
HAL Id: tel-00551865
https://theses.hal.science/tel-00551865

Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elements for Learning and Optimizing Expensive
Functions
Philippe Rolet

To cite this version:
Philippe Rolet. Elements for Learning and Optimizing Expensive Functions. Computer Science [cs].
Université Paris Sud - Paris XI, 2010. English. �NNT : �. �tel-00551865�

https://theses.hal.science/tel-00551865
https://hal.archives-ouvertes.fr


N◦ d’ordre : ?

Thèse
de

L’Université Paris–Sud

présentée en vue de l’obtention du
Doctorat de l’Université Paris–Sud

Spécialité : Informatique

Par
Philippe Rolet

Équipe A&O, Laboratoire de Recherche en Informatique (LRI),
U.M.R. CNRS 8623

Université Paris-Sud, 91405 Orsay Cedex, France

Éléments pour l’Apprentissage
et l’Optimisation de Fonctions

Chères

sous la direction de Michèle Sebag et Olivier Teytaud

Soutenue le 22 décembre 2010 devant la commission d’examen :

M. Jean-Yves AUDIBERT École des Ponts/Paris-Tech Rapporteur
M. Guillaume DEFFUANT CEMAGREF Président du jury
M. Damien ERNST Université de Liège Examinateur
M. Claudio GENTILE Universita’ dell’Insubria Rapporteur
Mme Michèle SEBAG CNRS Directrice de thèse
M. Olivier TEYTAUD INRIA Directeur de thèse



Résumé

Ces travaux de doctorat sont centrés sur l’apprentissage artificiel et l’optimisation,
c’est à dire la construction de programmes apprenant à identifier un concept,
à approximer une fonction ou à trouver un optimum à partir d’exemples de ce
concept (ou de points de la fonction).

Le contexte applicatif est l’apprentissage et l’optimisation de modèles sim-
plifiés en ingénierie numérique, pour des problèmes industriels pour lesquels les
exemples sont coûteux à obtenir. Il est nécessaire d’en utiliser le moins possible
pour l’apprentissage; c’est le principe de l’apprentissage actif et de l’optimisation
de fonction chères.

Mes efforts de recherche ont d’abord porté sur la conception et le développe-
ment d’une nouvelle approche de l’apprentissage Actif, fondée sur l’apprentissage
par renforcement. Les fondements théoriques de l’approche ont été établis. Par-
allèlement, l’implémentation d’un logiciel fondé sur cette approche, BAAL, a
permis une validation expérimentale (publications: CAP’09, ECML’09). Une
extension de cette approche a été réalisée pour l’optimisation de fonction chères
(publication: GECCO 2009).

La deuxième partie de mon doctorat s’intéresse aux potentiels et aux limites
de l’apprentissage actif et de l’optimisation chère d’un point de vue théorique.
Une étude des bornes de complexités de l’apprentissage actif par ”paquets”a été
réalisée (publication: ECML 2010). Dans le domaine de l’optimisation bruitée,
des résultats sur le nombre minimal d’exemples nécessaires pour trouver un
optimum ont été obtenus (publications: LION 2010, EvoSTAR 2010).



ii

Remerciements

The work presented in this thesis was built upon a vast amount of financial,
academical and emotional support. I believe it would be unfair not to thank the
Digiteo research park for the grant that funded this thesis, and more specifically
the various institutions belonging to Digiteo that contributed to address the fi-
nancial needs of this work: the Paris-Sud University, the French Atomic Enery
and Alternative Energies Commission (CEA), the National Research Institute
for Computer Science (INRIA), the French National Center for Scientific Re-
search (CNRS), the Ile-de-France region and the Pattern Analysis, Statistical
Modeling and Computational Learning network of excellence (PASCAL).

I would like to warmly thank my referrees, Jean-Yves Audibert and Claudio
Gentile, and the jury members Daniel Ernst and Guillaume Deffuant, for kindly
accepting to review this research work and attend the thesis presentation. Since
the rest of the thanks I would like to convey are destined to French speakers, I
will write them in French.

Je remercie tout d’abord Michèle Sebag, qui a accepté de diriger cette thèse,
avec qui j’étais fort heureux de travailler, et qui m’a apporté beaucoup de bons
conseils et une aide précieuse durant ces trois ans.

Je remercie très chaleureusement Olivier Teytaud, qui a largement contribué
à l’encadrement de cette thèse en tant que co-directeur. C’est un excellent
chercheur, de qui j’ai beaucoup appris, et sans qui ce travail aurait indéniable-
ment été de qualité bien moindre.

Merci également à Jean-Marc Martinez, qui a lui aussi participé à la co-
direction de ces travaux.

Je remercie aussi Gilles Dowek du LIX, qui a été pour moi un très bon
professeur, qui m’a beaucoup aidé à choisir mon orientation durant mon cycle
polytechnicien, et qui m’a entre autres dirigé vers Michèle Sebag et l’équipe
TAO du LRI.

Merci ensuite aux nombreux membres de l’équipe qui ont contribué à la
bonne ambiance dans laquelle j’ai pu effectuer ma thèse. Merci notamment à
Romaric, avec qui j’ai beaucoup discuté, et avec qui j’ai passé deux très bonnes
semaines à l’̂ıle de Ré à nager faire des balades chanter autour du feu étudier
l’apprentissage artificiel. Merci à l’éminent représentant des doctorants au con-
seil de labo, Ludovic, à Fabien, à Jean-Marc et à Pierre pour les trolls du midi
(d’ailleurs, la GPL c’est pire qu’Hitler et HADOPI va sauver la création artis-
tique). Merci à Nataliya, qui a su résister à mes tentatives de la convaincre
que le MacDo c’est génial. Merci à Cédric pour tous ses mouhahaas. Merci à
l’autre Cédric pour ses opinions sur la durée du trajet LRI/Montparnasse (qui
valent approximativement un café). Merci à Raymond pour tous ses insights
sur les gadgets de Cupertino. Merci aussi à la Mogo team (Hassen, Arpad, JB,
Fabien bis), à Julien (plus ou moins Mogo team aussi d’ailleurs), à Xiangliang,
à Dimo et Anne à qui je souhaite d’avoir passé un très bon voyage en Thäılande,
à Iliya, à Alvaro et Hassen (encore) pour les bons moments à Venise, à Jacques,
à Mohamed, à Miguel, à Marc, à et à tous les autres qui font que la vie à TAO
est vraiment sympa.



iii

Merci aux élèves et à l’équipe enseignante de l’IUT d’Orsay (et en particulier
à Cédric), j’ai vraiment aimé travailler avec vous.

Merci aussi à tous ceux qui sont venus (parfois de loin) pour assister à ma
soutenance.

Enfin, un très grand merci bien sûr à mes amis François, Jean-Noël, Etienne,
Rocaille, Ben, Matthieu, Clémence, Émilie, Gilles, Clotilde, Antoine, Vincent,
Amélie et tant d’autres, à Anne, François et Antoine, mes frères et soeurs, et
surtout à mon père et à ma mère, qui m’ont donné et qui continuent à me donner
un soutien absolument indispensable pour accomplir tout projet d’envergure tel
que celui-ci.



iv



Elements for Learning and Optimizing Expensive

Functions

Philippe Rolet

December 22, 2010



ii

Abstract

This work focuses on learning and optimizing expensive functions, that is con-
structing algorithms learning to identify a concept, to approximate a function
or to find an optimum based on examples of this concept (resp. points of the
function).

The motivating application is learning and optimizing simplified models in
numerical engineering, for industrial challenges for which obtaining examples is
expensive. It is then necessary to use as few examples as possible for learning
(resp. optimizing).

The first contribution was the conception and development of a new approach
of active learning, based on reinforcement learning. Theoretical foundations
for this approach were established. Furthermore, a learning algorithm based
on this approach, BAAL, was implemented, and used to provide experimental
validation.

The approach, originally focused on machine learning, was also extended to
optimization.

The second contribution is focused on the potential and limits of both active
learning and expensive optimization, from a theoretical point of view. Sample
complexity bounds were derived: 1/ for batch active learning; 2/ for noisy
optimization.



Contents

I Preliminaries 1

1 Introduction 3

2 Background 7
2.1 Learning and Optimization Problems . . . . . . . . . . . . . . . . 7

2.1.1 Algorithms and samplers . . . . . . . . . . . . . . . . . . 9
2.1.2 Performance, sample complexity and expensive functions 10
2.1.3 Noisy problems . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Value functions and action-value functions . . . . . . . . . 15
2.2.4 A generalization: partially observable Markov decision

processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Multi-armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Problem goal . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Algorithms and theoretical results . . . . . . . . . . . . . 20

II Learning Expensive Functions 23

3 Machine Learning Background 25
3.1 Statistical Learning Background . . . . . . . . . . . . . . . . . . 25

3.1.1 Hypothesis space, version space and realizability . . . . . 26
3.1.2 Performance and generalization error . . . . . . . . . . . . 26
3.1.3 Categories of learning algorithms and samplers . . . . . . 28
3.1.4 PAC-learning . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 Hypothesis space complexity . . . . . . . . . . . . . . . . 30

3.2 State of the Art in Active Learning . . . . . . . . . . . . . . . . . 32
3.2.1 State of the art: algorithms . . . . . . . . . . . . . . . . . 33
3.2.2 State of the art: theoretical results . . . . . . . . . . . . . 33
3.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



iv CONTENTS

4 Bandit-Based Active Learning 37
4.1 Active Learning as Dynamic Programming . . . . . . . . . . . . 37

4.1.1 Optimal finite-time active learning . . . . . . . . . . . . . 38
4.1.2 The active learning Markov decision process . . . . . . . . 39
4.1.3 A partially observable Markov decision process . . . . . . 42

4.2 Overview of the BAAL Algorithm . . . . . . . . . . . . . . . . . 43
4.3 UCT for Active Learning . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Sampling in the Version Space with Billiards . . . . . . . . . . . 48
4.5 Progressive widening and AL criteria . . . . . . . . . . . . . . . . 50

4.5.1 BAAL with maximal uncertainty . . . . . . . . . . . . . . 51
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Batch Active Learning Bounds 53
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Upper Bounds via Speculative Parallelization . . . . . . . . . . . 58
5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Experiments 63
6.1 BAAL Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Goal of experiments . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 Experimental setting . . . . . . . . . . . . . . . . . . . . . 64
6.1.3 Performance and scalability . . . . . . . . . . . . . . . . . 65
6.1.4 Computational cost and tractability . . . . . . . . . . . . 67
6.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Batch Active Learning Experiments . . . . . . . . . . . . . . . . 69
6.2.1 Experiments with naive active learning . . . . . . . . . . 69
6.2.2 Experiments with maximal uncertainty . . . . . . . . . . 70
6.2.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 71

III Optimizing Expensive Functions 73

7 Background and framework 75
7.1 Black-box Optimization . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Estimation of Distribution Algorithms . . . . . . . . . . . . . . . 76
7.3 Noisy Expensive Optimization SOA . . . . . . . . . . . . . . . . 77

7.3.1 Expensive optimization . . . . . . . . . . . . . . . . . . . 77
7.3.2 Noisy optimization . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Hoeffding/Bernstein Bounds and Races . . . . . . . . . . . . . . 80

8 Lower Bounds in Noisy Optimization 83
8.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 Theorem statement . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS v

8.2.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Upper Bounds in Noisy Optimization 93
9.1 Position of the work . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 R-EDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.3 Convergence and Runtime Analysis . . . . . . . . . . . . . . . . . 95

9.3.1 General case (monotonic transformation of the sphere func-
tion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.3.2 Asymptotic rates for polynomial sphere models . . . . . . 98
9.3.3 Summary and remarks . . . . . . . . . . . . . . . . . . . . 101

10 Experiments 103
10.1 Experiments on UH-CMA/QLR . . . . . . . . . . . . . . . . . . 103

10.1.1 Experimental results for UH-CMA—optimization without
surrogate models . . . . . . . . . . . . . . . . . . . . . . . 103

10.1.2 Experiments with QLR—optimization with surrogate mod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.2 Simple Regret and Optimization . . . . . . . . . . . . . . . . . . 107

10.2.1 The tuning of MoGo . . . . . . . . . . . . . . . . . . . . . 107
10.2.2 The tuning of MoGo—extended experiments . . . . . . . 108
10.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10.3 Optimal Expensive Noisy Optimization . . . . . . . . . . . . . . 112
10.3.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.3.4 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . 116

IV Conclusion 119

11 Conclusion 121
11.1 Noisy Optimization: Bounds, Algorithms . . . . . . . . . . . . . 121
11.2 Batch Active Learning Potential . . . . . . . . . . . . . . . . . . 122
11.3 MDPs and MCTS for Expensive Problems . . . . . . . . . . . . . 123



Part I

Preliminaries

1





Chapter 1

Introduction

“Guess the number” is a classical game that almost anyone played at least once
as a kid. The rules are basic: a player chooses a number in-between a given
range and the other tries to find the number in a minimal number of yes/no
questions. One can easily figure out an optimal strategy for this game: divide
the space in which the number lies in two equal parts, ask whether the number
is in a given part, and repeat the process.

Expensive problems

This simple game bears the characteristic of expensive problems that are going
to be studied by the present work: an objective must be reached by querying
information from an “oracle”, and the solution should be found by using as
few queries as possible. Of course, strategies for the problems that will be
encountered in the manuscript will not be as straightforward as for “Guess the
number”.

Queries can be deemed “expensive” for various reasons. Here are the most
common:

• obtaining answers requires a lot of time. This is often the case when an-
swers are provided by numerical engineering computational codes. Con-
sider for instance the design of plane wings. The quality of a wing design
is often assessed by simulating flights with planes using the wing design.
Such simulations rely on fluid mechanics equations that are usually dealt
with finite element methods: they may require the simulation software to
run for hundreds of hours on high-performance computers to output the
result of a single simulation;

• obtaining answers requires human effort (such as in “guess the number”).
The primary purpose of computers is to relieve humans from doing tedious
tasks; in software programming and web programming, developers aim
at minimizing the need for human input, which usually bothers users. A
well-known example is movie preference learning, made popular by Netflix

3



4 CHAPTER 1. INTRODUCTION

(2006): a solution would obviously not be practical if it needed users to
give more that a couple dozens of examples of movies they like or dislike;

• obtaining answers is in fact literally expensive. In the automobile industry,
for instance, design parameters that are the safest for a car are ultimately
assessed by crash tests, which cost lots of money to set up and perform.

In this work, an expensive problem will be embodied by a function, that
we either wish to discover or to optimize. The request of the image of a point
of the function domain is what will be called a query. Learning a function
from point/image pairs is part of a branch of machine learning called statistical
learning. In many statistical learning settings, the pairs are a given: there
is no ability to choose which points will be queried (this is passive learning).
Nevertheless, when dealing with expensive learning problems, it is common to
turn to active learning, and to assume that the learner has the ability to select
the points that may be queried. Therefore, the sub-field of machine learning
concerned with expensive problems often roughly coincides with active learning.
In optimization, however, it is almost always assumed that the algorithm is
responsible for choosing the points to query. This manuscript will be focused
on active learning and expensive optimization.

Learning and optimization

One might wonder why topics that might at first seem distinct, function ap-
proximation and function optimization, are addressed side-by-side in this work.
Here are some reasons that suggest to tackle both topics simultaneously.

Problem nature

First of all, in the present manuscript, the information available to solve the
problem, be it an optimization problem or a learning problem, will be provided
in the same way: by querying the images by the objective function of various
points. Either the whole function, or the optimum, must be guessed from a set
of pairs of points and their images (the sample). The goal is also the same:
perform the task with the minimum sample complexity, namely the minimum
number of queries.

Solving techniques

Multiple strategies to solve the kind of problem we are interested in can be
applied for both learning and optimization. For instance, Gaussian processes
have been used for regression tasks (Williams and Rasmussen, 1996) as well as
for optimization problems (Jones et al., 1998; Villemonteix et al., 2008). Another
example will be provided in this manuscript: the same Monte-Carlo tree search
strategy will be used to solve both active learning and optimization problems.



5

Relationships between learning problems and optimization problems

It is not uncommon that learning techniques are used to solve optimization
problems and vice-versa. For instance, a widely used optimization heuristic is
“surrogate optimization”: approximations of an objective function are learned in
the neighborhood of the position where the optimum is believed to be, and op-
timization is performed on these “surrogates” rather than on the true objective
function (Booker et al., 1999). Conversely, at the core of one of the most fa-
mous machine learning algorithm, support vector machines, lies an optimization
problem.

Purpose statement and structure

The purpose of this contribution is to

• give some theoretical insights regarding the best achievable sample com-
plexity and possible strategies, thus emphasizing the potential of active
learning and expensive optimization, as well as their limits;

• propose tractable methods to close up to those limits as much as possible;

• present some experiments validating the quality of those methods.

Chapter 2 will introduce background and notations that are common to
both learning and optimization, along with general mathematical tools used
throughout the manuscript. Despite the close relationships between those topics
that were described above, the topics are not identical; as such, the manuscript
is divided in two parts, one dedicated to learning (part II) and the other to
optimization (part III).

Part II begins by providing background knowledge specific to learning (chap-
ter 3). Then, chapter 4 presents a formulation of active learning as a Markov
decision process (this concept is introduced in chapter 2), and proposes an algo-
rithm to approximate the optimal solution yielded by this formulation. Chapter
5 is interested in batch active learning, that is active learning when multiple
queries can be made simultaneously. This is for instance the case when a com-
putational code can be run on multiple computers at once. The theoretical
benefits of such a framework in terms of sample complexity are studied. Fi-
nally, experiments validating the claims of chapters 4 and 5 are presented in
chapter 6.

Part III also starts by giving the formal background specific to optimization,
in chapter 7. The two following chapters, chapters 8 and 9, derive lower and
upper bounds in the number of queries necessary to reach a certain precision for
optimizing expensive functions in the presence of noise. These bounds rely on
a formalism involving multi-armed bandits (introduced in chapter 2) and races
(introduced in chapter 7). Chapter 10 concludes the part by confronting exper-
imental behaviors of noisy expensive optimization algorithms to the theoretical
bounds, and presenting further empirical evidence of the adequacy of bandits
and Monte-Carlo tree search approaches to expensive noisy optimization.



6 CHAPTER 1. INTRODUCTION



Chapter 2

General Framework and
Background

In this chapter, formal background and notations common to both learning and
optimization are presented (section 2.1). Two probabilistic frameworks relevant
to the following research work are then introduced: Markov decision processes
(section 2.2) and multi-armed bandits (section 2.3).

2.1 Learning and Optimization Problems

To introduce the formal background used throughout this manuscript, let us
consider a problem that was first presented in the previous chapter, relevant to
both learning and optimization goals: the design of good airplane wings. This
canonical problem can be formalized as follows. Let X denote a set of shapes, let
quality function f∗ be defined on X , mapping a shape to its quality in terms of
flight abilities, assuming further that f∗ : X → Y = [0, 1]. The general function
f∗ mapping a shape to its value is unknown. But given a particular shape x
of X , it is possible to compute its value f∗(x) via a numerical simulator (or by
actually building the wing).

A natural engineering problem, known as optimal design, would be to find
the best wing shape, and hence to find a good approximation of the maximum
x∗ of this unknown f∗, given some couples (x, f∗(x)). The engineering team
might also want to get a global overview of how each parameter influences the
quality of the wing shape: this requires to try and learn an approximation of f∗

on the set of parameters. This would be a statistical learning problem.

Generally speaking, both problems can be defined by the following ingredi-
ents:

• a “search space”X ;

• a “value space”Y;

7



8 CHAPTER 2. BACKGROUND

• a set F of mappings from X to Y and a “target” mapping f∗ from this
set;

• a set of pairs (x, f∗(x)) of points of X and their image in1 Y;

The set F to which f∗ belongs encompasses the prior knowledge available
about f∗ so that the problem may be solved more easily. For example, fluid
mechanics physicists might tell the engineering team that f∗ is continuous, and
then F ⊂ C([0, 1]).

f∗ may be referred to as fitness function or objective function in an opti-
mization context, and target hypothesis or target concept in a statistical learning
context.

Besides, given n in N, a set of couples s = {(x1, f
∗(x1)), . . . , (xn, f

∗(xn))}
generated from {x1, . . . , xn} ⊂ X by f∗ is available. This sample, or training
set, belongs to Sn .

= (X × Y)n. The sample space is the set S .
=
⋃

n∈N
Sn.

Useful Notations

In the following, PS denotes a probability measure on set S, while pS denotes the
corresponding densities. A conditional probability measure on space X depend-
ing on spaces Y and Z is written PX|YZ . Unless otherwise stated, density-based
formulas used in the manuscript hold for discrete probabilities. It is thus as-
sumed that all probability measures admit a density. Dirac measures can act as
densities for discrete probability measures when required. Given a point a of a
continuous set S, the Dirac measure δa is defined for subsets T of S by

δa : T 7→
{

1 if a ∈ T
0 otherwise.

As a notation, Dirac measures will be used as densities for discrete probability
measures: we will use δa as if it were defined on elements s of S and write

δa(T ) =
∫

s∈T

δa(s)ds.

E[X ] is the expectation of random variable X . EX,Y,...[.] is the expecta-
tion operator with respect to random variables X,Y,. . . applied to an expression
containing those random variables. Similarly, V arX,Y,...[.] is the variance of an
expression containing those random variables.

The ith element of a vector x will be written xi. If x, y ∈ Rd, then the
notation [x, y] refers to {a ∈ Rd; ∀i, xi ≤ ai ≤ yi}.

The following notations will also be used:

• ∀(a, b) ∈ R2,

– ]a, b]
.
= [a, b] \ {a},

1or a mechanism for generating such pairs



2.1. LEARNING AND OPTIMIZATION PROBLEMS 9

– [a, b[
.
= [a, b] \ {b},

– ]a, b[
.
= [a, b] \ {a, b};

• ∀S ⊂ R,

– S+
.
= S

⋂

[0,∞[,

– S−
.
= S

⋂

]−∞, 0].

The cardinal of a finite set S will be noted |S|. log refers to the logarithm
to the base 2.

Let us also remind Landeau notations o,O,Ω,Θ, used on functions of the
integer variable n, to describe their asymptotic properties. As n→∞,

f(n) = o(g(n)) indicates that f(n)/g(n)→ 0;

f(n) = O(g(n)) indicates that there exists a constant K > 0 such that f(n) <
Kg(n);

f(n) = Ω(g(n)) indicates that there exists a constant K > 0 such that f(n) >
Kg(n);

f(n) = Θ(g(n)) indicates that there exists two constant K1,K2 > 0 such that
K1g(n) < f(n) < K2g(n).

The same notations may also be used when f, g depend on a continuous variable
ǫ, with the same meaning except that ǫ → 0 instead of n → ∞. Furthermore,
tilded notations õ, Õ, Ω̃, Θ̃ refer to similar asymptotic properties within logarith-
mic factors (instead of constant factors only).

2.1.1 Algorithms and samplers

Solving a learning problem (respectively an optimization problem) is finding a
good approximation of the function f∗ (respectively of the optimum x∗) given
the sample s. In the following, a learning or optimization algorithm is noted A
(A : S → F for a learning problem andA : S → X for an optimization problem).
The goal of a computer scientist addressing such problems is to design algorithm
A such that if s has been generated by f∗, then A(s) is close either to f∗ or to
x∗. Algorithm A is here defined deterministically, but it could also be seen as a
probability distribution on F or X—in the learning case, with A : S ×F → R+

and ∀s,
∫

F
A(s, f)df = 1. The set of all learning (or optimization) algorithms is

noted A. Formalizations of what it is for A to be close to its goal will be given
in section 3.1 for learning and section 7.2 for optimization.

Furthermore, the sample s used by the algorithm can be a given set, over
which the problem solver has no control. It can also be drawn from a probability
distribution PX×Y , or it can be constructed by the problem solver itself if it
has access to an oracle providing f∗(x) when it is queried on the value of x. In
general, it can be said that the sample is generated by a sampler S : S×X → R+



10 CHAPTER 2. BACKGROUND

that2 maps each sample to a probability density on X , and an oracle that
takes as input the output x of the sampler and returns f∗(x). As for learners,
deterministic samplers directly map S to X .

Noting Xs the random variable whose law is given by density S(s, .), this
means that random samples Sn,f∗ of size n are constructed recursively as follows:

{

S0,f∗ = ∅
Sn+1,f∗ = Sn,f∗

⋃{(XSn,f∗
, f∗(XSn,f∗

))} for n > 0.
(2.1)

Passive settings are settings in which the sampler is a given to the problem
solver; active learning and expensive optimization are settings defined by the
assumption that the problem solver is responsible for designing S in addition
to A. Thus, active learners and expensive optimizers are noted as a pair L =
(A,S). Since the way of sampling the set X is left to the problem solver, better
performance can be hoped for.

2.1.2 Performance, sample complexity and expensive func-
tions

To measure how good a proposed solution to a learning or optimization problem
is, a function to measure the proximity of such solution to the actual target is
needed. Definitions of such a function, called ρ in the following, are different
for learning and for optimization. Therefore actual definitions of ρ are given in
chapter 3 for learning and chapter 7 for optimization.

Once ρ is decided upon, the quality of a learning or optimization algorithm
can be measured. For instance, for learning problems, ρ would map F2 to
R+. Given a sample s generated from f , an algorithm A will perform well if
ρ(A(s), f) is small. Generally, a sample s of size n is constructed by the sampler
S using f : it is a random variable Sn,f lying in Sn. Algorithm A’s output is a
random variable A(Sn,f ) depending on this sample. Therefore, the performance
of A and S is measured probabilistically. Given ǫ in R

+ (a precision) and δ in
]0, 1[ (a confidence), a common measure of the performance of L=(A,S) is the
minimum required sample size ensuring that with probability 1-δ, A outputs
an approximation whose distance to f∗ measured by ρ is less than ǫ, for any
function of F . Formally, the function sc is defined by:

sc : (L, ǫ, δ,F) 7→ min{n0 ∈ N

⋃

{+∞} |
∀f ∈ F , n > n0, PSn

(ρ(A(Sn,f ), f) > ǫ) < δ}.

sc is the sample complexity of L on F at precision ǫ and confidence δ. According
to the above definition, if L cannot learn some f of F at precision ǫ with
confidence δ, no matter how big the sample is, then sc(L, ǫ, δ,F) = +∞. The
sample complexity of a function class F can also be defined by sc(ǫ, δ,F) =
minL sc(L, ǫ, δ,F). This is a probabilistic definition of sc. A more stringent

2or equivalently, S : S → (R+)X



2.1. LEARNING AND OPTIMIZATION PROBLEMS 11

definition is sometimes used if the sampler is deterministic (Sn,f is not a random
variable any more):

scm : (ǫ,F) 7→ min
L

min{n ∈ N

⋃

{+∞} |

max
f∈F

ρ(A(Sn,f ), f) < ǫ}.

This definition will be referred to as minimax sample complexity.

The definition also applies to optimization problems, replacing ρ : F2 →R+

by ρ : X 2 → R+ and so on—although the term “sample complexity” originally
stems from computational learning theory. Some other ways to refer to sample
complexity are the number of fitness calls in optimization and the number of
queries to the oracle in statistical learning.

Expensive functions

It is often common in computer science to assess an algorithm’s performance by
measuring its runtime complexity: the number of computing steps it takes to
solve a problem of size n, as a function of n. In the formalism used here, L is
an algorithm whose runtime complexity depends on the size n of training set s.
However, for learning and optimization problems, sample complexity can be as
important or more important than runtime complexity.

Many artificial fitness functions used in scientific experiments have a neg-
ligible computational cost, whereas real-world applications often involve huge
computational cost. This cost can be due, for instance, to finite-element meth-
ods or (quasi-)Monte-Carlo sampling in numerical engineering problems. In such
settings, one can often neglect the internal cost of the learning/optimization al-
gorithm, and only consider the number of queries (a.k.a. fitness evaluations)—
the fact that algorithms may require a few minutes before asking for the value
of an example does not matter.

Therefore, the notion of sample complexity is quite relevant to this manuscript
since the following work deals with expensive problems. An expensive problem
is loosely defined as a problem for which, given x, obtaining f∗(x) is costly—be
it in time, money or human effort, as said in the introduction. In other words,
what is meant by “expensive” throughout all this manuscript is the fact that
the cost of obtaining f∗(x) given x is important enough that the focus is set on
sample complexity: runtime complexity is not considered at first.

Various parts of this work aim at finding upper bounds and lower bounds for
sample complexities of various function classes. Formally, bounding a function
class F is finding lb : (ǫ, δ)→ N and ub : (ǫ, δ)→ N such that

∀(ǫ, δ) ∈ R
+×]0, 1[, lb(ǫ, δ) ≤ sc(ǫ, δ,F) ≤ ub(ǫ, δ).

The bounds are said to be tight if when δ → 0, ub(ǫ, δ) = Θ(lb(ǫ, δ)).



12 CHAPTER 2. BACKGROUND

2.1.3 Noisy problems

In the example described in section 2.1, the wing optimization and learning
problems are noise-free, since given a wing shape x there is exactly one possible
quality value y related to x, which is f∗(x). However, in many real-world prob-
lems, it is more appropriate to consider noisy problems, where the outcome of
f∗ on x may vary.

For instance, let us assume that the value of a wing shape x is assessed by
actually manufacturing the wing, and performing a flight with a plane using the
wing. It is unlikely that for the same wing, two different flights output exactly
the same value. Rather, the value observed will depend on some random external
parameters and will not be the same twice: the observation is noisy. Thus, the
wing quality y for a given shape x will not be deterministic (y = f∗(x)); instead,
it will be a random variable Y ∗ whose law will be given by a probability density
p∗ that depends on x. Consequently, in a noisy problem, the fitness f∗ and set
F are replaced by a fitness density p∗Y|X : X × Y → R+, and a set PY|X of

densities pY|X : X × Y → R+ that are conditional densities—i.e. every pY|X

satisfies ∀x ∈ X ,
∫

Y pY|X (x, y)dy = 1; therefore their values are noted pY|X (y|x)
(rather than pY|X (x, y)).

Every x ∈ X is then mapped to a random variable whose density is p∗Y|X (.|x):
let us write Y (x) the random variable accounting for the measurement of x.
Noisy problems are often rephrased so that a deterministic function f∗ appears
anyway. The target function f∗ is often defined as

f∗ :X → Y
x 7→ E[Y (x)].

If the elements of PY|X are Dirac densities—that is, if for each element of PY|X ,
all the probability mass of the corresponding distribution is on a singleton—the
problem degenerates to a noise-free problem. In this manuscript, part II will
consider mostly noise-free learning problems, while part III will deal with both
noise-free and noisy optimization problems.

2.2 Markov Decision Processes

A key contribution of the present work is to formalize both active learning
and optimization as Markov decision processes. This formalization will further
allow us to compute optimal solutions to finite-horizon learning and optimization
problems. Therefore, this section will introduce Markov decision processes, and
provide an overview of classical tools and results. Interested readers can refer
to Sutton and Barto (1998), Bertsekas and Tsitsiklis (1996) for more thorough
surveys.



2.2. MARKOV DECISION PROCESSES 13

2.2.1 Definition

Markov decision processes (MDPs) are a formalism used to model multistep
processes in which an actor takes successive actions (decisions) leading him/her
from a state to another, and pays a cost (or earns a reward) for each decision
he/she takes.

Definition 1 (Markov decision process). A Markov decision process consists of
a quadruplet (St,Ac, p, r), involving:

• a state space St;

• an action space Ac;3;

• a transition probability density function p : St×Ac× St→ R+ satisfying
∀s ∈ St, ∀a ∈ Ac,

∫

St p(s, a, u)du = 1;

• a reward function r : St×Ac× St→ R.

This models the process of a decision maker in discrete time, starting from
an initial state. At a given time step, the decision maker is in state s and chooses
an action from the set of possible actions from s, which is a subset of Ac. At
the next time step, he/she will be in a new state s′, drawn randomly from
the probability density p(s, a, .)—noted p(.|s, a) since it refers to the probability
density of reaching new states conditionally to previous state s and chosen action
a. The decision maker then receives reward r(s, a, s′). A graphic representation
of a MDP is given in figure 2.2.1.

It is straightforward to see that such a stochastic process satisfies the Markov
property: the state at time step t only depends on the (state,action) pair at time
t− 1, and does not depends on states and actions at time t− 2 and below.

Example

A typical example well-modeled by a Markov decision process is the problem
known as GridWorld. This example is illustrated in figure 2.2.2. In its simplest
version, the set of states are the possible positions on a N ∗N grid. There are
four possible actions: up, down, left and right—the four possible directions that
an agent can take. Transitions are deterministic: given a state and a direction,
the next state is the position on the grid obtained by moving one step in this
direction, or by not moving if the direction points to an edge. The rewards are
null, except when reaching“target”positions that have strictly positive rewards,
and when moving in an edge, in which case a negative reward is given.

This is an illustrative example; MDPs are of course suited to model many
real-world processes, such as for instance:

Dialogue systems An automated machine must interact with a user to acquire
information and perform actions (e.g. interactive voice response for a

3some authors sometimes introduce for each s in St, a related action space Acs with
Ac =

⋃
s Acs



14 CHAPTER 2. BACKGROUND

Figure 2.1: Example of a Markov decision process. States are represented in
large green/ gray circles and actions in small red/gray circles. The number on
an arrow leaving an action is the probability to reach the state to which the
arrow goes. A yellow (or light gray) sinusoidal arrow indicates the reward for
arriving in a state by taking a given action in a given previous state.

telephone banking system). A state contains the information acquired by
the machine, what is left to ask and the current position of the machine
in the conversation. An action can for example be an information request
(e.g. credit card number) or a transaction (e.g. transferring money from
one account to another); see for instance Levin et al. (1998).

