N

N

Triangulating Point Sets in Orbit Spaces

Manuel Caroli

» To cite this version:

Manuel Caroli. Triangulating Point Sets in Orbit Spaces. Computer Science [cs]. Université Nice
Sophia Antipolis, 2010. English. NNT: . tel-00552215

HAL Id: tel-00552215
https://theses.hal.science/tel-00552215v1

Submitted on 5 Jan 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00552215v1
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE — SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

THESE

pour obtenir le titre de

Docteur en Sciences

de |'Université de Nice — Sophia Antipolis

Mention : Informatique

présentée et soutenue par

Manuel CAROLI

Triangulating Point Sets in Orbit Spaces

Theése dirigée par Monique TEILLAUD

soutenue le 10/12/2010

Rapporteurs : Kurt MEHLHORN — MPI fiir Informatik, Saarbriicken
John M. SULLIVAN — TU Berlin

Examinateurs : Eric COLIN DE VERDIERE - Ecole normale supérieure, Paris
Menelaos KARAVELAS — University of Crete
Jean-Marc SCHLENKER — Université Toulouse Il
Monique TEILLAUD — INRIA Sophia Antipolis — Méditerranée
Gert VEGTER — University of Groningen

Invité : Andreas FABRI - GeometryFactory Sarl

UNIVERSITY OF NICE — SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

PhD THESIS

to obtain the title of

Doctor of Sciences

of the University of Nice — Sophia Antipolis

Specialty: Computer Science

prepared and defended by

Manuel Caroli

Triangulating Point Sets in Orbit Spaces

Advisor: Monique Teillaud

defended on Dec. 10, 2010

Reviewers: Kurt Mehlhorn — MPI fir Informatik, Saarbriicken
John M. Sullivan — TU Berlin

Examinators: Eric Colin de Verdiére Ecole normale supérieure, Paris
Menelaos Karavelas University of Crete
Jean-Marc Schlenker Université Toulouse Il
Monique Teillaud — INRIA Sophia Antipolis — Méditerranée
Gert Vegter — University of Groningen

Invited: Andreas Fabri — GeometryFactory Sarl

Résumé

Dans cette thése, nous étudions les triangulations définies par un ensemble de points dans
des espaces de topologies différentes. Nous proposons une définition générale de la tri-
angulation de Delaunay, valide pour plusieurs classes d’espaces, ainsi qu'un algorithme
de construction. Nous fournissons une implantation pour le cas particulier du tore plat
tridimensionnel.

Ce travail est motivé a l'origine par le besoin de logiciels calculant des triangulations
de Delaunay périodiques, dans de nombreux domaines dont I’astronomie, 'ingénierie des
matériaux, le calcul biomédical, la dynamique des fluides, etc. Les triangulations péri-
odiques peuvent étre vues comme des triangulations du tore plat. Nous fournissons une
définition et nous développons un algorithme incrémentiel efficace pour calculer la triangu-
lation de Delaunay dans le tore plat. L’algorithme est adapté de I'algorithme incrémentiel
usuel dans R?. Au contraire des travaux antérieurs sur les triangulations périodiques, nous
évitons de maintenir plusieurs copies périodiques des points, lorsque cela est possible. Le
résultat fourni par 'algorithme est toujours une triangulation du tore plat.

Nous présentons une implantation de notre algorithme, & présent disponible publique-
ment comme un module de la bibliothéque d’algorithmes géométriques CGAL'.

Nous généralisons les résultats & une classe plus générale d’espaces quotients plats, ainsi
qu’a des espaces quotients de courbure constante positive. Enfin, nous considérons le cas
du tore double, qui est un exemple de la classe beaucoup plus riche des espaces quotients
de courbure négative constante.

Mots-clés : triangulation de Delaunay, espace quotient, complexe simplicial, trian-
gulation périodique, tore plat, revétement, algorithme incrémentiel, variété euclidienne
fermée

www.cgal.org

i

il

Abstract

In this work we discuss triangulations of different topological spaces for given point sets.
We propose both definitions and algorithms for different classes of spaces and provide an
implementation for the specific case of the three-dimensional flat torus.

The work is originally motivated by the need for software computing three-dimensional
periodic Delaunay triangulations in numerous domains including astronomy, material engi-
neering, biomedical computing, fluid dynamics etc. Periodic triangulations can be under-
stood as triangulations of the flat torus. We provide a definition and develop an efficient
incremental algorithm to compute Delaunay triangulations of the flat torus. The algorithm
is a modification of the incremental algorithm for computing Delaunay triangulations in
E?. Unlike previous work on periodic triangulations we avoid maintaining several periodic
copies of the input point set whenever possible. Also the output of our algorithm is guar-
anteed to always be a triangulation of the flat torus. We provide an implementation of our
algorithm that has been made available to a broad public as a part of the Computational
Geometry Algorithms Library CGAL?. We generalize the work on the flat torus onto a
more general class of flat orbit spaces as well as orbit spaces of constant positive curva-
ture. We furthermore consider the much richer class of orbit spaces of constant negative
curvature.

Keywords: Delaunay triangulation, orbit space, simplicial complex, periodic triangu-
lation, flat torus, covering space, incremental algorithm, closed Euclidean manifold

www.cgal.org

v

Acknowledgments

The work accomplished in the present thesis would not have been possible without the
support of many people that accompanied me during the last three years. It is impossible
to mention them all but nevertheless I would like to use these few lines to mention those
who influenced me most.

First of all I would like to thank my advisor Monique Teillaud for having proposed this
interesting topic and for accepting me as a student. She was always available and gave me
a lot of support, it was a real pleasure to be able to work with her.

It is a great honor to me that Kurt Mehlhorn and John M. Sullivan accepted to review
my thesis. T am very grateful to the examinators Eric Colin de Verdiére, Menelaos Karave-
las, Jean-Marc Schlenker, and Gert Vegter for coming to Sophia Antipolis to attend my
defense. 1 further thank Andreas Fabri for accepting to be a visiting examinator.

I would like to mention Nico Kruithof for having started some initial research. His
work helped me significantly to get started with the topic. I also want to thank Mridul
Aanjaneya for fruitful discussions on formalizing the problem. Arijit Ghosh was always
available for math questions or discussing interesting problems of any kind.

I want to thank Vissarion Fisikopoulos and Mikhail Bogdanov for their efforts to estab-
lish compatibility between the CGAL 3D Periodic triangulations and the CGAL Surface
mesher and the CGAL Volume mesher, respectively.

During my work I had the occasion to cooperate with research teams from TU Graz,
Austria and from the university of Groningen, Netherlands.

I am grateful to the people from Graz, Oswin Aichholzer and his project team (partic-
ularly Wolfgang Aigner, Thomas Hackl, Bernhard Kornberger, Birgit Vogtenhuber) as well
as Franz Aurenhammer. We had lots of interesting discussions during our mutual visits.

In the scope of the associate team “OrbiCG” we had several mutual visits with Rien van
de Weijgaert and Gert Vegter from Groningen. I really appreciated the fruitful discussions
both on applications of my code as well as on my research topic itself.

I am very thankful for the support I got from the CGAL project during the whole pro-
cess of implementation and submission of my package. 1 appreciated the open atmosphere
and the trust that was put in me from the very beginning.

Through the ANR project “Iriangles” I had the possibility to get in touch and exchange
ideas with French computer scientists and mathematicians on geometry-related topics. Our
various meetings were always a positive experience and often provided me with new ideas
on specific problems.

vi

Finally, I want to thank the current and former members of the INRIA project teams
Géométrica and ABS for all their support and the friendly atmosphere in which I had the
pleasure to pass the three years of my PhD studies.

I found a very positive and open international atmosphere both at INRIA as well as
outside of INRIA. I am thankful to everybody 1 met and who enriched my stay of almost
four years in France. I will always keep a very good memory of my time in Sophia-Antipolis.

Schliefslich mochte ich mich bei meiner Familie bedanken, die mich stets unterstiitzt
und mir ermdglicht hat, meinen bisherigen Weg zu beschreiten.

Contents

1 Introduction

1.1 Motivationo
1.2 Triangulations in B¢
1.2.1 Simplicial complexes oo Lo
1.2.2 The Delaunay triangulation,
1.2.3 Algorithms to compute Delaunay triangulations of E¢
1.2.4 The incremental algorithm00
1.3 Orbitspaces e
1.4 Problem statement Lo
1.5 Stateoftheart o . L oL
1.6 Contributions

2 3D Periodic triangulations

2.1 Theflat torus L
2.2 Delaunay triangulation of T3
2.2.1 Definition
2.2.2 Point sets that do not define a Delaunay triangulation of T3
2.3 Algorithm
2.3.1 Cubicdomain L
2.3.2 Non-cubicdomaino o
2.3.3 Weighted Delaunay triangulation
2.4 Analysis e e
24.1 Complexity analysis Lo
24.2 Number ofsheets oL

3 Implementation

3.1 Introduction to CGAL
3.2 The CGAL 3D triangulations
3.2.1 The triangulation traits o000
3.2.2 The triangulation data structure
3.3 The 3D periodic triangulations o Lo
3.3.1 Design
332 Offsets o . o
3.3.3 Traits L
3.3.4 Covering spaces oo
3.3.5 Point location L

3.3.6 Pointinsertion e

viii CONTENTS
3.3.7 Vertexremoval 53

3.3.8 Access 54
3.3.9 Optimizations 55
3.3.10 Additional functionality L. 56

3.4 Complexity e 28
3.5 Study of an alternative design 61
3.6 Experiments 62
3.6.1 Inputpointsets. 63
3.6.2 Construction of the Delaunay triangulation 63
3.6.3 Point insertion in T2 66
3.6.4 The triangulation hierarchy 0oL 67

3.6.5 Vertexremoval 68

3.6.6 Specific original domain L Lo 68
3.6.7 Comparison of the criteria of Section 2.3.1 69

3.7 Applications 71
3.7.1 Periodic alpha shapes L. 71
3.7.2 Periodic surface mesher L. 72
3.7.3 Periodic volume meshero oo 75
3.7.4 Periodic Lloyd algorithm 76

3.8 Conclusion e 78
4 Delaunay triangulations of other spaces 79
4.1 Preliminaries 79
4.2 Flat spaces 80
4.2.1 Closed Euclidean manifolds 80
4.2.2 Triangulations of Closed Euclidean Manifolds 81
423 Algorithm 84
424 Flatorbifolds 85

4.3 Spherical spaceso 85
4.3.1 Triangulations of the sphere 85
4.3.2 Spherical orbit spaceso Lo 86
4.3.3 'Triangulations of spherical orbit spaces 87

4.4 A hyperbolicspace 88
4.4.1 The hyperbolic plane H? 88
442 Thedouble torus 90
4.4.3 Triangulations of the double torus 90
444 Discussion 95

5 Conclusion and future work 97
5.1 Restriction to simplicial complexes 97
5.2 Restrictions on spaces e 98

5.3 Hyperbolic orbit spaceso 99

Chapter 1

Introduction

Triangulations are considered to be one of the most important structures in Computational
Geometry. The Delaunay triangulation is a special type of triangulation that exhibits
several very interesting and useful properties. Together with its dual, the Voronoi diagram,
it is of great importance to many applications. The Delaunay triangulation and the Voronoi
diagram are well-studied; many efficient algorithms are known and many implementations
exist. However, most of these results are restricted to Delaunay triangulations in the
d-dimensional Euclidean space E?.

In this work we consider the problem of defining and computing Delaunay triangulations
of spaces other than E%. The introductory section is organized as follows: We first discuss
the motivation for our work. Then we give the required background knowledge on Delaunay
triangulations and on orbit spaces. After these introductions, we state the problem we
consider in this work. Finally we review previous work on Delaunay triangulations and
Voronoi diagrams of spaces other than E¢ and present our contributions to the topic.

1.1 Motivation

This work is motivated by needs for computing periodic triangulations in different domains
of science. There are several reasons for working in a periodic space: Firstly, the input
can be a point set with an inherent periodicity. Another reason is that often the size of
the model is too big to run computations on it, so the experiments are run on a small
sample, replicated periodically to avoid boundary effects. And finally, there are some
interesting mathematical questions on triangulations and meshes, where the use of periodic
triangulations can help to gain further insight. In all cases it is desirable to compute the
triangulation of a smaller point set containing only one periodic copy of each input point
to avoid redundancy in the computation.

We now give a few concrete examples of problems in different fields of science that
use periodic triangulations. Some of them have been presented at the “CGAL Prospec-
tive Workshop on Geometric Computing in Periodic Spaces”!, at INRIA Sophia-Antipolis
Meéditerranée, France, October 2008 and at the workshop “Subdivide and Tile: Triangu-
lating spaces for understanding the world”?, at the Lorentz Center in Leiden, Netherlands,
November 2009.

"http://www.cgal.org/Events/PeriodicSpacesWorkshop/
Zhttp://www.lorentzcenter.nl/lc/web/2009/357/info.php3?usid=357

http://www.cgal.org/Events/PeriodicSpacesWorkshop/
http://www.lorentzcenter.nl/lc/web/2009/357/info.php3?wsid=357

2 1. INTRODUCTION

We first consider an example of an inherently periodic problem: In material sciences,
researchers develop new materials that should have some specific properties. For example,
Moesen et al. [Moe08] develop bone scaffolds, i.e. materials that can be used to replace
broken bones. In order to verify the material properties they use finite element simulations.
More specifically, they want to compute a Delaunay-based volume mesh of the scaffold.
These scaffolds are periodic; in order to mesh the whole scaffold it suffices to mesh only one
periodic domain such that the mesh can be replicated and glued together, see Figure 1.1(b).
When computing in a periodic setting, two copies of the mesh fit together by construction.

In cosmology, the subfield of astronomy dealing with large-scale structure in the uni-
verse, the so-called cosmological principle states: “Viewed on a sufficiently large scale, the
properties of the Universe are the same for all observers." [Kee02|. Thus for simulations on
the large-scale structure in the universe, a sufficiently large sample of the structure can be
used, replicated periodically; see Figure 1.1(a). We have been in contact with astronomers
who developed a “Delaunay tessellation Field Estimator” [vdWS07| and who are interested
in using periodic Delaunay triangulations and Voronoi diagrams. They are also interested
in Betti numbers of periodic alpha shapes [vdWVP*10].

Granular materials show particle properties at micro-scale and continuum-mechanical
properties at macro-scale. To understand the relation between both kinds of properties,
a method based on a hierarchy of Delaunay triangulations has been developed [Dur08,
Kru09]. To avoid boundary effects, the authors use a periodic setting.

Astrophysical simulations often work using a method called adaptive mesh refinement
that is based on regular grids. This leads to problems when the scaling range should be
big. Either some intermediate grid size is used that is not very well adapted for extreme
scales or the grid is refined where a smaller scaling is required, which makes the handling of
the grid considerably more complicated. Using Voronoi diagrams instead of regular grids
seems a well-adapted option in this case. There are applications of this in a periodic setting
as well [Dul08].

Similar approaches are used in computational structural biology [Ber09], fluid dynam-
ics [Cam09, Dugq], particle dynamics [dFCO03], solid mechanics [NG02], biomedical comput-
ing [Wei08] etc., this list being far from exhaustive. Some of these applications also ask
for different types of periodicities, such as periodicities in less than three directions in E3
or point sets generated by more complicated isometries, such as reflections or rotations.

There are also mathematical questions, where periodic triangulations can be useful.
For example the Kelvin Problem [Tho87|: How can space be partitioned into cells of equal
volume with the least area of surface between them? See Figure 1.1(c) for the bitruncated
cubic honeycomb, a partition with truncated octahedra proposed by Kelvin himself. There
is currently progress made on this topic using periodic Voronoi diagrams [Gab09]|. There
are more topics, e.g., [Rob06] works on Betti number signatures of point sets in a periodic
setting.

1.2 Triangulations in E?

In this section we recapitulate the definition and the properties of the Delaunay triangula-
tion. We start with underlying concepts such as simplicial complexes and triangulations.
Then we introduce Delaunay triangulations, some important properties, and explain in
detail the incremental algorithm that is used subsequently.

1.2. TRIANGULATIONS IN E¢ 3

(a)

Figure 1.1: (a): Large-scale structure of the cosmic web, courtesy R. v. d. Weijgaert.
(b): Bone scaffold, courtesy M. Moesen. (c): Bitruncated cubic honeycomb (Image: [Kep]).

1.2.1 Simplicial complexes

We now introduce the notions of simplices and simplicial complexes. For further reading
see [ZomO05.

We denote the d-dimensional Euclidean space by E?. The distance between p and ¢ is
denoted by dist(p, q), the length of the vector v := g — p from p to ¢ is denoted by ||v||.

A set A C E4 is said to be convez if for all points p,q € A the line segment between p
and ¢ is contained in A.

Let po, p1, . .. px be points in E¢, k < d. The linear combination Aopo+Aip1+. . .+ \eDk
with Zf:o Ai = 1, A\; € R, spans an affine variety. The points are said to be affinely
independent if the affine variety is a space of dimension k.

Definition 1.2.1 (k-simplex). A k-simplex o in B¢, k < d, is the convex hull of k + 1
affinely independent points Py = {po,p1,- .., Dk}

A simplex 7 defined by P, C P, is a face of 0 and has o as a coface. This is denoted
by o > 7 and 7 < o. Note that 0 > o and ¢ < 0.

There exist several definitions of simplicial complexes in the literature. Often they
restrict to a finite number of simplices [Zom05, RV06]. In the sequel, we deal with infinite
simplicial complexes, so, we use the definition given in [Lee00]:

Definition 1.2.2 (Simplicial complex). A simplicial complex is a set K of simplices such
that:

(i) ce C,r<o=717€K
(i1). 0,0/ e K=0No' <ocandono’ <o’

(#ii). Every point in a simplex of IKC has a neighborhood that intersects at most finitely many
simplices in K (local finiteness).

Of course, if K is finite, then condition (iii) is always fulfilled.
We give some more definitions: Let I be a simplicial complex. If a subset of K is a
simplicial complex as well, we call it subcomplex of K. The star of a subset £ C K consists

4 1. INTRODUCTION

of the cofaces of simplices in L:
St(L):={oceK|ITreLl,o>T1}
The closure £ of L is the smallest subcomplex containing £:
L={reK|JoecL,T<ao}.

The link of L is defined as follows

Lk(L) == St(L) — St(L).

See Figure 1.2 for an illustration of star, closure, and link. In subsequent discussions, we

Figure 1.2: Left: St({v}), shaded triangles and dashed segments. Center: St({v}), shaded
triangles, dashed segments, and incident vertices. Right: Lk({v}), dashed lines and incident
vertices.

will be interested in the union of the simplices from a set £, which we denote by |JL£. We
denote the interior of a simplex o by 6. Two simplices ¢ and 7 are said to be internally
disjoint if their interiors are disjoint, i.e. ¢ N7 =) (see Figure 1.3).

Figure 1.3: o and 7 are internally disjoint.

Note that the definition of simplicial complexes and the subsequent definitions are
purely combinatorial and do not depend on the embedding space. Thus in order to use
these definitions in spaces other than E? only the building blocks, the simplices, are
required to be defined.

We can now consider triangulations, which are very basic structures in Computational
Geometry. Triangulations are widely used in all types of applications, such as finite element
methods and meshing. We first give the formal definition.

Definition 1.2.3 (Triangulation). Let X be a topological space in which simplices are
defined. A triangulation of X is a simplicial complex K such that |JIKC is homeomorphic to
X. A triangulation of X defined by a point set S is a triangulation of X such that the set
of vertices of the triangulation is identical to S.

1.2. TRIANGULATIONS IN E¢4 5

In E?, the union of a finite number of simplices is compact, whereas E? itself is not com-
pact. So according to the above definition there is no finite triangulation of E?. However,
we can define triangulations of the one-point-compactification E?U {oo} of E, where com-
binatorial simplices formed by oo and d finite vertices are considered as infinite d-simplices.
From now on, when we refer to a finite triangulation of the point set S in E?, we actually
mean a triangulation of the point set S U {oo} in E¢ U {oo}.

1.2.2 The Delaunay triangulation

The Delaunay triangulation is named after Boris Delaunay who was one of the first to
explore the very interesting and useful properties of this by now well-studied structure in
computational geometry [Del34].

In order to define the Delaunay triangulation of E¢ given by a point set, we first need
some notation. Let S be a discrete point set in E?. Let o be a d-simplex; the d 4 1 vertices
of o lie on the boundary of a uniquely defined d-ball, called the circumscribing ball of o.
If one of the vertices of o is 0o, then the circumscribing ball of ¢ is a half-space bounded
by the hyperplane defined by the remaining d vertices.

Definition 1.2.4 (Delaunay triangulation). A d-simplex in a d-dimensional triangulation
whose circumscribing ball does not contain any vertex of the triangulation in its interior is
said to have the Delaunay property. A triangulation of E® with vertex set S is called the
Delaunay triangulation of E? defined by S if each d-simplex in the triangulation has the
Delaunay property.

We write DT(S) to denote the Delaunay triangulation of E¢ defined by S.
To explore more properties of the Delaunay triangulation we now consider its dual
structure, the Voronoi diagram:

Definition 1.2.5 (Voronoi diagram). The Voronoi cell Vor(p,S) of a point p € S consists
of all points q in E? such that dist(q, p) < dist(q,p;) for all p; € S — {p}.

The Voronoi diagram V D(S) of the point set S is the partition of E? into the Voronoi
cells of the points in S.

See Figure 1.4 for an illustration of a Delaunay triangulation and a Voronoi diagram
in the plane. For further reading on Delaunay triangulations and Voronoi diagrams,
see [dBvKOS00, BY98, Aur91, AKO00].

The dual graph of the Voronoi diagram has the following properties: The sites corre-
spond to the vertices of the dual graph, the Voronoi vertices correspond to cells in the dual
graph, the features of intermediate dimension follow implicitly. Such a dual of the Voronoi
diagram of S is called the Delaunay graph of S.

We say that S is in general position if there is no subset of more than k+ 1 points that
lie on one k-sphere or in one k-plane for k < d. If the points in § are in general position,
then the Delaunay graph is the Delaunay triangulation.

If the points are not in general position, then the subsets of cospherical points form
convex polyhedra in the Delaunay graph. In order to transform the Delaunay graph to a
Delaunay triangulation, these polyhedra must be triangulated. As the points are cospheri-
cal, any triangulation of these polyhedra has the Delaunay property. For practical purposes
it is often useful to always have a uniquely defined Delaunay triangulation. For point sets
that are not in general position this can be achieved using symbolic perturbation [DT03].

6 1. INTRODUCTION

Figure 1.4: Delaunay triangulation (solid lines) and Voronoi diagram (dashed lines) of 50
points in the plane.

The Voronoi diagram can be generalized to a weighted Voronoi diagram or power dia-
gram, where a real value, the so-called weight, is attached to each point in the set S and
the Euclidean distance is replaced by the power distance: Let (p,w,) and (q,w,) denote
points p and ¢ in E? together with their weights wp and wy, respectively. Then the power
distance is given by

II((p, wp), (q,wq)) := dist(p, q)* — wp — wy.

The weighted Delaunay triangulation or regular triangulation can be defined as the
dual of the power diagram in the same way as the Delaunay triangulation is the dual of
the Voronoi diagram. Weighted Delaunay triangulations are a generalization of Delau-
nay triangulations; geometrically, they can be understood as follows: The weighted points
(p,wp) and (g, w,) can be considered as spheres of radius ,/w, and ,/w, centered at p and
q, respectively. The power product of two weighted points is 0 if and only if the corre-
sponding spheres intersect orthogonally. Thus two such points are said to be orthogonal.
Analogously, if the power product of two weighted points is strictly negative or positive the
weighted points are said to be superorthogonal or suborthogonal, respectively. In a non-
degenerate case, d + 1 weighted points admit exactly one common orthogonal weighted
point (0,w,), i.e., (0,w,) is orthogonal to each of the d + 1 weighted points. The d + 1
weighted points are said to have the weighted Delaunay property if for any other weighted
point in S, the power product with (0, w,) is non-negative. If the input point set is in
general position, i.e., if not more than d + 1 weighted points have the same common or-
thogonal point, the weighted Delaunay triangulation is the set of all d-simplices formed
by (d 4+ 1)-tuples of points having this property. See [DT06b| for a treatment of degen-
erate cases. Note that if we add the same amount to the weight of each point in S, the
weighted Delaunay triangulation does not change. See Figure 1.5 for a weighted Delaunay
triangulation. For more on weighted Delaunay triangulations see [ES96].

Most of what we describe in Chapter 2 extends to weighted Delaunay triangulations.
Where this is not the case, we treat weighted Delaunay triangulations separately.

Properties of triangulations:
The size of any planar triangulation is linear in the number of vertices, which can be
seen easily from the Euler’s formula: Let n, e, f denote the number of vertices, edges, and

1.2. TRIANGULATIONS IN E¢4 7

Figure 1.5: A weighted Delaunay triangulation of E2.

faces in the triangulation, respectively. Then Fuler’s formula states that n —e + f = 2.
Furthermore, each face has three edges and each edge corresponds to two faces, thus we
have 2e = 3f. Plugging this into Euler’s formula gives f = 2n — 4 € O(n).

The size of a three-dimensional triangulation can be quadratic in the number of vertices.
Let ¢ denote the number of cells and e the number of edges as above. The 3D version of
Euler’s formula states n — e + f — ¢ = 0, which implies ¢ € O(e). An edge is defined by
a pair of vertices, so the number of edges is in O(n?). There are examples of quadratic
sized Delaunay triangulations, so the bound is tight (see Figure 1.6). The size of Delaunay

triangulations of E¢ is bounded by O(n[%]), which is a tight bound [AADOT7].

Figure 1.6: A quadratic size Delaunay triangulation of 3.

1.2.3 Algorithms to compute Delaunay triangulations of E¢

There are various algorithms known for computing the Delaunay triangulation [Bow81,
For87, 1.S80, Wat81]. The first algorithms have been developed for planar Delaunay tri-
angulations. By the duality of the Delaunay triangulation and the Voronoi diagram, al-
gorithms for computing Voronoi diagrams of point sets can be used to compute Delaunay
triangulations as well.

In E2 the size of the Delaunay triangulation is in O(n) as seen above. The lower bound
on the complexity of computing it is in (nlogn) because the sorting problem can be
reduced to a Delaunay triangulation computation: Imagine points given on one half of
the unit parabola. All input points are part of the convex hull of the triangulation, see
Figure 1.7. They can be extracted from the triangulation in increasing order of their -
coordinate in linear time. Thus the construction of the Delaunay triangulation must be in
Q(nlogn).

8 1. INTRODUCTION

Figure 1.7: Using the Delaunay triangulation algorithm to sort points along z.

We briefly introduce the most commonly used approaches to compute Delaunay trian-
gulations, first for the planar case and then for higher dimensions.

Incremental This approach is efficient in practice and easy to implement. It has first
been described by [Bow81] and [Wat81].

Given a point set S, the algorithm starts with a triangulation of d + 1 points from &
in general position, which is necessarily Delaunay, and inserts the remaining points one
by one, restoring the Delaunay property after each point insertion. Each point insertion
consists of a point location step and a point insertion step.

In the naive approach the point location step is in O(n(%]) in the worst case. The
point insertion step inserts the point into the simplex that contains it and restores the
Delaunay property. The worst-case complexity of the point insertion step is thus bounded
by O(n(%]). There are n point-location and insertion steps, so the overall complexity is
O(n[gprl).

This result can be improved considerably using randomization and a point-location
data structure. Randomization means here to insert the points of S in random order. We
now give the results of a randomized worst-case analysis, i.e., we consider a worst-case
point set S and randomized insertion order.

The first results have been achieved for Delaunay triangulations of E? only. Using
a point-location data-structure the point location step can be improved to an expected
complexity of O(logn). Several such point-location data-structures have been proposed,
all requiring expected O(n) space: [CS88] first proposed an offline version, i.e., the point set
must be known in advance. [GKS92| introduced an online version and [DMT92a, Dev02]
described a fully dynamic approach, i.e. allowing for vertex removal. When using such a
point-location data-structure and a randomized insertion order, the expected complexity
of the point insertion step is O(1). This yields an overall optimal randomized worst-case
complexity of O(nlogn).

The randomized incremental analysis can be easily extended to E3, resulting in expected
time and space complexity O(n?), which is optimal [GKS92]. Tt actually even extends to
d dimensions. In this case the expected time and space complexity is O(n[%w) [DMT92a,
Dev02]. We describe the details of the incremental algorithm in Section 1.2.4 below.

1.2. TRIANGULATIONS IN E¢4 9

Divide & Conquer A divide & conquer approach to compute planar Delaunay trian-
gulations has been described by |[LS80| and improved by |[Dwy87]. It actually computes
the Voronoi diagram; the Delaunay triangulation can then be constructed in linear time.

The point set S is partitioned along the x-axis or the y-axis into two about equally
large subsets S; and S2. Then the Voronoi diagrams of §1 and Sy are computed recursively.
Finally there is a sewing step that computes the Voronoi diagram of S from the Voronoi
diagrams of S; and Sz. This algorithm has the optimal worst-case complexity O(nlogn);
it does not directly extend to higher dimensions.

Sweeping algorithm This is again an algorithm to compute planar Voronoi diagrams
[For87]. It maintains a line that sweeps over the plane and the Voronoi diagram of the
already encountered points and the line itself. As the line sweeps the plane, the Voronoi
diagram is updated on the fly and new points encountered by the sweep-line are added.
This algorithm has optimal worst-case complexity O(nlogn).

1.2.4 The incremental algorithm

The implementation of Delaunay triangulations in the Computational Geometry Algo-
rithms Library CGAL [cga] uses a modified version of the incremental algorithm described
by Bowyer [Bow81] and Watson [Wat81]. We now present in more detail the algorithm
used by the CGAL implementation [Yvil0, PT10b], on which our algorithm to compute
the Delaunay triangulation of different orbit spaces is based.

At first we explain the employed point location strategy together with two optional
improvements, one using a point-location data-structure and the other one performing
some preprocessing on the point set before constructing the triangulation. Then we present
two common solutions to restoring the Delaunay property of the triangulation after having
inserted a new point. And finally we show how to remove a vertex from a triangulation.

Point location In order to find the cell that contains a given point, an approach called
remembering stochastic walk is used [DPT02|. The point location procedure starts at an
arbitrary cell c. It chooses a facet f of the cell at random. Let v denote the vertex of ¢
that does not belong to f. If the query point and v lie on different sides of the hyperplane
containing f, the point location algorithm proceeds to the neighboring cell on the opposite
side of f and does the same again. It remembers the cell that has been visited before in
order to save one geometric test. As it chooses f at random amongst the faces of ¢, it
reaches the cell containing the point after a finite number of steps with high probability.
Figure 1.8 for an illustration in 2D.

As introduced in Section 1.2.3, several point-location data-structures have been pro-
posed. In CGAL the Delaunay hierarchy [Dev02] is implemented: A logarithmic number of
triangulations of gradually smaller subsets of the input point set are maintained. For each
of these triangulations there are links between corresponding vertices in the next finer and
the next coarser triangulation in the hierarchy. The point location starts in the coarsest
triangulation, then goes down to the next finer triangulation and starts the remember-
ing stochastic walk described above at a vertex corresponding to the output of the point
location on the coarser triangulation.

If the whole point set is known it advance, it can be ordered in a way that two successive
points in the ordering are spatially close. Then the point location can be initialized with

10 1. INTRODUCTION

Figure 1.8: Left: We follow one of the arrows chosen at random to get closer to p.
Right: Without the random choice of the neighbor to visit the algorithm could end up
in an infinite loop in this situation.

the last inserted point. In practice this approach yields very good results. This approach
is called Spatial sorting [ACR03|. A CGALimplementation for sorting points spatially is
available [Dell0]; a theoretical analysis can be found in [Buc09].

Point insertion The goal of this step is to restore the Delaunay property when insert-
ing the new point into the triangulation. In the two-dimensional case an approach using
so-called flips is often used. But it is difficult to extend this approach to higher dimen-
sions [ES96]. We use an alternative approach proposed independently by Bowyer [Bow81]
and Watson |[Wat81| that extends easily to d dimensions and is well-suited for implemen-
tation due to its simplicity.

The point insertion is done in three steps:

1. Identify the cells that must be modified (the conflict region).
2. Delete all cells from the conflict region.
3. Fill the hole created in step 2 with cells spanned by the new point and the hole facets.

