Schémas numériques pour les modèles de turbulence statistiques en un point. Soutenance de thèse

Aurélien Larcher

IRSN/DPAM/SEMIC/LIMSI

05 Novembre 2010

A. Larcher (IRSN/DPAM/SEMIC/LIMSI)

05 Novembre 2010 1 / 47

・ロト ・ 日 ト ・ ヨ ト ・

Plan

1 Introduction

- 2 Modèle physique
- Oiscrétisations et algorithme
- Schéma monotone pour les modèles RANS
- 5 Étude de convergence pour un problème modèle stationnaire
- 6 Convergence de l'équation de convection-diffusion volumes-finis

Contexte

Contexte au sein de la DPAM : la simulation des incendies dans les milieux confinés.

Des écoulements caractérisés par :

- **(**) des domaines de calcul de grande dimension : \approx mètres
- **Q** des structures d'écoulements de très petite taille : pprox millimètres-microns

Les écoulements à décrire sont complexes :

- Géométries complexes
 - \Rightarrow recirculations, séparations
- Convection naturelle
 - $\Rightarrow {\sf stratification}$

 \Rightarrow Traiter la turbulence dans le cas d'écoulements complexes ?

Problématique

イロト イロト イヨト イヨト

Plan

Introduction

2 Modèle physique

3 Discrétisations et algorithme

Schéma monotone pour les modèles RANS

5 Étude de convergence pour un problème modèle stationnaire

Onvergence de l'équation de convection-diffusion volumes-finis

・ロト ・回ト ・ヨト ・

$\mathsf{Modèle}\ \mathsf{RANS} \to \mathsf{Modèle}\ \texttt{a}\ \mathsf{viscosit\acute{e}}\ \mathsf{tourbillonaire}$

• Décomposition de Reynolds/Favre : moyenne + fluctuation

$$\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$$
; $p = \bar{p} + p'$

イロト イポト イヨト イヨト

• Décomposition de Reynolds/Favre : moyenne + fluctuation

$$\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$$
; $p = \bar{p} + p'$

• Équations de Navier-Stokes moyennées (RANS) :

$$\partial_t(\rho \bar{\mathbf{u}}) + \nabla \cdot (\rho \bar{\mathbf{u}} \otimes \bar{\mathbf{u}}) = \nabla \cdot \left(2\mu_\ell \left(\mathbf{D}(\bar{\mathbf{u}}) - \frac{1}{3}\nabla \cdot \bar{\mathbf{u}}\right)\right) - \nabla \bar{p} - \nabla \cdot \mathbf{R}$$
$$\partial_t \rho + \nabla \cdot (\rho \bar{\mathbf{u}}) = 0$$

avec le tenseur de Reynolds $\mathbf{R} = -\rho \overline{\mathbf{u}' \otimes \mathbf{u}'}$ et $\mathbf{D}(\mathbf{\bar{u}}) = \frac{\nabla \mathbf{\bar{u}} + \nabla^t \mathbf{\bar{u}}}{2}$.

イロト イヨト イヨト イヨト

• Décomposition de Reynolds/Favre : moyenne + fluctuation

$$\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$$
; $p = \bar{p} + p'$

• Équations de Navier-Stokes moyennées (RANS) :

$$\partial_t(\rho \bar{\mathbf{u}}) + \nabla \cdot (\rho \bar{\mathbf{u}} \otimes \bar{\mathbf{u}}) = \nabla \cdot \left(2\mu_\ell \left(\mathbf{D}(\bar{\mathbf{u}}) - \frac{1}{3}\nabla \cdot \bar{\mathbf{u}}\right)\right) - \nabla \bar{p} - \nabla \cdot \mathbf{R}$$
$$\partial_t \rho + \nabla \cdot (\rho \bar{\mathbf{u}}) = 0$$

avec le tenseur de Reynolds $\mathbf{R} = -\rho \overline{\mathbf{u}' \otimes \mathbf{u}'}$ et $\mathbf{D}(\mathbf{\bar{u}}) = \frac{\nabla \mathbf{\bar{u}} + \nabla^t \mathbf{\bar{u}}}{2}$.

- Prendre en compte l'effet du cisaillement turbulent ?
 - ightarrow viscosité additionnelle dans le terme de diffusion: μ_t

• Décomposition de Reynolds/Favre : moyenne + fluctuation

$$\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$$
; $p = \bar{p} + p'$

• Équations de Navier-Stokes moyennées (RANS) :

$$\partial_t(\rho \bar{\mathbf{u}}) + \nabla \cdot (\rho \bar{\mathbf{u}} \otimes \bar{\mathbf{u}}) = \nabla \cdot \left(2\mu_\ell \left(\mathbf{D}(\bar{\mathbf{u}}) - \frac{1}{3}\nabla \cdot \bar{\mathbf{u}}\right)\right) - \nabla \bar{p} - \nabla \cdot \mathbf{R}$$
$$\partial_t \rho + \nabla \cdot (\rho \bar{\mathbf{u}}) = 0$$

avec le tenseur de Reynolds $\mathbf{R} = -\rho \overline{\mathbf{u}' \otimes \mathbf{u}'}$ et $\mathbf{D}(\mathbf{\bar{u}}) = \frac{\nabla \mathbf{\bar{u}} + \nabla^t \mathbf{\bar{u}}}{2}$.

- Prendre en compte l'effet du cisaillement turbulent ?
 - ightarrow viscosité additionnelle dans le terme de diffusion: μ_t
- Modéliser les corrélations des fluctuations de vitesse $\overline{u'_i u'_j}$, $1 \le i, j \le d$?
 - \rightarrow processus de diffusion pour le champ moyen:

$$\mathbf{R} = 2\mu_t \left(\mathbf{D}(\mathbf{u}) - \frac{1}{3} \nabla \cdot \bar{\mathbf{u}} \right) - \frac{2}{3} \rho k \mathbf{Id} \qquad (\text{Boussinesq})$$

• Décomposition de Reynolds/Favre : moyenne + fluctuation

$$\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$$
; $p = \bar{p} + p'$

Équations de Navier-Stokes moyennées (RANS) :

$$\partial_t (\rho \bar{\mathbf{u}}) + \nabla \cdot (\rho \bar{\mathbf{u}} \otimes \bar{\mathbf{u}}) = \nabla \cdot \left(2(\mu_\ell + \mu_t) \left(\mathbf{D}(\bar{\mathbf{u}}) - \frac{1}{3} \nabla \cdot \bar{\mathbf{u}} \right) \right) - \nabla \left(\bar{p} + \frac{2}{3} k \right)$$
$$\partial_t \rho + \nabla \cdot (\rho \bar{\mathbf{u}}) = 0$$

avec le tenseur de Reynolds $\mathbf{R} = -\rho \overline{\mathbf{u}' \otimes \mathbf{u}'}$ et $\mathbf{D}(\mathbf{\bar{u}}) = \frac{\nabla \mathbf{\bar{u}} + \nabla^t \mathbf{\bar{u}}}{2}$.

- Prendre en compte l'effet du cisaillement turbulent ?
 - ightarrow viscosité additionnelle dans le terme de diffusion: μ_t
- Modéliser les corrélations des fluctuations de vitesse $\overline{u_i'u_j'}$, $1 \leq i,j \leq d$?
 - \rightarrow processus de diffusion pour le champ moyen:

$$\mathbf{R} = 2\mu_t \left(\mathbf{D}(u) - \frac{1}{3} \nabla \cdot \bar{\mathbf{u}} \right) - \frac{2}{3} \rho k \mathbf{Id} \qquad \text{(Boussinesq)}$$

\Rightarrow Comment évaluer la viscosité turbulente μ_t ?