Game playing The set of states correspond to different possible game config-
urations and the set of actions are the moves that the player can make.
Markov decision processes have for instance been used for Backgammon
by Tesauro (1992): the TD-Gammon algorithm is known as an example
of the efficiency of TD (λ) algorithms in particular, and reinforcement
learning in general.

2.2.2 Policies

Policies on MDPs can be either be deterministic, or stochastic. A deterministic
policy for a MDP is a function π : St → Ac that describes which action to
take at each state. Thus, a policy embodies the decision maker’s behavior. A
stochastic policy π : St×Ac → R gives a probability density to each action (that
can be a Dirac density) from each state. Hence, π is a conditional probability,



2.2. MARKOV DECISION PROCESSES 15

Figure 2.2: The GridWorld example with a 4*4 grid. The agent is in the position
marked by the red/gray dot. His/her actions are modeled by black arrows.
Rewards for each transition are the numbers pointed at by arrows.

satisfying

∀s,
∫

a∈Ac

π(s, a)da = 1,

and as such it is written π(a|s). Note that deterministic policies are a particular
case of stochastic policies; this is why, unless otherwise stated, only stochastic
policies will be considered in the following. Given an MDP (St,Ac, p, r) and a
policy π, let us write











s0,π the initial state,

∀t ≥ 0, at,π the action randomly drawn from π(.|st,π),
∀t ≥ 1, st,π the state randomly drawn from p(.|st−1,π, at−1,π).

(2.2)

The corresponding random variables are noted At,π and St,π. The fact that
At,π is a conditional random variable depending only on St,π and that St,π is a
conditional random variable depending only on St−1,π, At−1,π is a restatement
of the Markov property of this process.

Joint probability measures P (t) and densities p(t) on (Ac×St)t for all t are
induced by this process, as follows:

p(t)(a0,π, s1,π, . . . , at−1,π, st,π) =

t−1
∏

i=0

π(ai,π |si,π)p(si+1,π |si,π, ai,π). (2.3)

Thanks to the Markov property, the transition density p(s′|s, a) is obtained by
marginalizing any p(t) on three consecutive variables s, a, s′ and then condition-
ing on s and a (the policy density π(a|s) is obtained similarly).

Also note that for any t0, t1 with t1 > t0, the density p(t0) is the marginal
density of the first 2t0 variables computed from p(t1); Hence, those probabilities
can all be referred to as a single measure, using a single notation (here p, omitting
the index).



16 CHAPTER 2. BACKGROUND

2.2.3 Value functions and action-value functions

Solving a MDP consists in finding a policy which maximizes some function of
all the rewards obtained during the process—the criterion of optimality. It is
standard to use the discounted total expected reward as a criterion:

Rπ(s) =

∞
∑

t=0

γtr(St,π , At,π, St+1,π) given S0,π = s (2.4)

where γ ∈]0, 1] is the discount factor. Of course, γ and r must be such that
the series is convergent. Naturally, given an initial state s, a policy is then said
optimal if it maximizes the value function Vπ : St → R, that represents how
“rewarding” it is to be in a state s knowing that policy π will be used to decide
on actions in the future.

Definition 2 (Value function). The value function Vπ of a policy π is4

Vπ : s 7→ E[Rπ(s)] = E

[

∞
∑

t=0

γtr(St,π , At,π, St+1,π)|S0,π = s

]

. (2.5)

Other criteria sometimes appear in the literature (e.g. Auer et al., 2008).
In chapter 4, for instance, a criterion suited to finite-time horizons is presented.
Nevertheless, in most cases, these other criteria can be viewed as particular
cases of equation 2.4 (the criterion used in chapter 4 will actually be rephrased
in this respect); this is why only the discounted total expected reward will be
considered in the rest of the manuscript.

Given the above definition of a value function, it can be shown that V π

satisfies an induction equation:

Vπ(s) = E

[

∞
∑

t=0

γtr(St,π , At,π, St+1,π)|S0,π = s

]

=

∫

(a,s′)∈Ac×St

π(a|s)p(s′|s, a)(r(s, a, s′)

+ E

[

∞
∑

t=1

γtr(St,π, At,π, St+1,π)|S1,π = s′

]

)dads′

=

∫

(a,s′)∈Ac×St

π(a|s)p(s′|s, a) (r(s, a, s′) + γVπ(s′)) dads′

= EA0,π,S1,π [r(s, A0,π , S1,π) + γVπ(S1,π)]. (2.6)

This equation is called the Bellman equation (Bellman, 1957). For a given
initial state and a given policy, there exists a unique function Vπ satisfying this
equation: the Bellman equation can then also be used as a definition of value
functions.

4The expectation here is taken over all the random variable AO,π, S1,π, A1,π, S2,π . . .



2.2. MARKOV DECISION PROCESSES 17

In the same vein, it is also quite common to rely on an action-value function
Qπ : St × Ac → R whose purpose is the same as the value function, but that
fixes an action in addition to a state:

Qπ(s, a) = E[Rπ(s)|s0,π = s, A0,π = a].

Similarly to value functions, action-value functions Qπ also satisfy a form of the
Bellman equation.

The goal is then to find an optimal policy π∗ such that given an initial state
s, Vπ∗

is maximal. This defines a unique optimal value function (that can
however be achieved by more than one policy):

V∗(s) = max
π

E[Rπ(s)].

In the Bellman inductive equation, this leads to

V∗(s) = max
π

E[Rπ(s)]

= max
π

EA,S [r(s, A, S) + γVπ(S)]

= max
π

EA,S [r(s, A, S) + γV∗(S)]

where A is drawn randomly from π(.|s) and S is drawn randomly from p(.|s, A).
In the last line, note thatV∗(S) does not depend on the policy, and EA,S [r(s, A, S)]
only relies on the first action advocated by π from s. This yields the Bellman
equation for the optimal value function:

V∗(s) = max
a∈Ac

ES [r(s, a, S) + γV∗(S)].

Again, a similar equation can be derived for Q∗, the optimal action-value func-
tion. This equation is central in reinforcement learning since it allows computa-
tion of V∗ and π∗ by backward induction, which is the cornerstone of dynamic
programming algorithms.

2.2.4 A generalization: partially observable Markov deci-
sion processes

In some cases, the agent is not perfectly aware of the current state; rather,
he/she partially observes the state. For instance, when using a Markov decision
process to model a poker game, a current state of the game consist of the cards
on the board, the remaining cards of all players, and for each player, which
amounts of money have been bet so far. However, the agent only observes
his/her cards, the board cards and the bets of other players, and knows not the
cards that other players have.

Such a setting is referred to as a partially observable Markov decision process.
partially observable Markov decision processes (POMDPs) involve two more
ingredients than classical MDPs:



18 CHAPTER 2. BACKGROUND

• a set of observations Ω;

• a conditional observation density ω : Ω× St→ R.

If the agent takes action a from state s, the state s′ where he/she arrives will
be drawn from p(.|s, a). The agent will then see an observation o drawn from
ω(.|s′). Consequently, a policy in the case of POMDPs describe which action to
take conditionally to observation o, rather than to state s as in classical MDPs.
The reader interested in POMDPs may refer for instance to Kaelbling et al.
(1998) for a more comprehensive introduction.

2.3 Multi-armed Bandits

The typical example for introducing the multi-armed bandit framework (Gittins,
1979; Auer et al., 2002) is the following. A player enters a casino where multiple
slot machines (the so-called “one-armed bandits”) are available to play. The
player plays a machine by pulling its arm and getting a reward—which of course
may be negative. Each machine has a fixed mean reward. At each time step, the
player chooses a machine and plays it, receiving the reward. Since he/she wishes
to maximize his/her gains (or minimize his/her losses), the selection of which
machine to play has to be done carefully enough so that over time, machines
that yield the best rewards are played more often. This is an example of a
multi-armed problem. The following will present formal definitions and some
well-known results in the literature, since the presented work partly relies on
multi-armed bandit approaches.

2.3.1 Setting

Let us first define the multi-armed bandit framework with a finite number of
arms. Consider K arms numbered from 1 to K. To each arm a ∈ [[1,K]] cor-
responds a probability distribution Pa on R. Arm a is a machine that outputs
a value drawn randomly from Pa each time it is “pulled”. Therefore, it is actu-
ally a collection of independent identically distributed (i.i.d.) random variables
(Xa,i)i∈N whose laws are given by Pa, each corresponding to a reward that the
arm can yield. When the arm is pulled for the ith time, it returns Xa,i as re-
ward. It is then natural to define the expected reward, and the empirical mean
reward of a at step t:

µa
.
= E[Xa,1] and X̂a,t

.
=

1

t

t
∑

i=1

Xa,i,

with the obvious property that X̂a,t →t→∞ µa almost surely. Similarly, the
variance and empirical variance are

σa
.
= V ar[Xa,1] and V̂a,t =

1

t

t
∑

i=1

(Xa,i − X̂a,t)
2, (2.7)



2.3. MULTI-ARMED BANDITS 19

The best possible expected reward is µ∗ = maxa∈[[1,K]] µa. The margin of an
arm is measured by ∆a = µ∗−µa. The player is allowed a number of successive
trials N ∈ [[1,+∞]]. He/she decides on an arm-pulling strategy A: a mapping
from previous arms pulls and their reward to the next arm to pull. To simplify
notations, A is only written as a mapping from the current time step to the next
chosen arm A : i 7→ A(i). It is also handy to define Ta : i 7→ Ta(i) mapping a
time step i to the number of times arm a has been pulled until time i (included).
Sometimes, the player is required to ultimately decide on the best arm after N
pulls, using a recommendation strategy R. The framework is summarized on
algorithm 2.3.1.

Algorithm 1 Multi-armed bandit framework.

Parameter Number of arms K>0
Parameter Number of allowed pulls N ∈ [[1,∞]]
t = 0
while t<N do
Pull arm a = A(i)
Receive stochastic reward Xa,Ta(i)

t++
end while
Return Arm chosen via recommendation rule R

The multi-armed bandit framework is commonly known for the exploration-
exploitation tradeoff that it models: the player should pull the most rewarding
arms according to what he/she observed (exploitation), but he/she should also
pull arms that weren’t pulled yet (exploration) or that were only pulled a few
times, since those could have a high expected reward that could have been
misestimated if the first pulls were unlucky. In other words, both estimates on
arm values and confidences on these estimates should be used in an arm pulling
strategy.

2.3.2 Problem goal

The strategy chosen by the player is based on previously observed rewards.

The goal is to pull as much as possible “best” arms whose expected rewards
are close to µ∗. There can be several optimality criteria:

Cumulative regret

In the above example of a casino player, the obvious goal is to maximize the
sum of rewards for all time steps. This is known as the cumulative regret.

Definition 3 (Cumulative regret). The cumulative regret in a multi-armed



20 CHAPTER 2. BACKGROUND

bandit problem at time step t is

Rt
.
= E[tµ∗ −

t
∑

i=1

XA(i),Ta(i)] = tµ∗ −
K
∑

a=1

Ta(t)µa

=

K
∑

a=1

Ta(t)∆a.

Since the rewards Xa,i are random variables, so are A(i) and Ta(i) for every
i. The expectation on the first line is taken over the Xa,i.

Simple regret

There are many situations where at some point, an arm needs to be chosen for
good, and only the performance of this arm matters. For instance, a company
manufacturing a computer chip may have a trial phase during which various
different sets of parameters for the chip (the arms) are tested under various
conditions. Afterward, it starts a commercialization phase for which a precise set
of parameters has to be decided on. In this case, what matters is the performance
of this single arm, rather than the cumulative rewards of the trial phase.

Definition 4 (Simple regret). The simple regret in a multi-armed bandit prob-
lem at time step t is

rt
.
= µ∗ − E[XA(t),Ta(t)]

= ∆A(t).

Here again, rt is a random variable depending on the strategy and the ob-
served rewards until t. It is then natural for the player to try to minimize
Ert.

Yet another possible goal in finite multi-armed bandit problems is to max-
imize the probability that rt = 0, i.e. that after N steps allowed for trial, an
optimal arm is chosen.

2.3.3 Algorithms and theoretical results

As mentioned above, there are two kinds of strategies to consider in the multi-
armed bandit framework: arm-pulling strategies and recommendation strate-
gies.

Arm-pulling strategies

Multiple arm-pulling strategies have been devised in the literature, depending
on the player’s goal.



2.3. MULTI-ARMED BANDITS 21

Random Uniform. A strategy that immediately comes to mind is the ran-
dom uniform selection of arms. As its name suggests, it consists in picking a
random arm in [[1,K]] with identical probability weight on each arm. Although
it is obvious that this choice is bad for minimizing cumulative regret, it has
been shown to be an optimal strategy for minimizing simple regret asymptoti-
cally (Bubeck et al., 2008): the value of Ert tends to the best achievable value
for any strategy when t→∞ if the empirical best arm is selected after t rounds
of uniform selection. However, Bubeck et al. (2008) point out that the random
uniform strategy is empirically outperformed by other strategies (see below)
even for t large, despite the fact that these are suboptimal in theory.

ǫ-greedy. The first widely used arm-pulling strategy, in which the tradeoff
between exploration and exploitation is clear, is the so-called ǫ-greedy policy
(Sutton and Barto, 1998): choosing the arm whose empirical mean is best with
probability 1− ǫ, and uniformly randomly picking another arm with probability
ǫ. This strategy offers a cumulative regret that is quite better than the random
uniform strategy, although only within a constant, since with a fixed probability
ǫ it actually behaves like the random uniform strategy. Therefore, in order
to improve on the asymptotic expected regret, ǫn-greedy strategies have been
devised, where ǫn → 0 for n → ∞. By carefully choosing ǫn, the cumulative
regret is logarithmic in n (Auer et al., 2002). However, these strategies depend
on multiple free parameters, some of which relate to properties of distributions
of the arms which may be unknown.

Upper Confidence Bound (UCB). UCB is a method devised by Auer
et al. (2002). It first requires an evaluation of all the arms once. Then, upper
confidence bounds on the reward are computed at each round, and the arm with
the largest bound is chosen. The simplest and most well-known policy derived
from this idea is the following.

Definition 5 (UCB1). The UCB1 strategy is the strategy that first pulls all
arms once, and then select at round t > K an arm UCB(t) such that:

UCB(t) ∈ arg max
a∈[[1,K]]

[

X̂a,Ta(t) +

√

2 ln(t)

Ta(t)

]

. (2.8)

The first term in the right-hand side of equation 2.8 is the empirical mean of
an arm at the current round: it favors exploitation. The second term decreases
as the number of pulls of the arm increases: it favors exploration. The form of
this term stems from simple statistical confidence bounds. More sophisticated
bounds such as Hoeffding and Bernstein bounds (Hoeffding, 1963; Mnih et al.,
2008) lead to better variations of equation 2.8.

It is common to add a multiplicative factor to the exploration term, used as a
parameter to manually adjust the tradeoff between exploration and exploitation.
However, this implies the necessity of tuning a new parameter, which might
not be straightforward. To avoid this downside, the use of empirical variance,



22 CHAPTER 2. BACKGROUND

in addition to empirical mean, in UCB formulas has been investigated. Auer
et al. (2002) report that a formula named UCB-Tuned using empirical variance
experimentally leads to better performance. Let us consider an upper bound on
V̂a,Ta(t), the variance of arm a after Ta(t) pulls:

V̄a,Ta(t) = V̂a,Ta(t) +

√

2 ln(t)

Ta(t)
.

Equation 2.8 becomes

UCB − Tuned(t) = arg max
a∈[[1,K]]

X̂a,Ta(t) +

√

ln(t)

Ta(t)
min{1/4, V̄a,Ta(t)}. (2.9)

Even more sophisticated versions are presented by Mnih et al. (2008), with
theoretical grounding. These will be detailed in chapter 7 as the part of this
work concerned with expensive optimization relies on them.

This manuscript will make use of UCB-like policies for the following reasons:

• good theoretical and empirical behavior with respect to cumulative regret:
logarithmic rate (Auer et al., 2002);

• good empirical behavior with respect to simple regret: (Bubeck et al.,
2008) point out that although random uniform should theoretically per-
form better, they observe a faster rate with UCB-like policies;

• the fact that no parameter tuning, nor prior knowledge of the arms and
their probability distribution, is required.

Recommendation strategies

This topic is not central in the present manuscript, therefore it is only reviewed
briefly. A recommendation strategy is a decision rule for the definite choice of
an arm after multiple pulls. It is necessary when one is interested in simple
regret, i.e. what matters is the quality of the arm chosen after t pulls, and the
sum of mistakes until then is irrelevant. Common strategies include (see Bubeck
et al. (2008)):

Empirical best arm which is self explanatory: it selects the arm with best
empirical mean reward when the player stops pulling arms;

Most pulled arm which is also self-explanatory. Note that it would make no
sense to use this strategy on top of a random uniform arm-pulling strategy.
It is however quite efficient when used with UCB-like strategies, since it
the outcome will have a good empirical mean (otherwise it would not have
been pulled a lot) with a good confidence (since the confidence directly
depends on the number of pulls);



2.3. MULTI-ARMED BANDITS 23

Empirical distribution of plays which selects an arm by randomly choosing
between the arms, weighing the probability of an arm to be selected by
its empirical mean reward.

Recommendation strategies are necessary when the algorithm is given a limit
on the number of pulls, or a time limit that can be converted in a number of
pulls, as in part II dealing with learning. In part III on expensive optimization,
a complementary approach is taken: the algorithm is required to reach a certain
confidence, and has to pull arms until this confidence is reached.



24 CHAPTER 2. BACKGROUND



Part II

Learning Expensive
Functions

25





Chapter 3

Learning and Active
Learning: a Brief Survey

In this chapter, the framework and tools specific to statistical learning are in-
troduced. The presented contribution in machine learning is mostly related to
active learning. This chapter will however focus on passive learning (when the
learner has no control on the training sample) since this setting, widely studied
since the seventies, is the traditional one in computational learning theory.

The state of the art in active learning, investigated since the early nineties,
will then be presented.

3.1 Statistical Learning Background

This section introduces a classical formalization of statistical learning known as
PAC-learning, as well as major elements of learning theory, developed since the
seventies, such as VC-dimension. This completes the definitions and formaliza-
tion of chapter 2.

Denoting X the instance space (chapter 2), an element x of X is called an
input, an instance or an unlabeled example. Hence, set X is also referred to as
the input space or unlabeled example space. Instance x can be composed of
multiple elements or coordinates—for instance if X is a subset of Rd—which are
usually called its features. It is also common to rely on a probability measure
defined on X , that will be noted PX in the following.

The image of x by f∗ is the label of x, and thus Y is the set of possible labels.
If Y is finite or discrete, the learning task is called a classification task; if Y is
continuous, the task is a regression task.

The presented work focuses on classification problems. Besides the basic
definition and formalism presented in chapter 2, this section introduces the
main two formal frameworks in statistical learning, namely the probably approx-
imately correct framework (PAC) and the statistical learning theory based on

27



28 CHAPTER 3. MACHINE LEARNING BACKGROUND

the Vapnik-Chervonenkis dimension (VC-dimension, see for instance Vapnik,
1995).

3.1.1 Hypothesis space, version space and realizability

Machine learning frameworks commonly consider a so-called hypothesis space1,
i.e. a set of functions h : X → Y considered for approximating target function
f∗ of F . Elements of H are referred to as hypotheses or classifiers, since the
focus is on classification tasks.

Definition 6 (Consistency of a hypothesis). Let s be a sample generated from
f∗. A hypothesis h is said to be consistent with s if

∀(x, y) ∈ s, h(x) = y.

Note that in noisy learning cases, i.e. when the training sample involves
non-deterministic noise, the notion of consistency with respect to the training
sample is not always relevant.

In error-free scenarios, however, consistency is a more natural requirement,
especially in the case where H equals F , which amounts to assuming that the
target concept is also a hypothesis. The realizable assumption relaxes the above,
stating that for each f in F , for all s generated by f there exists an h in H
that is consistent with s—this might be the case even if H 6= F . An important
concept in realizable situations is the version space of a training set s (Mitchell).

Definition 7 (Version Space). The version space of s, writtenH(s) is the subset
of H whose elements are the hypotheses consistent with s:

H(s) .
= {h ∈ H|∀(x, y) ∈ s, h(x) = y}.

Non-realizable scenarios appear when there might be some f generating some
samples s with which no element of H is consistent, making the learning task
more complex. Of course, for small sample sizes, this is less likely to happen.

3.1.2 Performance and generalization error

In statistical learning, performance function ρ (section 2.1.2) is used to measure
the difference between two functions.

The performance function most often relies on some cost function, referred
to as the loss function ℓ : Y2 → R+, where ℓ(h(x), y) gives the cost incurred
by la belling some instance x with h(x) instead of its true label x. Common
definitions for ℓ can be

l : (y, y′) 7→ 1{y′}(y) or (3.1)

l : (y, y′) 7→ ‖y − y′‖ if Y is hilbertian with norm ‖.‖.
1sometimes referred to as the concept class in the classification literature



3.1. STATISTICAL LEARNING BACKGROUND 29

The latter is typical of regression problems where for instance Y = R, while
the former, known as the 0− 1 loss, is a usual choice for classification problems.

Given a cost function ℓ, it comes naturally to define the performance ρ as the
expectation of ℓ on X : (h, f∗) 7→

∫

X
l(h(x), f∗(x))dx, using probability measure

PX on X to compute the integral.
It is usual in statistical learning to assume the existence of such a proba-

bilistic measure PX on input space X . Indeed, statistical learning problems are
often phrased as prediction problems: given the training set s, the aim is to be
able to predict the value of the next sample x that will appear.

Example: For instance, an online streaming music site may provide guesses
about which music a user wants to listen to, given a record of previous choices
s = {(x1, f ∗ (x1)), . . . , (xn, f

∗(xn))} where the xi represent some user-specific
characteristics (age, preferences) and probably some environmental features
(time of day, songs playing at the time), and the f∗(xi) are songs that were
chosen accordingly. The learning task is then, for the next x to come, to pre-
dict f∗(x) as accurately as possible. Some x will show up more often (young
users visit online streaming sites more frequently): it is more important to be
accurate on those. From this perspective, the next instance to appear is a
random variable that is sampled from probabilistic distribution PX called the
natural distribution of the input. This formulation of the learning task is just a
rephrasal of what was presented in the last chapter—it just emphasizes the role
of PX .

The learning task might include various assumptions on PX , thereby defining
a set PX of probability measures. If the goal is to be accurate on a single, definite
PX , the task is called fixed distribution learning. The sample complexity sc of
an algorithm becomes dependent on PX . At the opposite, if it is required
that learning is good for every element of PX , the learning task is said to be
distribution-free, and sc is the maximum sample complexity taken on PX . Only
fixed distribution learning will be considered in the following.

Definition 8 (Generalization Error). If X is a random variable whose law
follows PX , the performance function ρ, called generalization error is:

ρ :F2 → R
+

(h, f∗) 7→ EX [l(h(X), f∗(X))] =

∫

X

l(h(x), f∗(x))pX (x)dx. (3.2)

Exact computation of ρ is almost never possible: an empirical error is used
instead.

Definition 9 (Empirical Error). The empirical error on a finite sample s is:

ρ̂ : (h, f∗) 7→ 1

|s|
∑

(xi,f∗(xi))∈s

l(h(xi), f
∗(xi)).

If s can be chosen randomly, the empirical error corresponds to a Monte-
Carlo estimation of the generalization error. In a learning setting, the general-
ization error is estimated from the empirical error on a disjoint sample, called
test set.



30 CHAPTER 3. MACHINE LEARNING BACKGROUND

In the following, the considered loss function is the 0− 1 loss (equation 3.1),
suited to classification tasks. In this case, ρ is a pseudo-metric on spaces F and
H, since l is symmetric and l(y, y) = 0.

Remark 1 (Non-symetric losses). Although symmetric losses are used quite often
in computational learning theory, there are some cases in which a non-symmetric
loss can be preferred. For instance, in medicine, an automated diagnostic tool
may serve to screen patients arriving at an hospital. Diagnosing as sick a healthy
patient is not too bad, because the actual doctor will sort it out when consulting.
However, dismissing a sick patient may have dire consequences (for the patient
and the hospital’s reputation). The loss function should therefore account for
this and emphasize false negatives.

Some appropriate loss functions and learning approaches have been derived
(see for instance Bradley 1997) with some caveats however (see Hand 2010);
these considerations are outside the scope of this manuscript.

3.1.3 Categories of learning algorithms and samplers

The probability PX described above is the natural distribution of unlabeled data.
A learning algorithm, in statistical learning, is an algorithm that is responsible
for finding a hypothesis that best fits some given data. In the standard learning
framework, referred to as passive learning, learning algorithms are not respon-
sible for choosing the data—this task is done by samplers (a.k.a. sampling
algorithms).

In the previous section a learning algorithm was described as a function
A : S → F . Such algorithms pertain to a subfield of statistical learning known
as supervised learning, that focuses on labeled training data.

Two subfields of statistical learning complementary to supervised learning
focus on some applications of machine learning for which instance space X , i.e.
the space of unlabeled examples, may have a particular structure that can be
exploited:

Unsupervised learning , where algorithms rely solely on unlabeled inputs to
cluster the data (Duda et al., 2000, chap. 10);

Semi-supervised learning , where algorithms make use of unlabeled data
along with labeled data, see for instance the work of Chapelle et al. (2006).

This manuscript is focused on learning algorithms that use only labeled data,
i.e. supervised algorithms. It must be emphasized that although active learning
often browses unlabeled data, active learning algorithms considered here do not
fall into unsupervised or semi-supervised learning, since they do not rely on the
internal structure of the instance space.

As we saw, a learning algorithm is often paired with a sampler S that outputs
an element of X . A sampler may access X in various ways:

• if unlabeled data comes as a finite pool—i.e. the support of the sampler’s
output distribution is this pool—the task is pool-based. It is however



3.1. STATISTICAL LEARNING BACKGROUND 31

often assumed that the pool was generated by an underlying probability
distribution PX ;

• if unlabeled data can be sampled at will from such a PX , the task is
population-based;

• the sampler can also construct instances by itself, using for instance gen-
erative models, if its knowledge of X is good enough.

The degree of control that the problem solver has over the sampling part
may also vary; from the higher to the lower level of control, we distinguish:

Active Learning if the problem solver is responsible for designing S : S →
(X → R+) , the sampling algorithm;

Design of Experiments (also known as blind active learning) if the problem
solver can decide beforehand which points of X should be labeled, but
cannot adapt, that is, it cannot decide to see some label consequently
to other labeled points it has observed. Formally, the sampler does not
depend on the labels and degenerates to a function S : X ∗ → (X → R+)

Passive Learning if the problem solver has no choice over the points to be
labeled: either labeled points come as a fixed pool, or they come from a
given distribution. S is then a constant function that for any sample s
returns the same probability distribution.

Sometimes the term “active learning” is used to refer to the first two settings
as a whole, and selective sampling (or adaptive learning) refers to the very first
setting itself.

3.1.4 PAC-learning

While a learner was formally defined as any algorithm from S to H, it is clear
that a learner picked randomly in the set of all these algorithms does not fit the
machine learning agenda. It is necessary to have criteria to assess if a function
qualifies as a viable learning algorithm. A classical requirement for a statistical
learning algorithm is to be probably approximately correct (PAC). From the
sample complexity (section 2.1.2), a passive sampler S returns an example drawn
randomly from PX . The sample Sn,f is then a set of independently identically
distributed points of X their images.

An algorithm L built upon the passive sampler S is probably approximately
correct on a function class F when, given an increasing number of random
examples, it will eventually output with arbitrary confidence δ a hypothesis
which is arbitrarily close to a target hypothesis from F . Formally,

∀ǫ > 0, ∀δ > 0, sc(L, ǫ, δ,F) <∞. (3.3)



32 CHAPTER 3. MACHINE LEARNING BACKGROUND

Furthermore, a function class F is said to be PAC-learnable when there
exists L that satisfies condition 3.3 for F . Learnability has first been introduced
by Valiant (1984); the interested reader is referred to the more comprehensive
introduction of Vidyasagar (1997).

Example: Consider the set C of the binary linear classifiers of the d-

dimensional unit cube (C ∈ {0, 1}[−1/2,1/2]d): it is the set {x 7→ (sign(w.x) +
1)/2|w ∈ Rd}. Set C is PAC-learnable—informally, this can be understood vi-
sually since with an increasing number of random points, any hyperplane (rep-
resented by its normal vector w) separating the space in positive and negative
inputs is guessable with an increasing precision.

This contrasts with the set of all binary classifiers of [−1/2, 1/2]d, i.e. {0, 1}[−1/2,1/2]d

itself, which is not learnable. Indeed, for any set of points s, there are many
functions that have the same image on s, though they differ significantly. The
learner is then bound to return any one of those functions.

Remark 2 (Alternative PAC definition). The definition of the PAC criterion is
sometimes given using δ(ǫ,m,L,F), the confidence to which algorithm L can
learn any function of F at precision ǫ given m sample—the algorithm is PAC
if and only if ∀ǫ, δ(ǫ,m,L,F)→m→∞ 0. Both definitions (this one and the one
given in equation 3.3) are equivalent.

3.1.5 Hypothesis space complexity

Among the many diverse supervised learning algorithms A, some of the best
known are neural networks, decision trees and support vector machines. Each
algorithm explores a specific hypothesis space in order to find an approximation
of the target concept.

Clearly, the choice of H and A should depend on learning tasks, and a wrong
choice will affect the quality of the solution. Here is a common dilemma over
the choice of H. If H is “large”, then many hypotheses fit the data well—and
among those that fit the data well, some will be very different from each other:
there is a high risk of picking an approximation h that fits the data sampled
via f∗, but does not generalize well (i.e. does not have a good generalization
error ρ(h, f∗)). On the other hand, if H is small, then the best hypotheses will
probably only loosely fit the training set (high bias), and there will be a limit
to how good the precision can be, but the generalization error will not be much
worse than the (known) empirical error on the training set (low variance).

Two combinatorial parameters on hypothesis spacesH will now be described.
Details on the results presented in this section can be found in Vidyasagar (1997,
chap.2,4,6,7).

Vapnik-Chervonenkis dimension

The Vapnik-Chervonenkis dimension (VC-dimension, see for instance Vapnik,
1995) of a binary classification space is an indicator of how well the training
error estimates the true error, the generalization error. Informally, it quantifies



3.1. STATISTICAL LEARNING BACKGROUND 33

how “complex” the hypotheses of H can be. Its mathematical definition relies
on the concept of shattering.

Definition 10 (Shattering). Let H be a set of binary classifiers h : X → {0, 1}.
Let T = {x1, . . . , xn} be a finite set of elements of X whose cardinal is n. It is
said that H shatters T if

∀y ∈ {0, 1}n, ∃h ∈ H, ∀i ∈ [[1, n]], h(xi) = (y)i.

This basically means that whatever the labels of the points of the set T may
be, there will be some hypothesis that is consistent will the labeled data set
derived from T .
Definition 11 (VC-dimension). The VC-dimension of a hypothesis space H of
binary classifiers is the cardinal of a set shattered by H of maximal size.

An important result is that any concept class with a finite VC-dimension
D is PAC-learnable, with a sample complexity sc(ǫ, δ) = Θ̃(D/ǫ): the number
of random examples required to learn a concept at precision ǫ with a fixed
confidence δ is at least inversely proportional to ǫ (upper bound), and not bigger
than 1/ǫ (lower bound) up to logarithmic factors.

A very strong result also states that conversely, in the general case of dis-
tribution-free learning, if a concept class is learnable, then it has a finite VC-
dimension (this is not true for fixed distribution learning).2

Covering numbers

Another combinatorial parameter of a hypothesis space H is its covering num-
bers. Covering numbers appear in various sample complexity bounds regarding
H, in particular in the active learning context (Kulkarni et al., 1993). Intu-
itively, they quantify how “large” a hypothesis space is, when taking as distance
between two hypotheses their generalization error (the function ρ). Remember
that ρ is a pseudo-metric on H. Let B(h0, ǫ) = {h ∈ H| ρ(h, h0) ≤ ǫ} stand for
a (closed) ball centered on h0 ∈ H of radius ǫ. ǫ-covers and covering numbers
are then defined as follows.

Definition 12 (ǫ-cover). An ǫ-cover of H is a finite set T ⊂ H such that

H ⊆
⋃

h∈T

B(h, ǫ).

Definition 13 (Covering numbers). The ǫ-covering number of H is the smallest
number N(ǫ,H) such that there exist an ǫ-cover of cardinal N(ǫ,H).

Similarly, the ǫ-packing number of H, M(ǫ,H), is the cardinal of a largest
set T such that ∀(h1, h2) ∈ T 2, ρ(h1, h2) ≥ ǫ if h1 6= h2. It is easy to show (see
for instance Vidyasagar, 1997, chap. 2) that for any ǫ,

N(2ǫ,F) ≤M(ǫ,F) ≤ N(ǫ,F).
2The extension of VC-dimension to regression tasks is the Pollard dimension.



34 CHAPTER 3. MACHINE LEARNING BACKGROUND

It has been shown (by Sauer, 1972, among others) that finite VC-dimension
spaces have “small covering numbers”, i.e. if the VC-dimension is D, the ǫ-
covering number is Õ(1/ǫD). For fixed distribution learning, the fact that a
concept class F is such that its covering numbers are all finite is equivalent to
F being PAC-learnable.

