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W
E live in exponential times. Each year, 60% more information is generated in the
world than in the previous year, with predictions that the total size of information
will amount to 1800 Exabytes by the end of 2011. If we were to count the num-

ber of bits that represent information in circulation nowadays, we would already obtain a
number that is higher than the estimated total number of stars in our entire universe.

Processing such vast amounts of data in order to infer new knowledge becomes increas-
ingly difficult. Fortunately, computation, storage and communication technologies steadily
improve and enable the development of complex data processing applications both in re-
search institutions and industry. Since it is not feasible to solve such applications using a
single computer, the idea arised to leverage the power of multiple autonomous computers
that communicate through a computer network in order to solve them. Thus, the parallel and
distributed computing research field emerged.

One particularly difficult challenge in this context is to find the right means to store and
manage such huge amounts of data in a distributed environment. The main difficulty comes
from the fact that in a distributed environment, data needs to be shared between autonomous
entities such that they can converge towards a common goal and solve a problem. Data
sharing is difficult, because the autonomous components need to agree how to manipulate
the data such that it remains in a consistent state, yet try to perform as many data manipula-
tions as possible in a concurrent fashion. Therefore, it is important to provide the necessary
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abstractions that enable high-performance data sharing at large scale, otherwise the huge com-
putational potential offered by large distributed systems is hindered by poor data sharing
scalability. While this problem is well known, existing approaches still face many limitations
that need to be overcome.

1.1 Objectives

Given the limitations of existing data storage approaches and new challenges that arise in
the context of exponentially growing data sizes, this thesis aims at demonstrating that it is
possible to build a scalable, high-performance distributed data-storage service that facilitates data
sharing at large scale.

In order to achieve this main objective, this thesis aims to fulfill a series of sub-objectives:

1. To investigate and analyze a series of existing data storage approaches for distributed
computing and to understand their limitations.

2. To formulate a series of design principles that enable the construction of a highly effi-
cient distributed storage service.

3. To formalize the design principles into an algorithmic description that can be applied
to implement such a distributed storage service.

4. To provide an efficient practical implementation of the storage service based on the
algorithmic description.

5. To evaluate the implementation in a series of synthetic benchmarks that quantify the
potential usefulness of the storage service

6. To adapt and evaluate the implementation in various applicative contexts that demon-
strate its usefulness in concrete, real-life situations.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

Foundations for leveraging object-versioning to build scalable, distributed storage ser-
vices. We propose a series of principles for designing highly scalable distributed stor-
age systems which enable efficient exploitation of data-level parallelism and sustain a high
throughput despite massively parallel data access. In particular, we defend versioning as a
key principle that enhances data access concurrency, ultimately leading to better scalability
and higher performance. We show how versioningmakes it is possible to avoid synchroniza-
tion between concurrent accesses, both at data and metadata level, which unlocks the poten-
tial to access data in a highly parallel fashion. This approach is combined with data striping
andmetadata decentralization, so that concurrent accesses are physically distributed at large
scale among nodes.
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BlobSeer: a high performance, large-scale distributed storage service based on these foun-
dations. Based on the design principles mentioned in the previous paragraph, we intro-
duce BlobSeer, a distributed storage service that was implemented and thoroughly tested in
a series of experiments that validate the benefits of applying the proposed design principles.
Our contribution introduces an architecture which is backed up by a series of algorithmic de-
scriptions for manipulating objects under concurrency through versioning. In this context,
we propose a segment tree-based metadata structure that enables efficient implementation
of metadata forward references. We also present several techniques to integrate these con-
tributions into a practical implementation, which we then evaluate extensively in a series
of synthetic benchmarks that target various applicative contexts. This work was published
in [110, 108, 104, 106, 107, 109, 160].

A BlobSeer-based storage layer that improves performance of MapReduce applications.
MapReduce established itself as a prominent data-intensive computing paradigm in recent
times. One of the core components of any MapReduce implementation is the underlying
storage layer. In this context, we have designed and developed BlobSeer-based File Sys-
tem (BSFS), an efficient storage layer for Hadoop, an open-source MapReduce implementa-
tion. Our contribution consists in substituting the original storage layer of Hadoop (which
is HDFS - Hadoop Distributed File System) with a new, concurrency-optimized data storage
layer based BlobSeer, which enabled us to obtain significant performance improvement for
data-intensive MapReduce applications. This improvement is confirmed through extensive
large-scale experiments, both with synthetic benchmarks, as well as real-life MapReduce ap-
plications in common use. This work was carried out in collaboration with Diana Moise,
Gabriel Antoniu, Luc Bougé and Matthieu Dorier. It was published in [112].

A series of techniques that leverage BlobSeer to improve virtual machine image deploy-
ment and snapshotting for IaaS clouds. In the context of an increasing popularity of cloud
computing, efficient management of VM images such as concurrent image deployment to
compute nodes and concurrent image snapshotting for checkpointing or migration are criti-
cal. The performance of these operations directly impacts the usability of the elastic features
brought forward by cloud computing systems. Our contribution in this context is a lazy VM
deployment scheme that leverages our versioning proposal to save incremental differences
to persistent storage when a snapshot is needed, greatly reducing execution time, storage
space and network traffic. Furthermore, the versioning principles of BlobSeer enable us to
offer the illusion that each snapshot is a different, fully independent image. This has an im-
portant benefit in that it handles the management of incremental differences independently
of the hypervisor, thus greatly improving the portability of VM images, and compensating
for the lack of VM image format standardization. This work was carried out in collaboration
with Kate Keahey and John Bresnahan at Argonne National Laboratory, Chicago, Illinois,
USA, as well as Gabriel Antoniu, INRIA Rennes, France. It was published in [111].

A methodology to improve quality-of-service for cloud storage, illustrated on BlobSeer.
The elastic nature of cloud computing model makes large-scale data-intensive applications
highly affordable even for users with limited financial resources that cannot invest into ex-
pensive infrastructures necessary to run them. In this context, quality-of-service guarantees
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are paramount: there is a need to sustain a stable throughput for each individual accesses,
in addition to achieving a high aggregated throughput under concurrency. We contribute
with a technique that addresses this need, based on component monitoring, application-
side feedback and behavior pattern analysis to automatically infer useful knowledge about
the causes of poor quality of service, and provide an easy way to reason about potential
improvements. This technique is applied to BlobSeer and thoroughly tested in a series of
representative scenarios, where it demonstrated substantial improvements in the stability of
individual data read accesses under MapReduce workloads. This work was carried out in
collaboration with Jesús Montes and María Pérez from Universidad Politécnica de Madrid,
Spain, with Alberto Sánchez from Universidad Rey Juan Carlos, Madrid, Spain and with
Gabriel Antoniu, INRIA Rennes, France. It was published in [98].

All experiments involved in the aforementioned contributions were carried out on the
Grid’5000/ALLADIN experimental testbed federating 9 different sites in France. It is an ini-
tiative of the French Ministry of Research through the ACI GRID incentive action, INRIA,
CNRS, RENATER and other contributing partners. We are particularly grateful for the ex-
cellent support that was provided by the Grid’5000 team during the time in which the work
presented in this thesis was carried out.

1.3 Publications

The work presented in this manuscript was published in several peer-reviewed venues and
research reports. They concern:

• the core principles of BlobSeer and their algorithmic implementation [110, 108, 104,
106];

• the potential benefits of BlobSeer for scientific applications [107] and Desktop
Grids [109] using synthetic benchmarks;

• MapReduce applications, where BlobSeer demonstrated significant performance gains
over standard storage services [112];

• the advantages of BlobSeer as a cloud storage service that efficiently manages virtual
machine images [111], offers high quality-of-service guarantees [98], and offers high
throughput compression [105];

• the advantages of BlobSeer as a building block for grid file systems [160].

Journal articles

• Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise and Alexandra Carpen-
Amarie. BlobSeer: Next Generation Data Management for Large Scale Infrastruc-
tures. In Journal of Parallel and Distributed Computing, 2010, In press.
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Conferences

• BogdanNicolae, DianaMoise, Gabriel Antoniu, Luc Bougé andMatthieu Dorier. Blob-
Seer: BringingHigh Throughput under Heavy Concurrency to HadoopMap/Reduce
Applications. In IPDPS ’10: Proc. 24th IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 1-12, Atlanta, USA, 2010.

• Jesús Montes, Bogdan Nicolae, Gabriel Antoniu, Alberto Sánchez and María Pérez.
Using Global Behavior Modeling to Improve QoS in Data Storage Services on the
Cloud. In CloudCom ’10: Proc. 2nd IEEE International Conference on Cloud Computing
Technology and Science, Indianapolis, USA, 2010, In press.

• Bogdan Nicolae. High Throughput Data-Compression for Cloud Storage. In
Globe ’10: Proc. 3rd International Conference on Data Management in Grid and P2P Sys-
tems, pages 1-12, Bilbao, Spain, 2010.

• Bogdan Nicolae. BlobSeer: Efficient Data Management for Data-Intensive Applica-
tionsDistributed at Large-Scale. In IPDPS ’10: Proc. 24th IEEE International Symposium
on Parallel and Distributed Processing: Workshops and Phd Forum, pages 1-4, Atlanta, USA,
2010, Best Poster Award.

• BogdanNicolae, Gabriel Antoniu and Luc Bougé. EnablingHighData Throughput in
Desktop Grids Through Decentralized Data and Metadata Management: The Blob-
Seer Approach. In Euro-Par ’09: Proc. 15th International Euro-Par Conference on Parallel
Processing, pages 404-416, Delft, The Netherlands, 2009.

• Viet Trung-Tran, Gabriel Antoniu, Bogdan Nicolae, Luc Bougé and Osamu Tatebe. To-
wards A Grid File System Based On A Large-Scale BLOB Management Service. In
EuroPar ’09: CoreGRID ERCIM Working Group Workshop on Grids, P2P and Service com-
puting, pages 7-19, Delft, The Netherlands, 2009.

• Bogdan Nicolae, Gabriel Antoniu and Luc Bougé. BlobSeer: How to Enable Effi-
cient Versioning for Large Object Storage under Heavy Access Concurrency. In Proc.
EDBT/ICDT ’09 Workshops, pages 18-25, St. Petersburg, Russia, 2009.

• Bogdan Nicolae, Gabriel Antoniu and Luc Bougé. Enabling lock-free concurrent fine-
grain access to massive distributed data: Application to supernovae detection. In
Cluster ’08: Proc. IEEE International Conference on Cluster Computing: Poster Session,
pages 310-315, Tsukuba, Japan, 2008.

• Bogdan Nicolae, Gabriel Antoniu and Luc Bougé. Distributed Management of Mas-
sive Data: An Efficient Fine-Grain Data Access Scheme. In VECPAR ’08: Proc. 8th
International Meeting on High Performance Computing for Computational Science, pages
532-543, Toulouse, France, 2008.

Research reports

• Bogdan Nicolae, John Bresnahan, Kate Keahey and Gabriel Antoniu. Going Back and
Forth: Efficient VM Image Deployment and Snapshotting INRIA Research Report No.
7482, INRIA, Rennes, France, 2010.
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1.4 Organization of the manuscript

The rest of this work is organized in four parts.

The first part: introduces the context of our work, presenting the state of the art in the
related research areas. It consists of Chapters 2 and 3. Chapter 2 presents a high-level
overview on distributed computing paradigms that are designed to scale to large sizes, in
order to solve complex problems that require large amounts of computational power and
manipulate massive amounts of data. In particular, we focus on clusters, grids and clouds.
Chapter 3 narrows the focus on data storage and management. After identifying the main
properties that data storage should fulfill in a distributed environment, several existing ap-
proaches designed for clusters, grids and clouds are analyzed with respect to those proper-
ties. We conclude with a discussion about the limitations of existing approaches and new
challenges that data storage faces in the light of the ever growing scales of distributed sys-
tems.

The second part: introduces the core contribution of this work: BlobSeer, a distributed data
storage service that aims at addressing several of the challenges that were discussed in the
first part. In it organized in four chapters. Chapter 4 proposes a series of general design
principles that we consider to be crucial for overcoming the aforementioned challenges. In
particular, we insist on the importance of versioning as a key to enhancing data access con-
currency, ultimately leading to better scalability and higher performance. Chapter 5 presents
the architecture of BlobSeer and gives a high-level overview on how the basic data manip-
ulation primitives work. It then introduces an algorithmic description of the versioning
principles presented in Chapter 4. Chapter 6 focuses on the metadata management in Blob-
Seer. In particular, we introduce the algorithmic description of a highly-scalable distributed
metadata management scheme for our versioning algorithms that is specifically designed to
improve metadata accesses under heavy concurrency. Chapter 7 discusses the BlobSeer im-
plementation in real-life, insisting on software engineering aspects and other practical issues
and technical details that we encountered. Finally, Chapter 8 evaluates the implementation
described in Chapter 7 through a series of synthetic benchmarks that consist of specific sce-
narios, each of which focuses on the design principles presented in Chapter 4.

The third part: presents a series of contributions that leverage BlobSeer in the context of
several real-life applications, demonstrating the potentially large benefits of our proposal.
It is organized in 3 chapters. Chapter 9 evaluates BlobSeer in the context of MapReduce
applications, for which we designed and implemented a layer on top of BlobSeer that pro-
vides a specialized MapReduce file system API. We compare our approach to the Hadoop
Distributed File System, which is the default storage solution of Hadoop, a popular open-
source MapReduce framework, and show significant improvement. Chapter 10 proposes a
storage platform built on top of BlobSeer that optimizes virtual machine image manipula-
tions on clouds. In particular, we address the issues of efficiently deploying multiple virtual
machines at the same time, as well as efficiently snapshotting virtual machines simultane-
ously to persistent storage. We show significant speedup and lower resource consumption of
our approach compared to more traditional approaches. Finally, Chapter 11 proposes a gen-
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eral methodology to improve quality-of-service for cloud storage based on global behavioral
modeling. We experiment with synthetic MapReduce access patterns and show significant
reduction in throughput variability under concurrency.

The fourth part: is represented by Chapter 12 and summarizes the aforementioned con-
tributions, discusses the limitations of our work and presents a series of future perspectives
that are interesting to explore.
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Chapter 2
Large scale, distributed computing
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A
S information grows at an exponential rate [52], so does the complexity of applica-
tions that need to manipulate this information in order to infer new knowledge. A
single computer, no matter how powerful, cannot keep up with this trend. There-

fore, a natural idea that emerged in this context was to leverage the power of multiple au-
tonomous computers that communicate through a computer network in order to achieve a
common goal. An infrastructure that implements this idea is called a distributed system [6].

The drive for larger and faster distributed systems that aggregate the power of more and
more computers triggered a rapid evolution of research in this direction.

Distributed computing started out of necessity to solve mission-critical problems, such
as simulations of natural events for the purpose of predicting and minimizing disasters.
Such applications are usually tightly coupled and typically need large amounts of comput-
ing power for short periods of time (i.e. days or weeks) to answer questions like “where
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will the hurricane strike?”. High performance is critical in this context: the answer is needed
as fast as possible. To address this need, supercomputers are build that leverage the latest
of computing and network infrastructure, but are difficult and expensive to maintain (high
energy consumption, complex cooling systems, etc.). High costs saw the use of supercom-
puters solely at national and international public institutions that can afford to pay for them.
The field that studies this type of distributed systems is called high performance computing
(HPC).

With increasing application complexity, eventually even smaller institutions and private
companies adopted distributed computing to run their every-day applications. In this con-
text, the main driving factor is money: how to get as much computational power for the low-
est price. Therefore, efficiency is not measured in performance delivered over short amounts
of time, as is the case with HPC, but rather throughput: how many applications can be run
over the course of months or even years to amortize the infrastructure costs. Applications
are typically coarse-grain and perform simple computations (i.e., embarrassingly parallel).
To address this need, distributed systems are built out of loosely-coupled commodity hard-
ware that is much cheaper to buy and maintain than supercomputers. Such systems are the
object of high throughput computing (HTC).

With the explosion of data sizes, applications shifted from being computationally inten-
sive to data-intensive. They can usually be formulated as embarrassingly parallel problems
that involve a filtering or funneling process. More precisely, they start with vast amounts
of data and end with simple answers, often as small as one-bit decisions: yes or no, buy
or sell, etc. This requires taking vast amounts of unstructured raw data through a series
of processing steps that refine it to become more comprehensive and include better insight,
ultimately leading to better decision making. This type of applications prompted the in-
troduction of huge distributed systems both in the public and private sector that challenge
even the most powerful supercomputers. Such systems specialize to deliver a high data
processing throughput and are studied by data-intensive computing [24, 119].

A clear line between high performance computing, high throughput computing and
data-intensive computing cannot be drawn. All evolved together and influenced each other.
In the drive to lower costs, recent trends try to abridge the gap between them. For example,
many-task computing (MTC) [124] tries to adopt the cost-effective principles of high through-
put computing to solve high performance computing problems. This chapter focuses mainly
on high throughput computing and data-intensive computing, presenting the evolution of
distributed systems from clusters to grids and finally clouds.

2.1 Clusters

Clusters emerged as a first effort to assemble commodity hardware in order to build inexpen-
sive distributed systems. They typically consist of personal computers and/or workstations
(called nodes) that are linked through basic networking infrastructure, such as Ethernet. The
simplicity of this approach, coupled with low entry and maintenance cost, made clusters
highly popular. Even nowadays, clusters are adopted in all possible scales: from a couple of
nodes to tens of thousands.



2.1 – Clusters 13

2.1.1 Computing clusters

Computing clusters aim to provide scalable solutions that can handle the increasing com-
plexity of applications, both in size and scope.

A first effort in this direction was Beowulf [94, 93], originally referring to a specific cluster
build at NASA out of commodity hardware to emulate a supercomputer. The term was
later extended to include a whole class of clusters that run a standardized software stack:
GNU/Linux as the operating system and Message Passing Interface (MPI) or Parallel Virtual
Machine (PVM) on top of it [25], with the aim of providing a cost-effective and portable
alternative to supercomputers.

A significantly different approach was undertaken by Condor [157], a middleware that
coined the term high throughput computing. Rather than trying to emulate a supercomputer
that is able to run tightly-coupled, computationally-intensive applications, its goal is to en-
able coarse-grained parallelization of computationally-intensive applications. Condor can
both leverage dedicated clusters of computers and/or the idle CPU cycles of regular desk-
top machines when they are not in use. Nowadays, dedicated Condor clusters are widely
used even by public institutions (such as NASA) and reach thousands of nodes.

The need to process massive data sizes by industry giants such as Google and Yahoo
prompted the introduction of huge clusters made out of commodity parts that minimize
per unit cost and favor low power over maximum speed. Google for example does not
disclose the size of their infrastructure, but it is widely believed [89] it amounts to several
million processors spread in at least 25 data centers, which are grouped in clusters of tens of
thousands. Disk storage is attached to each processor to cope with the vast data sizes, while
processors are interconnected with standard Ethernet links.

2.1.2 Load-balancing clusters

Load-balancing clusters link together multiple computers with the purpose of providing the
illusion of a single powerful machine, called single system image (SSI). Unlike other systems
that typically operate at job-level, a SSI operates at process level: processes started by users
appear to run locally but are transparently migrated to other nodes in order to achieve load
balancing.

MOSIX [13, 56] was one of the first SSI implementations, incorporating automatic re-
source discovery and dynamic workload distribution, commonly found on single computers
with multiple processors. Kerrighed [102, 86] is another SSI that builds on the same princi-
ples as MOSIX but introduces several advanced features such as support for cluster wide
shared memory and transparent process checkpointing.

Load-balancing clusters are typically used for applications that need lots of RAM and
processing power, such as graphical rendering, compilation of large repositories and online
gaming. They comprise a small number of nodes, in the range of tens to hundreds.

2.1.3 High-availability clusters

Finally, a basic use of clusters is to provide high availability services. In order to do so, data
is replicated and cached onmultiple nodes, which enables a certain degree of load-balancing
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and redundancy, effectively avoiding a single server to act as a bottleneck and single point
of failure. Normally, if a server hosting a particular application crashes, the application
becomes unavailable until the system administrator fixes it. With high availability clusters,
hardware and software faults are automatically detected and fixed, without human interven-
tion. This is called fail-over and can implemented at different levels, from very low such as
simple redirection of network traffic to a different server to complex schemes implemented
at application level.

High availability clusters are often used for critical databases, file sharing on a network,
business applications, and customer services such as commercial websites. Their size is
typically very small, in the order of tens of nodes, often numbering as little as two nodes,
since it is the minimum required to provide redundancy.

2.2 Grids

Clusters proved to be a very powerful tool, and is widely adopted by many organizations. A
natural question that arises in this context is whether it is possible to federate the resources of
multiple organizations in order to obtain even more powerful distributed systems. Grids are
concerned with precisely this question, proposing a solution that enables taking advantage
of resources distributed over wide-area networks in order to solve large-scale distributed
applications.

The term grid was first defined in [48] as “a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-end computa-
tional capabilities”. It originates from an analogy with the electrical power grid: the dis-
tributed system should provide computational power to any user of the grid at any moment
in a standard fashion, as easy as plugging an electrical appliance into an outlet. This generic
definition has been used in a lot of contexts to the point where it became difficult to un-
derstand what a grid really is. In [49], Foster, Kesselman, and Tuecke try to refine the grid
definition to a distributed system that enables “coordinated resource sharing and problem
solving in dynamic, multi-institutional, virtual organizations”.

The concept of virtual organization (VO) is central in grids. The premise is that the grid
is formed from a number of mutually distrustful participants form a consortium, with the
purpose of sharing resources to perform a task. Sharing in this context refers to complex in-
teractions, such as direct access to remote software, computers, data, etc. These interactions
are enforced in a highly controlled fashion: resource providers and consumers clearly state
under what conditions who is allowed to share what. A set of participants defined by such
sharing rules is called a virtual organization.

The grid is thus far from being a “well-behaved” distributed system. As pointed out
in [28], assumptions such as rare failures, minimal security, consistent software packages
and simple sharing policies that work very well for clusters cannot be relied upon in grids.
In [46], Foster proposes a three-point checklist of requirements that any grid should meet:

1. Coordinates resources that are not subject to centralized control. The grid coordinates
resources that belong different administrative domains and as such it must address
issues of security, policy enforcement, access control, etc. that arise in this context.
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Grid fabric

Resource

Figure 2.1: Generic architecture of the grid

Since each members are distrustful of each other, these issues cannot be addressed in a
centralized fashion.

2. Using standard, open, general-purpose protocols and interfaces. Resource sharing is
relies onmulti-purpose protocols and interfaces that address issues such as authentica-
tion, authorization, resource discover, resource access, etc. Using standards is crucial
in this context, as it facilitates interactions between the members and can be used to
form reusable building blocks that work for a large number of applications.

3. To deliver nontrivial qualities of service. Since grids distribute applications over large
geographical areas, they must be able to deliver various qualities of service such as re-
sponse time, throughput, availability, security, co-allocation of multiple resource types
to meet complex user demands, etc., so that it becomes a distributed system that is
more powerful than the sum of its parts.

2.2.1 Architecture

A generic architecture for grids, that places few constraints on design and implementation
was proposed in [49] and is show in figure 2.1.

The grid fabric provides the lowest access level to raw resources that make up the grid
(clusters of computers, individual computers, file servers, etc.). It implements a unified in-
terface for resource monitoring andmanagement through a series of drivers that are adapted
to a large number of native systems. The connectivity layer is responsible to enable commu-
nication between the grid resources, addressing issues such as authentication and security.
The resource layer builds on top of the connectivity layer in order to implement the protocols
that expose the individual resources to the grid participants. It provides two important func-
tionalities to the upper layers: the ability to query the state of a resource and the mechanism
to negotiate access to a resource. The collective layer builds on both the connectivity layer and
resource layer to coordinate individual resources. It is responsible to provide functionalities
such as resource discovery, scheduling, co-allocation, etc. Finally, the application layer makes
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use of all other layers to enable the implementation of applications at virtual organization
level.

2.2.2 Middleware

Several corporations, professional groups, university consortiums, and other groups are in-
volved with the development of middleware that facilitates the creation and management of
grids.

Globus. The Globus Toolkit [47] is a de-facto standard grid computing middleware
adopted both in the academia and industry: HP, Cray, Sun Microsystems, IBM, etc. It is
an open-source and open-architecture project governed by the Globus Alliance, an organiza-
tion that aims at standardizing protocols and basic services for constructing grids. Globus
implements solutions for security, resource management, data management, communica-
tion and fault tolerance. It is designed in a modular fashion that enables each participant
in the grid to selectively enable the functionality it desires to expose to other participants
without breaking overall compatibility.

UNICORE. UNiform Interface to COmputing REsources (UNICORE) [133] is a middleware
developed in the context of two projects funded by the German ministry for education and
research (BMBF) and has matured to the point where it is used in several production grids
and many European and international research project, such as EUROGRID, GRIP, Open-
MolGRID, VIOLA, NaReGI, etc. UNICORE implements a Graphical User Interface (GUI)
that enables intuitive, seamless and secure access to the underlying services. The under-
lying services rely on Abstract Job Objects (AJO), which are the foundation of UNICORE’s
job model. An AJO contains platform and site independent descriptions of computational
and data related tasks, resource information and workflow specifications. AJOs are a flexi-
ble tool that enables building complex applications that are bound to many constraints and
interactions.

gLite. The gLite [88] middleware, developed in the context of the EGEE [78] project is
the foundation of many large scale scientific grids. CERN for example adopted gLite for
the Worldwide LHC Computing Grid (WLCG). Initially based on the Globus toolkit, gLite
evolved independently into a completely differentmiddleware that targets production grids,
aiming to improve usability. To this end, a rich user interface is provided that enables a vari-
ety of management tasks, such as listing all the resources suitable to execute a given job, sub-
mitting/canceling jobs, retrieving the output of jobs, retrieving logging information about
jobs, upload/replicate/delete files from the grid, etc.

2.3 Clouds

In theory, the grid has a high potential to achieve a massive aggregated computational
power, provided a large number of participants are willing to share their resources for a
common goal. A large number of participants however introduces several difficulties in
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practice. Since each member is responsible for its own resources and can enter or leave the
consortium at any time, grids become highly dynamic in nature and make quality-of-service
difficult to achieve. Furthermore, virtual organizations introduce complex security andman-
agement policies that are not easy to handle. Both users and application developers often
feel that “there is too much to configure” in order to get started on the grid.

Clouds [168, 163] emerged as a paradigm that evolved from grids with the promise to
provide reliable and user-friendly services delivered through next-generation data centers
that are build on virtualized computational and storage technologies. Much like grids, a
cloud federates computational resources into a single entity that enables its users to leverage
computational power to solve a problem in the same way they can plug in an appliance
into an outlet, without having to care where the electricity comes from. However, unlike
grids, clouds are driven by an economy model rather than the need to form a consortium in
which resources are shared. More specifically, clouds are owned by service providers that let
consumers utilize cloud resources in a pay-as-you-go fashion: the consumer pays only for
the resources that were actually used to solve its problem (for example: bandwidth, storage
space, CPU utilization).

In particular, consumers indicate the required service level through quality-of-service
parameters, which are noted in contracts, called service level agreements (SLAs), that are es-
tablished with the providers. Consumers are guaranteed that they will be able to access
applications and data from the cloud anywhere in the world on demand. Moreover, guaran-
tees are given that the cloud is robust and highly available. In [23], Buyya et al. propose the
following definition: “A cloud is a type of parallel and distributed system consisting of a col-
lection of inter-connected and virtualized computers that are dynamically provisioned and
presented as one or more unified computing resource(s) based on service-level agreements
established through negotiation between the service provider and consumers.”

The economy-driven model adopted by clouds has a series of interesting advantages:

Low entry and maintenance costs. Clouds convert large computation costs from capital ex-
penditures to operational expenditures. This enables consumers that do not have the
budget or do not want to buy and maintain their own infrastructure (for example,
small companies or start-ups that need one-time or infrequent computations) to still
be able to run their desired applications. As noted in [81], clouds lead to dynamic and
competitive market offers that are predicted to lower overall costs as they mature.

Elasticity. Since resources are provisioned on demand, consumers can dynamically upscale
or downscale their applications to fit their needs. This flexibility avoids the situation
when consumers are forced to buy expensive hardware to deal with peak data process-
ing times, only to see that hardware under-utilized otherwise.

Scalability. Since it is in the interest of the providers to serve as many customers as possible,
clouds can easily grow to huge sizes. Thus, a consumer is able to utilize virtually an
unlimited number of resources, provided it has the money to pay for them.

Rapid development. By using clouds, consumers do not have to go through a lenghtly pro-
cess of buying and setting up their infrastructure in order to run their applications. All
details of hardware and software configuration and maintenance are handled by the
cloud provider, which enables the consumer to focus on the application only.
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Data center

Platform-as-a-service (PaaS)

Figure 2.2: Cloud services and technologies as a stack of layers

2.3.1 Architecture

Cloud technologies and services can be classified into a stack of layers [79], as illustrated in
figure 2.2:

Data center. The data center layer consists of the hardware and software stack on top of
which the cloud services are build, including clusters of computers, networking in-
frastructure, operating systems, virtualization technologies, etc.

Infrastructure-as-a-Service (IaaS). IaaS typically offers raw computation and storage solu-
tions in form of a virtualization environment and distributed storage service respec-
tively. Rather than directly renting servers, software, disks or networking equipment,
cloud consumers customize virtual machine images, store the images and application
data remotely using the storage service, and then finally launch multiple VM instances
on the cloud. Fees are charged on an utility basis that reflects the amount of raw re-
sources used: storage space-hour, bandwidth, aggregated cpu cycles consumed, etc. A
popular cloud service provider is Amazon, with its offer Amazon EC2 [130].

Platform-as-a-Service (PaaS). Moving up in the hierarchy, PaaS builds on IaaS to provide
higher level programming and execution environments. Services at this level aim at
freeing the consumer from having to configure andmanage industry-standard applica-
tion frameworks (for example Hadoop [169]), on top of which distributed applications
are build, directly at IaaS level.

Software-as-a-Service (SaaS). At the highest level is SaaS, which aims at delivering end-
user applications directly as a service over the Internet, freeing the consumer from
having to install any software on its own computer or care about updates and patches.
Most often, a simple web browser is enough to perform all necessary interaction with
the application. SaaS is becoming increasingly popular, with industry giants such as
Google advocating for light-weight operating systems that eliminate the need to install
user applications altogether.



2.3 – Clouds 19

2.3.2 Emerging platforms

The economy model behind clouds prompted their adoption especially in the private sector.
Industry giants such as: Amazon, Google, IBM, Microsoft, etc. develop and offer a wide
range of cloud services. At the same time, cloud projects are also under development in
academia as a series of research projects and open source initiatives [29].

Amazon EC2. EC2 [130] provides a virtual computing environment that exposes a web
service interface to the consumer through which it can launch virtual instances of a variety
of operating systems, that can be loaded with custom application environments. The con-
sumer can dynamically adjust the number of such instances through the same interface. A
large pool of predefined virtual machine images, called Amazon Machine Images (AMIs) is
provided, that can be directly used as such or customized to form new AMIs. The cost for
using EC2 is measured in instance-hours. A specialized storage service, Amazon S3 [130], is
provided that is responsible to store both AMIs and consumer data. This service charges for
amount of data transfers and GB-hour.

Google App Engine. App Engine [139] is a PaaS that enables consumers to to build and host
web apps on the same systems that power Google applications. It offers fast development
and deployment that is coordinated through simple, centralized administration. Targeted
at casual users, it is free up to a certain resource utilization level, after which a low pricing
scheme is applied. Fees are charged for storage space-hour, bandwidth and CPU cycles
required by the application.

Microsoft Azure. Azure [126] is the cloud offer fromMicrosoft that runs on a large number
of machines, all located in Microsoft data centers. It is based on a fabric layer that aggregates
the computational resources into a whole, which is the used to build compute and storage
services that are offered to the consumer. Developers can build applications on top of lan-
guages commonly supported by Windows, such as C#, Visual Basic, C++, Java, ASP.NET,
using Visual Studio or another development tool.

Nimbus. Nimbus [71] is an open source toolkit that allows institutions to turn their clus-
ter into an IaaS cloud. It it interface-wise compatible with the Amazon EC2 API [130] and
Grid community WSRF. Data storage support is provided by Cumulus, which is compatible
with the Amazon S3 API. Internally, Nimbus can rely both on Xen and KVM as virtual-
ization technologies and can be configured to use standard schedulers for virtual machine
deployment such as PBS and SGE. It is based on an extensible architecture that allows easy
customization of provider needs.

OpenNebula. OpenNebula [101] is another open-source toolkit, specifically designed to
support building clouds in any combination: private, public and hybrid. It can be integrated
with a wide range of storage and networking solutions to fit a broad class of data centers, in
order to form a flexible virtual infrastructure which dynamically adapts to changing work-
loads. An interesting feature of OpenNebula is its ability to combine both private-owned
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data center resources with remote cloud resources, which gives providers greater flexibility
by allowing them to act as consumers themselves.

Eucalyptus. Eucalyptus [113] is an open-source toolkit that started as an NSF funded re-
search project at University of California, Santa Barbara. It implements IaaS using existing
Linux-based infrastructure found in modern data centers. Its interface is compatible with
Amazon’s EC2 API [130] enabling movement of workloads between EC2 and data centers
without modifying any code. Internally, Eucalyptus can rely on several virtualization tech-
nologies, including VMware, Xen, and KVM.

2.4 Conclusions

In our present-day, dynamic society it becomes increasingly difficult to keep up with the
explosion of information. For this reason, distributed computing systems were introduced
as a solution that helps processing such huge amounts of information in order to infer new
knowledge out of it. This chapter presented the evolution of distributed systems, from clus-
ters to grids and finally clouds. Withmodern datacenters hosting tens of thousands of nodes,
distributed systems have a huge computational potential.

However, in order for this potential to be leveraged at its maximum, distributed systems
must be designed in such way that they are able to store and manage huge amounts of data
in an efficient fashion. This aspect is the focus of the next chapter.
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D
ATA storage and management plays a crucial role in leveraging the computational
potential of distributed systems efficiently. This aspect forms the focus of this chap-
ter.

In order to enable efficient and reliable access to data, several important design issues
need to be taken into consideration:

High performance. A crucial aspect of data storage is the performance of data accesses.
Since every application needs to process input data and generate output data, how fast
data accesses can be executed impacts the total execution time of the application as a
whole. This issue is especially important in the context of data-intensive computing,
where data accesses represent a large portion of the application.
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Scalability. Since there is a need to build larger and larger distributed systems, it is crucial
to keep the same level of performance for data accesses when the number of clients
that are concurrently served by the storage system increases.

Data access transparency. With distributed systems growing in size, it becomes increas-
ingly difficult for applications to manage the location of data and move data from
one location to another explicitly. Transparency is an important feature that addresses
this problem. Rather than managing data locations explicitly, applications use a global
namespace and a uniform access interface that enables data to be accessed in the same
fashion, regardless of data location. Support for transparency greatly simplifies appli-
cation development, enabling for example migration of processes without changing
the way data is accessed.