- Fermeture au premier ordre
 - \rightarrow calculer μ_t par une relation algébrique
- Analyse dimensionnelle
 - ightarrow choix d'échelles turbulentes caractéristiques pour modéliser μ_t

・ロト ・ 日 ・ ・ ヨ ト ・

- Fermeture au premier ordre
 - \rightarrow calculer μ_t par une relation algébrique
- Analyse dimensionnelle
 - \rightarrow choix d'échelles turbulentes caractéristiques pour modéliser μ_t
- Cas du modèle $k \varepsilon$:
 - Vitesse : Énergie cinétique turbulente (ECT)

$$k = \frac{1}{2} \overline{|u'|^2}$$

Temps : Taux de dissipation de la ECT

$$\varepsilon = 2\nu \overline{|\mathbf{D}(u')|^2}$$

- Fermeture au premier ordre
 - \rightarrow calculer μ_t par une relation algébrique
- Analyse dimensionnelle
 - ightarrow choix d'échelles turbulentes caractéristiques pour modéliser μ_t
- Cas du modèle $k \varepsilon$:
 - Vitesse : Énergie cinétique turbulente (ECT)

$$k=\frac{1}{2}\overline{|u'|^2}$$

$$\varepsilon = 2\nu \overline{|\mathbf{D}(u')|^2}$$

• Calcul de μ_t par relation de Prandt-Kolmogorov

$$\mu_t = \rho C_\mu \frac{k^2}{\varepsilon}$$

- Fermeture au premier ordre
 - ightarrow calculer μ_t par une relation algébrique
- Analyse dimensionnelle
 - \rightarrow choix d'échelles turbulentes caractéristiques pour modéliser μ_t
- Cas du modèle $k \varepsilon$:
 - Vitesse : Énergie cinétique turbulente (ECT)

$$k=\frac{1}{2}\overline{|u'|^2}$$

$$\varepsilon = 2\nu |\mathbf{D}(u')|^2$$

• Calcul de μ_t par relation de Prandt-Kolmogorov

$$\mu_t = \rho C_\mu \frac{k^2}{\varepsilon}$$

\Rightarrow Comment évaluer les échelles k et ε ?

Production turbulente : $\mathbf{P} = \mathbf{R} : \nabla \bar{\mathbf{u}} = 2\mu_t |\mathbf{D}(\bar{\mathbf{u}})|^2 - \frac{2}{3}(\mu_t |\nabla \cdot \bar{\mathbf{u}}|^2 + \rho k \nabla \cdot \bar{\mathbf{u}})$

• Énergie cinétique turbulente :

$$\underbrace{\partial_t(\rho k) + \nabla \cdot (\rho k \bar{\mathbf{u}})}_{(1)} - \underbrace{\nabla \cdot \left(\left(\mu + \frac{\mu_t}{\sigma_k}\right) \nabla k \right)}_{(2)} = \underbrace{\mathbf{P}}_{(3)} - \underbrace{\rho \varepsilon}_{(4)}$$

- Convection
- Diffusion moléculaire + Diffusion turbulente
- Production turbulente
- Oissipation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Production turbulente : $\mathbf{P} = \mathbf{R} : \nabla \bar{\mathbf{u}} = 2\mu_t |\mathbf{D}(\bar{\mathbf{u}})|^2 - \frac{2}{3}(\mu_t |\nabla \cdot \bar{\mathbf{u}}|^2 + \rho k \nabla \cdot \bar{\mathbf{u}})$

• Énergie cinétique turbulente :

$$\underbrace{\partial_t(\rho k) + \nabla \cdot (\rho k \bar{\mathbf{u}})}_{(1)} - \underbrace{\nabla \cdot \left(\left(\mu + \frac{\mu_t(k,\varepsilon)}{\sigma_k} \right) \nabla k \right)}_{(2)} = \underbrace{\mathbf{P}(k,\varepsilon)}_{(3)} - \underbrace{\rho\varepsilon}_{(4)}$$

Convection

Diffusion moléculaire + Diffusion turbulente

Non-linéarités

Production turbulente

Oissipation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Production turbulente : $\mathbf{P} = \mathbf{R} : \nabla \bar{\mathbf{u}} = 2\mu_t |\mathbf{D}(\bar{\mathbf{u}})|^2 - \frac{2}{3}(\mu_t |\nabla \cdot \bar{\mathbf{u}}|^2 + \rho k \nabla \cdot \bar{\mathbf{u}})$

• Énergie cinétique turbulente :

$$\underbrace{\partial_t(\rho k) + \nabla \cdot (\rho k \bar{\mathbf{u}})}_{(1)} - \underbrace{\nabla \cdot \left(\left(\mu + \frac{\mu_t(k,\varepsilon)}{\sigma_k} \right) \nabla k \right)}_{(2)} = \underbrace{\mathbf{P}(k,\varepsilon)}_{(3)} - \underbrace{\rho\varepsilon}_{(4)}$$

Convection

Diffusion moléculaire + Diffusion turbulente

Non-linéarités

- Production turbulente
- Oissipation
- Taux de dissipation de l'ECT :

$$\underbrace{\frac{\partial_t(\rho\varepsilon) + \nabla \cdot (\rho\varepsilon \bar{\mathbf{u}})}{(1)} - \underbrace{\nabla \cdot \left(\left(\mu + \frac{\mu_t(k,\varepsilon)}{\sigma_{\varepsilon}}\right)\nabla\varepsilon\right)}_{(2)} = \underbrace{\frac{\varepsilon}{k} \left(C_{\varepsilon 1} \mathbf{P}(k,\varepsilon) - C_{\varepsilon 2} \rho \varepsilon\right)}_{(3+4)}$$

avec $\mathbf{\bar{u}}$ et ρ vérifiant le bilan de masse : $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{\bar{u}}) = 0$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Production turbulente : $\mathbf{P} = \mathbf{R} : \nabla \bar{\mathbf{u}} = 2\mu_t |\mathbf{D}(\bar{\mathbf{u}})|^2 - \frac{2}{3}(\mu_t |\nabla \cdot \bar{\mathbf{u}}|^2 + \rho k \nabla \cdot \bar{\mathbf{u}})$

• Énergie cinétique turbulente :

$$\underbrace{\partial_t(\rho k) + \nabla \cdot (\rho k \bar{\mathbf{u}})}_{(1)} - \underbrace{\nabla \cdot \left(\left(\mu + \frac{\mu_t(k,\varepsilon)}{\sigma_k} \right) \nabla k \right)}_{(2)} = \underbrace{\mathbf{P}(k,\varepsilon)}_{(3)} - \underbrace{\rho \varepsilon}_{(4)}$$

Diffusion moléculaire + Diffusion turbulente

- Production turbulente
- Oissipation
- Taux de dissipation de l'ECT :

$$\underbrace{\frac{\partial_t(\rho\varepsilon) + \nabla \cdot (\rho\varepsilon \bar{\mathbf{u}})}{(1)} - \underbrace{\nabla \cdot \left(\left(\mu + \frac{\mu_t(\boldsymbol{k},\varepsilon)}{\sigma_{\varepsilon}}\right)\nabla\varepsilon\right)}_{(2)} = \underbrace{\frac{\varepsilon}{\boldsymbol{k}}\left(C_{\varepsilon 1} \mathbf{P}(\boldsymbol{k},\varepsilon) - C_{\varepsilon 2} \rho\varepsilon\right)}_{(3+4)}$$

avec $\mathbf{\bar{u}}$ et ρ vérifiant le bilan de masse : $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{\bar{u}}) = 0$

A. Larcher (IRSN/DPAM/SEMIC/LIMSI)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Non-linéarités + Couplage En résumé : Équations de bilan pour le modèle RANS $k - \varepsilon$ complet

(Par souci de clarté, **u** et *p* désignent désormais les champs moyens.)

Bilan de quantité de mouvement :

$$\partial_t(
ho \mathbf{u}) + \mathbf{\nabla} \cdot (
ho \mathbf{u} \otimes \mathbf{u}) - \mathbf{\nabla} \cdot \left(\mu(k, \varepsilon) \mathbf{\nabla} \mathbf{u} \right) + \mathbf{\nabla} \mathbf{p} = \mathbf{g}$$

avec g terme de forçage.

Onservation de la masse :

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \mathbf{u}) = \mathbf{0}$$

Sequations de bilan couplées pour les échelles k et ε :

$$\partial_t(\rho k) + \nabla \cdot (\rho k \mathbf{u}) - \nabla \cdot \left(\mu_k(k,\varepsilon)\nabla k\right) = f_k(k,\varepsilon)$$
$$\partial_t(\rho \varepsilon) + \nabla \cdot (\rho \varepsilon \mathbf{u}) - \nabla \cdot \left(\mu_\varepsilon(k,\varepsilon)\nabla \varepsilon\right) = f_\varepsilon(k,\varepsilon)$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

En résumé : Équations de bilan pour le modèle RANS $k - \varepsilon$ complet (Par souci de clarté, **u** et *p* désignent désormais les champs moyens.)

Bilan de quantité de mouvement :

$$\partial_t(
ho {f u}) + {f
abla} \cdot (
ho {f u} \otimes {f u}) - {f
abla} \cdot \left(\muig(k,arepsilon) {f
abla} {f u}
ight) + {f
abla}
ho = {f g}$$

avec g terme de forçage.

