
HAL Id: tel-00553143
https://theses.hal.science/tel-00553143

Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-Level Synthesis of Ultra Low-Power Wireless
Sensor Network Node Controllers: A Complete

Design-Flow
Muhammad Adeel Ahmed Pasha

To cite this version:
Muhammad Adeel Ahmed Pasha. System-Level Synthesis of Ultra Low-Power Wireless Sensor Net-
work Node Controllers: A Complete Design-Flow. Computer Science [cs]. Université Rennes 1, 2010.
English. �NNT : �. �tel-00553143�

https://theses.hal.science/tel-00553143
https://hal.archives-ouvertes.fr

N° d’ordre : 4297 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Traitement du Signal et Télécommunications

Ecole doctorale : Matisse
présentée par

Muhammad Adeel Ahmed PASHA
Préparée à l’unité de recherche : CAIRN/IRISA-UMR 6074

 Nom développé de l’unité : Institut de Recherche en Informatique et
Systèmes Aléatoires de Rennes

Composante universitaire : S.P.M.

Synthèse de haut-niveau de
contrôleurs ultra-faible
consommation pour des
réseaux de capteurs: un flot
de conception complet

System-Level Synthesis of
Ultra Low-Power Wireless
Sensor Network Node
Controllers: A Complete
Design-Flow

Thèse soutenue à l’IRISA Rennes
le 15 décembre 2010
devant le jury composé de:
Tanguy RISSET
Président
Professeur, INSA Lyon, Lyon

Cécile BELLEUDY
Examinateur
Maître de Conférences, Université de Nice, Sophia Antipolis
Christian PIGUET
Rapporteur
Professeur, EPFL, Lausanne, Suisse
Frédéric PETROT
Rapporteur
Professeur, ENSIMAG, Grenoble

Olivier SENTIEYS
Directeur
Professeur, Université de Rennes 1, Lannion

Steven DERRIEN
Co-directeur
Maitre de Conférences, Université de Rennes 1, Rennes

Acknowledgments
First of all, countless thanks to Almighty Allah, Who has given me knowledge and courage to
carry out this work. Secondly, I would like the readers to keep all the below-mentioned people
in mind while reading this dissertation, without them this success would not have been possible.

I would like to begin by thanking my Ph.D. advisors, Olivier Sentieys and Steven Derrien, for
their guidance, understanding, patience, always believing in my capabilities and most impor-
tantly, their friendship during my Ph.D. at IRISA Rennes. They provided me different flavors
of care as they were my bosses, advisors, friends and brothers from time to time. They have al-
ways helped me to not only grow as a researcher and developer but also an independent thinker
and a better human being. It is my honour to have worked with them.

I would also like to thank all my colleagues of CAIRN research team and administration staff at
IRISA for creating such a pleasant work environment and for being there for me. In particular
many thanks to Kevin Martin, Antoine Floch, Erwan Raffin, Laurent Perraudeau, Antoine Mor-
van, Naeem Abbas, Amit Kumar, Jeremie Guidoux, Loic Cloatre, Florent Berthelot, Georges
Adouko, Maxime Naullet, Charles Wagner, François Charot, Christophe Wolinski, Patrice Quin-
ton and Ludovic L’Hours with whom I worked closely and had many fruitful discussions. Many
thanks to my colleagues at Lannion as well including Olivier Berder, Daniel Menard, Daniel
Chillet, Sebastian Pillement, Emmanuel Casseau, Philippe Quemerais, Thomas Anger, Arnaud
Carer, Vivek T.D., Shafqat Khan and others. I would also like to pay special thanks to CAIRN
team-assistants Celine, Elise and Nadia for their support.

Most importantly I would like to thank my parents, Abdul Hameed and Latifan Bibi, for their
faith in me, encouraging me to be as ambitious as I wanted and supporting me in all my
endeavors. It was under their watchful eye that I gained so much drive and ability to tackle
challenges head on. A very special thanks goes to my siblings, nephews and nieces as well for
being there for me all the time and cheering me up.

I thank all my friends in France and in Pakistan for motivating me and regularly wishing me
good luck. I am very grateful to all of them who made me feel at home, cared for and allowed
me to worry only about my studies during my stay in France. I would also like to thank my
teachers at Centre d’Etude de Langue of Colmar and at University of Nice Sophia-Antipolis.

Finally I would like to express my indebtedness to all the jury members for spending their
precious time to read and accept my work.

This dissertation is dedicated to the light of useful knowledge that enlightens our lives.

0

Résumé
Les réseaux de capteurs sont une technologie dont l’évolution est très rapide et avec un grand
nombre d’applications potentielles dans des domaines variés (e.g. en médecine, en surveillance
de l’environnement ou de structures, ou encore en contexte militaire). La conception d’une
plateforme matérielle pour un nœud de capteur est un véritable défi car elle est soumise à
des contraintes sévères. Par exemple, comme les nœuds doivent être de taille et de coût lim-
ités, il doivent comporter une capacité limitée d’énergie et ils s’appuient donc sur des sources
d’énergie non rechargeables (e.g. piles) ou récupérées dans l’environnement (e.g. cellules pho-
tovoltäıques). Comme le réseau doit de plus pouvoir fonctionner sans intervention pendant une
très longue durée (des mois voire des années), la consommation d’énergie est souvent considérée
comme la contrainte la plus forte. De nos jours, ces dispositifs s’appuient principalement sur
des microcontrôleurs à très faible consommation disponibles commercialement. Ces processeurs
offrent des puissances de calcul raisonnable pour des coûts et une consommation limités. Cepen-
dant, ils ne sont pas nécessairement complètement adaptés au contexte des réseaux de capteurs
car basés sur une structure de calcul monolithique et généraliste.

Dans cette thèse, nous proposons un flot de conception depuis le niveau système pour
une approche alternative et originale se basant sur le concept de micro-tâches matérielles avec
coupure de la tension d’alimentation (power gating). Dans cette approche les parties calcul et
contrôle d’un nœud de capteur sont constituées d’un ensemble de micro-tâches matérielles qui
sont activées selon un principe événementiel, chacune étant dédiée à une tâche spécifique du
système, telle que le relevé de paramètres, la couche MAC, le routage ou le traitement des don-
nées. En combinant la spécialisation du matériel avec la coupure d’alimentation, nous réduisons
de façon significative les énergies dynamique et statique d’un dispositif. Suivant la philosophie
de nombreux environnements logiciels de programmation des réseaux de capteurs, notre flot de
conception utilise l’association d’un langage spécifique (DSL pour Domain Specific Language)
pour les spécifications système (interactions entre micro-tâches, gestion des événements et des
ressources partagées, etc.) et de C-ANSI pour spécifier le comportement de chaque micro-tâche.
Partant de ces spécifications et en utilisant des approches MDE (Model Driven Engineering) et
des techniques de compilation reciblables, notre flot génère une description VHDL synthétisable
de l’ensemble du sous-système de contrôle et de calcul d’un nœud de capteur.

Dans un but de validation expérimentale de l’approche, nous accomplissons tout d’abord des
simulations au niveau transistor à l’aide de SPICE pour étudier les performances des coupures
d’alimentation dans notre système. Ces coupures dynamiques au cours de l’exécution sont
possibles avec des temps de commutation très faibles, de l’ordre de la centaine de nano-secondes.
Ceci améliore les temps de réveil et de mise en veille d’au moins 50% en comparaison avec
les microcontrôleurs à faible consommation. Un cas d’étude sur une application en réseau
de capteurs a été spécifié puis synthétisé à l’aide de notre flot de conception matériel en un
ensemble de micro-tâches associées à un moniteur système. Les résultats montrent que des
gains en énergie dynamique d’un à deux ordres de grandeur sont possibles en comparaison avec
des implémentations à base de microcontrôleurs comme le MSP430. De la même façon, des
gains d’un ordre de grandeur en énergie statique sont également obtenus grâce à la réduction
de l’espace mémoire et à l’utilisation de la coupure des tensions d’alimentation.

Abstract
Wireless Sensor Networks (WSN) are a fast evolving technology having a number of potential
applications in various domains of daily-life, such as structural and environmental monitoring,
medicine, military surveillance, robotic explorations etc. Engineering a WSN node hardware
platform is known to be a tough challenge, as the design must enforce many severe constraints.
For example, since WSN nodes must have small form-factors and limited production cost, it
is not possible to provide them with large energy sources. In most cases they must rely on
non-replenishing (e.g. battery) or self-sufficient (e.g. solar cells) sources of energy. As WSN
nodes may have to work unattended for long durations (months if not years), their energy
consumption is often the most critical design parameter. Moreover, as a WSN node remains
idle during most of its life-time (with a duty cycle of less than 1%), special measures have to
be taken to avoid the high static energy dissipation. WSN node devices have until now been
designed using off-the-shelf low-power microcontroller units (MCUs) (such as the MSP430, the
ARM-Cortex-M0 or the ATMega128L). These MCUs provide a reasonable processing power
with low power consumption at an affordable cost. However, they are not necessarily well-
suited for WSN node design as they are based on a general purpose compute engine.

In this thesis, we propose a complete system-level design-flow for an alternative approach
based on the concept of power-gated hardware micro-tasks. In this approach, computation
and control part of a WSN node is made of several hardware micro-tasks that are activated
on an event-driven basis, each of them being dedicated to a specific task of the system (such
as event-sensing, low-power MAC, routing, and data processing etc.). By combining hardware
specialization with power-gating, we can drastically reduce both dynamic and static energy of
the WSN node. Following the philosophy of many WSN software frameworks, our design-flow
uses a combination of a textual Domain Specific Language (DSL) for system-level specifications
(interactions between micro-tasks, event management, shared resources management etc.) and
ANSI-C for specifying the behavior of each micro-task. Starting from these specifications and by
using Model Driven Engineering (MDE) and retargetable compilation techniques, we are able to
generate a synthesizable VHDL description of the whole computation and control subsystem of
a WSN node. This VHDL description provides a direct path to ASIC/FPGA implementation.

For experimental validation of the approach, first of all, we performed SPICE transistor-
level simulations to study the feasibility of using power-gating in our system. We found that
the power-gating scheme happens to have very short switching-time delays, in the orders of
a few hundred of nano-seconds. This improves the wake-up response time by at least 50%
when compared to low-power MCUs such as the MSP430. A case-study example of a WSN
application was conceived and by using our design-flow, VHDL codes for different hardware
micro-tasks and system monitor were obtained. The synthesis results show that dynamic power
savings by one to two orders of magnitude are possible w.r.t. MCU-based implementations.
Similarly, static power savings of one order of magnitude are also obtained due to the reduction
in data memory size and power-gating.

Contents

Contents i

0 Résumé étendu 1
0.1 Réseaux de capteurs sans fil . 1

0.1.1 Architecture d’un nœud de capteur 2
0.1.2 Contraintes de conception d’un nœud de capteur 3

0.2 Optimisation de puissance d’un nœud de capteur 4
0.2.1 Conception VLSI orientée faible consommation 4
0.2.2 Microcontrôleurs faible consommation 5

0.3 Une approche combinant power gating et spécialisation 6
0.3.1 Micro-tâches matérielles . 7
0.3.2 Modèle au niveau système proposé 7
0.3.3 Modèle d’exécution et flot de conception logiciel 10

0.4 Contributions . 13
0.5 Résultats expérimentaux . 13

0.5.1 Temps de commutation du power gating 14
0.5.2 Gains en puissance dynamique de l’approche à base de micro-tâches 14
0.5.3 Estimation de la consommation du moniteur système 16

1 Introduction 19
1.1 Wireless Sensor Network (WSN) . 19

1.1.1 WSN node architecture . 20
1.1.2 WSN node design constraints . 21

1.2 Power optimization of a WSN node . 22
1.2.1 Low-power VLSI design . 22
1.2.2 Low-power MCUs . 22

1.3 Proposed approach: combination of power-gating and hardware special-
ization . 23
1.3.1 Power-gated micro-task . 24
1.3.2 Proposed system model . 25
1.3.3 Customized execution model and software design-flow 27

1.4 Contributions . 30
1.5 Thesis organization . 30

i

ii Contents

2 WSN node architectures and low-power microcontrollers 33
2.1 WSN basics . 33
2.2 WSN node architectures . 34

2.2.1 Computation subsystem . 35
2.2.2 Communication subsystem . 35
2.2.3 Sensing subsystem . 36
2.2.4 Power supply subsystem . 36

2.3 Power dissipation analysis of a WSN node 37
2.4 WSN platforms . 38

2.4.1 The Mica mote family . 38
2.4.2 BTnodes . 39
2.4.3 Telos . 39
2.4.4 PowWow . 39
2.4.5 WiseNet . 39
2.4.6 ScatterWeb . 39

2.5 Emergence of low-power microcontrollers 40
2.5.1 Power optimization at VLSI circuit level 40

2.5.1.1 Clock gating . 42
2.5.1.2 Voltage scaling . 44
2.5.1.3 Transistor sizing . 44
2.5.1.4 Power gating . 45

2.5.2 Commercial low-power MCUs . 46
2.5.3 WSN-specific sub-threshold controllers 48

2.5.3.1 SNAP/LE processor . 48
2.5.3.2 Accelerator-based WSN processor 49
2.5.3.3 Charm processor . 51
2.5.3.4 Phoenix processor . 51
2.5.3.5 BlueDot . 52

2.5.4 Conclusion . 52

3 High-level synthesis and application specific processor design 55
3.1 High-Level Synthesis (HLS) . 55

3.1.1 Generic HLS design-flow . 56
3.1.2 Scheduling . 57

3.1.2.1 ASAP scheduling . 57
3.1.2.2 ALAP scheduling . 58

3.1.3 Resource-constrained scheduling 58
3.1.3.1 List scheduling: . 58
3.1.3.2 Force-Directed Scheduling (FDS): 59
3.1.3.3 Force-Directed List Scheduling (FDLS): 59
3.1.3.4 Mixed Integer Linear Programming (MILP)-based ap-

proach: . 60
3.1.4 Resource allocation/binding . 60

3.1.4.1 Interval-graph based allocation 60

Contents iii

Left-Edge Algorithm (LEA): 61
3.1.4.2 Conflict-graph based allocation 61

Heuristic clique partitioning [137]: 61
Graph coloring algorithm: 62

3.2 Power-aware HLS tools . 62
3.2.1 SCALP . 62
3.2.2 Interconnect-Aware Power Optimized (IAPO) approach 63
3.2.3 LOPASS . 63
3.2.4 HLS-pg . 63

3.3 HLS tools targeting other design constraints 64
3.3.1 Multi-mode HLS . 64
3.3.2 Word-length aware HLS . 64
3.3.3 Datapath-specification-based HLS 65

3.3.3.1 User Guided HLS (UGH) 65
3.3.3.2 No Instruction-Set Computer (NISC) 66

3.3.4 Commercial tools and their application domain 66
3.4 Application Specific Instruction-set Processor (ASIP) design 67

3.4.1 Methodology for complete ASIP design 68
3.4.2 Methodology for partial ASIP design 70
3.4.3 Instruction selection . 71

3.4.3.1 DAG-based instruction selection 71
Simulated annealing: . 71
Genetic Algorithm (GA): 72
Constraint Satisfaction Problem (CSP): 72

3.4.3.2 Tree-based instruction selection 73
Dynamic programming: 73
Bottom-Up Rewrite System (BURS) generator: 73

3.4.4 Register allocation . 75
3.5 Existing tools in ASIP design . 76

3.5.1 ICORE . 76
3.5.2 Soft-core generator . 77

3.6 General discussion . 77

4 Hardware micro-task synthesis 79
4.1 Notion of hardware micro-task . 79

4.1.1 Potential power benefits . 79
4.1.1.1 Simplified architecture 82
4.1.1.2 Exploiting the run-to-completion semantic 82
4.1.1.3 Micro-task granularity 83
4.1.1.4 Simplified access to shared resources 83

4.1.2 Generic architecture . 84
4.2 Proposed design-flow for micro-task generation 85

4.2.1 Compiler front-end . 87
4.2.2 Instruction selection and mapping 88

iv Contents

4.2.2.1 Customized BURG-generator 89
P , the pattern: . 89
S, the replacement symbol : 90
C and A, the cost and the action: 90

4.2.3 Bitwidth adaptation . 93
4.2.4 Register allocation . 94
4.2.5 Hardware generation . 95

4.2.5.1 Datapath generation . 95
4.2.5.2 FSM generation . 96
4.2.5.3 Code generation . 98

4.2.6 Comparison to traditional design-flows of ASIP and HLS 98
4.3 An illustrative example of micro-task synthesis 100

4.3.1 Resultant dynamic power and energy savings 101

5 Proposed system model and design-flow for SM synthesis 105
5.1 Basic execution paradigms in a WSN node 105

5.1.1 Sequential approach . 107
5.1.2 Process-based approach . 107
5.1.3 Event-driven approach . 108

5.2 System-level execution model . 108
5.3 WSN-specific OS . 110

5.3.1 TinyOS . 110
5.3.2 Contiki . 111
5.3.3 MANTIS OS . 112
5.3.4 LIMOS . 113
5.3.5 SenOS . 113

5.4 Features of our proposed execution model 114
5.4.1 Events and commands . 114
5.4.2 Concurrency management . 115
5.4.3 Task hierarchy . 115
5.4.4 Memory management . 116

5.5 System monitor (SM) . 116
5.6 Design-flow for the SM generation . 117

5.6.1 System specification . 117
5.6.2 Model transformation . 120
5.6.3 Extraction of guard expression for micro-task activation 120
5.6.4 Hardware generation . 120
5.6.5 C-simulator generation for early system validation 121

5.7 Experimental results of the SM generation design-flow 121

6 Experimental setup and results 123
6.1 Power-gating and resultant switching delays 123
6.2 An illustrative WSN application . 125

6.2.1 Existing WSN applications . 125

Contents v

6.2.2 WSN application benchmarks . 127
6.2.3 The case study . 127

6.2.3.1 Tasks running in transmit mode 128
6.2.3.2 Tasks running in receive mode 129

6.3 Dynamic power gains . 130
6.3.1 Extraction of cycle count . 131
6.3.2 Approximate energy efficiency . 131

6.4 Design space exploration for datapath bitwidth 134
6.4.1 8-bit vs. 16-bit micro-task . 134

6.5 Power estimation of hardware system monitor 135
6.5.1 Dynamic power consumption . 135
6.5.2 Static power and area overhead 137

6.6 Effects of low duty-cycle and overall energy gain 138

7 Conclusion and future perspectives 141
7.1 Work in progress . 143
7.2 Future perspectives . 144

Personal publications 147

List of acronyms and abbreviations 149

Bibliography 153

List of Figures 165

List of Tables 169

Chapter 0

Résumé étendu

0.1 Réseaux de capteurs sans fil

Les réseaux de capteurs sont une technologie dont l’évolution est très rapide et avec
un grand nombre d’applications potentielles dans des domaines variés de notre vie
quotidienne, e.g. en médecine, en surveillance de l’environnement ou de structures,
en robotique ou encore en contexte militaire. Les avancées dans les technologies de
l’électronique numérique, de la microélectronique ou de la micromécanique MEMS
(Micro-Electro-Mechanical-Systems) ont facilité le développement de nœuds de capteur
à faible coût, faible encombrement et faible consommation qui communiquent sans-fil
de façon efficace sur de faibles distances. Par conséquent, le domaine émergent des
réseaux de capteurs combine la mesure, le calcul et la communication de données dans
un unique et minuscule nœud dit “de capteur”. Ces systèmes contenant des milliers
voire des dizaines de milliers de tels nœuds sont anticipés afin de révolutionner la façon
dont l’humain travaille et vit.

Le principal challenge dans le domaine des réseaux de capteurs est de faire face
aux difficultés liées aux contraintes sévères de ressources et d’énergie liées au nœud de
capteur. Les processeurs contrôlant le nœud ne contiennent que quelques kilo-octets de
mémoire et doivent cependant implémenter des protocoles réseaux complexes. Plusieurs
contraintes émergent du fait que ces composants seront produits en grand nombre et
doivent être de petite taille et peu chers. Chaque nouvelle génération de technologie
silicium amène un plus grand nombre de transistors sur une même surface et résulte
donc en deux scénarios distincts: (i) plus de fonctionnalités peuvent être placées sur
un composant à surface constante ou (ii) la taille du composant et sa consommation
peuvent être réduites pour la même fonctionnalité.

La plus forte des contraintes et aussi la plus complexe à respecter dans ce domaine
des réseaux de capteurs est celle de la consommation d’énergie ou de puissance. La faible
taille d’un nœud de capteur et ses besoins en autonomie limitent de façon très forte
la réserve d’énergie disponible sur un de ces dispositifs. Ceci induit des limitations en
termes de puissance de calcul et de mémoire disponibles et conduit à des problématiques
représentant un véritable challenge en termes d’architectures. De nombreux dispositifs,

1

2 Résumé étendu

Sensor MCU

Power Supply

Tx

Rx

Sensor
Subsystem

Computation
Subsystem

Power Subsystem

Communication
Subsystem

Figure 1: Architecture générale d’un nœud de capteur.

tels que les téléphones cellulaires et autres “smartphones”, réduisent leur consommation
d’énergie en utilisant des composants matériels spécialisés – ou Application Specific
Integrated Circuits (ASIC) – qui procurent des implémentations faible consommation
des protocoles de communications et algorithmes de traitement nécessaires.

A ce jour, une des forces des réseaux de capteurs est leur supposées flexibilité et
universalité. Cependant, si on observe de façon plus précise leur conception actuelle, le
besoin de flexibilité et de programmabilité est essentiellement poussé vers les couches
hautes et applicatives, ce qui de plus ne représente qu’une faible fraction de la charge de
calcul du nœud, alors que la plus grosse partie de celle-ci est dédiée à la pile de protocole
de communication, en particulier vers les couches basses. Notre opinion est donc qu’il
est intéressant d’explorer une approche de spécialisation du matériel dans la conception
d’un nœud du réseau, de façon à respecter les exigences de très faible énergie. Afin de
réduire cette consommation dans un dispositif, nous devons tout d’abord étudier son
architecture générique et rechercher ses “points chauds”. L’architecture générique d’un
nœud de capteur est discutée dans la prochaine section.

0.1.1 Architecture d’un nœud de capteur

Les nœuds de capteur sont des dispositifs à faible consommation fortement embarqués
constitués de blocs de calcul et de mémorisation (e.g. un microcontrôleur (MCU)
connecté à une mémoire RAM et/ou flash) associés à des composants de communication
sans-fil (RF transceiver) et à des capteurs/actionneurs. Comme les nœuds doivent être
de taille et de coût limités, il doivent comporter une capacité limitée d’énergie [138].
Dans la plupart des cas, ils s’appuient donc sur des sources d’énergie non rechargeables
(e.g. piles) ou récupérées dans l’environnement (e.g. cellules photovoltäıques).

La figure 1 présente l’architecture d’un nœud de capteur générique. Il est constitué
de quatre sous-systèmes: alimentation, communication, contrôle et calcul, et capteurs.
Le sous-système d’alimentation est constitué d’une batterie (ou d’une pile) et d’un
convertisseur DC-DC. Le sous-système de communication constitué d’un émetteur-
récepteur radio pour les communications sans-fil entre objets. La plupart des plate-
formes utilise une antenne unique omnidirectionnelle, cependant des techniques de

Réseaux de capteurs sans fil 3

coopération MIMO (Multiple-Input and Multiple-Output) peuvent également être dé-
ployées [99]. Le sous-système de calcul est typiquement composé de mémoire per-
mettant de stocker le programme ou les données, et d’un microcontrôleur pour con-
trôler le système et traiter les données. Le dernier sous-système lie le nœud avec le
monde physique et dispose d’un ensemble de capteurs et/ou d’actionneurs dépendant de
l’application considérée. Il contient également des convertisseurs analogique-numérique
pour convertir les signaux captés en données numériques utilisables pas le calculateur.
Pour concevoir de tels dispositifs avec des ressources fortement limitées, les concepteurs
d’architecture doivent faire face à des contraintes difficiles qui seront discutées dans la
prochaine section.

0.1.2 Contraintes de conception d’un nœud de capteur

Concevoir ces nœuds de capteur est un réel challenge, car plusieurs fortes contraintes
sont imposées qui, de plus, sont souvent étroitement liées. Les principales métriques
utiles à cette conception sont décrites ci dessous.

� La consommation d’énergie (ou de puissance) est le plus grand challenge à
atteindre car le réseau doit pouvoir fonctionner sans intervention pendant une
très longue durée (des mois voire des années).

� La robustesse est également un critère important pour les réseaux de capteurs
car elle permet de garantir le fonctionnement correct du r´eseau dans son ensem-
ble. Chaque nœud doit donc être conçu pour être le plus robuste possible afin de
tolérer et donc de s’adapter à des pannes de nœuds voisins.

� La sécurité au niveau de l’application est une autre métrique à considérer et
les dispositifs doivent souvent embarquer des algorithmes relativement complexes
d’authentification ou de chiffrement des données.

� Les débits et portées de communication sont des éléments clés dans la con-
ception des nœuds. Augmenter la portée et le débit a cependant un impact
significatif sur la consommation de puissance des partie radio et calcul.

� La charge de calcul est une autre métrique clé qui influence directement la
consommation d’énergie du dispositif. Cependant, augmenter la puissance de
calcul peut aussi permettre de réduire l’énergie du sous-système radio.

� Le coût et la taille de chaque nœud a un impact direct et significatif sur la
facilité et le coût du déploiement du réseau de capteurs complet ainsi que sur la
capacité de la source d’énergie disponible sur les dispositifs.

Comme discuté précédemment, les réseaux de capteurs sont déployés en général en
grand nombre et ils doivent donc être petits et peu coûteux. Dans le même temps,
comme il n’est pas possible de les équiper avec de grande sources d’énergie voire
d’accéder à un rechargement de cette source, la très faible consommation est donc

4 Résumé étendu

leur contrainte majeure de conception. De plus, sachant que les nœuds sont inactifs ou
en attente pendant la majeure partie de leur durée de vie (rapport cyclique de fonc-
tionnement inférieur à 1%), l’énergie induite par les pertes statiques des composants
(courants de fuite) doit être plus particulièrement réduite.

Si le profil de consommation d’un nœud de capteur est analysé sur l’ensemble de
ses sous-systèmes, les blocs de communication et de calcul représentent bien sur la ma-
jeure partie du budget énergétique [116, 30]. Dans ce travail de thèse, nous ciblons
par conséquent l’optimisation de la consommation des sous-systèmes de contrôle et de
calcul. En effet, nous soutenons que les gains en énergie ou en puissance obtenus par
notre approche sur ces blocs ouvrent des possibilités vers des protocoles de communica-
tion ou schémas de modulation plus complexes et plus coûteux en termes de puissance
de calcul, ce qui, au final, permettra de fournir une meilleure qualité de service, une
puissance radio plus faible et une meilleure efficacité d’utilisation de la bande passante
du réseau. La réduction de puissance des sous-systèmes de contrôle et de calcul peut
bénéficier d’optimisations à différents niveaux de conception du dispositif, tels que le
niveau application, la micro-architecture ou le niveau de conception de circuits VLSI
(Very Large Scale Integrated).

Dans les paragraphes suivants, nous présentons et discutons les techniques de ré-
duction de la consommation adaptées au domaine des réseaux de capteurs i.e. micro-
architecture et conception VLSI.

0.2 Optimisation de puissance d’un nœud de capteur

Depuis un peu plus d’une décennie, les problèmes d’estimation de réduction de la con-
sommation électrique dans les circuits VLSI sont l’objet d’un grand nombre de travaux
de recherche. Une grand partie de ces travaux se sont notamment intéressés à la con-
ception de microarchitectures faible consommation pour microcontrôleurs embarqués.
Cette section a pour objectif d’offrir au lecteur une synthèse des techniques utilisées
dans ce domaine.

0.2.1 Conception VLSI orientée faible consommation

La consommation électrique dans un circuit VLSI découle de deux phénomènes: la
puissance dynamique, provoquée par les charges et décharges des capacités (découlant
des changements d’états du circuit) et la puissance statique causée par les courants de
fuites entre la tension d’alimentation et la masse.

Quand un circuit est en mode actif, la puissance qu’il dissipe est très largement dom-
inée par sa composante dynamique, et peut-être considérée comme étant approximative-
ment proportionnelle à sa fréquence d’horloge. Pour les réseaux de capteurs, les choses
sont assez différentes car les nœuds peuvent rester inactifs pendant de longue périodes
(taux d’activité souvent inférieur à 1%). Dans ce contexte, il n’est plus raisonnable
d’ignorer la contribution de la puissance statique dans le bilan énergétique global.

Il existe de nombreuses techniques permettant de réduire la puissance dynamique
dans un circuit (clock gating, contrôle de la tension d’alimentation, etc.), celles-ci pou-

Optimisation de puissance d’un nœud de capteur 5

Block B Block CBlock A

VG

VDD

VVDDVVDD VVDD

Figure 2: Un exemple d’utilisation du power gating.

vant être appliquées à différents étapes du flot de conception. La plupart d’entre elles
sont cependant peu adaptées au contexte des réseaux de capteurs car elles ont sou-
vent pour effet secondaire d’augmenter le nombre de transistors du circuit, augmentant
ainsi indirectement sa puissance statique, avec un bilan global pouvant de fait devenir
négatif.

La technique de la coupure des alimentations – ou power gating –, dont le principe
consiste à couper l’alimentation d’un composant inactif [12, 87], est toutefois une ex-
ception à cette règle. Le power gating, si utilisé à bon escient, permet donc de réduire
de fait à la fois la puissance dynamique et la puissance statique, ce qui en fait une tech-
nique particulièrement attrayante pour des circuits dont les périodes d’activité sont
limitées.

La technique consiste à ajouter un sleep transistor entre la source d’alimentation
VDD globale et celle du composant, créant ainsi une alimentation virtuelle notée VV DD,
comme illustré sur la figure 2. Ce sleep transistor, lorsqu’il est ouvert, permet de réduire
les courants de fuites du composant à leurs niveaux minimums

0.2.2 Microcontrôleurs faible consommation

Les microcontrôleurs à très faible consommation actuellement disponibles sur le marché
(e.g. MSP430, CoolRISC and ATmega128L) partagent de très nombreuses caractéris-
tiques : un chemin de données simple (8/16-bits), un faible nombre d’instructions
(seulement 27 instructions pour le MSP430), et surtout de nombreux modes de fonc-
tionnement qui permettent d’adapter dynamiquement le comportement du processeur
en jouant sur des compromis entre gain en consommation et réactivité. Ces processeurs
sont conçus pour une gamme d’application assez large et ne sont donc pas spécifique-
ment conçus pour des réseaux de capteurs. De fait, parce qu’il sont conçus sur la
base d’un micro-architecture généraliste et monolithique, ils ne sont pas forcement bien
adaptés à la nature très particulière (basée événements) de la charge de calcul de ces
nœuds.

La plupart des plateformes matérielles utilisées dans des infrastructures de réseaux
de capteurs utilisent des processeurs commerciaux de ce type. Par exemple, la plate-

6 Résumé étendu

forme Mica2 [25], qui a été très largement utilisée par la communauté, est basée sur un
microcontrôleur ATmega128L de la société Atmel. Le même contrôleur a également été
utilisé par les concepteurs de la plateforme eXtreme Scale Mote (XSM) [30]. Les autres
plateformes (Hydrowatch [39], PowWow [64]) utilisent quand à elles des processeurs
MSP430 [129] de la société Texas Instruments, tandis que la plateforme WiseNet est
basée sur un processeur CoolRISC [33] de la société EM Microelectronic.

Bien que les niveaux de puissance dynamique relevés (et plus particulièrement en
Joules/instruction) pour ces processeurs puissent sembler extrêmement faibles au re-
gard de processeurs embarqués plus classiques (ex: MSP430), ces gains nous semblent
cependant loin de ce qui pourrait être obtenu en combinant des approches exploitant
la spécialisation et le parallélisme.

Le problème de ces approches est qu’elles impliquent des surcoût importants en
termes de coût silicium, qui eux-mêmes induisent des niveaux de puissance statique in-
acceptables pour des applications de type réseaux de capteurs. Dans la section suivante,
nous proposons donc une approche qui exploite la spécialisation en vue d’améliorer les
niveaux de puissance dynamique dissipés, tout en contrôlant très finement le niveau de
puissance statique en utilisant la technique de power-gating.

0.3 Une approche combinant power gating et spécialisa-
tion

Nous pensons qu’une approche à base de spécialisation matérielle offre une piste intéres-
sante pour améliorer l’efficacité énergétique des parties calcul et contrôle embarquées
dans un nœud de réseau de capteurs. Plutôt que d’exécuter l’applicatif et le système
d’exploitation sur un processeur programmable, nous proposons de générer automa-
tiquement, pour chacune des tâches du système, une micro-architecture matérielle tail-
lée sur mesure. Une telle approche permet une réduction drastique de la puissance
dynamique dissipée par chaque nœud. De plus, lorsque combinée avec des techniques
de power gating, elle permet également de maitriser le niveau de puissance statique.

Dans notre approche, l’architecture matérielle du calculateur embarqué dans le
nœud consiste en un ensemble de micro-tâches matérielles fonctionnant de manière
concurrente, et activées en fonction de l’arrivé de tel ou tel événement.

Chacune de ces micro-tâches est chargée d’une fonctionnalité bien définie (inter-
façage avec les capteurs, contrôleur MAC, routage, etc.), et est mise en œuvre sur
une micro-architecture minimaliste, organisée autour d’un chemin de données dédié
lui-même contrôlé par une machine à états. Cette micro-architecture est générée di-
rectement à partir d’une spécification de son comportement en C, grâce à l’adaptation
d’un flot de compilation reciblable pour processeur spécialisé ASIP et d’un outil de
génération de description RTL dédié à ce type d’architectures.

En combinant la spécialisation matérielle avec des techniques de réduction de puis-
sance statique (power gating), nous pouvons réduire de manière très significative la
puissance globale (et l’énergie) dissipée par le système [103].

Une approche combinant power gating et spécialisation 7

Register
File

Shared
RAM
IFace

ROM Arithmetic
Logic Unit

(ALU)

I/O

P
eripherals

IFace

CTRL. FSM

Alu Result

R
am

 A
ddress

(C
aculated)

ram
D

ataIn

Ram Address
(Generated)

Rom Address

A
lu Input

S
election

O
pera nd B

 A
d r.

romDataOut

ramDataOut

rfDataOut

A
lu O

perand
S

elect

Pheripheral On/Off
R

am
 Input S

election

Vdd

en_MT

micro-task

Vvdd

O
perand A

 A
dr.

3
2

2

8

8

8

8

8

Figure 3: Architecture d’une micro-tâche matérielle generique.

0.3.1 Micro-tâches matérielles

Notre approche repose sur cette notion de micro-tâche matérielle spécialisée, qui exécute
une partie des traitements du nœud. A la différence d’un processeur à jeu d’instructions,
la fonctionnalité d’une micro-tâche est figée et mise en œuvre sous la forme d’une
machine à états pilotant un chemin de données spécialisé. Cette mise en œuvre rend
l’architecture beaucoup plus compacte (pas besoin de décodeur d’instructions, pas de
mémoire de programme, etc.) et permet de dimensionner précisément tant les ressources
de stockage (file de registres, ROM, RAM) que les ressources de calcul (ALU simplifiée
en fonction des calculs mis en œuvre par la micro-tâche).

Chacune de ces micro-tâches peut accéder à une mémoire de données (éventuelle-
ment partagée avec d’autres tâches) ainsi qu’à des périphériques au travers d’un bus
d’E/S (ex: SPI link vers un émetteur RF tel que le CC2420 [131]).

La figure 3 représente la micro-architecture d’une tâche matérielle (ici avec un
chemin de données sur 8 bits). Les lignes en pointillé représentent les signaux de con-
trôle générés par la machine à états de contrôle, tandis que les lignes en trait continu
représentent le flot de données entre les opérateurs, les ressources de stockage, etc. Une
description plus détaillée de l’organisation d’une micro-tâche matérielle sera donnée en
section 4.1.2.

0.3.2 Modèle au niveau système proposé

Dans cette sous-section, nous détaillons l’architecture système d’un nœud basé sur le
principe de micro-tâches, dont le fonctionnement est illustré dans les paragraphes qui
suivent au travers d’un exemple d’application très simple (mesure et transmission de
température).

8 Résumé étendu

Timer
100 ms MT-A

I/O (Temp. Sensor)

MT-D

Temp. Value
(Gated Memory-1)

MT-B

MT-C

I/O (RF Tranceiver)

Temp. Value
(Gated Memory-1)

Temp. Value
(Gated Memory-1)
Node ID
(Non-gated Memory-2)

I/O (RF Tranceiver)

Node ID
(Non-gated Memory-2)
Neighbor ID
(Non-gated Memory-2)

Neighbor ID
(Non-gated Memory-2)

Ext. Event T

Int. Event A

Int. Event B

Int. Event CInt. Event D

senseTemp

processData

sendDatareceiveAck

Figure 4: Graphe de tâches d’une application de relevé et envoi de température.

Graphe de tâche de l’application

Considérons une application dans laquelle nous devons : lire à intervalle régulier la
mesure de température effectuée par un capteur au travers de son interface d’E/S,
analyser et traiter cette valeur, l’envoyer au nœud voisin, puis enfin recevoir un ac-
quittement de ce même voisin. Le graphe de tâche de cette application est représenté
figure 4 et consiste en un ensemble de quatre micro-tâches qui echangent des données
brutes et des données de contrôle.

Architecture

Le figure 5 représente une vue système d’une plateforme matérielle basée sur l’approche
micro-tâche, et dont l’application cible (graphe de tâches) est celle proposée plus haut.
Un tel système est formé:

� d’un ensemble de micro-tâches matérielles, contrôlées par un mécanisme de power
gating, et qui accèdent à un ensemble de ressources partagées (RF, capteurs) et
mémoires (gated/non-gated). Chacune de ces micro-tâches étant chargée d’une
tâche spécifique (mesure de températuren traitement de données, etc.);

� d’un moniteur système (SM) qui contrôle l’activation de toutes les micro-tâches
matérielles. Le moniteur système est chargé du contrôle de l’alimentation de
toutes les micro-taches ainsi que des mémoires en fonction de leur utilisation;

� des périphériques capables de déclencher des événements (radio, timer, etc.) qui
seront transmis au moniteur système.

Une approche combinant power gating et spécialisation 9

M-Task A M-Task B

Memory
M1

VddVdd

Vdd

Int. E
vent A

Int. Event B

E
n_A E

n_B

En_M
em

_A

Timer

I/O Port

Se
ns

or
(e

.g
. t

em
p)

Memory
M2

I/O Port

R
ad

io
 c

hi
p

(e
x

C
C

24
20

)

Vdd Vdd

System Monitor

M-Task C M-Task D

E
xt. E

vent T

Figure 5: Vue niveau système d’un nœud de capteur basé sur l’approche à base de
micro-tâches matérielles.

Fonctionnement d’un nœud de capteur basé sur l’approche micro-tâches
matérielles

L’interaction entre le moniteur système (SM) et les micro-tâches matérielles reste rel-
ativement simple. Le SM échange des informations de contrôle avec chaque micro-
tâche, au travers de signaux de contrôle (comme par exemple les signaux En A,En B,
En Mem 1, etc., représentés figure 1.5), de signaux d’événements internes (Int.Event A,
Int.Event B etc., comme indiqué figure 1.5) et d’événements externes, issus des pé-
riphériques (Ext.Event T, etc.).

A titre d’exemple nous détaillons ci-dessous le comportement du système mettant
en œuvre l’exemple du graphe de tâches de la figure 4.

� Tout d’abord le SM détecte que l’événement externe Ext.Event T vient de se
produire, et envoie un signal de réveil à la micro-tâche M-Task A au travers la
commande En A ainsi qu’à la mémoire Memory 1 (non alimentée à cet instant)
au travers de la commande En Mem 1. Une fois M-Task A réveillée, celle-ci va
interroger le capteur de température en y accédant au travers de son bus d’E/S.
Une fois lue et traité, cette valeur sera stockée dans la mémoire Memory 1, la
micro-tâche M-Task A envoie alors au SM un événement interne Int.Event A lui
indiquant qu’elle a terminé son travail.

� A la reception du signal Int.Event A, le SM coupe l’alimentation de M-Task A

10 Résumé étendu

en désactivant la commande En A, et réveille la micro-tâche M-Task B qui est
en charge de la seconde tâche du graphe de tâches de la figure 4, et dont le
rôle est de réaliser un traitement sur la température précédemment relevée et
stockée dans Memory 1, puis de réécrire la valeur modifiée en lieu et place de la
précédente valeur en mémoire. La tâche M-Task B envoie alors un événement
interne Int.Event B au SM pour lui indiquer qu’à son tour elle a terminé son
travail.

� A la réception du signal Int.Event B, le SM coupe l’alimentation de M-Task B et
réveille la micro-tâche M-Task C dont le rôle est de transmette la donnée stockée
en Memory 1 au nœud le plus proche. Pour réaliser cette tâche M-Task C a
également besoin de la mémoire permanente Memory 2 utilisée par le nœud pour
stocker son identifiant (ID) ainsi que sa table de routage. M-Task C effectue alors
un calcul de voisinage et envoie un paquet au plus proche voisin en accédant au
composant radio par son interface SPI. M-Task C envoie à son tour un évenement
interne Int.Event C au SM pour lui indiquer qu’elle a terminé son travail.

� Lorsqu’il reçoit Int.Event C, le MS coupe l’alimentation de MTask C à l’aide de
la commande En C et réveille la tâche M-Task D chargée de la réception de
l’acquittement du message par le voisin. Puisque Memory 1 n’est pas nécessaire
à l’exécution de M-Task D, elle est également désactivée par le SM grâce à la
commande En Mem 1 line. Finalement, une fois l’acquittement reçu par le nœud,
à l’issue de l’exécution de M-Task D, le SM coupe l’alimentation de la quatrième et
dernière tâche de l’application (sur réception de l’événement interne Int.Event D).
De fait, l’ensemble des composants de la plateforme (à l’exception du SM et de
la mémoire Memory 2) n’est plus alimenté. La puissance statique du système est
alors réduite à son minimum.