Versioning support. With the growing amount of data that needs to be stored, it becomes
increasingly important to provide support for versioning, i.e., to keep track of how
data changes throughout time and enable the user to retrieve data from any past point
in time. For example, in many cases it is necessary to undo updates to the data that
happened by accident. Versioning is also enforced in many cases by legislation: in-
stitutions are often required to keep an auditable trail of changes made to electronic
records, which is a complex issue to manage at application level without versioning
support at the level of the storage system.

Concurrency control. Scalability can only be achieved if the storage system enables its
clients to access data concurrently. However, support for concurrent access to data
introduces a delicate issue: what consistency semantics to offer and how to implement
it efficiently. A strong consistency semanticsmakes reasoning about concurrency easier
and simplifies application development, however it is difficult to implement efficiently
in a distributed environment without sacrificing performance. A weak consistency se-
mantics on the other hand has a much higher potential to achieve better performance
levels under concurrency, however it provides less guarantees, which is insufficient for
some applications. Therefore, it is important to find the right trade-off.

Fault tolerance. Faults are unavoidable at large scale, because a large number of compo-
nents are present that need to interact with each other. Therefore, in order to be reli-
able, a storage system needs to tolerate faults. One important challenge in this context
is the need to handle faults transparently: they are supposed to be detected and re-
paired automatically, by a self-healing mechanism such that the application needs not
be aware of them happening.

Security. Security is not a major concern for distributed systems that are isolated from the
outside and are supposed to be accessed by trusted users only. However, with the
emergence of grid computing and cloud computing, storage systems can spread over
untrusted open networks (Internet) and may need to serve untrusted users. In this
context, security becomes a critical issue: not only is it important to verify that users
are indeed who they claim to be (authentication), but it also necessary to enforce per-
missions and policies that define and limit the way users can access data.

In the rest of this chapter, we present several existing approaches to data storage in dis-
tributed systems, insisting on the issues mentioned above. We conclude with a series of
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limitations of these approaches and new challenges that arise in this context.

3.1 Centralized file servers

Themost basic form of data storage is centralized data storage. In this setting, all data accesses
that are issued in the distributed system are handled by a single dedicated machine that
specializes to store the data and serve the access requests to it.

This dedicated machine is typically a network file server or database server, that has di-
rect access to several block-based storage devices, such as hard-drives or solid state devices.
The server is responsible to manage the storage space of the devices and to expose a file-
based or higher level I/O access API to the clients. This approach is commonly referred to
as network-attached storage (NAS).

Direct access to the block devices is provided by several technologies. The simplest of
them is direct-attached storage (DAS) [87], which interconnects the block devices with the
server directly through the I/O bus, via SCSI or ATA/IDE. Such an approach has the advan-
tage of enabling high performance for a low price, however, there is a significant drawback:
only a very limited number of devices can be accessed simultaneously, most often not more
than 16. To address the connectivity limits of DAS, storage area networks (SANs) [32, 166]
were introduced, which feature a high performance switching hardware that enables both
fast access to, as well as scalable interconnect of a large number of storage devices. A SAN
however is more expensive to buy and more difficult to maintain than a DAS.

In order to expose a higher level API to the clients, a NAS typically uses standardized
protocols, such as the Network File System protocol (NFS) [150], which allows the clients
to access the data in the same way as local file systems are accessed. Like many other net-
working protocols, NFS is built on top Open Network Computing Remote Procedure Call
(ONC RPC), a standardized remote procedure call convention and is described in detail in
RCF 3530 [143].

Among the main advantages of centralized data storage are simplicity and low cost. In-
deed, setting up a file server in the cluster for data storage is a straightforward process that
requires little effort and greatly simplifies the design of the storage architecture. Since all
I/O traffic is handled by a single machine, transparency, consistency semantics and security
are not a concern. These advantages, combined with the low acquisition and maintenance
cost, make a centralized solution desirable for small clusters where it can satisfy data storage
requirements.

However, centralized data storage has important drawbacks: it features a poor scalability
and a poor fault-tolerance. The dedicated server can quickly become a bottleneck when a
large number of clients simultaneously try to access the data. At the same time, it is a single
point of failure in the distributed system that makes access to data completely unavailable
in case the dedicated server goes down.

Nevertheless, centralized solutions are extremely popular even in large-scale distributed
computing projects that are predominantly compute-intensive and manipulate modest
amounts of data, such as SETI@home [4].
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3.2 Parallel file systems

Parallel file systems aims at addressing the poor scalability and poor fault-tolerance of cen-
tralized approaches, while retaining transparency.

In order to do so, a parallel file system employs multiple servers that are each respon-
sible to manage a set of individual storage resources The clients do not have direct access
to the underlying storage resources, but interact over the network with the servers using a
standardized protocol.

The main idea behind this choice is the fact that under concurrency, the I/O workload
of the clients is distributed among the servers, which greatly increases scalability, as each
server has to deal with a much smaller number of clients. Furthermore, this approach makes
it possible to replicate data on multiple servers, which greatly enhances fault-tolerance, as
data is available in alternate locations if a server goes down.

Parallel file systems typically aim at at compatibility with the POSIX [42] file access in-
terface. This choice has a major advantage: POSIX is highly standardized and therefore it
enables a high degree of transparency, allowing applications to use the parallel file system
as if it were a local file system. However, the choice of using POSIX as the access model
also introduces important limitations: POSIX is locking-based and as such it can lead to
poor performance under specific concurrent access patterns, such as reading while writing
in overlapping regions of the same file.

Lustre. A massively parallel file system, Lustre [40] is generally used for large-scale clus-
ter computing. An open-source project, it can aggregate Petabytes of storage capacity and
can provide high levels of performance even in the range of tens of thousands of nodes.
Lustre exposes a standard POSIX access interface to the clients that supports locking-based
concurrent read and write operations to the same file. It employs a centralized metadata
management scheme through a metadata target (MDT), which is a server responsible to man-
age file names, directories, permissions, file layout, etc. The contents of the files is spread
across object storage servers (OSSes) that store file data on one or more object storage targets
(OSTs), which are typically high-capacity disks that are accessed by the OSSes through a
SAN. Thus, the aggregated capacity of a Lustre deployment is the sum of the capacities of
the OSTs. For security and fault-tolerance reasons, clients are not allowed to access the OSTs
directly and must do so through the OSSes.

PVFS. Designed as a high performance cluster file system for parallel applications,
PVFS [27] specifically targets scenarios where concurrent, large I/O and many file accesses
are common. To this end, PVFS distributes both data andmetadata over a fixed set of storage
servers, avoiding single points of contention and enabling scalability to a large number of
clients. In order to ensure scalability, PVFS avoids complex locking schemes present in other
parallel file systems by ordering operations in such way that they create a sequence of states
that represent consistent file system directory hierarchies. For example, to create a file, data
is written first on the servers, followed by metadata, and finally the corresponding entry is
created in the directory. If any step fails during the file creation, no change to the file system
happens, as the file is registered only in the last step. Already written data and metadata
is not harmful and can be discarded at a later point. While this simple scheme has a much
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higher potential to scale than a locking scheme, it comes at a cost: write/write concurrent
accesses to overlapping regions of the same file are not supported. Although not explicitly
forbidden, the effects of attempting to do so are undefined.

GPFS. The General Parallel File System (GPFS) [140], developed by IBM is a closed-source,
high-performance file system that is in use bymany supercomputers around the world. Files
written to GPFS are split into blocks of less than 1 MB, which are distributed across multiple
file servers that have direct access to several disk arrays. To prevent data loss, such blocks
are either replicated on the same server using native RAID or on different servers. Metadata
describes the file layout in terms of blocks, and the directory structure is distributed as well
and efficiently supports a large number of files in the same directory. The clients can access
files through an access interface that implements full POSIX semantics, including locking for
exclusive file access thanks to a distributed locking scheme. An interesting feature of GPFS is
its ability to be partition aware. More specifically, network failures that cut communication
between file servers and partition them into groups, are detected through a heartbeat pro-
tocol and measures are taken to reorganize the file system such that it comprises the largest
group, effectively enabling a graceful degradation.

Ceph. With the evolution of storage technologies, file system designers have looked into
new architectures that can achieve scalability. The emerging object storage devices (OSDs) [95]
couple processors and memory with disks to build storage devices that perform low-level
file system management (such as block allocation and I/O scheduling) directly at hardware
level. Such “intelligent” devices are leveraged by Ceph [167], a cluster file system specifically
designed for dynamic environments that exhibit a wide range of workloads. Ceph decen-
tralizes both data and metadata management, by using a flexible distribution function that
places data objects in a large cluster of OSDs. This function features uniform distribution
of data, consistent replication of objects, protection from device failures and efficient data
migration. Clients can mount and access a Ceph file system through a POSIX-compliant
interface that is provided by a client-side library.

3.3 Data grids

With the introduction of grid computing, presented in Section 2.2, the need arised to manage
large data collections that are distributed worldwide over geographically distant locations.
To address this need, data grids [165] emerged as the platform that combines several wide-
area management techniques with the purpose of enabling efficient access to the data for the
participants of the grid.

3.3.1 Architecture

Data grids are organized in a layered architecture, as proposed in [49, 9]. Each layer builds
on the lower level layers and interacts with the components of the same level to build a
complete data management system. We briefly introduce these layers, from the lowest to
the highest:
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Data fabric: consists of the resources that are owned by the grid participants and are in-
volved in data generation and storage, both with respect to the hardware (file servers,
storage area networks, storage clusters, instruments like telescopes and sensors, etc.)
as well as the software that leverages them (distributed file systems, operating systems,
relational database management systems, etc.)

Communication: defines and implements the protocols that are involved in data transfers
among the grid resources of the fabric layer. These protocols are build on several well-
known communication protocols, such as TCP/IP, authentication mechanisms, such
as Kerberos [72], and secure communication channels, such as Secure Sockets Layer
(SSL).

Data Grid Services: provides the end services for user applications to transfer, manage and
process data in the grid. More specifically, this layer is responsible to expose global
mechanisms for data discovery, replication management, end-to-end data transfers,
user access right management in virtual organizations, etc. Its purpose is to hide the
complexity of managing storage resources behind a simple, yet powerful API.

Applications. At this layer are user applications that leverage the computational power of
the grid to process the data stored in the data grid. Several standardized tools, such as
visualization applications, aim at presenting the end user with familiar building blocks
that speed up application development.

3.3.2 Services

The need to manage storage resources that are dispersed over large distances led to several
important design choices. Two important classes of services stand out.

3.3.2.1 Data transport services.

A class of services, called data transport services was designed that departs from data access
transparency, enabling applications to explicitly manage data location and transfers, in the
hope that application-specific optimizations can be exploited at higher level. The focus of
such services is to provide high performance end-to-end transfers using low overhead pro-
tocols, but this approach places the burden of ensuring data consistency and scalability on
the application.

Data transport is concerned not only with defining a communication protocol that en-
ables two end-to-end hosts to communicate among each other with the purpose of trans-
ferring data, but also with other higher level aspects such as the mechanisms to route data
in the network or to perform caching in order to satisfy particular constraints or speed up
future data access. Several representative services are worth mentioning in this context.

Internet Backplane Protocol (IBP). IBP [15] enables applications to optimize data trans-
fers by controlling data transfers explicitly. Each of the nodes that is part of the IBP instance
has a fixed-size cache into which data can be stored for a fixed amount of time. When data
is routed during an end-to-end data transfer, data is cached at intermediate locations in a
manner similar to “store-and-forward”. The application has direct control over the caches
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of IBP nodes and can specify what data to cache where, which increases the chance of future
requests for the same data to find it in a location that is close to where the data is required.
IBP treats data as fixed-size byte arrays, in a similar fashion as the Internet Protocol, which
splits data into fixed-size packets. The same way as IP, it provides a global naming scheme
that enables any IBP node to be uniquely identified. Using this global naming scheme, ap-
plications can move data around without caring about the underlying storage of individual
nodes, which is transparently managed by IBP.

GridFTP. GridFTP [2, 20] extends the default FTP protocol with features that target efficient
and fast data transfer in grid environments, where typically large files need to be transferred
between end points. Like FTP, GridFTP separates effective data transfers from control mes-
sages by using a different communication channel for each of them. This enables third-party
file transfers that are initiated and controlled by an entity that is neither the source, nor the
destination of the transfer. In order to support large files better, GridFTP provides the the
ability to stripe data into chunks that are distributed among the storage resources of the
grid. Such chunks can be transferred in parallel to improve bandwidth utilization and speed
up transfers. GridFTP can also use multiple TCP sockets over the same channel between
a source and a destination in order to improve bandwidth utilization further in wide-area
settings.

3.3.2.2 Transparent data sharing services.

Since grid participants share resources that are dispersed over large geographical areas, data
storage needs to adapt accordingly. Unlike data transport services where data access is man-
aged explicitly at application level, several attempts try to provide transparent access to data,
in a manner similar to parallel file systems, but at global grid scale. This approach has the
advantage of freeing the application from managing data locations explicitly, but faces sev-
eral challenges because resources are heterogeneous and distances between them can vary
greatly.

Replication becomes crucial in this context, as it improves locality of data and preserves
bandwidth, greatly increasing scalability and access performance. However, on the down
side, consistency among replicas that are stored in geographically distant locations becomes
a difficult issue that is often solved by choosing a weak consistency model.

Grid Data Farm (Gfarm). Gfarm [155] is a framework that integrates storage resources and
I/O bandwidth with computational resources to enables scalable processing of large data
sizes. At the core of Gfarm is the Gfarm file system, which federates local file systems of grid
participants to build a unified file addressing space that is POSIX compatible and improves
aggregated I/O throughput in large scale settings. Files in Gfarm are split into fragments
that can be arbitrarily large and can be stored in any storage node of the grid. Applications
may fine-tune the number of replicas and replica locations for each file individually, which
has the potential to avoid bottlenecks to frequently accessed files and to improve access
locality. Furthermore, the location of fragment replicas is exposed through a special API at
application level, which enables to schedule computations close to the data.
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JuxMem. Inspired by both both DSM systems and P2P systems, JuxMem [7] is a hybrid
data sharing service that aims to provide location transparency as well as data persistence
in highly dynamic and heterogeneous grid environments. Data is considered to be mutable
(i.e., it is not only read, but also concurrently updated) and is replicated in order to improve
data access locality and fault tolerance. In this context, ensuring replica consistency is a
difficult issue. JuxMem proposes an approach based on group communication abstractions
to ensure entry-consistency, while guaranteeing high data availability and resilience to both
node crashes and communication failures.

XtreemFS. XtreemFS [64] is an open-source distributed file system that is optimized for
wide-area deployments and enables clients to mount and access files through the Internet
from anywhere, even by using public insecure networking infrastructure. To this end, it
relies on highly secure communication channels built on top of SSL and X.509. XtreemFS
exposes a configurable replication management system that enables easy replication of files
across data centers to reduce network consumption, latency and increase data availability.
Several features aim at dealing with high-latency links that are present in wide-area net-
works: metadata caching, read-only replication based on fail-over replica maps, automatic
on-close replication, POSIX advisory locks.

3.4 Specialized storage services

With data sizes growing and distributed applications gaining in complexity, the traditional
POSIX file system access interface becomes a limitation for data management. The main
disadvantage of POSIX is the fact that it is designed as an all-purpose access interface that
is not aware of the specific application access patterns, which greatly limits the potential to
introduce optimizations in this direction and improve scalability. For this purpose, several
specialized file systems and storage services have been introduced that depart from POSIX.

3.4.1 Revision control systems.

Revision control systems specialize in the automated management of changes to collections
of documents, programs, and other information stored as computer files. This is highly
relevant for collaborative development, where large groups of individuals share and con-
currently update the same files. In this context, the most important problem that needs to be
solved is revision: how to offer a flexible and efficient mechanism to apply changes to a file,
such that it is easy to revoke them later if necessary. To solve this problem, revision control
systems keep an annotated history of changes that enables them to reconstruct any past state
of the files under its control. The history of changes must not necessarily be linear, enabling
a file to evolve in many directions (referred to as branching) that can be eventually merged
together in a single direction. Users explicitly control the submission of changes, branching
and merging. In order to remain scalable under these complex circumstances, revision con-
trol systems usually avoid synchronization mechanisms and enable users to perform their
changes in isolation. Potential consistency issues are detected only when the changes are
submitted and, if present, they need to be solved by the users manually. Examples of revi-
sion control system are listed below.
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SVN. Subversion (SVN) [171] is a popular revision control system that maintains full ver-
sioning for directories, renames, file metadata, etc. Users are allowed to change, move,
branch and merge entire directory-trees very quickly, while retaining full revision history.
SVN is based on a client-server model, where users synchronize in though a centralized
server that is responsible to maintain changeset and revision history. This choice has an
important advantage: user have a unified view over the whole codebase, which simplifies
several management tasks (such as testing) easy. However, the centralized approach has
limited scalability potential and represents a single point of failure.

Git. Unlike SVN, Git [83] is a distributed revision control system that is based on a peer-
to-peer approach to store the codebase. Rather than a single, central server through which
all clients synchronize, in Git each peer holds its own local copy of the repository. Revision
is conducted by exchanging patches between peers using gossip protocols, which means
that there is no global reference copy of the codebase, only working copies that eventually
become consistent. A core assumption in Git is that a change will be merged more often
than it is written, as it is passed around between various peers. In order to support this
pattern efficiently, Git supports rapid branching and merging, and includes dedicated tools
to visualize and browse dependencies. The distributed nature of Git makes it great for large
projects where users typically need to access and change only small parts for which they
are responsible. However, tasks such as obtaining the most recent view of the codebase are
rather difficult due to the slow propagation of changes.

3.4.2 Versioning file systems.

Unlike revision control systems that are designed to enable users to control versioning ex-
plicitly, versioning is handled by versioning file systems in a transparent fashion. More pre-
cisely, from the user point of view, the file system behaves like a regular file system. How-
ever, at regular time intervals or when other conditions apply, the file system consolidates
all recent changes into a new snapshot that can be later accessed for reference. Unlike revi-
sion control systems, versioning file systems support a linear evolution only. Versioning file
systems are typically used for archival purposes, when reference data needs to be kept for
predefined amounts of time. In this context, versioning transparency is a great advantage,
as it enables applications to run unmodified, while keeping track of their history of accesses
to data.

Fossil. Built as an archival file server, Fossil [122] maintains a traditional file system on the
local disk and periodically archives snapshots of this file system to Venti [123], a write-once,
read-many archival block storage repository that is installed in conjunction with it. Snap-
shots in Fossil are placed in special directories and can be directly accessed through the stan-
dard file system interface that obeys POSIX semantics. The active file system is presented
as “/active”, while past snapshots are presented as “/snapshot/date/time”. To implement
snapshots, Fossil keeps track of the time when each file system block was changed. If a
write occurs on a block that was not changed in predefined amount of time, then the block
is treated as immutable and a new block is generated in a copy-on-write fashion. Otherwise,
the block is simply overwritten as in a regular file system. When the predefined amount
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of time expired, all modified blocks are transferred to Venti and consolidated into a new
snapshot of the file system.

ZFS. The Zettabyte File System [58] is a versioning file system developed by Sun Microsys-
tems that is designed to efficiently leverage large storage capacities. ZFS uses a copy-on-
write transactional model in which blocks are never overwritten but instead a new copy of
the block is created in an alternate location and then the modified data is written to it. Any
metadata blocks that reference such newly written blocks are recursively treated in the same
fashion until a new snapshot of the whole file system is obtained that shares unmodified
data with the previous snapshots. ZFS snapshots are created very quickly, since all the data
composing the snapshot is already stored. They are also space efficient, since any unchanged
data is shared among the file system and its snapshots. ZFS introduces several interesting
features, such as writable snapshots and dynamic striping of data. However, an important
disadvantage of ZFS is the fact that it is not designed to enable concurrent access to data in
a distributed environment, and, as such, is limited to be used by a single client at a time in
the same way as a local file system.

3.4.3 Dedicated file systems for data-intensive computing

With the emergence of data-intensive computing, several paradigms, such as MapRe-
duce [38], appeared that exploit the parallelism at data level in order to scale even for huge
data sizes. In this context, data storage is faced with specific access patterns: highly concur-
rent reads from the same file at fine-grain level, few overwrites, highly concurrent appends
to the same file. These access patterns prompted the development of several distributed file
systems:

GoogleFS. The Google File System (GoogleFS) [53] is a proprietary distributed file system
in development by Google as a response to its data storage needs. GoogleFS leverages
large clusters of commodity hardware to provide high-throughput access to data. Files in
GoogleFS are traditionally very large, reaching hundreds of GB. Each file is is split into 64MB
chunks, which are replicated and distributed among the nodes of the cluster. A centralized
metadata server, called the Master, is responsible to manage the directory hierarchy and the
layout of each file (what chunks make up the file and where they are stored). A specialized
API is provided that enables clients to read from and write/append to the same file in a
highly concurrent fashion. Append operations are atomic: they guarantee that the contents
of the appended data will appear somewhere in the file as a contiguous sequence of bytes.
However, the precise location is not known in advance. Concurrent write operations are also
supported, but, as is the case with PVFS, the final result of doing so is undefined. In order
to enable concurrent write and append operations, the Master employs a system of time-
limited, expiring “leases”, which guarantee exclusive permission to a process to modify a
chunk. The modifications are always processed by the server that holds the primary copy of
the chunk. It is the responsibility of this server to propagate the modifications to the other
servers that hold the replicas of the chunk. In order to ensure consistency among replicas, a
leader election protocol is employed: no modification is applied unless all servers that hold
a replica of the chunk acknowledge the modification.
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HDFS. TheHadoop Distributed File System (HDFS) [144] is the primary storage system used
by Hadoop [169], a popular open-source MapReduce [38] framework that has seen a wide
adoption in the industry, with Yahoo! and Facebook counting among its users. HDFS was
modeled after GoogleFS: files are split into 64 MB chunks that are distributed among datan-
odes. A centralized server, called the namenode, is responsible for metadata management.
Access to files is facilitated by a specialized Java API that enables concurrent reads and ap-
pends to the same file, in the same sense as GoogleFS. However, unlike GoogleFS, data is
considered immutable: once written, it cannot be modified. Moreover, while the API offers
support for concurrent appends, in practice this feature is not yet implemented. The na-
menode is a single point of failure for an HDFS installation. When it goes down, the whole
file system is offline. When it comes back up, the name node must replay all outstanding
operations, which can take a long time on large clusters.

3.4.4 Cloud storage services

Cloud storage is a storage model that emerged in the context of cloud computing. Cloud
providers operate large data centers, whose storage resources provide huge aggregated ca-
pacities. These resources are virtualized according to the requirements of the customer and
exposed through a storage service. Customers can upload and download files and data ob-
jects to and from the cloud through this storage service, paying only for the occupied storage
space. Data availability and fault tolerance are key issues in the design of cloud storage ser-
vices, as the provider needs to be able to offer strong guarantees to the customers through
the service level agreement in order to make cloud storage an attractive offer. Several such
cloud storage services stand out:

Amazon Dynamo. Dynamo [39] is a highly available key-value store internally developed
at Amazon that is used to power Amazon’s core services and to provide an “always-on”
experience. In order to achieve a high level of availability, Dynamo replicates all key-value
pairs to multiple hosts, whose number can be configured independently for each pair. Each
replica is assigned to a coordinator node, which is responsible to maintain its replication
factor constant. A consistent hashing scheme is used for replica placement. Replication
itself is performed in a fully asynchronous fashion, at the expense of sacrificing consistency
under certain fault scenarios. More specifically, under no faults, updates will be eventually
propagated to all replicas. However, faults (such server outages or partitions) can delay
the propagation of updates for extended periods of time. This might lead to inconsistencies
which are handled by Dynamo through object versioning: each update creates a new and
immutable version of the object. Most of the time, the system can automatically determine
how to merge versions of the same object into a single, consistent object. However, under
faults combined with heavy concurrency, objects may evolve in different directions and a
semantic reconciliation at application level is necessary, for which Dynamo exposes a specific
API.

Amazon S3. Amazon S3 [130] is a web service that partially builds on Dynamo [39] to en-
able high-availability cloud storage to Amazon clients. S3 is intentionally designed with a
minimal feature set that however enables reaching high availability rates, which are guar-
anteed by Amazon through the service level agreement. The access interface enables clients
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to write, read and delete objects whose size ranges from 1 byte to 5 GB. Unlike file systems,
objects are not named and placed in a hierarchic directory structure, but are rather assigned
an unique ID and placed in a bucket, which together with the ID can be used to retrieve
the object later. Partial writes are not supported: each write request fully replaces the object
content with the written data. Under concurrency, there is no way to determine the writer
that succeeds in replacing the object content the last. However, partial reads of the same
object are supported.

Azure BLOB Storage Service. The Azure BLOB storage service [126] is a storage service
specifically designed for the Microsoft Azure cloud platform. It provides support to store
and retrieve binary large objects (BLOBs) through the REST API [44]. Each BLOB must be-
long to a container, which is created through the REST API as well. Two types of BLOBs
are supported: block BLOBs, which are optimized for streaming, and page BLOBs, which are
optimized for random read/write operations on ranges of bytes. A block BLOB can either be
created in a single step if it smaller that 64 MB, or in multiple steps by transferring chunks
of at most 4 MB at a time to the cloud. In this last case, an extra API call is used to con-
solidate the chunks into a single block BLOB, which can reach at most 200 GB. Page BLOBs
have fixed sizes, which are specified at creation time, and are initially zero-filled. The client
can then write the desired content in the BLOB using the write primitive. Page BLOBs are
limited to 1 TB. An interesting feature of the Azure BLOB storage service is the ability to
perform conditional updates, i.e. execute a write only if a particular condition, specified in
the write operation, holds.

3.5 Limitations of existing approaches and new challenges

We summarize the approaches presented so far in Table 3.1. For each type of storage sys-
tems, we have selected a few representative examples and classified them according to a
series of criteria that have the high impact on performance and scalability. More precisely,
we synthesize two aspects: (i) whether data and metadata is organized in a centralized or
decentralized fashion, which hints at potential bottlenecks that limit scalability; (ii) how con-
currency control is implemented and what guarantees are offered. Also included are details
about versioning: whether it is supported and if so, how it is handled.

With growing data management requirements, existing data storage systems face many
limitations and need to address new challenges that arise in this context. In the rest of this
section, we briefly discuss some of these limitations.

Too many files. Most distributed applications process data objects that are typically small,
often in the order of KB: text documents, pictures, web pages, scientific datasets, etc. Each
such object is typically stored by the application as a file in a distributed file system or as an
object in a specialized storage service. A similar scenario occurs for tightly-coupled applica-
tions that consist of billions of threads that perform parallel computations. Usually, there is
a need to save intermediate results at regular intervals, which, out of the need to avoid I/O
synchronization, is done is done independently for each thread in a separate file.

However, with the number of files easily reaching the order of billions [53], a heavy bur-
den on the underlying storage service, which must efficiently organize the directory struc-



3.5 – Limitations of existing approaches and new challenges 33

Architecture Example Data /
Meta-
data

Concurrency control Versioning

Centralized NFS server c/c lock daemon not supported
Parallel file
systems

Lustre d/c hybrid locking using leases not supported
GPFS d/d distributed locking scheme not supported
PVFS d/d none: undefined overlapped W/W not supported

Grid data
sharing
services

Gfarm d/c none: undefined overlapped W/W not supported
JuxMem d/d acquire-release; entry consistency not supported
XtreemFS d/c POSIX advisory locks not supported

Revision
control

SVN c/c manual conflict resolution; branch & merge changeset
Git d/d manual conflict resolution; branch & merge changeset

Versioning file
systems

Fossil c/c single client at a time snapshot
ZFS d/c single client at a time snapshot

Data-intensive
GoogleFS d/c locking using leases; atomic concurrent ap-

pends
not supported

HDFS d/c single writer; immutable data not supported

Cloud storage
Amazon S3 d/d atomic replace of full object snapshot
Dynamo d/d master replica; auto-branching under faults;

semantic reconciliation
snapshot

Azure d/d conditional updates not supported

Table 3.1: Summary of approaches presented so far. In the third column, c stands for central-
ized and d stands for decentralized

ture such that it can lookup files in a timely manner. Therefore, one important challenge in
this context is to find scalable ways of organizing data such that it does not lead to complex
namespaces that are slow to browse and maintain.

Centralized metadata management. Metadata is used by storage systems to maintain crit-
ical information about the data itself: directory hierarchy, file names and attributes, permis-
sions, file layout (what parts make up the file andwhere they are stored), etc. It is an essential
means to ensure data access transparency. Since metadata is a tiny fraction of the size of the
data itself, the details of metadata management might not seem critical. However, at very
large scale even a tiny fraction of the total data that is stored can quickly reach huge sizes.

A study conducted by Yahoo [145] for example, shows that their data requirements are
quickly approaching the Zettabyte limit. Most of their data is stored on HDFS, which there-
fore needs to scale to the Zettabyte order, both in terms of storage space and access perfor-
mance. HDFS however is built upon a single-node namespace server architecture, which
acts as a single container of the file system metadata. In order to make metadata operations
fast, the name-node loads the whole metadata into its memory. Therefore, the total size of
the metadata is limited by the amount of RAM available to the name-node. Since it was
established that the overhead of metadata represented in RAM is 1 GB for each 1 PB of ac-
tual data, it is easily observable that the current design does not scale to meet the Zettabyte
requirement.

Many storage systems presented in this chapter are in the same situation as HDFS, re-
lying on centralized metadata management: Lustre, GoogleFS, etc. An important challenge
that arises in this context is thus to find scalable ways of managing the metadata. Decentral-
ization seems to promise a lot of potential in this direction, but introduces metadata consis-
tency issues.



34 Chapter 3 – Data storage in large-scale, distributed systems

Limited throughput under heavy access concurrency. As distributed systems increase in
scale and complexity, concurrency control plays a crucial role. Several systems presented so
far aim at POSIX compatibility, as it is a widely accepted standard that offers high compat-
ibility with a broad range of applications. Over-generalization however has its price: such
systems need to implement complex locking schemes in order to satisfy POSIX consistency
semantics, which under many circumstances is a limitation of scalability, as it leads to ag-
gregated throughputs that are well below expected numbers. For example, this is the reason
why many large scale applications that consist of a large number of threads prefer to write
many small independent files rather that write concurrently in the same file.

To deal with this issue, many approaches over-relax consistency semantics even to the
point where it remains undefined: for example, in PVFS the outcome of concurrent overlap-
ping writers in the same file is not known. While this approach certainly simplifies concur-
rency control overhead and enables reaching high throughputs, in many applications such
undefined behavior is insufficient.

Therefore, an important challenge in this context, is to define a consistency semantics and
implement a concurrency control mechanism for it that enables reaching high throughputs
under concurrency, while offering a clear set of guarantees.

Limited versioning capabilities under concurrency. Many existing versioning file systems
are rich in features, but are not designed to be used at large scale under heavy access concur-
rency. For example, ZFS and Fossil are local file systems that can be mounted and used only
by single client at a time. In a distributed environment, this limitation is clearly a bottleneck.
Revision control services also suffer from the same problem. For example, SVN uses a cen-
tralized server to store the repository, which is at large scale again a bottleneck. While Git
tried to address this issue by proposing a decentralized P2P model, updates propagate slow
at global scale, which limits feasibility to a restricted set of usage patterns.

On the other hand, cloud storage services are designed to scale and support concurrent,
distributed access to data. However, they have only limited support for versioning. For
example, Amazon S3 supports versioning for its objects, but objects are limited to a size
of 5GB. Moreover, there is no support to apply partial updates to an object: an object can
only be fully replaced by a newer version in an atomic fashion. This limits the potential of
versioning, because an object cannot hold the combined effect of many concurrent writers.

Thus, another important challenge that needs to be addressed is how to provide efficient
versioning support under concurrency.

Conclusions. Extensive work has been done in the area of data storage in large-scale, dis-
tributed systems. We presented several approaches and underlined a series of limitations
and new challenges that these approaches face under growing pressure of increasing data
storage demands. The rest of this thesis aims at addressing several of these new challenges,
both by combining ideas from existing approaches as well as proposing novel data manage-
ment techniques that are designed from scratch with these challenges in mind.
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I
N the previous chapter, we introduced several important issues that need to be consid-
ered when designing a storage system. We presented several existing approaches and
underlined their limitations and the new challenges that arise in the context of data stor-

age. This chapter focuses on a series of core design principles that we propose in order to
overcome many of these limitations and address several challenges. We insist in particular
on the importance of versioning as a crucial feature that enhances data access concurrency,
ultimately leading to better scalability and higher performance.

4.1 Core principles

4.1.1 Organize data as BLOBs

We are considering applications that process huge amounts of data that are distributed at
very large scales. To facilitate data management in such conditions, a suitable approach is to
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organize data as a set of huge objects. Such objects (called BLOBs hereafter, for Binary Large
OBjects), consist of long sequences of bytes representing unstructured data and may serve as
a basis for transparent data sharing at large-scale. A BLOB can typically reach sizes of up to
1 TB. Using a BLOB to represent data has two main advantages.

Scalability. Applications that deal with fast growing datasets that easily reach the order of
TB and beyond can scale better, because maintaining a small set of huge BLOBs com-
prising billions of small, KB-sized application-level objects is much more feasible than
managing billions of small KB-sized files directly [53]. Even if there was a distributed
file system that would support access to such small files transparently and efficiently,
the simple mapping of application-level objects to file names can incur a prohibitively
high overhead compared to the solution where the objects are stored in the same BLOB
and only their offsets need to be maintained.

Transparency. A data-management system relying on globally shared BLOBs uniquely
identified in the system through global IDs facilitates easier application development
by freeing the developer from the burden of managing data locations and data trans-
fers explicitly in the application.

However, these advantages would be of little use unless the system provides support for
efficient fine-grain access to the BLOBs. Large-scale distributed applications typically aim at
exploiting the inherent data-level parallelism. As such, they usually consist of concurrent
processes that access and process small parts of the same BLOB in parallel. At the minimal
level, this means it must be possible to create a BLOB, read/write subsequences of bytes
from/to the BLOB at arbitrary offsets and append a sequence of bytes to the end of the
BLOB. The storage service needs to provide an efficient and scalable support for a large
number of concurrent processes that access such subsequences, whose size can go in some
cases as low as in the order of KB. If exploited efficiently, this feature introduces a very high
degree of parallelism in the application.

4.1.2 Data striping

Data striping is a well-known technique to increase the performance of data accesses. Each
BLOB is split into chunks that are distributed all over the nodes that provide storage space.
Thereby, the I/O workload is distributed among multiple machines, which enables the sys-
tem to scale and reach a high performance level. Two important features need to be taken
into consideration in order to maximize the benefits of accessing data in a distributed fash-
ion.

Configurable chunk distribution strategy. The distribution of chunks in the system has a
high impact on the benefits that an application can reap from data-striping. For exam-
ple, if a client needs to read a subset of chunks that was previously written to the
same provider, data striping is ineffective because the chunk distribution not opti-
mized for the way the application reads back data. In order to deal with this issue, the
chunk distribution strategy needs to be adapted to the application needs. Most of the
time, load-balancing is highly desired, because it enables a high aggregated through-
put when different parts of the BLOB are simultaneously accessed. However, a lot of
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more complex scenarios are possible. For example, green computing might introduce
an additional objective like minimizing energy consumption by reducing the num-
ber of storage space providers. Given this context, an important feature is to enable
the application to configure the chunk distribution strategy such that it can optimally
leverage data-striping according to its own access patterns.