Onservation de la masse :

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \mathbf{u}) = \mathbf{0}$$

Solutions de bilan couplées pour les échelles k et ε :

$$\partial_t(\rho k) + \nabla \cdot (\rho k \mathbf{u}) - \nabla \cdot \left(\mu_k(k,\varepsilon)\nabla k\right) = f_k(k,\varepsilon)$$
$$\partial_t(\rho \varepsilon) + \nabla \cdot (\rho \varepsilon \mathbf{u}) - \nabla \cdot \left(\mu_\varepsilon(k,\varepsilon)\nabla \varepsilon\right) = f_\varepsilon(k,\varepsilon)$$

Fonctions non-linéaires de k et ε !

Plan

Introduction

- 2 Modèle physique
- Oiscrétisations et algorithme
- Schéma monotone pour les modèles RANS
- 5 Étude de convergence pour un problème modèle stationnaire
- 6 Convergence de l'équation de convection-diffusion volumes-finis

イロト イヨト イヨト イヨ

Figure: Maillage triangulaire non-structuré
 M : famille de volumes de contrôles K, polygones (d = 2) ou polyhèdres (d = 3) convexes et disjoints.

・ロト ・回ト ・ヨト ・

- \mathcal{M} : famille de volumes de contrôles K, polygones (d = 2) ou polyhèdres (d = 3) convexes et disjoints.
- $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$: ensemble des faces du maillage

・ロト ・ 日 ・ ・ ヨ ・ ・

- \mathcal{M} : famille de volumes de contrôles K, polygones (d = 2) ou polyhèdres (d = 3) convexes et disjoints.
- $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$: ensemble des faces du maillage
 - *E*_{int} ensemble des faces internes

・ロト ・ 日 ・ ・ ヨ ・ ・

- \mathcal{M} : famille de volumes de contrôles K, polygones (d = 2) ou polyhèdres (d = 3) convexes et disjoints.
- $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$: ensemble des faces du maillage
 - \blacktriangleright \mathcal{E}_{int} ensemble des faces internes
 - \mathcal{E}_{ext} ensemble des faces externes

イロト イヨト イヨト イヨ

- \mathcal{M} : famille de volumes de contrôles K, polygones (d = 2) ou polyhèdres (d = 3) convexes et disjoints.
- $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$: ensemble des faces du maillage
 - *E*_{int} ensemble des faces internes
 - \mathcal{E}_{ext} ensemble des faces externes
 - Pour tout L voisin de K, $\sigma = K|L$ face commune à K et L

イロト イヨト イヨト イヨ

- \mathcal{M} : famille de volumes de contrôles K, polygones (d = 2) ou polyhèdres (d = 3) convexes et disjoints.
- $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$: ensemble des faces du maillage
 - *E*_{int} ensemble des faces internes
 - \mathcal{E}_{ext} ensemble des faces externes
 - Pour tout L voisin de K, $\sigma = K|L$ face commune à K et L
- $\mathcal{P} = (x_{\mathcal{K}})_{\mathcal{K} \in \mathcal{M}}$: famille de points vérifiant une condition d'orthogonalité
 - $[x_K, x_L]$ orthogonal à $\sigma_{K|L}$
 - ► $x_K \in K$

イロト イポト イヨト イヨ

Figure: Maillage triangulaire non-structuré

- *M*: famille de volumes de contrôles *K*, polygones (*d* = 2) ou polyhèdres (*d* = 3) convexes et disjoints.
- $\mathcal{E} = \mathcal{E}_{\mathrm{int}} \cup \mathcal{E}_{\mathrm{ext}}$: ensemble des faces du maillage
- $\mathcal{P} = (x_{\mathcal{K}})_{\mathcal{K} \in \mathcal{M}}$: famille de points vérifiant une condition d'orthogonalité
- Partition uniforme de l'intervalle de temps [0, T] en intervalles $[t^{n-1}, t^n]_{1 \le n \le N}$

Pour les analyses de convergence et pour avoir des estimations uniformes par rapport au maillage, on définit une suite de discrétisations régulières par :

Definition

$$\begin{split} \left(\mathcal{M}^{(m)}\right)_{m\in\mathbb{N}} & \text{de }\Omega \text{ est une suite de discrétisations régulières} \\ \bullet \ h_{\mathcal{M}}^{(m)} &\to 0 \text{ quand } m \to \infty, \\ \bullet \text{ il existe un paramètre de régularité } \theta_0 > 0 \text{ tel que } \theta_{\mathcal{M}}^{(m)} \geq \theta_0, \ \forall m \in \mathbb{N}, \text{ avec:} \\ \end{split}$$

$$ext{(2)} \qquad \qquad \theta_{\mathcal{M}} = \inf_{K \in \mathcal{M}} \left\{ \frac{d_{K,\sigma}}{d_{\sigma}}; \sigma \in \mathcal{E}(K) \right\} \cup \left\{ \frac{d_{K,\sigma}}{\operatorname{diam}(K)}; \sigma \in \mathcal{E}(K) \right\}$$

(Dessin ?)

イロト イポト イヨト イヨト

Élément finis de Crouzeix-Raviart

A. Larcher (IRSN/DPAM/SEMIC/LIMSI)

メロト メポト メヨト メヨト

Méthode de volumes finis standard

メロト メポト メヨト メヨト

• Trouver $(k^{n+1}, \varepsilon^{n+1})$ tel que: $\frac{\rho^n k^{n+1} - \rho^{n-1} k^n}{\delta t} + \nabla \cdot (k^{n+1} \rho^n \mathbf{u}^n) - \nabla \cdot \left(\mu_k (k^n, \varepsilon^n) \nabla k^{n+1}\right) = f_k(k^{n+1}, k^n, \varepsilon^{n+1}, \varepsilon^n)$ $\frac{\rho^n \varepsilon^{n+1} - \rho^{n-1} \varepsilon^n}{\delta t} + \nabla \cdot (\varepsilon^{n+1} \rho^n \mathbf{u}^n) - \nabla \cdot \left(\mu_\varepsilon (k^n, \varepsilon^n) \nabla \varepsilon^{n+1}\right) = f_\varepsilon(k^{n+1}, k^n, \varepsilon^{n+1}, \varepsilon^n)$

Préservation de la **positivité** de k et ε ?

- Traitement du terme de convection
- ▶ Semi-discrétisation adaptée des termes sources, pour $\xi = k, \varepsilon$:

$$f_{\xi}(k^{n+1},k^n,\varepsilon^{n+1},\varepsilon^n) = \alpha_{\xi}(k^n,\varepsilon^n) - \xi^{n+1}\beta_{\xi}(k^{n+1},k^n,\varepsilon^{n+1},\varepsilon^n)$$

avec α_k , β_k deux fonctions non-linéaires telles que $\alpha_k > 0$ et $\beta_k \ge 0$

• Trouver $(k^{n+1}, \varepsilon^{n+1})$ tel que: [Schéma VF + Méthode de Newton]

$$\frac{\rho^{n}k^{n+1}-\rho^{n-1}k^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(k^{n+1}\rho^{n}\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu_{k}(k^{n},\varepsilon^{n})\boldsymbol{\nabla}k^{n+1}\right)=f_{k}(k^{n+1},k^{n},\varepsilon^{n+1},\varepsilon^{n})$$
$$\frac{\rho^{n}\varepsilon^{n+1}-\rho^{n-1}\varepsilon^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(\varepsilon^{n+1}\rho^{n}\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu_{\varepsilon}(k^{n},\varepsilon^{n})\boldsymbol{\nabla}\varepsilon^{n+1}\right)=f_{\varepsilon}(k^{n+1},k^{n},\varepsilon^{n+1},\varepsilon^{n})$$

3 Trouver
$$(\mathbf{u}^{n+1}, p^{n+1})$$
 tel que:
9 Prédiction :
$$\frac{\rho^n \tilde{\mathbf{u}}^{n+1} - \rho^{n-1} \mathbf{u}^n}{\delta t} + \nabla \cdot (\rho^n \tilde{\mathbf{u}}^{n+1} \otimes \mathbf{u}^n) - \nabla \cdot \left(\mu(k, \varepsilon) \nabla \tilde{\mathbf{u}}^{n+1}\right) + \nabla p^n = \mathbf{f}^{n+1}$$
9 Projection L² :
$$\rho^n \frac{\mathbf{u}^{n+1} - \tilde{\mathbf{u}}^{n+1}}{\delta t} + \nabla (p^{n+1} - p^n) = 0$$