0.3.3 Modèle d’exécution et flot de conception logiciel

Une grade partie de ce travail de thèse a porté sur le développement de l’outil LoMiTa
(ultra Low-power Micro-Tasking), un flot complet de conception pour plateformes maté-
rielles dédiées [104, 105]. S’inspirant de la plupart des infrastructures pour réseaux
de capteurs, ce flot se base sur l’utilisation d’un langage dédié pour la spécification
système (interactions entre les tâches, gestion des événements, gestion des ressources
partagées) et sur la spécification du comportement des tâche en langage C-ANSI. A
partir de ces spécifications, nous sommes capables de générer du VHDL synthétisable
de la plateforme dans son ensemble (micro-tâches + moniteur système), permettant
une implantation directe sur ASIC ou FPGA.

Il nous semble important de préciser que notre but n’est pas de proposer un nouveau
modèle de calcul pour des plate-formes de réseau de capteurs, notre approche se veut
plutôt comme proposant un modèle d’exécution simple, qui soit bien adapté à ce que
nous pensons être une solution architecturale innovante pour les nœuds d’un réseau de
capteurs.

Une approche combinant power gating et spécialisation 11

Nous présentons ci-dessous une vue globale de notre flot de conception à base de
micro-tâches, celui-ci peut se décomposer en deux parties (c.f. figure 6):

� un outil de synthèse de matériel qui est utilisé pour générer la spécification VHDL
de la micro-tâche à partir de sa spécification en ANSI-C;

� Un flot système qui se sert d’une spécification de la plate-forme et de son graphe
de tâches (exprimé à l’aide d’un langage dédié) et génère la description VHDL du
moniteur système.

La mise en oeuvre de notre flot de conception exploite les outils et principes du
Model Driven Engineering (MDE), et plus particulièrement de l’infrastructure Eclipse
Modeling Framework (EMF) [134], ainsi que les nombreux outils et technologies qui lui
sont associés.

Nous avons ainsi défini un méta-modèle pour décrire et manipuler des microarchi-
tectures spécifiées au niveau RTL sous la forme de machine à états commandant des
chemins de données (modèle FSM+Datapath). Ce méta-modèle est ensuite utilisé pour
générer le code VHDL et SystemC des microarchitectures ainsi modélisées. En complé-
ment de ce méta-modèle, nous avons également utilisé les possibilités de l’outil MDE
Xtext pour définir un langage dédié dont le but est de faciliter la spécification au niveau
système de la plateforme (tâche, E/S, mémoires, etc.).

12 Résumé étendu

Task
C

Task
B

Application

Task
A

Task A Task BTask C

.c .c .c

Compiler
Front-end

Tree-based
Instruction Selection

and Mapping

Task.c

FSM.vhd Datapath.vhd

Custom
Datapath

Model

Micro-Task
Synthesis Design-

Flow

Micro-Task A Micro-Task BMicro-Task C

.vhd .vhd .vhd System
Monitor

.vhd

Hardware Synthesis Tool

Software Tasks

Hardware Micro-Tasks

Final IC

Transistor Level
Insertion of Power

Gating

Proposed Textual
DSL for System-
Level Description

Shared
Mem

CDFG-Level IR

Register
Allocation

Bitwidth
Adaptation

Assembly-Level IR

Datapath
Generation

FSM
Generation

Assembly-Level IR

Code-Generation Tool

EMF-based RTL-Models for
FSM and Datapath

Application.sysdesc

Model
Transformation

System Monitor
Synthesis Design-

Flow

CDFG of
Micro-Tasks

EMF-based RTL-Model for
System Monitor

EMF-based Intermediate
Model of the System

Guard
Expression
Evaluation

SM
Generation

Code-Generation Tool

SM.vhd

Contribution Discussed
in Chapter 4

Contribution Discussed
in Chapter 5

EventA

EventB

Figure 6: Flot de conception système LoMiTa

Contributions 13

0.4 Contributions

Les contributions de cette thèse sont décrites ci dessous.

� Nous proposons un flot de conception original pour la génération de plateformes
matérielles pour réseaux de capteurs très faible consommation. Ce flot se base
sur la notion de micro-tâche matérielle et permet la génération d’une description
d’une plate-forme complète. Dans ce flot, le comportement de chaque tâche est
spécifié an C ANSI et est mappé sur une micro-architecture dédiée, grâce à une
version adaptée d’un compilateur reciblable.

� Nous montrons également dans cette approche que les techniques à base de power
gating permettent d’obtenir des temps de commutation très courts, de l’ordre
de quelques dixièmes de miro-secondes, et ce même pour des micro-tâches de
taille importante. Ces propriétés permettent d’améliorer le temps de réponse
d’au minimum 50% par rapport à des solutions basées sur des microcontrôleurs
de type MSP430.

� Nous proposons également un langage dédié (DSL) qui peut-être utilisé pour
spécifier la vue système de la plateforme et qui permet de générer une descrip-
tion synthétisable de l’ensemble du système et en particulier le moniteur système
qui est utilisée pour contrôler l’activation et la désactivation des micro-tâches
matérielles.

� Notre approche permet d’obtenir des gains en puissance dynamique d’environ
deux ordres de grandeur par rapport à des solution existantes à base de micro-
contrôleurs programmables.

� Nous avons utilisé notre flot de conception pour effectuer une étape d’exploration
de l’espace de conception dans le but d’évaluer les différents compromis en sur-
face/performance pouvant être obtenus en modifiant certains paramètres de la
micro-architecture, et en particulier la largeur du chemin de données. Là encore
nous avons comparé les résultats obtenus avec ceux obtenus pour une microcon-
trôleur comme le MSP430.

� Nous avons validé notre flot sur une application simple (mais réaliste) et montré
que l’approche était tout à fait appropriée au domaine applicatif des réseaux de
capteurs.

0.5 Résultats expérimentaux

Cette section présente l’ensemble des expérimentations effectuées et les résultats obtenus.
Après une description des gains obtenus en termes de temps de réponse et de réveil de
notre technique de power gating à grain fin, nous présentons les réductions de puis-
sances dynamique et statique obtenus par notre concept de micro-tâches matérielles,
en les comparant avec des implémentations à base de microcontrôleurs. Finalement, le

14 Résumé étendu

Out1

Out4

Outn-2

In3

In4

Out2

Out5

Outn-1

In5

In6

Out3

Out6

Outn

Vdd

VG Vvdd

(a) (b)

TOFF = 451.2 ns

VG 1->0

Vout 0->1

TON = 37.6 ns

VG 0->1

Vout 1->0

(c)

Figure 7: Modèle à base de portes NAND parallèles utilisé pour exécuter les simulations
au niveau transistor à l’aide de SPICE et temps de réveil et de mise en veille mesurés
pour n = 3000.

coût en surface et le gain en puissance statique du système complet est analysé via la
synthèse du moniteur système. Tous ces résultats sont obtenus en utilisant notre flot
de conception complet, tel que proposé et développé dans cette thèse.

0.5.1 Temps de commutation du power gating

Pour vérifier l’applicabilité du power gating dans l’architecture que nous proposons,
nous utilisons un modèle similaire à celui utilisé par Hu et al. [59]. Cependant, comme
les auteurs ne donnent pas de valeurs quantitatives des temps de commutation pour
une technologie CMOS spécifique, nous avons accompli plusieurs expérimentations.

Pour cela, l’outil Eldo de Mentor Graphics a été utilisé pour les simulations SPICE
avec une technologie CMOS 130 nm et une tension d’alimentation de 1.2 V. Nous avons
utilisé un modèle à base de portes NAND parallèles (cf. figure 7 (a)). Un bloc logique
de 3000 portes équivalentes, comparable en termes de surface de silicium avec la plus
complexe des micro-tâches présentes dans notre système, a été simulé. Les figures 7 b
et 7 c) montrent de temps d’allumage (réveil) de 37.6 ns et de coupure (mise en veille)
de 451 ns entre les modes “éteint” et “actif”. Ces temps doivent être comparés avec ceux
du MSP430 qui offre un temps de réveil de 1µs [129]. Ceci montre que le power gating
est applicable dans notre système et une réduction de plus de 50% du temps de réveil
peut être gagnée par rapport aux implémentations à base de microcontrôleurs.

0.5.2 Gains en puissance dynamique de l’approche à base de micro-
tâches

Pour explorer les gains en consommation de notre approche, plusieurs tâches applica-
tives représentatives ont été extraites de benchmarks récents en réseaux de capteurs,
tels que SenseBench [97] et WiSeNBench [96]. De plus, pour couvrir les applications
orientées contrôle, plusieurs tâches de gestion des réseaux de capteurs dans un sys-
tème d’exploitation ont été utilisées: calcul de l’adresse du prochain nœud dans un
protocole de routage géographique multi-sauts (calcNeigh), protocole de transfert sur

Résultats expérimentaux 15

MSP430
Nom Nb. Cycles Temps Puissance Energie

Tâche Instr. Horl. (µs) (mW) (nJ)
tiMSP openMSP tiMSP openMSP

crc8 30 81 5.1 8.8 0.96 44.9 4.9
crc16 27 77 4.8 8.8 0.96 42.2 4.6

tea-decipher 152 441 27.5 8.8 0.96 242 26.4
tea-encipher 149 433 27.0 8.8 0.96 237.6 26

fir 58 175 10.9 8.8 0.96 96 10.4
calcNeigh 110 324 20.2 8.8 0.96 177.7 19.4
sendFrame 132 506 31.6 8.8 0.96 278 30.3

receiveFrame 66 255 15.9 8.8 0.96 139.9 15.2

Table 1: Consommation de puissance et d’énergie du MSP430 pour différentes tâches
applicatives issues de benchmarks (@ 16 MHz).

bus SPI pour interfaçage avec un composant radio tel que le CC2420 (sendFrame et
receiveFrame). Toutes ces tâches sont traitées via notre flot de conception qui génère
les descriptions matérielles correspondantes aux micro-tâches.

Une technologie CMOS 130 nm et une tension d’alimentation de 1.2 V sont utilisées
pour les résultats de synthèse. Les estimations de consommation statique et dynamique
résultent d’une simulation au niveau portes à une fréquence d’horloge de 16 MHz. Les
puissances estimées sont comparées avec celles dissipées par (i) tiMSP: un microcon-
trôleur MSP430F21x2 dont les informations sont extraites depuis la datasheet construc-
teur (8.8 mW @ 16 MHz en mode actif), ce qui inclut les mémoires et les périphériques,
et (ii) openMSP, une version open-source du MSP430 (0.96 mW @ 16 MHz) synthétisée
dans la même technologie 130 nm et n’incluant que le cœur et aucune mémoire ni
périphérique.

Nous escomptons que la puissance dissipée réelle du cœur du MSP430 associé à sa
mémoire programme se trouve entre ces deux résulats et faisons donc la comparaison
avec ces deux versions.

Les résultats sont donnés dans les tableaux 1 à 3 où le tableau 1 donne le nombre
de cycles et d’instructions pour les deux versions du MSP430 MCU. Les tableaux 2
et 3 montrent quant à eux les gains en puissance et en énergie obtenus par notre
architecture à base de micro-tâches matérielles pour des chemins de données de 8 et 16
bits respectivement. On observe que notre approche obtient des gains en énergie entre
un et deux ordres de grandeur pour les différents benchmarks.

En ce qui concerne la puissance statique, les micro-tâches consomment en moyenne
6 octets de mémoire. Quand cette mémoire est synthétisée dans une technologie 130 nm
(sans optimisation spécifique), elle consomme seulement 18 nW de puissance statique.
Par opposition, le MSP430 consommant approximativement 1.54µW en statique, notre
approche permet de gagner un rapport d’environ un ordre de grandeur en consommation
statique par rapport aux implémentations à base de microcontrôleurs.

16 Résumé étendu

Micro-tâches 8-bits
Nom Nb. TempsPuissanceEnergie Gain P. Gain E. Surface Nb. portes

Tâche Etats (µs) (µW) (pJ) (x) P1/P2(x) E1/E2 (µm2) Nand equiv.

crc8 71 4.4 30.09 132.4 292/32 339/37 5831.7 730
crc16 103 6.4 46.92 300.3 187/20.4 140.5/15.3 8732.5 1092

tea-decipher 586 36.6 84.5 3090 104/11.4 78/8.55 19950 2494
tea-encipher 580 36.2 87.3 3160 101/11 75/8.2 20248 2531

fir 165 10.3 75.3 775.6 116/12.8 123.8/13.413323.7 1666
calcNeigh 269 16.8 74.3 1248.2 118/12.9 142.4/15.514239.4 1780
sendFrame 672 42 33.3 1400.3 264/28.8 198.5/21.7 10578 1323

receiveFrame 332 20.7 27.3 565 322/35 247.6/26.7 5075.3 635

Table 2: Gain en puissance et en énergie pour des micro-tâches 8 bits par rapport au
MSP430 (@ 16 MHz, 130 nm). P1 et E1 sont les gains en puissance et en énergie par
rapport à la version tiMSP tandis que P2 et E2 sont les gains en puissance et en énergie
par rapport à la version openMSP.

Micro-tâches 16 bits
Nom Nb. TempsPuissanceEnergie Gain P. Gain E. Surface Nb. portes

Tâche Etats (µs) (µW) (pJ) (x) P1/P2(x) E1/E2 (µm2) Nand equiv.

crc8 71 4.4 55.3 242.6 159.6/17.4185.1/20.2 10348 1294
crc16 73 4.56 55.0 251.0 159.8/17.4168.1/18.3 10280 1285

tea-decipher 308 19.2 152.8 2940 57.6/6.2 82/9 27236 3405
tea-encipher 306 19.1 152.3 2910 57.8/6.3 81/8.93 27069 3384

fir 168 10.5 144.2 1514 61.02/6.7 63.4/6.9 23547 2944
calcNeigh 269 16.8 142.4 2392 61.8/6.7 74.3/8.1 24745 3094
sendFrame 672 42 58.1 2440 151.5/16.5 114/12.4 14863 1858

receiveFrame 332 20.7 50.0 1036 175.8/19.2 135/14.7 9485 1183

Table 3: Gain en puissance et en énergie pour des micro-tâches 16 bits par rapport au
MSP430 (@ 16 MHz, 130 nm). P1 et E1 sont les gains en puissance et en énergie par
rapport à la version tiMSP tandis que P2 et E2 sont les gains en puissance et en énergie
par rapport à la version openMSP.

0.5.3 Estimation de la consommation du moniteur système

Pour comparer les consommations d’énergie et le potentiel surcoût en surface du moni-
teur système (SM), une description sous forme de graphe de tâches est présentée à la
figure 4 et est exprimée à l’aide de notre DSL. Celui ci est ensuite traité avec notre flot
de conception et une description VHDL du moniteur système qui contrôle l’activation
et la désactivation des quatre micro-tâches et de la mémoire partagée est générée.

Ce code VHDL est ensuite synthétisé pour une bibliothèque de cellules CMOS
standards en 130 nm afin d’obtenir les consommations statique et dynamique et le
coût en surface de silicium. Les résultats montrent que le SM consomme 5.15µW de
puissance dynamique (@ 16 MHz et 1.2 V) et 296 nW de puissance statique. La partie
statique peut être réduite jusqu’à 80 nW si des cellules faible consommation alimentées
à 0.3 V sont utilisées pour les registres présents dans l’architecture. D’un point de vue
de la surface de silicium, le SM consomme seulement 754µm2 (pour un graphe simple),
soit environ 1% de la surface d’un cœur MSP430 synthétisé dans la même technologie.

Résultats expérimentaux 17

En résumé, notre approche basée sur des micro-tâches matérielles fournit une ré-
duction d’environ 50% dans les temps de commutation entre les modes de veille et
d’activité, et des gains d’un à deux ordres de grandeur en énergie dynamique et d’un
ordre de grandeur en énergie statique, par comparaison avec des implémentations logi-
cielles sur des microcontrôleurs à très faible consommation tels que le MSP430.

18 Résumé étendu

Chapter 1

Introduction

1.1 Wireless Sensor Network (WSN)

Wireless Sensor Networks (WSNs) is a fast evolving technology having a number of
potential applications in various domains of daily-life, such as structural-health and en-
vironmental monitoring, medicine, military surveillance, robotic explorations etc. Ad-
vancements in Micro-Electro-Mechanical-Systems (MEMS) technology, wireless com-
munications, and digital electronics have facilitated the development of low-cost, low-
power, multi-functional sensor nodes that are small in size and communicate efficiently
over short distances. Thus the emerging field of WSN combines sensing, computation,
and communication into a single tiny device (WSN node). WSN Systems of 1000s or
even 10,000s of such nodes are anticipated that can revolutionize the way we live and
work.

The core design challenge in WSN is coping with the harsh resource constraints
placed on the individual node devices. Embedded processors controlling the WSN
nodes have only kilo-Bytes of memory and they must implement complex networking
protocols. Many constraints evolve from the fact that these devices will be produced
in a large number and must be small and inexpensive. As Moore’s law still remains
applicable, we get nearly double the number of transistors in same surface area with
newer process technology. This results in two scenarios (i) more functionalities can be
added to a device for the same given area or (ii) size of the device gets smaller for
the same given functionalities. This size reduction is also helpful for the devices to be
produced as inexpensively as possible.

The most difficult resource constraint to meet is power consumption. As physical
size decreases, so does energy capacity of a WSN node. Underlying energy constraints
end up creating computational and storage limitations that lead to a new set of ar-
chitectural issues. Many devices, such as cell phones and pagers, reduce their power
consumption through the use of specialized communication hardware in Application
Specific Integrated Circuits (ASICs) that provide low-power implementations of the
necessary communication protocols.

To date, the strength of WSN systems is supposed to be their flexibility and uni-

19

20 Introduction

Sensor MCU

Power Supply

Tx

Rx

Sensor
Subsystem

Computation
Subsystem

Power Subsystem

Communication
Subsystem

Figure 1.1: General architecture of a WSN node.

versality. However, when looking more carefully to actual design practices, we observe
that the need for flexibility/programmability is essentially geared toward the user ap-
plication layer, which happens to represent only a small fraction of a WSN node’s
processing workload. Whereas most of the processing workload is almost dedicated
to the communication protocol stack. Hence, in our opinion, it is worth-studying to
explore the hardware specialization approach in WSN node design as well to meet the
ultra low-power requirement. In order to reduce the power consumption in a WSN
node, we first need to look at the generic node architecture to find out the hotspots for
power consumption. The generic architecture of a WSN node is discussed in the next
section.

1.1.1 WSN node architecture

WSN nodes are low-power embedded devices consisting of processing and storage com-
ponents (a Microcontroller Unit (MCU) connected to a RAM and/or flash memory)
combined with wireless communication capabilities (RF transceiver) and some sen-
sors/actuators. Since these nodes must have small form-factors and limited production
cost, it is not possible to provide them with large energy sources [138]. In most cases
they must rely on non-replenishing (e.g. battery) or self-sufficient (e.g. solar cells)
sources of energy.

Figure 1.1 presents the system architecture of a generic sensor node. It is composed
of four major subsystems: power supply, communication, control and computation,
and sensing. The power supply subsystem consists of a battery and a DC-DC con-
verter and has the purpose to power-up the node. The communication subsystem
consists of a radio transceiver for wireless communication. Most of the platforms use
a single omni-directional antenna however, cooperative “Multiple-Input and Multiple-
Output (MIMO)” technology has also been deployed [99]. The processing subsystem is
typically composed of memory to store application program codes and data, and of a
microcontroller to control the system and process the data. The last subsystem links
the sensor node to the region of interest and has a group of sensors and actuators that
depend on the WSN application. It also has an Analog-to-Digital Converter (ADC) to

Wireless Sensor Network (WSN) 21

convert the analog data sensed by the sensors to digital data that can be used by the
processing subsystem. To design such architecture with limited resources, the designers
are faced with some tough constraints that are discussed in the following section.

1.1.2 WSN node design constraints

Designing a WSN node is a challenging task, since the designers must deal with many
stringent design constraints and metrics that are often interrelated. Here we will briefly
discuss some of the metrics that are considered while designing a WSN node.

� Power is the biggest design challenge to meet while designing individual sensor
nodes to implement the applications that require multi-year life-time.

� Robustness also becomes an important parameter in WSN node design to sup-
port correct functioning of the network. Each node must be designed to be as
robust as possible to tolerate and adapt to neighborhood node failures.

� Security at application-level is another metric to be considered while designing
a node. The individual nodes must be capable of performing relatively complex
encryption and authentication algorithms.

� Communication bit-rate and range are key design metrics for a WSN node
as well. An increase in the communication range (and bit-rate) has a significant
impact on the power consumption (and computational requirement) of the node.

� Computation workload is another key design metric and it directly influences a
node’s power consumption. The more a node would be computationally-intensive,
the more would be its overall power/energy budget.

� Cost and size The physical size and cost of each individual sensor node has a
significant and direct impact on the ease and cost of deployment as well as the
size of the energy source available to it.

As discussed earlier, since WSN nodes are deployed in huge numbers, they must
be of small form-factor and inexpensive. Besides, it is not possible to equip them with
large power sources. Hence, ultra low-power becomes the most critical design metric
for a WSN node. It is also supported by the fact that WSN nodes may have to work
unattended for long durations due to a large number of deployed nodes or a difficult
access to them after deployment.

If we analyze the power profile of a WSN node, among all the subsystems (Sec-
tion 1.1.1), communication and computation subsystems consume bulk of a node’s
available power-budget [116, 30]. In this work, we are targeting the power optimization
of the computation and control subsystem of a WSN node. Indeed, we believe that
power and energy savings obtained through our approach could open possibilities for
more computationally demanding protocols or modulation schemes which, as a result,
would provide better Quality-of-Service (QoS), lower transmission energy and higher

22 Introduction

network efficiency. Power reduction for computation and control subsystem can benefit
from optimizations at several levels of a WSN node design (such as application de-
sign, micro-architecture design, logic synthesis and Very Large Scale Integrated (VLSI)
circuit design).

We will discuss the power reduction techniques adapted at two different levels of a
WSN node design, i.e. micro-architectural level and VLSI circuit level as they are the
two levels targeted by our approach.

1.2 Power optimization of a WSN node

In the last decade, there have been a large number of research results dealing with
power optimization in VLSI circuits. A lot of research has also been done to optimize
power at micro-architectural level such as evolution of low-power MCUs. This section
briefly covers some of these power optimization techniques.

1.2.1 Low-power VLSI design

Power dissipation in VLSI circuits can be divided into two categories: dynamic power
caused by capacitance switching (i.e. stage changes) that occurs while a circuit is
operating and static power caused by leakage current between power supply and ground.
When a device is active, its power is usually largely dominated by dynamic power and
becomes roughly proportional to clock frequency. However, in the context of WSN,
things are slightly different as a WSN node remains inactive for long periods (MCU
duty-cycle lower than 1%), and the contribution of static power also becomes significant
and can not be ignored.

There are several approaches to reduce dynamic power in a circuit (e.g. clock gating,
voltage scaling etc.) that can be applied at various levels of the design-flow. However,
most of them are poorly suited to WSN nodes as they often significantly increase the
total silicon area, and therefore have a negative impact on static power dissipation.

One exception is power gating, which consists in turning-off the power supply of
inactive circuit components [12, 87]. Power gating helps in reducing both dynamic and
static power, and is thus very efficient for devices in which components remain idle for
long time periods.

The technique consists in adding a sleep transistor between the actual VDD (power
supply) rail and the component VDD, thus creating a virtual supply voltage called VV DD
as illustrated in Figure 1.2. This sleep transistor allows the supply voltage of the block
to be cut off to dramatically reduce leakage currents.

1.2.2 Low-power MCUs

As far as the power optimization at micro-architectural level is concerned, a number
of low-power microcontrollers (e.g. MSP430, CoolRISC and ATmega128L) have been
designed that share several characteristics: a simple datapath (8/16-bit wide), a reduced
number of instructions (only 27 instructions for the MSP430), and several power saving

Proposed approach: combination of power-gating and hardware specialization 23

Block B Block CBlock A

VG

VDD

VVDDVVDD VVDD

Figure 1.2: An example of power gating.

modes which allow the system to select at run-time the best compromise between power
saving and reactivity (i.e. wake-up time). These processors, are designed for low-
power operation across a range of embedded system application settings but, are not
necessarily well-suited to the event-driven behavior of WSN nodes as they are based on
a general purpose, monolithic compute engine.

Most of the current WSN nodes are built on these commercial MCUs. For example,
Mica2 mote [25] has been widely used by the research community and is based on
ATmega128L from Atmel. The same MCU has also been used by the designers of the
eXtreme Scale Mote (XSM) [30]. The Hydrowatch [39] and PowWow [64] platforms
are built on the MSP430 [129] from Texas Instruments whereas the WiseNet platform
from CSEM uses a CoolRISC-core [33] from EM Microelectronic.

Although the power consumptions of these MCUs may seem extremely small w.r.t.
the power budgets of typical embedded devices, looking at energy efficiency metrics
such as Joules per Instruction, it appears that the proposed architectures (such as the
MSP430) still offer room for improvement. In particular, it is clear that a combination
of specialization and parallelism would significantly help improving energy efficiency.
However, such architectural improvements usually come at a price of significant increase
in silicon area, which leads to unacceptable levels of static power dissipation for WSN.
In the next section, we will discuss our proposed approach that exploits the hardware
specialization technique to improve the dynamic power consumption and also tackles
the issue of increased static power dissipation using power gating.

1.3 Proposed approach: combination of power-gating and
hardware specialization

We believe that the hardware specialization is an interesting way to further improve
energy efficiency in WSN computation and control subsystem i.e. instead of running
the application and control tasks on a programmable processor, we propose to generate
an application specific micro-architecture, tailored to each task of the application at
hand. This approach results in a drastic reduction of dynamic power dissipation of

24 Introduction

Register
File

Shared
RAM
IFace

ROM Arithmetic
Logic Unit

(ALU)

I/O

P
eripherals

IFace

CTRL. FSM

Alu Result

R
am

 A
ddress

(C
aculated)

ram
D

ataIn
Ram Address
(Generated)

Rom Address

A
lu Input

S
election

O
pera nd B

 A
d r.

romDataOut

ramDataOut

rfDataOut
A

lu O
perand

S
elect

Pheripheral On/Off

R
am

 Input S
election

Vdd

en_MT

micro-task

Vvdd

O
perand A

 A
dr.

3
2

2

8

8

8

8

8

Figure 1.3: Architecture of a generic hardware micro-task.

a WSN node. On the other hand, to tackle the (potential) increase in static power
consumption, we propose to use power gating technique.

We propose such an approach where a WSN node architecture is made of several
hardware micro-tasks that are activated on an event-driven basis, each of them being
dedicated to a specific task of the system (such as event-sensing, low-power MAC,
routing, and data processing etc.). The architecture of a hardware micro-task is in the
form of a minimalistic datapath controlled by a custom Finite State Machine (FSM) and
is being automatically generated from a task specification in C, by using an Application
Specific Instruction-set Processor (ASIP)-like design environment retargeted to our
purpose.

By combining hardware specialization with static power reduction techniques such
as power gating, we can drastically reduce both dynamic (thanks to specialization) and
static (thanks to power gating) power [103].

1.3.1 Power-gated micro-task

Our approach relies on the notion of a specialized hardware structure called a hardware
micro-task, which executes parts of the WSN node code. In contrast to an instruction-
set processor, the program of a micro-task is hardwired into an FSM that directly
controls a semi-custom datapath. This makes the architecture much more compact
(neither an instruction decoder is needed, nor an instruction memory) and allows the
size of storage devices (register file and RAM/ROM) as well as the Arithmetic Logic
Unit (ALU) functions to be customized to the target application. Each of these micro-
tasks can access a shared data memory and peripheral I/O ports (e.g. SPI link to an
RF transceiver such as the CC2420 [131]).

Figure 1.3 shows the micro-architecture for such a hardware micro-task (here with

Proposed approach: combination of power-gating and hardware specialization 25

Timer
100 ms MT-A

I/O (Temp. Sensor)

MT-D

Temp. Value
(Gated Memory-1)

MT-B

MT-C

I/O (RF Tranceiver)

Temp. Value
(Gated Memory-1)

Temp. Value
(Gated Memory-1)
Node ID
(Non-gated Memory-2)

I/O (RF Tranceiver)

Node ID
(Non-gated Memory-2)
Neighbor ID
(Non-gated Memory-2)

Neighbor ID
(Non-gated Memory-2)

Ext. Event T

Int. Event A

Int. Event B

Int. Event CInt. Event D

senseTemp

processData

sendDatareceiveAck

Figure 1.4: TFG of a temperature sensing and forwarding application.

an 8-bit data-path), dotted lines represent control signals generated by the control FSM,
whereas solid lines represent data-flow connections between datapath components. The
details of the micro-task architecture are given in Section 4.1.2.

1.3.2 Proposed system model

The basic system architecture of a WSN-node based on micro-task-oriented approach
and its behavior is explained with the help of a simple temperature sensing and
forwarding application in the following paragraphs.

Application task graph

Consider, for example, an application in which we periodically read the temperature
value provided by a temperature sensor through I/O interface, process this value, send
it to a neighbor node and finally, receive an acknowledgment from that neighbor node.
The task flow graph (TFG) of this application is shown in Figure 1.4 and consists of a
set of 4 micro-tasks and some data and control communication.

Architecture

Figure 1.5 represents the system level view of a WSN node platform designed according
to our proposed approach to implement the above-mentioned TFG. Such a system
consists of:

� A set of power-gated hardware micro-tasks accessing shared resources (e.g. pe-
ripherals (RF, sensor) and memories (gated/non-gated)). Each of these hardware
micro-tasks is able to perform a specific task such as temperature sensing, data
processing etc.

26 Introduction

M-Task A M-Task B

Memory
M1

VddVdd

Vdd

Int. E
vent A

Int. Event B

E
n_A E

n_B

En_M
em

_A

Timer

I/O Port

Se
ns

or
(e

.g
. t

em
p)

Memory
M2

I/O Port

R
ad

io
 c

hi
p

(e
x

C
C

24
20

)

Vdd Vdd

System Monitor

M-Task C M-Task D

E
xt. E

vent T

Figure 1.5: System-level view of a micro-task based WSN node architecture.

� A hardware System Monitor (SM) that controls the execution of all the hardware
micro-tasks. The SM is responsible for the turning-ON/OFF of the hardware
micro-tasks as well as the power-gated memories depending upon their usage.

� Event triggering peripherals (such as radio, timer etc.) that can send events to
the SM.

Behavior of a micro-task-based WSN node

The behavior of a WSN node based on our approach is simple. There are control
signals exchanged between the hardware micro-tasks and the SM. The control signals
generated by the SM are called “commands” (e.g. En A, En B, En Mem 1 etc.) as
shown in Figure 1.5, whereas signals emitted by the hardware micro-tasks after their
job-completion are called “internal events” (e.g. Int.Event A, Int.Event B etc.) shown
in Figure 1.5. There are also some events generated by the I/O peripherals that are
called “external events” (e.g. Ext.Event T etc.).

The behavior of the WSN node, implementing the TFG example shown in Figure 1.4
is explained below:

� The SM receives an external event Ext.Event T and through combinational logic
implemented in it, it sends the wake-up signal to the power-gated micro-task M-
Task A through En A and the power-gated memory Memory 1 through En Mem 1.

Proposed approach: combination of power-gating and hardware specialization 27

M-Task A wakes up and execute the temperature sensing task by reading the
temperature value from temperature sensor through I/O peripheral. This data
is then stored in Memory 1. Then M-Task A sends an internal event Int.Event A
announcing the SM that it has finished its job.

� Upon receiving Int.Event A, the SM shuts down the M-Task A by power-gating
its supply-voltage through En A and wakes up the hardware micro-task M-Task B
implementing the second task present in the TFG of Figure 1.4. This hardware
micro-task reads the temperature value stored in Memory 1, processes it accord-
ingly and stores the new value back in the memory. M-Task B then sends an
internal event Int.Event B to the SM announcing its job-termination.

� When Int.Event B is read by the SM, it shuts down the M-Task B by power-
gating En B and wakes up M-Task C that sends the post-processed data stored
in Memory 1 to the nearest neighbor. To perform this task, M-Task C also needs
the non-power-gated memory Memory 2 that is being used by the node to store
its node ID and the neighborhood table. M-Task C performs a simple neighbor-
hood calculation and sends the packet to the nearest neighbor by writing it to
the SPI interface of the RF transceiver. M-Task C then sends an internal event
Int.Event C to the SM announcing the termination of its job.

� Upon receiving Int.Event C, the SM powers down the MTask C by power-gating
its supply-voltage through En C and wakes up the hardware micro-task M-Task D
implementing the reception of acknowledgment from the neighbor. Since Mem-
ory 1 is not needed by M-Task D, it is also power-gated by SM through En Mem 1
line. Finally, once the acknowledgment is received by the node, through successful
finish of M-Task D, the SM shuts down the fourth and the last hardware micro-
task present on the WSN node platform at the reception of an internal event
Int.Event D. Resultantly, the whole computation and control part of the WSN
node, except the SM and Memory 2, goes to power-off mode to conserve power.

1.3.3 Customized execution model and software design-flow

Major portion of this work is devoted to the development of LoMiTa (ultra Low-power
Micro-Tasking), a complete system-level design-flow for designing application specific
hardware platforms [104, 105]. Following the philosophy of many WSN software frame-
works, this flow uses a combination of a textual Domain Specific Language (DSL) for
system-level specifications (interactions between tasks, event management, shared re-
sources management etc.) and ANSI-C for specifying the behavior of each micro-task.
From such a specification, we are able to generate a synthesizable VHDL (VHSIC Hard-
ware Description Language; VHSIC: Very-High-Speed Integrated Circuit) description
of the whole architecture (micro-tasks and SM), which provides a direct path to ASIC
or FPGA (Field Programmable Gate Array) implementation.

We want to clarify that our goal is not to propose a new model of computation
for WSN computation subsystem. We rather see our approach as a simple execution

28 Introduction

model chosen so as to be a good match for what we think is a promising architectural
solution for WSN nodes.

Here we provide a brief overview of our software framework for designing micro-task
based WSN platforms. It consists of two parts:

� A customized ANSI-C to hardware compiler which is used to generate the VHDL
specification of a micro-task, given its behavior in ANSI-C.

� A design-flow that uses a system specification in DSL and generates a VHDL
description for its hardware SM.

Our complete design-flow is summarized in Figure 1.6: we start from the application
task descriptions written in ANSI-C and a system-level description of task interactions
described in a textual DSL to derive the behavior of the SM and close the path to
hardware generation.

The design-flow is based on different Model Driven Engineering (MDE) techniques.
To briefly elaborate the concept: the micro-task generation flow is based on Eclipse
Modeling Framework (EMF) [134] that is used to define the Register Transfer Level
(RTL) EMF-models for FSM and datapath components whereas the SM generation
flow is based on Xtext [136] that is used to develop a textual DSL to describe different
components of the system-model like micro-tasks, their corresponding events, shared
memories and I/O resources. Then the flow uses this description to generate the RTL
EMF-models for the SM components. Both of the design-flows, then use the code-
generation techniques to generate the VHDL descriptions for the hardware micro-tasks
and the SM architectures.

Proposed approach: combination of power-gating and hardware specialization 29

Task
C

Task
B

Application

Task
A

Task A Task BTask C

.c .c .c

Compiler
Front-end

Tree-based
Instruction Selection

and Mapping

Task.c

FSM.vhd Datapath.vhd

Custom
Datapath

Model

Micro-Task
Synthesis Design-

Flow

Micro-Task A Micro-Task BMicro-Task C

.vhd .vhd .vhd System
Monitor

.vhd

Hardware Synthesis Tool

Software Tasks

Hardware Micro-Tasks

Final IC

Transistor Level
Insertion of Power

Gating

Proposed Textual
DSL for System-
Level Description

Shared
Mem

CDFG-Level IR

Register
Allocation

Bitwidth
Adaptation

Assembly-Level IR

Datapath
Generation

FSM
Generation

Assembly-Level IR

Code-Generation Tool

EMF-based RTL-Models for
FSM and Datapath

Application.sysdesc

Model
Transformation

System Monitor
Synthesis Design-

Flow

CDFG of
Micro-Tasks

EMF-based RTL-Model for
System Monitor

EMF-based Intermediate
Model of the System

Guard
Expression
Evaluation

SM
Generation

Code-Generation Tool

SM.vhd

Contribution Discussed
in Chapter 4

Contribution Discussed
in Chapter 5

EventA

EventB

Figure 1.6: Complete system-level design-flow

30 Introduction

1.4 Contributions

The main contributions of this work can be described as under:

� We provide an integrated design-flow for micro-task-based WSN node controller
synthesis. In this flow, the behavior of each micro-task is specified in C and is
mapped to an application specific micro-architecture using a modified version of
a retargetable compiler infrastructure.

� We also show that the power-gating scheme happens to have very short switching-
time delays, in the orders of a few hundred of nano seconds for average-size
hardware micro-task designs. This improves the wake-up response time by at
least 50 % when compared to low-power MCUs such as the MSP430.

� We also provide a DSL that can be used to specify the system-level execution
model of a WSN node that in turn generates the hardware description for the
system monitor (SM) that is used to control the activation and deactivation of
the power-gated hardware micro-tasks.

� Our approach provides power savings of one to two orders of magnitude in dy-
namic power when compared to the power dissipation of currently available low-
power MCU-based solutions.

� We also use this flow to perform design space exploration by exploring the trade-
offs in power/area that can be obtained by modifying the bitwidth of the generated
hardware micro-tasks. We compare the obtained results to those achieved by using
an off-the-shelf low-power MCU such as the MSP430.

� We performed realistic case-study of a WSN application that serves as an exper-
imental validation that the approach is conceivable for real-life WSN systems.

1.5 Thesis organization

The thesis is organized in 7 chapters. Chapter 2 presents the related work about power
optimization of WSN node architecture. It starts by briefly covering the basics of WSN
systems. It then describes the generic components of a WSN node and their contri-
bution to the node’s power budget. Chapter 2 covers the commercially available WSN
node architectures and provides a short survey of their features and design parameters.
It provides a summary of power reduction techniques developed at different design
levels of a WSN node such as micro-architectural level and VLSI circuit level.

Since our design-flow for micro-task generation is based on a hybrid of High-Level
Synthesis (HLS) and ASIP design methodologies, Chapter 3 provides a survey of the
existing work done in both of these domains. It starts with generic HLS design method-
ology and covers the existing tools for HLS. Similarly, it also discusses the ASIP design-
flows and existing tools.

Thesis organization 31

Chapter 4 thoroughly describes our proposed design-flow for hardware micro-task
synthesis. It starts by explaining the notion of a hardware micro-task, the basic building
block of our proposed approach. It discusses its potential power benefits and generic
architecture. It then concludes with a comprehensive description of our proposed micro-
task synthesis design-flow and a small experimental demonstration.

Chapter 5 covers the second half of our design tool, LoMiTa, that is the development
of a system-level execution model and design-flow for the hardware SM synthesis. It
starts by a brief introduction to existing execution paradigms in embedded systems and
why event-driven approach is more suitable for WSN systems. It then covers the system-
level view of the computation and control part of a WSN node based on our approach.
It then adds a comprehensive survey of existing WSN-specific OS that are used for
task- and power-management in conventional WSN nodes. Chapter 5 summarizes the
features of our proposed system-level execution model afterward and finally concludes
with the details of the System Monitor (SM) synthesis design-flow and a simple example
demonstrating the power benefit and area overhead of a hardware SM.

Chapter 6 consists of the experimental setup and the results that we have achieved.
It starts by describing the effects of using power-gating technique in our system and
achieved improvement in wake-up response time. It then covers the dynamic and static
power reductions achieved by our approach as compared to the currently available low-
power MCUs in the light of a case study WSN application. Additionally, it provides
the findings based on the design space exploration that we performed by varying the
sizes and bitwidths of the micro-task components and summarizes an optimal option.
Chapter 6 also provides the result for the power consumption of the SM controlling the
micro-tasks of our case-study example and compares it with an MCU-based software
solution. It concludes with the expression of overall energy gain for a complete time-
period of a micro-task activation.

Chapter 7 concludes the work done in the thesis along with the international pub-
lications extracted from this work and draws some future research directions.

32 Introduction

Chapter 2

WSN node architectures and
low-power microcontrollers

2.1 WSN basics

WSN systems are a merger of wireless networks and sensors but have different features
and design challenges from both of them and provide possible significant improvements
over both of them. For instance, traditional sensors are generally deployed in two
ways [65]:

� Sensors are placed far from the region of interest. In this approach, large sensors
with complex measuring techniques and algorithms are required that must be
capable of distinguishing the data readings from the environmental noise.

� Several sensors are deployed within the area of interest but they only perform the
sensing. Hence, the position and communication topologies for such sensors are
carefully designed. They transmit periodically sensed readings that are combined
and processed at central nodes.

In contrast, a WSN is composed of a large number of sensor nodes that are deployed
either inside the region of interest or very close to it. The positioning topology of the
nodes does not need to be pre-designed. This makes the deployment simpler and helps
in certain applications such as random deployment during disaster relief operations. On
the other hand, it means that sensor nodes must be equipped with self-organization and
localization functions. Moreover, sensor nodes contain on-board processing units and
they do not just perform simple sense and forward operation but use their processing
capabilities to perform in-network data processing and fusion.