Dynamically adjustable chunk sizes. The performance of distributed data processing is
highly dependent on the way the computation is partitioned and scheduled in the sys-
tem. There is a trade-off between splitting the computation into smaller work units in
order to parallelize data processing, and paying for the cost of scheduling, initializing
and synchronizing these work units in a distributed fashion. Since most of these work
units consist in accessing data chunks, adapting the chunk size is crucial. If the chunk
size is too small, then work units need to fetch data from many locations, potentially
canceling the benefits of techniques such as scheduling the computation close to the
data. On the other hand, selecting a chunk size that is too large may force multiple
work units to access the same data chunks simultaneously, which limits the benefits of
data distribution. Therefore, it is highly desirable to enable the application to fine-tune
how data is split into chunks and distributed at large scale.

4.1.3 Distributed metadata management

Since each massive BLOB is striped over a large number of storage space providers, addi-
tional metadata is needed in order to remember the location of each chunk in the BLOB,
such that it is possible to map subsequences of the BLOB defined by offset and size to the
corresponding chunks. This need results from the fact that without additional metadata, the
information about the internal structure of the BLOB is lost. Since BLOBs can reach huge
sizes and need to support fine-grain data-striping, metadata becomes an important issue.

As mentioned in Section 3.5, many distributed file systems such as GoogleFS [53] and
HDFS [144], which are used in large-scale production environments, are on the verge of
reaching their limits because they use a centralized metadata management scheme. Thus,
we argue for a distributed metadata management scheme (presented in detail in Chapter 6),
which brings several advantages to such an approach.

Scalability. Adistributedmetadata management scheme potentially scales better that a cen-
tralized approach, both with respect to increasing metadata sizes and concurrent ac-
cess to metadata. This is a consequence of the fact that the I/O workload associated
to metadata overhead can be distributed among the metadata providers, which means
a higher aggregated metadata storage space and a lower pressure on each metadata
provider. Both properties are important in order to efficiently support fine-grain ac-
cess to the BLOBs.

Data availability. A distributed metadata management scheme enhances data availability,
as metadata can be replicated and distributed to multiple metadata providers. This
avoids letting a centralized metadata server act as a single point of failure: the failure
of a particular node storing metadata does not make the whole data unavailable.
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4.1.4 Versioning

We defend the use of versioning as a core principle for data management. Versioning cer-
tainly implies that multiple copies of the same data needs to be kept. This leads to significant
storage space overheads when compared to traditional approaches that keep only the latest
version. However, storage space is becoming increasingly cheaper and data-centers are de-
signed in a scalable fashion that enables them to grow easily. Therefore, versioning has the
potential to bring high benefits for a low price.

Enhanced data access parallelism. One of the main advantages of versioning is the poten-
tial to enhance parallel access to data, both when versions are manipulated transparently by
the storage service or explicitly by the application. Unlike traditional approaches that keep
only the latest version, multiple versions enable a better isolation which greatly reduces the
need to synchronize concurrent access. To leverage this at a maximal extent, we propose
to generate a new snapshot version of the BLOB each time it is written or appended by a
client. By using the right means to generate a new snapshot, two important advantages can
be obtained.

Overlapped data acquisition with data processing through explicit versioning. In many
cases data is processed in two phases: a data acquisition phase where data is gath-
ered, and a data processing phase where a computation over the data is performed.
Versioning enables overlapping of these two phases: data acquisition can run and lead
to the generation of new BLOB snapshots, while data processing may run concurrently
on previously generated snapshots without any synchronization. Explicitly exposing a
versioning-based data access interface to the user enables it to control the process at a
fine level, e.g., by specifyingwhich snapshot generated by the acquisition phase should
be processed.

High-throughput data access under concurrency through immutable data /metadata.
Versioning enables better performance levels under concurrency evens when the
applications do not explicitly leverage multiple versions. For example, the storage
service can rely on versioning internally in order to optimize concurrent access to the
same BLOB. In this context, we propose to keep data and metadata immutable. Doing
so enables the storage service to break reads and writes from/to the BLOB into
elementary operations that are highly decoupled and require a minimal amount of
synchronization. For example, a read operation that needs to access a chunk does not
need to wait for a concurrent write operation that updates the same chunk, because
the write operation does not overwrite the chunk.

Archival storage. In today’s era of exponential growth of information, storing old data
is important for reference purposes. However, with growing processing power it becomes
also an important source for data mining applications that can track its evolution in time
and infer new knowledge. In this context, versioning is a powerful tool that enables effi-
cient management of archival data. Moreover, as mentioned in Chapter 3, in many cases
legislation requires keeping an auditable trail of changes made to electronic records, which
is a complex issue to manage at application level without versioning support. Generating a
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new snapshot of the BLOB with each write and append facilitates tracking such changes at
the smallest possible granularity, greatly enhancing security and compliance with the legis-
lation.

While versioning certainly has important benefits, it is not easy to efficiently implement it
in practice. We identified several important factors that need to be taken into consideration.

Differential updates. The generation of a new BLOB snapshot version for each write or
append might seem to lead to a huge waste of storage space, especially when BLOBs
are large and only small parts of them are updated. We propose the use of differential
updates: the system can be designed is such way that it only stores the difference with
respect to the previous versions. This eliminates unnecessary duplication of data and
metadata, and saves storage space. The new snapshot shares all unmodified data and
metadatawith the previous versions, while creating the illusion of an independent, self-
contained snapshot from the client’s point of view.

Atomic snapshot generation. A key property when providing versioning support at appli-
cation level is atomicity. Readers should not be able to access transiently inconsistent
snapshots that are in the process of being generated. This greatly simplifies application
development, as it reduces the need for complex synchronization schemes at applica-
tion level.

Asynchronous operations. I/O operations in data-intensive applications are frequent and
involve huge amounts of data, thus latency becomes an issue. Over the last years, asyn-
chronous, loosely-coupled system designs [30] have gained popularity in distributed
computing, because they tolerate high latencies better than synchronous systems, and
enable scalability up to a larger number of participants. An asynchronous access inter-
face can help the application to hide data access latency by offering support to overlap
the computation with the I/O.

4.2 Versioning as a key to support concurrency

We defended versioning as a key mechanism to support efficient access to a BLOB under
heavy access concurrency. In this section, we zoom on versioning further, detailing how it
can be leveraged to enhance the performance of concurrent accesses.

4.2.1 A concurrency-oriented, versioning-based access interface

We have argued in favor of a BLOB access interface that needs to be asynchronous, versioning-
based and which must guarantee atomic generation of new snapshots each time the BLOB gets
updated.

To meet these properties, we propose a series of primitives. To enable asynchrony, con-
trol is returned to the application immediately after the invocation of primitives, rather than
waiting for the operations initiated by primitives to complete. When the operation com-
pletes, a callback function, supplied as parameter to the primitive, is called with the result
of the operation as its parameters. It is in the callback function where the calling application
takes the appropriate actions based on the result of the operation.
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4.2.1.1 Basic BLOB manipulation

1 CREATE(allbak(id))
✝

This primitive creates a new empty BLOB of size 0. The BLOB will be identified by its id,
which is guaranteed to be globally unique. The callback function receives this id as its only
parameter.

1 WRITE(id, buffer, offset, size, allbak(v))

2 APPEND(id, buffer, size, allbak(v))
✝

The client can update the BLOB by invoking the corresponding WRITE or APPEND primitive.
The initiated operation copies size bytes from a local buffer into the BLOB identified by id,
either at the specified offset (in case of write), or at the end of the BLOB (in case of append).
Each time the BLOB is updated by invoking write or append, a new snapshot reflecting
the changes and labeled with an incremental version number is generated. The semantics
of the write or append primitive is to submit the update to the system and let the system
decide when to generate the new snapshot. The actual version assigned to the new snapshot
is not known by the client immediately: it becomes available only at the moment when
the operation completes. This completion results in the invocation of the callback function,
which is supplied by the system with the assigned version v as a parameter.

The following guarantees are associated to the above primitives.

Liveness: For each successful write or append operation, the corresponding snapshot is
eventually generated in a finite amount of time.

Total version ordering: If the write or append primitive is successful and returns version
number v, then the snapshot labeled with v reflects the successive application of all
updates numbered 1 . . . v on the initially empty snapshot (conventionally labeled with
version number 0), in this precise order.

Atomicity: Each snapshot appears to be generated instantaneously at some point between
the invocation of the write or append primitive and the moment it is available for
reading.

Once a snapshot was successfully generated, its contents can be retrieved by calling the
following primitive:

1 READ(id, v, buffer, offset, size, allbak(result))
✝

READ enables the client to read from the snapshot version v of BLOB id. This primitive results
in replacing the contents of the local buffer with size bytes from v, starting at offset, if
the snapshot has already been generated. The callback function receives a single parameter,
result, a boolean value that indicates whether the read succeeded or failed. If v has not
been generated yet, the read fails and result is false. A read fails also if the total size of the
snapshot v is smaller than offset+ size.
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4.2.1.2 Learning about new snapshot versions

Note that there must be a way to learn about both the generated snapshots and their sizes,
in order to be able to specify meaningful values for v, offset and size. This is the performed
by using the following ancillary primitives:

1 GET_RECENT(id, allbak(v, size))

2 GET_SIZE(id, v, allbak(size))
✝

The GET_RECENT primitive queries the system for a recent snapshot version of the blob id. The
result of the query is the version number v which is passed to the allbak function and the
size of the associated snapshot. A positive value for v indicates success, while any negative
value indicates failure. The system guarantees that: 1) v ≥ max(vk), for all snapshot versions
vk that were successfully generated before the call is processed by the system; and 2) All
snapshot versions with number lower or equal to v have successfully been generated as well
and are available for reading. Note that this primitive is only intended to provide the caller
with information about recent versions available: it does not involve strict synchronizations
and does not block the concurrent creation of new snapshots.

The GET_SIZE primitive is used to find out the total size of the snapshot version v for
BLOB id. This size is passed to the callback function once the operation has successfully
completed.

Most of the time, the GET_RECENT primitive is sufficient to learn about new snapshot ver-
sions that are generated in the system. However, some scenarios require the application to
react to updates as soon as possible after they happen. In order to avoid polling for new
snapshot versions, two additional primitives are available to subscribe (and unsubscribe) to
notifications for snapshot generation events.

1 SUBSCRIBE(id, allbak(v, size))

2 UNSUBSCRIBE(id)
✝

Invoking the SUBSCRIBE primitive registers the interest of a process to receive a notification
each time a new snapshot of the BLOB id is generated. The notification is performed by
calling the callback function with two parameters: the snapshot version v of the newly gen-
erated snapshot and its total size. The same guarantees are offered for the version as with
the GET_RECENT primitive. Invoking the UNSUBSCRIBE primitive unregisters the client from
receiving notifications about new snapshot versions for a given BLOB id.

4.2.1.3 Cloning and merging

WRITE and APPEND facilitate efficient concurrent updates to the same BLOBwithout the need to
synchronize explicitly. The client simply submits the update to the system and is guaranteed
that it will be applied at some point. This works as long as there are no semantic conflicts
between writes such that the client needs not be aware of what other concurrent clients are
writing. Many distributed applications are in this case. For example, the application spawns
a set of distributed workers that concurrently process records in a large shared file, such that
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each worker needs to update a different record or the worker does not care if its update to
the record will be overwritten by a concurrent worker.

However, in other cases, the workers need to perform concurrent updates that might in-
troduce semantic conflicts which need to be reconciled at higher level. In this case, WRITE
and APPEND cannot be used as-is, because the state of the BLOB at the time the update is ef-
fectively applied is unknown. While many systems introduce transactional support to deal
with this problem, this approach is widely acknowledged both in industry and academia to
have poor availability [50]. We propose a different approach that is again based on version-
ing and introduce another specialized primitive for this purpose:

1 CLONE(id, v, allbak(new_id))
✝

The CLONE primitive is invoked to create a new BLOB identified by new_id, whose initial
snapshot version is not empty (as is the case with CREATE) but rather duplicates the content
of snapshot version v of BLOB id. The new BLOB looks and acts exactly like the original,
however any subsequent updates to it are independent of the updates performed on the
original. This enables the two BLOBs to evolve in divergent directions, much like the fork

primitive on UNIX-like operating systems.

Using CLONE, workers can isolate their own updates from updates of other concurrent
workers, which eliminates the need to lock and wait. At a later point, these updates can be
“merged back” in the original BLOB after detecting potential semantic conflicts and recon-
ciling them. Another primitive is introduced for this purpose:

1 MERGE(sid, sv, soffset, size, did, doffset, allbak(dv))
✝

MERGE takes the region delimited by soffset and size from snapshot version sv of
BLOB sid and writes it starting at doffset into BLOB did. The effect is the same
as if READ(sid, sv, buffer, soffset, size, allbak(result)) was issued, followed by
WRITE(did, buffer, doff, size, allbak(dv)). The only difference is the fact that MERGE
enables the system to perform this with negligible overhead, as unnecessary data duplica-
tion and data transfers to and from the client can be avoided.

Both CLONE and MERGE can take advantage of differential updates, sharing unmodified
data andmetadata between snapshots of different BLOBs. Since no data transfer is involved,
this effectively results in the need to perform minimal metadata updates, which enables
efficient semantic-based reconciliation, as described in Section 4.2.3.

4.2.2 Optimized versioning-based concurrency control

Using the primitives presented in the previous section, versioning has the potential to enable
the application to leverage concurrency efficiently. Of course, this is only useful if the storage
system that implements them takes advantage of their inherent parallelism in an efficient
fashion. In this section we insist on precisely this aspect, elaborating on concurrency control
techniques that can be employed to do so.
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Read/read and read/write. Obviously, concurrent readers never interfere with each other:
they never modify any data or metadata, and cannot generate inconsistent states. Therefore,
concurrent reads do not have to synchronize. Moreover, a reader can learn about new snap-
shots only through notifications and direct inquiry of the system. This guarantees that the
snapshots the readers learn about have been successfully generated, and their corresponding
data and metadata will never be modified again. Therefore, no synchronization is necessary
and concurrent reads can freely proceed in the presence of writes.

Write/write. The case of concurrent writers requires closer consideration. Updating a
BLOB by means of a write or append involves two steps: first, writing the data, and sec-
ond, writing the metadata. We specifically chose this order for two reasons: first, to favor
parallelism; second, to reduce the risk for generating inconsistent metadata in case of fail-
ures. Writing the data in a first phase and metadata in a second phase enables full paral-
lelism for the first phase. Concurrent writers submit their respective updates to the system
and let the system decide about the update ordering. As far as this first phase is concerned,
concurrent writers do not interfere with each other. They can write their chunks onto data
storage providers in a fully parallel fashion. Besides, if a writer fails, no inconsistency may
be created, since no metadata has been created yet.

It is at metadata level where the newly written chunks are integrated in a new snap-
shot. It is done by generating new metadata that reference both the new chunks and the
metadata of the previous snapshot versions in such way as to offer the illusion of an inde-
pendent, self-contained snapshot. At a first glance, writing the metadata might not seem to
be parallelizable. Indeed, once the data is written, a version number must be assigned to the
writer. Since we decided that version numbers are assigned in an incremental fashion, this
step does require global synchronization and has to be serial. Moreover, since total ordering
is now guaranteed and since we want to support differential updates, generating metadata
for a snapshot that was assigned version number v relies on the metadata of snapshots with
lower version numbers. This dependency apparently seems to require serialization too, as
the metadata of the snapshots whose versions are 1 . . . v− 1 should be generated before gen-
erating the metadata for snapshot version v.

While the serialization of version assignment is unavoidable, it is not a major concern,
because this is a minor step in the write operation that generates negligible overhead com-
pared to the rest of the write operation. However, the serialization of writing the metadata
is an undesirable constraint that cancels the benefits of using a distributed metadata man-
agement scheme. It is this serialization that we want to eliminate in order to further enhance
the degree of concurrency in the process of writing data.

To this end, we introduce a key concept that we refer to as metadata forward references.
More precisely, given a snapshot version k that was successfully generated and a set of con-
current writers that were assigned versions k + 1 . . . v, the process of generating the meta-
data for snapshot version v must be able to precalculate all potential references to metadata
belonging to versions k + 1 . . . v − 1 even though the metadata of these versions have not been
written yet, under the assumption that they will eventually be written in the future, leading
to a consistent state. Considering this condition satisfied, metadata can be written in a par-
allel fashion as each writer can precalculate its metadata forward references individually if
necessary.
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However, consistency is guaranteed only if a new snapshot version v is considered as
successfully generated after the metadata of all snapshots with a lower version are success-
fully written. This is so in order to ensure that all potential metadata forward references
have been solved. Thus snapshot generation is an extremely cheap operation, as it simply
involves delaying the revealing of snapshot version v to readers until the metadata of all
lower snapshot versions has been written.

Advantages. Avoiding synchronization between concurrent accesses both at data and
metadata level unlocks the potential to access data in a highly concurrent fashion. This
approach is combined with data striping and metadata decentralization, so that concurrent
accesses are physically distributed at large scale among nodes. This combination is crucial
in achieving a high throughput under heavy access concurrency.

4.2.3 Consistency semantics

We adopt linearizability [59] as the model to reason about concurrency. Linearizability pro-
vides the illusion that each operation applied by concurrent processes appears to take effect
instantaneously at some moment in time between the invocation and the completion of the
operation. This provides strong consistency guarantees that enable easy reasoning about
concurrency at application level.

In our case, the objects we reason about are snapshots. Readers access snapshots explic-
itly specified by the snapshot version. Writers do not access any explicitly specified snap-
shot, so we associate them to an implicit virtual snapshot, which intuitively represents the
most recent view of the BLOB. The effect of all writes is guaranteed to satisfy total ordering,
which in terms of linearizability, is the sequential specification of the virtual snapshot. Since
linearizability does not place any constraints on the definition of the semantics of opera-
tions, we make an important decision: we define the completion of the read primitive to be
the moment when its callback was invoked, as is intuitively natural, but on the other hand,
we define the completion of the write primitive to be the moment when the assigned snap-
shot version was successfully generated, rather than the moment the corresponding callback
was invoked.

Using this definitions, we show that any interleaving of reads and writes is linearizable.
First observe that readers and writers never access the same snapshot. Because linearizabil-
ity is a local property (any interleaving of operations on different objects is linearizable if and
only if all interleavings on operations on the same object, taken separately, are linearizable),
we can thus analyze reads and writes separately. An interleaving of reads is obviously lin-
earizable. An interleaving of writes is linearizable because it satisfies the two conditions for
linearizability: (1) each write has a linearization point, because the write operation is guar-
anteed to be atomic; and (2) the order of non-concurrent writes is preserved, because total
ordering is guaranteed and therefore the effect of an already completed first write is never
applied after the effect of a subsequent secondwrite which was invoked after the completion
of the first write.

In our model we have chosen to define the completion of the write primitive as the mo-
ment in time when its assigned snapshot has been generated. This has an important con-
sequence: the callback of the write operation may be invoked before the the corresponding
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snapshot has been generated and exposed by the system to the readers. This can potentially
lead to a situation where a snapshot cannot be read immediately after it has been written,
even by the same process. This does not lead to an inconsistent state, but is rather a design
choice: the reader is forced to access an explicitly specified snapshot version.

This approach has a major advantage: writers don’t have to wait for their updates to get
generated, which enables taking decisions about future writes much earlier, greatly enhanc-
ing parallelism. This feature enhances parallelism without sacrificing the ease of use pro-
vided by strong consistency guarantees and still avoids the need for complex higher-level
synchronization mechanisms that are necessary for weaker models.

The introduction of the CLONE and MERGE primitives also introduces the potential to enable
efficient semantic-based reconciliation under concurrency [120, 141]. As argued in [5], under
high contention conditions and high number of accesses per client, traditional lock-based
approaches are doomed to fail in practice due to an exponential growth in the probability of
deadlocks. With semantic reconciliation, concurrent clients work asynchronously in relative
isolation, updating data independently and repairing occasional conflicts when they arise at
semantic level, which avoids having to lock the data out while somebody else is updating
it. Since the application is aware of the semantics of conflicts, in many cases conflicts can be
repaired without having to abort and restart transactions, as is the case with the traditional
approach.

Using CLONE and MERGE, each client can isolate its updates from the other concurrent
clients and then merge back the updates in the original BLOB after repairing the conflicts.
If the updates applied to a clone are undesired and need to be revoked, simply forgetting
about the clone is enough. Compared to traditional approaches, which need to rollback the
updates, this effectively avoids undesired effects such as cascading rollbacks, which can in-
troduce serious performance degradation. Since both CLONE and MERGE are extremely cheap,
high-performance semantic-based reconciliation can be easily implemented on top of them.

Moreover, even if the application needs transactional support in the traditional sense,
the two primitives offer a solid foundation to build a highly efficient transactional manager
based on snapshot-isolation [18].
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T
HIS chapter introduces BlobSeer, a large-scale data management service that illustrates
the design principles introduced in Chapter 4. First, the architecture of BlobSeer is
presented, followed by a general overview of how the reads, writes and appends

work. Then, an algorithmic description is given that focuses on the versioning aspects de-
scribed in Section 4.2.

5.1 Global architecture

BlobSeer consists of a series of distributed communicating processes. Figure 5.1 illustrates
these processes and the interactions between them.

Clients create, read, write and append data from/to BLOBs. A large number of concurrent
clients is expected that may simultaneously access the same BLOB.
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Figure 5.1: Global architecture of BlobSeer

Data (storage) providers physically store the chunks generated by appends and writes.
New data providers may dynamically join and leave the system.

The provider manager keeps information about the available storage space and schedules
the placement of newly generated chunks. It employs a configurable chunk distribu-
tion strategy to maximize the data distribution benefits with respect to the needs of the
application.

Metadata (storage) providers physically store the metadata that allows identifying the
chunks that make up a snapshot version. A distributed metadata management scheme
is employed to enhance concurrent access to metadata.

The version manager is in charge of assigning new snapshot version numbers to writers
and appenders and to reveal these new snapshots to readers. It is done so as to of-
fer the illusion of instant snapshot generation and to satisfy the guarantees listed in
Section 4.2.2.

5.2 How reads, writes and appends work

This section describes the basic versioning-oriented access primitives introduced in Sec-
tion 4.2 (read, write and append) in terms of high-level interactions between the processes
presented in the previous section. Processes use remote procedure calls (RPCs) [147, 156] in
order to communicate among each other.
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Figure 5.2: Reads and Writes

Reading data. To read data (Figure 5.2(a)), the client first contacts the version manager to
check if the requested snapshot version already exists in the system. If this is not the case, the
read operation fails. Otherwise the client queries the metadata providers for the metadata
indicating which providers store the chunks corresponding to the requested subsequence in
the blob delimited by offset and size. Once these data providers have been established, the
client fetches the chunks in parallel from the data providers. Note that the range specified
by the read request may be unaligned to full chunks. In this case, the client requests only the
relevant parts of chunks from the data providers.

Writing and appending data. To write data (Figure 5.2(b)), the client first splits the data
to be written into chunks. It then contacts the provider manager and informs it about the
chunks to be written. Using this information from the client, the provider manager selects
a data provider for each chunk and then builds a list that is returned to the client. Having
received this list, the client contacts all providers in the list in parallel and sends the corre-
sponding chunk to each of them. As soon as a data provider receives a chunk, it reports
success to the client and caches the chunk which is then asynchronously written to the disk
in the background. After successful completion of this stage, the client contacts the version
manager and registers its update. The version manager assigns to this update a new snap-
shot version v and communicates it to the client, which then generates new metadata that is
“weaved” together with the old metadata such that the new snapshot v appears as a stan-
dalone entity. Finally, it notifies the version manager of success, and returns successfully to
the user. At this point, the version manager takes the responsibility of eventually revealing
the version v of the BLOB to the readers, which is referred to as successful generation of
snapshot v.
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Figure 5.3: Three successive writes (left) and the corresponding snapshots (right)

5.3 Data structures

The rest of this chapter introduces a series of algorithmic descriptions that detail the interac-
tions presented in the previous section. In order to simplify the notation, it is assumed that a
single BLOB is involved in all operations and therefore the BLOB id is omitted from the pre-
sentation. This does not restrict the general case in any way, as all data structures presented
in this section can be instantiated and maintained for each BLOB id independently.

Let v be a snapshot version of a BLOB and R an arbitrary subsequence in snapshot v
that is delimited by offset and size. In this case, R consists of all full chunks and/or parts of
chunks that lie between offset and offset+ size, and which were written at the highest version
smaller or equal to v.

For example, Figure 5.3 depicts a scenario in which an initially empty BLOB is updated
three times (left side), which results in the snapshots whose composition is illustrated on
the right side. For convenience, let’s assume that each unit represents 1 MB. Thus, the first
update (white) is an append of 14 MB in three chunks: c1, c2, c3 (4 MB, 4 MB, 6 MB). The
second update (dark gray) is a write of 10 MB in three chunks: c4, c5, c6 (3 MB, 5 MB, 3 MB),
starting at offset 3. Finally the last update (light gray) is a write of 10 MB starting at offset 7
in two chunks: c7 and c8 (5 MB, 5 MB).

Now let’s assume a client wants to read the subsequence R delimited by offset = 5 and
size = 4 of the snapshot v = 3 that results after all three updates are applied. In this case, the
composition of R consists of the last MB of c4, the first MB of c5 and the first two MB of c7.

To R we associate the descriptor map D that fully describes the composition of R as list
of entries. Each entry in D is a chunk descriptor of the form (cid, coffset, csize, roffset), and
represents either a full chunk or a part of a chunk that belongs to R: cid is the id that uniquely
identifies the chunk in the system; coffset and csize delimit the chunk part relative to the
beginning of the chunk (for a full chunk coffset = 0 and csize is the total size of the chunk);
and finally roffset is the relative offset of the chunk part with respect to the absolute offset of
R in the snapshot v.

Considering the scenario given as an example above, the associated descriptor map con-
tains the following chunk descriptors: (c4, 2, 1, 0), (c5, 0, 1, 1), (c7, 0, 2, 2).

Such descriptor maps are shared among the processes. We assume this is done through a
globally shared container Dglobal that enables any process to concurrently store and retrieve
descriptor maps. To anticipate the question whether this is a potential bottleneck, we show
in Chapter 7 how such globally shared containers can be implemented efficiently in a dis-
tributed fashion. Each descriptor map is identified by a globally unique id. Let iD be the id
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of the descriptor map D. We denote the store operation by Dglobal ← Dglobal ∪ (iD,D) and
the retrieve operation by D ← Dglobal [iD].

A similar container Pglobal is used to share information about the location of chunks. En-
tries in this case are of the form (cid, address), where cid is the unique id that identifies the
chunk in the system and address the identifier of the data provider which stores cid.

Finally, we define Hglobal to be the history of all writes in the system that were assigned
a snapshot version, regardless whether their snapshot was generated or is in the course of
being generated. Entries in this history are of the form (v, (t, o, s, i)), where: v is the snapshot
version assigned to the write; t, the total size of the snapshot after the update; o, the offset
of the update in the snapshot; s, the size of the update; and i, the identifier of the descriptor
map associated to the update. Hglobal enables global sharing of these entries, in a manner
similar to Dglobal . However, rather than retrieving a single entry at a time, we require Hglobal

to be able to supply a whole subsequence of entries whose versions lie between va and vb in
a single step. We denote this operation with Hglobal [va . . . vb].

Taking again the example in Figure 5.3 where white was assigned version 1, dark gray
version 2 and light gray version 3, the corresponding descriptor maps are:

D1 = {(c1, 0, 4, 0), (c2, 0, 4, 4), (c3, 0, 6, 8)}

D2 = {(c4, 0, 3, 3), (c5, 0, 4, 6), (c6, 0, 3, 10)}

D3 = {(c7, 0, 5, 7), (c8, 0, 5, 12)}

Assuming the associated globally unique identifiers of the descriptor maps are i1, i2 and
i3, the history of all writes contains the following entries:

Hglobal = {(1, (14, 0, 14, i1)), (2, (14, 3, 10, i2)), (3, (17, 7, 10, i3))}

5.4 Algorithms

Using the data structures presented above, this section details the algorithms used to read,
write and generate new snapshots. We omit the details of metadata management, which are
presented in Chapter 6. Furthermore, in Section 4.2.1.3 we argued for the need to clone a
BLOB and then eventually merge the updates performed on the clone selectively into an-
other BLOB. Since these operations involve already existing data, they are handled at meta-
data level only and therefore are presented in Chapter 6 as well.

5.4.1 Learning about new snapshot versions

Before being able to read data, a client needs to find out about the versions of the snapshots
that were successfully generated and are available for reading. Since total ordering is guar-
anteed, it is enough to learn about the version of the most recently generated snapshot, as
all snapshots with lower versions are also available for reading.

The most recently generated snapshot, whose version is denoted vg, is maintained by the
version manager and is is exposed to clients through the remote procedure RECENT, that takes
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no arguments and simply returns vg. In order to simplify notation, we refer to a snapshot
whose version is v simply as snapshot version v.

Using the BlobSeer API, at application level vg can be obtained calling the GET_RECENT

primitive, presented in Algorithm 1. GET_RECENT simply invokes RECENT remotely on the ver-
sion manager and then invokes the callback supplied by the application with the result of
RECENT. Note that vg is not necessarily the highest version in the system. Writes using the
BlobSeer API that were assigned higher versions than vg may have successfully completed,
without their snapshot being revealed to the clients yet.

Algorithm 1 Get a recent snapshot version

1: procedure GET_RECENT(callback)
2: v← invoke remotely on version manager RECENT
3: invoke callback(v)
4: end procedure

In order to obtain the total size of a snapshot whose version is v, the client has to call the
GET_SIZE primitive, described in Algorithm 2. Obviously, this version needs to be available
for reading. The primitive queries Hglobal for the extra information stored about v. Once the
total size t has been successfully obtained, the callback is invoked with t as parameter.

Algorithm 2 Get the size of a snapshot

1: procedure GET_SIZE(v, callback)
2: (t, _, _, _)← Hglobal [v]
3: invoke callback(t)
4: end procedure

In Section 4.2.1 two additional primitives were introduced that enable learning about
new versions: SUBSCRIBE and UNSUBSCRIBE. These two primitives register/unregister the in-
terest of the invoking client to receive notifications about newly generated snapshots in the
system. We omit the algorithmic description of these primitives, as they rely on publish-
subscribe mechanisms, which are widely covered in the literature [43, 11]. In this case, the
version manager acts as the publisher of vg each time vg is incremented as the result of suc-
cessful generation of new snapshots.

5.4.2 Reading

Using the primitives presented above, the client can obtain information about snapshots
that are available for reading can consequently can initiate a read of any subsequence of
any snapshot. This is performed using the READ primitive, presented in Algorithm 3, which
consists of the following steps:

1. The client first invokes RECENT on the version manager to obtain vg. If the requested
version is higher than vg or if the requested offset and size overflow the total size of
the snapshot (offset + size > t), then READ is aborted and the supplied callback is invoked
immediately to signal failure.



5.4 – Algorithms 55

2. Otherwise, the client needs to find out what parts of chunks fully cover the requested
subsequence delimited by offset and size from snapshot version v and where they are
stored. To this end, the primitive GET_DESCRIPTORS, detailed in Section 6.3.1, builds the
descriptor map of the requested subsequence.

3. Once it has build the descriptor map of the subsequence, the client proceeds to fetch
the necessary parts of the chunks in parallel from the data providers into the locally
supplied buffer. Although not depicted explicitly in Algorithm 3, if any get opera-
tion failed, the other parallel unfinished get operations are aborted and the callback is
invoked immediately to signal failure to the user.

4. If all these steps have successfully completed, the READ primitive invokes the callback to
notify the client of success.

Algorithm 3 Read a subsequence of snapshot version v into the local buffer

1: procedure READ(v, buffer, offset, size, callback)
2: vg ← invoke remotely on version manager RECENT
3: if v > vg then
4: invoke callback(false)
5: end if
6: (t, _, _, _)← Hglobal [v] ⊲ t gets the total size of the snapshot v
7: if offset+ size > t then
8: invoke callback(false)
9: end if
10: D ← GET_DESCRIPTORS(v, t, offset, size)
11: for all (cid, coffset, csize, roffset) ∈ D in parallel do
12: buffer[roffset .. roffset + csize]← get subsequence [coffset .. coffset + csize] of chunk

cid from Pglobal [cid]
13: end for
14: invoke callback(true)
15: end procedure

5.4.3 Writing and appending

The WRITE and APPEND primitives are described in Algorithm 4. It is assumed that either a
default or a custom partitioning function was configured by the user to split the local buffer
into chunks. This partitioning function is denoted SPLIT and takes a single argument: the
total size of the buffer to be split into chunks. It returns a list of chunk sizes, denoted K,
whose sum adds up to the total size of the buffer.

The main idea behind WRITE and APPEND can be summarized in the following steps:

1. Split the local buffer into |K| chunks by using the partitioning function SPLIT.

2. Get a list of |K| data providers, one for each chunk, from the provider manager.

3. Write all chunks in parallel to their respective data providers and build the correspond-
ing descriptor mapD relative to the offset of the update. Add an entry for each chunk to
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Algorithm 4 Write a the content of a local buffer into the blob

1: procedure WRITE(buffer, offset, size, callback)
2: K← SPLIT(size)
3: P← get |K| providers from provider manager
4: D← ∅

5: for all 0 ≤ i < |K| in parallel do
6: cid← uniquely generated chunk id
7: roffset← ∑

i−1
j=0 K[j]

8: store buffer[roffset .. roffset + K[i]] as chunk cid on provider P[i]
9: D ← D ∪ {(cid, 0,K[i], roffset)}
10: Pglobal ← Pglobal ∪ {(cid, P[i])}
11: end for
12: iD ← uniquely generated id
13: Dglobal ← Dglobal ∪ (iD,D)
14: (va, vg)← invoke remotely on version manager ASSIGN_VERSION_TO_WRITE(offset, size,

iD)
15: BUILD_METADATA(va, vg,D)
16: invoke remotely on version manager COMPLETE(va)
17: invoke callback(va)
18: end procedure

Pglobal . Although not depicted explicitly in Algorithm 4, if any store operation fails, all
other parallel store operations are aborted and WRITE invokes the callback immediately
to return failure.

4. Add the descriptor map D to Dglobal .

5. Ask the version manager to assign a new version number va for the update
(ASSIGN_VERSION_TO_WRITE), then write the corresponding metadata (BUILD_METADATA)
and notify the version manager that the operation succeeded (COMPLETE). Once the ver-
sion manager receives this notification, it can generate the snapshot va at its discretion.

