ,any︸ ︷︷ ︸

o
k′ times

;to stop state [] . . . [] G′
k′ uj mk′ ?any, . . .,any︸ ︷︷ ︸

o
k′ times

;to stop state

[]

G′
k′+1 uj 1 ?any, . . . ,any︸ ︷︷ ︸

o
k′+1 times

;to s0 [] . . . [] G′
k′+1 uj mk′+1 ?any, . . . ,any︸ ︷︷ ︸

o
k′+1 times

;to s0

[] . . . []

G′
k uj 1 ?any, . . . ,any︸ ︷︷ ︸

ok times

;to s0 [] . . . [] G′
k uj mk ?any, . . .,any︸ ︷︷ ︸

ok times

;to s0

end select

where s0 is the first discrete state of uj and for each i ∈ 1..k, mi = sync card(G′
i, uj)

and oi is the offer cardinality of G′
i.

The function ATLANTIF action to FIACRE , defined in Fig. A.13 (supposing the context
of a unit u with initial state s0), translates Atlantif actions to Fiacre statements. It
can be seen that most constructs are the same in both languages and remain unchanged.
Four exceptions can be seen:

• The real-time syntax of Atlantif actions (which we excluded for this translation)
is not translated.

• The reset action does not exist in Fiacre, thus is is translated by the null action.

• The stop action is translated like the syntax from which it is derived according
to Remark 4.11. We used a similar approach in the translator to Uppaal (cf.
Section 6.1.3).

• Most importantly, the communication action is split up into several communication
actions grouped by a select action, defining one communication for each synchro-
nization set of G in which u occurs.

Examples. We now illustrate the translator by two examples, the first one of which
demonstrates how the among synchronization is handled, the second of which concerns
asynchronous termination.

Example A.2. We place the simple example of a synchronizer with the among syn-
chronization formula stated in Sections 4.5.1 and 5.5.2 in the context of a very simple
Atlantif module, given in Fig. A.14.

Following the rules given in this section, this module is translated35 to the Fiacre program
shown in Fig. A.15.

35We obtained the code of this translation, as well as in the following example, by our tool implemen-
tation, described in Section 6.4.

240 Appendix A. Additional algorithms and proofs

ATLANTIF action to FIACRE(null)
def
= null

ATLANTIF action to FIACRE(V0, . . . ,Vn := E0, . . . ,En)
def
= V0, . . .,Vn := E0, . . .,En

ATLANTIF action to FIACRE(V0, . . . ,Vn := T0, . . . ,Tn where E)
def
= V0, . . . ,Vn := where E

ATLANTIF action to FIACRE(reset V0, . . . ,Vn)
def
= null

ATLANTIF action to FIACRE(G ?P1 . . . ?Pn)
def
=





select G u 1 ?P1 . . . Pn; to stop state [] . . . []

G u m ?P1 . . . Pn; to stop state end select if usage(G, u) = SYNC N STOP

select G u 1 ?P1 . . . Pn; to s0 [] . . . []

G u m ?P1 . . . Pn; to s0 end select if usage(G, u) = SYNC N RESET

select G u 1 ?P1 . . . Pn [] . . . []

G u m ?O1 . . .On end select otherwise

ATLANTIF action to FIACRE(G !E1 . . . !En)
def
=





select G u 1 !E1 . . . En; to stop state [] . . .[]

G u m !E1 . . . En; to stop state end select if usage(G, u) = SYNC N STOP

select G u 1 !E1 . . . En; to s0 [] . . . []

G u m !E1 . . . En; to s0 end select if usage(G, u) = SYNC N RESET

select G u 1 !E1 . . . En [] . . . []

G u m !O1 . . .On end select otherwise

ATLANTIF action to FIACRE(to s′)
def
= to s′

ATLANTIF action to FIACRE(stop)
def
= to stop state

ATLANTIF action to FIACRE(A1;A2)
def
=

ATLANTIF action to FIACRE(A1); ATLANTIF action to FIACRE(A2)

ATLANTIF action to FIACRE(select A0 [] . . . [] An end)
def
=

select ATLANTIF action to FIACRE(A0) [] . . . []
ATLANTIF action to FIACRE(An) end select

ATLANTIF action to FIACRE(case E0 is P0->A0| . . .|Pn->An end)
def
=

case E0 of P0->ATLANTIF action to FIACRE(A0)| . . .|
Pn->ATLANTIF action to FIACRE (An) end case

ATLANTIF action to FIACRE(if E0 then A1 else A2 end)
def
=

if E0 then ATLANTIF action to FIACRE(A1)
else ATLANTIF action to FIACRE(A2) end if

ATLANTIF action to FIACRE(while E0 do A end)
def
=

while E0 do ATLANTIF action to FIACRE(A) end while

Figure A.13: Function ATLANTIF action to FIACRE

A.3. Translation to Fiacre 241

module Generalized Parallel Composition is unit B2 is
no time from S2

G; stop
sync G is 2 or 3 among (B1, B2, B3) end sync end unit
init B1, B2, B3

unit B3 is
unit B1 is from S3

from S1 G; stop
G; stop end unit

end unit end module

Figure A.14: 2 among 3 synchronization formula in the context of an Atlantif module

The synchronizer G of the Atlantif module has four synchronization sets, each of which
gets one port associated in the component l2 : The set {B1 ,B2} corresponds to the port
G l2 1 , the set {B1 ,B3} corresponds to the port G l2 2 , the set {B2 ,B3} corresponds
to the port G l2 3 , and the set {B1 ,B2 ,B3} corresponds to the port G l2 4 . Therefore,
the port G l2 1 appears in the synchronizing ports and in the parameters associated to
the processes B1 and B2 , the port G l2 2 appears in the synchronizing ports and in the
parameters associated to the processes B1 and B3 , etc.

As each unit belongs to three different synchronization sets of G, each process is pa-
rameterized by three ports derived from G. Then, each commuication action by G in a
multibranch transition is translated by a choice over communications by these three ports.

Example A.3. This example demonstrates the translation of aynchronous termination.
The Atlantif module we translate is a slight variation of that shown in Fig. 5.9 on
page 119: According to the restrictions on the translator, we suppose this module to be
untimed, thus we remove the two wait actions.

Then, we obtain the translation shown in Fig. A.16.

Although in the Atlantif module, the units U1 and U2 are not in the synchronization set
of RedButton, their process translations do synchronize on the attendant port to emulate
their asynchronus termination. Therefore, each discrete state in these processes contains
the possibility to synchronize on RedButton i.e., such a synchronization is always possible.

A.3.5 Discussion

Impact of the restrictions

Clearly, the most important restriction is the limitation to untimed Atlantif, because
real time played a central role in the definition of Atlantif and most examples in this
thesis contain real-time syntax. Nevertheless, sometimes real time can be abstracted from,
thus for certain verification problems an untimed translator can still be useful.

242 Appendix A. Additional algorithms and proofs

process B1 [G B1 1, G B1 2, process B3 [G B3 1, G B3 2,
G B1 3 : none] is G B3 3 : none] is

states S1, stop state states S3, stop state
init to S1 init to S3

from S1 from S3
select select

G B1 1 G B3 1
[] []

G B1 2 G B3 2
[] []

G B1 3 G B3 3
end select; end select;
to stop state to stop state

from stop state from stop state
null null

process B2 [G B2 1, G B2 2, component l2 [G l2 1, G l2 2,
G B2 3 : none] is G l2 3, G l2 4 : none] is

states S2, stop state par G l2 1, G l2 2, G l2 4 ->

init to S2 B1 [G l2 1, G l2 2, G l2 4]
from S2 || G l2 1, G l2 3, G l2 4 ->

select B2 [G l2 1, G l2 3, G l2 4]
G B2 1 || G l2 2, G l2 3, G l2 4 ->

[] B3 [G l2 2, G l2 3, G l2 4]
G B2 2 end par

[]

G B2 3 component Generalized Parallel Composition
end select; [G : none] is
to stop state par * in l2 [G, G, G, G] end par

from stop state
null Generalized Parallel Composition

Figure A.15: Generated Fiacre program for the module of Fig. A.14

A.3. Translation to Fiacre 243

process U1 [G U1 1 : none, process Supervisor
RedButton U1 1 : none] is [RedButton Supervisor 1 : none] is

states S1, stop state states S3, stop state
init to S1 init to S3

from S1 from S3
select RedButton Supervisor 1;

RedButton U1 1; to stop state to stop state
[] from stop state

G U1 1; to S1 null
end select

from stop state component l2 [G l2 1 : none,
select RedButton l2 1 : none] is

RedButton U1 1; to stop state par G l2 1, RedButton l2 1 ->

end select U1 [G l2 1, RedButton l2 1]
|| G l2 1, RedButton l2 1 ->

process U2 [G U2 1 : none, U2 [G l2 1, RedButton l2 1]
RedButton U2 1 : none] is || RedButton l2 1 ->

states S2, stop state Supervisor [RedButton l2 1]
init to S2 end par

from S2
select component Asynchronous Termination

RedButton U2 1; to stop state [G : none, RedButton : none] is
[] par * in l2 [G, RedButton] end par

G U2 1; to S2
end select Asynchronous Termination

from stop state
select

RedButton U2 1; to stop state
end select

Figure A.16: Generated Fiacre program for untimed asynchronous termination

244 Appendix A. Additional algorithms and proofs

Moreover, one of our initial intentions in the definition of a translator to Fiacre was to
create a link to the Cadp toolbox via the “flac” tool and the Lotos language. These
tools do not provide real-time aspects, thus a translation of them would not be of use to
us.

Imprecision problems of the translator

Again (as in the translators to Uppaal and to Tina), execution paths (of a multibranch
transition) without communication action and synchronizations on silent synchronizers
produce unlabelled transitions; also reset actions are not represented correctly.

Apart from this, however, no other imprecisions seem to be produced by our translator,
although no formal proof of correctness is possible in the moment, as the complete formal
semantics of Fiacre has not yet been published.

Appendix B

Additional examples

B.1 Application of the generalized parallel composi-

tion

In Section 5.5, we provided general rules on how synchronization vectors and the gener-
alized parallel composition operator can be represented in Atlantif. In this section, we
will provide a further illustration of such a representation, by the example of the Open
Distributed Processes (ODP) protocol, which we borrowed from [64] (i.e., the paper that
defines the generalized parallel composition operator).

We suppose an environment composed of several objects, each of which can provide dif-
ferent services to other objects and/or make use a service provide by another object. An
object providing a service is called a server ; an object making use of a service is called a
client . The coordination between the objects is assured by a “trader”, which manages a
database containing the information about which object offers which service.

The Atlantif code given in Fig. B.1 shows the most important ideas of a representation
of ODP.

The four type definitions are not detailed: The type Object describes a subset of the
natural integers, containing the numbers between 1 and n, where n is the number of
objects. The type Service describes an enumeration of all services that can be provided by
the servers. The type DataBase describes a set of tuples of one object and one service each,
which expresses that the service is provided by the object. The type Communication Tag
describes an enumeration of two values only: “request” / “reply”.

Moreover, two functions that are not detailed: The function Add To DataBase(d, j, s)
returns a DataBase consisting of a DataBase d extended with the tuple (j, s). The function
Find In DataBase(d, s) returns an object identifier j that is listed in the DataBase d to
provide the service s. For simplicity, we assume that for all requests carried out by the
function there is indeed an appropriate server.

Three gates are used: A synchronization on the gate E (“export”) corresponds to a server
object that wishes his service offer to be included in the trader’s database. A synchro-

245

246 Appendix B. Additional examples

module Open Distributed Processes is unit Object1 is
no time variables j:Object,

s 1:Service
type Object (...) from Init
type Service (...) select to Export Service
type DataBase (...) [] to Import Service end select
type Communication Tag (...) from Export Service

E !1 !s 1;
function Add To DataBase (...) to Work As Server
function Find In DataBase (...) from Work As Server

W ?1 ?j !s 1 . . . ;
sync E is Trader and to Init

1 among(Object1,..., Objectn) end sync from Import Service
sync I is Trader and I !1 !“request ′′ !s 1;

1 among(Object1,..., Objectn) end sync to Receive Server
sync W is 2 among(Object1,..., Objectn) end sync from Receive Server

I ?1 ?“reply ′′ ?j;
unit Trader is to Work As Client
variables d:DataBase:=empty, from Work AsClient

j:Object, W !j !1 !s 1 . . . ;
s:Service to Init

from Ready end unit
select

E ?j ?s; (. . .)
d:=Add To DataBase(d,j,s);
to Ready unit Objectn is

[] variables j:Object,
I ?j ?“request ′′ ?s; s n:Service
to Search Server from Init

end select select to Export Service
from Search Server [] to Import Service end select

I !j !“reply ′′ !(Find In DataBase(d,s)); from Export Service
to Ready E !n !s n;

end unit to Work As Server
from Work As Server

W ?n ?j !s n . . . ;
to Init

from Import Service
I !n !“request ′′ !s n;
to Receive Server

from Receive Server
I ?n ?“reply ′′ ?j;
to Work As Client

from Work AsClient
W !j !n !s n . . . ;
to Init

end unit
end module

Figure B.1: Atlantif code for Open Distributed Processes

B.2. Timed semantics in synchronization chains 247

nization on the gate I (“import”) corresponds to a client object seeking information from
the trader’s database about a server for a given service. A synchronization on the gate W
(“work”) corresponds to a server object and a client object working together by a given
service.

In the synchronizer definitions, it can be noticed that the among construct of the syn-
chornizer formulas enables a very short and intuitive description of the possible synchro-
nizations.

The code of the units representing the Trader and the n Objects is largely self-explanatory;
while it should be noted that, for generality, each Object can act as a client as we as a
server. Like in [64], we consider that for each requested service, a server is available. Note
also that the import of a service is represented by two successive synchronizations (the
first of which corresponding to the client requesting the trader for a service, the second
corresponding to the trader’s answer), which is also the structure the ODP example has
in [64]. In particular, both communications use different offer profiles.

B.2 Timed semantics in synchronization chains

This example is designed to illustrate how phases are used during the elemination of silent
synchronizations, more specifically silent synchronizations that start and stop units. Our
intention thus being linked to the Atlantif semantics, the syntax definition of the module
will sometimes be a bit artificial.

We consider a system describing an assembly line for toy cars, shown in Fig. B.2. One
subsystem represents the beginning of the line (unit BB , “begin belt”), where two seconds
elapse before the car parts begin to arrive on the belt. Until all parts arrive (gate PC ,
“place car parts”), up to five more seconds elapse. Then, the control is passed to the two
subunits, which represent robot arms (gate BM , “begin manipulation”).

Units R1 and R2 (“robot arm 1” and “robot arm 2”) need five and three seconds respec-
tively before they finish their manipulations (gate FM), which triggers a control passage
to the system representing the end of the belt.

This subsystem (unit EB) has to wait 4 seconds until the assembled car arrives in its
reach, then it needs exactly one second to handle it over to the environment (gate EC ,
“exit car”), which also triggers a control passage to the beginning of the line again.

Note that we shortened the names of units and synchronizers to ensure compact deriva-
tions.