As far as the comparison between traditional wireless networks and WSN is con-
cerned, we highlight the distinguishing features and design challenges for WSN below
(more details can be found in the article by Holger et al. [70]):

� Multi-hop communication : While in traditional wireless networks both single-
hop and multi-hop communications are feasible depending upon the application

33

34 WSN node architectures and low-power microcontrollers

requirements, in WSN mostly multi-hop communication is preferred. In particu-
lar, communication over long distances requires a high transmission power that
is not possible for the allowed energy-budget of a WSN node. Hence, the use of
intermediate nodes as relays can reduce the overall required energy of the system.

� Energy-efficient operation : To support long life-times, energy-efficient opera-
tion is a key technique. Since the WSN nodes must be small-size and cost-effective,
they can not be equipped with huge energy sources [138]. Hence, the design of a
WSN node must ensure the energy-efficient computation (measured in Joules per
instruction) and energy-efficient communication (measured in Joules per trans-
mitted bit) and find, wherever possible, the best compromise between the two
operations.

� Unattended operation : Since WSN nodes can be deployed in huge numbers
(1000s to 10,000s) and moreover in inaccessible terrains, it is not possible to
perform their maintenance after deployment. Hence, they must be robust and
autonomous in their configuration and energy needs.

� Collaboration to in-network processing : In some applications, a single WSN
node is not able decide whether an event has happened but several sensors have
to collaborate to detect an event. This collaboration results in data-aggregation
of the readings as they propagate forward through the network, reducing the
amount of data to be transmitted and hence an improvement in overall energy
consumption of a WSN.

� Fault tolerance : Sensor nodes may fail or be blocked due to lack of power,
physical damage or interference. The failure of some sensor nodes should not
affect the overall system operation and a WSN must be designed with reliability
or fault tolerance capabilities.

Moreover, as mentioned earlier that a WSN consists of a relatively large number
of sensor nodes, hence the physical size and cost of each individual sensor node has a
significant and direct impact on the ease and cost of deployment as well as the size of
the energy sources available to them. Hence, we can clearly see that having a low-power
design is the basic and most important driving force behind the engineering of a WSN
node. In the next section, we will have a closer look at the generic architecture of an
individual WSN node architecture as discussed in the literature.

2.2 WSN node architectures

When designing a WSN node, evidently the application requirements play a decisive
factor with regard mostly to size, costs, and energy consumption of the nodes, but
the trade-offs between features and cost is crucial. In some extreme cases, an entire
sensor node should be smaller than 1 cm3, weigh (considerably) less than 100 g, be
substantially cheaper than US$ 1, and dissipate less than 100µW [115]. In even more

WSN node architectures 35

Sensor
/

Actuator

Controller
+

Memory

Power Supply

Tx

Rx

Sensor
Subsystem Computation Subsystem

Power Subsystem

Communication
Subsystem

Figure 2.1: A generic WSN node architecture.

extreme visions, the nodes are sometimes claimed to have to be reduced to the size of
grains of dust [138]. In more realistic applications, the mere size of a node is not so
important; rather, convenience, simple power supply, and cost are more important [17].

A basic sensor node is comprised of four main components (as shown in Figure 2.1)
that are discussed in the following sections.

2.2.1 Computation subsystem

The computation subsystem is the core of a wireless sensor node. It gathers data from
the sensors, processes this data, decides when and where to send it, receives data from
other sensor nodes, and activates the actuator accordingly. It has to execute various
programs, ranging from time-critical signal processing and communication protocol
stack to application programs. It can very-well be called the Central Processing Unit
(CPU) of the node.

In most of the currently developed WSN node architectures, computation subsystem
includes a general purpose low-power embedded MCU and in certain cases it can also
contain coprocessing elements (such as hardware accelerators). As far as the storage
part is concerned, a variety of storage devices are deployed such as Random Access
Memory (RAM) to store the temporary data being received or processed by the node,
Read Only Memory (ROM) or Flash memory to store the permanently needed data
like node ID, neighborhood node table, etc. In Section 2.5, we will discuss about
some of the low-power MCUs extensively used in commercial and academic WSN node
architectures.

2.2.2 Communication subsystem

For wireless communication subsystem of a node the usual choices include Radio Fre-
quency (RF), optical communication, and ultrasound. Of these choices, RF-based
communication is by far the most extensively used as it best fits the requirements of
most WSN applications. For instance, it provides relatively long range and high data
rates, acceptable error rates at reasonable energy expenditure, and does not require

36 WSN node architectures and low-power microcontrollers

Measurement for Wireless Sensor Networks

Measured Transduction principle
Physical properties Pressure Piezoresistive, capacitive

Temperature Thermistor
Humidity Resistive, capacitive

Flow Pressure change

Motion properties Position GPS, contact sensor
Velocity Doppler, Hall effect

Acceleration Piezoresistive, piezoelectric

Presence Tactile Contact switch, capacitive
Proximity Hall effect, magnetic, seismic
Distance Sonar, radar, magnetic
Motion Sonar, radar, acoustic, seismic (vibration)

Table 2.1: Some measured quantities and corresponding physical principles used to
measure them.

Line of Sight (LoS) between sender and receiver. Some examples of RF-based radio
transceivers are CC 1000 [132] and CC 2420 [131] from Texas Instruments, and TR 1000
from RFM [120].

2.2.3 Sensing subsystem

WSN nodes may consist of many different types of sensors such as seismic, low sampling
rate magnetic, thermal, visual, infrared, acoustic and radar which are able to sense a
wide variety of environmental conditions. Table 2.1 summarizes some of the physical
principles that may be used to measure various quantities (as indicated by Lewis [38]).

Actuators are just about as diverse as sensors, yet for the purposes of designing a
WSN, they are a bit simpler to take account of: in principle, all that a WSN node can
do is to open or close a switch or a relay or to set a value in some way. Whether this
controls a motor, a light bulb, or some other physical object, is not really of concern
to the way communication protocols are designed.

2.2.4 Power supply subsystem

The power supply subsystem consists of a power supply and (possible) DC-DC con-
verter. Power supplies can be of different types but they mostly lie in two major
categories: (i) Non-replenishing: mostly consisting of simple batteries and (ii) Self-
sufficient: consisting of energy-scavenging mechanism (e.g. solar (photo-voltaic) cells,
Piezoelectric and thermal-gradient materials etc.) to harvest the energy and batteries
to store it.

Moreover, batteries (or other forms of energy storage) alone are not sufficient as
a direct power source for a sensor node. One typical problem is the reduction of
battery voltage as its capacity drops. This can result in less power delivered to the
sensor node circuits, with immediate effects on oscillator frequencies and transmission
power. Hence, a DC-DC converter is used to overcome this problem by regulating
the voltage delivered to the node circuitry. However, to ensure a constant voltage even

Power dissipation analysis of a WSN node 37

Sensor
/

Actuator

Controller
+

Memory

Power Supply

Tx

Rx

Sensor
Subsystem

Computation Subsystem

Power Subsystem

Communication
Subsystem

Location
Finder

Mobilizer

Solar Cells + Ctrl.
Mechanism

Energy-Harvesting
Subsystem

Figure 2.2: Block diagram of a mobile sensor WSN node.

though the battery output voltage drops, the DC-DC converter has to draw increasingly
higher current from the battery when the battery is already becoming weak, speeding
up battery death [116]. Also, the DC-DC converter does consume energy for its own
operation, reducing overall efficiency. However, the advantages of predictable operation
during the entire life-cycle of the node can outweigh these disadvantages.

In addition to the four basic subsystems discussed-above, a WSN node can con-
tain additional application-specific subsystems. These additional subsystems can be
location-finding and mobilization subsystems in a mobile sensor node or an energy-
harvesting subsystem that works in cooperation with the power-supply subsystem to
create an autonomous sensor node w.r.t. the energy needs [5]. Figure shows a scenario
where these additional subsystems are included to create a energy-harvesting mobile
WSN node.

In the next section, we will discuss the power profile and major sources of power
dissipation in a WSN node architecture.

2.3 Power dissipation analysis of a WSN node

As mentioned earlier, in some applications, replenishment of power sources might be
impossible. Sensor node life-time, therefore, is strongly dependent on battery life-time.
In a multi-hop sensor network, each node plays a dual role, both of data originator
and data router. As a consequence, few node failures can cause significant topological
changes and might result in re-routing of packets and re-organization of the network.
Hence, power consumption and power management take on additional importance.
For these reasons, both power-aware software (such as protocols and algorithms) and
hardware design are the current focus of WSN research community.

The main task of a sensor node in a sensor field is to detect events, perform quick
local data processing, and then transmit the data. Power consumption can hence be
divided into three domains: sensing, communication, and data processing.

38 WSN node architectures and low-power microcontrollers

Sensing power varies with the nature of applications. Sporadic sensing might con-
sume lesser power than constant event monitoring. However, sensing subsystem con-
sumes much less power as compared to communication and computation subsystems
that consume bulk of the available power-budget for a node [116, 30]. It has also been
shown that the power required for the communication subsystem even dominates the
power required by computation and control subsystem. Pottie et al. [112] showed that
assuming a communication channel with Rayleigh fading, the energy cost of transmit-
ting 1 kilo-Byte to a distance of 100 m was approximately the same as that for executing
3 million instructions by a 100 (Million Instructions Per Second) MIPS/Watt processor.
And this gap between communication and computation energy is becoming wider due
to Moore’s law with each newer process technology.

As a result, a lot of efforts are being put to reduce the communication energy of
a WSN node. Just to cite a few of them, the use of advanced digital communication
techniques (efficient error correction, cooperative MIMO [99]) and network protocols
(energy-efficient routing [121] and/or MAC schemes such as S-MAC [145], B-MAC [110],
WiseMAC [32] and RICER [84]) have shown to help in improving the energy efficiency
for communication (see [4] for a survey).

However, these techniques (e.g. LDPC error correcting codes) may significantly
increase the computation workload on the computation subsystem, which in turn (i)
impacts the overall energy budget of the system and (ii) may require processing power
that would be above the power budget allocated to typical WSN node MCUs.

As a consequence, improving the computational energy efficiency of WSN nodes is
an important issue. Indeed, we believe that such power and energy savings could open
possibilities for more computationally demanding protocols or modulations which, as
a result, would provide better quality-of-service (QoS), lower transmission energy and
higher network efficiency.

Some of the commercial and academic WSN node platforms existing in the literature
are discussed in the following section.

2.4 WSN platforms

There are quite a number of experimental platforms available for WSN research and
development. We discuss below a few examples to highlight typical approaches (a
detailed overview of current developments can be found, for example, in the work of
Hill et al. [55]).

2.4.1 The Mica mote family

Starting in the late 1990s, an entire family of nodes has evolved out of research projects
at the University of California at Berkeley, in collaboration with Intel. They are com-
monly known as the Mica motes, with different versions (Mica, Mica2, Mica2Dot)
having been designed [57, 56, 72]. They are commercially available via the company

WSN platforms 39

Crossbow1 in different versions and different kits. TinyOS [101] is the mostly used
OS for these nodes. All these boards feature a microcontroller belonging to the Atmel
family, a simple radio modem (usually a TR 1000 from RFM [120]), and various con-
nections to the outside. Sensors are connected to the controller via an I2C or SPI bus,
depending on the version.

The MEDUSA-II nodes [116] share the basic components and are quite similar in
design.

2.4.2 BTnodes

The BTnodes [13] have been developed at the ETH Zürich out of several research
projects. They feature the Atmel ATmega128L microcontroller, 64B + 180 kB RAM,
and 128 kB flash memory. Unlike most of the other sensor nodes, they use Bluetooth
technology at radio interface in combination with a Chipcon CC1000 [132].

2.4.3 Telos

The Telos [111] nodes have also been developed at the University of California at Berke-
ley. They differ in basic components from Mica family. They consist of an MSP430 from
Texas Instruments [130] as MCU and a Chipcon CC2420 [131] as an RF transceiver.

2.4.4 PowWow

The PowWow platform [64] developed by our team at INRIA, also uses an MSP430
MCU-core for node control in general and a CC2420 as radio transceiver. It also includes
Igloo [1], a low-power FPGA designed by Actel, to configure hardware accelerators for
certain compute-intensive applications.

2.4.5 WiseNet

The WiseNet [34] WSN platform has been developed at Swiss Center for Electronics
and Microtechnology (CSEM). This power-efficient platform benefits from reduction in
energy consumption at the physical layer by using low voltage operations. WiseNet uses
a dedicated duty-cycle RF transceiver and a low power MAC protocol (WiseMAC [32])
to lower its communication power consumption. To optimize the startup time and save
energy in the RF part, the system invokes different transceiver blocks in a sequence.
The lower power baseband blocks are awaken before the radio frequency (RF) circuits.
WiseNet node uses an 8-bit CoolRISC [109] core as the general purpose MCU.

2.4.6 ScatterWeb

The ScatterWeb platform [49] was developed at the Computer Systems & Telematics
group at the Freie Universität Berlin. This is an entire family of nodes, starting from
a relatively standard sensor node (based on MSP 430 microcontroller) and ranges up

1http://www.xbow.com

40 WSN node architectures and low-power microcontrollers

to embedded web servers, which come equipped with a wide range of interconnection
possibilities such as Bluetooth, a low-power radio mode, as well as connections following
I2C or CAN (Controller Area Network) protocols are also possible.

Similarly, the Hydrowatch platform is also built on the MSP430F1611-core [39].
Apart from these academic research prototypes, there are already a couple of sensor-

node-type devices commercially available, including appropriate housing, certification,
and so on. Some of the companies designing commercial WSN nodes include Millenial2

and Ember3.
As our current research work is focused on the power/energy optimization of the

computation and control subsystem of a sensor node, in the next section of this chap-
ter we will discuss the evolution of low-power solutions for the control subsystem and
present some related work about the low-power microcontrollers and their power opti-
mization techniques.

2.5 Emergence of low-power microcontrollers

Microcontrollers that are used in several wireless sensor node prototypes include the
ATMega series by Atmel Corporation or the MSP430 by Texas Instrument. In older
prototypes, the Intel StrongArm SA1100 processors have also been used, but it is no
longer considered as a practical option (it is included here for the sake of comparison
and completeness). These MCUs have several common characteristics such as a simple
datapath (8/16-bit wide), a reduced number of instructions, and several power saving
modes to have lower power consumption of the system.

The power saving modes adapted in low-power MCUs use VLSI circuit level tech-
niques to reduce the power consumption of the system. Hence, in the following section,
we investigate some of the most noticeable power optimization techniques adapted at
VLSI circuit level to engineer an energy-efficient design. Some of the key figures about
the power consumption of these low-power MCUs are presented afterward.

2.5.1 Power optimization at VLSI circuit level

In the last decade, there have been a large number of research results dealing with
power optimization in VLSI circuits (see [28, 108] for surveys on the topic).

Power dissipation in VLSI circuits can be divided into two categories:

� Dynamic power : This power dissipation has two sources, (i) capacitance switching
(i.e. stage changes) that occurs while the circuit is operating and (ii) short-circuit
current passing through the gates.

� Static power : It is caused by leakage current between power supply and ground
of the circuit.

2http://www.millenial.net
3http://www.ember.com

Emergence of low-power microcontrollers 41

CLoad

VDD

GND

ILeak

ISW

ISC

Figure 2.3: Currents contributing to various power consumptions in CMOS circuits.

The total power dissipation of a Complementary Metal-Oxide-Semiconductor (CMOS)
gate i is the sum of dynamic power and static power and can be expressed as

Ptotal =
1
2
CifclkαiV

2
DD + VDDIsci + VDDIleaki

(2.1)

where VDD is the supply voltage, Ci the output capacitance, αi the activity at the
output of gate i, fclk the switching frequency and, Isci and Ileaki

the short-circuit and
leakage current of gate i respectively. Figure 2.3 shows the currents that contribute to
the dynamic and static power in a CMOS circuit, ISW is the current that flows while
charging and discharging of the output capacitance (stage change), ISC is the short-
circuit current flowing when both the NMOS and PMOS transistors conduct for a short
duration at input transition whereas ILeak is the leakage current flowing through the
gate even when it is not operating.

When a CMOS device is active, its power is usually largely dominated by dynamic
power, and becomes roughly proportional to clock frequency. However, in the context
of WSN, things are sightly different as the node remains inactive for long periods (MCU
duty cycle lower than 1%), and the contribution of static power also becomes significant
and can not be ignored.

Moreover, as process technology passes 65 nm and continues toward 45 nm and
below, where the operating voltages are lower, and the switching thresholds roll off
more rapidly, static power dissipation is expected to exceed dynamic power dissipation
and become the dominant contributor to the total power of a device. Therefore, static
power minimization must be considered as an integral part of the power reduction
strategy. Figure 2.4 points out this ever-increasing share of static power dissipation in
overall system power [125].

There are several approaches to reduce the power dissipation in a CMOS circuit,
some of them are summarized in the following paragraphs.

42 WSN node architectures and low-power microcontrollers

Technology Dynamic Power Leakage Power
250 40 5
180 45 15
130 65 25
90 80 60
70 100 140

Leakage Power Vs. Dynamic Power

0

50

100

150

200

250

300

250 180 130 90 70
Process Technology (nm)

Po
w

er
 (W

)

Leakage Power
Dynamic Power

Figure 2.4: Scaling of static and dynamic power consumption with the advancements
of process technology.

2.5.1.1 Clock gating

Clock is considered as a major contributor to the power dissipation, as it is the signal
with the greatest switching activity. In addition, the clock signal tends to be highly
loaded as it has a high fan-out and corresponding high switching capacitance. To
distribute the clock and control the clock skew, one needs to construct a clock network
(often a “clock-tree”) with clock buffers. All of this adds to the capacitance of the clock
network. Recent studies (e.g. [143]) indicate that the clock signals in digital systems
consume a large percentage (15% to 45%) of the system power. In order to reduce the
unnecessary power consumption caused due to clock-trees, Clock gating is used.

Clock gating consists in gating the clock signals that drive inactive portions of
the circuit. The purpose is to minimize the switching activity on flip-flops and clock
distribution lines. For instance, large VLSI circuits such as processors contain register
files, arithmetic units and control logic. All the registers in a register file are generally
not accessed in each clock cycle. If simple conditions that determine the inaction of
particular registers are determined, then power reduction can be obtained by gating
the clocks of these registers [19]. When these conditions are satisfied, the switching
activity within the register file is reduced to negligible levels.

Figure 2.5 shows one of the typical gated-clock design styles. The “enable-logic”
consists of combinational elements and determines whether a clock signal should be
supplied to the registers or not. If the output of the enable-logic is equal to zero,
clock signal is not propagated to the clock-inputs of the registers. An AND-gate or
an OR-gate which satisfies following two conditions is called “gated buffer”. (i) The
output of the gate is connected to the clock-input of the registers. (ii) One input of

Emergence of low-power microcontrollers 43

Data F/F

Enable
Logic

De-glitch
Latch Gated

Buffer

Registers
GCLK

NCLK

CLOCK

Root Driver NCLK
Registers

Figure 2.5: Example of gated-clock design.

the gate is an enable signal coming from the “enable-logic”, while the other input is
the original clock signal. On the contrary, a buffer without gating function is called
“normal buffer”. The “de-glitch latch” is inserted between the enable-logic and the
gated buffer to eliminate glitches which occur in the enable-logic and can result in
un-expected behavior of the circuit. A clock signal used in the gated-clock technique
is called “gated clock signal” (say GCLK), while the non-gated clock signal is called
“normal clock signal” (say NCLK).

Kitahara et al. [75] suggested an automated layout design technique for the clock-
gated design and proposed tools to minimize the gated-clock net skew and to maintain
timing constraints for enable-logic parts. They proved that about 30% power reduction
could be achieved for the whole design by clock-gating using their techniques. Wu et
al. [143] used another technique that is based on quaternary representation for behaviors
of signals. They presented a method of finding a gated clock signal instead of a normal
clock signal using Karnaugh maps, by checking quaternary value of each flipflop in a
circuit. Using extended Boolean functions, the authors found the enable logic for clock
signals to be connected to the actual circuit and showed that the new clock-gated design
reduces the power dissipation by 22%.

Garrett et al. [43] looked at the impact of the physical design on a hierarchical
gated clock-tree and its power dissipation. They found that there is an inherent pitfall
in implementing gating groups for hierarchical gated-clock distribution because the
groups are typically developed at the logic level with no information of the physical
layout of the clock-tree. Depending on the distribution of underlying sinks, maintaining
gating groups can cause a wiring overhead that is potentially greater than the savings
due to reduced switching. Hence, their suggested algorithms took both the logical and
physical aspects of the design and generated a more power-optimized solution that
results in a 24% more power-saving in clock-trees.

44 WSN node architectures and low-power microcontrollers

2.5.1.2 Voltage scaling

Voltage scaling is one of the most powerful and frequently-used tools to reduce the
dynamic power dissipation. A quadratic improvement can be easily achieved through
lowering the supply voltage (Equation 2.1). Although this technique is very effective,
the speed of the circuits is degraded as the propagation delay increases with the decrease
in supply voltage. Equation 2.2 shows the proportional relation between supply voltage
VDD and propagation delay tpd.

tpd ∝
VDD

(VDD − Vth)α
(2.2)

where α is a factor depending on the carrier velocity saturation and is about 1.3 in
advanced MOSFETs [67]. A derivative of this approach is to use multiple voltages
in a system for different parts of the circuit depending upon their critical path de-
lays. For instance, microprocessors with dual supply voltage scaling technique have
the dramatic effect on power consumption reduction. The technique can significantly
reduce dissipated power without degrading speed by using lower supply voltage along
non-critical delay paths and higher supply voltage along critical delay paths [88]. The
main problems of using dual supply voltage scaling in CMOS circuits are the increased
leakage current in the high voltage gates when they are driven by low voltage gates,
and the routing of two power-supply grids. One solution is to use an additional circuit
of level converter, but it introduces area and energy overhead. On the other hand, some
researchers proposed Clustered Voltage Scaling (CVS), where no low voltage gate will
drive a high voltage gate [139]. However, both of these techniques introduce additional
constraints to the dual supply voltage scaling process, and reduce the overall energy
savings.

In contrast to the above-mentioned techniques that implement the voltage scaling
at circuit level, there have been several other approaches that proposed to implement
multiple supply voltages at other levels of design-cycle as well. For instance, Chang
et al. [20] presented a dynamic programming technique for solving the multiple supply
voltage scheduling problem in both non-pipelined and functionally pipelined datapaths.
The scheduling problem was concerned to the assignment of a supply voltage level
(selected from a fixed and known number of voltage levels) to each operation in a
“Data Flow Graph (DFG)” so as to minimize the average energy consumption for given
computation-time or throughput constraint or both of them. They showed that using
three supply voltage levels on a number of standard benchmarks, an average energy
saving of up to 40% can be obtained compared to using a single supply voltage level.

2.5.1.3 Transistor sizing

Transistor sizing in a combinational circuit significantly impacts the circuit delay and
power dissipation. If the transistors in a given gate are increased in size, the delay
of the gate decreases, however, it increases the delay and the load capacitance of the
fan-in gates. A typical approach to find the optimum transistor size, given a delay
constraint, is to compute the slack at each gate in the circuit, where the slack of a

Emergence of low-power microcontrollers 45

Block B Block CBlock A

VG

VDD

VVDDVVDD VVDD

Figure 2.6: The use power gating to reduce the overall circuit power.

gate corresponds to how much the gate can be slowed down without affecting the
critical delay of the circuit. Sub-circuits with slacks greater than zero are processed
for transistor-size reduction until the slack becomes zero, or the transistors reach the
minimum size. A similar approach is used in the work by Tan et al. [127]. However,
for a given delay-constraint finding an appropriate sizing of transistors that minimizes
power dissipation is a computationally difficult problem.

2.5.1.4 Power gating

One important issue with all of the above-mentioned techniques so-far is that they work
for dynamic power reduction of a circuit and are poorly suited to WSN nodes as they
significantly increase the total silicon area by adding extra components (e.g. a level
converter in case of dual voltage scaling, gated buffer and enable-logic for clock gating),
and therefore have a negative impact on static power dissipation.

However, one exception is power gating, that consists in turning-off the power supply
of inactive circuit components [12, 87] which helps reducing both dynamic and static
power. It is thus a very efficient optimization for devices in which components remain
idle for long time periods.

The technique consists in adding a sleep transistor between the actual VDD (power
supply) rail and the component’s VDD, thus creating a virtual supply voltage called
VV DD as illustrated in Figure 2.6. Similarly a sleep transistor between the actual
GND (ground) rail and the component’s GND can also be added, creating a virtual
ground called VGND. The sleep transistor, in first case, allows the supply voltage of
the block to be cut off to dramatically reduce leakage currents. In practice, Dual VT
CMOS or Multi-Threshold CMOS (MTCMOS) techniques are used for power gating
implementation [95, 69]. Research work is also being done on the sleep transistor sizing
to further reduce the leakage power caused by the sleep transistor insertion [22].

Since one centralized sleep transistor design suffers from large interconnect resis-
tances between distant blocks, such resistance has to be compensated by extra large
sleep transistor area that could result in extra load capacitance and delay for driving
logic. Hence, two approaches have been proposed to divide the overall circuit into seg-

46 WSN node architectures and low-power microcontrollers

ments and apply several sleep transistors to achieve a more-efficient design. Anis et
al [7] proposed a cluster-based design structure, where each cluster, consisting of several
gates, is accommodated by a sleep transistor separately. The size of the sleep transistor
is determined by the current of the cluster. Their approach achieved a 90% reduction
in static power consumption as well as 15% reduction in dynamic power consumption.
Long et al. [87] proposed another approach that uses a distributed network of sleep
transistors. This approach is better than the cluster-based approach in terms of sleep
transistor area and circuit performance and obtains sleep transistor networks that are
70% more area-efficient than the cluster-based networks.

Power gating has already been used in the context of high performance CPUs [59],
and FSM implementations [113] where parts of the design are switched on/off according
to their activity. The approach helps in reducing the static power dissipation for FPUs
of a high-end CPU by up to 28% at the price of a performance loss of 2%, for FSMs the
average reported power reduction was also 28%. In the context of WSN, where nodes
remain idle most of the time, such a technique has obvious advantages, and is therefore
intensively used for implementing the low power modes of typical node MCUs.

Most of the above-mentioned VLSI power-optimization techniques have been de-
ployed in ultra low-power microcontrollers targeted toward low-power embedded system
applications. A brief overview of these Commercially-Off-The-Shelf (COTS) microcon-
trollers that are currently being used in most of the existing WSN nodes is presented
in the following section.

2.5.2 Commercial low-power MCUs

In recent years, due to rapid evolution of embedded systems, several low-power mi-
crocontrollers have evolved. However, since these MCUs are designed for low-power
operation across a wide range of embedded system application settings, they might not
be very well-suited to the event-driven behavior of WSN nodes as they are based on a
general purpose, monolithic compute engine. In this section we present the features of
some of the most notable COTS microcontrollers being used by the WSN community
for WSN node development.

Texas Instruments MSP430 series

The MSP430 family features a wider range of low-power 16-bit MCUs. For instance,
the MSP430F1611 requires 500µA (@ 1 MHz and 3.0V) whereas an updated series,
designed for WSN nodes, the MSP430F21x2 consumes approximately 250µA (@ 1 MHz
and 2.2V) [129]. There are four sleep modes in total. The deepest sleep mode, LPM4,
consumes only 0.1µW, but the controller can only be woken up by external interrupts
in this mode. The MSP430 has a maximum operating frequency of 16 MHz.

Atmel ATMega series

Atmel Corporation has also developed a wide range of 8-bit MCUs that are used by
a variety of embedded system applications. In particular, for WSN node platforms,

Emergence of low-power microcontrollers 47

Figure 2.7: Architecture of CoolRISC 88 processor (extracted from the work of Piguet
et al. [109]).

ATmega128L and ATmega103L have been used [9, 8]. ATmega128L consumes an
average 8 mA (@ 8 MHz and 3.0V) whereas the older version ATmega103L, with an
operating frequency of 4 MHz max., consumes approximately 5.5 mA (@ 4 MHz and
3.0V). The ATmega128L has a maximum operating frequency of 8 MHz.

EM Microelectronic CoolRISC

EM Microelectronic has also come-up with an ultra low-power solution for 8-bit mi-
crocontroller called CoolRISC [33]. An EM6812 (based on CoolRISC) consumes ap-
proximately 120µA (@ 1 MHz and 3.0V) [33], whereas it has a maximum operating
frequency of 5 MHz (2.5 MIPS).

Historically, original CoolRISC was a low-power processor designed to achieve a
lower value of Clock per Instruction (CPI) to reduce the power consumption by working
in lower frequency range. At that time, CoolRISC 88 achieved a CPI = 1 by providing
10 MIPS performance and an operating frequency in the range of 1 to 10 MHz [109].
The legacy CoolRISC 88 having a register file of 8 registers is shown in Figure 2.7
(extracted from the work by Piguet et al. [109]). It was built in 1µm process technology
that resulted in a lower power consumption. It consumed around 60µA at 3.0 V while
working at 1 MHz.

NXP LPC111x

NXP Semiconductors have recently launched a series of MCUs, LPC111x that are based
on ARM Cortex-M0 [100]. These are 32-bit MCU cores with an average of 3.0 mA

48 WSN node architectures and low-power microcontrollers

WSN MCU Normalized Power Actual Power

ATmega103L 66 mW (@ 16 MHz) 5.5 mA (@ 4 MHz, 3.0V)
ATmega128L 48 mW (@ 16 MHz) 8 mA (@ 8 MHz, 3.0V)

MSP430F1611 24 mW (@ 16 MHz) 500µA (@ 1 MHz, 3.0V)
MSP430F21x2 8.8 mW (@ 16 MHz) 250µA (@ 1 MHz, 2.2V)

EM-6812 (CoolRISC) 5.76 mW (@ 16 MHz) 120µA (@ 1 MHz, 3.0V)
LPC111x (ARM Cortex-M0) 13.2 mW (@ 16 MHz) 3.0 mA (@ 12 MHz, 3.3V)

StrongArm SA-1100 40 mW (@ 16 MHz) 400 mA (@ 160 MHz, 2.0V)

Table 2.2: Actual and normalized power consumption for various low-power MCUs.

(@ 12 MHz, 3.3V) that can run up to an operating frequency of 50 MHz. LPC111x
consumes around 6µA (@ 3.3V) in deep-sleep mode without any active clock.

Intel StrongArm SA-1100

The Intel StrongARM [66] provides three power modes: (i) In normal mode, all parts
of the processor are fully powered. Power consumption is up to 400 mW (@ 160 MHz,
2.0V). (ii) In idle mode, clocks to the CPU are stopped while clocks to peripherals are
active. Any interrupt will cause return to normal mode. The power consumption is
up to 100 mW. (iii) In sleep mode, only the real-time clock remains active. Wake-up
occurs after a timer interrupt and takes up to 160 ms and the power consumption is
up to 50µW.

Table 2.2 summarizes power consumptions of all the above MCUs at a normalized
operating frequency of 16 MHz.

2.5.3 WSN-specific sub-threshold controllers

Apart from the general-purpose COTS processors, there are several WSN-specific con-
troller implementations that have been proposed by the research community. These
controllers try to exploit the WSN-specific characteristics such as event-centric behav-
ior and asynchronous communication to achieve an extremely low-power consumption
as well as a considerably lower energy per instruction. In this section, we will briefly
discuss some of the most significant WSN-specific processors present in the literature.

2.5.3.1 SNAP/LE processor

The SNAP/LE, proposed by Ekanayake et al. is an ultra low-power asynchronous pro-
cessor [31]. The processor instruction set is optimized for WSN applications, with sup-
port for event scheduling, pseudo-random number generation, bit-field operations, and
radio/sensor interfaces. SNAP/LE has a hardware event queue and event coprocessors,
which allow the processor to avoid the overhead of operating system software (such as
task schedulers and external interrupt servicing), while still providing a straightforward
programming interface to the designer. Figure 2.8 shows the basic micro-architecture
of SNAP/LE. The timer coprocessor is used for timing synchronization and generates

Emergence of low-power microcontrollers 49

IMEM

DMEM

Register
File

Fetch

Decode

Timer
Coproc.

Message
Coproc.

msg
fifos

event queue

busses

execution units

Figure 2.8: Microarchitecture of the SNAP/LE processor showing major components.

internal time-outs whereas message coprocessor is used for message exchange with the
RF-transceiver. The decode stage in Figure 2.8 is a normal stage whereas instruction-
fetch along with the event queue forms a FIFO-based hardware task scheduler. The
instruction-fetch waits for an event in the event queue and uses this event as an in-
dex to access the SNAP/LE’s “event handler table” to address a proper event handler.
It then starts fetching the instructions concerning the relative event handler until a
“done” instruction is encountered. The instruction-fetch then checks the event queue
for a possible next event. The dots (in the figure) correspond to the instruction tokens
being processed by the SNAP/LE processor core.

Running at its highest core voltage of 1.8 V, the SNAP/LE core consumes under
300 pJ/instruction while working at 600 mV it consumes 75 pJ/instruction with several
instructions as low as 25 pJ/instruction. The SNAP/LE processor is implemented in
180 nm process technology.

2.5.3.2 Accelerator-based WSN processor

Hempstead et al. [53] proposed a processor design that is compliant with the accelerator-
based computing paradigm, including hardware accelerators for the network layer (rout-
ing) and application layer (data filtering). Moreover, the architecture can disable these
accelerators via VDD-gating to minimize leakage current during the long idle periods
common to WSN applications. They implemented a system architecture for WSN nodes
in 130 nm CMOS technology that operates at 550 mV and 12.5 MHz.

Figure 2.9 shows the general architecture of this processor. There is an event-handler
implemented in hardware that performs the regular event management, then there is
a general purpose MCU for irregular event management and finally there are several
accelerators for application and network level tasks such as message routing and data
filtering etc. Since the commonly used metric of energy-per-instruction can not be easily

50 WSN node architectures and low-power microcontrollers

Tester I/O

Interrupt
Controller

Event
Processor

Interrupt
Processing/ Power

Management
(Regular Events)

SRAM
(2 x 2KB)

µController
General

Processing
(Irregular Events)

Timer
Subsystem

Programmable
Data Filter

Message
Processor

A
D

D
R

E
S

S

D
A

TA

P
O

W
E

R
 C

O
N

TR
O

L

IN
TE

R
R

U
P

T

Bus Signal

Power Enable Lines

Figure 2.9: System architecture of the accelerator-based WSN processor.

applied to accelerator-based systems, the authors introduced the concept of“energy-per-
task”. They defined a task as a collection of dependent computations that are executed
periodically. They presented measurements of a task similar in nature to a volcano
monitoring application. This task took 131 cycles to execute and consumed 678.9 pJ
at 550 mV and 12.5 MHz. An equivalent routine written for the Mica2 mote required
1532 instructions. Using this information, they computed the energy per equivalent
instruction as 0.44 pJ/instruction for accelerator-based mode while 3.4 pJ/instruction
in general purpose mode for their processor.

Even though their idea of benefiting from hardware acceleration and power-gating is
similar to ours, they design all of their accelerators manually and work in subthreshold
voltage domain that is prone to inconsistencies due to thermal and process variations.
On the other hand, we propose a complete automated design-flow for the generation of
specialized hardware blocks and our designs work at above-threshold voltage domain
to avoid complications. Moreover, the authors did not provide any details about the
general purpose microcontroller present in their system and its Instruction-Set Archi-
tecture (ISA), hence it is difficult to judge their claims about an energy efficiency of
3.4 pJ/instruction that is 20x times better than an asynchronous processor (SNAP/LE)
performing nearly the same job.

Emergence of low-power microcontrollers 51

JTAG test
port

clock
oscillator

voltage
converter

interface
(SPI, I²C, GPIO)

serial
(console)

power
manager

neighbor

location

64kB
Mem
256B

Reg. File

dw8051 µC
(apps & network)

1kB packet
queues

data link layer
(dll)

baseband

OOK
TX/RX

ADC

Charm DSP Chip External Radio

Power Ctrl. Bus

Figure 2.10: Block diagram of the Charm protocol processor.

2.5.3.3 Charm processor

The Charm processor [123] developed at the University of California at Berkeley is a
protocol processor implemented in 130 nm technology and implements a protocol stack
tailored for WSN applications. Its subsystems follow the OSI model and include the
application, network, data link, and digital baseband portion of the physical layers.

As shown in Figure 2.10, the processor chip contains a synthesized 8051-compatible
microcontroller with 64 kilo-Byte of program/data RAM, two 1 kilo-Byte packet queues,
a custom data-link layer (DLL), a neighborhood management subsystem, digital por-
tion of a custom baseband, a location computation subsystem, and several external
interfaces. Charm processor uses a unique approach that, instead of using VDD-gating,
reduces the power rail voltage to a “Data Retention Voltage (DRV)” that maintains the
state in the logic, while still reducing leakage current. Hence, the system has a trade-off
of data retention for a relatively higher leakage power dissipation. It works at 1.03 V
and consumes 96 pJ/instruction [53].

2.5.3.4 Phoenix processor

Seaok et al. developed the Phoenix processor (shown in Figure 2.11), that works at
500 mV and consumes as low as 2.8 pJ/cycle [122]. The Phoenix processor exploits both
the voltage scaling as well as a comprehensive sleep transistor technology to obtain an
ultra low-power processor design. The CPU works on an even-driven paradigm and the
authors claim to intentionally use an older low-leakage 0.18µm process technology to
further reduce the static power consumption.

However, the authors did not provide any information about the CPU being used or
its ISA. Similarly, no information about the clock-cycles taken by the CPU instructions
is provided. Hence, it impossible to interpret their energy efficiency metric “energy/cy-
cle” to normal metric such as “energy/instruction”.

52 WSN node architectures and low-power microcontrollers

64x10
(IMEM)

128x10
(IROM)

Clock
Generator

CPU

C
om

press/
D

ecom
press

52x40
(DMEM)

I/O Power
Management

Timer Temp. Sensor - - -

- - -System Bus

Partially Gated Not Gated Power Gated

Figure 2.11: Block diagram of the Phoenix processor.

2.5.3.5 BlueDot

Very recently, Raval et al. [119] have proposed BlueDot, a low-power TinyOS-tuned
processor platform for WSN nodes implemented in 130 nm process technology. The
BlueDot is compatible with Atmel ATmega128L series processors and an application
code written for ATmega128L-centric nodes can run on BlueDot-based nodes as well.
A BlueDot-based platform can also benefit from several hardware-accelerators that can
be used to implement frequently used application/control codes such as communication
with RF-transceiver through SPI-bus. The BlueDot platform, with an optimized pro-
cessor (having WSN-specific Instruction-set Architecture (ISA)) and RF-accelerator,
consumes 26 pJ/instruction on average. It consumes around 48% less energy than the
baseline ATmega128L-equivalent processor when executing the same WSN application
suite that is around 1.5 mJ on average. However, the authors did not provide the area
and power usage comparison w.r.t. the base-line ATmega128L processor. It is quite
possible that the overall area of the node as well as static power is increased by adding
the hardware accelerators along with the base-line processor that could result in a less
power-efficient design in standby mode.

2.5.4 Conclusion

Though all of these WSN-specific processors show impressive energy efficiency in terms
of Joules/instruction as compared to general purpose COTS processors mentioned ear-

Emergence of low-power microcontrollers 53

lier, they also suffer from their inherent weaknesses. For instance, subthreshold logic is
highly susceptible to temperature and process variations. In addition, due to the low
voltage swing, noise arising from other on-chip components could be an issue for com-
mercial WSN applications. As far as asynchronous processors are concerned, it can be
difficult to integrate asynchronous logic into conventional, commercial synchronous de-
sign flows for low-cost System-on-Chip (SoC) solutions. For this reason, asynchronous
logic is considered unattractive for many applications. Moreover, most of these proces-
sors are manually designed and optimized and no automatic design and programming
tool exists for them.

Due to these inherent problems of subthreshold and asynchronous WSN-specific
processors and a very high power consumption of general purpose COTS processors, we
focused on the development of a novel approach that is based on hardware specialization
and power gating that is built upon a hybrid concept of High-Level Synthesis (HLS)
and retargetable compilation for ASIP (Application Specific Instruction-Set Processor).
The next chapter presents a comprehensive state-of-the-art about HLS and ASIP design
tools.

54 WSN node architectures and low-power microcontrollers

Chapter 3

High-level synthesis and
application specific processor
design

As discussed in Section 1.3.3, our work consists of two distinct design-flows. The
first one takes the overall system-level behavioral description of application (using a
Domain Specific Language (DSL)) as an input and generates an RTL VHDL descrip-
tion of the global system monitor. On the other hand, the second design-flow takes
the C-specification of the tasks present in the application task graph and generates
the specialized hardware blocks, called hardware micro-tasks, for each of them. As
our design-flow for hardware micro-task generation is a hybrid of High-Level Synthesis
(HLS) and Application Specific Instruction-set Processor (ASIP) design methodologies,
we present, in this chapter, the existing work done in the domain of HLS and ASIP
design. The chapter starts with the generic methodology for HLS and discusses the
existing algorithms as well as academic and commercial tools available for HLS. In a
similar fashion, it then presents the generic methodologies for ASIP design and corre-
sponding algorithms. The chapter finally concludes with a discussion on some of the
existing academic and commercial tools for ASIP design.

3.1 High-Level Synthesis (HLS)

Rapid advancements in silicon technology and the increasing complexity of applications
in recent decades have forced design methodologies and tools to move up to higher
abstraction levels. Raising the abstraction levels and accelerating automation of both
synthesis and verification tools have been major key factors in the evolution of design
process. Moreover, the use of high-level models has enabled system-designers, rather
than circuit-designers, to be productive and to match the industry trends which is
delivering an increasingly large number of integrated systems in place of integrated
circuits.

The HLS design relates to leaving the implementation details to the design algo-

55

56 High-level synthesis and application specific processor design

rithms and tools, and thus represents an ambitious attempt by the research community
to provide capabilities for“algorithms to gates” for a period of almost three decades [48].
HLS takes as its input a behavioral description in the form of a high-level language and
generates an RTL circuit [85]. In the next section, we summarize the generic design-flow
for HLS found in the literature.