The last step requires some closer consideration. It is the responsibility of the version
manager to assign new snapshot versions, which can be requested by clients through the
ASSIGN_VERSION_TO_WRITE remote procedure call. Since we aim to guarantee total ordering,
new versions are assigned in increasing order. To this end, the version manager keeps only
the latest assigned version, denoted va, which is atomically incremented for each new write
request. Moreover, the version manager also takes the responsibility to add all necessary
information about va (the total size of snapshot version va, offset, size, iD) to the history of all
writes Hglobal . This process is detailed in Algorithm 5.

In the case of append, offset is not specified explicitly, it is implicitly equal to the total size
stored by Hglobal [va − 1]. Since this is the only difference from writes, we do not develop the
pseudo-code for APPEND and ASSIGN_VERSION_TO_APPEND explicitly.

Both vg and va are reported back to the client. Note that since each writer publishes D, it
is possible to establish the composition of any snapshot version by simply going backwards
in the history of writes Hglobal and analyzing corresponding descriptor maps Dglobal [i]. How-



5.4 – Algorithms 57

Algorithm 5 Assign a snapshot version to a write

1: function ASSIGN_VERSION_TO_WRITE(offset, size, iD)
2: (ta, _, _, _)← Hglobal [va]
3: if offset + size > ta then
4: ta ← offset + size
5: end if
6: va ← va + 1
7: Hglobal ← Hglobal ∪ {(va, (ta, offset, size, iD)}
8: Pending← Pending ∪ {va}
9: return (va, vg)
10: end function

ever, such an approach is unfeasible as it degrades read performance as more writes occur
in the BLOB. As a consequence, more elaborate metadata structures need to be maintained.

The BUILD_METADATA function, detailed in Section 6.3.2, is responsible to generate such
newmetadata that both references the descriptor map D and the metadata of previous snap-
shot versions, such as to provide the illusion of a fully independent snapshot version va, yet
keep the performance levels of querying metadata close to constant, regardless of howmany
writes occurred in the system, that is, regardless of how large va is. Moreover, it is designed
to support metadata forward references, introduced in Section 4.2.2. This avoids having to wait
for other concurrent writers to write their metadata first, thus enabling a high-throughput
under write-intensive scenarios. These aspects related to metadata management are dis-
cussed in more detail in Chapter 6.

After the client finished writing the metadata, it notifies the version manager of success
by invoking COMPLETE remotely on the version manager and finally invokes the callback with
the assigned version va as its parameter. At this point, the write operation completed from
the client point of view and it is the responsibility of the versionmanager to publish snapshot
va.

5.4.4 Generating new snapshot versions

The version manager has to generate new snapshots under the guarantees mentioned in
Section 4.2.1: liveness, total ordering and atomicity.

In order to achieve this, the version manager holds two sets: Pending and Completed.
The Pending set holds all versions for which the metadata build process is “in progress”.
More specifically, these are the versions that were assigned to clients through either
ASSIGN_VERSION_TO_WRITE or ASSIGN_VERSION_TO_APPEND, but for which the client didn’t con-
firm completion yet by invoking COMPLETE. The Completed set holds all versions that “are
ready for generation”. More specifically, these are the versions for which a notification has
been received but the corresponding snapshot has not been revealed yet to the readers (i.e.,
vg is lower than all versions in Completed).

Each time a client requests a new version, va is incremented and added to the Pending
set (Line 8 of Algorithm 5). Once a notification of completion for va is received, COMPLETE,
presented in Algorithm 6 is executed on the version manager. Naturally, va is moved from
Pending into Completed to mark that va is ready to be generated. If va is exactly vg + 1, the
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version manager generates vg + 1, increments vg and eliminates it from Completed. This
step can lead to a cascading effect where multiple successive versions, higher that va, that
were reported by clients as completed before va can now themselves be published. This is
why COMPLETE iteratively tries to perform the step until no more completed versions can be
published anymore.

Algorithm 6 Complete the write or append

1: procedure COMPLETE(va)
2: Pending← Pending \ {va}
3: Completed← Completed ∪ {va}
4: while vg + 1 ∈ Completed do
5: vg ← vg + 1
6: Completed← Completed \ {vg}
7: end while
8: end procedure

Using this approach satisfies the guarantees mentioned in Section 4.2.1:

Total ordering implies snapshot va cannot be generated unless themetadata of all snapshots
labeled with a lower version have been fully constructed, which translates into the fol-
lowing condition: all writers that were assigned a version number vi < va notified the
version manager of completion. Since vg is incremented only as long as a notification
of completion for vg + 1 was received, this property is satisfied.

The liveness condition is satisfied assuming that writers do not take forever to to notify the
version manager of completion, because eventually vg will be incremented to reach va.
If a pending writer fails to perform the notification in a predefined amount of time,
then a failure can be assumed and the process of building the metadata can be dele-
gated to any arbitrary process (for example to any metadata provider). This is possible
because both the chunks and their corresponding descriptor map were successfully
written before the client failed (otherwise the client would not have requested a snap-
shot version for its update in the first place). The situation where the client failed after
writing themetadata partially or fully does not lead to inconsistencies: the backup pro-
cess does not need to be aware of this and can safely overwrite any previously written
metadata, as the snapshot has not been revealed yet to the readers.

Atomicity is satisfied because the clients can learn about new snapshot versions only from
the version manager. Since vg is atomically incremented on the version manager, a
call to GET_RECENT that returns a higher version than was previously known by the
client corresponds from the client’s point of view to an instant appearance of a fully
independent snapshot in the system, without any exposure to inconsistent transitory
states.

5.5 Example

We consider the same example previously presented in Figure 5.3 in order to illustrate the
algorithms presented above. For convenience, we repeat it again in this section as Figure 5.4.
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Figure 5.4: Three successive writes (left) and the corresponding snapshots (right)

The scenario we assume is the following: two concurrent writers, light gray and dark
gray start writing at the same time in a blob whose latest snapshot version is 1 and which
consists of three chunks, c1, c2 and c3, that add up to a total of 14 MB (white). In this initial
state, assuming the corresponding descriptor map is labeled i1, we have:

Hglobal = {(1, (14, 0, 14, i1))}

vg = va = 1

Pending = Completed = ∅.

After obtaining a list of data providers able to store the chunks, each writer proceeds to
send the chunks in parallel to the corresponding data providers and add the correspond-
ing chunk descriptors to the local descriptor map D associated to the update. Note that the
writers perform these operations concurrently in full isolation, without any need for syn-
chronization among each other.

Once these steps are complete, each writer generates a globally unique id for D. In order
to be consistent with the notations used in Section 5.3 for the same example, we assume the
globally unique id of D for dark gray is i2, while the id for light gray is i3. Each of the writers
independently adds its local D to Dglobal and asks the version manager to assign a version to
their update by invoking ASSIGN_VERSION_TO_WRITE remotely.

For the purpose of this example, dark gray is first. Thus the version manager increments
va to 2, adds the corresponding entry in the history of writes and adds va to Pending. At this
point,

Hglobal = {(1, (14, 0, 14, i1)), (2, (14, 3, 10, i2))}

vg = 1

va = 2

Pending = {2}

Completed = ∅

Next, light gray asks for a version and is assigned va = 3. This leads to the following



state:

Hglobal = {(1, (14, 0, 14, i1)), (2, (14, 3, 10, i2)), (3, (17, 7, 10, i3))}

vg = 1

va = 3

Pending = {2, 3}

Completed = ∅

Both writers build the metadata associated to their update concurrently by calling
BUILD_METADATA. Again note that there is no need for synchronization. The mechanisms
that make this possible are discussed in more detail in Chapter 6.

In this example, we assume light gray is faster and finishes writing the metadata before
dark gray, thus being the first to invoke COMPLETE on the version manager. Since the meta-
data of light gray depends on the metadata of dark gray (dark gray was assigned a lower
version), the snapshot corresponding to light gray cannot be generated yet, thus vg remains
unchanged, but light gray is marked as completed. The new state is:

Hglobal = {(1, (14, 0, 14, i1)), (2, (14, 3, 10, i2)), (3, (17, 7, 10, i3))}

vg = 1

va = 3

Pending = {2}

Completed = {3}

If at this point any client wants to read the subsequence R, delimited by offset= 5 and
size = 4, the only snapshot version available to read from is 1, corresponding to white. Any
attempt to read from a higher snapshot version fails, as RECENT will return vg = 1.

At some point, dark gray finishes writing the metadata corresponding to its update and
calls COMPLETE on the version manager, which in turn marks dark gray as completed. Since
vg = 1 and both version 2 and 3 belong to Completed, vg is incremented twice and Completed
is emptied, leading to the following final state:

Hglobal = {(1, (14, 0, 14, i1)), (2, (14, 3, 10, i2)), (3, (17, 7, 10, i3))}

vg = 3

va = 3

Pending = Completed = ∅

Now, a client that invokes the GET_RECENT and GET_SIZE primitives obtains 3 and 17 re-
spectively, thus a read on the same subsequence R for snapshot version 3 is successful
this time. First, the client generates the descriptor map D corresponding to R by calling
GET_DESCRIPTORS, which leads to D = {(c4, 2, 1, 0), (c5, 0, 1, 1), (c7, 0, 2, 2)}. Having obtained
D, the client proceeds to fetch all parts of the chunks in parallel from the corresponding data
providers to assemble R in the locally supplied buffer and then notifies the user of success
by invoking the callback.
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M
ETADATA has the role of organizing the chunks in the system in such way as to offer
the illusion of complete and independent snapshot versions despite writing only
differential updates. This chapter describes the data structures and algorithms that

enable efficient management of metadata in order to fill this role.

6.1 General considerations

In Chapter 5 we have introduced a series of versioning-oriented algorithms that generate a
new snapshot of the whole BLOB for each fine-grain update, while exposing all such snap-
shots in a totally ordered fashion to the readers. We have also introduced a series of basic
globally shared metadata structures that enable establishing the composition of snapshots in
terms of chunks, and the location where those chunks are stored.

However, based on that metadata only, the complexity of establishing the composition
of snapshots is linear with respect to the number of updates that occur on the BLOB. This
leads to a read access performance degradation that is not acceptable. Thus, there is a need
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Figure 6.1: Shadowing: updates propagate to the root inode

to design and maintain additional metadata structures that are able to keep the level of read
performance from the BLOB the same, regardless how many times it was updated.

In this context, balanced trees (in particular B-trees [137, 54]) are used by most file
systems to maintain the composition of files and directories. Unlike traditional indirect
blocks [91], B-trees offer worst-case logarithmic-time key-search, insert, and remove. This
property makes B-trees highly appealing in our context. However, in our context each up-
date to the BLOB generates a new snapshot that offers the illusion of an independent object.
Using a B-tree for each snapshot is thus not feasible due to space constraints.

In order to deal with this issue, several versioning file systems, such as [58, 62], that
support snapshots rely on a powerful mechanism called shadowing. Shadowing means to
build snapshots by using copy-on-write for each on-disk data block that needs to be updated.
Since after an update the on-disk location of some data blocks has changed, the metadata of
the filesystem (traditionally organized into an inode hierarchy) has to be updated to reflect
this change as well. With shadowing this is performed by using copy-on-write for inodes
in a bottom-up manner, starting from the ones that point to the data blocks and going up
towards the root inode. An example is shown in Figure 6.1, where the initial inode structure
of a filesystem (white) points to the data blocks of two files, each of which is described by an
indirect inode block. Assuming that the leftmost data block needs to be changed, shadowing
uses copy-on-write for all inodes on the path from the data block to the root inode (gray) in
order to build a new snapshot of the filesystem.

Adapting B-trees to support shadowing however is not trivial. Traditional B-tree main-
tenance methods [97, 85, 84] try to minimize the cost of rebalancing (necessary to guarantee
logarithmic operations) by keeping the changes as local as possible in order to avoid having
to reorganize the tree nodes all the way up to the root. In order to do so, they introduce ad-
ditional references among tree nodes that aid in improving locality. While these methods are
highly efficient for simple B-trees, they cannot be easily adapted to support shadowing, be-
cause the extra references can cause “chain-reactions”, i.e. a simple change ultimately leads
to the whole B-tree having to be copied.

Recent work [131] aims at adapting B-trees for shadowing. A series of algorithms are pre-
sented that organize the B-tree in such way that references do not cause “chain-reactions”
and thus large parts of the B-tree can be shared between snapshots. Moreover, the proposed
algorithms also aim to be efficient when the operation on the B-tree are performed concur-
rently. In order to do so, lock-coupling [16] (or crabbing) is used as a synchronization mech-
anism (i.e. locking children before unlocking the parent). This ensures the validity of a tree
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path that a thread is traversing without prelocking the entire path and is deadlock-free. The
authors claim to attain performance levels close to regular B-trees even under concurrency,
despite removing the extra references.

This approach is apparently feasible to adapt for use in our context, because it introduces
support for both shadowing and concurrent access, while still inheriting the worst-case loga-
rithmic time guarantee. However, in our context, as mentioned in Section 4.1.3, the metadata
grows to huge sizes and needs to be maintained in a distributed fashion for scalability pur-
poses. This in turn means that a distributed locking scheme would be necessary to make this
approach work, which is known to be a problematic issue.

Moreover, a locking scheme implies that access tometadata is synchronized, which limits
the potential of attaining efficient write/write concurrency. As explained in Section 4.2.2,
ideally synchronization at metadata level should be avoided altogether bymeans ofmetadata
forward references. Essentially this means to organize the references in the metadata of a
snapshot in such way that it is possible to “guess” the references to the metadata of lower
snapshot versions even though it has not been written yet, under the assumption that it will
be eventually written and thus a consistent state is obtained.

To this end, we propose in this chapter a set of metadata structures and algorithms ori-
ented towards shadowing that overcome the limitations of B-trees, while still offering worst-
case logarithmic access times.

6.2 Data structures

We organize metadata as a distributed segment tree [174], and associate one to each snapshot
version of a given BLOB. A segment tree is a binary tree in which each node is associated
to a subsequence of a given snapshot version vi of the BLOB, delimited by offset and size.
In order to simplify the notation, we denote offset with xi and offset + size with yi and refer
to the subsequence delimited by offset and size as segment [xi, yi]. Thus, a node is uniquely
identified by the pair (vi, [xi, yi]). We refer to the association between the subsequence and
the node simply as the node covers (vi, [xi, yi]) (or even shorter, the node covers [xi, yi]).

For each node that is not a leaf, the left child covers the left half of the parent’s segment,
and the right child covers the right half of the parent’s segment. These two children are
(vli, [xi, (xi + yi)/2]) and (vri, [(xi + yi)/2, yi]). Note that the snapshot version of the left
child vli and right child vri must not necessarily be the same as vi. This enables the segment
trees of different snapshot versions to share whole subtrees among each other. The root of
the tree is associated the minimal segment [xi, yi] such that it covers the whole snapshot vi.
Considering ti the total size of the snapshot vi, the associated root covers [0, ri], where ri is
the smallest power of two greater than ti.

A node that is a leaf, covers a segment whose length is lsize, a fixed size that is a power of
two. Each leaf holds the descriptor map Di, relative to xi, that makes up the subsequence. In
order to limit fragmentation, the descriptor map is restricted to hold not more that k chunk
descriptors, which we call its fragmentation threshold.

Thus, nodes are fully represented by (key, value) pairs, where key = (vi, [xi, yi]) and
value = (vli, vri,Di). For leaves vli and vri are not defined, while Di 6= ∅. For inner nodes,
vli and vri hold the version of the left and right child, while Di = ∅.
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Figure 6.2: Four writes/appends (left) and the corresponding composition of the leaves
when lsize = 4 (right)
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Figure 6.3: Segment tree: leaves are labeled with the descriptor maps, inner nodes with the
segments they cover

Figure 6.2 depicts an example of four consecutive updates that generated four snapshots
v1..v4, whose version numbers are 1..4. The updates are represented in Figure 6.2(a): each
written chunk is a rectangle, chunks from the same update have the same color, and the shift
on the X-axis represents the absolute offset in the blob. v1 and v3 correspond to appends,
while v2 and v4 correspond to writes.

This series of appends and writes results in the snapshots presented in Figure 6.2(b). To
each of these snapshots, a segment tree is associated, for which lsize = 4. The leaves of the
segment trees thus cover the disjoint segments [0, 4], [4, 8], [8, 12], [12, 16]. Some of the leaves
are shared, with a total of 8 distinct leaves, labeled D1..D8 after the descriptor maps that
describe their composition.

Finally, the full segment trees are depicted in Figure 6.3, where the inner nodes are la-
beled with the segment they cover and their links to the left and right child are represented
as arrows. Notice how entire subtrees are shared among segment trees: for example, the
right child of the root of black (v4, [0, 16]) is light gray (v3, [8, 16]).

All tree nodes associated to the BLOB are stored in the globally shared container
Nodesglobal as (key, value) pairs. We denote the store operation by Nodesglobal ← Nodesglobal ∪
(key, value) and the retrieve operation by Nodesglobal ← Nodesglobal [key]. Details about how
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to implement such containers efficiently in a distributed fashion are given in Chapter 7.

6.3 Algorithms

6.3.1 Obtaining the descriptor map for a given subsequence

In order to read a subsequence R delimited by offset and size from the snapshot version
v, we introduced the READ procedure in Section 5.4.2, which relies on the GET_DESCRIPTORS

primitive to determine the descriptor map D corresponding to R before fetching the actual
chunks from the data providers.

Algorithm 7 Get the descriptor map for a given subsequence

1: function GET_DESCRIPTORS(v, offset, size)
2: D ← ∅

3: Q← ROOT(v)
4: while Q 6= ∅ do
5: ((vi, [xi, yi]), (vli, vri,Di))← extract node from Q
6: if Di 6= ∅ then ⊲ if it is a leaf, extract the chunk descriptors
7: D ← D∪ INTERSECT(Di, xi, [xi, yi] ∩ [offset, offset+ size], offset)
8: else ⊲ if it is an inner node, find the children that cover the range
9: if [offset, offset+ size] ∩ [xi, (xi + yi)/2] 6= ∅ then
10: Q← Q ∪ Nodesglobal [(vli, [xi, (xi + yi)/2])]
11: end if
12: if [offset, offset+ size] ∩ [xi + yi/2, yi] 6= ∅ then
13: Q← Q ∪ Nodesglobal [(vri, [(xi + yi)/2, yi])]
14: end if
15: end if
16: end while
17: return D
18: end function

The GET_DESCRIPTORS function, presented in Algorithm 7, is responsible to construct D
from the segment tree associated to the snapshot. This is achieved by walking the segment
tree in a top-down manner, starting from the root and reaching towards the leaves that in-
tersect R. Once such a leaf is found, its chunk descriptors from Di that are part of R are
extracted and added to D.

The chunk descriptors of the leaf cannot be directly added to D, because the offsets in Di

are relative to xi, which is the left end of the segment covered by the leaf, while the offsets in
D need to be relative to offset, which is the parameter supplied to READ.

For this reason, the offsets of the extracted chunk descriptors need to shifted accordingly.
This is performed by the INTERSECT function, presented in Algorithm 8.

INTERSECT has four arguments: the first two arguments determine the source descriptor
map Ds where to extract the chunk descriptors from, and the offset xs to which its chunk
descriptors are relative. The third argument is the segment [xi, yi] that delimits R, and fi-
nally the fourth argument is the offset xd to which the chunk descriptors of the resulting
destination descriptor map Dd are relative to.
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Algorithm 8 Intersect a chunk map with a given segment

1: function INTERSECT(Ds, xs, [xi, yi], xd)
2: Dd ← ∅

3: rod ← max(xs − xd, 0)
4: for all (cids, cos, css, ros) ∈ Ds such that [xi, yi] ∩ [xs + ros, xs + ros + css] 6= ∅ do
5: cod ← cos +max(xi − xs − ros, 0)
6: csd ← min(yi −max(xi, xs + ros), css)
7: Dd ← Dd ∪ {(cids, cod, csd, rod)}
8: end for
9: return Dd

10: end function

In order to illustrate how INTERSECT works, let’s take again the example presented in
Figure 6.2. Assuming R is delimited by xi = 3 and yi = 7 and the source descriptor map
is D3, we have xs = 4 and xd = 3. All three chunk descriptors (c1, 4, 1, 0), (c2, 0, 1, 1) and
(c3, 0, 2, 2) belonging to D3 intersect R. xs − xd = 1, thus the relative offsets are incremented
by 1. Moreover, only the first unit of c3 is part of R, such that the chunk size of the new
chunk descriptor gets adjusted accordingly: min(7−max(3, 4+ 2), 2) = 1. Thus, in the end
Dd contains the following chunk descriptors: (c1, 4, 1, 1), (c2, 0, 1, 2) and (c3, 0, 1, 3).

Once all chunk descriptors from all the leaves that intersect R have been extracted, ad-
justed to offset and added to D, GET_DESCRIPTORS returns D as the final result.

6.3.2 Building the metadata of new snapshots

Once the version manager assigned a new version va for the update, the segment tree con-
struction can begin. The BUILD_METADATA procedure, described in Algorithm 9 is responsible
for that, starting from the following parameters: va, the assigned snapshot version, vg, the
version of a recently generated snapshot and D, the descriptor map of the update corre-
sponding to va. Note that vg is simply the value returned by ASSIGN_VERSION_TO_WRITE or
ASSIGN_VERSION_TO_APPEND. It is possible that the version manager has published higher ver-
sions by the time BUILD_METADATA is called.

The segment tree construction is performed in a bottom-up manner, starting from the
leaves and working towards the root. It consists of two stages. In the first stage, the leaves
corresponding to the update are built, while in the second stage the inner nodes and the root
are built. Only the subtree whose inner nodes cover at least one of the new leaves is build.
Any inner node which does not cover at least one of the new leaves is shared with the most
recent segment tree assigned a lower version vi < va, which has built that inner node. This
way, whole subtrees are shared among versions without breaking total ordering.

6.3.2.1 Building the leaves

First of all, the set of new leaves corresponding to the update of va, whose offset is oa and
size sa, must be build. A leaf corresponds to the update if its segment [xi, xi + lsize] covers
[oa, oa + sa]. For each such leaf, the corresponding descriptor map Di, relative to xi must be
calculated. This is performed by the LEAF function, presented in Algorithm 10.
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Algorithm 9 Build the metadata for a given snapshot version

1: procedure BUILD_METADATA(va, vg,D)
2: W ← Hglobal [vg . . . va]
3: (ta, oa, sa, _)←W[va]
4: xi ← ⌊oa/lsize⌋ × lsize ⊲ largest multiple of lsize smaller or equal to offset oa
5: Q← ∅

6: repeat ⊲ determine all leaves that cover the written chunks
7: Q← Q ∪ {((va, [xi, xi + lsize]), (0, 0, LEAF(va, vg, [xi, xi + lsize],D,W)))}
8: xi ← xi + lsize
9: until xi + lsize < oa + sa
10: T ← ∅

11: while Q 6= ∅ do ⊲ build inner nodes in bottom-up fashion
12: ((vi, [xi, yi]), (vli, vri,Di))← extract any node from Q
13: T ← T ∪ ((vi, [xi, yi]), (vli, vri,Di))
14: if (vi, [xi, yi]) 6= ROOT(va) then
15: if (vi, [xi, yi]) has a right sibling then
16: (xs, ys)← (yi, 2× yi − xi) ⊲ [xs, ys] is the segment covered by the sibling
17: else ⊲ (vi, [xi, yi]) has a left sibling
18: (xs, ys)← (2× xi − yi, xi)
19: end if
20: vs ← va ⊲ vs is the version of the sibling, initially assumed va
21: if ∃((vs, [xs, ys]), (vl j, vrj,Dj)) ∈ Q then ⊲ sibling is in Q and has version va
22: Q← Q \ {((vs, [xs, ys]), (vl j, vrj,Dj))} ⊲ move sibling to T
23: T ← T ∪ {((vs, [xs, ys]), (vl j, vrj,Dj))}
24: else ⊲ sibling is not in Q, it belongs to a lower version
25: (vs, (ts, os, ss, _))← (va − 1,W[va − 1])
26: while vs > vg and [os, os + ss] ∩ [xi, yi] = ∅ do ⊲ determine vs
27: vs ← vs − 1
28: (ts, os, ss, _)←W[vs]
29: end while
30: end if
31: if xi < xs then
32: Q← Q ∪ {((vi, [xi, ys]), (vi, vs,∅))} ⊲ add parent to Q
33: else
34: Q← Q ∪ {((vi, [xs, yi]), (vs, vi,∅))}
35: end if
36: end if
37: end while
38: Nodesglobal ← Nodesglobal ∪ T
39: end procedure



68 Chapter 6 – Metadata management

Algorithm 10 Build the descriptor map for a given leaf

1: function LEAF(va, vg, [xi, yi],Da,W)
2: (_, oa, sa, _)←W[va]
3: (tg, og, _, _)←W[vg]
4: Di ← INTERSECT(Da, oa, [oa, oa + sa] ∩ [xi, yi], xi)
5: vj ← va − 1
6: Reminder ← [xi, yi] \ [oa, oa + sa]
7: while vj > vg and Reminder 6= ∅ do
8: (tj, oj, sj, ij)←W[vj]
9: for all [xj, yj] ∈ Reminder ∩ [oj, oj + sj] do
10: Di ← Di∪ INTERSECT(Dglobal [ij], oj, [xj, yj], xi)
11: Reminder ← Reminder \ [xj, yj]
12: end for
13: vj ← vj − 1
14: end while
15: if xi < tg and Reminder 6= ∅ then
16: ((vj, [xj, yj]), (vl j, vrj,Dj))← ROOT(vg)
17: while xj 6= xi and yj 6= yi do
18: if xj < xi then
19: xj ← xj + lsize
20: (vl j, vrj,Dj)← Nodesglobal [(vl j, [xj, yj])]
21: else
22: yj ← yj − lsize
23: (vl j, vrj,Dj)← Nodesglobal [(vrj, [xj, yj])]
24: end if
25: end while
26: Di ← Di∪ INTERSECT(Dj, xi,Reminder ∩ [xi, yi], xi)
27: end if
28: if |Di| > k then
29: Di ← DEFRAGMENT(Di)
30: end if
31: return Di

32: end function
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In order to obtain Di, the LEAF function must extract the chunk descriptors of D that
intersect with the segment of the leaf, adjusting their relative offsets from the original offset
oa of D to xi, the offset of the leaf.

Since the leaf may not be fully covered by [oa, oa + sa], the remaining part of the leaf,
denoted Reminder, may cover chunks belonging to snapshot versions lower than va. If the
snapshot va − 1 has already been generated, that is, vg = va − 1, extracting the chunk de-
scriptors that fill Reminder can be performed directly from the descriptor map of the leaf that
covers [xi, yi] in the segment tree of the snapshot va − 1.

If vg < va − 1, then the status of the metadata for all concurrent writes, with assigned
version vj such that vg < vj < va, is uncertain. Therefore, the segment tree of snapshot va− 1
cannot be relied upon to fill Reminder, as it may not have been generated yet.

However, since a write which was assigned a snapshot version vj requested a version
after it added to Dglobal its full descriptor map Dj, the Reminder of the leaf can be gradually
filled by working backwards in the history of writes starting from va − 1 and extracting the
chunk descriptors that overlap with the leaf, while adjusting the relative offset to xi. This
step might seem costly, but we need to observe that Dglobal has to be queried to obtain Dj only
if Reminder intersects with the update of vj, which in practice is rarely the case. Obviously,
once vg has been reached, the process stops, because the leaf of vg can be consulted directly.

At this point, Di has been successfully generated. It is however possible that overlapping
updates have fragmented the segment [xi, yi] heavily, such that Di contains a lot of chunk
descriptors. This is turn reduces access performance, because many small parts of chunks
have to be fetched. For this reason, if the number of chunk descriptors goes beyond the
fragmentation threshold, that is, |Di| > k, a healing mechanism for the leaf is employed.
More precisely, the DEFRAGMENT primitive, which is responsible for this task, reads the whole
range [xi, yi] and then applies the SPLIT primitive to obtain less then k chunks. These chunks
are written back to the data providers and Di is reset to contain their corresponding chunk
descriptors. This effectively reorganizes Di to hold less than k chunk descriptors.

6.3.2.2 Building the inner nodes

Having generated the set of leaves for the snapshot va, BUILD_METADATA proceeds to build the
inner nodes of the segment tree, up towards the root. This is an iterative process: starting
from the set of leaves Q, any two siblings for which at least one of them belongs to Q are
combined to build the parent, which in turn is eventually combined, up to the point when
the root itself is obtained and Q becomes empty.

In order to find two siblings that can be combined, an arbitrary tree node
((va, [xi, yi]), (vli, vri,Di)) is extracted from Q and its sibling is determined by calculation.
This tree node is either the left child of its parent and thus it has a right sibling or it is the
right child of its parent and thus has a left sibling. In either case, the segment [xs, ys] cov-
ered by the sibling can be easily calculated. Thus, the only missing information in order to
completely determine the sibling is its version vs. This version however needs more closer
attention. If the sibling belongs itself toQ, then vs = va. Otherwise, vs is the version assigned
to the most recent writer for which vs < va and the corresponding update of vs intersects
with [xs, ys], which means the sibling was generated or is in the process of being generated
by that writer. Once vs is established, both versions of the children are available and thus
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the parent can be generated.

Since the sibling may correspond to a lower snapshot version whose metadata is being
concurrently generated, it is unknown whether the sibling was indeed generated yet. Thus
the reference of the parent to it may be a potential metadata forward reference. Since snapshots
are revealed to the readers only after the metadata of all lower version snapshots was writ-
ten, the segment tree associated to va will be consistent at the time snapshot va is revealed to
the readers.

In any of the two cases, both the node (which belongs to Q) and its sibling (if it belongs
to Q) are moved from Q to T, which holds the set of all tree nodes belonging to va that have
been successfully combined. Once the root of the segment tree has been generated, T holds
the whole subtree corresponding to va and is committed to Nodesglobal . At this point the
metadata build process has successfully completed and BUILD_METADATA returns.

6.3.3 Cloning and merging

In Section 4.2.1.3 we introduced two special primitives: CLONE and MERGE. The CLONE primitive
is used to create a new BLOBwhose initial snapshot version duplicates the content of a given
snapshot of an already existing BLOB. MERGE is used to write a region of a specified snapshot
version of a BLOB into another BLOB. It is typically used in conjunction with CLONE to isolate
updates to a BLOB and then selectively merge them back later in the original BLOB once all
semantic conflicts have been eliminated.

We describe here how to perform these operations with minimal overhead, relying on
metadata manipulation alone. In order to do so, we extend the idea of physically sharing
the unmodified content between snapshots of the same BLOB to physically sharing the un-
modified content between snapshots of different BLOBs as well.

So far, the id of the BLOB was omitted from the algorithmic notation for simplification
purposes, because the same BLOB was always concerned. However, every data structure
presented so far is implicitly maintained for each BLOB separately. Because CLONE and MERGE

operate on different BLOBs, this simplified notation needs to be extended accordingly. More
specifically, we refer to the history of writes Hglobal associated to the BLOB identified by id as
Hid,global . Similarly, Dglobal becomes Did,global , while Nodesglobal becomes Nodesid,global . More-
over, all functions that access global containers receive id additionally as their first parame-
ter, which is used to represent the fact that the functions operate on the global containers of
the BLOB identified by id.

The CLONE primitive is described in Algorithm 11. It simply tests whether the source
snapshot v of BLOB id was already generated. If this is not the case, failure is returned.
Otherwise, it generates a new id new_id for the clone and creates its corresponding glob-
ally shared containers Hnew_id,global , Dnew_id,global and Nodesnew_id,global , which are initialized
accordingly. Since the clone shares its data and metadata completely with the original, this
initialization step is minimal: a stub entry is inserted in the history of writes to indicate that
the clone has a total initial size of t, an empty descriptor map is created (indicating that no
update occurred) and finally the root of the segment tree of v is copied into Nodesnew_id,global .

MERGE, described in Algorithm 12 is very similar to WRITE, which is covered in Sec-
tion 5.4.3. Unlike WRITE however, it does not need to write any chunks and generate their
corresponding descriptor map, but merge already existing data from a source snapshot sv of
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Algorithm 11 CLONE

1: procedure CLONE(id, v, callback)
2: if ROOT(id, v) = ∅ then
3: invoke callback( f ailure)
4: else
5: ((v, [x, y]), (vl, vr,D))← ROOT(id, v)
6: new_id← generate unique id
7: (t, _, _, _)← Hid,global [v]
8: Hnew_id,global ← {(1, (t, 0, t,−1))}
9: Dnew_id,global ← ∅

10: Nodesnew_id,global ← {((1, [x, y]), (vl, vr,D))}
11: invoke callback(new_id)
12: end if
13: end procedure

Algorithm 12 MERGE

1: procedure MERGE(sid, sv, soffset, size, did, doffset, callback)
2: if Hsid,global [v] = ∅ then
3: invoke callback(−1)
4: end if
5: (t, _, _, _)← Hsid,global [v]
6: if soffset+ size > t then
7: invoke callback(−1)
8: end if
9: D ← GET_DESCRIPTORS(sid, sv, t, soffset, size)
10: iD ← uniquely generated id
11: Ddid,global ← Ddid,global ∪ (iD,D)
12: (va, vg)← invoke remotely on version manager ASSIGN_WRITE(did, offset, size, iD)
13: BUILD_METADATA(did, va, vg,D)
14: invoke remotely on version manager COMPLETE(did, va)
15: invoke callback(va)
16: end procedure
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BLOB sid to a destination BLOB did. This source data is delimited by soffset and size and is
merged into BLOB did starting at doffset, generating a new snapshot whose version number is
returned by the callback. The descriptor map D corresponding to soffset and size is obtained
by inquiring the segment tree of sid directly though GET_DESCRIPTORS(sid, sv, t, soffset, size).
Once D has been assembled, the process continues in the same way as with writes and
appends: D is added to the global descriptor map, a new snapshot version for the merge is
requested from the version manager, the newmetadata for this new snapshot version is gen-
erated by a call to BUILD_METADATA(did, va, vg,D), success is signaled to the version manager
and finally the callback is invoked with the new snapshot version as its parameter.

6.4 Example

We consider the same example from Figure 6.2 in order to illustrate the algorithms presented
above. We omit illustrating how to read from the segment tree in order to obtain the descrip-
tor map of a subsequence in the BLOB (as this operation is straightforward) and concentrate
on the generation of new segment trees. For convenience, Figure 6.2 is repeated in this sec-
tion as Figure 6.4.

The assumed scenario is the following: after an initial append on to the BLOB (white)
which was assigned version 1 (snapshot v1), three concurrent writers: dark gray, light gray
and black start writing to the BLOB. We assume all three have finished writing all their data
and have requested each a version number for their update from the version manager. Their
assigned version numbers are 2 . . . 4, corresponding to the snapshots v2 . . . v4. Further, we
assume that all three writers were assigned a snapshot version before any of them finished
writing the metadata, that is, vg = 1 in all cases.

We consider the segment tree generation for black only, leaving the segment tree genera-
tion for white, dark gray and light gray as a “homework” to the reader.

In the case of black, va = 4 and vg = 1, with D = {(c6, 0, 5, 2)}. The first step in
BUILD_METADATA is to extract information about all versions between vg and va from the glob-
ally shared history of writes into the local variable W. Next, W is queried for information
about black’s update: the total size of snapshot: ta = 16, the offset of the update in the BLOB:
oa = 2 and the size of the update: sa = 5.