・ロト ・聞ト ・ヨト ・ヨト

• Trouver $(k^{n+1}, \varepsilon^{n+1})$ tel que: [Schéma VF + Méthode de Newton]

$$\frac{\rho^{n}k^{n+1}-\rho^{n-1}k^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(k^{n+1}\rho^{n}\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu_{k}(k^{n},\varepsilon^{n})\boldsymbol{\nabla}k^{n+1}\right)=f_{k}(k^{n+1},k^{n},\varepsilon^{n+1},\varepsilon^{n})$$
$$\frac{\rho^{n}\varepsilon^{n+1}-\rho^{n-1}\varepsilon^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(\varepsilon^{n+1}\rho^{n}\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu_{\varepsilon}(k^{n},\varepsilon^{n})\boldsymbol{\nabla}\varepsilon^{n+1}\right)=f_{\varepsilon}(k^{n+1},k^{n},\varepsilon^{n+1},\varepsilon^{n})$$

Trouver (uⁿ⁺¹, pⁿ⁺¹) tel que: [Schéma EF + Méthode de projection]
 Prédiction :

$$\frac{\rho^{n}\tilde{\mathbf{u}}^{n+1}-\rho^{n-1}\mathbf{u}^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(\rho^{n}\tilde{\mathbf{u}}^{n+1}\otimes\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu(k,\varepsilon)\boldsymbol{\nabla}\tilde{\mathbf{u}}^{n+1}\right)+\boldsymbol{\nabla}\rho^{n}=\mathbf{f}^{n+1}$$

Projection L²: $\rho^n \frac{\mathbf{u}^{n+1} - \tilde{\mathbf{u}}^{n+1}}{\delta t} + \nabla(p^{n+1} - p^n) = 0$

• Trouver $(k^{n+1}, \varepsilon^{n+1})$ tel que: [Schéma VF + Méthode de Newton]

$$\frac{\rho^{n}k^{n+1}-\rho^{n-1}k^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(k^{n+1}\rho^{n}\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu_{k}(k^{n},\varepsilon^{n})\boldsymbol{\nabla}k^{n+1}\right)=f_{k}(k^{n+1},k^{n},\varepsilon^{n+1},\varepsilon^{n})$$
$$\frac{\rho^{n}\varepsilon^{n+1}-\rho^{n-1}\varepsilon^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(\varepsilon^{n+1}\rho^{n}\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu_{\varepsilon}(k^{n},\varepsilon^{n})\boldsymbol{\nabla}\varepsilon^{n+1}\right)=f_{\varepsilon}(k^{n+1},k^{n},\varepsilon^{n+1},\varepsilon^{n})$$

Trouver (uⁿ⁺¹, pⁿ⁺¹) tel que: [Schéma EF + Méthode de projection]
 Prédiction :

$$\frac{\rho^{n}\tilde{\mathbf{u}}^{n+1}-\rho^{n-1}\mathbf{u}^{n}}{\delta t}+\boldsymbol{\nabla}\cdot(\rho^{n}\tilde{\mathbf{u}}^{n+1}\otimes\mathbf{u}^{n})-\boldsymbol{\nabla}\cdot\left(\mu(k,\varepsilon)\boldsymbol{\nabla}\tilde{\mathbf{u}}^{n+1}\right)+\boldsymbol{\nabla}\rho^{n}=\mathbf{f}^{n+1}$$

Projection L²: $\rho^{n} \frac{\mathbf{u}^{n+1} - \tilde{\mathbf{u}}^{n+1}}{\delta t} + \nabla(p^{n+1} - p^{n}) = 0$

Source Conservation de la masse à l'instant t^{n+1} :

$$\frac{\rho^{n+1}-\rho^n}{\delta t}+\boldsymbol{\nabla}\cdot(\rho^{n+1}\mathbf{u}^{n+1})=0$$

Note sur la conservation de la masse

- Discrétisation du bilan de masse en volumes finis :
- Discrétisation du bilan de masse en Crouzeix-Raviart :
- Propriété de monotonicité :

• • • • • • • • • • • •
Plan

Introduction

- 2 Modèle physique
- 3 Discrétisations et algorithme
- Schéma monotone pour les modèles RANS
- 5 Étude de convergence pour un problème modèle stationnaire
- 6 Convergence de l'équation de convection-diffusion volumes-finis

・ロト ・回ト ・ヨト ・

Problème étudié

Ω ouvert borné connexe de \mathbb{R}^d , d = 2, 3. Équations de bilan de k et ε couplées :

$$\partial_t(\rho k) + \nabla \cdot (\rho k \mathbf{u}) - \nabla \cdot (\mu_k(k,\varepsilon) \nabla k) = \mathbf{P} - \rho \varepsilon$$
$$\partial_t(\rho \varepsilon) + \nabla \cdot (\rho \varepsilon \mathbf{u}) - \nabla \cdot (\mu_\varepsilon(k,\varepsilon) \nabla \varepsilon) = \frac{\varepsilon}{k} (C_{\varepsilon 1} \mathbf{P} - \rho C_{\varepsilon 2} \varepsilon)$$

avec ρ et **u** suffisamment réguliers, supposés connus et vérifiant :

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \mathbf{u}) = \mathbf{0}$$

Peut-on construire un schéma de volumes finis préservant inconditionnellement la positivité des inconnues ?

Image: A math a math

Discrétisation du système

• Bilan de masse : $(\rho \bar{u})_{\sigma}^{n}$, ρ^{n} et ρ^{n-1} connus à t^{n+1} et vérifiant,

(4) pour tout
$$K \in \mathcal{M}$$
, $|K| \frac{\rho_K^n - \rho_K^{n-1}}{\delta t} + \sum_{\sigma = K|L} (\rho \bar{u})_{\sigma}^n = 0$

• Équation modèle pour k :

$$\frac{\rho^n k^{n+1} - \rho^{n-1} k^n}{\delta t} + \nabla_{\mathcal{M}} \cdot \left(\left(\rho \bar{u} \right)^n k^{n+1} \right) - \Delta_{\mathcal{M},\mu^n}(k^{n+1}) = S^{n+1}$$

Opérateur de convection VF :

$$[\nabla_{\mathcal{M}} \cdot \rho \bar{u}k]_{K} = \frac{1}{|K|} \sum_{\sigma = K|L} |\sigma| \ (\rho \bar{u})_{\sigma} k_{\sigma}$$

avec $(\rho \bar{u})_{\sigma}$ les flux massiques vérifiant le bilan de masse (4) et k_{σ} est la discrétisation upwind.

► Terme de diffusion VF:

$$-\left[\Delta_{\mathcal{M},\mu}(k)\right]_{K} = \frac{1}{|K|} \left[\sum_{\sigma=K|L} \mu_{\sigma} \frac{|\sigma|}{d_{\sigma}} (k_{K} - k_{L}) + \sum_{\sigma \in \mathcal{E}(K) \cap \mathcal{E}_{\text{ext}}} \mu_{\sigma} \frac{|\sigma|}{d_{\sigma}} k_{K}\right]$$

Linéarisation: $\mu(k,\varepsilon)$ calculée grâce aux valeurs de k and ε évalués au pas de temps précédent.

Discrétisation du système (2)

- Équation modèle pour k (suite)
 - Termes sources : stratégie de discrétisation en temps (pour l'équation de k)
 - ★ Si S est constant:

 $\begin{array}{lll} S=C>0 & \Rightarrow & S^{n+1}=C\\ S=C<0 & \Rightarrow & S^{n+1}=-|C| \ k^{n+1}/k^n \end{array}$

* Si S = g(k) est une fonction donnée de k, même raisonnement:

 $\begin{array}{lll} g \mbox{ positive function } & \Rightarrow & S^{n+1} = g(k^n) \\ g \mbox{ negative function } & \Rightarrow & S^{n+1} = -|g(k^{n+1})| \ k^{n+1}/k^n \end{array}$

Dans tous les cas, on peut écrire S sous la forme :

(5)
$$S^{n+1} = \beta(k^n, \varepsilon^n) - \alpha(k^{n+1}, \varepsilon^{n+1}, k^n, \varepsilon^n)k^{n+1}$$

où β et α sont deux functions strictement positives.

 \Rightarrow Diagonale de la matrice du système, surchargée par les termes sources négatifs.

Lemme

A matrice de $\mathbb{R}^{M \times M}$, $M \in \mathbb{N}$, $1 \leq i \leq M$:

4
$$A_{i,i} > 0$$

$$\textcircled{O} A_{i,j} \leq 0, \ \forall \ 1 \leq j \leq M, \ j \neq i$$

$$\bigcirc \sum_{1 \leq j \leq M} A_{i,j} > 0$$

A est une matrice non-singulière appelée M-matrice, admettant une matrice inverse A^{-1} positive.