3.1.1 Generic HLS design-flow

Coussy et al. [24] presented a generic design-flow that is shared by most of the HLS
tools. This design-flow consists of seven major steps that are highlighted in Figure 3.1.
We briefly discuss some of these design steps:

� Compilation : HLS always begins with the compilation of the functional specifi-
cation. This first step transforms the input description into a formal representa-
tion. This step includes several code optimizations such as dead-code elimination,
constant folding and loop transformations etc. and generates an intermediate
specification that can be in the form of a CDFG.

� Allocation : Allocation defines the type and the number of hardware resources
(e.g. functional units, storage, or connectivity components) needed to satisfy
the design constraints. These components are selected from the RTL component
library. The library must also include component characteristics (such as area,
delay, and power) and its metrics to be used by other synthesis tasks.

� Scheduling : All operations required in the specification model must be scheduled
into cycles. Depending on the functional component to which the operation is
mapped, the operation can be scheduled within one (or several) clock cycle(s).
The operations can be scheduled in parallel or sequential fashion depending upon
the data dependencies between them and if there are sufficient resources available
at a given time.

� Binding : This step binds the variables carrying a life-time of several clock cycles
to storage resources. Similarly, the operations are bound to the functional units
that are optimally selected for given design constraints.

� Generation : Once decisions have been made in the preceding tasks of allocation,
scheduling, and binding, the goal of the RTL architecture generation step is to
apply all the design decisions made and generate an RTL model of the synthesized
design.

Now we briefly discuss the algorithms that have been mostly used in the existing
work during different steps of the HLS design-flow such as operation scheduling, resource
allocation and binding.

High-Level Synthesis (HLS) 57

Specification

Compilation

Intermediate
Representation

Allocation Scheduling

Binding

Generation

RTL Architecture

Logic Synthesis

...

Library

Figure 3.1: Design methodology for high level synthesis (HLS)

3.1.2 Scheduling

Operation scheduling consists of assigning each operation at behavioral level (e.g. DFG)
to a control step (also called a C-step [106]). Generally speaking, scheduling determines
the cost-speed trade-off of a hardware design generated through HLS. If the target
design is subject to a timing/speed constraint, the scheduling algorithms will try to
meet the timing constraint through operation parallelization and an optimum algorithm
will provide a solution with the minimum hardware resources under the given timing
constraint. On the other hand, if there is a limit on the cost (area or resources) of
the target design, the scheduling algorithms will serialize the operations to meet the
resource constraint. In this case, the optimum solution will be the one that reduces the
overall execution time while keeping the resource constraint into consideration.

Scheduling, without resource constraints is simple as it consists in a topological
sorting of the operations and can be solved in polynomial time for an optimal solution.
Two of the algorithms to solve such scheduling are discussed in the following paragraphs.

3.1.2.1 ASAP scheduling

The simplest scheduling technique is As Soon As Possible (ASAP) scheduling where
the operations in the DFG are scheduled step-by-step from the first control step to the
last. An operation is called ready operation if all of its predecessors are scheduled. This
procedure repeatedly schedules ready operations to the next control step until all the

58 High-level synthesis and application specific processor design

3

4

5

2 6 8 10

7 9 11

1

1 2

3 6

4 7

5

8 10

9 11

(a)

(b)

Figure 3.2: (a) ASAP scheduling (b) ALAP scheduling

operations are scheduled.

3.1.2.2 ALAP scheduling

As Late As Possible (ALAP) scheduling has a very similar approach to ASAP schedul-
ing. In contrast to ASAP, ALAP scheduling schedules the operations from the last
control step toward the first performing a backward covering. An operation is sched-
uled to the next control step if all of its successors are scheduled. Figure 3.2 shows an
example of ASAP and ALAP scheduling.

3.1.3 Resource-constrained scheduling

Scheduling, under resource constraints (whether computation resources or computation
time) is a computationally difficult problem that lies in the domain of NP-Complete
problems [15]. Some of the mostly used scheduling algorithms and their implementa-
tions are discussed in the following paragraphs.

3.1.3.1 List scheduling:

One commonly used approach is called“list scheduling”or“resource-constrained schedul-
ing” in which we specify a hardware constraint and use an algorithm to minimize the
total execution time that satisfies the given constraint. Like ASAP, the operations in
the DFG are assigned to control steps from the first control step to the last. The ready
operations are given a priority according to heuristic rules and are scheduled into the

High-Level Synthesis (HLS) 59

2 2

1 1

1

2

3

4

Figure 3.3: List scheduling with deferred operations.

next control step according to this predefined priority. When the number of scheduled
operations exceeds the number of resources, the remaining operations are deferred to
next control step. Which operations to defer often depends on some local priority such
as urgency. In Figure 3.3, for example, two add operations may be scheduled in the
first control step, so we must defer one of them. Since they are both on the critical
path, they have the same urgency, so we could choose either one. In the figure, the left
addition is deferred to the second control step.

3.1.3.2 Force-Directed Scheduling (FDS):

The force-directed scheduling (FDS), also called “time-constrained scheduling”, reduces
the number of functional units, registers, and busses required. The strategy is to
place similar operations in different control steps so as to balance the concurrency of
the operations assigned to the units without increasing the total execution time. In
FDS, force values are calculated for all operations at all feasible control steps. The
pairing of operation and control step that has the most attractive force is selected
and assigned. After the assignment, the forces of the unscheduled operations are re-
evaluated. Assignment and evaluation are iterated until all the operations are assigned.

3.1.3.3 Force-Directed List Scheduling (FDLS):

Paulin et el. [106] suggested a hybrid of both of the above-mentioned approaches that
is called “force-directed list scheduling (FDLS)”. It provides a solution considering both
timing and hardware resource constraints. Similar to list scheduling, FDLS also sched-
ules the operations in the DFG to different control steps from the first control step to
the last. However, the local priorities of operations that are used to defer them to next
control step are defined by the force function used in FDS, instead of the usual metrics
such as urgency.

The complexity of both FDS and FDLS is O(n2) where n is number of operations
present in a CDFG. However, all the above mentioned algorithms i.e. list scheduling,
FDS and FDLS are heuristic algorithms that provide an approximate solution while
the optimality of the solution cannot be guaranteed.

60 High-level synthesis and application specific processor design

3.1.3.4 Mixed Integer Linear Programming (MILP)-based approach:

Instead of using heuristic algorithms, Hwang et al. [61] proposed an MILP-based formal
approach to solve the problem of scheduling for HLS. They proposed solutions for three
different types of scheduling. (i) time-constrained scheduling (ii) resource-constrained
scheduling and (iii) feasible-constrained scheduling, that takes both time and resource
constraints and outputs a solution if it exists. The authors used a combination of ASAP,
ALAP, list scheduling and MILP formulation to obtain a relatively less-complex solution
with a complexity O(s.n) where s and n are number of control steps and number of
operations respectively.

3.1.4 Resource allocation/binding

The resource binding assigns the operations and memory accesses within each clock
cycle to available hardware units. A resource such as a functional, storage, or inter-
connection unit can be shared by different operations, data accesses, or data transfers
if they are mutually exclusive. For instance, two operations assigned to two different
control steps are mutually exclusive since they will never execute simultaneously and
as a result, they can be bound to the same functional unit. Binding consists of three
sub-tasks based on the underlying unit type:

� Storage binding assigns variables to storage units. Storage units can be of many
types including registers, register files, and memory units.

� Functional-unit binding assigns each operation in a control step to a functional
unit. A functional unit can execute only one operation per clock cycle.

� Interconnection binding assigns an interconnection unit such as a multiplexer
or bus for each data transfer among ports, functional units, and storage units.

There exist several approaches to resolve the problem of resource binding. Some ap-
proaches (e.g. [137]) solve all three sub-tasks simultaneously whereas other approaches
either solve them one-by-one (e.g. Hybrid ALlocation (HAL) [107]) or two at a time
(e.g. [102]). There are two classes of resource allocation and binding problem that are
further discussed in the following section.

3.1.4.1 Interval-graph based allocation

The first category of the resource allocation problems is simpler of the two where the
liveness of the variables can be represented an interval-graph and an optimum solution
can be found in polynomial time with a single traversal of the interval-graph. One
example of such algorithms is called “Left-Edge Algorithm (LEA)” that is discussed
below.

High-Level Synthesis (HLS) 61

Left-Edge Algorithm (LEA): LEA is an algorithm used for register allocation.
It has been used previously for track assignment in channel routing [78]. It has been
proven optimal, and is of complexity O(n2) where n is the number of variables present
in a CDFG. Essentially, the track assignment problem is solved as follows:

1. Sort the wire segments in increasing order of their left edges.

2. Assign the first segment (the leftmost edge) to the first track.

3. Find the first wire whose left edge is to the right of the last selected wire and
assign it to the current track.

4. If no more, wires can be assigned to the current track, start a new track and begin
again from Step 2.

5. Repeat until all wires are assigned to tracks.

The life-time of each variable is mapped into a net interval in a channel routing
problem. The number of tracks needed by the LEA is equal to the number of registers
allocated and variables whose intervals are in the same track are assigned to the same
register.

3.1.4.2 Conflict-graph based allocation

The second category of resource allocation problems is harder in complexity. In such
allocation problems, the liveness of the variables is difficult to calculate and it must be
represented by an interference-graph or a conflict-graph. This kind of allocation prob-
lems are computationally hard and lie in the domain of NP-Complete problems. The
most common algorithms to solve such resource allocation and binding problems are
heuristic algorithms. Two of such algorithms are discussed in the following paragraphs.

Heuristic clique partitioning [137]: For register allocation, this algorithm builds
a graph where each vertex represents a variable and an edge exists between two vertices
if, and only if, the two corresponding variables can share a same register (i.e. they have
mutually-exclusive life-times). The graph is then partitioned into a number of cliques (a
clique is a complete subgraph such that there exists an edge between every vertex of the
subgraph). The number of cliques partitioned is the number of registers needed and a
register is allocated for those variables corresponding to the vertices in each clique. For
functional unit allocation, the vertex in the constructed graph represent the operations
and an edge between the two vertices exists if, and only if, the two corresponding
operations will not be performed in a same control step. The interconnect binding is
performed in the similar fashion.

62 High-level synthesis and application specific processor design

Graph coloring algorithm: Graph coloring algorithm is an assignment of labels,
traditionally called colors, to elements of a graph subject to certain constraints. For-
mally speaking, the situation is described by a graph G = (V,E) with vertex-set V
and edge-set E formed by all pairs of incompatible elements. Partitioning of V into k
subsets is equivalent to coloring the vertices of G with k colors.

In simpler form, it is a way of coloring the vertices of a graph such that no two
adjacent vertices share the same color; this is called a vertex coloring. In register
allocation, an interference graph is constructed, where vertices are symbolic registers
and an edge connects two nodes if they are needed at the same time (i.e. they are alive
at the same time and cannot be assigned to the same physical register). If the graph
can be colored with k colors then the variables can be stored in k physical registers.
Both graph coloring and register allocation (except for some special cases, such as
expression trees) are NP-Complete problems. Fortunately, there exist several methods
such as greedy algorithm, breadth-first search, brute-force search to solve the problem
of vertex coloring with a linear-time approximation and they could yield to good results
but without ensuring optimality.

After discussing the existing design methodology and corresponding algorithms for
each stage of the HLS design-flow, we present some academic as well as commercial tools
that are based on these principles and are being used by the HLS research community.

3.2 Power-aware HLS tools

HLS tools have been developed for targeting different design constraints such as low-
power, low silicon foot-print, FPGA resource optimization, wordlength optimization for
Digital Signal Processing (DSP) applications etc. Since our work targets a lower power
consumption of the generated hardware, we will mainly focus on the power-aware HLS
tools.

3.2.1 SCALP

Ragunathan et al. [117] proposed SCALP, an iterative-improvement-based low-power
datapath synthesis tool that targets data-oriented application domain. It adopts a
heuristic based approach for solving different HLS tasks such as scheduling, resource
binding and resource sharing etc. It also offers various optimizations such as compiler-
level transformations, appropriate clock and supply-voltage selection for a power-efficient
design, retiming, datapath merging as well as slower functional-unit selection (if per-
mitted by the timing constraint) to avoid excessive switching capacitance and reduce
the dynamic power of the resultant hardware. One of the main problems with SCALP,
in our point of view, is that it is targeted toward data-dominated applications and
its feasibility toward control-oriented applications (such as WSN) is not shown. It also
generates an interconnect-unaware solution that does not consider the power dissipated
by the interconnects and thus provides a relatively less power-efficient solution.

Power-aware HLS tools 63

3.2.2 Interconnect-Aware Power Optimized (IAPO) approach

Zhong et al. [85] provided an improvement over some HLS tools by taking into consid-
eration of the power consumed by interconnect. They added a notion of interconnect-
aware resource-binding in SCALP. They considered multiplexer-based interconnects in
their system and provided two methodologies for improved interconnect-bindings:

� Neighborhood-aware binding : the nodes in a CDFG that exchange data with
each other are mapped to the datapath units (DPUs) such that they are physically
placed closer to each other during floor-planning to reduce the communication
cost.

� Communication-sensitive binding : the authors added a weighted communi-
cation gain to the cost gain for DPU-sharing moves. It is based on the unit-length
switched capacitance of the data exchange between the corresponding two DPUs.
This tends to merge DPUs, which have intensive data-exchange between them.

The generated hardware through IAPO approach consumes 53% less power in in-
terconnects while 26% less overall power as compared to interconnect-unaware design
generated by SCALP.

3.2.3 LOPASS

The number of input ports of the multiplexers present in a circuit can greatly affect
the size of the FPGA resources needed to implement that circuit. Resultantly, this
could lead to a higher power consumption. Chen et al. [27] proposed LOPASS, a low-
power HLS tool that is suitable for FPGA architectures and targets data-dominated
applications also. It uses FDS for early scheduling and simulated annealing engine for
resource allocation and binding. It uses function unit optimizations such as merge,
split, reselect, swap and mix (at random) to generate new solutions. After each step of
optimization, list scheduling is used to check the overall timing and latency constraints.
Since a wide-port multiplexer can be quite expensive in terms of resources on FPGA,
a weighted bipartite matching algorithm is used to minimize the number of ports in
multiplexers used by the design to finalize the LOPASS flow. The authors showed that
LOPASS is able to reduce the power consumption of a design by 35% when compared
to the results of Synopsys Behavioral Compiler.

3.2.4 HLS-pg

HLS for power-gated circuits is a relatively new domain in HLS tools. The overhead of
the state-retention storage required to preserve the circuit state in standby mode is an
inherent problem in designing power-gated circuits. Retention storage size reduction is
known to be the key factor in minimizing the loss of power-saving (achieved by power-
gating). The bigger is the size of state-retention storage, the lesser will be the overall
benefits of the applied power-gating. Choi et al. [23] targeted a new issue in HLS
and proposed an approach that addresses the minimization of the retention storage size

64 High-level synthesis and application specific processor design

present in a design. They targeted scheduling and resource allocation problem where the
scheduling problem targets the minimization of the number of state-retention registers
and is solved with an MILP formulation. Register allocation problem is solved using
a heuristic vertex coloring algorithm. They showed that for 65 nm CMOS technology,
HLS-pg generates circuits with 27% less leakage current and with 6% less circuit area
and wire-length, compared to the power-gated circuits produced by conventional HLS.

The HLS-pg approach though targets the power-gated specialized hardware synthe-
sis, it is inherently different than our approach as we do not target the HLS of power-
gated circuits. Instead we use our design-flow to generate non-power-gated hardware
micro-tasks and the power-gating is added to our design (at transistor-level) after its
generation. Moreover, the benchmarks used by the authors for their experiments (such
as IIR7, ELLIPTIC and WAVELET) show that their design-flow is targeted toward
data-intensive applications.

3.3 HLS tools targeting other design constraints

Though, we are targeting the hardware generation for ultra low-power application do-
mains; however for the sake of completeness, HLS tools targeting other design con-
straints are also briefly discussed in this action.

3.3.1 Multi-mode HLS

Kumar et al. [80] and Chavet et al. [21] targeted a different aspect of HLS applications
that focuses on the reconfigurable multi-mode architectures. The multi-mode or multi-
configuration architectures are specifically designed for a set of time-wise mutually
exclusive applications (multi-standard applications).

Kumar et al. used FDLS algorithm for solving the scheduling problem while HAL
is used for resource binding. On the other hand, Chavet et al. used list scheduling algo-
rithm to perform scheduling while a maximal bipartite weighted matching algorithm for
resource binding. Although, both of these approaches showed an impressive reduction
in area-consumption, they are targeted toward the data-intensive DSP-systems.

3.3.2 Word-length aware HLS

Kum et al. [77] tackled another problem existing in embedded systems and combined
the word-length optimization of DSP-operators with HLS. Their approach uses an
MILP formulation for list scheduling algorithm to solve the scheduling problem while
a heuristic-based maximum-clique partitioning algorithm to solve the register-binding
problem. It also exploits the datapath merging technique (the concept of datapath
merging was introduced by Van der Werf et al. [140]) and selects the largest word-
length operator so that the smaller operations can also be mapped to the same operator
if possible.

Figure 3.4 shows the basic concept of datapath merging where two different dat-
apaths are merged to generate a single datapath circuit. The cost of this merging is

HLS tools targeting other design constraints 65

+ -

x

+ -

x

+ -

x

MUX

Figure 3.4: Dataflow graph (DFG) merging.

additional multiplexer as shown in the figure whereas the benefit is the reduction in
the number of operators present in a reconfigurable system.

The solution by Kum et al. [77] is targeted toward a high throughput design rather
than a low-power design. Nevertheless, it gave us an insight that the selection of an
optimum word-length for operators could be helpful in reducing the area and power con-
sumed by the hardware micro-task datapath. We have included a bitwidth adaptation
stage in our design-flow that is discussed in Section 4.2.3.

3.3.3 Datapath-specification-based HLS

Unlike the above-mentioned HLS tools that are based on an iterative-improvement-
based techniques, there is a class of HLS tools that take a datapath specification as
input and generate the RTL-description in a single step. Two of such tools are discussed
in the following sections.

3.3.3.1 User Guided HLS (UGH)

Augé et al. [10] proposed a design-flow for User Guided HLS (UGH) for the generation
of coprocessors under timing and resource constraints. As compared to other HLS
flows, UGH uses a single-step HLS where the datapath is pre-specified by the user at
the input of the tool. Hence, the tool is suitable for VLSI designers who have a close
knowledge of the actual datapath hardware. It uses two-step scheduling scheme that is
further explained below:

� Coarse-grain scheduling (CGS): This step implements a list-scheduling-based
solution to solve the issue of scheduling, resource allocation and binding.

� Fine-grain scheduling (FGS): FGS is performed after an early datapath and
its control FSM has been generated. It basically performs retiming in the FSM to
meet the actual physical delay constraints of the datapath components to achieve
a desired frequency.

The UGH synthesis flow is presented in Figure 3.5. It is split into three steps. (i)
The CGS generates a datapath and an FSM, called CG-FSM, from the C program and
the datapath description. (ii) Then the mapping is performed. Firstly, the generation of
the physical datapath is assigned to classical back-end tools using a target cell library.
Secondly, the temporal characteristics of the physical datapath are extracted. (iii)

66 High-level synthesis and application specific processor design

Behavioral
SystemC
Subset

Draft
Datapath

UGH-CGS

VHDL
Datapath

VHDL
CGFSM

UGH-FGS

Timing
Annotations

Synthesis +
Characterization

Cell Library VHDL
Dapath

Cycle-accurate
SystemC

Model

VHDL
FGFSM

UGH-Mapping

Depends on
back-end

synthesis tools

Clock

Figure 3.5: Complete UGH design flow [10].

Finally, the FGS retimes, for the given frequency, the finite control step machine taking
accurately into account the annotated timing delays of the datapath and produces the
FG-FSM of the circuit.

The notion of FGS and retiming of control FSM could be used in our system to
address a different problem that is the optimization of hardware micro-task FSM by
merging different FSM-states present in the basic block, of a CDFG, to have a possible
reduction in number of FSM-states to reduce its power consumption.

3.3.3.2 No Instruction-Set Computer (NISC)

Reshadi et al. [42] proposed an approach that compiles a C program directly to a datap-
ath and its controller. Since there is no instruction abstraction in this architecture they
named it No Instruction-Set Computer (NISC). A datapath specification is provided
at the input of the design-flow along with the application. The design-flow performs
both scheduling and resource binding simultaneously through ALAP-like algorithm.
The control-words generated to manage the datapath are kept in a control-memory.
Similar to other HLS tools, the target applications are data-intensive algorithms. The
area reduction is achieved by reducing the instruction fetch and decode stage of the
processor while a large-size control memory can cause a significant amount of dynamic
as well as static power consumption. Figure 3.6 shows the NISC design-flow.

3.3.4 Commercial tools and their application domain

After discussing the HLS tools present in the academics, we now present some of the
industrial HLS tools and their potential applications. Recent generation of industrial

Application Specific Instruction-set Processor (ASIP) design 67

application

custom datapath

datapath
selection/
generation

cycle-accurate
compilation

controller

constraints

Figure 3.6: NISC design-flow [42].

HLS tools, in most cases, uses either ANSI-C, C++, or languages such as SystemC that
are based on C or C++ that add hardware-specific constructs such as timing, hardware
hierarchy, interface ports, explicit specification of parallelism, and others. Some HLS
tools that support C or C++ or derivatives are Mentor’s Catapult-C (C, C++) [92],
Forte’s Cynthesizer (SystemC) [40], NEC’s CyberWorkbench (C with hardware exten-
sions) [98], Synfora’s PICO (C) [126], and Cadence’s C-to-Silicon (SystemC) [16].

As far as the application domain of these HLS tools is concerned, examining the
technical publications from Mentor Graphics on Catapult-C Synthesis, we found Nokia
using HLS to generate hardware implementations of DSP algorithms for wireless com-
munications. Alcatel Space also applied Catapult-C to DSP blocks for power, frequency,
and timing recovery. From Forte’s website, we see acknowledgments that Toshiba used
the Cynthesizer for H.264 multimedia design. Summarizing these findings, we can see
a lot of interest in using HLS for DSP blocks for wireless and wired communications
and for image processing [47].

It can be clearly seen for both the academic as well as the commercial tools enu-
merated above that most of them (except for UGH) focus on data-dominated applica-
tion domains where the hardware specialization is seen as a mean to improve system
efficiency through parallelization. Thus, they are not suitable for control-oriented do-
mains (such as ultra low-power WSN applications) where the focus is power-reduction,
instead of an increased system throughput. In this thesis, we tried to fill the gap by
introducing a design-flow that performs the hardware specialization for control-oriented
applications.

In the following part of this chapter, we provide the existing design methodologies,
algorithms and tools (both academic and commercial) for ASIP design.

3.4 Application Specific Instruction-set Processor (ASIP)
design

An ASIP is a processor designed for a particular application or for a set of applications.
It exploits special characteristics of application(s) to meet the desired performance, cost
and power requirements. ASIPs fill the architectural spectrum between general-purpose

68 High-level synthesis and application specific processor design

programmable processors and dedicated hardware or ASICs. They provide a compro-
mise between the two approaches, i.e. high flexibility through software programmability
(provided by general purpose MCUs) and high performance (high throughput and low
energy consumption provided by ASICs).

To program an ASIP, the desired algorithm is written in a high-level language
(C/C++). It is then translated by a compiler to generate a machine code that can be
interpreted by the ASIP. The ASIP compiler needs the precise information about the
underlying architecture of the processor and the algorithm must be written in such a
fashion to facilitate the work of compiler. The ASIP synthesis tool must be capable
of providing a fine blend among the algorithm, the compiler and the architecture to
generate a successful ASIP.

Moreover, the ASIP design does not mean only to design the underlying architec-
ture, but the ASIP designer must also come up with the corresponding software toolkit
(e.g. the compiler, simulator, debugger etc.) that can help a user to benefit from
the ASIP. To manually design these software toolkits is a time-consuming, expensive
and error-prone process, hence, in the literature the researchers have always provided
complete design methodologies to design their ASIPs. These approaches are based
on Architecture Description Languages (ADL) that are used to describe the generic
architecture of an ASIP and then the automatic design-flow goes down till hardware
generation of ASIP along with its associated software toolkit. Some ADLs present in
the literature are LISA [58], nML [36], ISDL [50], EXPRESSION [51] and Armor [93].
Most of these tools provide a path to retargetable ASIP compiler generation and only
few of them target actual ASIP hardware synthesis.

Although, some ASIPs are still designed completely from scratch to meet extreme
efficiency demands using the above-mentioned approach. There has also been a strong
trend toward the use of partially predefined, configurable RISC-like embedded proces-
sor cores that can be quickly tuned to given applications by means of Instruction-Set
Extension (ISE) techniques. This approach is helpful in reducing the design efforts and
“time-to-market” while sacrificing some performance efficiency.

In the next part of this section, we briefly discuss the methodologies present in the
literature for both the complete as well as partial ASIP design (using ISE).

3.4.1 Methodology for complete ASIP design

The ASIP design-flow normally follows a generic design methodology that has been
presented in the survey paper by Jain et al. [68]. The authors have identified five major
steps during the ASIP design that are briefly discussed in the following paragraphs.

� Application analysis: Input to the ASIP design process is an application or a
set of applications, along with their data and design constraints. The application
is analyzed to gather the desired characteristics that can guide the hardware
synthesis as well as instruction set generation. An application written in a high-
level language (HLL) is analyzed statically and dynamically and the analyzed
information is stored in some suitable intermediate format, which is used in the
subsequent steps.

Application Specific Instruction-set Processor (ASIP) design 69

Applications and design constraints

Application Analysis

Architectural Exploration

Instruction Set Generation

Performance
achieved

Object Code
Generation

Archi. HW
Generation

Object Code Processor
Description

No

Yes

Figure 3.7: Design methodology for complete ASIP generation

� Architectural design space exploration : First of all, a set of possible archi-
tectures is identified for a specific application(s) using the output of previous step
as well as the given design constraints. Performance of possible architectures is
estimated and suitable architecture satisfying performance and power constraints
and having minimum hardware cost is selected.

� Instruction-set generation : In the next step, instruction-set is generated for
that particular application and for the architecture selected. This instruction set
is used during the object code synthesis and hardware synthesis steps.

� Object code synthesis: Compiler generator or retargetable code generator is
used to synthesize code for the particular application(s).

� Hardware synthesis: In this step the hardware is synthesized using the ASIP
architectural template and Instruction-Set Architecture (ISA) starting from a
description in VHDL/Verilog using standard tools.

Figure 3.7 shows the steps involved during the complete ASIP design. A perfor-
mance evaluation phase exists between the instruction set generation step and code and
hardware synthesis steps. This phase tests if the generated ASIP satisfies the desired
design constraints or not. If yes, then we continue with code and hardware generation.
Else, the process is iterated from the start.

70 High-level synthesis and application specific processor design

Applications and design constraints

Instruction Selection

Instruction Set Generation

Performance
Achieved?

Object Code
Generation

Archi. HW
Generation

Object Code Processor
Description

No

Yes

Figure 3.8: Design methodology for partial ASIP generation

3.4.2 Methodology for partial ASIP design

The complete ASIP design methodology consists in designing a complete processor
along with its software toolkit to guarantee the harmony between the processor archi-
tecture and its compiler. However, the design-flow is not completely automated and
certain critical parts of the processor have to be manually implemented as in case of
design methodology using LISA [58]. Similarly, every new processor has to be validated
and optimized that can cause Non-Recurring Engineering (NRE) costs. To reduce these
costs, ISE technique is used where the instruction set of a predefined RISC-like proces-
sor is extended with special instructions that can be run on a coprocessor generated
through the partial ASIP design-flow.

Figure 3.8 presents the main steps involved in the design-flow of an extended pro-
cessor core generation. These steps are briefly discussed in the following paragraphs.

� Instruction generation : In first step, the application code is analyzed and
specialized instructions are generated for that particular application and for the
architecture selected.

� Instruction selection : In the next step, a sub-set of these special instructions is
selected to efficiently implement the required function under the design constraints
provided at the beginning. Like the design-flow for complete ASIP design, this
process can be iterative until the required constraints are met.

� Object code synthesis: Compiler generator or retargetable code generator is

Application Specific Instruction-set Processor (ASIP) design 71

used to synthesize code for the particular application(s).

� Hardware synthesis: In this step the hardware is synthesized using the copro-
cessor architectural template and ISE starting from a description in VHDL/Ver-
ilog using standard tools.

The next section briefly presents the existing algorithms involved in different steps
of ASIP design, such as instruction selection and register allocation.

3.4.3 Instruction selection

Instruction selection is the stage of a compiler back-end that transforms the Interme-
diate Representation (IR) (like CDFG), of an input application code, into a machine-
specific IR that is very close to its final target language. In a typical compiler, it
precedes register allocation, so its output IR has an infinite number of pseudoregisters;
otherwise, it closely resembles the target assembly language. It works by covering the
intermediate representation with patterns. The best covering is the one that results in
the fewest patterns being generated for a given IR. A pattern is a template that matches
a portion of the IR and can be implemented with a single machine instruction.

There are two approaches to perform the covering of an IR: (i) through instruction
selection on trees and (ii) through instruction selection on Data Acyclic Graphs (DAGs).
Instruction selection on DAGs is a much more computationally difficult problem than
instruction selection on expression trees. In has been shown in literature that the former
is an NP-Complete problem whereas the latter can be solved in polynomial time [76].

In the following section, we will first discuss the DAG-based instruction selection
and existing algorithms to solve this problem. Tree-based instruction selection and its
corresponding algorithms are discussed afterward.

3.4.3.1 DAG-based instruction selection

DAG-based instruction selection results in a much more efficient covering as the IR of
an application code can be covered with a less number of patterns. For example, Fig-
ure 3.9 shows the basic butterfly operation performed in FFT (Fast Fourier Transform)
algorithm. This operation has multiple outputs and thus it cannot be covered with a
single tree-based pattern, whereas it is possible to cover it with a single DAG-based
pattern. Hence, a DAG-based instruction selection results in a better covering with
lesser number of output patterns. However, it is computationally much more complex
to perform DAG-based instruction selection and lies in the domain of NP-Complete
problems. Hence, several heuristic algorithms have been developed to provide an ap-
proximate solution.

In the following paragraphs, we discuss some of the existing algorithms that are
being used for instruction selection on DAGs.

Simulated annealing: Simulated annealing is a meta-heuristic approach inspired
by a process used in metallurgy. This process consists of alternating cycles of slow

72 High-level synthesis and application specific processor design

+

-

X0

X1

Y0=X0+X1

Y1=X0-X1

Figure 3.9: Data-flow graph of basic butterfly operation present in an FFT algorithm.

cooling and reheating to minimize the energy of the materials. Simulated annealing is,
therefore, based on a parameter that represents the temperature. Similar to the physical
process of annealing, the simulated annealing algorithm modifies one simulated solution
to get another new one. If the new solution is better than the initial one, it leads to
the local optimum. On the other hand, a worse solution can be used to explore more
widely the solution space and saves us from being trapped in a local optimum. It can
be thus interesting to keep a worse solution depending on a probability calculation that
is based on the cost difference and the temperature of the system. Simulated annealing
has been used by several previous works to perform the instruction selection [71, 60].

Genetic Algorithm (GA): GA belong to the family of evolutionary algorithms
(a sub-set of meta-heuristics). Genetic algorithms are stochastic algorithms based on
adaptive search for solving optimization problems. These algorithms are based on the
theory of evolution and Darwin’s principle of natural selection and apply them to a
population of solutions possible to the problem. A genetic algorithm starts with a base
population, generated randomly, among all solutions. Then this population undergoes
cyclical stages of evaluation, selection, crossover and mutation. The algorithm stops
after a given number of iterations.

Constraint Satisfaction Problem (CSP): Martin et al. [91] used CSP-solving
based approach to resolve the problem of instruction selection for ASIP ISE generation.
A CSP is defined as a 3-tuple S = (V,D,C) where V = x1, x2, x3,..., xn is a set of
variables, D = D1, D2, D3,..., Dn is a set of finite domains (FDs), and C is a set of
constraints.

A solution to a CSP is an assignment of a value from variable’s domain to every
variable, in such a way that all constraints are satisfied. The specific problem to be
modeled will determine whether we need just one solution, all solutions or an optimal
solution given some cost function defined in terms of the variables.

The solver builds, using the given constraints, its own consistency methods and
systematic search procedures. Consistency methods try to remove inconsistent values
from the domains in order to reach a set of pruned domains such that their combinations
are valid solutions. Solutions to a CSP are usually found by systematically assigning
values from variables domains to the variables. It is implemented as depth-first search.

Application Specific Instruction-set Processor (ASIP) design 73

The consistency method is called as soon as the domains of the variables for a given
constraint are pruned. If a partial solution violates any of the constraints, backtracking
will take place, reducing the size of the remaining search space.

3.4.3.2 Tree-based instruction selection

Though the above-mentioned approaches that perform instruction selection on DAGs
such as [76, 91] result in a better covering of the CDFG (i.e. lesser number of resultant
patterns), the classical approach to instruction selection has been to perform tiling
(pattern matching) on expression trees. The problem is simpler in complexity and
can be solved in polynomial time. The problem was initially resolved using dynamic
programming that is discussed in the following paragraph.

Dynamic programming: Dynamic programming resolves a problem by combining
solutions of sub-problems. Dynamic programming is interesting especially when the
sub-problems are not independent, i.e. when sub-problems have common sub-sub-
problems. A dynamic programming algorithm resolves each sub-sub-problem once,
and memorizes the solution. A recalculation of the solution does not take place when-
ever the sub-problem is encountered. Dynamic programming is thus an interesting
approach when sub-problems have many sub-sub-problems in common. Most of the
existing solutions to the instruction selection on expression trees are based on dynamic
programming [3, 41, 114].

The instruction matching techniques on expression trees have been further devel-
oped to yield code-generator generators [41] that take a declarative specification of a
processor architecture at the input and, at compiler-compile time, generate an instruc-
tion selector. These code-generator generators either perform dynamic programming
at compile time [3] or use BURS (Bottom-Up Rewrite System) tree-parsing [114] to
move up the dynamic programming to compiler-compile time.

Bottom-Up Rewrite System (BURS) generator: Possibly the simplest way to
visualize and understand complex instructions and addressing modes of a processor is
to view them as expression trees in which leaves represent registers, memory locations,
or constant values; whereas internal nodes represent operations. Describing even the
most complex instruction is simplified when such trees are used. Figure 3.10 gives an
example of tree patterns whereas Figure 3.11 shows the two possible coverings of an
identical tree with different patterns.

Code generators based on BURS can be extremely fast because all dynamic pro-
gramming is done when the BURS automaton is built. At compile-time, it is only
necessary to make two traversals of the target expression-tree: (i) bottom-up traversal
to label each node with a state that encodes all optimal matches and (ii) top-down
traversal that uses these states to select the instructions for each node according to the
minimal cost function and emits target assembly level IR.

74 High-level synthesis and application specific processor design

Pattern #
1
2
3

4

5

6
7

8

(0)
(0)
(1)

(2)

(2)

(0)
(0)

(0)

Label Pattern Cost
goal reg
reg Reg
reg Int

reg addr

reg reg
addr reg
addr Int

addr
reg Int

reg

Fetch

Plus

Plus

Figure 3.10: Sample machine instruction template.

Reg Int

Fetch

Fetch

+

Reg

Fetch

Fetch

+

Int

#4

#4

#8

#2

#4

#4

#2 #3

#5
#6

Figure 3.11: Two possible coverings of the identical tree with different patterns.

Application Specific Instruction-set Processor (ASIP) design 75

Rule #

1
2
3
4
5
6
7
8

(0)
(0)
(1)
(2)
(2)
(0)
(0)
(0)

Cost

goal reg
reg Reg
reg Int

reg
reg
addr reg

addr Int
addr Plus(reg, Int)

Simple Grammar

L.H.S R.H.S.

Fetch(Addr)
Plus(reg,reg)

Figure 3.12: Simp1e grammar and its normal form [114]

The input to the BURG-generator is a set of rules. Each rule is a quadruplet of
the form R = (P, S,C,A) where P is a pattern existing in the IR, S is the replacement
symbol, C and A are the cost and action taken if the given rule is selected.

To further elaborate, S is a nonterminal symbol whereas A can be, for instance, the
resultant machine instructions generated if the concerning rule is selected for the given
pattern. In addition the rules are defined by keeping in mind the underlying hardware
of the datapath executing these instructions. Figure 3.12 gives a sample grammar.
The nonterminal is on the left side of the rule, the linearized tree pattern is on the
right side. In this grammar, goal, reg, and addr are nonterminals. In addition to
nonterminals, the grammar has operators. For instance, Reg, Int, Fetch, and Plus are
some operators present in the sample grammar.

A least-cost parse can be found using dynamic programming. By using all matching
patterns at all nodes, it is possible to remember the rules that lead to the least-cost
derivation for each possible nonterminal. Figure 3.13 applies the rules in Figure 3.12
to a tree representing Fetch(Fetch(Plus(Reg, Int))). We have only highlighted the
possible matches present at Reg and Int nodes.

In this example, a BURS matcher finds the least-cost parse of an expression tree
to reduce all the nodes to the goal nonterminal. Each node is labeled with a state
that contains all the rules that lead to the reduction of this node to all the possible
nonterminals. For example, it is possible to reduce the node Int, to all the nonterminals.
Int can be reduced to the nonterminals reg and addr, by directly applying the rules
3 and 7 respectively. The costs associated with each derivation is the cost of that
particular rule. The reduction toward goal utilizes the rule, “goal → reg” that will
require that Int to be subsequently reduced to reg. Therefore, while the cost associated
with rule 1 is 0, the total cost of the reduction from Int to goal is 1.

3.4.4 Register allocation

The resource allocation problem relates to simple register allocation in ASIPs that
have single processing element, while in ASIPs that have Very Large Instruction Word

76 High-level synthesis and application specific processor design

Fetch

Fetch

Plus

Reg Int
(goal reg #1, 0;
 reg Int #3, 1;
 addr Int #7, 0)

(goal reg #1, 0;
 reg Reg #2, 0;
 addr reg #6, 0)

(All rules for covering
Plus)

(All rules for
covering Fetch)

(All rules for
covering Fetch)

Figure 3.13: Dynamic programming applied to example tree, each node labeled with
“(Rule, Cost)”.

(VLIW) architecture, it also consists in functional unit allocation. As we described in
previous section that instruction selection results in an assembly-level IR that contains
infinite number of pseudoregisters. The allocation of the limited number of physical
registers present in the register file of an ASIP to these infinite pseudo-registers is
called register allocation. Similar algorithms are used in ASIP design-flow for register
allocation as those were used in HLS design-flow (see Section 3.1.4).

After a thorough description of ASIP design-flows and their related algorithms, we
move on to present some existing work in the domain of ASIP design tools.

3.5 Existing tools in ASIP design

There exist in the literature several commercial as well as academic examples of con-
figurable ASIPs. Xtensa by Gonzalez is a configurable and extensible coprocessor core
that builds around a traditional RISC five-stage pipeline [46, 128]. Silicon Hive is a
commercial tool that generates a framework of multiple ULIW (Ultra Large Instruc-
tion Word) coprocessors [124]. Virage Logic [141] has also launched a series of com-
mercial ASIPs like ARC750, ARC700 etc. In addition, different FPGA vendors have
launched their specialized soft-cores that can be implemented on their FPGAs. Most
famous of these FPGA-based soft-cores are NIOSII by Altera [6] and MicroBlaze by
Xilinx [144]. Aeroflex Gaisler [2] has introduced LEON series of soft-cores that are
based on SPARC V8 processor architecture. The FPGA-based soft-cores provide flex-
ibility and can be used for rapid prototyping. However, evidently they are consume
more power and provide less performance as compared to ASIC-based ASIPs.

3.5.1 ICORE

As far as low-power ASIP development is concerned, Glöker et al. proposed ICORE [45],
a low-power ASIP specialized for the data-intensive application of a DVB-T receiver.
Their design methodology starts with a semi-custom design and instruction-set en-

General discussion 77

hancements (hardware acceleration) are applied to this unoptimized architecture to
achieve a desired speed-up. When all the timing constraints are fulfilled, additional
optimizations are applied to increase the power-efficiency. The authors used two simple
rules to apply these optimizations: (i) they tried to find a power optimized (hardware
accelerated) solution for the most frequently used patterns, (ii) if there existed a simple
hardware solution for even a less-frequent task, it was still implemented in hardware
to save power. They synthesized an ICORE architecture using 0.18µm 5-metal layer
technology. ICORE was able to get a speed-up of nearly 15x when compared to tradi-
tional DSP with only a slight increase in average power whereas the overall energy is
reduced by 92.5% as the total time taken to do the job is considerably reduced.

On the other hand, Kin et al. [74] also proposed a framework for rapidly exploring
the design space of power-efficient mediaprocessors in the domain of VLIW and SIMD
(Single Instruction Multiple Data) architectures. Their framework is based on the idea
of using a retargetable Instruction Level Parallelism (ILP) compiler and its correspond-
ing processor simulator to perform rapid prototyping of media application benchmarks.
They used StrongARM SA-110 as their baseline architecture and their framework ex-
ploited the ILP compiler to perform the design space exploration of multi-processor
platforms to generate power-efficient mediaprocessors.

3.5.2 Soft-core generator

Fin et al. [37] introduced the concept of soft-core generation by instruction-set analysis.
The soft-core generator can be easily applied for parameterization and designing any
kind of processor which can be described by using FSMDs (FSMs with datapaths). By
using different parameters at the input of the soft-core generator design-flow, several
soft-cores performing the selected instruction sub-sets are generated. The VHDL codes
for these soft-cores are then easily synthesized to find the area-reduction caused by the
specialization process.

