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Détection de Classes d’Objets et Estimation de leurs Poses a partir de Modeles 3D Synthétiques
RESUME : Cette these porte sur la détection de classes d’objets et I’estimation de leur poses 2 partir d’une
seule image en utilisant des étapes d’apprentissage, de détection et d’estimation adaptées aux données
synthétiques. Nous proposons de créer des représentations en 3D de classes d’objets permettant de gérer
simultanément des points de vue différents et la variabilité intra-classe. Deux méthodes différentes sont
proposées : La premiere utilise des données d’entrainement purement synthétiques alors que la seconde
approche est basée sur un modele de parties combinant des images d’entrainement réelles avec des données
géométriques synthétiques. Pour I’entrainement de la méthode purement synthétique, nous proposons une
procédure non-supervisée de filtrage de descripteurs locaux afin de rendre les descripteurs discriminatifs
pour leur pose et leur classe d’objet. Dans le cadre du modele de parties, I’apparence d’une classe d’objets
est apprise de maniere discriminative a partir d’une base de données annotée et la géométrie en 3D est
apprise de maniere générative a partir d’une base de modeles CAO. Pendant la détection, nous introduisons
d’abord une méthode de vote en 3D qui renforce la cohérence géométrique en se servant d’une estima-
tion robuste de la pose. Ensuite, nous décrivons une deuxieme méthode d’estimation de pose qui permet
d’évaluer la probabilité de constellations de parties détectées en 2D en utilisant une géométrie 3D entiere.
Les estimations approximatives sont ensuite améliorées en se servant d’un alignement de modeles 3D CAO
avec des images en 2D ce qui permet de résoudre des ambiguités et de gérer des occultations.

MOTS CLES : vision par ordinateur, détection de classes d’objets, estimation de pose

Synthetic 3D Model-Based Object Class Detection and Pose Estimation

ABSTRACT : This dissertation aims at extending object class detection and pose estimation tasks on single
2D images by a 3D model-based approach. The work describes learning, detection and estimation steps
adapted to the use of synthetically rendered data with known 3D geometry. Most existing approaches re-
cognize object classes for a particular viewpoint or combine classifiers for a few discrete views. By using
existing CAD models and rendering techniques from the domain of computer graphics which are para-
meterized to reproduce some variations commonly found in real images, we propose instead to build 3D
representations of object classes which allow to handle viewpoint changes and intra-class variability. These
3D representations are derived in two different ways : either as an unsupervised filtering process of pose
and class discriminant local features on purely synthetic training data, or as a part model which discrimina-
tively learns the object class appearance from an annotated database of real images and builds a generative
representation of 3D geometry from a database of synthetic CAD models. During detection, we introduce
a 3D voting scheme which reinforces geometric coherence by means of a robust pose estimation, and we
propose an alternative probabilistic pose estimation method which evaluates the likelihood of groups of 2D
part detections with respect to a full 3D geometry. Both detection methods yield approximate 3D boun-
ding boxes in addition to 2D localizations ; these initializations are subsequently improved by a registration
scheme aligning arbitrary 3D models to optical and Synthetic Aperture Radar (SAR) images in order to
disambiguate and prune 2D detections and to handle occlusions. The work is evaluated on several standard
benchmark datasets and it is shown to achieve state-of-the-art performance for 2D detection in addition to
providing 3D pose estimations from single images.

KEYWORDS : computer vision, object class detection, pose estimation
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Abstract

The present thesis describes 3D model-based approaches to object class detection and pose esti-
mation on single 2D images. We introduce learning, detection and estimation steps adapted to the
use of synthetically rendered training data with known 3D geometry.

Most existing approaches recognize object classes for a particular viewpoint or combine classifiers
for a few discrete views. By using CAD models and rendering techniques from the domain of
computer graphics, we propose instead to build 3D representations of object classes which allow
to handle viewpoint changes and intra-class variability.

We outline an unsupervised filtering process of pose and class discriminant local features on purely
synthetic training data, and we derive a part model which discriminatively learns the object class
appearance from an annotated database of real images and builds a generative representation of its
3D geometry from a database of synthetic CAD models.

During detection, we introduce a 3D voting scheme to reinforce geometric coherence by means of
a robust pose estimation, and we propose an alternative probabilistic method which evaluates the
likelihood of groups of 2D part detections with respect to a full 3D geometry. Both approaches
yield approximate 3D bounding boxes in addition to 2D localizations; these initializations are
subsequently improved and disambiguated by a registration scheme aligning arbitrary 3D models
to 2D images.

The work is evaluated on several standard benchmark datasets and achieves state-of-the-art per-
formance for 2D detection in addition to providing 3D pose estimations from single images.






Résumé

Cette these apporte des contributions a la détection d’objets en utilisant des modeles 3D. Plus exac-
tement, elle porte sur la détection de classes d’objets et I’estimation de leurs poses a partir d’une
seule image. Nous décrivons des étapes d’apprentissage, de détection et d’estimation adaptées a
I’utilisation de données synthétiques pour lesquelles la géométrie est connue.

La plupart des approches existantes détectent des classes d’objets a partir de points de vue discrets
en combinant des classifieurs. En utilisant des modeles CAO existants et des méthodes de rendu
issues du domaine de la synthese d’images, nous proposons de créer des représentations en 3D
de classes d’objets permettant de gérer simultanément des points de vue différents et la variabilité
intra-classe.

Pour obtenir ces représentations en 3D, deux méthodes différentes sont proposées. La premiere
utilise des données d’entrainement purement synthétiques alors que la seconde approche est basée
sur un modele de parties combinant des images d’entrainement réelles avec des données géomé-
triques synthétiques. Pour I’entrainement de la méthode purement synthétique, nous proposons
une procédure non-supervisée de filtrage de descripteurs locaux afin de rendre les descripteurs
discriminatifs pour leur pose et leur classe d’objet. Dans le cadre du modele de parties, 1’appa-
rence d’une classe d’objets est apprise de maniere discriminative a partir d’'une base de données
annotée et la géométrie en 3D est apprise de maniére générative a partir d’une base de modeles
CAO.

Pendant la détection, nous introduisons tout d’abord une méthode de vote en 3D qui renforce la
cohérence géométrique en se servant d’une estimation robuste de la pose. Ensuite, nous décrivons
une deuxieme méthode d’estimation de pose qui permet d’évaluer la probabilité de constellations
de parties détectées en 2D en utilisant une géométrie 3D entiere. Les deux méthodes génerent
des détections en 2D ainsi que des estimations approximatives de poses en 3D ; ces estimations
approximatives sont ensuite améliorées en se servant d’un alignement de modeles 3D CAO avec
des images en 2D, ce qui permet de résoudre des ambiguités, d’effectuer un filtrage des détections
en 2D et de gérer des occultations.

L’approche est évaluée sur plusieurs bases d’images de référence et nous montrons qu’elle est ca-
pable de fournir des estimations de pose en 3D a partir d’images 2D tout en générant des détections
en 2D comparables a 1’état de 1art.






Zusammenfassung

Ziel dieser Arbeit ist die Erkennung und Positionsschédtzung von Objektklassen in einzelnen zwei-
dimensionalen Bildern mittels eines dreidimensionalen modellbasierten Ansatzes. Die Arbeit un-
tersucht Lern-, Detektions- und Positionsschidtzungsverfahren, die auf die Verwendung synthetisch
generierter Trainingsdaten mit bekannter dreidimensionaler Geometrie abgestimmt sind.

Der iiberwiegende Anteil existierender Verfahren erkennt Objektklassen aus einzelnen Kame-
raperspektiven oder kombiniert Klassifikatoren fiir einzelne diskrete Ansichten. Demgegeniiber
beschiftigt sich diese Arbeit mit dem Erlernen von dreidimensionalen Reprisentationen mittels
CAD-Modellen und Bilderstellungsverfahren der Computergrafik, um mit Veridnderungen des Er-
scheinungsbildes von Objekten einer Klasse aufgrund von wechselnder Kameraperspektive und
ausgeprigter Intra-Klassen-Varianz umgehen zu kénnen.

Es werden zwei verschieden Methoden zur Erstellung solcher dreidimensionaler Représentatio-
nen untersucht: ein uniiberwachtes Lernverfahren zur Bestimmung von lokalen Bildmerkmalen
aus rein synthetisch erstellten Trainingsdaten, welche fiir bestimmte Ansichten und Objektklassen
charakteristisch sind, und ein tiberwachtes Lernverfahren, welches einerseits diskriminativ das
Erscheinungsbild von Objektteilen aus annotierten realen Trainingsbildern bestimmt und anderer-
seits unter Verwendung von synthetischen CAD-Daten ein generatives Modell der dreidimensio-
nalen Geometrie dieser Objektteile erstellt.

Zur Detektion von Objektklasseninstanzen in einzelnen zweidimensionalen Bildern wird sowohl
die geometrische Konsistenz von Gruppen lokaler Bildmerkmale mittels eines robusten dreidi-
mensionalen Positionsschitzungsverfahrens bewertet als auch die Wahrscheinlichkeit bestimmt,
dass Teile eines Objektes nach Projektion in den Bildraum in einer zur erlernten dreidimensio-
nalen Modellgeometrie konsistenten Anordnung auftreten. In beiden Fillen kann zusitzlich zur
zweidimensionalen Lokalisierung einer Objektinstanz im Einzelbild eine Schitzung ihrer dreidi-
mensionalen Position und Ausrichtung erreicht werden. Diese Schitzung dient anschliessend als
Initialisierung eines Registrierungsverfahrens, welches CAD-Modelle von Objektinstanzen auf
Einzelbilder registriert und die Positionsschitzung weiter verbessert.

Die Genauigkeit der in dieser Arbeit untersuchten Verfahren zur Detektion und Positionsschétzung
verschiedener Objektklassen wird auf mehreren standardisierten Testdatensitzen evaluiert.
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Figure 1.1: Illustration of Plato’s Allegory of the Cave (Jan Saenredam 1604).

In Part VII of The Republic, Plato introduces the "Allegory of the Cave": prisoners in a cave
perceive the outside, real (3D and colored) world exclusively as the (2D and colorless) shadows
of objects cast through an inaccessible pinhole into their confined prison world; see figure 1.1.
Lacking divergent experience, they are led to equate the shadows with the real world and remain
forever unaware of the true nature underlying their perceived shadow universe. Philosophy typ-
ically interprets this allegory as an illustration of the limits of human knowledge, the deceitful
nature of human perception and the striving of the individual after the true form of things [126].
Interestingly, the functioning of human vision exhibits parallels to the above allegory, albeit on a
lower, less philosophical level. Numerous studies suggest the ability of the human and even of the
animal brain to infer complete (perfect) 3D form from few, even flawed and incomplete 2D struc-
tural clues (such as in figure 1.2), seemingly possessing a hidden model of the perfect 3D form of
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things and the capacity of establishing correspondences between weak 2D clues and idealized 3D
models. Sophisticated brain imaging methods (functional magnetic resonance imaging (fMRI),
see for example [128]) have been able to locate the regions actively involved in the process, but
the full understanding of the process itself is as yet beyond the reach of science.

Figure 1.2: Optical illusion: the human eye can distinguish a dalmatian dog by inferring 3D shape
and shadows from minimal optical clues; illustration in [33].

Computer vision research, in particular in the domain of object (class) detection, has been striving
after a comparable level of perfection. It aims at building algorithmic methods to automatically de-
tect and identify classes of objects in single images and determine their location in 2D image space
and, if possible, their 3D pose. Even though significant progress has been made in recent years,
both in image representation and in learning theory, the results achieved do not yet come close
to the human vision system. Still, given the ubiquity of consumer image recordings and the need
to organize and commercially exploit the subsequent tremendous amount of visual data, research
in computer vision can provide innovative solutions to these problems even without matching the
performance of nature.

Recent findings in medical brain research [128] allow to conclude that the human brain makes use
of some form of 3D representation of objects learnt during early childhood. While the human brain
can rely on a natural stereo sensor as data source, many computer vision tasks rely exclusively on
2D images. Still, the advantages of a 3D representation, notably for identification, pose estima-
tion and navigation tasks, are obvious: ambiguities can be avoided, appearance variations due to
multiple viewpoints or geometry-dependent external factors such as shadows can be implicitly re-
solved and additional information on pose and scene geometry can be derived. The predominant
amount of work in the field of object detection has focussed on 2D, the shadow world of Plato’s
allegory, both for knowledge representation as well as for result visualization. The present the-
sis takes up the idea of a preexisting, idealized 3D model-based representation in form of CAD
computer graphics models and explores approaches of how this added knowledge can contribute
to improving the computer vision tasks of object class detection and pose estimation from single
2D images. It benefits from the significant technological improvements which have recently taken
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place in the domain of computer graphics, providing readily available tools to handle 3D model
representations and to imitate the natural process of deriving 2D images from 3D representations.

1.1 Problem Statement

This thesis aims at developing algorithmic approaches to detect object classes in images. In the
following, we provide a detailed definition of the task and summarize the main difficulties. Given
the 2D output of an imaging sensor, including but not necessarily limited to optical cameras, we
would like to detect all instances of a specific object category which are present in the sensor
output. For simplification, we assume in the following that the sensor is an optical camera and the
sensor reading is given as a 2D color image; it will be shown later (see for example section 2.2.5)
that the extension to different sensors is possible.

In this scenario, the term object class, in opposition to a specific object instance, denotes a group
of objects which share sufficiently many properties to justify assigning them to a semantic equiva-
lence group; the object class can therefore be considered as a set of specific object instances which
are similar in terms of some similarity measure. Imprecisions in natural language and interpre-
tational freedom make it difficult to decide upon a universal definition of semantic equivalence;
fortunately, theoretical work on the structuring of natural language, such as the WordNet approach
of [69], can serve as a framework to address the problem. Starting with a set of what can be
considered atomic, non-divisible instances, a bottom-up hierarchy can be build to reflect sets of
cognitive synonyms called synsets, each expressing a distinct concept, which are further inter-
linked by means of conceptual-semantic and lexical relation. Given the large number of levels of
such a semantic hierarchy, in the present work we focus on a small set of relatively vast semantic
groups which stand exemplary for potentially relevant object classes: we resort to the three man-
made object classes of cars, motorbikes and bicycles as exemplary object classes on which the
algorithmic concepts will be demonstrated. Figures 1.3, 1.4, 1.5 show examples for these classes
as well as a typical negative test image (1.4, right).

Figure 1.3: Some images from the PASCAL VOC2006 CAR dataset [18].

The term object class detection denotes the identification of all, potentially overlapping, locations
in 2D image space which show an object belonging to a given class. An identification can be
conveniently represented by a bounding box, i.e. a rectangle in 2D image space which contains
the entire visible object area, alongside the classification into one of the object classes in question.
Due to imaging conditions, a number of special cases exist; for simplification, we only consider
the following two cases: objects can be truncated (figure 1.3, third and fourth image from the left),
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Figure 1.4: Some images from the motorbike and bicycle classes (left, center) of the PASCAL
VOC2006 dataset [18] and an example of a negative test image for those classes (right).

Figure 1.5: Some images from the car and bicycle classes of the 3D Object Category dataset [102].

where we assume the accurate bounding box to contain only the part of the object which is visible
inside the image boundaries; and objects can be occluded (figure 1.3, right), where the accurate
bounding box is defined as the largest rectangle circumscribing the visible parts of the occluded
object; note that in this case, the rectangle might also contain the occluding objects, regardless of
their class membership. Other cases, such as objects indirectly visible as reflections or in symbolic
form as drawings, will not be considered.

In order to assess the performance of an approach to object class detection and benchmark against
previous work, common evaluation datasets and evaluation criteria are required and a meaning-
ful visualization of the performance has to be chosen. Due to the nature of learning-based ap-
proaches, these datasets have to provide training and testing data in order to guarantee the compa-
rability of the results achieved. In the present work, we evaluate on three state-of-the-art bench-
mark datasets, the 3D Object Category [102] and the PASCAL VOC 2006 [18] and PASCAL
VOC 2007 [17] datasets; some example images for the PASCAL 2006 dataset are shown in fig-
ures 1.3, 1.4, some examples for the 3D Object Category datset are shown in figure 1.5. Both
datasets provide training examples containing 2D bounding box and class annotations, and testing
examples with groundtruth annotations which allow to evaluate detection performance. The 3D
Object Category dataset [102] emphasizes a systematic evaluation of multi-view conditions and
provides weak pose annotations; the evaluation sections of chapters 3 and 4 provide details on the
annotation format. In contrast, the PASCAL VOC 2006 and 2007 datasets focus on difficult and
realistic image conditions, a large number of training images to be representative of a large-scale
application and significantly more negative (i.e. not containing an object of a given class) than
positive images. Training and groundtruth annotations follow the definitions given in the previous
paragraphs. In order to compare 2D detections, a distance metric has to be used which takes into
consideration that manual annotations may display imprecisions and different approaches to the
detection task may generate bounding boxes which do not exactly match the annotations. Con-
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sequently, the relative overlap between annotation and detection is suggested in [18] to measure
detection precision; it assumes a positive detection when the area of overlap between a detection
and an annotation exceeds a given percentage of the joint area of detection and annotation. This
so-called overlap criterion has become the standard. In section 3.4.1, the evaluation procedure is
described in detail.

A number of inherent difficulties render the task of object class detection particularly challenging.

¢ Intra-Class Variation: Objects within a class share certain semantic properties. However,
they can differ in numerous ways without influencing these common properties; their dif-
ferences make up the intra-class variation which a detector for this class has to cope with.
When considering the example class car, typical intra-class variations arise from deviations
in body geometry (notchback, hatchback etc.) as well as texture (shape of components,
coloring etc.). In the present work, this obstacle is mainly addressed by using robust lo-
cal image statistics, generalizing classifiers and the systematic generation of variations from
synthetic training data. In principle, non-rigid deformations of the objects can be considered
intra-class variation. In the present work, we focus exclusively on rigid object geometries;
consequently, the variation induced by non-rigid deformations cannot be covered. See the
section 6.2 on future work for possible approaches to the problem.

e Background: When evaluating a detector on real images, objects of a class can occur in
many different environments. Each surrounding scenery introduces new and potentially un-
seen image components considered as background. Moreover, due to the choice of rectan-
gular bounding boxes as training annotations, training data will not be perfectly segmented
from the background which may contaminate the positive training samples. In the present
work, we generate training samples with systematically varying background to explicitly
guide the training process towards the common object (foreground) properties.

e Imaging Noise: Every imaging process is influenced by global illumination conditions,
sensor noise and environmental conditions which impact the appearance of objects in the
scene. By resorting to a synthetic training process in conjunction with robust image statis-
tics, we can simulate some of the most dominant factors to account for their impact on real
test images.

e Object Pose: During the image formation, different 3D scene and object configurations
induce variations in object appearance due to changing viewpoints and occlusions. Here,
we account for these changes in appearance by building object class representations during
training which explicitly include 3D geometric clues. During detection, a pose estimation
then allows to recover information on the scene structure from the image and assess the
plausibility of a 2D detection in terms of a full 3D geometry.

o Multi-Class: The presence of multiple object classes in images constitutes an additional
challenge, since possible ambiguities between classes have to be resolved and the computa-
tional effort is increased. In the present work, a strategy to multi-class detection is employed
which is commonly refered to as one-vs-all: each object class is treated independently of the
other classes in a training and detection process which aims at separating the relevant object
class from a joint background class assembled from non-object background and all other
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classes. While this strategy effectively ignores potential contextual dependencies between
classes, it favors a flexible and extensible evaluation.

1.2 Context

Historically, research on learning-based multi-view object class detection and pose estimation
developed from initial work in the 1990s; it can be separated into different approaches which we
will briefly summarize and describe how they relate to our own contributions. A detailed survey
of more recent related work is given in chapters 3 and 5, respectively.

1.2.1 Global Approaches

A global approach to object class detection attempts to describe the appearance of the entire object
under a set of discrete viewpoints. The choice of the appearance representation varies; tradition-
ally, the detection of the object class of human faces received the most attention. Turk and Pent-
land [120] projected image patches of faces for a few discrete viewpoints separately into the
dimensionality-reduced eigenspace. Subsequently, several authors [72, 74] merged geometric
and shape clues with the appearance representation to achieve approximate viewpoint estima-
tions. In order to achieve a higher generalization of the appearance description, more invariant
descriptions are suggested such as in [26] and more sophisticated classifiers are employed, see for
example [123] and [91]. During detection, patches from test images were selected either exhaus-
tively or based on some simple entropy- or color-based predetection step. An efficient strategy
for evaluating a global detection method on an entire image is known as a sliding window classi-
fier [84, 115]; it builds a pyramid of images on different scales and applies the detector exhaus-
tively to all possible image subregions. Still, identifying reliable globally invariant descriptions
for entire objects is difficult and these approaches are often limited to idealized conditions of ho-
mogeneous backgrounds or pre-segmented regions without occlusions and object classes with low
appearance variation. In the present work, we combine global and local components to flexibly
describe object class appearance and geometry: in chapter 3, groups of viewpoint-consistent local
descriptors are matched to optimize a global distance measure, and in chapter 5 we rely on global
appearance similarity to derive improved 3D pose estimations.