In the first stage, the black leaves are generated. Assuming lsize = 4, there are two leaves
that overlap with the update of black: the leftmost leaf covers segment [0, 4] while the right
most leaf covers segment [4, 8]. For each of the leaves, the corresponding descriptor maps
must be determined. They are depicted in Figure 6.4(b): D7 for the leftmost leaf and D8 for
the rightmost leaf. LEAF is responsible to build both D7 and D8.

The descriptor map of the leftmost leaf is obtained by calling LEAF(4, 1, [0, 4],D,W). First,
we determine what parts of chunks belonging to the black update are covered by the leaf
and build their chunk descriptor map Di. This is the result of INTERSECT(D, 2, [2, 7]∩ [0, 4], 0),
which results in Di = {(c6, 0, 2, 2)}.

Since the leaf was not fully covered by the update (Reminder = [0, 2]), the composi-
tion of the remaining part of the leaf is yet to be determined. In order to do that, the
history of writes is walked backwards down to v1 in an attempt to fill Reminder. In this
case, neither the update of v3 (which covers [11, 16]) nor the update of v2 (which cov-
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Figure 6.4: Four writes/appends (left) and the corresponding composition of the leaves
when lsize = 4 (right)

ers [6, 11]) intersects with [0, 2]. However, since the segment tree of v1 is complete, the
composition of Reminder can be simply extracted from the descriptor map of the corre-
sponding leaf that covers [0, 4] in v1, which is D1. Thus, Di = {(c6, 0, 2, 2)} ∪ INTERSECT

(D1, 0, [0, 2], 0) = {(c1, 0, 2, 0), (c6, 0, 2, 2)}. Assuming the fragmentation threshold k is larger
than 1, there is no need to defragment the leaf, thus the result is final and corresponds to D7.

The descriptor map of the rightmost leaf is obtained in a similar fashion. In this case,
the corresponding call to leaf is LEAF(4, 1, [4, 8],D,W). The part of the leaf that is covered
the black update is INTERSECT(D, 2, [2, 7] ∩ [4, 8], 4), thus Di = {(c6, 2, 3, 0)} and Reminder =
[3, 4]. Walking backwards through the history of writes reveals v2 as the most recent snap-
shot whose segment tree has not been generated yet and whose update fills Reminder. Thus,
it’s descriptor map needs to be consulted in order to extract the corresponding chunk de-
scriptor, leading to Di = {(c6, 2, 3, 0)} ∪ INTERSECT (Dglobal [i2], 6, [4, 8], 4) = {(c6, 2, 3, 0),
(c3, 1, 1, 3)}. Again, there is no need to defragment the leaf, thus Di is final and equals D8.

Now that all the leaves have been generated, the second stage consists in building rest of
the black segment tree up to the root. Initially,

T = ∅

Q = {((4, [0, 4]), (_, _,D7)), ((4, [4, 8]), (_, _,D8))}

Our algorithm does not make any assumption about which node is extracted first, but
for the purpose of this example we assume the first node is extracted. This leads to:

T = {((4, [0, 4]), (_, _,D7))}

Q = {((4, [4, 8]), (_, _,D8))}

Since the first node is the black leftmost leaf, it has a right sibling, which is the black right-
most leaf (v4, [4, 8]) ∈ Q. Thus, the remaining node in Q is extracted and added to T. Since
the version of the sibling is known, the parent of the two black leaves can be determined and
is added to Q. At this point,
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Figure 6.5: Metadata forward references for segment trees: the light-gray segment tree (dot-
ted pattern) has not been generated yet, thus the reference of the black root to its right child
(semi-dotted pattern) is a forward reference

T = {((4, [0, 4]), (_, _,D7)), ((4, [4, 8]), (_, _,D8))}

Q = {((4, [0, 8]), (4, 4,∅))}

Since Q is nonempty, a new iteration is performed. The only node in Q is extracted,
leaving Q empty. The node is a left child of its parent, thus it has a right sibling which covers
[8, 16]. This time however its sibling does to belong to Q, thus it it belongs to the segment
tree of the most recent lower snapshot version whose update intersects [8, 16]. ConsultingW
reveals this version to be 3, thus the sibling is (3, [8, 16]). Note that it does not matter whether
this sibling actually exists in order to determine its parent. The reference of the parent to the
sibling might be a potential metadata forward reference, as shown in Figure 6.5. The parent
is simply added to Q, which leads to:

T = {((4, [0, 4]), (_, _,D7)), ((4, [4, 8]), (_, _,D8)), ((4, [0, 8]), (4, 4,∅))}

Q = {((4, [0, 16]), (4, 3,∅))}

Q is again nonempty, thus a new iteration is performed again. The node inQ is extracted,
leavingQ empty. Since the node is the root of the segment tree, it is directly added T, leading
to the final state:

T = {((4, [0, 4]), (_, _,D7)), ((4, [4, 8]), (_, _,D8)), ((4, [0, 8]), (4, 4,∅)), ((4, [0, 16]), (4, 3,∅))}

Q = ∅

Now that Q is empty, the black segment tree generation is complete. T holds the set of
black nodes, which is finally added to Nodesglobal .
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T
HE algorithms and data structures presented in the previous chapters are based on two
high-level abstractions: (1) remote procedure calls that can be executed efficiently in
parallel and (2) globally shared containers that support efficient queries on key-value

pairs. Furthermore, several important aspects such as fault tolerance, persistency, allocation
strategy for new chunks, etc. have been omitted from the presentation in order to simplify
understanding.

This chapter discusses the aforementioned details, focusing on the technical side and
proposing an event-driven implementation that enables obtaining good performance in
practice.

7.1 Event-driven design

As explained in Section 4.2.1, an asynchronous access interface to BLOBs is very important in
the context of I/O intensive, distributed applications because it provides better decoupling
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Figure 7.1: Implementing event-driven programming: the proactor pattern

of I/O from computation, which in turn enables scalability to a large number of participants.

Event-driven programming [118, 35] is one of the most robust ways to implement an
asynchronous system in practice. Instead of viewing applications as sequential processes
that initiate communication among each other, in event-driven programming applications
have a reactive behavior: callbacks are executed as a reaction to incoming events.

Event-based systems often bear a strong resemblance to state machines. Each incoming
event leads the system into a new state. Understanding a distributed application that is
coded as a series of responses to different events is however not easy when there are a large
number of interactions, because it is much harder to visualize the execution flow.

Therefore, in order to facilitate a better understanding, an event-driven model was not
used explicitly throughout the presentation of the algorithms so far. The use of callbacks
was limited to the interactions with the outside, strictly for the purpose of matching with
the BLOB access primitive prototypes defined in Section 4.2.1.

However, in the real BlobSeer implementation, event-driven programming is at the core,
which enables leveraging asynchrony properly. Our implementation proposal is based on
the Proactor pattern [22], illustrated in Figure 7.1. In the Proactor pattern, all asynchronous
operation executed by the system are handled by the asynchronous operation processor. In
order to schedule a new asynchronous operation, the code to be executed together with
a completion handler (callback) is dispatched to the operation processor. Upon successful
completion of an operation, a corresponding completion event is generated by the operation
processor and enqueued in the completion event queue. In parallel, the proactor is responsible
to dequeue and demultiplex the events through the asynchronous event demultiplexer, which
then are dispatched to the corresponding callback as arguments.

The design and execution of callbacks needs careful consideration. Events are indepen-
dent from each other, bringing the potential to execute their corresponding callbacks in a
highly parallel fashion. However, this potential can be achieved only if synchronization
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Figure 7.2: Event-based layer design: each layer reacts to the layers below it and generates
higher-level events

between callbacks is avoided as much as possible. To decouple callbacks, the BlobSeer im-
plementation adopts several principles borrowed from functional programming: first-order
functions, closures and co-routines [148, 8]. These principles bring several benefits in the
context of large-scale, distributed applications [146].

The power of event-driven programming comes from the fact that callbacks can act them-
selves as initiators of asynchronous operations, which enables defining the whole execution
flow as reactions to events. The BlobSeer implementation leverages this principle to build
event-driven layers, as shown in Figure 7.2. Each layer reacts to events generated by the
lower layers and generates itself higher-level events that are reacted upon by the higher
layers.

7.1.1 RPC layer

The RPC layer is responsible to mediate communication between all other layers of BlobSeer
by means of asynchronous remote procedure calls [3]. Each remote procedure call is initi-
ated by the higher-level layers on the client side, and triggers a corresponding server-side
event that encapsulates the parameters of the RPC. Once the server side is done processing
the event, it triggers in turn a completion event on the client side. The client side event
encapsulates the result and is dispatched to the callback that was associated with the RPC.

All details of communication such as socket management, data transfers and parameter
serialization are handled transparently by the RPC layer. We implemented the RPC layer on
top of ASIO [73], a high-performance asynchronous I/O library that is part of the Boost [1]
collection of meta-template libraries. It is based on the event-driven design first introduced
in ACE [65].

Since each client needs to communicate with several servers in parallel, a simple solution
that opens a new socket for each RPC request does not scale. In order to deal with this issue,
we introduced two optimizations:
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Figure 7.3: RPC layer optimizations: socket reusal, request buffering and aggregation

Socket reusal. Both the client side and the server side of the RPC layer have a limited num-
ber of communication channels (TCP sockets) they can use at the same time. These
sockets are organized as a socket pool, with the upper limit chosen in such way as to
optimize the trade-off between speedup gained by increasing the number of parallel
connections, and the slowdown paid for their management. As long as the upper limit
is not reached yet, newly initiated RPCs will open and use a new socket. Once the
limit is reached, newly initiated RPCs will be buffered and scheduled to reuse the first
socket to the same server that becomes available (if such a socket exists) or to open a
new socket as soon as possible.

Request aggregation. While waiting for an existing or new socket to become available, it
is possible that many RPC requests accumulate for the same destination. In this case,
when the socket becomes available, all RPC requests can be aggregated and sent as a
single request to the server side. This optimization greatly reduces latency when the
number of accumulated RPC requests for the same destination is large.

An example is provided in Figure 7.3. Three RPCs, labeled 1, 2, 3 are initiated by the
client side to the same server. RPC 1 was initiated first and triggered a new socket to be
opened. Assuming the limit of the client socket pool has been reached when RPC 2 and
3 are initiated, no more new sockets can be opened and RPC 2 and 3 are buffered. After
the reply for RPC 1 arrived, the same socket is reused for RPC 2 and 3. Both RPC requests
are aggregated and sent to the server side as a single request. Once the results have been
received and the corresponding completion events (cevents) dispatched, the socket can be
safely closed and its slot in the socket pool freed for other potential requests that wait for
opening a new socket.

An important observation about RPC buffering is necessary. Since the parameters of
RPCs can grow to large sizes (for example put /get chunk), it is important to use zero-copy
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techniques in order to minimize the buffering overhead, both in space and time [92]. Fur-
thermore, choosing the right buffering strategy has also a large impact on performance [21].

7.1.2 Chunk and metadata repositories

The repository layer acts as a high-performance remote key-value store, responsible to store
and later retrieve chunks (chunk repository) or small metadata objects such as distributed
segment tree nodes (metadata repository).

Since from an abstract point of view, chunks are objects themselves, the natural choice
might seem to use a universal object repository, such as Redis [173] and MemCached [45].
While such an approach would have indeed been able to deal with both chunks and meta-
data objects in an unified fashion, the differences in average size of objects and access pattern
motivated us to specialize them into two different layers, as shown in Figure 7.2.

Both repositories form the basic building blocks of data and metadata providers respec-
tively. They rely on the RPC layer to expose a remote get /put object access interface. How-
ever, unlike small metadata objects, chunks can grow to large sizes and it is not efficient to
fully read a chunk when only a subsequence of it is needed. Therefore, the chunk repository
must extend the get primitive to support partial access to chunks.

Again, both repositories leverage the persistency layer to store and retrieve the objects to
/from the local disk where the provider is running. We implemented the persistency layer
in both cases on top of BerkeleyDB [172], a high-performance embedded database. However,
a specialized caching mechanism was implemented for each case.

In the case of metadata, the cache needs to hold many small objects entirely, and read
/write access to a whole subset of them is common, which makes complex eviction schemes
expensive. We found a simple LRU policy to work best in this case. In the case of chunks,
the cache needs to hold a smaller amount of larger objects. This setting favors more expen-
sive eviction schemes that use a combination of several criteria, such as the recentness and
frequency of use, the size, and the cost of fetching chunks. As pointed out in [121], such
eviction schemes have the potential to lead to a sizable improvement in both hit-rate and
latency reduction.

7.1.3 Globally shared containers

The globally shared containers introduced in Section 5.3 and Section 6.2 require the design of
a distributed key-value store that enables efficient exact queries and range queries under
concurrency.

We implemented this distributed key-value store in form of a series of layers, as shown
in Figure 7.2. At the lowest level is the distributed hash table (DHT) layer, responsible to
organize the metadata providers (each running a metadata repository) into a DHT. P2P-
oriented DHTs [10, 151, 129] that build structured overlays are highly appealing because
of their robustness under churn. However, they incur a logarithmic look-up cost to do so,
which is prohibitively expensive in our setting. We are interested in almost constant time
look-up cost, keeping in mind that metadata providers join and leave at a much smaller
scale than in P2P systems. Consistent hashing [69, 70] is a popular approach to achieve
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this goal. Our DHT layer implementation is based on consistent hashing, adding a simple
replication mechanism that further increases data availability.

The DHT layer by itself can address exact queries out-of-the-box. In order to introduce
support for range queries, we built the globally shared containers layer on top of the DHT.
While this is currently performed as as a series of parallel DHT requests, several more elab-
orate techniques have been proposed in the literature [36, 31] that could be easily adopted in
our context.

Finally, on the client-side, a container access interface enables the client to issue both
exact and range queries in an asynchronous fashion. The results of these queries are cached
on the client-side as well, and later directly reused if the result is already available in the
cache.

7.1.4 Allocation strategy

The allocation strategy is the layer uponwhich the providermanager relies to assign providers
to the write /append requests issued by the clients. Its responsibility is to select a data
provider for each chunk that needs to be written in the system.

In order to do so, it relies on the monitoring layer to collect information about the state
of the data providers. Every data provider periodically reports its state to the monitoring
layer by means of RPC calls. When the state of a data provider changes, or, if the data
provider has not reported in a long time, the monitoring layer generates a corresponding
state change event or unavailable event. Such events are captured and processed by the
allocation strategy in order to maintain a recent view over the states of the data providers.

Whenever a client queries the provider manager for a list of data providers that need
to store chunks, the latter tries to match the client with the “most desirable set of data
providers”. More specifically, based on information about the client (location, etc.) and
the states of the data providers, a score is assigned to each provider that reflects how well
that provider can serve the client’s write request. All providers are then sorted according to
this score and the top providers are assigned to store the chunks, one (distinct if possible)
provider for each chunk.

The score calculation is highly customizable and allows easy implementation of different
strategies. The default strategy we picked is a load-balancing strategy that favors a provider
instead of another if the first provider has stored a smaller number of chunks. In case of
equality, the provider with the smallest number of pending write requests (i.e., the smallest
amount of times the provider was allocated to clients since it reported its state the last time)
is favored. More complex strategies are possible, as illustrated in Chapter 11.

7.2 Fault tolerance

In large-scale distributed systems an important issue is fault tolerance [125, 67, 152]: be-
cause of the large number of machines involved, faults invariably occur frequently enough
to be encountered in regular use rather than exceptional situations. A desirable property to
achieve is then fault transparency: based on a self-healing mechanism automatically invoked
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when faults occur, the applications can continue their execution without interruption. Ad-
ditionally, it is also desirable for the system to withstand faults while providing a level of
performance close to the case when no faults occur.

In our case, fault transparency refers to two failure scenarios: (1) when a client fails
and (2) when a core process (version manager, provider manager, data providers, metadata
providers) fails.

The failure model we assume is permanent crashes in the first scenario and permanent or
amnesia crashes in the second. Both types of crashes are described in [34]. A permanent crash
is the lack of response starting at a specific moment in time and persisting for an indefinite
amount of time. An amnesia crash is the lack of response starting at a specific moment in
time as well, but persisting only for a limited amount of time, after which the entity recovers
to some stable state in which it was before the crash.

The rationale behind this choice is as follows. Clients are expected to perform read and
write operations that take much less time than the down time in case of a crash. Therefore, it
is reasonable to assume that a failing client will not recover from a crash fast enough to play
an important role in fixing the consequences of the crash. Therefore, it can be safely assumed
as “dead forever”. Permanent crashes of core processes on the other hand are much more
expensive: they involve permanent loss of data or metadata that has to be fixed. Therefore,
if the machine where the core process originally ran can be “resurrected” to a stable state,
data or metadata initially thought lost can be potentially recovered and reintegrated into the
system to fix the problem faster, which makes amnesia crashes worth considering.

7.2.1 Client failures

First, notice that client crashes during read operations can be silently ignored, as they do
not alter the state of the system and therefore do not affect data or metadata consistency or
otherwise influence other clients.

Write operations on the other hand are not stateless. Any write operation writes data
first, and, once this phase is finished, a snapshot version is assigned to the write, then finally
the corresponding metadata is generated and stored in a second phase. Thus, if a writer
fails during the first phase (i.e. before requesting a snapshot version), the fault can be again
silently ignored. The system remains in a consistent state, because nobody else in the system
(but the writer) is aware of the new data that was written. These extra data does no harm
and can be later garbage-collected in an off-line manner.

Let us now assume that a writer completes the first phase, is assigned a snapshot version,
then fails during the second phase. The system is in an inconsistent state because metadata
has not fully been built yet. This blocks the generation of the corresponding snapshot and
also that of the snapshots corresponding to subsequent write operations. This situation is
handled as follows: if metadata takes too long to be generated, a timeout occurs on the ver-
sion manager, which then delegates metadata generation for that snapshot to a randomly
selected metadata provider. Since all required knowledge was already committed into the
globally shared containers before requesting a snapshot version, any randomly selectedmeta-
data provider can take over the metadata generation phase.
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7.2.2 Core process failures

To deal with failures of data or metadata providers, we rely on data and metadata replica-
tion. Each chunk is replicated on several data providers and metadata is extended to main-
tain the complete list of providers for each chunk. Similarly, metadata is also replicated on
multiple metadata providers by the DHT layer.

Note that the use of versioning and immutable data and metadata greatly simplifies
replica management. By isolating readers from writers, replication can be efficiently per-
formed in an asynchronous fashion. There is no need for any complex and costly mecha-
nisms for maintaining replica consistency, as both data chunks and metadata are read-only
once written. In order to maintain the replication factor constant, we have chosen an offline
approach that relies on monitoring active replicas. As soon as it is detected that a provider
goes down, all replicas stored by that provider are marked as unavailable. For each unavail-
able replica a timer is started. If the replica stays in the unavailable state for too long, a new
provider is instructed to fetch a copy of the replica from one of the providers that holds an
active copy. Once this is successfully performed, the replica is marked as active again. How-
ever, if a provider that was down recovers, it announces all active replicas it holds to the
system. If unavailable replicas are among them, they are marked as active again and no new
provider is instructed to fetch a copy of it.

Finally, in order to avoid the situation when a failure of any centralized entity (in our
case the version manager or provider manager) compromises the whole system, we propose
to organize them in small groups that act as replicated state machines running a consensus
protocol like [76, 77]. This enables other members of the group to take over in case one
of the members fail. At the time of this writing, the replicated state machine has not been
implemented in BlobSeer yet.

7.3 Final words

The BlobSeer implementation was written from scratch in C++ using the Boost C++ col-
lection of meta-template libraries [1]. The client-side is implemented as a dynamic library
that needs to be linked against the user application. Besides being natively accessible from
applications written in C and C++, bindings exist for a wide range of other programming
languages: Python, Java and Ruby. More information is available at:

http://blobseer.gforge.inria.fr.

http://blobseer.gforge.inria.fr
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T
HE BlobSeer implementation described in the previous chapter is evaluated in this
chapter through a series of synthetic benchmarks. These benchmarks consist of spe-
cific scenarios that focus on each of the design principles presented in Chapter 4. They

facilitate the study of their impact on the achieved performance levels under concurrency.

The experiments were performed on the Grid’5000 [68, 26] testbed, an experimental plat-
form that gathers 9 sites in France. We used clusters located in Rennes, Sophia-Antipolis and
Orsay. Each experiment was carried out within a single such cluster. The nodes are outfitted
with x86_64 CPUs and 4 GB of RAM for the Rennes and Sophia clusters and 2 GB for the
Orsay cluster. All nodes are equippedwith Gigabit Ethernet, with a measured point-to-point
throughput of 117.5 MB/s for TCP sockets with MTU = 1500 B. Latency was measured to be
0.1 ms.

For the purpose of these synthetic experiments, we have chosen to instruct the clients
to continuously transfer data without performing any computation, in order to emphasize
data access. This corresponds to a worst-case theoretical scenario that in practice is not en-
countered in real applications. It shows the behavior of the I/O infrastructure when it is put
under the highest pressure possible.
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Each of the next sections focuses on one principle: data striping, distributed metadata man-
agement and versioning.

8.1 Data striping

In this section we evaluate the impact of data striping on concurrent access to data. We
consider a set of clients that read and write different parts of the same BLOB in parallel,
and measure the achieved throughput. The goal of these experiments is to show that under
increasing concurrency, data striping successfully distributes the I/O workload among the
data providers. This leads to large performance gains over the case when the BLOB is stored
in a centralized fashion.

For this purpose, a round-robin allocation strategy was chosen that evenly distributes
the chunks among the data providers. Moreover, the chunk size was adjusted to large sizes
in order to minimize the size of the segment trees associated to the BLOB and thus minimize
the impact of metadata overhead on the results.

The experiments are carried out in two settings: (1) data providers and clients are de-
ployed on different machines; and (2) data providers and clients are co-deployed in pairs on
the same physical machine. Both settings are representative of distributed data-intensive ap-
plications that separate computation from storage, respectively co-locate computation with
storage.

8.1.1 Clients and data providers deployed separately

In this series of experiments, the number of concurrent clients is kept constant while the
number of available data providers is varied from 1 to 60. The case where a single data
provider is available corresponds to the case when the BLOB is stored in a centralized fash-
ion.

The deployment setup is as follows: one version manager, one provider manager and a
variable number of data providers. The chunk size is fixed at 64 MB, a size large enough to
generate minimal metadata overhead, which can be handled by a single metadata provider
and therefore only one is deployed. All processes are deployed on dedicated machines of
the Rennes cluster.

The experiment consists in deploying a fixed number of clients on dedicated machines
that are then synchronized to start writing each 3 GB of data in chunks of 64 MB at random
positions in the same BLOB. Each client writes a single chunk at a time for a total of 48
iterations. The average throughput achieved by the clients is then computed over all their
iterations. We start with one data provider and repeat the same experiment by gradually
increasing the number of available data providers up to 60.

The experiment described above is performed for 1, 20 and 60 clients, which results in
the curves depicted in Figure 8.1(a).

For one single client, using more than one data provider does not make any difference
since a single data provider is contacted at the same time. However, when multiple clients
concurrently write their output data, the benefits of data striping become visible. Increasing
the number of data providers leads to a dramatic increase in achieved throughput per client:
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Figure 8.1: Impact of data striping on the achieved individual throughput

from a couple of MB/s in the case when the BLOB is stored on a single data provider in a
centralized fashion to over 100 MB/s when using 60 data providers.

Throughput gains flatten rapidly when the number of data providers is at least equal to
the number of clients. This is explained by the fact that using at least as many data providers
as clients enables the provider manager to direct each concurrent write request to distinct
data providers. Once the number of providers is higher than the number of clients, no ad-
ditional gains are observable as the extra providers simply remain idle. When the number
of providers is at least equal to the number of clients, the throughput measured under ideal
conditions (single client under no concurrency) at 115 MB/s is just by 12% higher than the
average throughput reached when 60 clients write the output data concurrently (102 MB/s).

Thus, it can be concluded that data striping effectively enables the system to scale under
concurrency. Indeed, the perceived loss of bandwidth under concurrency is minimal from
the point of view of clients, as opposed to the case when the BLOB is stored in a centralized
fashion, which leads to a huge loss. Although not depicted explicitly, similar results are
observed with reads under the same circumstances (i.e., replacing the write operation with
a read operation).

As a next step, we evaluate the impact of the chunk size on the achieved average write
throughput. This time we fix the number of providers to 60 and deploy a variable number
of clients and synchronize them to start writing the same amount of output data in smaller
chunks of 32 MB, 16 MB and 8 MB, for a total of 96, 192 and 384 iterations. In this setting,
the chunk size is still large enough that the metadata overhead can be considered negligible.

Results are shown in Figure 8.1(b). As can be observed, the overhead of contacting more
data providers in parallel and sending the data has a minimal overhead, as the average client
bandwidth drops from 110 MB/s (for 32 MB pages) to 102 MB/s (for 8 MB pages).

Thus, it can be concluded that data striping alone enables the system to remain scalable
for variable chunk sizes, as long as the total number of involved chunks is small enough so
that the metadata management is negligible.
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8.1.2 Clients and data providers co-deployed

A similar set of experiments as in the previous section is performed for the case where clients
and data providers are co-deployed in pairs, each pair on dedicated physical machine.

Unlike the previous experiment, where the total number of physical machines available
in the Rennes cluster limited the number of clients and data providers to 60, this time we
can afford to increase the limits further to 130 data providers and clients. We fix and deploy
130 providers and vary the number of co-deployed clients from 1 to 130. The rest of the
configuration is the same: one metadata provider, one version manager and one provider
manager, each deployed on a dedicated machine.

The chunk size is again fixed at 64 MB. This time however the scenario is slightly differ-
ent in order to reflect the behavior of data-intensive applications that run in a co-deployed
configuration better. More specifically, the clients concurrently append data to an initially
empty BLOB. Each client appends a total of 3 GB in 6 iterations, each of which consists in
a single append operation of 8 chunks. This access pattern puts even more pressure on the
system, because each machine has to execute not only two processes concurrently, but also
has to handle more connections simultaneously for each process (compared to the case when
only one chunk is transferred at a time).

The same scenario described above was also used to evaluate the read throughput of
the system in a co-deployed configuration by replacing the append operation with the read
operation. Both reads and appends are depicted in Figure 8.1.2. Unlike the separated de-
ployment scenario, this time we represent the total aggregated throughput achieved by the
system, rather than the individual throughput achieved by the clients. This enables a bet-
ter visualization of our findings at larger scale, where we were able to reach the bandwidth
limits of the networking infrastructure.

As can be observed, up to 40 concurrent clients, the curves for reads and appends over-
lap and scale close to the ideal case (i.e., the throughput of N clients is the throughput of
one client multiplied by the number of clients). This is consistent with our findings in the
previous section.

However, beyond 40 concurrent clients the gap between reads and appends starts to in-
crease. In the case of reads, a close to ideal scalability ismaintained up to 100machines, when
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the total bandwidth of the networking infrastructure is reached (theoretically, 10 GB/s). Af-
ter the total bandwidth is reached, the aggregated throughput flattens as expected. With a
peak aggregated throughput of 8.5 GB/s, our approach has a very low overhead and is close
to the real limit (considering the fact that the theoretical limit does not include networking
overhead: TCP/IP, frame encapsulation, retransmissions, etc.).

Based on these facts, two important conclusions can be drawnwith respect to the benefits
of our data striping proposal in the context of highly concurrent read access: (1) it remains
highly scalable even when a client and a data provider are co-deployed on the same physical
machine and thus share physical resources; and (2) it efficiently leverages the networking
infrastructure, pushing it to its limits.

In the case of appends, after 40 clients the scalability is still close to linear but takes amore
gentle slope. This effect can be traced back to the persistency layer (described in the previous
chapter) of the data providers, that have to cope with increasing write pressure from more
concurrent clients. This in turn puts the machine under heavy load, which decreases the
responsiveness of the co-deployed client significantly more than in the read scenario.

Nevertheless, with a total aggregated throughput of 7.5 GB/s for 130 concurrent appen-
ders, data striping provides large benefits in a heavily concurrent write scenario, leveraging
the total networking infrastructure efficiently as well.

Since point-to-point links are limited to 117 MB/s, storing the BLOB in a centralized
fashion cannot achieve a higher aggregated throughput than this under concurrency, which
makes it a rather poor choice when compared to data striping, both for intensive read and
write scenarios.

8.2 Distributed metadata management

In the previous set of experiments we have intentionally minimized the metadata manage-
ment overhead in order to emphasize the impact of data striping on performance. As a next
step, we study how metadata decentralization impacts performance: we consider a setting
where a large number of clients concurrently read/write a large amount of data in small
chunk sizes, which generates a large metadata overhead.

To evaluate the impact of metadata distribution as accurately as possible, we first deploy
as many data providers as clients, to avoid potential bottlenecks on the providers. As in the
previous section, we carry out the experiments in two settings: (1) data providers and clients
are deployed on different machines; and (2) data providers and clients are co-deployed in
pairs on the same physical machine.

8.2.1 Clients and data providers deployed separately

In this setting, each process is deployed on a separate physical node: a version manager,
a provider manager and a fixed number of 60 data providers. We then launch 60 clients
and synchronize them to start writing output data simultaneously. Each client iteratively
generates a fixed-sized 64 MB output and writes it to BlobSeer at the same offset (50 itera-
tions). The achieved throughput is averaged for all clients. We vary the number of metadata
providers from 1 to 30. We perform this experiment for very small chunk sizes: 64 KB,
128 KB and 256 KB.
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Figure 8.3: Metadata management efficiency under unfavorable conditions: large number of
small chunks

Results in Figure 8.3(a) show that increasing the number of metadata providers results
in an improved average bandwidth under heavy concurrency. The improvement is more
significant when reducing the chunk size: since the amount of the associated metadata dou-
bles when the page size halves, the I/O pressure on the metadata providers doubles too. We
can thus observe that the use of a centralized metadata provider leads to a clear bottleneck
(62 MB/s only), whereas using 30 metadata providers improves the write throughput by
over 20% (75 MB/s).

Thus, metadata decentralization clearly has an important impact when dealing with a lot
of chunks, as significant improvement in throughput is observed from the view point of the
clients when increasing the number of metadata providers. Although not depicted explicitly,
similar results are observed when the write operation is replaced by the read operation.

8.2.2 Clients and data providers co-deployed

In this setting, data providers and clients are co-deployed, which is representative of dis-
tributed applications that co-locate computation with storage. We perform a series of 4
experiments that measure the aggregated throughput achieved when N concurrent clients
append 512 MB in chunks of 256 KB (respectively, read 512 MB from disjoint parts of the
resulting BLOB).

For each of the experiments, we use the nodes of the Rennes cluster. As many as 130 data
providers are deployed on different nodes, with each of the N clients is co-deployed with a
data provider on the same node. We consider the case where a single metadata provider is
deployed, versus the case where 20 metadata providers deployed on separate nodes, differ-
ent from the ones where data providers are deployed.

The results are represented in Figure 8.3(b). As can be observed, a distributed meta-
data management scheme substantially improves access performance, both for readers and
appenders. The best improvement occurs is the case of reads, where the total aggregated
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throughput has more than doubled. The case of appends has also seen a large improvement:
no less than 25%.

8.3 Versioning

In Section 4.1.4 we have argued that versioning is a key principle to enhance concurrent ac-
cess to data, because multiple versions enable a better isolation, which ultimately decreases
the need for synchronization. This is possible because data and metadata is kept immutable,
which means reads and writes to/from the same BLOB can be broken into elementary oper-
ations that are highly decoupled. Therefore, they do not need to wait for each other, despite
the total ordering consistency constraint.

In this section, we perform a series of experiments that put this principle to test. Our goal
is to show that even when highly concurrent, mixed read-write workloads are present, Blob-
Seer can sustain a high throughput and remains scalable in spite of increasing the number
of concurrent clients and modifying the read-to-write ratio of the workload.

For this purpose, we perform two experiments that involve a mixed workload where a
large number of concurrent clients read and write to the same BLOB. In the first experiment,
we fix the number of concurrent readers, and gradually increase the number of concurrent
writers. Our goal is to analyze how this impacts the average throughput sustained by the
readers. The second experiment is complementary to the first one: we fix the number of con-
current writers and gradually increase the number of concurrent readers in order to analyze
how this impacts the average throughput sustained by the writers.

For these two experiments we used the nodes of the Orsay cluster, which totals to 270
nodes. The Ethernet networking infrastructure of the Orsay cluster was insufficient for
this series of experiments, as we are using a large number of nodes that are all linked to-
gether through a very small number of commodity switches. Fortunately, Orsay is also
equippedwith aMyrinet networking infrastructure to overcome potential bandwidth limita-
tions. Thus, we decided to useMyrinet for our experiments, as it enables us to emphasize the
behavior under concurrency better. Furthermore, it avoids reaching any physical bandwidth
limitations that could interfere with the conclusions that can be drawn about scalability.

In order to be able to deploy as many concurrent clients as possible, we opted for a
co-deployed scenario, where the clients and data providers run on the same physical node.
Thus, for each of the two experiments, BlobSeerwas deployed on the 270 nodes in the follow-
ing configuration: one version manager, one provider manager and 20 metadata providers.
The rest of the nodes were used to co-deploy data providers and clients.

In the first experiment, 100 readers are deployed and synchronized to concurrently start
reading 10 chunks of 64MB from the same BLOB. Each reader accesses a different region
of the BLOB. At the same time, an increasing number of writers is deployed ranging from
0 (only readers) to 140. Each writer generates and writes 10 chunks of 64MB. Results are
shown in Figure 8.4(a). As can be observed, the average sustained throughput of the readers
drops from 370 MB/s to 300 MB/s when the number of concurrent writers increases from
0 to 140. Thus, we can conclude that we have a drop of only 20% in a situation where more
than twice as many clients access the same BLOB concurrently and generate a mixed read-
write workload. These results are even more impressive considering that we use a scenario
where a small amount of data is processed that can be cached on the data providers. No
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Figure 8.4: Benefits of versioning under mixed, highly concurrent read and write workloads

disk activity that could limit throughput is involved, which makes the system even more
sensitive to scalability issues.

Similar results are obtained in the second experiment, where the readers and the writers
reverse roles. This time, we fix the number of concurrent writers to 100 and increase the
number of concurrent readers from 0 to 140. The access pattern for readers and writers
remains the same as in the previous experiment. Results are shown in Figure 8.4(b). Write
operations are slower as there is a higher co-deployment overhead, since data has to be
asynchronously committed to disk. For this reason, the scalability in this case is even better:
introducing more than double concurrent readers causes the average write throughput to
drop by only 10%.

8.4 Conclusions

We performed extensive synthetic benchmarks using BlobSeer that emphasize the impact
of each of the proposed design principles (data striping, distributed metadata management
and versioning) on the sustained throughput under concurrent access to the same BLOB.

Data striping shows best results when at least as many data providers are deployed
as clients, because each client can interact with a different provider. In this case, average
throughput under concurrency is at most 12% lower than the case where no concurrency
is present. Aggregated throughput measurements show that BlobSeer reached the physical
limits of the networking infrastructure, demonstrating that it can leverage it efficiently.