3.6 General discussion

Interestingly, all these ASIP design and HLS tools share a common characteristic: they
generate the hardware that is specialized toward data-intensive applications and they
generally see hardware specialization as a mean to improve performance over a standard
software implementation. This performance improvement, however, often comes at a
price of increased area cost (coprocessor or ISE requires additional area). Of course,
these specializations also have a significant impact on power efficiency, since they allow
for a drastic reduction of dynamic power of the system, however, the overall static
power dissipation of the system is increased due to the increase in overall silicon area.
This increased static power can be crucial for a power-restricted application domain
such as WSN.

Indeed, except from [37] and [86], very few papers have addressed the problem of
using processor specialization as a mean to reduce silicon footprint. We believe that in
the context of WSN node architecture, where silicon area and ultra low-power are the

78 High-level synthesis and application specific processor design

two main design issues, such an approach deserves attention. In the next chapter, we
present an original approach which builds on this idea. We propose a new architectural
model (along with a complete system-level downto RTL design-flow) for WSN node
controller design, based on the notion of concurrent power-gated hardware micro-tasks.

Chapter 4

Hardware micro-task synthesis

This chapter discusses in details our proposed design-flow for hardware micro-task syn-
thesis as highlighted in Figure 4.1. The chapter starts with the notion of hardware
micro-task where we provide the potential power benefits and architectural details of
the proposed hardware micro-task. Our proposed design-flow for C to RT-level VHDL
description of hardware micro-task synthesis is discussed afterward. Incidentally, we
would like to clear it out that we do not propose new algorithms to solve different
HLS/ASIP-design related problems such as instruction selection or register allocation,
instead we use classical algorithms to solve these problems. The choice of using classi-
cal tools is mainly driven by our application domain that consists in control-oriented
tasks of a WSN node. Since the target applications are not data-intensive, working on
more sophisticated algorithm development would not be more beneficial. The chap-
ter concludes with an example of a control-oriented micro-task (processed through our
tool) showing the benefits of our approach over a conventional MCU-based software
implementation.

4.1 Notion of hardware micro-task

In a typical WSN node, each task present in the Task Flow Graph (TFG) is handled
by an MCU and corresponding OS that provides support for multi-tasking features.
We call such task, a micro-task, to highlight the fact that it has light-weight process-
ing requirements. In addition, these micro-tasks normally have a run-to-completion
semantic. Figure 4.3 shows the generic template of a micro-task. In our approach, each
micro-task present in the TFG is executed by a specialized hardware entity. This entity
is called a “hardware micro-task”.

4.1.1 Potential power benefits

Some of the important aspects of the hardware micro-task design that impact its overall
power and energy consumption are discussed in the following section.

79

80 Hardware micro-task synthesis

Task
C

Task
B

Application

Task
ATask A Task BTask C

.c .c .c

Compiler
Front-end

Tree-based
Instruction Selection

and Mapping

Task.c

FSM.vhd Datapath.vhd

Custom
Datapath

Model

Micro-Task
Synthesis Design-

Flow

Micro-Task A Micro-Task BMicro-Task C

.vhd .vhd .vhd System
Monitor

.vhd

Hardware Synthesis Tool

Software Tasks

Hardware Micro-Tasks

Final IC

Transistor Level
Insertion of Power

Gating

Proposed Textual
DSL for System-
Level Description

Shared
Mem

CDFG-Level IR

Register
Allocation

Bitwidth
Adaptation

Assembly-Level IR

Datapath
Generation

FSM
Generation

Assembly-Level IR

Code-Generation Tool

EMF-based RTL-Models for
FSM and Datapath

Application.sysdesc

Model
Transformation

System Monitor
Synthesis Design-

Flow

CDFG of
Micro-Tasks

EMF-based RTL-Model for
System Monitor

EMF-based Intermediate
Model of the System

Guard
Expression
Evaluation

SM
Generation

Code-Generation Tool

SM.vhd

EventA

EventB

The design-flow under
discussion in Chapter-4

Figure 4.1: Design-flow for hardware micro-task generation.

Notion of hardware micro-task 81

PC

IMEM
(external)

Instruction Fetch Instruction Decode

Reg.
File

Instruction Execute

ALU

Write Back

DMEM
(external)

(a) A simplified version of a general purpose CPU architecture with external instruction and data
memories (all the components are of fixed size and cannot be customized)

Reg.
File

ALU

(b) A simplified version of a generic hardware micro-task architecture
(all the components can be customized to save power and area)

Microcoded
FSM

 Interface for
shared I/O
and Mem

C
on

tro
l L

in
es

Data Lines

Figure 4.2: Architectural simplicity of a hardware micro-task w.r.t. a general purpose
CPU.

82 Hardware micro-task synthesis

Register
File

RAM

ROM Arithmetic
Logic Unit

(ALU)

I/O

P
eripherals

CTRL. FSM

Alu Result

R
am

 A
ddress

(C
aculated)

ram
D

ataIn

Ram Address
(Generated)

Rom Address

A
lu Input

S
election

O
p eran d B

 A
dr.

romDataOut

ramDataOut

rfDataOut

Alu O
perand

S
elect

Pheripheral On/Off

R
am

 Input S
election

Vdd

en_MT

Micro-
Task

Vvdd

O
pera nd A

 A
dr .

3
2

2

8

8

8

8

8

Task in C with a run-to-completion
semantic

void encipher(unsigned long * v,unsigned long * w)
{
 unsigned long

y=v[0],z=v[1],sum=0,delta=0x9E3779B9,
a=k[0],b=k[1],c=k[2],d=k[3],n=32;

 while(n-->0){
sum += delta;
y += (z << 4)+a ^ z+sum ^ (z >> 5)+b;
z += (y << 4)+c ^ y+sum ^ (y >> 5)+d;

 }
 w[0]=y; w[1]=z;
}

Figure 4.3: Generic template of a “micro-task” running in a WSN node.

4.1.1.1 Simplified architecture

In contrast to an instruction-set processor, the program of a hardware micro-task is
hard-wired into an FSM that directly controls a semi-custom datapath. This makes
the architecture much more compact (no need of an instruction decoder or instruction
memory) and allows the size of storage devices (register file and ROM) as well as the
ALU functions to be customized to the target application. Each of these hardware
micro-tasks can access shared data memory and I/O peripheral (e.g. SPI link to an RF
transceiver). The simplicity of the hardware micro-task architecture w.r.t. a generic
architecture of an MCU (currently being used in WSN node design) can be seen in
Figure 4.2. These general purpose MCUs are not customized to the application at
hand and of course contain an instruction memory, fetch and decode stage. Whereas,
our datapath contains neither instruction memory nor fetch/decode stage, and it can
be customized to the application at hand. This leads to a reduction in both dynamic
and static power consumption.

Such a drastically simplified architecture allows for obvious dynamic power savings
compared to a standard MCU architecture, with a negligible loss in performance since
the datapath is tailored to the application at hand.

4.1.1.2 Exploiting the run-to-completion semantic

As mentioned earlier, the micro-tasks follow a run-to-completion semantic. This leads
to a stateless execution of the micro-tasks in which we do not need to store the state of
the local variables present in the C-specification of a micro-task after its execution. In
hardware implementation, it means that the whole micro-architecture of the hardware
micro-task can be power-gated after its job-termination that leads to a lower static
power dissipation.

Notion of hardware micro-task 83

Register
File

Shared
RAM
IFace

Imm.
ROM Arithmetic

Logic Unit
(ALU)

S
hared I/O

 IFace

CTRL. FSM

Alu Result
R

am
 A

ddress
(C

aculated)

ram
D

ataIn

Ram Address
(Generated)

Rom Address

A
lu Input

S
election

O
p era nd B A dr.

romDataOut

ramDataOut

rfDataOut

A
lu O

perand
S

elect

Pheripheral On/Off

R
am

 Input Selection

Vdd
en_MT

Hardware
micro-task

Vvdd

O
peran d A A dr.

3
2

2

8

8

8

8

8

Figure 4.4: Architecture of a generic hardware micro-task.

4.1.1.3 Micro-task granularity

Hardware specialization can be less effective if more and more functionalities are han-
dled by the same specialized hardware. As a consequence, to take advantage from
hardware specialization, we need to distribute the whole WSN node software frame-
work into a set of hardware micro-tasks, so as to maintain a high degree of specialization
within each micro-task.

For instance, a complete WSN communication stack uses approximately 3500 in-
structions; by distributing the stack functionality onto 7 micro-tasks, we can reach an
average micro-task code size of 500 instructions, which is a granularity level at which
we can expect significant energy improvements. Since the micro-tasks present in WSN
applications are fine-grain in nature with an average code size much smaller than 500
instructions (as shown in Chapter 6), we benefit from a higher degree of hardware
specialization.

4.1.1.4 Simplified access to shared resources

It is also worth-mentioning that the local variables present in the C-specification of a
micro-task are stored in the register file while the global variables are stored in external
memory blocks that can be shared between multiple hardware micro-tasks. Depending
upon the life-time of these global variables, these external memories can be power-gated

84 Hardware micro-task synthesis

ALU

aluOut

aluOp cIn

cOut

Lt_GT

8

3

op1

op2

ADD

NOT

CMP

AND

OR

XOR

SHL

SHR

op1

op1

op1

op1

op1

op1

op1

op1

op2

op2

op2

op2

op2

op2

op2

op2

aluOut

cOut

cIn

Lt_GT0
Lt_GT1
Lt_GT2

aluOp

3

3

Figure 4.5: Architectural template of customizable ALU block present in hardware
micro-task datapath (shown in Figure 4.6).

to save the leakage power. More details about the memory management are provided
in Section 5.4.4 where the system-level execution-model is presented. Moreover, since
the hardware micro-tasks are power-gated (turn-on only when needed), we do not need
arbiters, tri-state or multiplexer logic at the input of the shared resources. This also
leads to an overall reduction in power and area.

4.1.2 Generic architecture

Figure 4.4 shows the micro-architecture of a generic hardware micro-task. In this
figure, the hardware micro-task consists of an 8-bit datapath whereas our design-flow
is capable of generating both 8-bit and 16-bit datapath according to designer’s choice.
The possible trade-offs in terms of energy, power and area consumption of an 8-bit
and a 16-bit hardware micro-tasks implementing the same function are discussed in
Section 6.4.1.

The main components of a hardware micro-task are:

� FSM : The control part of the application task is directly micro-coded in the form
of an FSM that controls the underlying datapath.

� Register file : The register file is implemented in the form of a dual-port RAM.
The size of the register file can be customized according to the application by
the design-flow. It contains two read -ports and one write-port that enables reg-
reg-type instruction patterns to be executed in one clock-cycle by our datapath.

Proposed design-flow for micro-task generation 85

A hardware micro-task having a dual-port memory benefits from approximately
50% reduction in the size of the control FSM as compared to a hardware micro-
task having a single-port memory. This potential reduction comes from the fact
that a single-port memory has to be accessed twice consecutively while fetching
two operands from the register file. Hence, if size of the control FSM is very
large and its power consumption is dominant, a hardware micro-task containing
a dual-port register file would consume lower power than a hardware micro-task
containing a single-port register file. In addition, since the size of the register
file needed by a hardware micro-task is relatively small (as it will be discussed in
Section 4.2.4), it does not consume huge power in the resultant circuit.

� Immediate ROM : The datapath also contains a ROM that stores all the con-
stants present in the application code. Since the constants stored in ROM are
hardwired in the hardware and the ROM can be turned-off without data loss, this
approach consumes less static and dynamic power for storing constants.

� ALU : The ALU block contains several arithmetic and logic operations (such as
add, sub, or, shl, etc.). A generic template of the ALU block implemented in
our hardware micro-task is shown in Figure 4.5 where different operators can
be added/removed and size of the multiplexer is customized according to the
application at hand.

� I/O interface : The final major component of the hardware micro-task is an
I/O interface module that provides the interface to external data memories and
I/O peripherals (that can be possibly shared among multiple micro-tasks).

According to the legend of Figure 4.4, dotted lines represent control signals gener-
ated and exchanged between the control FSM and datapath components, whereas solid
lines represent data-flow connections between datapath components.

A more detailed view of the hardware micro-task architecture is shown in Figure 4.6
where we can find different control-flow multiplexers (such as those connecting different
types of operands to the ALU block).

To generate such architecture of a hardware micro-task from a high-level C-specifica-
tion of the application, we developed a design-flow that is a hybrid of High-Level Syn-
thesis (HLS) and retargetable Application Specific Instruction-Set Processor (ASIP)
design-flows.

4.2 Proposed design-flow for micro-task generation

Of course, even the soundest proposal for hardware specialization is useless without
a supporting design-flow, which allows the programmer to proceed directly from a
specification written in a high-level language (e.g. C) to an executable specification,
which in our case consists of an RTL description of the each specialized hardware
micro-task.

86 Hardware micro-task synthesis

IO
 M

o dule

im
m

R
O

M
(size=2

p)

A
LU

R
eg. File

(size= 2
n)

P
1P
2

P
1

8

8

8

8

88

8 8

m
em

O
p

im
m

R
O

u t

reg S
rc

aluO
u t

rfIn S
el1

rfInS
el 0g V

M
D

S
e l

gV
M

A
S

el0

gV
M

A
S

el1

gV
R

am
InP

ad

gV
R

a m
A

drP
a d

gv R
am

O
u tP

ad

im
m

R
O

ut

im
m

R
A

dr

rfIn

rdD
stA

d r

op1S
el 1

op2 S
el1

op2 S
el0

aluO
u t

aluO
p

cIn

cO
ut Lt_G

T0
Lt_G

T1
L t_G

T2

aluO
u t

regD
st

re gS
rc

regD
st

reg S
rc

reg D
st

(dp)

(dp)

n
n

8

3

q rdS
rcW

rdD
stW

g V
R

am
W

eP
ad

m
icro-tas k datap ath lege nds:

S
olid b lack lines : data w

ires
S

olid red line s: C
trl. W

ires (ctr l. Inputs from
 FS

M
)

D
o tted red lines: C

t rl. W
ires (ctrl. O

u tputs to FS
M

)
 : input C

trl.P
or t

 : o utput C
t rl.P

ort
 : inp ut D

ataP
ort

 : output D
ataP

or t
 :C

trl. toD
ataB

uffer

io D
O

utP
a d

o p1S
el0

C
2D

C
2D

r dS
rcA

dr

C
2D

p

C
2D

gV
M

D
irA

drq

ioD
S

el1ioD
S

el0

im
m

R
O

ut

re gS
rc

gvR
am

O
utP

ad

alu O
ut

ioD
InP

ad

ioW
e P

ad

i oD
O

utP
ad

ioP
ort A

drP
ad

C
2D

ioP
ort A

dr
6

gV
M

W
io P

ortW

C
trl. FS

M

gV
M

D
irA

dr
rfInS

el0
rfInS

el1

rdD
s tA

dr

op1 sel1

rdS
rcA

dr

im
m

R
A

dr

g V
M

D
S

el

gV
M

A
S

el0

gV
M

A
S

el1

op1S
e l0

op2S
el1

op2 S
el0

alu O
p

cIn

cO
u t

Lt_G
T0

Lt _G
T1

Lt_G
T2 r dD

stW

rd S
rcW

gV
M

W

ioP
ort A

dr
ioD

S
el0

ioP
o rtW

io D
S

el1

C
2D

O
p

nam
e

add
not
cm

p
and
or
xor
shl
shr

aluO
p2

00001111

aluO
p1

00110011

aluO
p0

01010101

Figure 4.6: Detailed architectural template of a hardware micro-task.

Proposed design-flow for micro-task generation 87

Compiler
Front-end

Tree-based
Instruction Selection

and Mapping

Task.c

FSM.vhd Datapath.vhd

Custom
Datapath

Model

Micro-Task
Synthesis Design-

Flow

CDFG-Level IR

Register
Allocation

Bitwidth
Adaptation

Assembly-Level IR

Datapath
Generation

FSM
Generation

Assembly-Level IR

Code-Generation Tool

EMF-based RTL-Models for
FSM and Datapath

Figure 4.7: Design methodology for hardware micro-task generation.

This section details our proposed software design-flow used to generate these cus-
tomized hardware micro-tasks from an application description written in C (shown
in Figure 4.7). A comparison of our approach to classical HLS/ASIP-design flow is
presented later in this section. We have identified six distinct steps involved in the
design-flow for micro-task synthesis that are explained in the following sections.

4.2.1 Compiler front-end

Our flow begins with the front-end compilation of the ANSI-C specification of an ap-
plication. This first step transforms the input description into a formal Intermediate
Representation (IR). This step benefits from several target-independent code transfor-
mations such as constant evaluation and propagation, single static assignment, loop
unrolling, etc. The output of this step is an IR (that is in the form of a CDFG) in

88 Hardware micro-task synthesis

for loop

while loop

Figure 4.8: Example of a CDFG generated through GeCoS [86].

which instructions are represented as trees. This part of our design-flow is based on
the front-end of the GeCoS [86] retargetable C-compiler, initially developed by L’hours.
Figure 4.8 presents a generic example of the CDFG generated by GeCoS front-end where
different sub-components like basic blocks, composite blocks, while, if, and for blocks
can be observed. GeCoS can represent instructions present in a basic-block either as
expression-trees or DAGs. In this work, we use tree-based intermediate representation.

4.2.2 Instruction selection and mapping

The tree-based IR represents each basic operation (e.g. memory fetch or store, addition
or subtraction, conditional jumps, etc.) by a tree node. A real machine instruction
often performs several of these basic operations at the same time. For example, a mac
instruction can perform addition and multiplication in a single step. On the other
hand the situation can be reversed i.e. a basic operation in an IR (e.g. a 32-bit
memory fetch) can be mapped to a sequence of several machine instructions (4x 8-bit
load instructions). Finding the appropriate mapping of machine instructions to a given
IR-tree is done through an instruction selection phase.

As mentioned previously, even if there exist more sophisticated approaches for in-

Proposed design-flow for micro-task generation 89

/* The syntax of a BURG rule defined in our BURG generator is:
 Symbol : Pattern {Cost computation} = {Action} */
stmt: SET(REGISTER, ADD(reg8, mem))
{

if (!isByteType($value[4]))
return false;

// this expression defines the cost (C) of this BURG rule
$cost[0] = $cost[4] + $cost[5] + 2;

} = { // this block defines the action (A) of this rule

AsmInst add = new AsmInst (“addBG”, 0, 3, false);
add.addOperand ($action[4] ());
add.addOperand ($action[5] ());
block.addInstruction(add);
return;

};

Figure 4.9: A sample BURG rule being used in our BURG-generator.

struction selection (e.g. instruction selection on DAGs [76, 83, 91]); our current imple-
mentation uses a simple BURG-based tree-covering algorithm to provide a polynomial
time solution to the instruction selection problem as we target control-oriented applica-
tions where there is very little instruction-level parallelism. Moreover, the polynomial-
time solution of instruction selection problem makes the tool useful for real-life appli-
cations that is also an important factor in our point of view. The approach is based on
the work of L’hours who used the tree-based pattern matching to generate retargetable
ASIP instruction-set architectures (ISAs) [86].

4.2.2.1 Customized BURG-generator

Following a similar approach as was used by Proebsting in [114], we used a back-end
compilation tool called BURG-generator. The input to the BURG-generator is a set
of rules of the form R = (P, S,C,A) where P is a pattern existing in the CDFG (IR),
S is the replacement symbol, C and A are the cost and action taken if the given rule
is selected. Figure 4.9 shows a sample BURG rule that is being used by our BURG-
generator.

Each of the terms used in a BURG rule and its difference from the conventional
BURG-generator approach is explained in the following paragraphs.

P , the pattern: Each rule in the BURG-grammar defines an instruction pattern
that can be used to cover a given expression-tree if that rule is selected. Since most
of the workload of a traditional WSN-based MCU consists of the communication with
its RF-transceiver or sensor through SPI-interface [119], we define such a template for
hardware micro-task datapath where memory and I/O modules can directly work as
operands for ALU and direct interaction is possible between register-file, data memory

90 Hardware micro-task synthesis

that carries the global shared variables, I/O modules and immediate ROM that carries
the constant values (as shown in Figure 4.6). In order to better exploit this datapath,
we do not limit ourselves to simple ISAs (such as MIPS, RISC or mini-MIPS) but
generate relatively complex instruction patterns and their corresponding rules in our
BURG-generator, so as to obtain an efficient covering.

S, the replacement symbol : The second entity defined in a rule is S, the replace-
ment symbol. S is normally a nonterminal and an instruction pattern described in a
given rule is reduced to the nonterminal defined by that rule. We differ, in the defini-
tion of the replacement symbol, than the normal BURG-based instruction selection as
we introduce typed-nonterminals that result in the generation of an assembly-level IR
having typed-pseudoregisters. The nonterminals used in our grammar are stmt, reg8,
reg16, reg32, mem, and cond. Apart from nonterminals, our grammar contains termi-
nals that represent the operator -nodes in an expression tree. Some examples of these
terminals are SET, ADD, SUB, XOR, AND, OR and CMP that correspond to assignment, addi-
tion, subtraction, exclusive-OR, AND, OR and comparison operations in a tree-based
CDFG.

C and A, the cost and the action: C and A are the cost and resultant action
taken, if the given rule for instruction selection is used. A can be, for instance, the
resultant machine instructions generated if the concerning rule is selected for the given
pattern.

As the operating frequency for WSN applications is quite low (current low-power
MCUs work at around 1 MHz to 4 MHz), the time available during a single clock-
cycle is long enough to perform several operations. We exploited this fact and our
instruction selection tries to minimize the total number of clock-cycles consumed during
the execution of an input IR instruction.

Since the complex patterns mentioned-above involving the memory- or I/O-operands
result in a lesser number of overall clock-cycles, the code selector generates these spe-
cialized instructions (involving mem- and I/O-operands), instead of generating multiple
simple reg-reg-type instructions that involve additional load and store instructions to
move the data from I/O-peripherals and memories to the register file.

The idea is illustrated with the help of an example in Figure 4.10. The input CDFG
pattern is SET(INDIR(INT), AND(INDIR(INT), INT)). This pattern can be covered by
multiple rules present in our BURG-grammar. One of these rules corresponds to a
complex pattern, which can be executed by the hardware micro-task datapath in only
two clock-cycles (as shown in Figure 4.10, Case A). The same input pattern could have
been covered by simpler patterns that would have resulted in a sequence of reg-reg, load
and store instructions consuming 5 clock-cycles (as shown in Figure 4.10, Case B).The
example clearly shows that the selected specialized pattern has a lower cost in terms of
execution time.

As mentioned earlier, the BURG-rules are defined according to the underlying

Proposed design-flow for micro-task generation 91

andIOi #ioPort, #const

ldi rByte_2, #const
ldIO rByte_3, @(#ioPort)
and rByte_3, rByte_2
stIO rByte_3, @(#ioPort)

(Case A) Assembly-level IR generated using
the specialized I/O-operand-based pattern

ioPortW <= 0
aluOp <= 3

op1Sel0 <= 0
op1Sel1 <= 1
op2Sel0 <= 0
op2Sel1 <= 1

cIn <= 0
immRAdr <= #
ioPortAdr <= #

ioDSel0 <= 1
ioDSel1 <= 1
ioPortW <= 1

ioPortAdr <= #

rdDstW <= 1
rdDstAdr <= 2
rfInSel0 <= 1
rfInSel1 <= 0

immRAdr <= #

rdDstW <= 1
rdDstAdr <= 3
rfInSel0 <= 0
rfInSel1 <= 1

ioPortAdr <= #
ioPortW <= 0

rdDstW <= 0
rdSrcAdr <= 2
rdDstAdr <= 3

aluOp <= 3

rdDstW <= 1
rdDstAdr <= 3
rfInSel0 <= 1
rfInSel1 <= 1

ioDSel0 <= 1
ioDSel1 <= 0
ioPortW <= 1

ioPortAdr <= #
rdSrcAdr <= 3

tim
e

total cost = 2 clock-cycles total cost = 5 clock-cycles

Resultant micro-coded FSM segment

(Case B) Assembly-level IR generated without
using the specialized I/O-operand-based pattern

Input CDFG IR Instruction:

Figure 4.10: Advantage of using specialized pattern that results in an overall reduction
in cycle-count.

92 Hardware micro-task synthesis

S
stmt

stmt

stmt

stmt

stmt

P
SET(INDIR(INT), AND(INDIR(INT), INT))

SET(INDIR(INT), INT))

SET(INDIR(INT), OR(INDIR(INT), reg8))

SET(REGISTER, XOR(reg8, INT))

SET(REGISTER, AND(reg8, mem))

mem INDIR(reg16)

reg16 AND(reg16, reg8)

Comments

where rByte_2, rByte_3 and rByte_5 are 8-bit pseudoregisters, rInt_5 and rInt_3 are 16-bit pseudoregisters and rLong_2 is a 32-bit pseudoregister.

Performs an AND operation of an I/O port and a constant
value

Moves a constant value to an I/O port

Performs an OR operation of an I/O port and an 8-bit
variable
Performs an EX-OR of an 8-bit variable and a constant
value.
Performs an AND operation of an 8-bit variable and the
contents of a memory location

Covers a memory access by a 16-bit pointer

Performs an AND operation of a 16-bit and an 8-bit
variable

Moves a constant value to a 16-bit variable

Adds and stores an 8-bit variable to a memory location

Subtracts a 16-bit variable from a 32-bit variable

Performs an EX-OR of an I/O port value and a 16-bit
variable
Performs an AND operation of the memory contents to a
constant value and stores it to the same memory location
Performs an AND operation of the memory contents
pointed by a symbol to a constant value

reg16

mem

stmt

stmt

stmt

INT

ADD(mem, reg8))

SUB(reg32, reg16)

SET(INDIR(INT), XOR(INDIR(INT), reg16))

SET (INDIR(REGISTER), AND(mem,INT))

mem SET (GLOBAL, AND(GLOBAL,INT))

C
2

1

2

2

2

1

2

2

2

2

2

2

2

A
andIOi #ioPort, #const

movIOi #ioPort, #const

orIOB #ioPort, rByte_2

xoriB rByte_3, #const

andBG rByte_2, @(rByte_3)

@(rInt_5)

moviI rInt_3, #const

addGB @(rByte_3), rByte_5

subLI rLong_2, rInt_3

xorIOI #ioPort, rInt_3

andiG @(rByte_5), #const

andiG @(symbol), #const

andIB rInt_3, rByte_5

Figure 4.11: Some grammar rules used by our customized BURG-generator.

micro-architecture of the datapath. A partial set of such “customized” rules, present in
our BURG-generator and supported by a hardware micro-task datapath, is shown in
the form of a table in Figure 4.11. For the sake of elaboration, we discuss the BURG
rule given in Row 3.

The replacement symbol (S) in this rule is stmt nonterminal while the pattern (P)
is SET(INDIR(INT), OR(INDIR(INT), reg8)) which represents a combination of two
operations present in a CDFG:

� an OR operation between the contents of a pointed location and an 8-bit variable.

� an assignment operation of the result achieved in previous operation to the pointed
location.

The effective cost (C) of selecting this rule is 2 (as it takes 2 clock-cycles to implement
this pattern in hardware) and the machine instruction generated through the action
(A) performed is orIOB #ioPort, rByte_2 where rByte_2 is an 8-bit pseudoregister.

Following the classical BURG-based instruction selection approach, the tool gener-
ates a pattern matcher that contains all the patterns defined by the input grammar to
the BURG-generator. The tool is integrated in Eclipse [133] and benefits from the code
generation frameworks (such as Java Emitter Template (JET) editor [135]). Using the
JET template defining the BURG rules, the tool generates JAVA code for the pattern
matcher. Using this matcher, the instruction covering of the input CDFG IR is then a
two-phase problem.

In first phase, that is a bottom-up traversal, all the nodes of the subject expression-
tree are labeled with states that contain all the possible rules that can be used to reduce

Proposed design-flow for micro-task generation 93

this node to a possible nonterminal. In the second phase, that is a top-down traversal of
the subject tree, the least-cost covering of the expression-tree nodes is found that reduce
these node to stmt nonterminal and generates the resultant low-level assembly-like IR
having typed-pseudoregisters (as shown in Figure 4.11, Column 4).

We would also like to point out that our instruction selection can be easily extended
and it is highly customizable as many efficient rules that exploit the features of the
underlying datapath can be easily added to our proposed grammar. During the course
of the development of our design-flow, we experimented with register-register based,
register-memory based and memory-memory based instruction patterns and finally we
achieved an instruction selector that can easily exploit the micro-task datapath with
register-register, register-memory, memory-register, io-memory, io-register and several
similar instruction patterns.

4.2.3 Bitwidth adaptation

The next stage in our design-flow involves a wordlength conversion step in which
the low-level assembly-like IR having different operations on 16-bit, 32-bit or 64-bit
operands (e.g. typed-pseudoregisters) are transformed into either sequential byte-level
(8-bit) or sequential short-level (16-bit) operations in order to match the characteristics
of the underlying micro-task datapath. A datapath of smaller bitwidth in a hardware
micro-task is more efficient from the point of view of area and power dissipation. A
smaller bitwidth datapath contains relatively smaller busses (in width) and glue logic
like multiplexers. This results in a smaller dynamic and static power consumption and
of course, a smaller foot-print for the datapath. The price to be paid is a reduction
in performance as, for example, it takes twice as long to perform a 16-bit arithmetic
operation on an 8-bit datapath than on a 16-bit datapath. However, since the required
operating frequency is not that high for WSN applications, we can pay this price for a
reduction in silicon area and power consumption. Currently we can generate either an
8-bit and a 16-bit datapaths. The details of the design space exploration and compar-
ison of power/energy/area consumptions of 8-bit and 16-bit datapath micro-tasks are
discussed in Section 6.4.

The bitwidth adaptation phase has its own particular pit-falls that are to be treated
with care while performing this step. Some of the issues involved are discussed in the
following paragraphs.

� Propagation of carry : The propagation of carry/borrow while replacing a 32-
bit addition/subtraction to a sequence of four 8-bit add/sub instructions is to be
handled carefully. In our case, we replaced a 32-bit addLL instruction with one
8-bit add and three 8-bit addc instructions. Similar (but modified accordingly)
approach was used for 32-bit to 16-bit and 16-bit to 8-bit instructions too.

� Proper incrementation of pseudoregister-number : Similarly, one has to
take care about the pseudoregister-number being generated for 32-bit, 16-bit and
8-bit pseudo-registers. To avoid the over-writing of a pseudoregister by mistake

94 Hardware micro-task synthesis

during bitwidth adaptation, we have to properly increment the pseudoregister-
number according to its type during instruction selection and assembly-like IR
generation.

� Conversion of comparison operation : The compare operation can also be
a difficult problem while performing bitwidth adaptation as comparison of two
32-bit operations cannot be directly replaced by a sequence of four 8-bit com-
parisons as the compare operation is accompanied by a branch operation. To
explain the issue with the help of a simple example, we consider an instruction
cmpLL rLong_3, rLong_9 where rLong_3 and rLong_9 are 32-bit pseudoregister.
If we want to convert this 32-bit instruction to its equivalent sequence of 16-bit
instructions, we need to replace each of two 32-bit pseudoregisters present in the
instruction by two 16-bit registers (as shown in Figure 4.12, Case A). The contents
of rLong_9 are supposed to be in two adjacent locations in register-file i.e. r10
and r9 while the contents of rLong_3 are at r4 and r3. Then, we perform the
compare operation on r4 and r10 that contain the higher 16-bits and depending
on the result, we perform the branch operation and then, we add the compare
operation of the lower 16-bits using r3 and r9 and add the proper branch op-
eration afterward. Moreover, the conversion of the compare operation involving
operands of different bitwidth has to be handled differently. The procedure used
in our bitwidth adaptation phase is shown in Figure 4.12(Case B) where we are
comparing a 32-bit operand (rLong_3) with a 16-bit operand (rInt_9). We, at
first, compare the higher 16-bits (i.e. the contents of r4) with 0. Then the
branch operation is appended that will be performed depending upon the re-
sult of compare and then the compare operation having the lower 16-bits of first
operand (i.e. the contents of r3) and the second operand (r9) is performed and
its corresponding branch operation is added afterward.

Similar transformations are also used during the bitwidth adaptation of the Shift
Left and Shift Right operations. For instance, a 32-bit shliL instruction is
replaced with a sequence of one 8-bit shl and three 8-bit shlc instructions to
propagate the carry in sequential shift operations.

4.2.4 Register allocation

The only explicit resource binding operation performed in our design-flow is register
allocation. In this step the temporary pseudoregisters used during the instruction-
selection phase are replaced by physical registers present in the register-file of our
micro-task datapath. We used a similar register allocation approach as was used by
Chaitin et al. [18]. We used a linear approximation based algorithm to implement the
graph coloring algorithm.

However, we do not implement the register-spilling step during the register alloca-
tion at the moment. Since the number of registers available in a register-file of our

Proposed design-flow for micro-task generation 95

r4 r3

rLong_3

cmp rLong_3, rLong_9
ble B23

cmp r4, r10
blt B23
cmp r3, r9
ble B23

32-bit

16-bit 16-bit

r10 r9

rLong_9
32-bit

16-bit 16-bit

r4 r3

rLong_3

cmp rLong_3, rInt_9
ble B23

cmpi r4, #0
blt B23
cmp r3, r9
ble B23

32-bit

16-bit 16-bit

r9
rInt_9

16-bit

#0

16-bit

Case A Case B

Figure 4.12: Bitwidth adaptation of the compare and branch instructions.

hardware micro-task is customizable, we gradually increase the number of physical
registers during register allocation if the previous value results in an allocation failure.

It turns out that the number of registers required for allocation in WSN-related
applications remains quite small (ranging from 2 to 8, as will be seen in Chapter 6).
Nevertheless, register spilling may be implemented, in future, to generate a hardware
micro-task datapath with a maximum fixed size of register file and the trade-offs would
be studied for power/area/energy consumption comparison between a larger register
file and a larger external data memory carrying the data of the spilled registers.

4.2.5 Hardware generation

The machine-specific IR obtained after register allocation is then processed through the
FSM and datapath generation tools to generate an RTL-level IR of the hardware micro-
task. The main reason for using this RTL-level IR is its reusability for code generation
facilities. Once the RTL-level IR is generated, it can be easily retargeted to generate
different back-end descriptions, such as VHDL, SystemC and C (for C-based behavioral
simulator of the hardware micro-task that is discussed later in Section 4.2.5.3).

There are two parts of the hardware micro-task RTL-level IR (i) a semi-custom dat-
apath (ii) an FSM, in which each machine-specific instruction, present in the assembly-
like IR, is mapped to a sequence of micro-code (i.e. FSM states) used to control the
micro-task datapath. The hardware generation phase for each of these two components
is discussed in the following sections.

4.2.5.1 Datapath generation

We have developed, using the“Eclipse Modeling Framework (EMF)”[134], an RTL-level
template for a generic datapath that can be used to construct an RTL-level IR of any
circuit such as an FFT, DCT or FIR. This template contains the RTL models for wires,

96 Hardware micro-task synthesis

I/O ports, logic and arithmetic operators, and control-flow and data-flow multiplexers.
Similarly, we have also defined RTL libraries for different storage components such as
dual-port RAM, single-port RAM, dual-port ROM, single-port ROM, shift register and
RS flip-flop in this generic datapath template.

From the low-level assembly-like IR (generated after register allocation) we ex-
tract the required information for the generation of a customized datapath using the
RTL-level datapath template mentioned-above. We tune different parameters of the
components present in the generic datapath template to the application at hand. For
example, the constants present in the input assembly-like IR are used to determine
the size and the contents of the single-port immediate ROM to be generated. The
operations are used to extract the information about the minimum-required function-
ality of the resultant ALU block while the maximum value of register-number present
in the input IR is used to determine the size of the output register file. As a result,
a customized datapath for the hardware micro-task is generated following the generic
template shown in Figure 4.6.

4.2.5.2 FSM generation

As far as the generation of micro-coded FSM is concerned, we developed a Domain
Specific Language (DSL), called FSM-Sequencer, that is based on an EMF-based tool
Xtext [136] and can be used to describe the control-flows. A control-flow described in
the FSM-Sequencer has inputs/outputs and control-sequences, and can be translated
into a low-level RTL description of equivalent FSM.

Figure 4.13 shows a control-flow described using FSM-Sequencer where inputs and
outputs (having default values) are contained in the header block. As far as the body
block is concerned, each line represent a control-sequence where some outputs are be-
ing assigned. An example of such control-sequences is set rdDstW=true, rdDstAdr=2
(shown in Figure 4.13) where rdDstW and rdDstAdr are the outputs being assigned.
These control-sequences can be translated into corresponding FSM-states as it is shown
in Figure 4.14 (a). In addition, we do not need to explicitly define transitions between
consecutive control-sequences in the DSL. A transition takes place either to the follow-
ing control-sequence in the code when a simple “;” is used or to another basic-block
if goto construct is used. These transitions are implicitly defined in the syntax of
FSM-Sequencer.

However, more complex transitions such as conditional branches can be described
using if, else and goto constructs that can be translated into conditional transitions in
an RTL-level FSM description. An example of such conditional branch (extracted from
Figure 4.13) is

if (!lt_GT0 & lt_GT1 & lt_GT2) { goto B12; }
else { goto B4; }

where the control-flow goes to either label B12 or B4 depending upon the predicate
value. Figure 4.14 (b) shows the corresponding FSM description that results in two
conditional FSM-transitions. In short, FSM-Sequencer looks much similar to assembly
language and a control-flow described in FSM-Sequencer can be easily translated into
an RTL-level FSM description.

Proposed design-flow for micro-task generation 97

sequencer sendBeacon_fsm is (
/**/
/* Header contains the inputs and outputs to the control‐flow
 where output can be initialized with default values */
input sendBeacon_enable : boolean;
input lt_GT0 : boolean; input lt_GT1 : boolean; input lt_GT2 : boolean;
output rdSrcAdr : int<2>:=0; output rdDstAdr : int<2>:=0;
output rdDstW : boolean := false; output gVMASel1 : boolean := false;
output gVMDSel : boolean := false; output gVMDirAdr : int<4>:=0;
output gVMW : boolean := false
/**/

)
begin
B4:

/* Every line represent a control‐sequence with outputs being assigned
";" marks the transition to next consecutive control‐sequence */

set rfInSel0=true, rfInSel1=false, immRAdr=0;
set rdDstW=true, rdDstAdr=2;
set aluOp0=false, aluOp1=false, aluOp2=false, op1Sel0=false, op1Sel1=false, op2Sel0=false;
set rfInSel0=true, rfInSel1=true, rdDstW=true, rdDstAdr=1;
set aluOp0=false, aluOp1=true, aluOp2=false, op1Sel0=false, op1Sel1=false, op2Sel0=false;
set rfInSel0=true, rfInSel1=true, rdDstW=true, rdDstAdr=0;

/* Conditional branches are represented using if, else and goto constructs,
 Unlike high‐level languages, the branch predicate evaluation does not
 consume any clock‐cycle, so we have to add a nop operation to wait for
 a clock‐cycle in order to have correct values for the predicate variables*/

if (!lt_GT0 & lt_GT1 & lt_GT2) {
nop goto B12;

} else {
nop goto B4;

}
B12:

set rfInSel0=true, rfInSel1=false, immRAdr=6;
set rdDstW=true, rdDstAdr=1;
set ioDSel0=true, ioDSel1=false, ioPortW=true, ioPortAdr=4, rdSrcAdr=1;

set sendBeacon_event0=true;
set sendBeacon_event1=true, goto B4;

end

Figure 4.13: Description of a control-flow using FSM-Sequencer DSL.

98 Hardware micro-task synthesis

There are several back-end passes developed for the generation of different output
representations of the control-flows described in FSM-Sequencer. For example, an RTL-
level IR description for the FSM can be generated. This RTL-level IR for the FSMs
can be integrated in the RTL-level IR of datapath to complete the RTL-level IR of
the complete hardware micro-task. Similarly, we can also generate the C and SytemC
descriptions for the control-flows written in FSM-Sequencer.

We created a back-end pass that takes the low-level assembly-like IR generated
after the register allocation and generates a control-flow description in FSM-Sequencer.
Each control-sequence of this control-flow carries the micro-coded control signals for
the underlying micro-task datapath. Above-mentioned code generation tools are then
used to generate the corresponding RTL-level IR for different FSM components such
as states, transitions, inputs and output ports.

4.2.5.3 Code generation

The Eclipse Modeling Framework (EMF) provides code-generation facilities that can
be used to write back-end templates for different output codes (such as VHDL and
SystemC). We use these facilities to write the VHDL templates for all the library
components present in the RTL-level generic datapath template such as the FSM, the
dual-port RAM, the single-port ROM, the ALU block and the multiplexers etc.

In the last step of our design-flow, using these VHDL templates for datapath and
FSM components, we generate VHDL description for the hardware micro-tasks de-
scribed in the RTL-level IR.

Similarly, we used the code generation facilities to write the C-based simulator
templates for the assembly-like IR of the hardware micro-task code to perform the cycle-
accurate behavioral simulation of the micro-tasks. A C-based behavioral simulator is
used to simulate the behavior of a circuit in C. It can be used to perform debugging
and behavioral validation of the circuit. There exist C-based Instruction-Set Simulators
(ISSs) for different low-power MCUs (such as the MSP430 and the AVR) and some of
them are also integrated in the WSN-node and network simulators (such as WSim [62]
and WSNet [63]). This cycle-accurate micro-task behavioral simulator could serve
for early validation and debugging of the hardware micro-task synthesis design-flow.
Moreover, the generated simulators would also be integrated (in the future) in WSim
and WSNet for a complete system-level and network-level validation.