1.2.2 Part-Based Models

As aremedy to the shortcomings of global approaches, objects were represented by multiple layers
of parts [107] or spatially subdivided into regions. The appearance of each part was described by
applying the global techniques to more localized image patches and the co-occurrence and the
spatial relationship between these parts were modeled, for example with spring-like forces as
in [24]. By allowing more internal variation and distributing the detection of a full object over
a set of part classifiers, robustness towards appearance variation and occlusions was increased.
However, the fundamental dependency on the per-patch appearance classification remained. In
chapter 4, we propose a part-based model for appearance and geometry which builds on a fixed
grid of object parts and a discriminatively learnt appearance classifier.
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1.2.3 Local Descriptors

Consequently, methods to repeatably select characteristic image regions [38, 70], termed feature
detectors, and to discriminatively represent them by more invariant local descriptions [60, 65, 106],
termed feature descriptors, were introduced. These methods usually exploit gradients and gen-
eralized filter responses to detect and encode characteristic structures such as corners and edge
combinations in the image and cope with scale, translation or affine invariance by suitable normal-
ization [67, 68]. Several authors consequently proposed robust distance measures [32] to compare
the resulting high-dimensional feature descriptors. More recent work [5] has focussed mainly on
optimization. As an alternative to the use of detectors, descriptors can also be computed densely
over the entire image [118]. The advent of local features extended the feasibility of object class
detection significantly and gave rise to numerous approaches exploiting their invariance for this
task, for example [105]. Local features are used in chapter 3 to capture object class appearance;
we propose a novel filtering process to determine those features which are robust towards small
local variations and discriminative for their class and viewpoint. In chapter 4, local features form
the building blocks of our appearance representation.

1.2.4 Vocabulary Codebooks

In order to more efficiently extract common characteristics from a set of local features, the use
of unordered co-occurrence relationships of local features has been proposed [11], termed bag-of-
features. Based on vector quantization of a set of local descriptors harvested from training images,
a set of prototypical descriptors is generated which can be interpreted as a base vocabulary or
codebook. Local features computed on test images are then assigned to their closest codebook
and their occurrence counts are stored in a histogram. By varying the region of influence for a
histogram, localization can be achieved [63]. The original bag-of-features approach represents
unordered, spatially unaware co-occurrence counts. Due to symmetries and self-similarities of
objects, such unordered sets may have a reduced discriminatory power. In [49], based on the
idea of [32] a spatial layout of co-occurrence histograms was introduced which allows to consider
feature constellations on varying levels of locality. Both object class detection approaches outlined
in this work rely on codebooks; in chapter 3, local descriptors are clustered into a codebook of
fixed size where each codebook entry is annotated with additional information on the 3D geometry
of the object class. In chapter 4, dense spatial pyramids are used to capture the global object and
local part appearance.

1.2.5 Pose Estimation

Pose estimation methods can build on different underlying concepts. In the present work, rigid
3D models and single 2D images are used to derive point sets which are optimally aligned onto
each other to estimate the camera pose; furthermore, a calibrated camera is assumed. Alternative
strategies use higher-order components such as line [76, 85] or free-form objects [51] or combine
calibration and estimation steps; these will not be discussed here; for a detailed survey, see [96].
Work on point-based pose estimation can rely on an iterative solution as in [36, 57] and [81], or
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resort to a closed-form solution such as the perspective three-point (P3P) method [23, 37, 129],
which in turn relies on a 3D-to-3D point set alignment suggested by [44] and [121]. Optimiza-
tion strategies range from gradient descent [57] to simulated annealing [30]. If the initial point
correspondences are not known or unstable, robust correspondences have to be determined as part
of the pose estimation process. Frequently, robustness is derived from randomly sampling min-
imal subsets of point correspondences and evaluating inlier counts or accumulated errors; other
authors [30] perform iterative reweighing of all point pairs. In chapter 3, we compare three pose
estimation approaches for the task of computing approximate poses based on clustered local fea-
tures with 3D annotations; in chapter 4, a probabilistic approach is introduced which determines
the most likely pose given the constellation of detected parts. For a given initialization of object
class and approximate pose, we describe in chapter 5 how the initial pose estimate can be improved
by optimizing a global appearance similarity measure.

1.3 Contributions

In this thesis, we aim at extending object class detection and pose estimation on single 2D images
by a 3D model-based approach, building on existing CAD models and rendering techniques from
the domain of computer graphics.

The first contribution is a 3D approach to multi-view object class detection. Most existing ap-
proaches recognize object classes for a particular viewpoint or combine classifiers for a few dis-
crete views. We propose instead to build 3D representations of object classes which allow to
handle viewpoint changes and intra-class variability. Our approach extracts a set of pose and class
discriminant features from synthetic 3D object models using a filtering procedure, evaluates their
suitability for matching to real image data and represents them by their appearance and 3D posi-
tion. We term these representations 3D Feature Maps. For recognizing an object class in an image,
we match the synthetic descriptors to the real ones in a 3D voting scheme. Geometric coherence
is reinforced by means of a robust pose estimation which yields a 3D bounding box in addition to
the 2D localization. This work was published in [55].

The second contribution extends the previous approach to multi-view object class detection by
introducing discriminative part classifiers and a probabilistic pose estimation method; it further
allows to combine training data from synthetic as well as from real images. Appearance and
geometry are treated as separate learning tasks with different training data. A part model is used
which discriminatively learns the object appearance with spatial pyramids from a database of real
images, and encodes the 3D geometry of the object class with a generative representation built
from a database of synthetic models. The geometric information is linked to the 2D training data
and allows to perform an approximate 3D pose estimation for generic object classes. The pose
estimation provides an efficient method to evaluate the likelihood of groups of 2D part detections
with respect to a full 3D geometry model in order to disambiguate and prune 2D detections and to
handle occlusions. This work was published in [54].

The third contribution addresses the limitation of the previous methods which provide only ap-
proximate 3D pose estimations. Building on initializations of object category and approximate
3D pose as provided for example by the previous methods, a registration scheme is described to
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align arbitrary standard 3D models to optical and Synthetic Aperture Radar (SAR) images in or-
der to recover the full 6 degrees of freedom of the object. We propose a novel similarity measure
which combines perspective contour matching and an appearance-based Mutual Information (MI)
measure; it is optimized using an evolutionary Particle Swarming strategy, parallelized to exploit
the hardware acceleration potential of current generation graphics processors (GPUs). We show
that our approach leads to precise registration results, even for significant image noise, small ob-
ject dimensions and partial occlusion where other methods would fail. This work was published
in [52].

1.4 Thesis Overview

In chapter 2, we provide details on the synthetic training data which will be used in all subse-
quent chapters and we outline the camera models and parameterizations that define the rendering
process.

In chapters 3 and 4, we present two different approaches to object class detection, adapted to the
use of synthetic training data. A survey of recent related work on this topic is given in section 3.2.

The first approach, described in chapter 3, is based on an unsupervised training process (sec-
tion 3.3.1) to robustly derive appearance and 3D geometry representations from synthetic CAD
models. In section 3.3.2, we provide details on the corresponding detection process which builds
on a probabilistic voting scheme and a robust 3D pose estimation; in section 3.4, the different
contributions of this initial approach are evaluated on several benchmark databases.

Based on the analysis of the first approach, we outline a second method in chapter 4 which com-
bines a part-based appearance representation learnt discriminatively from real training images and
a 3D geometry representation learnt generatively from synthetic CAD models. In section 4.1, we
relate this approach to the method from chapter 3, we describe the training and detection steps in
section 4.2 and provide results of the experimental evaluations in section 4.3.

In chapters 3 and 4, we have focused on detecting generic object classes in images and on obtain-
ing an approximate estimation of their 3D pose in addition to a 2D localization in image space.
In chapter 5, we describe a method which builds on the generic 3D detection results of the previ-
ous chapters as initializations to more precisely align a single 3D CAD model to a single image
and to perform a fine-grained object instance selection. We summarize previous work on CAD
model registration in section 5.2 and derive a similarity measure in section 5.3. In section 5.4, we
analyze the impact of a suitable optimization scheme on various test cases. In section 5.4.4, we
demonstrate on a calibrated test set that the proposed method offers a suitable tradeoff as regards
precision, speed and universality in order to complete the generic object class detection approaches
from chapters 3 and 4 towards a more precise 3D pose estimation and the identification of specific
object instances.

Chapter 6 concludes the thesis and provides an outlook on promising future lines of work.






Synthetic Training Data

"The lines will continue to blur between computer graphics and photography until the idea of what is real
becomes meaningless. Whether you capture something with a lens or use virtual photons, the rules of
lighting are the same." James Cameron

In this chapter, we will provide details on the synthetic CAD models used in the subsequent chap-
ters and we will outline the camera models and parameterizations which define the rendering
process to generate training data. We will start by describing the properties of these CAD models
and the main elements governing the generation of synthetic images. We will then provide a short
outline of the camera model typically used in the domain of computer vision and discuss how it
relates to a computer graphics rendering pipeline.

2.1 Introduction: In Defence of Synthetic Data

One of the ideas of the present work is the use of synthetic data for computer vision tasks, notably
for object class detection and pose estimation. Synthetic data is modeled after reality and both
the process of creating CAD models and the generation of images from these models are designed
to provide the most realistic representation possible. Still, both the model creation as well as the
rendering suffer from imperfections: the model creation process can be limited in accuracy by
the design tools used or the artistic freedom of the human designer, while the rendering process
depends on the quality of the physical model chosen to represent surface shading and lighting in
addition to potential hardware limitations in resolution and numerical precision. Consequently,
the employed methods have to be adapted in order to account for these deficiencies. This is one of
the main objectives of the present work, both for object class detection and for pose estimation.

Once the gap between synthetically generated data and real images has been bridged, however,
the advantages of the synthetic world are numerous: synthetic data can be generated on demand,
exhaustively including variations in lighting, background and viewpoints. Surface and material
properties can be modified to span the range of possible object appearances, dynamic scene- and
geometry-dependent noise can be introduced and configurations of these parameters which are
rare in real scenarios can be generated at will. Full 3D scene and object geometry information is
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available and semantic annotations and metadata are an automatic byproduct of the data genera-
tion; finally, the results of the training or validation process can be immediately fed back into the
data generation.

The majority of object detection and pose estimation methods rely on databases of real images
as training data or templates. For specific tasks or benchmark purposes, these real databases are
manually chosen in the hope of being representative of the problem [89]. Consequently, it can
be argued that this process of drawing samples from real data is as imperfect as the synthetic
data generation; in neither case, the exhaustiveness of the drawn samples and the persistence of
the underlying selection model can be guaranteed. Both approaches are based on assumptions
and heuristics as to the expected deployment scenario, but real data is limited in scope since no
real sample can represent all variations in appearance, geometry, environment conditions, view-
point and noise. In this work, we argue that the advantages of using synthetic data outweigh its
shortcomings.

Synthetic data has been used for computer vision tasks in the past. Among the first authors to
suggest the use of CAD models for object detection tasks were [25, 40, 57, 79, 112, 130], mostly
by building relational graphs of edge segments, by exploiting the link between surface shading
and model normals or by flexibly matching and aligning contour segments. Through the use of
edge-based features, the approaches are able to generalize up to a certain degree over classes of
objects with similar outlines; however, they do not systematically take the object appearance into
account. Consequently, they do not require appearance-based textured rendering and lighting.
Approaches to detection, 3D pose estimation and tracking of specific objects have been proposed
for example by [1] which resort to appearance-based rendering; they mostly rely on the availability
of photorealistic textures which correspond exactly to the appearance of the object in an image and
consequently do not generalize well to object classes.

In this work, in order to exploit the potential of synthetic data which provides both geometry and
appearance information, we rely on standard computer graphics techniques which are available
in most current hardware platforms, operating systems and programming toolsets. Recently, the
flexibility of both hardware and programming frameworks has been extended to allow using graph-
ics processors for general purpose tasks, which significantly facilitates their use in the computer
vision domain. A detailed review of the techniques underlying the rendition of synthetic images
from 3D models and the concept of general purpose programming on graphics hardware is beyond
the scope of this work. However, we will provide a summary of selected aspects which impact the
quality of the synthetic data generation and thus the performance of the methods which will be
described in the subsequent chapters.

2.2 Data Representation and Rendering

In this section, we summarize the camera and rendering model and their parameterizations in order
to generate synthetic training data to be used in the following chapters.



2.2. DATA REPRESENTATION AND RENDERING 13

Figure 2.1: Selection of some 3D models used to represent the object classes car, motorbike and
bicycle. See appendix B for a visualization of the complete database of 3D models used in the
present work.

2.2.1 Data Representation

The CAD models used in this work stem from different free and commercial CAD model databases,
notably turbosquid.com, 3d02.com and doschdesign.com. Each model consists of a set of surface
points or vertices and the associated adjacency information describing its 3D surface. Each vertex
is annotated with additional properties, a material, describing the appearance of the model surface
at that point. The material contains a diffuse color value including the degree of transparency, a
set of 2D texture coordinates and a factor describing the behavior of the local surface under spec-
ular reflection. Semantic grouping of vertices into parts is available in some models depending on
their design process, although it is not used in the present work. Textures represented as images
may be associated with the model to provide additional detailed appearance information; they are
mapped onto the model surface using perspective correction based on the Besenham interpolation
algorithm, the standard approach in computer graphics. Figure 2.1 shows a few examples of 3D
models used to represent the three object classes bicycle, motorbike and car; also see appendix B,
figures B.1, B.2, B.3, B.4. These models will serve as training data or registration templates in
the following chapters. As a consequence of the lack of standardization in CAD model design
and the artistic freedom of the model designers, the level of detail in terms of geometry, coloring
and texture differs significantly among the 3D models in our database. Although methods exist
to normalize these differences for example by surface reparameterization [43], equivalent differ-
ences are present in real image datasets, such as varying image sizes and resolutions and vastly
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differing camera characteristics and quality. In this work, we assume that the quality differences
in the CAD models can be considered beneficial to improving the generalization capacity of the
computer vision tasks. In future work, methods will have to be developed to quantify these quality
differences and to assess their impact on the training performance systematically; see section 6.2.
In order to account for background variation, rendered models are overlayed on real images not
containing any relevant object classes as shown in figure 2.2; these background images stem from
the category None of the TU Graz-02 Database [80]. Note that for the experimental evaluations,
we additionally resort to the pure negative training images provided as part of the benchmark data
sets.

Figure 2.2: Examples of real background variation in synthetically rendered training data.

2.2.2 Camera Models in Computer Vision and Computer Graphics

In the following, homogeneous notations are used for 2D points xop = (z,y,1) and 3D points
zsp = (x,y, z,1) such that (x, y, w) — (x/w,y/w) and equivalently (z,y, z,w) — (x/w,y/w, z/w).

2.2.2.1 Real Camera Model

Assuming a set of homogeneous 3D coordinates x5, in some world coordinate system, a camera
projects each point in world coordinates onto a point in homogeneous 2D screen coordinates 57,
such that

x5p = K 25 = K[R|t] x§H = KP x3p (2.1

where 757, are the coordinates in a camera coordinate system after rotation 2 and translation ¢;
all coordinate systems are assumed left-handed. The matrix K is usually called the calibration or
intrinsic matrix and P is the extrinsic or camera matrix. K comprises the parameters describing
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Figure 2.3: Camera projection: transformation from world to camera coordinates and projection
into the image plane.

the internal camera properties, notably skew s, focal length f, screen pixel dimensions (mg, m,,)
and principal point p = (p, py) such that

fme s pp 0
K= 0  fmy py

0 2.2
0 0 1 0

Simplified models may assume s = 0 and m, = m,, where (z,vy, z)g‘b — (fmgx/z4pe, fmyy/z—i—
py). The camera matrix

P= (2.3)
0 001

can be further decomposed into a sequence of translation and rotations. Figure 2.3 illustrates the
transformation and projection steps.

2.2.2.2 Synthetic Camera Model

Different camera model notations exist in computer graphics, mostly varying with respect to the
orientation of the coordinate systems used. In the present work, we follow the notation specified
by the DirectX© pipeline since it has been used in the implementations. DirectX© relies on a
left-handed coordinate system and a projection sequence

x5p=98-C-P-Maxsp (2.4)
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where x37, denotes a 3D point (also called vertex) in the object-centered coordinate system of the
3D CAD model which the point belongs to. The following equivalences between the synthetic and
the above described real camera model exist:

K=§-C

we — ve
T3p = M:USD

where M = [Rs|ts] denotes the additional transformation between object and world coordinate
system. The definition of S and C with an additional reference system is necessary for resolving
occlusion and visibility of objects as shown in figure 2.4. C'is defined by the camera field of view
and the distance of the closest (2p¢qr) and farthest (zy,,) distance at which an object is still to be
visible as illustrated in figure 2.5, left;

cot(fov/2) 0 0 0
0 cot(fov/2) 0 0
C= 0 0 Zfar 1 (25)
Zfar —Znear
0 O —Znear‘Zfar 0

Zfar —Rnear

In order to perform this step efficiently, the view frustrum is converted into a normalized repre-
sentation, the clip space, as shown in figure 2.5, left. The final screen transformation .S maps the
contents of the clip space from normalized coordinates in [—1, 1] to screen coordinates with width
w and height h.

Figure 2.4: Synthetic rendering: the view frustrum is defined by the field of view and the
Znear, Zfar Planes (left); objects are removed when they are outside of the view frustrum (right,
in black) or occluded (right, in red).

2.2.3 Optical Rendering

In this work, the objective of creating synthetic renditions of CAD models to provide training data
for computer vision tasks does not necessarily lie in improving the rendition quality to achieve
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Figure 2.5: Synthetic rendering: efficient handling of occlusions by transforming the view frus-
trum to normalized clip space, illustration courtesy F. Schubert.

Figure 2.6: Lighting and reflectance modeling for synthetic rendering. Illustration in [131].

photorealism by fully exploiting the most advanced computer graphics technologies, driven by
the entertainment industry and commercial visualization and simulation. We argue instead that
it may not be necessary to increase rendering performance beyond what is currently considered
as the basic functionality; unless the impact of dataset selection on computer vision systems is
clearly understood [89], it may not be the most promising approach either. Instead, the implicit
simplifications in the physics and lighting models which form the basis of current consumer-
grade computer graphics methods can contribute to improving computer vision systems. Instead
of increasing the rendering performance to match reality, some degree of natural idealization is
introduced, thereby increasing robustness and generalization performance of the vision algorithms.
In this work, we describe methods which are capable of dealing with differences between synthetic
and real data up to a certain degree, consequently depending less on rendition. Figure 2.7 shows
a real object (left) and its synthetic rendering (second from left) using the approach described in
this section; the most notable difference is due to the opaque rendering of originally transparent
surfaces.
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Since the advent of computer graphics, numerous lighting models have been proposed in the liter-
ature, ranging from crude simplifications of local shading to complex global illumination and ray
tracing, taking into account the interaction of CAD models with the ambient scene. These light
models are closely connected to the surface interpolation strategies of the geometric models. A
survey of the domain can be found for example in [110]. The contribution of the present work
does not lie in the domain of computer graphics, but in applying it to computer vision tasks. Since
the subsequent objectives are different, certain simplifications can be made as to the complexity
of the used lighting model; notably, no interaction with the ambient scene such as indirect lighting
or shadow generation is required. Instead, real background images represent the context varia-
tion which the algorithms are expected to deal with; see the previous section 2.2.1 for details.
Moreover, we are not concerned with more complex material properties such as transparency or
anisotropy in surface appearance, thus a Lambertian (directionally independent) model can be
considered sufficient. As a result, we chose the Blinn-Phong lighting model [6] which has become
the standard in most rendering pipelines; it has been experimentally shown [78] to offer a suitable
tradeoff between realism and modeling complexity. In simplifying the contribution of ambient
light, per-vertex and texture color and reflection properties of the surface, it is capable of creating
renditions which are useable for the methods proposed in the following chapters. Its ability to gen-
erate reflection highlights of varying emphasis on the rendered surfaces is sufficient to introduce
at least one of the important variations in the training data.

The empirical Blinn-Phong lighting model [6] is an approach to modeling the illumination inten-
sity stemming from a light source with given wavelength and direction (L in figure 2.6). The light
from the source is conveyed to a sensor V', depending on the orientation (normal N) and differ-
ent additional properties of the illuminated surface, notably its diffuse and specular reflectance.
We assume a single point light source at infinite distance and a locally planar surface patch. The
resulting intensity at a single surface point follows as

L+V
2

I = Ioka + Likg(L - N) + Likg(N - ( )" (2.6)

where I, is the intensity of the ambient light, k, the coefficient of ambient reflection, I; the inten-
sity of the incident light, L its vector (see figure 2.6), k4 the coefficient of the diffuse reflection for
the material, ks the coefficient of specular reflection, and n an index to weigh the contribution of
the specular component; the actual specular component depends on the angle ¢ between sensor V'
and reflection vector R (see figure 2.6, right) which in this formulation is approximated by N - H
with H = % to reduce computational complexity. The above equation can be extended to
multiple light sources by summation over their respective contributions. In order to use this light
model, the CAD models have to provide the local color values and reflection coefficients allowing
to compute the above term.

A frequent problem in synthetic rendering stems from aliasing artifacts due to limited sampling
rate and numerical precision. In the present work, the problem is circumvented by resorting to
the standard anti-aliasing approach of resampling the image at multiple resolutions, adapted to the
distance of the object surface to the camera; see [110] for details on anti-aliasing.
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2.2.4 Linking Pixels to 3D Points

One key advantage of a modern rendering pipeline lies in its flexibility. In section 2.2.5, we show
exemplarily how the same rendering procedure can be used to create simplified simulations of a
radar sensor; in a similar way, infrared and polarimetric sensor simulations could be derived from
the 3D CAD models and noise, distortion and environmental factors such as fog and motion blur
could be added. In the following chapters, the association of image pixels with their originating
3D points on the model surfaces will be crucial in order to build 3D representations of the object
classes in addition to describing their visual appearance. This association of pixels and 3D points
is made possible by exploiting the flexibility of the rendering pipeline in generating arbitrary per-
pixel outputs. Instead of only generating the four color values R,G,B,A per pixel, we can pass
on all information contained in the original 3D model down to the pixel level and use additional
output channels for each pixel to save material properties, arbitrary model metadata or the 3D
coordinates, surface normals or derived gradients of the model surface point which is projected
into the current pixel position. Since the rendering pipeline inherently resolves occlusion, only the
data associated with visible pixels is written. Figure 2.7 shows some outputs generated from a 3D
model (intensity, surface normals, color gradients, surface contour).