Pour tout $K \in \mathcal{M}$, l'équation volumes finis modèle s'écrit:

(6)
$$\begin{bmatrix} \frac{|K| \rho_{K}^{n}}{\delta t} + \sum_{\sigma = K|L} |\sigma| \left((\rho \bar{u})_{\sigma}^{n,+} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right) + |K| \alpha(k,\varepsilon)^{n+1} \end{bmatrix} k_{K}^{n+1} \\ - \sum_{\sigma = K|L} \left[|\sigma| (\rho \bar{u})_{\sigma}^{n,-} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right] k_{L}^{n+1} = |K| \left[\beta(k^{n},\varepsilon^{n}) + \frac{\rho_{K}^{n-1}k_{K}^{n}}{\delta t} \right]$$

・ロト ・回ト ・ヨト ・ヨ

Pour tout $K \in \mathcal{M}$, l'équation volumes finis modèle s'écrit:

(6)
$$\begin{bmatrix} \frac{|K| \rho_{K}^{n}}{\delta t} + \sum_{\sigma=K|L} |\sigma| \left((\rho \bar{u})_{\sigma}^{n,+} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right) + |K| \alpha(k,\varepsilon)^{n+1} \end{bmatrix} k_{K}^{n+1} \\ - \sum_{\sigma=K|L} \left[|\sigma| (\rho \bar{u})_{\sigma}^{n,-} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right] k_{L}^{n+1} = |K| \left[\beta(k^{n},\varepsilon^{n}) + \frac{\rho_{K}^{n-1}k_{K}^{n}}{\delta t} \right]$$

• Éléments diagonaux strictement positifs

Image: A math a math

Pour tout $K \in \mathcal{M}$, l'équation volumes finis modèle s'écrit:

(6)
$$\begin{bmatrix} \frac{|K| \rho_{K}^{n}}{\delta t} + \sum_{\sigma=K|L} |\sigma| \left((\rho \bar{u})_{\sigma}^{n,+} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right) + |K| \alpha(k,\varepsilon)^{n+1} \end{bmatrix} k_{K}^{n+1} \\ - \sum_{\sigma=K|L} \left[|\sigma| (\rho \bar{u})_{\sigma}^{n,-} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right] k_{L}^{n+1} = |K| \left[\beta(k^{n},\varepsilon^{n}) + \frac{\rho_{K}^{n-1}k_{K}^{n}}{\delta t} \right]$$

- Éléments diagonaux strictement positifs
- Éléments hors-diagonaux négatifs

Image: A math a math

Pour tout $K \in \mathcal{M}$, l'équation volumes finis modèle s'écrit:

(6)
$$\begin{bmatrix} \frac{|K| \rho_{K}^{n}}{\delta t} + \sum_{\sigma=K|L} |\sigma| \left((\rho \bar{u})_{\sigma}^{n,+} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right) + |K| \alpha(k,\varepsilon)^{n+1} \end{bmatrix} k_{K}^{n+1} \\ - \sum_{\sigma=K|L} \left[|\sigma| (\rho \bar{u})_{\sigma}^{n,-} + \frac{\mu_{\sigma}^{n}}{d_{\sigma}} \right] k_{L}^{n+1} = |K| \left[\beta(k^{n},\varepsilon^{n}) + \frac{\rho_{K}^{n-1}k_{K}^{n}}{\delta t} \right]$$

- Éléments diagonaux strictement positifs
- Éléments hors-diagonaux négatifs
- Second membre strictement positif

Pour tout $K \in \mathcal{M}$, l'équation volumes finis modèle s'écrit:

(6)
$$\begin{bmatrix} \frac{|K| \rho_K^n}{\delta t} + \sum_{\sigma = K|L} |\sigma| \left((\rho \bar{u})_{\sigma}^{n,+} + \frac{\mu_{\sigma}^n}{d_{\sigma}} \right) + |K| \alpha(k,\varepsilon)^{n+1} \end{bmatrix} k_K^{n+1} \\ - \sum_{\sigma = K|L} \left[|\sigma| (\rho \bar{u})_{\sigma}^{n,-} + \frac{\mu_{\sigma}^n}{d_{\sigma}} \right] k_L^{n+1} = |K| \left[\beta(k^n,\varepsilon^n) + \frac{\rho_K^{n-1}k_K^n}{\delta t} \right]$$

- Éléments diagonaux strictement positifs
- Éléments hors-diagonaux négatifs
- Second membre strictement positif

En sommant tous les éléments d'une rangée de la matrice, si le bilan de masse est vérifié:

(7)
$$|\mathcal{K}|\alpha(k,\varepsilon)^{n+1} + |\mathcal{K}|\frac{\rho_{\mathcal{K}}^{n}}{\delta t} + \sum_{\sigma} (\rho\bar{u})_{\sigma}^{n,+} - (\rho\bar{u})_{\sigma}^{n,-} = |\mathcal{K}|\alpha(k,\varepsilon)^{n+1} + \underbrace{|\mathcal{K}|\frac{\rho_{\mathcal{K}}^{n-1}}{\delta t}}_{>0}$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Pour tout $K \in \mathcal{M}$, l'équation volumes finis modèle s'écrit:

(6)
$$\begin{bmatrix} \frac{|K| \rho_K^n}{\delta t} + \sum_{\sigma = K|L} |\sigma| \left((\rho \bar{u})_{\sigma}^{n,+} + \frac{\mu_{\sigma}^n}{d_{\sigma}} \right) + |K| \alpha(k,\varepsilon)^{n+1} \end{bmatrix} k_K^{n+1} \\ - \sum_{\sigma = K|L} \left[|\sigma| (\rho \bar{u})_{\sigma}^{n,-} + \frac{\mu_{\sigma}^n}{d_{\sigma}} \right] k_L^{n+1} = |K| \left[\beta(k^n,\varepsilon^n) + \frac{\rho_K^{n-1}k_K^n}{\delta t} \right]$$

- Éléments diagonaux strictement positifs
- Éléments hors-diagonaux négatifs
- Second membre strictement positif

En sommant tous les éléments d'une rangée de la matrice, si le bilan de masse est vérifié:

(7)
$$|\mathcal{K}|\alpha(k,\varepsilon)^{n+1} + |\mathcal{K}|\frac{\rho_{\mathcal{K}}^{n}}{\delta t} + \sum_{\sigma} (\rho\bar{u})_{\sigma}^{n,+} - (\rho\bar{u})_{\sigma}^{n,-} = |\mathcal{K}|\alpha(k,\varepsilon)^{n+1} + \underbrace{|\mathcal{K}|\frac{\rho_{\mathcal{K}}^{n-1}}{\delta t}}_{>0}$$

⇒ La matrice associée à l'opérateur de convection VF est une M-matrice. Rôle essentiel du bilan de masse pour assurer la positivité - Larrouturou [JCP 1991]

Discrétisation des termes sources: un exemple

Modèle $k - \varepsilon$ RNG :

$$\mathbf{S}_{k}^{n+1} = \mathbf{P}^{n} - \rho^{n} |\varepsilon^{n+1}| \frac{k^{n+1}}{\max(k^{n}, k^{*})}$$
$$\mathbf{S}_{\varepsilon}^{n+1} = \gamma^{n} (C_{\varepsilon 1} \mathbf{P}^{n} - \rho^{n} (C_{\varepsilon 2} + C_{\mathrm{rng}} \mathrm{sgn}(C_{\varepsilon r}^{+})) \frac{(\varepsilon^{n+1})^{2}}{\max(k^{n}, k^{*})} - \rho^{n} C_{\mathrm{rng}} \mathrm{sgn}(C_{\varepsilon r}^{-}) \frac{(\varepsilon^{n})^{2}}{\max(k^{n}, k^{*})}$$

avec,

- $x^+ = |x|$ et $x^- = |-x|$ • $\gamma^n = \frac{\rho^{n-1}C_{\mu}k^n}{\mu_n^n}$
- $C_{
 m rng} = C_{\mu} C_{\eta} \eta^2$
- $C_{\varepsilon r} = C_{\varepsilon 2} + C_{\mathrm{rng}}$
- k* fixé pour limiter les termes sources

(日) (同) (日) (日)

Résultats d'analyse

Théorème

Existence, unicité et positivité stricte de $(k^{n+1}, \varepsilon^{n+1})$, $0 \le n < N$ si (k^0, ε^0) strictement positives.

Proof.

- Positivité : argument de M-Matrice précédent.
- Existence : principe du maximum pour une équation de convection-diffusion-réaction afin de borner la solution de manière uniforme, puis théorème de degré topologique.
- Unicité : par linéarité et principe du maximum.

(日) (同) (日) (日) (日)

Plan

Introduction

- 2 Modèle physique
- 3 Discrétisations et algorithme
- 4 Schéma monotone pour les modèles RANS
- 5 Étude de convergence pour un problème modèle stationnaire

Onvergence de l'équation de convection-diffusion volumes-finis

A D > A B > A B > A

Problème étudié

 Ω ouvert borné connexe de \mathbb{R}^d , d = 2, 3.