4.2.6 Comparison to traditional design-flows of ASIP and HLS

Our design-flow is a hybrid of traditional ASIP and HLS design-flows. In traditional
HLS, there is no notion of instruction pattern selection and mapping but an FSM-
based controller is directly generated after analyzing the application code. On the
contrary, our tool based on a retargetable compiler performs the instruction selection
and mapping similar to a retargetable ASIP-like compiler infrastructure. Moreover, in
traditional HLS, the tool is provided with a library of available hardware components
and it generates itself a datapath based on an iterative approach. In contrast, similar

Proposed design-flow for micro-task generation 99

B4_1
-rfInSel0 <= one
-rfInSel1 <= zero
-immRAdr <= 0

B4_1->B4_2:1

B4_2
-rdDstW <= one
-rdDstAdr <= 2

B4_2->B4_3:1

B4_3
-aluOp0 <= zero
-aluOp1 <= zero
-aluOp2 <= zero
-op1Sel0 <= zero
-op1Sel1 <= zero
-op2Sel0 <= zero

B4_3->B4_4:1

(a) FSM representing
consecutive control-sequences
described in FSM-Sequencer

B4_6
-rfInSel0 <= one
-rfInSel1 <= one
-rdDstW<= one
-rdDstAdr <= 0

B12_0

clps0: (!lt_GT0&<_GT1&<_GT2)

B4_0

clps1: (!(!lt_GT0&<_GT1&<_GT2))

clps0: (1)

clps1: (1)

(b) FSM representing
conditional branches described

in FSM-Sequencer

set rfInSel0=true, rfInSel1=false,
immRAdr=0;

set rdDstW=true, rdDstAdr=2;
set aluOp0=false, aluOp1=false,

aluOp2=false, op1Sel0=false,
op1Sel1=false, op2Sel0=false;

set rfInSel0=true, rfInSel1=true,
rdDstW=true, rdDstAdr=0;

if (!lt_GT0 & lt_GT1 & lt_GT2) {
goto B12;
} else {
goto B4;
}

Input control-flow in FSM-Sequencer

Equivalent FSM representation generated through the design-flow

…

…

…

Figure 4.14: FSM representations generated through our tool for equivalent control-
flows described in FSM-Sequencer DSL.

100 Hardware micro-task synthesis

HLS flow ASIP synthesis flow LoMiTa design-flow

Datapath (DP) selection Iterative (mostly) User-guided (ISA based) User-guided (ISA based)
Instruction selection No Yes Yes
Hardware generation FSM + DP ISA-based processor FSM + DP
Application domain Compute-intensive Compute-intensive Control-oriented

Table 4.1: Comparison of major features of the proposed approach to the existing ones.

to “UGH” approach proposed by Augé et al. [10] that uses a datapath-level abstraction
to help coprocessor generation, our tool is provided with a higher-level (instruction-set
level) abstraction to help the hardware micro-task synthesis. In addition, our approach
may seem similar to the processor specialization of Gorjiara et al. [11], however, our
main goal is to minimize the silicon footprint of the resulting hardware micro-task,
improving performance is only a secondary objective.

As far as comparison to ASIP design-flow is concerned, our tool performs the in-
struction selection and mapping but does not follow the classical object-code and pro-
cessor synthesis path. Instead it generates a micro-coded FSM that is used to control
the micro-task datapath. Table 4.1 compares some of the major features of the three
design-flows.

The hardware micro-tasks generated through our design-flow show good results in
terms of not only power and energy consumption but area cost as well. The details of
experimental setup, application benchmarks and a practical case-study are presented
in Chapter 6. However, the next section provides some results for a control-oriented
task processed through our micro-task generation tool.

4.3 An illustrative example of micro-task synthesis

As it has been discussed by Raval et al. [119], major part of a WSN node workload
consists of communicating with the RF transceiver for data exchange. This data-
exchange is normally performed between the on-chip MCU and the RF transceiver
through SPI-link.

In this section, we present a small example of a C-code to explain the working
of our design-flow. This C-code is a function called sendBeacon() that is used by
a receiver WSN node to send a beacon-frame to a transmitter node through its RF
transceiver. A part of this particular C-code is shown in Figure 4.15. Since this ap-
plication code contains the instructions that directly communicate with the I/O ports
of an RF transceiver, we will take this opportunity to show the specialized instruction
selection of our tool to select the I/O-operand based instructions. We have highlighted
the portion of C-code that will be concentrated upon throughout this example.

The input C-code is processed through the GeCoS front-end and an IR in the form
of a CDFG is generated (as shown in Figure 4.16). This CDFG (IR) is then processed
through instruction selection, bitwidth adaptation and register allocation phases, and a
low-level assembly-like IR is generated. Figure 4.17 shows the IR that corresponds to

An illustrative example of micro-task synthesis 101

for (i = 0; i < 8; ++i) {
(*(volatile unsigned char*)0x04) = sentFrame[i];
while (((*(volatile unsigned char*)0x02) & 0x01) == 0);

}
/**/
// The part of the C‐code under study that communicates
// with the I/O‐ports addressed by 0x01 and 0x04
(*(volatile unsigned char*)0x01) |= 0x01 ;
(*(volatile unsigned char*)0x01) &= ~(0x01);
(*(volatile unsigned char*)0x04) = 0x03;

/***/
while (((*(volatile unsigned char*)0x02) & 0x01) == 0);

(*(volatile unsigned char*)0x01) |= 0x01;
do
{

(*(volatile unsigned char*)0x01) &= ~(0x01);
(*(volatile unsigned char*)0x04) = 0x00;
while (((*(volatile unsigned char*)0x02) & 0x01) == 0);

spiStatusByte = (*(volatile unsigned char*)0x03);
(*(volatile unsigned char*)0x01) |= 0x01;

}

Figure 4.15: A portion C function sendBeacon() under study.

the C-code under study. Here, we can clearly see the I/O-operand based specialized
instructions such as orIOi and movIOi being generated.

This IR is then processed through the hardware generation stage of our tool and it
is converted to its corresponding RT-level EMF-based model of a hardware micro-task
that is further processed through the code-generation step to generate the synthesizable
VHDL description.

4.3.1 Resultant dynamic power and energy savings

We present below a comparison of power and energy consumption of sendBeacon()
task when implemented in hardware (generated through our tool) and in software on a
low-power MSP430F21x2.

The original C-code for sendBeacon() when run on the MSP430-core consumes on
average 278 nJ for one execution while working at 16 MHz. The equivalent hardware
micro-task generated through our tool, for 130 nm technology, consumes only 1.4 nJ
of energy for one execution while working at same frequency. As far as, the power
consumption is concerned, the MSP430-core consumes around 8.8 mW when working
at 16 MHz while the equivalent hardware micro-task consumes approximately 33µW.
As a result, we get a 264 x power while 198.5 x energy gain respectively while executing
the same control task in hardware generated through our tool. More details of our
experimental results are presented in Chapter 6).

102 Hardware micro-task synthesis

Figure 4.16: CDFG representation of the C-code under study.

An illustrative example of micro-task synthesis 103

B27:
jmp B26

B23:
addi %r0, #1
jmp B22

/**/
// B30 corresponds to the highlighted part C-code in Figure 4.15
B30:

orIOi %io0(#1), #1
andIOi %io0(#1), #0
movIOi %io0(#4), #3

/***/

B31:
movi %r1, #2
movi %r0, #1
and @(%r1), %r0
movi %r0, #0
cmp @(%r1), %r0
bne B34

B32:
jmp B31

B34:
orIOi %io0(#1), #1

B36:
movIOi %io0(#1), #0
movIOi %io0(#4), #0

Figure 4.17: Machine-specific intermediate representation of the C-code under study.

As we discussed in Chapter 1, our work consists in a complete design-flow for the
generation of ultra low-power WSN-node controllers. On one hand, our design-flow
consists in a C to RTL VHDL generation of hardware micro-tasks, while on the other
hand, the second contribution of our work consists in developing a design-flow for the
generation of a hardware System Monitor (SM) that is responsible for the scheduling
of these hardware micro-tasks.

Next chapter presents the details about the notion of our system-level execution
model and its features, the corresponding existing work as well as the design-flow for
the synthesis of the SM responsible of implementing this system-level execution model.

104 Hardware micro-task synthesis

Chapter 5

Proposed system model and
design-flow for SM synthesis

This chapter presents the system-level execution model of the computational and con-
trol subsystem of a WSN node based on our approach. We start this chapter by briefly
discussing the existing execution paradigms in embedded systems as our target domain
(WSN systems) is a sub-category of embedded systems. We then continue with de-
scribing the basic system-level view of proposed micro-task-based WSN node. Since
the current WSN node implementations (such as Mica, Mica2, ScatterWeb etc.) are
built on conventional MCUs and they use WSN-specific OS for system-level task man-
agement, the second part of this chapter details the related work done in the domain
of WSN-specific OS. The chapter continues onward with the features of our proposed
execution model and the notion of a hardware System Monitor (SM) that is used to
perform the task- and power- management of a micro-task-based WSN node. Finally,
we conclude this chapter with the details of our design-flow developed for the genera-
tion of an RTL description of the SM from a high-level system description (as shown
in Figure 5.1) and some experimental results about the power and area consumption
of the SM generated for the example presented in Section 1.3.2.

5.1 Basic execution paradigms in a WSN node

The traditional tasks associated to an Operating System (OS) are the control and
protection of resource-access (including support for I/O), and management of resource
allocation to different users. Moreover, the support for concurrent execution of several
processes and their inter-communication is also considered as a job of the OS. These
functionalities are, however, only partially required in an embedded system as code
execution is much more restricted and usually more tightly synchronized than in a
general-purpose system. Moreover, as the description of the microcontrollers has shown,
in Section 2.5, these systems simply do not have the required resources to support a
full-blown OS.

Similarly, an OS or an execution paradigm for WSN nodes should support the

105

106 Proposed system model and design-flow for SM synthesis

Task
C

Task
B

Application

Task
A

Task A Task BTask C

.c .c .c

Compiler
Front-end

Tree-based
Instruction Selection

and Mapping

Task.c

FSM.vhd Datapath.vhd

Custom
Datapath

Model

Micro-Task
Synthesis Design-

Flow

Micro-Task A Micro-Task BMicro-Task C

.vhd .vhd .vhd System
Monitor

.vhd

Hardware Synthesis Tool

Software Tasks

Hardware Micro-Tasks

Final IC

Transistor Level
Insertion of Power

Gating

Proposed Textual
DSL for System-
Level Description

Shared
Mem

CDFG-Level IR

Register
Allocation

Bitwidth
Adaptation

Assembly-Level IR

Datapath
Generation

FSM
Generation

Assembly-Level IR

Code-Generation Tool

EMF-based RTL-Models for
FSM and Datapath

Application.sysdesc

Model
Transformation

System Monitor
Synthesis Design-

Flow

CDFG of
Micro-Tasks

EMF-based RTL-Model for
System Monitor

EMF-based Intermediate
Model of the System

Guard
Expression
Evaluation

SM
Generation

Code-Generation Tool

SM.vhd

EventA

EventB

The design-flow
dicussed in Chapter-5

Figure 5.1: Design-flow for hardware system monitor generation.

Basic execution paradigms in a WSN node 107

Poll sensor

Process sensor
data

Poll RF
transceiver

Process received
packet

... ...

Handle
sensor
process

Handle
packet

process

OS-controlled
process

switching

Task-A

Task-B

Task-C

Task-D

event1

event2

event3

event4

event5

(a) Sequential execution
paradigm

(b) Process-based
execution paradigm

(c) Event-driven
execution paradigm

Figure 5.2: Different execution paradigms for a WSN node system.

specific requirement of these systems. In particular, energy-efficient execution requires
support for energy management. Similarly, external components (e.g. sensors, radio
transceiver, or timers) should be handled easily and efficiently, specially information
that is available asynchronously (at any arbitrary time-instance) must be handled.
There are three possible approaches to handle such tasks in conventional embedded
systems [70]. In the following discussion, we briefly explore these approaches.

5.1.1 Sequential approach

The first and the simplest approach to handle tasks in a system is the sequential ap-
proach. For example, a system could poll a sensor to decide whether some data is avail-
able and process the data right away, then poll the radio to check whether a packet is
available, and process the packet, and so on (as shown in Figure 5.2 (a)). However, such
a simple model risks of missing data while a packet is processed or missing a packet
when sensor information is processed. This risk is particularly large if the sensor-data
processing or incoming-packet processing takes substantial amount of time, which can
easily be the case. Hence, a simple, sequential approach is clearly insufficient.

5.1.2 Process-based approach

Most modern, general-purpose OS support concurrent (quasi-parallel) execution of mul-
tiple processes on a single processor. Hence, such a process-based approach would be
the first candidate to support concurrency in a sensor node as well. The approach
is shown in Figure 5.2 (b) where different processes are run on a single resource (an
MCU) and their switching is controlled by an OS. While indeed this approach works in
principle, mapping such an execution model of concurrent processes to a sensor node

108 Proposed system model and design-flow for SM synthesis

shows however some inherent problems. For example, often the tasks to be executed
in a WSN node are smaller w.r.t. the overhead incurred for switching between tasks.
Also, each process requires its own stack space in memory, which does not fit properly
with the stringent memory constraints of sensor nodes.

5.1.3 Event-driven approach

For these reasons, a relatively different execution model seems more appropriate. The
idea is to take into account the reactive nature of a WSN node. In this case, the system
essentially waits for any event to happen where an event can be the availability of data
from a sensor, the arrival of a packet, or the expiration of a timer and reacts to these
events by performing certain tasks. This approach is called event-driven execution
paradigm. Since all the events are destined for small tasks to be performed, the whole
WSN application can be presented in the form of Task Flow Graphs (TFGs). Such an
approach is presented in Figure 5.2 (c) where different application and control tasks,
present in a system, communicate with each other through events.

5.2 System-level execution model

We use event-driven paradigm as the system-level execution model in our approach.
To give an example, Figure 5.3 shows the TFGs of a lamp switching application, where
a transmitting node demands a receiving node to switch on/off its lamp if a button is
pressed at transmitter end. Figure 5.3 (a) shows the TFG for receive mode when a node
waits for a signal from the transmitter and switches the lamp, whereas Figure 5.3 (b)
presents the TFG for transmit node where a node waits for push-button event and
sends a signal to the receiver to switch the lamp. This application involves several
tasks such as data transmission, data reception, wait for acknowledgment, and timer,
push-button and lamp switching APIs.

All these control-oriented tasks are spread across different layers of the communica-
tion stack and involve further sub-tasks associated to them. For instance, beacon and
data packets transmission and reception involve physical layer functions that exchange
data between I/O peripherals of the MCU and the RF transceiver using SPI-protocol.
The control-flow itself follows a simplified version of RICER, a low-power MAC proto-
col [84]. In typical WSN node, such tasks are handled by an MCU and corresponding
OS that provides support for multi-tasking features.

In our proposed approach, all of the tasks present in such TFGs are executed on
dedicated hardware resources (i.e. the hardware micro-tasks). Figure 5.4 presents a
system-level view of a WSN node platform based on our proposed approach. Such a
system consists of:

� A set of power-gated hardware micro-tasks accessing shared resources (e.g. pe-
ripherals (RF, sensor) and memories (gated/non-gated)). Each of these hardware
micro-tasks is able to perform a specific task such as temperature sensing, pro-
cessing data, sending data to SPI-interface etc.

System-level execution model 109

Timer
100 ms

Ext.Event T

MT1
sendBeacon()

WakeUp Beacon
rIdx, rIdy

MT2

beacon_Sent
receiveData()

Received Data
tIdx, tIdy

MT3

sendAck()

Ack Frame
tIdx, tIdy

data_Received

MT4

lightOn()

Received Data
Previous Data

LED

MT5

turnOff()

timeOut_NoData

ack_Sent

Push
Button

Ext.Event B

MT7
receiveBeacon()

rIdx, rIdy

wait_Beacon

MT8
wait()

Wait time

MT9

received_Beacon

sendData()

Sent Data
tIdx, tIdy
rIdx, rIdy

MT6counter()
Counter period

wait_Done

MT10 receiveAck()

data_Sent

ack_notOK

MT11

turnOff() ack_OK

not_received_Beacon

(a) TFG for receive mode (b) TFG for transmit mode

light_Switched

Figure 5.3: TFGs presenting the tasks running in a lamp switching application.

Micro-task
A

Micro-task
B

Micro-task
C

I/O
 Port

Radio chip
(e.g. : CC2420)

Sensor
(e.g. : heat)

Local
Memory A’

Monitor

Micro-task
D

Local
Memory B’

I/O
 Port

VddVdd Vdd Vdd

Vdd Vdd

E
x. E

vent A

E
x. E

vent B

Int. E
vent A

Int. Event B

Int. Event C

Int. E
vent D

En_A En_B

E
n_C

E
n_DE

n_M
E

M
_A

E
n_M

E
M

_B

Flash
Memory G

Figure 5.4: System-level view of a micro-task based WSN node architecture

110 Proposed system model and design-flow for SM synthesis

� A hardware System Monitor (SM) that controls the execution of all the hardware
micro-tasks. The SM is responsible for the turning-on/off of the hardware micro-
tasks as well as the power-gated memories depending upon their usage. The
detailed architecture, working of the SM and the design-flow for its synthesis are
discussed later in this chapter.

� Event triggering peripherals (such as wake-up radio, timer etc.) that can send
events to the SM.

� A set of memory resources that are used to store the global data shared among
different micro-task. These memories can be power-gated or non-power-gated
depending upon their usage.

Later in this chapter, we will provide the details of the specificities and limitations
of our proposed system-level model and compare them to the features of standard OS-
based WSN implementations. However, to be able to perform this comparison, we
first need to take a closer look at the system-level view and management aspects of
conventional OS-based WSN nodes. In typical embedded systems, concurrency, event
and shared resource management are handled by a real-time embedded OS, which
provides adequate constructs for the programmer (preemptive task scheduling, mutex,
etc.). However, such full featured OSs cannot be implemented in WSN nodes because of
the strong constraints on memory footprint. As a result, several light-weight operating
systems have been developed by the WSN community that handle the power- and task-
management in current WSN nodes. The next section summarizes the features of some
of these WSN-specific OSs.

5.3 WSN-specific OS

Due to strong constraints on memory resources available on a WSN node, several WSN-
specific OSs have evolved that are very light-weight in terms of memory requirement and
can run on low-power embedded MCUs such those discussed in Section 2.5. This section
outlines the characteristics of the most commonly used OS infrastructures targeted at
WSN.

5.3.1 TinyOS

TinyOS [101] is one of the earliest and the most commonly used OS in WSN platforms.
It is a flexible OS built from a set of reusable components that are assembled into an
application-specific system. TinyOS supports an event-driven concurrency model and
uses asynchronous events, and deferred computation called tasks. TinyOS is imple-
mented in the NesC language [44], which supports the TinyOS component and concur-
rency model as well as cross-component optimization and compile-time race detection.

A TinyOS program is a graph of components where each component is an inde-
pendent computational entity that exposes one or more interfaces. Components have
three computational abstractions: commands, events, and tasks. Commands and events

WSN-specific OS 111

are mechanisms for inter-component communication, while tasks are used to express
intra-component concurrency and computation. A command is typically a request to a
component to perform some service, such as initiating a sensor reading, while an event
signals the completion of that service. Commands and events cannot block, rather a re-
quest for service is split-phase i.e. the command returns immediately and the event sig-
nals completion at a later time. Tasks may perform significant computation and follow
a run-to-completion execution-model. This allows tasks to be much lighter-weight than
threads. The standard TinyOS task scheduler uses a non-preemptive, FIFO scheduling
policy. Since TinyOS uses a system of smaller components that are statically linked
with the kernel to form a complete image of the system, so after linking, modifying
the system is not possible. However, in order to provide run-time reprogramming for
TinyOS, Levis et al. have developed Maté [81], a virtual machine for TinyOS devices.
Code for the virtual machine can be downloaded into the system at run-time.

5.3.2 Contiki

Contiki [29] is another WSN-specific OS proposed by Dunkels et al. It features an
event-driven kernel where multi-threading is not present as an inherent feature but can
be implemented as a library that is linked only with programs that explicitly require
it. Contiki is implemented in the C language and has been ported to a number of
microcontroller architectures, including the MSP430 and the Atmel AVR.

A running Contiki system consists of kernel, libraries, program loader, and a set
of processes. A process may either be an application program or a service. A ser-
vice implements a functionality used by more than one application processes. All
processes, both application programs and services, can be dynamically replaced at run-
time. Communication between processes always goes through the kernel. The kernel
does not provide a hardware abstraction layer, but lets device drivers and applications
communicate directly with the hardware.

A Contiki system is partitioned into two parts: the core and the loaded programs
as shown in Figure 5.5. The partitioning is made at compile time and is specific to
the deployment in which Contiki is used. Typically, the core consists of the Contiki
kernel, the program loader, the most commonly used parts of the language run-time
and support libraries, and a communication stack with device drivers for the commu-
nication hardware. The core is compiled into a single binary image that is stored in
the devices prior to deployment. The core is generally not modified after deployment,
even though it is possible to use a special boot loader to overwrite or patch the core.
Programs are loaded into the system by the program loader. The program loader may
obtain the program binaries either by using the communication stack or by using di-
rectly attached storage such as Electrically Erasable Programmable ROM (EEPROM).
Typically, programs to be loaded into the system are first stored in EEPROM before
they are programmed into the code memory. So, the major benefit of Contiki OS over
its competitors is its feature to dynamically load and unload an application program or
service. But there is a question of the efficiency of this process as the number of nodes
in a WSN can go up to 10,000, will it be possible to dynamically update all these nodes

112 Proposed system model and design-flow for SM synthesis

in real-time?

Contiki uses a notion of protothreads. Protothreads are programming abstraction
that provide a conditional blocking statement to simplify the event-driven programming
for memory constrained systems. The operation takes the conditional statement and
blocks the protothread until the statement evaluates to true. If the statement evaluates
to true at the very first time, the protothread continues its execution without being
interrupted; otherwise the protothread is blocked and condition is re-evaluated each
time the protothread is invoked.

In Contiki, protothreads are stack-less i.e. local variable contents are lost whenever
the scheduler switches from one protothread to another. Hence the programmer must
take great care while using such variables inside his program. We have observed that
programmers using Contiki in their WSN system usually avoid using local variables to
reduce complications and due to the fact that they are not familiar with the concept.
For instance, PowWow [64] is an open-source WSN platform, that uses Contiki as OS,
where programmers have completely avoided the use of local variables.

Loaded Program

Comm. Service

Lang. Run-time

Prog. Loader

Kernel

Core

Loaded Program

Comm. Service
Kernel

Core

ROM

RAM

Figure 5.5: System overview of Contiki OS [29] (portioning into core and loaded pro-
grams).

5.3.3 MANTIS OS

The MANTIS Operating System (MOS) [14] uses a traditional multi-threaded ap-
proach. It offers a time-sliced approach in which an interleaved concurrency of multi-
threading is used to prevent one long-lived task from blocking execution of a sec-
ond time-sensitive task. However, a larger memory resource is needed for thread-
management as task preemption requires that the complete stack of the preempted
thread is to be saved. Average stack size of TinyOS is approximately 16 KB and it
does not support multi-threading, while MOS dedicates 128 Bytes/thread having a
multi-threading based kernel.

WSN-specific OS 113

5.3.4 LIMOS

LIMOS [146] is a resource-aware, low-power-consuming and distributed real-time micro-
kernel which is specially designed for the real-time applications. It uses the notions of
event and thread to build a two-level system architecture. It also exploits a two-level
scheduling policy: non preemptive priority based high-level scheduling for events and
preemptive priority-based low-level scheduling for threads. The scheduling scheme is
predictable and deterministic with respect to real-time applications. An event is the
job-unit of LIMOS and a thread is an atomic unit of an event. Threads are the essential
system units, each containing a block of independent program that has a particular
function. A group of relative threads are organized into an event, each containing
the threads that deal with a certain aspect of a system by cooperating with others.
Therefore, LIMOS consists of a set of events and each event contains a number of
relative threads.

LIMOS events follow a run-to-completion semantic without preempting one another
i.e. events are non-preemptive and adopt a priority-based non-preemptive scheduling,
such as Earliest-Deadline-First (EDF) algorithm. On the other hand, LIMOS threads
run in parallel to implement an event by interacting with each other. Hence, threads
are preemptive and thus each one needs a memory to store its context and other status
information. There is a static priority-based preemptive scheduling scheme for threads.
Threads are selected to run in order of priority and the selected thread can preempt
any other lower priority thread at any execution point outside of critical. When the
threads of an active event are running, the threads of other events are not eligible to
obtain CPU resource. This allows events to run to completion. Since threads follow a
static scheduling that is determined prior to run-time, the priorities of threads must be
allocated carefully to avoid a deadlock situation.

5.3.5 SenOS

SenOS [73] is a totally different OS than all the above mentioned OSs due to the fact
that it does not follow a conventional thread-based operation style. It deploys a state
machine based programming model. A state machine has been recognized as a powerful
modeling tool for reactive and control-driven embedded applications. Sensor network
applications are one of those applications that can mechanize a sequence of actions, and
handle discrete inputs and outputs differently according to its operating modes. Being
in a state implies that a system reacts only to a predefined set of legal inputs, produces
a subset of all possible outputs after performing a given function, and changes its state
immediately in a mechanical way.

SenOS has four system-level components:

� an event queue that stores inputs in a FIFO order,

� a state sequencer that accepts an input from the event queue,

� a callback function library that defines output functions,

114 Proposed system model and design-flow for SM synthesis

� a re-loadable state transition table that defines each valid state transition and its
associated callback function. Each callback function should satisfy the run-to-
completion semantics to maintain the instantaneous state transition semantics.
This phenomenon is achieved by using a protected shared resource like mutex.

In SenOS, kernel and callback library are statically built and stored in flash ROM
of a sensor node whereas the state transition table can be reloaded. The SenOS can
handle multiple applications by means of multiple co-existing state transition tables
and provide concurrency among applications by switching state transition tables. Each
state transition table defines an application and during preemption, the kernel saves
the present state of the current application, restores the state of the next application,
and changes the current state transition table.

After presenting the existing related work about the most commonly used OS by
the WSN community, in next section, we present the important features and notions
used in our system-level execution model and compare them wherever possible to those
of conventional OS-based WSN systems.

5.4 Features of our proposed execution model

First of all, we want to clarify that our goal (in this work) is not to propose a new model
of computation for WSN computation subsystem. We rather see our proposed approach
as a simple system-level execution model chosen so as to be a good match for what we
think is a promising architectural solution for WSN nodes. The important notions or
features proposed in our execution model are discussed in the following sections.

5.4.1 Events and commands

In our approach, we use command and event message structures between the SM and
hardware micro-tasks similar to those of TinyOS. A command is an enable signal gen-
erated by the SM toward a hardware micro-task signaling the start of its operation.
On the other hand, an event is a control signal generated by a hardware micro-task to
the SM announcing the termination of its job.

Dotted lines in Figure 5.4, represent command signals driven by the SM to the
micro-tasks and shared memories. Solid lines represent the events sent back to the SM.
Events can be of two types:

� internal event : an event that is generated by a hardware micro-task indicating
its termination or preemption (in case of a sub-routine call).

� external event : an event that is generated by an external peripheral that can
serve as wake-up call from shut-down mode using a timer, arrival of a data packet
at RF interface or a periodic value received at the sensor interface.

Features of our proposed execution model 115

5.4.2 Concurrency management

Both TinyOS and Contiki allow the programmer to express concurrency in their appli-
cations through the use of specialized constructs such as Protothreads for Contiki and
Tasks for TinyOS. One of the goals of such non-standard constructs is to help reducing
context switching and task scheduling overhead.

In our approach, as we rely on several physically distinct hardware micro-tasks, we
provide a natural support for concurrency and task-level parallelism, and do not have
to pay for any context switching overhead. Similarly, scheduling does not have any
execution time overhead, even if taking into account the extra silicon area required by
the SM.

Another advantage of our approach lies in the fact that shared resources such as
memory or I/O ports are much easier to handle than in a standard multi-processor
architecture, thanks to power-gating.

MT2

MT3

Local
Memory

A’

MT2

MT3

Local
Memory

A’

(a) Access control logic in
conventional systems

(b) Access control logic in
our system

Arbiter System Monitor

Figure 5.6: Access control simplicity of power-gated modules.

We introduce a resource constraint in our execution model that no two hardware
micro-tasks sharing write-access to a shared resource can be active (powered-on) at
the same time. Thanks to this constraint, we can save the typical extra tri-state (or
multiplexer) logic used to share data/address bus lines, which results in savings both
in terms of power and area. Figure 5.6 shows this concept while comparing the access
control logic in our system compared to a conventional one.

5.4.3 Task hierarchy

In our execution model, we offer two ways for handling sub-routine calls made within
the C-specification of a hardware micro-task.

The first one is straightforward and consists in inlining the sub-routine calls, this
increases the task granularity and is acceptable for small sub-program calls. The second
one is more complex and consists in generating a new hardware micro-task dedicated
to the sub-program execution. In latter case, the parent (i.e. caller) micro-task invokes
the child micro-task (through the SM). As the child micro-task is also power-gated, it
only marginally contributes to the static power budget, while helping in maintaining a

116 Proposed system model and design-flow for SM synthesis

high level of specialization within the parent task. The data communication between
the parent and the child hardware micro-task is done through shared memory.

5.4.4 Memory management

There are small locally shared memories used by the hardware micro-tasks that can be
power-gated once their corresponding micro-tasks are shut down. We must emphasize
that a system-level model (see Section 5.6) is used to specify that, after the termination
of a given task, which memory was being used by the task and this information is used
to turn the shared memories off. This notion of small power-gated locally shared
memories, instead of a large global one, will also contribute to the overall reduction in
power consumption.

There is also a very small global memory (based on non-volatile flash technology)
that is used to store the global data such as the node-ID, node-address, neighborhood
table and if there is some potential data to be saved by the micro-tasks, in case of local
memory shut-down. Since an always-ON memory can be critical from the point of view
of static power dissipation, we use a non-volatile flash memory to store the needed data
that can be turned-off in case of total node shut-down.

In this extremely low-power mode, only the SM will be powered-on while all the
other components of the micro-task-based computational and control subsystem will
be power-gated. In the next section, we explain the architecture and working of the
SM being used for task- and power-management.

5.5 System monitor (SM)

All the features presented in previous section are made sure by a hardware scheduler
present in our system, called the System Monitor (SM). The SM that is responsible
for powering-on/off micro-tasks/memory blocks upon reception of an (or a combination
of) event(s), is itself implemented as a simple combinational logic block to evaluate the
guard conditions for micro-task activation and a set of 1-bit status registers carrying
the state of events and commands signals until they are used by micro-tasks. Figure 5.7
provides a block diagram of the SM components for the case study example mentioned
in Section 5.1.3.

In our execution model, we restrict ourselves to micro-tasks following a run-to-
completion semantic, as in the case of TinyOS tasks. This ensures that a given micro-
task will never reach a state in which it is activated (i.e. its powered-on) while not
executing useful computation (i.e. blocked waiting for some event).

In addition, we make sure that at a given time instant there may not be two active
tasks sharing a write-access to a same shared resource. This property is ensured (in
a conservative way) by the SM which makes sure that, prior to activating a candidate
hardware micro-task, there are no other active micro-tasks that may need write-access
to a resource that may also be used by the candidate micro-task.

In the remaining part of this chapter, we will explain the design-methodology that

Design-flow for the SM generation 117

en_MT1
en_MT2

en_MT3
en_MT4

en_MT5event_1
event_2

System Monitor

event_3
event_4

event_5

S
R Q

Status RegistersEvent Registers

MT5

System Monitor
Combinational Logic

S R

Q

S R

Q

S R

Q

S R

Q

S R

Q

R Q

S

R Q

S

R Q

S

R Q

S

R Q

S

Figure 5.7: Block diagram of the System Monitor designed for the lamp switching
example of Figure 5.3.

we have devised for the automatic synthesis of the SM from a high-level system de-
scription.

5.6 Design-flow for the SM generation

Figure 5.8 shows the second half of our tool, a design-flow developed for the generation
of the SM that is used to control the system-level behavior of a micro-task-based WSN
node. The basic steps involved in this design-flow are discussed in details in the following
sections.

5.6.1 System specification

We developed a Domain Specific Language (DSL) that is used to specify the system-level
execution model of a WSN node and its components e.g. micro-tasks, event, shared
memories, peripherals, etc. This DSL is developed by using Xtext, the EMF-based
MDE framework.

In order to write a system-level description of a micro-task-based node, we have
to define all the external and internal events present in the system. Moreover, for
each micro-task in the system, we specify its corresponding sub-program name, the
event configuration (whether a single event or a logical combination of events) that is
necessary for the micro-task activation and also the events produced by the micro-task
at its termination. Similarly, for each global variable of the application-code, we specify
which memory block (gated/non-gated) is used as storage component and the shared
I/O ports that are used by the micro-task.

Figure 5.9 shows an example of the system-level description written in DSL. This
description corresponds to a portion of the lamp-switching example shown in Figure 5.3,

118 Proposed system model and design-flow for SM synthesis

Task
C

Task
BTask

A
Proposed Textual
DSL for System-
Level Description

Shared
Mem

Application.sysdesc

Model
Transformation

System Monitor
Synthesis Design-

Flow

CDFG of
Micro-Tasks

EMF-based RTL-Model for
System Monitor

EMF-based Intermediate
Model of the System

Guard
Expression
Evaluation

SM
Generation

Code-Generation Tool

SM.vhd

EventA

EventB

Figure 5.8: Design methodology for system monitor (SM) generation.

Design-flow for the SM generation 119

system send_receive_data {
include "send_receive.gecos" /* Link to CDFG IR of micro‐task synthesis design‐flow */
/***
 * Events existing in the system (both internal and external) *
***/
events { extPB, extET, beacon_Sent, data_Received,

ack_Sent, timeOut0, timeOut1, timeOut2, receiver_OFF, transmitter_OFF,
counter_Start, beacon_Received, data_Sent, ack_OK, ack_NOK, radio_OFF}

/***/
/***
 * Shared memories existing in the system (both gated and permanent) *
***/
memory memB [gated] {

contains globals {neigh_IdX,neigh_IdY, receiveFrame, sentFrame, pushButtonStatus}
};

memory memC [permanent] {
contains globals {my_IdX, my_IdY}

};
/***/
/***
 * Shared I/Os existing in the system *
***/
ioModule led {

contains ports { port LED 8}
};

ioModule pushButton {
contains ports { port PUSHBUTTON 7}

};

ioModule cc2420 {
contains ports { port P2IN 0, port P5OUT 1, port U1TCTL 2, port U1RXBUF 3,

port U1TXBUF 4, port URXIFG1 5, port IFG 6}
};
/***/
/***
 * Hardware micro‐tasks existing in the system *
***/
microTask receiveData {

activates With { beacon_Sent }
produces { data_Received }
reads ioModule { cc2420 }
writes memory { memB }

};

microTask sendBeacon {
activates With { extET }
produces { beacon_Sent }
writes ioModule { cc2420 }
reads memory { memC }

};
}

Figure 5.9: A snapshot of the system-level execution model, of the lamp-switching
example shown in Figure 5.3, described using proposed DSL.

120 Proposed system model and design-flow for SM synthesis

where the important notions of the execution model such as events, shared resources
and micro-tasks are highlighted.

5.6.2 Model transformation

In the second step of the design-flow, the information provided by the system specifi-
cation is processed through our tool and an IR of the system is generated that contains
the EMF-based models of all the important components of our system model such as
the events, the hardware micro-tasks, the shared memory as well as the I/O modules.
This EMF-based IR is also connected to the EMF-based IR (CDFG) of the micro-
task synthesis design-flow for the retrieval of necessary information such as the global
variables and I/O port addresses.

5.6.3 Extraction of guard expression for micro-task activation

Using all these pieces of information present in the IR, we derive the guard expression
for each micro-task activation present in the system.

In simple form, a micro-task TN can only be activated when the following conditions
are met:

� All the internal and external event signals present in TN ’s event configuration (or
their logical combinations) are evaluated to true.

� The event signals (or their logical combinations) present in the event configuration
of a task TM are false where TM is such a micro-task that is sharing a write-access
with TN to a memory or I/O resource.

Using the above mentioned conditions, we derive the following guard expression for
a micro-task TN ’s activation:

CGN
= EAN

&∀TM
not(EAM

)&∀TI
not(EAI

) (5.1)

where EAN
is the event configuration for TN activation, TM is a micro-task sharing

a write-access with TN to a memory resource and TI is a micro-task sharing a write-
access with TN to an I/O resource. The command signals, generated by combinational
logic (see Figure 5.7), that are used to control the status registers are evaluated by
the guard expression derived above. The status registers are in turn connected to the
power-gating ports of the corresponding hardware micro-tasks to control their activa-
tion/deactivation.

5.6.4 Hardware generation

In the final step, using the guard expressions evaluated for different micro-tasks and
shared memories, an RTL EMF-model of a datapath is generated following the generic
template given in Figure 5.7. This model contains the combinational logic for micro-
task/memory activation, a set of 1-bit status and/or event registers that store the

Experimental results of the SM generation design-flow 121

signals until used by the micro-tasks, and I/O pads to communicate with different
components of the system (such as micro-tasks, shared resources and I/O peripherals
generating the events).

This EMF-model of the SM datapath is then processed through the facilities for code
generation provided by the framework (e.g. the JET editor) to generate a synthesizable
VHDL description for the SM.

5.6.5 C-simulator generation for early system validation

To speed-up the system-level validation of a micro-task-based WSN node, we have
used our design-flow to generate a C-simulator for the SM. This C-simulator can be
integrated with the C-codes of the WSN application and can work for an early validation
and debugging for the SM-synthesis design-flow.

Just to demonstrate the power and area consumption of a generic SM generated
through our design-flow, a simple example is presented in next section.

5.7 Experimental results of the SM generation design-
flow

The detailed experimental validation of our design-flow in presented in Chapter 6 with
the help of a case-study. However, just to demonstrate how light-weight an SM can
be in terms of power and area, we wrote the system description of the TFG shown in
Figure 1.4 in our DSL. We then processed this system through our tool and generated
a VHDL description of the hardware SM that controls the activation/deactivation of
the four micro-tasks and the shared memory.

We then synthesized this VHDL description for 130 nm process technology and got
its static and dynamic power consumption as well as the area overhead. According to
the results, the SM hardware consumes 5.15µW of dynamic power while operating at
16 MHz and a mere 296 nW of static power while using standard cell libraries at 1.2 V.
The static power consumption can be further reduced to 80 nW if low-power cell libraries
working at 0.3 V are used for 1-bit registers present in the hardware (see Figure 5.7). As
far as the area overhead of the SM is concerned, it take only 754µm2 that corresponds
to just 1% of the surface area consumed by an MSP430-core synthesized using the same
process technology.

Next chapter contains further details about the experimental setup, the application
benchmarks as well as our methodology for comparing the power/energy benefits of the
proposed approach over a conventional MCU-based WSN-node.

122 Proposed system model and design-flow for SM synthesis

Chapter 6

Experimental setup and results

This chapter presents the experimental setup and the results that we have achieved.
It starts by describing the effects of using power-gating technique in our system and
improvement achieved in wake-up response time. It then covers the dynamic and static
power reductions obtained by our approach as compared to the currently available low-
power MCUs in the light of a case study WSN application. Additionally, it provides
the findings based on the design space exploration that we performed by varying the
sizes and bitwidths of the micro-task datapath components and summarizes the optimal
option. This chapter also provides the results for the power consumption of a hardware
SM controlling the micro-tasks present in the case study and compares them with a
soft-core MCU-based solution. The chapter finally concludes with the analysis of overall
energy gain obtained while using power-gating over an entire period of a power-gated
micro-task activation.

6.1 Power-gating and resultant switching delays

To check the applicability of power-gating in our proposed node architecture, we used
a similar model of power-gated blocks as was used by Hu et al. [59]. However, as the
authors did not provide any quantitative data for the switching delays specific to a
CMOS technology, we had to re-run the experiments.

For this purpose, Eldo from Mentor Graphics was used to perform the transistor-
level SPICE simulations using a 130 nm CMOS technology at a supply voltage of 1.2 V1.
We used parallel NAND gates to model the timing behavior of a gated block (as shown
in Figure 6.1). We observed a linear relation between the number of gates to be power-
gated, n and the gating-transistor width, W . Similarly, a linear relation between n and
output switching delays of the circuit was observed if the width of the gating-transistor
was kept constant. Figure 6.2 shows this relation for a transistor width of 2.04µm.
It means that we are constrained on the number of gates to be driven by a single
gating-transistor, if the switching delays are to be kept small.

1At that time, the design kit in 65nm was not available in the Lab.

123

124 Experimental setup and results

Out1

Out4

Outn-2

In3

In4

Out2

Out5

Outn-1

In5

In6

Out3

Out6

Outn

Vdd

VG Vvdd

Figure 6.1: Parallel NAND gates model used to perform the SPICE transistor level
simulations.

Number of driven gates vs. Output switching delay

0
5

10
15
20
25
30
35
40

1000 2000 3000

Number of gates (#)

D
el

ay
 (n

s)

Figure 6.2: Linear relation between the number of gates being driven by a gating-
transistor and the output switching delay (0 to 1).

On the other hand, if the total number of gates driven by a gating-transistor was
kept constant, an inverse linear relation was found between the width of the gating-
transistor and the output switching delay (as shown in Figure 6.3). This also shows
that if the overall output switching delays are to be kept small, we have to either
increase the width of the gating-transistor or limit the number of gates driven by a
single gating-transistor.

We used a logic block of 3000 gates that is comparable in silicon area to the largest
hardware micro-task present in our case study application and large enough for normal
WSN control tasks (see Section 6.3). Figures 6.4 (a and b) show the turn-off and turn-
on delays for the gate-outputs with a gating-transistor width of 2.04µm. We chose
this width as it permits the reasonable output switching delays with a moderate size of
gating-transistor.