The distributed metadata management scheme shows best results when a large number
of chunks is involved in the data transfers. In this case, speedup against centralized meta-
data management under concurrency is at least 20%.

Finally, our versioning proposal shows high scalability under mixed read-write work-
loads. In this context, the drop in average throughput when doubling the number of concur-
rent clients is not more than 20% in the worst case and close to 10% in the best case.
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Part III

Applications of the BlobSeer approach
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A
S the rate, scale and variety of data increases in complexity, new data-intensive
paradigms are required in order to achieve high performance level at large scale.
Several paradigms such as MapReduce [38] and Dryad [66] have been proposed

to address this need. MapReduce has been hailed as a revolutionary new platform
for large-scale, massively parallel data access [116]. After being strongly promoted by
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Google, MapReduce has also been implemented by the open source community through
the Hadoop [169, 164] project, maintained by the Apache Foundation and supported by Ya-
hoo! and even by Google itself. This model is currently getting more and more popular as a
solution for rapid implementation of distributed data-intensive applications. A key compo-
nent of MapReduce upon which the performance of the whole model depends is the storage
backend, as it has to deal efficiently with the massively parallel data access. Thus, evaluating
BlobSeer as a storage backend for MapReduce applications is a highly relevant context that
enables us to demonstrate its benefits in real life applications. In this chapter we show how
we successfully achieved this objective. The work presented here was published in [112].

9.1 BlobSeer as a storage backend for MapReduce

9.1.1 MapReduce

MapReduce proposes to exploit parallelism at data level explicitly, by forcing the user to de-
sign the application according to a predefined model [75], inspired by the map and reduce
primitives commonly used in functional programming, although their purpose in MapRe-
duce is not the same as their original forms.

A problem must be expressed in MapReduce using two operators: “map” and “reduce”.
The map operator defines a transformation that is applied by the framework in parallel to
the input data in order to obtain a set of intermediate key-value pairs as output. The reduce
operator defines an aggregation method for values that correspond to the same key in the
intermediate set of key-value pairs. The final result of the MapReduce application is the
aggregated set of key-value pairs after applying the reduce operator for all keys.

Thismodel is generic enough to cover a large class of applications, with supporters claim-
ing the extreme that it will render relational databasemanagement systems obsolete. At least
one enterprise, Facebook, has implemented a large data warehouse system using MapRe-
duce technology rather than a DBMS [159].

While some work points out the limitations of MapReduce [117, 153] compared to DBMS
approaches, it still acknowledges the potential of MapReduce to complement DBMSes. On-
going work even exists [114] to build a new query language, PigLatin, designed to fit in the
sweet-spot between the declarative style of SQL [17], and the low-level, procedural style of
MapReduce. The intent is to compile PigLatin into physical plans that are executed over
MapReduce, greatly simplifying the development and execution of data analysis tasks and
bringing the MapReduce framework closer to the DBMS concept.

The main reason for the popularity of MapReduce is its high potential for scalability:
once the application is cast into the framework, all details of distributing the application
are automatically handled: splitting the workload among the compute nodes, synchroniza-
tion, data access, fault tolerance, assembly of the final result, etc. This is very appealing
in large-scale, distributed environments, as it greatly simplifies application design and de-
velopment. The burden for enabling this feature however falls on the framework itself: all
aforementioned aspects have to be addressed efficiently with minimal user intervention.

To enable massively parallel data access over a large number of nodes, the framework re-
lies on a core component: the storage backend. Since MapReduce applications are generally
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data-intensive, the storage backend plays a crucial role in the overall scalability and perfor-
mance of the whole framework. It must meet a series of specific requirements which are not
part of the design specifications of traditional distributed file systems employed in the HPC
communities: these file systems typically aim at conforming to well-established standards
such as POSIX and MPI-IO.

9.1.2 Requirements for a MapReduce storage backend

MapReduce applications typically crunch ever-growing datasets of billions of small records.
Storing billions of KB-sized records in separate tiny files is both unfeasible and hard to han-
dle, even if the storage backend supports it. For this reason, the datasets are usually packed
together in huge fileswhose size reaches several hundreds of GB.

The key strength of the MapReduce model is its inherently high parallelization of the
computation, which enables processing Petabytes of data in a couple of hours on large clus-
ters consisting of several thousands of nodes. This has several consequences for the storage
backend. Firstly, since data is stored in huge files, the computation will have to process small
parts of these huge files concurrently. Thus, the storage backend is expected to provide effi-
cient fine-grain access to the files. Secondly, the storage backend must be able to sustain a high
throughput in spite of heavy access concurrency to the same file, as thousands of clients access
data simultaneously.

Dealingwith huge amounts of data is difficult in terms ofmanageability. Simplemistakes
that may lead to loss of data can have disastrous consequences since gathering such amounts
of data requires considerable effort. In this context, versioning becomes an important feature
that needs to be supported by the storage backend. Not only does it enable rolling back un-
desired changes, but it also enables profiling a MapReduce execution by analysing changes
from one version to another, which may later prove useful in improving the application.
While versioning is certainly an interesting feature, it should have a minimal impact both on
performance and on storage space overhead.

Finally, another important requirement for the storage backend is its ability to expose
an interface that enables the application to be data-location aware. This allows the scheduler
to use this information to place computation tasks close to the data. This reduces network
traffic, contributing to a better global data throughput.

9.1.3 Integrating BlobSeer with Hadoop MapReduce

To address the requirements presented in the previous section, specialized filesystems have
been designed, such as GoogleFS [53], used as a backend for the proprietary Google MapRe-
duce implementation, and HDFS [144], the default storage backend of the Hadoop [169]
framework. We have briefly presented both filesystems in Section 3.4.3.

Since the Hadoop framework is open-source and was adopted by large players in the
industry such as Yahoo! and Facebook, it stands as a good candidate for exploring the role
of BlobSeer as a storage backend for MapReduce. The challenge thus is to extend BlobSeer
to the point where it is possible to substitute HDFS with it. Essentially, this means to enable
BLOBs to be used as files in Hadoop MapReduce.
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The Hadoop MapReduce framework provides a specific Java API by which the underly-
ing storage service is accessed. This API exposes the basic operations of a file system: create
directory/file, list directory, open/close/read/write file, etc. However, it does not aim to be
POSIX compatible and introduces a series of advanced features, such as atomic appends to
the same file.

In order to enable BLOBs to be used as files, this API had to be implemented in a ded-
icated backend on top of BlobSeer. We call this backend the BlobSeer File System (BSFS).
To enable a fair comparison between BSFS and HDFS, we addressed several performance-
oriented issues highlighted in [170]. They are briefly discussed below.

File system namespace. The Hadoop framework expects a classical hierarchical directory
structure, whereas BlobSeer provides a flat structure for BLOBs. For this purpose, we had to
design and implement a specialized namespace manager, which is responsible for maintaining
a file system namespace, and for mapping files to BLOBs. For the sake of simplicity, this
entity is centralized. Careful consideration was given to minimizing the interaction with this
namespace manager, in order to fully benefit from the decentralized metadata management
scheme of BlobSeer. Our implementation of Hadoop’s file system API only interacts with it
for operations like file opening and file/directory creation/deletion/renaming. Access to the
actual data is performed by a direct interaction with BlobSeer through read/write/append
operations on the associated BLOB, which fully benefit from BlobSeer’s efficient support for
concurrency.

Data prefetching. Hadoop manipulates data sequentially in small chunks of a few KB
(usually, 4 KB) at a time. To optimize throughput, HDFS implements a caching mechanism
that prefetches data for reads, and delays committing data for writes. Thereby, physical
reads and writes are performed with data sizes large enough to compensate for network
traffic overhead. We implemented a similar caching mechanism in BSFS. It prefetches a
whole chunk when the requested data is not already cached, and delays committing writes
until a whole chunk has been filled in the cache.

Affinity scheduling: exposing data distribution. In a typical Hadoop deployment, the
same physical nodes act both as storage elements and as computation workers. Therefore,
the Hadoop scheduler strives at placing the computation as close as possible to the data:
this has a major impact on the global data throughput, given the huge volume of data being
processed. To enable this scheduling policy, Hadoop’s file system API exposes a call that
allows Hadoop to learn how the requested data is split into chunks, and where those chunks
are stored. We address this point by extending BlobSeer with a new primitive. Given a
specified BLOB id, version, offset and size, it returns the list of chunks that make up the
requested range, and the addresses of the physical nodes that store those chunks. Then, we
simply map Hadoop’s corresponding file system call to this primitive provided by BlobSeer.
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9.2 Experimental setup

9.2.1 Platform description

To evaluate the benefits of using BlobSeer as the storage backend for MapReduce applica-
tions we used Yahoo!’s release of Hadoop v.0.20.0 (which is essentially the main release of
Hadoop with some minor patches designed to enable Hadoop to run on the Yahoo! produc-
tion clusters). We chose this release because it is freely available and enables us to experiment
with a framework that is both stable and used in production on Yahoo!’s clusters.

We performed our experiments on the Grid’5000 [68], using the clusters located in
Sophia-Antipolis, Orsay and Lille. Each experiment was carried out within a single such
cluster. The nodes are outfitted with x86_64 CPUs and 4 GB of RAM for the Rennes and
Sophia clusters and 2 GB for the Orsay cluster. Intracluster bandwidth is 1 Gbit/s (mea-
sured: 117.5 MB/s for TCP sockets with MTU = 1500 B), intracluster latency is 0.1 ms. A
significant effort was invested in preparing the experimental setup, by defining automated
deployment processes for the Hadoop framework when using respectively BlobSeer and
HDFS as the storage backend. We had to overcome nontrivial node management and con-
figuration issues to reach this objective.

9.2.2 Overview of the experiments

In a first phase, we have implemented a set of microbenchmarks that write, read and append
data to files through Hadoop’s file system API and have measured the achieved throughput
as more and more concurrent clients access the file system. This synthetic setup has enabled
us to control the access pattern to the file system and focus on different scenarios that exhibit
particular access patterns. We can thus directly compare the respective behavior of BSFS and
HDFS in these particular synthetic scenarios.

In a second phase, our goal was to get a feeling of the impact of BlobSeer at the appli-
cation level. To this end, we ran two standard MapReduce applications from the Hadoop
release, both with BSFS andwith HDFS.We have evaluated the impact of using BSFS instead
of HDFS on the total job execution time as the number of available MapReduce workers pro-
gressively increases. Note that Hadoop MapReduce applications run out-of-the-box in an
environment where Hadoop uses BlobSeer as a storage backend, just like in the original,
unmodified environment of Hadoop. This was made possible thanks to the Java file system
interface we provided with BSFS on top of BlobSeer.

9.3 Microbenchmarks

We have first defined several scenarios aiming at evaluating the throughput achieved by
BSFS andHDFSwhen the distributed file system is accessed by a single client or bymultiple,
concurrent clients, according to several specific access patterns. In this section, we report on
the results focused on the following patterns, often exhibited by MapReduce applications:

• a single process writing a huge distributed file;

• concurrent readers reading different parts of the same huge file;
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Figure 9.1: Single writer results

• concurrent writers appending data to the same huge file.

The aim of these experiments is to evaluate which benefits can be expected when using
a concurrency-optimized storage service such as BlobSeer for highly-parallel MapReduce
applications generating such access patterns. The relevance of these patterns is discussed in
the following subsections, for each scenario.

In each scenario, we first measure the throughput achieved when a single client performs
a set of operations on the file system. Then, we gradually increase the number of clients
performing the same operation concurrently andmeasure the average throughput per client.
For any fixed number N of concurrent clients, the experiment consists of two phases: we
deploy HDFS (respectively BSFS) on a given setup, then we run the benchmarking scenario.

In the deployment phase, HDFS (respectively BSFS) is deployed on 270 machines from
the same cluster of Grid’5000. For HDFS, we deploy one namenode on a dedicated machine;
the remaining nodes are used for the datanodes (one datanode per machine). For the BSFS
deployment we use the same nodes in the following configuration: one version manager,
one provider manager, one node for the namespace manager, 20 metadata providers and
the remaining nodes are used as data providers. Each entity is deployed on a a separate,
dedicated machine.

For the benchmarking phase, a subset of N machines is selected from the set of machines
where datanodes/providers are running. The clients are then launched simultaneously on
this subset of machines, individual throughput is collected and is then averaged. These
steps are repeated 5 times for better accuracy (which is enough, as the corresponding stan-
dard deviation proved to be low). Measurements in this second phase of the experiment are
performed for both HDFS and BSFS.

9.3.1 Single writer, single file

We first measure the performance of HDFS/BSFS when a single client writes a file whose
size gradually increases. This test consists in sequentially writing a unique file of N× 64MB,
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in chunks of 64 MB (N goes from 1 to 246), which corresponds to the default chunk size of
HDFS. The goal of this experiment is to compare the chunk allocation strategies of HDFS and
BSFS used in distributing the data across datanodes (respectively data providers). The policy
used by HDFS consists in writing locally whenever a write is initiated on a datanode. To
enable a fair comparison, we chose to always deploy clients on nodes where no datanode has
previously been deployed. This way, wemake sure that HDFSwill distribute the data among
the datanodes, instead of locally storing the whole file. BlobSeer’s default strategy consists
in allocating the corresponding chunks on remote providers in a round-robin fashion.

We measure the write throughput for both HDFS and BSFS: the results can be seen on
Figure 9.1(a). BSFS achieves a significantly higher throughput than HDFS, which is a result
of the balanced, round-robin chunk distribution strategy used by BlobSeer. A high through-
put is sustained by BSFS even when the file size increases (up to 16 GB). To evaluate the load
balancing in both HDFS and BSFS, we chose to compute the Manhattan distance to an ide-
ally balanced system where all data providers/datanodes store the same number of chunks.
To calculate this distance, we represent the data layout in each case by a vector whose size
is equal to the number of data providers/datanodes; the elements of the vector represent
the number of chunks stored by each provider/datanode. We compute 3 such vectors: one
for HDFS, one for BSFS and one for a perfectly balanced system (where all elements have
the same value: the total number of chunks divided by the total number of storage nodes).
We then compute the distance between the “ideal” vector and the HDFS (respectively BSFS)
vector.

As shown on Figure 9.1(b), as the file size (and thus, the number of chunks) increases,
both BSFS andHDFS become unbalanced. However, BSFS remainsmuch closer to a perfectly
balanced system, and it manages to distribute the chunks almost evenly to the providers,
even in the case of a large file. As far as we can tell, this can be explained by the fact that the
chunk allocation policy in HDFS mainly takes into account data locality and does not aim
at perfectly balancing the data distribution. A global load-balancing of the system is done
for MapReduce applications when the tasks are assigned to nodes. During this experiment,
we could notice that in HDFS there are datanodes that do not store any chunk, which ex-
plains the increasing curve shown in figure 9.1(b). As we will see in the next experiments, a
balanced data distribution has a significant impact on the overall data access performance.

9.3.2 Concurrent reads, shared file

In this scenario, for each given number N of clients varying from 1 to 250, we executed an
experiment in two steps. First, we performed a boot-up phase, where a single client writes
a file of N × 64 MB, right after the deployment of HDFS/BSFS. Second, N clients read parts
from the file concurrently; each client reads a different 64MB chunk sequentially, using finer-
grain blocks of 4 KB. This pattern where multiple readers request data in chunks of 4 KB is
very common in the “map” phase of a Hadoop MapReduce application, where the mappers
read the input file in order to parse the (key, value) pairs.

For this scenario, we ran two experiments in which we varied the data layout for HDFS.
The first experiment corresponds to the casewhere the file read by all clients is entirely stored
by a single datanode This corresponds to the case where the file has previously been entirely
written by a client colocated with a datanode (as explained in the previous scenario). Thus,
all clients subsequently read the data stored by one node, which will lead to a very poor
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Figure 9.2: Performance of HDFS and BSFS when concurrent clients read from a single file

performance of HDFS. We do not report on these results here. In order to achieve a more fair
comparison where the file is distributed on multiple nodes both in HDFS and in BSFS, we
chose to execute a second experiment. Here, the boot-up phase is performed on a dedicated
node (no datanode is deployed on that node). By doing so, HDFS will spread the file in a
more balanced way on multiple remote datanodes and the reads will be performed remotely
for both BSFS and HDFS. This scenario also offers an accurate simulation of the first phase of
aMapReduce application, when themappers are assigned to nodes. TheHDFS job scheduler
tries to assign each map task to the node that stores the chunk the task will process; these
tasks are called local maps. The scheduler also tries to achieve a global load-balancing of the
system, such that not all the assignments will be local. The tasks running on a different node
than the one storing its input data, are called remote maps: they will read the data remotely.

The results obtained in the second experiment are presented on Figure 9.2. BSFS per-
forms significantly better than HDFS, and moreover, it is able to deliver the same through-
put even when the number of clients increases. This is a direct consequence of how balanced
is the chunk distribution for that file. The superior load balancing strategy used by BlobSeer
when writing the file has a positive impact on the performance of concurrent reads, whereas
HDFS suffers from the poor distribution of the file chunks.

9.3.3 Concurrent appends, shared file

We now focus on another scenario, where multiple, concurrent clients append data to the
same file. The Hadoop API explicitly offers support for atomic appends in this context, as
concurrent appends are useful not only in order to optimize theMapReduce framework itself
(for example, appending the results of parallel reducers in the same output file), but also for
data gathering applications that build the initial input of MapReduce jobs (for example, web
crawlers).

As BlobSeer provides support for concurrent appends by design, we have implemented
the append operation in BSFS and evaluated the aggregated throughput as the number of
clients varies from 1 to 250. Despite being part of the Hadoop API specification, append
support was not available in HDFS at the time of this writing. Therefore, we could not
perform the same experiment for HDFS.
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Figure 9.3 illustrates the aggregated throughput obtained when multiple clients concur-
rently append data to the same BSFS file. These good results can be obtained thanks to
BlobSeer, which is optimized for concurrent appends.

Note that these results also give an idea about the performance of concurrent writes to
the same file. In BlobSeer, the append operation is implemented as a special case of the write
operation where the write offset is implicitly equal to the current file size: the underlying
algorithms are actually identical. The same experiment performed with writes instead of
appends, leads to very similar results.

9.4 Higher-level experiments with MapReduce applications

In order to evaluate how well BSFS and HDFS perform in the role of storage backends for
real MapReduce applications, we selected a set of standardMapReduce applications that are
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part of Yahoo!’s Hadoop release.

9.4.1 RandomTextWriter

The first application, RandomTextWriter, is representative of a distributed job consisting in
a large number of tasks each of which needs to write a large amount of output data (with
no interaction among the tasks). The application launches a fixed number of mappers, each
of which generates a huge sequence of random sentences formed from a list of predefined
words. The reduce phase is missing altogether: the output of each of the mappers is stored
as a separate file in the file system. The access pattern generated by this application corre-
sponds to concurrent, massively parallel writes, each of them writing to a different file.

To compare the performance of BSFS vs.HDFS in such a scenario, we co-deploy aHadoop
tasktracker with a datanode in the case of HDFS (with a data provider in the case of BSFS)
on the same physical machine, for a total of 50 machines. The other entities for Hadoop,
HDFS (namenode, jobtracker) and for BSFS (versionmanager, provider manager, namespace
manager) are deployed on separate dedicated nodes. For BlobSeer, 10 metadata providers
are deployed on dedicated machines as well.

We fix the total output size of the job at 6.4 GB worth of generated text and vary the size
generated by each mapper from 128 MB (corresponding to 50 parallel mappers) to 6.4 GB
(corresponding to a single mapper), and measure the job completion time in each case.

Results obtained are displayed on Figure 9.4(a). Observe that the relative gain of BSFS
over HDFS ranges from 7 % for 50 parallel mappers to 11 % for a single mapper. The case
of a single mapper clearly favors BSFS and is consistent with our findings for the synthetic
benchmark in which we explained the respective behavior of BSFS and HDFS when a single
process writes a huge file. The relative difference is smaller than in the case of the synthetic
benchmark because here the total job execution time includes some computation time (gen-
eration of random text). This computation time is the same for both HDFS and BSFS and
takes a significant part of the total execution time.

9.4.2 Distributed grep

The second application we consider is distributed grep. It is representative of a distributed
job where huge input data needs to be processed in order to obtain some statistics. The
application scans a huge text input file for occurrences of a particular expression and counts
the number of lines where the expression occurs. Mappers simply output the value of these
counters, then the reducers sum up the all the outputs of the mappers to obtain the final
result. The access pattern generated by this application corresponds to concurrent reads
from the same shared file.

In this scenario we co-deploy a tasktracker with a HDFS datanode (with a BlobSeer data
provider, respectively), on a total of 150 nodes. We deploy all centralized entities (ver-
sion manager, provider manager, namespace manager, namenode, etc.) on dedicated nodes.
Also, 20 metadata providers are deployed on dedicated nodes for BlobSeer.

We first write a huge input file to HDFS and BSFS respectively. In the case of HDFS,
the file is written from a node that is not colocated with a datanode, in order to avoid the
scenario where HDFS writes all chunks locally. This gives HDFS the chance to perform some
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Figure 9.5: Sort: job completion time

load-balancing of its chunks. Then we run the distributed grep MapReduce application and
measure the job completion time. We vary the size of the input file from 6.4 GB to 12.8 GB
in increments of 1.6 GB. Since the default HDFS chunk is 64 MB large and usually Hadoop
assigns a single mapper to process each chunk, this roughly corresponds to varying the
number of concurrent mappers from 100 to 200.

The obtained results are presented on Figure 9.4(b). As can be observed, BSFS outper-
forms HDFS by 35 % for 6.4 GB and the gap steadily increases with the text size. This be-
havior is consistent with the results obtained for the synthetic benchmark where concurrent
processes read from the same file. Again, the relative difference is smaller than in the syn-
thetic benchmark because the job completion time accounts for both the computation time
and the I/O transfer time. Note however the high impact of I/O in such applications that
scan through the data for specific patterns: the benefits of supporting efficient concurrent
reads from the same file at the level of the underlying distributed file system are definitely
significant.

9.4.3 Sort

Finally, we evaluate sort, a standard MapReduce application, that sorts key-value pairs. The
key is represented by the first 10 bytes from each record, while the value is the remain-
ing 100 bytes. This application is read-intensive in the map phase and it generates a write-
intensive workload in the reduce phase. The access patterns exhibited by this application are
thus concurrent reads from the same file and concurrent writes to different files.

A full deployment of HDFS/BSFS was performed on all 270 available nodes followed by
a deployment of the entities belonging to the Hadoop framework: the jobtracker, deployed
on a dedicated node, and the tasktrackers, co-deployed with the datanodes/providers. The
input file to be sorted by the application is stored in 64 MB chunks spread across the datan-
odes/providers. The Hadoop jobtracker assigns amapper to process each chunk of the input
file. The same input data was stored in multiple chunk configurations in order to be able to
vary the number of mappers from 1 to 120. This corresponds to an input file whose size
varies from 64 MB to 8 GB. For each of these input files, we measured the job completion
time when HDFS and BSFS are respectively used as storage backends.
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Figure 9.5 displays the time needed by the application to complete, when increasing
the size of the input file. When using BSFS as a storage backend, the Hadoop framework
manages to finish the job faster than when using HDFS. These results are consistent with the
ones delivered by the microbenchmarks. However, the impact of the average throughput
when accessing a file in the file system is less visible in these results, as the job completion
time includes not only file access time, but also the computation time and the I/O transfer
time.

9.5 Conclusions

In this chapter we presented BlobSeer-based File System (BSFS), a storage layer for Hadoop
MapReduce that builds on BlobSeer to provide high performance and scalability for data-
intensive applications. We demonstrated that it is possible to enhance Hadoop MapReduce
by replacing the default storage layer, Hadoop Distributed File System (HDFS), with BSFS.
Thank to this new BlobSeer-based File System (BSFS) layer, the sustained throughput of
Hadoop is significantly improved in scenarios that exhibit highly concurrent accesses to
shared files. We demonstrated this claim through extensive experiments, both using syn-
thetic benchmarks and real MapReduce applications. The results obtained in the synthetic
benchmarks show not only large throughput improvements under concurrency, but also su-
perior scalability and load balancing. These theoretical benefits were put to test by running
real-life MapReduce applications that cover all possible access pattern combinations: read-
intensive, write-intensive and mixed. In all three cases, improvement over HDFS ranges
from 11% to 30%.
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I
N this chapter we leverage the object-versioning capabilities of BlobSeer to address two
important challenges that arise in the context of IaaS cloud computing (presented in Sec-
tion 2.3): (1) efficient deployment of VM images on many nodes simultaneously (multi-

deployment); and (2) efficient concurrent snapshotting of a large number of VM instances to
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persistent storage (multi-snapshotting). In the context of cloud computing, efficiency means
not only fast execution time, but also low network traffic and storage space, as these re-
sources need to be paid by the user proportional to the consumption.

We propose a series of optimization techniques that aim at minimizing both execution
time and resource consumption. While conventional approaches transfer the whole VM
image contents between the persistent storage service and the computing nodes, we leverage
object-versioning to build a lazy deployment scheme that transfers only the needed content
on-demand, which greatly reduces execution time and resource consumption. The work
presented in this chapter was published in [111].

10.1 Problem definition

The on-demand nature of IaaS is one of the key features that makes it attractive as an alter-
native to buying and maintaining hardware, because users can rent virtual machines (VMs)
instantly, without having to go through lengthy setup procedures. VMs are instantiated
from a virtual machine image (simply referred to as image), a file that is stored persistently
on the cloud and represents the initial state of the components of the virtual machine, most
often the content of the virtual hard drive of the VM.

One of the commonly occurring patterns in the operation of IaaS is the need to instantiate
a large number of VMs at the same time, starting from a single (or multiple) images. For
example, this pattern occurs when the user wants to deploy a virtual cluster that executes a
distributed application, or a set of environments to support a workflow.

Once the application is running, a wide range of management tasks, such as checkpoint-
ing and live migration are crucial on clouds. Many suchmanagement tasks can be ultimately
reduced to snapshotting [154]. This essentially means to capture the state of the running VM
inside the image, which is then transferred to persistent storage and later reused to restore
the state of the VM, potentially on a different node than the one where it originally ran.
Since the application consists of a large number of VMs that run at the same time, another
important patten that occurs in the operation of IaaS is concurrent VM snapshotting.

This chapter focuses on highlighting the benefits of BlobSeer for these two patterns. We
call these two patterns the multi-deployment pattern and the multi-snapshotting pattern:

• The multi-deployment pattern occurs when multiple VM images (or a single VM image)
are deployed on many nodes at the same time. In such a scenario where massive
concurrent accesses increase the pressure on the storage service where the images are
located, it is interesting to avoid full transfer of the image to the nodes that will host
the VMs. At the minimum, when the image is booted, only parts of the image that
are actually accessed by the boot process need to be transferred. This saves us the
cost of moving the image and makes deployment fast while reducing the risk for a
bottleneck on the storage service where images are stored. However, such a “lazy”
transfer will make the boot process longer, as some necessary parts of the image may
not be available locally. We exploit this tradeoff to achieve a good balance between
deployment and application execution.

• The multi-snapshotting pattern occurs when many images corresponding to deployed
VM instances in a datacenter are persistently saved to a storage system at the same
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time. The interesting property of this pattern is that most of the time, only small parts
of the image are modified by the VM instance. Therefore, image snapshots share large
amounts of data among each other, which can be exploited both to reduce execution
time, as well as to reduce storage space and bandwidth consumption.

These two patterns are complementary and for this reason we study them in conjunction.

10.2 Application model

In order to reason about the two patterns presented above, several important aspects need
to be modeled.

10.2.1 Cloud infrastructure

Clouds typically are built on top of clusters made out of loosely-coupled commodity hard-
ware that minimizes per unit cost and favors low power over maximum speed [175]. Disk
storage (cheap hard-drives with capacities in the order of several hundred GB) is attached
to each processor, while processors are interconnected with standard Ethernet links. A part
of those nodes is employed as compute nodes that run the VMs of users. Their disk storage
is not persistent and is wiped after the VM finished running. Another part of these nodes
is employed as storage nodes, which are responsible to host a distributed storage service,
such as Amazon S3 [130], whose role is to persistently store both VM images and applica-
tion data. In many commercial clouds, the ratio of storage nodes to compute nodes is not
officially disclosed, but with the recent explosion of data sizes, (for example, Google grew
from processing 100 TB of data a day with MapReduce in 2004 [37] to processing 20 PB a
day with MapReduce in 2008 [38]), we estimate that the storage nodes will soon have to
outnumber the compute nodes to cope with these increasing storage needs.

10.2.2 Application state

The state of the VMdeployment is defined at eachmoment in time by twomain components:
the state of each of the VM instances and the state of the communication channels between
them (opened sockets, in-transit network packets, virtual topology, etc).

Thus, in the most general case (denoted Model 1), saving the application state implies
saving both the state of all VM instances and the state of all active communication chan-
nels between them. While several methods have been established in the virtualization com-
munity to capture the state of a running VM (CPU registers, RAM, state of devices, etc.),
the issue of capturing the state of the communication channels is difficult and still an open
problem [82]. In order to avoid this issue, the general case is usually simplified such that
the application state is reduced to the sum of states of the VM instances (denoted Model 2).
However, while this is perfectly feasible for one single VM instance and widely used in
practice, for a large number of VMs the necessary storage space explodes to huge sizes. For
example, saving 2 GB of RAM for 1000 VMs consumes 2 TB of space, which is unacceptable
for a single one-point-in-time application state.
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Therefore, Model 2 can further be simplified such that the VM state is represented only
by the virtual disk attached to it, which is stored as an image file in the local file system of the
VM host (denoted Model 3). Thus, the application state is saved by persistently storing all
disk-image files (locally modified by the VM). While this approach requires the application
to be able to save and restore its state explicitly to disk (for example as a temporary file), it
has two important practical benefits: (1) huge reductions in the size of the state, since the
contents of RAM, CPU registers, etc. does not need to be saved; and (2) portability, since
the VM can be restored on another host without having to worry about restoring the state of
hardware devices that are not supported or are incompatible between different hypervisors.

In this work, for clarity, we assume VM state is represented using Model 3. It is however
easy to extend the applicability of our approach to Model 2 by considering that VM image
files include not only the contents of the virtual disk attached to the VMs, but also the state
of the devices.

10.2.3 Application access pattern

VM typically do not access their whole initial images. For example, they may never access
some applications and utilities that are installed by default. In order to model this, it is useful
to analyze the life-cycle of a VM instance, which consists of three phases:

1. Booting, which involves reading configuration files and launching processes which
translates to random small reads and writes from the virtual machine image acting
as the initial state.

2. Running the user application, which generates application-specific access patterns:

• Negligible disk-image access, which applies to CPU-intensive applications or appli-
cations that use external storage services. Examples for this case are large-scale
simulations.

• Read-your-writes access, which applies to applications that write temporary files or
log files and eventually read them back (e.g., web servers).

• Read-intensive access, which applies to application that read (most often sequen-
tially) input data stored in the image. Examples here are data mining applica-
tions. The results are typically presented as a single aggregated value, so gener-
ated writes are negligible.

3. Shutting down, which generates negligible disk access to the image.

10.3 Our approach

We propose an approach that enables both efficient propagation of the initial virtual image
contents to the VMswhen the application is deployed, as well as efficient snapshotting while
the VM is running.

10.3.1 Core principles

We rely on three key principles:
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10.3.1.1 Optimize VM disk access by using on-demand image mirroring

Before the VM needs to be instantiated, an initially empty file of the same size as the image
is created on the local file system of the compute node that hosts the VM. This file is then
passed to the hypervisor running on the compute node, to be used as the underlying VM
image. Read and write accesses to the file however are trapped and treated in a special
fashion. A read that is issued on a fully or partially empty region in the file that has not been
accessed before (either by a previous read or write), results in fetching the missing content
remotely from the repository, creating a local copy of it and redirecting the read to the local
copy. If the whole region is available locally, no remote read is performed. This relates
closely to copy-on-reference, first used for process migration in the V-system [158]. Writes on
the other hand are always performed locally.

10.3.1.2 Reduce contention by striping the image

Each virtual image is split into small equally-sized chunks that are distributed among the
storage nodes of the repository. When a read request triggers a remote fetch from the repos-
itory, the chunks that hold this content are first determined. Then, the storage nodes that
hold the chunks are contacted in parallel and the data is transferred back to the compute
node. Under concurrency, this scheme effectively enables the distribution of the I/O work-
load among the storage nodes, because accesses to different parts of the image are served by
different storage nodes.

Even in the worst case scenario when all VMs read the same chunks in the same order
concurrently (for example, during the boot phase) there is a high chance that the accesses
get skewed and thus are not issued at exactly the same time. This effect happens because of
various reasons: different hypervisor initialization overhead, interleaving of CPU time with
I/O access (which under concurrency leads to a situation where some VMs execute code
during the time in which others issue remote reads), etc. For example, when booting 150
VM instances simultaneously, we measured two random instances to have on the average a
skew of about 100ms between the times they access the boot sector of the initial image. This
skew grows higher the more the VM instances continue with the boot process. What this
means is that at some point under concurrency they will access different chunks, which are
potentially stored on different storage nodes. Thus, contention is reduced.

Whereas splitting the image into chunks reduces contention, the effectiveness of this
approach depends on the chunk size and is subject to a trade-off. A chunk that is too large
may lead to false sharing, i.e. many small concurrent reads on different regions in the image
might fall inside the same chunk, which leads to a bottleneck. A chunk that is too small on
the other hand leads to a higher access overhead, both because of higher network overhead,
resulting from having to perform small data transfers and because of higher metadata access
overhead, resulting from having to manage more chunks. Therefore, it is important to find
the right trade-off.

10.3.1.3 Optimize snapshotting by means of shadowing and cloning

Since our approach does not bring the whole contents of the initial image on the compute
node where the VM is running, taking a snapshot is a non-trivial issue. The local image file
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cannot be simply saved to persistent storage, as it is partially empty. Even under the assump-
tion that the image contents has been fully pulled on the local file system, it is not feasible to
simply save the local image to persistent storage, because a lot of data is duplicated, which
leads to unnecessary storage space and bandwidth consumption, not to mention unaccept-
ably high snapshotting times.

For this reason, most hypervisors implement custom image file formats that enable stor-
ing incremental differences to efficiently support multiple snapshots of the same VM in-
stance in the same file. For example, KVM introduced the QCOW2 [51] format for this
purpose, while other work such as [127] proposes the Mirage Image Format (MIF). This
effectively enables snapshots to share unmodified content, which lowers storage space re-
quirements. However, in our context we need to efficiently support multiple snapshots of
different VM instances that share an initial image. This requirement limits the applicability
of using such a custom image file format. Moreover, a custom image file format also limits
the migration capabilities: if the destination host where the VM needs to be migrated runs a
different hypervisor that does not understand the custom image file format, migration is not
possible.

Therefore it is highly desirable to satisfy two requirements simultaneously:

1. store only the incremental differences between snapshots;

2. represent each snapshot as an independent, raw image file that is compatible with all
hypervisors.