Bayesian learning

By definition, a learning algorithm outputs hypotheses taken from some hypoth-
esis spaceH. In some learning settings, some knowledge about which hypotheses
are more likely to be good is available a priori, that is before any example has
been observed. A way to account for this information is to define a probability
distribution PH over H, called a prior on hypotheses. This prior can then be
multiplied with the probability of observing the given data for each hypothesis,
to provide a posterior emphasizing which hypotheses are more likely given the
data. This approach is known as Bayesian learning (see for instance Mackay,
1992).

Assuming a prior on hypotheses can also be used for other purposes, such
as to perform regularization, that is to bias towards simpler hypothesis to avoid
overfitting3. Note that regularization is often equivalently performed via other
paradigms such as structural risk minimization (Vapnik, 1995, see,e.g. in sup-
port vector machines) or minimum description length (Duda et al., 2000, chap.
9)4. Chapter 4 will assume a prior PH on the set of hypotheses.

3.2 State of the Art in Active Learning

This section reviews the main results obtained in active learning, starting with
some formal background.

Let X be the input space for the learning task, and H be the hypothesis
space.

Definition 14 (Uncertainty Region). The uncertainty region U(s) of a sample
s is the subset of X made of every input point which is mapped to different
labels by some hypotheses of the version space:

U(s) .
= {x ∈ X|∃(h1, h2) ∈ H(s)2, h1(x) 6= h2(x)}.

A first critical requirement for any good active learning algorithm is that
the sampler samples from points of the uncertainty region. Indeed, it would be
pointless to try to ask for labels of points on which all hypotheses agree.5

3Overfitting happens when a learning machine with many parameters (very expressive
hypothesis space) tends to adjust itself to the training data excessively. Therefore, it has a
very low empirical error on the training set, but generalizes poorly on new instances.

4In many situations, these three regularization techniques can be proved equivalent to each
other.

5In a non-realizable scenario, it might be worthwhile to try and find points on which all
hypotheses agree, albeit differ from the target concept. This topic however remains outside
the scope of this manuscript.



3.2. STATE OF THE ART IN ACTIVE LEARNING 35

Measuring the size of the version space Under the Bayesian assumption,
a probability PH on the hypothesis space is available. The size of the version
space of s can then naturally be defined as PH(H(s)). As an alternative, i.e. if
no such PH is available, the version space is measured via its diameter, defined
as

∆(s) = max
h1,h2∈H(s)

ρ(h1, h2).

3.2.1 State of the art: algorithms

Seung et al. (1992) were among the first authors to propose an efficient ac-
tive learning algorithm, based on a Bayesian prior on the hypothesis space,
called Query-by-committee (QBC). It relies on the ability to sample hypotheses
from the version space using the prior. Given a finite committee of hypotheses
consistent with examples seen so far, QBC selects the instances for which the
committee disagrees most on the label are selected. Originally applied to linear
separators, QBC was extended to kernel machines in a tractable way, by Gilad-
Bachrach et al. (2006). Variants of QBC using bagging and boosting were also
proposed (Abe and Mamitsuka, 1998).

Another early heuristic for learning a binary classifier, devised by Cohn et al.
(1994) in the realizable setting, considers a large pool of unlabeled examples
(pool-based adaptive sampling), and uses a neural network to characterize the
uncertainty region. The active algorithm proceeds by selecting an instance in
the uncertainty region at each time step.

A related research direction focuses on error reduction, meant as the ex-
pected generalization error improvement brought by an instance. Many criteria
reflecting various measures of the expected error reduction have been proposed
(Iyengar et al., 2000; Roy and McCallum, 2001; Lindenbaum et al., 2004; Das-
gupta et al., 2005), with some encouraging results in, for instance, pharmaceu-
tical industry (Warmuth et al., 2003). Specific algorithms and methods have
been developed for active learning in linear and kernel spaces, either heuristic
(Schohn and Cohn, 2000) or theoretically grounded (Cesa-Bianchi et al., 2003;
Dasgupta et al., 2005; Balcan et al., 2007). Active learning for support vector
machines has also yielded promising results in image retrieval and text classifica-
tion (Tong and Koller, 2001; Chang and Tong, 2001). A recent work by Schein
and Ungar (2007), inspired by uncertainty reduction methods, surveys active
learning on logistic regression models for classification, and proposes a method
to find examples reducing error by looking at a criterion called A-optimality,
which is trace of the inverse Fisher matrix of the experiment (Fisher, 1951).

Some of these approaches however happen to face learning instabilities, which
might require to mix the active learning procedure with a uniform instance se-
lection (Xiao et al., 2005). Such instabilities suggest that in some cases an
optimally efficient active learning system can hardly be based on a greedy se-
lection strategy, at least using the criteria considered so far.



36 CHAPTER 3. MACHINE LEARNING BACKGROUND

3.2.2 State of the art: theoretical results

Angluin (1988) introduced query learning models that formalized how learning
algorithms may directly interact with the oracle. Based on this model, an early
work by Kulkarni et al. (1993) established a lower bound on the sample com-
plexity in the general active learning case, logarithmic in the ǫ-covering number
of hypothesis space H; the result is actually concerned with binary queries, a
general model that encompasses querying the oracle on a single input.

The concept of PAC-learnability (section 3.1.4) aims at characterizing how
learnable is a concept class when using passive learning. The definition extends
to active learning; since active learning is more powerful than passive learning,
one could expect that more function classes will be learnable under this less
stringent definition. This is actually not true: PAC-learnability is equivalent to
active PAC-learnability (see for instance Vidyasagar, 1997, chap. 9).

This being said, even though active learning does not allow one to learn in
wider function classes, it can be hoped that the sample complexity of active
learning algorithms is smaller than the one of passive algorithms, considering
that any passive learner dealing with a space of finite VC-dimension D requires
Θ̃(D/ǫ) examples to learn a binary concept with precision ǫ.

Freund et al. (1997) proved that methods such as QBC can lead to an expo-
nentially smaller number of queries than the random querying strategy (passive
learning), at least in the case of perceptrons. Freund et al. (1997) related the
efficiency of QBC to a statistical criterion called Information Gain, measuring
how efficiently the VS can be divided. This supported the idea that active
learning may sometimes significantly reduce the sample complexity.

The appropriateness of hypothesis spaces to active learning has been studied,
showing that active learning improves sample complexity significantly in some
spaces, while it does not much better than passive learning in others (Hegedüs,
1995; Dasgupta, 2006; Hanneke, 2007a).

Dasgupta (2006) studied the non-Bayesian setting, deriving a lower com-
plexity bound based on a criterion called splitting index. This index is used to
determine the cases where active learning enables an exponential reduction of
the sample complexity. Dasgupta (2006) proposed an “almost” optimal, though
intractable, algorithm coarsely matching the lower bound. Hanneke (2007a)
proposed a criterion referred to as disagreement coefficient, partially capturing
the active learning potential of a concept class, even in presence of bounded
noise (see below). Similarly to VC-dimension and covering numbers, aimed at
estimating the learnability of a hypothesis space, the splitting index and the
disagreement coefficient aim at assessing the reduction of sample complexity
provided by active learning.

In the Bayesian setting, Dasgupta (2005) has established the quasi-optimality
of greedy version space reduction methods in the realizable classification case
(i.e. when h∗ belongs to H) for a finite instance pool. More generally, when
there exists a probability measure PH on H, usual active learning strategies are
concerned with reducing either the measure of the Version Space, or the vari-
ance of labels for hypotheses of the version space. In non-Bayesian settings, the



3.2. STATE OF THE ART IN ACTIVE LEARNING 37

reduction of the version space can be expressed in terms of its diameter.

3.2.3 Noise

Agnostic active learning considers the case where the training set can include
noise, and/or the target concept does not belong to the hypothesis space. It
was studied by Balcan et al. (2006) using an (intractable) agnostic active learn-
ing algorithm called A2. Hanneke (2007a) established complexity bounds for
A2 through the disagreement coefficient. Dasgupta et al. (2008) presented an
agnostic active algorithm whose sample complexity was also bounded using the
disagreement coefficient.

The bounded noise rate setting was investigated further by Kaariainen (2006),
showing that it does not significantly differ from the realizable setting. Kaari-
ainen (2006) also studied the context of active learning with unbounded noise
rate, along with Castro and Nowak (2007), who focused on the learning rates
when instances are close to the decision boundary. Hanneke (2007b) also pro-
posed an analysis based on the teaching dimension (see Goldman and Kearns,
1991; Hegedüs, 1995), which is outside the scope of this work.

3.2.4 Regression

The so-called blind active learning, also referred to as Experiment Design (Fisher,
1951), has been investigated in the regression framework since 1920. Some re-
cent results on experiment design are based on low-discrepancy and low disper-
sion sequences (Niederreiter, 1988), see in particular the work of Teytaud et al.
(2007).

Active regression has been much less studied than active classification. Cohn
et al. (1996) proposed an approach based on minimization of the learner vari-
ance: using mixtures of gaussians as hypothesis space, they can quantify the
expected variance of the model when labeling a point, and choose the one that
maximizes this variance.

Castro et al. (2005) analyzed convergence rates in two function spaces:
Hölder-smooth functions, and piecewise-constant functions6. For Hölder-smooth
functions, the authors have derived a minimax lower bound assuming indepen-
dent Gaussian noise on the labels given by the oracle. This disappointing result
is blamed on the expressiveness of Hölder-smooth functions, adversely affect-
ing their learnability; one understands in hindsight that active learning does
not help much in this case. Under stronger assumptions such as finite VC-
dimension, many hypothesis spaces ensure a good learnability. Such spaces
include e.g. linear separators, kernel spaces, artificial neural networks, etc. It
would be very interesting to investigate further the benefits of active regression
in such spaces.

6although the latter is actually restricted to the Boundary fragment class, namely functions
valued in {−M,M}, with regularity conditions on the frontier in the input space corresponding
to the jump from −M to M , which makes it similar to a classification setting



38 CHAPTER 3. MACHINE LEARNING BACKGROUND



Chapter 4

Optimal Active Learning
via MDPs : the BAAL

Algorithm

In this chapter, active learning under bounded resources is formalized as a finite
horizon reinforcement learning problem, where the sampling strategy aims at
minimizing the expectation of the generalization error. A tractable approxi-
mation of the optimal (intractable) policy is presented, the Bandit-based Active
Learner (BAAL) algorithm. BAAL tackles active learning as a one-player game,
combining UCT, a tree structured multi-armed bandit algorithm (Kocsis and
Szepesvari, 2006), and billiard algorithms. The source code is publicly available
(Rolet, 2010). Only the classification case will be considered in the following.
The stakes of extending the following approach to regression are discussed in
chapter 11. The first version of this work was originally published in the pro-
ceedings of the twenty-first European Conference on Machine Learning (Rolet
et al., 2009a).

4.1 Finite Horizon Active Learning: a Dynamic

Programming Formulation

This section presents a theoretically optimal strategy for active learning in finite
time horizon T , where T corresponds to the total number of instances to be
labeled along the active learning process.

Similarly to Freund et al. (1997) and Dasgupta (2005) (among others), the
proposed approach is built on a Bayesian setting (Mackay, 1992; Haussler et al.,
1994). Prior knowledge about the target concept is accounted for by a proba-
bility distribution PH on hypothesis space1 H. Noting H(s) the version space

1PH is set to the uniform distribution on H in the absence of prior knowledge.

39



40 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

associated to a training set s, measure PH naturally induces a conditional mea-
sure on any version space H(s) with a non-null probability mass2:

∀A ⊂ H(s), PH(s)(A) = PH(A)/PH(H(s)) or equivalently

pH(s)(h) =
pH(h)

PH(H(s))1H(s)(h). (4.1)

A random hypothesis of H drawn from PH (respectively PH(s)) will be noted
H (respectively Hs).

The following relies on the realizable assumption, i.e. the target concept
f∗ to be learned is assumed to be deterministic and to belong to H (how to
relax this assumption will be discussed in section 11.3). In this section, given a
training set s, a point x and a hypothesis h, the set s

⋃{x, h(x)} will be referred
to as s+ h(x).

For the sake of readability, the binary classification case will be considered
throughout this chapter, although the approach holds for the multi-class setting
either.

4.1.1 Optimal finite-time active learning

The first requirement when looking for an optimal sampling strategy is to define
what “optimal” means. Considering finite-horizon T , with same notations as
chapters 2 and 3, let S be the sampling process. Random variable ST,h denotes
the training set built by S after T steps of the process described in equation 2.1
when learning some target concept h.

Distance ρ is the generalization error as defined in section 3.1.2. Therefore,
ρ(A(ST,h), h) is the generalization error of the hypothesis learned by A on
training set ST,h. A natural way to define an optimal active learning sampler
for finite time horizon T is to consider the minimization of the expectation of
ρ(A(ST,h), h) when h ranges in H.

Let us define precisely the law of ST,h, considering the probability laws on
training sets that embody the process of equation 2.1. The definitions are re-
cursively based on the joint probabilities (such as in equation 2.3).Let δs stands
for the Dirac measure in s (section 2.1). Conditionally to the probability distri-
bution on H:











p(0)(s|h) = δ∅(s);

p(s′|s, x, h) = δs+h(x)(s
′);

π(x|s, h) = S(x, s).

(4.2)

The initial training set, noted s0, is the empty set. The joints p(t) for t > 0,

2Case PH(H(s)) = 0 In this case, PH(s) need not be defined for the purposes of this work:
active learning as analyzed below is such that instance selection cannot lead to a training set
whose corresponding version space has null measure.



4.1. ACTIVE LEARNING AS DYNAMIC PROGRAMMING 41

conditioned on h, are then

p(t)(x1, s1, . . . , xt, st|h) =
t−1
∏

i=0

S(xi+1, si)δ{si+h(xi+1)}(si+1). (4.3)

Identically to equation 2.3, p(t)(s|h) is the marginal of training set s under-
stood as the last state variable in density p(t).

Noting ST,H the random training set conditioned to random hypothesis H ,
the desired optimality criterion for a sampler then reads

S∗
T = argmin

S

EH,ST,H
[ρ(A(ST,H), H)]. (4.4)

The law of ST,H for the expectation in this equation follows density p(T )(s|h).
From this definition, optimal sampler S∗ is specific to the chosen hypothesis

space H, and to the learning algorithm A.

4.1.2 The active learning Markov decision process

The main motivation behind the presented MDP framework is to build an op-
timal sampling policy in the sense of equation 4.4.

As stated in section 2.2, MDPs are classically described in terms of states,
actions, reward, policy and transition functions. In the active learning context,
the state space S consists of all possible training sets s. An action corresponds
to the selection of a new instance to be labeled; the set of actions Ac thus
coincides with the instance space X or a subset thereof.

There is a clear analogy between the active learning notations of section
2.1.1, where a sampler S(x, s) is a probability density for an instance x given
training set s, and the MDP notations of section 2.2, where a policy π(a|s) is a
probability density for an action a given a state s. A sampler is then written as
a policy π.

Let us derive the right transition density pAL and reward rT such that solv-
ing the Markov decision process (S,X , pAL, rT ) amounts to finding an optimal
sampling strategy in the sense of equation 4.4. Note that while the process
described by equations 4.2 depend on a target h, pAL and rT must be defined
independently of h.

The following result states that, for the adequate definitions of pAL and rT ,
the Bellman optimal policy of the MDP yields an optimal active learning policy
in the sense of equation 4.4.

Theorem 1. Let transition density pAL and reward rT be defined as

rT (s, x, s
′) =

{

EHs
[ρ(A(s), Hs)] if |s|=T

0 otherwise.
(4.5)

pAL(s
′|s, x) =

∫

h∈H(s)

δs+h(x)(s
′)pH(s)(h)dh. (4.6)



42 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

Then, the finite-time active learning Markov decision process (S,X , pAL, rT ) is
such that for any policy π for this MDP, the value function V

π satisfies at initial
state s0

V
π(s0) = EH,ST,H

[ρ(A(ST,H), H)] (4.7)

where the law of H is given by PH and the law of ST,H is given by density
p(T )(s|h).

An immediate consequence of this theorem is that the Bellman-optimal value
function V ∗ maps s0 to the minimum described in equation 4.4: an optimal
policy for this MDP is an optimal active learning strategy.

Proof. The proof first explains mathematical expressions of reward function rT
and transition function pAL. Equation 4.7 is thereafter obtained by backward
induction.

Regarding the reward function, as the goal is to minimize the generalization
error of the hypothesis learned after T steps, the reward is only known at horizon
T , when a terminal state s (i.e. such that |s| = T ) is reached. From the realizable
assumption, the target concept h is bound to be in the version space of s, noted
H(s). Thus, the reward function is defined as in theorem 1:

rT (s, x, s
′) =

{

EHs
[ρ(A(s), Hs)] if |s|=T

0 otherwise.

Transition probability density pAL(s, x, s
′) = pAL(s

′|s, x) models the proba-
bility of going to state s′ conditioned by current state s and current action x (the
selected instance). By definition, states accessible from s are s

⋃{(x, y = h(x))},
where h denotes a concept that belongs to the version space H(s) (because of
the realizable assumption). From equations 4.2, it is consistent to define pAL as
in theorem 1:

pAL(s
′|s, x) =

∫

h∈H(s)

δs+h(x)(s
′)pH(s)(h)dh.

To show 4.7, let us first notice that from the probabilities defined in equa-
tion 4.2 derive conditional joints p(t0,t1) modeling probability of training sets
st0+1, . . . , st1 given that the state at step t0 is st0 . Since by construction, the
process described by equations 4.3 has the Markov property, those probabilities
read

p(t0,t1)(xt0+1, st0+1, . . . , xt1 , st1 |st0 , h) =
t1−1
∏

i=t0

π(xi+1|si)δ{si+h(xi+1)}(si+1).

(4.8)

The marginal of state s′ as the last variable of p(t0,t1) conditionally to state s
of the t0th step of the process is written p(t0,t1)(s′|s, h). With these notations,
observe that the density of random variable ST,H in equation 4.4 is p(0,T )(.|∅, h).



4.1. ACTIVE LEARNING AS DYNAMIC PROGRAMMING 43

We can now prove equation 4.7 by backward induction, by showing

∀t ∈ [0, T ], ∀s s.t. |s| = t,

Vπ(s) = EHs,ST,Hs |s
[ρ(A(ST,Hs

(Hs)), Hs)] (4.9)

where the law of ST,Hs
|s has density p(t,T )(.|s, h). The generalization error will

hereafter be noted ρ(ST,Hs
, Hs) for short. Although the induction may seem

intuitive, it actually requires a few computations to ensure that value functions
functions associated to pAL and rT actually satisfy equation 4.9.

To initialize the induction procedure, the case t = T will be addressed. To
this end, we need to give a meaning to p(t,t

′)(s′|s, h) when t = t′:

∀t ∈ [[0, T ]], p(t,t)(s′|s, h) .
= δs(s

′). (4.10)

Then, from equation 2.5, by setting the discount factor γ to 1, the value function
of a policy π at a terminal state s is exactly equal to rT (s, ., .) (since rT in this
case does not depend on action x and previous state s′).

For the induction step, assuming that equation 4.9 is true for some t > 0,
it can be shown that it is also true for t − 1 using the Bellman equation for a
value function (equation 2.6). Let s be a state satisfying |s| = t− 1. Then,

Vπ(s) = EA|s,S|A.s[r(s, A, S) + γVπ(S)]

= EA|s,S|A.s[V
π(S)]

=

∫

X

∫

S

pAL(s
′|s, x)π(x|s)EH|s′ ,ST,H |s′ [ρ(ST,H , H)]dxds′

=

∫

X

∫

S

pAL(s
′|s, x)π(x|s)

∫

H

∫

S

pH(s′)(h)p
(t,T )(sT |s′, h)ρ(sT , h)dhdsTdxds′

=

∫

H

∫

S

ρ(sT , h)J(sT , x, h)dhdsT (4.11)

with J(s, sT , h) =
∫

X

∫

S
pAL(s

′|s, x)pH(s′)(h)p
(t,T )(sT |s′, h)π(x|s)ds′dx.

From equations 4.8 and 4.10, and the Markov property of the process, we
have

∀t0 ∈ [[0, T − 1]], ∀t1 ∈ [[t0 + 1, T ]]

p(t0,t1)(st1 |st0 , h) =
∫

X×S

π(xt0+1|st0)δst0+h(xt0+1)(st0+1)

p(t0+1,t1)(st1 |st0+1, h)dst0+1dxt0+1

=

∫

X

π(xt0+1|st0)p(t0+1,t1)(st1 |st0 + h(xt0+1), h)dxt0+1.

(4.12)

By including the expression of pAL(s
′|s, x) in J(sT , x, h),

J(s, sT , h) =

∫

S

∫

X

∫

H

δs+h′(x)(s
′)pH(s)(h

′)dh′p(t,T )(sT |s′, h)π(x|s)pH(s′)(h)ds
′dx

=

∫

X

π(x|s)
∫

H

pH(s)(h
′)p(t,T )(sT |s+ h′(x), h)pH(s+h′(x))(h)dh

′dx



44 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

Because of the definition of pH(s)(h
′) and pH(s+h′(x))(h) (and since s + h′(x)

is short for the set s
⋃{(x, h′(x))}), the right-hand side integrand is null when

s+ h′(x) 6= s+ h(x), therefore

J(s, sT , h) =

∫

X

π(x|s)
∫

H

pH(s+h(x))(h)pH(s)(h
′)

p(t,T )(sT |s+ h(x), h)1{h0∈H|h0(x)=h(x)}(h
′)dh′dx

=

∫

X

π(x|s)p(t,T )(sT |s+ h(x), h)pH(s)(h)dx (4.13)

= pH(s)(h)p
(t−1,T )(sT |s, h). (4.14)

Equation 4.13 arises from the fact that

∫

H

pH(s)(h
′)1{h0∈H|h0(x)=h(x)}(h

′)dh′ =
PH(H(s+ h(x)))

PH(H(s))

(using definition 4.1), which multiplied by pH(s+h(x)(h) yields pH(s)(h). Equa-
tion 4.14 is obtained using equation 4.12.

Integrating equation 4.14 in the value function expression 4.11 yields the
desired result.

Remark 3. Note that the active learning MDP may start with a non-empty
training set: all statements still hold for s0 6= ∅.

4.1.3 A partially observable Markov decision process

A more general formulation of active learning as a planning problem, embracing
the formalism presented above, is a partially observable MDP(POMDP) formu-
lation. As seen in section 2.2.4, states of a POMDP have a visible part and
a hidden part—classical MDPs are of course a subset of POMDPs. In the ac-
tive learning case, a state comprises the unobserved target hypothesis h besides
the training set. The decision to select an instance xt+1 leads to a new state
st+1 = st

⋃

(xt+1, h(xt+1)), where st contains h (the transition is deterministic).
The observation corresponding to this partially observable state is h(xt+1)—the
observed state, is the training set st+1 without hypothesis h. The reward at a
terminal state sT is not an expectation anymore, it is directly ρ(h, sT ).

In practice, embedding the unobserved target h in the state amounts to
model the hidden variable within the transition function and the reward function
of the MDP: equations 4.2 can be used directly as a definition of the POMDP
(while they could not be used directly for the simple MDP). The rewards at the
end of the process is the same as for the MDP formulation. However, devising
an optimal policy and showing that it converges to equation 4.4 then requires
additional effort.

In this respect, a connection between POMDPs and MDPs in the case of
discrete state spaces has been studied by Astrom (1965). He notably devised



4.2. OVERVIEW OF THE BAAL ALGORITHM 45

a theoretical strategy to tackle POMDPs as regular MDPs under certain con-
ditions, although this strategy does not apply straightforwardly, in particular
because the active learning problem is a continuous one.

This POMDP formulation implicitly presents active learning as a one-player
game. The active learner plays against the (unknown) target hypothesis h,
belonging to the version space H(s0) of the initial training set3 s0. Upon each
move (selection of some instance x), oracle h provides the label y = h(x). At the
end of the game—that is, after T examples have been picked, defining training
set sT—the reward is the generalization error of the hypothesis A(sT ) learned
from sT with respect to h. The real learning game is played against oracle h.

It is however possible to train the active learning player, and therefore devise
a good active learning policy beforehand, by mimicking the above game and
playing against a “surrogate” oracle, made of a hypothesis h uniformly selected
in the VS. The reward of such a game is computed as in the real game: it is
the generalization error of the learned hypothesis w.r.t. the (surrogate) oracle.
This reward implements a uniform draw of the random variable ρ(A(s), h) for
h ranging in H.

By construction, the average empirical reward collected by the active learn-
ing player after many such games asymptotically converges toward the true
expectation of this random variable, that is, the desired reward function.

4.2 Overview of the BAAL Algorithm

Next sections will present a consistent and tractable approximate resolution
of the above MDP, the BAAL algorithm. As already mentioned, for the sake
of simplicity, BAAL is presented in the binary classification case; it must be
emphasized that the publicly available code handles multi-class problems.

BAAL relies on three main ingredients:

• the tree-structured multi-armed bandit algorithm called UCT (Kocsis and
Szepesvari, 2006), which is extended to the one-player game of active learn-
ing in section 4.3;

• billiard algorithms to sample the version space, presented in section 4.4;

• progressive widening to apply UCT to continuous state spaces, and allow
integration of “expert knowledge” on active learning to BAAL (section
4.5).

3For the sake of simplicity and when no confusion is to fear, the initial training set s0 is
omitted and H is used instead of H(s0).



46 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

4.3 Monte-Carlo Tree Search to Solve the Ac-

tive Learning Markov decision process

Upper Confidence Trees (UCT) is a Monte-Carlo tree-search algorithm (Kocsis
and Szepesvari, 2006; Coulom, 2006) in which the selection of a child node is
cast into a multi-armed bandit problem (see section 2.3). UCT notably became
famous in the domain of strategic games as it inspired the computer-Go program
MoGo, first to ever win over professional human players without handicap (Gelly
and Silver, 2007).

UCT is aimed at searching large trees in which each leaf bears a deterministic
or stochastic reward. The tree representing a MDP is made of all the states and
all the state-action pairs. The root of the tree is the initial state s0. From each
state node s, a branch for each action a available from this state leads to state-
action node (s, a). Then, from (s, a) there is a branch leading to each s′ such
that the transition density p(s′|s, a) is not null. Since a state may be reached
by more than one state-action node, the tree is actually a directed graph. In
the case of active learning, states (sets) of cardinal t can only be reached from
state-action nodes whose state have cardinal t − 1: the graph is acyclic (it is
a DAG). Fortunately, UCT is suited to search DAGs, and does not depend on
the particularity of trees requiring a node to have exactly one father. We refer
to the active learning DAG as a “game tree”, to pinpoint the analogy with a
one-player game.

As an example of game tree, in board games such as Chess or Go, the tree
is made of all the possible games: at a given node, a player chooses a move,
reaching another node, from which the other player chooses a move until the
game ends (leaf node). The reward is usually binary: 0 if the game is lost, 1 if
it is won.

UCT will be described through the BAAL algorithm (algorithm 2). Let T
denote the “game” tree of active learning (figure 4.1); its root node is the initial
training set s0.

A path from the root node to a leaf is called a tree walk, also referred to as a
game or a simulation. To each simulation is attached a hypothesis h, uniformly
extracted from the version space of the root node s0. Each node corresponding
to a training set st , a state node, has a continuous set of child nodes, the
state-action nodes (s, x) with x ∈ X since for active learning actions correspond
to instances. The children of st (state-action nodes) correspond to the possible
instances that the learner can choose to query—each one is made of the parent
node st, and a chosen instance xt+1, and written st + xt+1.

Every state-action node has two children in the binary classification case,
one for each possible label of instance xt+1. The one selected during the tree-
walk indexed by h obviously corresponds to h(xt+1), thus leading to the next
state node st+1 = st + h(xt+1).

More precisely, each tree-walk proceeds as follows (Figure 4.1 and algorithm
2):

1. first, a hypothesis h is drawn in version space H(s0) of the initial training



4.3. UCT FOR ACTIVE LEARNING 47

s0
x1

jjjjjjjjjjjjjjjjjjjj

x2 ...
xP

QQQQQQQQQQQQQQQQ

s10

0

�������
s11

1

7777777
s20

0

�������
s21

1

2222222

2222222

sP0

0

������
sP1

1

//////

x1

kkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkk

x2 ...
xP

PPPPPPPPPPPPPPP

s2110

0

�������

�������
s2111

1

7777777

sT

O�
O�
O�
O�
O�
O�
O�
O�

Figure 4.1: Game tree developed by BAAL, the Bandit Based Active Learner,
in the binary classification case. The root of the tree is the initial training
set, s0. Each tree walk (or simulation) is based on selecting some hypothesis h
in the version space of s0. The tree walk proceeds by iteratively selecting an
instance x, whose label is set to h(x). Ultimately, the tree walk is assessed by
generalization error ρ(sT , h) of the learned hypothesis w.r.t. h.

set, s0, according to PH, referred to as a surrogate hypothesis;

2. then, in a given state node (training set st), BAAL uses the famed Upper
Confidence Bounds (UCB) criterion (equation 4.15, see below) to select a
state-action node, corresponding to some instance xt+1 to be labeled;

3. surrogate hypothesis h is used to set the label to h(xt+1), and state node
st+1 = st + h(xt+1) is reached;

4. the tree-walk proceeds until arriving at a state node st0 not yet visited;
at this point, T − t0 additional instances are randomly uniformly selected,
labeled using h, and added to the training set st0 , forming a T -size training
set sT ;

5. from training set sT , a hypothesis ĥ is learned by BAAL4;

6. the reward of the tree walk is the generalization error of ĥ with respect to
the surrogate hypothesis h;

4The learning algorithm is actually a parameter of BAAL. In the experiments, a uniform
sampler of the version space of sT is used (chapter 6)



48 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

7. the reward of the leaf is backpropagated to update the value of every tree
node st such that t ≤ t0.

Algorithm 2 The BAAL algorithm.

BAAL(PH, s0, T,N)

Parameter

Measure PH on hypothesis space H
Initial training set s0
Time horizon T
Number N of allowed tree-walks

Set n(s) = 0 for all s //number of times s has been visited, i.e. Ts(i)
for i=1 to N do
h = DrawHypothesis(PH, s0) //h ∼ PH, h ∈ H(s0)

Tree-Walk(s0, T, h)
end for
//select the instance on the most visited branch from the root

Return x = argmaxx′∈X Ts0+x(N)
//instance x to be labeled by the oracle.

routine Tree-Walk(s, t, h)
n(s)++
if t==0 then
Compute r = ρ(A(s), h)

else
Z = ArmSet(s, n(s)) // discrete set of considered instances
Select x∗ = UCB − Tuned(s,Z))

// recursively call Tree-Walk
r = Tree-Walk(s+ h(x∗), t− 1, h)

end if
// update reward of node s

r(s) = (1− 1
n(s) )r(s) +

1
n(s) r

Return r

routine UCB-Tuned(s,Z)
for x ∈ Z do
if n(s+ x) == 0 then
Return x

end if
end for

Return argmaxs′∈{s+x|x∈X} X̂s′,n(s′) +
√

ln(t)
n(s′) min{1/4, V̄s′,n(s′)}

Values are attached to each state node and state-action node, and are ex-
ploited by a UCB-like criterion (Auer et al., 2002); they support the choice of
a state-action node from a state node (in step 2). The value of state node st is
updated after each tree walk going through st. In accordance with notations of
section 2.3.3 on multi-armed bandits where UCB is introduced, for the nth tree



4.3. UCT FOR ACTIVE LEARNING 49

walk, let us write Tst(n) the number of times st has been visited. The value
of st is the average of all Tst(n) rewards gathered for leaf nodes sT such that
st ⊆ sT , noted X̂st,Tst

(n). The value of a state-action node st + x is computed
similarly, as the average of rewards obtained from each tree walk going through
st + x.

The arm selected is the one maximizing the sum of the empirical reward
X̂st,Tst

(n) (exploitation term), plus an exploration term depending on the num-
ber of times that arm st has been selected. The exploration-exploitation tradeoff
is adjusted via an upper bound on empirical variance V̄st,Tst

(n) (section 2.3); the
formula for choosing the next state-action node (i.e. choosing an instance) is
the UCB-tuned formula (equation 2.9):

arg max
s∈children(st)

X̂s,Ts(n) +

√

ln(n)

Ts(n)
min 1/4, V̄s,Ts(n) (4.15)

where children(st) = {st + x|x ∈ X} is the set of state-action nodes that are
children of st. In the multi-armed bandit setting, this formula exhibits good
empirical performance (Auer et al., 2002). Furthermore, although there exist
some sets of probability distributions for arm rewards such that the formula is
suboptimal, slight variations of this formula have been derived (Audibert et al.,
2006; Audibert et al., 2008) that were proved optimal in terms of asymptotic
cumulative regret (i.e. the regret is logarithmic asymptotically), under the as-
sumption that arm rewards are independent random variables (although clearly
this assumption does not hold in the active learning game, no more than in the
game of Go, see Wang and Gelly, 2007).

Remark 4. Section 2.3.3 points out that UCB-like criteria require each arm to
be evaluated once before the selection equation may be used. This raises an
issue in active learning since quite often the instance space X (which is the set
of arms) is continuous. This issue is addressed through the progressive widening
heuristic, detailed in section 4.5.

The memory-wise computational tractability of BAAL is ensured by grad-
ually developing the tree in memory. It is initially made of the root node and
its direct children. During each game simulation, at some point, a node s is en-
countered that is not yet stored in memory, and from here on the game proceeds
randomly. This node is then stored in memory with its child nodes: the next
time it is encountered, the selection among its child nodes will rely on the UCB
formula. Hence, the tree is asymmetrically grown: the subtrees where nodes
have better values will be more developed, since those subtrees will be visited
more often.