The early results show that we have a turn-on delay of 37.6 ns and turn-off delay

An illustrative WSN application 125

Width of gating transistor vs. Output switching delay

0

20

40

60

80

100

120

0,68 1,36 2,04

W (µm)

D
el

ay
 (n

s)

Figure 6.3: Inverse linear relation between the width of the gating-transistor and the
output switching delay (0 to 1) for (n = 3000).

of 451 ns (between cut-off and active mode). This must be compared with MSP430’s
typical wake-up delay of 1µs from the standby mode [129]. Further work is being
done in our group on accurate modeling and estimation of wake-up delays and wake-up
energy estimations of power-gated clustered [26].

6.2 An illustrative WSN application

In order to perform power, area and energy comparison of our proposed micro-task-
based WSN node with the traditional low-power MCU-based WSN node, we need a
case-study WSN application whose application and control-oriented tasks can be run
on the two platforms. For this purpose, we have to take a closer look at the applications
targeted by WSN technology. Hence, this section starts with a short bibliographical
study of the existing WSN application domains. We then move on to the established
application benchmarks existing for WSN and finally extract a case-study application
for the comparison.

6.2.1 Existing WSN applications

In the last decade, a wide range of application domains for WSN have been developed.
Some of the application areas are environment, military, health, and security. WSN
may include many different types of sensors such as seismic, low sampling rate magnetic,
thermal, visual, infrared, acoustic and radar. These sensors are able to monitor a wide
variety of ambient conditions such as temperature, humidity, lightning, pressure, and
vehicular movements etc [35]. This section details the literature study of some of such

126 Experimental setup and results

(a)

(b)

TOFF = 451.2 ns

TON = 37.6 ns

VG 0->1

Vout 1->0

VG 1->0

Vout 0->1

Figure 6.4: The output turn-on and turn-off delays for (n = 3000).

An illustrative WSN application 127

WSN applications.
Environmental-health monitoring is an important application of WSN. A lot of

research work has been done on the different environmental aspects. Mainwaring et
al. [89] developed a habitat monitoring system that monitors the habitats of birds,
animals and insects. Similarly, forest fire detection and prevention [82], strength mon-
itoring of the civil infrastructures [72], and detection of volcanic eruptions [142] are
some other examples of environment-monitoring WSN systems.

WSN can also be used as an integral part of military Command, Control, Communi-
cation, Computing, Intelligence, Surveillance, Reconnaissance and Targeting (C4ISRT)
systems [4]. The rapid deployment, self-organization and fault tolerance are some char-
acteristics that make WSN a very promising sensing technique for military C4ISRT
systems. Similarly, VigilNet is also a good example of an integrated wireless sensor
node for military surveillance application [52]. VigilNet acquires and verifies informa-
tion about enemy capabilities and positions of hostile targets.

In addition, the benefits of WSN have also been proved in other domains of human
life such as health and home applications ([90], [54]).

6.2.2 WSN application benchmarks

It can be clearly seen that WSN applications consist of a heterogeneous nature as they
are pretty different in their overall goals. However, the basic tasks performed in a WSN
node are quite similar. These tasks are: sensing a certain phenomenon, gathering its
relevant data and forwarding it to a base-station in a pre/post-processed state. Several
attempts have been made to profile the workload of a generic WSN node. Two of the
recent application benchmarks for WSN are SenseBench [97] and WiSeNBench [96].
Both of them covered majority of the general applications and algorithms that can be
run on a typical WSN node.

To cover the OS-task aspect, we also used several of the OS-related control-tasks
such as a next-node calculation function used in multi-hop geographical routing algo-
rithm (similar to that was used in our group by PowWow [64]), and the drivers used
to exchange data with the SPI-interface of RF transceiver such as CC2420. All of the
above-mentioned application and OS tasks provide an adequate database of real-life
WSN applications mostly used by WSN designers.

Using this data-base of application codes, we have generated a simple yet realistic
example of a WSN application example that will serve us the purpose of illustrating
power and energy gains of our approach. The next section discusses in details about
different software tasks that are part of this case study and are used to generate the
hardware micro-tasks through micro-task synthesis design-flow of LoMiTa.

6.2.3 The case study

This section highlights the important control tasks of our lamp-switching WSN ap-
plication (discussed briefly in Section 5.1.3) during transmit as well as receive mode.
The control-flow of the proposed node is based on RICER (Receiver Initiated CyclEd

128 Experimental setup and results

Timer
100 ms

Ext.Event T

MT1
sendBeacon()

WakeUp Beacon (Flash)
rIdx, rIdy (Flash)

MT2

beacon_Sent
receiveData()

Received Data (gated RAM)
tIdx, tIdy (gated RAM)

MT3

sendAck()

Ack Frame (Flash)
tIdx, tIdy (gated RAM)

data_Received

MT4

lightOn()

Received Data (gated RAM)
Previous Data (gated RAM)

LED (I/O peripheral)

MT5

turnOff()

timeOut_NoData

ack_Sent

Push
Button

Ext.Event B

MT7
receiveBeacon()

rIdx, rIdy (gated
RAM)

wait_Beacon

MT8
wait()

Wait time (gated RAM)

MT9

received_Beacon

sendData()

Sent Data (gated RAM)
tIdx, tIdy (gated RAM)
rIdx, rIdy (gated RAM)

MT6counter()
Counter period (Flash)

wait_Done

MT10 receiveAck()

data_Sent

ack_notOK

MT11

turnOff() ack_OK

not_received_Beacon

(a) TFG for receive mode (b) TFG for transmit mode

light_Switched

Figure 6.5: TFGs presenting the micro-tasks running during a lamp switching applica-
tion.

Receiver) MAC protocol [84]. Briefly speaking, data transmission by a transmitter
node is initiated upon reception of a wake-up beacon from the desired receiver node.
Figures 6.5 (a and b) shows the TFGs of the proposed node in transmit and receive
mode, respectively.

6.2.3.1 Tasks running in transmit mode

The basic control tasks running in our WSN node example in transmit mode are as
follows:

� Wait for wake-up beacon: Upon reception of an external event (Ext.Event B) from
push-button or an ack notOK event, the transmitter node checks an internal
counter if it has already achieved the maximum number of attempts to send
a packet according to RICER protocol. We have written a C-function, called
counter(), that actually checks that maximum number. If the counter is in valid
state, a wait Beacon event is generated to start the next task.

� Receiving the beacon frame: The next task in TFG is receiving the beacon, the

An illustrative WSN application 129

transmitter node waits for the wake-up beacon from a receiver. We have written
a C-function, called receiveBeacon(), that actually starts a timer and reads the
data packets received by its RF transceiver through SPI-link. In our example,
we are using CC2420 radio chip from Texas Instrument [131] as RF transceiver.
If the transmitter receives the required wake-up beacon before the timer expiry,
it generates a received Beacon event. Otherwise, a not received Beacon event is
generated by the task.

� Waiting for channel clearance: Upon reception of received Beacon event, the
wait() function is activated. This task waits for a pre-defined wait period accord-
ing to RICER protocol for the communication channel clearance and generates a
wait Done event.

� Sending data: The next task is data transmission that is described in sendData()
function. This function writes data frame to the physical interface of the radio
transceiver through SPI bus and generates a data Sent event.

� Receiving acknowledgment: After sending data, the transmitter node waits for
an acknowledgment frame from the receiver using receiveAck() function. If it
receives the acknowledgment correctly, it generates an ack OK event, otherwise
an ack notOK event is generated.

� Shutting down the transceiver: Upon reception of ack OK or not received Beacon
event, the transmitter node will shut down its RF transceiver to save energy. This
is done through turnOffRadio() function, that sends appropriate signals to RF
transceiver to shut it down.

6.2.3.2 Tasks running in receive mode

The control tasks running on a WSN receiver node of our case study are as follows:

� Sending a wake-up beacon: Our proposed WSN node periodically broadcasts
a wake-up beacon to invite the neighbors to initialize a communication. This
control task waits for an external event Ext.Event T for its activation. This
external event is periodically generated by a hardware timer. The corresponding
C-function for the task is described in sendBeacon() function that generates a
beacon Sent event.

� Receiving and analyzing data: After sending the beacon, the receiver waits for
the data frame from any transmitter. The task is described in receiveData()
function that starts a timer for possible time-out and receives and analyzes the
data frame if it is destined for the receiver node or not. In case of valid data, it
generates data Received event whereas if the timer is expired and no valid data
is received, a timeOut NoData event is generated.

� Sending acknowledgment: Upon successful data reception, the receiver generates
an acknowledgment for the transmitter node by calling sendAck() function that

130 Experimental setup and results

sends an acknowledgment frame to its RF transceiver and generates a ackSent
event.

� Switching the lamp: The next task, in receiver TFG, is switching the lamp that is
accomplished by calling the switchLamp() function. This function analyzes the
previous state of the lamp by reading its corresponding port and inverses it to
switch the lamp state. Then it generates a lamp Switched event.

� Shutting down the transceiver: Upon reception of lamp Switched or timeOut NoData
event, the receiver node shuts down its RF transceiver to conserve energy until
the next periodic wake-up event.

All the tasks present in the TFGs of this case-study were processed through hard-
ware micro-task synthesis design-flow to generate hardware micro-tasks of two different
bitwidths (8-bit and 16-bit). The resultant VHDL descriptions for the specialized hard-
ware were synthesized through back-end commercially available synthesis tools. In next
section, we discuss the synthesis results obtained during our experiments.

6.3 Dynamic power gains

The hardware micro-task (FSM + datapath) VHDL descriptions have been synthesized
for both 130 nm and 65 nm CMOS process technologies using Design Compiler from
Synopsys. We used these synthesis results to extract gate-level static and dynamic
power estimations where an operating frequency of 16 MHz was assumed. These results
were compared to the power dissipated by two different versions of MSP430 MCU:

� tiMSP, the Texas Instruments MSP430F21x2. We used the datasheet information
for its power consumption (8.8 mW @16 MHz in active mode) which includes
memory and peripherals,

� openMSP, an open-source MSP430-core without accounting for program memory,
data memory and peripherals. We synthesized it and did the statistical power
estimation for 130 nm technology and found it to be 0.96 mW @ 16 MHz.

We expect the actual power dissipation of the MSP430-core along with its program
memory to lie somewhere in between the two results, and compare our results to both
of them.

The results are given in Table 6.1 through Table 6.5. Table 6.1 shows the machine-
instruction and cycle count, time taken, power and energy consumption for both tiMSP
and openMSP (for software implementation). Table 6.2 and Table 6.3 show the power
and energy benefits for 8-bit hardware micro-tasks over both the MSP430 implementa-
tions for 130 nm and 65 nm technology respectively. Similarly, Table 6.4 and Table 6.5
summarizes the similar results for 16-bit hardware micro-tasks. Before comparing these
results, we explain the methodology that we used to extract information about the
cycle-count and total execution time.

Dynamic power gains 131

6.3.1 Extraction of cycle count

The MSP430 ISA consists of several complex instructions and addressing modes that
have multi-cycle execution time. There are two techniques to profile an application
running on an MCU: (i) simulation-based technique and (ii) statistical technique.

In simulation-based technique, we use the instruction-set simulator (ISS)) of the
MCU under-test that contains a counter to accumulate the number of cycles used by
each machine instruction. We then simulate the byte-code contained in the instruction
memory to accumulate the cycle count taken by the input code. The approach gives us
the exact number of clock-cycles being used by an application code on a certain MCU.

In statistical technique, we statistically analyze assembly-level machine-code of the
application and estimate an approximate value of cycle count as the exact control-flow
of the application (such as the loops and branches) is not explored.

We used the statistical approach to get an approximate cycle count of the appli-
cation codes of the micro-tasks running on an MSP430-core. Since, the application
codes of some micro-tasks such as sendFrame(), swithLamp() or receiveFrame() in-
volve communications with the I/O-peripherals (e.g. lamp and RF-transceiver) through
I/O-ports, it is difficult to simulate their behavior using an ISS for the MSP430. As
a consequence, we statistically added the number of cycles taken by all the machine
instructions by analyzing them one-by-one. To handle the control-flow of the applica-
tion (such as if -blocks and for -loops), we accumulated the cycles taken by both the
branches of an if -block and accumulated the clock-cycles taken by all the instructions
present in a for -loop for only one iteration.

Similarly, the cycle count for the hardware micro-task is also performed using the
statistical technique where the number of clock-cycles taken is equal to the number of
FSM-states present the hardware micro-task.

Finally using this information about the approximate cycle count and a given com-
mon operating frequency, the total execution time for a micro-task running on the
MSP430 as well as implemented in hardware as a hardware micro-task was estimated.

Going back to Table 6.2 through Table 6.5, it can be observed that, for different
benchmark applications and OS tasks, our approach gains between one to two orders
of magnitude in power and energy consumption. As it was discussed in Section 2.5.3,
the other important parameter for a low-power MCU is its energy efficiency in terms
of Joules/instruction. The energy efficiency of our approach is discussed in the next
section.

6.3.2 Approximate energy efficiency

As mentioned by Hempstead et al. [53] that the energy efficiency measurement for
the accelerator-based (hardware specialization) implementations are hard to evalu-
ate in terms of Joules/instruction. Hence, they introduced the notion of Joules/task.
Similarly, as the hardware micro-tasks generated through our design-flow are also not
instruction-set processors, their exact energy-efficiency in terms of “Joules/instruction”

132 Experimental setup and results

MSP430
Task Instr. Clk time Power Energy
Name Count Cycles (µs) (mW) (nJ)

tiMSP openMSP tiMSP openMSP

crc8 30 81 5.1 8.8 0.96 44.9 4.9
crc16 27 77 4.8 8.8 0.96 42.2 4.6

tea-decipher 152 441 27.5 8.8 0.96 242 26.4
tea-encipher 149 433 27.0 8.8 0.96 237.6 26

fir 58 175 10.9 8.8 0.96 96 10.4
calcNeigh 110 324 20.2 8.8 0.96 177.7 19.4
sendFrame 132 506 31.6 8.8 0.96 278 30.3

receiveFrame 66 255 15.9 8.8 0.96 139.9 15.2

Table 6.1: Power/energy consumption of MSP430 for different application tasks (@
16 MHz).

8-bit Micro-task
Task No. timePowerEnergy P. Gain E. Gain Area Eq. No. E.Eff.
Name States (µs) (µW) (pJ) (x) P1/P2(x) E1/E2 (µm2) Nand Gates(pJ/Inst.)

crc8 71 4.4 30.09 132.4 292/32 339/37 5831.7 730 4.4
crc16 103 6.4 46.92 300.3 187/20.4 140.5/15.3 8732.5 1092 11.1

tea-decipher 586 36.6 84.5 3090 104/11.4 78/8.55 19950 2494 20.3
tea-encipher 580 36.2 87.3 3160 101/11 75/8.2 20248 2531 21.2

fir 165 10.3 75.3 775.6 116/12.8 123.8/13.413323.7 1666 13.3
calcNeigh 269 16.8 74.3 1248.2 118/12.9 142.4/15.514239.4 1780 11.3
sendFrame 672 42 33.3 1400.3 264/28.8 198.5/21.7 10578 1323 10.6

receiveFrame 332 20.7 27.3 565 322/35 247.6/26.7 5075.3 635 8.5

Table 6.2: Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16 MHz,
130 nm). Here, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas
P2 and E2 are the power and energy gains w.r.t. openMSP.

can not be measured.

However, since these micro-tasks are comparable to the MSP430 in terms of their
overall execution time, we used the instruction count for MSP430 implementation from
Table 6.1 and the actual energy consumptions of the hardware micro-task (for each
application and control task) to calculate equivalent energy efficiency for them. The
values are given in the last column of respective tables (Table 6.2 through Table 6.5).
It can be observed that even if the operating voltage is neglected, our hardware micro-
tasks are better (in terms of energy efficiency) than the WSN-specific subthreshold
processors that are manually designed and optimized for ultra low-power WSN domain.
In addition, if we scale the results using a common subthreshold voltage then we would
do a lot better than these approaches. Table 6.6 reflects this fact where the actual and
normalized energy efficiencies of various WSN-specific processors are compared with
that of an average hardware micro-task.

Dynamic power gains 133

8-bit Micro-task
Task No. timePowerEnergy P. Gain E. Gain Area E.Eff.
Name States (µs) (µW) (pJ) (x) P1/P2(x) E1/E2(µm2)(pJ/Inst.)

crc8 71 4.4 8.0 35.3 1095/32 1272/37.3 1762 1.2
crc16 103 6.4 12.4 79.2 710/20.6 532.8/15.5 2678 2.9

tea-decipher 586 36.6 22.6 827 389/11.32 292.6/8.6 6138 5.4
tea-encipher 580 36.2 23.3 845 377/10.99 281/8.27 6230 5.6

fir 165 10.3 20.4 209.7 432/12.54 458/13.3 4124 3.6
calcNeigh 269 16.8 20.1 337.8 437/12.73 526/15.4 4454 3.1
sendFrame 672 42 8.84 371.3 995/29 748/21.7 3434 2.8

receiveFrame 332 20.7 7.4 53.2 1189/34.6 913/26.8 1561 0.8

Table 6.3: Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16 MHz, 65 nm).
Here, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are
the power and energy gains w.r.t. openMSP.

16-bit Micro-task
Task No. timePowerEnergy P. Gain E. Gain Area Eq. No. E.Eff.
Name States (µs) (µW) (pJ) (x) P1/P2(x) E1/E2(µm2)Nand Gates(pJ/Inst.)

crc8 71 4.4 55.3 242.6 159.6/17.4185.1/20.2 10348 1294 8.1
crc16 73 4.56 55.0 251.0 159.8/17.4168.1/18.3 10280 1285 9.3

tea-decipher 308 19.2 152.8 2940 57.6/6.2 82/9 27236 3405 19.3
tea-encipher 306 19.1 152.3 2910 57.8/6.3 81/8.93 27069 3384 19.5

fir 168 10.5 144.2 1514 61.02/6.7 63.4/6.9 23547 2944 26.1
calcNeigh 269 16.8 142.4 2392 61.8/6.7 74.3/8.1 24745 3094 21.7
sendFrame 672 42 58.1 2440 151.5/16.5 114/12.4 14863 1858 18.5

receiveFrame 332 20.7 50.0 1036 175.8/19.2 135/14.7 9485 1183 15.7

Table 6.4: Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16 MHz,
130 nm). Here again, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas
P2 and E2 are the power and energy gains w.r.t. openMSP.

16-bit Micro-task
Task No. timePowerEnergy P. Gain E. Gain Area E.Eff.
Name States (µs) (µW) (pJ) (x) P1/P2 (x) E1/E2(µm2)(pJ/Inst.)

crc8 71 4.4 14.71 64.72 598.2/17.4 693.7/20.3 3097 2.1
crc16 73 4.56 14.69 66.98 599/17.4 630/18.4 3102 2.5

tea-decipher 308 19.2 40.85 784.3 215.4/6.3 308.5/9.04 8380 5.1
tea-encipher 306 19.1 40.61 776.0 216.7/6.3 306.2/9 621 5.2

fir 168 10.5 39.03 409.8 225.5/6.56 234.3/6.8 7164 7.0
calcNeigh 269 16.8 38.58 648.1 228/6.4 274/8 7613 5.9
sendFrame 672 42 15.53 652.2 566.6/16.5 426/12.52 4771 4.9

receiveFrame 332 20.7 13.67 283.0 643.7/18.72 494/14.42 2858 4.3

Table 6.5: Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16 MHz,
65 nm). Here again, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas
P2 and E2 are the power and energy gains w.r.t. openMSP.

134 Experimental setup and results

Processor Operating Actual Energy Normalized Energy Process
Voltage (pJ/instruction) (pJ/instruction) Technology

(V) (@ 0.50V)

SNAP/LE [31] 0.60 75 52 180

RISC-like core [79] 0.50 27 27 65

Charm [123] 1.03 96 23 130
BlueDot [119] NA 26 NA 130

Hardware micro-task 1.20 12.4 2.2 130

Table 6.6: Actual and normalized energy-efficiencies for various ultra low-power WSN-
specific processors.

Bit Register RAM ROM ALU Power Area
Width File Depth Depth Fns. (µW) (µm2)

Depth 130 nm 65 nm 130 nm 65 nm

8 4 4 4 8 57 16.76 7635 2159
8 8 0 8 6 49.7 14.17 7038 2093
8 16 0 2 4 69 20.2 11163 3387
8 4 2 2 2 42 12.23 6160 1617
8 16 2 4 6 93 26.8 13098 4034
16 8 0 4 6 99 27.8 13184 4013
16 4 4 4 8 116 34.05 14423 4199
16 16 0 2 4 139.5 40.73 21590 6555
16 4 2 2 2 88 25.62 11715 3251

Table 6.7: Power consumption for datapaths having different design parameters (@
16 MHz).

6.4 Design space exploration for datapath bitwidth

Our proposed software design-flow was used to generate hardware micro-tasks having
both 8-bit and 16-bit datapaths to monitor the power savings as compared to commer-
cial MCUs such as the MSP430.

We synthesized the customized datapaths of different hardware micro-tasks ex-
tracted from the above-mentioned benchmarks. The synthesis was again performed
for both 130 nm and 65 nm CMOS technologies and the power and area estimations are
given in Table 6.7.

6.4.1 8-bit vs. 16-bit micro-task

The application codes under study have different wordlength operations. For example,
the application crc16 mostly uses 16-bit wordlength operations while operations in tea-
decipher and tea-encipher involve 32-bit wordlength data. The rest of the applications
under-test use 8-bit wordlength operations.

As expected, for application codes, having wordlengths greater than 8-bit, an 8-
bit micro-task has twice the number of FSM states than a 16-bit micro-task due to
the bitwidth adaptation step of our design-flow. However, interestingly the FSM of a
micro-task consumes much lesser power than the datapath and power consumption of

Power estimation of hardware system monitor 135

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

Number of FSM States

P
ow

er
 (

m
ic

ro
−

w
at

ts
)

Figure 6.6: Power consumption vs. number of states of a micro-task FSM.

even very large FSMs increases in a sub-linear fashion with the number of states as
shown in Figure 6.6.

As a result, an 8-bit micro-task consumes nearly half the power and silicon area
than a 16-bit micro-task (Figures 6.7 (a and b)). As far as the energy consumption is
concerned, for codes having wordlengths greater than 8-bit, total energy consumption
of an 8-bit and 16-bit micro-task is nearly the same. On the other hand, for application
codes having 8-bit wordlength, an 8-bit micro-task consumes half of that of a 16-bit
micro-task, (as shown in Figure 6.7 (c)).

Hence, as the datapath power dominates the FSM power in our case study, an
8-bit micro-task is a better solution. Nevertheless, for cases where FSMs could be
comparatively much larger and consume more power than the datapath, micro-tasks
having larger bitwidth would become more suitable.

6.5 Power estimation of hardware system monitor

To compare the power consumptions and potential area overhead of a hardware system
monitor (SM), we wrote a system-level description of the TFGs present in our case-study
application using our DSL. Then we used our design-flow for the SM synthesis to process
this system-level description and generated an RTL description of the SM controlling
the hardware micro-tasks, I/Os and memory modules present in our proposed WSN-
node (similar to the one shown in Figure 5.4).

6.5.1 Dynamic power consumption

The VHDL description of the hardware SM was synthesized for 130 nm process tech-
nology. The results show that it consumes only 12µW at an operating frequency of
16 MHz and since the average active period of a WSN node is quite low (less than
1% of the overall duty cycle), this power consumption is negligible as compared to an
OS-based scheduler running on an MSP430 that consumes between 8.8 mW (tiMSP)
to 1 mW (openMSP).

136 Experimental setup and results

Figure 6.7: Comparison of power, area and energy consumption for 8-bit and 16-bit
micro-tasks.

Effects of low duty-cycle and overall energy gain 137

Pact MSP = 8.8 mW

P
ow

er

time

Tperiod = 100 ms

Tact MSP =
31.6 µs

Ton MSP = 1µs Toff MSP = 1µs

Pact MT = 33.34 µW
Ton MT = 38 ns Toff MT = 450 ns

Tperiod = 100 ms

Tact MT =
42 µs

Tstby MSP =
99.96 ms

Tslp MT = 99.957
ms

Figure 6.8: Time distribution of sendFrame task duty cycle.

6.5.2 Static power and area overhead

As far as the static power consumption of the synthesized SM is concerned, it consumes
approximately 600 nW of static power when implemented with standard cell library. It
is worth-noticing that the major part of this static power is consumed due to the various
1-bit flip-flops present in the SM. For the sake of exploration, we experimented with
different available cell libraries (e.g. general purpose, low-power etc.) and different
levels of VDD. We found out that even using the standard cell libraries and just by
lowering the VDD to 0.3 V (the minimum voltage for data retention), the static power
consumption of the SM can be reduced to approximately 150 nW whereas the static
power consumption of the MSP430 is around 1.54µW (from the datasheets).

Similarly, if we look at the area overhead of the hardware SM used in our case-
study example, it is only 1710µm2 that corresponds to only 2% of area consumed by
an openMSP-core synthesized for the same process technology.

Looking at these power and area results, obtained for the hardware SM, it is quite
evident that for an area overhead of only 2%, we are gaining approximately 10x in terms
of static power consumption whereas the dynamic power consumption of the hard-
ware SM is negligible as compared to an equivalent OS-based software implementation.
However, we must take into account the static power consumption of the power-gated
hardware micro-tasks present in the system. The effects of static power consumption
of a hardware micro-task on the overall energy gain during a micro-task activation is
discussed in the next section.

138 Experimental setup and results

6.6 Effects of low duty-cycle and overall energy gain

As mentioned earlier, a WSN-node has a very low active duty-cycle. If we look at
Tables 6.2 through Table 6.5, they show the energy gains of the proposed technique
during the active period only, whereas the overall energy gain of a micro-task-based
WSN node can be obtained if complete time period of a task activation and the static
energy dissipation during stand-by mode is considered.

Figure 6.8 shows the simplified version of time distribution for sendFrame task
activation having a wake-up time period of 100 ms which means that our transmitting
node is sending a packet to the RF transceiver through SPI-bus every 100 ms. Such a
task can be considered as highly reactive w.r.t. WSN application domain. It can be
can clearly observed that the node has a pretty low duty cycle (even less than 1% of the
whole time period). The switching delays of the MSP430 are taken from its datasheet
whereas those of the micro-task block from the Section 6.1.

The overall energy gain of our approach over the MSP430 can be presented by the
following expression:

Gaintot =
Eactmsp

+ (Pstbymsp
× Tstbymsp

) + (1
2Pactmsp

× (Tonmsp
+ Toffmsp

))
Eactmt + (Pslpmt × Tslpmt) + (1

2Pactmt × (Tonmt + Toffmt))
(6.1)

where

� Eactmsp
is the dynamic energy of the MSP430 (given in Table 6.1),

� Pstbymsp is the static power consumption of the MSP430,

� Tstbymsp
is the time spent in standby mode by the MSP430,

� Pactmsp is the dynamic power of the MSP430 (given in Table 6.1),

� Tonmsp
is the turn-on delay of the MSP430 (given in [129]),

� Toffmsp
is the turn-off delay of the MSP430 (given in [129]),

� Eactmt
is the dynamic energy of the micro-task (given in Table 6.2)

� Pslpmt
is the static power consumption of the micro-task,

� Tslpmt is the time spent in sleep mode by the micro-task,

� Pactmt
is the dynamic power of the micro-task (given in Table 6.2),

� Tonmt is the turn-on delay of the micro-task (c.f. Section 6.1),

� Toffmt
is the turn-off delay of the micro-task (c.f. Section 6.1).

The MSP430F21x2 consumes approximately 1.54µW in stand-by mode having a
512 Bytes of RAM. The static power of a micro-task in power-gated mode depends
on the size of its RAM. We considered the same static power consumption (as that of
the MSP430) for a micro-task and just scaled it down since a micro-task needs much
smaller global memory (6 Bytes on average, see Table 6.7). Hence, average static power
consumption of a micro-task would be around 18 nW.

Effects of low duty-cycle and overall energy gain 139

Considering this static power, a time period of 100 ms and using the expression
derived above, we calculated the overall energy gain for sendFrame micro-task over a
complete period of task-activation. As a result, we gain approximately 138 x over the
MSP430.

To conclude, as our system uses much lower power in sleep mode (thanks to power
gating) and relatively shorter output switching delays than a low-power MCU (e.g. the
MSP430), one to two orders of savings in energy are obtained when a complete period
of a WSN task activation is considered. With these results, we close our discussion on
experimental setup and results obtained for static and dynamic power consumptions of
hardware the micro-tasks and the SM generated through our design-flows.

In next chapter, we conclude the work presented in this thesis and draw some future
research directions.

140 Experimental setup and results

Chapter 7

Conclusion and future
perspectives

WSN is a fast evolving technology with a number of potential applications in various
domains of human-life. Structural-health and environmental monitoring, medicine, mil-
itary surveillance, smart environments and robotic explorations can be some examples
of these domains. Recent advancements in mechanics, wireless communication, and
digital electronics have enabled us to develop low-cost, low-power and multi-functional
sensor nodes that are small in size and communicate efficiently over short distances.
Systems of 1000s or even 10,000s of such nodes are anticipated.

WSN nodes are low-power embedded devices consisting of processing subsystem (an
MCU connected to a RAM and/or flash memory), wireless communication subsystem
(RF transceiver), power supply subsystem (power source and DC-DC converter) and
sensory subsystem (sensor/actuator). Since WSN nodes must be small in size due to
limited production cost, it is not possible to provide them with large power sources.
In most cases they must rely on non-replenishing (e.g. batteries) or self-sufficient (e.g.
solar cells) sources of energy. Hence, ultra low-power becomes the most critical design
metric for a WSN node. It is also supported by the fact that WSN nodes may have
to work unattended for long durations due to a large number of deployed nodes or a
difficult access to them after deployment.

If we analyze the power consumption profile of a generic WSN node, among all of its
subsystems, communication and computation subsystems consume bulk of the node’s
available power-budget. As a result, in this work, we targeted the power optimization
of the computational subsystem of a WSN node.

As far as their design is concerned, WSN node computational and control subsys-
tems have until now been based on low-power MCUs such as the MSP430 from Texas
Instruments, the ARM Cortex-M0 by ARM and the ATmega128L from Atmel Cor-
poration. These programmable processors provide a reasonable processing power with
low power consumption at a very affordable cost. Most of such MCU-packages also
offer a limited amount of RAM (from a few hundred Bytes to a few kilo-Bytes) and
non-volatile flash memory.

141

142 Conclusion and future perspectives

However, these processors are designed for low-power operation across a wide range
of embedded system application settings. As a consequence, they are not necessarily
well-suited to WSN node design as they are based on a general purpose, monolithic
compute engine. On the software end, WSN nodes generally rely on a light-weight OS
layer to provide concurrency management for both external event handling and/or ap-
plication task management. Eventually, power dissipation of current low-power MCUs
still remains orders of magnitude too high for many potential applications of WSN.

We believe that the hardware specialization is an interesting way to further improve
energy efficiency: instead of running the application/OS tasks on a programmable
processor, we propose to generate an application specific micro-architecture, tailored
to each task of the application at hand. We proposed such an approach where a
WSN node computation subsystem is made of several hardware micro-tasks that are
activated on an event-driven basis, each of them being dedicated to a specific task
of the system (such as event-sensing, low-power MAC, routing, and data processing
etc.). By combining hardware specialization with power reduction techniques such as
power-gating, we drastically reduced both dynamic (thanks to specialization) and static
(thanks to power-gating) power consumption.

In addition, our proposed micro-task-based WSN node contains a hardware sched-
uler, called system monitor (SM) to perform the task/power-management.

The key contributions of this research work can be described as under:

� We demonstrated using transistor-level SPICE simulations the potential benefit of
power-gated specialized hardware and thus proposed the concept of “power-gated
hardware micro-tasks”.

� We thus showed that power-gating is applicable to our micro-task-based WSN
node architecture and it happens to have very short switching-time delays, in the
orders of a few hundred of nano seconds for the larger micro-tasks. This improves
the wake-up response time by at least 50% when compared to low-power MCUs
such as the MSP430.

� We provided an integrated design-flow for the synthesis of micro-task-based WSN
node architectures. In this flow, the behavior of each micro-task is specified in C
and is mapped to an RTL description of an application specific micro-architecture
using a hybrid of retargetable ASIP-synthesis and HLS design methodologies.

� We also provided a DSL that can be used to specify the system-level description
of WSN node (following an event-driven TFG). The second part of our design-
flow, using this system-level description, generates hardware description for the
SM that is used to control the activation and deactivation of the power-gated
micro-tasks present on the WSN node.

� With the help of a simple yet realistic case-study of a WSN application, we showed
that our approach provides power savings of one to two orders of magnitude in
dynamic power when compared to the power dissipation of currently available
MCU-based solutions.

Work in progress 143

� We also used our design-flow to perform design space exploration by exploring
the trade-off in power/area that can be obtained by modifying the bitwidth of
the generated micro-tasks, and compared the obtained results to those achieved
by using an off-the-shelf low-power MCU such as the MSP430.

� Using the SM generation design-flow, we demonstrated that the hardware SM
generated to control the micro-tasks and shared memories of our case-study appli-
cation provides 10x reduction in static power and a negligible amount of dynamic
power when compared to MCU-based solution. Moreover, the area overhead of a
hardware scheduler is only 2% of the surface area of an MSP430-like core.

After enumerating the key contributions and results obtained during the course of
this work, we take this opportunity to discuss some of the on-going advancements and
future perspectives of current research work.

7.1 Work in progress

At the moment we are working on two different aspects of this research work. First one
is the network-level validation of a micro-task-based WSN node. In our opinion, the
generation of a C-simulator for the micro-tasks, that can be integrated in the existing
C-simulators for WSN, is among the fastest ways to perform validation and debugging.
There exist C-simulators for wireless sensor nodes and networks, such as WSim [62]
and WSNet [63] that can be used for this validation. The basic approach is shown in
Figure 7.1 where the C-simulators for different low-power MCUs and RF-transceivers
are already developed in WSim. We are currently working on adding WSim-compatible
C-simulator generation step to our design-flow for micro-task generation.

The second issue is the lack of programmability. Our approach has an obvious draw-
back: it assumes that the micro-tasks are hard-wired into silicon as ASIC blocks. This
means that the behavior of each micro-task is fixed, making post-production upgrade
or bug fixing very costly. This may look like a show stopper, as flexibility is often of a
great concern for WSN system designers. However, when looking more carefully to ac-
tual design practices, we can observe that the need of flexibility and reprogrammability
is essentially geared toward the user application layer, which happens to represent only
a small fraction of the WSN node processing workload, this latter one being almost
entirely dedicated to the communication stack.

Besides, in practice, designing a new WSN application usually means adapting a
proved existing WSN software framework to a new user application. In other words, the
communication stack software is generally reused “as is” and routing algorithms, MAC
protocols, device driver layers remain the same (even if their behavior is parameterized).
We therefore propose to combine the best of both worlds, that is:

� use a very small silicon footprint instruction-set processor (8-bit datapath, min-
imalistic RISC instruction set) with a power-gating feature to implement the
application layer user software,

144 Conclusion and future perspectives

Hardware Micro-
Task

(Wsim-compatible
C Simulator)

CC1100
(C Simulator)

Node A

SPI Bus

MSP430
(C Simulator)

CC1100
(C Simulator)

Node B

SPI Bus

WSNet

WSim

WSim

Figure 7.1: Network level validation of micro-task-based WSN node using WSim and
WSNet.

� use a distributed system of micro-tasks to handle the OS-level services of the
WSN node (mostly the communication stack).

Such an approach would preserve most of the power/energy savings provided by
specialization, while preserving programmability at the user application level. Fig-
ure 7.2 shows the block diagram of a computation/control subsystem based on the
above-proposed approach while Figure 7.3 shows the modified version of WSN node
based on our approach after considering the issue of programmability.

We are currently working on the integration of our micro-task-based SoC to an
MCU-based platform. A circuit in 65 nm process technology is under design and will
be send to foundry around mid-November. It includes an openMSP -core and a basic
micro-task for data-frame generation. We are also developing an interface between
the MSP430 and our micro-task-based SoC. Beside this on-going work, there are some
future perspectives as well that are discussed in the next section.

7.2 Future perspectives

Our approach generates a micro-task-based computation and control subsystem that
is comparable in silicon area to an MCU-based approach with a relatively lower static
power consumption (thanks to power gating).

However, it can be interesting to explore some ideas to further reduce the silicon
area of a micro-task-based WSN node. Some of these ideas are discussed in the following
paragraphs.

Future perspectives 145

SW. Infrastructure

HW. System Monitor

Computation Subsystem

MCU Micro-Task
based SoC

Application Layer

Network Layer

Link Layer

Mac Layer

Physical Layer

Figure 7.2: Proposed solution to tackle the issue of loss of reprogrammability.

MT4 MT3

Memory
M1

VddVdd

Vdd

light_S
w

itched

ack_S
ent

en_M
T4

en_M
T3

en_M
EM

_A

Application
core (MPU)

Vdd

E
n_M

P
U

Timer

I/O Port

LE
D Memory

M2

Vdd

I/O Port

R
ad

io
 c

hi
p

(e
.g

. C
C

24
20

)

Memory
M3

Vdd Vdd

System Monitor

MT7 MT9

E
xt. E

vent T

en_M
T7

received_B
eacon

en_M
T9

data_S
ent

I/O
 P

ort

Push Button

E
xt. E

vent B

I/O
 P

ort

M
P

U
_finish

en_M
E

M
_B

en_M
E

M
_C

Vdd

Figure 7.3: System-level view of a micro-task based WSN node architecture

146 Conclusion and future perspectives

Reconfigurable SoC

It will be interesting to study the portability of our approach on control-oriented recon-
figurable structures, which would provide support for small grain power-gating tech-
niques. Small grain partial power gating does not exist till now in commercial FPGAs
but some work has been done in academics on this aspect [118].

Datapath merging

Datapath merging [94] has been used in reconfigurable architecture design to save the
overall surface area. It could be interesting to study the feasibility of developing a
hardware-OS based MSP430. In such an approach, the designed MSP430-core can work
in two modes: (i) general-purpose mode and (ii) specialized mode. In general-purpose
mode, the MSP430-core would perform the application-layer tasks of the communica-
tion stack. For lower layers of the communication stack, the MSP430-core would be
used in specialized mode implementing a hardware-OS where the MSP430-datapath
components such as the register file, and the ALU-operators could be used by the
hardware micro-task FSMs generated through our design-flow to perform the control-
oriented tasks such as event sensing, routing, packet processing and forwarding, etc.
In this hardware-OS based MSP430, a fine-grain datapath merging could be applied to
merge the datapath components present in hardware micro-tasks (generated through
our design-flow) and the MSP430-datapath.

Since the hardware micro-tasks are power-gated, there will not be any extra cost
for adding the multiplexers that are needed at the input of conventional datapath
components being merged.

With some of the possible future perspectives discussed above, we conclude this
manuscript with the publications extracted from this research work.

Personal publications

International conferences

� Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “System Level Synthe-
sis for Ultra Low-Power Wireless Sensor Nodes”, EuroMicro DSD’10, Lille France,
September 2010.

� Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “A Complete Design-
Flow for the Generation of Ultra Low-Power WSN Node Architectures Based on
Micro-Tasking”, ACM/IEEE DAC, Anaheim CA USA, June 2010.

� Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “A Novel Approach
for Ultra Low-Power WSN Node Generation”, IET ISSC, Cork Ireland, June 2010.

� Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “Toward Ultra Low-
Power Hardware Specialization of a Wireless Sensor Network Node”, IEEE IN-
MIC, Islamabad Pakistan, December 2009 (Best Student Paper Award).

� Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “Ultra Low-Power
FSM for Control Oriented Applications”, IEEE ISCAS, Taipei Taiwan, May 2009.

National workshops

� Muhammad Adeel Pasha, Steven Derrien, Olivier Sentieys, “Ultra Low-Power
FSM for Sensor Networks”, GDR SOC-SIP, Paris France, June 2009.

147

148 Conclusion and future perspectives

List of acronyms and
abbreviations

ADC Analog to Digital Converter
ADL Architecture Description Language
ALAP As Late As Possible
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ASAP As Soon As Possible
ASIP Application Specific Instruction-set Processor

BURS Bottom Up Re-writing System
BURG Bottom Up Re-writing system Generator

CAN Controller Aea Network
C4ISRT Command, Control, Communication, Computing, Intelligence,

Surveillance, Reconnaissance and Targeting
CDFG Control Data Flow Graph
CGS Coarse Grain Scheduling
CMOS Complementary Metal-Oxide Semiconductor
COTS Commercially Off The Shelf
CPU Central Processing Unit
CVS Clustered Voltage Scaling

DAG Directed Acyclic Graph
DC Direct Current
DFG Data Flow Graph
DPU Data Path Unit
DSL Domain Specific Language

EDF Earliest Deadline First
EEPROM Electrically Erasable Programmable ROM
EMF Eclipse Modeling Framework

149

150 Conclusion and future perspectives

FDLS Force Directed List Scheduling
FDS Force Directed Scheduling
FFT Fast Fourier Transform
FGS Fine Grain Scheduling
FPGA Field Programmable Gate Arrays
FPU Floating Point Unit
FSM Finite State Machine
FSMD FSM with Datapath

GA Genetic Algorithm
GeCoS Generic Compiler Suit

HAL Hybrid ALlocation
HLL High Level Language
HLS High Level Synthesis

IAPO Interconnect Aware Power Optimized
I2C Inter Integrated Circuit
ILP Instruction Level Parallelism
I/O Input/Ouput
IR Intermediate Representation
ISS Instruction Set Simulator
ISA Instruction Set Architecture
ISE Instruction Set Extension

JET Java Emitter Template

LEA Left Edge Algorithm
LoMiTa ultra Low-power Micro-Tasking
LoS Line of Sight

MAC Medium Access Control
MCU Micro-Controller Unit
MDE Model Driven Engineering
MEMS Micro Electro Mechanical System
MILP Mixed Integer Linear Programming
MIMO Multiple Input Multiple Output
MIPS Million Instructions Per Second
MOS Mantis Operating System
MOSFET Metal-Oxide Semiconductor Field Effect Transistor
MTCMOS Multi-Threshold CMOS

NRE No Intruction Set Computer
NRE Non-Recurring Engineering

Future perspectives 151

OS Operating System

QoS Quality of Service

RAM Random Access Memory
RF Radio Frequency
RICER Receiver Initiated CyclEd Receiver
RISC Reduced Instruction Set Computer
ROM Read Only Memory
RT Register Transfer
RTL RT-Level

SIMD Single Instruction Multiple Data
SM System Monitor
SoC System on Chip
SPI Serial Peripheral Interface

TFG Task Flow Graph

UGH User Guided HLS
ULIW Ultra Large Instruction Word

VHDL VHSIC Hardware Description Language
VHSIC Very High Scale Integrated Circuit
VLIW Very Large Instruction Word
VLSI Very Large Scale Integrated

WSN Wireless Sensor Network

152 Conclusion and future perspectives

Bibliography

[1] Actel Corporation. 2008. IGLOO Handbook. Tech. rep., Actel corporation.