The conflict region consists of all d-simplices, whose circumscribing balls contain the
new point, see Figure 1.10.

To find the conflict region a depth-first search algorithm is used. It starts at the cell
containing the new point. For all its neighbors, it is checked whether they belong to the
conflict region. If a neighbor is in conflict, all its neighbors but the already visited ones
are tested recursively. If a neighbor is not in conflict, the search is stopped.

The conflict region is a star-shaped polytope and the new point is located in its kernel,
i.e., the new point can see the whole boundary of the polytope. Furthermore, the boundary
of the polytope consists of (d — 1)-simplices by construction. Thus after deleting the d-
simplices in conflict it is possible to fill up the hole by constructing new d-simplices from
the (d — 1)-simplices that are facets of the polytope and the new point. This gives the
desired triangulation (see Figure 1.9).

This approach directly extends to the weighted Delaunay triangulation: In this case,
the conflict region consists of all d-simplices whose orthogonal spheres are suborthogonal
to the sphere centered at the new point and whose squared radius is the weight of the

1.3. ORBIT SPACES 11

Figure 1.9: Left: The triangles in conflict with p. Right: The star of p in the updated
Delaunay triangulation.

Figure 1.10: Conflict regions for Delaunay triangulation (left) and weighted Delaunay
triangulation (right).

new point, see Figure 1.10. The same depth-first search algorithm as for the Delaunay
triangulation can be used. The condition for this algorithm to work is that the conflict
region must be contractible, which is true for the weighted Delaunay triangulation.

Vertex removal For general triangulations vertex removal is not possible because remov-
ing a vertex might leave a hole that cannot be triangulated (e.g. the Schénhardt polyhedron
[She98al).

For the Delaunay triangulation and the weighted Delaunay triangulation a vertex can
be removed in the following way: First the vertex and all incident cells are removed from
the triangulation. This leaves a hole whose boundary is a polytope with (d—1)-simplices as
facets. Then the vertices of that polytope are triangulated using the algorithm described
above to compute the Delaunay triangulation or the weighted Delaunay triangulation of
a point set. The boundary of the hole forms a subcomplex of this triangulation and thus
the interior of this polytope can be sewed into the hole.

1.3 Orbit spaces

We now give a short introduction to orbit spaces and other mathematical concepts that
will be used throughout the thesis. See [Arm82] for further reading.

12 1. INTRODUCTION

A topological space is a set X together with a collection € of subsets of X with the
properties

e () and X are in
e The union of any collection of sets in €2 is again in 2.
e The intersection of any finite collection of sets in €2 is again in €.

The collection € is also called a topology on the set X. An element w of €2 is a neighbor-
hood of an element x € X if x € w. A subset O of X is called open if it is a neighborhood of
each of its points. A subset C of X is called closed if its complement is open. A topological
space is discrete if all elements of X appear as singleton sets in €. Note that in a discrete
topological space all the singleton sets are both open and closed. A function f from a
topological space X to a topological space Y is continuous if for each point x of X and each
neighborhood N of f(z) in Y the preimage f~!(IV) is a neighborhood of x in X. Contin-
uous functions are also called maps. A homeomorphism from a topological space X to a
topological space Y is a function that is bijective, continuous, and has a continuous inverse.
If such a function exists, X and Y are called homeomorphic or topologically equivalent.

We use the notation G :=< ¢1,...,gr > to denote the group generated by elements
g1, ---,9k- Let g, h be elements of G. For two group elements g, h € G, the group operation
that combines g and h is written as gh. A topological group is a group together with a
topology with the property that both the group operation and the function mapping a
group element to its inverse are continuous. A group is discrete if it is a topological group
with the discrete topology. In this work we only consider discrete groups. A group G is
said to be torsion-free if the only element of finite order is the identity.

A topological group G is said to act as a group of homeomorphisms on a space X if
its elements are homeomorphisms from X to X, the group operation is composition of two
homeomorphisms, and the following properties are fulfilled:

e (hg)(x) = h(g(x)) for all g,h € G, for all z € X|
e ¢(x) =z for all z € X, where e is the unit element of G,
e the function G x X — X (g, z) — g(x) is continuous.

Let « be a point of X. The action of G is discontinuous at x if there is a neighborhood
U of x such that {g € G | gUNU # 0} is finite. The action is called discontinuous if
it is discontinuous at any x € X. The set of all images g(z), for all elements g of G, is
called the orbit of . From the fact that G is a group follows that two intersecting orbits
are equal, and thus orbits form a partition of X. This induces the following equivalence
relation: z ~ y if x = g(y) for some g € G. The quotient space X/G is the set of all orbits
of X under the action of G; from now on we use the term orbit space for X/G because it
is more commonly used in geometric contexts and emphasizes the fact that we consider a
space of orbits. We call X/G the orbit space of X under the discontinuous action of G. We
abuse the denomination by using the following short expressions to denote X and G when
there are no ambiguities: X is the underlying space of X/G and G is the group of action
defining X/G. Let g € G and p € X. We use the short notation gp to denote g(p).

A fundamental domain of G is a subset of X that contains at least one point of each
orbit. One often requires the fundamental domain to be connected and closed and to
contain not more than one point of the same orbit in its interior.

1.4. PROBLEM STATEMENT 13

We furthermore need the concept of covering spaces defined as follows.

Definition 1.3.1 (Covering space). Let X be a topological space. A map p : X — X is
called a covering map and X is said to be a covering space of X if the following condition
holds: For each point x € X there is an open neighborhood V', and a decomposition of
p YV as a family {U,} of pairwise disjoint open subsets of X, in such a way that plu, is a
homeomorphism for each a.. Let h, denote the cardinality of the family {U,} corresponding
to some x € X. If the maximum h := max,cx hy s finite, then X s called an h-sheeted
covering space of X.

A covering space X of X is said to be a universal covering space if it is a covering space
of all covering spaces of X. For example, a 2-sheeted covering space of a circle is again a
circle, see Figure 1.11. The real line is a universal covering space of a circle.

X X

Figure 1.11: Left: A circle. Right: A 2-sheeted covering space.

A space is a manifold of dimension d or d-manifold if each of its points has a neigh-
borhood homeomorphic to E¢. Note that a torsion-free group does not have fixed points,
i.e., gp # hp holds for all p € E%, g, h € G and g # h. If X is a manifold and if G is discrete
and torsion-free, then X/G is a manifold. In this case the action of G is also called properly
discontinuous. If G is not torsion-free, then X/G can have points whose neighborhood is
not homeomorphic to E?, so-called singular points. In this case X/G is an orbifold, which
is a generalization of manifolds [Thu02, BMP03|.

When we talk about curvature of manifolds, we mean Riemannian curvature, which
is a generalization of Gaussian curvature to d-dimensional manifolds [dC92]. We consider
only orbit spaces whose underlying spaces have constant curvature.

1.4 Problem statement

The goal of this work is to give a definition of the Delaunay triangulation of different orbit
spaces and to devise efficient algorithms to compute it.

One orbit space we consider is the so-called flat torus. The flat torus can be generated
by identifying opposite edges of a square, see Figure 1.12.

identification

—

Figure 1.12: Identifying opposite edges of a square yields a torus.

14 1. INTRODUCTION

A triangulation of the flat torus is periodic by construction: It can be replicated peri-
odically in 2- and y-direction in E?, see Figure 1.13. In Chapter 2, we describe in more

Figure 1.13: A periodic triangulation.

detail how to consider the flat torus as an orbit space.

If the input point set is too small or not well-distributed, it does not define a triangu-
lation. This means that the partition of the flat torus into vertices, segments and triangles
is not a simplicial complex and followingly not a triangulation, see Figure 1.14.

Figure 1.14: This is not a simplicial complex because the intersection of o and 7 is p U e,
which is not a simplex.

Let us insist here on the fact that computing a triangulation, i.e. a simplicial complez,
is important for several reasons. First, a triangulation is defined as a simplicial complex in
the literature [Arm82, DS02, GGL95, Hen79, Lee00, Spa66, Zom05|. Moreover, designing
a data structure to efficiently store tessellations that are non-simplicial complexes (e.g. A-
complexes [Hat01]) would be quite involved. The CGAL 3D triangulation data structure,
that we reuse in our implementation, assumes the structure to be a simplicial complex
[PT10a]. Even more importantly, algorithms using a triangulation as input rely on the
fact that the triangulation is a simplicial complex; this is the case for instance for meshing
algorithms [RY07, RY10], as well as algorithms to compute a-shapes, which are actually
needed in the periodic case by several applications mentioned at the beginning of this
introduction.

One approach to resolve issues arising when computing the Delaunay triangulation of

1.5. STATE OF THE ART 15

an orbit space is to use several explicit copies of the input point set. Several examples
where this approach is used are presented in Section 1.5. We want to give a number of
copies that is sufficiently large to obtain a simplicial complex but small enough such that
an implementation of an algorithm is still useful in practice. Such a number depends on
both the orbit space and the input point set. We also aim at working without additional
copies whenever possible.

1.5 State of the art

In this section we describe existing work on triangulations in spaces other than E¢, es-
pecially work in relation to orbit spaces. At first we consider work discussing Delaunay
triangulations of different spaces of constant curvature. Then we turn to discussing soft-
ware packages, and finally we consider papers that treat the problem for more general
spaces and in more general settings.

Grima and Marquez describe how to compute triangulations of point sets on sur-
faces [GMO1]. They explicitly treat the cases of the cylinder, the sphere, and the torus.
They do not discuss the Delaunay triangulation.

Given a set of points S on a surface, they define a “pseudo-triangulation” as a maximum
set of segments, which are the shortest geodesics connecting two points from S such that
no two segments intersect. They do not consider degenerate cases but implicitly assume
geodesics to be uniquely defined. The segments of the “pseudo-triangulation” partition the
surface into polygonal regions. The authors prove the following results, see also Figure 1.15:

Cylinder If the input points are not all contained in one half-cylinder, then the “pseudo-
triangulation” partitions the cylinder into two unbounded regions and many bounded
regions that are all triangles.

Sphere If the input points are not all contained in one half-sphere, then the “pseudo-trian-
gulation” partitions the sphere into triangles; this partition is a triangulation.

Torus If at least one quadrant of the fundamental square of the flat torus does not contain
any input point, then the “pseudo-triangulation” is not a triangulation.

They do not give an algorithm for computing triangulations of the torus.

Figure 1.15: Left: Triangulation of the cylinder. Right: "Pseudo-triangulation” of the torus;
no more shortest geodesics can be added without introducing intersections. |[GMO1]

16 1. INTRODUCTION

Mazon and Recio [MR97] discuss the computation of Voronoi diagrams on orbifolds.
The dual structure of the Voronoi diagram has the Delaunay property, but is not necessarily
a simplicial complex. They only consider a quite restricted class of orbifolds: Orbit spaces
of E2 and S? under the action of discrete groups of isometries. In the Euclidean case
these are the wallpaper groups, the point groups and the Frieze groups, in the spherical
case the point groups only [CM57]. Let G be one such group and S the input point
set. If G is infinite, then GS, the set of all points in the orbits of the points of S, is
infinite. Let V D(S) denote the Voronoi diagram of S in E? or S2. The authors show that
for any G there is a finite point set $* C ¢S and a fundamental domain F, such that
VD(S*)NF =VD(GS)NF. This means that V. D(S*) N F under the action of G is the
infinite Voronoi diagram of GS, see Figure 1.16. The goal here is to compute such a basic

Figure 1.16: Left: Voronoi diagram of three points on a cylinder. Right: One basic building
block. Source [MR97]

building block. The authors prove that in the worst case (i.e. for the worst groups) S*
consists of up to 37 copies of the point set S.

In this approach, the computation of the Voronoi diagram is done in E? or S?, respec-
tively. Thus any of the well-known algorithms of complexity O(nlogn) can be used. As
the number of points in §* is at most 37 times the number of points in S this does not
change the asymptotic behavior of the algorithm, but it does not appear very practical
either, given that the algorithm is slowed down by a factor of at least 37 in the worst case.

Aanjaneya and Teillaud [AT07] examine triangulations of the projective plane, which is
an orbit space of S? under the action of the group identifying two antipodal points. They
use an incremental algorithm and start with an initial triangulation of six of the input
points. They represent the triangulation and perform the computations in the projective
plane itself. They solve the problems arising due to the fact that the projective plane is
not orientable. The triangulations they compute do not have the Delaunay property.

Dolbilin and Huson [DH97b| show that in the case of the three-dimensional flat torus
a periodic Delaunay triangulation can be extracted from a Delaunay triangulation of 27
copies of the point set. In Section 4.4.3, we present a part of their proof in more detail.
They do not discuss whether the number of required copies can be reduced depending
on the input point set. They do not work in the flat torus but consider a fundamental
domain given by the Voronoi cell of a single point in the torus. Then they compute the
Delaunay triangulation of the convex hull of the input point set inside the fundamental

1.5. STATE OF THE ART 17

domain together with its copies in the 26 adjacent fundamental domains in E3. Their
algorithm works in three steps:

1. Let S be the input set of points in the fundamental cube. Compute the set S* of 27
copies of each point in S.

2. Compute the Delaunay triangulation of S* in [E3.

3. Extract the simplices from the Delaunay triangulation of S* that are part of the
infinite periodic Delaunay triangulation.

The output of this algorithm is a set of tetrahedra whose union is a fundamental domain
of the three-dimensional flat torus.

Again, as this approach actually computes a Delaunay triangulation in E3, it can use
any of the known algorithms. However, the number of input points to the algorithm is
27 times larger than the number of points in §. This does not change the theoretical
complexity of the algorithm, but for practical use it would be nice to reduce the number
of required copies of the input points.

Software

In the engineering community, Thompson proposed an algorithm for computing Delaunay
triangulations of the three-dimensional flat torus avoiding duplications of points [Tho02].
However, the algorithm heavily relies on the assumption that the input point set is suffi-
ciently large and well-distributed. It starts with an initial “triangulation” of eight vertices
close to the corners of the fundamental cube. This initial structure is not a simplicial
complex and it is not required to have the Delaunay property. Points are added itera-
tively using several techniques in order to find inconsistencies due to floating-point errors
and work around them [BL95]. The claim is that if the input point set is sufficiently
large and well-distributed, then the final output will be a Delaunay triangulation of the
three-dimensional flat torus. The claim is supported by experiments on well-distributed
data. No proofs are provided. The experiments exhibit a running time of about O(n!-11).
Unfortunately, the code is not available, so we could not compare it to our implementation.

John M. Sullivan wrote the software package vcs for computing both periodic and
non-periodic Voronoi diagrams [Sul|. However, it dates back to 1988 and is not maintained
by the author anymore. In case of periodic Voronoi diagrams it works with 27 copies of
each input point.

Furthermore, there are other implementations from researchers, adapted to their spe-
cific use: For instance, Volker Springel implemented a parallelized version of a two-
dimensional periodic mesh generator to run experiments on fluid dynamics [Spr10, Spr09].
It is highly adapted to the used hardware and it is not intended to be available for public
use.

More general spaces
Some work on triangulations in more general spaces have been published:

Edelsbrunner and Shah discuss triangulations in general topological spaces [ES97].
However, they assume the space to be embedded in E¢ and they suppose that they are
given a sufficiently well-sampled point set. Then they compute the Delaunay triangulation

18 1. INTRODUCTION

of the point set in E? and define the triangulation of the given topological space to be
a restriction of the triangulation in E¢. In his way the restricted Delaunay triangulation
is a subcomplex by construction and thus a triangulation. The actual discussion aims
at determining whether the restricted triangulation is homotopy equivalent to the given
topological space. This topic has been subject to extensive research, see for instance [BO05,
Che93, Rup95, She00].

Delgado Friedrichs and Huson discuss orbifold triangulations and crystallographic groups
[DH97a]. Their problem is in some sense inverse to the problem we want to discuss: Given
a triangulation of a space, find the corresponding space group, i.e. the group G, such that
the given triangulation is a triangulation of the orbit space E3/G.

1.6 Contributions

We give a mathematically sound definition of the Delaunay triangulation of the three-
dimensional flat torus defined by a set of points. We propose a consistent approach of
treating point sets that do not define a periodic Delaunay triangulation using covering
spaces. We prove conditions to decide whether a periodic Delaunay triangulation of a
covering space of the flat torus can be converted to a Delaunay triangulation of the flat
torus itself and give simple geometric criteria to verify these conditions.

We present an adaptation of the well-known incremental algorithm in E? [Bow8l,
Wat81] that allows to compute Delaunay triangulations of the three-dimensional flat torus.
We focus on the incremental algorithm for several reasons: Its practical efficiency has been
proved in particular by the fully dynamic implementation in CGAL [PT10b]; moreover,
a dynamic algorithm, allowing to freely insert and remove points, is a necessary ingredi-
ent for all meshing algorithms and software based on Delaunay refinement methods (see
for instance [She98b, RY07, CDL07|). We extend the above work to different classes of
triangulations such as weighted Delaunay triangulations.

We also provide an implementation of the algorithm. The software has been reviewed
and accepted by the CGAL Editorial Board for inclusion in version 3.5 of the CGAL library
[cga]. This software was demonstrated by a video [CT08]. We are in contact with users of
our implementation and there is at least one publication referring it [Soul0].

We discuss extensions that allow for using our code in combination with other CGAL
components such as the alpha shape package |[DY10| or the surface mesh and volume mesh
generators [RY10, RTY10].

We extend parts of our work on Delaunay triangulations of the flat torus to different
classes of spaces, such as orbit spaces of the d-dimensional Euclidean space E? and the
d-dimensional sphere S?. We present some preliminary ideas on how to extend it also to
orbit spaces of the hyperbolic space H.

The thesis is organized as follows. In Chapter 2, we discuss periodic triangulations in
detail. We give a precise definition as well as an algorithm and prove several important
properties. In Chapter 3, we describe the implementation in CGAL, show some experi-
ments and applications. Chapter 4 deals with extending the theory developed in Chapter 2
onto further flat orbit spaces as well as spherical and hyperbolic orbit spaces.

19

Chapter 2

3D Periodic triangulations

In this chapter, we first show how to define the flat torus as an orbit space. In the main
part of the chapter we show how to extend the definition of a Delaunay triangulation to
the three-dimensional flat torus and present an algorithm. We extend the algorithm to
weighted Delaunay triangulations. We finally prove the correctness of the algorithm and
show that it has randomized worst-case optimal complexity of O(n?).

2.1 The flat torus

At first we give a precise definition of the flat torus that we will consider throughout
the rest of the chapter. Then we review some of its well-known properties and establish
notation. Finally, we give a definition of simplices in the flat torus.

Let t;, t,, and ¢, denote the unit translations along the z-, y-, and z-axis in E3,
respectively.

Definition 2.1.1 (T2). Let ¢ := (cy, ¢y, ¢;) € (R\{0})? and G be the group < cyty, cyty, ot
The orbit space E3/G is a flat torus and we denote it by TS. We furthermore denote the

projection map by |7 : E3 — T2 |.

Another commonly used denomination is Fuclidean torus [Thu97]. Here, flat or Eu-
clidean means that the space has a constant Riemannian curvature zero. It is called torus
because it is homeomorphic to the three-dimensional torus embedded in E*.

The flat torus T2 that we consider here has a d-cuboid as fundamental domain. For
general flat tori the fundamental domain is not restricted to cuboids but can be a d-
dimensional parallelepiped. The general case is treated in Section 4.2.

Note that the orbits of G are isomorphic to Z3 and T? x Z?3 is isomorphic to E3. T3 is
a metric space with distr(m(p), 7(q)) := mindist(p’, ¢’) for p’ ~ p, ¢’ ~ q. Note that 7 is
continuous.

Consider the closed cuboid [u, u + co] X [v,v+ ¢1] X [w, w + ¢2], which is a fundamental

domain for G. The half-open cuboid |D. = [0, ¢;) % [0,¢,) X [0, ;) | contains exactly one

representative of each element of T2. We call it original domain. We denote coordinate-
wise vector multiplication by x, i.e. (ag,ay,a.)* (b, by, b.) = (azby, ayby, asb;). Note that
this can also be understood as a matrix multiplication where the a and b are the entries

20 2. 3D PERIODIC TRIANGULATIONS

on the diagonals. The map
Ye:Dex?? — E?
(p.¢) = ptex(

is bijective. The longest diagonal of D has length ||c||. We say that two points p, ps € E?
are periodic copies of each other if they both lie in the same orbit, or equivalently if there
is a point p € D, such that p1,pa2 € pe({p} x Z3).

Now we turn towards the definition of simplices in T2. There is no meaningful definition
of a convex hull in T3 and a tetrahedron is not uniquely defined by four points. We attach
with each vertex an integer vector, named offset, that specifies one representative out of
an orbit (see Figure 2.1). Intuitively, the offsets determine which way a simplex “wraps
around” the torus. In the above definition of ¢, the offsets are the numbers ¢ € Z3.

D2e A

p3 D1

Figure 2.1: (2D illustration) The three points p1,ps2, and p3 do not uniquely define a
triangle. The drawn triangle is the triangle (pi, (8)), (p2, ((1))), (ps, (}))

As seen in Section 1.2.1 the simplicial complex definition is purely combinatorial and
does not depend on the space. Only the simplex definition must be adapted to T3. This
can be done in a similar way as in [Wil08§]:

Definition 2.1.2 (k-simplex in T3). Let P be a set of k+1 (k < 3) point-offset pairs (p;, ;)
in DexZ3, 0 <i < k. Let Ch(P) denote the convex hull of pe(P) = {pi+c*¢ | 0 <i <k}
in B3, If the restriction Tlcn(p) of T to the convex hull of P is injective, the image of Ch(P)
by 7 is called a k-simplex in T3.

In other words, the image under 7 of a simplex in E3 is a simplex in TS only if it
does not self-intersect or touch. Figure 2.2 shows the convex hulls A, B, and C of three
point-offset pairs in [0,1)? x Z2, respectively; (pl, (g)) is a point in the orbit of a vertex of
A that lies inside A. All three vertices of B are in the same orbit.

There are infinitely many sets of point-offset pairs specifying the same simplex. The
definition of face and coface is adapted accordingly: Let o be a k-simplex defined by a set
Py C D x Z3. A simplex 7 defined by a set P, C D, x Z3 is a face of o and has o as a
coface if and only if there is some ¢ € Z3 such that {(p;, (; +¢) | (pi, &) € Pr} C Ps.

2.2 Delaunay triangulation of T2

This section is organized as follows: At first we give a definition of the Delaunay trian-
gulation of TS. We observe that there are point sets in T2 that do not define a Delaunay

2.2. DELAUNAY TRIANGULATION OF T2 21

| A \ | | |
(Pu- (‘2’)) (P«r (;)) (170« (;))
() @)

(] [°

(#2(2) \p, (© :

i o\ () o0 () T8 (= ()
M) (vo. ((v, (7))
&j»/%)) ® ()

2 (D) | @) | @:())

X
(vo- (5)) (vo- 5))

(o) @ *0.() (1.()
[] [)

(1. ()] () 6

(Pn i

S

Figure 2.2: (2D illustration) 7(A) and 7(B) are not simplices; however, 7(C') is a simplex.

triangulation of TS. Then we give a necessary and sufficient condition for a point set to
define a Delaunay triangulation of T2 (Theorem 2.2.8). In the second part we discuss how
to deal with point sets that do not define a Delaunay triangulation of T2.

2.2.1 Definition

Let us recall that a triangulation of a point set S in E? is a simplicial complex with vertex
set S. It is a Delaunay triangulation if and only if each tetrahedron satisfies the Delaunay
property, i.e., its circumscribing ball does not contain any point of § in its interior. From
now on we always assume Delaunay triangulations of E? to be uniquely defined, e.g. by
using symbolic perturbation as described in Section 1.2.2.

We want to define the Delaunay triangulation of T2 for a given point set 7(S). The
idea is to use the projection under m of a Delaunay triangulation of E? defined by the

infinite periodic point set | GS := (S x Z3) | Without loss of generality, we can assume
that the points of S lie in De.

From now on, (i), (ii) and (iii) always denote the three conditions of Definition 1.2.2
(Simplicial complex).

Lemma 2.2.1. For any finite point set S C D, a set of simplices K in E? that fulfills (i),
(ii), and the Delaunay property with respect to GS, is a simplicial complex in E3.

Proof. We need to show that K has the local finiteness property (iii).

Assume that there is a vertex v with an infinite number of incident simplices and thus
an infinite number of incident edges. Since S contains only a finite number of points, there
must be at least one point ¢ in S of which infinitely many periodic copies are adjacent to
v. The periodic copies of ¢ form a grid, in which the diameter of the largest empty ball is
bounded by ||¢||. So circumscribing balls of tetrahedra that are cofaces of edges between
v and periodic copies of ¢ that are further away than ||c|| cannot be empty. This is a
contradiction and hence all vertices in I are incident to only a finite number of simplices.

Let us now consider a point p in E? that is not a vertex in K. If it lies in the interior
of a tetrahedron, then it has a neighborhood that intersects only one simplex. If it lies in
the interior of a triangle, then it has a neighborhood that intersects three simplices: the
triangle and the two incident tetrahedra. Assume now that p lies in the interior of an edge,

22 2. 3D PERIODIC TRIANGULATIONS

then it has a neighborhood intersecting only the triangles and tetrahedra that are incident
to the two endpoints of the edge. According to the above discussion, these are only finitely
many. O

Since GS contains points on an infinite grid, any point p € E3 is contained in some
simplex defined by points in GS. Together with Lemma 2.2.1, this implies that the set
of all simplices with points of GS as vertices and respecting the Delaunay property is a
Delaunay triangulation of E3 and we denote it by DT(GS). Using m we can now define
the Delaunay triangulation of T2.

Definition 2.2.2 (Delaunay triangulation of T2). Let DT(GS) be a Delaunay triangulation
of GS in E3. If m(DT(GS)) is a simplicial complex in T3, then we call it a Delaunay
triangulation of T2 defined by S and we denote it by DTr(S).

There are point sets for which #(DT(GS)) is not a simplicial complex, see Figure 1.14
on page 14.

The rest of this section is devoted to studying when S actually defines a Delaunay
triangulation of TS. We show that Definition 2.2.2 actually makes sense: We verify that
the simplices “match” under , i.e., that all periodic copies of a simplex in DT(GS) are
mapped onto the same simplex in TS under 7. We also prove that if 7(DT(GS)) is a
set of simplices, then it fulfills conditions (i) and (iii). Finally, we discuss under which
circumstances condition (ii) is fulfilled, which yields the necessary and sufficient condition
on (DT (GS)) to be a triangulation, i.e., by Definition 1.2.3 it is a simplicial complex
whose union is homeomorphic to T2.

Let us start with the first lemma:

Lemma 2.2.3. If the restriction of w to any simplex in DT (GS) is injective, then m(DT(GS))
is a set of internally disjoint simplices in T3 that do not contain any point of (S) in their
interior.

Proof. Consider a tetrahedron o of DT(GS), whose vertices are a four-tuple of points
P, C GS. o satisfies the Delaunay property, so all periodic copies @e(P, x Z3) also have
an empty circumscribing ball. This shows that all these periodic copies form tetrahedra of
DT (GS).

Note that this is even true in degenerate cases: If we handle degeneracies as in [DT03],
then the Delaunay triangulation of a set of cospherical points only depends on their lexico-
graphic order. As translating the set of points does not change their lexicographic order,
all periodic copies of that point set are triangulated in the same way.

Followingly, 7 collapses precisely all the periodic copies of o onto its equivalence class
in T2. As any lower-dimensional simplex in DT(GS) is incident to some tetrahedron, and
thus is defined by a subset of its vertices, the same holds for simplices of any dimension.

Now the projections under 7 of two internally disjoint k-dimensional simplices o and
7 in DT(GS) are either equal or internally disjoint for & > 1, due to the bijectivity of m
between both simplices and their respective images. The same argument implies that the
interior of a simplex cannot contain any vertex. O

We observe that 7(DT(GS)) is finite: DT(GS) is locally finite (Lemma 2.2.1), i.e.,
the star of any vertex is finite. As S is discrete also GS is discrete and all tetrahedra
have a certain volume larger than some constant. Followingly, there are only finitely many

2.2. DELAUNAY TRIANGULATION OF T3 23

tetrahedra necessary to fill the original domain D, and thus T3. Finitely many tetrahedra
have only finitely many faces so the overall number of simplices in 7(DT(GS)) is finite,
too.

So far we know that if all simplices in DT(GS) are mapped as simplices onto T2, then
the whole triangulation is mapped onto a set of simplices in T3. We now consider the
incidence relation.

Observation 2.2.4. Assume that the restriction of m to any simplex in DT (GS) is injec-
tive. If T is a simplex in 7(DT(GS)) and 7' < 7, then 7' is a simplex in 7(DT(GS)). This
follows immediately from the fact that incidence relations are maintained by m and from
Lemma 2.2.5.

It only remains to show condition (ii), i.e., the intersection of two simplices o and 7 in
m(DT(GS)) is another simplex x that is incident to both o and 7.

Lemma 2.2.5. Assume that the restriction of ™ to any simplez in DT (GS) is injective.
Let o,7 € 7(DT(GS)) be any two simplices in TS, then o N T is a set of simplices in
m(DT(GS)).

Proof. Without loss of generality, we assume that o N7 # (). We show that o N7 =
Upeonr Xp» Where x; is a simplex in 7(DT(GS)). The union is finite because there are
only finitely many simplices in 7(DT(GS)). Consider a point p € o N7. If p is a vertex
of 7(DT(GS)), then it is not contained in the interior of any other simplex, according to
Lemma 2.2.3, and we set x, = {p}. If p is not a vertex in 7(DT(GS)), then p € o’ and
p € 7/ for some proper faces ¢/ < o and 7/ < 7 because o and 7 are internally disjoint
(Lemma 2.2.3). Since ¢’ and 7’ are again either internally disjoint or identical, it follows
that they are the same face and we set x, := o/ = 7/. By condition (i) the simplex ¥, is
contained in 7(DT(GS)). O

Remember that | JSt(v) denotes the union of the simplices in the star of v. We can
now formulate the following sufficient condition for 7(DT(GS)) to be a simplicial complex:

Lemma 2.2.6. If for all vertices v of DT(GS) the restriction of the projection map 7| jsi (o)
is injective, then m(DT(GS)) forms a simplicial comples.

Proof. We set K = n(DT(GS)). Let o be a simplex of DT(GS) and v an incident vertex.
Then o C |JSt(v), thus the restriction of 7| jgy() to o is injective as well, and K is a set
of simplices (Lemma 2.2.3).

Conditions (i) and (iii) follow from the above discussion. It remains to show condi-
tion (ii): Consider two simplices 0,7 € I with o N7 # (). By definition of a simplex, there
exist sets Py, P, in D¢ x Z3 such that o = 7(Ch(P,)) and 7 = 7(Ch(P;)). From Lemma
2.2.5, we know that o N7 is a set of simplices in K. So there exists a vertex v € o N7
and o,7 € St(v). By assumption 7| jsy(y) is injective, so 7 is injective on o and 7, and
o N7t = n(Ch(Py)) N m(Ch(P;)) = m(Ch(Py NP;)). Also, the restriction of 7| sy to
Ch(P, NP;) is injective. So from Definition 2.1.2, it follows that o N7 is a simplex. Since
cNTtCo,r1,wehaveo Nt <o,T.]

As the last ingredient for the theorem, we need the following lemma that shows that
the Delaunay triangulation as defined in Definition 2.2.2 is actually a triangulation of T?
in the sense of Definition 1.2.3.

24 2. 3D PERIODIC TRIANGULATIONS

Lemma 2.2.7. |7(DT(GS))| is homeomorphic to T5.

Proof. By its construction |DT(GS)| = E? and 7 is surjective. Followingly, 7(|DT(GS)|)
is equal to TS. Then, the chain of equalities

m(|DT(GS))) = = U o| Y U 7 H(r)

ceDT(GS) Ten(DT(GS))
2 U = U ro)=mores)
Tew(DT(GS)) ceDT(GS)

holds with the following arguments:

(1) This step just regroups the simplices in a different order but does not change the set
(cf. Lemma 2.2.3).

(2) There is only a finite number of elements in 7(DT(GS)).

O

We are now ready to prove the main theorem of this section, which gives a necessary
and sufficient condition for 7(DT(GS)) to be a triangulation of TS. Let us recall that the
1-skeleton of a simplicial complex is the subcomplex that consists of all edges and vertices.