BAAL implements the UCT scheme with two specific ingredients. The
DrawHypothesis function selects the surrogate hypothesis h attached to each
tree-walk using billiard algorithms (see below). The ArmSet function (section
4.5) extends UCT to deal with an infinite set of actions (the continuous in-
stance space), using the so-called progressive widening heuristics. BAAL has
four inputs:



50 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

• the probability distribution PH on hypothesis space H (Bayesian setting);

• the initial training set s0;

• the time horizon T ;

• the number N of allowed tree-walks.

Its output is the instance x to be queried next by the active learner.

4.4 Sampling in the Version Space with Billiards

The second ingredient in BAAL is a uniform sampler of the version space; like-
wise, as sampler of the instance space is required by BAAL(unless the learning
problem comes with a predefined pool of instances). This section describes how
a fair and frugal billiard-based algorithm (Ruján, 1997; Herbrich et al., 2001)
is used to sample the instance space and hypothesis space. As already men-
tioned, each tree walk in BAAL is performed by using a hypothesis h sampled
randomly in version space H(s0) to label instances. The focus is on uniform
random selection (i.e. assuming that every hypothesis of the version space has
the same probability of being the target as any other, as often done when we
have no prior knowledge).

The most straightforward sampling algorithm is based on rejection: hypothe-
ses are uniformly drawn in H and rejected if they do not belong to the version
space (that is, if they are inconsistent with the training set s0). The rejection
algorithm is sound: it is guaranteed that its outcome is exactly what a random
uniform draw would output. It can also be adapted to non-uniform measures.
Unfortunately, it is hardly tractable.

Alternative algorithms such as Gibbs sampling or more generally Monte-
Carlo Markov Chains (MCMC) methods involve quite a few free parameters
and might scale poorly with respect to the dimensionality of the search space
and the size of the training set s0.

For this reason a billiard (a.k.a. ray-tracing) algorithm inspired from Ruján
(1997), Ruján and Marchand (2000) and Herbrich et al. (2001) has been used;
it only assumes that the hypothesis space H can be parametrized by Rd. The
experimental validation (section 6.1) considers linear hypotheses for which such
a parametrization is natural; how to go beyond the linear case will be discussed
in the perspectives of the presented work (section 11.3).

Let Ω be a connected subset of Rd, defined by a set of constraints g1, . . . , gn:
Ω = {x ∈ Rd s.t. ∀i ∈ [[1, n]], gi(x) ≥ 0}. Consider a point z ∈ Rd (not
necessarily in Ω) and a direction v ∈ Rd such that ||v|| = 1). Point z is seen as
a ball in a billiard, and moves as follows (4.4):

1. z follows direction v until it meets an active constraint g, i.e. a constraint
that is already satisfied—and that will not be satisfied anymore if the
point goes on in the same direction;



4.4. SAMPLING IN THE VERSION SPACE WITH BILLIARDS 51

2. z “bounces”when it meets such a constraint, i.e. its direction v is changed
to point inside the domain (see below);

3. the trajectory is stopped when the computational resources are exhausted,
that is when its total length reaches some user-defined parameter L, and
the final point is returned.

Algorithm 3 Billiard algorithm, taking as input a set of constraints gi, a
trajectory length L, and returning a final point.

Randomly select z ∈ Rd satisfying at least one (but not necessarily all) con-
straints, and a direction v.
while L > 0 do

//Find the set of satisfied constraints

J = {j; gj(p) ≥ 0}
//Go as far as possible while gj ≥ 0, j ∈ J

λ∗ = sup{λ ≥ 0 s.t. ∀ℓ < λ, ∀j ∈ J, gj(z + ℓv) ≥ 0}
if J = {1, . . . , n} then

(all constraints satisfied)

if L > λ∗ then
//Go until some gi is saturated

p = p+ λ∗~v
L = L− λ∗

else
Return p+ Lv //out of resources

end if
end if
v = symmetric (v, gi) Bounce against gi

end while

It is clear that the set of constraints satisfied by z does not decrease. Hope-
fully, it increases and eventually z satisfies all the constraints. In fact, under a
few regularity conditions on the constraints, a billiard trajectory is ergodic, i.e.
it covers the whole domain W when L goes to infinity (Comets et al., 2009).
Given the law used for rebound (see below), the probability distribution of the
final trajectory point converges toward a specific probability distribution on Ω
when L gets large.

Billiard algorithms have been successfully used in machine learning, for in-
stance to estimate the Bayes classifier in a (high-dimensional) kernel feature
space (Ruján and Marchand, 2000; Herbrich et al., 2001).

Rebound policy

Let gi be the saturated constraint and zi the rebound point. The rebound policy
sets the new direction v followed by z when it reaches zi. This policy deter-
mines to which probability distribution the billiard converges—that is, which



52 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

probability distribution on W is approximated by the distribution of point z
after it has walked a path of length L in the billiard.

Comets et al. (2009) shows that if the so-called Knudsen law is used to
sample the new v at the rebound point, then the billiard algorithm converges to
the uniform probability distribution onW . While the Knudsen law is difficult to
compute, an accurate approximation thereof is obtained by setting the direction
to a unit vector randomly drawn in the half sphere centered on zi and defined
from the hyperplane tangent to gi in zi, as reported by Comets et al. (2009).

4.5 Progressive widening and the integration of

existing active learning criteria

A tree search heuristic called progressive widening has been included to the UCT
engine of BAAL in order to resist over-exploration and deal with continuity
of the action space on the one hand, and to take advantage of existing active
learning criteria, such as Query-by-Committee (Seung et al., 1992), on the other
hand.

UCB requires each arm to be selected at least once for equation 4.15 to
be computed. Therefore, when the number of arms is large with respect to the
number N of simulations, UCB tends to degenerate into pure exploration. UCT
faces the same limitation, and even more so since many arms are considered at
each node of the tree, strongly biasing the search towards exploration.

The progressive widening (PW) technique has been proposed by Coulom
(2007) to handle such cases. The idea is that if Ts(n) is the number of times node
s has been visited so far, then the number of arms that can be considered from s
should be limited to a fraction m of Ts(n) that grows with Ts(n). Empirical and

theoretical studies suggest m = O(n
1/4
s ) (Coulom, 2007; Chaslot et al., 2007;

Wang et al., 2009). In practice, the ArmSet procedure implementing PW in
BAAL (algorithm 2), considers a finite set of options for each node (see below),

and a new option is added to this set whenever ⌊n1/4
s ⌋ is incremented by one.

Typically, a single arm will be explored from the root node in the first fifteen
tree-walks; an additional arm is considered in the sixteenth random walk; UCB
will be used to select among both arms during random walks 16 to 80; a third
arm is considered in random walk 81, etc. How to decide which instance to add
will be addressed below.

The rationale behind progressive widening is that the better (i.e. the more
visited) s, the more careful the investigation of its subtrees should be.

The procedure offers two main advantages (as opposed to e.g. a grid dis-
cretization of the domain):

• the growth of the tree in memory is controlled: children are added slowly,
one by one (instead of adding a complete pool of state-action nodes when
a new state node is stored), and with a focus on more promising parts of
the tree (since the number of children depends on the number of visits);



4.5. PROGRESSIVE WIDENING AND AL CRITERIA 53

• the consistency of the process is enforced provided that any instance can
be selected with non-null probability at any point.

Progressive widening further allows for a seamless integration of existing active
learning heuristics in BAAL.

Integrating active learning criteria in BAAL

The selection of actions (instances) considered at a given time step by ArmSet of-
fers some room for the use of prior knowledge. The simplest selection procedure
is based on uniform sampling of the instance space. This procedure reflects an
agnostic viewpoint, making no assumption about the information held by each
instance.

It must be noted however that BAAL convergence might be delayed (like
other UCT-based algorithms) if the optimal options are considered late during
the search: instances introduced later on are clearly disadvantaged compared to
the earlier, more investigated, instances.

Furthermore, the active learning literature suggests that some selection criteria—
although not optimal—offer generally sound indications in order to select infor-
mative instances (section 3.2). Such criteria can seamlessly be integrated in
BAAL through the progressive widening procedure. Formally, a new instance is
added to ArmSet when it satisfies the considered criterion, instead of being uni-
formly selected in the pool of instances. Note that the use of such criteria does
not assume or require any hints about the target concept and how it actually
labels instances.

4.5.1 BAAL with maximal uncertainty

One such criterion is the maximal uncertainty (MU) criterion, inspired from
Query-by-committee. The version space contains functions of H consistent with
the examples observed so far, suited to approximate h∗. Each instance x splits
the version space in two: the functions labeling x by 1, and those labeling x by
0. A clever active learning heuristic is to find examples separating the version
space the most evenly: the instances for which consistent hypotheses disagree
as much as possible, in other words the maximally uncertain instances. This
criterion has been studied empirically and theoretically; multiple algorithms
enforcing this criterion or related criteria have been proposed (section 3.2).

Query-by-committee (QBC, Seung et al., 1992) algorithms were among the
first ones to look for uncertain samples. In this respect, maximal uncertainty
can be seen as a variation of QBC. QBC works by randomly sampling hypothe-
ses in the version space, and choosing a given instance only if enough hypotheses
disagree about its label, which amounts to looking for “uncertain enough” in-
stances. An analysis of this strategy with a committee of size 2 is for instance
presented by Freund et al. (1997). In the case of larger committees, one can
either set a threshold of minimum disagreement for an instance to be queried, or
rank instances based on the committee disagreement: the top-ranked instances



54 CHAPTER 4. BANDIT-BASED ACTIVE LEARNING

indeed converge to those with maximal uncertainty if the committee size tends to
∞: this is the approach with which BAAL was hybridized, called QBC-BAAL.

Maximal uncertainty is integrated within BAAL as follows. At each node
(training set st) a committee of hypotheses is built by uniformly sampling the
version space of st (using again a billiard algorithm). Whenever a new instance
is to be added to ArmSet, the one maximizing the committee disagreement is
selected.

Maximal uncertainty is an aggressive criterion, thus holding a higher active
learning potential than random progressive widening. In counterpart it leads to
a less diversified sample; whenever the criterion is under-optimal, the limited
exploration will yield poorer performance. It is also more demanding computa-
tionally. Of course, any other appropriate active learning criterion can be used
in BAAL in a similar fashion.

4.6 Chapter Summary

Within this bounded resource setting, active learning was tackled as a rein-
forcement learning problem: find the sampling strategy aimed at minimizing
the overall generalization error for a finite time horizon. This ideal and utterly
intractable formalization leads to the proposed BAAL algorithm: an approxi-
mation of the optimal sampling strategy is learned within a one-player game
setting. BAAL is inspired from an earlier work devoted to Computer Go (Gelly
and Silver, 2007), building upon the tree-structured bandit-based search algo-
rithm UCT (Kocsis and Szepesvari, 2006) and the progressive widening heuris-
tics to deal with a continuous search space (Coulom, 2006; Chaslot et al., 2007;
Wang et al., 2009).



Chapter 5

Batch Active Learning
Bounds

Batch active learning (Hoi et al., 2006; Sugiyama and Rubens, 2008; Hoi et al.,
2009) is the particular case of active learning where the algorithm can query
λ examples simultaneously. Parameter λ, referred to as the batch size, is the
number of simultaneous requests to the oracle. This chapter provides rigorous
bounds on the number of iterations before a given precision is reached for batch
active learning in binary classification, in particular as a function of λ. The first
version of this work was originally published in the proceedings of the twenty-
first European Conference on Machine Learning (Rolet and Teytaud, 2010a).

5.1 Motivation

A motivating example of batch active learning setting is when the oracle is a
computational code, such as in numerical engineering applications: if λ com-
puting units are available, the oracle code can be launched in parallel on the λ
machines. The batch model of complexity only considers the numbers of itera-
tions, which is relevant whenever the computational cost essentially lies in the
calls to the oracle function (expensive oracle). The underlying assumptions are:

1. the cost of the active learning algorithm is negligible w.r.t. the cost of
calling the oracle;

2. at least λ computation units are available.

The quantity of interest when analyzing batch active learning w.r.t. sequen-
tial active learning (i.e. when λ = 1), is the speedup at λ. To define the speedup,
consider a sequential active learning algorithm L, that picks an instance, gets its
label and iterates the process until the objective function is learned well enough.
The number of iterations that L needs to learn a function from F with preci-
sion ǫ and confidence δ is its sample complexity, sc(L, ǫ, δ,F). Let us assume

55



56 CHAPTER 5. BATCH ACTIVE LEARNING BOUNDS

that L can be extended to a batch active learning algorithm Lλ, learning with
batches of examples of size λ. The number of iterations required by Lλ is its
sample complexity sc(Lλ, ǫ, δ,F) divided by λ, since Lλ queries λ instances at
once (note that in most cases, sc(L, ǫ, δ,F) 6= sc(Lλ, ǫ, δ,F)). The speedup at
λ is the ratio of number of iterations of L over the number of iterations of Lλ,
that is λ.sc(L, ǫ, δ,F)/sc(Lλ, ǫ, δ,F).

With respect to this criterion, passive learning—the setting in which in-
stances are selected i.i.d. from the natural input distribution—has a linear
speedup: an algorithm querying λ instances at a time in an i.i.d. fashion is
λ times faster than the sequential algorithm querying 1 instance at each time.
This chapter focuses on a theoretical analysis of the speedup in the case of active
learning.

Batch active learning for classification.

Batch active learning has received less attention than sequential active learning.
Hoi et al. (2006) assesses the information brought by batches of examples via a
criterion based on Fisher information matrix reduction. Guo and Schuurmans
(2008) seeks sets of examples with low uncertainty; this goal, cast as an (NP-
hard) optimization problem, is handled by an approximation algorithm. Both
works provide empirical evidence of the soundness of their strategies. However,
they do not provide any formal proof guaranteeing their behavior. Furthermore,
we are not aware of any theoretical study of the speedup of batch active learning
over sequential active learning, in terms of sample complexity bounds (speedup
is in terms of gain with respect to the number of iterations, see section 5.2).
Clearly, batch active learning cannot reduce the overall number of evaluations
when compared to sequential active learning; the gain relies on the existence of
a parallel oracle, simultaneously labeling a batch of λ instances provided by the
active learning algorithm.

This work was notably motivated by the task of approximating a computa-
tionally heavy numerical code, that require hours or days to compute an out-
come given an input. Specifically, this code developed by nuclear physicists
from CELIA (Center for Intense Lasers Applications), a research laboratory of
the French national institute for nuclear research (the CEA), is concerned with
simulating nuclear fusion ignition through lasers, with a low input dimension (5
to 10).

Although the simulation code is not intrinsically parallelized, using multiple
processors it can be run simultaneously on multiple inputs, for instance on a
single cluster (e.g. a hundred cores), or on a grid (e.g. five thousand cores).
In the first case, outputs were given by batches of 100, and in the second by
batches of 5000. As can be expected, the second requires much more deployment
effort. A main theoretical result of this study is to show that in such a case,
it is not worth wasting time and computational power on using the grid, since
the speedup of using the grid over using the cluster would be quite low. This
result specifically holds for active learning, and would naturally not be true for
passive learning scenarios.



5.2. FRAMEWORK 57

The chapter is organized as follows:

• section 5.2 presents the formal background and notations;

• section 5.3 shows lower bounds on the speedup of batch active learning
using covering and packing numbers;

• section 5.4 symmetrically presents upper bounds, relying on a“speculative
paralellization” algorithm.

The experimental evidence supporting the presented analysis is presented on
chapter 6.

5.2 Framework

A sequential active learning algorithm is a sampler-learner pair L = (A,S). In
the batch case, the sampler noted Sλ should output batches of λ instances; the
batch active algorithm is the pair Lλ = (A,Sλ).

The speedup of a parallel algorithm Lλ over its sequential counterpart L (or
equivalently L1) is the ratio of L’s complexity in terms of number of iterations
(i.e. of batch calls to the oracle) on Lλ’s complexity.

Only deterministic algorithms are considered here: samplers Sλ map S to el-

ements of X λ as opposed to mapping S on a probability distribution of1 (R+)X
λ

.
The framework of batch active learning is presented in algorithm 4. For the sake
of the analysis, we shall use the notion of internal state of algorithm Lλ at it-
eration n, noted In, which reflects the labels associated to examples queried up
to n. A function updateλ describes how this internal state changes after each
batch. Given input domain X , PX is a probability measure on this domain.

As in chapter 4, the realizable assumption is made: the target concept f∗ :
X → {0, 1} is non-noisy and belongs to hypothesis space F ⊂ {0, 1}X . Let
us remind the generalization error ρ(f, f∗) of an approximation f ∈ F of f∗

is defined as PX ({x ∈ X|f(x) 6= f∗(x)}). Remember that Sn,f∗ is the set of
samples generated by sampler S after n steps with target function f∗. Similarly,
Sλ,n,f∗ is the set generated by Sλ.

We assume that the considered concept class F has a finite VC-dimension
D. It is common to consider finite VC-dimension in active learning settings
since the improvement over passive learning is potentially much bigger in this
case (Kulkarni et al., 1993). Indeed, for finite VC-dimension concept classes,
the number of examples required to learn f∗ with precision ǫ, i.e. to find f such
that ρ(f∗, f) ≤ ǫ, is N = Θ(D log(1/ǫ)) in many cases (Balcan et al., 2008).

For a given λ and a given algorithm Lλ, the minimum number of iterations
for reaching precision ǫ is

scm(Lλ, ǫ,F) = min{n ∈ [[0,+∞]]; max
f∈F

ρ(f,A(Sλ,n,f )) < ǫ}

1The lower bounds can nonetheless be extended to stochastic cases within logarithmic
dependencies on the risk δ (i.e. case with confidence 1− δ). Precisely, the sample complexity
is increased by a factor O(log(1/δ)) if we request that the algorithm finds the solution with
probability 1− δ. Upper bounds can also be extended to the stochastic case.



58 CHAPTER 5. BATCH ACTIVE LEARNING BOUNDS

Algorithm 4 Batch active learning algorithm Lλ.

Given I0 the initial state // Global state of the algorithm
Parameter Batch size λ, the number of visited points per iteration.
n = 0
repeat
fn = A(Sλ,n,f∗)
(xnλ+1, . . . , xnλ+λ) = Sλ(Sλ,n,f∗)
for i ∈ [[1, λ]] do
ynλ+i = f∗(xnλ+i) // label λ instances at once

end for
In+1 = updateλ(In, xnλ+1, . . . , x(n+1)λ, ynλ, . . . , y(n+1)λ)
n++

until Computational budget exhausted
Return A({(x1, y1), . . . , (xnλ, ynλ)})

in accordance with the minimax sample complexity defined in section 2.1.2. The
smallest achievable number of iterations for any algorithm is then

scmλ(ǫ,F) = inf
Lλ

scm(Lλ, ǫ,F)).

Although scmλ depends on the considered function class F , it will be noted
scmλ(ǫ) when no confusion is to fear. Let M(ǫ,F) be the ǫ-packing number of
F , i.e. the maximum number of hypotheses in F with pairwise distance ρ at
least ǫ, see section 3.1.5. In the sequel, unless stated otherwise, we will assume
that there exists constants C and M such that the log-packing numbers of target
function class F are at least −CD log(ǫ/M). Formally,

∀ǫ,M(ǫ,F) ≥ (M/ǫ)(C×D). (5.1)

The product C ×D in equation 5.1 stems from many results emphasizing some
constant C, and the VC-dimension D (Dasgupta, 2006), such as, for example,
the well-known case of homogeneous linear separators 2 of the sphere with ho-
mogeneous distribution (Freund et al., 1997; Dasgupta et al., 2005; Balcan et al.,
2007), in which case D is equal to the dimension of the domain. In this chapter,
D always refer to the VC-dimension of the considered function class.

5.3 Lower Bounds

Equation 5.1 leads to (see Kulkarni et al., 1993; Vidyasagar, 1997):

scm1(ǫ) ≥ ⌈CD log(M/ǫ)⌉. (5.2)

Equation 5.2 states a lower bound on the sample complexity of active learn-
ing, and has the following consequence (which is a lower bound on the sample

2that is, linear separators whose value in the null vector is 0



5.3. LOWER BOUNDS 59

complexity of batch active learning):

scmλ(ǫ) ≥ ⌈CD log(M/ǫ)/λ⌉ (5.3)

When λ calls to the oracle are launched in parallel, equation 5.3 provides a
straightforward lower bound with linear speedup, which is the ultimate limit for
batch active learning (as good as passive learning speedup). A first contribution
is to show a more stringent lower bound, log-linear in the speedup, by extending
equation 5.2.

Theorem 2 (Lower bound for batch active learning). If F has VC-dimension
D and packing numbers satisfying

M(ǫ,F) ≥ (M/ǫ)C·D, (5.4)

then the following holds for λ > 1:

scmλ(ǫ) ≥ CD log(M/ǫ)/ log(K) (5.5)

where K = λD if D ≥ 3, λD + 1 if D ≤ 2 , i.e.

scmλ(ǫ) ≥ C log(M/ǫ)/(log(λ)). (5.6)

Remark. K is an upper bound on the number of possible classifications of
λ points, given a class of function with VC-dimension D. K = λD stems from
Sauer (1972). K is exponential in D, but finite, thanks to the finite number of
possible classifications of λ points when the VC-dimension is D. Having this
upper bound on the number of reachable states for one batch, the number of
possible branches in a run of the algorithm can be bounded accordingly.

Proof. Consider an algorithm realizing scmλ(ǫ).
As the sampling algorithm is deterministic, there is one and only one possible

value for the λ-uple (x1, . . . , xλ), independently of f :

(x1, . . . , xλ) = Sλ(∅).

Thanks to the finite VC-dimension and to Sauer’s lemma, there are at most
K possible values for y1, . . . , yλ; therefore there are at most K possible values for
internal state I1 (since the sampling algorithm is assumed to be deterministic).

Similarly, for each possible value of I1, there are at most K possible values
for I2; therefore the total number of possible values for I2 is at most K2.

By induction, there are at most Ki possible values for Ii. After scmλ(ǫ)
iterations, each possible state Iscmλ(ǫ) corresponds to a function learned with
λscmλ(ǫ) examples. Since the algorithm realizes the bound scmλ(ǫ), for any
2 oracle functions distant of ǫ or more, the algorithm must have 2 different
states. Thus, the final number of states is at least as big as the packing number:
Kscmλ(ǫ) ≥M(ǫ,F). As a consequence,

scmλ(ǫ) ≥ log(M(ǫ,F))/ log(K). (5.7)

Equations 5.7 and 5.4 yield the expected result.



60 CHAPTER 5. BATCH ACTIVE LEARNING BOUNDS

5.4 Upper Bounds via Speculative Paralleliza-

tion

The next result shows that this bound is tight, at least asymptotically (λ→∞).

Theorem 3 (Upper bound for batch active learning). With the notations of
algorithm 4, assume F has VC-dimension D. Let K = λD + 1, b ≥ 1 and

λ′ = λ
Kb − 1

K − 1
. (5.8)

Then the following holds:

scmλ′(ǫ) ≤ ⌈scmλ(ǫ)/b⌉ (5.9)

Remark. Equation 5.9 leads to

scmλ′(ǫ) = O (⌈scmλ(ǫ)/ log(λ
′)⌉) (5.10)

for fixed b and λ. This is a logarithmic speedup: see for instance that if λ = 1,

then ∀n, scm2n(ǫ) = O( scm1(ǫ)
n )

Proof. The proof exhibits an algorithm realizing equation 5.9. Consider an
algorithm Lλ = (A,Sλ) realizing scmλ(ǫ) and consider some b ≥ 1. Define

λ′ = λKD−1
K−1 . Consider, then, another algorithm Lλ′ = (A,S′

λ) which generates
λ′ points by simulating Lλ on b steps; if Lλ has nth internal state In, then Lλ′

has nth internal state I ′n = IDn. At each iteration:

• Sλ′ simulates the Kb possible internal paths

(Ibn, Ibn+1, . . . , Ibn+b)k with k ∈ [[1,Kb]] (5.11)

and generates for each iteration all the λ′ points visited in any of those
paths. At state Ibn, λ points are to be labeled. Then, there are K possi-
ble states Ibn+1 resulting in Kλ other points. Repeating the process for
Ibn+2, . . ., one can see that λ′ as in equation 5.8 is enough;

• the target f is computed at these λ′ points. It is then possible to figure out
which path among the Kb possible paths is the one that would actually
have happened during b steps of L;

• updateλ′ is the result of updateλ for the path selected by Sλ′
3;

• the output of A(Sλ′,n,f ) is the output of A(Sλ,n,f ) on the λ points visited
in the selected path.

3Therefore, only bλ points are actually used among the λ’ labeled points



5.4. UPPER BOUNDS VIA SPECULATIVE PARALLELIZATION 61

Note that most points which the target value has been computed are dis-
carded in Sλ′,n,f . While discarding them is useful to establish the tightness of
the bounds (equation 5.10), it is clear that in real world applications, we should
rather keep all labeled points. Nevertheless, theorem 3 shows that keeping them
only improves the asymptotic speedup by a constant factor.

Equations 5.6 and 5.9 show that log(λ) is the optimal speedup when no
assumption on λ are made: theorem 3 shows that in all cases, a logarithmic
speedup is achievable and Theorem 2 shows that we cannot do much better for
λ large. The rate of batch active learning is therefore at least logarithmic in λ,
and for λ large enough at most logarithmic. From the passive case, it is clear
that even with small λ the speedup is at most linear.

The remaining question is what happens for moderate values of λ, and in
particular if the dependency in D can be removed by asking sufficiently many
simultaneous queries.

A third result is that λ = D leads to a nearly linear speedup for some
hypothesis space F . This removes the dependency inD in runtimes—this means
that the curse of dimensionality can be broken with a batch size of D, whereas
λ > D will only provide a logarithmic speedup eventually.

Being reminded that a binary hypothesis on X can be seen as a subset of
X , we map by convention each hypothesis f of F to a set X of X such that
X = {x| f(x) = 1}.

Theorem 4 (Linear speedup until λ ≤ D). Given any D > 0, consider FD =
{[0, x], x ∈ [0, 1]D}. Then, for some M > 0,M ′ > 0, C > 0, C′ > 0 independent
of D,

∃ǫ0, ∀ǫ < ǫ0, scm
FD

1 (ǫ) ≥ CD log(M/ǫ) (5.12)

and

∃ǫ0, ∀ǫ < ǫ0, scm
FD

D (ǫ) ≤ C′ log(M ′/ǫ). (5.13)

One can check that the VC-dimension of FD is D. Equations 5.12 and 5.13
state the linear speedup for batch active learning with λ = D for this family of
functions (within constants C and C′).

Proof. We first show that the following holds:

∃C > 0, ∀D, ∃ǫ0, ∀ǫ < ǫ0,M(ǫ,FD) ≥M/ǫ(C×D). (5.14)

Equation 5.14 is a version of equation 5.1 modified for considering only ǫ small;
it is weaker than equation 5.1 and sufficient for our purpose.

Equation 5.14 is proved as follows:

• Let us give a lower bound on the packing number of FD. First, notice that
there is a one-to-one mapping between sets [0, x] of FD, and elements x of
[0, 1]D: FD can be mapped to [0, 1]D. We will now prove a lower bound
on the packing numbers of [ 12 , 1]

D, which is also a lower bound on [0, 1]D

and thus on FD



62 CHAPTER 5. BATCH ACTIVE LEARNING BOUNDS

• For x and y in [ 12 , 1]
D, the L1 distance between [0, x] and [0, y], which

is the generalization error between the two corresponding hypotheses, is
lower bounded by ||x− y||1.

• Consider a grid of edge 2ǫ in [1/2, 1]D: it contains Θ(1/ǫD) points. Each
point of this grid corresponds to a hypothesis of FD, and any two hy-
potheses [0, x] and [0, y] of the grid will have a generalization error of at
least ‖x− y‖1 ≥ ǫ. Thus, the ǫ-packing number for the hypothesis subset
corresponding to [1/2, 1]D is at least Θ(1/ǫD): this is a lower bound for
the packing number of FD.

• This shows equation 5.14 for C = 1.

Then, equation 5.14 classically leads to equation 5.12, using the same proof
as that of equation5.2 from equation 5.1 (section 5.3). This result establishes
equation 5.12.

Let us now prove equation 5.13, by considering the following algorithm de-
scribed at iteration n, with λ = D:

• Sλ prepares the batch (xnλ+1, . . . , x(n+1)λ) as follows: for each xnλ+i, all

coordinates j 6= i are set to 0. The ith coordinate of xnλ+i is chosen by
looking at the n − 1 previous points in position i of each of the n − 1
previous batches. It is defined as the middle of the segment defined by the
lowest previously-observed ith coordinate whose label is 0, and the highest
previously observed ith coordinate whose label is 1. More formally: 4

(xnλ+i)i =
1

2

(

min
n′≤n
{(x′

n′λ+i)i|y′n′λ+i = 0}

+ max
n′≤n
{(x′

n′λ+i)i|y′n′λ+i = 1}
)

. (5.15)

• A selects any function fn ∈ FD which is consistent with x1, . . . , xnλ.

At a given iteration n each point xn,i of the batch of size λ makes sure that
the domain will be halved along the ith coordinate. Thus, after N iterations,
it is known that the target oracle/classifier is in a square of edge size 2−N . As
a consequence, precision ǫ is reached in at most Θ(log(1/ǫ)) iterations, which
shows equation 5.13.

This theorem shows that, at least for F as above, we can have a linear
speedup until λ ≤ D; this result establishes the tightness of equation 5.3 for
λ ≤ D—similarly to the tightness of equation 5.6 (i.e. logarithmic speedup)
shown by equation 5.10 for λ large.

4In equation 5.15, if no point xn′λ+i has been labeled as 0, the minimum is set to 1;
equivalently, if no point has been labeled as 1, the maximum is set to 0.



5.5. CHAPTER SUMMARY 63

5.5 Chapter Summary

It has been shown that batch active learning exhibits:

• a linear speedup until λ = D for some families of target functions;

• a speedup at least logarithmic in all cases;

• and a logarithmic speedup at most for λ large.

Please note that the logarithmic speedup is a speculative parallelization result.
The point is not to analyze the convergence rate of active learning in general,
but to emphasize that any active learning algorithm can be transformed into a
batch active learning algorithm (with λ computation units) which simulates it
with speedup b, where b is logarithmic as a function of λ.



64 CHAPTER 5. BATCH ACTIVE LEARNING BOUNDS



Chapter 6

Experiments

The two claims made in chapters 4 and 5 regarding the learning of expensive
functions are confronted to experimental evidence in this chapter.

Chapter 4 proposed a formalization finite horizon active learning as a Markov
decision process. The claim is that a sound and theoretically tractable method
can approximate the optimal learning strategy with arbitrary precision. A proof
of principle of this claim is made in section 6.1 by applying different versions of
BAAL to linear separators, and comparing it to a variation of the classic QBC
algorithm.

Chapter 5 establishes two results:

1. the gain provided by parallelizing the oracle (batch active learning) is
asymptotically small (logarithmic in λ);

2. the gain can be high (linear in λ) for a low degree of parallelization (same
order as the VC-dimension).

Section 6.2 provides some simple experiments with two active learning algo-
rithms that confirm this trend.

6.1 BAAL Experiments

This section reports on the experimental study of BAAL. After describing the
experimental goal and setting, empirical results are discussed comparatively
to random active learning (passive learning), and a variation of the Query-by-
Committee (QBC) approach (Seung et al., 1992; Freund et al., 1997).

6.1.1 Goal of experiments

The main questions investigated in the experiments regard the theoretical and
computational performance of BAAL. Specifically:
Question 1 (Optimality): Does the stand-alone BAAL, where the progressive

65



66 CHAPTER 6. EXPERIMENTS

widening heuristics involves a uniform instance selection, converge to an opti-
mal strategy; does it match maximal uncertainty results when these are known
to be quasi-optimal under certain conditions (Dasgupta, 2005)?
Question 2 (Flexibility): As shown in section 4.5, BAAL can embed existing
active learning criteria, e.g. QBC, within the progressive widening heuristics.
Does the use of QBC within BAAL improve i) on stand-alone BAAL ? ii) on
stand-alone QBC?
Question 3 (Tractability): Does BAAL yield good enough results on a reasonable
computational budget? In this respect, it is hoped that billiard algorithms allow
for better time complexity and scalability than straightforward approaches such
as reject.

6.1.2 Experimental setting

Following various works on active learning (Freund et al., 1997; Dasgupta et al.,
2005; Balcan et al., 2007), the instance space X considered in these experiments
is the unit sphere of Rd.

The hypothesis space H is restricted to linear classifiers, a.k.a. separating
hyperplanes. The choice of this search space is motivated by the fact that it
has been thoroughly studied from a theoretical perspective (Freund et al., 1997;
Dasgupta et al., 2005; Balcan et al., 2007) although these results did not lead
to experimental studies to the best of the author’s knowledge. Accordingly,
there are many hints at upper and lower bounds regarding the optimal sample
complexity in this case, that will be used to assess BAAL performance. The
goal of this experimental study is to provide a proof of principle regarding the
validity of this new active learning approach; still, it must be emphasized that
BAAL is not limited to linear hypothesis spaces (a kernelized extension will be
discussed in section 11.3).

Two variants of BAAL will be considered. BAAL stand-alone (or BAAL
for short), uses a uniform selection of instances within progressive widening,
whereas QBC-BAAL uses a committee-based selection of instances. More pre-
cisely, in each node (training set st), a committee of 100 hypotheses uniformly
selected in H(st) is built, and a set of 10, 000 instances uniformly drawn from
X is sampled and ordered by the committee disagreement.