Figure 2.7: Real object (left) and some outputs generated from its corresponding 3D CAD model
(left to right: intensity, surface normals, color gradients, surface contour).

2.2.5 Extension to Different Sensors: Synthetic Aperture Radar

Figure 2.8: Simulated SAR rendering based on a 3D CAD model (left); our result (center) and a
commercial grade simulator (right, [66]).

In chapter 5, we propose an approach capable of working on sensor inputs from other than optical
devices; this will be demonstrated exemplarily on Synthetic Aperture Radar (SAR) data. SAR is a
remote sensing technique which exploits post-processing of a sequence of radar signals over time
to fusion the echos from points at different distances. As a consequence, an object remains longer
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inside the beam of the radar and its resolution can be increased in the resulting radar image by
merging the separate echos, given the sensor movement is known.

In the present work, SAR images are generated on the model side using a simple algorithm to
simulate the SAR specific projection properties based on provided 3D CAD models. Although we
do not simulate speckles and highlights which would require raytracing precision, the quality of
the simulated SAR modality is sufficient to register 3D models to real SAR sensor input and to
recover the 3D pose of the objects in the scene.

Assume that we are given a 3D CAD model and its 2D image rendered according to section 2.2.3.
To simulate its SAR image, for each rendered pixel we save its original 3D coordinates (z,y, 2)
along with its intensity in a 2D image (see section 2.2.4 on rendering multiple per-pixel outputs).
Using these 3D coordinates, we then place a pixel-wise regular grid geometry on the 2D image,
assign each grid node the intensity value of the rendered image at that pixel position and deform
each grid node such that it maps to the 2D screen coordinates (z, z). This deformation corresponds
to a simplified representation of the two parameters azimuth and distance which govern the SAR
imaging process. If several grid nodes map to the same screen coordinates, their intensity values
are accumulated at this position.

Figures 2.8, 5.8 show results of the above algorithm as opposed to an industry-grade SAR simula-
tion [66]. The synthetic rendering proves sufficient for the registration task described in chapter 5;
it allows avoiding difficulties in obtaining rare and usually classified training and evaluation data.

2.3 Conclusion

In this chapter, we summarized the process of generating synthetic training data using methods
from the domain of Computer Graphics. We outlined the choice of the 3D CAD model represen-
tation, the synthetic camera parameterization and the lighting model. In the following chapters,
we propose approaches to generic object class detection, approximate 3D pose estimation, object
instance selection and fine-registration which exploit the advantages of the synthetic 3D training
data in order to extend state-of-the-art beyond pure 2D detections.



3D Feature Maps for Detection

In this chapter, we present a first approach to object class detection based on synthetic training
data and describe the advantages of the CAD models for training and detection. We summarize
related work in section 3.2 and describe the training process to robustly derive appearance and
3D geometry representations from synthetic CAD models in section 3.3.1. In section 3.3.2, we
provide details on the detection process which builds on a voting scheme and a 3D pose estimation;
in section 3.4, the different contributions of the approach are evaluated on various benchmark
databases.

3.1 Introduction

Existing work on object detection based on local features can be roughly separated into two groups,
i.e., detection of specific objects and of object classes. Numerous approaches propose solutions
for viewpoint-independent detection of specific objects and significant progress has been made
recently [1, 51, 59, 75, 98]. Some approaches build multiview representations of an object instance
from real images; for example Lowe [59] harvests local features from real images, forms groups
of local features in 2D image space belonging to same viewpoints and derives a probabilistic
formulation to identify viewpoint-consistent groups of features in new images. In [98], a 3D model
is build from a sequence of images of an object instance without requiring viewpoint annotations
by describing the appearance of local image patches, successively matching them to other images
in the sequence and identifying common geometric constraints. A hybrid approach is suggested
in [51] who formulate the detection as a classification task and train a tree-based classifier by
sampling local patches from real images and synthesizing small viewpoint distortions to increase
robustness. Synthetic textured 3D models of specific object instances have been used in [1] to
harvest local features from rendered views; by exploiting the available 3D geometry, the harvested
features can be geometrically annotated and used for robust detection and pose estimation. Najafi
et al. [75] combine a synthetic 3D model geometry with aligned real images which allows to
learn appearance distributions of local features from real and synthesized views; during detection,
starting with an initial feature match a set of viewpoint-consistent features and the object pose can
be determined.

In contrast to the detection of specific object instances, methods for detecting generic object
classes have to handle significant intra-class variations in addition to multiple viewpoints. In recent
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years, multi-view generic object class detection has received increasing attention [10, 22, 102, 114,
134]. Most approaches address the task by extrapolating known strategies from 2D single-view
object class detection, notably by combining classifiers for separate viewpoints [20, 48, 117].
Some authors have proposed to include weak geometric information into the learning process,
mostly by applying locally deformable 2D models for discrete viewpoints [10, 22, 29]. Very
recently, more sophisticated methods started to make use of a 3D model structure [101, 134].
Learning such a generic representation of the 3D geometry of an object class is challenging and
remains an active research topic [2, 102, 114]. However, even these approaches only determine
2D regions of interest in the image plane as the localization output. Yet, in many cases a 3D
pose estimation of the detected generic object would be useful in terms of specific applications,
for example for the localization of robots, as well as to improve 2D detections, for example by
resolving occlusions or exploiting geometric scene priors.

The advantages of a 3D representation for multi-view object class detection are obvious: 2D de-
tections can be disambiguated and pruned with respect to their consistency with the object class
geometry under full perspective projection, and detection confidence can be computed per-object
instead of combining per-classifier scores. Furthermore, such a representation allows an approxi-
mate estimation of the pose.

In this chapter, we describe an approach to viewpoint-independent object class detection which
does provide information on the 3D pose of the detected object. Unlike most recent approaches, we
do not build a 3D model from 2D images and their geometric constraints, but resort to a database of
existing, fully textured synthetic 3D models to compute a robust 3D representation for each object
category, thereby facilitating viewpoint-independent recognition. The local features obtained from
rendered synthetic objects have to be selected during training (section 3.3.1) in order to be suitable
for a reliable matching to real image features. Figure 3.1 illustrates the detection steps (section
3.3.2). Local features from real images are matched to the synthetically trained ones. Each match
casts votes to determine the most likely class and 3D pose of the detected generic object. The
most promising votes are then evaluated and refined with respect to their geometric consistence
with the 3D model using a robust pose estimation step (section 3.3.2.2). In section 3.4, we present
experimental results on the 2006 PASCAL datasets for motorbike and car models [18] and the 3D
Object Category dataset CAR [102] and analyze the precision of the 3D pose estimation using a
calibrated scenario.

3.2 Related Work

A survey of related work on multi-view object class detection shows three predominant approaches
which differ in their choice of the geometric representation. 2D detectors can be combined by
linking them over multiple viewpoints in order to achieve some degree of viewpoint invariance [48,
101, 117] and modeling flexible spatial layouts of part detectors [10, 22, 24, 29]. Other methods
have been proposed which build 3D representations of the object class from 2D training data
based on initial viewpoint annotations [42, 2, 102, 114]. As a third approach, the use of existing
3D models has been suggested in the past [25, 57, 79, 112, 130] and more recently in [39, 134].

Dynamically built representations for viewpoint-independent object recognition have been pro-
posed in the field of face detection, where several authors deal with multiple viewpoints by
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Figure 3.1: Overview of the proposed detection approach.

combining the results of separate single-view detectors ([20, 77, 127]). Fan and Lu [20] tackle
multi-view detection by treating each discrete viewpoint as a class and discriminatively learning a
multi-class SVM. To account for the fact that the amount of appearance variation differs for each
section of the viewsphere, [77] adapt the training data of each discrete SVM to reduce the overall
risk of misclassification over all viewpoints. For general object categories, the combination of 2D
detectors to cover a multi-view sphere has also been the initial step towards a more comprehen-
sive use of geometry for object class detection: Thomas et al. [117], for example, suggest linking
Implicit Shape Models for specific viewpoints amongst each other, thereby achieving a detec-
tion over multiple viewpoints at the cost of an expensive training process on manually segmented
viewpoint-specific examples.

In order to increase robustness towards pose changes, additional probabilistic layout models as
well as local 2D geometric constraints have been introduced in combination with increasingly
powerful object part representations and learning procedures. These probabilistic layout models
were originally introduced in [24], who model a flexible geometry with interaction forces between
different subparts. The idea is taken up by [10] who introduce a simplified layout which assumes
a set of mutually independent branch parts which only depend on a few root parts instead of
modeling all pairwise interactions. The approach is further extended in [22] with discriminatively
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learnt part appearance, different heuristic layout models for the main viewpoints and a root part
per viewpoint which covers the entire object, thereby increasing robustness. In [50], Implicit
Shape Models are defined as clustered local features with annotations of object scale and centers;
during detection, these features cast votes according to the annotation to allow identification of a
set of consistent parts. Kushal et al. [48] enforce local geometric constraints between Partial Shape
Models which are dense locally rigid assemblies of image features, thereby achieving robustness
to viewpoint changes as well as better 2D localization performance. Hoiem et al. [42] suggest a
Layout Conditional Random Field to model part interactions for a set of discrete viewpoints from
the pixel level upwards. In [83], additional classifiers on selected levels of spatial pyramids are
learnt to obtain orientation estimates. Instead of modeling sparse sets of parts, a fixed grid-based
subdivision of object views has been suggested in [29] who propose a greedy algorithm to detect
regions of parts which conform to the training part layout. However, all these approaches are
inherently limited to a few discrete viewpoints as detection output.

Alternatively, viewpoint-annotated training data can be used to dynamically build 3D represen-
tations to better address the possible viewpoint variations of object classes. Savarese and Fei-
Fei [101] determine homographies of groups of local features in order to map large 2D image re-
gions onto a collection of near-planar parts to form a viewpoint-independent 3D model. In [102],
homographic constraints between groups of object parts are combined to form a piecewise pla-
nar 3D approximation of object classes which also allows to interpolate unseen instances within
the chosen parameterization. More recently, [114] introduced a probabilistic approach to learning
affine constraints between object parts; during testing, they rely on a complex sequence of random
forest classifiers, Hough voting and linear SVM classifiers. In [2], sparsely annotated 2D feature
positions are factorized to obtain a 3D implicit shape model which extends the original implicit
shape model to 3D transformations and occlusion issues. Although these methods perform well,
their training process is elaborate and they rely on relatively sparse object part representations
which may impact their robustness for unseen objects. Instead of building a 3D representation,
the inverse approach has been suggested in [132] by using the identified geometric constraints
between images of separate views to warp all views into a single 2D unfolded representation.

An alternative lies in using a database of existing 3D CAD models, given their ubiquitous avail-
ability and increasing realism in recent years. In the late 1980s and 1990s, this idea has already
been advocated by several researchers. Some authors resorted to flexibly aligning groups of con-
sistent edge segments by probabilistic matching [57], to building relational graphs from CAD
models to identify characteristic object features [35] or extracting symmetry properties of geo-
metric primitives from CAD models and describing them as permutation groups [25]. Others
performed geometric indexing based on invariants, typically curvature or edges, which cast votes
into a hash table of potential object poses [79, 112, 130]. Many approaches include an additional
step to verify and refine the geometric consistency of the most likely hypotheses [34, 35]. The
majority of these solutions rely on geometric primitives which are in general not sufficiently ro-
bust and discriminant for generic object categories. Recently, Yan et al. [134] addressed this issue
by collecting patches from 2D images with 3D viewpoint annotations and mapping these patches
onto an existing 3D CAD model. However, the suggested texture mapping of 2D patches onto a
single 3D model is prone to cause artifacts in the appearance representation. Moreover, a single
3D model is in general not sufficient to capture the geometric variations within an object cate-
gory. Heisele et al. [39] generate difficult training sets from synthetic 3D models for an active
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learning algorithm. While being significantly simpler to train, these methods suffer from render-
ing artifacts and do not systematically exploit the 3D geometry available during training for a 3D
pose estimation at detection time. The work of [119] differs from these approaches in relying on
motion-based segmentation of object silhouettes from videos which are matched to silhouettes of
synthetic models.

In this chapter, we build on the idea of using existing 3D CAD models. However, we do not rely
on geometric features for matching, but use a vocabulary of photometric descriptors which are
more discriminant and are shown to match to real images. In addition, the available 3D geometry
of the object category models is systematically exploited to achieve viewpoint-independent state-
of-the-art 2D object class detection results and an approximate 3D pose prediction.

3.3 Our Approach

The proposed approach relies on a database of existing, fully textured synthetic 3D models to
compute a robust 3D representation for different object classes. During training, the local features
obtained from rendered synthetic objects are filtered (section 3.3.1) in order to be discriminative
for their respective object class and viewpoint and to be suitable for a reliable matching to real
image features. A global 3D representation, consisting of a codebook of clustered features which
were retained in the filtering step and their 3D locations on the training object surfaces, is build
(see figure 3.4). Figure 3.1 illustrates the subsequent detection steps (section 3.3.2). Local features
from real images are matched to the synthetically trained ones (figure 3.1, top left). Each match
casts votes to determine the most likely class and 3D pose of the detected generic object (figure 3.1,
top right). The most promising votes are then evaluated and refined with respect to their geometric
consistence with the 3D model using a robust pose estimation step (figure 3.1, bottom).

3.3.1 Training

In this section, we describe the unsupervised training process which builds on synthetic 3D CAD
models and suitably selected local features in order to build a data representation capturing 3D
geometry and local appearance of an object class.

3.3.1.1 Training Data

In chapter 2, we discussed the use of synthetic 3D CAD models as a possible solution to generating
training data for object class detection. In the present chapter, we outline an approach which uses
such synthetic training data (as shown for example in appendix B); more specifically, we train on
subsets of the CAD model databases for the classes car and motorbike; see section 3.4.1 for details
on the chosen subsets. We follow the rendering method described in chapter 2 to generate training
images with precise 3D viewpoint annotations for different camera parameterizations as specified
in section 3.3.1.3. As discussed in chapter 2, by choosing to train our detector on rendered views of
synthetic 3D models, we circumvent both instable training conditions and complex model-building
at the cost of a possibly reduced descriptor similarity.
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3.3.1.2 Local Features

Our approach is based on local features which are extracted from rendered views of synthetic 3D
models. The performance of our object class detector, as is the case with any other feature-based
detector, depends heavily on descriptor similarity. In our case, it depends on the ability to establish
correspondences between descriptors extracted from synthetic images and from real images.

Here, we use the FastHessian feature detector in combination with the SURF descriptor [5]. Ex-
perimental results show that this image description allows to match synthetic with real images
when combined with a discriminative filtering step, see section 3.4. Unlike the standard parame-
ters suggested by [5], our detection uses a smaller sampling step of one pixel and the descriptor is
used in the extended 128-dimensional upright (i.e., not rotation invariant) version.

3.3.1.3 Model Acquisition

A truly viewpoint-independent object detector would require training an object representation
which continuously covers the entire camera view sphere. To reduce the complexity of the prob-
lem, we resort to a discrete representation where gaps in the view sphere are bridged by the invari-
ance of the local features.

First, all our 3D models are scaled to fit into a unit bounding sphere and they are oriented along
their dominant dimension. For each model, its minimum-volume enclosing rectangular bounding
box is computed from its mesh geometry. To further simplify the problem, we determine the
average ratio of the bounding box dimensions (length, width and height) within each object class,
resulting in a single scale parameter to represent a class-specific bounding box. Each model is
now rendered from a discrete number of viewpoints, characterized by the following conditions as
depicted in figure 3.2:

1. The camera is positioned at A = (a, e, d) with a, e, d being azimuth, elevation and distance,
looking at the world coordinate origin at (0,0,0).

2. The model is rendered with its bounding box centered at the origin, called the 0-pose.

3. The distance between object and camera is varied at discrete steps in order to account for
the fact that the scale invariance of the features is limited in practice.

4. The orientation parameters azimuth and elevation run through a set of discrete values.

The choice of the discretization has to take into consideration the degree of invariance offered by
the chosen local feature descriptors as well as the viewpoints which are to be encountered by the
detector when working on real images. See section 3.4 for the specific discretization used in our
experiments and chapter 2 for details on the synthetic data generation.

A distinct bounding box pose for a given viewpoint can now be described by the three-dimensional
parameter set A = (a, e, d) with a, e, d being azimuth, elevation and distance of the camera pose
(directed per definition towards the world origin). The parameter set A forms the object hypothesis.
These hypotheses are all relative to the internal virtual camera calibration matrix K chosen for the
rendering step. As a consequence, the 3D pose estimation provided by our method will be relative
to the same internal camera parameters; our method only provides an estimation of the external
camera matrix V().
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Figure 3.2: Discretization of the camera parameters azimuth, elevation and distance during train-
ing.

For each object hypothesis, we then collect local features. Each feature is annotated with the ob-
ject hypothesis describing its originating viewpoint and bounding box along with a weight which
corresponds to the inverse of the number of features found under this viewpoint. This weight
is necessary to balance each viewpoint’s contribution, since for example profile views of an ob-
ject typically cover a larger image surface and therefore result in significantly more features than
frontal views. In addition, each feature stores its 3D position relative to the model geometry in the
normalized object coordinate system. This 3D position, which corresponds to the feature location
in the image after backprojection onto the object geometry, later allows for a 3D pose estimation;
see section 2.2.4 on how these 3D positions can be obtained from the synthetic data. We term
these groups of 3D-annotated features 3D Feature Maps, since they contain all the information
necessary to roughly reconstruct in 3D the object hypothesis from which they originated.

3.3.1.4 Discriminative Filtering

The local features should be discriminant with respect to the object category and each discrete
viewpoint. At the same time, the features have to be invariant towards small local pose variations
in order to bridge the gaps between the discretely sampled training viewpoints; moreover, they
have to be robust in the presence of background. This can be achieved by a discriminative filtering
procedure similar in spirit to [1, 51]. In section 3.4, we show the importance of the discriminative
filtering for the detection performance. Filtering consists of the following steps, see figure 3.3 for
an illustration:

1. Each training object is rendered once with the exact viewpoint parameters in front of a white
background; local features are collected for the rendered image, in the following identified
as the default feature set.
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2. The training object undergoes a sequence of slight variations of each of the three pose pa-
rameters, typically covering *1% of its respective parameter space, leading to 33 evaluated
parameter combinations.

3. For each pose variation, the object is rendered three times, in front of a white, a real and a
synthetic background (see figure 3.3 for a visualization of the idea and 3.4 for an example.).

4. Each pose variation and background yields local features which are matched to the default
feature set w.r.t. descriptor distance and 3D position distance after backprojection into 3D
world coordinates. The features of the default set are weighted according to the number
of matches for each pose and background variation, thus giving a higher importance to the
more discriminant and robust ones.

Figure 3.3: Discriminative filtering of the features during training. The features are weighted
according to their stability w.r.t. different backgrounds and small local pose variations.

The discriminative filtering could in principle be extended in the same way to more rendering
parameters, such as lighting and imaging conditions.

Figure 3.4: Different steps of discriminative filtering for one pose: initial features (left), interme-
diate step (center), final result (right).

To reduce the complexity of the approach during matching to real images, the number of features
has to be reduced as early as possible in the processing chain. We, therefore, train a simple two-
class Support Vector Machine (SVM) classifier on the synthetic object features harvested during
training and a real background feature set in order to differentiate between relevant object and
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irrelevant background descriptors. The SVM classification step further avoids having to compute
pairwise distances between the model features and those image features which are unlikely to be
located on an object; this is efficient since the number of support vectors necessary to classify
background features is typically small compared to the number of model features with which we
would otherwise have to exhaustively compute pairwise distances. Support Vector Machines are a
standard machine learning approach; for details, see appendix C. For the above task of separating
object class relevant features from those likely to belong to the background, we rely on a radial
basis kernel defined by

k(wi, x5) = exp(—yllzi — ;) G.1)

and determine the parameters C, 3, v by an exhaustive grid search with fixed step size.

Figure 3.5: Each codebook entry stores the mean descriptor and the 3D positions of all the similar
features which form a cluster.

3.3.1.5 Codebook Construction

Similar to many existing approaches [28], we construct a visual codebook of k elements by clus-
tering the harvested discriminant descriptors with the standard k-means algorithm [61].

Each cluster stores a list of the discrete poses of the features which contributed to this cluster,
along with their viewpoint-specific weights (see section 3.3.1.3). In section 2.2.3, we described
how the rendering pipeline allows to associate image pixels with their originating 3D points on the
model surface. Here, we exploit this functionality to recover the 3D position of each local feature
retained after the discriminative filtering. From the 3D positions of all the training features which
are merged into a single codebook cluster, we build a data structure consisting of multiple linked
lists per discretized training viewpoint. This data structure allows to quickly recover all poten-
tially visible 3D feature positions of a given cluster under a given viewpoint. The information is
later used as input for the geometry verification: for each viewpoint hypothesis, we can directly
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access the subset of all those codebook entries which occurred under a given viewpoint during
training without having to exhaustively search through the entire codebook. Figure 3.5 shows an
example cluster with the links to the 3D positions of its contributing features. Without preserving
the full 3D position origins of each cluster contribution, the geometric structure of the codebook
would loose its consistency when the number of training models is increased; figure 3.6 com-
pares the geometry layout of a feature map for the motorbike class when neither discriminative
filtering (see section 3.3.1.4) nor clustering of the descriptors is performed and each descriptor is
stored unchanged with its original 3D position (left), when k-means clustering on discriminatively
filtered features is performed and a weighted average of the 3D positions is computed based on
descriptor distances within each codebook entry (center), and when all 3D positions are retained
in the above described linked lists after filtering and clustering (right). The unfiltered and unclus-
tered representation retains many outliers, the clustered feature map with averaged positions has
a tendency of smoothing out many of the potentially important geometric characteristics such as
handle bars, while the proposed feature map offers a tradeoff between the removal of outliers and
the preservation of geometric structure.