Theorem 2.2.8. Assume that the restriction of ™ to any simplex in DT (GS) is injective.
7(DT(GS)) is a triangulation of TS if and only if its 1-skeleton does not contain any cycle
of length less than or equal to two.

Proof. We first show the “if” part. We set £ = w(DT(GS)). From Lemma 2.2.3 and
Observation 2.2.4, we know that C is a finite set of simplices that fulfills conditions (i)
and (iii). Assume that IC is not a simplicial complex. From Lemma 2.2.6 there is a vertex
v € K for which 7| jg;(v) i8 not injective. This implies the existence of two different points
p,q € |JSt(v) with w(p) = m(q). Let o denote the simplex of K that contains m(p) = 7(q)
in its interior. Then there are two different simplices of € 7 !(0) and of € 7 1(0)

containing p and ¢, respectively. Thus o and o are both elements of St(v). Let u,w be
vertices different from v with u < of and w < of such that 7(u) = 7m(w). Such vertices

w and w always exist because m(of) = (o). The vertices u, w are also elements of St(v)
and thus there are edges (u,v) and (v, w) in DT(GS). From 7(u) = m(w) follows that the
projection of (u,v) and (v, w) under 7 forms a cycle of length two in T2, which contradicts
the assumption that 7| s is injective. So K must be a simplicial complex. Following
Definition 2.2.2, we can now note D17 (S) = n(DT(GS)). Lemma 2.2.7 shows that DT (S)
is actually a triangulation of T3, which concludes the first part of the proof.

Now we consider the “only if” part. There cannot be any cycles of length one because
of the assumption that the restriction of 7 to any simplex in DT(GS) is injective. Assume
m(DT(GS)) is a simplicial complex containing two edges o and 7, o # 7, that form a cycle
of length two. Then o N7 consists of the two endpoints of the segments ¢ and 7, which do
not form a simplex in 7(DT(GS)), which contradicts condition (ii) of Definition 1.2.2. [

See Figure 2.3 for an illustration of Lemma 2.2.6 and Theorem 2.2.8.

2.2. DELAUNAY TRIANGULATION OF T3 25

Figure 2.3: (2D illustration) The shaded region is ©¢(St(p) x Z3) N De (cf. Lemma 2.2.6).
There are several cycles of length two originating from p (cf. Theorem 2.2.8).

In the proof of Theorem 2.2.8 we have shown that if 7| jg¢(,) is not injective, then
there are cycles of length two in w(DT'(GS)), which is equivalent to 7(DT(GS)) not being
a simplicial complex. Followingly, this condition is not only sufficient but also necessary
in Lemma 2.2.6.

2.2.2 Point sets that do not define a Delaunay triangulation of T?

In this section, we explain how we can give a finite representation of the periodic triangula-
tion DT(GS) that is a simplicial complex even if 7(DT'(GS)) is not a simplicial complex. If
S does not define a Delaunay triangulation of T3, we compute in a finitely sheeted covering
space, see Section 1.3.

Note that E3 itself with the projection map 7 as covering map is a universal covering
space of T3, which means that it is a covering space for all covering spaces of TS [Arm82)].
However, we cannot use it to compute the Delaunay triangulation because it has an infinite
number of sheets. We now construct a finitely sheeted covering space that is sufficiently
large so that any point set P defines a Delaunay triangulation of it.

Let h = (hy, hy, h,) € N3. T3 _is a covering space of T3 together with the covering
map pp = TO 7r}:1, where 7, : E? — ']I‘:,SL*C denotes the projection map of T;q’l*c. As p,_ll(p)
for any p € T3 consists of hz-hy-h. different points, Ti*c is a hg-hy-h.-sheeted covering
space. The original domain is Dpse = [0, hgcy) X [0, hycy) x [0, hzc). If hy = hy = h., we
use the notation 7, := mp, with h := hy-hy-h;, like for a7 in Theorem 2.2.10 below. Note
that Tj .. is a flat torus again.

Dolbilin and Huson [DH97b| showed that only the points of GS contained in D, and
the 26 copies that surround it can have an influence on the simplices that are completely
contained in D.. We use the ideas of their proof to prove Theorem 2.2.10, so we first
give a sketch of their approach. The proof idea is based on considering which parts of the
triangulation can be influenced by a point. This is done in three steps using Minkowski
sums [dBvKOS00]. Let F(1) denote the Voronoi cell of the origin in the Voronoi diagram of
the orbit of the origin under G. Then F@) is a fundamental domain of G. Let furthermore
Q be a point set in FM). A @& B denotes the Minkowski sum of A and B, and we define
FO .= p) g pl-1),

26 2. 3D PERIODIC TRIANGULATIONS

Lemma 2.2.9 (|[DH97b]). Let o and T be simplices in the infinite periodic Delaunay trian-
gulation DT (GQ) such that one of the vertices of o lies in the center of FO gnd rnF® £ ¢
holds. Then

1. the center of the circumscribing ball of o lies in F(),
2. o is completely contained inside F(?.
8. T is completely contained inside F®.

Proof. We briefly sketch the proofs of the three properties.

1. This follows directly from the fact that F(1 is a Voronoi cell of the Voronoi diagram
of the orbit of the origin under the action of G: If the center of the circumscribing
ball of o was outside of F(l), then it would be closer to some other point of GO
contradicting the fact that it is the center of the circumscribing ball of o.

2. This follows directly from 1, and from the fact that F(® is the Minkowski sum of
FO) with itself.

3. This follows directly from the definition of F(®).

See Figure 2.4 for an illustration of Lemma 2.2.9.

FO[.= 7O glp()

@ TS

i

Figure 2.4: (2D illustration) It is sufficient to consider F(®) in order to compute a Delaunay
triangulation of the flat torus.

From Lemma 2.2.9 follows that all triangles of the periodic Delaunay triangulation of Q
are contained inside F'®) and so it is sufficient to compute the finite Delaunay triangulation
DT(GQN F®)inE3. According to Lemma 2.2.9, all simplices of DT(GQ N F®)) that have
at least one vertex in F(1) are simplices of the infinite periodic Delaunay triangulation
DT (GQ). Since the set of these simplices covers FO) applying the action of G on it yields
an infinite periodic partition of E®. Note that this result directly extends to E.

Using the approach of the proof of Lemma 2.2.9, we can show the following:

Theorem 2.2.10. 7o7(DT(GS)) is a simplicial complex.

Proof. We show that there are no cycles of length 2 in mo7(DT(GS)). Let De(i, 7, k) denote
the translation of D¢ by (i - ¢z, J - ¢y, k- cz), Le.

De(i, g k) :==1li-coy (1 +1)) X [f-cy, (J+1)-¢y) X [k-cz (K+1)-¢2).

2.3. ALGORITHM 27

Assume that there is a cycle of length two in mo7(DT(GS)). Then there are vertices
v,v',v" € DT(GS) such that the edges (v, ') and (v/,v"), (v,v") # (v',v"), are contained in
DT (GS) and that mo7(v) = mor(v”). Let De(i, 4, k), De(i', §', k'), and De(i”, 5", k") denote
the translations of D, that contain v,v’, and v”, respectively. According to Lemma 2.2.9,
if a simplex intersects both D¢(7, j, k) and De(i, j', k'), then |i —i'| <1, |j — j/| < 1, and
|k—k'| < 1. Without loss of generality, we can choose v and v’ such that (4, j, k), (¢, 7', k') €
{0,1}3. Note that mo7(De(i, 7, k)) = T27(De(i mod 3,5 mod 3,k mod 3)), so at least one
of the i”,j”, and k” must be in {0 — 3,1 — 3,0+ 3,1 + 3} for ma7(v) = m27(v") to hold.
This is not possible according to Lemma 2.2.9. O

With the same argumentation as in the proof of Lemma 2.2.7, |ma7(DT(GS))| is home-
omorphic to the 27-sheeted covering space Tj,, . with h = (3,3, 3), which is homeomorphic
to T2.

We prefer to use the framework of covering spaces, rather than just talk about copies
of the points as in [DH97b| because it avoids creating artificial boundaries in the data
structure; the adjacency relations are computed for all simplices.

As will be seen in the next section, the incremental algorithm that we present requires
a slightly stronger result than Theorem 2.2.10.

2.3 Algorithm

As mentioned in the introduction, there is a strong motivation for reusing the standard
incremental algorithm |[Bow81| to compute a periodic Delaunay triangulation. Let us give
a rough sketch of the algorithm that we propose, before we present it in more detail later.

e We start computing in a finitely-sheeted covering space T:;’L* e of T3, with h chosen
such that 7 (DT(GS)) is guaranteed to be a triangulation.
Theorem 2.2.10 shows that such a covering space always exists: h = (3,3,3) is
one possible choice. In fact, the algorithm requires a slightly stronger result than
Theorem 2.2.10 and thus needs to use other covering spaces if D, is not a cube.

e In practice, if the point set is large and reasonably well distributed, it is likely that
after having inserted all the points of a subset 8’ C S, all the subsequent 7(DT(GS"))
for 8’ ¢ 8" C S are simplicial complexes in T2.

In this case, we discard all periodic copies of simplices of mp(DT(GS’)) and switch
to computing 7(DT(GS)) in T2 by adding all the points left in S\ S'.

In this way, unlike [DH97b], we avoid duplicating points as soon as this is possible. In
cases when S is a small or badly distributed point set, the algorithm never enters the second
phase and returns mp(DT(GS)), which is a triangulation of Tj,_, still homeomorphic to
T3.

Section 2.3 is organized as follows: We describe the algorithm for the restricted case
when D, is a cube and we prove its correctness. This corresponds to what the current
CGAL implementation provides. In the second part we relax the condition on D, allowing
it to be a cuboid and we describe how the algorithm can be adapted to this case. Finally,
in Section 2.3.3 we show how to extend the algorithm to compute weighted Delaunay
triangulations as well.

28 2. 3D PERIODIC TRIANGULATIONS

Note that, before switching to computing in T2, it is not sufficient to test whether
7(DT(8’¢)) is a simplicial complex. Indeed, adding a point could create a cycle of length
two (see Figure 2.5). So, a stronger condition is needed before the switch.

Figure 2.5: (2D illustration) Adding a point in a simplicial complex can create a cycle of
length two.

The following observation will be useful in the subsequent proofs:

Observation 2.3.1. Let A denote a tetrahedron in DT(GS) and Ba its circumscribing
ball. If the diameter of Ba is smaller than cyin := min{cy, ¢y, c. }, then w|g, is injective,
and | a is injective as well since A C Ba. Thus A is a simplex in T3.

2.3.1 Cubic domain

If the original domain D, is a cube with edge length ¢, the incremental algorithm uses
the 27-sheeted covering space Ti., where 3¢ = (3c,3c,3c). The original domain for this
covering space is Dse.

We prove below that once all edges in the triangulation of T3, are shorter than % ¢,

c’

computing a simplicial complex in T? is possible.

See Algorithm 2.3.1 for a pseudo-code listing of the algorithm. It computes either a
Delaunay triangulation of T2, as defined in Definition 2.2.2, or a Delaunay triangulation
of ']I'gc, which is still homeomorphic to Ti.

To show the correctness of the algorithm, it remains to establish the following two

properties:

1. After each insertion, TRo7 is a Delaunay triangulation of ’]I‘gc. Let us emphasize on
the fact that Theorem 2.2.10 cannot be used here because in the inner loop (step 8),
the set of points present in TRay7 does not contain all the periodic copies of p.

Let p be a point in D and 7, C @c({p} X Z3)NDse, i.e., T, is a subset of the grid of 27
copies of p that lie within D3.. Then TRgy is always of the form mo7(DT(GS U 7;,3‘3))
with 7;,3C = p3¢(T, x Z3). Lemma 2.3.2 shows that this is a triangulation.

2. If all edges in mo7(DT(GS)) are shorter than % ¢, then we can switch to computing

in T2. See Criterion 2.3.4 for a proof.

2.3. ALGORITHM 29

Algorithm 2.3.1 Compute Delaunay triangulation of T3 from a point set.

Input: Set S of points in a cube D, of edge length ¢ € E3\ {0}.
Output: DT (S) if possible, otherwise mo7(DT(GS))

.88

2: Pop p from &’

3: S < {p}

4: TRo7 <= mor (DT (pe({p} x Z3))) // can be precomputed

5: while the longest edge in TRg7 is longer than %c do

6: Pop p from §’; S « SU{p}

7. forallp € {p+ecx*(|¢e{0,1,2}3} do

8: Insert p’ into TRoy

9: end for // TRo7 = 7['27(DT(QS))

10: if &’ = () then return TRg; = mo7(DT(GS)) // non-triangulable

// point set
11: end while
12: Compute DTp(S) from TRoy // switch to T3
13: Insert all points remaining in &’ into DT (S) one by one
14: return DTp(S)

Lemma 2.3.2. Let S C D, be a finite point set, p € D, be a point and T, a subset of
¢e({p} x Z*) N D3e. If Dc is a cube, then wor(DT(GS U T7)) is a triangulation of T3,
with T3¢ := p3e(T, x L7).

Proof. We first consider a triangulation defined by only one point, i.e. § = {q} for some
q € De. Then m97(GS) cousists of 27 points arranged as a regular grid. Without loss of
generality, we can assume ¢ = (0,0,0) because triangulations of point sets are invariant
with respect to translations. The point set ma7(GS) is highly degenerate: There are 27
different empty balls that all have eight points on their boundary. They are centered at
((%, %, %) + C) * ¢ with ¢ € {0,1,2}3 and have radius r = @ ¢ =~ 0.866 c. Without loss of
generality, we now consider the ball B centered at (%, %, %) It is easy to check that the
intersection of the image of any pair of these balls under o7 consists of one connected set,
i.e., that mo7 restricted to the union of any pair of these balls is injective.

As the length of an edge of the cube D, is 3¢ and the diameter of B is v/3 ¢, an edge of

length (3 — v/3) ¢ would be enough to introduce a cycle of length two. Let B’ be a largest

empty ball given by the points (2,0,0), (2,0,1), (2,1,0), (2,1,1) and (%@%,5). It
turns out that the radius of B’ is smaller than 0.712¢. There exist other such balls along
the y- and z-axis but since D, is a cube, their radii are the same. The width of the overlap
between B and B’ is less than (2-0.712++/3 —3)c < 0.155 c. Then 797|sup is not injective
and o7 (BN B') consists of two disjoint connected components.

Now we have to exploit a special property of Algorithm 2.3.1: mo7(GS) consists of a
regular orthogonal grid of 27 points and 7r27(7;,3°) is a subset of the grid of 27 copies of p.
From this we know that after adding a point p; € ’2;30, the next point will differ by some
vector in exZ3. However, to be able to form a cycle of length two crossing the balls B and B’
its length along one axis would have to be between 1.266¢ and 1.424c. This is not possible
because [1.266,1.424] N Z = (), see Figure 2.6. Note that if we move p; inside B, then the
radius of B’ becomes smaller and thus the overlap range is only a subset of [1.266, 1.424].

30 2. 3D PERIODIC TRIANGULATIONS

B_ . . B B
z . : -pl o.
Sy
q T “overlap

Figure 2.6: No periodic copy of p; can lie inside BN B'.

There is no further possibility for a cycle of length two to occur because the shortest
diagonals through Ds. have length /18 ¢ which is larger than 2v/3c.

Using Theorem 2.2.8, this proves that mo7(DT(GS U 7)) is a triangulation when S
consists of only one point. If S contains more points, then the empty balls can only be
smaller, which even more avoids cycles of length two. O

Now we give a geometric criterion to decide whether m(DT(GS)) is a simplicial complex
and thus a triangulation of T3.

Criterion 2.3.3. If the diameter of the circumscribing ball of any tetrahedron in DT(GS)
is smaller than % c, then 7(DT(GT)) is a simplicial complex for any finite T C De with
SCT.

Proof. The edges of a tetrahedron are completely contained in its circumscribing ball and
are thus bounded by the ball’s diameter. If the diameter of any circumscribing ball is
smaller than % ¢, then all edges in the triangulation are shorter than % c. In order to create
a cycle of length two, the sum of the lengths of the two edges needs to be at least ¢, which is
not possible if both edges are shorter than % ¢. From Observation 2.3.1 and Theorem 2.2.8,
it follows that 7(DT'(GS)) is a simplicial complex. If we add more points, the diameter of
the largest empty ball cannot become larger. The claim follows. O

We now prove the geometric criterion that is used in practice.

Criterion 2.3.4. If the 1-skeleton of DT (GS) contains only edges shorter than % ¢, where
c is the edge length of De, then w(DT (7)) is a simplicial complex for any finite T C D,

with S C T, so it is a triangulation of T.

Proof. Assume that there is a ball B of diameter d that does not contain any point of GS
in its interior. Consider the tetrahedron A in DT(GS) that contains the center of B. The
length of the largest edge of A is bounded from bhelow by the edge length of the regular

tetrahedron with circumscribing ball B, which is \2/—%. So if all edges in DT'(GS) are shorter

than % ¢, then the diameter of any empty ball is smaller than % c. The claim follows from
Criterion 2.3.3 and Lemma 2.2.7. O

Note that Criteria 2.3.3 and 2.3.4 are ounly sufficient, where Criterion 2.3.3 is weaker
than Criterion 2.3.4: There are point sets with maximum empty ball diameter shorter than
% c but edges longer than % c. A more detailed discussion on the two criteria can be found
in Section 3.6.7.

Lemma 2.3.2 and Criterion 2.3.4 prove:

2.3. ALGORITHM 31

Theorem 2.3.5. Algorithm 2.5.1 is correct, i.e., it always computes a Delaunay triangu-
lation homeomorphic to T3,

A weaker version of Lemma 2.3.2, which will be used in the next section, follows
immediately from Criterion 2.3.3:

Corollary 2.3.6. Let S C D¢, S # 0 and T C Dy be finite point sets. If D. is a cube,
then mea(DT(GS U T4€)) is a triangulation of T3,.

Proof. The largest empty ball in GS has diameter v/3 ¢. The domain Dy, is a cube of edge
length 4c, which is more than twice v/3 ¢. Thus Criterion 2.3.3 applies. O

Note that unlike Lemma 2.3.2, Corollary 2.3.6 does not require 7 to be a subset of a
point grid ¢.({p} x Z3) for some point p € D.. Even though its result is weaker in that it
yields a larger number of periodic copies to consider, it is much easier to prove and thus it
generalizes easily to other settings as will be seen below. Before, we describe an approach
that avoids computing in T3,.

Dummy points In order to avoid computing in T3, at the beginning, the algorithm
starts with an initial triangulation of a dummy point set P, chosen such that any superset
of P has a triangulation in T3. A possible dummy point set of 36 points is defined as
follows:

P = {C'({L’,y,Z)’x,ye{07%7§}726{07%}}
U{C' (%—Fx,%—ky’%—l—z) ’1’,2/6 {07%7%}7Z€ {07%}}

See Figure 2.7 for an illustration of the periodic Delaunay triangulation of the dummy
point set.

Figure 2.7: The triangulation of the dummy point set.

The diameter of the largest empty ball in the set P is smaller than %c as required by
Criterion 2.3.3. The point set P is easy to describe and sufficiently small for practical use.
It would be interesting to investigate further to find the smallest possible point set. In two
dimensions it is known that the smallest triangulation of a torus has 7 vertices [M6b86].
For the three-dimensional torus a triangulation of 15 vertices is known [KL84|, but it is not
known whether this is the smallest possible number of vertices. For both cases the smallest
point sets defining a Delaunay triangulation with the diameter of the largest circumscribing
ball bounded by %c are unknown.

32 2. 3D PERIODIC TRIANGULATIONS

Once all the input points in § are inserted into the initial triangulation defined by P,
the points of P are removed from the triangulation. By construction, the point set S U P
defines a Delaunay triangulation of T3. If the input point set without P does not define
a triangulation of T2 anymore, then the triangulation will be converted to T3, during the
removal of one of the dummy points.

The only overhead of this approach is the removal of the points in P. There is addi-
tionally the potential conversion to Tgc but without using the dummy point set the whole
triangulation would be computed in T3, in this case, which is likely to be even more ex-
pensive. If the input point set is large enough, then the overhead of removing 36 points
is negligible. As it completely avoids computing in Ti., it is faster than the standard
approach.

2.3.2 Non-cubic domain

The above discussion still remains valid if the original domain D, is a general cuboid, i.e.
¢ = (¢, ¢y, cz). Only the constants, i.e., the number of sheets of the covering space to start
with and the edge length threshold need to be adapted.

Let Thye with b = (hg, hy, h.) be a covering space of T2 with projection map Tpe and
original domain Dpye.

We first give a criterion to decide when to switch back to T2 in Algorithm 2.3.1 in the
case of a non-cubic domain.

Criterion 2.3.7. If the diameter of the circumscribing ball of any tetrahedron in DT (GS)
is smaller than %Cmin; where cmin = min{cy, ¢y, ¢, }, then 71(DT(GT)) is a simplicial com-
plex for any finite T C D with S C 7.

Proof. The proof of this criterion is essentially the same as for Criterion 2.3.3: If the
diameter of any circumscribing ball is smaller than %cmin, then all edges in DT(GS) are
shorter than %cmin. The shortest possible non-trivial cycle in Tg has length cpin, thus
two edges the 1-skeleton of DT(GS) cannot form such a cycle. The claim follows from
Theorem 2.2.8. O

Using Criterion 2.3.7, we can give the covering space required in Algorithm 2.3.1.

Lemma 2.3.8. Let S C D¢, S # 0 and T C Dpye be finite point sets. Let h; := {2%}

fori=x,y,z. Then Th.(DT(GS U ’Z;,h*c)) with T .= @p.o(T x Z3) is a triangulation
of T3, ..

Proof. The largest empty ball in GS has diameter smaller than |¢||. The domain Dp.c
is a cuboid of edge lengths h;c; for ¢ = z,y,z. The condition h; = [2@-‘ implies that

hic; > 2||c||. Applying Criterion 2.3.7 to the flat torus with original domain Dp,. proves
the claim. O

2.3.3 Weighted Delaunay triangulation

The weighted Delaunay triangulation, or regular triangulation, generalizes the Delaunay
triangulation when the sites are spheres, also called weighted points. We gave a short
introduction on weighted Delaunay triangulations in Section 1.2.2.

2.3. ALGORITHM 33

Like the Delaunay triangulation, the weighted Delaunay triangulation can be defined
uniquely, even in degenerate cases |[DT06a|. Here, we show that the whole discussion in
Section 2.2 works in the same way for weighted Delaunay triangulations. We also prove
a geometric criterion using the edge length similar to Criterion 2.3.4, which allows us to
generalize Algorithm 2.3.1 to compute a periodic weighted Delaunay triangulation as well.

Let S be a set of weighted points in E3, i.e. pairs (p,wp) € E? x R. Let D, be a
cube of edge length ¢ and § a set of weighted points in D.. Let W and w respectively
denote the largest and smallest weight in S. Let WDT(GS) denote the weighted Delaunay
triangulation of E3 defined by GS.

Criterion 2.3.9. If the longest edge of WDT(GS) is shorter than \/% 2 — %(W —w),
then m1(WDT(T€)) is a triangulation of TS for any finite T C D with S C T .

Note that if W = w, this bound reduces to % ¢, which is the edge length threshold for
Delaunay triangulations. The proof of this result uses the following auxiliary lemma:

Lemma 2.3.10. Consider WDT(GS). If the orthogonal weighted point of a tetrahedron
has weight w,, then the length of the longest edge of the tetrahedron is not larger than

2vVw, + W —w.

Proof. Let (o,w,) be an orthogonal weighted point and (p,wp),(q,ws) be two of the
weighted points orthogonal to (o,w,). Then dist(o,p) = \/w, +w,. The edge length
dist(p, ¢) attains its maximum if the segment [p, q] contains o. Then dist(p, q) = /w, + wp+
\/Wo + wg. This expression is maximized if the weight is maximized. We know that chang-
ing the weights of all points in the triangulation by the same amount does not change the
triangulation. So we can assume W — w to be the maximum possible weight. The claim
follows. See Figure 2.8 for an illustration in 2D. O

3

D

N

Figure 2.8: (2D illustration) The longest possible edge of a tetrahedron with orthogonal
sphere of radius /w,.

Proof of Criterion 2.3.9. Let \ be the length of the longest edge in WDT(GS). Then

the circumradius of any tetrahedron in WDT(GS) cannot be larger than \/g)\. From
Lemma 2.3.10 follows that the longest possible edge of a tetrahedron is bounded by Apaz 1=

2
2\/<\/§)\> + W —w. If we now choose A to be smaller than \/% 2 — 3(W — w), then

Amag is smaller than c. Thus no cycle of length two can occur and 7(WDT(GS)) is a
triangulation according to Theorem 2.2.8 together with the equivalent of Observation 2.3.1

34 2. 3D PERIODIC TRIANGULATIONS

for weighted Delaunay triangulations. Adding further points cannot increase the size of
the largest circumscribing ball and so 7(WDT(7¢)) is a triangulation as well. O

Corollary 2.3.11. Let 1 be given as n = [8: (3+ (W — w))g/ﬂ and h :=n3. Let T, be
a subset of the h copies of p in Dye and Ty := gonc(% x Z3). Then m,(WDT(GS U 7,)9))
is a triangulation of Tn?’c

Proof. If S consists of only one point, then the weighted Delaunay triangulation defined
by GS actually is a Delaunay triangulation because all periodic copies of the point have
the same weight. So the largest orthogonal sphere coincides with the largest circumsphere
and has radius @c. With the same argument as in the proof of Criterion 2.3.9 the

diameter of the largest orthogonal sphere after adding any other point is bounded by

2. \/ 2+ W —w. To make sure that this expression is smaller than 2-7-c we choose
(3+ LW —w))3/2. O

2.4 Analysis

2.4.1 Complexity analysis

In this Section we show that using the Delaunay hierarchy, the randomized worst-case
complexity of Algorithm 2.3.1 is asymptotically equal to the one of the Algorithm for
computing the Delaunay triangulation of E3.

Let us first discuss the following two points before we consider the Delaunay hierarchy
in more detail: (1) How to test for the length of the longest edge and (2) how to convert
from the triangulation of Th*c to the triangulation of T2,

(1) We mamtaln an unsorted data structure £ that references all edges that are longer
than the threshold f Cmin- As soon as £ is empty, we know that the longest edge is smaller
than the threshold. The total number of edges that are inserted to and removed from £
is at most proportional to the total number of simplices that are created and destroyed
during the algorithm. We can have direct access from the simplices to their edges in £.
Hence, the maintenance of £ does not change the algorithm complexity.

(2) To convert the triangulation of Tj, . to DTr(S) when we convert to T2, we need
to iterate over all cells and all vertices to delete all periodic copies, keeping only one;
furthermore, we need to update the incidence relations of those tetrahedra whose neighbors
have been deleted. This is linear in the size of the triangulation and thus dominated by
the main loop.

The Delaunay Hierarchy The overall algorithm is incremental and can be combined
with the Delaunay hierarchy [Dev02], see also Section 3.3.9. In a nutshell, the structure
is designed for efficient computation of a Delaunay triangulation of E?; it is built incre-
mentally and has several levels: the intermediate levels store the Delaunay triangulations
of an increasing sequence of subsets of the set of input points, while the last level stores
the complete triangulation. There are pointers between some vertices in different levels
corresponding to the same input point. The structure allows for fast point location in
the complete triangulation. We refer the reader to the original paper for a more complete
description of this data structure.

2.4. ANALYSIS 35

This structure can be adapted to our algorithm. Let Ti* . be the covering space chosen
as presented at the beginning of Section 2.3. Each new level of the hierarchy stores a
triangulation of ']T‘?L «c When it is created, and this triangulation is converted when possible
to a triangulation of T3. Note that, if a given level [stores a triangulation of T2, then
the next level [4+ 1 is also in T2, since it contains more points and thus also stores a
triangulation of T3 by Criterion 2.3.4. However, some level | can store a triangulation
of T3 . while the next level [+ 1 is converted into T2. In this case, for all the vertices
corresponding to periodic copies of a given input point in that level [, their pointer to the
level I + 1 just all lead to the same vertex corresponding to this non-duplicated point in
T3,

The randomized analysis of [Dev(2| assumes the insertion of points of S to be performed
in a random order. The changes to this analysis, when computing in Ti* o> are minor: The
points are inserted in sets of constant size (the number of periodic copies), and these sets
are inserted in random order. The result remains the same.

Theorem 2.4.1. Algorithm 2.5.1 has optimal randomized worst-case time and space com-
plexity O(n?).

Proof. Let S be the input point set. The vertex set of the Delaunay triangulation in level
i is denoted by S; and the levels of the hierarchy are numbered from bottom to top, that
is So = S. Let 1/« denote the probability that a point is in S;41 given that it is in ;.
In Algorithm 2.3.1, the points of S can be inserted in random order but when computing
in T3, 27 copies of each point are inserted consecutively. Let S/ be the set containing 27
copies of each point of ;.

The randomized worst-case analysis in [Dev02]| shows that the expected cost of the
walk in level i is linear in the vertex degree and «, i.e. in O(an), if the input points are
inserted in a random order. The proof is based on the fact that the number of points in
S; that are closer to a query point ¢ than to any other point in S;+1 is in O(«). This
property extends to the case of computing in 27-sheeted covering space. The vertex set of
the Delaunay triangulation in level 4 is S. As for each point of S; there are 27 copies in
S/, the above bound can be at most 27 times bigger, which is still in O(«). Thus the cost
of the walk in level ¢ is still in O(an) and summing up over all levels yields an expected
O(n) complexity for one point insertion.

In the beginning of this section, we showed that the maintenance of the structure £
only requires a total number of O(n?) edges to be inserted and removed. Furthermore,
we showed that the conversion from T3, to TS is O(n?), too, and it is applied only once
during the algorithm run.

Also the maximum size of the structure € is in O(n?). We insert at most 27n points
into the Delaunay triangulation, so the asymptotic size of the hierarchy does not change
with respect to [Dev02]. O

The n in the bound for the point insertion comes from the worst-case vertex degree in
the triangulation. Thus for triangulations with maximum vertex degree smaller than O(n),
the results can still be improved. This complexity result also holds for the extensions to
non-cubic domains (Section 2.3.2) and to weighted Delaunay triangulations (Section 2.3.3).

36 2. 3D PERIODIC TRIANGULATIONS

2.4.2 Number of sheets

In this section, we give an estimation of the number of points required to switch back to
1-sheeted covering space if the input point set is uniformly distributed.

We first define the notations we use in the following discussion: Let £ be an event and
X be a random variable for £. We denote the probability of £ by p(€) and the expected
value and the variance of X by E[X] and V[X], respectively. When there is no ambiguity
for the random variable we also use u = E[X] and 0 = /V[X] to denote the expected
value and the standard deviation, respectively.

We want to predict the number of points required in order to fulfill Criteria 2.3.3
and 2.3.4. More precisely, given a set of points, uniformly distributed in the unit cube,
what is the expected value for the number of points such that the largest empty ball’s
diameter is smaller than % 7

This problem can be modeled as a Poisson process [Mil70, San76]: Consider an infinite
random point set II given by a unit-intensity Poisson process on E? and the cube C :=
[0, ¥/nf’.

The Poisson distribution has the following properties: Let A denote a subset of E? of
volume ||A||. The probability that A contains exactly k points of II is given by p(]4 N

k
I = k) = e"'A”%. Then the probability that A does not contain any point of II is
p(JANTI| = 0) = e~ Al
The expected number of points in a volume of measure ||A|| is then given as

. . Al
BlANT) =Y k-p(AnT]=k) = 3 ke AL =)
k=0 k=0

By the properties of the Poisson distribution and from the construction of C' follows
that expected number of points in C' is n. Let Iz denote the set of points of II that lie
inside C, i.e. Il :=1INC. We denote the number of points in Ilo by ne.

Let Go denote the group of three orthogonal axis-aligned translations with fundamental
domain C. Then DT (GcIle) is the infinite periodic Delaunay triangulation defined by Il
and DT (Gelle) N C the set of tetrahedra of DT'(IT) that are completely contained inside
C together with their faces. In the following, we consider DT (Gcll) N C, this is called
“minus sampling”. Note that if we consider the point set Golle instead of I, we do not
change the set of points inside C'. So the point set Gollg N C still follows the Poisson
distribution, a property that is heavily used in the subsequent discussion.