We propose a solution that addresses these two requirements by leveraging the version-
ing principles introduced in Section 4.2. In particular, we rely on the update semantics that
offers the illusion of creating a new standalone snapshot of the object for each update to it,
while physically storing only the differences and manipulating metadata in such way that
the aforementioned illusion is upheld. This effectively means that from the user point of
view, each snapshot is a first-class object that can be independently accessed. For example,
let us assume that a small part of a large VM image needs to be updated. With versioning,
the user sees the effect of the update as a new, completely independent VM image that is
identical to the original except for the updated part. Moreover, we also leverage cloning to
duplicate a VM in such way that it looks like a stand-alone copy that can evolve in a different
direction than the original, but physically shares all initial content with the original.

Using these two versioning concepts, snapshotting can be easily performed in the follow-
ing fashion: the first time a snapshot is built, a new virtual image clone is created from the
initial image for each VM instance. Subsequent local modifications are written as incremen-
tal differences to the clones. This way all snapshots of all VM instances share unmodified
content among each other, while still appearing to the outside as independent raw image
files.

10.3.2 Applicability in the cloud: model

The simplified architecture of a cloud which integrates our approach is depicted in Fig-
ure 10.1. The typical elements found in the cloud are illustrated with a light background,
while the elements that are part of our proposal are highlighted by a darker background.

The following actors are present:
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Figure 10.1: Cloud architecture that integrates our approach (dark background)

• BlobSeer: in its role as a versioning storage service, it is deployed on the storage nodes
and manages their storage devices.

• The cloud middleware: it is responsible to expose and implement a control API that
enables a wide range of management tasks: VM deployment and termination, snap-
shotting, monitoring, etc.

• The cloud client: it uses the control API of the cloud middleware in order to interact
with the cloud. It has direct access to the storage service and is allowed to upload and
download images from it. Every uploaded image is automatically striped.

• The hypervisor: it runs on the compute nodes and is responsible to execute the VMs.
The cloud middleware has direct control over it.

• The mirroring module: it traps the reads and writes of the hypervisor and implements
on-demandmirroring and snapshotting, as explained in Section 10.3.1. It relies on both
the local file system and the versioning storage service to do so.

In order to support snapshotting, the mirroring module exposes two control primitives:
CLONE and COMMIT. These two primitives are used according to the procedure described
in 10.3.1.3: CLONE is used to create a new image clone, while COMMIT is used to persistently
store the local modifications to it.

Both CLONE and COMMIT are control primitives that result in the generation of a new fully
independent VM image that is globally accessible through the storage service and can be
deployed on other compute nodes or manipulated by the client. A global snapshot of the
whole application, which involves taking a snapshot of all VM instances in parallel, is per-
formed in the following fashion: the first time when the snapshot is taken, CLONE is broadcast
to all mirroring modules, followed by COMMIT. Once a clone is created for each VM instance,
subsequent global snapshots are performed by issuing to each mirroring module a COMMIT to
its corresponding clone.

CLONE and COMMIT can also be exposed by the cloud middleware at user level through the
control API for fine-grain control over snapshotting. This enables leveraging snapshotting
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in interesting ways. For example, let us assume a scenario where a complex distributed ap-
plication needs to be debugged. Running the application repeatedly and waiting for it to
reach the point where the bug happens might be prohibitively expensive. However, CLONE
and COMMIT can be used to capture the state of the application right before the bug happens.
Since all virtual image snapshots are independent entities, they can be either collectively or
independently analyzed and modified in an attempt to fix the bug. Once this is done, the
application can safely resume from the point where it left. If the attempt was not successful,
this can continue iteratively until a fix is found. Such an approach is highly useful in practice
at large scale, because complex synchronization bugs tend to appear only in large deploy-
ments and are usually not triggered during the test phase, which is usually performed at
smaller scale.

10.3.3 Zoom on mirroring

One important aspect of on-demand mirroring is the decision of how much to read from the
repository when data is unavailable locally, in such way as to obtain a good access perfor-
mance.

A straightforward approach is to translate every read issued by the hypervisor in either
a local or remote read, depending whether the requested contents is locally available or
not. While this approach certainly works, its performance is rather questionable. More
specifically, many small remote read requests generate significant network traffic overhead
(because of the extra networking information encapsulated with each request), as well as a
low throughput (because of the latencies of the requests that add up). Moreover, in the case
of many scattered small writes, a lot of small fragments need to be accounted for, in order to
remember what is available locally for reading and what is not. A lot of fragments however
incur a significant management overhead, negatively impacting access performance.

For this reason, we leverage two heuristics that aim to limit the negative impact of small
reads and writes. The first heuristic is a prefetching heuristic that is based on the empir-
ical observation that reads tend to be locally correlated: a read on one region is probably
followed by a read “in the neighborhood”. This is especially true for sequential read ac-
cess, which is a common access pattern. For this reason, the heuristic tries to minimize the
negative impact of small reads by forcing remote reads to be at least as large as a chunk.
Subsequent reads that fall within the same chunk are served locally, thus greatly improving
throughput in this case.

The second heuristic we propose eliminates write fragmentation by forcing a single con-
tiguous region to be mirrored locally for each chunk. More precisely, when a chunk that is
not available locally is written for the first time, only the region that is covered by the write
is modified in the local file. If a subsequent write to the same chunk falls on a region that
is disjoint from the first write, a gap between the two regions is created. In this case, the
heuristic reads the region corresponding to the gap from the remote storage and applies it
to the local file, such that a single contiguous non-empty region is obtained in the local file.
With this approach, only the limits of the contiguous region need to be maintained for each
chunk, which makes fragment management overhead negligible. Moreover, it is better than
plain copy-on-reference whichwould read the whole chunk before applying awrite, because
it avoids unnecessary reads when writes are not fragmented (e.g., sequential writes).
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Figure 10.2: Implementation details: zoom on the FUSE module

10.4 Implementation

In this section we show how to efficiently implement the building blocks presented in the
previous section in such way that they achieve the design principles introduced in Sec-
tion 10.3.1 on one side, and are easy to integrate in the cloud on the other side.

The versioning storage service relies on BlobSeer, which brings three advantages in this
context. First it offers out-of-the-box support for versioning, which enables easy implemen-
tation of our approach. Second, BlobSeer supports transparent data striping of large objects
and fine-grain access to them, which enables direct mapping between BLOBs and virtual
machine images and therefore eliminates the need for explicit chunk management. Finally
it offers support for high throughput under concurrency, which enables efficient parallel
access to the image chunks.

Themirroringmodule was implemented on top of FUSE (FileSystem in UserspacE) [176].
FUSE is a loadable kernel module for Unix-like operating systems that lets non-privileged
users create their own file systems without editing kernel code. This is achieved by running
file system code in user space while the FUSE module acts only as an intermediate to the
actual kernel interfaces. This approach brings several advantages in our context. First, it
enables portability among hypervisors by exposing a POSIX-compliant file system access
interface to the images. POSIX is supported by most hypervisors and enables running the
same unmodified mirroring module on all compute nodes, regardless of what hypervisor
is installed on them. Second, FUSE takes advantage of the kernel-level virtual file system,
which brings out-of-the-box support for advanced features such as cache management. Fi-
nally it avoids the need to alter or extend the hypervisor in any way, which effectively re-
duces implementation time and maintenance costs. The downside of FUSE is the extra con-
text switching overhead between the kernel space and the user space when an I/O system
call is issued. However, this overhead has a minimal negative impact, as demonstrated in
Section 10.5.3.

BlobSeer is leveraged as a versioning storage service by mapping each virtual image to
a BLOB. Local modifications are committed simply by using the BlobSeer write primitive to
update the BLOB. Cloning is performed by using the BlobSeer clone primitive.

The FUSEmodule, presented in Figure 10.2 exposes each BLOB (the VM) as a directory in
the local file system, and its associated snapshots as files in that directory. It consists of two
sub-modules: the local modification manager, responsible to track what contents is available
locally and the R/W translator, responsible to translate each original read and write request
into local and remote reads and writes, according to the strategy presented in Section 10.3.3.
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Whenever a BLOB snapshot (exposed by FUSE as a file to the hypervisor) is opened for
the first time, an initially empty file of the same size as the BLOB snapshot is created on the
local filesystem. This file is then used to mirror the contents of the BLOB snapshot. As soon
as this operation completed, the local file is mmap-ed in the host’s main memory for as long
as the snapshot is still kept open by the hypervisor.

Reads andwrites issued by the hypervisor are trapped by the R/W translator and broken
by the local modification manager into elementary read and write operations that concern
either the remote storage service or the local file system. Thanks tommap, any local read and
write operation bypasses the POSIX interface and is executed as a direct memory access. This
enables zero-copy (i.e. avoiding unnecessary copies between memory buffers). Moreover,
local writes are also optimized this way because they benefit from the built-in asynchronous
mmap write strategy.

Finally, when the snapshot is closed, the mmapped space is unmapped and the local file
is closed.

CLONE and COMMIT are implemented as ioctl system calls. Both rely on the clone and write
primitives natively exposed by BlobSeer. CLONE simply calls the BlobSeer clone primitive and
binds all local modifications to the newly cloned BLOB, while the COMMIT primitive writes all
local modifications back to the BLOB as a series of BlobSeer writes. Care is taken to mini-
mize the amount of issued BlobSeer writes by aggregating consecutive “dirty” (i.e. locally
modified) chunks in the same write call. Once the all dirty chunks have been successfully
written, the state is reset and all chunks are marked as “clean” again.

For the purpose of this work, we did not integrate the CLONE and COMMIT primitives with
a real cloud middleware. We implemented a simplified service instead that is responsible
to coordinate and issue these two primitives in a series of particular experimental scenarios
that are described in the next section.

10.5 Evaluation

10.5.1 Experimental setup

The experiments presented in this work have been performed on Grid’5000 [68], using the
cluster located in Nancy. All nodes of Nancy, numbering 200 in total, are outfitted with
x86_64 CPUs, local disk storage of 250 GB (access speed 55 MB/s) and at least 2 GB of RAM.
Unless otherwise stated, we fix 50 nodes to act as storage nodes and we employ a variable
number of compute nodes, up to the rest of 150. This accounts for a storage-to-compute
ratio that is at least 1:3. The hypervisor running on all compute nodes is KVM 0.12. For all
experiments, a 2 GB raw disk image file based on a recent Debian Sid distribution was used.

10.5.2 Scalability of multi-deployment under concurrency

The first series of experiments evaluates how well our approach performs under the multi-
deployment pattern, when a single initial image is used to instantiate a large number of VM
instances.

We compare our approach to the technique commonly used by cloud middleware to
distribute the image content on the node that hosts the VM: pre-propagation. Pre-propagation



10.5 – Evaluation 115

consists of two phases: in a first phase the VM image is broadcast to the local storage of
all compute nodes that will run a VM instance. Once the VM image is available locally
on all compute nodes, in the second phase all VMs are launched simultaneously. Since in
the second phase all content is available locally, no remote read access to the repository is
necessary. This enables direct local access to the image and does not depend or use the
network connection to the storage nodes. This is based on the assumption that access to
the local file system of the compute nodes is faster than access to remote storage, which is
the case for most large clusters in the industry that are built from commodity hardware, as
mentioned in Section 2.1.1.

The downside of this approach is however the initialization phase, which potentially in-
curs a high overhead, both in terms of latency and network traffic. In order to minimize this
overhead, we use TakTuk [33], a highly scalable tool based on broadcasting algorithms in the
postal model [12], which builds adaptive multicast trees that optimize the bandwidth/la-
tency tradeoff in order to efficiently broadcast a file to a set of machines. In this setting, it is
assumed that the root of the multicast tree is a NFS file server which is hosted by a dedicated
storage node and which holds the initial image.

We will compare the two approaches according to the following metrics:

• Average execution time per instance: the average time taken to execute an application in
the VM. This time is measured after the initialization phase (if applicable) has been
completed, between the time the VM is launched and the time the VM is terminated.
This parameter is relevant because it reveals the impact of remote concurrent reads
(present in our approach) vs. independent local reads (pre-propagation) on the scala-
bility of running VMs in parallel.

• Time-to-completion for all instances: the time taken to complete the initialization, launch-
ing, and execution of applications for all VMs. This time is measured between when
the request to launch the VMs is received in the system and when the last VM is termi-
nated. This parameter is relevant because it measures the total time needed to execute
the application and obtain a final result, which is what the user directly perceives.

• Total network traffic: the total network traffic generated throughout the execution of
all VMs, including during the initialization phase (if applicable). This parameter is
relevant because it directly impacts the end-user costs.

The series of experiments consists in deploying an increasing number of VMs using both
our approach and pre-propagation. We start with one VM and increase the number of de-
ployed VMs in steps of 25 up to 150, applying the metrics defined above at each step. In
the case of pre-propagation, the initial image is stored on the local NFS server which serves
the cluster and which is used as the source of the multicast. In the case of our approach,
BlobSeer is assumed to be deployed on the 50 reserved storage nodes and the initial image
stored in a striped fashion on it.

Note that the variation of average execution time needs not be represented explicitly.
This results from two reasons: (1) in the case of pre-propagation all data is available locally
after the initialization phase and therefore the variation is negligible; and (2) in the case of
our approach there is no initialization phase and therefore the completion time coincides
with the time to run the slowest VM, which measures the maximal deviation from the mean.
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10.5.2.1 Boot performance

In the first experiment, the only activity carried out in the VM is fully booting the operating
system. This corresponds to the behavior of an application that performs minimal access to
the underlying virtual image, which is for example the case of CPU-intensive applications.
Under such circumstances, almost all access to the virtual image is performed during the
boot phase.

Since in our approach the image is striped into chunks, an important aspect is to evalu-
ate the impact of the chunk size on performance and network traffic. As discussed in Sec-
tion 10.3.1.2, a small chunk size minimizes the amount of unnecessary data that is prefetched
and thus minimizes network traffic. However, lowering the chunk size too much means that
many chunks have to be fetched and thus this can have a negative impact on performance.
We evaluated various chunk sizes and found the best performance was delivered at 512 KB.
For completeness, we include both results obtained with a higher size (1 MB), and a lower
size (256 KB).

Figure 10.3 shows the average boot time per VM instance. As expected, in the case of pre-
propagation, average boot time is almost constant, as data is already on the local file system
and therefore no transfer from the storage nodes is required. In the case of our approach,
boot times are higher, as chunks need to be fetched remotely from the storage nodes on-the-
fly during boot time. The more instances, the higher the read contention and thus the higher
the boot times. A breaking point is noticeable at 50 instances, where the increase in average
time becomes steeper. This is because after 50 instances, the storage nodes are outnumbered
by the VM instances and therefore the probability of concurrent access to the same storage
node increases even when reading different chunks.

Figure 10.4 shows the total time to boot all VMs. As can be seen, the pre-propagation is
an expensive step, especially when considering that only a small part of the initial virtual is
actually accessed. This brings our approach at a clear advantage, with the speedup depicted
in Figure 10.5. The speedup is obtained as the completion time to boot all instances of the
pre-propagation approach divided by the completion time of our approach. As expected, the
highest speedup is obtained when the number of VM instances is the same as then number
of storage nodes, which enables the optimal distribution of I/O workload for our approach.
Performance-wise, it can be observed that a 512 KB chunk size brings the highest speedup
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and scales well even after the breaking point is reached.

Finally, Figure 10.6 illustrates the total network traffic generated by both approaches. As
expected, the growth is linear and is directly proportional to the amount of data that was
brought locally on the compute node. In the case of pre-propagation, the network traffic is
as expected a little over 300 GB for 150 instances. In the case of our approach, the smaller
the chunk size, the smaller amount of total network traffic. However, the total amount of
network traffic is not directly proportional to the chunk size. Lowering the chunk size from
1 MB to 512 KB results in a network traffic drop from 30 GB to 21 GB, while lowering from
512 KB to 256 KB in a drop from 21 GB to 15 GB only. The smaller the chunk gets, the smaller
the benefits from avoiding network traffic are. This happens mainly because of access local-
ity: consecutive reads issued by the hypervisor fall inside a region that is more likely to be
covered by consecutive chunks, which makes the benefit of small chunks sizes smaller.

10.5.2.2 Full read performance

The second experiment considers the complementary case to the one presented in the previ-
ous section, namely when the whole content of the virtual image needs to be read by each
VM instance. This represents the most unfavorable read-intensive scenario that corresponds
to applications which need to read input data stored in the image. In this case, the time to
run the VM corresponds to the time to boot and fully read the whole virtual image disk con-
tent (by performing a “cat /dev/hda1”, where hda1 is the virtual disk corresponding to the
image). Again, the evaluation is performed for three chunk sizes: 1 MB, 512 KB and 256 KB.

The average time to boot and fully read the initial disk content is represented in Fig-
ure 10.7. As expected, in the case of pre-propagation, this time remains constant as no read
contention exists. In the case of our approach, almost perfect scalability is also noticeable
up to 50 storage nodes, despite read concurrency. This is so because there are enough stor-
age providers among which the I/O workload can be distributed. After the number of in-
stances outnumbers the storage nodes, the I/O pressure increases on each storage node,
which makes the average read performance degrade in a linear fashion. On a general note,
the read performance is obviously worse in or approach, as the data is not available locally.

However, when considering the completion time for booting and fully reading the image
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Figure 10.7: Average time to boot and
fully read image per instance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120  140  160

T
ot

al
 ti

m
e 

to
 fu

lly
 r

ea
d 

fr
om

 a
ll 

in
st

an
ce

s

Number of concurrent instances

taktuk pre-propagation
our approach, 1MB chunks

our approach, 512KB chunks
our approach, 256KB chunks

Figure 10.8: Completion time to boot and
fully read the contents of all images

from all instances 10.8, our approach is at a clear advantage. The main reason for this is the
fact that the pre-propagation approach needs to touch the data twice: once in the initializa-
tion phase, when it needs to be copied locally and then in the execution phase when it needs
to be read by the guest. Since in our approach the initialization phase is missing, the total
time is better even for a single instance.

The actual speedup is represented in Figure 10.9. The peak is as expected at 50 when
the number of instances reaches the number of storage nodes. Then, the speedup gradually
starts falling as the I/O pressure on the storage nodes increases. Since the image needs to be
fully read by each instance, the total generated network traffic is not represented explicitly,
as it is roughly the same for both approaches and was already depicted in Figure 10.6: it
corresponds to the pre-propagation curve. Compared to the speedup obtained for the boot-
only experiment, it can be noted that the peak speed-up is much lower at 4.7 and degrades
faster when the number of compute nodes outnumber the storage nodes. This is explained
by the fact that in the boot-only experiment, our approach had the advantage of fetching
only the necessary parts of the image, which does not apply any longer.

10.5.3 Local access performance: read-your-writes access patterns

While the previous section evaluates first time read performance of the initial image con-
tents, this section focuses on local read and write performance, i.e. when the accessed re-
gions are presumed to be already available locally. This scenario is representative of read-
your-writes applications, that need to write large amounts of data in the virtual image (e.g.,
log files) and then eventually read all this information back.

For this purpose, we compare our approach to the ideal scenario: when a copy of the
virtual image is already available on the local file system of the compute node and can be
used directly by the hypervisor. We aim to evaluate the overhead of our approach which
needs to trap reads and writes and needs to manage local modifications, as opposed to the
ideal case when the hypervisor can directly interact with the local file system. In order to
generate a write-intensive scenario that also reads back written data, we use a standard
benchmarking tool: Bonnie++ [90]. Bonnie++ creates and writes a set of files that fill a large
part of the remaining free space of the disk, then reads back the written data, and then
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overwrites the files with new data, recording throughput in all cases. Other performance
factors such as howmany files per second can be created and deleted are also recorded. Since
data is first sequentially written and then read back, no remote reads are involved for our
approach. This in turnmeans contention is not an issue and therefore experimentationwith a
single VM instance is enough to predict behavior of multiple instances that run concurrently.

The experiment consists in booting the VM instance and then running Bonnie++ using
both our approach and a locally available image directly. This experiment is repeated 5 times
and the results of Bonnie++ are averaged. The total space written and read back by Bonnie++
was 800 MB out of a total of 2 GB, in blocks of 8 KB.

Throughput results are shown in Figure 10.10. As can be noticed, reads of previously
written data have the same performance levels for both approaches. This results is as ex-
pected, because previously written data is available locally for both approaches and there-
fore no additional overhead is incurred by our approach. Interestingly enough, write
throughput and overwrite throughput is almost twice as high for our approach. This is
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explained by the fact that mmap triggers a more efficient write-back strategy in the host’s
kernel and overrides the default hypervisor strategy, which comes into play when it has
direct access to the image.

On the other hand, the extra context switches andmanagement overhead incurred by our
approach become visible whenmeasuring the number of operations per second. Figure 10.11
shows lower numbers for our approach, especially with random seeks and file deletion.
However, since operations such as file creation/deletion and seeks are relatively rare and
execute very fast, the performance penalty in real life is negligible.

10.5.4 Multi-snapshotting performance

This section evaluates the performance of our approach in the context of the multi-
snapshotting access pattern. We assume a large number of VM instances that need to concur-
rently save their corresponding VM image, which suffered local modifications, persistently
on the storage nodes.

The experimental setup is similar to the one used in the previous sections: an initial RAW
image, 2 GB large, is striped and stored on 50 storage nodes in three configurations: 1 MB,
512 KB and 256 KB chunks. In order to underline the benefits our our approach better, we
consider that local modifications are small, which is consistent for example with checkpoint-
ing a CPU-intensive, distributed applications where the state of each VM instance can be
written as a temporary file in the image. In order to simulate this behavior in our experi-
ments, we have instantiated a variable number of VM instances from the same initial image
and then instructed each instance to write a 1 MB file in its corresponding image, after which
the hypervisor was instructed to flush all local modifications to the VM image. Once all hy-
pervisors finished this process, all images were concurrently snapshotted by broadcasting
a CLONE, followed by a COMMIT command to all compute nodes hosting the VMs. The local
modifications captured by COMMIT include not only the temporary file, but also file system
operations performed during the boot phase (i.e. creating configuration files, writing to log
files, etc.)

The execution time on each compute node, as well as the total storage space consumed
by all snapshots is recorded and used to calculate the following metrics: the average snap-
shotting time per instance, the completion time to snapshot all VMs, and the overall storage
space occupied on the storage nodes (which is roughly equivalent to the total generated
network traffic).

Execution time results are depicted in Figure 10.13 and Figure 10.14. As can be observed,
average snapshotting time does not show a significant growth when the storage nodes out-
number the compute nodes, and from that point on it shows a linearly-shaped growth. The
completion time to snapshot all images follows the same trend, but it grows faster and expe-
riences an evolution in steps. This is explained by the higher deviation from the mean that is
present from the increased write pressure on the storage nodes. Nevertheless, both the aver-
age time as well as the completion time are just a tiny fraction when compared to traditional
approaches that store all images fully in the cloud storage, a process that can easily extend
to hours. The same conclusion can be drawn when looking at the storage space and network
traffic: Figure 10.15 shows a total occupied storage space well below 2 GB for 150 instances,
when the chunk size is 256 KB, and about 4.5 GB for a 1 MB chunk size. For comparison,
fully transferring the images to the storage nodes takes well over 300 GB for 150 instances.
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10.5.5 Benefits for real-life, distributed applications

We illustrate the benefits of our approach for a common type of CPU-bound scientific appli-
cations: Monte-Carlo approximations. Such applications rely on repeated random sampling
to compute their results and are often used in simulating physical and mathematical sys-
tems. This approach is particularly useful when it is unfeasible or impossible to compute
the exact result using deterministic methods. In our particular case, we estimate the number
π by choosing random points in a square and calculating how much of the points fall inside
of the inscribed circle. In this case, π = 4× (points_inside)/(total_points).

This is an embarrassingly parallel application, as a large number of workers can inde-
pendently pick such points and verify their belonging to the circle. In a final step, the results
are aggregated and π is calculated. We spawn 100 instances to solve this problem for a vari-
able number of total points: 1011, 5× 1011 and 1012. The work is evenly distributed among
instances. The workload is mostly CPU-intensive, with each instance programmed to save
intermediate results at regular intervals in a temporary file (I/O is negligible).

For each total number of points, the problem is solved in three different ways: using
our approach, using pre-propagation as described in Section 10.5.2, and using our approach
but suspending the application and then resuming each VM instance on a different node as
where it originally ran. The suspend-resume is performed in the following fashion: CLONE,
followed by a COMMIT, is broadcast to all VM instances. Immediately after all snapshots are
successfully written to persistent storage, the VM instances are killed. Once all VM instances
are down, they are rebooted and the application resumes from the last intermediate result
saved in the temporary file. Each VM instance is resumed on a different compute node than
the one where it originally ran, to simulate a realistic situation where the original compute
nodes have lost all their local storage contents or there is a need to migrate the whole appli-
cation on a different set of compute nodes.

Results are shown in Figure 10.12. As expected from the results obtained in Sec-
tion 10.5.2.1, since this is a CPU-intensive application, the initialization phase for pre-
propagation is extremely costly. This effect is more noticeable when fewer work is done
by each VM instance. While the overhead of snapshotting is negligible in all three cases, the
suspend-resume cycle overall grows slightly higher the more work needs to be performed
by the VM instances, as resuming on different nodes with potentially different CPU creates
a larger variance in longer VM execution times. However, this accounts for less than 10%
overall overhead in the worst case of 1012 points.
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10.6 Positioning of this contribution with respect to related work

Several mechanisms to disseminate the content of the initial virtual image exist. Commonly
in use is full virtual image pre-propagation to the local storage of the compute nodes before
launching the VM. For this purpose, efficient broadcast techniques have been proposed. Tak-
Tuk [33] is a highly scalable tool inspired by broadcasting algorithms in the postal model [12].
It builds adaptive multi-cast trees to optimally exploit bandwidth and latency for content
dissemination. Multi-casting is also employed by Frisbee [61], a tool used by EmuLab [60]
to apply disk images to nodes. Scp-wave [177], in use by OpenNebula [101] is another such
tool. It carries out the transfers by starting with a single seed and increases the number of
seeders as more content is transferred, in order to obtain a logarithmic speed-up versus a
sequential transfer. A similar idea is implemented in [132] as well. While these approaches
avoid read contention to the repository, they can incur a high overhead both in network
traffic and execution time, as presented in Section 10.5.2.

A different approach to instantiate a large number of VMs from the same initial state is
proposed in [74]. The authors introduce a new cloud abstraction: VM FORK. Essentially this
is the equivalent of the fork call on UNIX operating systems, instantaneously cloning a VM
into multiple replicas running on different hosts. While this is similar to CLONE followed by
COMMIT in our approach, the focus is on minimizing the time and network traffic to spawn
and run on-the-fly new remote VM instances that share the same local state of an already
running VM. Local modifications are assumed to be ephemeral and no support to store the
state persistently is provided.

Closer to our approach is Lithium [57], a fork-consistent replication system for virtual
disks. Lithium supports instant volume creation with lazy space allocation, instant creation
of writable snapshots, and tunable replication. While this achieves the same as CLONE and
COMMIT, it is based on log-structuring [136], which incurs high sequential read and mainte-
nance overhead.

Content Addressable Storage (CAS) [63, 123] was also considered for archival of virtual
machine images [103] and disk imagemanagement [80, 128]. While the focus is on providing
space-efficient disk image storage mainly by exploiting duplication, concurrency issues are
again not addressed or not part of the original design.

Cluster volume managers for virtual disks such as Parallax [96] enable compute nodes
to share access to a single, globally visible block device, which is collaboratively managed
to present individual virtual disk images to the VMs. While this enables efficient frequent
snapshotting, unlike our approach, sharing of images is intentionally unsupported in or-
der to eliminate the need for a distributed lock manager, which is claimed to dramatically
simplify the design.

Several storage systems such as Amazon S3 [130] (backed by Dynamo [39]) have been
specifically designed as highly available key-value repositories for cloud infrastructures.
This objective however is achieved at the cost of limiting the client to read and write full
objects only, which limits the applicability in our context.

Finally, our approach is intended as a means to complement existing cloud comput-
ing platforms, both from the industry (Amazon Elastic Compute Cloud: EC2 [175]) and
academia (Nimbus [71], OpenNebula [101]). While the details for EC2 are not publicly avail-
able, it is widely acknowledged that all these platforms rely on several of the techniques
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presented above. Claims to instantiate multiple VMs in “minutes” however is insufficient
for the performance objectives of our work.

10.7 Conclusions

In this chapter we have successfully demonstrated the benefits of BlobSeer for VM man-
agement in the context of IaaS cloud computing. We introduced several techniques that
integrate with cloud middleware to efficiently handle two patterns: multi-deployment and
multi-snapshotting.

We proposed a lazy VMdeployment scheme that fetches VM image content as needed by
the application executing in the VM, thus reducing the pressure on the VM storage service
for heavily concurrent deployment requests. Furthermore, we leverage object-versioning to
save only local VM image differences back to persistent storage when a snapshot is created,
yet provide the illusion that the snapshot is a different, fully independent image. This has
an important benefit in that it handles the management of updates independently of the
hypervisor, thus greatly improving the portability of VM images, and compensating for the
lack of VM image format standardization.

We demonstrated the benefits of the proposal through experiments on 100s of nodes
using benchmarks as well as real-life applications. Compared to simple approaches based on
pre-propagation, our approach shows improvements both in execution time and resources
usage (i.e., storage space and network traffic): we show that the time to process application
execution in an IaaS cloud can be improved by a factor of up to 25, while at the same time
reducing storage and bandwidth usage by 90%. These results have impact on the final user
costs, as costs are directly proportional to the amount of consumed resources and the time
the user spends waiting for an application to finish.
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In the previous chapter we have evaluated BlobSeer in its role as a storage service that
offers efficient support for virtual machine storage in the context of IaaS cloud computing.
We have experimented with applications that are rather compute-intensive and havemodest
user data storage requirements: it is feasible to store all user data in the guest filesystems of
the VM instances (i.e. directly in the image files).

However, for data-intensive applications, an external storage service that is accessible
from within the VM instances is a more robust approach. This greatly simplifies data man-
agement for the user, because input and output files of applications can be uploaded and
downloaded by direct interaction with the storage service, without the need to involve vir-
tual machine images.
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In this chapter, we evaluate BlobSeer as a cloud storage service for user data rather than
virtual machine images. To place this work in a relevant context, we have chosen to use Blob-
Seer as a storage service for MapReduce applications. However, unlike Chapter 9, where we
focused on delivering a high aggregated throughput even under a heavy data access concur-
rency, in this chapter we focus on a crucial property on clouds: quality-of-service (QoS).

QoS is important in this context, because the cloud storage service is shared by multi-
ple users and therefore a high aggregated throughput does not necessarily imply that all
customers are served equally well. Therefore, in addition to sustaining a high aggregated
throughput, in this chapter we aim to deliver a stable throughput for each individual data ac-
cess. A stable throughput guarantee is however an inherently difficult task, because a large
number of factors is involved.

First, MapReduce frameworks run on infrastructures comprising thousands of commod-
ity hardware components. In this context, failures are rather the norm than the exception.
Since faults cause drops in performance, fault tolerance becomes a critical aspect of through-
put stability. Second, complex data access patterns are generated that are likely to combine
periods of intensive I/O activity with periods of relative less intensive I/O activity through-
out run-time. This has a negative impact on throughput stability, thus adaptation to access
pattern is a crucial issue as well.

The sheer complexity of both the state of the hardware components and the data ac-
cess pattern makes reasoning about fault tolerance and adaptation to access pattern difficult,
since it is not feasible to find non-trivial dependencies manually. Therefore, it is important
to automate the process of identifying and characterizing the circumstances that bring the
storage service in a state where there are significant fluctuations in the sustained throughput
and to take appropriate action to stabilize the system.

In order to solve this problem, we propose a general methodology based on component
monitoring, application-side feedback and behavior pattern analysis in order to discover and char-
acterize the situations that lead to fluctuations of individual data access throughput and
remedy the situation. This work was published in [98].

11.1 Proposal

We propose a general approach to automate the process of identifying and characterizing
the events that cause significant fluctuations in the sustained throughput of individual I/O
transfers. This enables the storage service to take appropriate action in order to stabilize the
system. We rely on three key principles.

In-depth monitoring. The storage service is usually deployed on large-scale infrastruc-
tures comprising thousands of machines, each of which is prone to failures. Such compo-
nents are characterized by a large number of parameters, whose values need to be measured
in order to describe the state of the system at a specific moment in time. Since data-intensive
applications generate complex access-pattern scenarios, it is not feasible to predetermine
which parameters are important and should be monitored, as this limits the potential to
identify non-obvious bottlenecks. Therefore, it is important to collect as much information
as possible about each of the components of the storage service.
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Application-side feedback. Extensive monitoring of the system helps to accurately define
its state at a specific moment in time. However, it is not accurate enough to identify a sit-
uation where the throughput of individual I/O transfers fluctuates, because the perceived
quality of service from the application point of view remains unknown. For example, in the
context of MapReduce applications, monitoring the network traffic is not enough to infer
the throughput achieved for each task, because the division of each job into tasks remains
unknown to the storage service. Therefore, it is crucial to gather feedback dynamically from
the upper layers that rely on the storage service in order to decide when the system performs
satisfactorily and when it does not.

Behavior pattern analysis. Extensive monitoring information gives a complete view of the
behavior of the storage service in time. Using the feedback from the upper layers, it is also
possible to determine when it performed satisfactory and when it performed poorly. How-
ever, the complexity of the behavior makes direct reasoning about the causes of potential
bottlenecks difficult. Intuitively, explaining the behavior is much easier if a set of behavior
patterns can be identified, which can be classified either as satisfactory or not. Once a clas-
sification is made, taking action to stabilize the system essentially means to predict a poor
behavior and enforce a policy to avoid it. The challenge however is to describe the behav-
ior patterns in such a way that they provide meaningful insight with respect to throughput
stability, thus making healing mechanisms easy to implement.

11.1.1 Methodology

Starting from these principles, we propose a methodology to stabilize the throughput of the
storage service as a series of four steps:

Monitor the storage service. A wide range of parameters that describe the state of each of
the components of the storage service is periodically collected during a long period of
service up-time. This is necessary in order to approximate reliably the data access pat-
tern generated by the data-intensive application. An important aspect in this context
is fault detection, as information on when and how long individual faults last is crucial
in the identification of behavior patterns.

Identify behavior patterns. Starting from the monitored parameters, the behavior of the
storage service as a whole is classified into behavior patterns. The classification must
be performed in such a way that, given the behavior at any moment in time, it un-
ambiguously matches one of the identified patterns. The critical part of this step is to
extract meaningful information with respect to throughput stability that describes the
behavior pattern. Considering the vast amount of monitoring information, it is not
feasible to perform this step manually. Therefore, an automated knowledge discovery
method needs to be applied. Specific details are provided in Section 11.1.2.