Figure 3.6: Comparison of the geometric consistency of differently constructed feature maps for
the motorbike class; unclustered without discriminative filtering (left), clustered and weighted 3D
position average (center), clustered and 3D position lists (right).

3.3.2 Detection

In this section, we outline the detection process, consisting of a voting to establish initial pose hy-
potheses and a consistency check based on a full 3D pose estimation; we compare the performance
of three different estimation approaches for this task.

3.3.2.1 Pose Hypothesis

Figure 3.1 provides an overview of the different steps of the detection process. During detection,
local features are extracted from the image and matched with at most the n closest codebook
entries, provided that the matches fulfill the nearest neighbor distance ratio (NNDR) criterion [67];
in our experiments, we use n = 5. Next, votes are cast for the respective pose parameters. Each
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cluster casts votes for the voting bins of the discrete poses contained in its internal list. The
interpretation of the voting result can be expressed as follows:

Each extracted feature descriptor f corresponds to a codebook entry c¢; with probability

plejf) = 1.0 — e~ (d(f)/d(fej)—-1) (3.2)
where d(f, ¢;) is the descriptor distance of f and ¢;, and dy(f) is the distance of f to the closest
cluster different from c;. For each codebook entry, we can derive the distribution of the parameter

sets A = (a, e, d) from the training data as P(\|c;)p(c;|f). The vote of each match in favour of
an object hypothesis A then has the weight

p(ALF) =Y P(Nej)pleylf). (3.3)
j=1

Note that the 2D location of the extracted feature does not contribute to the voting weight. It is
only used in the subsequent geometry verification step for a 2D-3D pose refinement.
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Figure 3.7: Histogram of the votes cast by the matched features into the discretized pose bins.
The bounding boxes illustrate the poses corresponding to the two local vote maxima. Symmetric
object orientations yield similar features. For simplification, only the azimuth pose bins for a
single elevation bin are shown.

Figure 3.7 visualizes the result of voting within one class-specific voting space. The bin with the
maximum sum of votes over all features indicates the most likely object hypothesis A in the 0-pose
(see section 3.3.1.3). We perform a non-maxima suppression within the voting space and retain the
maximum votes as the potential pose hypotheses. Note that the voting cannot distinguish between
symmetric orientations which yield nearly identical feature distributions. These ambiguities have
to be resolved in the pose refinement step described in the next section.
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If multiple object instances in similar poses are present in the image, they will cast votes into
the same bins. These ambiguities will be resolved in the following steps, described in the next
sections, by exhaustively evaluating the consistency of groups of features with the training model
geometry. If a group of consistent features of a pose has been found, they will be removed from the
set and the process will be restarted on the remaining features of this pose until no more consistent
feature groups are found.

3.3.2.2 Pose Consistency

Due to incorrect descriptor matches, ambiguous symmetric poses, multiple object instances in
similar poses, background clutter and limited feature invariance, the pose hypotheses typically
contain geometrically inconsistent results as well as overlapping or multiple detections of the
same object.

To separate the correct from the inconsistent hypotheses, we perform an approximate pose estima-
tion to determine the number of matches which are consistent with the model geometry. From the
test image, the previous voting step generates a set of pose hypotheses which are associated with
sets of image features, each consisting of a feature descriptor and a 2D image position. From the
training step, the codebook contains model features, each consisting of the descriptor of the cluster
it belongs to and a list of the 3D positions on which the cluster feature occurred during training; the
model features are further linked to their training viewpoints. For a given pose hypothesis, we can
now recover all model features associated with this pose during training and match them to their
closest image features. However, these tentative matches can contain outliers and ambiguities; by
performing a pose estimation, inconsistent matches can be pruned and the pose hypothesis from
the voting step can be evaluated in terms of the similarity of the pose-consistent features.

The subsequent pose estimation consists of iteratively executing the following steps to determine
the extrinsic camera parameters; it assumes a known camera calibration (i.e. known intrinsic
parameters) determined by the virtual camera used to render the 3D training models.

1. Feature correspondences: Establish a set of potential correspondences between subsets of
model and image features based on minimizing a distance function (see equation 3.4). Ini-
tially, the distance function relies on descriptor distances alone; in the following iterations,
the descriptor distances will be used as weights to the geometric distances, either in image
or in model space.

2. Pose Estimation: Assuming the previously established pairs of model and image features,
sorted in terms of the distance function, robustly estimate the projective transformation
which maps the set of 3D model points onto the 2D image features, minimizing the over-
all combined geometric and descriptor distance between pairs of corresponding 3D and 2D
features. We consider three different approaches to this problem.

3. Based on the estimated projective transformation, return to step 1 and refine the correspon-
dences based on the geometric distances resulting from the current projection, until the pose
change between two iterations is below some threshold.
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Note that in order to keep computation times feasible, the solutions within one pose estimation
iteration are evaluated only in terms of the preestablished feature correspondence pairs; the full
correspondence matrix is recomputed only after a pose estimation iteration has converged or ex-
ceeded a fixed number of evaluations.

3.3.2.3 Feature correspondences

During training, we harvested local features together with all their 3D positions on the surface
of the training models and associated each feature to a codebook cluster. During testing, we are
given a set of local features in the test image together with their 2D positions in image space. As
described in section 3.3.2, initial matches between features from the codebook and the test image
are established based on their assignment to the same codebook clusters, not taking into account
their geometric distance. In order to perform a pose estimation for verification and pruning of the
initial voting hypotheses, the quality of potential pose estimations has to be evaluated in order to
choose the best suited estimation result and establish a ranking of the detections for assessing the
overall performance on a given test database. This quality measure should be based on descriptor
and geometric distance to account for appearance similarity as well as geometric consistency.
Consequently, we introduce a combined distance measure between a 3D feature from the training
database c; with its associated list of n 3D positions Pf’D = {p%) e p‘j’gfl} under a perspective
projection @ and a feature descriptor f with its 2D position p>” extracted from the test image as

dcombined(cj,ia f) = max(l - p(Cj|f), '7)((1))\(]7?7?) - pQD)26 (34)

where -y is the minimum contribution of the geometric distance per correspondence; in the experi-
ments, we use 7 = 0.1. Since the voting step provides only a discretized pose hypothesis, it cannot
initially be used to project 3D features into 2D image space; consequently, ¢ is set to 0 in the first
iteration of the correspondence estimation and to 1 in the subsequent iterations when precise pose
estimations are available. The descriptor distances can be precomputed and remain constant dur-
ing the pose refinement iterations. A distance matrix D can now be assembled, containing in each
row r;; the m distances dcompined(Cj,i, fi) between a 3D feature c¢; at 3D position p?f with all
2D features fj for k € 0..m — 1 found in the test image.

The task of establishing consistent correspondences between pairs of 3D and 2D features to be
used in the subsequent pose estimation can now be formulated as an optimal assignment problem
which can be solved with a dynamic programming approach on the above distance matrix D as
described in [73] as a refinement of [47]. We suppose that each 2D feature found in the test
image can be explained by at most one model feature at a distinct 3D position in the feature
map; the quality of such an assignment is given by the corresponding entry in the distance matrix
D. The 2D features contained in the image have to be assigned to a subset of model features
from the feature map such that the sum of the distances of all assignments is minimal, i.e. given
matrix D, the objective is to choose a permutated subset 7 of length m of its rows r;; such
that 7"} D(w(k), k) is minimal. The subsequent pose estimation step will then try to find a
perspective projection which consistently maps as many of the model features in this subset onto
their assigned 2D features as geometrically possible. Both steps will eliminate outliers in terms
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of the distance function d.ompineq and in terms of the geometric consistency with a perspective
projection.

The algorithm of [73] solves the assignment problem in polynomial runtime by iteratively sub-
tracting the smallest entry per row in the distance matrix D from all other row elements until a
set of zeros has been determined which covers all columns of D, thereby constituting an optimal
assignment; for a detailed algorithm outline and runtime analysis, see [73]. The algorithm is guar-
anteed to converge since in each iteration, the (positive) entries of the matrix are decreased until
they are zeroed out which only allows for a finite number of iterations.

3.3.2.4 Pose Estimation

We evaluate three different approaches to the pose estimation problem for known intrinsic camera
parameters and compare their performance and suitability for the overall task. All three pose
estimation approaches rely on a set of assignment pairs between 3D model and 2D image features
as outlined before. Since the voting step 3.3.2 provides a pose hypothesis with a discretized
parameter set, the refined pose estimation can be constrained to the pose parameter subspace
associated with a discretized pose hypothesis, thereby allowing to exclude unlikely pose estimation
results and increasing robustness.

The pose refinement generally allows for the detection of multiple object instances present in an
image, since each of the locally maximal hypothesis votes will be evaluated. For object geometries
similar to those of the training models, an object instance will typically yield a single refined
hypothesis. Since the chosen 3D representation contains all 3D locations under which a given
feature cluster was found during training, the geometry matching can accommodate for variations
of the object geometry. In case of significant deviations from the trained geometric configurations,
a single object might result in several pose estimations of its subparts, differing only slightly in
translation and scale; our method detects these cases and combines them into a single hypothesis
with an extended bounding box. Occlusions are handled implicitly: as long as the visible part of
the object yields enough geometrically consistent feature matches, the correct object pose will be
found; see section 3.4.2, figure 3.15, bottom left, for an example.

In the following sections, we describe and compare the three pose estimation approaches.

3.3.2.4.1 Robustly Sampled Closed-Form Perspective 3-Point

This approach does not use the voted-for pose hypothesis as initialization, but only as a constraint
to post-filter estimation results not covered by the voted hypothesis bin; for details on the chosen
discretization, see 3.4.1. Pose estimations outside the initial hypothesis bin are considered negative
detections, assuming that the corresponding features found in the current image are not consistent
with the trained model geometry.

Matching pairs of model and image features are sorted according to their descriptor distances and
fed into a RANSAC loop [23]. Inside the RANSAC loop, on each subset of three 3D-2D model-
image feature pairs a closed-form perspective three-point (P3P) method [23, 37, 129] estimates
the extrinsic camera parameters which project the model features onto the paired image features.
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Figure 3.8: Approach to the perspective three-point problem by solving for the lengths of the three
sides of the tetrahedron formed by the camera center CP and the 3 model points A,B,C; illustration
in [129].

The P3P is based on the intrinsic parameters of the virtual camera which has been used to render
the models in the training step.

To solve the perspective three-point problem, first the lengths of the three sides of the tetrahedron
formed by the camera center CP and the 3 model points A,B,C are computed as suggested in [23];
see figure 3.8. Then the orientation of the 3 model points A,B,C in their original coordinate system
is determined using the method of [44] with modifications suggested by [121].

From figure 3.8, assuming known intrinsic camera parameters that in the present case are given
by the virtual camera used for rendering the training models as outlined in chapter 2, and given
the lengths of the tetrahedron base sides s1, s3, s3 and the angles ¢pap, ¢pc, ¢ac of a known
image, the cosine rule allows to derive the following equation system:

s? = L4+ L% —2LaLpcos(dap)
3% = L2B + ch —2LpLecos(dpe)
s2 = L4+ LL —2LLc cos(dpac). (3.5)

Several approaches to solving this system of equation have been discussed in the literature; we
follow [23] to obtain a quartic polynomial which we then solve by computing the eigenvalues
of the associated companion matrix [15]. The problem can have a maximum of eight solutions,
but four solutions result in negative tetrahedron side lengths corresponding to a virtual object
position behind the camera and can thus be discarded; the remaining four solutions represent four
possible projective configurations; for a detailed review of the possible solution configurations,
see [23, 37, 129]. Based on the known intrinsic camera parameters corresponding to the virtual
camera used to render the 3D models during training, the 3D positions of the model points can
be computed in camera coordinates. It remains to determine the transformation which aligns the
model points from camera coordinates to their original frame of reference which is equivalent



36 3. 3D FEATURE MAPS FOR DETECTION

to solving the absolute orientation problem [44, 121]: given two sets of 3D points x;—1 23 and
Yi=1,2,3, solve for the rotation R, and translation ¢, such that

3
(Rovto) = ar(gm)in(z lyi — (Ra; + 1)) (3.6)
Rt i=1

The solution in least square sense which guarantees the orthonormality of the resulting rotation
can be found via a singular value decomposition of the covariance matrix of the data, taking the
signs of the eigenvalues into account to avoid obtaining a reflection instead of a rotation [121].

The best of the four solutions is selected as that which maximizes the number of inliers in terms
of the combined descriptor and geometric distance of the preestablished pairs of corresponding
features for the current pose estimation iteration. The RANSAC loop terminates after a fixed
number of 3-point samples have been evaluated; see section 3.4 for the chosen parameters.

Note that in this case, we perform neither a non-rigid registration of the model nor an iterative op-
timization. Instead, the success of the closed-form pose estimation depends on the fact that among
all the feature positions identified during training, a minimum of 4 corresponding, geometrically
consistent feature positions can be discovered in the input image. Features occurring at positions
which have not been trained, cannot be matched either.

3.3.2.4.2 Robustly Sampled Iterative Estimation

As in the three-point estimation, matching pairs of model and image features computed in 3.3.2.4

are sorted according to their descriptor distances and fed into a RANSAC loop. Inside the RANSAC
loop, on each subset of three 3D-2D model-image feature pairs an iterative estimation which fol-

lows the work of [81] computes the extrinsic camera parameters which project the model points Q;

onto the paired image points p;. In contrast to the previously described closed-form estimation, it

explicitly relies on the voted pose hypothesis as an initialization, which is then iteratively refined.

Assuming a known camera calibration, which in the present case is given by the virtual camera
used for rendering the training models as outlined in chapter 2, and a set of n image points p;—1 .. n,
the unit length projection ray v; = K ~!p; of each image point p; = (x;,;, 1) is defined as the
location of all 3D points P; in camera coordinates which project onto this image point p; as

P = \vi = MK p; (3.7)

where ); is a scalar corresponding to the distance of P; to the camera and K the intrinsic camera
matrix. The forward projection chain for some set of 3D points (); into an image consists of a
transformation of the 3D points (); into the camera coordinate system with some rotation R and
translation ¢ such that

Qi = RQi +1t (3.8)
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and the subsequent projection of the transformed points Ql along the rays v; into the image. In
the case of pose estimation, the projection chain is inverted, i.e. the depths )\;, rotation R and
translation ¢ are chosen to minimize the distance function

n

(i, R,t) = argmin()_ | Aiv; — (RQi +1)|1%) (3.9)
()‘i’th) =1

for known 3D model points @);. The iterative pose estimation procedure recovers these unknowns
as follows:

e Assume a known initialization for the rotation R (which in the present case is given by the
pose hypotheses of the voting step) and compute estimated Q; = R(Q);.

e Determine estimations \; for each image point p; from

():Z', f) = argmin(z ||)\1U1 — (QZ + t)||2) (3.10)

Partial differentiation gives
X o= vj(Qi+1t)

n -1 n
i = - (Z(I - vwf)) <Z(I - vivf)Qi> (3.11)

i=1
where [ is the identity matrix.
e Align the two point sets P; = /\~wi and Qz in least-square sense such that

(dR, dt) = argmin() " || P, — (RQi + 1)[|) (3.12)
(R,t) i—1

This step corresponds to the absolute orientation problem [44, 121] described above as part
of the 3-point estimation procedure.

e Update the Ql by the incremental transformation defined by (dR, dt): QZ{TH} = dRQZ{T_l}—i-
dt.

e [terate until the change in the Qi is below some threshold.

Note that the above procedure distributes the estimation of the translation into the two steps (3.10)
and (3.12) which increases robustness of the first step (3.10). The projection error of the selected
subset of paired 3D model and 2D image points is computed to assess the quality of the current
RANSAC iteration. The RANSAC loop terminates after a fixed number of 3-point samples.
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3.3.2.4.3 Fully-Paired Iterative Estimation

The approach is based on the previously described robustly sampled iterative estimation, but does
not wrap the estimation step inside a RANSAC loop. Instead, the iterative estimation initially
uses the kg best-scoring 3D-2D model-image feature pairs in terms of the descriptor distances of
equation 3.2. In each estimation iteration j, all k; pairings are used in the optimization; after each
iteration, the quality of the pairings is reevaluated with the combined descriptor and geometric
distance d.ompineq in equation 3.4, where the geometric distance is based on the pose estimation
of the current iteration. Pairings resulting in projection errors above a threshold are removed. This
procedure iteratively prunes the pairings; note that pairings can only be removed in order to guar-
antee the consistency of all pairs with the previous estimation and achieve a stable convergence.

3.3.2.4.4 Experimental Comparison of the Estimation Methods

In order to assess the estimation precision and robustness, a large number of precisely labeled
groundtruth tests is necessary. Since different 3D imaging methods, notably a time-of-flight and
a stereo camera, did not provide satisfactory precision, the comparison was performed on 180
synthetically generated images with known 3D geometry. A 3D feature map with K = 2000
codebook entries was built from 20 car models, and 10 additional car models not contained in the
training set were used to render 18 test images per model in 18 azimuth steps for a single distance
of two units and O elevation; see chapter 2, figure 2.2, for examples of synthetic test images with
background variation. Since the focus of the comparison is entirely on the estimation process,
the voting process described in section 3.3.2 was replaced by systematically providing different
initial pose hypotheses around the groundtruth pose with their corresponding codebook entries
and subsequently evaluating the refined pose after convergence of the respective method; table 3.1
provides details on these pose variations.

Figure 3.9 compares the estimation results of the three methods by their residual distance, centroid
distance and angular error relative to the deviation of the initialization hypotheses in terms of the
three parameters a azimuth, e elevation and d distance and table 3.2 provides the average errors for
each of the estimation methods. It is obvious that the fully-paired iterative estimation is not suit-
able for this task regardless of the initialization, since the outliers in the correspondence matching
result in irrecoverable errors which show clearly in the residuals of the distance function; the posi-
tion errors are multiples of the object size and the angular errors exceed 45°. The robustly sampled
perspective three-point estimation method performs better and usually achieves alignment errors
of less than 30% of the model diameter and angular errors below 1°; however, it fails in several
cases: From the right row in figure 3.9, one can clearly see that it has difficulty in correctly estimat-
ing the orientation when the initial elevation is close to the groundtruth elevation, since the object
features visible from a camera view with zero elevation usually remain visible when increasing
the viewpoint’s elevation up to 45°; consequently, ambiguous elevation estimations can be found
which reduce the overall residual distance, but do not correspond to the actual viewpoint eleva-
tion. Since the P3P does not use viewpoint initialization values (i.e. only the codebook entries
differ according to the initial viewpoint), it cannot resolve these ambiguities. A similar behaviour,
although resulting in smaller average errors, can be observed for an azimuth initialization close
to the groundtruth (see figure 3.9, center row at O initial azimuth). Finally, larger initial distance
offsets slightly reduce the estimation performance (figure 3.9, left row). The third method, the
robustly sampled iterative estimation, outperforms the previous approaches as can be seen from
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the low average errors in table 3.2. Note that the residuals of the distance function are due to
background features and variations in the descriptor values resulting from viewpoint changes and
the clustering procedure. Furthermore, reduced estimation performance has to be expected on real
images due to reduced descriptor similarity and potentially incorrect initial pose hypotheses devi-
ating by more than the values tested above. The convergence speed of the two robustly sampled
methods is comparable; for the synthetic tests on a codebook of K = 2000 entries and test images
of dimension 512 x 512 yielding 200 — 500 relevant image features per initial pose hypothesis, the
estimation takes approx. 40 sec per image. Convergence of the unsampled iterative method with
approx. 2.5 sec per image is faster, but comes with the cost of a significantly lower precision.

Table 3.1: Discrete pose variations relative to each ground truth pose for pose estimation testing.

’ description \ value range \ stepping ‘
dazimuth —0.8.. + 0.8[rad] 0.1[rad]
delevation 0..0.8[rad] 0.1[rad]
ddistance | +0.6.. + 5.5[units] | 0.7[units]

Table 3.2: Average errors of the three estimation methods on synthetic test cases; also see fig-
ure 3.9.