In a similar way as done by [BEY91]|, we can show the following theorem:

Theorem 2.4.2. Let C and g be defined as above. Let uo denote the expected value of the
volume of the largest empty ball in the infinite periodic Delaunay triangulation DT (Gcolle).

Then the following holds

O.5lnn< <51nn+2.

> HO =
n n

Proof. We denote by B, a ball of volume x. A ball B, is said to be empty if B, N1I = ().
The probability that Bsi,, is empty is given by p(Bsm, empty) = e 2" = % Then
p(By empty) < # for all z > 5lnn. We compute the probability of the existence of an
empty circumscribing ball of volume at least 5Inn in DT(IT)NC'. A circumscribing ball in
DT(II) is defined by 4 points; thus there are (”4C) possibilities to define a tetrahedron with

points in ITN C as vertices. We give an upper bound for the probability that ("40) > nt:

2.4. ANALYSIS 37

Let X be the random variable that describes the number of points from II that lie in C.
From the fact that X has a Poisson distribution, we know that u = n and o = \/n. We
now apply the Cantelli inequality’ P(X —p > k) < 02"7; Choosing k = n this yields
P(X—-n>n)< n%rl, which implies that the probability for nc > 2n is at most n%rl If
no = 2n, then there are (25) < n? possibilities to choose from. Let Bc denote the set of
circumscribing balls defined by all possible 4-tuples of points in II N C. The probability
that one of the balls in B¢o has volume larger than 51lnn and is empty given ng < 2n is
then p(3 empty Bsimy, € Bo | ne < 2n) < (QZ) . # < n%rl
So finally, we have the following probabilities:

p(3 empty Bsimp € Be | ne < 2n) < p(nc <2n) <1

1
n
p(ﬂ empty Bsimn € Be | ng > 2”) <1

Summing up the conditional probabilities gives p(3 empty Bsin, € Bo) < %

Let Y denote the random variable that describes the diameter of the largest empty
circumscribing ball in DT(II) N C. Then from the above discussion we have the probability
p(Y > 5lnn) < % The volume of the ball is bounded from above by the volume of C,
which is n. Now we can give an upper bound for the expected value of Y. Let f(z) denote

the probability density function of the distribution of Y. Then

E[Y]:/Oooa:f(x)da: = /Omnnxf(x)d:c—&-/; xf(x)dx—i—/ooxf(x)dx

Inn n

< Slnn-p(Y <5lnn)+n-p(Y >5lnn)+0<5lnn+ 2

From [BEY91| we know that E[Y] > 0.51nn.

The Poisson process we described so far was modeled such that the growth of the cube
that contains the points of the triangulation gives the number of points in the cube. When
considering periodic triangulations, we want to leave the size of the cube constant, which
can be modeled by rescaling IT such that the cube C is rescaled to [0,1]3. The whole
discussion remains valid because the Delaunay triangulation is invariant to rescaling.

Let II' denote the rescaled version of the point set II, restricted to [0, 1]® and copied
periodically onto E3, i.e. I := {%\/ﬁ -p | pe€ll}. Let Y’ denote the random variable that
corresponds to Y but with respect to the rescaled cube. The rescaling divides the volume
of the empty balls by n, so this proves the theorem for = E[Y’]. O

Let now Y} denote the random variable that describes the diameter of the largest empty
ball in DT(IT"). We get the bounds for its expected value directly from the bounds on the
empty ball volumes in Theorem 2.4.2:

™ n T™mn

Now we can estimate the number of uniformly distributed points required for the ex-
pected value of the largest ball diameter to be smaller than % Rearranging the left part
equation 2.1 yields 24 < n, rearranging the right part gives n < 507. So for a uniformly
distributed random point set the expected value of the size of the largest empty circum-

scribing ball is smaller than % if the point set has more than 507 points.

'the one-sided variant of the well-known Chebyshev inequality

38 2. 3D PERIODIC TRIANGULATIONS

Note that the longest edge in a Delaunay triangulation is bounded by the diameter of
the largest empty ball. Thus the same analysis works for estimating the number of points

required such that the longest edge in the triangulation is shorter than % as required by

Criterion 2.3.4. In this case we have to replace the constant of % for the ball diameter by
%. From equation 2.1 then follows 56 < n and n < 1030.

In Section 3.6, we present experimental results on the number of points required by
Criteria 2.3.3 and 2.3.4.

39

Chapter 3

Implementation

In this chapter we describe our implementation of 3D periodic triangulations in CGAL.
The implementation is based on the 3D triangulations implementation that already existed.
At first we give a brief introduction to CGAL. Then we have a more detailed look on the
implementation of the 3D triangulations. Afterwards, we present the implementation of
the 3D periodic triangulations. Then we give a more detailed analysis of the complexity of
the main functions and we show the practical efficiency of our implementation in experi-
ments on both generated and real-world data. Finally, we elaborate on extensions that we
implemented additionally.

3.1 Introduction to CGAL

The Computational Geometry Algorithms Library CGAL is a collection of open source
implementations of geometric data structures and algorithms [cga]. Its design follows the
generic programming paradigm [Aus98, FT06]|. This enables the user to easily plug different
components together.

In generic programming a concept describes the types and operations that must be
made available. A class is a model of a specific concept if it implements the required
operations and types.

Implementations of geometric algorithms in CGAL strictly separate the combinatorial
parts of the algorithms from the geometric computations. In this way different implemen-
tations of the geometric computations can be plugged into an algorithm implementation.
Some basic geometric functionality is available by default in the geometry kernel that we
describe below.

One major problem in implementing computational geometry algorithms is that com-
puters do not dispose of a real RAM, i.e., the possibility to perform exact computations
on real numbers. Roundoff errors in computations can lead to undefined behavior in the
implementation of geometric algorithms. Kettner et al. [KMP*04] have shown that this is
not a purely theoretical problem. Generally, there is a tradeoff between efficiency and ex-
actness. The generic programming approach enables the user to choose a suitable number
type and plug it into the geometry kernel,

Number types
In principle, the user can provide his own number type to perform the arithmetic operations

40

3. IMPLEMENTATION

required by an algorithm. In CGAL there are several number types available:

Built-in floating-point number type (double): The C++ double number type is
very fast but does not perform exact computations. It conforms to the IEEE stan-
dard 754 |Gol91, IEE85, TEE(S].

Multi-precision floating-point number types: They achieve a higher precision than
double but they are slower and still not able to always provide exact computations.

Interval arithmetic: This number type maintains two numbers that are generally of
a fast and inexact number type as a lower and upper bound of the number they
actually should represent.

Rational numbers: This number type maintains two integer numbers, a numerator
and a denominator. As long as the numbers to represent are rational, these number
types are exact, at the expense of slower performance.

Algebraic numbers: Such number types can represent all real roots of polynomials
with integer coefficients. Unfortunately, computations on algebraic numbers are quite
expensive.

Geometry kernels
In geometric algorithms there are two types of geometric computations: (1) predicate
evaluations and (2) geometric constructions.

1.

Geometric predicates: Given a set of geometric objects we want to know whether or
not they have a certain property. The set of possible answers of a geometric predicate
is small and discrete. Example: Given three points in E?, decide whether the third
point lies to the left or to the right of the line defined by the first two points. There
are three possible answers: left, right, exactly on the line.

Geometric construction: Given a set of geometric objects, compute a new geometric
object out of them. Example: Compute the center of the circumscribing circle of
three points in E2.

A CGAL geometry kernel must provide a collection of constant size geometric objects
in E2 and E3, and geometric predicates and constructions of constant evaluation time. A
non-exhaustive list consists of

Geometric objects: Point_2, Point_3, Segment_2, Segment_3,
Triangle_2, Triangle_3, Tetrahedron_3, Circle_2, Sphere_3,

Predicates: Collinear_2, Collinear_3, Equal_2, Equal_3,
Orientation_2, Orientation_3,
SideOfOrientedCircle_2, SideOfOrientedSphere_3,

Constructions: ComputeArea_2, ComputeArea_3,
ConstructCircumcenter_2, ConstructCircumcenter_3,
ComputeSquaredDistance_2, ComputeSquaredDistance_3,

3.2. THE CGAL 3D TRIANGULATIONS 41

Note that there are geometric constructions that do not perform any computations, like
e.g. ConstructTriangle_2. These constructions do not impose any requirements on the
number types. In the following we will call this type of constructions trivial constructions.

There are different approaches to improve the performance of the kernel. An approach
to accelerate the predicate evaluation is described by [FV96]. In a first step the predicate
is evaluated using a fast but approximate number type with a known error bound. If the
result can be certified using the error bound the predicate evaluation is done. Otherwise it
resorts to a slower but exact number type restarting the computation from scratch. This
approach is based on the idea that in most cases it is sufficient to use an approximate
number type to evaluate the predicate. Only in a few cases the exact evaluation must be
used. So the overhead of evaluating a few predicates twice is outweighed by the speed-up
from using an approximate number type. The described approach is also called “arithmetic
filtering”. In CGAL the filtered kernel provides filtered predicates for the geometry kernel
[BBPO1, DP03|. Another approach that concentrates on geometric constructions is called
“lazy evaluation” [FP06|. In this case the arithmetic expression that has to be evaluated
is not evaluated immediately but only when required.

Note that exact evaluation of predicates is easier than exact computation of construc-
tions, so for algorithms that do not perform any geometric constructions a number type
providing only exact predicates can be used to improve the performance.

Geometric algorithms

In the big picture an algorithm implemented in CGAL defines a set of geometric objects,
predicates, and constructions it requires. These are provided through a template param-
eter, the so-called geometric traits class. Often the CGAL kernel can serve as traits class
but sometimes specialized objects, predicates, or constructions are needed, so a specific
traits class is required. The traits class itself takes the number type as a template ar-
gument. The user can freely choose the number type to be used and he/she can even
exchange the provided traits class with his/her own implementation. Along with this goes
the responsibility to choose an appropriate number type depending on, e.g., whether or
not geometric constructions are used in the algorithm. See Figure 3.1 for a schematic view
on the template parameter hierarchy.

Geometric traits

CGAL Algorithm

Figure 3.1: The use of templates in a typical CGAL algorithm (NT = number type).

3.2 The CGAL 3D triangulations

This work is based on the CGAL 3D triangulations [PT10b] that have mainly been devel-
oped by Sylvain Pion and Monique Teillaud. It computes several types of triangulations of
point sets in E3. CGAL triangulations are stored in the CGAL triangulation data struc-
ture [PT10a]. We briefly introduce the implementation with a stress on the parts that are
required in the discussion on the implementation of periodic triangulations later on.

42 3. IMPLEMENTATION

Apart from computing 3D triangulations of E3, there is also functionality for computing
Delaunay triangulations and regular triangulations. The algorithm used is incremental, i.e.,
points are inserted one by one. We now briefly review the software design.

The class Triangulation_3 implements the functionality to compute and access trian-
gulations of dimension < 3. It is templated by the geometric traits and the data structure.
There are two derived classes Delaunay_Triangulation_3 and Regular_triangulation_3.
See also Figure 3.2.

' Sriclass ! 1efEs T
! 0S:class : TDS:class |
Delaunay_triangulation 3~ ~ '|' == Regular_triangulation=3" |

Figure 3.2: Design of the CGAL 3D triangulations, GT refers to the geometric traits class
and TDS to the triangulation data structure.

3.2.1 The triangulation traits

All objects, predicates, and constructions required by the Delaunay triangulation compu-
tation are contained in the CGAL Kernel. Thus it is not required to provide a specific
geometric traits class do compute Delaunay triangulations.

The geometric traits for computing 3D triangulations must contain

e Geometric objects: Point_3, Segment_3, Triangle_3, Tetrahedron_3.

o (Gleometric predicates: CompareXYZ_3, Orientation_3, and a few more for treating
degenerate dimensions.

e Geometric constructions: The computation of triangulations only requires trivial
constructions to construct the geometric objects.

For Delaunay triangulations the predicate Side0fOrientedSphere_3 is required addi-
tionally. It tests for four given points that are not coplanar, whether a fifth point lies inside,
outside, or on the sphere defined by the first four points. For the Voronoi output the con-
struction ConstructCircumcenter_3 is required additionally. And finally, for regular trian-
gulations, the PowerTest_3 predicate is required instead of the Side0f0OrientedSphere_3
test. Note that ConstructCircumcenter_3 is the only non-trivial construction and it is
only required for the computation of the Voronoi diagram. Thus for computing the De-
launay triangulation it suffices to use a number type that only provides exact predicate
evaluation and no exact constructions.

3.2.2 The triangulation data structure

The triangulation data structure implements the data structure to store triangulations
of dimension < 3. Formally, it stores a simplicial complex homeomorphic to a three-
dimensional compact space without boundaries. As E3 is not compact, a vertex at infinity
Voo is added to the point set and the stored complex is a triangulation of E? U {oo}. Here

3.3. THE 3D PERIODIC TRIANGULATIONS 43

we only describe the full-dimensional case, i.e., the case of dimension three because the
triangulations of T2 that we want to store have always dimension three.

The triangulation data structure stores triangulations in the following way: It stores
the vertices and the cells, where vertices correspond to points in the geometric layer and
cells correspond to tetrahedra. Each vertex contains a pointer to one of the cells it is
incident to. Additionally it contains the coordinates of the point it corresponds to. The
cells store the following information:

e Four pointers to vertices indexed from 0 to 3,

e Four pointers to adjacent cells indexed from 0 to 3, where index ¢ corresponds to the
adjacent cell opposite of vertex 1.

The lower dimensional simplices, i.e. edges and facets, are implicitly represented as
follows: An edge can be accessed through one of the cells it is incident to indicating the
two indices that determine the vertices that belong to the edge. A facet can be accessed
through one of the two cells it is incident to indicating the index of the vertex that is
opposite to the facet, i.e., the only vertex of the cell that does not belong to the facet. See
Figure 3.3 for an illustration.

vertex 3 neighbor 0

edge (1,3)

.. vertex 2

facet 0

vextex 0 ‘ vertex 1
Figure 3.3: Representation of a triangulation in the data structure [PT'10a).

The class representing the triangulation data structure is Triangulation_data_structure_3.
It is templated by a vertex class and a cell class. Default classes are provided but any classes
that meet the requirements defined in the respective concepts can be used. From the data
structure the vertices and cells are typically accessed using handles. In CGAL handle
describes a concept that represents pointers. The types to access vertices and cells in the
triangulation data structure are named Vertex_handle and Cell_handle.

3.3 The 3D periodic triangulations

In this section we describe the implementation of the algorithm for computing the periodic
Delaunay triangulation of a point set as described in Chapter 2.

We first give naming conventions for the following discussions: We will use the notations
T3 and T3, as defined in Chapter 2 but assume that ¢ represents a cube of edge length c.
Remember that vertices represent orbits of the input points under the action of the group
(Z3,+) or (3Z3,+), when computing in T3 or T3, respectively. When computing in T,
we use the following naming conventions. By an original verter, we mean a vertex whose
representative in Ds, lies in D.. By a periodic copy, we mean a vertex whose representative
in Ds. does not lie in D.. See Figure 3.4 for an illustration.

44 3. IMPLEMENTATION

8 periodic copies

o/ri ginal vertex

—0—

Figure 3.4: (2D illustration) An original vertex with its eight periodic copies in a 9-sheeted
covering space of TZ.

From Chapter 2 and Section 3.2, we can give the following main differences between
E3 and T2 with respect to the implementation:

e use of offsets,

e use of covering spaces,

e no need for a vertex at infinity,

e 1o need for treating dimension two and smaller.

We now give the overall design of the implementation. Then we present in more detail
how the offsets are implemented, how the geometric traits class must be adapted, how the
covering spaces are managed and how the different steps of the algorithm must be adapted,
such as point location, point insertion and vertex removal. Finally we present additional
functionalities, such as access functions specific to T3, adaptation of the point location
strategies, and dual functions for Voronoi output.

3.3.1 Design

The prefix Periodic_3 to class names determines the type of periodicity, i.e., it determines
that we compute in a space homeomorphic to T2, as opposed to other possible periodic
spaces, such as orbit spaces of E3 under the action of a group spanned by two or one
translations only, see also Section 5.2.

The design of the CGAL 3D periodic triangulations is very similar to the design of the
CGAL 3D triangulations: The class Periodic_3_triangulation_3 contains all the func-
tionality that is not specific to Delaunay triangulations. That is mainly access functions and
the point location functionality. The specialization Periodic_3_Delaunay_triangulation_3
contains all the Delaunay specific and Voronoi specific functionality. It is possible to add
another class Periodic_3_regular_triangulation_3 as a specialization of Periodic_3_
triangulation_3in the same way as for the 3D regular triangulations in E3, see Figure 3.5.
Even though there is no conceptual problem, the class Periodic_3_regular_triangulation_3
has not been implemented.

As in the CGAL 3D triangulations, the periodic triangulation classes have two tem-
plate parameters: the geometric traits and the triangulation data structure. The first
one is described in Section 3.3.3. For the second one the existing implementation of the
triangulation data structure can be used: As described in Section 3.2.2,; the triangulation
data structure stores a simplicial complex without boundary. A triangulation in T% is a
simplicial complex homeomorphic to T2 and thus without boundary. So we can reuse the

3.3. THE 3D PERIODIC TRIANGULATIONS 45

' GT:class
:TDS:class 1
Periodic_3_triangulation 3" =~ 7T =~

1 Gr:class .
: TDS:class
Periodic_3_Delaunay_triangulation_3~ =~ ~ 'l' - -

Figure 3.5: Design of the CGAL 3D periodic triangulations, GT refers to the geometric
traits clags and TDS to the triangulation data structure.

class Triangulation_data_structure_3 directly. Only the vertex class and the cell class
need to be changed, which is described in Section 3.3.2.

3.3.2 Offsets

As described in Section 2.1, simplices are represented by point-offset pairs, where the
points lie in the original domain and the offsets are elements of Z3. Remember that a
point p together with an offset o corresponds to the point @e(p,0) = p+c*o in E3, ie.,
{pe(p,0) | 0 € Z3} describes the orbit of p under the action of the group (Z3,+). A k-
simplex in T2 is defined as the projection onto T% of the convex hull of the images of k + 1
point-offset pairs under ¢, (Definition 2.1.2). Accordingly, a k-simplex in T3, is given in
the same way by the images of k£ + 1 point-offset pairs under ¢s3.. The triangulation data
structure does not know the original domain of the space of triangulation it stores. Off-
sets are implemented as three-dimensional integer vectors with a comprehensive interface
for convenience. We now present the different uses of offsets in the CGAL 3D periodic
triangulations.

As described in Section 3.2.2, the triangulation data structure stores only the cells and
the vertices of a triangulation. As in the flat torus simplices are defined by point-offset
pairs, we must adapt the cell representation of the triangulation data structure as follows.
To describe a cell we store four vertices and four offsets to represent a tetrahedron. A
vertex represents the orbit of a point of the input point set. The vertex class itself remains
unchanged, i.e., it only stores the point of the orbit that lies in the original domain. Note
that the offsets must be attached to the cells and cannot be attached to the vertices because
a vertex might have different offsets in different cells, see Figure 3.6.

Figure 3.6: (2D illustration) In o the vertex v has offset (8); in 7 the vertex v has offset ((1))

Note that for any offset o € Z3 the four point-offset pairs (p;,0;) and (p;, 0; + o),
1 =0...3 define the same cell under the respective projection map. For the implementation

46 3. IMPLEMENTATION

we define the following convention in order to have a canonical way of storing cells:

Convention 3.3.1. Let C be a cell with vertices vy, ...,vs and corresponding offsets
0Q,...,03 with 0; = (Oix,Oiy,Oiz). Then

min{ogy, 014, 024, 035 }
min{OOy, 01y7 02y7 0311} =

min{0027 01z,02z, 032} =

Intuitively this means that the representation of the cell in E? lies as close as possible
towards the origin without allowing for negative offsets. The image under ¢, of the cell is
always entirely contained in the quadrant x > 0, y > 0, z > 0, see Figure 3.7.

A

0

Figure 3.7: (2D illustration) Images of all cells of a periodic triangulation according to
Convention 3.3.1.

Note that storing additional information in the cells is critical with respect to memory
usage, so we are interested in finding a representation that is as compact as possible. The
following lemma shows that one bit per dimension of the space is sufficient.

Lemma 3.3.2. For Delaunay triangulations of both TS and T3, it is sufficient to encode
the offsets using three bits.

Proof. The claim follows from statement 2 of Lemma 2.2.9: F(?) consists of eight copies
of the fundamental cube that can be addressed by offsets using three bits. O

Note that Lemma 3.3.2 actually holds for any torus with a rectangular fundamental
domain.

As each cell contains four offsets, which require three bits to be stored according to
Lemma 3.3.2, we need to store 12 extra bits per cell. We currently use one unsigned
int to store the four offsets of the cell. This space-efficient representation is only used
to store offsets in the triangulation data structure. For computing with offsets we use a
three-dimensional integer vector that can represent a much bigger range of offsets.

For some of the subsequently presented algorithms we need to define neighbor offsets:
Consider a Delaunay triangulation of T% or T3,.. Convention 3.3.1 determines a tetrahedron
7 in E? to be the canonical representation of a cell ¢ in the Delaunay triangulation. Now let
o be the canonical representation of a cell adjacent to ¢. Then o and 7 are not necessarily
adjacent in E3, see Figure 3.8.

3.3. THE 3D PERIODIC TRIANGULATIONS 47

Definition 3.3.3 (Neighbor offset). There is an offset (such that (o, () is adjacent to
7. We call this offset (neighbor offset from 7 to o.

The neighbor offset can be determined as follows: Let v be one of the common vertices
of 7 and o. The neighbor offset is the difference between the offset of v in 7 and the offset
of v in o, see Figure 3.8.

Figure 3.8: (2D illustration) The neighbor offset from 7 to o is ((1))

Neighbor offsets are used in the implementation of the remembering stochastic walk
for the point location and in the implementation of find_conflicts that determines the
conflict region of a point.

To deal with points that are not vertices of the triangulation we use the following
notation: Let p, denote the point of the vertex v of the triangulation. By “offset o of a
vertex v with respect to a point p” we mean the offset of the endpoint p, in the edge given
by the endpoints ¢e(p,0) and pe(py, 0).

3.3.3 Traits

The GeometricTraits concept for periodic triangulations is essentially the same as for
CGAL 3D triangulations. The main change is that each predicate and construction can
take points and corresponding offsets as arguments additionally to the version that takes
only points. In order to provide the new predicates and constructions we have an adapter
that works as described by the following pseudo-code listing:

bool periodic_predicate(Point pl, ..., Point pk,
Offset o1, ..., Offset ok) {
return predicate(pl + ¢ * ol, ..., pk + ¢ * ok);
}

The periodic_construction is defined in the same way. Note that the edge length c of the
original domain is required to perform the computation of the predicate or construction.
The original domain is logically associated with the triangulation, so it is a member of the
class Periodic_3_triangulation_3 and not of the traits class. We endow the traits class
with a pointer to the original domain stored in the class Periodic_3_triangulation_3.

The predicates and constructions taking only points would not be required by the
algorithm but we provide them for efficiency reasons: They can be called if all offsets are
zero. In this case no translations due to offsets need to be performed and these predicates
and constructions do considerably less arithmetic operations.

Exact evaluation As described in Section 3.2.1, the CGAL 3D triangulations implemen-
tation requires exact predicates and no exact constructions. The output is a combinatorial

48 3. IMPLEMENTATION

structure that contains only unmodified input points. Computing the Voronoi diagram
is the only case where non-trivial constructions are needed, namely for computing the
circumcenter of tetrahedra.

For periodic triangulations the situation is slightly different. During an algorithm run
some points have to be translated in order to embed simplices in E? for evaluation of
geometric predicates, see Figure 3.9. Translating points is a geometric construction, and if

Figure 3.9: (2D illustration) To test on which side of the circumcircle of ¢ a point ¢ lies, p
must be translated first.

it is not exact, the correct output of an algorithm run and even its termination cannot be
guaranteed. On the other hand we do not want to require exact constructions for efficiency
reasons. To avoid constructions, we regroup the translations and predicate evaluations in
new predicates. That is why we introduced the predicates taking point-offset pairs as
arguments above: The translation of the points is now part of the predicate evaluation.
This means the coordinates of the translated points are never represented in memory but
only treated symbolically. In this way all the known and highly efficient techniques for
exact predicate evaluation can be applied. For the same reason, when computing in Tgc,
the points outside D, store the coordinates of the corresponding points in D, and are
assigned an offset. The coordinates of points outside of D, are never computed explicitly.

3.3.4 Covering spaces

Here we describe how our implementation handles covering spaces and how we handle
conversion between different covering spaces. Note that in general, triangulations of small
point sets require computation in Tgc, whereas for large point sets we can compute in T3.
So, one very important implementation issue is that there should not be any overhead for
handling covering spaces when computing in T2, i.e. without additional copies.

In order to compute in ’]I'gc7 27 copies of each point are inserted. Remember that in ’]I'gc,
we call vertices with a representative in D, original vertices, and other vertices periodic
copies.

Copy shift When computing in Tgc, vertices represent orbits under the action of the
group (3Z3,+). So a point in Ds. of an orbit represented by a vertex does not necessarily
lie in D.. However, the input point set of the algorithm is contained in D.. According to
Section 3.3.2 the triangulation data structure stores for each vertex the coordinates of a
point in D3.. According to Section 3.3.3, the computation of the point coordinates in Ds.
of a periodic copy of an input point is a geometric construction. In order to avoid this
geometric construction, we store for each periodic copy the corresponding input point p
in D, and a copy shift s, such that pc(p,s) is the periodic copy in D3.. Copy shifts are

3.3. THE 3D PERIODIC TRIANGULATIONS 49

only required when computing in T3, so we do not store them in the triangulation data
structure to avoid memory overhead. They are stored in a separate data structure in the
triangulation class itself as described below. Like offsets, copy shifts are elements of Z3.
In the implementation we reuse the offset class to represent copy shifts.

Data structures Here we describe a data structure to recover the copy shift of a given
vertex. This data structure additionally stores the information which vertices are peri-
odic copies of each other, an information that is not contained in the triangulation data
structure either. We decided to use a std::map with Vertex_handle as key type and
std: :pair<Vertex_handle,Copy_shift> as value type to retrieve for each vertex that is
not an original vertex its corresponding original vertex and the copy shift. We call this
map covering_map, because it actually corresponds to the mathematical definition of the
covering map, see Definition 1.3.1. Tt is stored in the class Periodic_3_triangulation_3.
See Figure 3.10 for an illustration of the use of the covering_map.

(7
Wl |

'\ ~1
AL
original vertex

[e ¢}
=
=.
=
(¢}

copies

—0—

Figure 3.10: (2D illustration) The covering_map implements the arrow relation.

For some algorithms, we do not only need to find the original copy from a given vertex
but we must also find all periodic copies of a given original vertex. There is another map
that stores for each original vertex all its periodic copies. The key type of this map is again
Vertex_handle, the value type is std: :vector<Vertex_handle>. Here the copy shifts are
implicitly encoded as ternary numbers in the index of the periodic copy in the vector: i.e.,
the copy with copy shift (i, 7, k) is stored as the vector element of index i-32 +j-3' 4+ k- 3°.
We call this map reverse_covering_map.

Keep track of the edge length We implemented Criterion 2.3.4 in order to decide
when to convert the triangulation to T2. To avoid overhead when computing in T3, we
maintain an auxiliary data structure that contains all edges that are too long according to
Criterion 2.3.4. This data structure only contains data when computing in T3, otherwise
it is empty. It works in the following way: The used data structure is a std: :map with key
type Vertex_handle and value type std::1list<Vertex_handle>. If an edge is too long,
one of its vertices is stored as a key and the other one is contained in the corresponding
list. We call this data structure long_edges_list, see Figure 3.11.

In order not to store edges twice we require a comparison function for Vertex_handles
and define the convention that a Vertex_handle in a key is always smaller than any of the
Vertex_handles in the corresponding list. For the comparison function we compare the
memory addresses of the Vertex_handles.

When we are computing in T3., each time we insert a new point or remove a vertex
we update the long_edges_list. In case of a point insertion we remove all edges of the

50 3. IMPLEMENTATION

Vertex handle std::list<Vertex handle>

(e[l Lo Lo oL Lo fe e T T]
e[l L e e[T T]
e[l L e el [T T]
(e[l feTe e Lo fe e Lo]
(e[l L e oL Lo [[T]
(e[l e e el e T T T T
e el e e el T T T T
e[l e L T T T
(e[l feTe e T Lo fe e Lo]
(e[l L e el [[T T]

NN EEENENEEEN RN RS

Figure 3.11: The long_edges_list.

conflict region that are contained in the long_edges_list. Then we check for each edge
of the newly inserted cells whether it is longer than the threshold in Criterion 2.3.4 and if
so, we insert it into the long_edges_list. Note that this approach removes and reinserts
the same edges from the boundary of the hole, which is redundant. However, it is quite
difficult to test for a given edge whether it lies on the boundary of the hole. It turns out
to be faster to remove and reinsert some edges redundantly, rather than testing for all of
them, whether they lie on the boundary of the hole.
In case of vertex removal exactly the same approach is used.

Conversion from T3, to TS Once the long_edges_list is empty, the current triangu-
lation can be converted to T2. To do so, we iterate four times over all cells and once over
all vertices (see also Figure 3.12):

Cell 1. Mark all cells that will be deleted. Cells are deleted if they are not canonical
with respect to the original domain of T2 in the sense of Convention 3.3.1.

2. For all unmarked cells, redirect the neighbor pointers to the new neighbors as
shown in Figure 3.12, if they point to a marked cell. The new neighbors can be
found using the covering_map.

3. Note that vertices will be deleted if they are not original vertices but periodic
copies. For all unmarked cells, redirect the vertex handles that point to vertices
that are to be deleted to the corresponding original vertices.

4. Delete all marked cells.

Vertex Delete all vertices that are not original vertices.

Conversion from T2 to Tgc According to Criterion 2.3.4, when computing in T3 we
will never need to switch back to T3, if we just keep inserting points. However, vertex
removal can make it necessary to switch back to Tgc. So during each vertex removal — even
when computing in T3 — we need to check that the newly created cells do not have edges
that are longer than the threshold in Criterion 2.3.4.

3.3. THE 3D PERIODIC TRIANGULATIONS 51

Figure 3.12: (2D illustration) The colored cells will be deleted, the vertices that will be
deleted are not drawn. The arrows exemplary indicate the new adjacency relations.

The conversion from T2 to Tj,. turns out to be more complicated than the conversion
from ’]I‘gc to T3 described above. It is done in the following way: First create 26 copies
of each vertex and construct the covering_map and the reverse_covering_map. Iterate
over all cells and store the vertex offsets and neighbor offsets in some temporary data
structures. Now create 26 periodic copies of each cell, obtaining their vertices from the
reverse_covering_map using the vertex offsets from the temporary data structure. Note
that all the original cells are completely contained inside the original domain of Tj,.. Thus
they will now turn to cells with all offsets zero, even the ones that had non-zero offsets
before. The vertices of non-zero offsets must be replaced by their periodic copies with
the respective copy shift according to the reverse_covering_map. It remains to set the
neighbor relations of both the newly created cells and the original cells, the cell pointers
of the vertices, the vertex offsets in the cells and finally to set up the long_edges_list.

3.3.5 Point location

The point location is guaranteed to work only for input points given in the original domain.

The remembering stochastic walk described in Section 1.2.4 works in periodic triangu-
lations as well if we use the representations in E? of the simplices for the geometric tests.
Each time we walk from one cell to the next we need to keep track of the neighbor offsets
in order to maintain the offset of the input point with respect to the vertices of the current
cell, see Figure 3.13.

The walk is started at a random cell of the triangulation. If this starting cell has a
non-empty intersection with the boundary of the fundamental domain, it can happen that
it is very close to the point to locate or even contains it but its canonical representation in
E3 according to Convention 3.3.1 appears on the opposite side of the fundamental domain.
This can be detected easily by testing whether the starting cell has at least one non-
zero offset. In this case — depending on the coordinates of the point — we start the point
location at the periodic copy of the cell at the opposite side of the fundamental domain, see
Figure 3.14. This prevents the walk from traversing the whole domain, while the starting
cell and the cell containing the point are actually close. This case occurs especially when
using the spatial sorting, see Section 3.3.9.