Équations de Stokes stationnaires + convection-diffusion modèle pour k :

(8a)
$$- \nabla \cdot (\lambda(k) \nabla \mathbf{u}) + \nabla p = \mathbf{f}$$

$$(8b) \nabla \cdot \mathbf{u} = 0$$

(8c)
$$- \nabla \cdot (\lambda(k) \nabla k) + \nabla \cdot (k\mathbf{u}) = \lambda(k) |\nabla \mathbf{u}|^2$$

(8d)
$$\mathbf{u}(\mathbf{x}) = \mathbf{0}, \ k(\mathbf{x}) = \mathbf{0} \quad \forall \mathbf{x} \in \partial \Omega$$

avec :

•
$$\mathbf{f} \in \mathrm{L}^2(\Omega)^d$$

• $\lambda(k) = \min(\lambda_{\infty}, \mu^2 + \ell^2 k)^{1/2}$, avec ℓ réel positif et deux réels μ et λ_{∞} , tels que $\lambda_{\infty} > \mu > 0$

Peut-on montrer la convergence du schéma éléments finis/volumes finis sur ce problème ?

イロト イポト イヨト イヨト

Un résultat de convergence

Convergence du schéma numérique ?

- (u^(m), p^(m), k^(m))_{m∈ℕ} suite de solutions approchées telle que (M^(m)) suite de discrétisations régulières
- (\mathbf{u}, p, k) solution de (8) au sens faible :

$$\begin{split} (\mathbf{u},p,k) \in \mathrm{H}_{0}^{1}(\Omega)^{d} \times \mathrm{L}_{0}^{2}(\Omega) \times \mathrm{W}_{0}^{1,\alpha}(\Omega), \text{ for any } \alpha \in [1,d/(d-1)) \text{ and,} \\ \text{for all } (\mathbf{v},q,\psi) \in \mathrm{H}_{0}^{1}(\Omega)^{d} \times \mathrm{L}^{2}(\Omega) \times \mathrm{C}_{c}^{\infty}(\Omega): \end{split}$$

(9)
$$\int_{\Omega} \lambda(k) \, \nabla \mathbf{u} : \nabla \mathbf{v} \, \mathrm{d}\mathbf{x} - \int_{\Omega} p \, \nabla \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, \mathrm{d}\mathbf{x},$$
$$\int_{\Omega} q \, \nabla \cdot \mathbf{u} \, \mathrm{d}\mathbf{x} = 0,$$
$$\int_{\Omega} \lambda(k) \, \nabla k \cdot \nabla \psi \, \mathrm{d}\mathbf{x} - \int_{\Omega} k \, \mathbf{u} \cdot \nabla \psi \, \mathrm{d}\mathbf{x} = \int_{\Omega} \lambda(k) \, |\nabla \mathbf{u}|^2 \, \psi \, \mathrm{d}\mathbf{x}.$$

 $\Rightarrow \mathsf{Montrer} \ \mathsf{que} \ (\mathbf{u}^{(m)}, p^{(m)}, k^{(m)}) \rightarrow (\mathbf{u}, p, k) \ \mathsf{quand} \ m \rightarrow \infty$

イロト イポト イヨト イヨト

Une difficulté : régularité du terme de production turbulente

Terme de production turbulente : $\lambda(k) |\nabla \mathbf{u}|^2$

Remarque : prenons $\mathbf{v} = \mathbf{u}$ dans (9)

$$\int_{\Omega} \lambda(k) |\nabla \mathbf{u}|^2 \, \mathrm{d}\mathbf{x} - \int_{\Omega} p \, \nabla \cdot \mathbf{u} \, \mathrm{d}\mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{u} \, \mathrm{d}\mathbf{x}$$

alors, classiquement, il existe C > 0 tel que :

$$\|\lambda(k) | \nabla \mathbf{u}|^2 \|_{\mathrm{L}^1(\Omega)} \leq C$$

 \rightarrow Le second membre de l'équation de k n'est pas dans $L^2(\Omega)$ mais $L^1(\Omega)$ seulement ! Conséquences :

- *Estimations* : cadre fonctionnel différent $\rightarrow k \in W_0^{1,q}(\Omega)$ avec q vérifiant une condition de type exposant critique de Sobolev.
- Convergence : Passage à la limite dans le second membre de l'équation de k ?

Problème discret

• Trouver $(\mathbf{u}, p, k) \in \mathbf{V}_h imes \mathrm{H}_\mathcal{M} imes \mathrm{H}_\mathcal{M}$ vérifiant :

$$\begin{aligned} \forall \mathbf{v} \in \mathbf{V}_{h}, \qquad & \int_{\Omega} \lambda(k) \ \boldsymbol{\nabla}_{h} \mathbf{u} : \boldsymbol{\nabla}_{h} \mathbf{v} \, \mathrm{d} \mathbf{x} - \int_{\Omega} p \ \boldsymbol{\nabla}_{h} \cdot \mathbf{v} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, \mathrm{d} \mathbf{x}, \\ \forall q \in \mathcal{H}_{\mathcal{M}}, \qquad & \int_{\Omega} q \ \boldsymbol{\nabla}_{\cdot h} \mathbf{u} \, \mathrm{d} \mathbf{x} = \mathbf{0}, \\ \forall K \in \mathcal{M}, \qquad & \sum_{\sigma = K \mid L} \frac{|\sigma|}{d_{\sigma}} \ \lambda(k)_{\sigma} \ (k_{K} - k_{L}) + \sum_{\sigma \in \mathcal{E}(K) \cap \mathcal{E}_{\mathrm{ext}}} \frac{|\sigma|}{d_{K,\sigma}} \ \lambda(k)_{\sigma} \ (k_{K}) \\ & + \sum_{\sigma = K \mid L} (\mathbf{v}_{\sigma,K}^{+} \ k_{K} - \mathbf{v}_{\sigma,K}^{-} \ k_{L}) = |K| \ \left[\lambda(k) \ |\boldsymbol{\nabla} \mathbf{u}|^{2} \right]_{K}. \end{aligned}$$

• Avec les discrétisations volumes finis suivantes :

- Flux convectif upwind, avec v⁺_{σ,K} = max(v_{K,σ}, 0) et v⁻_{σ,K} = − min(v_{K,σ}, 0).
- Terme source constant par maille :

$$\left[\lambda \left|\boldsymbol{\nabla}_{h} \mathbf{u}\right|^{2}\right]_{K} = \frac{\lambda(k_{K})}{|K|} \int_{K} |\boldsymbol{\nabla}_{h} \mathbf{u}|^{2} \, \mathrm{d}\mathbf{x}.$$

- Terme de diffusion : on suppose juste que λ_{σ} satisfait,
 - $\begin{aligned} \forall \sigma \in \mathcal{E}_{\text{int}}, \ \sigma = K | L, & \min \left[\lambda(k_K), \lambda(k_L) \right] \leq \lambda(k)_{\sigma} \leq \max \left[\lambda(k_K), \lambda(k_L) \right], \\ \forall \sigma \in \mathcal{E}_{\text{ext}} \cap \mathcal{E}(K) & \lambda(k)_{\sigma} = \lambda(k_K). \end{aligned}$

Lemma (Convergence faible dans $L^2(\Omega)^d$ du gradient EF)

$$\begin{split} & \left(\mathcal{M}^{(m)}\right)_{m\in\mathbb{N}} \text{ suite de discretisations régulières de }\Omega. \\ & \left(v^{(m)}\right)_{m\in\mathbb{N}} \text{ suite de fonctions discrètes telles que }: \forall \ m\in\mathbb{N}, \qquad \left\|v\right\|_{1,b} \leq C \text{ avec }C \text{ réel strictement positif.} \end{split}$$

 $Si(v^{(m)})_{m\in\mathbb{N}} \to v \in H_0^1(\Omega)$ dans $L^2(\Omega)$, alors la suite $(\nabla_h v^{(m)})_{m\in\mathbb{N}}$ des gradients constants par maille converge faiblement dans $L^2(\Omega)^d$ vers ∇v .