Fully-Paired Iterative Estimation
initialization offset
description or da de
residual dist. 750.8623 | 462.0260 | 439.8999
3D centroid err. [units] | 14.9325 31.5237 31.6720
angular err.[rad] 0.7191 1.0288 0.8402
Robustly Sampled Closed-Form Perspective 3-Point
initialization offset
description or da de
residual dist. 34.2035 | 33.4687 | 242.9908
3D centroid err. [units] | 0.3196 0.2257 7.6644
angular err.[rad] 0.0125 0.0126 0.2309

Robustly Sampled Iterative Estimation
initialization offset
description or da de

residual dist. 26.4129 | 30.2583 | 24.5239
3D centroid err. [units] 0.02 0.02 0.031
angular err.[rad] 0.0026 | 0.0065 | 0.0043




40

3. 3D FEATURE MAPS FOR DETECTION

initial distance R

initial azimuth A

initial elevation B

1000| 1000 1000 = RANSAC+P3P
g = RANSAC+P3P mm RANSAC+lterative °
H m— RANSAC +terative Nonsampled Iterative o
% 800 800 Nohsampled Iterative| 800 £
2 — RANSAC +P3P B
£ 600 m— RANSAC +lterative 500) 600) 2
£ Nonsarnpled Iterative S
o
'_f 400| 400) 400 E
=1 ]
o 200 200 200 ?
0 S Aﬁh o
5 -4 3 2 1 0 91 -05 0 05 1 0 02 04 06 08
40, 40, 40
== RANSAC+P3P
39 m—RANSACHterative | 35 35 [\
g 30 Nonsampled Iterative | 39 30 ®
.Iﬁu 25| 25 25| = RANSAC+P3P E
o m— RANSAC +lterative 2
_-g 20 20 m— RANSAC+P3P 20) Nonsampled lterative | ©
£ 15 = RANSAC +lterative 2
2 15 Nonsampled Iterative 15 &
o
Q10 10| 10] Q
5 5 5
—~
0 0 k 0
-6 -5 -4 -3 -2 -1 0 - -05 0 05 1 0 0.2 04 06 08
1.6 16 18
14 == RANSAC+P3P 14 14
: = RANSAC Hlterative :
1.2l Nonsampled Iterative | 1 2| 1.2
g 1 1 1 g
5 os 08 08 P
E’ 08 e m— RANSAC+P3P ‘ 0:8 E’
) = RANSAC+P3P ©
0.4 0.4 EANSACTI::;?W:'V 04 — RANSAC +terative
0.2 0.2) onsampledierxive 0.2 Nonsampled Iterative
i - N
-8 -5 -4 2 -1 0 9 -0.5 0 0.5 1 CO 0.2 04 06 08

initial distance R initial azimuth A initial elevation B

Figure 3.9: Comparison of the pose estimation approaches on synthetic test cases; each row plots
one evaluation measure (residual of the distance function, 3D centroid distance, combined angle
difference) of the estimation result relative to groundtruth, each column refers to one initialization
variation (distance, azimuth, elevation).

3.4 Experimental Evaluation

In order to assess the performance of the complete approach for the task of object class detection
as outlined in the problem statement in section 1.1, we apply the approach to different publicly
available benchmark data sets, chosen to represent different aspects of the task.

3.4.1 Dataset and Evaluation Criteria

For training, we used 8 synthetic models for the class "motorbike" and 50 synthetic models for the
class "car". The models come from different free and commercial CAD model databases, notably
turbosquid.com, 3d02.com and doschdesign.com; see chapter 2 for details. The experiments were
performed using these two classes of 3D models rendered on the background dataset described in
section 2.2.1 in addition to the pure negative training data provided by the respective benchmark
data sets. The codebook contains K = 2000 clusters per class as described in section 3.3.1.5.

Table 3.3 summarizes the parameter space discretization used for training. We have experimentally
found these values to best cover the viewpoints and object poses, given the invariance of the
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descriptors used. Both increasing and decreasing resolution resulted in a loss in performance due
to less pronounced maxima or less precise pose estimations. Note that for our experiments, we
have chosen to include the model scale variation into the camera pose estimation as outlined in
section 3.3.1.3.

Table 3.3: Choice of discretization parameters for training

’ description \ values ‘
azimuth a 0..360° in 10° steps
elevation e 0..40° in 20° steps

object distance d 4.5,6,7.5 [units]

In order to evaluate the performance of our detector w.r.t. 2D ground truth bounding boxes, we use
the detection quality criterion suggested by [18]: For a correct localization, the overlap a, between
predicted bounding box B, and ground truth bounding box B,; must exceed 50% as defined by

_ area(By, N Byt) (3.13)
®" area(ByU Bg)’ ’

Our 2D localization is created by projecting the 3D bounding box into the image plane and com-
puting the convex hull of the 2D projection of the bounding box corners from which an axis-
aligned rectangular 2D bounding box is determined. Please refer to section 1.1 for additional
details on the benchmark criteria.

High Recall

High Precision

PRECISION

High Overall
Performance

FlLi9

RECALL

Figure 3.10: Simplified scheme of a precision/recall curve and the different performance criteria
for an object class detector. Illustration courtesy K. Schertler.

Since algorithmic approaches to the detection task often depend on a set of parameters governing
the algorithm, the detection performance of different algorithms for different parameterizations has
to be assessed in terms of the general behavior of the algorithm on a given dataset. In the domains
of Information Retrieval and Data Mining, several performance metrics are commonly used for the
task. Some authors, for example [93], have compared the suitability of these metrics with regard
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to dataset characteristics. For object class detection on the above mentioned benchmark datasets,
the distribution of positive and negative samples is skewed in that the number of potential negative
detections outnumbers the positive detections by far. Consequently, it has been suggested in the
literature that such a problem setting is best evaluated in terms of a precision/recall metric. In the
following, we outline the metric, assuming a binary detection outcome which is positive when it
matches the groundtruth annotation as defined in equation 3.13, and negative when it fails to match
the groundtruth annotation. We term true positives (TP) the positive samples correctly detected as
positive, false positives (FP) the negative samples incorrectly detected as positive, true negatives
(TN) the negative samples correctly detected as negative, and false negatives (FN) the positive
samples incorrectly detected as negative. From these definitions, we define recall as the fraction
of true positive detections among all positive samples in the dataset, i.e. TPTJF% and precision as
the fraction of true positive detections among all positive detections, i.e. %. Since neither
term depends on the number of true negatives, a biased representation of detection performance on
datasets with a predominantly large number of negatives is avoided. The described performance
metric is commonly visualized as a plot of precision over recall. The plot is built by sorting the
positive detections by their decreasing classification score; for each detection, the performance of
the detector is visualized by a point on the curve which is defined by the precision and recall values
of the accumulated TP and FP counts prior to the current detection; see figure 3.10 for a simplified
illustration. Optimal overall performance corresponds to a precision/recall curve integrating close
to 1 (target area 3 in figure 3.10); in practice, the curve reflects the tradeoff between a strict
parameterization of the detector designed to achieve high detection precision (target area 2 in
figure 3.10), thereby generating fewer detections and sacrificing recall, and a more lenient setup
which maximizes the number of detections in favor of a high recall (target area 1 in figure 3.10)
and at the cost of a lower precision. From the precision/recall curve, the simplified criteria of
average precision (AP), area under curve and P/R break-even point, the point of equal precision
and recall, can be derived as single values to characterize the overall detector performance.

The use of a pose estimation approach for the detection task allows to identify potentially failed
detections and to discard them based on a geometric consistency criterion as follows: given a pose
hypothesis provided by the voting step as outlined in section 3.3.2 and given the training pose
discretizations as defined in table 3.3, we can determine if the pose obtained from the estimation
process (section 3.3.2.4) is within the range of discretization of the initial pose hypothesis. If it is
beyond the hypothesis discretization range, we have one of the following cases:

e strong symmetries of the object appearance between different hypotheses result in similarly
scoring pose estimates for significantly different poses,

o the initial pose assumption was incorrect, for example due to erroneous feature matches, a
wrong initial hypothesis or unknown object geometry,

e the pose estimation failed despite a correct hypothesis.

In all three cases, we can discard the entire detection: in case of symmetries, the corresponding
symmetric poses will also generate similarly high scoring pose hypotheses which will be evaluated
in addition to the current hypothesis; in the other two cases, our approach does not provide reli-
able information on the presence of an object instance. This consistency check can be considered
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a hard breakdown behavior of the detector as opposed to the soft breakdown of pure 2D detection
approaches for which a clear distinction between obviously correct and obviously incorrect de-
tections usually has to be made by choosing a threshold on the continuous detection scores. The
precision/recall plots in the following sections clearly illustrate the difference, see for example
figure 3.14. While a soft breakdown behavior may be advantageous when aiming at high detection
recall on benchmark data sets, many industrial applications, in particular in safety-critical environ-
ments, require a clear separation based on a hard, semantically meaningful criterion; in the present
work, this separation does not consist in an arbitrary cutoff threshold, but it intuitively results from
the success or failure of the pose estimation process. Since our work aims at showing the added
benefit of a 3D model-based approach, we chose to apply this strict consistency criterion to all
subsequent evaluations. Note that this does not prevent from fine-tuning the approach in order
to optimize detection precision based on the continuous pose estimation scores of the remaining
consistent detections.

3.4.2 2D Localization

In the following, we present the evaluation results of our detector on two datasets.

3.4.2.1 PASCAL 2006

We evaluate the 2D localization performance on the PASCAL 2006 test set [18]. The evaluation
follows the conventions of the PASCAL 2006 object detection challenge.

Section 3.3.2.4 compared three pose estimation approaches on synthetic datasets; the robustly
sampled iterative and the perspective three-point approach both showed suitable performance.
Figures 3.11, 3.12 compare the two approaches on real data, the PASCAL VOC2006 car (fig-
ure 3.11) and motorbike (3.12) test datasets. Note that for better visualization of the difference
between the two methods, the plots are scaled to only show prec € [0.7---1],rec € [0---0.6].

Although the average performance of both approaches is comparable, the three-point estimation
performs better in terms of precision. The advantage of the iterative approach in the synthetic
tests in section 3.3.2.4 originated mainly from its use of the pose hypothesis as an initialization
of the estimation procedure and its more precise estimation of the elevation angle. On real data,
however, hypotheses often deviate more significantly due to erroneous feature matches in the
voting step. In these cases, the three-point algorithm has a better chance of succeeding since it
relies only on the features of the pose hypothesis and does not use the pose associated with the
hypothesis as an initialization. The iterative method, which uses the initial pose, gets stuck in
less advantageous local minima. Moreover, precise estimation of the elevation does not have a
significant impact on the 2D overlap criterion, since the backprojected 2D bounding boxes for
different elevations usually have similar outlines (at least for the typical viewpoints contained in
the VOC 2006 dataset). Since only the 2D overlap is evaluated in these precision/recall plots, this
advantage of the iterative method cannot be measured.

In terms of recall, both approaches depend on the same feature matches and consequently perform
comparably. The small advantage of the iterative approach seems to be due to its convergence
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Figure 3.11: Comparison of two pose estimation methods (see section 3.3.2.4) on the PASCAL
06 car dataset; for better visualization of the difference, the plot is scaled to only show prec €
[0.7---1],rec € [0---0.6]. Although the robustly sampled iterative approach performed better on
synthetic data (see section 3.9), the results of the perspective three-point approach on real datasets
are better, since it depends less on the pose initialization.
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Figure 3.12: Comparison of two pose estimation methods (see section 3.3.2.4) on the PASCAL
06 motorbike datasets; for better visualization of the difference, the plot is scaled to only show
prec € [0.7---1],rec € [0---0.6]; see above.

behavior in difficult cases which are dominated by a large number of bad feature matches; in these
cases, it will converge to a pose close to the initialization which may not correspond to the pose of
the actual object in the image, but in some cases may still result in a 2D bounding box fulfilling the
overlap criterion. In contrast, the three-point estimation fails with improbable poses which deviate
significantly from the hypothesis and can be more easily identified and discarded, which results
in a higher precision, but reduces recall. Since the objective of the present work is to emphasize
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the advantage of a 3D pose estimation for improving precision, the above results suggest that the

remaining experiments in this chapter rely only on the three-point estimation approach.
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Figure 3.13: Precision/Recall for the PASCAL 2006 car dataset of our approach and and the best
PASCAL Challenge 2007 detection on the 2006 test set; for better visualization of the difference,
the plot is scaled to only show prec € [0.85---1],rec € [0---0.7] .
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Figure 3.14: Precision/Recall for the PASCAL 2006 motorbike dataset of our approach, the 3D

approach of [134] and the best PASCAL Challenge 2007 detection on the 2006 test set.

Figures 3.13, 3.14 show precision/recall curves for the PASCAL VOC2006 car (3.13) and motor-
bike (3.14) test datasets; we evaluated on the entire test sets. Our approach produces few false
positives and achieves an excellent detection precision as long as sufficient feature matches for
an accurate pose estimation can be found. No fallback 2D detectors are used when the minimum
required number of 4 geometrically consistent matches necessary for a 3D pose estimation can
no longer be found; consequently, recall is lower than for pure 2D detectors. In figure 3.14, we
provide the results of the 2D detector of [8] which performed best on the 2006 motorbike dataset
in the PASCAL Challenge 2007. Their method achieves a higher average precision due to a better
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recall behavior; however, on the motorbike test set, our method detects fewer false positives due to
the more restrictive geometry verification and consequently maintains a detection precision above
the results of [8] for a significant fraction of the test set. On the motorbike dataset, our approach
performs better than on the car dataset (figure 3.13). Car objects usually have less textured struc-
ture which reduces the number of pose-discriminant features found during training and matching.
Still, our approach achieves similar precision when compared to the 2D detector of [22] which
performed best on the 2006 motorbike dataset in the PASCAL Challenge 2007. Since the work
of [134] is similar to our approach in that they resort to an existing 3D model geometry, we also
show their results on the VOC2006 motorbike test set in figure 3.14. Although they use real train-
ing images and directly focus on 2D localizations, their P/R curve is lower. This might be due to
the much smaller number of images used in their training procedure.

Figure 3.15: Some successful 2D detections from the PASCAL 2006 car test set. This figure is
best viewed in color.

Figure 3.16: Some successful 2D detections from the PASCAL 2006 motorbike test set. This
figure is best viewed in color.

Figures 3.15, 3.16 show some examples of successful detections on the PASCAL 2006 test set.
The 2D detections and the estimated 3D poses are visualized using semitransparent 3D bounding
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Figure 3.17: Remaining issues illustrated on a few examples from the PASCAL 06 motorbike
dataset (from left to right): nonrigid geometry, incorrect feature matches, unknown camera trans-

formation, unknown object geometry. This figure is best viewed in color.

boxes, backprojected onto the image plane. Figure 3.17 depicts some failed detections. The failed
detections are due to incorrectly established feature correspondences, failed 3D pose estimations
due to ambiguities or geometrically inconsistent feature layouts due to nonrigid deformations,
object geometries which have not been trained for, camera transformations which cannot be rep-
resented with the chosen simplified camera model or an insufficient number of features in case of
small objects.

It should be noted that detection performance vitally depends on descriptor similarity. Since our
training and testing descriptors stem from different data types (synthetic resp. real images), the
overall descriptor similarity is reduced, resulting in fewer correct matches. As a consequence, the
discriminative filtering step outlined in section 3.3.1.4 is crucial in achieving a sufficiently accurate
matching performance. If the discriminative filtering step during training was omitted, training
would result in a codebook which has little discriminativity with respect to object/background
separation, pose resolution and 3D position stability. On average, more than 90% of the features
are discarded during filtering as being not sufficiently stable and discriminant. We found that the
average precision on the same dataset falls from 0.453 to 0.125 for motorbikes and from 0.363 to
0.1 for cars when not using discriminative filtering.

3.4.2.2 3D Object Category dataset

The 3D Object Category dataset CAR [102] contains images of 10 different object instances from
42 different viewpoints with their 2D annotated bounding boxes. We follow the evaluation proto-
col described in [102], using 3 randomly selected object instances for testing. Unlike [102] who
chose to omit the farthest distance, this approach is trained and evaluated on all viewpoints in the
database. The training set outlined in section 3.4.1 is kept unchanged; in order to account for
the different background characteristics, we re-train the background from images of the 7 object
instances not used for testing, where the positive object annotations in each image are masked out.
Detection results are given in terms of the PASCAL overlap criterion as described above.

Figure 3.18 provides the precision/recall plots on the 3D Object Category dataset CAR [102] in
comparison to the approach in chapter 4. Although the present approach uses synthetic training
data and no 2D fallback in case of a failing 3D pose estimation, the precision is comparable. As for
the PASCAL 2006 dataset in section 3.4.2.1, recall is reduced since none of the object instances
contained in the 3D Object Category dataset has an exact equivalent in the synthetic training set.
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See section 4.3.2 in chapter 4 for a comparison with related work. Some detection results are
given in figure 3.19; for better visualization, a synthetic car model representing the object class is
rendered in the estimated pose alongside each detection. On the largest of the three test distances,
no detections have been found; this illustrates one of the main shortcomings of relying on a full
pose estimation which requires a minimum number of feature correspondences, since these are
frequently too sparse on the lower object scales. Figure 3.20 shows examples of failed estimations
due to underestimating the camera distance (top left) and incorrect elevation estimates; elevation
estimation is unstable since poses with similar azimuth and different elevations have similar scores.
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Figure 3.18: Precision/Recall curves on the 3D Object Category dataset CAR [102]; the current
approach in comparison to the method proposed in chapter 4.

3.4.3 3D Pose Estimation

In addition to the 2D localization, the proposed approach yields an estimate of the generic object’s
3D pose. The precision of the 3D pose estimation was evaluated in the following two experiments.

3.4.3.1 Estimation of Object Orientation

In addition to the 2D annotations used in section 3.4.2.2 to assess the 2D detection performance,
the 3D Object Category dataset [102] also provides approximate orientation annotations for each
image. Since each object instance is shown in the same discretely sampled viewpoints, the dataset
allows to benchmark the pose estimation performance of the present approach. In chapter 4, we
also evaluate orientation estimations on the bicycle class. However, the discriminative filtering
step of the present approach did not yield enough stable features on the delicate bicycle frames,
since the local features computed on the rendered training images contained a significant amount
of background which the filtering step could not match over a sequence of pose variations. This
issue will be addressed in chapter 4.
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Figure 3.19: Some successful detections on the 3D Object Category dataset CAR [102]; for better
illustration, a synthetic car model is rendered alongside the detection in the estimated pose.

Figure 3.20: Some failed detections on the 3D Object Category dataset CAR [102] due to under-
estimation of the distance or wrong elevation estimates.
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The orientation estimates on the 3D Object Category dataset CAR are given in figure 3.21 as
a confusion matrix between groundtruth annotations (rows) and estimations (columns) for dis-
cretized azimuth annotations in 45° steps. It is important to note that the orientation estimates
are computed as averages of the successful detections only; consequently, the results of the cur-
rent approach are slightly biased since the approach from chapter 4 has a higher recall and the
estimations are thus averaged over a larger result set. The advantage of the full pose estimation
as part of the current approach results in more precise orientation estimates. The main source of
errors is the incorrect interpretation of rear views as being frontal views; interestingly, the error
is not symmetric. Apparently, the training of the feature map and the clustering of the descrip-
tors have resulted in an imbalanced representation which favours frontal over rear hypotheses in
the voting step. Whenever the estimation process is initialized with the correct hypothesis, how-
ever, the resulting pose estimation is able to achieve a high accuracy. This becomes particularly
obvious in contrast to the estimation performance of the probabilistic model from chapter 4. As
mentioned in section 3.4.2.2, no detections have been found on those test images which contain
an object instance on the largest of the three discrete distances. Since smaller object instances
result in fewer feature detections with lower detail resolution, these cases are more difficult for
pose estimations and would have likely resulted in more estimation errors. Their absence in the
orientation evaluation thus represents a further bias in favor of the present approach.

Stanford 3D CAR: confusion plot azimuth; AP=0.91 Stanford 3D CAR: confusion plot azimuth; AP=0.70

left left-back  back right-back right-front ~ front  left-front left leftback back right-back  right
Feature Maps Prob.Geo Model

right right-front ~ front  left-front

Figure 3.21: Confusion matrix (rows: groundtruth, columns: estimates) for orientation estimates
on the 3D Object Category dataset CAR [102]; the current approach (left) in comparison to the
method proposed in chapter 4 (right).

3.4.3.2 Pose Estimation on 3D Groundtruth

In this section, we aim at evaluating the precision of the 3D pose estimated by the detection
process. We took a set of images of two toy cars with a calibrated camera; see figure 3.22 for an
example. For each image, the actual 3D world coordinates of the toy cars (947¢%:30) w r.t. the cal-
ibration pattern as well as the intrinsic (K9) and extrinsic (V9trealy camera matrices are known.
In particular, the intrinsic camera parameters focal view, principal point and pixel dimensions
are computed and any distortion in the test images is removed; we use the calibration approach
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of [135]. The synthetic camera which governs the rendering process of the training data is now
modified to match the intrinsic parameters of the real camera recovered during calibration, the
training process described in section 3.3.1 is performed again on the same training data as in
section 3.3.1.1 and the detection is applied to the test images, resulting in estimated virtual 2D
bounding box positions 2¢55:virt:2D.

In order to compare virtual and real poses in a common 3D coordinate system, it has to be taken
into account that the estimated pose (extrinsic camera matrix P:v"%) is relative to the 3D bound-
ing box determined from the synthetic training objects in the training world coordinate system.
The task of mapping the synthetic pose into the coordinate system of the real camera for metric
comparison of errors in centroid position and box orientation can be described as another pose
estimation. We assume that the detected synthetic bounding box can be interpreted as the projec-
tion of a known metric bounding box; given the known intrinsic matrix of the real camera K9,
the metric dimensions of the bounding box of each toy car (z957¢?3D) and the 2D coordinates
of the detected synthetic bounding box after projection into the image (z**v¥"%2P) with known
correspondences between the real and the synthetic bounding box corners, we wish to compute
the transformation (P¢st7¢?) such that

Pest,real — argmin”x“t’”m’QD . th Pest,real xgt,real,BDHZ' (314)

Ppest,real

est,virt,3D o real p9treal,3D bounding

The problem has an exact solution only when synthetic x
boxes have the same dimensions; otherwise, the solution that minimizes the projection error in
image space is retained. The iterative estimation (section 3.3.2.4) is used; in this setting, a random
sampling is not necessary since the correspondences between synthetic and real bounding box
corners are known. The iterative estimation is better suited since no closed-form estimation can
be performed when synthetic and real bounding boxes do not have the exact same dimensions
and only a sparse set of bounding box corners instead of the dense maps (such as in figure 3.6)
is available. Based on the pose of the 3D bounding box mapped from the synthetic to a metric

coordinate system, metric position and orientation errors can be derived.