52 3. IMPLEMENTATION

Figure 3.13: (2D illustration) When traversing the dashed edge, the offset of the point
with respect to the current cell changes. Green triangle: starting cell, red triangle: cell
containing the query point q.

Figure 3.14: (2D illustration) As the point is in the left half of the fundamental domain,
we start the walk at a more appropriate periodic copy of the initial cell. Green triangle:
starting cell, red triangle: cell containing the query point q.

3.3.6 Point insertion

If we are computing in T2, then the point insertion can be implemented in exactly the same
way as described in Section 1.2.4. If we work in Tj., then each point must be inserted 27
times by the insertion algorithm as described in Algorithm 2.3.1 and additionally we must
maintain the maps for the periodic copies of vertices as well as the long_edges_list.

As described in Section 1.2.4, the insertion step first identifies the cells that are in
conflict with the newly inserted point. Then it deletes these cells, leaving a hole in the data
structure that is refilled by new triangles with the new point as a vertex. If the boundary of
the hole and the boundary of the fundamental domain have non-empty intersection, some
of the new cells filling the hole will have vertices with non-zero offsets (see Figure 3.15). It
would be possible to compute these offsets by walking through the cells outside the hole
while keeping track of the neighbor offsets. But this approach would be quite costly in
terms of running time. We use the following, more time-efficient but less space-efficient
approach:

e During the step of identifying cells in conflict with the new point, we compute the
offsets of each vertex of each cell in conflict with respect to the new point. These

3.3. THE 3D PERIODIC TRIANGULATIONS 53

offsets are temporarily stored in the vertices.

e After having created the new cells, we only need to get the stored offsets from the
vertices to correctly set the offsets in the cells.

o After point insertion the offsets that are stored in the vertices have to be cleared off,
in order to not interfere with future point insertions.

This approach requires to store one offset in each vertex and thus requires the use of some
extra memory. Given that the number of vertices in a triangulation is generally small
compared to the number of cells (see Lemma 3.4.1), this memory overhead is acceptable.
This is the only case where offsets are attached to vertices.

Figure 3.15: (2D illustration) The boldfaced colored lines show the boundary of the hole
during insertion of the point. The offsets attached to the hole’s vertices are shown; they
indicate how to translate the vertices in order to get the shaded polygon.

Note that this approach only works if the hole is homeomorphic to a ball. The hole
is the union of all simplices of the star of the newly inserted point. Thus if the structure
after the point insertion is a simplicial complex then the hole is homeomorphic to a ball,
cf. Lemma 2.2.6 and Theorem 2.2.8.

3.3.7 Vertex removal

In principle, the algorithm for removing vertices works in the same way as described in
Section 1.2.4.

Remember that the first step of the vertex removal consists in deleting all tetrahe-
dra that contain the vertex from the triangulation, yielding a hole. By Theorem 2.2.8
(page 24), this hole is always homeomorphic to a ball. The interior of the hole must be
triangulated and this triangulation must be sewed in the current data structure. As the
hole is homeomorphic to a ball, the triangulation of the hole is computed as the Delaunay
triangulation of E3 defined by the vertices of the hole. This is done using the CGAL 3D
triangulation implementation.

There still is an implementation issue: The triangulation of the hole must be sewed
into the hole created by deleting the vertex from the periodic triangulation. However, the
triangulation data structures of a CGAL triangulation and a CGAL periodic triangulation
are not type compatible. That is because for the periodic triangulations different vertex
and cell classes for storing the offsets are required. So it is not sufficient to copy the

54 3. IMPLEMENTATION

primitives during the sewing process but they must also be converted to objects of the
right type.

Additionally, when computing in T%C the long_edges_list needs to be updated as
well as the covering_map and the reverse_covering_map.

When computing in T2, we have to verify after each removal that there are no edges that
are too long according to Criterion 2.3.4. Otherwise the triangulation has to be converted
to Tgc.

3.3.8 Access

As described in Section 3.2.2, the vertices store the corresponding point coordinates, i.e.,
the coordinates of the vertex of index 1 in cell ¢ can be accessed by c->vertex (i) ->point (),
for i€ {0,1,2,3}. However, in order to project a simplex into E3, the offsets and the edge
length of the original domain must be taken into account. There are two things to con-
sider: (1) The original domain of T? is different from the original domain of Tj.. (2)
When computing in Tgc, the point coordinates outside of D, must be computed using the
covering_map. To hide these technicalities from the user, we introduce a new member
function point to the periodic triangulations: The call to c->vertex(i)->point() can
now be replaced by a call to this->point(c,i). Instead of fetching the point coordi-
nates from the triangulation data structure directly, the function point(c,i) also fetches
the offsets from the data structure and the point coordinates and copy shifts from the
covering_map if the triangulation is represented in Tj,.

To access the simplices of the triangulation, all the iterators and circulators of the trian-
gulation data structure are available. However, note that the triangulation data structure
does not have the information whether it stores a triangulation of TS or of T3.. If the
triangulation is represented in ']T%c, the iterator returns 27 copies of each simplex. It is
not possible to filter out copies at the data structure level. This also has a mathematical
reason: We compute in T3, because the triangulation does not exist in T2. If iterators
would return only one copy of each simplex, this would lead to inconsistencies, e.g. in the
adjacency and incidence relations because returned simplices do not form a triangulation,
see Figure 3.16 for an example. For some applications it is useful to have only one copy of
each simplex even if the returned set of simplices does not form a triangulation.

’
N
oo o ———- oo 2, X
N
N
S e S T .
A
N , ’
S N
q SR LR *
f4 \
rT—t——> -+, ® - ~
,,,,,,,,, U2,

Figure 3.16: (2D illustration) An iterator returning only one periodic copy of each simplex,
returns for instance the face pgr but only one of its three adjacent faces.

To provide such functionality without inconsistencies, we have some geometric iterators

3.3. THE 3D PERIODIC TRIANGULATIONS 55

that only output simplices, without adjacency and incidence relations. Then problems like
those shown in Figure 3.16 cannot occur. These geometric iterators exist for all four types
of simplices: points, segments, triangles, and tetrahedra. There are four different options
to specify which simplices will be returned, see also Figure 3.17:

e STORED Iterates over all the simplices that are stored, i.e., it shows the same behavior
as the iterators from the triangulation data structure.

e STORED_COVER_DOMAIN Iterates over all simplices that have non-empty intersection
with the fundamental domain of the flat torus the triangulation is stored in, i.e. 27
copies of the original domain in case of Tgc. This means that the simplices that
intersect the boundary of the current fundamental domain will be returned several
times.

e UNIQUE Iterates only over the original copy of each simplex.

e UNIQUE_COVER_DOMAIN Iterates only over those simplices that have non-empty inter-
section with the original domain. As for STORED_COVER_DOMAIN boundary simplices
will be returned several times.

\
AN

Figure 3.17: The four modes for the geometric iterators. Top left: STORED. Top
right: STORED_COVER_DOMAIN. Bottom left: UNIQUE. Bottom right: UNIQUE_COVER_DOMAIN.
Here the triangulation is represented in Tgc and the tetrahedra output by the iterators are
shown.

3.3.9 Optimizations

There are several optimizations available for CGAL 3D triangulation computation as de-
scribed in Section 1.2.4. These optimizations can be adapted to periodic triangulations.

56 3. IMPLEMENTATION

Hierarchy As described in Section 1.2.4 the triangulation hierarchy maintains a finite
number of layers of triangulations, where the upper layers are coarser than the lower layers.
To connect the layers, each vertex has a pointer to its corresponding vertex in the layer
below (down) and in the layer above (up) if there is one in the layer above. Note that each
vertex has a corresponding vertex in the layer below, so the down-pointer always points to
some vertex except for vertices in the lowermost layer.

For periodic triangulations it is highly probable that the coarser (upper) layers are
represented in ']I‘gc while the finer (lower) layers are represented in T2. We index the layers
from bottom to top, i.e., the lowermost layer has index 0. Let layer i be the uppermost
layer represented in T2; so layer i + 1 is represented in Tgc. Then all the periodic copies
of original vertices in layer i + 1 do not have corresponding vertices in the lower layer ¢,
and thus their down-pointer is not set. To avoid undefined down-pointers, we let all the
down-pointers of periodic copies point to the original vertex instead. Periodic copies do
not have up-pointers as they are not required, see Figure 3.18).

Layer
3 | 3 copies
2| § | 3 copies
et 1 copy
0 | | 1 copy

Figure 3.18: (1D illustration) up- and down-pointers of periodic copies point to the original
vertex one layer lower.

Spatial sorting The spatial sorting as described in Section 1.2.4 can be reused without
any modification: The output sequence of the spatial sorting has the property that two
points that are close in the sequence have small Euclidean distance in E?. As the input
point set for the periodic triangulation lies in D, which is a subset of E?, this property
remains true.

3.3.10 Additional functionality

We provide some additional functionality, i.e. functionality that is not required to compute
the Delaunay triangulation itself but is useful for the user interface.

Force conversion between covering spaces Asshown in Section 2.3 the Criterion 2.3.4
is sufficient but not necessary to decide whether the current point set defines a Delaunay tri-
angulation of T2. That is, point set can define a triangulation in T2 even if Criterion 2.3.4 is
not fulfilled. A necessary condition is given by Theorem 2.2.8. However, it is possible that
after adding a point to the point set it does not define a triangulation in T3 anymore. Nev-
ertheless, for a triangulation that is not going to be changed anymore, it might be useful to
convert it from T3, to T2. The function is_triangulation_in_1_sheet() implements the

3.3. THE 3D PERIODIC TRIANGULATIONS 57

test for the condition in Theorem 2.2.8. The functions convert_to_1_sheeted_covering()
and convert_to_27_sheeted_covering() can be used to convert between T3 and T3,.

Voronoi diagram As in the CGAL 3D Delaunay triangulation, we provide functionality
for computing Voronoi diagrams. Note that the computation of Voronoi diagrams requires
geometric constructions and thus is exact only if the kernel provides exact constructions.

To return the Voronoi diagram, we only need functions that for a given simplex return
its dual. This yields the following types of geometric objects:

Delaunay Voronoi
Cell Point

Facet Segment

Edge Polygon

Vertex | Polyhedron

Note that polygons and polyhedra are not simplices and do not have constant size, so
there are no kernel objects in CGAL suited to represent them. In the CGAL 3D Delaunay
triangulations only dual functions for facets and cells are available, which is sufficient to
describe the Voronoi diagram. The duals of vertices and edges can be constructed easily
from this output. In the periodic case the dual functions for facets and cells are sufficient,
too, for describing the dual periodic Voronoi diagram. However, for the dual polygons and
dual polyhedra some vertices might need to be translated in order to map the polyhedra
and polygons into E3. It is a bit more involved to compute the offsets that determine
these translations using the cell and facet dual functions only. Therefore, we also provide
dual functions for vertices and edges that use the incidence relations in the Delaunay
triangulation to reconstruct the vertex offsets of the polyhedra and polygons. This is more
efficient than an ad-hoc approach using the dual functions for facets and cells only. The
dual functions for vertices and edges output the respective objects as point lists through an
output iterator. As the computation of a Voronoi vertex requires a geometric construction,
there is no reason to avoid further geometric constructions for translating points. Thus we
return the translated points instead of pairs of points and offsets.

We implement a helper function periodic_circumcenter that computes the circum-
center for a given cell and returns the point inside the domain and an offset that specifies
the periodic copy of this point that corresponds geometrically to the circumcenter of the
canonical representation of the input cell in E3. This offset cannot be inferred directly
from the offsets of the cell because there is no relation between the offset of a circumcenter
of a cell and the offsets of the cell itself, see Figure 3.19. Thus geometric tests must be
applied to find the right offset in {—1,0,1}3.

The duality functions then work as follows:

Cell Returns the circumcenter of the cell inside D, as computed by periodic_circumcenter.

Facet Returns the dual edge as a pair of its endpoints represented by point-offset pairs
following Convention 3.3.1.

Edge The dual of an edge is a polygon. We return an ordered list of points that define
this polygon. Note that these points do not necessarily lie all inside the domain. We
calculate the polygon as follows: Circulate over all cells incident to the edge. For
each cell compute the circumcenter and the required offset with respect to one of the
vertices of the input edge using the helper function periodic_circumcenter.

58 3. IMPLEMENTATION

Figure 3.19: (2D illustration) The offsets of a triangle do not determine the offset of its
circumcenter.

Vertex The dual of a vertex is a polyhedron. We return a list of points that define this
polyhedron as their convex hull. As above, these points do not necessarily lie all
inside the domain but are chosen such that their convex hull is a projection of the
dual of the vertex into E3. In order to obtain the polyhedron itself the adjacency
relations can be extracted from the Delaunay triangulation.

3.4 Complexity

As seen in Section 2.4.1, Algorithm 2.3.1 has the same randomized worst-case complexity
as the algorithm for computing Delaunay triangulations in E3. However, this is not true
for the implementation: As explained in Section 3.3.4, when computing in Tj, the coor-
dinates of points that do not lie in D, are not stored in the triangulation data structure
for memory efficiency reasons. They are available through the additional data structure
covering_map that does not allow for constant time access. Again to avoid memory over-
head, when computing in T3, we do not mark the too long edges in the data structure
directly but we keep track of them in the long_edges_list, as described in Section 3.3.4.
As the covering_map, this data structure does not allow for constant time access. In this
section we examine the impact of the covering_map and the long_edges_list on the time
complexity of the implementation.

The use of these two additional data structures is a choice motivated by practical
considerations: For most applications it seems much more important to be highly time
and space efficient when computing in T3, whereas the efficiency of computation in Tgc is
less important. In order to achieve the bound of O(n?) on the complexity as proved in
Section 2.4.1, we would need to store the information contained in the covering_map and
the long_edges_list directly in the triangulation data structure to obtain constant time
access. However, the memory reserved for the data members required to store this data in
the cells and vertices would also be reserved when the triangulation is represented in TS,
causing a non-negligibly higher memory consumption of the triangulation data structure.

As in Section 2.4.1, we give the expected complexity of the randomized algorithm for
a worst-case input. The expected complexity is the expectation value for the complexity
over all possible insertion orders.

Let S be a set of n vertices and let e, and m denote the number of edges, and cells, of the
Delaunay triangulation defined by S as computed by Algorithm 2.3.1. Let N denote the
number of vertices and M the number of cells of the triangulation for which Criterion 2.3.4
applies, i.e. for which Algorithm 2.3.1 switches to the T3. If the triangulation of n points is

3.4. COMPLEXITY 59

still computed in Tj,, then N =n and M = m. The inclusions O(1) C O(N) C O(n) and
O(1) C O(M) C O(m) hold. The access to vertices in the covering_map is in O(log N),
the access to edges in the long_edges_list one of the vertices must be found first, which
is in O(log V), and then the second vertex must be searched for in the corresponding list,
which is in O(NV). Thus the overall complexity for access to the long_edges_list is O(N).

Lemma 3.4.1. Let T be a triangulation of a compact 3-manifold without boundary that
has n vertices and m cells. Then the following two statements hold.

1. The number of edges of T is given by e :=n + m.

2. The number of vertices is not larger than the number of cells: n < m.

Proof. Let f denote the number of facets. The Euler characteristic x of any 3-manifold
without boundary is 0 [Hen79] and is given by the formula

x=n—e+ f—m.

Furthermore, for a triangulation we know that 2f = 4m. Applying this to the above
formula yields 0 = n — e + 2m — m and thus e = n + m, which proves the first statement.
Each facet has three edges and each edge is incident to at least three facets, so 3f > 3e.
Plugging this into the formula above yields 0 =n—e+ f—-—m>n—e+e—m=n—m
and thus n < m. O

From Lemma 3.4.1 and well-known triangulation properties (Section 1.2.2) we know
that
O(1) € O(n) € O(m) = O(¢) C O(n?)

and O(N) C O(M).

Maintenance of the long_edges_list In Section 2.4.1, we show that the total number
of edges that are inserted into and removed from the long_edges_list is proportional to
the simplices that are created and destroyed by the algorithm. After the conversion from
T3. to T2, the long_edges_list is not used anymore, so the number of changes to the
long_edges_list is proportional to N2. As in our implementation each access to a vertex
is in O(N), the maintenance of the long_edges_list is in O(N?).

We now discuss the functionalities presented in Section 3.3.

Conversion from Tgc to ']T:é The most expensive steps are the four iterations over all
M cells. Three of them require to read copy shifts from the covering_map, which is in
O(log N). The overall complexity is O(M log N).

Conversion from T2 to T%c Again, the most expensive steps are the iterations over all
cells. Unlike above, in some of these iterations elements need to be inserted or found in
the local covering map on cells, which is in O(log M).

The construction of the covering_map is in O(N log N).

Additionally, in the end we need to iterate over all edges in order to find the edges that
are too long. According to Lemma 3.4.1 there are O(M) many edges. The insertion of
edges into the long_edges_list is in O(NN) and thus the overall complexity of the function
remains O(MN).

60 3. IMPLEMENTATION

Point location When computing in T3, for the vertices of each visited cell the copy
shifts must be computed (O(log N)). In the worst-case O(M) cells must be visited, which
yields O(M log N). When computing in T2 the usual bound of O(m) applies.

Point insertion When computing in T%c, the subroutine that finds the cells in conflict
has to visit O(NN) cells in the worst case and it has to get the copy shifts for the vertices
of each of these cells, so this takes O(N log N). Additionally, the long_edges_list must
be updated for up to O(NN) edges, so the overall bound is O(N?). When computing in T3,
the complexity remains O(n).

Vertex removal The complexity of the vertex removal is in O(n?) in the worst case.
When computing in T3, the copy shifts for the hole vertices must be extracted from the
covering_map, which is in O(Nlog N) and up to O(N) edges must be removed from the
long_edges_list, which is in O(N?), yielding an overall worst-case complexity of O(N?).

Hierarchy In Section 2.4.1, we discuss that the triangulation hierarchy of [Dev02] can
be used for periodic triangulations, too. Here, we analyze the impact of computing in T3,
on the complexity of both point location and point insertion when using the Delaunay
hierarchy.

Let a denote the ratio between the expected number of points in two adjacent layers.
According to [Dev02] the expected complexity of the point location in some layer i is
O(a**1n). According to the discussion on the complexity of the point location, if layer 7 is
represented in ’H‘%c, the expected complexity of the point location will be O(a‘*lnlog N).
Let layer I be the lowermost' layer that is represented in Tgc. Then the total complexity
of the point location is:

<r X a(l—al) oft?
Zo/“n%-z:a”lnlog]\f:n- (+ 10gN> € O(nlog N)
i=0 i=1 1-a 1-a

Note that the coefficient % of log N will get very small with growing I.

During point insertion additionally the up and down pointers must be set. For layers
represented in T2, these two operations are in O(1). For layers represented in T%c, the
down pointers of the periodic copies have to be set to the respective original vertex in the
layer below. This requires a query per pointer in the covering_map, which is in O(log N).
The probability of inserting a point into layer i is o, so the expected number of insertions
per point is Y 0 a’ € O(1).

As seen above, a point insertion into the periodic Delaunay triangulation is in O(n +
N2) C O(nN). Inserting into the hierarchy does not change this so the randomized worst-
case complexity is O(n%N).

Summary See Table 3.1 for an overview of the results of this section.

If N is constant, the asymptotic running time is the same as for computing Delaunay
triangulations in [E3, namely in the worst case O(n?), which can be improved to randomized
worst-case O(n?) by using the hierarchy. In case the point set does not have a triangulation,
then N = n and a log n factor is added, which yields a worst-case complexity in O(n3logn),
randomized worst-case O(n?logn) when using the hierarchy.

!The layer with the smallest index and largest number of points.

3.5. STUDY OF AN ALTERNATIVE DESIGN 61

E3 T3
long_edges_list maintenance | — O(N?)
T3, — T2 — O(MlogN)
T3 — T3, — O(MN)
Point location O(m) O(m+ MlogN)
Point insertion O(n) O(n + N?)
Vertex removal O(n?) O(n?)
Point location with hierarchy O(n) O(nlog N)
Triangulation O(n3) O(n3N)
T. with hierarchy O(n?) O(n®N)

Table 3.1: Overview of the results of Section 3.4

3.5 Study of an alternative design

In this Section we describe an idea for an alternative design that integrates the CGAL
3D triangulations and the CGAL 3D periodic triangulations. This alternative design has
been described in [CKTO08]. The motivation for such an approach is that the algorithms
for computing triangulations in E® and T3 are not substantially different. The goal is to
duplicate as little functions as possible in the code. However, it turns out that most of
the highly optimized functions loses efficiency by generalizing them sufficiently to work for
both spaces.

The alternative design is developed taking the following particularities of E3 and T3
into account:

E3: vertex at infinity, degenerate dimensions,
T3: covering spaces, offsets.

The goal of the alternative design is to make it possible to easily extend the current
implementation to different spaces with the least possible redundancy in code. The basic
idea of the alternative design is to split the class Triangulation_3 into three classes related
by inheritance (cf. Figure 3.20). The embedding space class provides all functionality that
depends on the space. It is now a template parameter of the triangulation, together with
the triangulation data structure and the geometric traits.

General base

Triangulation_base_3

Tr_space_euclidean_3| or | Tr_space_torus_3

i
I

I

I

I

I

|

The embedding space 1
1

|

:

|
Triangulation class .
|

I

Triangulation_3

|
|
|
|
|
|
|
|
|
or ... !
1
1
|
1
1
1
|
|
|

Specialized triangulations Delaunay_triangulation 3 Regular_triangulation_3

Figure 3.20: The alternative design.

62 3. IMPLEMENTATION

The triangulation data structure and the geometric traits are the same as described in
Section 3.3. Let us now list the affected classes in more detail:

General base: This class contains all the functionality that does neither depend on the
space, nor on the triangulation type. These are mostly wrapper functions from the trian-
gulation data structure and other general helper functions.

The embedding space: This class is new in the design and is used to handle everything
that depends on the embedding space of the triangulation.

There is functionality that depends on both space and triangulation type. In these cases
we use visitors [GHJIV95| that modify the functionality relevant to the triangulation type
in the space class.

Triangulation class: The triangulation class provides the same interface as in the de-
sign described in Section 3.3.1, independent of the embedding space. It provides generic
algorithms for point location, point insertions and flips. This class is finally specialized to
Delaunay triangulation and regular triangulation.

Adding further spaces is quite simple with this design. Only a new space class (and pos-
sibly a different geometric traits class) is needed, since the algorithms provided by the
triangulation classes are fully generic.

The ideal result would be that all main functions go in the base class and the respective
space and triangulation classes contain only visitors that implement space specific and
triangulation specific functionality. However, in this way we could only merge about 274
out of 3396 lines of code without losing any efficiency. As the CGAL 3D triangulations
are highly optimized and widely used, it is not acceptable to implement modifications
that trade genericity against efficiency. This means that almost all the functionality ends
up in the space class, which implies that almost all of the code will be duplicated. Given
these results we preferred having a completely separate implementation for the 3D periodic
triangulations.

3.6 Experiments

In Section 1.5 we introduced three implementations of algorithms to compute the 3D
periodic Delaunay triangulation. Unfortunately, most of them are either not publicly
available or not maintained anymore. We compare our implementation of the algorithm to
compute the 3D periodic Delaunay triangulation to the CGAL implementation for the 3D
Delaunay triangulation of E3. We present some experiments comparing the computation
of the Delaunay triangulations of E3 and T3 defined by the same set of points in D3.

For uniformly distributed input points the computation of the periodic Delaunay tri-
angulation is expected to be slightly slower than the computation of the Delaunay trian-
gulation of E? due to overhead caused by managing the offsets and the computation in
covering spaces.

At first we show experiments on the construction of the Delaunay triangulation using
different configurations of the above described optimizations: with or without use of the
spatial sorting and the dummy point set. Another test series restricts on the point insertion
in T2, which is the most critical part in the Delaunay triangulation construction: We insert
the points into a precomputed triangulation in ']I'?c’. In this way we avoid computation in
T3, but unlike the use of the dummy points these points are chosen at random and we do
not remove them again. Then we briefly present results of the same experiments using the

3.6. EXPERIMENTS 63

triangulation hierarchy as point-location data-structure. The following experiment tests
the vertex removal functionality. Then we run the Delaunay triangulation construction
tests and the point insertion tests using a geometric traits class that is specialized to the
case that D, is the unit cube. And finally we compare the two Criteria of Section 2.3.1.
As each of the optimizations we use has different properties, these experiments help to
identify specific advantages and shortcomings in our implementation.

3.6.1 Input point sets

We ran experiments on both generated data and real data from astronomy (by courtesy
of Prof. Rien van de Weijgaert?). In all benchmarks the original domain is the half-open
unit cube [0, 1)3.

We denote the data sets as follows:

cube points uniformly distributed in the half-open unit cube
sph points uniformly distributed on a sphere of radius 0.5 centered at (0.5,0.5,0.5)
astr input data from research on astronomy

We now discuss the different experiments in detail. The rows of the tables give the
running times for input point sets the number of input points given in the first column.
The running time behavior of Delaunay triangulation computation of E® and T? is shown
in the second and third column, respectively. Furthermore, in the last column the factor by
which the computation of the Delaunay triangulation of TS is slower is given. All running
times are given in seconds. Experiments were run on an Intel Xeon 8 core at 2.33 Ghz
running Fedora 10 and CGAL 3.6. We aborted tests that took longer than 300 seconds;
aborted tests are marked as -- in the tables.

3.6.2 Construction of the Delaunay triangulation

We ran three series of experiments: One with the default configuration, one using the
spatial sorting and one using both spatial sorting and the dummy point set.

For each experiment we list the table for the point sets cube, astr, and sph as well as
a plot of this data. Note that the plot axes are both scaled logarithmically.

Default configuration

cube E3 T3 factor astr E3 T3 factor
102 0.001 0.355 354.9 1-103 0.011 0.990 90.00
103 0.012 1.114 92.85 1-104 0.161 1.919 7.53
10% 0.165 1.332 8.07 1-10° 3.753 5.380 1.43
105 4.068 5.904 1.45 2.10° 9.706 12.792 1.31
10 | 103.5 104.2 1.01 5.10° 33.70 36.73 1.09

1-106 86.70 93.71 1.08

2.10 | 223.9 230.8 1.03

?Kapteyn Institute, Groningen, Netherlands

64 3. IMPLEMENTATION

1000

100

sph E3 T‘Z factor 10
102 0.001 0.466 465.9
103 0.011 7.896 717.9
10% 0.108 277.9 2574

10° 1.631 - _ 01
10 | 21.39 - .
0.01
107 | 279.1 - .
0.001 \) ‘ sph“l'3 3o
10 1000 10000 100000 1et06 1e+07

In this experiment, we see that for the point set cube of 102 points the slow-down due
to the overhead of computing in T3, is quite large. For larger point sets, the slow-down
becomes smaller because the initial computation in ']I‘gc has less impact on the overall
running time. Finally, for point sets of about 10° points the computation of periodic
triangulations takes about the same time as the triangulation of point sets in E3. The
slow-down becomes negligible.

The experiments astr show that the real-world point set is sufficiently well distributed
to have a behavior similar to cube.

For the sph experiment, the large slow-down persists and even grows. Here, the periodic
Delaunay triangulation is never represented in T3, because for this point set there are
always edges longer than the threshold of Criterion 2.3.4. As the projection of the 1-
skeleton of the periodic Delaunay triangulation of the sphere onto T2 has in most cases
cycles of length 2 we cannot even hope to do much better. Moreover, we are not aware
of any case in real-world applications where such a situation would occur. The growing
slow-down for larger point sets is due to handling the triangulation of the covering space,
where several std: :maps and additional function calls are involved. This is the price we
have to pay in order to avoid as much overhead as possible when computing in T, which
is clearly the principal goal.

With spatial sorting

cube E3 T3 factor astr E3 T3 factor
10° 0.001 0.342 341.9 [-10°| 0.010 1.388 138.8
10° 0.010 ~0.906 90.60 1-10°| 0.1056 1.1561 10.96
10* 0.106 1.521 14.35 1.105 | 1.037 3.9255 3.14
10° L.064 3.309 3.1t 2.10° | 2.112 4.620 2.19
10° | 10.95 19.22 1.76 5-10° | 5.466 9.838 1.80
107 [111.1 186.7 1.68 1-10% | 11.21 18.89 1.69
2-100 | 23.77 38.24 1.61

3.6. EXPERIMENTS

65

sph E3 T3 factor
10> | 0.001 0.535 534.9
103 | 0.009 7.610 845.6
10 | 0.085 279.7 3291

10° | 0.750 -- --
109 | 7.239 -- --
107 | 73.17 -- --

1000

100

10

cube E3
cube T3
astr E3
astr T3
sph E3
sphT3

—.

1000

10000

100000

le+06

When using the spatial sorting, the behavior of the running times becomes almost
linear in the number of points. The principal gain comes from the fact that the point-
location step gets accelerated considerably. The point location function has very similar
running times whether computing in E? or T2. So in the tests of the default configuration,
the point location has an attenuating effect on the overall running time difference. In
the case of using spatial sorting, computing a periodic triangulation of a large number of
well-distributed points is about 1.6 times slower than computing a triangulation of E3.

The results of the astr experiment again agree with the cube experiment.

The spatial sorting does not work very efficiently on the set of points on a sphere. In
the periodic case its effect is outweighed by the expensive handling of the covering space.

With dummy point set and with spatial sorting

cube E3 T3 factor
102 0.001 0.339 339.0
103 0.009 0.024 2.67
10% 0.102 0.190 1.86
10° 1.07 1.82 1.69
10 | 11.0 18.4 1.67
sph E3 T3 factor
10% | 0.001 2.140 2140
103 | 0.009 10.02 1113
10* | 0.086 161.7 1880
10° | 0.756 -- --
109 | 7.262 -- --

1000

100

10

01

0.01

0.001

astr E3 T3 factor
1-10° | 0.009 0.024 2.67
1-10*| 0.098 0.187 1.91
1-10°| 1.045 1.780 1.70
2.10° | 2.105 3.545 1.68
5-10° | 5.402 8.954 1.66
1-105 | 11.16 18.25 1.64
2.10% | 23.67 37.62 1.59

66 3. IMPLEMENTATION

For the cube experiment, the big slow-down for the set of 10? points is explained by
the fact that this point set does not define a Delaunay triangulation of TS and thus the
algorithm must switch to computing in T3, while removing the dummy points. For larger
point sets no computation in T%c is required at all, and so the slow-down is much less:
The factor is between 1.67 and 2.67. Note that the larger the point set, the less is the
slow-down, which can be explained in the following way. In our implementation we provide
specialized functions for dealing more efficiently with cells that have all zero offsets. A part
of the slow-down in T3 is due to offset manipulations during the point insertion, when cells
with non-zero offsets are involved. As the point set is uniformly distributed, the percentage
of cells with non-zero offsets, i.e. the number of cells that are located on the boundary of
the original domain, is smaller for large point sets than for small point sets, so the relative
slowdown decreases when the number of points grows.

For the sph experiment with 10 points, the slow-down is less than before. That is be-
cause this approach avoids inserting points in Tgc. Only the post-processing of removing
the 36 dummy points and converting the triangulation to T3, is expensive. This result sug-
gests that for point sets of more than about 5000 points that do not define a triangulation
in T2, it is useful to use the dummy point set.

3.6.3 Point insertion in T3

Here, we start with a precomputed triangulation of T2 from 1000 uniformly distributed
input points and insert more points. We do this with and without spatial sorting of the
input points. The goal of these experiments is to compare the insertion of points in T3
only, i.e. to filter out potential overhead for managing 27 copies or the dummy point set.

Without spatial sorting

cube E3 T2 factor astr E3 T3 factor
102 0.002 0.004 2.00 1-103 0.012 0.023 1.92
102 0.053 0.117 2.21 1-104 0.167 0.954 1.59
104 0.462 0.708 1.53 1-10° 3.799 4.388 1.15
10° 4.479 5.488 1.23 2.10° 9.716 10.392 1.06
105 | 104.8 113.4 1.08 5-10° | 33.76 34.08 1.01
1-10 | 87.45 98.02 1.12
2.10% | 225.0 258.8 1.15
1000
100
sph E3 T3 factor 10
10? 0.001 0.002 2.00
102 0.011 0.015 1.36 !
10* 0.125 0.170 1.36 o
10° 3.940 4.347 1.10 ' -
10% | 162.5 158.8 0.98 0oLl

0.001

3.6. EXPERIMENTS 67

Here, we see even more clearly in all three experiments that the bigger the number
of points the less is the slow-down. Note that also the case of points on a sphere can
now be computed easily. That is because there are additional points ensuring that all
computations can be done in T2 rather than T3.. These additional points are contained
in the final result though.