Lemma (Convergence faible du gradient VF)

$$\begin{split} & \left(\mathcal{M}^{(m)}\right)_{m\in\mathbb{N}} \text{ suite de discretisations régulières de }\Omega. \\ & \left(v^{(m)}\right)_{m\in\mathbb{N}} \text{ suite de fonctions discrètes telles que }\forall m\in\mathbb{N}, \ v^{(m)}\in\mathrm{H}^{(m)}_{\mathcal{M}}. \end{split} \\ & \text{On suppose qu'il existe } \alpha\in[1,+\infty) \ C>0 \ \text{tels que }: \ \|v^{(m)}\|_{1,\alpha,\mathcal{M}}\leq C \\ & \text{Si } \left(v^{(m)}\right)_{m\in\mathbb{N}} \text{ converge in } \mathrm{L}^1(\Omega) \ \text{to } v\in\mathrm{W}^{1,\alpha}_0(\Omega), \ \text{alors } \left(\boldsymbol{\nabla}_{\mathcal{M}}v^{(m)}\right)_{m\in\mathbb{N}} \text{ converge faiblement dans } \mathrm{L}^{\alpha}(\Omega)^d \ \text{vers } \boldsymbol{\nabla}v \end{split}$$

イロト イヨト イヨト イヨト

Estimations a priori

Soit $(\mathcal{M}^{(m)})_{m\in\mathbb{N}}$, une suite de discrétisations régulières de paramètre de régularité $\theta_0 > 0$.

Pour tout $m \in \mathbb{N}$, $(\mathbf{u}^{(m)}, p^{(m)}, k^{(m)})$ vérifie les estimations a priori suivantes :

Théorème

 $(\mathbf{u}, p, k) \in \mathbf{V}_h \times \mathrm{H}_{\mathcal{M}} \times \mathrm{H}_{\mathcal{M}}$ solution du problème (10) satisfait:

 $\left\|\mathbf{u}\right\|_{1,b}+\left\|k\right\|_{1,\alpha,\mathcal{M}}+\left\|p\right\|_{\mathrm{L}^{2}(\Omega)}\leq C,$

avec:

•
$$\alpha \in [1, d/(d-1))$$

• C dépendant de f, Ω , μ , θ_0 and α

Proof.

- L'estimation de u est classique car λ est bornée inférieurement par $\mu > 0$.
- L'estimation de p est une conséquence de la condition inf-sup.
- L'estimation de k s'obtient de manière similaire au cas du Laplacien [?].

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Compacité

Les estimations précédentes ainsi que les estimations usuelles sur les translatées en espace permettent de déduire par Kolmogorov :

Lemma (Compacité des solutions discrètes)

$$(\mathcal{M}^{(m)})_{m \in \mathbb{N}} \text{ suite de discrétisations régulières de }\Omega.$$

$$(\mathbf{u}^{(m)}, p^{(m)}, k^{(m)})_{m \in \mathbb{N}} \text{ suite de solutions approchées correspondantes.}$$
À l'extraction d'un sous-suite près :

$$(\mathbf{u}^{(m)})_{m \in \mathbb{N}} \rightarrow \mathbf{u} \in \mathrm{H}^{1}_{0}(\Omega)^{d}, \text{ dans } \mathrm{L}^{2}(\Omega)^{d}$$

$$(p^{(m)})_{m \in \mathbb{N}} \rightarrow p \in \mathrm{L}^{2}(\Omega), \text{ dans } \mathrm{L}^{2}(\Omega)$$

$$(k^{(m)})_{m \in \mathbb{N}} \rightarrow k \in \mathrm{W}^{1,\alpha}_{0}(\Omega), \text{ dans } \mathrm{L}^{\beta}(\Omega), \text{ pour tout } \alpha \in [1, d/(d-1)) \text{ et }\beta \in [1, d/(d-2))$$

$$(\nabla_{h}\mathbf{u}^{(m)})_{m \in \mathbb{N}} \rightarrow \nabla \mathbf{u}, \text{ dans } \mathrm{L}^{2}(\Omega)^{d \times d} \text{ par Théorème 5.1}$$

$$(\nabla_{\mathcal{M}}k^{(m)})_{m \in \mathbb{N}} \rightarrow \nabla k \text{ dans } \mathrm{L}^{\alpha}(\Omega)^{d}, \text{ pour tout } \alpha \in [1, d/(d-1)) \text{ par Théorème 5.2}$$

De plus, on montre que :

Lemma

$$\lambda(k^{(m)})_{m\in\mathbb{N}} o \mathrm{L}^{\beta}(\Omega)$$
 to $\lambda(k)$, pour $\beta \in [1, +\infty)$.

Passage à la limite : Équations de Stokes (1) Soit $\varphi \in C_c^{\infty}(\Omega)^d$ et $\varphi^{(m)} = r_h^{(m)}\varphi$ son interpolée dans $\mathbf{V}_h^{(m)}$.

• Le passage à la limite dans Stokes est classique :

$$\underbrace{\int_{\Omega} \lambda(k^{(m)}) \, \boldsymbol{\nabla}_{h} \mathbf{u}^{(m)} : \boldsymbol{\nabla}_{h} \boldsymbol{\varphi}^{(m)} \, \mathrm{d} \mathbf{x}}_{T_{1}} - \underbrace{\int_{\Omega} p^{(m)} \, \boldsymbol{\nabla}_{h} \cdot \boldsymbol{\varphi}^{(m)} \, \mathrm{d} \mathbf{x}}_{T_{2}} = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}^{(m)} \, \mathrm{d} \mathbf{x}.$$

Terme de diffusion :

$$T_{1} = \int_{\Omega} \lambda(k^{(m)}) \nabla_{h} \mathbf{u}^{(m)} : \nabla_{h} \varphi \, \mathrm{d}\mathbf{x} + \int_{\Omega} \lambda(k^{(m)}) \nabla_{h} \mathbf{u}^{(m)} : \nabla_{h} (\varphi^{(m)} - \varphi) \, \mathrm{d}\mathbf{x}.$$

$$T_{1,1} = \int_{\Omega} \underbrace{\lambda(k^{(m)})}_{\text{fortL}^{2}(\Omega)} \underbrace{\nabla_{h} \mathbf{u}^{(m)}}_{\text{faibleL}^{2}(\Omega)} : \nabla_{h} \varphi \, \mathrm{d}\mathbf{x} \longrightarrow \int_{\Omega} \lambda(k) \nabla_{h} \mathbf{u} : \nabla_{h} \varphi \, \mathrm{d}\mathbf{x}.$$

$$T_{1,2} = \underbrace{\int_{\Omega} \lambda(k^{(m)}) \nabla_{h} \mathbf{u}^{(m)}}_{\leq C_{\varphi} h^{(m)}} : \nabla_{h} (\varphi^{(m)} - \varphi) \, \mathrm{d}\mathbf{x}. \longrightarrow 0$$

Terme de pression : rôle crucial de la préservation de la divergence par r_h

$$T_{2} = \int_{\Omega} p^{(m)} \boldsymbol{\nabla}_{h} \cdot \boldsymbol{\varphi}_{h}^{(m)} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \underbrace{p^{(m)}}_{faible \mathrm{L}^{2}(\Omega)} \boldsymbol{\nabla} \cdot \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x} \to \int_{\Omega} p \boldsymbol{\nabla} \cdot \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x}$$

< ロト < 同ト < ヨト < ヨ

Passage à la limite : Équations de Stokes (2)

Terme source :

$$\lim_{m \to +\infty} \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}^{(m)} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x}.$$

Contrainte d'incompressibilité :

$$\int_{\Omega} \pi^{(m)} \varphi \, \boldsymbol{\nabla}_{h} \cdot \mathbf{u}^{(m)} \, \mathrm{d}\mathbf{x} = \int_{\Omega} \varphi \, \underbrace{\boldsymbol{\nabla}_{h} \cdot \mathbf{u}^{(m)}}_{\text{faibleL}^{2}(\Omega)} \, \mathrm{d}\mathbf{x} + \int_{\Omega} \left(\pi^{(m)} \varphi - \varphi \right) \, \underbrace{\boldsymbol{\nabla}_{h} \cdot \mathbf{u}^{(m)}}_{\text{borneL}^{2}(\Omega)} \, \mathrm{d}\mathbf{x} = 0.$$

・ロト ・ 日 ・ ・ ヨ ト ・

Passage à la limite : Équations de k (1)

• Le passage à la limite dans le second membre pose problème :

 \rightarrow d'après les résultats $(\lambda(k^{(m)})^{1/2} \nabla_h \mathbf{u}^{(m)})_{m \in \mathbb{N}}$ est bornée dans $L^2(\Omega)^{d \times d}$, donc converge faiblement dans $L^2(\Omega)^{d \times d}$ vers une certaine limite.