Table 3.4 lists the errors of the 3D estimations over 14 calibrated poses of toy cars. The position
error is measured as the Euclidian distance between the centroids of the ground truth and the
estimated bounding boxes, while the orientation error is measured as the angle between their
dominant axes. Although the precision of our pose estimation cannot compete with methods for
registration or tracking of a specific model (cf. chapter 5), it is sufficient as an initialization for
these methods. The position error is mainly due to the underestimation of the distance between
object and camera. In section 5.4.4, we show that the approximate pose estimations obtained by
the detection can serve as initializations for more precise registration methods.

3.5 Conclusion

In this chapter, we have presented an approach to viewpoint-independent object class detection.
The main contributions lie in the training process of local 3D-aware features from synthetic 3D
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Figure 3.22: Calibrated scene used for 3D evaluation. Measured ground truth bounding boxes are
displayed in green, estimated bounding boxes in red. (Errors pos./orient.: left car 21.9 mm/6.55°,
right car 60.3 mm/6.14°).

Table 3.4: Evaluation of the 3D pose estimation for a calibrated scene; 14 ground truth experiments
with two toy cars (cf. toy car length 280 mm).

‘ ‘ mean std. dev.
position error of
bounding box centroid 33.9mm | 21.74mm
angular error
of main bounding box axis 10.7° 5.2°

models, the selection of pose- and class-discriminant descriptors and the extension of the tradi-
tional probabilistic voting scheme to 3D (i.e., beyond 2D interest regions). The method generates
an approximate 3D pose hypothesis for generic object classes which is then refined by a full 2D-
3D pose estimation. However, the low recall of the method in conjunction with the relatively slow
pose estimation suggest a comparison to a more flexible, lightweight approach. In the next chap-
ter 4, we outline such an approach, explicitely addressing the shortcomings of the present method,
and compare the performance of the two methods.



Detection with a Probabilistic
Geometric Model

In this chapter, we describe an approach to object class detection which is based on combining
a part-based appearance representation learnt discriminatively from real training images and a
3D geometry representation learnt generatively from synthetic CAD models. In section 4.1, we
relate this approach to the method from chapter 3, we describe the training and detection steps in
section 4.2 and provide the results of the experimental evaluations in section 4.3.

4.1 Introduction

In the previous chapter, an initial approach to 3D model-based object class detection was intro-
duced. While the approach performs well on a number of test databases, it suffers from some
limitations which will be addressed in this chapter.

e The unsupervised clustering of local features into a 3D map tends to saturate for large num-
bers of training objects. There is no explicit grouping of features according to their positions
on the 3D model geometry: those local features which are found on object parts that reoccur
on the object due to symmetries will fall into the same clusters due to similar appearance,
but they will also be scattered in multiple geometric positions on the 3D feature map. While
these symmetries can be compensated up to a certain level in the pose verification step in
section 3.3.2.4, a leaner representation would be advantageous which groups features ac-
cording to their appearance, their geometric and potentially their semantic role. In this
chapter, we address this issue by first, splitting the appearance and the geometry training
processes, second, relying on a generative geometry model which does not saturate even for
larger training sets, and third, resorting to a part model to take into account both appearance
semantics and geometric layout.

e The performance of the approach described in chapter 3 depends significantly on the quality
of the CAD model textures in the training set and their similarity to the appearance expected
in the test data. In order to alleviate this dependency, it might be advantageous to allow for
incorporating real training images into the training process in order to cover more exotic
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object appearances which may not be found in the available CAD model database. In this
chapter, the proposed separation of appearance and geometry training will allow to use real
training images for appearance and CAD models for geometry, thereby circumventing the
potential gap between synthetic textures and real object appearance.

e The previous approach performs a pose estimation based on matching geometrically con-
sistent groups of local features in order to determine the approximate 3D pose of an object
in a test image. The pose estimation result then allows to determine the 2D location of the
object by backprojecting the 3D estimation into the image plane. This 3D estimation step
is inevitable for the previous method. In certain cases, such as for small object scales, the
requirements for a full 3D pose estimation, notably a sufficient amount of local features
found, might not be fulfilled. Consequently, it would be preferable to have an initial 2D de-
tection step which already incorporates certain geometric constraints, and a subsequent 3D
pose estimation based on the detection of larger 2D image regions corresponding to object
parts. In this chapter, we describe an approach which meets these requirements.

e The pose estimation techniques used in the previous chapter rely on potentially non-determi-
nistic matching by random sampling. Although their robustness has been shown [23], faster,
deterministic pose estimation methods exist. In addition, the pose estimation approaches by
matching as outlined in chapter 3 will fail when no subset of at least three matching model
and image features in a trained geometric constellation can be found. Of the evaluated
pose estimation approaches in section 3.3.2.4, the three-point estimation does not tolerate
any deviation from trained geometric constellations and the iterative estimation has only
limited robustness towards layout perturbation. In this chapter, we present a probabilistic
pose estimation which does not depend on random sampling. It is faster to evaluate and
allows to deal with significant variation in geometric constellation of object parts.

To summarize this chapter, based on discriminative part-based 2D detectors which are both robust
and straightforward to train, only a few synthetic 3D models for each object class are used to learn
a generative 3D representation of the object class geometry without relying on the presence of
synthetic textures. In particular, no manual annotation of individual part locations is necessary.
Moreover, a probabilistic pose estimation allows to obtain an approximate 3D object pose along-
side a precise 2D detection which is robust towards small perturbations in the geometric layout.
This estimation step provides an effective evaluation measure to assess the consistency of the 2D
part detections with respect to the full 3D geometry of the object class. We thereby show that a
joint model for geometry and appearance can be avoided by learning separate models for both and
combining them at a later stage. As a result, one can use better adapted, leaner representations and
separate training sources and exploit the ubiquitous availability of geometrically faithful synthetic
3D CAD models for object class detection.

The chapter is structured as follows. In section 4.2.1, an overview of the training approach is given.
Details on the appearance model for part-based detection on 2D training images are presented in
section 4.2.2. The geometric representation of the object classes, which is built from synthetic
3D models, is described in section 4.2.3. Section 4.2.4 describes the combined detection process.
Experimental results and a comparision with the state of the art are given in section 4.3 for the 3D
Object Category datasets CAR and BICYCLE [102] as well as for the 2006 and 2007 PASCAL
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datasets for motorbike and car models [17, 18]. For a survey of the related work on object class
detection, see section 3.2.

4.2 Our Approach

In the following, we describe our approach, consisting of two separate models for appearance
(section 4.2.2) and 3D geometry (section 4.2.3), and outline how they contribute to the detection
process in section 4.2.4.

4.2.1 Overview

301 3D.5

2D.1 2D.2

2D+3D

Figure 4.1: Overview of the two training steps. (Top) Mixture models are learnt from synthetic 3D
models to describe the class geometry. (Bottom) Full object and part appearance are learnt from a
2D image database. See text for details. The figure is best viewed in color.

Figure 4.1 illustrates the approach presented in this chapter, which is based on combining a 2D
appearance model with an external 3D geometry.

The object class appearance is learnt from a database of 2D images, showing the objects from
different viewpoints (figure 4.1, 2D.1); each image is annotated with the 2D bounding box and
the viewpoint of the object, but neither manual part annotations nor segmentations are necessary.
Each annotated bounding box is subdivided (2D.2) into a regular grid where each grid block rep-
resents a part of the object. A single spatial pyramid detector is used for the full object regions of
interest (2D.3 top), while for each part region under each viewpoint, several smaller, overlapping
spatial pyramid detectors are trained (2D.3 bottom).

The 3D geometry is learnt from one or several synthetic 3D CAD models representative of the
object class geometry. The models are rendered from many viewpoints (figure 4.1, 3D.1); the
rendered images are subdivided (3D.2) into the same regular grid as in (2D.2). For each ren-
dered pixel inside a part region, its original position on the CAD model surface is known (see
section 2.2.4); thus the image pixels belonging to the same part can be backprojected onto the sur-
face (3D.3), sampled into discrete 3D points (3D.4) and the distribution of all 3D points belonging
to one object part can be modeled by a mixture of Gaussians (3D.5).
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The resulting object class representation now consists of a 2D pre-detector of regions of interest,
dense 2D part detectors per viewpoint, and an approximate representation of the 3D geometry of
the object class (figure 4.1, 2D+3D). To summarize, by subdividing both the annotated real training
bounding boxes (figure 4.1, bottom) and the rendered images of the 3D models (figure 4.1, top)
into the same regular grid of parts (figure 4.1, 2D.2 and 3D.2), the link between local 3D geometry
and local 2D image appearance is established. Note that this requires bounding box annotations
as well as approximate viewpoint annotations in the 2D training images.

4.2.2 Part-based Appearance Model

Learning the appearance of an object class needs to take into account large intra-class and view-
point variations in addition to significant background clutter and partial occlusions. Moreover,
when dealing with part-based object class detection, one aims at learning sufficiently powerful
part descriptors for relatively small image patches. These patches do not always contain sufficient
structure to be suitable for discriminative classifiers. In addition, manually including detailed an-
notations on the location of each object part is tedious. Consequently, some authors have suggested
using fixed part layouts for 2D detection [8, 29, 92] where each detector is associated with an ob-
ject part depending on its location inside the grid. More recently, the use of hierarchical structures
as a representation for both the entire object and its subparts has been advocated [10, 22]. This
work builds on these ideas in relying on spatial pyramids [49] both for the global object and the
local parts. It extends beyond previous, sparse part-based approaches [92] by using both densely
computed local features and spatial pyramids densely covering the image space. Learning the
appearance of an object class consists of a two-fold supervised training process which is both effi-
cient and robust; figure 4.1, 2D.3 illustrates the two detection components which are described in
the following paragraphs.

4.2.2.1 Detector Layout

Both detection steps build on densely computed local features as their basic building blocks. The
DAISY descriptor [118] was chosen because of its efficient implementation. Initially, from all
positive and negative training images, DAISY descriptors are randomly sampled and clustered
into a small codebook of fixed size C using a standard k-means algorithm with random initializa-
tion. The codebook size can be adapted to the complexity of the object class; see section 4.3 for
details on the chosen parameter. Given each positive training annotation, DAISY features are then
computed densely within the annotated training region and assigned to their respectively closest
codewords to build localized occurrence histograms.

A single detector is trained on entire objects to identify regions which have a higher likelihood
of containing an entire object instance; figure 4.1, 2D.3 top, shows an example layout. The di-
mensions and aspect ratio of the training annotations determine the dimension of the detector used
during testing.

For the part-based detectors, instead of manually selecting semantic parts, the training annotations
are further subdivided into a regular grid of V' x W regions, assuming that the densely sam-
pled detectors whose centers fall into the same region can be considered to share some common
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characteristics of this part of the entire object under this viewpoint; see figure 4.1, 2D.3 bottom.
Consequently, V' x W groups of detectors are obtained, each representing the appearance of a part
of the entire object under the current view. These part detectors have to deal less with background
variation, but focus primarily on differentiating between the appearance of areas of an object under
changing viewpoints.

The negative training examples for object parts and full objects are initially chosen randomly
on the background of the training images; the detector layouts which were used for the positive
training instances are re-used to determine the layout of the negative samples.

4.2.2.2 Appearance Representation

Following [49], localized occurrence histograms are combined into spatial pyramids. DAISY fea-
tures are computed densely on the image (figure 4.2, left) and assigned to their closest codebook
entries. On each pyramid level, local occurrence histograms are built (figure 4.2, center) and suc-
cessively merged into the next higher level (figure 4.2, right). The full spatial pyramid descriptor
contains a concatenation of all subhistograms of the different levels (figure 4.2, bottom). For the
full object pre-detector, a single spatial pyramid is built to represent the appearance of the entire
object under the current view; see figure 4.1, 2D.3 top. For the part-based detectors, V' x W spatial
pyramids are obtained, each representing the appearance of a part of the entire object under the
current view. The spatial pyramids of each part are densely sampled and allowed to overlap in
order to completely cover the part area as shown in figure 4.1, 2D.3 bottom.
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Figure 4.2: Appearance is coded in a spatial pyramid of a codebook of DAISY descriptors. DAISY
features are computed densely on the image (left) and assigned to their closest codebook entries.
On each pyramid level, local occurrence histograms are built (center) and successively merged
into the higher levels (right). The full spatial pyramid descriptor contains a concatenation of all
subhistograms of the different levels (bottom).

Given positive and negative training examples, separate SVM classifiers are now trained, one for
the entire object under all viewpoints and one for each of the V' x W object parts under each of
the weakly-annotated views as provided by the training database. See appendix C for an outline
of SVM classifiers. In the case of the 3D Object Category datasets CAR and BICYCLE, annota-
tions are given for discrete distances and elevation and azimuth angles (also see section 4.3). As
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illustrated in figure 4.3, the proposed approach parameterizes the viewpoints in spherical coordi-
nates of v = (7, a, b) where r is radius, a azimuth and b elevation, assuming a simplified
camera which is always oriented at the centroid of the object. A part is assigned to one block
of the fixed grid when the center of the support of its representing spatial pyramid is inside the
block, thereby allowing for some overlap between the parts (see figure 4.1, 2D.3 bottom). All
views having azimuth angles within a given range together with all distances and elevation angles
associated with this azimuth angle are combined to train V' x W part detectors for this particu-
lar base viewpoint; see section 4.3 for details on the chosen parameters. To compensate for the
random choice of initial negative training instances, a standard bootstrapping procedure is used to
iteratively select the most difficult false positives and false negatives for each part classifier. The
SVMs are learned on a minimum intersection distance kernel with the per-level weighting scheme
suggested in [49]; the distance k4 g between two spatial pyramids A and B, each consisting of L
levels on subhistograms with dimension d, is given as

L—1 1 d
kap=)» (2L_l Z(min(A(l,n),B(l,n)))) . 4.1
=0 n=0

4.2.2.3 Training Set Selection by Bootstrapping

On the datasets on which we evaluate our approach, the number of potential negative samples
outnumbers the positive ones significantly; moreover, by computing spatial pyramids densely on
the entire image, the training of the SVM on all negative training samples becomes computation-
ally intractable. Consequently, we have to derive a method of selecting a representative subset of
negative training samples.

The properties of an SVM and its generalization capacity are mainly defined by the training sam-
ples closely located to the separation plane; they are the difficult training samples « in that their dis-
tance to the separating plane is smaller than some threshold, || ¥(z)|| < €; typically € € [0-- - 0.5].
It is advisable to include a large number of these difficult samples in the training process in order
to achieve a suitable class separation. The difficulty of a training sample, however, can only be as-
sessed in terms of an existing separation plane, i.e. a pre-trained SVM. We propose the following
approach which can be interpreted as a variant of bootstrapping [7].

A positive sample in the context of the present work is defined as a spatial pyramid overlapping
by more than 50% with the region of its respective part annotation; a negative sample is any
spatial pyramid overlapping by less than 50%. For a justification of the chosen overlaps from the
evaluation criteria, see section 3.4.1.

1. Create an initial training set My C M from the set of all possible samples M with their
annotations 7" by randomly adding N positive (x, with 7; = 1) and [N negative samples
(z,, with T; = —1). Each subsequent bootstrap iteration is denoted by its index ¢, initially
t=0.

2. Train an SVM classifier ¢y, on the training set M;.
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3. Evaluate the SVM classfier cpy, on the entire set M and assign each sample s its signed
distance to the separating plane d.

4. Select all samples s; with T; = —1 A d,, > e (false positives); sort them by decreasing
positive ds and keep at most N/2! of the worst, i.e. highest positively scoring, samples.
Assume that fp; false positives are kept in a set F'P;.

5. Select all samples s; with T; = 1 A ds; < € (false negatives); sort them by increasing
negative ds and add at most fn; = min(N/2¢, fp;) of the worst, i.e. lowest negatively
scoring, samples. In order to avoid overfitting to positive samples, in each step ¢ we do
not add more false negatives than false positives to the training set. Assume that fn; false
positives are kept in a set F'IV;.

6. Assemble a new training set M1 = My U F'P; U F'N,.

7. Repeat from step 2 in the next iteration ¢ + 1, until F'P; = 0 either because N/2! = 0, i.e.
the maximum number of boostrap iterations has been reached, or because no false positives
have been found in the last step. In that case, cjy, is the final classifier.

In the present work, N = 2500 and € = 0.5. The parameter C' controlling the tightness of the
SVM classification margin is determined by gridsearch with C' € [0.001 - - - 100] with 5-fold cross-
validation of the SVM on the entire training set; see appendix C for details on the parameterization
of SVMs.

Figure 4.3: Discretization of the viewpoints for initial classification into “base viewpoints” in
discrete azimuth steps, each combining multiple elevations and distances.

4.2.3 Geometry Model

The following section outlines how the model of the object class geometry is built to represent the
3D distribution of the centers for each of the V' x W parts per object class and for each discretized
camera viewpoint (figure 4.3).
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Recently, some publications have proposed methods for building a 3D representation from training
data to be used for detection tasks. In most cases, groups of consistently deforming image regions
are promoted to a higher geometry model to reflect their co-occurrence [2, 102, 114].

In this section, a different approach is proposed which relies on commercially available synthetic
3D models; see figure 4.4 for some examples. However, unlike previous approaches, the geometric
learning task is separated from the appearance component described in the previous section 4.2.2.
No explicit matching between synthetic textures and real images is required; still the precise ge-
ometry of synthetic models can be used in an extremely flexible way to learn the 3D distribution
of parts of an object class, as long as the models represent characteristic object class geometries.
In particular, no manual annotation of part locations is required for geometry training.

4.2.3.1 3D Training Data

Figure 4.4: Synthetic 3D models used for the geometry training.

The use of synthetic models as training sources for the geometry allows to densely sample the
space of possible viewpoints and to choose the models such that the training database includes
representative object surface geometries. The approach follows the pose space parameterization
of [102] as defined by their test database; the parameterization is based on a spherical coordinate
system as illustrated in figure 4.3; a simplified camera model is assumed where rotations around
the camera view axis are not part of the parameter space and the camera is always directed at the
model centroid.

When working with synthetic models, the appearance of synthetic textures is difficult to relate to
real images. By limiting the contribution of the synthetic models to their geometry, this problem
is efficiently avoided; furthermore, far fewer models are needed to only represent the geometry
of an object class rather than all possible textural appearance variations. Still, if some texturing
is available, it would be possible to train a 2D detector similar to section 4.2.2 on the synthetic
parts and, by applying it on the synthetic images, to identify symmetry relations of parts on certain
surface regions; one could then account for these symmetries in the subsequent model building
steps.

For each object class, all its 3D models are rendered into images of fixed dimensions, along with
their automatically generated bounding boxes; see chapter 2 for details on the synthetic render-
ing process. Each model is rendered from the same viewpoints that are present in the real image
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database (termed “base viewpoints”) as well as from additional densely sampled viewpoints, re-
flecting intermediate distances and object orientations. By using synthetic models, viewpoints can
be more densely sampled from the space of all relevant poses to account for the typical visibility of
the parts under perspective projection, depending on 3D surface structure and local self-occlusions.
For each rendered view, the bounding box is subdivided into a regular grid of V' x W parts (see
figure 4.1, 3D.2) in the same way as for the appearance training (see figure 4.1, 2D.2). The as-
signment of 3D surface locations to parts does not require any annotation, since for synthetically
rendered images, the actual 2D bounding boxes are known; their automatic subdivision into the
same regular grid that was used for the real training images directly establishes the link between
appearance parts and 3D geometry.

4.2.3.2 Mixture Models

After perspective projection of a synthetic model, for each image pixel its 3D position on the
original 3D model surface is known; as a consequence, the 3D points belonging to each part under
each of the specified viewpoints can be determined and projected into a common object coordinate
system as shown in figure 4.1 (3D.3). More specifically, the rendering pipeline of modern graphics
processors as described in section 2.2.4, figure 2.3, allows to annotate each rendered pixel with
more than just its color values; we use this property to pass on the original 3D coordinates of each
point on the model surface to the final image pixel. Figure 4.5, left and center, displays the 3D
point clouds for one car base viewpoint and four parts; different colors indicate different parts.
This representation now allows to associate regions of the 3D object surfaces under perspective
projection to the corresponding appearance parts, since for the rendered as well as the real images
the same regular grid of V' x W parts was used. This link holds true independently of the real
image training data on which the appearance has been trained, as long as the same regular grid
has been used to determine the part regions in synthetically rendered images and annotated real
training images.

Once all available models of one object class have been processed under all discretely sampled
viewpoints, Gaussian mixtures are fitted to the point clouds of each part per base viewpoint, using
the standard Expectation-Maximization procedure [13]. The choice of Gaussian mixtures reflects
a trade-off between a faithful representation of the 3D geometry and a conveniently parameterized
formulation which later allows to efficiently evaluate the probability of co-occurrence of parts,
given the geometry model. This trade-off is reflected in the number of mixtures to represent each
parts’ geometry: more mixtures will allow to better represent the geometry, while at the same time
increasing computational cost during pose estimation. In this approach, the number of mixtures
per part is iteratively chosen according to the MDL criterion [94]. Assuming that each part obeys
a multivariate multimodal Gaussian distribution with parameterset 0y.c(1. ) = (g, Ry, wy) in
3D (where p is the centroid of each mixture component, Ry, its covariance and wy, the weight of
the mixture component), for each part distribution L the likelihood

N
p(L|K, 0) = H Zp(x(n,SD)‘ek’) 4.2)

n=1k=1
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of each of the N 3D points’ z(,, 3p) € L belonging to mixture & is maximized, while accounting
for the MDL penalty term. Figure 4.5, right, shows the fitted mixture models for the 3D point dis-
tribution of the parts of a car from base viewpoint “rear”. For each part under each base viewpoint,
such a representation of its originating 3D surface positions is built.