Our illustration of the semantics by this example consists of the derivation of four Tlts
transitions of this module. We show that from the initial state (which is (U0, π1, θ0, ρ1) =
({BB}, [BB 7→ Ry], [BB 7→ (0, f)], [V 7→ 2]), where, as in Section 4.6.3, f and t are
shorthands for false and bf true) 4 seconds may elapse before a τ -transition occurs, then
11 more seconds may elapse before a transition labeled EC occurs.

Formally:

248 Appendix B. Additional examples

module Toy Car Assembly Line is
dense time unit R1 is (∗ subunit of BB ∗)
sync PC: hidden is BB end sync from Ac
sync BM : silent is BB wait 5;FM ;stop

stop BB end unit (∗ R1 ∗)
start R1,R2

end sync unit R2 is (∗ subunit of BB ∗)
sync FM : silent is R1 and R2 from Ac

stop R1,R2,EB wait 3;to A2
start EB from A2

end sync FM ;stop
sync EC is EB stop EB end unit (∗ R2 ∗)

start BB end sync
end unit (∗ BB ∗)

init BB (* initially started unit *)
unit EB is

unit BB is from Fi
variables V : int := 2 wait 4;EC in [1,1];stop
from Ry end unit

wait 2;PC in [0,5];to Ar
from Ar end module

wait 1;BM ;stop

Figure B.2: Atlantif program for semantics example

B.2. Timed semantics in synchronization chains 249

(U0, π1, θ0, ρ1)
4−→ (U0, π1, θ0 + 4, ρ1)

τ−→ (U0, π2, θ0, ρ1)
11−→ (U0, π2, θ0 + 11, ρ1)

EC−−→
(U0, π1, θ0, ρ1),

where π2 = [BB 7→ Ar].

First, (U0, π1, θ0, ρ1)
4−→ (U0, π1, θ0 + 4, ρ1) comes from the following derivation:

4 > 0 ∧ (∀t′ < 4) relaxed((U0, π1, θ0 + t′, ρ1))

(U0, π1, θ0, ρ1)
4−→ (U0, π1, θ0 + 4, ρ1)

(time)

Second, (U0, π1, θ0 + 4, ρ1)
τ−→ (U0, π2, θ0, ρ1) comes from:

enabled((U0, π1, θ0 + 4, ρ1),PC , f , (U0, π2, θ0, ρ1))

(U0, π1, θ0 + 4, ρ1)
τ−→ (U0, π2, θ0, ρ1)

(rdv)

where enabled((U0, π1, θ0 + 4, ρ1),PC , f , (U0, π2, θ0, ρ1)), because {BB} ∈ sync(PC), and

{BB} ⊆ U0, and (act(Ry), (4, f), ρ1)
PC
=⇒ (Ar , (2, f), ρ1), and Ar 6= δ, and the evaluation

of the three auxiliary predicates results in π2, θ0, and ρ1 respectively.

The premise (act(Ry), (4, f), ρ1)
PC
=⇒ (Ar , (2, f), ρ1) comes from the following, recalling

that act(Ry) = “wait 2; PC in [0, 5]; to Ar”:

eval (2, ρ1, 2) ∧ 4 ≥ 2

(wait 2, (4, f), ρ1)
ε

=⇒ (δ, (2, f), ρ1)
(wait)

(PC in [0,5];to Ar , (2, f), ρ1)
PC
=⇒ (Ar , (2, f), ρ1)

(act(Ry), (4, f), ρ1)
PC
=⇒ (Ar , (2, f), ρ1)

(seq1)

At last, the premiss (PC in [0,5];to Ar , (2, f), ρ1)
PC
=⇒ (Ar , (2, f), ρ1) comes from:

win eval([0,5], ρ1, [0, 5]) ∧ 2 ∈ [0, 5]

(PC in [0,5], (2, f), ρ1)
PC
=⇒ (δ, (2, f), ρ1)

(comm)
(to Ar , (2, f), ρ1)

ε
=⇒ (Ar , (2, f), ρ1)

(to)

(PC in [0,5];to Ar , (2, f), ρ1)
PC
=⇒ (Ar , (2, f), ρ1)

(seq1)

The third transition (U0, π2, θ0, ρ1)
11−→ (U0, π2, θ0 + 11, ρ1) is derived similarly as the first

transition.

Fourth, (U0, π2, θ0 + 11, ρ1)
EC−−→ (U0, π1, θ0, ρ1) is derived from the predicate

enabled((U0, π2, θ0 + 11, ρ1),EC , f , (U0, π1, θ0, ρ1)).
This predicate itself describes a chain of synchronizations and is derived from the three
following predicates:

synchronizing(((U0, π2, θ0 + 11, ρ1), ∅),BM , f , (({R1, R2}, [R1 7→ Ac, R2 7→ Ac],
[R1 7→ (10, f), R2 7→ (10, f)], ρ1), {{R1, R2}}))

synchronizing((({R1, R2}, [R1 7→ Ac, R2 7→ Ac], [R1 7→ (10, f), R2 7→ (10, f)], ρ1), {{R1, R2}}),
FM , f , (({EB}, [EB 7→ Fi], [EB 7→ (5, f)], ∅){EB}))

250 Appendix B. Additional examples

synchronizing((({EB}, [EB 7→ Fi], [EB 7→ (5, f)], ∅), {{EB}}),EC , f , ((U0, π1, θ0, ρ1), ∅))

We take a closer look at the first of this three. It is derived with {BB} ∈ sync(BM),
and {BB} ⊆ U0, and {R1, R2} = ({BB} \ stop(BM)) ∪ start(BM), and µ = f , and

(act(Ar), θ0 + 11, ρ1)
BM
=⇒ (Ω, θ0 + 10, ρ1), and Ω 6= δ. Furthermore,

next π(π2, [BB 7→ Ω],BM , [R1 7→ Ac, R2 7→ Ac])
next θ(θ0 + 11,U0, 10,BM , [R1 7→ (10, f), R2 7→ (10, f)])
next ρ(ρ1, ρ1, {R1, R2},BM , ρ1)

(because V is accessible both in R1 and R2)
next α(∅, {BB},BM , {{R1, R2}})

(because (∅ \ {BB}) ∪ {({BB} \ {BB}) ∪ {R1, R2}} = {{R1, R2}})
In the second of the three synchronizations, the predicate next θ occurs as follows:

next θ([R1 7→ (10, f), R2 7→ (10, f)], {R1, R2}, 5,FM , [EB 7→ (5, f)])
By the two local transitions on which this synchronization is based, the phases 5 and 7
respectively are reached. As the gate FM is silent, the new phase is calculated to be the
minimum among those two values, thus t0 = 5. Therefore, the newly started unit EB has
then the time distribution (5, f). This further illustrates the intuition behind the silent
case in the definition of next θ: Unit R1 needs 5 seconds to become ready to synchronize,
unit R2 only needs 3. Thus R2 has to wait two seconds for R1, thus the phase of R1 is
decisive.

Note that in no state of the Tlts, other units than BB are active. This can already be
seen from the synchronizers, because all non-silent synchronizations “end” in BB .

B.3 Lamp

In Section 6.4, we make use of a simplified version of the light switch example of Fig. 4.1
on page 55. This simplified version is given here, in Fig. B.3.

module Light is dense time from Low
sync Push is User and Lamp end sync select Push in[0,5[;
init User,Lamp to Bright
unit User is [] Push in[5,...[;

from Rdy to Off
wait 1; Push; to Rdy end select

end unit from Bright
unit Lamp is Push; to Off

from Off end unit
Push; to Low end module

Figure B.3: Atlantif module describing a light switch

Appendix C

Complete syntax

In Chapter 4, we defined the syntax of Atlantif in a variant of Ebnf designed to be
easily human-readable (by using bold fonts, truetype fonts, etc.). In the implementation
of the atlantif tool, we defined the syntax by the variant of Ebnf used in the syntax

tool, which we used.

Thus, to complement our definitions of Table 4.3, we show here the complete implemented
syntax. This also provides information on the syntax of constants, external types, and
external functions, which we used in Chapter 7.

ATLANTIF grammar

<specification> = <module>;

<module> = "module" <identifier> "is"

<timing-option>

<types-functions-constants>

<sync-declarations>

<initial-state>

<unit-declarations>

"end" <module-end-tag>;

<timing-option> = ;

<timing-option> = "no" "time";

<timing-option> = "dense" "time";

<timing-option> = "discrete" "time";

<initial-state> = "init" <identifier-list>;

<module-end-tag> = ;

<module-end-tag> = "module";

*==

<types-functions-constants> = ;

<types-functions-constants> = <type-declaration> <types-functions-constants> ;

251

252 Appendix C. Complete syntax

<types-functions-constants> = <function-declaration> <types-functions-constants> ;

<types-functions-constants> = <constant-declarations> <types-functions-constants> ;

<type-declaration> = "type" <identifier> "is" "!" "external" <qidentifier>

"end" "type" ;

<type> = "time" ;

<type> = "int" ;

<type> = "bool" ;

<type> = <identifier> ;

<function-declaration> = "function" <identifier>

"(" <parameters> ")"

":" <type>

"is" <function-body>

"end" "function" ;

<function-body> = <function-variables> <action> "return" <expression> ;

<function-body> = "!" "external" <qidentifier> ;

<parameters> = ;

<parameters> = <variable-list> ;

<function-variables> = ;

<function-variables> = "variables" <variable-list> ;

<constant-declarations> = "constant" <constant-declaration-list>;

<constant-declaration-list> = <constant-declaration>;

<constant-declaration-list> = <constant-declaration> "," <constant-declaration-list>;

<constant-declaration> = <identifier> ":" <type> "is" <expression>;

<sync-declarations> = ;

<sync-declarations> = <sync-list>;

<sync-list> = <sync>;

<sync-list> = <sync> <sync-list>;

<sync> = "sync" <identifier> <rdv-gate> "is"

<unit-combination> <opt-disabling> <opt-activation>

"end" "sync";

<unit-combination-list> = <unit-combination>;

<unit-combination-list> = <unit-combination> "," <unit-combination-list>;

<unit-combination> = <unit-combination-2>;

<unit-combination> = <unit-combination> "or" <unit-combination-2>;

<unit-combination-2> = <unit-combination-3>;

<unit-combination-2> = <unit-combination-2> "and" <unit-combination-3>;

<unit-combination-3> = <identifier>;

<unit-combination-3> = "(" <unit-combination> ")";

253

<unit-combination-3> = <natural-list> "among" "(" <unit-combination-list> ")";

<natural-list> = %NATNUMBER ;

<natural-list> = %NATNUMBER "or" <natural-list>;

<opt-disabling> = ;

<opt-disabling> = "stop" <identifier-list>;

<opt-activation> = ;

<opt-activation> = "start" <identifier-list>;

<rdv-gate> = ;

<rdv-gate> = ":" "silent";

<rdv-gate> = ":" "hidden";

<rdv-gate> = ":" "urgent";

<rdv-gate> = ":" "visible";

<unit-declarations> = <unit-declaration>;

<unit-declarations> = <unit-declaration> <unit-declarations>;

<unit-declaration> = "unit" <identifier> "is"

<opt-var-declaration> <opt-transition-list>

<opt-subunit-declarations>

"end" "unit";

<opt-var-declaration> = ;

<opt-var-declaration> = "variables" <variable-list> ;

<opt-subunit-declarations> = ;

<opt-subunit-declarations> = <unit-declarations> ;

*==

<condition> = ;

<condition> = "where" <expression> ;

*==

<variable-list> = <variable-declaration> ;

<variable-list> = <variable-declaration> "," <variable-list> ;

<variable-declaration> = <identifier> ":" <type> ;

<variable-declaration> = <identifier> ":" <type> ":=" <expression>;

*==

<opt-transition-list> = ;

<opt-transition-list> = <transition-list>;

<transition-list> = <transition>;

<transition-list> = <transition> <transition-list> ;

<transition> = "from" <identifier> <action> ;

254 Appendix C. Complete syntax

<action> = <single-action> ;

<action> = <single-action> ";" <action> ;

<single-action> = "null" ;

<single-action> = "stop" ;

<single-action> = "wait" <expression> ;

<single-action> = <identifier-list> ":=" <assignment> ;

<single-action> = "reset" <identifier-list> ;

<single-action> = <identifier> <offer-list> <timed-condition>;

<single-action> = "to" <identifier> ;

<single-action> = "select" <select-action> "end" <select-end-tag> ;

<single-action> = "case" <expression> "is" <case-rule-list>

"end" <case-end-tag> ;

<single-action> = "while" <expression> "do" <action> "end" <while-end-tag> ;

<single-action> = "if" <expression> "then" <action> <else-branch> "end" <if-end-tag> ;

<single-action> = "for" <identifier> "in" <expression> %DOTDOT <expression>

"do" <action> "end" <for-end-tag> ;

<else-branch> = ;

<else-branch> = "else" <action> ;

<select-end-tag> = ;

<select-end-tag> = "select" ;

<case-end-tag> = ;

<case-end-tag> = "case" ;

<while-end-tag> = ;

<while-end-tag> = "while" ;

<if-end-tag> = ;

<if-end-tag> = "if" ;

<for-end-tag> = ;

<for-end-tag> = "for" ;

<assignment> = <expression-list> ;

<assignment> = "any" <type-list> <condition> ;

<type-list> = <type> ;

<type-list> = <type> "," <type-list> ;

<timed-condition> = ;

<timed-condition> = "in" <intervals> ;

<timed-condition> = "may" "in" <intervals> ;

<timed-condition> = "must" "in" <intervals> ;

<intervals> = <intervals-2> ;

<intervals> = <intervals> "or" <intervals-2> ;

<intervals-2> = <intervals-3> ;

<intervals-2> = <intervals-2> "and" <intervals-3> ;

<intervals-3> = "[" <expression> "," <expression> "]" ;

255

<intervals-3> = "]" <expression> "," <expression> "]" ;

<intervals-3> = "[" <expression> "," <expression> "[" ;

<intervals-3> = "]" <expression> "," <expression> "[" ;

<intervals-3> = "[" <expression> "," "..." "[" ;

<intervals-3> = "]" <expression> "," "..." "[" ;

<intervals-3> = "(" <intervals> ")" ;

<offer-list> = ;

<offer-list> = <offer> <offer-list> ;

<offer> = "!" <expression> ;

<offer> = "?" <pattern> ;

<select-action> = <action> ;

<select-action> = <action> "[]" <select-action> ;

<case-rule-list> = <case-rule> ;

<case-rule-list> = <case-rule> "|" <case-rule-list> ;

<case-rule> = <pattern-list> <condition> "->" <action> ;

<pattern-list> = <pattern-tuple> ;

<pattern-list> = <pattern-tuple> "|" <pattern-list> ;

<pattern-tuple> = <pattern> ;

<pattern-tuple> = <pattern> "," <pattern-tuple> ;

<pattern> = <identifier> ;

<pattern> = %FLOATNUMBER ;

<pattern> = "- " %FLOATNUMBER ;

<pattern> = %NATNUMBER ;