Classify behavior patterns according to feedback. In order to identify a relationship be-
tween behavior patterns and stability of throughput, the application-side feedback
with respect to the perceived quality of service is analyzed. More specifically, a se-
ries of performance metrics as observed by the upper layers is gathered for each data
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transfer. These performance metrics are then aggregated for all data transfers that oc-
curred during the period in which the behavior pattern was exhibited. The result of the
aggregation is a score that is associated to the behavior pattern and indicates how de-
sirable the behavior pattern is. Once the classification has been performed, transitions
from desirable states to undesirable states are analyzed in order to find the reason why
the storage service does not offer a stable throughput any longer. This step involves
user-level interpretation and depends on the quality of the generated behavior model.

Predict and prevent undesired behavior patterns. Finally, understanding the reasons for
each undesired behavior enables the implementation of prediction and prevention
mechanisms accordingly. More specifically, the preconditions that trigger a transition
to each undesirable state are determined. Using this information, a corresponding pol-
icy is enabled, capable of executing a special set of rules while these preconditions are
satisfied. These rules are designed to prevent this transition to occur or, if this is not
possible, to mitigate the effects of the undesired state. It is assumed that the applica-
tion is monitored throughout its execution and the storage service has accessed to the
monitoring information. This makes the service able to predict when an undesirable
behavior is about to happen and to activate the corresponding policy.

11.1.2 GloBeM: Global Behavior Modeling

In order to identify and describe the behavior patterns of the storage service in a simple yet
comprehensive way, we rely on a generic approach to model the global behavior of large-
scale distributed systems [99, 100] (from now referred to as GloBeM). Its main objective is to
build an abstract, descriptive model of the global system state. This enables the model to
implicitly describe the interactions between entities, which has the potential to unveil non-
trivial dependencies significant for the description of the behavior, which otherwise would
have gone unnoticed.

GloBeM follows a set of procedures in order to build such amodel, starting frommonitor-
ing information that corresponds to the observed behavior. These basic monitoring data are
then aggregated into global monitoring parameters, representative of the global system behav-
ior instead of each single resource separately. This aggregation can be performed in different
ways, but it normally consists in calculating global statistic descriptors (mean, standard de-
viation, skewness, kurtosis, etc.) values of each basic monitoring parameter for all resources
present. This ensures that global monitoring metrics are still understandable from a human
perspective. This global information undergoes a complex analysis process in order to pro-
duce a global behavior representation. This process is strongly based on machine learning
and other knowledge discovery techniques, such as virtual representation of information
systems [161, 162]. A behavior model presents the following characteristics.

Finite state machine. The model can be expressed as a finite state machine, with specific
states and transitions. The number of states is generally small (between 3 and 8).

State characterization based on monitoring parameters. The different system states are ex-
pressed in terms of the original monitoring parameters. This ensures that its character-
istics can be understood and directly used for management purposes.
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Figure 11.1: Our approach applied: stabilizing throughput in BlobSeer

Extended statistical information. The model is completed with additional statistic metrics,
further expanding the state characterization.

11.1.3 Applying the methodology to BlobSeer

The methodology described in Section 11.1.1 is implemented for BlobSeer, as presented in
Figure 11.1. For simplification purposes, we assume that the only components of BlobSeer
that can cause bottlenecks are the data providers. This is a reasonable assumption, as most
of the I/O load falls on the data providers.

11.1.3.1 Monitor the data providers

We periodically collect a wide range of parameters that describe the state of each data
provider of the BlobSeer instance. For this task we use GMonE [138], a monitoring frame-
work for large-scale distributed systems based on the publish-subscribe paradigm. GMonE
runs a process called resource monitor on every node to be monitored. Each such node pub-
lishes monitoring information to one or more monitoring archives at regular time intervals.
These monitoring archives act as the subscribers and gather the monitoring information in a
database, constructing a historical record of the system’s evolution.

The resource monitors can be customized with monitoring plugins, which can be used to
adapt the monitoring process to a specific scenario by selecting relevant monitoring informa-
tion. We developed a plug-in for BlobSeer that is responsible for monitoring each provider
and pushing the following parameters into GMonE: number of read operations, number of
write operations, free space available, CPU load and memory usage. These parameters rep-
resent the state of the provider at any specific moment in time. Every node running a data
provider publishes this information every 45 seconds to a single central monitoring archive
that stores the monitoring information for the whole experiment.

Once the monitoring information is gathered, an aggregation process is undertaken:
mean and standard deviation values are calculated for each of the five previous metrics. Ad-
ditionally, unavailable data providers (due to a failure) are also included as an extra globally
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monitored parameter. We call the result of the gathering and aggregation the global history
record of the behavior of BlobSeer.

11.1.3.2 Identify behavior patterns

The historical data mentioned above is then fed into GloBeM in order to classify the behavior
of BlobSeer as a whole into a set of states, each corresponding to a behavior pattern. Thanks
to GloBeM, this process is fully automated and we obtain a comprehensive characterization
of the states in terms of the most important parameters that contribute to it.

11.1.3.3 Classify behavior patterns according to feedback

For each data transfer, we take the following parameters as client-side quality of service
indicators: (i) the effective observed throughput; and (ii) the number of times the operation
was interrupted by a fault and had to be restarted. This information is logged for each data
transfer, averaged for each state of the behavior model and then used to classify the states
into desirable states that offer good performance to the clients and undesirable states that
offer poor performance to the clients.

11.1.3.4 Predict and prevent undesired behavior patterns

Finally, the challenge is to improve the behavior of BlobSeer in such way as to avoid un-
desirable states. This step is completely dependent on the behavioral analysis of the model
generated by GloBeM. Since the model is tightly coupled with the data-access pattern of
the application, the infrastructure used to deploy BlobSeer, and the corresponding failure
model, we detail this step for each of our experiments separately in Section 11.2.3.

11.2 Experimental evaluation

11.2.1 Application scenario: MapReduce data gathering and analysis

We evaluate the effectiveness of our approach for simulatedMapReduce workloads that cor-
respond to a typical data-intensive computing scenario on clouds: continuously acquiring
(and possibly updating) very large datasets of unstructured data while performing large-
scale computations over the data.

For example, a startup might want to invest money into a cloud application that crawls
the web in search for new text content (such as web pages) in order to build aggregated
statistics and infer new knowledge about a topic of interest.

In this context, simulating the corresponding MapReduce workloads involves two as-
pects: (i) a write access pattern that corresponds to constant data gathering andmaintenance
of data in the system and (ii) a read access pattern that corresponds to the data processing.
Observe that in most cases the final result of the data processing are small aggregated values
that generate negligible writes. Moreover, intermediate data is not persistently stored by
MapReduce.
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Write access pattern. As explained in [53], managing a very large set of small files is not
feasible. Therefore, data is typically gathered in a few files of great size. Moreover, ex-
perience with data-intensive applications has shown that these very large files are gener-
ated mostly by appending records concurrently, and seldom overwriting any record. To
reproduce this behavior in BlobSeer, we create a small number of BLOBs and have a set of
clients (corresponding to “map” tasks) generate and write random data concurrently to the
BLOBs. Each client predominantly appends, and occasionally overwrites chunks of 64MB to
a randomly selected BLOB at random time intervals, sleeping meanwhile. The frequency of
writes corresponds to an overall constant write pressure of 1 MB/s on each of the data pro-
vides of BlobSeer throughout the duration of the experiment. It corresponds to the maximal
rate that a single web crawler process can achieve under normal circumstances.

Read access pattern. In order to model the data processing aspect, we simulate MapRe-
duce applications that scan the whole dataset in parallel and compute some aggregated
statistics about it. This translates into a highly concurrent read access pattern to the same
BLOB. We implemented clients that perform parallel reads of chunks of 64MB (which is the
default chunk size used in Hadoop MapReduce) from the same BLOB version and then sim-
ulate a “map phase” on this data by keeping the CPU busy. Globally, we strive to achieve an
average I/O time to computation time ratio of 1:7, which is intended to account for the CPU
time of both the “map phase” and the “reduce phase”.

We execute both the data gathering and data processing concurrently in order to simu-
late a realistic setting where data is constantly analyzed while updates are processed in the
background. We implemented the clients in such a way as to target an overall write to read
ratio of 1:10. This comes from the fact that in practice multiple MapReduce passes over the
same data are necessary to achieve the final result.

11.2.2 Experimental setup

We performed our experiments on Grid’5000, using 130 of the nodes of Lille cluster and 275
of the nodes of Orsay cluster. Since MapReduce-style computing systems are traditionally
running on commodity hardware, collocating computation and storage on the same phys-
ical box is common. However, recent proposals advocate the use of converged networks
to decouple the computation from storage in order to enable a more flexible and efficient
datacenter design [142]. Since both approaches are used by cloud providers, we evaluate
the benefits of applying global behavior modeling to BlobSeer in both scenarios. For this
purpose, we use the Lille cluster to model collocation of computation and storage node by
co-deploying a client process with a data provider process on the same node, and the Or-
say cluster to model decoupled computation and storage by running the client and the data
provider on different nodes. In both scenarios, we deploy on each node a GMonE resource
monitor that is responsible to collect the monitoring data throughout the experimentation.
Further, in each of the clusters we reserve a special node to act as the GMonE monitoring
archive that collects the monitoring information from all resource monitors. We will refer
from now on to the scenario that models collocation of computation and storage on the Lille
cluster simply as setting A and to the scenario that models decoupled computation and stor-
age on the Orsay cluster as setting B.
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Table 11.1: Global states - Setting A
parameter State 1 State 2 State 3 State 4

Avg. read ops. 68.9 121.2 60.0 98.7
Read ops stdev. 10.5 15.8 9.9 16.7
Avg. write ops. 43.2 38.4 45.3 38.5
Write ops stdev. 4.9 4.7 5.2 7.4
Free space stdev. 3.1e7 82.1e7 84.6e7 89.4e7
Nr. of providers 107.0 102.7 96.4 97.2

Since real large-scale distributed environments are subject to failures, we implemented
a data provider failure-injection framework that models failure patterns as observed in real
large-scale systems build from commodity hardware that run for long periods of time. This
framework is then used to simulate failures during run-time, both for setting A and set-
ting B. The failure distribution is generated according to a multi-state resource availability
characterization study described in [134].

11.2.3 Results

We perform a multi-stage experimentation that involves: (i) running an original BlobSeer
instance under the data-intensive access pattern and failure scenario described; (ii) applying
our approach to analyze the behavior of BlobSeer and identify potential improvements; and
finally (iii) running an improved BlobSeer instance in the same conditions as the original
instance, comparing the results and proving that the improvement hinted by the proposed
methodology was indeed successful in raising the performance of BlobSeer. This multi-stage
experimentation is performed for both settings A and B described in Section 11.2.

11.2.3.1 Running the original BlobSeer instance

We deploy a BlobSeer instance in both settings A and B and monitor it using GMonE. Both
experimental settings have a fixed duration of 10 hours. During the experiments, the data-
intensive workload accessed a total of ≃ 11 TB of data on setting A, out of which ≃ 1.3 TB
were written and the rest read. Similarly, a total of ≃ 17 TB of data was generated on setting
B, out of which ≃ 1.5 TB were written and the rest read.

11.2.3.2 Performing the global behavior modeling

We apply GloBeM both for setting A and setting B in order to generate the corresponding
global behavior model. Each of the identified states of the model corresponds to a specific
behavior pattern and contains the most significant parameters that characterize the state.
Tables 11.1 and 11.2 show the average values for the most representative parameters of each
state, both for setting A and setting B respectively. It is important to remember that these are
not all the parameters that were monitored, but only the ones selected by GloBeM as the most
representative. As can be seen, GloBeM identified four possible states in the case of setting A
and three in the case of setting B.

The client-side feedback is gathered from the client logs as explained in Section 11.1.3.
Average read bandwidths for each of the states are represented in Table 11.3 for both settings
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Table 11.2: Global states - Setting B
parameter State 1 State 2 State 3

Avg. read ops. 98.6 202.3 125.5
Read ops stdev. 17.7 27.6 21.9
Avg. write ops. 35.2 27.5 33.1
Write ops stdev. 4.5 3.9 4.5
Free space stdev. 17.2e6 13.0e6 15.5e6
Nr. of providers 129.2 126.2 122.0
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Figure 11.2: Read faults: states are represented with different point styles

A and B.

Table 11.3: Average read bandwidth
Scenario State 1 State 2 State 3 State 4

Setting A 24.2 20.1 31.5 23.9

Setting B 50.7 35.0 47.0
units are MB/s

Figures 11.2(a) and 11.2(b) depict evolution in time of the total number of read faults as
observed by the clients for both scenarios. At this point it is important to remember that these
are client-related data and, therefore, neither read bandwidth nor failure information was
available to GloBeM when identifying the states. Nevertheless, the different global patterns
identified correspond to clearly different behavior in terms of client metrics, as shown in
Table 11.3 and Figures 11.2(a) and 11.2(b).

As previously described, the GloBeM analysis generated two global behavior models, re-
spectively corresponding to the behavior of BlobSeer in settings A and B. We performed fur-
ther analysis using the effective read bandwidth and the number of read faults as observed
from the client point of view, in order to classify the states of the behavior models into de-
sired states (where the performance metrics are satisfactory) and undesired states (where the
performance metrics can be improved).

In the case of setting A, State 2 presents the lowest average read bandwidth (≃ 20 MB/s).
It is also the state where most read faults occur, and where the failure pattern is more erratic.
A similar situation occurs with setting B. In this case again State 2 is the one with the lowest
average bandwidth (≃ 35 MB/s) and the most erratic read fault behavior. We classify these
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states (State 2 in both settings A and B) to be undesired, because the worst quality of service
is observed from the client point of view.

Considering now the global state characterization provided by GloBeM for both scenar-
ios (Tables 11.1 and 11.2), a distinctive pattern can be identified for these undesired states:
both have clearly the highest average number of read operations and, specifically in the case
of setting B, a high standard deviation for the number of read operations. This indicates a
state where the data providers are under heavy read load (hence the high average value) and
the read operation completion times are fluctuating (hence the high standard deviation).

11.2.3.3 Improving BlobSeer

Now that the cause for fluctuations in the stability of the throughput has been identified,
our objective is to improve BlobSeer’s quality of service by implementing a mechanism that
avoids reaching the undesired states described above (State 2 in both settings). Since the sys-
tem is under constant write load in all states for both settings A and B (Tables 11.1 and 11.2),
we aim at reducing the total I/O pressure on the data providers by avoiding to allocate
providers that are under heavy read load for storage of new chunks.

This in turn improves the read throughput but at the cost of a slightly less balanced chunk
distribution. This eventually affects the throughput of future read operations on the newly
written data. For this reason, avoiding writes on providers with heavy read loads is just an
emergency measure to prevent reaching an undesired state. During normal functioning with
non-critically high read loads, the original load-balancing strategy for writes can be used.

The average read operation characterization provided by GloBeM for State 2, which is
the undesired state (both in settings A and B), is the key threshold to decide when a provider
is considered to be under heavy read load and should not store new chunks. We imple-
mented this policy in the chunk allocation strategy of the provider manager. Since data
providers report periodically to the provider manager with statistics, we simply avoid se-
lecting providers for which the average number of read operations goes higher than the
threshold. We enable choosing those providers again when the number of read operations
goes below this threshold.

11.2.3.4 Running the improved BlobSeer instance

The same experiments were again conducted in the exact same conditions, (for both settings
A and B), using in this case the improved BlobSeer chunk allocation strategy. As explained,
the purpose of this new strategy is to improve the overall quality of service by avoiding the
undesirable states identified by GloBeM (State 2 in both settings A and setting B).

As final measure of the quality of service improvement, a deeper statistical comparison
of the average read bandwidth observed by the clients was done. Figures 11.3(a) and 11.3(b)
show the read bandwidth distribution for each experimental scenario. In each case, the
values of the original and improved BlobSeer version are compared. Additionally, Table 11.4
shows the average and standard deviation observed in each experimental setting.

The results seem to indicate a clear improvement (especially in setting A). However, in
order to eliminate the possibility of reaching this conclusion simply because of different bi-
ases in themonitoring samples, we need further statistical assessment. In order to declare the
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Figure 11.3: Read bandwidth stability: distribution comparison

Table 11.4: Statistical descriptors for read bandwidth (MB/s)
Scenario mean (MB/s) standard deviation

Setting A - Initial 24.9 9.6
Setting A - Advanced strategy 27.5 7.3

Setting B - Initial 44.7 10.5
Setting B - Advanced strategy 44.7 8.4

results obtained using the improved BlobSeer implementation (depicted in Figures 11.3(a)
and 11.3(b) and Table 11.4) as statistically meaningful with respect to the original implemen-
tation, we need to ensure that the different monitoring samples are in fact obtained from
different probability distributions. This would certify that the quality of service improve-
ment observed is real, and not a matter of simple bias.

To this end, we ran the Kolmogorov-Smirnov statistical test [149], on both the initial read
bandwidth results and the improved read bandwidth results. This test essentially takes two
samples as input and outputs a p-value, which must be smaller than 0.01 in order to conclude
that they do not originate from the same probability distribution. The obtained p-values for our
samples are with at least one order of magnitude smaller than 0.01.

Finally, the results show a clear quality of service improvement in both settings A and
B. In setting A, the average read bandwidth shows a 10% increase and, which is more im-
portant, the standard deviation is reduced by almost 25%. This indicates a lesser degree
of dispersion in the effective read bandwidth observed, and therefore a much more stable
bandwidth (for which the difference between the expected bandwidth (the mean value) and
the real bandwidth as measured by the client is lower). Thus, these improvements indicate
a significant increase in the overall quality-of-service.

In setting B, the average read bandwidth remained stable, which is understandable given
that, as explained in Section 11.2, we are close to the maximum physical hard drive transfer
rate limit of the testbed characteristics. Therefore, achieving a higher value is very difficult.
Nevertheless, the standard deviation of the read bandwidth was again significantly reduced:
no less than 20%.
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11.3 Positioning of this contribution with respect to related work

Several approaches to improve quality-of-service have been proposed before. The majority
of them relies on modeling.

A large class of modeling approaches, called white-box, relies on some foreknowledge of
the system and the scenario where it is supposed to run. The most basic approach, bench-
marking [41], is insufficient as it relies on manual analysis of monitoring data. Other ap-
proaches describe the system formally using Colored Petri Nets (CPN) [19] or Abstract State
Machines (ASM) [55] in order to reason about behavior. Rood and Lewis [135] propose a
multi-state model and several analysis techniques in order to forecast resource availability.

While these approaches work well for several fixed scenarios, in many cases it is not
known how the system looks like and in what context it will be used. To address this need,
several so called black-box approaches have been proposed. Magpie [14] for example is a tool
for automated extraction and analysis of grid workloads. MapReduce frameworks also saw
generic diagnosis tools, such as Ganesha [115], that automatically try to identify bottlenecks
in arbitrary applications.

Our proposal tries to combine the best of both white-box and black-box approaches.
Whereas black-box approaches are more generic, it is their generality that limits their ap-
plicability in practice: the modeling process cannot be guided to focus on a specific issue,
such as stability of throughput. We use GloBeM to automatically characterize the behavior
of the storage service under arbitrary access patterns, but then combine this generic informa-
tion together with foreknowledge about the implementation of the storage service in order
to reason about a specific quality-of-service issue: stability of throughput. This eventually
leads to a refined implementation of the storage service. The key in this context is GloBeM,
which motivated our modeling choice because of the simple yet comprehensive model it
produces as output, which greatly simplifies reasoning about the behavior.

11.4 Conclusions

Global behavioral modeling has been successfully applied to improve the individual
throughput stability delivered by BlobSeer, which is an important quality-of-service guaran-
tee that complements the main goal of providing a high aggregated throughput under heavy
access concurrency. This brings the potential to use BlobSeer as a cloud storage service that
offers advanced features to cloud customers, such as versioning and high throughput un-
der concurrency, while offering a high quality-of-service guarantee: stable throughput for
individual data accesses.

Evaluations on the Grid’5000 testbed revealed substantial improvement in individual
read throughput stability in the context of MapReduce applications, both for the case when
the storage is decoupled from the computation and the case when they share the same ma-
chines. More precisely, results show a reduction of standard deviation in read throughput
no less than 20% and going as high as 25%. Such numbers are very important to cloud
providers, as they can be leveraged to guarantee higher quality-of-service guarantees in the
service level agreement, which means more competitive offers that are more appealing to
the customers.
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E
XISTING approaches to data management in distributed systems face several limita-
tions: poor scalability because of huge number of small files and centralized metadata
management; limited throughput under heavy access concurrency because of adher-

ence to legacy data access models that were not originally designed for large scales; no support for
efficient versioning data under concurrency.

The work presented in this thesis has led to the creation of BlobSeer, a highly efficient
distributed data storage service that facilitates data sharing at large scale, addressing many
of the limitations listed above. We demonstrated the benefits of BlobSeer through extensive
experimentations, both in synthetic settings, as well as real-life, applicative settings.

Thus, the main objective proposed in the beginning of this manuscript has been fulfilled.
In the rest of this chapter, we underline the usefulness of the contributions presented so far,
showing how they enabled us to reach the sub-objectives centered around themain objective.
Furthermore, we discuss several choices we made and aspects that were left unexplored and
conclude with the potential future perspectives they open.

12.1 Achievements

Key design principles for efficient, large-scale data storage. We have proposed a series
of key design principles for building a distributed storage system that can scale to large
sizes and can overcome many of the limitations that existing approaches face. First, we
advocate for organizing data as unstructured binary large objects (BLOBs), which are huge se-
quences of bytes that aggregate many small application objects. We propose a scheme that
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enables fine-grain access to BLOBs under concurrency, eliminating the need to store each
application object in a separate file. This avoids having to deal with too many files, which
otherwise places a heavy namespace management burden on the storage service. Second,
we advocate to enhance an already known principle, data striping, to support configurable
chunk allocation strategies and dynamically allocatable chunk sizes. These two proposals
enable the application to control data-striping at fine-grain level, such that it can potentially
exploit the benefits of distributing the I/O workload better than default striping strategies
that are uninformed with respect to application intent and access pattern. Third, we pro-
pose to decentralize the metadata management, which improves scalability and data availability
compared to centralized approaches. Finally, we argue in favor of versioning as a crucial
principle to enhance parallel access to data and provide support to manage archival data
efficiently. We underline the potential of versioning to enable overlapped data acquisition with
data processing when used explicitly, and to provide a high-throughput for data accesses under
concurrency when leveraged internally by the storage service. In order to do so, we intro-
duce an asynchronous versioning access interface, and propose the concept of metadata for-
ward references respectively. These metadata forward references enhance concurrent access
to a degree where synchronization is avoided even at metadata level, greatly reducing the
metadata access overhead under concurrency.

BlobSeer: putting these principles into practice. We proposed BlobSeer, a distributed data
storage service that illustrates the design principles mentioned in the previous paragraph.
Our proposal introduces an architecture that is backed up by a series of algorithmic descrip-
tions that formalize our versioning proposal. These algorithms rely on the idea that data and
metadata is added and never removed, which enables efficient manipulation of BLOBs, provid-
ing total ordering, atomicity and liveness guarantees. Furthermore, we introduce a segment tree
based distributed metadata management scheme that supports metadata forward references and
guarantees logarithmic metadata lookup time for fine grain accesses. Finally, we detail several
important considerations for a practical implementation of these algorithms. Notably, we
argue for an event-driven design that enables building a highly efficient, asynchronous RPC
mechanism; aDHT-based and consistent hashing based schemes can be leveraged to implement
globally shared data structures that are required by our algorithms in a distributed fashion; a
passive replication scheme that deals with fault tolerance and data availability without sacrific-
ing performance. We have fully implemented BlobSeer. It is released under the GNU LGPL
(http://blobseer.gforge.inria.fr) and is registered with the French software protection agency
(APP - Agence pour la Protection des Programmes).

Theoretical benefits demonstrated through synthetic scenarios. We performed extensive
synthetic benchmarks using BlobSeer that emphasize the impact of each of the proposed de-
sign principles (data striping, distributedmetadata management and versioning) on the sus-
tained throughput under concurrent access to the same BLOB. With respect to data striping,
our findings show that best results are obtained when at least as many data providers are de-
ployed as clients, as this enables each clients to interact with a potentially different provider
and therefore maximizes the distribution of the I/Oworkload. When this is the case, our ap-
proach achieves under concurrency an average throughput per client that is only 12% lower
than when no concurrency is present. Moreover, we have also shown that our approach can
leverage the networking infrastructure efficiently, achieving a high aggregated throughput

http://blobseer.gforge.inria.fr
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that pushes it to its limits. Finally, we have shown that our approach remains highly scalable
even when the clients are co-deployed with data providers, which is a typical case for data-
intensive applications that are data location aware. Our distributed metadata management
scheme proved to be crucial when the metadata overhead becomes significant due to the
large number of chunks involved. In this context, the speedup obtained for concurrent data
accesses versus a centralized approach is at least 20%, with several I/O intensive scenarios
where the speedup is even more than double. With respect to the benefits of versioning, we
show that readers can access a BLOB that is concurrently altered by writers with minimal
average throughput loss (and the reverse, too). Our versioning proposal shows high scala-
bility even for high-performance networking infrastructure (such as Myrinet), where the maximal
average throughput loss under concurrency is less than 20%when the number of concurrent
clients doubles.

Real-life benefits demonstrated through applicative scenarios. BlobSeer was successfully
applied in three applicative scenarios.

• A BlobSeer-based storage layer that improves performance of MapReduce appli-
cations. In the context of data-intensive, distributed applications, the performance
of data storage and management has a high impact on the total application perfor-
mance. We designed and implemented a new storage layer for Hadoop, an open-
source MapReduce framework. This storage layer, called BlobSeer-based File Sys-
tem (BSFS), significantly improves the sustained throughput in scenarios that exhibit
highly concurrent accesses to shared files, compared to Hadoop Distributed File Sys-
tem (HDFS), the default storage layer. We have extensively experimented with syn-
thetic workloads, where BSFS demonstrated high throughput improvements under
concurrency, as well as superior scalability and load balancing. Furthermore, we in-
vestigated the real-life benefits of BSFS by experimenting with real MapReduce appli-
cations from the Yahoo! distribution of Hadoop, where the improvement ranges from
11% to 30%. This work was carried out in collaboration with Diana Moise, Gabriel
Antoniu, Luc Bougé and Matthieu Dorier.

• A BlobSeer-based approach to improve virtual machine image deployment and
snapshotting for IaaS clouds. We have successfully used BlobSeer in the context of
cloud computing to improve the management of virtual machine (VM) images by op-
timizing two key usage patterns: multi-deployment, i.e. simultaneous deployment of
one or more VM images to multiple nodes and multi-snapshotting, i.e. taking a snap-
shot of multiple VM instances simultaneously. We propose a lazy VM deployment
scheme that leverages the efficient fine-grain access provided by BlobSeer, as well as
object-versioning to save only local VM image differences back to persistent storage
when a snapshot is created, yet provide the illusion that the snapshot is a different,
fully independent image. This has an important benefit in that it handles the manage-
ment of updates independently of the hypervisor, thus greatly improving the portabil-
ity of VM images, and compensating for the lack of VM image format standardization.
We also demonstrate the benefits our approach both through a series of distributed
benchmarks and distributed real-life applications that run inside multiple VMs. Our
results show important reductions in execution time (as high as 95%), as well as stor-
age space and bandwidth consumption (as high as 90%), when compared to traditional



142 Chapter 12 – Conclusions

approaches. Given the pay-as-you-go cloud model, this ultimately brings substantial
cost reductions for the end-user. This work was carried out in collaboration with Kate
Keahey and John Bresnahan during a 3-month visit at Argonne National Laboratory,
USA, as well as Gabriel Antoniu.

A methodology to improve quality-of-service for cloud storage, illustrated on Blob-
Seer. We proposed and applied a methodology to improve quality-of-service in the
context of cloud computing, where BlobSeer acted as a distributed storage service for
I/O intensive access patterns generated by MapReduce applications. In this context,
there is a need to sustain a stable throughput for each individual access, in addition
to achieving a high aggregated throughput under concurrency. We propose a tech-
nique that addresses this need based on component monitoring, application-side feed-
back and behavior pattern analysis to automatically infer useful knowledge about the
causes of poor quality of service and provide an easy way to reason about potential
improvements. Using a modified allocation strategy that we implemented in BlobSeer,
we demonstrated improvements in aggregated throughput in excess of 10%, as well
as a substantial reduction of standard deviation for individual access throughputs (as
high as 25%). These results enable cloud providers to set higher service level agree-
ment guarantees, which ultimately makes the offer more attractive to customers at the
same price. This workwas carried out in collaborationwith JesúsMontes, María Pérez,
Alberto Sánchez and Gabriel Antoniu in the framework of the “SCALing by means of
Ubiquitous Storage” (SCALUS) project.

12.2 Perspectives

During the development of this work, several choices were made that shifted the focus to-
wards some directions at the expense of other directions. Although a large array of promis-
ing results was obtained so far, there is certainly room for improvement. Thus, in this section
we discuss the impact of our choices and how this work can be leveraged to inspire future
research directions that address new challenges or aspects insufficiently developed in this
work.

Cost-effective storage on clouds. Cloud computing has revolutionized the way we think
of acquiring resources by introducing a simple change: allowing users to lease computa-
tional resources in a pay-as-you-go fashion. While this is still an emerging technology, it is
increasingly adopted in the industry, which ultimately means for the end-user that there will
be a highly dynamic selection of offers. In this context, a promising direction to explore is
how to build a cloud storage service that tries to minimize the end user costs by leveraging
this dynamic market offer to migrate data from one provider to another depending on how
the costs fluctuate. For example, a virtualized BlobSeer deployment can be imagined that
relies on advanced allocation strategies and replication mechanisms to perform such data
migration from one cloud to another transparently, effectively lowering user bills without
explicit intervention. Versioning can prove to be highly valuable in this context, as it has the
potential to avoid consistency issues related to migration.
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Efficient virtual machine storage. In Chapter 10 we presented a virtual machine image
cloud repository based on BlobSeer that introduces several techniques to leverage version-
ing for optimizing deployment and snapshotting of images on many nodes of the cloud
simultaneously. While results are very encouraging in this context, we did not integrate our
proposal with a real could middleware and used only a simplified service that mimics its
functionality. We have plans to integrate our approach with Nimbus [71], an open-source
toolkit that enables turning a private cluster into an IaaS cloud. The difficulty in this context
is how to efficiently leverage the CLONE and COMMIT primitives at the level of the cloudmiddle-
ware in such way that they can be both exposed to the user for fine grain control over virtual
machine image snapshotting, as well as exploited internally for higher level functionalities,
such as checkpointing and migration. Furthermore, in the typical case, the same initial image
is deployed and snapshotted on many nodes, which means a similar access pattern to the
image is expected on the nodes. For example, during the boot process, all nodes read the
same parts of the image in the same order. Such similarities are interesting to explore, as
they can bring a promising potential for optimizations. For example, additional metadata
based on past experience with these access patterns could be stored together with the image
in order to build intelligent prefetching strategies.

Versioning in more applicative contexts. We have shown that our approach remains
highly scalable when increasing the number of concurrent writers that alter a BLOB while
a set of concurrent readers access it, however this advantage was not exploited to its full
potential in real life applications. For example, we have developed BSFS as a storage layer
for Hadoop MapReduce applications. However, BSFS implements the standard Hadoop
MapReduce file access API, which was not designed to take advantage of versioning capa-
bilities or even support for writes at random offsets in the same file (a file can be changed
only by appending data). Given the high throughput sustained by BlobSeer under these cir-
cumstance, this opens the potential for promising improvements of MapReduce framework
implementations, including Hadoop. For example, versioning can be leveraged to optimize
more complexMapReduce workflows, in which the output of oneMapReduce is the input of
another. In many such scenarios, datasets are only locally altered from one MapReduce pass
to another: writing parts of the dataset while still being able to access the original dataset
(thanks to versioning) could bring significant speedup to the computation and save a lot of
temporary storage space. Generalizing the MapReduce example, there are a lot of scientific
workflows and data intensive applications where the output of one computation is used as
the input of another. As pointed out in several of our publications [108, 109], many times the
input and output files are collections of objects and the computations are transformations
of these collections that do not necessarily alter every object (for example, the frames of a
movie need to pass a set of image processing filters). Using a BLOB to store this collection,
versioning can be leveraged to efficiently apply and revert if necessary such transformations,
by combining writes and appends with clone and merge.

BlobSeer as a back-end for Petascale computing systems: efficient decoupled I/O and
checkpointing support. In the context of the visualization of large-scale scientific simula-
tions, poor concurrency control at the level of I/O frequently leads to situations where the
simulation application blocks on output and the visualization application to blocks on input.
We propose to adapt concurrency control techniques introduced in BlobSeer in order to op-
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timize the level of parallelization between visualization and simulation with respect to I/O
to allow periodic data backup and online visualization to proceed without blocking com-
putation and vice-verso. An important observation is the fact that the visualization usually
reads data in a different way than it was written by the simulation. This could be leveraged
to optimize the data layout for the read-access pattern generated by the visualization. A
second research topic relates to the fault tolerance for massively parallel data processing on
large-scale platforms. Checkpointing in such a context typically generates a write-intensive,
highly-parallel access pattern. As a case study, we focus on MapReduce data processing
applications. We will investigate how incremental checkpointing could be used to enhance
fault tolerance by efficiently leveraging the principles proposed in BlobSeer.

High data availability. Data availability and fault tolerance are key issues in the design of
cloud storage services, as the provider needs to be able to offer strong guarantees to the cus-
tomers through the service level agreement in order to gain their trust that it is safe to store
data remotely on the cloud. To address these issues, we proposed in Section 7.2 a fault toler-
ance scheme based on passive replication that leverages the fact that BlobSeer keeps data and
metadata immutable in order to simplify replica management: replicas can be created in the
background without having to worry about replica consistency. This is a powerful idea that
was not fully developed in this work. While some synthetic benchmarks were done to eval-
uate the resilience of data and metadata under faults, these results are still in a preliminary
stage and were not included in this work. Some fault tolerance aspects were also tangen-
tially explored in Chapter 11, where the focus is the improvement of quality-of-service. In
this context, we adjusted the chunk allocation strategy to adapt to the access pattern better,
which ultimately leads to better quality-of-service. Both the the replication mechanism and
the allocation strategy are two aspects that are worth to be given closer consideration, as
they have a large potential for promising results in the context of data availability.

Security. Security is a crucial feature of any storage service that is intended to facilitate
data sharing between untrusted entities. For example, if a storage service is to be exposed in
a cloud to the customers, it must implement strong security mechanisms, as the customers
cannot be trusted by the cloud provider. While this aspect is beyond the purpose of this
work, we acknowledge its importance. Besides traditional authentication and permission
management that can be integrated in BlobSeer, there are several aspects specific to its design
that can be improved to increase security. For example, in the current design, the client
is responsible to build and write the metadata segment tree. However, this step can be
safely delegated to trusted entities such as the metadata providers, as all information about
the chunks is already available in BlobSeer before building the tree. Such an approach can
greatly enhance security, canceling potential attempts at faking metadata bymalicious users.
Versioning as proposed by BlobSeer is also a source of promising future research on security.
For example, onemight consider the scenario where the readers andwriters do not trust each
other, yet they still want to benefit from versioning to share data under concurrency. In this
context, new permission models are required that are able to deal with multiple snapshots
and the dependencies between them.
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