With spatial sorting

cu?e E3 T2 factor astr E3 T3 factor
183 8~82; 8~22? g'gg 1-10i 0.010 0.018 1.80
ot 0-126 0.222 1-76 1-105 0.099 0.175 1.78
o7 1-080 1-840 1-70 1-105 1.045 1.765 1.69
: : : 2-10 2.102 3.548 1.69
106 11.02 18.51 1.68 5.10° | 5.405 8.920 1.65
107 | 112.5 185.6 1.65 1.10 | 11.32 18.924 1 61
2.10% | 23.75 37.64 1.59
1000
100
sph E3 T3 factor 10
10° | 0.001 0.002 2.00
103 | 0.008 0.013 1.63 1
10* | 0.057 0.101 1.77
10° | 0.508 0.884 1.74 01
105 | 4.872 8.677 1.78 0ol
107 | 49.21 89.61 1.82
0.001 : : : :
100 1000 10000 100000 let+06 1le+07

This experiment confirms the above explanations without adding new results.

3.6.4 The triangulation hierarchy

We ran the same experiments as above using the triangulation hierarchy. In the peri-
odic case, the hierarchy suffers from the fact that there are always layers representing a
triangulation of T3.. We only give a sample of the results for the point set cube of 10°
points.

68 3. IMPLEMENTATION

E3 T3 factor
default 30.57 79.66 2.61
spatial sorting 11.76 33.49 2.85
dummy point set + spatial sorting 11.70 28.96 2.48
point insertion in T% 31.21 78.71 2.52
point insertion in T3 + spatial sorting | 11.78 28.16 2.39

In practice only the triangulation of the uppermost level is represented in Tgc, so the
slow-down is with a factor between 2.39 and 2.85 comparatively small. The fact that the
slow-down is similar for all five experiments shows that in T2 the triangulation hierarchy
shows a similar behavior as in E3.

3.6.5 Vertex removal

Here we remove 10,000 vertices from a triangulation of the given size.

cube ‘ E3 T3 factor astr E3 T3 factor
10* |[1.775 105.6 59.52 1-10* | 1.812 107.7 59.43
10° | 1.426 1.843 1.292 1-10° | 1.394 1.827 1.31
10 | 1.675 2.102 1.255 2-10° | 1.426 1.840 1.29
5-10° | 1.508 1.923 1.28
1-106 | 1.636 2.058 1.26
2.10% | 1.855 2.264 1.22

We see that the running time of removing 10,000 vertices does not much depend on
the size of the triangulation. The overhead for the periodic triangulation is comparatively
small: It causes a slow-down of a factor between 1.2 and 1.3. Only if the triangulation
must be converted to T3, during the removal, the slow-down factor goes up to about 60.

3.6.6 Specific original domain

In the CGAL 3D periodic triangulations, the original domain of the periodic space can
be chosen by the user. When computing predicates of point-offset pairs, points must be
translated by multiples of the edge length of the original domain. This is numerically more
involved than simply fixing the original domain to the unit cube.

We could write a special traits class that permits only the unit cube as original domain.
The experiments below show that in this case we gain about 3% on the running time for
both 10% uniformly distributed points in the cube and the cosmological data set of 106
points.

cube T T3, ¢=[0,1)2 Speed-up in %
standard 104.2 102.7 1.5%
spatial 19.22 18.45 4.0%
dummy, spatial | 18.35 17.80 3.0%
ins T3 113.4 111.8 1.4%
ins T2, spatial 18.51 17.78 4.0%

3.6. EXPERIMENTS 69

astr TS T3, ¢=10,1* Speed-up in %
standard 93.71 92.78 1.0%
spatial 18.89 18.44 2.4%
dummy, spatial | 18.25 17.60 3.5%
ins T3 98.02 96.70 1.3%
ins T3, spatial 18.24 17.67 3.1%

We see that the speed-up is bigger in the cases when spatial sorting is used. This
can be explained by the fact that our specialization to ¢ = [0, 1) accelerates the predicate
evaluation, and the part of the running time used up in predicate evaluation is bigger when
using spatial sorting. We decided that the resulting speed-up is not sufficient to include
this feature in the public release.

3.6.7 Comparison of the criteria of Section 2.3.1

In the experiments above we have seen that whether computing in T3 or T3, has a huge
impact on the running times. Here, we test for given point sets after insertion of how many
points the triangulation fulfills some of the conditions presented in Chapter 2. We use the
following notation for the different conditions:

2c (2-cycle): This is the number of points for which the point set defines a triangulation
of T2 for the first time. The necessary and sufficient condition of Theorem 2.2.8 is
used to compute this property. Note that by adding further points the point set can
lose this property again.

bd (ball diameter): This is the number of points for which the point set fulfills the
condition of Criterion 2.3.3 for the first time. That is in a triangulation of this point
set the diameter of the largest circumscribing ball is smaller than half the edge length
of the original domain.

el (edge length): This is the number of points for which the point set fulfills the condi-
tion of Criterion 2.3.4, the edge-length criterion.

We ran the tests on the point sets cube and astr. For the point est sph, for instance,
these criteria are never fulfilled. We ran each experiment twice. Once on a random insertion
order and once using spatial sorting as described in Section 3.3.9.

The results without the use of spatial sorting are shown in the two following tables.

cube | 2¢ bd el astr 2¢ bd el
10° | 57 -10° | 67 164 284
103 |51 136 250 -10* | 53 147 254
104 |50 139 247 -10° | 55 150 263
10° | 56 153 226 -10° | 53 151 272
105 |61 145 230 -10° | 63 155 294
10" | 55 152 246 .10 | 54 143 275
-10% | 55 150 257

DO TN e

In the two following tables the result with the use of spatial sorting are given.

70 3. IMPLEMENTATION

cube | 2¢ bd el astr 2¢ bd el
102 65 1-10° | 80 244 768
103 83 274 805 1-10* | 79 238 922
104 93 232 874 1-10° | 86 301 350
10° 91 175 748 2.10° | 81 394 777
109 97 216 533 5-10°| 90 183 798
107 | 124 264 374 1-10| 91 373 429

2.10° | 108 219 840

The left plot shows the experiments without spatial sorting, the right plot shows the
experiments with spatial sorting.

450 T : . . 1000
2c, cube —m—
400 bd, cube - . +
[d, cube —¢— S
2C, aStr «rr3Geree 800 | *
350 bd, astr —4— 4 °Fp T N e
d, astr - :
300 + "y
L 2¢, cube —m—-,
250 L 600 bd, cube ----m--
d, cube —¢— =
2, astr e G
200 - 1 bd, astr —+—
400 + d, astr g

200 e

. . . . 0
100 1000 10000 100000 le+06 1le+07 100 1000 10000 100000 1let+06 le+07

All tests were run 10 times and the presented numbers are the arithmetic means of all
10 results. This is done because the results of one run can vary due to the randomization
in the algorithm.

As Theorem 2.2.8 gives a necessary and sufficient condition on whether the point set
defines a Delaunay triangulation of T2, the numbers in column 2c can be considered as the
best possible result. Note that the condition of Theorem 2.2.8 is not sufficient for our actual
purpose, which is to decide whether any superset of the point set has a triangulation in
T2. We can consider the results of column 2c as lower bounds on the minimum number of
points required to switch to ']I‘i and use it to measure the quality of our geometric criteria.

The use of spatial sorting increases the required number of points. That is because
now the points are inserted in a specific order, thus it takes longer until the point set is
sufficiently well-distributed. The unstable results for the point set astr show that the
number of required points is very sensitive to the input point set.

The tables show that generally point sets of about 60 random points already define
a Delaunay triangulation of T2. However, it can happen that inserting a point in such
a triangulation leads to a point set that does not define a Delaunay triangulation of T3
anymore. In general about 150 points are necessary for the largest empty ball diameter to
be smaller than half an edge length of the original domain. According to Criterion 2.3.3
such point sets define a Delaunay triangulation of T3 even if we add further points. How-
ever, computing the circumcenter of a tetrahedron is more expensive than computing the
distance of two points. That is why Algorithm 2.3.1 tests for the longest edge length to
be smaller than % ¢ (see Criterion 2.3.4). As this is a stronger criterion, about 250 to
300 points are required for the algorithm to switch to computing in the 1-sheeted covering
space. When the data set becomes large, this number can be considered negligible.

3.7. APPLICATIONS 71

3.7 Applications

Due to the modularity of CGAL it is easily possible to plug different functionalities to-
gether. For instance, there are several algorithms that use 3D triangulations, like the alpha
shape computation [DY10] or the meshing algorithms [RY10, RTY10].

However, the interface of the implementation of 3D periodic triangulations has some
mathematically motivated differences to the interface of the non-periodic triangulations.
Thus we need to introduce adapters to make the 3D periodic triangulations compatible to
other CGAL algorithms.

3.7.1 Periodic alpha shapes

Alpha shapes have been described in [EKS83, EM94]|. This extension has been motivated by
the need of astronomers for computing periodic alpha shapes of simulations on the cosmic
web [vdWVPT10]. Based on the cosmological principle (Section 1.1), these simulations are
run on a comparatively small sample of the cosmic web. However, the boundaries of the
sample can have a substantial effect on the topology of its alpha shapes. By computing
periodic alpha shapes these effects can be avoided.

Definition 3.7.1 ([EM94|). Given a point set S and a parameter o with 0 < o < o0, the
alpha shape of S is the subset of all simplices of DT(S) that have a circumscribing ball of
radius o or smaller that does not have any point of S in its interior.

If we replace the Delaunay triangulation by weighted Delaunay triangulation, then we
get weighted alpha shapes. The definition directly extends to periodic triangulations.

The CGAL implementation of alpha shapes takes an implementation of a triangulation
algorithm as template parameter. During the construction of the alpha shape, first the
3D (weighted) Delaunay triangulation is computed and then the alpha shape on top of it:
It attaches to each simplex the smallest « for which it appears in the alpha shape and
provides iterators to output alpha shapes for a given a.

The very same approach works for periodic triangulations. The CGAL 3D periodic
triangulation implementation outputs a triangulation on top of which the alpha shape
can be computed. In order to do so, the class Alpha_shape_3 must be instantiated with
the class Periodic_3_Delaunay_triangulation_3 as template parameter. Still, some
difficulties arise in the implementation that are solved as follows. Note that periodic
weighted alpha shapes are not yet available because there is no implementation of weighted
periodic Delaunay triangulations yet.

In order to establish compatibility between the CGAL alpha shape implementation and
the CGAL 3D periodic triangulations, we have to redefine some types and functions that
exist in the CGAL 3D triangulations but not in the CGAL 3D periodic triangulations.
These are mainly functions dealing with the vertex at infinity and degenerate dimensions
and turn out to be trivial for the periodic case:

e Type Finite_[simplex]_iterator. In the periodic triangulation all simplices are
finite, thus this type can be defined to be the same as the [Simplex]_iterator.

e Function dimension. In the periodic triangulation we are always computing in three
dimensions. Thus this function returns always 3.

72 3. IMPLEMENTATION

e Function is_infinite: Decide for a given simplex whether it has the vertex at
infinity as a vertex. As there is no vertex at infinity in periodic triangulation, this
function always returns false.

e Function number_of_finite_[simplices]: There are no infinite simplices in the pe-
riodic triangulation, so this function just returns the output of number_of _[simplices].

Furthermore, as described in Section 3.3.8, we cannot directly access point coordinates
of vertices through the triangulation data structure. So in the alpha shape implementation
every point coordinate access of the form cell->vertex(i)->point() has to be replaced
by an expression of the form this->point(cell,i), cf. Section 3.3.8.

Once the periodic alpha shapes are available it is interesting to compute their Betti
numbers. This can be accomplished using the algorithm of [DE95] and the work of [Abs09].
Figure 3.21 shows a screenshot of a prototype implementation.

Alpha: 0273314
Betti 0: 5164
Betti 1: 1690
Betti2: 19
Betti3: 0

Figure 3.21: Screenshot of a demo prototype for computing periodic alpha shapes and their
Betti numbers.

3.7.2 Periodic surface mesher

The results of this section are joint work with Vissarion Fisikopoulos [CFT10].

The CGAL surface mesher provides generation of triangular meshes to approximate
smooth surfaces. It implements the meshing algorithm described in [BO05|. For a surface
mesh computed by CGAL see Figure 3.22

The algorithm works as follows: It maintains a Delaunay triangulation and a queue of
so-called bad surface facets. A facet is surface facet if its dual Voronoi edge intersects the
surface. There is a set of so-called refinement criteria that decide whether a facet is good
or bad. The algorithm then starts with a Delaunay triangulation of E? defined by a set of
initial points on the surface. It maintains a queue of bad surface facets and in each step a
new point on the surface is added to refine the current bad facet. A surface Delaunay ball
of a surface facet is a circumscribing ball of this facet that is centered at the intersection
of the surface facet’s dual Voronoi edge with the surface, see Figure 3.23. One by one the
bad surface facets from the queue are refined, that is, the center of their surface Delaunay
ball is inserted into the Delaunay triangulation and the new bad surface facets are added
to the queue.

The implementation of this algorithm in CGAL is described in [RY10]. It provides the
following three refinement criteria as a default.

3.7. APPLICATIONS 73

Figure 3.22: A surface mesh computed by CGAL, model by Visual Computing Lab, Pisa,
Italy.

o Aspect criterion: A surface facet is good if its minimum angle is larger than some
user-defined threshold.

o Uniform size criterion: A surface facet is good if the radius of its surface Delaunay
ball is smaller than some user-defined threshold.

o Clurvature criterion: A surface facet is good if the distance of its circumcenter to the
center of the Surface Delaunay ball is smaller than some user-defined threshold.

Default values for the thresholds are provided.

Figure 3.23: The surface Delaunay ball of a surface facet.

The default criteria can be replaced by the user’s own criteria, which can be given to
it as a template. In the same way the underlying Delaunay triangulation implementation
can be exchanged.

In order to compute periodic surface meshes, we plug the periodic Delaunay triangu-
lations in the CGAL surface mesher. When doing so, similar interface problems occur
as for the periodic alpha shapes, see Section 3.7.1. Most of them can be resolved in the
same way. A problem appears because instead of using the point insertion method of
the periodic Delaunay triangulation, the surface mesher first computes the cells in conflict
with this point using the method find_conflicts. Then it removes these cells and adds
new cells using the method insert_in_hole. As described in Section 3.3.6, when com-
puting periodic triangulations, the offsets of the vertices lying on the boundary of the hole

74 3. IMPLEMENTATION

with respect to the new point must be stored. This information is directly stored in the
vertices and must be cleaned up after each run of find_conflicts in order to not cause
side effects later on. This clean-up is done by insert_in_hole. Thus, when computing a
periodic Delaunay triangulation, for each call to find_conflicts there must be a corre-
sponding call to insert_in_hole and there must not be any calls to find_conflicts in
between. The surface mesher, however, does not always call insert_in_hole after a call
of find_conflicts. So we use a modified version of find_conflicts that cleans up the
vertex offset before starting to detect cells in conflict.

Only the evaluation of the refinement criteria require geometric computations. So the
refinement criteria must be adapted in order to treat the offsets correctly. They are made
available to the algorithm through template arguments, so they can be replaced easily. We
write a new set of refinement criterion classes for the periodic case. Note that in order to
correctly compute translated points from point-offset pairs the refinement criterion classes
must have access to the edge length of the original domain of the periodic triangulation.
Thus a pointer to the periodic triangulation must be provided to the constructor of the
criterion classes. The following modifications must be implemented for the specific criteria.

Aspect criterion
Use the offsets to correctly embed the given facet into R? in order to compute its minimum
angle, see Figure 3.24.

Figure 3.24: (2D illustration) The periodic aspect ratio criterion.

Uniform size criterion

This criterion is more complicated because we have to compute the center of the surface
Delaunay ball of a given facet. It is not possible to infer the offset of the center of the
surface Delaunay ball from the offsets stored in the triangulation. This can be seen by a
similar example as in Figure 3.19 on page 58 for circumscribing balls of cells. We search
the offset o that minimizes the distance between one vertex of the facet and the computed
center with offset 0. The correctness of this approach follows from the fact that we are
computing a triangulation using Algorithm 2.3.1, i.e., we know that the biggest empty ball
has diameter smaller than half the domain edge length. So one of the periodic copies of the
center is closer to the facet vertices than half the domain edge length and all the others are
further. In terms of predicates this approach requires several comparisons. See Figure 3.25
for an illustration of the periodic version of this criterion.

Curvature criterion
Here we have the same problem as for the uniform size criterion. We can apply the same

3.7. APPLICATIONS 75

Figure 3.25: (2D illustration) The periodic uniform size criterion.

solution, as well (see Figure 3.26).

G N
/

Figure 3.26: (2D illustration) The periodic curvature criterion.

In Figure 3.27 we show some periodic meshes computed with the CGAL surface mesher
using the CGAL periodic Delaunay triangulations. The figures show eight copies of each
mesh. We see that the copies perfectly agree at the boundaries, which is expected from
the way of constructing the meshes.

Figure 3.27 shows some periodic surface meshes: The Schwarz p and the gyroid func-
tions are triply periodic minimal surfaces [Sch70]. The cylinder is not triply periodic but
only periodic in one direction. Nevertheless, it can be meshed. We obtained the piecewise
defined function from M. Moesen at K. U. Leuven, Belgium, who works on bone scaffolding.

The implementation described in this section is not yet published in CGAL.

3.7.3 Periodic volume mesher

As a continuation of the work on periodic surface meshing described in Section 3.7.2, we also
worked on computing periodic volume meshes. This is joint work with Mikhail Bogdanov.

The problems and solutions in this case are very similar to what was described in
Section 3.7.2. We have to adapt the same three refinement criteria on the surface triangles
and additionally two criteria on the cells in the volume:

o Radius edge criterion: upper bound on the ratio between the circumradius and the
shortest edge of a tetrahedron

e Radius criterion: upper bound on the radius of the circumscribing ball

The computation of the two cell criteria for periodic meshing can be done in the same
way as the computation of the facet criteria described above. See Figure 3.28 for examples
of periodic volume meshes computed with the CGAL volume mesher and the periodic
triangulations.

The implementation described in this section is not yet published in CGAL.

76 3. IMPLEMENTATION

()

Figure 3.27: Some periodic surface meshes: (a) Schwarz p function, (b) Gyroid function,
(c) cylinder, (d) piecewise defined function (courtesy M. Moesen).

3.7.4 Periodic Lloyd algorithm

Given a Voronoi diagram, a Lloyd iteration replaces all the sites by the centroids of their
Voronoi cells [L1082]. The Lloyd algorithm does repeated Lloyd iterations. The Voronoi
diagram is known to converge towards a centroidal Voronoi diagram by repeatedly apply-
ing Lloyd iterations [DEJ06]|. Lloyd iterations are, for instance, used in mesh optimiza-
tion [Tou09].

Our implementation works as follows: In a first step the Voronoi diagram of all the input
points is computed. In each iteration the centroid of each Voronoi cell is computed and each
defining site of a cell is moved to the centroid of the same cell. In the implementation,
we actually recompute the Voronoi diagram of the centroids from scratch. Using dual
functions of the periodic Delaunay triangulation, it is straightforward to implement a
periodic version of the Lloyd algorithm. The dual functions return the cells as convex set
of points in E3, so the centroid computation in E? can be reused. Only if a centroid lies
outside of D, it must be translated back inside the original domain. See Figure 3.29 for an
illustration of our periodic Lloyd software that is publicly available as a demo in CGAL.

Once we can compute Lloyd iterations on periodic Voronoi diagrams, we are interested
in determining whether the number of points has an influence on the minimum and maxi-

3.7. APPLICATIONS 77

(a)

Figure 3.28: Periodic volume meshes: (a) Schwarz p function, (b) piecewise defined function
(courtesy M. Moesen).

Figure 3.29: Left: Initial periodic Voronoi diagram of 9 random points. Right: Converged
centroidal Voronoi diagram after about 25 Lloyd iterations.

mum dihedral angles of the dual periodic Delaunay triangulation. We expect an answer to
this question to be useful in mesh optimization [Val]. We did the following experiment: We
computed the periodic Delaunay triangulation of a set of n uniformly distributed random
points in D.. Then we ran Lloyd iterations until the minimum and maximum dihedral
angle of two consecutive Lloyd iterations did not differ by more than 0.01 for 10 consec-
utive iterations. We ran 10 independent experiments for each n between 1 and 100, see
Figure 3.30.

Unfortunately, the results of this experiment are not very conclusive. For small point
sets very good extremal dihedral angles can be attained. However, for bigger point sets
the results are much less clear. Especially since the results depend heavily on the starting
configuration. For point sets of about 36 points and about 48 points we see that some of
the starting configurations can yield very good results.

78 3. IMPLEMENTATION

e’y

e

max angle ~]
min angle -

® %ézz‘i;""tz“iz} AT
st e e
30 40 50 60 70 80 90 100 n

Figure 3.30: Minimum and maximum dihedral angle of a periodic Delaunay triangulation
of n points after Lloyd iterations.

3.8 Conclusion

In this chapter, we presented our implementation of 3D periodic triangulations that is
publicly available through the open source library CGAL. We described our implementation
as well as the similarities and the differences to the CGAL 3D triangulations. We gave an
overview on the complexity of the main functions and some interesting functions that are
specific to T3. In experiments on both generated and real-world data we verify the efficiency
of our implementation. In fact, for big random point sets our implementation turns out to
be only about 1.7 times slower? than the computation of the Delaunay triangulation of E3.
This is a great improvement compared to the factor of at least 27 when computing with
27 copies of each point. Finally, we showed some exemplary applications where the 3D
periodic triangulations can be used instead of the 3D triangulations, requiring only minor
adaptations.

3The factor can be improved to 1.6 using a traits class specialized to the unit cube.

79

Chapter 4

Delaunay triangulations of other
spaces

In this chapter, we generalize the results of Chapter 2 to other spaces. More specifically,
we consider three classes of orbit spaces:

1. flat spaces, i.e. spaces of constant Riemannian curvature zero. These are orbit spaces
of B¢,

2. spaces of constant posilive curvature, i.e. orbit spaces of the d-dimensional sphere
N

3. spaces of constant negative curvature, i.e. orbit spaces of the d-dimensional hyperbolic
space H¢.

The last class is much richer than the two above. We only give a preliminary discussion
on the special case of the double torus.

4.1 Preliminaries

A number of definitions in Chapter 2 can be generalized to work on a rather broad class
of orbit spaces, including spaces of different curvature. Here we give generalized versions
of these definitions that are reused in the subsequent sections.

Let M be a d-manifold with the following properties:

1. There is a definition of the Delaunay triangulation of M defined by a set of points in
M.

2. An algorithm for computing the Delaunay triangulation of M from a given point set
is known.

In this chapter we discuss the cases of M = E¢, M = S%, and M = H¢.

Let G be a discrete group of isometries acting on M and X := M/G the orbit space of M
under the action of G with projection map 7 : Ml — X. To be able to consider triangulations
of X according to Definition 1.2.3, we first give a definition for a simplex in X. This is an
immediate extension of the definition of simplices in the flat torus (Definition 2.1.2).

80 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

Definition 4.1.1 (Simplex in M). Let o be a k-simplex in M. If the restriction |, of ©
to o 1is injective, the image of o by w is called a k-simplex in X.

Intuitively, this definition requires simplices not to self-intersect in the orbit space. We
write DT(Q) to denote the Delaunay triangulation of M defined by a point set Q. Let P
be a point set in M. We can now adapt Definition 2.2.2 to the Delaunay triangulation of
X defined by m(P):

Definition 4.1.2 (Delaunay triangulation of X). If 7(DT(GP)) is a triangulation of X
(which subsumes that it is a simplicial complex according to Definition 1.2.2), then we call
it the Delaunay triangulation of X defined by 7(P).

We introduce some basic notions from group theory that are used later on. Let G be
a group and H denote a subgroup of G. H is called normal in G if it is invariant under
conjugation, i.e. if for all h € H and g € G, ghg~! € H. For a group element g € G, the
set {gh | h € H} is called a coset of H in G. The index of a subgroup H in G is defined as
the number of cosets of H in G.

In the subsequent sections we prove adapted versions of Theorem 2.2.8 and provide some
geometric tests to decide whether a given point set defines a triangulation in X = M/G,
for different classes of spaces Ml and groups G.

4.2 Flat spaces

In this section we consider d-dimensional flat spaces. The flat torus discussed in Chapter 2
is a special case of the spaces considered in this section. While the Delaunay triangulation of
the flat torus fulfills the needs of many application fields, some of them, like computational
biology [Ber09], require more general manifolds that are orbit spaces of E3 under the action
of other crystallographic groups.

We first introduce closed Euclidean d-manifolds and their properties. Section 4.2.2
then studies Delaunay triangulations of closed Euclidean d-manifolds and shows, using the
Bieberbach theorem, that there is always a finitely-sheeted covering space of the manifold
in which the Delaunay triangulation is defined for any set of points. Section 4.2.3 discusses
the generalization of Algorithm 2.3.1 (see page 29) to closed Euclidean manifolds. Most
concepts mentioned below are taken from [Thu97].

4.2.1 Closed Euclidean manifolds

A closed manifold is a compact manifold without boundary. A d-manifold is called Fu-
clidean or flat if every point has a neighborhood isometric to a neighborhood in E%.

A d-dimensional Bieberbach group Gp is a discrete group of isometries of E? such that
the orbit space E¢/Gp is compact. Such groups are also called crystallographic groups or
space groups [Thu97].

Theorem 4.2.1 (Bieberbach [Biel0]).

o Let Gp be a d-dimensional Bieberbach group. There is a group Gr of d linearly
independent translations that is a normal subgroup of Gp of finite index. The group
Gt is called a translational subgroup of Gp.

4.2. FLAT SPACES 81

o For any d, there is only o finite number of d-dimensional Bieberbach groups, up to
isomorphism.

Note that the orbit space E?/Gp is not necessarily a manifold: If Gp leaves points
fixed, these points do not have a neighborhood in E?/Gp that is homeomorphic to a
neighborhood in EY. The orbit space E?/Gp can always be described by the more general
concept of an orbifold [BMP03, Thu02]. For the orbit space to be a manifold, the group of
action defining it must not have fixed points. In other words the group of action must be
torsion-free, i.e., the identity must be the only element of finite order. If Gr is a subgroup
of d independent translations of Gg, then Ed/QT is a d-torus. It is sufficient to consider
torsion-free Bieberbach groups to completely classify closed Euclidean manifolds:

Theorem 4.2.2 (|[Thu97]). Any closed Euclidean d-manifold is equal up to diffeomorphism
to exactly one orbit space Ed/gB, where Gp is a torsion-free d-dimensional Bieberbach

group.

According to Theorem 4.2.1, there are only finitely many d-dimensional Bieberbach
groups, up to isomorphism. In dimension 2 there are 17, in dimension 3 there are 230.
The number of Bieberbach groups by dimension is assigned the id A006227 in the On-Line
Encyclopedia of Integer Sequences [Slo]; they are known up to dimension 5. The number of
torsion-free Bieberbach groups is assigned the id A059104; they are known up to dimension
6.

In two dimensions, there are only two torsion-free Bieberbach groups and thus two
closed Euclidean manifolds, up to isomorphism: the torus and the Klein bottle. In three
dimensions, there are 10 closed Euclidean manifolds, four of which are non-orientable. A
classification is given in [HW35] and [Thu97]:

e three linearly independent translations (3-torus)

e one screw motion and two linearly independent translations orthogonal to it. The
screw motion can rotate by 7, 27 /3, 7/2, w/3.

e three orthogonal screw motions that rotate by .

e two linearly independent glide reflections in a plane. There are two different groups
generated in this way.

e one glide reflection and one screw motion that rotates by @ about an axis parallel to
the reflection plane and orthogonal to the translation. Whether the screw axis lies
inside the glide reflection plane or not yields two different manifolds.

The first six manifolds are orientable and the four last ones are not because their
generators contain reflections.

4.2.2 Triangulations of Closed Euclidean Manifolds

Let Gr be a torsion-free d-dimensional Bieberbach group, P a finite point set in B¢, X :=
E?/Gr a closed Euclidean manifold with projection map 7 : E¢ — X, and DT(GrP) the
Delaunay triangulation of E¢ defined by the infinite point set GpP.

For the discussions below we need the following two values:

82 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

1. The minimum distance 6(G) by which a group G moves a point:

0(G) = min dist(p, gp),
©) p€Ed geG,g#1g ()

where 1g denotes the unit element of G. Note that if G is torsion-free and discrete,
then §(G) > 0 holds.

2. The diameter A(S) of the largest d-ball B in E? that does not contain any point of
a set S in its interior.

We now generalize Theorem 2.2.8 (page 24):

Theorem 4.2.3. If the I-skeleton of m1(DT(GrP)) does not contain cycles of length < 2,
then m(DT(GrP)) is a triangulation of X.

Most parts of the proof of Theorem 2.2.8 are completely combinatorial and do not
depend on the space: The proof of Lemma 2.2.3 is based on the fact that the restriction of
7 to a simplex is a homeomorphism. Observation 2.2.4 follows directly from Lemma 2.2.3
and the simplicial complex definition. The proofs of Lemmas 2.2.5, 2.2.6, and 2.2.7 are
again based on Lemma 2.2.3 and the properties of 7. Thus apart from Lemma 2.2.1, the
whole discussion of Section 2.2.1 directly generalizes to closed FEuclidean d-manifolds. We
now prove the generalized version of Lemma 2.2.1:

Lemma 4.2.4. Let K be a set of simplices in E? whose vertices are exactly the elements of
GrP, and that fulfills conditions (i) and (ii) of Definition 1.2.2, and the Delaunay property
with respect to GpP. Then K satisfies the local finiteness property (iii) as well. Thus, K
s a simplicial complez.

Proof. We first consider a point p that is a vertex in IC. Note that 6(Gr) > 0 and A(GrP) <
o0 hold because Gp is a torsion-free Bieberbach group. The longest edge of K is bounded
by A(GrP) and thus any point incident to p must lie in a ball of radius A(GpP) centered
at p. As Gp is discrete, the number of points of GpP that lie inside such a ball is finite.
Followingly, p is incident to only finitely many simplices.

Let us now consider a point p in E? that is not a vertex in K. Let o denote the simplex
that contains p in its interior and let v, denote a vertex of o. Let St(v,) denote the set of
simplices that v, is incident to. Above we have shown that St(v,) contains only finitely
many elements. The set St(o) of simplices that ¢ is incident to is a subset of St(vs), thus
it is finite. There is a neighborhood U (p) that has non-empty intersection with exactly the
elements St(o). O

Criterion 2.3.3 mentions the threshold %, which depends on the group G. The general-
ized version of this corollary follows by simple geometric reasoning from Theorem 4.2.3.

Corollary 4.2.5. If A(GFP) < 6(2F), then 7(DT(GrP')) is a triangulation of X for any
finite P’ D P.

For any torsion-free Bieberbach group there are point sets such that the condition of
Corollary 4.2.5 is fulfilled, because § is strictly positive and A can be made arbitrarily
small by the choice of the point set.

Finally, we give a generalized version of Lemma 2.3.2.

4.2. FLAT SPACES 83

Lemma 4.2.6. There is a normal subgroup Go of Gr of finite index such that the projection
of the Delaunay triangulation of GrP U GoQ in EY onto Xo = E?/Ge is a triangulation
for any finite point set P in E? and any Q C Grq with any q € E?.