<pattern> = "- " %NATNUMBER ;

<pattern> = "true" ;

<pattern> = "false" ;

<pattern> = <identifier> "(" <pattern-tuple> ")" ;

<pattern> = "(" <pattern> <condition> ")" ;

<pattern> = "any" <type> ;

*==

<expression-list> = <expression> ;

<expression-list> = <expression> "," <expression-list> ;

<expression> = <level-1-expression> ;

<expression> = <level-1-expression> <level-0-infix> <level-1-expression> ;

<level-1-expression> = <level-2-expression> ;

<level-1-expression> = <level-1-expression> <level-1-infix> <level-2-expression> ;

<level-2-expression> = <level-3-expression> ;

<level-2-expression> = <level-2-expression> <level-2-infix> <level-3-expression> ;

<level-3-expression> = <level-4-expression> ;

<level-3-expression> = <unary-prefix> <level-4-expression> ;

256 Appendix C. Complete syntax

<level-4-expression> = <identifier> ;

<level-4-expression> = <identifier> <call-parameters> ;

<level-4-expression> = <constant> ;

<level-4-expression> = <level-4-expression> "." "[" <expression> "]" ;

<level-4-expression> = <level-4-expression> "." <identifier> ;

<level-4-expression> = "(" <expression> ")" ;

<level-0-infix> = "=" ;

<level-0-infix> = "==" ;

<level-0-infix> = "!=" ;

<level-0-infix> = "<" ;

<level-0-infix> = ">" ;

<level-0-infix> = "<=" ;

<level-0-infix> = ">=" ;

<level-1-infix> = "+" ;

<level-1-infix> = "- " ;

<level-1-infix> = "or" ;

<level-2-infix> = "*" ;

<level-2-infix> = "/" ;

<level-2-infix> = "%" ;

<level-2-infix> = "and" ;

<unary-prefix> = "+" ;

<unary-prefix> = "- " ;

<unary-prefix> = "not" ;

<constant> = %FLOATNUMBER ;

<constant> = %NATNUMBER ;

<constant> = "true" ;

<constant> = "false" ;

<constant> = "infinity" ;

<call-parameters> = "(" ")" ;

<call-parameters> = "(" <expression-list> ")" ;

*==

<identifier> = %IDENTIFIER ;

<qidentifier> = %QIDENTIFIER ;

<identifier-list> = <identifier> ;

<identifier-list> = <identifier> "," <identifier-list> ;

The terminal symbols used in the preceeding definition are either string constants or
among the following:

• “%IDENTIFIER” is a string composed of latin letters, digits from 0 to 9, and under-
scores. It begins with a letter and does not end with an underscore.

257

• “%QIDENTIFIER” is a string beginning and ending with double quotes, and containing
exactly (these) two double quotes.

• “%DOTDOT” is the constant string “..”.

• “%NATNUMBER” is a string of digits from 0 to 9, beginning with a digit from 1 to 9.

• “%FLOATNUMBER” is a string that either begins with a %NATNUMBER, followed by a dot
“.”, followed by a (possibly empty) string of digits from 0 to 9; or it begins with a
dot and continues with a non-empty string of digits from 0 to 9.

One important difference to the definition of Table 4.3 is that the sequential composi-
tion of actions is here give in an “asymetrical” fashion: The action on the left side of a
sequential composition must not be a sequential composition itself e.g., an action of the
form “A1; A2; A3; A4” will be understood as “A1; (A2; (A3; A4))”. This cannot cause
any problems, because of the associativity of the sequential composition we proved in
Proposition 4.5 on page 96.

Reserved keywords

As we already mentioned in Section 4.6.2, Atlantif identifiers must not be chosen among
the keywords used in the syntax of Atlantif, nor among the keywords used in a model
the Atlantif code is translated to.

For Atlantif itself, the following keywords are not usable:

among, and, any, bool, case, constant, dense, discrete, do, else, end,

external, false, for, from, function, hidden, if, in, infinity, init,

int, is, module, no, not, null, or, reset, return, select, silent, start,

stop, sync, then, time, to, true, type, unit, urgent, variables, visible,

wait, where, while

For the Uppaal translation (beyond those reserved by Atlantif), the following keywords
are not usable:

chan, clock, commit, const, broadcast, process, state, guard, assign,

system, trans, deadlock, imply, forall, exists, return, typedef, struct,

rate, before_update, after_update, meta, priority, progress, scalar,

void, default, switch, continue, break

For the Tina translation (beyond those reserved by Atlantif), the following keywords
are not usable:

net, pl, tr, pr, p, n, ne, t, c, w, e, h

For the data part of the Tina model, the reserved keywords of C also restrict types,
functions and variables.

For the Fiacre translation (beyond those reserved by Atlantif), the following keywords
are not usable:

258 Appendix C. Complete syntax

append, array, channel, component, const, dequeue, elsif, empty, enqueue,

first, foreach, full, nat, none, of, out, par, port, priority, process,

queue, read, record, states, union, var, write

Appendix D

An extended summary in French

Un modèle intermédiaire pour la vérification
des systèmes asynchrones embarqués en

temps réel :

définition et application du langage ATLANTIF

D.1 Introduction

D.1.1 Motivation

Contexte général

Le monde de l’année 2009 dépend plus que jamais de systèmes informatiques, et cette
dépendance se renforcera sans doute dans l’avenir. L’argent qui n’existe qu’électronique-
ment, l’élimination effective des distances grâce aux téléphones portables et à l’Internet
ainsi que plusieurs autres manifestations de changements fondamentaux de notre culture
sont aujourd’hui acceptés comme faisant partie de notre vie quotidienne.

Techniquement, beaucoup de ces changements ne sont devenus possible que grâce aux
utilisations nombreuses de systèmes embarqués, c’est-à-dire de systèmes en informatique
très spécialisés qui sont intégrés dans des équipements électriques ou électroniques et qui
contrôlent ces équipements. Les tâches dont ils sont chargés sont normalement trop com-
plexes pour être fait par des être humains (par exemple des calculs rapides de grands
quantités de données), ou trop dangereuses (par exemple le contrôle d’un vaisseau spatial
ou des manipulations dans des réacteurs nucléaires ou des usines chimiques), ou simple-
ment trop ennuyeux (par exemple le contrôle de feux de circulation). Souvent, plusieurs
systèmes embarqués (identiques ou différents) sont connectés et communiquent entre eux.

Evidement, ces dépendances nombreuses engendrent des risques et des vulnérabilités,

259

260 Appendix D. An extended summary in French

puisque le malfonctionnement de systèmes critiques peut provoquer d’incidents facheux
(comme des embouteillages) ou même des conséquences désastreuses (comme des catas-
trophes aériennes). Pour éviter cela, un développeur ne peut pas se fier uniquement à
son intuition, parce que l’exécution en parallèle de plusieurs systèmes embarqués atteint
facilement une complexité qui dépasse la portée de l’imagination humaine.

Alors il est vital de trouver une méthode systématique pour s’assurer que des systèmes
informatiques fonctionnent correctement. Si on ne peut pas prendre le risque d’un mal-
fonctionnement pendant l’utilisation, alors il est évident qu’il faut placer une telle méthode
dans le développement de ces systèmes. Parmi les approches qui existent dans ce but il y
a l’utilisation des méthodes formelles comme le model checking .

Le model checking commence par la description du comportement du système, couvrant
des aspects comme les messages émis par le système (vers d’autres systèmes ou vers des
utilisateurs humains), les messages que le système attend de recevoir d’autres systèmes,
comment les données d’entrée sont procédées, combien de temps se passe avant l’action
suivante, etc. L’écriture de cette description est faite par une notation standardisée, qui
est soit purement textuelle, soit un mélange d’éléments textuels et graphiques, et qui est
définie munie d’une sémantique formelle non ambiguë.

Lors de l’étape suivante, une ou plusieurs propriétés que le système doit satisfaire sont
énoncées, par exemple « Il est impossible que le feu piétons A et le feu voitures B sont
verts en même temps. », ou « Si la vitesse de l’avion est supérieur à 400 km/h, alors les
volets ne sont pas sortis. », ou « Une lampe d’incident doit être allumée dans le cockpit de
l’avion, si les dernières prévisions météo datent de plus de 30 minutes. ». Ces propriétés
sont aussi exprimées dans un langage formel avec une sémantique non ambiguë.

Avec cette description formelle et une formule exprimant une propriété désirée, des al-
gorithmes vérifient si le système satisfait la propriété. D’abord, ils génèrent un ensemble
complet de toutes les configurations (« états ») qui peuvent être atteintes d’après la de-
scription du système, ils y inclus des informations sur quel état peut être succédé par quel
autre état. Puis, toutes les successions d’états possibles sont vérifiées si elles satisfont la
propriété ou non. Donc le model checking vérifie strictement et surtout exhaustivement si
le système se comporte comme il le doit.

La modélisation abstraite

Données, concurrence et temps réel. Les langages textuelles et les modèles gra-
phiques qu’on utilise pour les descriptions de système dans le model-checking doivent être
assez simple pour permettre l’utilisation des algorithmes de vérification efficaces. Or, si
l’objectif est l’application des méthodes formelles sur des systèmes réalistes, les langages
simples ne sont pas aptes pour la modélisation de ces systèmes.

Dans cette thèse, le terme « réaliste » décrit trois aspects qui doivent être couvert par un
langage adéquat : la gestion de données, la concurrence et le temps réel. Dans le reste de
cette section, nous discuterons les concepts qui peuvent apparâıtre dans la modélisation
des systèmes réalistes pour chacun de ces aspects.

261

Le premier aspect est la gestion de types de données complexes, couvrant les concepts
suivants :

– Représentation : Types de données simples (tels que booléens, entiers et de types
énumérés) et aussi des types structurés (tels que array, records, listes, unions, ensembles
et arbres) peuvent tous les deux apparâıtre comme des paramètres dans des systèmes
que nous souhaitons modéliser. Un langage adéquat doit donc contenir les moyens pour
un utilisateur de définir des types.
Par exemple, un système qui décrit un pylône relais GSM pourrait avoir un type client
défini comme un array qui contient le numéro téléphone, le fournisseur d’accès etc., et
un autre type connections , défini comme un ensemble de clients .

– Manipulation : Opérations et fonctions mathématiques doivent être représentées. Celles-
ci peuvent être prédéfinies pour les types standards (ex. l’addition des entiers), mais
clairement, les types définis par l’utilisateur n’ont de sens que si des fonctions peuvent
être définies par l’utilisateur aussi.
Par exemple, si on suppose une variable clients actuels du type connections , des fonc-
tions de mises à jour sont nécessaires pour représenter des nouveaux clients qui entrent
ou des clients actuels qui sortent de la portée du pylône.

Le deuxième aspect couvre la concurrence, c’est-à-dire la description de systèmes qui
sont composés de deux ou plusieurs sous-systèmes indépendants, que nous appellerons
des processus dans la suite. Cet aspect couvre les concepts suivants :

– Communication : Si plusieurs processus sont exécutés en concurrence, il faut que la
communication soit possible entre eux. Par exemple, dans un système qui décrit un
avion, un processus cockpit envoie un message vers un processus volets pour ordonner
leur sortie.
Une communication entre des processus peut être soit décalée (un processus envoie un
message, puis un ou plusieurs autres processus le reçoivent), soit synchronisée (tous
les processus participants à la communication le font simultanément, donc il n’est pas
nécessaire d’identifier un émetteur et des récepteurs).

– Activation/Désactivation : Pendant l’exécution d’un système, l’ensemble des processus
participants n’est pas nécessairement statique : des nouveaux processus peuvent être
créés, et des anciens processus peuvent disparâıtre. Par exemple, l’arrivée et le départ
des nouveaux clients dans la portée du pylône pourraient être représentés par l’activation
et la désactivation des différents processus, chacun correspondant à un client.

Le troisième aspect est la représentation du temps . Le modèle d’un processus exprime dans
quel ordre ce processus fait ses communications. Or, parfois cette description qualitative
n’est pas suffisante ; et il est alors nécessaire de fournir des informations quantitatives sur
combien de temps se passe pendant l’exécution. Cet aspect couvre les concepts suivants :

– Délais : Un langage adéquat doit pouvoir exprimer l’inaction d’un processus pendant
un certain temps. Normalement, c’est une représentation abstraite d’une activité qui
nécessite du temps pour son exécution, comme un déplacement physique, par exemple
la sortie des volets.

– Urgence : Si un processus est prêt pour exécuter une certaine communication, il peut
avoir du sens de forcer l’exécution immédiate de cette communication, au lieu de laisser

262 Appendix D. An extended summary in French

le temps s’écouler.
Par exemple, si un téléphone portable reçoit un message par le processus pylône relais
qui dit qu’il y a un appel arrivant, alors la sonnerie est lancée immédiatement.

– Latence : L’idée de l’urgence est complétée par celle de la latence. Celle-ci indique
qu’une quantité limitée de temps peut passer avant qu’une communication devienne
urgente.
Pour rester dans l’exemple précédent, le processus du téléphone pourrait avoir besoin
d’un temps indéfini mais très limité pour décider quelle sonnerie jouer.

Ces trois aspects ne sont pas entièrement indépendants : Des concepts supplémentaires
doivent être considérés s’ils sont combinés, comme les suivantes :

– Transmission des valeurs : Dans un langage qui combine données et concurrence, il
devrait être possible d’exprimer que les données générées dans un processus peuvent
être utilisés dans un autre processus.
Par exemple, le processus qui représente le capteur de vitesse d’un avion doit transmet-
tre la valeur de la vitesse actuelle vers le processus qui représente l’autopilote.

– « Timeout » : Dans un langage qui combine temps et concurrence, les communications
peuvent dépendre du passage du temps. Si le modèle permet à deux ou plusieurs pro-
cessus de communiquer par synchronisation, alors le modèle devrait pouvoir exprimer
qu’une fois que le processus est prêt à communiquer, il n’attend pas arbitrairement,
mais il devient indisponible pour la communication après une certaine durée de temps.
Par exemple, après que le pylône relais ait envoyé un message d’un appel arrivant vers
un téléphone portable, il n’attend qu’une minute que le téléphone accepte l’appel.

Le besoin pour les modèles intermédiaires. La description et la vérification de
systèmes couvrant les trois aspects des données, de la concurrence et du temps est un
champ de recherche très active depuis déjà plus que deux décades. Fin des années 1980
et durant les années 1990, beaucoup des approches étaient dans une de deux catégories
suivantes :

– Des langages de haut-niveau ont une syntaxe purement textuelle et fortement expres-
sive qui permet des descriptions très concises. En particulier, des algèbres de proces-
sus [97], déjà capable de représenter concisément des données complexes et de la con-
currence, ont été élargies avec de constructions de temps réel. Des algèbres de processus
décrivent le comportement d’un système par l’ordre des événements de communica-
tions , qui représentent comment le système est perçu par l’extérieur, donc le comporte-
ment interne est ignoré. Ces événements internes sont combinés avec des opérateurs
mathématiques, qui expriment par exemple que deux faits se passent l’un après l’autre
(composition séquentielle) ou que deux comportements s’exécutent indépendamment
(composition parallèle).