Whenever a new action is to be considered (i.e. ⌊n(st)1/4⌋ is increased by
one, according to section 4.5), the first instance not yet considered in the ordered
set is returned by ArmSet.

A hypothesis h is represented by the unit vector wh normal to its separating
hyperplane (wh ∈ Rd, ||wh||2 = 1): h(x) is positive if and only if the dot
product wh.x is positive. The lack of prior knowledge is accounted for by setting
distribution PH to the uniform distribution on the unit sphere of Rd.

A run of BAAL proceeds as follows:

1. The target concept h∗ is uniformly selected in H.



6.1. BAAL EXPERIMENTS 67

2. For t = 0 to T , where T is the horizon time and the initial training set s0
is empty:

(a) The game tree rooted on st is constructed using N game simulations
(tree walks), respectively using an instance pool ordered randomly
(for BAAL) or via maximal uncertainty (for QBC-BAAL) in the pro-
gressive widening heuristics;

(b) The best instance, i.e. the most visited one at the first level of the st
rooted tree, noted xt+1, is selected and labeled by the target concept
(oracle) h∗;

(c) st+1 = st ∪ {(xt+1, h
∗(xt+1))}.

3. From sT , the T -size training set built by BAAL (or QBC-BAAL) and
labeled by the current target concept h∗, a hypothesis hT is learned.

4. The performance of the run, that is, the generalization error ρ(h, h∗) de-
fined as PX (h∗(x) 6= h(x)) is computed: in this case, it is simply the dot
product of vectors wh and wh∗ .

At each run, hypothesis hT is learned by learning algorithm A. Note that this
learning algorithm is already called in BAAL each time to compute a reward
when reaching a leaf node, by learning from a “surrogate hypothesis” associated
to the tree walk (section 4.3, algorithm 2, routine tTree-walk). This algorithm
was originally set to uniformly pick a hypothesis from version space H(sT ).
It was thereafter modified taking inspiration from Herbrich et al. (2001), to
compute and return the center of mass of the version space. This learning
algorithm, referred to as Bayes point machine, was reported to outperform the
canonical SVMs by Herbrich et al. (2001). In the following, the Bayes point
machine is used as learning algorithm.

BAAL and QBC-BAAL performances are averaged over 400 independent
runs for each 3-uple (d, T,N) (dimension, time horizon, simulation number).
The number N of simulations, controlling the computational cost, ranges in
the powers of 2: N ∈ {1, 2, 4, . . .212}. The reported experiments consider
(d = 4, T = 15) and (d = 8, T = 20) to assess the scalability of the approach.
The performance is plot against the number N of tree-walks on figures 6.1
and 6.2, indicating the average performance (plain line) and the standard de-
viation (vertical bars). The performance of BAAL stand-alone (respectively
QBC-BAAL) is assessed comparatively to the passive learning (resp. the QBC
greedy active learning) baseline. The baseline performances correspond to those
obtained for N = 1. Actually, BAAL can be viewed as an algorithm providing
an “educated” sampling strategy, where the “educated sampler” is based on a
computational budget of N simulations; the baseline, non-educated and uniform
sampler, accordingly corresponds to N = 1.

6.1.3 Performance and scalability

Figure 6.1 displays the overall performance of stand-alone BAAL versus the
computational budget N (in log scale).



68 CHAPTER 6. EXPERIMENTS

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

(a) d = 4, T = 15, stand-alone BAAL

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10

(b) d = 8, T = 20, stand-alone BAAL

Figure 6.1: Experiments on stand-alone BAAL: Generalization error vs the
number of simulations N in log scale. Plot (a) reports the results obtained for
instance space dimension d = 4 and time horizon T = 15; plot (b) report the
results for d = 8, T = 20. The performance of the baseline correspond to the
performance obtained for N = 1 (at the origin of the curve). The horizontal
line reports the results obtained for the stand-alone QBC (with a committee of
size 100) strategy.

The competence of BAAL in terms of Active Learning is visible as stand-



6.1. BAAL EXPERIMENTS 69

alone BAAL strongly outperforms the passive learning baseline (N = 1): the
generalization error significantly decreases as N increases. For a given com-
putational budget N , the improvement on passive learning is higher in small
dimension, as could have been expected. Nevertheless, the improvement is sig-
nificant both in dimensions 4 and 8 even for a small computational budget
(N ∼ 26).

The performance of stand-alone BAAL is further assessed by comparison
with that of a stand-alone QBC using a committee of size 100. Freund et al.
(1997) and Dasgupta (2005) show that the the maximal uncertainty heuristics
(approximated by a QBC selection with large committee) is almost optimal,
up to logarithmic terms, in the linear setting. It is thus satisfactory to see
that stand-alone BAAL steadily approaches the QBC reference performance.
Since this reference is only quasi-optimal, it is not inconsistent that BAAL
can even outperform the QBC reference in dimension 8 when the number of
simulations gets larger: by construction, it is designed to converge to the actual
optimum. These results suggest a positive answer to the Optimality question
(section 6.1.1): stand-alone BAAL is a competent, criterion-agnostic Active
Learner, which might work well in the absence of prior knowledge about the
instance selection, and which matches the known optimal performance in a
simple hypothesis space.

Another picture is provided by the performance of QBC-BAAL (figure 6.2),
suggesting that QBC-BAAL can get the “best of both worlds”. In dimensions 4
and 8, QBC-BAAL outperforms the QBC baseline in a statistically significant
way; it overcomes the theoretical limitations of QBC with regards to optimality
1. These results suggest a positive answer to the Flexibility question (section
6.1.1): BAAL can be efficiently hybridized with the QBC criterion, and the
hybrid QBC-BAAL improves on both stand-alone BAAL and stand-alone QBC
in this simple setting. The significance of this result comes from the fact that
maximal uncertainty approaches are among the most widely used criteria in the
active learning literature; further research will investigate the incorporation of
other active learning criteria within BAAL.

The QBC baseline presented here is the one with a committee of size 100
embedded in BAAL. Since maximal uncertainty is quasi-optimal in the linear
separator setting, it is obvious that using a small committee (e.g. of size 2 as
in the work of Freund et al., 1997) would have resulted in poorer generalization
error for the same sample complexity. On the other hand, simple experiments
(not presented here) performed with committee sizes of 103, 104 and 105 did not
provide a significant improvement (relatively to the results presented here) over
the committee size of 100, which is why this committee size is referred to as a
baseline.

1w.r.t. the optimal sample complexity in dimension d, QBC’s complexity is approximately
O(log(1/ǫ) ∗ d) times larger.



70 CHAPTER 6. EXPERIMENTS

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0 1 2 3 4 5 6 7 8 9

(a) d = 4, QBC-BAAL

0.095

0.1

0.105

0.11

0 1 2 3 4 5 6 7 8 9

(b) d = 8, QBC-BAAL

Figure 6.2: Experiments on QBC-BAAL: Generalization error vs the number
of simulations N in log scale. The committee size in each node is set to 100.
Complementary experiments with a 10000-hypothesis committee do not show
significant improvement over a 100-hypothesis committee.

6.1.4 Computational cost and tractability

The main computational cost incurred by BAAL comes from the selection of
the hypothesis in the version space of the current training set (last algorithm
step in BAAL, learning a hypothesis from sT ).



6.2. BATCH ACTIVE LEARNING EXPERIMENTS 71

Dim. d Horizon T Reject Billiard
4 10 9s 4s

20 1h10m 14s
8 10 30s 6s

20 >3h 17s

Table 6.1: Computational cost of Stand-alone BAAL (with N = 16, 000 tree-
walks): reject-sampling and billiard-sampling selection of hypotheses for dimen-
sion d = 4 and d = 8, time horizon T = 10 and T = 20.

The first heuristics used to sample the version space was a rejection-based
sampling: uniformly drawing h in H, until h belong to H(sT ). However, when
active learning is successful, the size of the version space decreases exponentially
fast, adversely affection the rejection heuristic.

This heuristics has been replaced by a billiard-based sampling of the version
space (section 4.4). Without downgrading the performance, the billiard-based
sampling reduces the computational cost by several orders of magnitude (table
6.1), and features an outstanding scalability with respect to the dimension d of
the search space.

The billiard-based sampling of version spaces thus supports a computation-
ally efficient active learning with BAAL. It is expected that, even in larger
dimensions, the computational cost will remain negligible compared to the cost
needed to label the instances. Let us remind that for targeted application
domains such as numerical engineering, the cost of labeling an instance (e.g.
checking whether some mechanical design parameters will enforce the device
compliance with the desired requirements, using finite element methods) might
require several days of computation on high-performance computers.

6.1.5 Conclusion

The experimental validation of BAAL investigates three main questions: the
convergence towards the optimal performance when it is known; the ability to
take advantage of competent active learning criteria, such as maximal uncer-
tainty (Freund et al., 1997), and improve on the greedy use of these criteria;
the computational tractability of the overall active learning scheme. The ex-
periments discussed in the paper show that the answer to all three questions is
positive in the simple case of a realizable setting with linear hypotheses.

6.2 Batch Active Learning Experiments

As far as the instance labeling step can be parallelized in a simple way, batch
active learning has been considered in chapter 5 providing both lower and upper
bounds on the iteration gain needed to reach a given precision. This section
presents experiments with both a simple and a more sophisticated AL algorithm,
supporting the tightness of the established bounds.



72 CHAPTER 6. EXPERIMENTS

6.2.1 Experiments with naive active learning

A simple batch active learning algorithm for F = {[0, x];x ∈ [0, 1]d} (VC-
dimension D = d) is experimented here. The new instances xnλ+1, . . . , x(n+1)λ

are uniformly drawn in the uncertainty region. Formally:

V = {x ∈ [0, 1]d; ∀j ∈ [[1, nλ]]yj = 0⇒ ¬(xj ≤ x)}

∩{x ∈ [[0, 1]d; ∀j ∈ [[1, nλ]]yj = 1⇒ xj ≤ x}.
Note that this parallel algorithm is straightforward to derive from its se-

quential counterpart that queries one random sample from the version space at
each iteration. This is not true of all active learning algorithms: in many cases,
it is not clear how to efficiently turn a sequential active learning into a parallel
one.

For each batch parameter λ(on the X-axis), figure 6.3 reports the inverse of
the number of iterations for reaching precision 0.001d2, depending on λ (on the
Y-axis), thus displaying rates of convergence. Each point is averaged over 33
runs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20  25  30

ra
te

 (
1/

nb
 it

er
at

io
ns

)

batch size

Rates for reaching precision 0.001xD2 in batch AL in dim D

dim 1
dim 2
dim 3
dim 5

Figure 6.3: speedup of batch active learning for a simple active learning algo-
rithm (see text).

6.2.2 Experiments with maximal uncertainty

This part of the experiments is concerned with a straightforward adaptation of
the classical active learning heuristic called maximal uncertainty (introduced in



6.2. BATCH ACTIVE LEARNING EXPERIMENTS 73

4.5.1) to the batch setting. The idea is to choose the most uncertain examples,
meaning the ones for which many approximations of the target function that
are still good candidates disagree on the label.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0  10  20  30  40  50  60  70

1/
ru

nt
im

e

batch size

1/runtime for batch AL (max uncertainty)

dim 2, precision 0.0001
dim 4, precision 0.0016
dim 6, precision 0.0081
dim 8, precision 0.0256

Figure 6.4: speedup of batch maximal uncertainty active learning.

Experiments learn homogeneous linear separators of Rd, where examples lie
on the hypersphere Sd−1 for dimensions d = 2, 4, 6, 8. As mentioned earlier,
this setting has been widely studied for sequential active learning (Balcan et al.,
2007; Dasgupta et al., 2005; Freund et al., 1997) and is therefore well suited to
a speedup analysis for the batch setting.

In such a setting, for d > 2, an infinite number of points of the hypersphere
maximize the uncertainty given previously witnessed instances (note that there
would only be a single point maximizing uncertainty for d = 2). Hence, a
relevant batch active learning strategy consists in selecting λ of those points
maximizing uncertainty, at each iteration. In contrast with the simple batch
active learning of section 6.2.1, this strategy is not necessarily the most efficient
w.r.t. the batch setting; we shall see however that it still provide significant
speedups.

Batch sizes are λ = 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64. Precision is set to
0.0001(d/2)4. For each (d, λ), the rate are averaged over 160 runs.

6.2.3 Interpretation

In both cases, the results resemble the expected behavior: a steady (linear)
speedup for small batch sizes, when λ < d (where d is the dimension), and



74 CHAPTER 6. EXPERIMENTS

a slow, logarithmic-like speedup when λ becomes much bigger than d. These
results suggest that the parallel gain can be linear in high dimension and low
parallel factor, although it asymptotically goes down to a logarithmic factor.

Remarks

• It was pointed out that the instance maximizing uncertainty is unique
in the case d = 2, and therefore any batch should consist of the same
point λ times. However, figure 6.4 still shows a small improvement when
the batch size increases. This is because the computation of the maximal
uncertainty relies on stochastic approximations: the batches consist of
many points that are slightly different, and thus still bear a little bit more
information than only one point.

• The behavior of the speedup for values of λ in-between D and λ large,
although depicted in the experiments, was not studied theoretically. It
might be that the speedup can remain good even for a while when λ > D—
but asymptotically it will end up in a logarithmic improvement.

• The rates for high dimensions seem low (although linear) on the first
figure, while they seem higher in the second. This is due to the fact that
the precision to be reached is bigger in the second figure than in the first,
in an attempt to be more “fair” to high dimensions—since for a given
number of examples, a concept is harder to learn if the dimension of the
domain is higher.

Perspectives regarding the work presented in this part will be discussed in
the concluding chapter (chapter 11).



Part III

Optimizing Expensive
Functions

75





Chapter 7

Background and framework

This chapter lays down the formal background related to expensive optimiza-
tion. Optimization, formerly known as mathematical programming, has been
a research topic for ages. The first section of this chapter introduces some
definitions with respect to the various kinds of optimization approaches, and
situates the present work on optimizing expensive noisy functions. Most specif-
ically, sections 7.2, 7.3 and 7.4 respectively introduce estimation of distribution
algorithms, noisy optimization and races techniques.

7.1 Black-box Optimization

This section aims at situating the presented work within the broad field of opti-
mization, referring the reader to e.g. Boyd and Vandenberghe (2004); Bertsekas
and Bertsekas (1999) for a comprehensive presentation of the optimization field.

Vocabulary

Optimization problems are most generally formalized as the search of an opti-
mum of a function f : X → Y ⊂ R, where f is commonly referred to as objective
function, fitness function, or fitness landscape. We can assume that the opti-
mization problem considered in the following is a minimization one without loss
of generality. Possible locations of the optimum are called candidate solutions,
or simply points. Many optimization problems are constrained: although a set
X represents the input space, the optimum is only sought for on points that
satisfy a number of constraints. Those points form the feasible region (or fea-
sible set, or search space, or solution space). Given a fitness f : X → Y, the
optimum sought for in X is often written x∗ (although it may not be unique).

Performance measure

The performance of an optimization algorithm in continuous optimization is
most often expressed by means of distances defined on domain X or on values

77



78 CHAPTER 7. BACKGROUND AND FRAMEWORK

Y. The most common measure in optimization is the distance to the optimum

ρ(x, x∗) = ‖x− x∗‖
where ‖.‖ is most commonly the L2 norm or the L1 norm on X ⊂ Rd. Another
classic measure is the distance in terms of fitness value

ρ(x, x∗) = ‖f(x)− f(x∗)‖
where ‖.‖ is a norm on Y.

Problem categories

One classically distinguishes continuous and discrete optimization depending
on the structure of the input space. Discrete optimization deals with objectives
for which the optimum is sought among a countable number of candidate solu-
tions. Conversely, continuous optimization is concerned with finding real-valued
solutions, where X ⊂ Rd.

Discrete optimization consists in integer programming, in which the domain
is continuous but only integer solutions are considered, and combinatorial opti-
mization in which the domain itself is countable, and has a particular structure,
such as a partial order—since otherwise only exhaustive search can lead to the
optimum.

Only continuous optimization will be considered in the following. One char-
acteristic particularly relevant to continuous optimization algorithms is the con-
vexity of the objective function, since it guarantees the uniqueness of the min-
imum. The particular case of (twice) differentiable deterministic functions is
addressed by many studies (see for instance Boyd and Vandenberghe, 2004),
and will not be considered in the following1

In this manuscript, though, the focus is on noisy (stochastic) fitness func-
tions, related to a rugged fitness landscape. Optimization algorithms designed
for smooth objectives do not apply to noisy objective functions.

Therefore, derivative-free techniques are better suited to noisy optimiza-
tion. While those techniques originally aimed at non-differentiable functions
(for instance subgradient methods, which are a generalization of gradient de-
scent), they have also been used for noisy optimization (Beyer, 1998). Many
derivative-free algorithms, including genetic algorithms, can be viewed as EDAs.

7.2 Estimation of Distribution Algorithms

Genetic algorithms (resp. evolution strategies) have been designed to handle
ill-posed combinatorial problems (resp. continuous problems). Therefore, we

1For instance, quadratic convex optimization problems can be solved quite efficiently: there
is a well-known analytic form for the solutions that can be approximated even for high dimen-
sional domains. Generally, for finding local optima of twice-differentiable functions, second-
order methods (e.g. Newton’s method or quasi-Newton methods such as BFGS) are quite
efficient. If there are linear constraints, first-order methods (interior point, Frank-Wolfe algo-
rithm) may be used.



7.3. NOISY EXPENSIVE OPTIMIZATION SOA 79

will first present evolutionary search algorithms before introducing estimation
of distribution algorithms.

An evolution strategy (ES) is defined on R
d. An instance of X ⊂ R

d is
referred to as an individual, the coordinates of which are called genes. An
ES generates a population of solutions of size µ. From the population, λ new
individuals, the offspring, are created via variation operators: the mutation
operator modifies one or several genes of an individual, the crossover operator
combines some genes of two or more individuals. Some new individuals may
also be picked from the domain. From here on, the µ best individuals (ranked
according to their fitness values) are selected either from the offspring of size λ
(called (µ,λ)-ES) or from the offspring and the parent population of size µ+ λ
(called (µ+λ)-ES). The process is then repeated with the newly obtained µ-sized
population.

In estimation of distribution algorithms, the variation operators are replaced
by drawing individuals from a probability distribution. These individuals are
evaluated, ranked, and the µ best ones are used to update the probability dis-
tribution (algorithm 5).

Note that EDAs generalize evolution strategies: probability distribution P
(t)
X

that routine evol outputs can be any discrete generative model, and can therefore
represent any variation operator.

Also note that such algorithms only involve the rank of instances, as opposed
to the actual fitness values; such algorithms, invariant through any monotonous
transformation of the objective function, are referred to as comparison-based.

7.3 State of the Art in Noisy Expensive Opti-

mization

This section briefly summarizes the state of the art in noisy optimization and
expensive optimization, with an emphasis on EDA analysis.

7.3.1 Expensive optimization

In expensive optimization settings, one can usually neglect the internal cost of
the optimization algorithm, and can consider only the number of fitness evalu-
ations. In particular, the computational cost of related optimization algorithm
might be rather high, though negligible with respect to the fitness computation
cost.

Efficient Global Optimization (EGO,Jones et al., 1998) and Informational
Approach to Global Optimization (IAGO,Vazquez et al., 2008; Villemonteix
et al., 2008) are examples of such algorithms. They assume a Gaussian prior on
the fitness function; most specifically, they assume that the fitness function can
be approximated accurately by a Gaussian Process. Although no theoretical
proof of convergence towards the global optimum is provided, their empirical
behavior is quite good in particular with respect to local optima. Their main
limitation is a poor scalability with respect to the dimension of the search space.



80 CHAPTER 7. BACKGROUND AND FRAMEWORK

Algorithm 5 Evolutionary search and estimation of distribution algorithms.
P(t) denotes the population (set of points of domain X ) at time t.

(µ+λ)-ES

Given Operator mutation(S) generating m ∈ [[0, λ]] instances from set S
Given Operator crossover(S) generating c ∈ [[0, λ]] instances from set S
Initialize P(0) with µ points of domain X
Query fitness value for each element of P(0)
t = 0
repeat
M(t) = mutation(P(t))
C(t) = crossover(P(t))
Generate R(t) by picking randomly λ−m− c points from X
for(x ∈M(t)

⋃ C(t)⋃R(t)) query f(x)
P(t+1) are the top-ranked µ instances ofM(t)

⋃ C(t)⋃R(t)⋃P(t)
t++

until Computational budget is exhausted
Return argmaxx∈P (t) f(x)

(µ,λ)-EDA // Requires λ ≥ µ

Given Initial probability distribution P
(0)
X on domain X

Given Operator evol(P,S) generating a probability distribution from distribu-
tion P and set S
Form P(0) by sampling µ points from P

(0)
X

repeat

P
(t+1)
X = evol(P

(t)
X ,P(t))

Draw λ points from P
(t+1)
X to form E(t)

for(x ∈ E(t)) query f(x)
P(t+ 1) are the top-ranked µ instances of E(t)
t++

until Computational budget is exhausted
Return argmaxx∈P(t) f(x)

Another approach known as surrogate optimization is based on learning a
(cheap) approximation of the objective function, and alternating the learning
phase with the use of a standard optimization algorithm to extract the optimum
of the surrogate (Booker et al., 1999). As an example, Zhou (2004) applies
surrogate optimization in conjunction with evolution strategies.

7.3.2 Noisy optimization

Optimization in noisy environments deals with fitness functions for which mul-
tiple evaluations do not necessarily give the same result. Noise occurs in many
real world applications (for instance, in many cases, it is due to finite precision
of Monte-Carlo sampling) and often the noise is centered to zero: the goal is to



7.3. NOISY EXPENSIVE OPTIMIZATION SOA 81

reach the optimal expected value.

Noisy expensive optimization is known to be hard computationally. In par-
ticular, handling it with evolution strategies directly may lead to a limit error,
termed residual error (Arnold and Beyer, 2000). The formalism of EGO or
IAGO is not adapted to noisy optimization either. Specific noisy optimization
variants of direct search methods or algorithms with surrogate models have been
designed (Conn et al., 1997), but these algorithms have several free parameters
and often rely on the assumption that noise decreases to 0 near the optimum.
Incidentally, noisy optimization is often the result of heavy Monte-Carlo simu-
lations, and is therefore an expensive optimization problem either.

Noisy optimization is sometimes called “stochastic optimization” (Sengupta,
1972; Kall, 1976; Denton, 2003; Marti, 2005), although“stochastic optimization”
rather refers to the optimization of deterministic fitness functions by stochastic
algorithms. This is why the term “noisy optimization” is preferred here. Noisy
optimization often distinguishes between cases in which the variance of the noise
quickly decreases to zero around the optimum, and cases in which the variance
of the noise is lower bounded. In the literature, various theoretical analyzes of
complexity bounds address the former case. We are not aware of similar studies
in the latter case.

The simplest solution for reducing noise consists in evaluating several times
the same point: averaging decreases the variance. Unfortunately, depending on
the detail of experimental setting, related works differ on whether such averaging
is beneficial or adverse to optimization, particularly with respect to evolution
strategies: an alternative to averaging in the case of evolution strategies or EDAs
is to increase parameter λ (population size).

Various works (Fitzpatrick and Grefenstette, 1988; Hammel and Bäck, 1994;
Arnold and Beyer, 2000) have investigated noisy optimization with EDAs from
a theoretical point of view; a rigorous mathematical analysis is presented in
Jebalia and Auger, 2008. Fitzpatrick and Grefenstette (1988) conclude in the
case of genetic algorithms that averaging does not perform well: when consid-
ering the tradeoff between the computational overhead of averaging and the
convergence rate, convergences are always slower with averaging. In the case of
evolution strategies (see Beyer, 2001), Hammel and Bäck (1994) and Arnold and
Beyer (2000) draw different conclusions: Hammel and Bäck (1994) conclude that
strong averaging is required, whereas Arnold and Beyer (2000) conclude that
increasing the population size is better than averaging. According to Arnold
and Beyer (2000), results of Hammel and Bäck (1994) are due to a poor muta-
tion strength adaptation schema; however, interestingly, they point out that for
various noise models, each usual mutation-strength adaptation schema can lead
to poor results: Arnold and Beyer (2000) compare mutative self-adaptation
(Rechenberg, 1973; Schwefel, 1981)2 and cumulative self-adaptation (Hansen
and Ostermeier, 2003), and concludes that in both cases, there exist simple
noise models adversely affecting any kind of mutation operator. Whether aver-

2two variants: one with arithmetic averaging of mutation strength and the other with
geometric averaging



82 CHAPTER 7. BACKGROUND AND FRAMEWORK

aging overcomes these difficulties is an open question.
An improvement of cumulative step-length adaptation is possible with in-

creased population size, but only to a limited extent (Arnold and Beyer, 2008).
An analysis using Markov chains has been adapted from the noise-free case (Bi-
envenue and Francois, 2003; Auger, 2005) to the noisy case (Jebalia and Auger,
2008; Teytaud and Auger, 2007); reevaluating individual fitnesses is suggested,
but it is pointed out that in many cases, this would not be sufficient.

Heidrich-Meisner and Igel (2009) proposed the use of “bandits” (Lai and
Robbins, 1985; Auer et al., 2002) for choosing the number of function evaluations
spent on a given individual (more in section 7.4). This idea, albeit promising,
could not be applied as such to the problem3.

A particular case of noisy optimization setting is when the variance of the
noise decreases to zero near the optimum. This has been tackled by Jebalia and
Auger (2008), when the noisy fitness values Y (x) involve a multiplicative noise:

Y (x) ∼ f(x)× (1 +N)

where f is the sphere function (i.e. f : x 7→ ||x||2) and N is an independent
random variable. Assuming that N has a density in a bounded range [m,M ]
with −1 < m < M ,Jebalia and Auger (2008) shows that the scale-invariant (1+
1)-ES converges. However, the proposed algorithm remains useless in practice4

and its convergence rate could not be determined.

7.4 Hoeffding and Bernstein Bounds and their
Application to Races

This section provides some tools related to concentration inequalities, which will
be used in chapter 8 to study the convergence of a bandit-based optimization
algorithm proposed to prove upper bounds on expensive optimization.

These inequalities aim at quantifying the discrepancy between the empirical
average and the expectation of bounded random variables. The well-known
Hoeffding bounds (Hoeffding, 1963) were the first ones to generalize bounds on
binomial random variables to bounded random variables. Improved versions of
these bounds known as Bernstein bounds, accounting for the variance of the
random variable (Chernoff, 1952; Bernstein, 1924, 1946) and therefore tighter
in some settings, will also be presented; we will focus on their application to
races.

A race between two or more random variables aims at distinguishing with
high confidence random variables with better expectation from those with worse
expectation. The intuition behind races, as will be further detailed in chapter
9, is that finding an arm that is better than another one, irrespective of the

3The authors had to add several tricks in the implementation in order to get acceptable
results, and did not provide theoretical nor experimental supporting evidence.

4After footnote 5 in Jebalia and Auger, 2008, it requires some information on each iteration
about the distance to the optimum.



7.4. HOEFFDING/BERNSTEIN BOUNDS AND RACES 83

quality of all the others, is sufficient to prune the search space in a principled
way.

Algorithm 6 Bernstein race between 3 arms. Equation 7.1 is derived from
Bernstein’s inequality for estimating the precision for empirical estimates (see
e.g. Devroye et al., 1997, p124). With notations of section 2.3.1 on multi-armed
bandits, Xa,i is the ith random draw of arm a, X̂a,i is the empirical mean and
√

ˆVa,i is the empirical standard deviation (evaluating to 0 in the first iteration).

Bernstein(a1, a2, a3, η)
T = 0
repeat
T ++
Pull each arm a1, a2, a3 once, i.e. obtain the realizations of random variables
Xa1,T , Xa2,T and Xa3,T , and update the empirical means
Evaluate the precision:

ǫT = 3 log

(

3π2T 2

6η

)

/T +max
i

√

V̂ai,T

√

2 log

(

3π2T 2

6η

)

/T . (7.1)

until Two arms (good ,bad) satisfy X̂bad,T − X̂good,T ≥ 2ǫT
Return (good, bad)

Algorithm 6 presents a Bernstein race for 3 arms. For the Bernstein race in
the following analysis, arms ai will be points xi of domain X , and pulling an
arm will be assessing the noisy fitness by sampling Y (xi). At the end of the
race, 3T evaluations have been performed; T is accordingly referred to as the
halting time in the sequel.

It is crucial in this situation to ensure that there exist i, j such that µai
6= µaj

(which translates in f(xi) 6= f(xj) for our purposes). If all f(xi) are equal, the
algorithm may not terminate, and if it does its output will be meaningless.
Intuitively, the closer f(xi) are, the larger T will be. A difference with the
usual Bernstein framework is that the goal here is not to find i s.t. µi =
min{µ1, µ2, µ3}. It is only to find i such that there is a j for which with high
confidence, µi < µj .

More formally (section 2.3.1),

∆ = max
ai

∆ai

= sup{µa1 , µa2 , µa3} − inf{µa1 , µa2 , µa3}

As established by (Mnih et al., 2008), if ∆ > 0 then

• with probability at least 1− η, the Bernstein race is consistent:

µgood < µbad. (7.2)



84 CHAPTER 7. BACKGROUND AND FRAMEWORK

• the Bernstein race halts almost surely, and with probability at least 1− η,
the halting time T verifies

T ≤ K log

(

1

η∆

)

/∆2 where K is a universal constant. (7.3)

• if, in addition,
∆ ≥ C sup{µa1 , µa2 , µa3}, (7.4)

then the Bernstein race halts almost surely, and with probability at least
1− η, the halting time T verifies

T ≤ K ′ log

(

1

η∆

)

/∆ where K ′ depends on C only. (7.5)



Chapter 8

Lower Bounds for Noisy
Expensive Optimization

This chapter focuses on the minimum runtime of any noisy expensive optimiza-
tion algorithm on a given class of fitness function. The presented contribution
is a lower bound on the number of requests needed to yield the optimum with
precision ǫ and confidence 1-δ.

Some upper bounds will be presented in the next chapter. The work pre-
sented in both chapters has been published in Rolet and Teytaud (2010c,b);
Coulom et al. (2011).

8.1 Framework

The optimization framework is described in algorithm 7. The algorithm can
request the fitness value at any point of the domain; the cost of the optimiza-
tion algorithm is measured by its sample complexity. No other information on
the fitness function is available, as in any black-box optimization setting. For
simplicity, it is assumed that optimization algorithms are deterministic. Consis-
tently with previous notations, an expensive optimization algorithm is written
L and consists of a pair (A,S). Sampler S takes as input a sequence of visited
points and their measured fitness values, and outputs a new point to be visited.
Optimizer A suggests an optimum given a sequence of visited points. Without
loss of generality, it will be assumed that the optimum sought for is a minimum,
and that every fitness function considered admits a minimum.

Consider a class of function F whose elements, fitness functions f : X → R,
can be parametrized solely by the (unknown) location of their minimum, x∗—
i.e. the mapping f 7→ minx∈X f is injective. The goal is to find the minimum
x∗ of f , by observing noisy measurement of f at xi.

Since elements of F can be indexed by their minimum, F will be charac-
terized by the mapping f : X × X → Y, such that the function f of F whose
minimum is x∗ is x 7→ f(x, x∗).

85



86 CHAPTER 8. LOWER BOUNDS IN NOISY OPTIMIZATION

Following notations of chapter 2 (section 2.1.3), noisy measurements of the
fitness at point x are modeled by a random variable Y (x). By construction,
f(x) = E[Y (x)]. The probability density function of Y (x) is noted p(.|x). Two
remarks should be made on this noise model:

• since few assumptions on the probability density function are made, one
cannot consider that the probability mass of Y (x) is centered on f(x, x∗)
( as opposed to the case of a Gaussian noise model);

• the noisy setting does not assume Y (x) > Y (x∗), contrary to some previ-
ous analyzes (Jebalia and Auger, 2008) .

For the sake of simplicity, we assume in the following that Y (x) ranges in [0,1].
The proposed contributions (the lower bound and its proof) are however invari-
ant under multiplication or addition of a constant.

The following analysis requires to consider all possible runs of an optimiza-
tion algorithm. For the purpose of the analysis, it is convenient to model
the whole noise as a single random variable Θ which is a sequence of inde-
pendent random variables (Θ)i of uniform law on [0,1]—thus, a realization
θ = ((θ)1, (θ)2, . . .) of Θ is an element of [0, 1]N—θ can be thought of as a
random seed.

During a run of the optimization algorithm, the randomness of a call to
fitness f(., x∗) at step n is then accounted for by (θ)n: the outcome of the nth

fitness call is written y
(θ,x∗)
n . Since the points that the algorithm selects at step

n for evaluation depend on these outcomes, those also depend on θ and are

noted x
(θ,x∗)
n .

Note that the use of parameter θ modeling the stochasticity of the process
does not imply any assumptions on the noise model. The noise is defined be-
forehand via random variable Y (x) of probability density p(.|x). It is possible
to choose a mapping Φ : (x, τ) 7→ y such that random variable Φ(x, τ) has the
same law as random variable Y (x). Formally, choosing

Φ :X × [0, 1]→ [0, 1]

(x, t) 7→ min

{

y0|
∫ y0

0

p(y|x)dy ≥ t

}

ensures this property. A noisy measurement y
(θ,x∗)
n is given by Φ(x

(θ,x∗)
n , (θ)n).