Proof. According to Theorem 4.2.1, there is a group Gr of d linearly independent transla-
tions that is a normal subgroup of G with finite index h’. We choose generators g1, ..., g4
of Gr in the following way: Let g; be the shortest translation in Gr. Let g;+1 be the short-
est translation in G that is linearly independent of the translations g¢1,...,g;. Note that
A(Grp) does not depend on a specific choice of p and thus can be considered constant. We
can find an integer coefficient ¢ such that for each g; the inequality dist(p, gp) > 2A(Grp)
holds for any p € E¢. The group Go generated by g5, ... , g5 is a subgroup of Gr of index
¢ with the property 6(Go) > 2A(Grp) for any p € E%. As Gr is normal in Gr we have
ggrg~! € Gr for each g € Gr, g7 € Gr. By construction of Go there is a bijection between
the gr € Gr and the go € G¢ given by go = g%. Now it is easy to see that G¢ is a normal
subgroup of Gr with index h = h’- . Note that A(GcGrP) = A(GrP) < A(Grp) for any
p € E?. Thus A(GeGrP) < @ holds and according to Corollary 4.2.5 the projection
of the Delaunay triangulation of GoGrP = GrpP onto X¢ forms a triangulation, which
remains true even when adding further points. O

Note that the proof is constructive, i.e., it describes how to construct Go from Grp.
The group Gr can be constructed from Gp, e.g. using the Reidemeister-Schreier algo-
rithm [Sim94]. An implementation of the Reidemeister-Schreier algorithm is available, for
instance, in GAP [gap|. Lemma 4.2.6 means that there exists a space X¢, in which the
point set 7(P) defines a Delaunay triangulation. The space X¢ is a covering space of X with
a finite number of sheets [Arm82]. Lemma 4.2.6 can also be understood by constructing
X¢ from X directly, as follows.

Each closed Euclidean d-manifold has a d-torus as covering space with a finite number of
sheets. This follows from Theorem 4.2.1 as discussed above. A fundamental domain of the
d-torus is a d-dimensional hyperparallelepiped. By gluing two of these hyperparallelepipeds
together, we get a new covering space that is again a d-torus. We can construct X¢ by
gluing as many copies of the fundamental domain as necessary to fulfill the condition in
Corollary 4.2.5, i.e. A(GeGrP) = A(GrP) < @. See Figure 4.1 for an illustration in
two dimensions.

[. 17
N
[550]
[TG

2A

-

Figure 4.1: Sufficient number of copies of the fundamental domain.

As an example we consider the flat Klein bottle E?/Gx, where G is the group generated
by a translation g; and a glide-reflection gg4, that is, a reflection together with a translation
parallel to the reflection axis (see Figure 4.2). The group generated by g¢; and gg is a

84 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

translational subgroup of G of index 2. Now we can choose a subgroup of this translational
subgroup with finite index that fulfills the condition of Lemma 4.2.6 as in Figure 4.1.

Figure 4.2: A part of the infinite point grid Gxp.

Note that in both Corollary 4.2.5 and Lemma 4.2.6 we deal with the condition of the
form A < g. In Corollary 4.2.5 we adapt the point set P to decrease A, in Lemma 4.2.6
we adapt the group G¢ to increase 9.

4.2.3 Algorithm

Algorithm 2.3.1 generalizes to X = E¢/Gp using the results given in the previous section.
The algorithm is incremental, i.e., the points of P are added one by one.

e The algorithm determines Go from G as described in Section 4.2.2.

e Then the algorithm starts computing in the h-sheeted covering space X¢ = E?/Go
as in Lemma 4.2.6, inserting h copies per input point (here we call copy of a point
p an element of its orbit under the action of the quotient group Gr/Gc, i.e. a point
gp, for g € Gr/Gc).

e Once the condition of Corollary 4.2.5 is met for the current point set, the algorithm
switches to computing in X and continues to insert each of the remaining points only
once.

If P is such that the condition of Corollary 4.2.5 is never fulfilled, then the algorithm
returns the triangulation of the covering space Xc¢.

Two issues appear, namely, how to store the current triangulation and how to insert a
point.

Space-efficient data structure

The triangulation can be stored as a graph in the following way: Full-dimensional simplices
are stored with a list of their vertices and neighbors. Each vertex contains the coordinates
of the point it corresponds to. Additionally, each d-simplex stores the information on how
to map it isometrically into E?, i.e. an appropriate element of the simplex’ preimage under
the projection map w. However, this approach is not very space efficient since for large
dimensions the number of d-simplices in a triangulation can grow very large. A more space
efficient approach is to store the 1l-skeleton |[BDH09|. In this case, each edge must be
described by its two vertices together with their offsets, where the offsets are elements of
Go or G, respectively. A d-simplex can then be constructed by translating edges such
that their offsets at common vertices agree, see Figure 4.3.

4.3. SPHERICAL SPACES 85

Figure 4.3: Left: Three edges. Right: Add ((1)) to both offsets of es to form the triangle
pqr.

Point insertion

For the point insertion the approach by Bowyer |[Bow81| and Watson |Wat81] can be
used. If X is orientable, the insertion routine ensures that data structure only stores
positively oriented simplices. If X is non-orientable, this is not possible. In this case we
must apply an orientation test on the preimage under m of the simplex first before testing
whether the point lies inside or outside the respective d-ball.

4.2.4 Flat orbifolds

A natural question is how the extend the results to general orbifolds. The results of
Section 4.2.2 exclude Bieberbach groups with fixed points. However, from the Bieberbach
theorem we know that any orbifold has a finitely sheeted covering space that is a closed
Euclidean manifold and on which our approach works. So, while the approach cannot
compute a triangulation in the orbifold, it can always compute a Delaunay triangulation
in that covering space.

4.3 Spherical spaces

In this section we extend the approach described in Chapter 2 onto orbit spaces of a sphere
under the action of a discrete group of isometries. We first discuss Delaunay triangulations
of the sphere. Then we identify the orbit spaces that our approach can handle and finally
discuss the Delaunay triangulation of a spherical orbifold.

4.3.1 Triangulations of the sphere

Let S% denote d-dimensional unit sphere. In order to use Definitions 4.1.1 and 4.1.2, we
must give a definition for simplices and the Delaunay triangulation of the d-dimensional
sphere. The following definitions are straightforward extensions of the flat case.

Let p: B4+1 — {0} — S?% denote the radial projection, i.e., p projects all points of a ray
R starting at the origin onto the intersection point of R and S%.

Definition 4.3.1 (Spherical simplex). Let Q be a set of k+ 1 points in ST with k < d. Let
Ch(Q) denote the conver hull of @ in B, If Ch(Q) does not contain the origin, we call
the image under p of Ch(Q) a spherical k-simplex.

The circumscribing ball of a spherical d-simplex can be defined in the same way as for
E? using the spherical metric. It can be constructed as follows: Consider the (d — 1)-ball

86 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

defined by the d vertices of the simplex, lying in a (d — 1)-hyperplane in E¢. The projection
under p of this (d — 1)-ball is the circumscribing ball of the d-simplex.

Definition 4.3.2 (Spherical Delaunay triangulation). The Delaunay triangulation of P
in S is a triangulation of S% such that the circumscribing ball of each d-simplex of the
triangulation does not have any point of P in its interior.

The Delaunay triangulation of the sphere S defined by P is the convex hull of P in
E4t+1. As P lies in the d-dimensional sphere embedded in E*t!, all points of P appear in
its convex hull in E?*!. It is more efficient to directly compute the Delaunay triangulation
in a d-dimensional space instead of resorting to E?+!. [NLC02] describe how to compute a
spherical Voronoi diagram in two dimensions by computing two planar Voronoi diagrams.
In [CACL*10] we describe two approaches and an implementation for the case of d = 2.
These approaches use the algorithm for computing the Delaunay triangulation in E? and
adapt the predicates accordingly to give the correct results for the Delaunay triangulation
of the sphere.

The approaches discussed in [CACLT10] extend to d dimensions. The predicate to test
whether the circumscribing ball of a d-simplex contains a given point can be computed
as follows: Let o be a spherical d-simplex. The vertices of o define a d-dimensional
hyperplane in E*1. Let p denote the query point. If p and the origin lie on different sides
of the hyperplane, then p lies inside the circumscribing ball of o.

If all the points of P lie in a half-sphere, P does not define a Delaunay triangula-
tion of S%. In order to have a Delaunay triangulation that is homeomorphic to S¢ we
can for instance introduce a virtual vertex similar to the vertex at infinity for Delaunay
triangulations of E?, see Section 3.3.

4.3.2 Spherical orbit spaces

In a similar manner as in Section 4.2, our approach works for d-dimensional discrete groups
of isometries of the sphere S?. The group of isometries of the d-dimensional sphere is the
orthogonal group O(d + 1). The discrete subgroups of O(d + 1) are finite because the
sphere is compact: Otherwise the orbit of a point would be infinite and infinite subsets
of a compact space have an accumulation point and are thus not discrete. The discrete
subgroups of O(d + 1) are called point groups and for each dimension there are infinitely
many of them. We briefly discuss the two- and three-dimensional point groups.

There are two types of finite point groups in two dimensions: (1) cyclic groups Ch:
generated by a rotation of 360°/n; (2) dihedral groups: generated by a rotation of 360°/n
and a reflection; see Figure 4.4 for an illustration.

In three dimensions, there are seven series of point groups, each of which contains an
infinite number of groups, and seven more point groups. The seven infinite series all have
a rotation of 360°/n for any n > 0 as one generator. The remaining seven point groups
are: the symmetry group of the tetrahedron together with two subgroups as well as the
symmetry groups of the octahedron and the icosahedron with one subgroup each. For
further reading see [Cox91].

Note that among the three-dimensional point groups, the only group without fixed
points is the group that maps each point to its antipodal point on the sphere. The orbit
space under the action of this group is the projective plane, which is thus the only two-
dimensional spherical manifold besides the sphere itself. All other orbit spaces are actually
orbifolds [Sti92].

4.3. SPHERICAL SPACES 87

Figure 4.4: Left C3: rotation of 360°/3. Right Djs: rotation of 360°/5 and reflection. The
dashed arcs (D) are the respective fundamental domains.)

4.3.3 'Triangulations of spherical orbit spaces

The generalization of Theorem 2.2.8 and Algorithm 2.3.1 is similar to Section 4.2.2. The
main difference is that the number of groups to consider is infinite while the groups them-
selves are finite.

Let Gp denote a d-dimensional point group, X := S%/Gp an orbit space with projection
map 7 : S? — X, and DT(GpP) the Delaunay triangulation of S? defined by the finite
point set GpP.

We now generalize Theorem 2.2.8.

Theorem 4.3.3. If the I-skeleton of m1(DT(GpP)) does not contain cycles of length < 2,
then 7(DT(GpP)) is a triangulation of X.

Like for Section 4.2.2, the definitions and lemmas of Section 2.2.1 generalize directly
to X, except Lemma 2.2.1: However, the proof of Lemma 2.2.1 turns out to be trivial in
the spherical case because GpP is finite and so DT(GpP) is finite, too.

As GpP is finite, we can always choose the sphere S? as a finite covering space of X, in
which the point set GpP defines a triangulation if it contains more than d + 2 points, not
all within one half-sphere.

With the modifications described in Section 4.3.1, the incremental algorithm by Bowyer
and Watson works for computing the Delaunay triangulation of S?. Algorithm 2.3.1 can
be modified to work in X = Sd/gp using the results from Section 4.3.3:

e The algorithm starts computing in the |Gp|-sheeted covering space S¢, inserting |Gp|
copies per input point.

e Once the projection of the current triangulation under 7 has no cycles of length two
and it can be shown that adding further points cannot introduce cycles of length
two, the algorithm switches to computing in X.

Note that if Gp is not torsion-free, then the algorithm returns DT (GpP). We now give
a geometric criterion similar to Criterion 2.3.3 to decide when to switch back to computing
in X for the case of the real projective plane. We do not have a general criterion.

88 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

The real projective plane

Let G denote the group generated by the isometry that maps a point of S? onto its antipodal
point. The orbit space S?/G is the real projective plane. We can formulate the following
criterion:

Criterion 4.3.4. If the largest spherical disk in S* that does not contain any point of
GP has diameter smaller than 7/2, then P defines the Delaunay triangulation of the real
projective plane X/G.

Proof. This proof contains the same ideas as the proof of Criterion 2.3.3, adapted to the

spherical case: If the largest empty spherical disk has diameter smaller than 7, then the
longest edge in the Delaunay triangulation of GP is shorter then 5 and thus a path of two

edges is shorter than 7 and cannot form a two-cycle when projected onto S?/G. O

Criterion 4.3.4 can be used by the algorithm described above to decide when to convert
the computed Delaunay triangulation from the 2-sheeted covering space S? to S?/G.

4.4 A hyperbolic space

Here, we discuss how to extend the approach of Chapter 2 to orbit spaces of the hyperbolic
plane under the action of a discrete group of hyperbolic isometries. We first give a short
introduction on the hyperbolic plane H? and on hyperbolic Delaunay triangulations. Then
we discuss groups of hyperbolic isometries and extend Theorem 2.2.8 and Algorithm 2.3.1
to this setting. The groups of hyperbolic isometries turn out to be infinite and their
theory is much richer than for groups of Euclidean isometries. We discuss three different
approaches for the case of the group of the double torus.

4.4.1 The hyperbolic plane H?>

The hyperbolic plane has the property that given a line [and a point p not in [there are
infinitely many lines through p that do not intersect I, see Figure 4.5.

Figure 4.5: Parallel lines in the Poincaré disk: All lines through the point p are parallel to
! [pdh].

There are four common models to represent the hyperbolic plane: the Beltrami-Klein
Model, the Poincaré disk model, the Poincaré upper halfplane model and the hyperboloid
model [Sti92]. We only use the Poincaré disk model in the subsequent discussions.

4.4. A HYPERBOLIC SPACE 89

In the Poincaré disk model, all points of the hyperbolic plane are mapped inside the
Euclidean unit disk. The points on the unit circle are points at infinity. Hyperbolic lines
correspond to diameters of the unit disk or circular arcs that intersect the unit circle or-
thogonally. Hyperbolic circles correspond to Euclidean circles, though their centers differ if

24/ dz?+dy?

they are not centered in the origin. The local distance function is given by ds = T2
Thus the distance of a point (z) to the origin is 2 tanh™!(\/22 + y2).

There are four types of hyperbolic isometries; they can be characterized by their fixed
points at infinity. A hyperbolic isometry that has no fixed points is a rotation; if it
has exactly one fixed point at infinity it is called limit rotation. Hyperbolic translations
are isometries with exactly two fixed points at infinity. These are the three orientation-
preserving hyperbolic isometries. The fourth type of hyperbolic isometries are the non-
orientation-preserving glide reflections [Sti92]. We now introduce hyperbolic translations
in more detail.

The two points left invariant by a translation ¢ define a unique geodesic in the hyperbolic
plane. The translation ¢ translates a point along this invariant geodesic. The translation
t maps a point of distance d to the geodesic onto another point on the equidistant line of
distance d to the geodesic. This is due to the fact that ¢ is an isometry, i.e. dist(p,q) =
dist(t(p),t(q)). Note that if p and ¢ do not have the same distance to the invariant geodesic,
then the distance by which they are translated differs, i.e. dist(p, t(p)) # dist(q,t(¢q)). That
is the closer a point p lies to the invariant geodesic the shorter distance dist(p,t(p)) by
which they are translated. This is a fundamental difference to the Euclidean plane. For
an illustration of hyperbolic translations see Figure 4.6. For instance, in case the two
fixed points are not antipodal, note that the distance of a hyperbolic translation along the
Euclidean chord is larger than along the hyperbolic geodesic.

Figure 4.6: Left: Translation along a diameter of the Poincaré disk. Right: Translation
along a general geodesic.

As geodesics are unique in the hyperbolic plane, the hyperbolic conver hull of a point
set P can be defined in the classical way as the smallest set S such that the geodesic
between two points p and ¢ of S is entirely contained in §. Then a hyperbolic edge or
hyperbolic triangle is the convex hull of two or three points in H?, respectively.

In [DMT92b| the authors consider hyperbolic Voronoi diagrams using the property that
in the Poincaré models hyperbolic circles are Fuclidean circles. In this way, the algorithm
for computing the Euclidean Delaunay triangulation can be used directly to compute the

90 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

hyperbolic Delaunay triangulation because the empty circles are exactly the same in both
cases.

Nielsen and Nock [NN09| describe how to compute hyperbolic Voronoi diagrams us-
ing the Beltrami-Klein model. Their approach as well as the work of [DMT92b] can be
extended to HC.

The orientation-preserving discrete groups of isometries on H? are called Fuchsian
groups [Kat92]. Fu and Wang [FW09| describe isometries and discrete isometry subgroups
of d-dimensional hyperbolic spaces.

4.4.2 The double torus

Here we only consider the double torus, which is one of the most simple orbit spaces of
constant negative curvature.

We first require some more notions from group theory. Let H be a group and H’ denote
a subgroup of H. The quotient group H/H' is the set of all cosets of H' in H with the
product of subsets' as group operation. A group is said to be free if each group element
can be written in a unique way as a product of generators. We denote the free group with
generators G by < G >. Let R denote a subset of < G >, called set of relations. The
quotient group of the free group < G > and the normal subgroup of < G > generated by
the relations in R is denoted by < G| R >. This notation is called group presentation.

The double torus can now be constructed as an orbit space under the action of a
group generated by four hyperbolic translations. Let a, b, ¢, and d denote four hyperbolic
translations and @, b, ¢, and d their respective inverse translations. There are at least two
groups acting on H? that define a double torus:

G = <a,b,c,d|abcdabed >
G = <a,b,cd|ababcded >

The groups G and G’ are isomorphic but not equal [CM57]. The isomorphism can be
constructed geometrically using the algorithm described in [VY90]. For more discussions
on this see also [AB91, Thr32].

Here we consider the groups for which the fundamental domain is the regular octagon
centered at the origin. The generators of G and G’ respectively map octagon edges onto
octagon edges. This can be interpreted as identifying the edges as shown in Figure 4.7.

The generators for G can be chosen as follows: Let a be the hyperbolic translation that

translates points along the Euclidean z-axis by 2tanh ™! (1+2\/§)' Let b, ¢, d be the same

translations rotated by m/4. The fundamental domain of G is the regular octagon with
angles of 7/4. If we consider the tiling of the hyperbolic plane by such octagons, at each
vertex of the tiling eight fundamental domains meet to complete the full angle of 2.

We do not consider the group G’. The group G’ has the advantage that it is easier to
see that the identifications it induces on the octagon yield a double torus. However, its
generators are more complicated to deal with.

4.4.3 Triangulations of the double torus

We first extend Theorem 2.2.8 to the case of the double torus. Let P be a finite point set in
H?, G the group of the double torus as defined in Section 4.4.2, H?/G the orbit space with

'For S, T subsets of H, ST := {st|s€ Sandtc T}

4.4. A HYPERBOLIC SPACE 91

Figure 4.7: Left: Identification scheme for group G. Right: Identification scheme for
group G'.

projection map 7 : H? — HZ2/G, and DT(GP) the Delaunay triangulation of H? defined
by the infinite periodic point set GP. Then Theorem 2.2.8 can be formulated as follows
for the hyperbolic case:

Theorem 4.4.1. If the 1-skeleton of (DT (GP)) does not contain cycles of length < 2,
then m(DT(GP)) is a triangulation of X.

The only missing part in the proof of Theorem 4.4.1 is the local finiteness (Lemma 2.2.1).
All the other lemmas are purely combinatorial and only argue using properties of simplices,
independent of their embedding.

We now generalize Lemma 2.2.1:

Lemma 4.4.2. A set of simplices K that fulfills (i), (ii) (cf. page 3), and the Delaunay
property with respect to GP, is a simplicial complex in H2.

Proof. In order to show that K is a simplicial complex it remains to prove that condi-
tion (iii) of the simplicial complex definition (local finiteness) is fulfilled. We use a similar
argumentation as in the proof of Lemma 2.2.1 (see page 21).

Assume there is a vertex v with an infinite number of incident simplices and thus an
infinite number of incident edges. Let ¢, denote the hyperbolic translation that moves v
to the origin. The Delaunay property is invariant under the action of isometries, so we can
apply t, onto K without losing the Delaunay property. Thus, without loss of generality we
can assume that v lies in the origin. The orbit of v is a point set, in which the diameter
of the largest empty disk is bounded by the diameter of the circumscribing circle of the

2(1+v2)
sin(m/8)

circles of hyperbolic triangles that are incident to v and a point in the orbit of a point in
P of distance larger than A from v cannot be empty. The disk of radius A centered at the
origin is compact. From the fact that G is discrete, it follows that the number of elements
of the orbit of a point in P that lie inside this disk is finite and P itself is finite, too.

We have shown that there are only finitely many triangles incident to v, which implies
directly that the number of edges incident to v is finite, too. O

fundamental octagon, which is A := 2sinh™! ~ 4.90. So circumscribing

In the spaces we have discussed so far, we always used covering spaces to resolve this
issue of input point sets that do not define a Delaunay triangulation. Below, we discuss

92 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

why it is much more difficult and of less interest to construct covering spaces of hyperbolic
orbit spaces. We present two alternative approaches:

1. Compute with a finite number of copies of the fundamental domain of the group and
compute the Delaunay triangulation of H? defined by this finite set of points.

2. Start with a fixed initial point set that is guaranteed to define a Delaunay triangu-
lation of the orbit space and remove these points only after some criterion similar to
Criterion 2.3.4 is fulfilled.

Covering spaces

The original motivation for using covering spaces for computing triangulations in the flat
torus was that the covering spaces of the flat torus are homeomorphic to the flat torus
again. This follows from the Riemann-Hurwitz formula [Har77]: Let X be a topological
space and X a k-sheeted covering space. If X(X) denotes the Euler characteristic of space
X, then the equation x(X) = k- x(X) holds.

Recall that the genus of a surface, i.e. the number of handles, is given by 1 — %X- As
the Euler characteristic of the flat torus is zero, any covering space of the flat torus is
again a flat torus. The double torus has Euler characteristic —2. Followingly, the Euler
characteristic decreases when the number of sheets in the cover increases. This corresponds
to a larger number of handles.

The above argument on the number of handles can also be understood in a more
intuitive way. Let us consider a two-dimensional torus embedded in E3. The torus has
two non-trivial loops. The use of a covering space corresponds to considering a bigger
torus with more points on it. Now the non-trivial loops are longer and two-cycles in the
triangulation can be avoided. The process of generating a two-sheeted covering space of
the double torus corresponds to cutting one non-trivial loop in both double tori and sew
the open edges to the other double torus, see Figure 4.8. In this way one handle has
been expanded, i.e., one non-trivial loop has become longer, and the other two handles
are unchanged. The newly created space has two handles of original loop length and one
handle of double loop length. So we have not actually changed the number of handles with
small loop length, which was the original goal. Still, it might be possible to cut and glue
the loops in a more complicated way in order to avoid introducing new short loops.

\

P

Figure 4.8: Constructing a two-sheeted covering space of the double torus [Ale].

Thus it appears difficult to construct a covering space in which cycles of length two can
be avoided. Additionally, the original motivation of using covering spaces, namely that
they are topologically equivalent to the original space, is not given anymore.

4.4. A HYPERBOLIC SPACE 93

Copies of the fundamental domain in H?

Let F denote the fundamental domain of G centered at the origin and P C F be a finite

2(1+v/2)
sin(mw/8)

of the largest possible empty circle with respect to GP. So there cannot be any edges
longer than A in the Delaunay triangulation of GP. Thus points that are further away
than SA from the origin do not have any influence on the simplices of DT(GP) that
intersect F'. So we have to consider the subset G of all translations g € G such that gF
and the disk of radius %A centered at the origin have non-empty intersection. We can use
Dehn’s algorithm in order to identify the set G [Lyn66]. We then compute the Delaunay
triangulation of H? defined by the point set GP and extract all simplices that intersect
F'. Preliminary estimations showed that the number of fundamental domains to consider
is far above 400. Thus this approach turns out to be not very practical.

Another idea is to generalize the result of [DH97b] that we describe in Section 2.2.2
to the hyperbolic plane. Unfortunately Minkowski sums do not extend to the hyperbolic
case. Nevertheless, we can define a set that is analogous to F(™ in hyperbolic space: Let

)

point set. The diameter of F is A := 2sinh™! ~ 4.90, which is the diameter

F,S” denote the Voronoi cell of p in the hyperbolic Voronoi diagram of Gp. Then F,ﬁl is a

fundamental domain of G. Now we define Fé”’ = qu F Fq(n_l)_
Theorem 4.4.3. Let 7 be a simplex in DT (GP) with at least one vertex in Fzgl). Then T
1s completely contained inside F1§3).

Proof. The proof works in the same way as the proof of Lemma 2.2.9 in [DH97b|. Let o
and 7 denote simplices in DT (GP) such that o has p as one of its vertices and 7 has at

(1)

least one vertex in Fjp .

1. F,El) contains the center ¢, of the circumscribing circle of o, see Figure 4.9. This is

due to the construction of F,Sl) as a Voronoi cell: If ¢, was outside of F,Sl) then a
point in the orbit of p would be closer to ¢, than p, which is a contradiction to the
fact that ¢, is the circumcenter of a simplex with p as vertex.

2. 0 C FIEQ): Note that from the definition of F,§1) follows that if ¢, € Fzgl), then
pE Fc(ol), and so o C Fc(j) C F1£2), by definition of FZSZ).

3. Let q € F,El) be a vertex of 7. From the above argumentation we know that 7 C Fq(z),
and by definition of F,SS) the inclusion Fq(z) C F,S?’), and thus 7 C Fp(‘g) holds.

O]

In order to formulate a criterion to decide whether a point set defines a Delaunay
triangulation of the double torus, we can have a similar approach as for the flat torus.

Criterion 4.4.4. If the diameter of the largest circumscribing circle of the triangles of the

Delaunay triangulation of QPﬂFISS) that intersect Fzgl) is shorter than tanh ™! <1 / 1+2\/§) ~

1.53, then any point set Q with P C Q defines a Delaunay triangulation of the double torus.

94 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

Figure 4.9: ¢, lies in £V,

Proof. From Section 4.4.2, we know that the shortest distance by which a point can be

1+v2
triangles that intersect F,S” are shorter than half this constant, then there cannot be cycles
of length two even after adding new points and thus Q defines a Delaunay triangulation
of the double torus according to Theorem 4.4.1. O

translated under G is at least 2 tanh™! (2) ~ 3.06. So if all circumscribing circles of

Algorithm 4.4.1 describes how to compute Delaunay triangulations of the double torus
if possible.

Algorithm 4.4.1 Compute Delaunay triangulation of H?/G defined by the point set P.

Input: Set P of points in Fél)

Output: 7(DT(GP)) if it is a triangulation, () otherwise

P <P

: Pop p from P’

P« {p}

. TRy < DT(GP N F)

: while the longest edge in TRy N Fél) is longer than tanh~! (2) do

1+v2

Pop p from P'; P < P U {p}
for all p’ € GpnN Fo(g) do

Insert p’ into TRy
end for // TRy = DT(GP N F\Y)
itP =0

if 7(DT(GQ)) is a triangulation for any Q O P then goto 14

else exit
: end while
: Compute 7(DT(GP)) from TRy // switch to double torus
: Insert all points remaining in P’ into 7(DT(GP)) one by one
: return 7(DT(GP))

© 00 N O Ut kW N =

I e S e S S T
DD O R W NN = O

The correctness of the algorithm follows from Theorems 4.4.1 and 4.4.3 as well as
Criterion 4.4.4. In case the input set P does not define a Delaunay triangulation of H?/G,

4.4. A HYPERBOLIC SPACE 95

there are actually several options possible. For simplicity we chose to return nothing. In
an actual implementation it could be of interest to return the current structure TRy. It

would also be possible to return the simplices from TRy that intersect Fél) as their images
under 7 form a partition of H?2 /G according to Theorem 4.4.3.

®. One feasible
approach is to compute the set G of isometries in G such that GFO(I)) F(g3). We have
not done this computation but we can give a simple lower bound on the cardinality of G.

We consider the partition of the hyperbolic plane into hyperbolic octagons given by QFél) .

The main difficulty is to actually compute the point set PG N FO(

Counsider the elements of G that map Fzgl) to one of its neighbors in the octagon partition
of H? described above. The union of all Fél) and all its neighbors clearly forms a subset of
FISS): There is one neighbor per edge, i.e. eight, and five more neighbors per vertex, i.e. 40.
Together with the original copy F]gl) this makes 1+ 8 + 40 = 49 copies to consider. Given
that the number of 49 copies is only a lower bound on the required number of copies to
consider, this approach does not seem to be very feasible in practice.

The approach described above is nevertheless nice because it is extensible to other
discrete groups for which GP N Fo(g) can be computed.

Dummy point set.

In this approach, we start with an initial triangulation of a point set Pp that is chosen
such that any point set that contains Pp defines a Delaunay triangulation of H?/G. This
is the same approach as described in Section 3.3.9 for the case of the flat torus. If the
input point set itself defines a Delaunay triangulation, the points of Pp can be removed
from the triangulation.

Let P be a point set such that Pp C P. We want to prove that 7(DT(GPp)) is a
Delaunay triangulation of H2 /G. It is sufficient to show that the restriction of 7 on two
non-disjoint disks that are empty with respect to GPp is injective. This implies that the
restriction of m on any two empty disks in GP is injective, too. Then there cannot be
cycles of length two and thus 7(DT(GP)) is a Delaunay triangulation of H?/G according
to Theorem 4.4.1.

We propose a point set Pp of 18 points in Figure 4.10 (9 points inside the fundamental
domain, 8 on the border and 1 in the corner). As hyperbolic circumcircles are Euclidean
circumcircles, it can be shown that 7(DT(P U Pp)) is a Delaunay triangulation of H?/G.

This approach appears to be the most practical among the presented ones. The draw-
back is that if the input point set does not define a Delaunay triangulation of H?/G, the
Delaunay triangulation defined by a modified input point set is returned. This approach
generalizes to other groups, if an appropriate dummy point set can be given.

4.4.4 Discussion

We have presented three approaches to handle cases in which the input point set does not
define a Delaunay triangulation of the double torus. In the hyperbolic case the motivation
for using covering spaces, as done in the case of Euclidean or spherical spaces, is not given
anymore. Covering spaces are not homeomorphic to the original space as in the flat torus
and the universal covering space is not finite as in spherical orbit spaces. So the natural
approach would be to compute in H?, using as many copies of the input point set as

96 4. DELAUNAY TRIANGULATIONS OF OTHER SPACES

Figure 4.10: Proposed dummy point set Pp of 18 points for the double torus.

necessary to extract a subset of the triangulation onto which the identifications defined by
the group G can be applied. This is possible, even though the number of required copies
turns out to be very large. And finally, instead of changing the space we presented an
approach that modifies the point set. This approach is very practical, in case the intended
application can cope with 12 extra points in case of small or badly distributed input point
sets.

97

Chapter 5

Conclusion and future work

We presented an approach to compute the Delaunay triangulation of T2 defined by a
given point set P. The developed algorithm was implemented and is available through
the open source library CGAL. Extensions and adaptations of this approach to other flat
and spherical orbit spaces and to the double torus of constant (negative) curvature were
discussed. During the course of this work some more interesting questions arose, which we
present in this chapter.

5.1 Restriction to simplicial complexes

In this work we concentrate on computing simplicial complexes both for the purpose of
mathematical soundness of the definition of the Delaunay triangulations we give as well
as for practical considerations in the implementation, see also Section 1.4. Nevertheless, it
might be interesting to consider tessellations that have the Delaunay property but are not
simplicial complexes, i.e. not triangulations. Here, we briefly discuss the problems arising
when computing with structures other than simplicial complexes.

Relaxed simplicial complexes

We could relax condition (ii) of the simplicial complex definition (Def. 1.2.2) to the follow-
ing: Let o and ¢’ be simplices in K. Then the intersection o No’ is a set of simplices in K.
The 1-skeleton of these relaxed simplicial complex could have non-trivial cycles of length
two but not of length one, which would contradict the simplex definition (Def. 2.1.2). So
the constants on the number of required copies and the edge length could be improved,
see Figure 5.1. It seems feasible to design an efficient data structure for relaxed simpli-
cial complexes so this approach might be an interesting direction for further examination.
One severe drawback is that algorithms that require the data structure to be a simplicial
complex must be modified accordingly. For instance, inserting a new point to the trian-
gulation using the star-hole approach as described in Section 1.2.4 requires the hole to be
homeomorphic to a d-ball. Relaxed simplicial complexes do not have this property.

A-complexes

Hatcher presents CW-complexes, first introduced by Whitehead in 1949, and describes a
more restrictive type of complexes, the so-called A-complexes [Hat01]. In the A-complex
the simplices are represented by maps that are not necessarily injective on the simplex

98 5. CONCLUSION AND FUTURE WORK

Figure 5.1: A relaxed simplicial complex in T? that has the Delaunay property

boundaries, i.e., there can be self-loops. In this way, T? can be tessellated by two triangles,
three edges and one vertex. However, it is not described how a data structure storing A-
complexes could be implemented. There is ongoing work on this topic by Colin de Verdiére
and Teillaud [dVT].