– Des modèles graphiques combinent des descriptions textuelles avec un composant visuel,
ce qui permet une application plus intuitive. En particulier, des modèles comme des
réseaux des automates et des réseaux de Petri, qui sont déjà munis des représentations
intuitives de la concurrence, ont été élargis avec des constructions pour données et
temps. Les tels modèles les plus connus sont des automates temporisés [4] et des réseaux

263

de Petri temporisés [95].
Basés sur des règles de syntaxe et de sémantique plus simples que dans le cas des algèbres
de processus, ces modèles graphiques ont permis le développement des algorithmes
efficaces et des outils logiciels pour la simulation et la vérification formelle.

Les expériences réalisées avec ces deux approches dans la modélisation des systèmes avec
des données, de la concurrence et du temps ont montré des points forts et des points
faibles complémentaires :

– Des langages de haut-niveau sont très expressifs et concis, mais leur structure élaborée
rend la création des outils de vérification difficile. Dans certains cas, même la définition
formelle de leur sémantique est assez complexe.

– Des modèles graphiques sont les langages d’entrée pour des différents outils de vérifi-
cation, mais ils sont inadaptés pour faire des descriptions concises : la représentation
d’un système complexe peut rapidement devenir peu structurée et illisible à cause des
objets qui se chevauchent inévitablement.

Pour dépasser ces problèmes, des modèles intermédiaires ont été développés pendant les
dernières années, avec une conception inspirée des deux approches, et visant à combiner les
différents points forts. Dans le cas idéal, il est alors possible de spécifier un système dans un
langage de haut-niveau, ainsi de traduire la spécification dans un modèle intermédiaire,
et finalement de traduire celui-ci vers un modèle graphique, où des outils peuvent être
appliqués pour faire du model checking, de la simulation etc. La plus grande difficulté
dans une telle châıne de traduction est la préservation de la sémantique. L’utilisation
des résultats obtenues au niveau du modèle graphique pour raisonner sur la spécification
initiale n’est possible que si la sémantique de cette spécification initiale a été préservée.

Une proposition pour un nouveau format intermédiaire. Le but de cette thèse
est l’introduction du nouveau modèle intermédiaire Atlantif (Asynchronous Timed Lan-
guage Amplifying Ntif). Bien que plusieurs propositions pour des modèles intermédiaires
ont été faits pendant les dernières années, ils leurs manquent tous des idées importantes
pour la représentation des langages de haut-niveau récents. Certains sont définis seule-
ment sémi-formellement, d’autres ne couvrent qu’un ou deux de nos trois aspects, d’autres
utilisent peu de constructions de haut-niveau ou les appliquent avec une approche séman-
tique différente.

Notre objectif pour la définition d’Atlantif est de surmonter ces restrictions et de pro-
poser des traductions vers des outils de vérification.

Structure de ce résumé

Chacune des sections de ce résumé correspond à un chapitre de la thèse. La section D.2 (qui
correspond au chapitre 2) discute les notations mathématiques nécessaires pour la suite.
La section D.3 (chapitre 3) présente et analyse des langages et de modèles existantes, avec
un accent sur les choix qui peuvent être fait pendant la définition d’un nouveau modèle.
La section D.4 (chapitre 4) définit formellement la syntaxe et la sémantique d’Atlantif.

264 Appendix D. An extended summary in French

La section D.5 (chapitre 5) illustre à partir de deux exemples comment Atlantif peut
représenter des constructions qui sont typiques pour les langages de haut-niveau. La sec-
tion D.6 (chapitre 6) décrit deux traductions de sous-ensembles d’Atlantif vers d’autres
modèles : les automates temporisés de l’outil Uppaalet les réseaux de Petri temporisés
de l’outil Tina. La section D.7 (chapitre 7) donne un exemple d’application d’Atlantif
(un ascenseur). Enfin, la section D.8 (chapitre 8) conclue ce résumé.

D.2 Notations

Des différentes notations sur des ensembles, des fonctions et d’autres objets mathéma-
tiques qui sont appliqués dans la suite sont dans leur majorité des notations standards.
Toutes les constructions introduites par nous sont listées dans les tables 2.1 à 2.5 sur les
pages 10 à 14.

D.3 Aperçu et classification des méthodes formelles

Dans cette section, nous faisons une analyse des modèles et des langages formelles exis-
tantes, qui combinent des données, de la concurrence et du temps réel. Nous les groupons
dans des modèles sémantiques, des modèles graphiques, des langages de haut-niveau et
enfin des modèles intermédiaires. Pour conclure, nous donnons une liste des approches
différentes qui sont observables dans tous ces modèles et langages

D.3.1 Le modèle sémantique : Le système à transitions tempo-
risées

Les définitions sémantiques dans cette thèse sont basées sur le modèle du système à
transitions temporisées, qui est un modèle simple et sur lequel se basent la majorité
des modèles et des langages temporisés existantes. Nous présentons ce modèle par les
définitions suivantes :

Définition D.1. (i) : Un système à transitions étiquettées (Ste) est un 4-uplet (Σ, A,→
, S0), défini comme suit :

– Σ est un ensemble (possiblement infini) des états, écrits S, S ′, S0, S1, etc.
– S0 ∈ Σ est appelé l’état initial.
– A est un ensemble (possiblement infini) des étiquettes discrètes, écrites a, a′, a0, a1, etc.

A contient un élément spécial τ , appelé l’étiquette silencieuse.
– L’ensemble des 3-uplets → ⊆ (Σ × A × Σ) est appelé la rélation de transition. Nous

écrivons « S
a−→ S ′

» au lieu de « (S, a, S ′) ∈ → ».

(ii) : Un domaine de temps est une structure (D, 0, <, +) qui satisfait les conditions suiv-
antes :

– D est un ensemble fini ou infini. Nous écrivons t, t′, t1, t2, etc. ses éléments.

265

– < est un ordre total sur D.
– 0 est l’élément minimal par rapport à l’ordre <.
– L’opération binaire + est entièrement définie sur D ; elle est associative et commutative,

et 0 est son élément neutre.
– (∀t1, t2 ∈ D) (t1 < t2 ⇔ (∃t3 ∈ D) t3 6= 0 ∧ t1 + t3 = t2)
– (∀t, t′) 0 < t⇒ t′ < t + t′

Nous disons souvent aussi « domaine de temps » pour désigner l’ensemble sous-jacent D.

(iii) : Nous disons que le domaine de temps est dense si D est dense par rapport à <,
c’est-à-dire (∀t1, t2 ∈ D) t1 < t2 ⇒ (∃t3 ∈ D) t1 < t3 < t2. Nous disons que le domaine de
temps est discret si D est discret par rapport à <, c’est-à-dire (∀t1 ∈ D) (∃t2 ∈ D) t1 + t2
est le plus petit élément supérieur à t1 (donc tout élément a un successeur direct).

Des exemples pour des domaines denses sont les rationels non négatives Q≥0 et les réels
non négatives IR≥0. Un exemple pour un domaine discret sont les entiers naturels (IN, 0, <
, +).

(iv) : Un système à transitions temporisées (Stt) est un 5-uplet (Σ, A, D,→, S0), définit
comme suit :

– Σ, S0 et A sont définis comme dans (i).
– D est l’ensemble sous-jacent d’un domaine de temps tel que A∩D = ∅. Nous écrivons

l, l′, l0, l1, etc. pour les éléments de A ∪ (D \ {0}).
– L’ensemble des 3-uplets→ ⊆ (Σ×(A∪(D\{0}))×Σ) est appelé la rélation de transition.

Nous écrivons « S
l−→ S ′

» pour un (S, l, S ′) ∈ →. Si l ∈ D, nous appelons (S, l, S ′) une
transition temporisée ; si l ∈ A nous l’appelons une transition discrète.

Nous identifions trois propriétés intuitives qui sont généralement souhaitées dans des Stes,
données par la définition suivante :

Définition D.2. Un Stt (Σ, L, D,→, S0) est appelé bien-temporisé, si et seulement si
toutes les conditions suivantes sont satisfaites :

1. Additivité de temps : Deux transitions temporisées successives sont égales à leur
somme. Formellement, pour tous S1, S2 ∈ Σ, t1, t2 ∈ (D \ {0}) :

S1
t1+t2−−−→ S2 ssi (∃S3 ∈ Σ) S1

t1−→ S3
t2−→ S2

2. Déterminisme de temps : À partir d’un état donné, l’écoulement de temps ne peut
pas conduire à deux états différents. Formellement, pour tous S1, S2, S3 ∈ Σ, t ∈
(D \ {0}) :

si S1
t−→ S2 et S1

t−→ S3, alors S2 = S3

3. Progrès maximal des actions urgentes : Supposons un ensemble U ⊆ A des éti-
quettes appelées urgentes. Un état qui permet une transition discrète par une éti-
quette urgente ne doit pas permettre une transition temporisée. Formellement, pour
tout S1 ∈ Σ, l ∈ A, t ∈ (D \ {0}) :

si l ∈ U et S1
l−→ , alors ¬

(
S1

t−→
)

266 Appendix D. An extended summary in French

D.3.2 Les modèles graphiques

Des modèles graphiques sont des modèles qui utilisent une notation graphique finie pour
représenter des comportements possiblement infinis. Dans cette thèse, deux modèles gra-
phiques sont d’une grande importance, qui sont les automates temporisés et les réseaux
de Petri temporisés. Dans la suite, nous présentons ces deux modèles informellement.

Les automates temporisés

Les réseaux des automates temporisés sont utilisés dans beaucoup des outils pour la
simulation et la vérification formelle, tels que Uppaal [89], Red [123], Sgm [80], Cmc [88],
Kronos [126] et Rabbit [27].

Chaque automate temporisé est défini par un ensemble d’états discrets, par un ensemble
des transitions entre ces états et par un ensemble des variables spéciales, dites horloges.
À tout instant, un automate peut soit faire passer le temps (ce qu’augmente le valeur de
toutes les horloges), soit prendre une transition pour passer d’un état discret à l’autre.
La deuxième possibilité peut être restreinte par une formule sur la transition qui exige
certaines valeurs pour les horloges. Une transition peut remettre la valeur de certaines
horloges à zéro.

Dans un réseau d’automates temporisés, plusieurs automates communiquent par les éti-
quettes sur leurs transitions.

Un exemple simple d’un réseau d’automates temporisés est présenté dans Fig. 3.4 sur
page 27.

Les réseaux de Petri temporisés

Les réseaux de Petri temporisés sont aussi utilisés dans beaucoup des outils pour la sim-
ulation et la vérification formelle, tels que Tina [16], Roméo [65], CPN Tools [107] et
Oris [113].

Le modèle du réseau de Petri y est élargi par des intervalles qui sont associées à chaque
transition et qui définissent à quel ensemble d’instants après la sensibilisation de la tran-
sition elle peut être tirée.

Un exemple simple pour un réseau de Petri est donné dans Fig. 3.5 sur page 30.

D.3.3 Les langages de haut-niveau

Pour plusieurs raisons, une approche graphique n’est souvent pas suffisant pour la mod-
élisation des systèmes réalistes. Par exemple, dans un modèle graphique, l’ensemble des
processus est statique (aucun processus ne peut être créé ou terminé pendant l’exécution),
la communication est limitée aux concepts simples et les structures des états et des tran-
sitions sont rigides et artificielles. Bref, la simplicité des constructions disponibles peut
faire la modélisation des systèmes complexes une tâche incommode.

267

Pour pallier cet inconvénient, des langages de haut-niveau ont été développés. Ces langages
sont purement textuels et ils offrent des constructions puissantes.

Parmi ces langages, les algèbres de processus [14] présentent un choix naturel : la séman-
tique d’une algèbre de processus est donnée par un ensemble de règles, chacune trans-
formant un terme de syntaxe vers un autre, où toute transformation correspond à une
transition dans un Stt ou un Ste. Ces règles sont souvent données dans le style simple
des « structural operational semantics » d’après Plotkin [105].

La liste suivante décrit les langages qui ont été, directement ou indirectement, influencés
la définition d’Atlantif :

– Le langage CCS [97] contient des constructions pour exprimer entre autre la concur-
rence, la composition séquentielle, et le choix. Des extensions temporelles [98, 125] ont
proposés des opérateurs pour exprimer des délais et des limiteurs de vie.

– Pour le langage CSP [77], des extensions [108, 103] ont proposés des opérateurs tem-
porelles semblables.

– Le langage Lotos [81] est un standard ISO pour la description formelle des systèmes
concurrentes et communicantes.
Parmi les extensions temporelles, ET-Lotos [91] introduit un opérateur de capture de
temps , et RT-Lotos [47] introduit un opérateur de latence.

– Des différentes idées pour des extensions de Lotos ont convergé vers les langages
E-Lotos (extended Lotos) [83] et son dialecte Lotos NT (Lotos Nouvelle Tech-
nologie) [115]. Ces extensions incluent une composition parallèle généralisée, une com-
position séquentielle symétrique, la gestion des exceptions, et aussi des constructions
de temps réel.

D.3.4 Les modèles intermédiaires

Des limites dans les approches des modèles graphiques et des langages de haut-niveau
ont été observées pendant des années, en particulier par rapport à la modélisation des
grands systèmes pour les modèles graphiques et par rapport à la vérification automatique
pour des langages de haut-niveau. Pour pallier cet écart entre modélisation et vérification,
l’approche des modèles intermédiaires a été établi [37, 61, 21], dont les idées centrales sont
les suivantes :

– Ils sont munis des constructions de haut-niveau, tel que des types de données définis
par l’utilisateur, opérateurs de choix ou opérateurs de communication élaborés.

– Ils permettent la vérification formelle, soit directement, soit indirectement, par traduc-
tion vers un autre modèle.

La liste suivante donne des exemples pour les modèles intermédiaires :

– Bip [11] décrit un système par plusieurs processus séquentiels, qui sont liés par des
connecteurs qui décrivent comment les processus communiquent. Bip utilise du temps
discret.

– Dans MoDeST [30], les processus séquentiels permettent aussi des constructions prob-
abilistes.

268 Appendix D. An extended summary in French

– Ntif (New Technology Intermediate Form) [61] a été conçu pour représenter des pro-
cessus séquentiels qui gèrent des structures de données complexes. Les actions dans un
processus Ntif sont données par des transitions à branchement multiples, qui perme-
ttent une description très concise. Ntif est défini sans constructions pour exprimer la
concurrence ou le temps-réel.

– Fiacre [17] est partiellement basé sur Ntif, mais contient des constructions pour
exprimer la concurrence ou le temps-réel.

D.3.5 Résumé et observations

Nous pouvons observer par la comparaison des différents modèles et langages que beau-
coup des approches différentes sont possibles pour exprimer des données, de la concurrence
et du temps-réel. La liste suivante donne plusieurs de ces approches :

– Plusieurs modèles permettent à l’utilisateur de définir ses propres types de données et
fonctions.