Figure 4.5: 3D point distributions and fitted mixtures for four parts of the car class from base view-
point “rear” (left: projection from actual viewpoint, center: rotated, right: estimated mixtures).

4.2.4 Detection
This section outlines the detection steps, starting with the initial 2D predetection of the entire

object, the detection of pose-specific 2D parts for the most probable base viewpoint, and the
maximum-likelihood optimization process to estimate the remaining pose parameters.

4.2.4.1 2D Detection

Figure 4.6: Initial detections with a full object spatial pyramid classifer; note the frequent under-
estimation of object scale due to the lack of object pose information.

4.24.1.1 Pre-Detection

The 2D detection process starts with an initial pre-detection to identify regions of interest poten-
tially containing fully or partially visible objects. This method follows the work of [12] in using
a sliding-window detection and a subsequent mean-shift mode estimation to merge and localize
these regions of interest in image and scale space. This detection step alone is usually unable
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to generate a reliable localization, since it does not deal with occlusion and is sensitive to the
detector window dimensions chosen. In addition, no sliding-window approach can sample all
possible window layouts on all possible scales; consequently, additional verification steps are nec-
essary. Figure 4.6 shows some example detections for the full object pre-detector; note that this
pre-detector frequently underestimates the actual scale of the object which is due to its lacking
information on the full object pose. While this issue could potentially be solved by other means,
for example by the use of segmentation masks as in [63], we suggest to deal with this issue by
including more comprehensive information on the object pose into the detection process. In the
following steps, knowledge on the full 3D geometry of the object class allows to accurately choose
the entire image region containing the object, thereby significantly improving this initial detection
and providing an evaluation score which measures the consistency of the detected parts with the
learnt geometry model. Multiple object instances visible in the same image are handled implicitly
by applying the subsequent steps to each of the pre-detection results in the image; every object
instance that is pre-detected in this step can potentially yield a separate final detection, provided
that enough consistent parts are found to allow for a successful pose estimation.

4.2.4.1.2 Pose-Specific Parts Detection

The part detection forms the fundament which the 3D pose estimation will rely on. Section 4.2.2
described how classifiers for different regions of an object under each base viewpoint are com-
puted. Typically trained on much smaller image parts, the discriminativity of these part detectors
is reduced; however, by computing them only on the previously identified regions of interest in
the test images, much of the background variability is removed which allows to focus the training
process on differentiating between base viewpoints and parts on the objects. In addition, these
parts can be densely computed on every pixel within the region of interest. The large number of
resulting detections increases robustness of the following pose estimation step. A simple voting
procedure is used to determine the most likely azimuth-only base viewpoint v; = (1, a;, 0), given
all the NV detected parts at 2D image locations x which were classified as belonging to base view-
point hypothesis / and part label [ € 1...n, with discriminative detection probability p(x, h, [):

N np,

p(v;) = Z Z P(xn, h = v, Ly). 4.3)

n=1m=1

Note that this voting does not yet take the distribution of parts into consideration; it only selects the
most promising base viewpoints to evaluate in the subsequent pose estimation. In particular, for
a given base viewpoint, we may have several different part detections at the same image location;
these ambiguities have to be resolved in the pose estimation step. Some part detection results
are visualized in figures 4.22, 4.23 along with the most likely base viewpoint votes illustrated as
histograms.

4.2.4.2 3D Pose Estimation

For all detected 2D parts at 2D image locations x with part labels [ of a specific base viewpoint
hypothesis v;, an iterative pose estimation now provides an evaluation of the probability of oc-
currence of the refined viewpoint in simplified spherical camera parameters v = (7, a, b)
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as illustrated in figure 4.3. We are now searching for those camera parameters that maximize the
probability of occurrence of the detected constellation of object parts in the image when the 3D
model is projected into the image. This is equivalent to finding those camera parameters v within
the constraints T'; given in section 4.3 which maximize the likelihood of the detected 2D parts
after perspective projection ®,, of the K 3D Gaussian mixture components of this base viewpoint
into the image space:

N
argmax Hp(xn,vi,l]v) = (4.4)
veT; n=1

N K

argmax H Zwk N (%ﬂ% ”(I)U(/J’(k,ZSD))’ ‘I’U(R(k,gD))) )

veTi ol 1

where N/ (xn, U, P ((r,3D))5 @U(R(kygD))) denotes a 2D Gaussian mixture component evalu-
ated at the 2D image location z,, of the detection with viewpoint hypothesis v; and specific part
label [, where the 2D Gaussian is the result of projecting the 3D Gaussian with mean p, 3p) and
covariance R, 3p) into a 2D image, using the perspective projection @,,. To simplify the com-
putation of the likelihood under the perspective projection ®,, of the per-part covariances R 3p)
into image space, ®,, is approximated by the Taylor expansion localized at the mixture centroids
i (k,3D)> assuming the projection to be locally affine:

P, (z(3p)) ~ Po(tr,3D)) + Jo. (T3D) — H(k,3D)) (4.5)

which allows to compute the approximate covariance of the projected 3D mixtures @, (R 3p))
from the original covariances R, 3p) using the Jacobian Jg,, of the projection ®,, evaluated at the
3D centroids fi(x3p):

Dy (Rie30)) = Jo, (k30)) - Rik3p) - Jo, (H(k,3D))- (4.6)

The optimization problem in equation 4.4 is solved under the constraints Y; given in section 4.3
which reflect the discretization used during training. Solving requires choosing unambiguous part
label assignments [ for each detection at a location « with pose hypothesis v;. Two options exist
for assigning [ to one of the ny, part labels:

e For each detection at a location x, choosing part label

[ = argmax (p(z,v;, 1)) 4.7)
lE{l...nL}

based only on the scores of the discriminative classifiers. The choice is made once initially
and the chosen part labels are kept constant over the optimization.

e As part of an EM-like iterative optimization, where the update step is given in equation 4.4
and the part label selection is done in the E-step as

I = argmax (p(z, v;,1|0)) (4.3)
lE{l...nL}
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where v is the result of equation 4.4 from the previous iteration. For initialization, part
labels are chosen as the maximum of the classifier scores as in the first option.

In both cases, optimization of equation 4.4 is done using a genetic algorithm [46] which is analyzed
in detail in section 5.4.3. The genetic approach performed best in the experiments due to its
robustness towards local optima. In practice, we chose to minimize the negative log-likelihood
for better numerical stability. Since the discriminative classifiers tend to assign small scores to
part detections on ambiguous image regions, in our experiments, the fixed part choice and the
dynamic part relabeling showed identical performance; a different behavior might be expected
when a different type of classifier is used.

The resulting detection now allows to evaluate the probability of occurence of an object of the
searched-for class under a consistent 3D pose. Moreover, the 3D bounding box backprojected into
the image can be used to determine the smallest circumscribed 2D rectangle which significantly
improves the 2D scale estimates of the initial detection step. Note, however, that the 3D pose
estimation obtained is relative to the virtual camera parameters used to generate the geometry
training data from the synthetic model database. Without information on the real camera used to
take the specific test image, the computed virtual 3D pose does not relate to the actual metric 3D
pose of the object, but provides only orientations and relative distances. Still, if metric calibration
data of the camera used to take each test image was available, the virtual camera pose could
be promoted to an actual 3D measurement. The pose estimation scores are not used to rank
detections over different images of a database, since the log-likelihood is not normalized. Instead,
the improved 2D bounding box after pose estimation and 2D backprojection is re-classified with
the full object classifier (see section 4.2.4.1.1) to generate a comparable overall score for ranking.

4.2.5 Implementation

An important building block of the approach lies in the appearance representation as spatial pyra-
mids of occurrence histograms of DAISY features. The process of computing the pyramids
densely at each pixel position in the image is time consuming. Since on their most detailed level,
the pyramids share occurrence histogram blocks of local image patches (see figure 4.2), both the
computation of the histogram blocks as well as the combination of the blocks into spatial pyramids
can be parallelized since the blocks and the pyramids are independent of each other. The paral-
lelized computation performed on the graphics processor; in the following paragraphs, we outline
its implementation.

4.2.5.1 General Purpose Computation on the GPU

During the last decade, speeds of single CPU cores have stopped increasing; at the same time, the
graphics processor (GPU) has changed from a hardware component for dedicated graphics output
into a fully programmable processor architecture. Driven by early work on general purpose com-
puting on GPUs [82] for visualization and mathematical co-processing, programming models such
as OpenCL© and CUDA® have become established tools for solving computationally expen-
sive operations, notably in the domain of computer vision [27]. By subdividing tasks into small,
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locally independent computation kernels with a limited amount of shared memory and a common,
albeit slower access to global memory, operations can be deployed in a massively parallel way
on several hundred subprocessors with reduced instruction sets (Single Instruction Multiple Data,
SIMD). The CUDA® programming model which we rely on for the following implementation
allows the kernels to be written in a C language; one computation kernel is executed by one or
more threads depending on their organization into blocks of a regular grid; threads are grouped
into warps which run on one processing unit (PU) and share its local memory. Although certain
limitations exist as to the amount of parallelization and memory access, the approach offers a high
degree of scalability.

4.2.5.2 Parallelized Operations

Given a codebook which has been built during training, containing Nb descriptor centroids (see
section 4.2.2.1), and a test image on which we wish to compute spatial pyramids, we initially
compute dense DAISY features on the entire test image, resulting in Na descriptors and their
associated positions in the image.

4.2.5.2.1 Nearest-Neighbour Codebook Assignment

da
k4

Na

-
T -

Nb

Figure 4.7: Parallelization scheme for the descriptor distance matrix, containing the pairwise dis-
tances between all Na descriptors found in a test image and the Nb descriptor centroids of a
codebook built during training. The matrix is divided into regular blocks which are computed in
parallel to account for the limited shared memory of the GPU.

In order to build occurrence histograms, we initially need to assign each of the Na descriptors
found in the test image to its nearest neighbour among the Nb descriptors in the codebook in
terms of a descriptor distance; we use the L2 distance. First, the distances between each descriptor
in the test image and all the codebook descriptors have to be computed in a matrix M of dimension
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Na x Nb. Figure 4.7 illustrates the parallelization scheme used for this task. Given the two sets
A and B consisting each of Na and Nb DAISY descriptors with per-descriptor dimension of
d = 200, we wish to compute the matrix M of dimension Na x Nb such that each entry m; ;
in M corresponds to the sum of the squared distances between each of the d elements of two
descriptors a; and b;. To adapt the problem to the limited shared memory on the GPU, the entries
of matrix M are computed in regular blocks of dimension b x b such that two of these blocks fit
into the shared memory of one processing unit (PU) and each element of the block is computed
by one thread. The elements of one block starting at position (da,db) in M depend on the b
descriptor rows starting at da in A and db in B. We subdivide each group of b descriptor rows into
the same set of regular blocks, step through each two corresponding blocks in A and B and load
their entries into shared memory. Each thread then accumulates the result of an operation on the
elements in two different rows of the two blocks into one entry in M.

|

\EJ| T
\W}
|

] O O O
J J L. Lt 4

=
T T T T I T T T T TTT]

Figure 4.8: Parallelization scheme (parallel reduce) for the computation of the nearest neighbour
in the codebook for each of the descriptors in the test image. In each iteration, two values from
the lower and the higher part of each row of the distance matrix are compared in parallel and the
smaller value of the two is kept for the subsequent iteration.

Based on the matrix M, one row containing the distances of one test descriptor to all codebook
entries, we wish to find the codebook entry having the smallest distance to the test descriptor. The
parallelization scheme suited for this task is a standard reduce operation which runs on each row
of the matrix M to recover the minimum value and its column index; figure 4.8 illustrates the
concept. On each of the Na rows of M, initially Nb/2 threads compute the minimum of two
entries and save the minimum value and its column index in shared memory. In each subsequent
iteration, half of the threads repeat the operation on the remaining values until a single minimum
and column index per row remains. The column index per row is the codebook entry which is
most similar to the test descriptor; this index is stored in a new matrix at the 2D position on which
the corresponding test descriptor has been computed in the image.
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4.2.5.2.2 Local Histograms

The previous steps resulted in a matrix which contains at each pixel position of the test image the
index of the codebook entry which is closest to the DAISY descriptor found at that position. In
the next step, we subdivide the entire matrix into a regular spatial grid; for each block in the grid,
we build a histogram counting the frequency of occurrence of the codebook entries in that block.
In order to account for optimized operations on the GPU, we only use power-of-two histogram
bin counts and power-of-two spatial block dimensions; to densely cover the entire index matrix,
the full grid is offset by multiple values up to the dimensions of one grid block and a new set
of histograms relative to this offset is built. The occurrence histogram of one block in the grid is
computed by all threads available on one PU; current CUDA hardware and API limit the maximum
number of threads on one PU to 512. Since the codebook dimensions typically required exceed this
value (see section 4.3), one thread runs over the entire block area and accumulates the occurrence
count of a range of codebook indices into shared memory; the shared memory blocks are then
concatenated to form the initial level O of the spatial pyramids.

4.2.5.2.3 Spatial Pyramids

In order to assemble spatial pyramids building on the blocks of local histograms computed in
the previous steps, on each of the L levels, 22 local histograms per dimension from the previous
level have to be combined into a single histogram which is then concatenated with all previous
subhistograms; figure 4.9 shows one such combination step for a single spatial pyramid. A full
spatial pyramid with L >= 0 levels therefore has dimension Ef:_ol((QL*kl)zd) where d is the
number of bins per histogram, i.e. the codebook size. We assign one PU to the merging of
each group of 22 local histogram blocks (yellow in figure 4.9) on each level; again, one thread
steps through a range of bins of each local histogram and accumulates the bin counts into the
corresponding range of bins of a single new histogram which is kept in shared memory. In order
to avoid resizing the global memory on each pyramid level, we initially reserve the entire memory
space required for the full set of pyramids and save the histograms in an interleaved way.

4.2.5.2.4 Minimum Intersection Kernel

The nonlinear SVM classifier operates on a distance matrix containing a subset of spatial pyramids
from training and testing instances, the kernel. We have chosen the Minimum Intersection Dis-
tance [49] between spatial pyramids. The operation is implemented in the same way as the sum of
squared differences matrix for the Nearest-Neighbour assignment described above; it operates on
the spatial pyramids as inputs instead of the DAISY descriptors and performs a per-element min
instead of a difference.

In comparison to a pure CPU-based C++ implementation without processor-specific optimiza-
tions, the full process, as described above, of building spatial pyramids on 3 levels from a code-
book of dimension 2048 (resulting in a full pyramid dimension of 21 * 2048) sampled in steps of
4 pixels on an image of dimension 512 x 512 takes approx. 80ms on an nVidia Tesla C1060 GPU
as opposed to approx. 21sec on a dual-core CPU at 2.1GH z.
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Figure 4.9: Parallelization scheme for the building of spatial pyramids on multiple levels (blue)
from local histogram blocks (yellow).

4.3 Experimental Evaluation

On the publicly available 3D Object Category datasets CAR and BICYCLE [102], our approach
was evaluated on two tasks, 2D object class detection and approximate 3D pose estimation. Object
class detection in 2D was used to assess the contribution of the geometric model with respect to
object localization in image and scale space. The accuracy of our approximate pose estimation was
evaluated with respect to groundtruth orientation annotations of the 3D Object Category datasets.
On the PASCAL VOC 2006 and 2007 motorbike, bicycle and car testsets [17, 18], only the 2D
detection was evaluated, since the provided viewpoint groundtruth is too sparsely discretized and
not available for all test images.

4.3.1 Dataset

The approach relies on training data from two separate sources. The 3D geometric representation
is built from 3D models available from the commercial distributors turbosquid.com and doschde-
sign.com; see section 2.2.1 for details on our 3D model database. We used two motorbike, two car
and two bicycle models (some examples are shown in figure 4.4) which are representative of the
object class geometries contained in the test databases. For training, the 3D models are normalized
to unit scale in the virtual camera coordinate system and rendered from distances r € {1---5}
(in multiples of 3D model radius), six elevation angles in steps of 10° and all azimuth angles in
22.5° steps. Consequently, given an initial hypothesis v;, the pose estimation step is constraint to
Ti={re{l---5},a € {a;722.5°},b € {0---60°}} where q; is the azimuth angle associated
with the base viewpoint hypothesis.
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Appearance training for the 3D Object Category datasets CAR and BICYCLE [102] relies on the
annotated training images of the dataset. For each object class, it contains images of 10 differ-
ent object instances from 42 different viewpoints. We follow the evaluation protocol described
in [102], using the images of 7 randomly selected object instances per class for training and those
of 3 unseen instances for testing; the results are averaged over 10 evaluations with different random
subset selections. Unlike [102] who chose to omit the farthest distance, this approach is trained
and evaluated on all viewpoints in the database. 2D training bounding boxes are computed from
the provided groundtruth segmentation masks and the base viewpoint classifiers are trained on
the available approximate viewpoint annotations, consisting of three distance units (near, medium,
far), three elevation units (low, medium, high) and 8 azimuth steps of approximatively 45°. Code-
book sizes of 2048 codewords for the full detector on 3 pyramid levels and 1024 codewords on
two pyramid levels for the part detector performed best in our experiments.

On the PASCAL VOC 2006 and 2007 motorbike, bicycle and car testsets [17, 18], no complete
viewpoint annotations exist; instead, a subset of the database contains annotations for the discrete
object orientations front, rear, left and right. We use these annotations in the training sets whenever
available and skip training images without viewpoint annotations. Since our approach focuses on a
part-based representation which requires a minimum object size, we skip training images marked
as truncated, difficult, or having a maximum axis-aligned bounding box diameter of less than 100
pixels. In order to cover diagonal viewpoints as well, we merge the appearance training data
from each VOC database separately with the training data from the 3D Object Category datasets
CAR and BICYCLE. Since the 3D Object Category dataset does not contain a motorbike object
class, our approach will only able to generate hypotheses for motorbike detections from the four
discrete orientations provided by the VOC annotations; the detection of intermediate orientations
relies entirely on the local invariance of the part detectors in combination with the pose estimation
procedure. See figure 4.25, second from the right, for an example of the impact of this sparse
viewpoint annotation, resulting in an incorrect orientation estimation.

4.3.2 Experiments

The 2D localization task is evaluated with the standard 50% VOC Challenge overlap criterion
of [18] on the axis-aligned rectangular 2D bounding boxes obtained from backprojecting the 3D
bounding boxes generated by the pose estimation; the same method has been used to evaluate the
approach in the previous chapter, see section 3.4.1 for details. As in the previous chapter, we resort
to a strict geometric consistency criterion in order to remove detections where the pose estimation
result is beyond the discretization range of the initial viewpoint hypothesis.

The precision/recall curve obtained with our approach on the CAR dataset [102] is given in fig-
ure 4.10 (AP 76.7%). We compare to the best currently reported pure 2D approach [29] (AP 72.6%)
and the most recent 3D approach of [114] (AP 55.3%). As can be seen, our detection approach
outperforms the state of the art on the CAR dataset. On the BICYCLE dataset [102], our method
achieves an AP of 69.8% as shown in figure 4.11 which is slightly below the 2D results reported
by [29], probably because on the narrow image regions of bicycle frontal and rear views, the 3D
backprojections into 2D image space used by the present approach tend to overestimate relative to
the provided groundtruth annotations.
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Figure 4.10: Precision/Recall curves on the 3D Object Category dataset CAR [102].
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Figure 4.11: Precision/Recall curves on the 3D Object Category dataset BICYCLE [102].
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on the 3D Object Category datasets CAR and BICYCLE [102].
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Figure 4.14: Precision/Recall curves on the PASCAL VOC2006 testset BICYCLE [18].
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Figure 4.16: Some results illustrating successful detections on the PASCAL VOC2006 testsets
CAR, BICYCLE and MOTORBIKE [18]. For each result, the predetection density, the detected
parts, the base viewpoint votes and the final pose estimation are visualized.
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On the PASCAL VOC 2006 motorbike, bicycle and car testsets [18], we benchmark the results
of our approach against the best results achieved on these datasets with 2D detection methods
as part of the PASCAL VOC challenge [18], i.e. the work of [8] (referred to as Oxford in fig-
ures 4.13, 4.14) and [22] (referred to as UoCTTI in figure 4.15). For comparison, we provide the
precision/recall curves of the approach described in chapter 3 where available (referred to as Fea-
tureMaps in figures 4.13, 4.15). Some successful detection results are shown in figure 4.16, some
failed detections in figure 4.25. Incorrect detections are mostly due to camera rotations which
are not representable by the chosen simplified pose parameterization (figure 4.25, left), nonrigid
deformations which result in ambiguous pose votes (figure 4.25, second and third from left) or
failed detections on objects with an appearance that differs too much from the training data (fig-
ure 4.25, right).