In the following, minimum x∗ is not handled stochastically, i.e. the lower
bounds are not computed in expectation w.r.t. all the possible fitness functions
of F yielded by different values of x∗. Rather, the worst case on x∗ is considered.
Therefore the only random variable in this framework is θ, which governs the
trajectory of the search process1 (algorithm 7). Therefore, the return value of
L is completely determined by number of requests N , random seed θ and fitness
function f indexed by its minimum x∗.

1Although only deterministic algorithms are considered, the extension to stochastic algo-
rithms is possible by including a random seed for the algorithm in θ.



8.2. LOWER BOUND 87

Given domain X and mapping F , the distance

ρ : (x∗1, x∗2) 7→ sup
x∈X
|f(x, x∗1)− f(x, x∗2)|

for x∗1 and x∗2 in X will be used to measure the error of L. Basically, assuming
x∗1 is the target minimum, this distance is the largest gap in fitness that exist
when mistaking minimum x∗1 with x∗2.

Algorithm 7 Black-box noisy optimization framework (optimization algorithm
L). sn is the training set at step n . The performance of L is measured by

ρ(x∗, x
(θ,x∗)
N+1 )(details in the text).

Given θ, random seed of ∈ [0, 1]N whose coordinates (θ)i for i ∈ N are uniformly
distributed in [0, 1].

Given x∗, unknown element of X characterizing the fitness f
Parameter N , number of fitness evaluations
s0 = ∅, n = 0
while n<N do
x
(θ,x∗)
n+1 = S(sn)

y
(θ,x∗)
n+1 = Φ(x

(θ,x∗)
n+1 , (θ)n+1)

sn+1 = Sn
⋃{(x(θ,x∗)

n+1 , y
(θ,x∗)
n+1 )})

n++
end while
Return x

(θ,x∗)
N+1 = A(sN ) = L(N, θ, x∗)

Remark 5. It is important to notice that in many cases ρ(x̂, x∗) = Θ(‖x̂− x∗‖)
in the neighborhood of x∗, which ensures that the asymptotic convergence rate
is the same (up to a constant), whether the distance is ρ(x̂, x∗) or ‖x − x∗‖.
Typically, given a monotonically increasing function g, for f : x 7→ g(‖x− x∗‖),
it is sufficient that g be Lipschitz continuous to derive ρ(x̂, x∗) = Θ(‖x̂− x∗‖).

8.2 Lower Bound

This section states and prove a theorem allowing derivations of lower bounds
in sample complexity for noisy expensive optimization. In this section B(n, p)
is a binomial random variable (sum of n independent Bernoulli variables of
parameter p).

8.2.1 Theorem statement

Let us consider a Bernoulli noise, for which Y (x) is 1 with probability 1− f(x)
and 0 otherwise. It follows that density p is given as

p(y|x) = f(x)δ0 + (1 − f(x))δ1



88 CHAPTER 8. LOWER BOUNDS IN NOISY OPTIMIZATION

where δx stands for the Dirac measure in x. Mapping Φ(x, τ) boils down to
returning 1 if f(x) > τ and 0 otherwise. This model fits applications based on
highly noisy optimization problems2.

By construction, a lower bound that holds in this restricted noise setting
is valid in the more general case in which no assumption is made on the noise.
Besides, as mentioned above, this noise model is adverse, providing a pessimistic
estimate of the lower bound, which suggests the generality of this bound.

The proposed result relies on two assumptions, respectively related to the
topology of space X , and the convergence of an optimization algorithm L.

The first assumption, referred to as Hdim(ǫ0, D), is related to the existence
of D points in X with pairwise distance ǫ for any ǫ lower than some ǫ0:

Hdim(ǫ0, D) : ∀ǫ1 < ǫ0∃(x∗1, . . . , x∗D) ∈ XD, ∀(i, j) ∈ [[1, D]]2,

i 6= j ⇒ ρ(x∗i, x∗j) = ǫ1.

Note that this assumption makes sense only for D ≥ 2. It is closely related to
the dimension of X . For instance, in many cases (some of them will be presented
at the end of this chapter), ρ(x, x′) = Θ(‖x− x′‖), and the maximum number
of such equidistant points is d+ 1 (where X ⊂ R

d).
The second assumption, referred to as HPAC(ǫ,N, δ) states that there exists

an L reaching precision ǫ with probability 1− δ after N visited points:

HPAC(ǫ,N, δ) : ∃L ∀x∗ ∈ X , P (ρ(L(N, θ, x∗), x∗) < ǫ) ≥ 1− δ

where P is the probability with respect to θ.
The lower-bound theorem can then be stated as follows:

Theorem 5. Let ǫ0 and D ≥ 2 be such that X satisfies Hdim(ǫ0, D). Let
precision ǫ be in ]0, ǫ0], and confidence δ be in ]0, 1/(2D)[. If a number of
requests N is such that HPAC(ǫ/2, N, δ) holds for a given algorithm L, then N
satisfies

P (B(N, ǫ) ≥ ⌈log(D)⌉) ≥ 1− δD. (8.1)

Equation 8.1 is a lower bound on the number of iterations N such that
precision ǫ is reached since it implies

N = Ω(log(D)/ǫ) (8.2)

for a fixed D.

8.2.2 Proof

The proof of theorem 5 will be presented, followed by the proof of equation 8.2.

2Games are an example of such problems: let x be a parameter of a game strategy, to be
set at its optimal value; one noisy observation is a game against a baseline, resulting either in
a win or in a loss; the aim is to find the value of x maximizing the probability of winning.



8.2. LOWER BOUND 89

Useful definitions

Let us now introduce some notations and definitions relevant to the proof.
First, consider ǫ0, D, ǫ, δ as in the theorem statement, assuming thatHdim(ǫ0, D)

holds. Let N be a number of requests such that there exists an algorithm for
which HPAC(ǫ/2, N, δ) holds, and let L be this algorithm.

Thanks to assumption Hdim(ǫ0, D), there exists D points x∗1, . . . , x∗D sat-
isfying

∀i 6= j, ρ(x∗i, x∗j) = ǫ. (8.3)

These points will correspond to “possible minimums” that L cannot distinguish
if N is not large enough, because the probability that they provide the same
answer when querying the noisy fitness on a point x is very high.

Second, given an index i ∈ [[1, D]], let us define

Cn
i (θ) = {j ∈ [[1, D]]; (y

(θ,x∗j)
1 , . . . , y(θ,x

∗j)
n ) = (y

(θ,x∗i)
1 , . . . , y(θ,x

∗i)
n )}.

Cn
i (θ) corresponds to the set of points in x∗1, . . . , x∗D such that all answers

given by the oracle are the same as on x∗i.
Next, define kn(θ) as

kn(θ) = min{i ∈ [[1, D]]; |Cn
i (θ)| is maximal}.

The important point here is that kn(θ) is an index i such that Cn
i (θ) is of

maximal cardinal; the min is only here to choose among the possible solutions.
In other words, kn(θ) is the index of some x∗i such that ”many” (as many as

possible) x∗j raise the same labels y
(θ,x∗j)
1 , . . . , y

(θ,x∗j)
n .

Then, let us define:

smin,n(θ) = inf
i∈Ckn(θ)(θ)

f(x(θ,x∗i)
n , x∗i),

smax,n(θ) = sup
i∈Ckn(θ)(θ)

f(x(θ,x∗i)
n , x∗i).

Interval [smin,n(θ), smax,n(θ)] is “small”, thanks to assumption Hdim(ǫ0, D):

∀(n, θ), smin,n(θ) ≥ smax,n(θ)− ǫ. (8.4)

Lastly, define the property Error(x∗ , θ) : ρ(L(N, θ, x∗), x∗) ≥ ǫ/2. Define
also a ”good” set G by

θ ∈ G iff ∀i, |CN
i (θ)| = 1. (8.5)

Then,

θ /∈ G ⇒ ∃i 6= j, x
(θ,x∗i)
N+1 = x

(θ,x∗j)
N+1

⇒ Error(x∗i , θ) or Error(x∗j , θ). (8.6)

thanks to equation 8.3.



90 CHAPTER 8. LOWER BOUNDS IN NOISY OPTIMIZATION

Proof of equation 8.1

From those definitions, we can turn to the proof of equation 8.1.

First, let us prove some useful lemmas.

Lemma 6. With the above notations,

P (∀i, |CN
i (θ)| = 1) ≥ 1−Dδ. (8.7)

Proof. First let us show the following equation:

HPAC(ǫ/2, N, δ)⇒ P (G) ≥ 1−Dδ. (8.8)

Assume HPAC(ǫ/2, N, δ). If θ /∈ G, then from equation 8.6, there exists i such
that Error(x∗i , θ). Therefore,

P (¬G) ≤
∑

i∈[[1,D]]

P (Error(x∗i , θ))

≤ Dδ by HPAC(ǫ/2, N, δ).

which proves equation 8.8. Equation 8.8 and the definition of G (equation 8.5),
under assumption HPAC(ǫ/2, N, δ), lead to the result.

From lemma 6, if HPAC holds, then CN
i (θ) must be small for all i and with

high probability on θ.

In order to complete the proof, it will now be shown that CN
i (θ) cannot

be small unless N is large. More precisely, let us show for all N the following
lemma:

Lemma 7. With the above notations,

P (|CN
kN (θ)(θ)| ≤ 1) = P (∀i, |CN

i (θ)| ≤ 1) ≤ P (B(N, ǫ) ≥ ⌈log(D)⌉). (8.9)

Proof. First, with kn = kn(θ) for short, notice that the size of the largest set of
x∗i that have the same outcomes at n = 0 is |C0

k0
(θ)| = D.

Second, from step n− 1 to step n, let us analyze how the size of this largest

set evolves. Given i ∈ kn−1, from the definition of θ and y
(θ,x∗i)
n , we have

y
(θ,x∗i)
n = 1 iff (θ)n ≥ f(x

(θ,x∗i)
n , x∗i), and (θ)n is a random variable chosen

uniformly in [0, 1]. Therefore, for any i, j ∈ kn−1, having y
(θ,x∗i)
n 6= y

(θ,x∗j)
n

requires (θ)n ∈ [smin,n(θ), smax,n(θ)]. Then,

• |Cn
kn
| is not reduced with probability P (|Cn

kn
(θ)| = |Cn−1

kn−1
(θ)|) ≥ 1− ǫ (by

equation 8.4);

• |Cn
kn
| is reduced by at least 1 (and halved at most) with probability 1 −

P (|Cn
kn
(θ)| = |Cn−1

kn−1
(θ)|) ≤ ǫ.



8.3. DISCUSSION 91

Even in the most optimistic situation, in which |Cn
kn
| is halved each time it

diminishes, it is required that at least ⌈logD⌉ reductions occur during the N
iterations to ensure the cardinal of |Cn

kn
| reaches 1. Since the probability that

a single reduction occur is upper-bounded by ǫ, the probability that ⌈logD⌉
reductions occur duringN iterations is bounded by a binomial law of parameters
(N, ǫ):

P (|CN
kN (θ)(θ)| ≤ 1) ≤ P (B(N, ǫ) ≥ ⌈log(D)⌉).

This yields lemma 7.

Lemmas 6 and 7 together conclude the proof of equation 8.1, which concludes
the proof of theorem 5.

Proof of equation 8.2

Equation 8.2 is derived from a one-sided variant of Chebychev’s inequality
known as Cantelli’s inequality. The expectation of random variableX = B(N, ǫ)
is Nǫ, and its variance is Nǫ(1 − ǫ). Cantelli’s inequality states that for any
k > 0,

P (X − E[X ] ≥ k
√

V ar(X)) ≤ 1

1 + k2
.

If k = 1 then 1/(1 + k2) ≤ 1− δD, since δD ≤ 1/2, and

P (X ≥ Nǫ+ k
√

Nǫ(1− ǫ)) ≤ 1− δD,

which combined with equation 8.1 gives

⌈log(D)⌉ ≤ Nǫ+ k
√

Nǫ(1− ǫ)

≤ Nǫ+
√
Nǫ.

Since logD ≥ 1, it is necessary that Nǫ ≥ 1/4; in this case,
√
Nǫ ≤ 2∗Nǫ which

yields
logD ≤ 3Nǫ.

8.3 Discussion

The interpretation of this lower bound result is discussed with respect to a few
particular models:

Sphere function f(x, x∗) = ||x − x∗||, a special case in which the variance
promptly decreases to 0 around the minimum;

Scaled sphere function f(x, x∗) = λ||x − x∗|| for some λ > 0, a case that
might be handled similarly to the one above;



92 CHAPTER 8. LOWER BOUNDS IN NOISY OPTIMIZATION

Scaled and translated sphere function (noted S-T sphere from here on).
f(x, x∗) = λ||x − x∗|| + c, for some c ∈]0, 1[, fundamentally harder since
the variances does not decrease to 0 around the minimum;

Polynomial S-T sphere f(x, x∗) = λ||x − x∗||p + c with p ∈ [[2,∞[[; in par-
ticular, the quadratic case, p = 2, is often encountered in practice;

Transformed sphere f(x, x∗) = g(||x − x∗||) for some increasing mapping g
from [0,∞[ onto a subset of [0, 1].

The tightness of the bound for these models will be discussed in the next chapter.
Let us now turn to the application of theorem 5 to each of these models.

Sphere model

The simplest interpretation is for the sphere model, with X = [0, 1]d, and
f(x, x∗) = ||x − x∗|| for some norm ‖.‖. In this case, theorem 5 applies with
D = d + 1, and distance ρ boils down to the considered norm (i.e. ρ(x, x∗) =

‖x− x∗‖): reaching a precision ǫ = ||x(θ,x∗)
N+1 − x∗|| with confidence 1− δ for any

δ < 1/(2D) will require at least Ω(log(D)/ǫ) points.

Scaled sphere

The above result can straightforwardly be applied to this setting: a distance ǫ
between the minimum and approximation requires at least Ω(log(D)/ǫ) itera-
tions (for any algorithm).

S-T sphere

The fitness at the minimum needs not have a variance of 0 for the above theorem
to apply—consider for instance3 f(x, t) = min(1, c+ ||x− t||). In this case, the
bound N = Ω(log(D)/ǫ) is still valid. Let us however present some intuitive
arguments pointing to the fact that in the case of a strictly positive variance at
the minimum, better lower bounds can be obtained, with a convergence rate in
Ω(1/ǫ2).

With the S-T sphere function, the variance can be lower bounded by some
positive constant c: infx∈X V ar[Y (x)] > c > 0. Therefore, evaluating a point n
times leads to a confidence interval on its mean whose length is roughly

√

c/n.
Hence, the precision of a fitness estimate based on n evaluations is Θ(1/

√
n).

As the precision in the fitness space linearly depends on the precision in the
search space, it seems realistic to say that ‖x+

n − x−
n ‖ = Θ(1/

√
n) is the best

achievable rate. Chapters 9 and 10 provide theoretical and empirical evidence
showing that this rate can be reached; we are not aware of any theoretical or
empirical evidence showing that it can be exceeded.

3Note that in our problem setting, the function g : x 7→ c+ ||x− t|| should in all generality
range in [0, 1], which is not the case here. We can either set the measurement to 0 when
g(x, t) > 1, or consider f(x, t) = min(1, g(x, t)) instead, which is what will be done from now
on.



8.3. DISCUSSION 93

Quadratic and polynomial S-T sphere

An unexpected result in the polynomial S-T sphere (f(x, t) = min(1, ||x−t||p+c)
for any p ∈ [[2,∞]] and c ∈ [0, 1]) is that the rate in the lower bound does not
depend on p: it is similar to the case p = 1 (although a linear dependence in p
exist in constant factors). Indeed, for ǫ0 sufficiently small, H(ǫ0, D) holds for
D = d+ 1 and applying the theorem yields N = Ω(log(D)/ǫ)—or equivalently,
for any fixed p, the distance between the N th iterate and the minimum that can
be guaranteed with confidence 1− δ for δ < 1/(2D), is Θ(1/N) (although there
might.

Since in this case ρ(x, x∗) = Θ(‖x− x∗‖), a somewhat surprising conclusion
can be drawn: the number of iterations is lower bounded by Θ(log(D)/ǫ) for
any exponent p used in the family of fitness functions. Of course, the constant
hidden in the Landau symbol Θ might change, but the rate remains ǫ−1.

Monotonically transformed sphere

In the general case of an arbitrary monotonically increasing function g, the
problem can be made arbitrarily difficult: the lower bound can be made arbi-
trarily high by choosing hard function classes. Thus, the only guarantee that
any algorithm can provide in this setting is its convergence.



94 CHAPTER 8. LOWER BOUNDS IN NOISY OPTIMIZATION



Chapter 9

Upper Bounds for Noisy
Expensive Optimization

This chapter, also focusing on noisy optimization, establishes new upper bounds
on the number of fitness queries needed to reach the optimum. The contribution
lies in the upper bounds, and in the supporting bandit-based algorithm called
R− EDA.

9.1 Position of the work

As mentioned in section 7.3, Jebalia and Auger (2008) provide an upper bound
on the sphere function, based on runtime analysis of the scale-invariant (1 +
1)− ES. The presented work differs from theirs in three respects:

• the noise model is broader, and includes for instance cases in which the
noisy measurement can be arbitrarily small with respect to the expected
fitness, i.e. Y (x)/f(x) is not lower bounded;

• the algorithm is explicit: it does not require information on the position
of the optimum, or on the distance towards the optimum;

• the convergence rate is tight for any fixed dimension on the sphere model.

Further, in the general case, while Arnold and Beyer (2000) emphasized that
for many algorithms a residual error remains, R−EDA is truly consistent (i.e.
‖xn − x∗‖ →∞ 0) as shown in section 9.3 below.

Finally, the proposed upper bounds are tight for the scaled sphere and
quadratic sphere model (p = 1 or p = 2) when c = 0: the algorithm is op-
timal asymptotically up to logarithmic terms and constant factors. The intu-
itive arguments presented on the last chapter for the lower bound in the case
(p = 1, c > 0) suggest that the algorithm is optimal in that case too. Hence, a
merit ofR−EDA is that it adapts to all considered fitness functions, irrespective
of the different lower bounds (chapter 8).

95



96 CHAPTER 9. UPPER BOUNDS IN NOISY OPTIMIZATION

Section 9.2 will describe the R − EDA algorithm. Section 9.3 proves con-
vergence rates for the different variations of the sphere model introduced in the
previous chapter.

9.2 An Adaptive Noisy Optimization Algorithm:
R − EDA

The algorithm presented in this section is called Race-EDA (R−EDA) is based
on Bernstein races and inspired by estimation of distribution algorithms (EDAs).
R−EDA is a (3,3) evolution strategy: the parent population consists of 3 points,
and 3 points are generated from this population and act as the new population.
The difference with respect to “standard” EDAs is as follows:

• the algorithm is derandomized: population t is generated deterministically
from population t− 1;

• since µ = λ, there is no need for actually ranking all the points (the
algorithm still orders two points among the three as will be seen below).

Note that these points do not prevent the algorithm from fitting the EDA defini-
tion of chapter 7 (algorithm 5). The algorithm is comparison-based (since fitness
values only matter by how they order the population), which is the major trait
of EDAs.

Algorithm 8 R − EDA: Algorithm for optimizing noisy fitness functions.
Bernstein denotes a Bernstein race, as defined in algorithm 6. The initial
domain is [x−

0 , x
+
0 ] ∈ Rd.

Parameter δ, the confidence parameter.
n = 0
repeat
/* Pick the coordinate with highest uncertainty */
c = argmaxi∈[[1,d]] [(x

+
n )i − (x−

n )i]
for i ∈ [[1, 3]] do

x
(i)
n ← 1

2 (x
−
n + x+

n ). // Consider the middle point

(x
(i)
n )c ← (x−

n )c +
i−1
2 (x+

n − x−
n )c. //except that the cth coordinate may

// take 3 different values
end for
/* Find a good and a bad point */

(goodn, badn) = Bernstein(x
(1)
n , x

(2)
n , x

(3)
n , 6δ

π2(n+1)2 )

Let Hn be the halfspace {x ∈ Rd; ||x− goodn|| ≤ ||x− badn||}.
Split the domain: [x−

n+1, x
+
n+1] = Hn ∩ [x−

n , x
+
n ].

n++
until Computational budget exhausted
Return (x+

n + x−
n )/2 // middle of the remaining domain



9.3. CONVERGENCE AND RUNTIME ANALYSIS 97

Notations of section 8.1 will be used, except that superscripts (θ, x∗) on

points x will be dropped for the sake of clarity. Point x
(i)
n stands for the ith

point of the nth-generation population, and x+
n , x

−
n define the boundary of the

remaining domain at step n. The optimization domain is X = [x−
0 , x

+
0 ] =

[(x−
0 )1, (x

+
0 )1]× [(x−

0 )2, (x
+
0 )2]× · · · × [(x−

0 )d, (x
+
0 )d].

Referring to routine Bernstein (algorithm 6, chapter 7), the x
(i)
n are seen as

arms whose distribution are p(.|x(i)
n ) centered on f(x

(i)
n ) (associated to random

variables Y (x
(i)
n )).

Points x−
0 and x+

0 are elements of Rd and therefore X ⊂ Rd. It is assumed
that ||x−

0 − x+
0 || ≤ 1.

Overview of R − EDA R − EDA (algorithm 8) proceeds by iteratively
splitting the domain in two subspaces, and retaining the one that most probably
contains the minimum. At iteration n, from the nth domain [x−

n , x
+
n ], the (n+

1)th domain [x−
n+1, x

+
n+1] is obtained by:

• finding the coordinate c such that the gap (x+
n )c − (x−

n )c is maximal;

• selecting 3 regularly spaced points along this coordinate;

• repeatingly assessing those 3 points until gaining some confidence that

one point x
(i)
n is closer to x∗ than another x

(j)
n (noting that x

(i)
n is not

necessarily the best one, nor is x
(j)
n necessarily the worst one), which is

achieved with confidence 1− η by the Berstein race (algorithm 6, chapter
7)

• splitting the domain by the hyperplane in the middle of these points and
normal to the line they define, and keeping only the side of the domain

containing x
(i)
n .

Visual descriptions of the algorithm are provided by figure 9.1 and 9.2.

Related works. The “domain reduction” step relies on a good point (x
(i)
n )

and a bad point (x
(j)
n ). While the use of good and bad points to narrow down the

search space has been used in Arnold and Wart (2008), and in the optimization
heuristic Breda by Gelly et al. (2007), R−EDA applies this idea to address the
noisy optimization case.

9.3 Convergence and Runtime Analysis

This section will be devoted to the analysis of the runtime of R − EDA. The
analysis will focus on the transformed sphere models1 introduced in chapter 8.
In the following, fitness f is a strictly increasing function of ‖x− x∗‖ and noisy
measurements of f are given via random variables Y (x) of density p(.|x).

The results are concerned with:

1The transformed sphere covers in particular models of the scaled sphere, S-T sphere and
polynomial S-T sphere.



98 CHAPTER 9. UPPER BOUNDS IN NOISY OPTIMIZATION

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
�������������������� Optimum

First removed
part of the domain
(1/4th of the domain)

Second removed
part of the domain
(1/2 of the remaining part)

Third removed part
of the domain
(1/4 of the remaining part)

Fourth removed part
of the domain
(1/4 of the remaining part)

Figure 9.1: Sequence of domain reductions achieved by R−EDA (algorithm 8).
At each iteration, the axis with maximal span is selected ). Three equally spaced
points located on this axis are generated (the offspring). The Bernstein race is
used to determine a“good”point and a“bad”point, and the region closest to the
bad point is removed, pruning one fourth or one half of the domain (depending
on the position of the good arm and of the bad arm—the best case is when the
good and the bad arm are diametrically opposed: see figure 9.2).

• the convergence of R − EDA: it finds the minimum with precision ǫ and
confidence 1− δ;

• the convergence rate: for specific sphere models, the number of fitness
calls can be upper-bounded by Õ(1/ǫ2p) and even sometimes Õ(1/ǫp).

9.3.1 General case (monotonic transformation of the sphere
function)

Proof sketch. The algorithm geometrically shrinks the domain, hence the
domain size quickly decreases to ǫ. Based on the assumption that fitnesses are
monotonically increasing transformations of the sphere function, the minimum is
closer to the “good”arm than to the “bad arm”with high probability: hence the
minimum stays within the shrunk domain with high probability. The number
of requests to the fitness functions will then be upper bounded by classical
Bernstein bounds for variations of the sphere model. This is only possible thanks
to the specific mutation operator in algorithm 8: it ensures that arms are all
“sufficiently different”.



9.3. CONVERGENCE AND RUNTIME ANALYSIS 99

Let us turn to formal proofs, relying on various lemmas.

First, note that assuming that noisy measurements Y(x) belong to [0,1], we
have

V ar Y (x) ≤ E[Y (x)2] ≤ E[Y (x)] = f(x). (9.1)

Lemma 8. Let δ > 0. If the Bernstein race succeeds (i.e. terminates) for steps
1 to n in R − EDA, then

(

3

4

)n

||x+
0 − x−

0 || ≤ ||x+
n − x−

n || ≤
(

3

4

)⌊n/d⌋

||x+
0 − x−

0 || and (9.2)

(∀i < n, f(goodi) ≤ f(badi))⇒ x∗ ∈ [x−
n , x

+
n ], (9.3)

Proof. At each iteration, at least one fourth of the hyper-rectangle is removed in
the direction in which the hyper-rectangle is the longest. This ensures equation
9.2.

f(goodn) ≤ f(badn) implies that x∗ is closer to goodn than to badn; therefore
x∗ ∈ Hn. This implies equation 9.3.

The guarantee on R− EDA’s convergence follows:

Theorem 9 (Consistency of R − EDA for the transformed sphere). In the
transformed sphere model, algorithm 8 ensures x−

n → x∗ and x+
n → x∗ with

probability at least 1− δ.

Proof. From lemma 8 (equation 9.3), ‖x+
n − x−

n ‖ → 0. Furthermore, the Bern-
stein race halts almost surely, because the fact that f is a strictly increasing
transformation of the sphere guarantees that there are two arms with a differ-
ent mean (section 7.4).

We will now show that with probability 1− δ, x∗ ∈ [x−
n , x

+
n ] by establishing

the left-hand side of equation 9.3 by induction. This will be sufficient to prove
theorem 9.

• The induction hypothesis H(n) is:

With probability at least 1−
n+1
∑

k=1

6δ

π2k2
,

∀i < n, f(goodi) = EY (goodi) ≤ EY (badi) = f(badi).

• H(0) clearly holds because the statement ∀i < 0, EY (goodi) ≤ EY (badi)
is always true, since no i satisfies i < 0.

• Let us assume H(n − 1) for n > 0. For clarity, the statement ∀i <



100 CHAPTER 9. UPPER BOUNDS IN NOISY OPTIMIZATION

n, f(goodi) ≤ f(badi) is written G(n).

P (G(n)) = P (G(n− 1), f(goodn) ≤ f(badn))

= P (f(goodn) ≤ f(badn) | G(n− 1))P (G(n− 1))

= (1−
n
∑

k=1

6δ

π2k2
)(1− 6δ

π2(n+ 1)2
) (9.4)

≥ 1−
n+1
∑

k=1

6δ

π2k2

which proves H(n). The first term of equation 9.4 is the application of
H(n− 1). The second term is a property of the Bernstein race described
in algorithm 6, and used in algorithm 8.

It only remains to observe that
∑∞

i=1(6δ/(πi)
2) = δ to conclude.

9.3.2 Asymptotic rates for polynomial sphere models

While the number of iterations is log-linear (log(‖x−
n −x∗‖)/n is upper bounded

by a negative constant), the number of evaluations per iteration (during the
Bernstein race) might be arbitrarily large in the general case of the transformed
sphere model. More precise results for subclasses of the transformed sphere
model will now be considered. The results rely on the following lemma lower-
bounding the gap between fitness values on individuals of the population (i.e.
the arms of the Bernstein race), defined as:

∆n
.
= max

i∈[[1,3]]
f(x(i)

n )− min
i∈[[1,3]]

f(x(i)
n ).

Lemma 10. Assume f belongs to the polynomial S-T sphere model, i.e. f :
x 7→ γ‖x − x∗‖p + c for γ ∈]0,∞[, p ∈ [[1,∞]] and c ∈]0, 1[. Then, for some
constant K depending on dimension d of X and parameters γ, p of f ,

x∗ ∈ [x−
n , x

+
n ]⇒ ∆n ≥ K‖x+

n − x−
n ‖p. (9.5)

Proof. Let us note gmax
n = (x+

n )c−(x−
n )c. Recall that by definition (see algorithm

8),
‖x+

n − x−
n ‖/d ≤ gmax

n ≤ ‖x+
n − x−

n ‖ (9.6)

and let x̄∗
n be the projection of x∗ on the line on which lie x

(1)
n , x

(2)
n , x

(3)
n . The

result will now be proved for (x̄∗
n)c ∈ [(x

(1)
n )c, (x

(2)
n )c]. In this case, f(x

(3)
n ) >

f(x
(2)
n ). The proof for the case (x̄∗

n)c ∈ [(x
(2)
n )c, (x

(3)
n )c] is symmetric (see figure

9.2).
First of all, we have

∆n
.
= max

i,j∈[[1,3]]2
γ(‖x(i)

n − x∗‖p − ‖x(j)
n − x∗‖p)

≥ γ(‖x(3)
n − x∗‖p − ‖x(2)

n − x∗‖p).



9.3. CONVERGENCE AND RUNTIME ANALYSIS 101

Without loss of generality, constant γ is set to 1. By Pythagora’s theorem,

∀i ∈ [[1, 3]], ‖x(i)
n − x∗‖2 = ‖x(i)

n − x̄∗
n‖2 + ‖x̄∗

n − x∗‖2. Thus,

∆n ≥
(
√

‖x(3)
n − x̄∗

n‖2 + ‖x̄∗
n − x∗‖2

)p

−
(
√

‖x(2)
n − x̄∗

n‖2 + ‖x̄∗
n − x∗‖2

)p

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

"good" arm"bad"
  arm

Discarded
part of the
domain

Figure 9.2: The large rectangle is the domain [x−
n , x

+
n ]. The three circles are

arms x
(1)
n , x

(2)
n , x

(3)
n ; the left arm is the “bad”arm, whereas the arm in the center

is the “good” arm, i.e. the one which proved to be closer to the minimum than
the left arm, with confidence 1− 6δ/(π2n2).

Note that ‖x(3)
n − x̄∗

n‖ = ‖x(2)
n − x̄∗

n‖+ gmax
n /2, since gmax

n = (x+
n )c− (x−

n )c =

‖x(3)
n − x

(1)
n ‖. Define q = ‖x̄∗

n− x∗‖2 and a = ‖x(3)− x̄∗
n‖. Then, observing that

gmax
n ≥ a ≥ gmax

n /2, we have

∆n ≥
√

a2 + q
p −

√

(a− gmax
n /2)2 + q

p

≥ ap





√

1 +
q

a2

p

−
√

(

1− gmax
n

2a

)2

+
q

a2

p



≥ (gmax
n )p

2p

(

√

1 +
q

a2

p

−
√

1

4
+

q

a2

p)

(9.7)

By setting u = q/a2, it is clear that ∆n2
p/(gmax

n )p is greater than the minimum

of u 7→
√
1 + u

p −
√

1/4 + u
p
on the interval [0, d] (since

√
q = ‖x̄∗

n − x∗‖ ≤



102 CHAPTER 9. UPPER BOUNDS IN NOISY OPTIMIZATION

√
dgmax

n /2, u ranges in [0,d]). It remains to find the minimum of that function
on [0,d]. Its derivative is

p

2
(1 + u)p/2−1 − p

2
(1/4 + u)p/2−1.

If p = 1, this is always negative, since the left-hand side denominator is
always larger than the right-hand side denominator. Therefore, the function is
decreasing, and is minimized for u = d. Finally, settingK ′ =

√
1 + d−

√

1/4 + d
and injecting in eq. 9.7 yields ∆n ≥ K ′gmax

n /2.
If p ≥ 2, the function is increasing since the derivative becomes always

positive, and therefore its minimum is its value in 0, which is, for all p ≥ 2, at
least 1

2 . We then have ∆n ≥ (gmax
n )p/2p+1.

In both cases, using equation 9.6 leads to equation 9.5 for some K. Inter-
estingly, the dependence in d disappears for p ≥ 2.

Remark 6. As the proof relies on Pythagora’s theorem, the underlying norm
for the search space is necessarily L2. In a bounded domain of finite dimension,
however, the norm equivalence support the extension of the result to other
norms.

Theorem 11 (Hoeffding rates for the polynomial S-T sphere model). Assume
fitness f is of the polynomial S-T sphere model. The number of evaluations
requested by algorithm 8 for reaching precision ǫ with probability at least 1 − δ

is O(p log(1/ǫ)+log(log(1/ǫ)/δ)
ǫ2p ).

Proof. Equation 9.5 ensures that ∆n = Ω(‖x+
n − x−

n ‖p). Therefore, applying
the concentration inequality 7.3, the number of evaluations in the nth iteration
is at most

O

(

− log

(

6δ

π2(n+ 1)2
‖x+

n − x−
n ‖p

)

/‖x−
n − x+

n ‖2p
)

. (9.8)

Now, let us consider the numberN(ǫ) of iterations before a precision ǫ is reached,
that is, N(ǫ) = min{n| ‖x+

n−x−
n ‖ ≤ ǫ}. From equation 9.8, the cost (the number

of evaluations) in the last call to the Bernstein race is

Boundlast(ǫ) = O

(

− log

(

6δ

π2(N(ǫ) + 1)2
ǫp
)

/ǫ2p
)

. (9.9)

From equation 9.2,

ǫ ≤ 3

4

⌊(N(ǫ)−1)/d⌋

which yieldsN(ǫ) = O(log(1/ǫ)). Then, Boundlast(ǫ) = O(log(log(1/ǫ)/(δǫp))/ǫ2p).
For a fixed dimension d, there exists k′ > 1 such that the cost of the (N(ǫ)− i)th

iteration is at most
O(⌈Boundlast/(k

′)i⌉) (9.10)

because the algorithm ensures that after d iterations, ‖x+
n − x−

n ‖ decreases by
at least 3/4.