– La majorité des modèles est définie avec une communication par synchronisation.
– La synchronisation peut être définie d’une manière plutôt simple (par exemple, la syn-

chronisation binaire, limité à deux processus) ou d’une manière plus complexe (choix
entre plusieurs ensembles de plusieurs processus).

– Quelques modèles sont capable de démarrer et d’arrêter dynamiquement des processus.
– L’envoi des données entre différents processus peut se faire soit par des variables parta-

gées, soit par des offres, c’est-à-dire des valeurs envoyées lors d’une synchronisation.
– Les limiteurs de vie des communications sont définis soit à l’intérieur des processus (donc

lors d’une communication, chaque processus peut imposer des contraintes temporelles),
soit sur le niveau de composition (donc une communication a une contrainte temporelle
globale).

– Quand un limiteur de vie est arrivé à sa limite, deux approches sémantiques différentes
peuvent s’appliquer : soit la communication devient impossible dès que le temps continue
de s’écouler, soit l’écoulement de temps est bloqué jusqu’à la communication a lieu.
Inspiré par [36], nous écrivons respectivement limite faible et limite forte pour ces
approches.

D.4 La syntaxe et la sémantique d’ATLANTIF

D.4.1 La syntaxe d’ATLANTIF

La syntaxe d’Atlantif, présentée dans la table D.1 est décrit dans une variante d’Ebnf
(Extended Backus-Naur Form [82]) où les parties entre des « [,] » sont optionnelles et
des barres verticales désignent des alternatives. Atlantif est un superensemble strict
de Ntif ; des ombres en gris sont utilisés pour mieux montrer les extensions, que nous
détaillerons dans les sections D.4.2 et D.4.3.

Pour simplifier, nous ne détaillerons pas des définitions de types (qui inclurent de types

269

Syntaxe de modules :
X ::= module M is

[(no | discrete | dense) time] (option temporelle)
type T1 is D1 . . . type Tn is Dn (déclarations de types)
function F1 is Y1 . . . function Fk is Yk (déclarations de fonctions)
R1 . . . Rm (synchroniseurs , définis en bas)
init u0, . . . ,uj (unit és initialement actives)
U0 . . . Ul (définitions d ′unit és , définis en bas)
end module

Syntaxe d ′unit és :
U ::= unit u is

[variables V0 :T0 [:= E0], . . . ,Vn :Tn [:=En]] (variables locales)
from s0 A0 . . . from sm Am (liste de transitions)
U1 . . . Ul (sous − unit és)
end unit

Syntaxe d ′actions :
A ::= V0, . . . ,Vn := E0, . . .,En (affectation déterministe)

| V0, . . . ,Vn := any T0, . . . ,Tn [where E] (affectation non−déterministe)
| reset V0, . . . ,Vn (reset des variables)
| wait E (delai)
| G O1 . . . On [[must | may] in W] (communication par porte)
| to s (saut vers état)
| stop (arr êter unit é)
| A1 ;A2 (composition sequentielle)
| if E then A1 else A2 end [if] (conditionel)
| case E is P0->A0| . . . |Pn->An end [case] (choix déterministe)
| select A0[] . . . []An end [select] (choix non−déterministe)
| while E do A0 end [while] (boucle)
| null (inaction)

Syntaxe d ′offres : Syntaxe d ′expressions :
O ::= !E (émission devaleur) E ::= V (variable)

| ?P (r éception devaleur) | F(E1, . . . ,En) (fonction)
| C(E1, . . . ,En) (constructeur)

Syntaxe de motifs :
P ::= any T (variable anonyme) | P0 where E (condition) | (P0)

| V (variable) | C(P1, . . . ,Pn) (constructeurr)
Syntaxe de fenêtres temporels :

W ::= [E1,E2] |]E1,E2] | [E1,E2[|]E1,E2[(intervalle borné)
| [E1, ...[|]E1, ...[(intervalle non borné)
| W1 or W2 | W1 and W2 | (W0) (intervalles combinés)

Syntaxe de synchroniseurs :
R ::= sync G [: B] is K (formule de synchronisation)

[stop u1, . . .,um] [start u′
1, . . .,u′

n] (unit és arr êt ées et d émarr ées)
end sync

Syntaxe auxiliaire de synchroniseurs :
K ::= u (unit é seule) N ::= n (entier naturel)

| K1 and K2 (synchronisation) | N1 or N2 (choix)
| K1 or K2 (alternative)
| N among (K1, . . .,Km) B ::= visible | hidden
| (K0) | urgent | silent

Tab. D.1 – Syntaxe intégrale d’Atlantif

270 Appendix D. An extended summary in French

de données complexes, comme des records, des listes, etc.) et des définitions de fonctions.

D.4.2 Les processus séquentiels en ATLANTIF

Un processus séquentiel en Atlantif, appelé une unité, contient des déclarations de
variables et optionnellement des sous-unités . Nous écrivons decl(u) pour l’ensemble de
variables déclarées dans une unité donnée u. Celles-ci peuvent être lues et/ou écrites dans
les sous-unités de u, ce que permet de partager ces variables entre des différentes unités.
Pour cela, chaque variable V est munie d’une portée, donnée par l’ensemble accessible(V),
qui définit les unités dans lesquelles V peut être lue ou écrite.

Chaque unité contient une liste des états discrets, le premier duquel est compris d’être
l’état initial. À chaque état discret s nous attribuons une transition à branchement multi-
ple avec la forme « from s A », où A est une action, notée act . En différence des modèles
habituels, où les actions sont simplement des couples « condition/affectation », les actions
d’Atlantif utilisent des constructions de haut-niveau, qui combinent des actions atom-
iques. Une action particulière est la communication par une porte, qui permet l’échange
de données sous forme d’offres, dont chacune est soit de la forme !E (représentant une
émission du valeur de l’expression E), soit de la forme ?P (représentant une réception
d’un valeur dans un motif P par pattern-matching).

En ce qui concerne le temps réel, Atlantif permet le temps discret (qui correspond à un
domaine de temps isomorphe à IN) aussi que le temps dense (qui correspond à IR≥0) ; le
comportement sans temps quantitative est également permis. Cette option temporelle est
donnée dans le header d’une spécification (par les mots-clés « discrete time », « dense
time » ou « no time » ; ce dernier étant le défaut si l’option n’est pas spécifie). Atlantif
a une action « wait » qui permet une quantité donné de temps à s’écouler (ce concept
est emprunté des algèbres de processus tels que Tcsp [108]), et les extensions suivantes à
la communication par une porte :

– Une fenêtre de temps W composée des intersections (« and ») et unions (« or ») des
intervalles ouvertes ou fermées, où « ... » représente l’infini. La communication peut
être exécutée quand le temps écoulé depuis l’arrivée à l’action de communication est
contenu dans la fenêtre de temps. Si W n’est pas spécifiée, elle est « [0, ...[» par défaut.
La fenêtre de temps prend donc le rôle d’un « limiteur de vie », tel qu’il se trouve dans
des différents algèbres de processus temporisés tels que ET-Lotos [91].

– Une modalité Q parmi must ou may, où must indique que la communication doit avoir
lieu avant la fin de la fenêtre de temps (qu’on appelle l’« échéance »), et may indique
que le temps peut s’écouler indéfiniment. Si Q n’est pas spécifié, elle est may par défaut.
Le may représente donc un limiteur de vie avec une limite faible, pendant que le must
represente un limiteur de vie avec une limite forte. Les réseaux de Petri temporisés et
Fiacre ne permettent que des limites fortes, pendant que les automates temporisés et
la plupart des extensions de Lotos permettent une combinaison des limites fortes et
faibles, ce qui justifie notre choix en Atlantif.

271

Sémantique

Sémantique statique. En ce qui concerne la sémantique statique, Atlantif hérite les
règles de Ntif [61] avec des extensions pour les nouveaux constructions de syntaxe. Les
règles héritées concernent le bon typage et la restriction à au plus une communication sur
chaque chemin possible dans une transition à branchement multiple. L’extension des règles
concerne l’initialisation correcte de variables avant leur utilisation, qui doit maintenant
prendre en compte la concurrence et le partage des variables entre les unités.

Nous ajoutons les contraintes qu’une action « wait » n’est pas admise après une action de
communication sur un chemin d’une transition à branchement multiple, que la fenêtre de
temps de chaque communication « must » est soit non bornée, soit close à droite, que les
communications par des synchroniseurs silencieux (« silent ») ne sont pas limités par une
fenêtre de temps (c’est-à-dire, ces communications sont exécutées au plus tôt), et qu’une
unité ne peut pas être active si une de ces sous-unités (directes ou indirectes) est active.
En plus, aucune unité qui est permise de lire une variable V ne peut être active en même
temps qu’une autre unité qui est permise de lire et/ou écrire V . Nous avons définis des
algorithmes qui peuvent vérifier ce dernier critère.

Sémantique dynamique – définitions. Pour présenter la sémantique dynamique,
nous avons d’abord besoin des définitions suivantes, héritées de Ntif. Nous supposons un
ensemble Val de valeurs, dont les éléments sont écrits v, v′, v0, v1, etc. Nous écrivons V pour
l’ensemble de variables. Des fonctions partielles sur V → Val , appelées environnements,
sont écrites ρ, ρ′, ρ0, ρ1, etc. Nous écrivons dom(ρ) pour le domaine de ρ. Les opérateurs
update (mis à jour) ⊘ et restriction ⊖ sont définis sur les environnements de la manière
suivante :

ρ⊘ ρ′ def
= ρ′′ où ρ′′(V) = si V ∈ dom(ρ′) alors ρ′(V) sinon ρ(V)

ρ⊖ {V1, . . . , Vn} def
= ρ′′ où dom(ρ′′) = dom(ρ) \ {V1, . . . , Vn}

et (∀V ∈ dom(ρ′′)) ρ′′(V) = ρ(V)

La sémantique des expressions est donnée par un prédicat eval(E, ρ, v) qui est vrai si et
seulement si l’évaluation de l’expression E avec un environnement ρ donne un valeur v. La
sémantique des motifs est donnée par une fonction du « pattern-matching » match(v, ρ, P),
qui renvoie « fail », si v ne peut pas être évaluée par ρ ; sinon elle renvoie un nouveau
environnement ρ′, qui correspond à ρ où les variables de P sont affectés avec les sous-termes
applicables de v. La sémantique des offres est donnée par une fonction accept(v, ρ, O),
définie par :

accept(v, ρ, !E)
def
= si eval(E, ρ, v) alors ρ sinon fail

accept(v, ρ, ?P)
def
= match(v, ρ, P)

Nous écrivons S pour l’ensemble d’identificateurs d’états munis de deux éléments spéciaux
δ et Ω, réservés pour la sémantique. δ représente un état discret auxiliaire qui dénote la

272 Appendix D. An extended summary in French

terminaison d’une action, ce que permet l’exécution des actions consécutives ; Ω représente
la terminaison d’une unité.

Nous avons aussi besoin des définitions suivantes. Nous écrivons D le domaine de temps,

t, t′, t0, t1, etc. ses éléments, et L1
def
= {G v1 . . . vn | G ∈ G, v1, . . . , vn ∈ Val} ∪ {ε}

l’ensemble d’étiquettes, où G est l’ensemble de portes et ε représente des transitions
sans action de communication. L’opérateur binaire « + » est partiellement défini sur

L1 × L1 → L1 par l + ε
def
= l, ε + l

def
= l, il est indéfini si les deux arguments sont

différents de ε. Nous écrivons U pour l’ensemble d’identificateurs d’unités et U ,U ′,U0,U1,
pour ses sous-unités. Nous utilisons la notation ρ↾U pour restreindre le domaine d’un
environnement ρ aux variables accessibles dans un ensemble d’unités U ; formellement

ρ↾U
def
= ρ ⊖ {V | (∀u ∈ U) u /∈ accessible(V)}. La sémantique des fenêtres de temps

est définie par un prédicat win eval(W, ρ, D) qui est vrai si et seulement si l’évaluation
de W avec un environnement ρ génère un ensemble (possiblement infini) de temps D.
Nous définissons également une fonction booléenne up lim(Q, W, ρ, t) renvoyant vrai si et
seulement si Q = must et que l’ensemble D défini par win eval(W, ρ, D) ait un maximum
qui vaut t.

Sémantique dynamique – constructions séquentielles. Dans Ntif, la sémantique

des actions a été défini par une relation ayant la forme (A, ρ)
l

=⇒ (s, ρ′), où A est une
action, ρ, ρ′ sont des environnements, s ∈ S est un état discret et l ∈ L1 est une éti-
quette [61].

Dans Atlantif, cette relation est élargit vers la forme (A, d, ρ)
l

=⇒ (s, d′, ρ′), où d, d′

ont la forme (t, µ), avec t ∈ D est appelé une phase (intuitivement, t représente le temps
qui peut s’écouler dans l’unité avant la communication suivante), et µ une valeur booléen
(appelé la condition de blocage), qui vaut vrai si et seulement si le temps ne peut pas
s’écouler au-delà de t. Donc le prédicat signifie que l’action A dans le contexte de d et de
ρ évolue vers un état local (s, d′, ρ′) (états locaux sont aussi écrits σ, σ′, σ0, σ1, etc.), en
produisant une transition étiquettée par l. Ces règles sont détaillées dans la figure D.1,
où une trame grise indique une extension par rapport à Ntif.

La figure D.2 présente un exemple d’un système composé d’un utilisateur et d’une lampe.
L’utilisateur, modélisé par l’unité User , appuie de façon répétée sur un interrupteur
(représenté par une porte « Push »). La lampe, modélisée par l’unité Lamp, met à dispo-
sition trois niveaux de luminosité, qui sont modélisés par les trois états discrets « Off »,
« Low » et « Bright ». Quand la lampe est éteinte (état « Off »), appuyer sur l’interrup-
teur l’allume avec une luminosité basse (état « Low »). Si l’appui suivant est fait dans les
cinq secondes suivantes, alors la lampe devient plus lumineuse (état « Bright »). Si c’est
après plus que cinq secondes, alors la lampe est éteinte.