[2] Aeroflex Gaisler. 2010. Leon4 Processor . Product.

[3] Aho, A. V., Ganapathi, M., and Tjiang, S. W. K. 1989. Code Generation using
Tree Matching and Dynamic Programming. ACM Transactions on Programming
Languages Systems 11, 4, 491–516.

[4] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. March 2002.
Wireless Sensor Networks: A Survey. Computer Networks 38, 4.

[5] Alippi, C. and Galperti, C. 2008. An Adaptive System for Optimal Solar Energy
Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 55, 6 (jul.), 1742–1750.

[6] Altera. 2010. Nios II Processor: The World’s Most Versatile Embedded Processor.

[7] Anis, M., Mahmoud, M., Elmasry, M., and Areibi, S. 2002. Dynamic and
Leakage Power Reduction in MTCMOS Circuits using an Automated Efficient Gate
Clustering Technique. In DAC’02: Proceedings of the 39th annual Design Automation
Conference. ACM, New York, NY, USA, 480–485.

[8] Atmel Corporation. 2007. ATmega 103L 8-bit AVR Low-Power Microcontroller.
Tech. Report.

[9] Atmel Corporation. 2009. ATmega 128L 8-bit AVR Low-Power MCU. Tech.
Report.

[10] Augé, Ivan and Pétrot, Frédéric. 2008. User Guided High Level Synthe-
sis. In High-Level Synthesis, Coussy, Philippe and Morawiec, Adam, Ed. Springer
Netherlands, Chapter 10, 171–196.

[11] B. Gorjiara and D. Gajski. 2008. Automatic Architecture Refinement Tech-
niques for Customizing Processing Elements. In DAC’08: Proceedings of the 45th
annual ACM/IEEE Design Automation Conference. ACM, Anaheim, USA, 379–384.

[12] Babighian, P., Benini, L., Macii, A., and Macii, E. 2004. Post-Layout
Leakage Power Minimization Based on Distributed Sleep Transistor Insertion. In

153

154 Bibliography

ISLPED’04: Proceedings of the International Symposium on Low Power Electronics
and Design. ACM, Newport Beach, California, USA, 138–143.

[13] Beutel, J., Kasten, O., and Ringwald, M. 2003. Poster Abstract: BTnodes
– A Distributed Platform for Sensor Nodes. In SenSys’03: Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems. ACM, New York,
NY, USA, 292–293.

[14] Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker,
B., Gruenwald, C., Torgerson, A., and Han, R. 2005. MANTIS OS: An
Embedded Multithreaded Operating System for Wireless Micro Sensor Platforms.
Mob. Netw. Appl. 10, 4.

[15] C. A. Mandal, P. P. C. and Ghose, S. 1995. Complexity of Scheduling in
High Level Synthesis. VLSI Design 7, 4, 337–346.

[16] Cadence. 2010. C-to-Silicon Compiler. Product.

[17] Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., and Girod, L.
2001. Habitat Monitoring: Application Driver for Wireless Communications Tech-
nology. In SIGCOMM-LA’01: Workshop on Data communication in Latin America
and the Caribbean. ACM, New York, NY, USA, 20–41.

[18] Chaitin, G. 2004. Register Allocation and Spilling via Graph Coloring. SIGPLAN
Not. 39, 4, 66–74.

[19] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. 1995. Low Power
CMOS Digital Design. IEEE Journal of Solid State Circuits 27, 473–484.

[20] Chang, J. M. and Pedram, M. 1997. Energy Minimization Using Multiple
Supply Voltages. IEEE Transactions on VLSI Systems 5, 436–443.

[21] Chavet, C., Andriamisaina, C., Coussy, P., Casseau, E., Juin, E., Urard,
P., and Martin, E. 2007. A Design Flow Dedicated to Multi-mode Architectures for
DSP Applications. In ICCAD’07: Proceedings of the 2007 IEEE/ACM International
Conference on Computer-Aided Design. IEEE Press, Piscataway, NJ, USA, 604–611.

[22] Chiou, D.-S., Juan, D.-C., Chen, Y.-T., and Chang, S.-C. 2007. Fine-
Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization. In
DAC’07: Proceedings of the 44th annual ACM/IEEE Design Automation Confer-
ence. ACM, New York, NY, USA, 81–86.

[23] Choi, E., Shin, C., Kim, T., and Shin, Y. 2008. Power-Gating-Aware High-
Level Synthesis. In ISLPED’08: Proceeding of the 13th International Symposium on
Low power Electronics and Design. ACM, New York, NY, USA, 39–44.

[24] Coussy, P., Gajski, D. D., Meredith, M., and Takach, A. 2009. An In-
troduction to High-Level Synthesis. IEEE Design and Test of Computers 26, 4,
8–17.

Bibliography 155

[25] Crossbow Technology. MICA2 Motes.

[26] D., V. T., Sentieys, O., and Derrien, S. 2011. Wakeup Time and Wakeup
Energy Estimation in Power-Gated Logic Clusters. In VLSI’2011: Proceedings of the
24th International Conference on VLSI Design. Chennai, India.

[27] Deming Chen and Cong, J. and Yiping Fan. 2003. Low-Power High-Level
Synthesis for FPGA Architectures. In ISLPED’03: Proceedings of the 2003 Interna-
tional Symposium on Low Power Electronics and Design. 134 – 139.

[28] Devadas, S. and Malik, S. 1995. A Survey of Optimization Techniques Tar-
geting Low Power VLSI Circuits. In DAC’95: Proceedings of the 32nd ACM/IEEE
conference on Design automation. ACM, New York, NY, USA, 242–247.

[29] Dunkels, A., Gronvall, B., and Voigt, T. 2004. Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors. In LCN’04: Proceedings
of the 29th Annual IEEE International Conference on Local Computer Networks.
455–462.

[30] Dutta, P., Grimmer, M., Arora, A., Bibyk, S., and Culler, D. 2005.
Design of a Wireless Sensor Network Platform for Detecting Rare, Random, and
Ephemeral Events. In IPSN’05: Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks. NJ, USA, 70.

[31] Ekanayake, V., Kelly, IV, C., and Manohar, R. 2004. An Ultra Low-Power
Processor for Sensor Networks. SIGOPS Oper. Syst. Rev. 38, 5, 27–36.

[32] El-Hoiydi, A. and Decotignie, J.-D. 2004. WiseMAC: An Ultra Low Power
MAC Protocol for the Downlink of Infrastructure Wireless Sensor Networks. In
ISCC’04: Proceedings of the 9th International Symposium on Computers and Com-
munications. 244–251.

[33] EM Microelectronic. 2005. EM6812, Ultra Low Power 8-bit FLASH Mircro-
Controller. Tech. rep.

[34] Enz, C. C., El-Hoiydi, A., Decotignie, J.-D., and Peiris, V. 2004.
WiseNET: An Ultralow-Power Wireless Sensor Network Solution. Computer 37,
62–70.

[35] Estrin, D., Govindan, R., Heidemann, J., and Kumar, S. 1999. Next Cen-
tury Challenges: Scalable Coordination in Sensor Networks. In MobiCom’99: Pro-
ceedings of the 5th annual ACM/IEEE International Conference on Mobile Comput-
ing and Networking. ACM, New York, NY, USA, 263–270.

[36] Fauth, A., Van Praet, J., and Freericks, M. 1995. Describing Instruction Set
Processors using nML. In EDTC’95: Proceedings of the 1995 European Conference
on Design and Test. IEEE Computer Society, Washington, DC, USA, 503.

156 Bibliography

[37] Fin, A., Fummi, F., and Perbellini, G. 2001. Soft-Cores Generation by In-
struction Set Analysis. In ISSS’01: Proceedings of the 14th International Symposium
on Systems Synthesis. ACM, 227–232.

[38] F.L. Lewis. 2005. Wireless Sensor Networks. Book Chapter in Smart Environ-
ments: Technologies, Protocols, Applications.

[39] Fonseca, R., Dutta, P., Levis, P., and Stoica, I. 2008. Quanto: Tracking
Energy in Networked Embedded Systems. In OSDI’08: USENIX Symposium on
Operating Systems Design and Implementation. 323–338.

[40] Forte. 2010. Cynthesizer and High-Level Design. Product.

[41] Fraser, C. W., Henry, R. R., and Proebsting, T. A. 1992. BURG: Fast
Optimal Instruction Selection and Tree Parsing. SIGPLAN Not. 27, 4.

[42] Gajski, D. and Reshadi, M. 2005. A Cycle-Accurate Compilation Algorithm
for Custom Pipelined Datapaths. In CODES+ISSS’05: Proceedings of the 3rd
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis. 21 –26.

[43] Garrett, D., Stan, M., and Dean, A. 1999. Challenges in Clockgating for a
Low Power ASIC Methodology. In ISLPED’99: Proceedings of the 1999 International
Symposium on Low Power Electronics and Design. 176–181.

[44] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler,
D. 2003. The nesC Language: A Holistic Approach to Networked Embedded Systems.
SIGPLAN Not. 38, 5, 1–11.

[45] Glokler, T., Bitterlich, S., and Meyr, H. 2000. ICORE: A Low-Power
Application Specific Instruction Set Processor for DVB-T Acquisition and Track-
ing. In SOCC’00: Proceedings of the13th Annual IEEE International ASIC/SOC
Conference. 102 –106.

[46] Gonzalez, R. 2000. Xtensa: A Configurable and Extensible Processor. IEEE
Micro 20, 2 (mar/apr), 60 –70.

[47] Grant Martin and Gary Smith. 2009. High-Level Synthesis: Past, Present,
and Future. IEEE Design and Test of Computers 26, 18–25.

[48] Gupta, Rajesh and Brewer, Forrest. 2008. High-Level Synthesis: A Ret-
rospective. In High-Level Synthesis, Coussy, Philippe and Morawiec, Adam, Ed.
Springer Netherlands, Chapter 2, 13–28.

[49] H. Ritter. 2010. ScatterWeb.

[50] Hadjiyiannis, G., Hanono, S., and Devadas, S. 1997. ISDL: An Instruction
Set Description Language for Retargetability. In DAC’97: Proceedings of the 34th
Annual Design Automation Conference. ACM, New York, NY, USA, 299–302.

Bibliography 157

[51] Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., and Nicolau,
A. 1999. EXPRESSION: A Language for Architecture Exploration through Compil-
er/Simulator Retargetability. In DATE’99: Proceedings of Design, Automation and
Test in Europe Conference and Exhibition. 485 –490.

[52] He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou,
G., Cao, Q., Vicaire, P., Stankovic, J. A., Abdelzaher, T. F., Hui, J.,
and Krogh, B. 2006. VigilNet: An Integrated Sensor Network System for Energy-
Efficient Surveillance. ACM Transactions on Sensor Networks 2, 1, 1–38.

[53] Hempstead, M., Wei, G.-Y., and Brooks, D. 2009. An Accelerator-Based
Wireless Sensor Network Processor in 130nm CMOS. In CASES’09: Proceedings
of the 2009 international conference on Compilers, architecture, and synthesis for
embedded systems. ACM, New York, NY, USA, 215–222.

[54] Herring, C. and Kaplan, S. 2000. Component-Based Software Systems for
Smart Environments. Personal Communications, IEEE [see also IEEE Wireless
Communications] 7, 5 (Oct), 60–61.

[55] Hill, J., Horton, M., Kling, R., and Krishnamurthy, L. 2004. The Plat-
forms Enabling Wireless Sensor Networks. ACM Commun. 47, 6, 41–46.

[56] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K.
2000. System Architecture Directions for Networked Sensors. SIGPLAN Not. 35, 11,
93–104.

[57] Hill, J. L. and Culler, D. E. 2002. Mica: A Wireless Platform for Deeply
Embedded Networks. IEEE Micro 22, 12–24.

[58] Hoffmann, A., Schliebusch, O., Nohl, A., Braun, G., Wahlen, O., and
Meyr, H. 2001. A Methodology for the Design of Application Specific Instruction Set
Processors (ASIP) using the Machine Description Language LISA. In ICCAD’01:
Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided
Design. Piscataway, NJ, USA, 625–630.

[59] Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H.,
and Bose, P. 2004. Microarchitectural Techniques for Power Gating of Execution
Units. In ISLPED’04: Proceedings of the 2004 International Symposium on Low
Power Electronics and Design. 32–37.

[60] Huang, I.-J. and Despain, A. 1994. Synthesis of Instruction Sets for Pipelined
Microprocessors. In DAC’94: Proceedings of the 31st ACM/IEEE Design Automation
Conference. 5–11.

[61] Hwang, C.-T., Lee, J.-H., and Hsu, Y.-C. 1991. A Formal Approach to the
Scheduling Problem in High Level Synthesis . IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 10, 4 (apr.), 464 –475.

158 Bibliography

[62] INRIA. 2010a. WSim, A Simulator for Microcontroller-based Wireless Platforms.
Tech. Project.

[63] INRIA. 2010b. WSNet, An Event-Driven Simulator for Large Scale Wireless
Sensor Networks. Tech. Project.

[64] INRIA, Tech. Project. 2010. PowWow, Protocol for Low Power Wireless Sensor
Network.

[65] Intanagonwiwat, C., Govindan, R., and Estrin, D. 2000. Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor Networks. In MobiCom
’00: Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking. ACM, New York, NY, USA, 56–67.

[66] Intel. 1999. StrongArm SA-1100, Data Sheet. Tech. Report.

[67] Ishihara, T. and Asada, K. 2001. A System Level Memory Power Optimization
Technique using Multiple Supply and Threshold Voltages. In ASP-DAC’01: Proceed-
ings of the 2001 Asia and South Pacific Design Automation Conference. ACM, New
York, NY, USA, 456–461.

[68] Jain, M., Balakrishnan, M., and Kumar, A. 2001. ASIP Design Methodolo-
gies: Survey and Issues. In VLSI’01: Proceedings of the 14th International Confer-
ence on VLSI Design. 76 –81.

[69] Kao, J. and Chandrakasan, A. 2000. Dual-Threshold Voltage Techniques for
Low-Power Digital Circuits. IEEE Journal of Solid-State Circuits 35, 7 (July), 1009
–1018.

[70] Karl, H. and Willig, A. 2005. Protocols and Architectures for Wireless Sensor
Networks. John Wiley & Sons.

[71] Kastrup, B. 2001. Automatic Synthesis of Reconfigurable Instruction Set Accel-
erators. Ph.D. thesis, Eindhoven University of Technology.

[72] Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S.,
and Turon, M. 2007. Health Monitoring of Civil Infrastructures using Wireless
Sensor Networks. In IPSN’07: Proceedings of the 6th international conference on
Information processing in sensor networks. ACM, New York, NY, USA, 254–263.

[73] Kim Tae-Hyung, H. S. 2005. State Machine Based Operating System Architec-
ture for Wireless Sensor Networks. In PDCAT’05: Proceedings of the International
Conference on Parallel and Distributed Computing, Applications and Technologies.
803–806.

[74] Kin, J., Lee, C., Mangione-Smith, W. H., and Potkonjak, M. 1999. Power
Efficient Mediaprocessors: Design Space Exploration. In DAC’99: Proceedings of
the 36th annual ACM/IEEE Design Automation Conference. ACM, New York, NY,
USA, 321–326.

Bibliography 159

[75] Kitahara, T., Minami, F., Ueda, T., Usami, K., Nishio, S., Murakata,
M., and Mitsuhashi, T. 1998. A Clock-Gating Method for Low-Power LSI De-
sign. In ASP-DAC’98: Proceedings of the Asia and South Pacific Design Automation
Conference. 307–312.

[76] Koes, D. R. and Goldstein, S. C. 2008. Near-Optimal Instruction Selection
on DAGs. In CGO’08: Proceedings of the 6th annual IEEE/ACM International
Symposium on Code Generation and Optimization. ACM, New York, NY, USA, 45–
54.

[77] Kum, K.-I. and Sung, W. 2001. Combined Word-Length Optimization and
High-Level Synthesis of Digital Signal Processing Systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 20, 8 (aug.), 921 –930.

[78] Kurdahi, F. and Parker, A. 1987. REAL: A Program for REgister ALlocation.
In DAC’87: Proceedings of the 24th IEEE/ACM Design Automation Conference.
210–215.

[79] Kwong, J., Ramadass, Y., Verma, N., Koesler, M., Huber, K., Moor-
mann, H., and Chandrakasan, A. 2008. A 65nm Sub-Vt Microcontroller with
Integrated SRAM and Switched-Capacitor DC-DC Converter. In ISSCC’08: Pro-
ceedings of the IEEE International Solid-State Circuits Conference. 318–616.

[80] Lach, J. and Kumar, V. 2005. Highly Flexible Multi-Mode System Synthe-
sis. In CODES+ISSS’05: Proceedings of the 3rd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis. 27–32.

[81] Levis, P. and Culler, D. 2002. Mate: A Tiny Virtual Machine for Sensor
Networks. In ASPLOS’02: Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems. San Jose,
CA, USA, 85–95.

[82] Li, Y., Wang, Z., and Song, Y. 2006. Wireless Sensor Network Design for
Wildfire Monitoring. In WCICA’06: Proceedings of the 6th World Congress on
Intelligent Control and Automation. Vol. 1. 109–113.

[83] Liao, S., Devadas, S., Keutzer, K., and Tjiang, S. 1995. Instruction Selec-
tion using Binate Covering for Code Size Optimization. In ICCAD’95: Proceedings
of the 1995 IEEE/ACM International Conference on Computer-Aided Design. San
Jose, CA, USA, 393–399.

[84] Lin, E.-Y., Rabaey, J., and Wolisz, A. 2004. Power-Efficient Rendez-Vous
Schemes for Dense Wireless Sensor Networks. In ICC’04: Proceedings of the IEEE
International Conference on Communications. Vol. 7. 3769–3776.

[85] Lin Zhong and Jha, N.K. 2005. Interconnect-Aware Low-Power High-Level
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24, 3 (march), 336 – 351.

160 Bibliography

[86] L.L’Hours. 2005. Generating Efficient Custom FPGA Soft-Cores for Control-
Dominated Applications. In ASAP’05: Proceedings of the 2005 IEEE International
Conference on Application-Specific Systems, Architecture Processors. Washington,
DC, USA, 127–133.

[87] Long, C. and He, L. 2003. Distributed Sleep Transistor Network for Power Re-
duction. In DAC’03: Proceedings of the 40th annual ICM/IEEE Design Automation
Conference. ACM, 181–186.

[88] Mahnke, T., Stechele, W., and Hoeld, W. 2002. Dual Supply Voltage Scal-
ing in a Conventional Power-Driven Logic Synthesis Environment. In PATMOS’02:
Proceedings of the 12th International Workshop on Integrated Circuit Design. Power
and Timing Modeling, Optimization and Simulation. Springer-Verlag, London, UK,
146–155.

[89] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Ander-
son, J. 2002. Wireless Sensor Networks for Habitat Monitoring. In WSNA’02:
Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications. ACM, New York, NY, USA, 88–97.

[90] Malan, D., Fulford-jones, T., Welsh, M., and Moulton, S. 2004. Code-
Blue: An Ad Hoc Sensor Network Infrastructure for Emergency Medical Care. In
BSN’04: International Workshop on Wearable and Implantable Body Sensor Net-
works.

[91] Martin, K., Wolinski, C., Kuchcinski, K., Floch, A., and Charot, F.
2009. Constraint-Driven Instructions Selection and Application Scheduling in the
DURASE System. In ASAP’09: Proceedings of the 21st IEEE International Confer-
ence on Application-specific Systems, Architectures and Processors. IEEE Computer
Society, Boston, MA, USA, 145 – 152.

[92] Mentor Graphics. 2010. Catapult C Synthesis: Full-Chip High-Level Synthesis.
Product.

[93] Messé, V. 1999. Production de Compilateurs Flexibles pour la Conception de
Processeurs Programmables Spécialisés. Ph.D. thesis, Université de Rennes-1.

[94] Moreano, N., Borin, E., de Souza, C., and Araujo, G. 2005. Efficient
Datapath Merging for Partially Reconfigurable Architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 24, 7 (jul.), 969 –
980.

[95] Mutoh, S., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., and Ya-
mada, J. 1995. 1-V Power Supply High-Speed Digital Circuit Technology with
Multithreshold-Voltage CMOS. IEEE Journal of Solid-State Circuits 30, 8 (aug),
847 –854.

Bibliography 161

[96] Mysore, S., Agrawal, B., Chong, F., and Sherwood, T. 2008. Exploring
the Processor and ISA Design for Wireless Sensor Network Applications. In VLSI’08:
Proceedings of the 21st International Conference on VLSI Design. 59–64.

[97] Nazhandali, L., Minuth, M., and Austin, T. 2005. SenseBench: Toward
an Accurate Evaluation of Sensor Network Processors. In IISWC’05: Proceedings of
the IEEE International Workload Characterization Symposium. Austin, Texas, USA,
197–203.

[98] NEC. 2010. CyberWorkBench: Pioneering C-based LSI Design. Product.

[99] Nguyen, T.-D., Berder, O., and Sentieys, O. 2007. Cooperative MIMO
Schemes Optimal Selection for Wireless Sensor Networks. In VTC2007-Spring: Pro-
ceedings of the 65th IEEE Vehicular Technology Conference. Dublin, Ireland, 85–89.

[100] NXP Semiconductors. 2010. LPC1111/12/13/14, 32-bit ARM Cortex-M0 mi-
crocontroller. Product data sheet.

[101] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A.
Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, D. Culler. 2005. TinyOS: An
Operating System for Sensor Networks . In Ambient Intelligence. Springer.

[102] Pangrle, B. 1988. Splicer: A Heuristic Approach to Connectivity Binding. In
DAC’88: Proceedings of the 25th annual IEEE/ACM Design Automation Conference.
536–541.

[103] Pasha, M. A., Derrien, S., and Sentieys, O. 2009. Ultra Low-Power FSM
for Control Oriented Applications. In ISCAS’09: IEEE International Symposium on
Circuits and Systems. Taipei, Taiwan, 1577–1580.

[104] Pasha, M. A., Derrien, S., and Sentieys, O. 2010a. A Complete Design-
Flow for the Generation of Ultra Low-Power WSN Node Architectures Based on
Micro-Tasking. In DAC’10: Proceedings of the 47th ACM/IEEE Design Automation
Conference. ACM, Anaheim, CA, USA, 693–698.

[105] Pasha, M. A., Derrien, S., and Sentieys, O. 2010b. System Level Synthesis
for Ultra Low-Power Wireless Sensor Nodes. In DSD’10: Proceedings of the 13th
Euromicro Conference on Digital System Design. Lille, France, 493–500.

[106] Paulin, P. and Knight, J. 1989. Algorithms for High-Level Synthesis. IEEE
Design and Test of Computers 6, 6 (dec.), 18 –31.

[107] Paulin, P., Knight, J., and Girczyc, E. 1986. HAL: A Multi-Paradigm
Approach to Automatic Data Path Synthesis. In DAC’86: Proceedings of the 23rd
annual IEEE/ACM Design Automation Conference. 263–270.

[108] Pedram, M. 1996. Power Minimization in IC Design: Principles and Applica-
tions. ACM Transaction on Design Automation of Electronic Systems 1, 1, 3–56.

162 Bibliography

[109] Piguet, C., Masgonty, J.-M., Arm, C., Durand, S., Schneider, T., Ram-
pogna, F., Scarnera, C., Iseli, C., Bardyn, J.-P., Pache, R., and Dijkstra,
E. 1997. Low-Power Design of 8-b Embedded CoolRisc Microcontroller Cores. IEEE
Journal of Solid-State Circuits 32, 7 (jul), 1067 –1078.

[110] Polastre, J., Hill, J., and Culler, D. 2004. Versatile Low Power Media
Access for Wireless Sensor Networks. In SenSys’04: Proceedings of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems. ACM, New York, NY,
USA, 95–107.

[111] Polastre, J., Szewczyk, R., and Culler, D. 2005. Telos: Enabling Ultra-
Low Power Wireless Research. In IPSN’05: Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks. IEEE Press, Piscataway,
NJ, USA, 364–369.

[112] Pottie, G. J. and Kaiser, W. J. 2000. Wireless Integrated Network Sensors.
ACM Commun. 43, 5, 51–58.

[113] Pradhan, S. N., Kumar, M. T., and Chattopadhyay, S. 2008. Integrated
Power-Gating and State Assignment for Low Power FSM Synthesis. In IVLSI’08:
Proceedings of the IEEE Computer Society Annual Symposium on VLSI. Vol. 0. IEEE
Computer Society, Los Alamitos, CA, USA, 269–274.

[114] Proebsting, T. A. 1995. BURS Automata Generation. ACM Transactions on
Programming Languages and Systems 17, 3, 461–486.

[115] Rabaey, J. M., Ammer, M. J., da Silva, J. L., Patel, D., and Roundy,
S. 2000. PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking. Com-
puter 33, 7, 42–48.

[116] Raghunathan, V., Schurgers, C., Park, S., and Srivastava, M. 2002.
Energy-aware Wireless Microsensor Networks. IEEE Signal Processing Maga-
zine 19, 2 (Mar).

[117] Raghunathan, A. and Jha, N.K. 1997. SCALP: An Iterative-Improvement-
Based Low-Power Data Path Synthesis System. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 16, 11 (nov), 1260 –1277.

[118] Rahman, A., Das, S., Tuan, T., and Trimberger, S. 2006. Determination of
Power Gating Granularity for FPGA Fabric. In CICC’06: Proceedings of the IEEE
Custom Integrated Circuits Conference. 9–12.

[119] Raval, R. K., Fernandez, C. H., and Bleakley, C. J. 2010. Low-Power
TinyOS Tuned Processor Platform for Wireless Sensor Network Motes. ACM Trans-
actions on Design Automation of Electronic Systems 15, 3, 1–17.

[120] RFM. 2008. 916.50 MHz Hybrid Transceiver.

Bibliography 163

[121] Schurgers, C. and Srivastava, M. 2001. Energy Efficient Routing in Wireless
Sensor Networks. In MILCOM’01: Proceedings of the Military Communications
Conference. Vol. 1. 357–361.

[122] Seok, M., Hanson, S., Lin, Y.-S., Foo, Z., Kim, D., Lee, Y., Liu, N.,
Sylvester, D., and Blaauw, D. 2008. The Phoenix Processor: A 30pW Platform
for Sensor Applications. In VLSI’08: Proceedings of the IEEE Symposium on VLSI
Circuits. 188–189.

[123] Sheets, M., Burghardt, F., Karalar, T., Ammer, J., Chee, Y., and
Rabaey, J. 2006. A Power-Managed Protocol Processor for Wireless Sensor Net-
works. In VLSI’06: Proceedings of the IEEE Symposium on VLSI Circuits. 212–213.

[124] Silicon Hive. 2010. Exploiting Parallelism, while Managing Complexity using
Silicon Hive Programming Tools. Product.

[125] Smith, J. 2009. Rapid Implementation of Low Power Microprocessors.
DACeZine 4, 2.

[126] Synposys. 2010. High Level Synthesis with Synphony C Compiler. Product.

[127] Tan, C. H. and Allen, J. 1994. Minimization of Power in VLSI Circuits Using
Transistor Sizing, Input Ordering, and Statistical Power Estimation. In Proceedings
of the International Workshop on Low Power Design. 75–80.

[128] Tensilica. 2010. Tensilica: Customizable Processor Cores for the Dataplane.
Product.

[129] Texas Instruments. 2009. MSP430 User Guide. Tech. Report.

[130] Texas Instruments. 2010a. MSP430 16-bit Ultra-Low Power MCUs.

[131] Texas Instruments. 2010b. Single-Chip 2.4 GHz IEEE 802.15.4 Compliant
and ZigBee RF Transceiver.

[132] Texas Instruments. 2010c. Single Chip Ultra Low Power RF Transceiver for
315/433/868/915 MHz SRD Band.

[133] The Eclipse Foundation. 2010a. Eclipse Development Platform.

[134] The Eclipse Foundation. 2010b. Eclipse Modeling Framework (EMF).

[135] The Eclipse Foundation. 2010c. Java Emitter Template (JET).

[136] The Eclipse Foundation. 2010d. Xtext, a Framework for Development of
Textual Domain Specific Languages (DSLs).

[137] Tseng, C.-J. and Siewiorek, D. 1986. Automated Synthesis of Data Paths
in Digital Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 5, 3 (jul.), 379 – 395.

164 Bibliography

[138] University of California, Berkeley. 1999. Tech. Project: Smart Dust.

[139] Usami, K. and Horowitz, M. 1995. Clustered Voltage Scaling Technique for
Low-Power Design. In ISLPED’95: Proceedings of the 1995 International Symposium
on Low Power Design. ACM, New York, NY, USA, 3–8.

[140] Van der Werf, A., Peek, M. J. H., Aarts, E. H. L., van Meerber-
gen, J. L., Lippens, P. E. R., and Verhaegh, W. F. J. 1992. Area Optimiza-
tion of Multi-Functional Processing Units. In ICCAD’92: Proceedings of the 1992
IEEE/ACM International Conference on Computer-Aided Design. IEEE Computer
Society Press, Los Alamitos, CA, USA, 292–299.

[141] Virage Logic. 2010. ARC 700 Core Family Power-Efficient, High Performance
32-Bit Configurable CPU Cores. Product.

[142] Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., and Welsh, M. 2005.
Monitoring Volcanic Eruptions with A Wireless Sensor Network. In EWSN’05: Pro-
ceedings of the 2nd European Workshop on Wireless Sensor Networks. 108–120.

[143] Wu, Q., Pedram, M., and Wu, X. 2000. Clock-Gating and its Application
to Low Power Design of Sequential Circuits. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 47, 3 (Mar), 415–420.

[144] Xilinx. 2010. MicroBlaze Soft Processor Core. Product.

[145] Ye, W., Heidemann, J., and Estrin, D. 2002. An Energy-Efficient MAC Pro-
tocol for Wireless Sensor Networks. In INFOCOM’02: Proceedings of the 21st An-
nual Joint Conference of the IEEE Computer and Communications Societies. Vol. 3.
1567–1576.

[146] Zhou, Hai-Ying, and Hou, K.-M. 2007. LIMOS: A Lightweight Multi-
Threading Operating System dedicated to Wireless Sensor Networks. In WiCom’07:
Proceedings of the International Conference on Wireless Communications, Network-
ing and Mobile Computing. 3051–3054.

List of Figures

1 Architecture générale d’un nœud de capteur. 2
2 Un exemple d’utilisation du power gating. 5
3 Architecture d’une micro-tâche matérielle generique. 7
4 Graphe de tâches d’une application de relevé et envoi de température. . 8
5 Vue niveau système d’un nœud de capteur basé sur l’approche à base de

micro-tâches matérielles. 9
6 Flot de conception système LoMiTa . 12
7 Modèle à base de portes NAND parallèles utilisé pour exécuter les sim-

ulations au niveau transistor à l’aide de SPICE et temps de réveil et de
mise en veille mesurés pour n = 3000. 14

1.1 General architecture of a WSN node. 20
1.2 An example of power gating. 23
1.3 Architecture of a generic hardware micro-task. 24
1.4 TFG of a temperature sensing and forwarding application. 25
1.5 System-level view of a micro-task based WSN node architecture. 26
1.6 Complete system-level design-flow . 29

2.1 A generic WSN node architecture. 35
2.2 Block diagram of a mobile sensor WSN node. 37
2.3 Currents contributing to various power consumptions in CMOS circuits. 41
2.4 Scaling of static and dynamic power consumption with the advancements

of process technology. 42
2.5 Example of gated-clock design. 43
2.6 The use power gating to reduce the overall circuit power. 45
2.7 Architecture of CoolRISC 88 processor (extracted from the work of Piguet

et al. [109]). 47
2.8 Microarchitecture of the SNAP/LE processor showing major components. 49
2.9 System architecture of the accelerator-based WSN processor. 50
2.10 Block diagram of the Charm protocol processor. 51
2.11 Block diagram of the Phoenix processor. 52

3.1 Design methodology for high level synthesis (HLS) 57
3.2 (a) ASAP scheduling (b) ALAP scheduling 58

165

166 List of Figures

3.3 List scheduling with deferred operations. 59
3.4 Dataflow graph (DFG) merging. 65
3.5 Complete UGH design flow [10]. 66
3.6 NISC design-flow [42]. 67
3.7 Design methodology for complete ASIP generation 69
3.8 Design methodology for partial ASIP generation 70
3.9 Data-flow graph of basic butterfly operation present in an FFT algorithm. 72
3.10 Sample machine instruction template. 74
3.11 Two possible coverings of the identical tree with different patterns. . . . 74
3.12 Simp1e grammar and its normal form [114] 75
3.13 Dynamic programming applied to example tree, each node labeled with

“(Rule, Cost)”. 76

4.1 Design-flow for hardware micro-task generation. 80
4.2 Architectural simplicity of a hardware micro-task w.r.t. a general pur-

pose CPU. 81
4.3 Generic template of a “micro-task” running in a WSN node. 82
4.4 Architecture of a generic hardware micro-task. 83
4.5 Architectural template of customizable ALU block present in hardware

micro-task datapath (shown in Figure 4.6). 84
4.6 Detailed architectural template of a hardware micro-task. 86
4.7 Design methodology for hardware micro-task generation. 87
4.8 Example of a CDFG generated through GeCoS [86]. 88
4.9 A sample BURG rule being used in our BURG-generator. 89
4.10 Advantage of using specialized pattern that results in an overall reduc-

tion in cycle-count. 91
4.11 Some grammar rules used by our customized BURG-generator. 92
4.12 Bitwidth adaptation of the compare and branch instructions. 95
4.13 Description of a control-flow using FSM-Sequencer DSL. 97
4.14 FSM representations generated through our tool for equivalent control-

flows described in FSM-Sequencer DSL. 99
4.15 A portion C function sendBeacon() under study. 101
4.16 CDFG representation of the C-code under study. 102
4.17 Machine-specific intermediate representation of the C-code under study. 103

5.1 Design-flow for hardware system monitor generation. 106
5.2 Different execution paradigms for a WSN node system. 107
5.3 TFGs presenting the tasks running in a lamp switching application. . . 109
5.4 System-level view of a micro-task based WSN node architecture 109
5.5 System overview of Contiki OS [29] (portioning into core and loaded

programs). 112
5.6 Access control simplicity of power-gated modules. 115
5.7 Block diagram of the System Monitor designed for the lamp switching

example of Figure 5.3. 117

List of Figures 167

5.8 Design methodology for system monitor (SM) generation. 118
5.9 A snapshot of the system-level execution model, of the lamp-switching

example shown in Figure 5.3, described using proposed DSL. 119

6.1 Parallel NAND gates model used to perform the SPICE transistor level
simulations. 124

6.2 Linear relation between the number of gates being driven by a gating-
transistor and the output switching delay (0 to 1). 124

6.3 Inverse linear relation between the width of the gating-transistor and the
output switching delay (0 to 1) for (n = 3000). 125

6.4 The output turn-on and turn-off delays for (n = 3000). 126
6.5 TFGs presenting the micro-tasks running during a lamp switching ap-

plication. 128
6.6 Power consumption vs. number of states of a micro-task FSM. 135
6.7 Comparison of power, area and energy consumption for 8-bit and 16-bit

micro-tasks. 136
6.8 Time distribution of sendFrame task duty cycle. 137

7.1 Network level validation of micro-task-based WSN node using WSim and
WSNet. 144

7.2 Proposed solution to tackle the issue of loss of reprogrammability. . . . 145
7.3 System-level view of a micro-task based WSN node architecture 145

168 List of Figures

List of Tables

1 Consommation de puissance et d’énergie du MSP430 pour différentes
tâches applicatives issues de benchmarks (@ 16 MHz). 15

2 Gain en puissance et en énergie pour des micro-tâches 8 bits par rapport
au MSP430 (@ 16 MHz, 130 nm). P1 et E1 sont les gains en puissance
et en énergie par rapport à la version tiMSP tandis que P2 et E2 sont
les gains en puissance et en énergie par rapport à la version openMSP. 16

3 Gain en puissance et en énergie pour des micro-tâches 16 bits par rapport
au MSP430 (@ 16 MHz, 130 nm). P1 et E1 sont les gains en puissance
et en énergie par rapport à la version tiMSP tandis que P2 et E2 sont
les gains en puissance et en énergie par rapport à la version openMSP. 16

2.1 Some measured quantities and corresponding physical principles used to
measure them. 36

2.2 Actual and normalized power consumption for various low-power MCUs. 48

4.1 Comparison of major features of the proposed approach to the existing
ones. 100

6.1 Power/energy consumption of MSP430 for different application tasks (@
16 MHz). 132

6.2 Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16 MHz,
130 nm). Here, P1 and E1 are the power and energy gains w.r.t. tiMSP
whereas P2 and E2 are the power and energy gains w.r.t. openMSP. . . 132

6.3 Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16 MHz,
65 nm). Here, P1 and E1 are the power and energy gains w.r.t. tiMSP
whereas P2 and E2 are the power and energy gains w.r.t. openMSP. . . 133

6.4 Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16 MHz,
130 nm). Here again, P1 and E1 are the power and energy gains w.r.t.
tiMSP whereas P2 and E2 are the power and energy gains w.r.t. openMSP.133

6.5 Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16 MHz,
65 nm). Here again, P1 and E1 are the power and energy gains w.r.t.
tiMSP whereas P2 and E2 are the power and energy gains w.r.t. openMSP.133

6.6 Actual and normalized energy-efficiencies for various ultra low-power
WSN-specific processors. 134

169

170 List of Tables

6.7 Power consumption for datapaths having different design parameters (@
16 MHz). 134

Résumé :

 La conception d'une plate-forme matérielle pour un nœud de réseaux de capteurs (RdC) est un
véritable défi car elle est soumise à des contraintes sévères. La consommation d'énergie est souvent
considérée comme la contrainte la plus forte donnée la petite taille et les besoins d'autonomie d'un
nœud. De nos jours, les nœuds s'appuient sur des microcontrôleurs (MCUs) faible consommation
disponibles dans le commerce. Ces MCUs ne sont pas adaptés au contexte de RdC car ils sont basés
sur une structure de calcul généraliste et ils consomment trop d'énergie par rapport au budget d'énergie
d'un nœud. Dans cette thèse, nous proposons un flot de conception complet, depuis le niveau système,
se basant sur le concept de micro-tâches matérielles avec coupure de la tension d'alimentation (Power
Gating). Dans cette approche, l'architecture d'un nœud est constituée d'un ensemble de micro-tâches
matérielles qui sont activées selon un principe événementiel, chacune étant dédiée à une tâche
spécifique du système (ex. la couche MAC, le routage, etc.). Ces micro-tâches sont gérées par un
ordonnanceur matériel (System Monitor) qui est automatiquement généré à partir d'une description
système, dans un langage spécifique (DSL), du graphe des tâches d'un nœud de RdC. En combinant la
spécialisation du matériel et la technique du power gating, nous réduisons considérablement les
énergies dynamique et statique d'un nœud de RdC. Les résultats montrent que des gains en énergie
dynamique de 1 à 2 ordres de grandeur sont possibles par rapport aux mises en œuvre à base des
MCUs (ex. le MSP430). De plus, des gains de 1 ordre de grandeur en énergie statique sont également
obtenus grâce à l'utilisation du power gating.

Abstract:

 Wireless Sensor Networks (WSN) is a new and challenging research field for embedded
system design automation. Engineering a WSN node platform is a tough challenge, as the design must
enforce many severe constraints among which energy consumption is often the most critical one due
to the small size of a node and its difficult access after deployment. WSN nodes have until now been
designed using commercial low-power microcontrollers (MCUs). These MCUs are not well-suited for
WSN node design as they are based on a general purpose compute engine and consume too much
power w.r.t. WSN node's power budget. In this thesis, we propose a complete system-level design-
flow for an alternative approach based on the concept of power-gated hardware micro-tasks. In this
approach, WSN node architecture is made of several micro-tasks that are activated on an event-driven
basis, each of them being dedicated to a specific task of the system (such as event-sensing, MAC,
routing, etc.). These hardware micro-tasks are controlled by a hardware scheduler (called the System
Monitor) that is automatically generated from a system-level description of the WSN node task graph
in the form of a textual Domain Specific Language (DSL). By combining hardware specialization with
power-gating, we can drastically reduce both dynamic and static energy of a WSN node controller.
The results show that dynamic power savings by one to two orders of magnitude are possible w.r.t. the
software implementations based on MCUs such as the MSP430. Similarly, static power savings of one
order of magnitude are also obtained due to the reduction in data memory size and power-gating.