• Ceci ne suffit pas :

 \to on doit montrer la convergence forte de $(\lambda(k^{(m)})^{1/2} \ \nabla_h u^{(m)})_{m \in \mathbb{N}}$ dans $\mathrm{L}^2(\Omega)^{d imes d}$

• Le terme source est obtenu en prenant **u**^(m) comme fonction test dans le terme de diffusion de l'équation de Stokes,

$$\int_{\Omega} \lambda(k^{(m)}) \, \boldsymbol{\nabla}_{h} \mathbf{u}^{(m)} : \boldsymbol{\nabla}_{h} \boldsymbol{\varphi}^{(m)} \, \mathrm{d} \mathbf{x}$$

ce qui suggère d'utiliser la première équation pour montrer la convergence. On montre donc, le résultat suivant :

Lemma (Convergence forte de la dissipation visqueuse) La suite $(\lambda(k^{(m)})^{1/2} \nabla_h \mathbf{u}^{(m)})_{m \in \mathbb{N}}$ converge fortement dans $L^2(\Omega)^{d \times d}$ to $\lambda(k)^{1/2} \nabla \mathbf{u}$.

Passage à la limite : Équations de k (2)

 $\lambda(k^{(m)})^{1/2} \nabla_h \mathbf{u}^{(m)}$ converge faiblement vers $\overline{\lambda(k)^{1/2} \nabla \mathbf{u}}$ dans $L^2(\Omega)^{d \times d}$. La limite satisfait donc, $\forall \varphi \in L^2(\Omega)^{d \times d}$:

$$\lim_{m \to +\infty} \int_{\Omega} \lambda(k^{(m)})^{1/2} \, \boldsymbol{\nabla}_{h} \mathbf{u}^{(m)} : \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \overline{\lambda(k)^{1/2} \, \boldsymbol{\nabla} \mathbf{u}} : \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x}$$

Mais également, $orall arphi \in \mathrm{C}^\infty_c(\Omega)^{d imes d}$:

$$\lim_{m \to +\infty} \int_{\Omega} \lambda(k^{(m)})^{1/2} \, \boldsymbol{\nabla}_{h} \mathbf{u}^{(m)} : \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \lambda(k)^{1/2} \, \boldsymbol{\nabla} \mathbf{u} : \boldsymbol{\varphi} \, \mathrm{d} \mathbf{x}, \qquad \forall \boldsymbol{\varphi} \in \mathrm{C}^{\infty}_{c}(\Omega)^{d \times d},$$

D'où, on déduit:

$$(\lambda(k^{(m)})^{1/2} \, \boldsymbol{\nabla}_h \mathbf{u}^{(m)})_{m \in \mathbb{N}} \rightharpoonup \lambda(k)^{1/2} \, \boldsymbol{\nabla} \mathbf{u}, \qquad m \to \infty$$

Convergence faible de $(\lambda(k^{(m)})^{1/2} \nabla_h \mathbf{u}^{(m)})_{m \in \mathbb{N}}$

Passage à la limite : Équations de k (3)

Prenons \mathbf{u}^m comme fonction test dans Stokes :

$$\int_{\Omega} \lambda(k^{(m)}) \, \boldsymbol{\nabla}_{h} \mathbf{u}^{(m)} : \boldsymbol{\nabla}_{h} \mathbf{u}^{(m)} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \mathbf{f} \cdot \mathbf{u}^{(m)} \, \mathrm{d} \mathbf{x}.$$

Les résultats de compacité ne suffisent pas pour passer à la limite à gauche... mais comme $\mathbf{u}^{(m)}$ converge dans $L^2(\Omega)^d$, on peut donc le faire à droite :

$$\lim_{m\to+\infty}\int_{\Omega}\lambda(k^{(m)}) \,\boldsymbol{\nabla}_{h}\mathbf{u}^{(m)}:\boldsymbol{\nabla}_{h}\mathbf{u}^{(m)}\,\mathrm{d}\mathbf{x}=\int_{\Omega}\mathbf{f}\cdot\mathbf{u}\,\mathrm{d}\mathbf{x}.$$

De plus, u satisfait l'équation de Stokes :

$$\int_{\Omega} \mathbf{f} \cdot \mathbf{u} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \lambda(k) \, \boldsymbol{\nabla} \mathbf{u} : \boldsymbol{\nabla} \mathbf{u} \, \mathrm{d} \mathbf{x}.$$

Convergence de la norme $\|(\lambda(k^{(m)})^{1/2} \nabla_h \mathbf{u}^{(m)}\|_{L^2}$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Passage à la limite : Équations de k (4)

Le passage à la limite dans les termes de diffusion et de convection font appel aux résultats usuels de l'analyse des méthodes volumes finis :

- Diffusion : similaire aux technique développées dans [?] en adaptant avec une viscosité variable et en utilisant la convergence faible du gradient VF.
- Convection : preuve similaire à l'étape 3 de la preuve du Théorème 6.1 de [?] pour le terme ∇·(ρu).

Plan

Introduction

- 2 Modèle physique
- 3 Discrétisations et algorithme
- Schéma monotone pour les modèles RANS
- Étude de convergence pour un problème modèle stationnaire

6 Convergence de l'équation de convection-diffusion volumes-finis

A D > A B > A B > A

Problème étudié

 Ω ouvert borné connexe de \mathbb{R}^d , d = 2, 3.

Équation de convection-diffusion instationnaire à donnée L^1 :

$$\begin{aligned} \partial_t u + \nabla \cdot (u \mathbf{v}) - \Delta u &= f & \text{ in } \Omega \times (0, T), \\ u(\mathbf{x}, 0) &= u_0(\mathbf{x}) & \text{ a.e. in } \Omega, \\ u(\mathbf{x}, t) &= 0 & \text{ a.e. in } \partial\Omega \times (0, T), \end{aligned}$$

avec $f \in L^1(\Omega \times (0, T))$ et $u_0 \in L^1(\Omega)$.

$$egin{aligned} \mathbf{v}\in\mathrm{C}^1(\bar{\Omega} imes [0,T]),\ \mathbf{
abla}\cdot\mathbf{v}(\mathbf{x},t) &= 0, \ orall(\mathbf{x},t)\in\Omega imes (0,T),\ \mathbf{v}(\mathbf{x},t) &= 0, \ orall(\mathbf{x},t)\in\partial\Omega imes (0,T). \end{aligned}$$

Peut-on montrer la convergence du schéma de volumes finis pour ce problème ?

イロト イポト イヨト イヨト

Problème discret

(11)
$$\forall K \in \mathcal{M}, \text{ for } 0 \leq n < N,$$

$$\frac{|K|}{\delta t} (u_{K}^{n+1} - u_{K}^{n}) + \sum_{\sigma = K|L} v_{K,\sigma}^{n+1/2} u_{\sigma}^{n+1} + \sum_{\sigma = K|L} \frac{|\sigma|}{d\sigma} (u_{K}^{n+1} - u_{L}^{n+1})$$

$$+ \sum_{\sigma \in \mathcal{E}(K) \cap \mathcal{E}_{ext}} \frac{|\sigma|}{d\sigma} u_{K}^{n+1} = \frac{1}{\delta t} \int_{t^{n}}^{t^{n+1}} \int_{K} f(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

tel que pour $\sigma \in \mathcal{E}_{int}$ et $0 \le n \le N$, on note $v_{K,\sigma}^{n+1/2}$ l'approximation du champ de vitesse est défini par:

(12)
$$\mathbf{v}_{K,\sigma}^{n+1/2} = \frac{1}{\delta t} \int_{t^n}^{t^{n+1}} \int_{\sigma=K|L} \mathbf{v}(\mathbf{x},t) \cdot \mathbf{n}_{K,\sigma} \,\mathrm{d}\gamma(\mathbf{x}) \,\mathrm{d}t$$

et la discrétisation de u sur les faces internes est la discrétisation décentrée amont.

イロト イポト イヨト イヨト

Résultat de convergence

Énoncé + Limite vérifie le problème faible

・ロト ・ 日 ・ ・ ヨ ト ・

Nécessité d'un nouveau résultat de compacité

Présentation de la différence avec le cas Naviers-Stokes (L^2) , espace non-dual

・ロト ・ 日 ・ ・ ヨ ・ ・

Un lemme d'Aubin-Simon discret

Que permet le lemme d'Aubin-Simon en continu par rapport à Kolmogorov

・ロト ・回ト ・ヨト ・ヨ

Un lemme d'Aubin-Simon discret

Comment obtenir un équivalent discret ? Lemme de Lions \rightarrow estimation des translatées en temps.

・ロト ・回ト ・ヨト ・ヨ

Un lemme d'Aubin-Simon discret

Un dessin de la méthode de reflexion pour borner les sauts

・ロト ・ 日 ・ ・ ヨ ト ・

En un slide, donnner les estimations

メロト メポト メヨト メヨト

(Estimations + Compacité) permet de conclure à la convergence.

・ロト ・ 日 ・ ・ ヨ ト ・