D.4.3 Concurrence dans ATLANTIF

Dans Atlantif, une spécification contient plusieurs unités qui sont synchronisées au
respect des synchroniseurs (voir figure D.1), qui sont une généralisation des vecteurs de

273

(assignd)
eval(E0, ρ, v0) ∧ . . . ∧ eval (En, ρ, vn)

(V0, . . .,Vn := E0, . . . ,En, d, ρ)
ε

=⇒ (δ, d, ρ⊘ [V0 7→ v0, . . . , Vn 7→ vn])

(assignn)
v0 ∈ T0, . . . , vn ∈ Tn ∧ ρ′ = ρ⊘ [V0 7→ v0, . . . , Vn 7→ vn] ∧ eval(E, ρ′, true)

(V0, . . . ,Vn := any T0, . . . ,Tn where E, d, ρ)
ε

=⇒ (δ, d, ρ′)

(reset)
(reset V0, . . . , Vn, d, ρ)

ε
=⇒ (δ, d, ρ⊖ {V0, . . . , Vn})

(wait)
eval (E, ρ, v) ∧ t ≥ v ≥ 0

(wait E, (t, µ), ρ)
ε

=⇒ (δ, (t− v, µ), ρ)

(comm)
(∀j ∈ 1..n) accept(vj , ρj, Oj) = ρj+1 6= fail ∧ win eval (W, ρn+1, D) ∧ t ∈ D

(G O1 . . .On Q in W, (t, µ), ρ1)
G v1...vn=⇒ (δ, (t, up lim(Q, D, t)), ρn+1)

(to)
(to s, d, ρ)

ε
=⇒ (s, d, ρ)

(stop)
(stop, d, ρ)

ε
=⇒ (Ω, d, ρ)

(seq1)
(A1, d, ρ)

l1=⇒ (δ, d′, ρ′) ∧ (A2, d
′, ρ′)

l2=⇒ σ

(A1 ;A2, d, ρ)
l1+l2=⇒ σ

(seq2)
(A1, d, ρ)

l
=⇒ (s, d′, ρ′) ∧ s 6= δ

(A1 ;A2, d, ρ)
l

=⇒ (s, d′, ρ′)

(case)
eval (E, ρ, v) ∧ (∀j < k) match(v, ρ, Pj) = fail ∧match(v, ρ, Pk) = ρk 6= fail ∧ (Ak, d, ρk)

l
=⇒ σ

(case E is P0->A0| . . . |Pn->An end, d, ρ)
l

=⇒ σ

(if 1)
eval (E, ρ, true) ∧ (A1, d, ρ)

l
=⇒ (s, d′, ρ′)

(if E then A1 else A2 end, d, ρ)
l

=⇒ (s, d′, ρ′)
(if 2)

eval (E, ρ, false) ∧ (A2, d, ρ)
l

=⇒ (s, d′, ρ′)

(if E then A1 else A2 end, d, ρ)
l

=⇒(s, d′, ρ′)

(select)
k ∈ 0..n ∧ (Ak, d, ρ)

l
=⇒ σ

(select A0[] . . . []An end, d, ρ)
l

=⇒ σ

(while1)
eval(E, ρ, true) ∧ (A0 ;while E do A0 end, d, ρ)

l
=⇒ σ

(while E do A0 end, d, ρ)
l

=⇒ σ

(while2)
eval (E, ρ, false)

(while E do A0 end, d, ρ)
ε

=⇒ (δ, d, ρ)
(null)

(null, d, ρ)
ε

=⇒ (δ, d, ρ)

Fig. D.1 – Règles pour la sémantique dynamique des unités

274 Appendix D. An extended summary in French

module Light is dense time from Low
sync Push is User and Lamp end sync select Push in [0, 5[;
init User ,Lamp (∗ initially started units ∗) to Bright
unit User is [] Push in [5, ...[;

from Rdy to Off
wait 1; Push ; to Rdy end select

end unit from Bright
unit Lamp is Push; to Off

from Off end unit
Push; to Low end module

Fig. D.2 – Programme Atlantif qui décrit un interrupteur

synchronisation [6, 33]. Un synchroniseur est activé chaque fois qu’une unité arrive à une
action de communication, c’est-à-dire chaque fois qu’elle veut proposer un rendez-vous à
son environnement. Il décrit comment des unités synchronisent et il détermine l’ensemble
des unités qui tournent (qui sont actives). Formellement, un synchroniseur est de la forme
« sync G : B is K stop u1, . . . , um start u′

1, . . . , u
′
n end sync », où :

– G est une porte qui déclenche le synchroniseur.
– B est une balise facultative (noté tag(G)), qui peut prendre une des quatre formes

suivantes : visible engendre une transition étiquetée par G et les offres échangées par G ;
hidden engendre une transition interne qu’on appelle τ -transition ; urgent se comporte
comme le dernier, mais en plus, le temps est bloqué si une synchronisation est possible ;
et silent indique que la communication n’engendre pas une transition. Si aucune balise
n’est spécifiée, alors le synchroniseur est visible.

– K est une formule composée d’identificateurs d’unités et d’opérateurs booléennes, qui
décrit des combinaisons des unités qui doivent se synchroniser ; chacune de ces com-
binaisons est appelée un « ensemble de synchronisation ». L’ensemble d’ensembles de
synchronisation attaché à G, noté sync(G), est défini comme suit :

sync(u) = {{u}}
sync(K1 and K2) = {S1 ∪ S2 | S1 ∈ sync(K1) ∧ S2 ∈ sync(K2)}
sync(K1 or K2) = sync(K1) ∪ sync(K2)
sync(n among (K1, . . . , Km)) = sync(K ′

1 or . . .or K ′
k), où

{K ′
1, . . . , K

′
k} = {(Ki1 and . . .and Kin) | 1 ≤ i1 < . . . < in ≤ m}

sync(n1 or . . .or nl among (K1, . . . , Km)) =
sync(n1 among (K1, . . . , Km) or . . . or nl among (K1, . . . , Km))

– « stop u1, . . . , um » et « start u′
1, . . . , u

′
n » sont des constructions facultatives qui in-

diquent que les unités u1, . . . , um deviennent inactives, pendant que u′
1, . . . , u

′
n devien-

nent actives quand le synchroniseur est déclenché. Nous écrivons stop(G) ={u1, . . . , um}
et start(G) = {u′

1, . . . , u
′
n}. Par défaut, stop(G) = ∅ et start(G) = ∅.

Pour exprimer la concurrence, dans d’autres modèles intermédiaires (tels que les réseaux
Cæsar [59] ou les « communicating state machines » [84]) les transitions sont composés
des communications de plusieurs processus (similaire aux transitions des réseaux de Petri).

275

Un inconvénient de cette approche est que le nombre des transitions dans le modèle ré-
sultat peut être le produit du nombre de transitions dans chaque processus. Des synchro-
niseurs offrent une approche plus symbolique pour éviter ce problème, mais cette approche
est en même temps assez générale pour exprimer les concepts suivants :

– La compétition entre des processus en synchronisation peut être exprimée par des syn-
chroniseurs qui décrivent plusieurs ensembles de synchronisation. Par exemple, dans la
formule « u1 and (u2 or u3) », u2 et u3 sont en compétition pour se synchroniser avec
u1.

– La synchronisation « multiway » (c’est-à-dire entre un nombre arbitraire de processus)
peut être exprimée par des ensembles de synchronisation qui contiennent plus que deux
unités. Par exemple, dans la formule « u1 and u2 and u3 », les trois unités u1, u2 et u3

doivent se synchroniser toutes ensemble.
– L’opérateur généralisé de la composition parallèle de [64] peut aussi être exprimé. Par

exemple, la formule « par G#2, G#3 in u1||u2||u3 end par » (qui signifie que deux ou
trois processus parmi u1, u2 et u3 peuvent se synchroniser sur G) peut être exprimée
par « sync G is 2 or 3 among (u1, u2, u3) end sync ».

– Des processus peuvent être démarrés ou arrêtés par eux-mêmes ou par des processus
concurrentes. Par exemple, « sync G is u1 and u2 stop u1, u2 start u3, u4 end sync »

signifie que les unités u1 et u2 sont arrêtées dès leur synchronisation sur G, et que u3

et u4 sont démarrées le même instant.

Sémantique dynamique – constructions séquentielles. À la différence de Ntif,
qui n’a pas une sémantique parallèle, Atlantif est muni d’une deuxième couche de la
sémantique pour la concurrence et le temps réel. Elle est donnée par un Stt (voir la
définition D.1) avec la forme (S, T, S0) où :

– S est un ensemble d’états globaux (ou simplement états) de la forme (π, θ, ρ) (notés
S, S ′, S0, S1, etc.), où π : U → S est une fonction partielle, appelée la distribution
d’états , qui associe toute unité active à son état discret actuel, θ : U→ (D×Bool) est
une fonction partielle, appelée la distribution de temps, qui associe toute unité active à
sa phase et sa condition de blocage actuelle, et ρ est un environnement. À remarque que
l’ensemble des unités actives est donné par dom(π) et dom(θ), avec dom(π) = dom(θ).

– T est un ensemble de transitions défini par une relation en S × L2 × S, où L2
def
=

(L1 \ {ε})∪ {τ} ∪ (D \ {0}). Les transitions étiquetées dans D \ {0} sont les transitions
de temps, les autres sont les transitions discrètes.

– S0 ∈ S est l’état initial, qui est défini par S0
def
= (π0|U0

, θ0|U0
, ρ0↾U0

), où π0 est une fonction
qui associe toute unité à son état discret initial (défini implicitement comme le premier
état discret dans cette unité), θ0 est la fonction qui renvoie constamment (0, false)
pour toute unité, ρ0 est l’environnement qui associe toute variable à sa valeur initiale
(si définie), et U0 est l’ensemble d’unités initialement actives. π0|U0

et θ0|U0
représentent

respectivement π0 et θ0, où le domaine est restreint à U0.

Une transition discrète correspond à une châıne de zéro ou plus synchronisations silen-
cieuses suivies par une synchronisation non silencieuse (appelé châıne dans la suite). Nous
appelons une châıne incomplète toute préfixe d’une châıne. Une châıne est exécutée sans

276 Appendix D. An extended summary in French

écoulement de temps.

Comme déjà observé en [59], l’exploration de toutes les châınes possibles ne serait pas
correct. Au lieu de cela, une synchronisation silencieuse n’est permis dans une châıne que
si au moins une des unités synchronisées et non arrêtées ou une des unités démarrées
se synchronisent aussi dans une autre synchronisation dans la suite de la châıne. Nous
appelons l’affectation d’unités d’une synchronisation l’ensemble contenant les unités qui se
synchronisent mais qui ne sont pas arrêtées et les unités qui sont démarrées. Nous associons
à toute châıne incomplète l’ensemble α d’affectations d’unités qui correspondent à celles
synchronisations dans la châıne incomplète, dont aucune unité ne s’est synchronisée dans
la suite de la châıne incomplète. Alors, il ne faut explorer que les châınes qui finissent avec
un ensemble α vide. Nous définissons les prédicats suivants :

– Le prédicat synchronizing((S, α), l, µ, (S ′, α′)), défini sur (S×P(P(U)))× (L1 \ {ε})×
Bool × (S × P(P(U))) est vrai si et seulement si (1) une transition étiquetée par l
peut avoir l’origine dans l’état global S et aller vers l’état global S ′, (2) la disjonction
des conditions de blocage dans les états locaux atteintes par cette transition vaut µ
et (3) un ensemble d’affectations d’unités α évolue vers α′ par cette synchronisation.
Formellement :
synchronizing(((π, θ, ρ), α), G v1 . . . vn, µ, ((π′, θ′, ρ′), α′))

def
=

(∃{u1, . . . , um} ∈ sync(G)) {u1, . . . , um} ⊆ dom(π) ∧
(∀i ∈ 1..m) ((act(π(ui)), θ(ui), ρ↾{ui})

G v1...vn=⇒ (si, (ti, µi), ρi) ∧ si 6= δ)∧
µ =

∨
i=1..m µi ∧

next π(π, [ui 7→ si | i ∈ 1..m], G, π′) ∧
next θ(θ, {u1, . . . , um},mini∈1..m(ti), G, θ′) ∧
next ρ(ρ, [V 7→ ρi(V) | ui ∈ accessible(V)], dom(π′), G, ρ′) ∧
next α(α, {u1, . . . , um}, G, α′)

Le prédicat next π définit la nouvelle distribution d’états après une synchronisation.

next π(π, π1, G, π′)
def
=

π′ = ((π ⊘ π1)⊖ stop(G))⊘ [u 7→ π0(u) | u ∈ start(G)]
Le prédicat next θ définit la nouvelle distribution de temps après une synchronisation.
Si la synchronisation a été silencieuse, alors la nouvelle phase t0 des unités affectées
est donnée par la phase minimale parmi les unités qui se synchronisent. Donc elle
correspond à l’unité / aux unités dans laquelle / lesquelles le délai le plus longue a eu
lieu, c’est-à-dire l’unité laquelle les autre unités qui se synchronisent ont du attendre. Si
la synchronisation n’a pas été silencieuse, la nouvelle phase de toutes les unités affectées
est mis à zéro.
next θ(θ,U , t0, G, θ′)

def
=

θ′ =






((θ ⊘ [u 7→ (t0, false) | u ∈ U]))⊖ stop(G)

⊘ [u 7→ (t0, false) | u ∈ start(G)] si tag(G) = silent

((θ ⊘ [u 7→ (0, false) | u ∈ U])⊖ stop(G))

⊘ [u 7→ (0, false) | u ∈ start(G)] sinon
Le prédicat next ρ définit le nouveau environnement après une synchronisation. Le
domaine de l’environnement est restreinte par rapport au nouveau ensemble d’unités
actives. Pour toute unité démarrée qui déclare une variable V avec un valeur initial,
[V 7→ ρ0(V)] est ajouté à l’environnement.

277

next ρ(ρ, ρ1,U , G, ρ′)
def
=

ρ′ = ((ρ⊘ ρ1)⊖ {V | (∀u ∈ U) u /∈ accessible(V)})
⊘ [V 7→ ρ0(V) | V ∈ dom(ρ0) ∧ (∃u ∈ start(G)) V ∈ decl(u)]

Le prédicat next α, qui définit les nouvelles affectations d’unités après une synchroni-
sation, commence par supprimer les affectations d’unités dont au moins une unité s’est
synchronisée. Si la synchronisation a été silencieuse, un nouvel ensemble est ajouté, qui
contient toutes les unités synchronisées et non arrêtées et toutes les unités démarrées.

next α(α,U , G, α′)
def
=

α′ =






(α \ {U ′ ∈ α | (∃u ∈ U) u ∈ U ′}) ∪
{(U \ stop(G)) ∪ start(G)} si tag(G) = silent

α \ {U ′ ∈ α | (∃u ∈ U) u ∈ U ′} sinon
où les opérateurs ⊘, ⊖ sont définies sur π et sur θ d’une manière pareille que sur ρ.

– Le prédicat enabled(S, l, µ, S ′), définit sur S × (L1 \ {ε}) × Bool × S est vrai si et
seulement s’il y a une châıne à explorer qui mène de l’état global S vers l’état global
S ′, où la dernière synchronisation est étiquetée par l et la condition de blocage atteinte
par cette synchronisation vaut µ. Formellement :

enabled(S, l, µ, S ′)
def
= (∃S1, . . . , Sk, α1, . . . , αk, l1, . . . , lk, µ1, . . . , µk)

synchronizing((S, ∅), l1, µ1, (S1, α1)) ∧ . . . ∧
synchronizing((Sk, αk), lk, µk, (S

′, ∅)) ∧
tag(l1) = . . . = tag(lk−1) = silent ∧ tag(lk) = l 6= silent ∧ µk = µ

– Le temps ne peut pas s’écouler dans un état global si une communication urgente est
prête, c’est-à-dire une châıne qui finit soit avec une synchronisation sur une porte ur-
gente ou soit avec une action de communication de la forme « G O1 . . . On must in W »

où l’échéance de W est atteint. Le prédicat relaxed(S), définit sur S, est vrai si et seule-
ment si le temps peut s’écouler dans S. Formellement :

relaxed(S)
def
= (∀ G v1 . . . vn, µ, S ′)

enabled(S, G v1 . . . vn, µ, S ′)⇒ (¬µ ∧ tag(G) 6= urgent)

Les transitions discrètes sont définies par la règle (rdv) comme suit :

(rdv)
enabled((π, θ, ρ), G v1 . . . vn, µ, (π′, θ′, ρ′))

(π, θ, ρ)
label(G v1...vn)−−−−−−−−−→ (π′, θ′, ρ′)

où la fonction label change une étiquette non ε de L1 en une étiquette discrète de L2 :

label(G v1 . . . vn)
def
=

{
G v1 . . . vn si tag(G) = visible

τ sinon

Les transitions de temps sont définies par la règle (time), qui permet l’écoulement de t
unités de temps si aucune communication urgente n’est prête. Le nouvel état est calculé par

l’augmentation de toutes les phases par t, en utilisant « + », définie par (∀u) (θ+ t)(u)
def
=

(tu + t, µu) où θ(u) = (tu, µu).