9.3. CONVERGENCE AND RUNTIME ANALYSIS 103

The sum of the costs forN(ǫ) iterations is therefore the sum ofO(Boundlast(ǫ)/(k
′)i)

for i ∈ [[0, N(ǫ)−1]], that is O(Boundlast(ǫ)/(1−1/k′)) = O(Boundlast(ǫ)) (plus
O(N(ǫ)) for the rounding associated to the ⌈...⌉ in equation 9.10).

The overall cost is therefore O(Boundlast(ǫ) + log(1/ǫ)). This yields the
expected result.

Theorem 12 (Bernstein rates for null variance at optimum). Assume fitness
f is of polynomial sphere model, with c = 0. Then, the number of evaluations
requested for reaching precision ǫ with probability at least 1− δ is

O(
p log(1/ǫ) + log(log(1/ǫ)/δ)

ǫp
).

Proof. The proof follows the lines of the proof of theorem 11, except for one
point. For the polynomial scaled sphere model as well as for the polynomial
S-T sphere model, equation 9.5 holds, which implies

∆n = Ω(‖x+
n − x−

n ‖p). (9.11)

However, for the scaled sphere model, we can also claim

sup
i∈[[1,3]]

f(x(i)
n ) = O(‖x+

n − x−
n ‖p) (9.12)

because x∗ and the x
(i)
n belong to [x−

n , x
+
n ] and f(x

(i)
n ) = γ‖x(i)

n −x∗‖p. Equations
9.11 and 9.12 lead to equation 7.4.

Furthermore, equation 7.4 implies that equation 9.9 can be replaced by

Boundlast(ǫ) = O

(

− log

(

6δ

π2(N(ǫ) + 1)2
ǫp
)

/ǫp
)

. (9.13)

The summation as in the proof of theorem 11 now leads to an overall cost of

O(p log(1/ǫ)+log(log(1/ǫ)/δ)
ǫp ).

9.3.3 Summary and remarks

The bounds address optimization of noisy fitness functions, where the fitness in
x is randomized, with values in [0, 1], and expected values f(x, x∗) where x∗ is
the optimum. On fitnesses of the form x 7→ γ‖x− x∗‖p + c, the same algorithm
(using Bernstein’s inequality) ensures that with probability 1− δ, the optimum
x∗ is in a set of diameter ǫ after Õ(1/ǫ2p) fitness evaluations if the variance is
not null at the optimum, and after Õ(1/ǫp) evaluations if the variance is null.

This result does not need that the fitness values at a given point be Bernoulli
(which was assumed for the lower-bound proof of last chapter): it works for any
distribution with values between 0 and 1 (whose variance is therefore upper
bounded by the expectation).

The tightness of the bound is established (as matching the lower bound) for
p = 1 and c = 0. Intuitive arguments and experimental results suggest that the



104 CHAPTER 9. UPPER BOUNDS IN NOISY OPTIMIZATION

bound might be tight for p = 1 and p = 2 with c > 0, although not tight for other
settings. This work opens several perspectives for further research. Firstly, it is
expected that the dependency in d can be improved. Secondly, the results can
be generalized as the convergence rate only depends on f(x, x∗) for x close to
x∗: all f such that f(x) = Θ(||x − x∗||p) lead to the same asymptotic rate as
the polynomial scaled sphere; and all f such that f(x)− c = Θ(||x− x∗||p) for
some c lead to the same asymptotic rate as the polynomial scaled and translated
sphere function.



Chapter 10

Experiments

This chapter is devoted to the experimental validation of the results presented
in chapters 8 and 9, related to expensive noisy optimization problems; it also
presents and experimentally studies some bandit algorithms devoted to noisy
optimization.

The chapter is organized as follows. Section 10.1 empirical performance of
two algorithms on transformed sphere models (chapters 8 and 9), namely UH-
CMA and QLR. Section 10.2 is devoted to a particular type of noisy optimiza-
tion problem: parameter tuning. Section 10.3 presents a multi-armed bandit
algorithm similar to BAAL (chapter 4), applied to expensive optimization.

In a nutshell, the chapter provides empirical evidence that bandit methods
are suited to tackle noisy optimization problems.

10.1 Experiments on UH-CMA/QLR

In this section, the empirical performance of two algorithms, an evolution strat-
egy called UH-CMA and introduced by Hansen et al. (2009), and an algorithm
based on quadratic logistic regression, therefore called QLR(Coulom, 2010), are
studied in light of the theoretical findings of chapters 8 and 9. These results
first appeared in Coulom et al. (2011).

Convergence rates are given for minimization; the fitness at point x is the
Bernoulli random variable B(f(x)) with parameter min(1,max(0, f(x))), xn is
the approximation of the optimum after n fitness evaluations, x∗ is the optimum,
c > 0, and g is some increasing mapping. Results for QLR and for UH-CMA
are empirical, based on current versions of the algorithms.

105



106 CHAPTER 10. EXPERIMENTS

10.1.1 Experimental results for UH-CMA—optimization
without surrogate models

UH-CMA has been developed with intensive testing on the BBOB challenge
(Auger et al., 2010), which includes mild models of noise1. The optimization
domain is R2. Let B(q) denote a Bernoulli distribution of parameter q, N (µ, σ2)
denote a Gaussian distribution centered on µ with variance σ2, and U(I) denote
a uniform distribution on interval I. UH-CMA was tested on four different noise
settings (noting again Y (x) the random variable associated to the computation
of f(x)):

1. Y (x) ∼ N (‖x‖2, 0.1);

2. Y (x) ∼ ‖x‖2 + U([0, 1]);

3. Y (x) ∼ B(‖x‖2);

4. Y (x) ∼ B(‖x‖2 + 0.5).

The initial values required by UH-CMA to start the search were sampled
from U([0, 1]2). The convergence (and divergence) of UH-CMA—illustrated on
figure 10.1—is known to be log-linear.

For the first setting (Gaussian noise), the algorithm converges efficiently:
the precision decreases exponentially as the number of iterations increases. For
Y (x) ∼ ||x||2 + U([0, 1]), the precision stops improving after a few hundred
iterations. For B(‖x‖2) and B(‖x‖2+0.5) we can see that the algorithm diverges.
The available implementations of UH-CMA cope quite well with small noise
situations, but as soon as the variance does not go to zero sufficiently fast they
do not succeed.

After personal communication with Hansen (2010), it appears that adding
some specific rules for averaging multiple fitness evaluations depending on the
step-size, specifically for each fitness function lead to better rates. However, the
rates are still dominated by QLR.

10.1.2 Experiments with QLR—optimization with surro-
gate models

QLR is based on a Bayesian quadratic logistic regression. It samples regions of
the search space with maximum variance of the posterior probability, i.e. regions
with high variance conditionally to past observations. This is a key difference
w.r.t. algorithms without surrogate models, which tend to sample points close
to the optimum. QLR is fully described by Fackle Fornius (2008), Chaloner
(1989), Khuri et al. (2006) (design of experiments for quadratic logistic model),
and by Schein and Ungar (2007) (active learning for logistic regression). See
Coulom (2010) for a description of the algorithm used here specifically tailored
to binary noisy fitnesses.

1The source code for these experiments is publicly available, see Hansen (2008).



10.1. EXPERIMENTS ON UH-CMA/QLR 107

−10

0

10

20

30

40

50

60

70

80

lo
g1

0(
||x

||2 2)

Number of function evaluations

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

76
0

81
0

86
0

91
0

96
0

 

 

B(‖x‖2

2
)

B(||x||2
2

+ 0.5)

−12

−10

−8

−6

−4

−2

0

Number of function evaluations

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

76
0

81
0

86
0

91
0

96
0

lo
g1

0(
||x

||2 2)

 

 

||x||2
2
(1 +N )

||x||2
2

+ rand

−2

−1.5

−1

−0.5

0

Number of function evaluations

10 60 11
0

16
0

21
0

26
0

31
0

lo
g1

0(
||x

||2 2)

 

 

||x||2
2
(1 +N )

||x||2
2

+ rand

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−140

−120

−100

−80

−60

−40

−20

Number of function evaluations

lo
g1

0(
||x

||2 2)

 

 
||x||2

2
(1 +N )

Figure 10.1: Optimization with UH-CMA. The number of fitness evaluations is
plotted against the learning precision in log-scale (base 10). Top-left: Bernoulli
models, exhibiting a divergence. Bottom-left: Gaussian and uniform models,
with up to 300 fitness calls: log-linear behaviors occur. Top-right: Gaussian
and uniform models, with up to 1000 fitness calls: UH-CMA stops improving
for the uniform noise model. Bottom-right: Gaussian model with up to 10000
fitness calls: the loglinear improvement is confirmed.

QLR was tested on fitnesses whose noisy measurements follow a law B(||x||p+
c), for p in {1, 2} and c in {0, 1/2}. The domain is R2. Figure 10.2 shows the
experimental results:

Top left (p=1, c=0) QLR converges on B(||x− x∗||), but with a suboptimal
exponent 1

2 (the slope of the curve is − 1
2 in log-scale), i.e. f(xn)−f(x∗) =

Θ(1/
√
n), which translates in n = Θ(1/ǫ2). The upper bound for R-EDA

is n = Θ̃(1/ǫ) in this case;

Top right (p=1, c=1/2) QLR converges with supposedly optimal rate n =
Θ(1/ǫ2) which match the optimal rate of R− EDA;

Bottom left (p=2, c=0) QLR reaches f(xn) − f(x∗) = f(xn) = Θ(1/n)
which translates into n = Θ(1/ǫ2) since f(x) = ‖x‖2. This is similar
to the upper bound of R− EDA.



108 CHAPTER 10. EXPERIMENTS

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

MeanError

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

MeanError

p=1, c=0 p=1, c=1/2

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

MeanError

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10  100  1000  10000

MeanError

p=2, c=0 p=2, c=1/2

Figure 10.2: Convergence rates of QLR. The average precision f(xn)− f(x∗) is
reported versus the number of fitness evaluation in log scale. The noisy fitness
measurements are of the form Y (x) ∼ B(||x||p + c) (top: p = 1, bottom: p = 2,
left: c = 0, right: c = 1/2).

Bottom right (p=2, c=1/2) QLR still reaches f(xn)−f(x∗) ≃ Θ(1/n), thus
n = Θ(1/ǫ2) whereas the bound on R-EDA only guarantees n = Θ(1/ǫ4).

10.1.3 Discussion

The convergence rates for R-EDA and QLR are summarized in table 10.1.3. For
the rightmost column, it is important to point out that we tested QLR without
knowledge of the parameter p or c, so that the comparison with other algorithms
is fair. In particular, R-EDA, which provably realizes the upper bounds above,
does not require such a knowledge. The quality of an optimization algorithm
clearly depends on the required prior knowledge: the less, the better.

As a partial conclusion, R − EDA’s behavior is shown to be efficient with
respect to all considered types of noise. However, in the (easy) case N (||x −
x∗||2, 0.1), UH-CMA is the only algorithm reaching a log-linear convergence.

In the particular case of B(c + ||x − x∗||2), UH-CMA does not converge,
suggesting that algorithms tailored to small noise models uneasily extend to
large noise assumptions. R − EDA’s convergence rates are outperformed by



10.2. SIMPLE REGRET AND OPTIMIZATION 109

f n(ǫ) Known n(ǫ) for
for R-EDA lower-bound QLR

γ||x− x∗|| Õ(1/ǫ) Ω(1/ǫ) ≃ 1/ǫ2

γ||x− x∗||+ c Õ(1/ǫ2) Ω(1/ǫ) ≃ 1/ǫ2

γ||x− x∗||2 Õ(1/ǫ2) Ω(1/ǫ) ≃ 1/ǫ2

γ||x− x∗||2 + c Õ(1/ǫ4) Ω(1/ǫ) ≃ 1/ǫ2

γ||x− x∗||p Õ(1/ep) Ω(1/ǫ) –

γ||x− x∗||p + c Õ(1/ǫ2p) Ω(1/ǫ) –
g(||x− x∗||) o(1) – –

Table 10.1: Rates for R − EDA and QLR. Typical cases p = 1 and p = 2 are
emphasized.

QLR in this case. An explication is that QLR is tailored to Bernoulli-like noise
models, while R− EDA is not limited to those models.

Table 10.1.3 shows that the lower bounds given in chapter 8 for p > 1 or
c > 0 are not tight. Further work, taking inspirations from the intuitions of
section 8.3 will be devoted to finding tighter bound.

10.2 Simple Regret and Optimization

This section focuses on a particular case of noisy optimization, namely param-
eter tuning.

Bandits and races can be used even more directly for noisy optimization, and
specifically parameter tuning. We introduce a parameter-tuning bandit algo-
rithm, UCBp (introduced below), which is compared to the baseline Uniform
selection (section 2.3.3). First, a practical problem is addressed: tuning the
parameters of the UCT-based Go-Playing program MoGo. Second, artificial
problems are derived from this real-world problem, and used to investigate sim-
ple regret procedures further. These results have been included and published
in Coulm et al. (2010).

10.2.1 The tuning of MoGo

Monte-Carlo tree search (Chaslot et al., 2006; Coulom, 2006; Kocsis and Szepes-
vari, 2006) (introduced in chapter 4) is efficient both for games and for planning
problems, and it performs particularly well when the size of the state space is
huge, adversely affecting supervised learning. MoGo (Lee et al., 2009) is one of
the main MCTS programs2, dedicated to a major testbed for artificial intelli-
gence techniques: the game of Go.

MoGo can be viewed as a complex system, involving a large number of
parametrized modules Chaslot et al. (2009), each requiring specific tuning. In
this section, a specific parameter tuning will be considered (detailed in Lee

2The authors of MoGo make its CVS available upon request.



110 CHAPTER 10. EXPERIMENTS

Algorithm Horizon Selected arm Generalization perf.
Baseline 51.37 % ± 0.3%

UCB(4)+MPA 88 000 (0.00,0.09) 52.65% ± 0.3%
UCB(4)+MPA 150 000 (0.03,0.09) 52.42% ± 0.3%
Uniform+EBA 88 000 (0.09,0.03) 52.00% ± 0.3%

Table 10.2: Comparison between the different algorithms in the non-blitz set-
tings, where MPA stands for“most played arm”, while EBA stands for“empirical
best arm”.

et al., 2009), concerned with biasing the patterns used in MoGo. The tuning
problem focuses on optimizing two discretized parameters. The nature of the
handcrafting and the meaning of the parameters are not very relevant to this
work: they are described in Coulm et al. (2010).

Let us consider the tuning those two parameters of MoGo for 10 seconds
per move in 19x19. Using the Uniform arm pulling strategy, each parame-
ter (α1, α2) in {−0.09,−0.06,−0.03, 0, 0.03, 0.06, 0.09}2 was tested nearly 1800
times—which has a huge computational cost.

The same experiment was then repeated, but with UCBp as arm-pulling
strategy instead of uniformly sampling all the values of the parameters. UCBp

is a very simple modification of UCB1 introducing a constant p adjusting the
strength of the exploration term. With the notations of section 2.3.3,

UCBp(t) = arg max
a∈[[1,K]]

[

X̂a,Ta(t) +

√

p
2 ln(t)

Ta(t)

]

.

In this experiment, p is set to 4.
The two approaches are compared to the baseline algorithm (without tun-

ing) from the point of view of their generalization performance in table 10.2.
The baseline is the algorithm without any tuning. The performance of Baseline,
UCBp and Uniform is the percentage of victories of the black player against
a white player that always uses the untuned algorithm (Baseline). The black
player has a slight advantage in Go, which explains why the Baseline has a
generalization performance strictly bigger than 50% when playing against itself.
Although the table shows that UCBp and Uniform outperform the baseline
(statistically significantly for UCBp, and less so for Uniform), some uncer-
tainty remains as each result comes from a single run of the tuning algorithm3.
Extended experiments are therefore performed.

The results are somewhat relevant in the sense that the algorithms provided
an arm which significantly outperformed the baseline (although the statistical
significance of the dominance of Uniform over Baseline is questionable). How-
ever, some uncertainty remains since these results are equal within 2 standard
deviations and each correspond to a single run of the algorithm. This is why
carefully designed artificial experiments will be performed in the next section.

3However, the performance of tuned MoGos are tested by performing large numbers of
games against the baseline.



10.2. SIMPLE REGRET AND OPTIMIZATION 111

10.2.2 The tuning of MoGo—extended experiments

The purpose of this experimental section is to empirically support multiple
claims regarding multi-armed bandit problems optimizing simple regret instead
of cumulative regret.

Let us bear in mind that the goal is to get the minimal expected simple
regret for a given number of pulls. As mentioned in section 2.3.3, Bubeck et al.
(2008) have shown that uniformly pulling arms is asymptotically optimal in
this case. Nevertheless, they also suggest that in practical applications, using
strategies designed for cumulative regret on simple regret problems often yields
much better results, although those strategies are suboptimal asymptotically.

Remember that after having exhausted the allowed number of pulls to choose
an arm, various recommendation rules are used to decide which arm to keep:

Empirical best arm (EBA): the arm kept is the one with the best empirical
mean;

Most played arm (MPA): the arm is the one which has been played most
often;

Empirical distribution of plays (EDP): the arm is selected by random draw
among the K arms, where each arm has a probability of being chosen pro-
portional to the number of times it has been played.

it must be noted however that only EBA can be used for the Uniform selec-
tion strategy: MPA makes no sense, since the first N%K arms have been played
exactly once more than the remaining arms. Furthermore, EDP degenerates to
randomly choosing an arm.

For UCB-based selection strategies, or other confidence bound strategies,
EBA is the most aggressive choice, since an arm that has been played less, but
that has a better average, will be preferred. On the other hand, MPA will select
arms with high confidence. Both recommendation rules are sound, however, and
converge to the same result for confidence-bound based selection strategies.

The following experiments investigate these arm selection procedures on
three artificial experiments constructed from the MoGo real-world application,
designed as follows:

• the Uniform strategy was applied during a very long time on all param-
eters;

• the results (estimated generalization performance for each parameter) were
recorded;

• various strategies could then be simulated “offline”; for each simulation,
the random draws were permuted, so that there is no systematic bias.

Each point of each curve is the result of an average over 1600 experiments.
The 95% error bars were almost unnoticeable, and therefore they are not de-
picted on the graphs. Consequently, even small gaps between curves are statis-
tically significant.



112 CHAPTER 10. EXPERIMENTS

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

eba

unif
ucb0.1

ucb1
ucb10 0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 2 4 6 8 10 12 14

eba

unif
ucb0.1

ucb1
ucb10

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

eba

unif
ucb0.1

ucb1
ucb10

Figure 10.3: Results for empirical best arm, with regret strategies compared
on the blitz case as black (on the left), blitz case as white (on the right) and
standard case (on the bottom) for various horizons. The Y-axis is the true
mean of the arm chosen by a simple regret strategy being allowed H pulls on
arms on the whole. On the X-axis lies log(H/100). The order of the curves
is as follows: in all cases, UCB0.1 ≥ UCB1 ≥ UCB10 ≥ Uniform, and the
difference vanishes as the horizon goes to ∞.

Each problem consists in a few hundred arms whose rewards are Bernoulli
distributions with parameter p close to 1/2. Experiments are performed by
confronting strategies Uniform, UCB0.1, UCB1 and UCB10 for each recom-
mendation rule (EBA, MPA and EDP). For each of the 3 experiments, each
selection strategy and each decision rule, experiments were performed for vari-
ous horizons (number of allowed pulls), going from 100 to 819200. The results
are presented on figures 10.2.2, 10.2.2 and 10.2.2 and show that

• UCB performs better than Uniform;

• the improvement is moderate. A strength of Uniform is that the perfor-
mance is naturally evaluated on the fly for all arms; therefore both the
statistical validation and the visualization are straightforward.



10.2. SIMPLE REGRET AND OPTIMIZATION 113

Figure 10.4: Results for most played arm, with regret strategies compared on the
blitz case as black (on the left), blitz case as white (on the right) and standard
case (on the bottom) for various horizons. The Y-axis is the true mean of the
arm chosen by a simple regret strategy being allowed H pulls on arms on the
whole. On the X-axis lies log(H/100). The order of the curves is as follows: in
all cases, UCB0.1 ≥ UCB1 ≥ UCB10 ≥ Uniform, and the difference vanishes
as the horizon goes to ∞.

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

mpa

unif
ucb0.1

ucb1
ucb10 0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 2 4 6 8 10 12 14

mpa

unif
ucb0.1

ucb1
ucb10

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

mpa

unif
ucb0.1

ucb1
ucb10

10.2.3 Discussion

This section has considered simple regret algorithms viewed as noisy optimiza-
tion algorithms, without assuming any structure of the search space. The com-
parison of Uniform (known as optimal for sufficiently large horizon, i.e. suffi-
ciently large time budget) and UCBp shows that:

• Uniform vs Sophisticated If the number of arms K is very small rela-
tively to the number of pulls the Uniform strategy is the recommended
one; at its best, UCBp can reduce the number of calls by a number
K log(K). When K gets larger w.r.t. the horizon, UCB becomes better.
Note that the larger p is, the more UCT degenerates into pure exploration:
this is why UCB10 has results close to Uniform while UCB0.1, empha-
sizing exploitation, performs better. A drawback is that UCT does not
include any statistical validation, and cannot be easily parallelized;



114 CHAPTER 10. EXPERIMENTS

Figure 10.5: Results for empirical distribution of plays, with regret strategies
compared on the blitz case as black (on the left), blitz case as white (on the
right) and standard case (on the bottom) for various horizons. The Y-axis is
the true mean of the arm chosen by a simple regret strategy being allowed H
pulls on arms on the whole. On the X-axis lies log(H/100). The order of the
curves is as follows: in all cases, UCB0.1 ≥ UCB1 ≥ UCB10 ≥ Uniform, and
the difference vanishes as the horizon goes to ∞.

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

edp

unif
ucb0.1

ucb1
ucb10 0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 2 4 6 8 10 12 14

edp

unif
ucb0.1

ucb1
ucb10

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

edp

unif
ucb0.1

ucb1
ucb10

• Results on the application to MCTS. For the specific MoGo applica-
tion, the results were significant but moderate; however, it can be pointed
out that many handcrafted modifications around Monte-Carlo tree search
provide such small improvements of a few percents each. Moreover, im-
provements performed automatically by bandits can be applied incremen-
tally, leading to huge cumulative improvements;

• Comparing recommendation techniques: most played arm is bet-
ter. Empirical best arm and most played arm in UCB are usually the same
(this is not the case for various other bandit algorithms), and are much
better than the “empirical distribution of play” recommendation strategy,
which is not tailored for this application4. This result confirms earlier work
(Wang and Gelly, 2007) suggesting that MPA is the best recommendation
rule.

4As already mentioned, most played arm and the empirical distribution of plays obviously
do not make sense for Uniform.



10.3. OPTIMAL EXPENSIVE NOISY OPTIMIZATION 115

Further work will investigate the application of the proposed approach to
larger search spaces. Another direction is to consider UCB-Tuned (Auer et al.,
2002), taking into account the variance of the results attached to a given arm.

10.3 Optimal Expensive Noisy Optimization in
Finite Horizon

This section presents yet another multi-armed bandit algorithm applied to op-
timization, inspired from BAAL (active learning, chapter 4), and called OUCT
(Optimization with UCT). Following the same procedure as for active learning,
an optimal expensive noisy optimization strategy is derived, and OUCT embod-
ies the Monte-Carlo tree search used to approximate the optimal optimization
strategy.

A specificity of OUCT is that it deals with noisy functions, while BAAL
is currently limited to the noise-free case. This difference is at the root of a
few small differences in the theoretical optimality formulation as well as in the
algorithm itself.

10.3.1 Formalization

We will first formalize non-linear noisy optimization as a planning problem,
along the same lines as in chapter 4. The main difference is the use of a partially
observable Markov decision process for optimization:the noisy setting makes a
POMDP formulation more appropriate.

The idea of seeing optimization as a planning problem has already been
suggested by Igel (2004), with the conclusion that the problem is not tractable.
It has been reconsidered by Auger and Teytaud (2009), with positive results in
a simplified noise-free setting.

The main finding of this section is to show that even in the noisy setting,
UCT and general methods can be used to make the problem tractable, at least
for small horizon, i.e. when the number of time steps in the planning problem
is not too large. Furthermore, the approach can be applied in general to any
problem that can be formulated as a partially observable planning task.

As already mentioned, this approach is suited to expensive fitness functions:
it needs a lot of computational power for choosing each iteration. Besides, noisy
optimization makes the problem much more challenging because the process is
even less observable than in the classical optimization framework. Note that
optimization, like active learning, can indeed be formalized as a partially ob-
servable problem in any case, as the fitness function is always unknown; still,
the unobservable part is easier to deal with in the deterministic case.

Let us denote F the class of fitness functions considered. Let PF be a
probability measure on F , and given f ∈ F , let pf (.|x) be the density associated
to noisy measurements of f . With same notations as section 4.1, the noisy



116 CHAPTER 10. EXPERIMENTS

optimization process clearly matches the active learning process (equation 4.2):











p(0)(s|f) = δ∅(s)

p(s′|s, x, f) = δs+(x,y)(s
′)pf (y|x)

π(x|s, f) = π(x|s) = S(x, s).

(10.1)

The sampling process however involves noise in fitness evaluations, modeled by
pf . Equation 10.1 defines a POMDP whose states are made of training sets s
and fitnesses f . The transition density p(s′|s, x, f) = p((s′, f)|(s, f), x) defined
above embodies the noisy measurements.

As in section 4.1, a complete state is a pair (s, f) containing a training set
and an objective function. The set of observations, Ω, is the set of all possible
noisy training sets. If an agent is in state (s, f), he/she observes only training
set s: conditional observation density ω is deterministic, and simply defined as
ω : (s, f) 7→ δs.

The intuitive arguments presented in section 4.1 and the work of Astrom
(1965) suggest that an optimal optimization strategy is obtained by solving the
above POMDP. The proof of this claim is left for further work.

10.3.2 Algorithm

OUCT proceeds like BAAL: the possible strategies are sought via UCT, progres-
sive widening is used to deal with the fact that the domain is continuous, and
optimization heuristics guiding the search can be integrated in OUCT just as
the maximal uncertainty heuristic for active learning was integrated in BAAL.
The most important difference between OUCT and BAAL is that since OUCT
deals with noise, there is no concept equivalent to a “version space” that would
contain all the optima consistent with observations.

As such, conditional sampling techniques are required to pick surrogate fit-
nesses so that they fit the noisy observations. Indeed, when selecting a point af-
ter having visited points x1, . . . , xi, with noisy fitness values y1, . . . , yi in OUCT,
a posterior probability can be computed: assuming the noise model is known,
each fitness function f of F can be mapped to a probability describing how
likely f produced outcomes (xi, yi), pF(f |{(xj , yj)|j ∈ [[1, i]]}). Let us assume
as in previous chapters that f can be parametrized by its optimum x∗, and write
this probability p(x∗ |{(xj , yj)|j ∈ [[1, i]]}).

As mentioned in chapter 4, there are at least three classical methods to
sample from constrained spaces. Rejection methods are the simplest but most
expensive solutions. Billiard methods, more difficult to use, are much faster;
Markov chain Monte-Carlo sampling is another quite general method with some-
times better performance than rejection methods. Unfortunately, billiard algo-
rithms only handle a few particular densities yet (such as the uniform density),
and to our best knowledge no extension exist to apply this method to the general
case. Therefore, OUCT must rely either on rejection algorithms or on MCMC
algorithms. It is assumed that p((x1, y1), . . . , (xi, yi)|x∗) can be computed and
that the prior on x∗, p0, can be sampled at will.



10.3. OPTIMAL EXPENSIVE NOISY OPTIMIZATION 117

Rejection methods

Rejection methods for specific densities are slightly different from the uniform
rejection method on a constrained domain presented in section 4.4. They consist
in:

• generating r1, r2, r3, . . . independently and uniformly in [0, 1] and x∗
1, x

∗
2,

x∗
3, . . . independently from p0;

• choosing x∗
j with j minimal such that rj < P ((x1, y1), . . . , (xi, yi)|x∗

j ).

It is known that rejection methods are consistent, i.e. they effectively generate
x∗ drawn from a law of density p(.|(x1, y1), . . . , (xi, yi)). Of course, the proce-
dure can be very slow if the likelihood of (x1, y1), . . . , (xi, yi) is close to 0. This
likelihood may decrease exponentially in the number of observations in our case,
making rejection methods hardly tractable.

Markov chain Monte-Carlo (MCMC).

A very simple and classical form of Markov chain Monte-Carlo (MCMC) method
is presented here, referring the interested reader to Gilks (1995) for a compre-
hensive presentation. It is assumed that a distribution of probability Kx0 on the
domain of x∗ is given (called a transition kernel), for each possible realization
x0 of x∗, and that Kx1(x0) = Kx0(x1) (the transition kernel is symmetric).

Let L be some large integer.
Let m be some point in the domain of x∗.
for i ∈ [[1, L]] do
Let m′ be drawn according to distribution Km.
Let r be randomly independently uniformly distributed in [0, 1].

Let s be p((x1,y1),...,(xi,yi)|m)p0(m)
p((x1,y1)...,(xi,yi)|m′)p0(m′) .

if r ≤ s then
m = m′

end if
end for

Under some very general assumptions, it is shown that asymptotically in L, the
output m is distributed according to p(.|(x1, y1), . . . , (xk, yk)). The main issue
with MCMC strategies are the free parameters to set, and in particular the
choice of transition kernel K.

Improved rejection

Given the limitations of both above methods, respectively the high cost of the
rejection method and the parameter tuning of the MCMC, an improved rejection
method, called rescaling, was used in OUCT.

• generate r1, r2, . . . independently and uniformly in [0, 1];



118 CHAPTER 10. EXPERIMENTS

• choose x∗
j with j minimal such that

ri <
P ((x1, y1), . . . , (xi, yi)|x∗

j )

maxx P ((x1, y1), . . . , (xi, yi)|x∗
j )

(10.2)

This implies the computation of maxx P ((x1, y1), . . . , (xi, yi)|x∗
j ) before starting

the rejection method. This is done using 1+1-evolution strategy (ES) and one-
fifth rule (Rechenberg, 1973), with 37 random restarts. In the fixed budget of
12 hours, the rescaling method could perform 4 times more simulations, with
similar results: the method is empirically sound.

10.3.3 Experiments

In this section, various simple experiments are conducted as a proof-of-principle
of the soundness of the OUCT approach.

OUCT is compared to random search, and the evolution of OUCT’s perfor-
mance with respect to the computational power involved for each point selection
(represented by the number of simulation) is depicted. This is done in order to
check the tractability and consistency of the algorithm at least for small values
of the horizon (i.e. the number of time steps).

The experimental setting is as follows:

• the optimization domain is [0, 1]d, where d ranges in [[1, 4]]; the optimum
is uniformly randomly drawn in [0, 1]d;

• the time horizon is 13 (i.e. 13 points are visited). The error is the average
distance to the optimum for the 13th point;

• the random seed is discretized (replaced by a sample of 1000 values sam-
pled by rejection);

• the bandit is applied on a fixed pool of 30d points; this random (uniform,
independent) pool is the same at all nodes of the UCT tree;

• the fitness function is the Bernoulli sphere function, i.e. the fitness of x is
1 with probability min(1, ‖x− x∗‖2).

The results of OUCT are comparatively assessed to those of two baselines.
The first one is provided by running OUCT with a single simulation (returning
the maximum likelihood given fitnesses of 12 random points); the second one
is the constant algorithm returning the central point of the search space. Note
that in a noisy setting, and with only 13 points, these baselines are not trivial
to overcome.

The experimental results (figure 10.6) show that the distance to the optimum
(on the Y-axis) decreases with the computational power (in X-axis, log-scale).
The random search/maximum likelihood approach is outperformed when OUCT
is used on top of it, and the constant baseline is exceeded too. An MCMC
method with Gaussian transition kernel was also tested in addition to the rejec-
tion method with rescaling. The less conclusive results are likely to be due to a
bad tuning of the MCMC algorithm.



10.3. OPTIMAL EXPENSIVE NOISY OPTIMIZATION 119

0

0.05

0.1

0.15

0.2

2 4 6 8 10 12 14 16 18

av
er

ag
e 

sq
ua

re
d 

di
st

an
ce

log2(nbSimus)

Dimension 1

MCMC
rejection
baseline

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

2 4 6 8 10 12 14 16 18

av
er

ag
e 

sq
ua

re
d 

di
st

an
ce

log2(nbSimus)

Dimension 2

MCMC
rejection
baseline

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14 16

av
er

ag
e 

sq
ua

re
d 

di
st

an
ce

log2(nbSimus)

Dimension 3

MCMC
rejection
baseline

0.2
0.3
0.4
0.5
0.6
0.7

2 4 6 8 10 12 14 16

av
er

ag
e 

sq
ua

re
d 

di
st

an
ce

log2(nbSimus)

Dimension 4

MCMC
rejection
baseline

Figure 10.6: Performance of OUCT measured by the average square distance
between xi and argmin f∗ (Y axis) as a function of the number of simulations
(X axis). The baseline is the naive algorithm which just outputs the middle of
the domain as the optimum. The y-intercept corresponds to the performance of
a random search with maximum likelihood (details in the text).