5.2 Restrictions on spaces

Our current approach has some clear limitations on the types of spaces it can handle. Here,
we explore the reasons of these restrictions and try to develop ideas how to handle such
cases.

Unbounded fundamental domains In Section 4.2, we consider only groups with
bounded fundamental domain. Also, the groups of action defining the flat torus and the
double torus as well as all groups of isometries on the sphere have bounded fundamental
domains.

An example of a group with an unbounded fundamental domain is the group G gener-
ated by one translation acting on E2. The quotient space E?/G¢ is the 2D cylinder. Let us
assume that G¢o is generated by the unit translation along the x-axis. Let P be a point set
in E2, then DT(GcP), the Delaunay triangulation of E? defined by GoP, has the following
properties:

1. Let pmaz be the point in P with largest y-coordinate. Let t € Go be one of the
generating unit translations. Then there is an edge between pmer and tpmez in
DT(GcP).

2. The union of all simplices in DT'(GP) is the convex hull of GoP, which is not equal
to E2: All points of larger y-value than py,q, do not lie in the convex hull.

When projecting DT(GoP) onto E2/Ge, the first property implies that there is a self-
loop in Pmqe. Followingly at least a three-sheeted covering space is necessary to avoid
cycles of length two, independent of the point set P, see Figure 5.2.

The second property implies that the projected triangulation is not a triangulation of a
cylinder but only of an annulus. This yields a problem for the implementation because the
current CGAL implementation cannot handle spaces with boundaries. In the case of E?
and E3 a vertex at infinity has been introduced in order to represent a triangulation of the
one point compactifications E? U {oo} and E? U {co}, respectively, see Section 3.2.2. This

5.3. HYPERBOLIC ORBIT SPACES 99

pma$

Figure 5.2: Delaunay triangulation of GoP.

is not possible for the cylinder because it has two boundaries. One vertex at infinity would
be part of a “cap” on both boundaries. Thus its neighborhood would not be homeomorphic
to E? and so E?/Gc U oo would not be a manifold. The option of adding two different
vertices at infinity — one for the upper cap and one for the lower cap — is more difficult to
handle in terms of implementation.

In three dimensions there are two different types of cylinders: The orbit spaces E3/G¢
and E3/Goc, where Goc denotes the group generated by two different unit translations.
[E3/Gc is a space that is periodic along one axis, E3/Gyc is periodic along two axes. For
both spaces practical applications exist (see e.g. [Ber09]), so this should be an interesting
direction of research to pursue.

A more general formulation of the problem would consider all orbit spaces of E¢ under
the action of a Bieberbach group of dimension smaller than d.

5.3 Hyperbolic orbit spaces

Unlike for the case of flat and spherical orbit spaces we do not yet have a general approach
for hyperbolic orbit spaces. In Section 4.4, we give some approaches for the double torus
that are expected to extend to other orbit spaces of H? and even of H?. However, as the
class of discrete groups of hyperbolic isometries is much richer than for the flat or the
spherical case, there are still many open questions on this topic. In a next step it would
be useful to extend our findings to surfaces of higher genus. Another topic to examine is
orbit spaces of higher-dimensional hyperbolic spaces.

100 5. CONCLUSION AND FUTURE WORK

101

Bibliography

[AADO7]

[AB91]

[Abs09]

[ACRO3]

[AK00]

[Ale]

[Arm82]
[ATOT]

[Aur9l|

[Aus98|

[BBPO1]

Nina Amenta, Dominique Attali, and Olivier Devillers. Complexity of Delau-
nay triangulation for points on lower-dimensional polyhedra. In Proceedings
of the 18th ACM-SIAM Symposium on Discrete Algorithms, pages 1106—
1113, 2007. 7

R. Aurich and E. B. Bogomolny. Periodic orbits on the regular hyperbolic
octagon. Physica D, 48:91-101, 1991. 90

Mark A. Abspoel. Computing homology of subcomplexes of the 3-torus.
http://scripties.fwn.eldoc.ub.rug.nl/FILES/scripties/Wiskunde/
Bachelor/2009/Abspoel .M.A./Mark_Abspoel_WB_2009.pdf, 2009. 72

Nina Amenta, Sunghee Choi, and Giinter Rote. Incremental constructions
con BRIO. In Proceedings of the 19th Annual Symposium on Computational
Geometry, pages 211-219, 2003. 10

Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Jorg-Riidiger
Sack and Jorge Urrutia, editors, Handbook of Computational Geometry,
pages 201-290. Elsevier Science Publishers B.V. North-Holland, Amster-
dam, 2000. 5

Oleg Alexandrov. Double torus illustration. http://en.wikipedia.org/
wiki/File:Double_torus_illustration.png. 92

Mark A. Armstrong. Basic Topology. Springer-Verlag, 1982. 11, 14, 25, 83

Mridul Aanjaneya and Monique Teillaud. Triangulating the real projective
plane. In Mathematical Aspects of Computer and Information Sciences, 2007.
16

Franz Aurenhammer. Voronoi diagrams: A survey of a fundamental geo-
metric data structure. ACM Computing Surveys, 23(3):345-405, September
1991. 5

Matthew H. Austern. Generic Programming and the STL: Using and Fzx-
tending the C++ Standard Template Library. Addison-Weasley Longman
Publishing Co., Inc., Boston, MA, USA, 1998. 39

Hervé Bronnimann, Christoph Burnikel, and Sylvain Pion. Interval arith-
metic yields efficient dynamic filters for computational geometry. Discrete
Applied Mathematics, 109:25-47, 2001. 41

http://scripties.fwn.eldoc.ub.rug.nl/FILES/scripties/Wiskunde/Bachelor/2009/Abspoel.M.A./Mark_Abspoel_WB_2009.pdf
http://scripties.fwn.eldoc.ub.rug.nl/FILES/scripties/Wiskunde/Bachelor/2009/Abspoel.M.A./Mark_Abspoel_WB_2009.pdf
http://en.wikipedia.org/wiki/File:Double_torus_illustration.png
http://en.wikipedia.org/wiki/File:Double_torus_illustration.png

102

BIBLIOGRAPHY

[BDHO09)

[Ber09]

[BEY91]

[Biel0]

[BL95|

[BMP03]

[BOO5]

[Bowsl1]

[Buc09]

[BY9S]

[Cam09]

[CACL*10]

[CDLO7]

Jean-Daniel Boissonnat, Olivier Devillers, and Samuel Hornus. Incremental
construction of the Delaunay graph in medium dimension. In Proceedings
of the 25th Annual Symposium on Computational Geometry, pages 208-216,
2009. 84

Julie Bernauer. Talk: Computational structural biology: Periodic triangu-
lations for molecular dynamics. http://www-sop.inria.fr/geometrica/
collaborations/0OrbiCG/program.html, 2009. 2, 80, 99

Marshall Bern, David Eppstein, and Frances Yao. The expected extremes in
a Delaunay triangulation. International Journal of Computational Geometry

and Applications, 1:79-91, 1991. 36, 37

Ludwig Bieberbach. Uber die Bewegungsgruppen des n-dimensionalen eu-
klidischen Raumes mit einem endlichen Fundamentalbereich. Géttinger
Nachrichten, 75, 1910. 80

H. Borouchaki and S. H. Lo. Fast Delaunay triangulations in three dimen-
sions. Computer Methods in Applied Mechanics and Engineering, 128:153—
167, December 1995. 17

Michel Boileau, Sylvain Maillot, and Joan Porti. Three-dimensional orbifolds
and their geometric structures. Société mathématique de France, Paris, 2003.
13, 81

Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and
meshing of surfaces. Graphical Models, 67:405-451, 2005. 18, 72

Adrian Bowyer. Computing Dirichlet tesselations. The Computer Journal,
24:162-166, 1981. 7, 8, 9, 10, 18, 27, 85

Kevin Buchin. Constructing Delaunay triangulations along space-filling
curves. In Furopean Symposium on Algorithms, volume 5757 of Lecture
Notes in Computer Science, pages 119-130, 2009. 10

Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cam-
bridge University Press, UK, 1998. Translated by Hervé Bronnimann. 5

Daniel Duque Campayo. Talk: Voronoi fluid particle dynam-
ics. http://www-sop.inria.fr/geometrica/collaborations/0rbiCG/
program.html, 2009. 2

Manuel Caroli, Pedro M. M. de Castro, Sébastien Loriot, Olivier Rouiller,
Monique Teillaud, and Camille Wormser. Robust and efficient Delaunay tri-
angulations of points on or close to a sphere. In 9th International Symposium

on Ezrperimental Algorithms, volume 6049 of Lecture Notes in Computer Sci-
ence, pages 462-473, 2010. 86

Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical Delaunay
meshing algorithm for a large class of domains. In Proceedings of the 16th
International Meshing Roundtable, pages 477-494, 2007. 18

http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html

BIBLIOGRAPHY 103

[CFT10]

[cgal

[Che93]

[CKTO8]

[CM57]

[Cox91]

[CS8s]

[CTO8]

[dBvKOS00]

[dC92]

[DE95]

[DEJO6)

[Del34]

[Del10]

Manuel Caroli, Vissarion Fisikopoulos, and Monique Teillaud. Meshing of
triply-periodic surfaces in CGAL, 2010. Poster presentation, 7th Interna-
tional Conference on Curves and Surfaces. 72

CaAL, Computational Geometry Algorithms Library. http://www.cgal.org.
9, 18, 39

L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces.
In Proceedings of the 9th Annual Symposium on Computational Geometry,
pages 274-280, 1993. 18

Manuel Caroli, Nico Kruithof, and Monique Teillaud. Decoupling the CGAL
3D triangulations from the underlying space. In Workshop on Algorithm
Engineering and Experiments, pages 101-108, 2008. 61

H. S. M. Coxeter and W. O. J. Moser. Generators and Relations for Discrete
Groups. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1957. 16, 90

H. S. M. Coxeter. Regular Complex Polytopes. Cambridge University Press,
Cambridge, England, 2nd edition, 1991. 86

Kenneth L. Clarkson and Peter W. Shor. Algorithms for diametral pairs and
convex hulls that are optimal, randomized, and incremental. In Proceedings
of the 4th Annual Symposium on Computational Geometry, pages 12-17,
1988. 8

Manuel Caroli and Monique Teillaud. Video: On the computation of 3D
periodic triangulations. In Proceedings of the 24th Annual Symposium on
Computational Geometry, pages 222-223, 2008. 18

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, Germany, 2nd edition, 2000. 5, 25

Manfredo Perdigao do Carmo. Riemannian Geometry. Birkhduser, Boston,
1992. 13

Cecil Jose A. Delfinado and Herbert Edelsbrunner. An incremental algorithm
for Betti numbers of simplicial complexes on the 3-sphere. Computer Aided
Geometric Design, 12:771-784, 1995. 72

Qiang Du, Maria Emelianenko, and Lili Ju. Convergence of the Lloyd al-
gorithm for computing centroidal Voronoi tessellations. SIAM Journal on
Numerical Analysis, 44:102-119, 2006. 76

Boris Delaunay. Sur la sphére vide. Izvestia Akademii Nauk SSSR, Otdelenie
Matematicheskih i Estestvennyh Nauk, 7:793-800, 1934. 5

Christophe Delage. Spatial sorting. In CGAL User and Reference Manual.
CGAL Editorial Board, 3.6 edition, 2010. http://www.cgal.org/Manual/
latest/doc_html/cgal_manual/packages.html#Pkg:SpatialSorting. 10

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:SpatialSorting
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:SpatialSorting

104

BIBLIOGRAPHY

[Dev02]

[dFCO3]

[DHY7a]

[DHY7D)

[DMT92a]

[DMT92b)

[DP03]

[DPTO02]

[DS02]

[DT03)

[DT06a]

[DTO6b]

[Dul0g]

[Duq]

Olivier Devillers. The Delaunay hierarchy. International Journal of Foun-
dations of Computer Science, 13:163-180, 2002. 8, 9, 34, 35, 60

Gianni de Fabritiis and Peter V. Coveney. Dynamical geometry for multi-
scale dissipative particle dynamics. http://xxx.lanl.gov/abs/cond-mat/
0301378v1, 2003. 2

Olaf Delgado Friedrichs and Daniel H. Huson. Orbifold triangulations and
crystallographic groups. Periodica Mathematica Hungaria, 34:29-55, 1997.
18

Nikolai P. Dolbilin and Daniel H. Huson. Periodic Delone tilings. Periodica
Mathematica Hungarica, 34:1-2:57-64, 1997. 16, 25, 26, 27, 93

O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangula-
tion in logarithmic expected time per operation. Computational Geometry:
Theory and Applications, 2(2):55-80, 1992. 8

Olivier Devillers, Stefan Meiser, and Monique Teillaud. The space of spheres,
a geometric tool to unify duality results on Voronoi diagrams. In Proceedings
of the 4th Canadian Conference on Computational Geometry, pages 263—
268, 1992. Full version available as INRIA Research Report 1620, http:
//hal.inria.fr/inria-00074941. 89, 90

Olivier Devillers and Sylvain Pion. Efficient exact geometric predicates for
Delaunay triangulations. In Proceedings of the 5th Workshop on Algorithm
Engineering and Erperiments, pages 37-44, 2003. 41

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangu-
lation. International Journal of Foundations of Computer Science, 13:181—
199, 2002. 9

Robert J. Daverman and Richard B. Sher, editors. Handbook of Geometric
Topology. Elsevier, Amsterdam, London, Paris, 2002. 14

Olivier Devillers and Monique Teillaud. Perturbations and vertex removal
in a 3D Delaunay triangulation. In Proceedings of the 14th ACM-SIAM
Symposium on Discrete Algorithms, pages 313-319, 2003. 5, 22

Olivier Devillers and Monique Teillaud. Perturbations and vertex removal
in Delaunay and regular 3d triangulations. Research Report 5968, INRIA,
2006. 33

Olivier Devillers and Monique Teillaud. Perturbations and vertex removal
in Delaunay and regular 3d triangulations. (To appear in CGTA). Research
Report 5968, INRIA, 2006. 6

Cornelis Dullemond. Talk: Radiative transfer using unstructured grids.
http://www.cgal.org/Events/PeriodicSpacesWorkshop/, 2008. 2

Daniel Duque Campayo. Sklogwiki - Boundary conditions. http://www.
sklogwiki.org/SklogWiki/index.php/Boundary_conditions. 2

http://xxx.lanl.gov/abs/cond-mat/0301378v1
http://xxx.lanl.gov/abs/cond-mat/0301378v1
http://hal.inria.fr/inria-00074941
http://hal.inria.fr/inria-00074941
http://www.cgal.org/Events/PeriodicSpacesWorkshop/
http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions
http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions

BIBLIOGRAPHY 105

[Dur08]

[dVT]

[Dwy87]

[DY10]

[EKS83]

[EM94]

[ES96]

[BS97]

[For87]

[FP06)

[FT06]

[F'V96]

[FW09]

[Gab09]

[gap]

Orencio Duran. Talk: Multi-scale mechanics of granular materials. http:
//www.cgal.org/Events/PeriodicSpacesWorkshop/, 2008. 2

Eric Colin de Verdiére and Monique Teillaud. FEfficient representations of
triangulations of arbitrary dimension. Personal communication. 98

Rex A. Dwyer. A faster divide-and-conquer algorithm for constructing De-
launay triangulations. Algorithmica, 2:137-151, 1987. 9

Tran Kai Frank Da and Mariette Yvinec. 3D alpha shapes. In
CGAL User and Reference Manual. CGAL Editorial Board, 3.6 edition,
2010. http://www.cgal.org/Manual/latest/doc_html/cgal_manual/
packages.html#Pkg:AlphaShapes3. 18, 71

Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the
shape of a set of points in the plane. IEEE Transactions on Information
Theory, 1T-29:551-559, 1983. 71

Herbert Edelsbrunner and Ernst P. Miicke. Three-dimensional alpha shapes.
ACM Transactions on Graphics, 13(1):43-72, January 1994. 71

Herbert Edelsbrunner and Nimish R. Shah. Incremental topological flipping
works for regular triangulations. Algorithmica, 15:223-241, 1996. 6, 10

Herbert Edelsbrunner and Nimish R. Shah. Triangulating topological spaces.
International Journal of Computational Geometry and Applications, 7:365—
378, 1997. 17

Steven J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorith-
mica, 2:153-174, 1987. 7, 9

Andreas Fabri and Sylvain Pion. A generic lazy evaluation scheme for exact
geometric computations. In Proceedings of the 2nd Library-Centric Software
Design, 2006. 41

Efi Fogel and Monique Teillaud. Generic programming and the CGAL li-
brary. In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective
Computational Geometry for Curves and Surfaces. Springer-Verlag, Mathe-
matics and Visualization, 2006. 39

Steven J. Fortune and Christopher J. Van Wyk. Static analysis yields effi-
cient exact integer arithmetic for computational geometry. ACM Transac-
tions on Graphics, 15(3):223-248, July 1996. 41

Xi Fu and Xiantao Wang. Isometries and discrete isometry subgroups of
hyperbolic spaces. Glasgow Mathematical Journal, 51:31-38, 2009. 90

Ruggero Gabbrielli. A new counter-example to Kelvin’s conjecture on min-
imal surfaces. Philosophical Magazine Letters, 89:483-491, 2009. 2

Gap - groups, algorithms, programming - a system for computational dis-
crete algebra. http://www.gap-system.org. 83

http://www.cgal.org/Events/PeriodicSpacesWorkshop/
http://www.cgal.org/Events/PeriodicSpacesWorkshop/
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:AlphaShapes3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:AlphaShapes3

106

BIBLIOGRAPHY

[GGLYS|

[GHIV95]

|GKS92]

[GMO1]

[Gol91]

[Har77]

[HatO01]

[HenT79]

[HW35

[IEES5|

[IEE0S]

[Kat92]

[Kee02]

[Kep]

[KL84]

[KMP+04]

Ronald L. Graham, Martin Grotschel, and Laszl6 Lovasz, editors. Handbook
of Combinatorics. Elsevier, Amsterdam, Lausanne, New York, 1995. 14

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, Reading, MA, 1995. 62

Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized in-
cremental construction of Delaunay and Voronoi diagrams. Algorithmica,
7:381-413, 1992. 8

Clara I. Grima and Alberto Marquez. Computational Geometry on Surfaces.
Kluwer Academic Publishers, 2001. 15

David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5-48, March 1991. 40

Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate texts in
Mathematics. Springer-Verlag, New York, 1977. 92

Allan Hatcher. Algebraic Topology. Cambridge University Press, 2001. 14,
97

Michael Henle. A Combinatorial Introduction to Topology. W. H. Freeman,
San Francisco, CA, 1979. 14, 59

W. Hantzsche and H. Wendt. Dreidimensionale euklidische Raumformen.
Mathematische Annalen, 110:593-611, 1935. 81

IEEFE Standard for binary floating point arithmetic, ANSI/IEEE Std 754 —
1985. New York, NY, 1985. Reprinted in SIGPLAN Notices, 22(2):9-25,
1987. 40

IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic.
IEEE, New York, NY, USA, August 2008. 40

Svetlana Katok. Fuchsian Groups. The University of Chicago Press, Chicago
and London, 1992. 90

William C. Keel. The Road to Galazy Formation. Springer Praxis Publish-
ing, Chichester, UK, 2002. 2

Andrew Kepert. Bitruncated cubic honeycomb. http://en.wikipedia.
org/wiki/File:Truncated_octahedra. jpg. 3

Wolfgang Kiihnel and Gunter Lassmann. The rhombidodecahedral tessella-
tion of 3-space and a particular 15-vertex triangulation of the 3-dimensional
torus. manuscripta mathematica, 49:61-77, 1984. 31

Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap.
Classroom examples of robustness problems in geometric computations. In
Proceedings of the 12th European Symposium on Algorithms, volume 3221 of

Lecture Notes in Computer Science, pages 702-713. Springer-Verlag, 2004.
39

http://en.wikipedia.org/wiki/File:Truncated_octahedra.jpg
http://en.wikipedia.org/wiki/File:Truncated_octahedra.jpg

BIBLIOGRAPHY 107

[Kru09]

[Lee00]

[L1082]

[LS80]

[Lyn66]

[Mil70]

[M5b36]

[Moe08|

[MR97]

ING02]

[NLCO02]

[NN09|

[pdh]

[PT10a]

[PT10D)

Niels P. Kruyt. Talk: Tessellations and granular materials. http://
www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html,
2009. 2

John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New
York, 2000. 3, 14

Stuart P. Lloyd. Least square quantization in PCM. IEEE Transactions on
Information Theory, 28:129-137, 1982. 76

D. T. Lee and B. J. Schachter. Two algorithms for constructing Delaunay tri-
angulations. International Journal of Computer and Information Sciences,
9(3):219-242, 1980. 7, 9

Roger C. Lyndon. On Dehn’s algorithm. Mathematische Annalen, 166:208—
228, 1966. 93

R. E. Miles. On the homogenous planar Poisson point-process. Mathematical
Biosciences, 6:85-127, 1970. 36

August F. M6bius. Mittheilungen aus Mobius’ Nachlass: 1. Zur Theorie der
Polyéder und der Elementarverwandtschaft. Gesammelte Werke 11, pages
515-559, 1886. 31

Maarten Moesen. Talk: Periodicity and the design of bone scaffolds. http:
//www.cgal.org/Events/PeriodicSpacesWorkshop/, 2008. 2

Marisa Mazon and Tomas Recio. Voronoi diagrams on orbifolds. Computa-
tional Geometry: Theory and Applications, 8:219-230, 1997. 16

Mikael Nygards and Peter Gudmundson. Three-dimensional periodic
Voronoi grain models and micromechanical FE-simulations of a two-phase
steel. Computational Materials Science, 24:513-519, 2002. 2

Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong. Voronoi diagrams on
the sphere. Computational Geometry: Theory and Applications, 23:183-194,
2002. 86

Frank Nielsen and Richard Nock. Hyperbolic Voronoi diagrams made easy.
Computing Research Repository (CoRR), abs/0903.3287, 2009. 90

Poincare disc hyperbolic parallel lines. http://en.wikipedia.org/wiki/
File:Poincare_disc_hyperbolic_parallel_lines.svg. 88

Sylvain Pion and Monique Teillaud. 3D triangulation data struc-
ture. In CGAL User and Reference Manual. CGAL Editorial Board,
3.6 edition, 2010. http://www.cgal.org/Manual/latest/doc_html/cgal_
manual/packages.html#Pkg:TDS3. 14, 41, 43

Sylvain Pion and Monique Teillaud. 3D triangulations. In CGAL
User and Reference Manual. CGAL FEditorial Board, 3.6 edition,
2010. http://www.cgal.org/Manual/latest/doc_html/cgal_manual/
packages.html#Pkg:Triangulation3. 9, 18, 41

http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://www.cgal.org/Events/PeriodicSpacesWorkshop/
http://www.cgal.org/Events/PeriodicSpacesWorkshop/
http://en.wikipedia.org/wiki/File:Poincare_disc_hyperbolic_parallel_lines.svg
http://en.wikipedia.org/wiki/File:Poincare_disc_hyperbolic_parallel_lines.svg
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:TDS3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:TDS3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Triangulation3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Triangulation3

108

BIBLIOGRAPHY

[Rob06]

[RTY10]

[Rup95|

[RV06]

[RY07]

[RY10]

[San76]

[Sch70]

[She98a

[She98b]

[She00]

[Sim94]

[Slo]

[Soul0]

Vanessa Robins. Betti number signatures of homogeneous Poisson point
processes. Physical Review E, 74(061107), 2006. 2

Laurent Rineau, Stéphane Tayeb, and Mariette Yvinec. 3D mesh gen-
eration. In CGAL User and Reference Manual. CGAL Editorial Board,
3.6 edition, 2010. http://www.cgal.org/Manual/latest/doc_html/cgal_
manual/packages.html#Pkg:Mesh_3. 18, 71

J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18:548-585, 1995. 18

Giinter Rote and Gert Vegter. Computational topology: An introduction.
In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective Compu-
tational Geometry for Curves and Surfaces. Springer-Verlag, Mathematics
and Visualization, 2006. 3

Laurent Rineau and Mariette Yvinec. Meshing 3D domains bounded by
piecewise smooth surfaces. In Proceedings of the 16th International Meshing
Roundtable, pages 443-460, 2007. 14, 18

Laurent Rineau and Mariette Yvinec. 3D surface mesh generation.
In CGAL User and Reference Manual. CGAL FEditorial Board, 3.6
edition, 2010. http://www.cgal.org/Manual/latest/doc_html/cgal_
manual/packages.html#Pkg:SurfaceMesher3. 14, 18, 71, 72

Luis A. Santald. Integral Geometry and Geometric Probability. Addison-
Wesley, Reading, MA, 1976. 36

Alan Schoen. Infinite periodic minimal surfaces without self-intersection.
Technical Note D-5541, NASA, 1970. 75

Jonathan R. Shewchuk. A condition guaranteeing the existence of higher-
dimensional constrained Delaunay triangulations. In Proceedings of the 14th
Annual Symposium on Computational Geometry, pages 76-85, 1998. 11

Jonathan R. Shewchuk. Tetrahedral mesh generation by Delaunay refine-
ment. In Proceedings of the 14th Annual Symposium on Computational Ge-
ometry, pages 86-95, 1998. 18

Jonathan R. Shewchuk. Sweep algorithms for constructing higher-
dimensional constrained Delaunay triangulations. In Proceedings of the 16th
Annual Symposium on Computational Geometry, pages 350-359, 2000. 18

Charles C. Sims. Computing with Finitely Presented Groups. Cambridge
University Press, Cambridge, UK, 1994. 83

Neil J. A. Sloane. The on-line encyclopedia of integer sequences. http:
//www.research.att.com/"njas/sequences/. 81

Thierry Sousbie. The persistent cosmic web and its filament structure i:
Theory and implementation. arXiv:1009.4015, 2010. 18

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Mesh_3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Mesh_3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:SurfaceMesher3
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:SurfaceMesher3
http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

BIBLIOGRAPHY 109

[Spa66]

[Spr09]

[Spr10]

[Sti92]

[Sul]
[Tho87]

[Tho02]

[Thr32]

[Thu97]

[Thu02]

[Tou09]

[Val]

[vdWS07]

[vdWVP*10]

[VY90]

[Wat81]

Edwin H. Spanier. Algebraic Topology. McGraw-Hill Book Company, New
York, 1966. 14

Volker Springel. Talk: Computational fluid dynamics and Voronoi tessella-
tions. http://www-sop.inria.fr/geometrica/collaborations/0rbiCG/
program.html, 2009. 17

Volker Springel. E pur si muove: Galilean-invariant cosmological hydro-
dynamical simulations on a moving mesh. Monthly Notices of the Royal
Astronomical Society (MNRAS), 401:791-851, 2010. 17

John Stillwell. Geometry of Surfaces. Springer-Verlag, New York, 1992. 86,
88, 89

John M. Sullivan. vcs. http://torus.math.uiuc.edu/jms/software/. 17

William Thomson. On the division of space with minimum partitional area.
Philosophical Magazine, 24:503, 1887. 2

Karsten E. Thompson. Fast and robust Delaunay tessellation in periodic
domains. International Journal for Numerical Methods in Engineering,
55:1345-1366, 2002. 17

William Threlfall. Gruppenbilder. Abhandlungen der Sachsischen Akademie
der Wissenschaften, Mathematisch- Physikalische Klasse, 41:1-59, 1932. 90

William Thurston. Three-Dimensional Geometry and Topology, Volume 1.
Princeton University Press, New Jersey, 1997. 19, 80, 81

William P. Thurston. The Geometry and Topology of Three-Manifolds. http:
//www.msri.org/publications/books/gt3m/, 2002. 13, 81

Jane Tournois. Optimisation de maillages. Thése de doctorat en sciences,
Université de Nice Sophia-Antipolis, Nice, France, 2009. 76

Sébastien Valette. Personal communcation. http://www.creatis.
insa-lyon.fr/“valette/. 77

Rien van de Weijgaert and Willem Schaap. The cosmic web: Geomet-
ric analysis. http://www.astro.rug.nl/ weygaert/timlpublication/
weyval2004.pdf, 2007. 2

Rien van de Weijgaert, Gert Vegter, Erwin Platen, Bob Eldering, and Nico
Kruithof. Alpha shape topology of the cosmic web. arXiV:1006.2765, 2010.
2,71

Gert Vegter and Chee K. Yap. Computational complexity of combinatorial
surfaces. In Proceedings of the 6th Annual Symposium on Computational
Geometry, pages 102-111, 1990. 90

David F. Watson. Computing the n-dimensional Delaunay tesselation with
applications to Voronoi polytopes. The Computer Journal, 24(2):167-172,
1981. 7, 8, 9, 10, 18, 85

http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://www-sop.inria.fr/geometrica/collaborations/OrbiCG/program.html
http://torus.math.uiuc.edu/jms/software/
http://www.msri.org/publications/books/gt3m/
http://www.msri.org/publications/books/gt3m/
http://www.creatis.insa-lyon.fr/~valette/
http://www.creatis.insa-lyon.fr/~valette/
http://www.astro.rug.nl/~weygaert/tim1publication/weyval2004.pdf
http://www.astro.rug.nl/~weygaert/tim1publication/weyval2004.pdf

110

BIBLIOGRAPHY

[Wei0g]

[Wil0g]

[Yvil0]

[ZomO05]

Dahlia Weiss. Talk: How hydrophobic Buckminsterfullerene affects sur-
rounding water structure. INRIA Geometrica Seminar, http://www-sop.
inria.fr/geometrica, March 2008. 2

P M. H. Wilson. Curved Spaces. Cambridge University Press, Cambridge,
2008. 20

Mariette Yvinec. 2D triangulations. In CGAL User and Reference Manual.
CGAL Editorial Board, 3.6 edition, 2010. http://www.cgal.org/Manual/
latest/doc_html/cgal_manual/packages.html#Pkg:Triangulation2. 9

Afra Zomorodian. Topology for Computing. Cambridge University Press,
Cambridge, 2005. 3, 14

http://www-sop.inria.fr/geometrica
http://www-sop.inria.fr/geometrica
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Triangulation2
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Triangulation2

BIBLIOGRAPHY 111

	Introduction
	Motivation
	Triangulations in Ed
	Simplicial complexes
	The Delaunay triangulation
	Algorithms to compute Delaunay triangulations of Ed
	The incremental algorithm

	Orbit spaces
	Problem statement
	State of the art
	Contributions

	3D Periodic triangulations
	The flat torus
	Delaunay triangulation of the flat torus
	Definition
	Point sets that do not define a Delaunay triangulation of the flat torus

	Algorithm
	Cubic domain
	Non-cubic domain
	Weighted Delaunay triangulation

	Analysis
	Complexity analysis
	Number of sheets

	Implementation
	Introduction to CGAL
	The CGAL 3D triangulations
	The triangulation traits
	The triangulation data structure

	The 3D periodic triangulations
	Design
	Offsets
	Traits
	Covering spaces
	Point location
	Point insertion
	Vertex removal
	Access
	Optimizations
	Additional functionality

	Complexity
	Study of an alternative design
	Experiments
	Input point sets
	Construction of the Delaunay triangulation
	Point insertion in Tbold0mu mumu ccghjv-dp-95cccc3
	The triangulation hierarchy
	Vertex removal
	Specific original domain
	Comparison of the criteria of Section 2.3.1

	Applications
	Periodic alpha shapes
	Periodic surface mesher
	Periodic volume mesher
	Periodic Lloyd algorithm

	Conclusion

	Delaunay triangulations of other spaces
	Preliminaries
	Flat spaces
	Closed Euclidean manifolds
	Triangulations of Closed Euclidean Manifolds
	Algorithm
	Flat orbifolds

	Spherical spaces
	Triangulations of the sphere
	Spherical orbit spaces
	Triangulations of spherical orbit spaces

	A hyperbolic space
	The hyperbolic plane H2
	The double torus
	Triangulations of the double torus
	Discussion

	Conclusion and future work
	Restriction to simplicial complexes
	Restrictions on spaces
	Hyperbolic orbit spaces