278 Appendix D. An extended summary in French

(time)
t > 0 ∧ (∀t′ < t) relaxed((π, θ + t′, ρ))

(π, θ, ρ)
t−→ (π, θ + t, ρ)

Nous illustrons la sémantique par la dérivation de deux transitions de Stt de l’exemple
sur l’interrupteur de la figure D.2. Nous montrons que si User est dans l’état Rdy et Lamp
dans l’état Low , alors trois unités de temps peuvent s’écouler avant que l’interrupteur soit

utilisé. Formellement : (π, θ, ∅)
3−→ (π, θ + 3, ∅)

Push−−−→ (π ⊘ [Lamp 7→ Bright], θ, ∅) où

π
def
= [User 7→ Rdy ,Lamp 7→ Low], et θ

def
= [User 7→ (0, f),Lamp 7→ (0, f)] (ou « f » est

bref pour « faux »).

D’abord, (π, θ, ∅)
3−→ (π, θ + 3, ∅) est dérivé comme suit :

3 > 0 ∧ (∀t′ < 3) relaxed((π, θ + t′, ∅))

(π, θ, ∅)
3−→ (π, θ + 3, ∅)

(time)

Après, (π, θ + 3, ∅)
Push−−−→ (π ⊘ [Lamp 7→ Bright], θ, ∅) est dérivé comme suit :

{User ,Lamp} ∈ sync(Push) ∧ (act(Rdy), (3, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅) ∧

(act(Low), (3, f), ∅)
Push
=⇒ (Bright , (3, f), ∅)

(π, θ + 3, ∅)
Push−−−→ (π ⊘ [Lamp 7→ Bright], θ, ∅)

(rdv)

La prémisse (act(Rdy), (3, f), ∅)
Push
=⇒ (Rdy, (2, f), ∅) est dérivée comme suit, où il est

rappelé que act(Rdy) = (wait 1; Push ; to Rdy) :

eval(1, ∅, 1) ∧ 3 ≥ 1

(wait 1, (3, f), ∅)
ε

=⇒ (δ, (2, f), ∅)
(wait)

(Push; to Rdy , (2, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅)

(act(Rdy), (3, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅)

(seq1)

Finalement, la prémisse (Push; to Rdy , (2, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅) est dérivée comme

suit :

(Push, (2, f), ∅)
Push
=⇒ (δ, (2, f), ∅)

(comm)
(to Rdy , (2, f), ∅)

ε
=⇒ (Rdy , (2, f), ∅)

(to)

(Push; to Rdy , (2, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅)

(seq1)

La prémisse (act(Low), (3, f), ∅)
Push
=⇒ (Bright , (3, f), ∅) est dérivé de manière semblable

avec les règles (comm), (to), (seq1) et (select).

Avec notre approche sémantique, nous respectons la propriété standard que le temps doit
s’écouler avec la même vitesse dans toutes les unités. En plus, la proposition suivante
montre que la sémantique respecte les propriétés souhaitées qui sont présentés dans la
définition D.2.

Proposition D.1. Le Stt qui correspond à la sémantique d’une spécification Atlantif
satisfait les propriétés de (i) additivité de temps, (ii) déterminisme de temps et (iii) progrès
maximal des actions urgentes.

279

D.5 Représenter des constructions de haut-niveau

Dans cette section, deux exemples des constructions haut-niveau sont présentés, suivi
par des traductions (manuelles) en Atlantif. Ceci est une illustration de la puissance
d’expression d’Atlantif.

D.5.1 Latence

Dans le langage RT-Lotos [48], la construction de latence représente une extension des
limiteurs de vie, qui ne peut pas être exprimé dans la majorité d’autres langages de haut-
niveau.

Le fragment du code RT-Lotos suivant exprime un cas typique de latence :

. . .
hide G in
(delay(3) latency(2) G ;

stop)
. . .

Sémantiquement, cet exemple commence par l’écoulement de trois unités de temps (in-
struction « delay(3) »). Puis, la communication par G peut avoir lieu à n’importe quel
instant pendant les deux unités de temps suivantes (« latency(2) G »). Comme G est
caché (« hide »), cette communication devient une action τ . Remarquons que l’urgence
qui est normalement impliquée par le hide n’influence pas le temps de latence ; au lieu de
cela, G ne devient urgent qu’après l’écoulement des deux unités de temps.

Traduction vers ATLANTIF

Déclarer G comme synchroniseur urgent n’est pas praticable, donc G est déclaré caché
(hidden). Pour forcer la communication au dernier moment possible, après une période
où elle est optionnelle, nous utilisons la modalité must dans l’action de communication,
ce que donne le fragment de code Atlantif suivant :

. . .
sync G :hidden is U1 end sync
. . .
unit U1 is

from S1
wait 3 ;
G must in [0,2] ;
stop

end unit
. . .

280 Appendix D. An extended summary in French

Dans la Section 5.4.2, nous montrons informellement que cette traduction est correcte.

D.5.2 Gestion des exceptions

Quelques langages de haut-niveau sont définis avec des constructions pour exprimer la
gestion des exceptions, c’est-à-dire interruption d’un comportement, qui est alors suivi
par un autre comportement, appelé le traitement de l’exception.

Dans Lotos NT, une exception est levée par l’instruction raise et le traitement de l’ex-
ception est décrit par une instruction trap. Un exemple simple est donné par le fragment
du code Lotos NT de Fig. 5.12 sur page 121, où x est une variable entière, G une porte
et B un comportement arbitraire.

Ce code commence par vérifier si la variable x est entre deux et dix, et dans ce cas, x est
réduite par un. Sinon, l’exception EX1 est levée, paramétrée par x.

Le traitement de l’exception EX1 est juste une communication par G, qui émit la valeur
du paramètre. Le comportement régulier aussi que le traitement de l’exception sont suivis
par B.

Traduction vers ATLANTIF

Dans Fig. 5.14 sur page 123 nous montrons des fragments d’une module Atlantif qui
correspondent au code Lotos NT de Fig. 5.12. Le comportement normal est représenté
par l’unité Main Unit , le traitement de l’exception est représenté par l’unité EH et B
est représenté par l’unité Unit B . Nous supposons que les unités Main Unit et EH sont
toujours démarrées au même instant, et que la variable x est définie dans une unité
supérieure à Main Unit . Quand Main Unit devient active (et EH avec), elle exécute la
même vérification sur x comme le fragment Lotos NT : si x est entre deux et dix,
alors elle est réduite par un, suivi par une synchronisation de Main Unit et EH sur
Normal Termination. Ce synchroniseur est une construction auxiliaire qui représente la
fin de la portée de l’exception. La levée d’une exception est représentée par le synchroniseur
silencieux EX1 .

Dans l’unité EH , l’état discret S1 représente un état veille qui attend qu’une exception
a lieu ou sinon pour être arrêté par Normal Termination. Quand une exception a lieu,
Main Unit est arrêtée et EH passe à l’état discret S2 , qui représente le traitement de
l’exception original, y inclus la communication par G. La synchronisation sur Termina-
tion After Exception représente la fin du traitement de l’exception.

Dans la Section 5.7.2, nous montrons informellement que cette traduction est correcte.

D.6 Traduire ATLANTIF en modèles graphiques

Nous avons développé un outil prototype qui traduit des modules Atlantif vers les
automates temporisés (TA) de l’outil Uppaal [89] et vers les réseaux de Petri temporisés

281

(TPN) de l’outil Tina [16]. Cette section décrit les idées centrales de ces traductions.
Nous supposons que le lecteur connâıt les notations des TA Uppaal et des TPN Tina.

Restrictions communs

Certains concepts d’Atlantif ne peuvent être traduits ni vers les TA Uppaal, ni vers
les TPN Tina. Concrètement, les modèles Atlantif doivent utiliser du temps dense, les
expressions dans les actions wait et dans les fenêtres de temps doivent être des constantes
entiers, les affectations non déterministes ne sont pas admis, les motifs doivent être com-
posés des variables ou des constants. En plus, la traduction vers les TA ne prend pas
encore en compte des boucles while, bien qu’une telle traduction serait faisable. L’élim-
ination des synchroniseurs silencieux n’existe pas dans Uppaal et dans Tina ; nous les
traduisons alors par des transitions non étiquetées, ce que change la sémantique.

Traduction vers UPPAAL

Chaque unité Atlantif est traduit par un TA. Chaque état discret s est traduit par une
location du TA (appelé s aussi) et un invariant est généré à partir des contraintes must de
la transition à branchement multiple dont l’origine est s. L’action act(s) est décomposée
en une transition du TA pour chacun de ces chemins. Si la communication par une porte
permet plusieurs ensembles de synchronisation qui contiennent l’unité actuelle, alors le
chemin est scindé pour donner une transition pour chaque ensemble de synchronisation.
Puisque les TA ne permettent pas des offres de communication, les échanges de données
sont émulés par des variables partagées.

Un défi clé est que la synchronisation des TA d’Uppaal est limité à deux automates,
pendant qu’Atlantif permet des synchronisations « multi-way » entre n > 2 unités.
Pour notre solution, il est nécessaire qu’exactement une unité émet des données (toutes
les offres sont des émissions), pendant que les (n− 1) autres unités reçoivent des données
(toutes les offres sont des réceptions). Alors la communication dans l’émetteur est scindé
en une séquence de (n− 1) communications, dont chacune synchronise avec un récepteur.

En plus, il faut émuler de démarrer et d’arrêter les unités. Pour cet objectif, chaque TA
qui correspond à une unité qui est arrêtée ou démarrée par au moins un synchroniseur est
munie d’une transition location nommée « disabled ». La séquence des communications
dans une « unité d’émission » décrite en-dessus est prolongée par une communication
étiquetée par un canal de diffusion (« broadcast ») « G stop ! » si le synchroniseur arrête
des unités, et par une communication étiquetée par un canal de diffusion « G start ! »
si le synchroniseur démarre des unités. Chaque unité qui est arrêtée par G reçoit une
transition supplémentaire vers la location « disabled », étiqueté « G stop ? », à partir de
chaque location. Chaque unité qui est démarrée par G reçoit une transition supplémentaire
étiqueté « G start ? » entre « disabled » et la location initiale.

282 Appendix D. An extended summary in French

Traduction vers TINA

Pour chaque unité d’Atlantif un TPN est crée. Tout état discret s est traduit par
une place de TPN (appelé s aussi) et l’action act(s) est décomposée en une transition
du TA, étiquetée par une porte. En ce qui concerne les contraintes temporelles, nous ne
considérons que les intervalles et nous implémentons une solution inspirée par [20], qui a
besoin des places et des transitions supplémentaires. Étant donné une communication par
une porte G qui correspond à une transition T dans le TPN, nous calculons la somme m de
tous les délais des actions wait avant la communication. Nous supprimons ces actions et
nous augmentons les bornes de l’intervalle par m. L’intervalle obtenue est alors implémenté
sous forme de zéro, une ou deux transitions comme suit :

– Si la borne inférieur de l’intervalle est n > 0, alors nous ajoutons une transition non
étiquetée avec la contrainte temporelle « [n, ω[» (ou «]n, ω[», si la borne est stricte),
aucune place de sortie, et une nouvelle place d’entrée s1. Nous ajoutons s1 aux places
inhibiteurs de T et aux places de sortie de toute transition dont s est déjà une place de
sortie.

– Si la modalité de la communication est may et si la borne supérieure de l’intervalle
est n, alors nous ajoutons une transition non étiquetée avec la contrainte temporelle
«]n, ω[» (ou « [n, ω[», si la borne est stricte), aucune place de sortie, et une nouvelle
place d’entrée s2. Nous ajoutons s2 aux places d’entrée de T et aux places de sortie de
toute transition dont s est déjà une place de sortie. En plus, la nouvelle transition est
prioritaire par rapport à T .

– Si la modalité de la communication est must et si la borne supérieure de l’intervalle
est n, alors nous ajoutons une transition non étiquetée avec la contrainte temporelle
« [n, n] », aucune place de sortie, et une nouvelle place d’entrée s3. Nous ajoutons s3

aux places d’entrée de T et aux places de sortie de toute transition dont s est déjà une
place de sortie. En plus, la nouvelle transition est moins prioritaire par rapport à T et
les autres transitions auxiliaires pour T .

Le TPN qui correspondent au module à traduire est composé des TPN qui correspondent
à chacune des unités. Si une transition dans le TPN composé est étiquettée par une
porte dont le synchroniseur arrête des unités, alors les places de sortie de cette unité
sont supprimées de la transition. Si le synchroniseur démarre des unités, alors les places
initiales de ces unités sont ajoutées aux places de sortie de cette transition.

Implémentation

Notre avons implémenté (par la méthode proposé dans [62]) nos traducteurs dans un outil
nommé atlantif (au présent 2 193 lignes de code Syntax, 13 146 lignes de code Lotos
NT et 538 lignes de code C). L’architecture d’atlantif est illustrée dans Fig. D.3, où les
flèches grasses représentent les traducteurs proposés par notre outil.

283

Uppaal

Tina

.ant entrée

1) vérif. sémantique statique

2) traduction

automates temp.

Fiacre

& vérif.

Fiacre-to-Lotos
(flac)

Atlantif

module

atlantif
outil

simulation

rés. Petri temp.

formelle

programme

Fig. D.3 – Schéma pour l’utilisation de l’outil prototype atlantif

D.7 Exemple : Un ascenseur

Fig. 7.1 sur le page 182 contient le code Atlantif d’un ascenseur inspiré d’un exemple
semblable dans [78]. Cet exemple couvre à la fois données, concurrence et temps-réel.

Nous avons utilisé notre outil atlantif pour traduire cette module vers un TPN de Tina,
qui est décrit dans Fig. 7.2 (code) et dans Fig. 7.3 (description graphique).

L’utilisation de l’outil selt de la bôıte d’outils Tina permet de découvrir deux fautes
dans le code de Fig. 7.1, et de les corriger ainsi.