10.3.4 Partial conclusion

Let us summarize the findings of this section:

• expensive noisy optimization can be formalized as a POMDP problem
and bandit-based tree search can be used to yield an approximate optimal
strategy;

• the main difficulty, induced by the presence of noise, is that sampling from
conditional densities becomes expensive since billiard strategies cannot be
used. A specific heuristic, rescaling, has been proposed, yielding some
performance improvement even for small horizon;

• OUCT can be hybridized with noisy optimization heuristics just as BAAL
can be hybridized with active learning heuristics. Ongoing work, related
to the use of the BREDA heuristic (Gelly et al., 2007) within OUCT shows
promising results.



120 CHAPTER 10. EXPERIMENTS



Part IV

Conclusion

121





Chapter 11

Conclusion

The core focus of this manuscript is on machine learning an optimization for
expensive functions. The general frameworks of Markov decision processes and
multi-armed bandit algorithms were chosen to tackle these problems, yielding
multiple theoretical and algorithmic results.

This chapter concludes by discussing perspectives regarding the three main
lines of work addressed in this manuscript, namely noisy expensive optimization
algorithms (section 11.1, Rolet and Teytaud, 2010c,b; Coulom et al., 2011),
batch active learning potential (section 11.2, Rolet and Teytaud, 2010a) and
finally Markov decision processes and Monte-Carlo tree search for expensive
problems (section 11.3, Rolet et al. 2009a,b).

11.1 Noisy Optimization: Bounds, Algorithms

Noisy optimization was analyzed in this manuscript from the angle of comparison-
based algorithms known as EDAs, in a classical setting of the related literature:
monotonic transformations of the sphere model. A strength of the analysis is
that the noise model is fairly general.

The general lower bound of chapter 8 is one of the first of its kind. Although
it can be applied in many settings, it is more relevant to functions that are
O(‖x − x∗‖) in the neighborhood of the optimum: the bound is tight up to
logarithmic factors in this case. A further work is to improve the bound from
O(log(D)/ǫ) to O(D/ǫ)1.

In the more general case of functions O(‖x− x∗‖p + c), the bound of course
remains valid. It is however believed that the bound is not tight, as explained
in chapter 8. This is why a natural extension to this research would be to
improve the bound in these cases. Analyzing the bound when the model is not
exactly a monotonic transformation of the sphere could also be worthwhile: the
proof remains valid, but the distance used in the proof may not yield the same
interpretation.

1Ongoing work that exploits kissing numbers to derive this very result.

123



124 CHAPTER 11. CONCLUSION

The algorithm designed to prove the upper bound is another example of
the success of multi-armed bandit frameworks in optimization, applied in this
case through the race formalism. R − EDA matches the lower bound for the
simple sphere model, and exhibits a rate that is likely to be optimal either
in the translated sphere model ( when the fitness is O(λ‖x − x∗‖ + c)). The
convergence rate adapts to the model: there is no need to specify the value of c
to obtain the best possible rates. However, empirical evidence points to a non-
optimal behavior in polynomial cases of degree 2 when c is not null: algorithms
such as QLR have empirical convergence rates that overcome the theoretical
convergence rate of R− EDA. The next step is then to try and prove that the
rates of QLR are optimal, maybe by adapting R−EDA so that it can deal with
polynomial fitnesses more accurately, while remaining good on p = 1 cases, so
that it would keep its nice “adaptive” feature.

11.2 Batch Active Learning Potential

The work on batch active learning revolved around the question “is it worth
parallelizing a sequential active learning technique?”. Sometimes, for the de-
sired application, it is possible to obtain a batch of function points rather than
obtaining answers one-by-one. Some examples for that come (again) from the
approximation of heavy computational codes. The codes are often black-boxes,
that are very hard to parallelize. It is however not a (scientific) challenge to run
them on multiple processors at once. Nevertheless, it might cost lots of money,
maintenance time and/or programming effort. By providing upper and lower
bounds on how a parallel active learning algorithmmay improve on its sequential
counterpart, chapter 5 emphasizes the possible benefits of parallelization for low
batch sizes, i.e. batch sizes in the order of the problem’s complexity, measured
by its dimension or VC-dimension. It also shows that large-scale parallelization
is probably not worthwhile: it will only yield a logarithmic improvement.

A crucial point is that active learning algorithms are difficult to parallelize,
on the contrary of passive learning. Many active learning heuristics can suggest
multiple instances for labeling at a given point in the learning process. However,
it is likely that a parallelization that simply labels all those points will not be
very efficient. Indeed, an active learning suggestion after obtaining the label of
an instance is often quite different from before obtaining the label: the added
information changes the shape of the version space. An example that illustrates
this idea well is the following: consider two points that are very close to each
other. In many scenarios, if one of them is good for the learning, the other one
is probably good too. However, once the first one has been labeled, the second
one becomes uninteresting, since their label are likely to be similar (of course,
this is not true for all active learning situations).

Consequently, an interesting work would be to focus on a generic method to
turn a sequential active learning algorithm into a parallel algorithm. Interest-
ingly, the “simulation” result of chapter 5 is such a generic method. Further,
a surprising fact is that the algorithm of chapter 4, BAAL, can be used in a



11.3. MDPS AND MCTS FOR EXPENSIVE PROBLEMS 125

way that mimics this “simulation” method: after performing the N authorized
tree walks, a tree of possible learning scenarios is stored in memory. This tree
may be used to select not only the best instance at depth one, but also the best
instances at depth 2 for each possible label of the first example, and the best
instances at depth 3 or more: this is almost exactly what the upper-bounding
algorithm of section 5.4 does.

Finally, it would be useful to know what happens between the linear speedup
for small batch sizes (less than the VC-dimension), and the logarithmic speedup
for very large batch sizes (asymptotically). It seems hard to maintain the lin-
ear speedup on the simple classifiers of section 5.4 once the batch size reaches
the VC-dimension: a formal proof showing that the speedup steadily becomes
logarithmic would be a great addition to this work.

11.3 Markov Decision Processes and Monte-Carlo

Tree Search for Expensive Problems

A major contribution was the formalization of optimality for active learning
and expensive optimization in terms of MDPs (or POMDPs) for finite horizon
problems. From this formulation, bandit-based algorithms BAAL and OUCT
were derived to approximate optimal strategies. They outperform classical al-
gorithms on proof-of-principle experiments using simple target functions.

There are many extensions to this work. On the theoretical side, the MDP
formulation is based on a definition of optimality that uses a prior on the set
of hypotheses: the strategy is optimal in expectation with respect to this prior.
It would be interesting to see if the MDP formalization can be adapted to a
worst-case definition of optimality: the strategy would aim at having the best
possible generalization error with the worst possible hypothesis from the chosen
hypothesis class. This would correspond to an adversarial setting, which does
not require a probabilistic prior. Nonetheless, adaptations of BAAL or OUCT
to this setting raise multiple issues: for instance, instead of randomly picking
surrogate hypotheses, worst-case hypotheses have to be chosen, which is not
straightforward. Furthermore, a shortcoming of the adversarial approach is that
the optimality guarantee on the worst-case performance will probably result in
a poorer performance on average.

On the practical side, a natural next step is to address more sophisticated
function spaces, by extending BAAL to handle non-linear hypothesis spaces such
as kernel spaces, thanks to the famed kernel trick. It must be noted that billiard-
based algorithms have been investigated for kernel spaces (Herbrich et al., 2001;
Ruján, 1997; Ruján and Marchand, 2000), featuring good theoretical and com-
putational results. Ongoing work on this direction shows promising results.

Similarly, there might be ways to use the approach on other common ma-
chine learning approximators, such as neural networks or Gaussian processes. A
trickier (and therefore more challenging) part would be to find a way to apply
BAAL to regression rather than classification. Indeed, having a continuous set



126 CHAPTER 11. CONCLUSION

of possible answers to each query produces a “game tree” in which each path
is visited only once: UCT makes no sense in this case. A possibility for this
would be to use another layer of progressive widening; it is however not as easy
to enforce for the value space as it was for the input space.

Another question regards the possible misspecification of the model: what
happens if the prior used on the hypothesis space is not accurate? It seems
reasonable to believe that the loss in performance may depend smoothly on a
distance between the “right” prior and the prior that was actually used, such as
the Kullback-Leibler divergence—the question remains open, however.

Applying the presented approaches to real-world applications is of course
a significant further work. One might think that an extension of BAAL to
noisy cases is necessary for use on practical problems. Addressing noisy settings
would indeed be a significant step forward, and is not out of reach. However,
although noise often occur in numerous applications, many other problems are
noise-free. This is the case for numerical engineering applications that first
motivated this work: computational codes used to simulate engineering tasks
are often deterministic. The fact that an algorithm cannot handle noise does not
disqualify it for real-world applications. It is easy to derive classification tasks
(or optimization tasks with a Bernoulli noise) from such numerical engineering
codes; using BAAL on such tasks can then be done directly.

A larger term perspective is to reconsider how exploration is handled within
UCT.

UCT has been used in many different algorithms, notably in games such as
Go, Havannah or Hex. Incidentally, a difference between BAAL/OUCT and
applications of UCT to games is that the exploration term in games tends to
disappear; within games, exploration may sometimes be replaced by prior knowl-
edge. On the contrary, the exploration term of UCB is quite necessary in active
learning and expensive optimization. In games such as Go, a possible reason
for the disappearance of the exploration term is that many expert heuristics
to assess a move can be embedded in the algorithm: opening books, pattern
recognition, etc. These heuristics overtake the need for exploration, since they
generally give a not-so-bad estimation of the quality of moves (although this
estimation in itself is far from enough to play well). In BAAL and OUCT, such
expert knowledge is scarcer.

In game applications, some of the improvements that have been made to the
original method yielded with impressive results. Transposing those improve-
ments to BAAL and OUCT could fasten convergence to the optimal strategy.
An example of a very successful improvement is rapid action-value estimation
(RAVE, Gelly and Silver, 2007), a heuristic that adds a term to the UCB evalu-
ation of a node consisting in an weighted average of the rewards obtained for all
paths that perform the move leading to this node at any point in the simulation
(rather than only the paths going through the exact same node). Similarly to
the exploration term, its weight decreases with the number of times the node
has been explored.

The use of heuristics such as RAVE provides online priors, summarizing
the search results. As many perspectives of the presented work are concerned



11.3. MDPS AND MCTS FOR EXPENSIVE PROBLEMS 127

with continuous spaces, a major goal would be to tailor RAVE-like heuristics
suited to spaces of continuous nodes. A learning layer, e.g. involving “similarity
kernels”, might then be developed to identify and exploit the structure of the
search space within the UCT exploration.



128 CHAPTER 11. CONCLUSION



Bibliography

Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and
bagging. In ICML ’98: Proceedings of the Fifteenth International Conference
on Machine Learning, pages 1–9, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-556-8.

Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, 1988.
ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:1022821128753.

D. V. Arnold and H.-G. Beyer. Efficiency and mutation strength adaptation of
the (mu/muI,lambda)-ES in a noisy environment. In M. Schoenauer et al.,
editor, Parallel Problem Solving from Nature, volume 1917 of LNCS, pages
39–48. springer, 2000.

Dirk V. Arnold and Hans-Georg Beyer. Evolution strategies with cumulative
step length adaptation on the noisy parabolic ridge. Natural Computing:
an international journal, 7(4):555–587, 2008. ISSN 1567-7818. doi: http:
//dx.doi.org/10.1007/s11047-006-9025-5.

Dirk V. Arnold and D. C. Scott Van Wart. Cumulative step length adaptation
for evolution strategies using negative recombination weights. In EvoWork-
shops, pages 545–554, 2008.

K.J. Astrom. Optimal control of Markov decision processes with incomplete
state estimation. Journal of Mathematical Analysis and Applications, 10:
174–205, 1965.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. Use of vari-
ance estimation in the multi-armed bandit problem. NIPS Workshop on
On-line Trading of Exploration and ExploitationWorkshop, 2006. URL
http://http://hal.inria.fr/inria-00203496/en/.

J.Y. Audibert, R. Munos, and Cs. Szepesvári. Exploration-exploitation trade-
off using variance estimates in multi-armed bandits. Theoretical Computer
Science, 2008.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256, 2002. URL
http://dx.doi.org/10.1023/A:1013689704352.

129



130 BIBLIOGRAPHY

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds
for reinforcement learning. In NIPS, pages 89–96, 2008.

Anne Auger. Convergence results for (1,λ)-SA-ES using the theory of ϕ-
irreducible markov chains. Theoretical Computer Science, 334:35–69, 2005.

Anne Auger and Olivier Teytaud. Continuous lunches are free plus
the design of optimal optimization algorithms. Algorithmica, page ac-
cepted, 2009. doi: http://dx.doi.org/10.1007/s00453-008-9244-5. URL
http://dx.doi.org/10.1007/s00453-008-9244-5.

Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009:
Comparison Tables of All Algorithms on All Noisy Functions. Technical Re-
port RT-0384, INRIA, 04 2010. URL http://hal.inria.fr/inria-00471253/en/.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active
learning. In ICML ’06: Proceedings of the 23rd international conference on
Machine learning, pages 65–72, New York, NY, USA, 2006. ACM. ISBN
1-59593-383-2. doi: http://doi.acm.org/10.1145/1143844.1143853.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active
learning. In Proc. of the 20 th Conference on Learning Theory, 2007.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman. The true sample
complexity of active learning. In COLT, pages 45–56, 2008.

R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

S.N. Bernstein. On a modification of chebyshev’s inequality and of the error
formula of laplace. Original publication: Ann. Sci. Inst. Sav. Ukraine, Sect.
Math. 1, 3(1):38–49, 1924.

S.N. Bernstein. The Theory of Probabilities. Gastehizdat Publishing House,
Moscow, 1946.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
September 1996. ISBN 1-886529-10-8.

Dimitri P. Bertsekas and Dimitri P. Bertsekas. Nonlinear Programming.
Athena Scientific, 2nd edition, September 1999. ISBN 1886529000. URL
http://http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/18865290

H.-G. Beyer. The Theory of Evolutions Strategies. Springer, Heidelberg, 2001.

Hans-Georg Beyer. Evolutionary algorithms in noisy environments: Theoretical
issues and guidelines for practice. In Computer Methods in Applied Mechanics
and Engineering, pages 239–267, 1998.

Alexis Bienvenue and Olivier Francois. Global convergence for evolution strate-
gies in spherical problems: some simple proofs and difficulties. Theor. Com-
put. Sci., 306(1-3):269–289, 2003. ISSN 0304-3975. doi: http://dx.doi.org/
10.1016/S0304-3975(03)00284-6.



BIBLIOGRAPHY 131

A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and
M. W. Trosset. A rigorous framework for optimization of expensive func-
tions by surrogates. Structural and Multidisciplinary Optimization, 17:1–
13, 1999. ISSN 1615-147X. URL http://dx.doi.org/10.1007/BF01197708.
10.1007/BF01197708.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, March 2004. ISBN 0521833787. URL
http://http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521833787.

Andrew P. Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30:1145–1159, 1997.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration for multi-
armed bandit problems. CoRR, abs/0802.2655, 2008.

R. Castro and R. Nowak. Minimax bounds for active learning. In to appear
in Proceedings of the 20th Annual Conference on Learning Theory (COLT),
2007.

R. Castro, R. Willett, and R. Nowak. Faster rates in regression via active learn-
ing. Proceedings of Neural Information Processing Systems (NIPS), pages
05–3, 2005.

Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. Learning probabilistic
linear-threshold classifiers via selective sampling. In In Proc. 16th COLT,
pages 373–386. Springer, 2003.

Kathryn Chaloner. Bayesian design for estimating the turning point of a
quadratic regression. Communications in Statistics—Theory and Methods,
18(4):1385–1400, 1989.

Edward Chang and Simon Tong. Support vector machine active learning for
image retrieval. In Proceedings of the 9 th ACM international conference on
Multimedia, pages 107–118, 2001.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
Supervised Learning. MIT Press, Cambridge, MA, 2006. URL
http://www.kyb.tuebingen.mpg.de/ssl-book.

G. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for monte-carlo tree search. In P. Wang et al.,
editors, Proceedings of the 10th Joint Conference on Information Sciences
(JCIS 2007), pages 655–661. World Scientific Publishing Co. Pte. Ltd., 2007.

Guillaume Chaslot, Jahn-Takeshi Saito, Bruno Bouzy, Jos W. H. M.
Uiterwijk, and H. Jaap van den Herik. Monte-Carlo Strategies for
Computer Go. In Pierre-Yves Schobbens, Wim Vanhoof, and Gabriel
Schwanen, editors, Proceedings of the 18th BeNeLux Conference on
Artificial Intelligence, Namur, Belgium, pages 83–91, 2006. URL
http://www.cs.unimaas.nl/g.chaslot/papers/mcscg.pdf.



132 BIBLIOGRAPHY

Guillaume Chaslot, Jean-Baptiste Hoock, Fabien Teytaud, and Olivier Teytaud.
On the huge benefit of quasi-random mutations for multimodal optimization
with application to grid-based tuning of neurocontrollers. In ESANN, Bruges
Belgium, 2009. URL http://hal.inria.fr/inria-00380125/en/.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Math. Stat., 23:493–509, 1952.

D.A. Cohn, Z. Ghahramani, and M.I. Jordan. Active Learning with Statistical
Models. Journal of Artificial Intelligence Research, 4:129–145, 1996.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with
active learning. Mach. Learn., 15(2):201–221, 1994. ISSN 0885-6125. doi:
http://dx.doi.org/10.1023/A:1022673506211.

F. Comets, S. Popov, G. M. Schütz, and M. Vachkovskaia. Billiards in a Gen-
eral Domain with Random Reflections. Archive for Rational Mechanics and
Analysis, 191:497–537, March 2009. doi: 10.1007/s00205-008-0120-x.

A. Conn, K. Scheinberg, and L. Toint. Recent progress in un-
constrained nonlinear optimization without derivatives, 1997. URL
http://citeseer.ist.psu.edu/conn97recent.html.

M. Coulm, P. Rolet, O. Teytaud, and P. Vayssiere. Parameter tuning by simple
regret algorithms and multiple simultaneous hypothesis testing. In Proceed-
ings of ICINCO’2010, 2010.

R. Coulom. Details on the QLR algorithm for stochastic optimization, March
2010. http://remi.coulom.free.fr/QLR/.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the
5th International Conference on Computers and Games, Turin, Italy, 2006.

Rémi Coulom. Computing elo ratings of move patterns in the game of go. In
Computer Games Workshop, Amsterdam, The Netherlands, 2007.

Rémi Coulom, Philippe Rolet, Nataliya Sokolovska, and Olivier Teytaud. Han-
dling expensive optimization with large noise. In Proceedings of FOGA’2011
(to appear), 2011.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Lawrence K.
Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information
Processing Systems 17, pages 337–344. MIT Press, Cambridge, MA, 2005.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 235–242. MIT Press, Cambridge, MA, 2006.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of
perceptron-based active learning. In In COLT, pages 249–263, 2005.



BIBLIOGRAPHY 133

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active
learning algorithm. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 353–360. MIT
Press, Cambridge, MA, 2008.

Brian Denton. Review of ”stochastic optimization: Algorithms and applications”
by stanislav uryasev and panos m. pardalos, kluwer academic publishers 2001.
Interfaces, 33(1):100–102, 2003. ISSN 0092-2102.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic Theory of Pattern Recog-
nition. Springer, 1997.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience Publication, 2000.

Ellinor Fackle Fornius. Optimal Design of Experiments for the Quadratic Logistic
Model. PhD thesis, Department of Statistics, Stockholm University, 2008.

Ronald A. Fisher. The design of experiments. Oliver and Boyd, 1951.

J. M. Fitzpatrick and J. J. Grefenstette. Genetic algorithms in noisy environ-
ments. Machine Learning, 3:101–120, 1988.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective
sampling using the query by committee algorithm. Mach. Learn., 28(2-3):
133–168, 1997. ISSN 0885-6125.

Sylvain Gelly and David Silver. Combining online and offline knowledge in uct.
In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 273–280, New York, NY, USA, 2007. ACM Press. ISBN 978-
1-59593-793-3. doi: http://doi.acm.org/10.1145/1273496.1273531.

Sylvain Gelly, Sylvie Ruette, and Olivier Teytaud. Comparison-based algorithms
are robust and randomized algorithms are anytime. Evolutionary Computa-
tion, 15(4):411–434, 2007.

Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Query by committee
made real. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18, pages 443–450. MIT Press, Cambridge,
MA, 2006.

W. R. Gilks. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC,
December 1995. ISBN 0412055511.

J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society. Series B (Methodological), 41.2:148–177, 1979. URL
http://www.jstor.org/stable/2985029.



134 BIBLIOGRAPHY

Sally A. Goldman and Michael J. Kearns. On the complexity of teaching.
In COLT ’91: Proceedings of the fourth annual workshop on Computational
learning theory, pages 303–314, San Francisco, CA, USA, 1991. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-213-5.

Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In
Advances in Neural Information Processing Systems (NIPS), pages 593–600,
Cambridge, MA, 2008. MIT Press.

Ulrich Hammel and Thomas Bäck. Evolution strategies on noisy functions: How
to improve convergence properties. In Yuval Davidor, Hans-Paul Schwefel, and
Reinhard Männer, editors, Parallel Problem Solving From Nature, volume 866
of LNCS, pages 159–168, Jerusalem, 1994. springer.

David J Hand. Evaluating diagnostic tests: The area under the roc curve
and the balance of errors. Statistics in Medicine, 29:1502–1510, 2010. URL
http://http://dx.doi.org/10.1002/sim.3859.

Steve Hanneke. A bound on the label complexity of agnostic active learning.
In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 353–360, New York, NY, USA, 2007a. ACM. ISBN 978-1-
59593-793-3. doi: http://doi.acm.org/10.1145/1273496.1273541.

Steve Hanneke. Teaching dimension and the complexity of active learning.
In Proceedings of the 20th Annual Conference on Learning Theory (COLT),
2007b.

N. Hansen. Source code for uh-cma, June 2008. Version 3,
http://www.lri.fr/ hansen/cmaesintro.html.

N. Hansen. Personal communication, 2010.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 11(1), 2003.

Nikolaus Hansen, Andre Niederberger, Lino Guzzella, and Petros Koumout-
sakos. A Method for Handling Uncertainty in Evolutionary Op-
timization with an Application to Feedback Control of Combus-
tion. IEEE Transactions on Evolutionary Computation, 2009. URL
http://hal.inria.fr/inria-00276216/en/.

David Haussler, Michael Kearns, and Robert E. Schapire. Bounds on the
sample complexity of bayesian learning using information theory and the
vc dimension. Mach. Learn., 14(1):83–113, 1994. ISSN 0885-6125. doi:
http://dx.doi.org/10.1023/A:1022698821832.

Tibor Hegedüs. Generalized teaching dimensions and the query complexity
of learning. In COLT ’95: Proceedings of the eighth annual conference on
Computational learning theory, pages 108–117, New York, NY, USA, 1995.
ACM. ISBN 0-89791-723-5. doi: http://doi.acm.org/10.1145/225298.225311.



BIBLIOGRAPHY 135

Verena Heidrich-Meisner and Christian Igel. Hoeffding and bernstein races for
selecting policies in evolutionary direct policy search. In ICML ’09: Proceed-
ings of the 26th Annual International Conference on Machine Learning, pages
401–408, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi:
http://doi.acm.org/10.1145/1553374.1553426.

R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines. Journal of
Machine Learning Research, 1:245–279, 2001.

Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Probability Inequalities for Sums of Bounded Random Variables, 58
(301):13–30, March 1963.

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch mode
active learning and its application to medical image classification. In ICML
’06: Proceedings of the 23rd international conference on Machine learning,
pages 417–424, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2. doi:
http://doi.acm.org/10.1145/1143844.1143897.

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Semisupervised
svm batch mode active learning with applications to image retrieval. ACM
Trans. Inf. Syst., 27(3):1–29, 2009. ISSN 1046-8188. doi: http://doi.acm.org/
10.1145/1508850.1508854.

C. Igel. Recent results on no-free-lunch for optimization. In H. Beyer, T. Jansen,
C. Reeves, and M. D. Vose, editors, Theory of Evolutionary Algorithms, num-
ber 04081 in Dagstuhl Seminar Proceedings, Abstract Collection. Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, 2004.

V. S. Iyengar, C. Apte, and T. Zhang. Active learning using adaptive resampling.
In Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 91–98, 2000.

Mohamed Jebalia and Anne Auger. On multiplicative noise models for stochastic
search. In Parallel Problem Solving From Nature, Dortmund, Germany, 2008.
URL http://hal.inria.fr/inria-00287725/en/.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. J. of Global Optimization,
13(4):455–492, 1998. ISSN 0925-5001. doi: http://dx.doi.org/10.1023/A:
1008306431147.

Matti Kaariainen. Active learning in the non-realizable case. In Algorith-
mic Learning Theory, 17th International Conference, ALT 2006, Barcelona,
Spain, October 2006, Proceedings, volume 4264 of Lecture Notes in Artificial
Intelligence, pages 63–77. Springer, October 2006.



136 BIBLIOGRAPHY

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artif. Intell., 101
(1-2):99–134, 1998.

P. Kall. Stochastic Linear Programming. Springer, Berlin, 1976.

André I. Khuri, Bhramar Mukherjee, Bikas K. Sinha, and Malay Ghosh. Design
issues for generalized linear models: A review. Statistical Science, 21(3):376–
399, 2006.

L. Kocsis and C. Szepesvari. Bandit-based monte-carlo planning. ECML’06,
2006. URL http://zaphod.aml.sztaki.hu/papers/ecml06.pdf.

S. R. Kulkarni, S. K. Mitter, and J. N. Tsitsiklis. Active learning using arbitrary
binary valued queries. Mach. Learn., 11(1):23–35, 1993. ISSN 0885-6125. doi:
http://dx.doi.org/10.1023/A:1022627018023.

T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6:4–22, 1985.

C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud,
Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong. The computational
intelligence of mogo revealed in taiwan’s computer go tournaments. IEEE
Transactions on Computational Intelligence and AI in Games, page accepted,
2009.

Esther Levin, Roberto Pieraccini, and Wieland Eckert. Using markov decision
process for learning dialogue strategies. In Proc. ICASSP, pages 201–204,
1998.

M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest
neighbor classifiers. Machine Learning, 54:125–152, 2004.

David J. C. Mackay. Bayesian interpolation. Neural Computation, 4:415–447,
1992.

K. Marti. Stochastic Optimization Methods. Springer, 2005.

T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226,
1982.

Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical bern-
stein stopping. In ICML ’08: Proceedings of the 25th international conference
on Machine learning, pages 672–679, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-205-4. doi: http://doi.acm.org/10.1145/1390156.1390241.

Netflix. The Netflix Prize, 2006. URL
http://en.wikipedia.org/wiki/Netflix Prize.

Hammond Niederreiter. Low-discrepancy and low-dispersion sequences. J. Num-
ber Theory, 1988.



BIBLIOGRAPHY 137

I. Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart,
1973.

Philippe Rolet. Java source code of the baal algorithm, 2010. URL
http://www.lri.fr/r̃olet/misc/baal.tgz.

Philippe Rolet and Olivier Teytaud. Complexity bounds for batch active learn-
ing in classification. In ECML PKDD ’10: Proceedings of the European Con-
ference on Machine Learning and Knowledge Discovery in Databases, Berlin,
Heidelberg, 2010a. Springer-Verlag.

Philippe Rolet and Olivier Teytaud. Adaptive noisy optimization. In EvoSTAR
2010 Proceedings, volume EvoSTAR, 2010b. To appear.

Philippe Rolet and Olivier Teytaud. Bandit-based Estimation of Distribution
Algorithms for Noisy Optimization: Rigorous Runtime Analysis. In Lion4,
Venice, Italy, 2010c. URL http://hal.inria.fr/inria-00437140/en/.

Philippe Rolet, Michèle Sebag, and Olivier Teytaud. Boosting active learning
to optimality: A tractable monte-carlo, billiard-based algorithm. In ECML
PKDD ’09: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 302–317, Berlin, Heidelberg,
2009a. Springer-Verlag. ISBN 978-3-642-04173-0. doi: http://dx.doi.org/10.
1007/978-3-642-04174-7 20.

Philippe Rolet, Michèle Sebag, and Olivier Teytaud. Optimal robust expensive
optimization is tractable. In GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 1951–1956, New
York, NY, USA, 2009b. ACM. ISBN 978-1-60558-325-9. doi: http://doi.acm.
org/10.1145/1569901.1570255.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through
sampling estimation of error reduction. In Proc. 18th International Conf. on
Machine Learning, pages 441–448. Morgan Kaufmann, San Francisco, CA,
2001. URL http://citeseer.ist.psu.edu/roy01toward.html.

Pál Ruján and Mario Marchand. Computing the bayes kernel classifier. In
A. J. Smola, P. L. Bartlett, B. Schoelkopf, and D. E. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 329–347, Cambridge, MA, USA,
2000. MIT Press.

Paul Ruján. Playing billiards in version space. Neural Computation, 9(1):99–
122, January 1997. URL http://arxiv.org/pdf/cond-mat/9508130.

Norbert Sauer. On the density of families of sets. J. Comb. Theory, Ser. A, 13
(1):145–147, 1972.



138 BIBLIOGRAPHY

Andrew I. Schein and Lyle H. Ungar. Active learning for logistic regression:
an evaluation. Mach. Learn., 68(3):235–265, 2007. ISSN 0885-6125. doi:
http://dx.doi.org/10.1007/s10994-007-5019-5.

G. Schohn and D. Cohn. Less is more: Active learning with support vector ma-
chines. Proceedings of the Seventeenth International Conference on Machine
Learning, 282:285–286, 2000.

H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley &
Sons, New-York, 1981. 1995 – 2nd edition.

J. K. Sengupta. Stochastic Programming. Methods and Applications. North-
Holland, Amsterdam, 1972.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In COLT ’92:
Proceedings of the fifth annual workshop on Computational learning theory,
pages 287–294, New York, NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi:
http://doi.acm.org/10.1145/130385.130417.

Masashi Sugiyama and Neil Rubens. A batch ensemble approach to active
learning with model selection. Neural Netw., 21(9):1278–1286, 2008. ISSN
0893-6080. doi: http://dx.doi.org/10.1016/j.neunet.2008.06.004.

R.S. Sutton and A.G. Barto. Reinforcement Learning: an Introduction. MIT
Press, Cambridge, MA, 1998.

Gerald Tesauro. Practical issues in temporal difference learning. In Machine
Learning, pages 257–277, 1992.

Olivier Teytaud and Anne Auger. On the adaptation of the noise level for
stochastic optimization. In IEEE Congress on Evolutionary Computation,
Singapour, 2007. URL http://hal.inria.fr/inria-00173224/en/.

Olivier Teytaud, Sylvain Gelly, and Jérémie Mary. Active learning in regression,
with application to stochastic dynamic programming. In ICINCO and CAP,
2007. URL http://www.grappa.univ-lille3.fr/ mary/paper/ldsfordp.pdf.

Simon Tong and Daphne Koller. Support vector machine active learning with
applications to text classification. Journal of Machine Learning Research,
pages 42–66, 2001.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
1984. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1968.1972.

Vladimir Vapnik. The Nature of Statistical Learn-
ing Theory. Springer, New York, 1995. URL
http://books.google.com/books?id=sna9BaxVbj8C&printsec=frontcover.



BIBLIOGRAPHY 139

Emmanuel Vazquez, Julien Villemonteix, Maryan Sidorkiewicz, and Eric
Walter. Global optimization based on noisy evaluations: an empiri-
cal study of two statistical approaches. Journal of Global Optimiza-
tion, page 17 pages, 2008. doi: 10.1007/s10898-008-9313-y. URL
http://hal-supelec.archives-ouvertes.fr/hal-00354656/en/.

M. Vidyasagar. A Theory of Learning and Generalization. Springer-Verlag, New
York, New York, 1997.

Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An in-
formational approach to the global optimization of expensive-
to-evaluate functions. Journal of Global Optimization, page
26 pages, 09 2008. doi: 10.1007/s10898-008-9354-2. URL
http://hal-supelec.archives-ouvertes.fr/hal-00354262/en/.

Yizao Wang and Sylvain Gelly. Modifications of UCT and sequence-like simula-
tions for Monte-Carlo Go. In IEEE Symposium on Computational Intelligence
and Games, Honolulu, Hawaii, pages 175–182, 2007.

Yizao Wang, Jean-Yves Audibert, and Remi Munos. Algorithms for infinitely
many-armed bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems 21, pages 1729–
1736. Curran Associates, Inc., 2009.

Manfred K. Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh
Putta, and Christian Lemmen. Support vector machines for active learning
in the drug discovery process. Journal of Chemical Information Sciences, 43:
667–673, 2003.

C. Williams and C. Rasmussen. Gaussian processes for regression. In Advances
in Neural Information Processing Systems 8, volume 8, pages 514–520, 1996.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.8841.

G. Xiao, F. Southey, R. C. Holte, and D. Wilkinson. Software testing by active
learning for commercial games. In In AAAI-05: Twentieth National Confer-
ence in Artificial Intelligence, pages 609–616, 2005.

Zongzhao Zhou. Hierarchical surrogate-assisted evolutionary optimization
framework. In In Evolutionary Computation, 2004. CEC2004. Congress on,
pages 1586–1593, 2004.