D.8 Conclusion

D.8.1 Contribution

Caractéristiques du langage

Dans la section D.1, nous avons développé l’objectif de définir un modèle intermédiaire
avec une grande puissance d’expression par rapport à la gestion des données, la concur-
rence, et le temps réel, ce qu’est atteint par Atlantif comme suit :

– La gestion des données d’Atlantif est fortement basée sur le modèle Ntif. Nous
n’avons pas eu besoin de définir des extensions sur cet aspect, car Ntif est déjà capable
de représenter la gestion des données de haut-niveau.

– Par rapport à la concurrence, Atlantif inclut la notion des synchroniseurs, qui per-
met d’une manière concise, puissante et intuitive la représentation des synchronisations
possibles entre unités dans une composition parallèle.
Des constructions puissantes de haut-niveau telles que la gestion des exceptions sont
représentables en Atlantif (avec la préservation de la sémantique), grâce à la notion
des synchroniseurs silencieux (« silent »).

– La syntaxe temps réel d’Atlantif introduit (sur le niveau des unités) les constructions
de haut-niveau d’une action de délai indépendante et d’une extension limiteur de vie

284 Appendix D. An extended summary in French

à l’action de communication ; Atlantif introduit en plus (au-dessus du niveau des
unités) la possibilité de déclarer une porte comme urgente. Sur les deux niveaux, des
constructions avec des limites fortes aussi qu’avec des limites faibles sont définies.
Dans la définition formelle de la sémantique, nous avons introduit la nouvelle notion de
phase, comme un élément clé assurer facilement la satisfaction des propriétés séman-
tiques généralement souhaitées.

Nous avons définis une sémantique formelle dans la section D.4 par des règles détaillées,
ce que souligne les conséquences de la représentation combinée des données, de temps
réel et de la concurrence dans un seul modèle : par exemple, la distinction de plusieurs
cas dans le calcul d’une phase après une synchronisation (prédicat nextθ sur le page 276)
est nécessaire à cause de la combinaison entre le temps réel et la concurrence. En plus, il
peut être observé que des petits simplifications dans la syntaxe peuvent considérablement
simplifier la sémantique (voir la version simplifiée d’Atlantif dans [118].

Comparaison systématique d’ATLANTIF avec d’autres modèles

D’autres modèles intermédiaires ont été définis, souvent avec des objectifs similaires à
ceux d’Atlantif. Dans cette section, nous faisons une comparaison systématique entre
Atlantif et des approches similaires.

Le résumé de cette comparaison se trouve dans la table D.2, qui considère des approches
centrales de la syntaxe et de la sémantique.

Pour complémenter la table D.2, nous discutons dans la suite les différences principales
entre Atlantif et Fiacre, Bip et MoDeST.

– Fiacre et Atlantif appliquent tous les deux une structuration des processus par des
transitions à branchement multiple, une idée héritée de Ntif. Donc les deux modèles
sont très semblables sur le niveau de processus (respectivement unité), sauf par rapport
à la syntaxe temporelle, qui existe dans les unités d’Atlantif, mais non pas dans les
processus de Fiacre.
Au-dessus du niveau de processus, Fiacre définit des priorités parmi les portes de
synchronisation, ce que n’existe pas dans Atlantif. En plus, Fiacre permet de
définir des intervalles de temps associés aux portes de synchronisation, pendant que
Atlantif permet sur ce niveau seulement la distinction « visible/hidden » et entre
« urgent/silent ».
Par ailleurs, il y a une grande différence entre Fiacre et Atlantif par rapport à la
représentation de la synchronisation : Fiacre utilise des vecteurs de synchronisation qui
combinent plusieurs identificateurs de processus et plusieurs identificateurs de portes
dans une seule construction ; et dans Atlantif, les portes sont définies séparement par
l’utilisation d’un synchroniseur pour chacune. Notre traduction de section D.6 montre
que l’approche d’Atlantif n’est pas plus expressive, mais à notre avis, cette traduction
indique aussi que nos formules de synchronisation sont une notation plus concise et plus
intuitive.

– Bip permet des variables hybrides et des priorités ; ces deux concepts n’existent pas
dans Atlantif. Les notations pour les synchronisations dans les deux modèles sont

285

domaine de temps

limites

synchronisation

dense

discrète

faibles

fortes

horloges

limiteurs de vie

construction délai

variables globales

variables hybrides

trans. ht-niv.

simple

complexe

start/stop

priorités

probabilités

If
-2.0

+
−

+
+
−

+
−

+
−
−
−
−

+
(+

)
−

A
lt

a
R

ic
a

+
−

+
+

+
+
−
−
−
−

+
+
−

+
−

N
t
if

−
−

−
−

+
−
−
−

−
−

F
ia

c
r
e

+
−
−

+
−

+
−

+
−

+
+

+
−

+
−

B
ip

−
+

+
+

+
+
−
−

+
−

+
+
−

+
−

M
o
D

e
S
T

+
−

+
+

+
+
−

+
−

+
+
−
−

−
+

A
t
l
a
n
t
if

+
+

+
+
−

+
+
−
−

+
+

+
+

−
−

T
a
b
.

D
.2

–
C

om
p
arison

d
es

m
o
d
èles

in
term

éd
iaires

286 Appendix D. An extended summary in French

très différentes, et aussi d’une puissance d’expression différente : démarrer et arrêter
des processus (unités) n’existe qu’en Atlantif, pendant que seulement Bip contient
une construction pour une communication de diffusion (« broadcast ») ; d’où aucune
des deux notations n’est plus expressive que l’autre.
Sur le niveau des processus, Bip applique des transitions « condition/action » avec
donc une syntaxe qui est plus simple mais moins concise, et elle est surtout plus loin
des langages de haut-niveau que les transitions à branchement multiple d’Atlantif.

– MoDeST élargit le choix non déterministe avec des probabilités ; nous avons choisi de
ne pas introduire une telle construction dans Atlantif. Une autre différence au niveau
des processus est que Atlantif structure ses unités par des états discrets, pendant que
les processus de MoDeST utilisent des structures de contrôle semblables aux langages
de haut-niveau, où des états discrets ne sont pas nécessaires. Par contraste, le temps dans
des processus MoDeST est implémenté par des variables d’horloges comme dans les
automates temporisés, pendant qu’Atlantif applique des constructions de haut-niveau
(« wait » et limiteur de vie avec les communications).
L’idée de plusieurs ensembles de synchronisation qui est utilisé dans Atlantif n’existe
pas dans l’opérateur de composition parallèle de MoDeST, ni la possibilité de démarrer
et d’arrêter des processus.

Nous observons donc que dans la conception des différents modèles intermédiaires, des
réponses très différentes ont été trouvées à la question « Quelle combinaison de con-
structions des langages de haut-niveau et des modèles graphiques est optimale pour le
dépouillement, la puissance expressive et l’intuition ? ». En particulier, aucun entre ces
modèles peut facilement être identifier d’être plus proche aux langages (ou aux modèles)
que les autres.

Atlantif a fait au moins une décision d’une manière différente que chacun des autres
modèles36, et donc ce modèle propose une combinaison unique des caractéristiques.

L’extension des possibilités pour appliquer la vérification formelle

Par les traductions que nous avons décrites dans la section D.6 il est possible d’appliquer
la vérification formelle sur des sous-ensembles d’Atlantif qui sont suffisamment grands.
Pour ces traductions, nous avons définis des émulations pour les constructions qui n’ont
pas de correspondance directe dans le modèle cible, en particulier les suivantes :

– Pour Uppaal, nous avons émulé la synchronisation « multiway », les offres et de dé-
marrer et d’arrêter des unités.

– Pour Tina, nous avons émulé les limites faibles et les contraintes temporelles sur le
niveau des processus.

En particulier, nous considérons la représentation du temps réel d’Atlantif dans le
concept de temps réel bien différent des réseaux de Petri temporelles (dans le dialecte de
Tina) d’être une approche intéressante.

36À remarquer que cet énoncé reste correct par rapport aux sous-ensembles d’Atlantif qui peuvent
être traduits vers des outils de vérification.

287

Les sous-ensembles d’Atlantif qu’on sait traduire couvrent des parties différentes de
notre langage. En pratique, cela nous permet dans beaucoup de cas (ce que nous avons
pu observé dans les sections D.6 et D.7) de trouver une traduction appropriée pour un
système donné. Donc le « sous-ensemble vérifiable » d’Atlantif est considérablement
grand.

L’intention centrale de cette thèse a été de rapprocher les deux tâches de la modélisation
expressive et concise et de la vérification formelle, par une extension de la classe des
systèmes qui peuvent être vérifiés en pratique. Nous considérons avoir atteint cet objectif,
pour les raisons suivantes :

– Par rapport aux langages de haut-niveau (comme ceux discutés en section D.3.3), At-
lantif fait une extension des possibilités de vérification, grâce à sa combinaison des
éléments du syntaxe de haut-niveau avec un lien vers les outils de vérification. Un tel
lien est rarement défini pour des langages de haut-niveau, au moins pour ceux qui
combinent la concurrence avec le temps réel et la gestion des données.

– Par rapport aux autres modèles intermédiaires, Atlantif fait une extension des possi-
bilités de vérification, parce que, comme nous l’avons observé au début de la section D.8,
notre modèle les complète en proposant une combinaison des caractéristiques syntax-
iques nouvelle et unique. Bien que, comme nous l’avons vu, le sous-ensemble traduisible
d’Atlantif ait une puissance d’expression ni plus grande, ni plus petite que les autres
modèles, ses constructions sont conçues pour être très proches aux algèbres de processus
modernes, tels que E-Lotos et Lotos NT ; donc Atlantif représente un complément
convenable.

– Par rapport aux modèles graphiques, Atlantif fait une extension des possibilités de
vérification, grâce à ses constructions concises (telles que synchroniseurs, offres et tran-
sitions à branchement multiple) qui permettent aux utilisateurs une description facile
des systèmes qui seraient difficile à décrire directement dans un modèle graphique. Par
l’application d’une de nos traductions, la vérification formelle devient ainsi possible.
Bien sûr, la puissance d’expression des sous-ensembles d’Atlantif qu’on sait traduire
vers des modèles graphiques ne peut pas être supérieur à la puissance d’expression
de ces modèles. Mais un utilisateur d’Uppaal par exemple qui souhaite modéliser un
système avec de la synchronisation « multiway » ou un utilisateur de Tina qui souhaite
modéliser un système avec des limites faibles ne pourraient pas facilement trouver une
représentation correcte dans ces modèles. Par contre, avec Atlantif, l’utilisateur peut
facilement implémenter ces aspects et faire une traduction automatique vers le modèle
souhaité.

D.8.2 Perspective

Sémantique dynamique – constructions séquentielles. Ils existent plusieurs axes,
sur lesquels le développement d’Atlantif pourrait être poursuit :

– Des nouvelles constructions syntaxiques peuvent être introduites, telles que des prior-
ités (par exemple, entre des différentes portes) ou la synchronisation de diffusion (par
exemple, comme celle d’Uppaal).

288 Appendix D. An extended summary in French

– La syntaxe actuelle d’Atlantif pourrait être modifiée. En particulier, il est possible
de remplacer la structure stricte des unités avec une structure qui permet d’instancier
dynamiquement les unités, à partir d’une unité générique paramétrable.

– La sémantique actuelle d’Atlantif pourrait être modifiée. En particulier, les restric-
tions de la sémantique statique qui ont des origines plutôt techniques (par exemple que
les actions wait ne sont pas permis après les communications) pourraient être levées
dans une version révisée.

Sémantique dynamique – constructions séquentielles. Il y a des différentes pos-
sibilités pour le futur développement des traductions :

– Certaines restrictions qui définissent les sous-ensembles d’Atlantif pour lesquels des
traducteurs sont définis pourraient être levées dans une version révisée ; par exemple
concernant les boucles while.

– Les traducteurs pourraient être élargis pour cibler d’autres dialectes des automates
temporisés et des réseaux de Petri temporisés que ceux d’Uppaal et de Tina respec-
tivement, ou même d’autres modèles graphiques. De tels nouveaux traducteurs sont
sensés s’ils augmentent le sous-ensemble d’Atlantif qui peut être traduit.

Résumé

La validation des systèmes critiques réalistes nécessite d’être capable de modéliser et de vérifier formelle-
ment des données complexes, du parallélisme asynchrone, et du temps-réel simultanément.

Des langages de haut-niveau, comme ceux qui héritent des fondations théoriques des algèbres de processus,
ont une syntaxe concise et une grande expressivité pour représenter ces aspects. Cependant, ils disposent
de peu d’outils logiciels permettant d’appliquer des algorithmes efficaces du model-checking. Néanmoins,
de tels outils existent pour des modèles graphiques, de niveau plus bas, tels que les automates temporisés
(par exemple Uppaal) et les réseaux de Petri temporisés (par exemple Tina).

Les modèles intermédiaires sont un moyen pour combler le fossé qui sépare les langages des modèles
graphiques. Par exemple, Ntif (New Technology Intermediate Format) a été proposé pour représenter
des processus séquentiels non temporisés qui manipulent des données complexes. Dans cette thèse, nous
proposons un nouveau modèle nommé Atlantif, qui enrichit Ntif de constructions temps-réel et de
compositions parallèles de processus séquentiels. Leur synchronisation est exprimée d’une manière simple
et intuitive par la nouvelle notion de synchroniseur .

Nous montrons qu’Atlantif est capable d’exprimer les constructions principales des langages de haut-
niveau. Nous présentons aussi des traducteurs d’Atlantif vers des automates temporisés (pour la véri-
fication avec Uppaal) et vers des réseaux de Petri temporisés (pour la vérification avec Tina). Ainsi,
Atlantif étend la classe des systèmes qui peuvent en pratique être vérifiés formellement, ce que nous
illustrons par un exemple.

Mots-clés: algèbre de processus, automate, concurrence, méthode formelle, modèle intermédiaire, temps-
réel, réseau de Petri, vérification

Abstract

The validation of real-life critical systems raises the challenge of being able to formally model and verify
complex data, asynchronous concurrency, and real-time aspects simultaneously.

High-level languages, such as those inheriting from the theoretical foundations of process algebras, provide
a concise syntax and a high expressive power regarding these aspects. Yet, they lack software tools
enabling the application of efficient model checking algorithms. On the other hand, such tools exist for
graphical, lower level, models such as timed automata (e.g., Uppaal) and time Petri nets (e.g., Tina).

Intermediate models are a key to bridge the gap between languages and graphical models. For instance,
Ntif (New Technology Intermediate Format) was proposed to represent untimed sequential processes
that handle complex data. In this thesis, we propose a new model named Atlantif, which extends
Ntif with real-time constructs and parallel compositions of sequential processes. Their synchronization
is expressed in a simple and intuitive way using the new notion of synchronizers .

We show that Atlantif is capable of expressing the main constructs of high-level languages. We also
present translators from Atlantif to timed automata (for verification using Uppaal) and to time Petri
nets (for verification using Tina). Thus, Atlantif extends the class of systems that can practically be
formally verified, which we illustrate along an example.

Keywords: automaton, concurrency, formal method, intermediate model, Petri net, process algebra,
real time, verification