On the CAR dataset (figure 4.15), we achieve a significantly better recall when comparing to
the previous approach (chapter 3); this is due to the use of appearance training data from the
corresponding training set instead of relying on synthetic textures. However, traditional pure 2D
detectors still perform better on small objects which our approach fails to detect; note that the full
predetector is trained only on those training instances which are large enough to yield individual
training parts for subsequent processing steps. Since the CAR testset contains a particularly high
number of small objects, the difference in recall is significant when comparing to the approach
of [22]. The MOTORBIKE and BICYCLE testsets contain fewer small objects; here, the main
difficulty resides in nonrigid deformations which occur when the front wheel is not aligned with
the object body. On the MOTORBIKE testset (figure 4.13), the recall of the previous approach is
once again lower, although the more precise pose estimation achieves a slightly better detection
precision. As stated above, it has to be noted that this comparison is somewhat biased due to the
limitation to only four discrete viewpoints for appearance training on the MOTORBIKE testset.
Still, the average precision of 0.521 is comparable to the performance of the best pure 2D detector
with 0.539 [8]. This limitation in viewpoints is avoided on the BICYCLE testset, since we rely
on a combination of the appearance training sets from VOC 2006 and 3D Object Category dataset
as outlined above. As a result, our approach performs better than the 2D method of [8] with an
average precision of 0.608 as opposed to 0.568. This result underlines the importance of a pose
discretization in at least 45° degree steps to provide a suitable initialization for the subsequent
pose estimation.

On the PASCAL VOC 2007 motorbike, bicycle and car testsets [17], we benchmark the results of
our approach against the best results achieved on these datasets as part of the PASCAL VOC chal-
lenge [17], i.e. the work of [8] (referred to as Oxford), and more recently published results [21]
where available (referred to as UoCTTI in figures 4.18, 4.19). Some successful detection results
are shown in figure 4.20, some failed detections in figure 4.26. Incorrect detections are mostly
due to camera rotations which are not representable by the chosen simplified pose parameter-
ization (figure 4.26, second from left), geometries that differ too much from the training data
(figure 4.26, left and third from left) and bad classification results which lead to ambiguous pose
initializations (4.26, right). With the exception of the bicycle class (see figure 4.18), our approach
achieves a consistently higher precision for positive detections; as before, the recall is significantly
reduced when compared to the currently best pure 2D detectors of [8, 21]. Not surprisingly, the
use of a 3D geometry can be useful in improving detection precision and to indicate and devalue
detections which are inconsistent with the geometric model; however, this will inevitably result in
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more false negative detections. Note that in [21], training data from 2008, 2009 and 2010 chal-
lenges is merged to train a detector which is then applied to the 2007 test set; in comparison, our
appearance training is limited to the training data from the 2007 challenge and the 3D Object Cate-
gory dataset which constitutes a much smaller training set. The successful detections in figure 4.20
show that the approach has the ability to interpolate its pose estimations to viewpoints which were
not part of the training set, provided that the part classifiers generalize sufficiently well to these
unseen viewpoints.

To demonstrate the contribution of our pose estimation component to the 2D detection, we again
evaluated the detection task on the 3D Object Category datasets, this time omitting the pose
estimation. Instead, the detected 2D parts cast votes for their potential parent objects, similar
to an implicit shape model [117]. The AP scores for both classes, bicycles (AP 63.7%) and
cars (AP 59.9%), are significantly below those obtained with our combined detection and pose
estimation approach (bicycles (AP 69.8%) and cars (AP 76.7%), see above). By including a pose
estimation into the detection process, the detection precision can thus be substantially increased;
figure 4.21 shows the corresponding precision/recall curves for the CAR and BICYCLE sets. Note
how the 2D detections on the car dataset suffer from several highly scoring false positives due to
underestimating the bounding box and subsequently missing the overlap criterion; by including
the 3D estimation, these underestimations can be removed, thereby increasing the precision. The
recall on the CAR dataset remains unchanged, since objects not detected by the complete 2D pre-
detector do not yield part detections which are required for the pose estimation. On the bicycle
dataset (figure 4.21, bottom), the improvement is less significant; as stated above, the small object
sizes for frontal and rear views and the ensuing low part count with small spatial support render
the pose estimation difficult. In some cases, the pose estimation results in overestimated 2D boxes
which reduce the recall on this dataset.

In order to benchmark the 3D pose estimation on the 3D Object Category datasets, only the orien-
tation estimations can be compared against the annotated orientations, since the provided elevation
and distance groundtruth of the test datasets is too approximate. We bin the continuous orientation
estimates in 45° steps to be comparable to the groundtruth annotations. The confusion matrices
obtained on the CAR and BICYCLE datasets are shown in figure 4.12; for cars, the diagonal
views suffer from multiple symmetries; for bicycles, front and rear views are more difficult to
estimate correctly. On the car dataset, the achieved orientation AP of 70% compares favourably
to [114] (approx. 67%); no published pose estimation results on the BICYCLE dataset are cur-
rently available for comparison.

Figures 4.22, 4.23 show some examples of the full detection process. In each result window,
the predetection density is visualized in the top left area, the detected parts which contributed to
the best base viewpoint are plotted in the top right area. The votes cast for each base viewpoint
bin are visualized as histograms in the lower left area. In the bottom right, the pose estimation
along with the backprojected covariance ellipses of the parts is given; note that no additional
priors on viewpoints or ground planes are used. Some failed detections are given in figure 4.24;
the most frequent reasons for incorrect results are due to an unstable pose estimation on sparse
detections (figure 4.24, left), in this case emphasized by the small area covered by the bicycle in
rear view. Some detection constellations cannot be differentiated and cause incorrect elevation
estimates (center). When the detections are too sparse, the pose voting space is not representative
and may generate incorrect initializations (right).
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4.4 Conclusion

This chapter has introduced a method for including external 3D geometry from synthetic CAD
models into a 2D part-based appearance detection method, yielding an approximate 3D pose esti-
mation and an evaluation score for the 3D geometric consistency of 2D part detections. Although
slightly less precise than the method from chapter 3, the approach achieves a higher recall on chal-
lenging data sets and benefits from a more flexible training process. Both approaches to object
class detection have used synthetic CAD models as their exclusive or partial source of training
data to achieve state-of-the-art 2D detection performance in addition to approximate 3D pose es-
timations. In the following chapter, we will describe a registration scheme which builds on these
pose estimations, improves their precision and thereby allows for their use beyond pure detection
tasks.
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Figure 4.17: Precision/Recall curves on the PASCAL VOC2007 testset MOTORBIKE [17].
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Figure 4.18: Precision/Recall curves on the PASCAL VOC2007 testset BICYCLE [17].
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Figure 4.20: Some results illustrating successful detections on the PASCAL VOC2007 testsets
CAR, BICYCLE and MOTORBIKE [17]. For each result, the predetection density, the detected
parts, the base viewpoint votes and the final pose estimation are visualized.
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Figure 4.21: Comparison of detection precision/recall without (blue) and with 3D verification on
the 3D Object Category datasets [102] CAR (top) and BICYCLE (bottom); the pure 2D predetec-
tion can be significantly improved by the 3D geometric model.
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Figure 4.22: Some results illustrating the complete detection process on the 3D Object Category
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Figure 4.23: Some results illustrating the complete detection process on the 3D Object Category
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biguous elevation estimate (center), scattered pose voting for incorrect detections (right). For each
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Figure 4.25: Some failed detections on the PASCAL VOC2006 testsets CAR, BICYCLE and
MOTORBIKE [18]: (from left to right) camera pose not representable with the chosen param-
eterization, two incorrect pose estimations due to nonrigid deformations, untrained appearance
resulting in wrong pose voting. For each result, the predetection density, the detected parts, the
base viewpoint votes and the final pose estimation are visualized.
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Figure 4.26: Some failed detections on the PASCAL VOC2007 testsets CAR, BICYCLE and
MOTORBIKE [17]: (from left to right) unknown geometry, camera pose not representable with
the chosen parameterization, unknown geometry, wrong pose voting resulting in incorrect pose
estimation. For each result, the predetection density, the detected parts, the base viewpoint votes
and the final pose estimation are visualized.



Precise Pose Estimation by Registration

In the previous chapters, we have focused on detecting generic object classes in images and on
obtaining an approximate estimation of their 3D pose. Since a model of the geometry of a generic
object class has to describe large intra-class variations, the obtained pose estimation precision is
limited by the amount of uncertainty contained in the model. For many applications, a better pose
estimation precision is required. In this chapter, we describe a method to more precisely align a
single 3D CAD model to a single image, assuming that an initial approximate pose is given and a
model has been selected which corresponds to the actual object in terms of geometry and texture;
the detection results of the previous chapters can be considered as suitable initializations.

5.1 Introduction

The registration of 3D models to images in order to recover the pose of an object in a scene usually
relies on the optimization of a similarity measure. Typically, a known 3D model of an object needs
to be precisely aligned with the signature of the same object in sensor data. In this chapter, we
propose a flexible approach to precise 3D model registration, consisting of the generation of the
model modalities corresponding to different sensor types, the computation of a robust and accurate
similarity measure which combines perspective contour matching and appearance-based Mutual
Information [124], and its efficient optimization to recover the six-dimensional object pose. While
previous approaches have predominantly focussed on gradient descent approaches, we propose
using the evolutionary Particle Swarm Optimization (PSO) [46]. We analyze the suitability and
the precision of PSO for the registration task on synthetic as well as on real input images and
present a kinetic energy based convergence criterion. We present the results of testing on synthetic
and real sensor input to evaluate its precision and convergence properties and apply the system
to an exemplary 3D tracking task. It is shown that the registration scheme can sustain significant
image noise, small object dimensions and partial occlusion. In addition, we demonstrate that the
approach can be efficiently parallelized to exploit the hardware acceleration potential of current
generation graphics processors (GPUs).

The chapter is organized as follows: we summarize previous work on CAD model registration
in section 5.2, the problem setting is formulated in section 5.3.1 and we outline our choice of a
similarity measure underlying the registration process in section 5.3.2. Section 5.3.3 focusses on
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the multimodal capabilities of our registration scheme, while section 5.3.4 provides details on the
optimization method and its efficient implementation. In section 5.4, we analyze the impact of the
optimization scheme on various test cases and in section 5.4.3, we propose a convergence criterion
for the optimization method. In section 5.4.4, we show that the registration can be initialized on
the detection results of the previous approach in order improve estimation precision and perform
a more fine-grained object instance selection.

5.2 Related Work

When looking at the deficiencies of existing model registration approaches, one realizes that a ma-
jor source of instability arises from their reliance on a common direct metric between the model
description and the sensor image. For example, a matching that relies exclusively on the compar-
ison or correlation of intensity values will necessarily fail as soon as the intensity values of the
sensor image are significantly influenced by varying lighting conditions. Moreover, the matching
of the model and the sensor image has to be performed in the same data space, i.e. with some dis-
tance metric applicable to both sides of the matching problem. A typical setting is the alignment
of sensor readings obtained from standard video cameras, infrared imaging sensors and possibly
SAR devices with each other or with a known CAD model structure: although clear functional re-
lationships exist since all devices have captured the same scene, it is impossible to map the sensor
readings into a metric space common to all sensors which would allow for the use of traditional
distance metrics such as Haussdorff, Chamfer, ECC or SSD. Most publications on image-to-model
alignment, for example, resort to various preprocessing stages in order to artificially create an ap-
proximation of such a common metric space, usually based on edge filtering (see for example
the work of [58]). However, during filtering, significant parts of the information available to the
matching system are simply discarded, although they might provide important clues.

An ideal matching approach should be robust towards all changes occuring on the sensor side
as long as the observed variations in the sensor image can be explained by the model degrees of
freedom and the parametrization of the sensing conditions. Furthermore, it would be desirable
to perform the matching between all available sources of information from the model side, even
when a representation of a piece of information may not be possible in a metric space common to
both the model and the sensor image.

In medical applications of computer vision and image processing, a similar problem exists when
trying to align image data obtained from vastly different sensor sources [88]. Typically, the data
produced by sensors such as cameras, ultrasound and tomographic devices does not allow for a
direct comparison, since the sensor readings require an "interpretation” of some sort. However,
when the sensor readings all describe the same scene or object, one can assume the existence of
a functional relationship between them. Intuitively, an extended and more flexible metric allow-
ing for the comparison of different sources of information should measure how well one source
"explains" another source, regardless of the information type of the compared sources. As a con-
sequence, a number of researchers have come up with the concept of Mutual Information as a
possible remedy [87, 88, 95, 99].
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5.2.1 Measure of Similarity

A number of approaches have been described in the literature to derive similarity measures be-
tween models and sensor data.

Some authors resort to computing the difference between 2D-projected edge models and edge-
filtered sensor images, for example in [58], thereby increasing generality, but discarding other
possibly discriminative information on both the model and the sensor side. Other authors derive
shape signatures or similar descriptors from the model and try to identify the corresponding cues
on the sensor side by comparing the respective signatures, such as in [133].

In their original work, [124] introduce the concept of Mutual Information (M) as a similarity
measure based on information theory and demonstrate its use for aligning untextured 3D objects
to images using the interpolated surface normals as clues on the model side. In several publica-
tions, extensions to the classical MI formulation are proposed, notably by introducing normaliza-
tion terms such as in [62] to account for the amount of overlap or weights to account for spatial
relationships, usually based on gradients or segmentation [113, 116].

Two fundamental problems of classical MI have been addressed by [100], i.e. the lack of spatial
information in the similarity measure and the curse of dimensionality which prevented the use of
classical density estimators for multivariate MI computation.

In the present work, we propose several extensions to the method of [100], notably the fusion of
Mutual Information with an edge-based measure, thereby increasing robustness and registration
precision.

5.2.1.1 Computation of MI and Estimation of Probability Distributions

Several approaches to computing the MI of two random variables have been introduced in the
literature. Essentially, the marginal and the joint distributions have to be estimated using the given
sensor readings. In the following, we will briefly summarize some of the most frequently used
approaches to estimating these distributions.

5.2.1.1.1 Histograms

The simplest method of estimating probability distributions is to build a histogram counting the
number of times a value a; in one sensor reading coincides with a value b; in another sensor
reading at the same position; each histogram bin is normalized by the total number of evaluated co-
occurrences. Using the Law Of Large Numbers, one can assume that each normalized histogram
bin value (representing the average of a sequence of random variables with a joint distribution)
will converge to the common expectation value of the joint distribution, when the number of
histogram evaluations are large enough. The marginal distributions can then be computed by
simply summing over the rows respectively columns of the histogram. An efficient implementation
requires a careful analysis of the spatial requirements of large histograms, in particular since joint
histograms are usually sparsely populated.
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5.2.1.1.2 Parzen Windows
Another non-parametric estimation method is the Parzen Window density estimation. Essentially,
it can be described as a sampling whose support is limited by a local windowing function which
weights each sample wrt. its distance to the window center. The following equation defines this
density:

Pla,A) = = S W —a) 5.1)

’SA’ a;ESp

where W is a windowing function; the choice of a Gaussian density for W will lead to a Gaussian
Mixture Model as outlined in the following section 5.2.1.1.3.

The Parzen Window method combines the advantages of simple histogram estimation, but allows
a closed-form computation of its gradients (for additional details on gradient computation and the
properties of the Parzen estimation, refer to [125]).

5.2.1.1.3 Mixture of Gaussians

A parametric estimation which is frequently used for random processes is the Gaussian Mixture
Model (GMM). The idea behind GMMs is to represent a complex stochastic process as the sum of
a number of Gaussian distributions with different unknown parameters. Using a Gaussian Model
for the estimation of probability distributions boils down to finding the optimal set of parameters
such that the random variables observed in the samples can be accurately described by a com-
bination of Gaussians; parameter estimation can be performed via maximum likelihood (ML)- or
Expectation Maximization (EM)-Algorithms(see [125]). Some authors ([90, 95, 100]) make addi-
tional simplifying assumptions on the nature of the distribution in order to use the property of the
Gaussian distribution that the entropy of a Gaussian can be directly computed from its variance.

5.2.1.1.4 Influence of Sampling Strategies

All of the above outlined approaches rely on a sampling of the sensor data. In some publications
[122], the influence of the chosen sampling method on the quality of the obtained distribution
estimates and consequently on the MI itself has been investigated; evidently, smooth convex MI
functions are preferable. It has been shown [122] that regular grid sampling may result in artifacts
which can cause Ml-based extrema search to converge to non-global solutions. The authors sug-
gest resorting to irregular interpolated sampling techniques or employing stochastic sampling to
deal with these issues.

5.2.2 Registration to Multiple Modalities

When trying to extract information on objects visible in a scene, precision and robustness can be
increased by resorting to different sensors working in different modalities and then combining the
captured sensor responses.

Most of the existing methods are confined to working on optical imagery, sometimes exploiting
different sensor characteristics such as color and polarization [71], as well as multiple channels
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from the model side, such as normals [90] or contours [116]. Most multimodal applications orig-
inate from medical 2D/2D and 3D/3D registration tasks, with the exception of [14, 71] who use
MI for tracking 2D templates in images.

In our approach, we align 3D objects to different sensor modalities by explicitely simulating and
rendering the object appearance for a given sensor modality on the model side not only for optical
sensors, but also for Synthetic Aperture Radar (SAR) devices.

5.2.3 Optimization for Registration Tasks

Previous work on registration tasks has predominantly relied on gradient descent approaches in
order to determine the optimum of the chosen similarity measure. The choice of the optimization
scheme depends on the characteristics of the similarity measure as well as on its computation;
[124] present several concepts for computing probabilistic similarity measures and outline their
optimization using gradient descent.

Due to the lack of directly computable gradients in the formulation of [100] which our similarity
measure is based on, we propose an evolutionary optimization approach, Particle Swarming [46],
to approach the global optimum. Moreover, this inherently parallel optimization approach is well
suited for an efficient implementation on dedicated hardware if the particles are processed simul-
taneously per iteration; in the present work, we employ the graphics processor (GPU) in a hybrid
CPU-GPU implementation.

5.3 Our Approach
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Figure 5.1: Outline of the proposed model registration scheme.

Figure 5.1 gives an overview on the different parts of the proposed scheme for registering a 3D
model to 2D sensor inputs. In the following, we provide a formal description of the task and
present our contributions to each of the components used to address the problem.
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5.3.1 Formal Problem Setting

We suppose that a 3D CAD model M and a vector of sensor modalities s = sy, - - - , S, are given.
The set of model modalities m = my, - - - , my can be described by
mi(p, Py, M) =Pi - (R- M +t), (5.2)

where the 6 extrinsic parameters p govern the camera-relative rotation R and translation t of
the 3D model M and P; specifies the projection rules for each type of modality m; with known
intrinsic parameters. For an optical camera, for example, P; is a perspective projection with
intrinsic matrix K.

We now wish to determine for all modalities the common 6 extrinsic parameters p such that the
similarity between the model rendered in each of the k£ modalities and the n sensor modality inputs
is maximized. More formally, we identify the optimal pose p as

p = argmaz S(s,m(p)) (5.3)
P

where S represents the similarity measure which will be described in section 5.3.2.

We aim at a flexible approach to model registration which does not require the time-consuming
generation of models typical of most previous methods. Instead, we resort to using standard 3D
CAD models; see chapter 2 for details on the training data and the synthetic rendering process.
Given the choice of the similarity measure, our system can consistently register a 3D model even
if its appearance does not exactly correspond to the object visible in the scene, since no direct
equivalence between model and sensor object is required, as long as a functional relationship
exists. This property is achieved by resorting to a probabilistic similarity measure as discussed in
the next section.

5.3.2 Measure of Similarity

Mutual Information was first applied to computer vision problems by [62, 124] and has since be-
come a popular technique both for image registration and feature selection tasks. In the following,
we summarize its theoretical basis and describe our own contribution.

Information theory provides a concept for quantizing the amount of new information contained
within a signal when interpreted as the possible states of a discrete random variable X, the entropy
H

H(X) == px(x)log(px(z)). (5.4)
€T
Analogously, the joint entropy of two signals can be computed as

HX,Y) ==Y pxvy(x,y)log(pxy(z,y)). (5.5)

r oy
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A strong statistical relationship between the two signals reduces their joint entropy, while a weaker
relationship will increase this value. Entropy can thus be used as a means of determining how well
one signal describes the other by computing the joint entropy of two signals given their separate
marginal entropies,

MI(X,Y)=H(X)+H(Y)— H(X,Y). (5.6)

This term is called Mutual Information (MI); it will tend towards zero for completely unrelated
signals and assume its maximum, the sum of the marginal entropies, for statistically identical
signals where the joint entropy is minimal. Its main advantage over other similarity measures
such as SSD is that no direct per-value equivalence is required as long as some form of statistical
dependency between the signals can be determined. This concept does not, however, take into
account the spatial distribution of a signal, but relies exclusively on a per-element relationship.
It is important to note that in this definition of Mutual Information, the influence of the marginal
entropies can have unwanted consequences when employing MI for alignment tasks since there is
no normalization relative to the amount of actual overlap of the sensor readings. As a result, in the
absence of significant overlap, the weight of the joint probability decreases relative to the sum of
marginal probabilities. [4] compare several approaches to avoid this problem. The most frequent
normalization method is

H(A)+ H(B)

(5.7)

as suggested by [62], which we use in our work.

Unlike the registration of entire images, we wish to compute the similarity of a 3D model and a
number of images containing input from various sensors. Using the projection of the model into a
sensor image, we can determine a precise region of interest which will serve as a mask containing
the area of the sensor image relevant for similarity computation. This mask is not precomputed or
limited to certain variation modes as is the case for most template-based methods, but instead it
varies depending on the current pose of the 3D model. We can thus much more effectively limit
the support of the similarity computation to the relevant region in the sensor image and reduce
computation time.

When computing the MI between larger image regions and multiple modalities, instead of an-
alyzing the correlation between pairs of one-dimensional pixel values, the data now consists of
multi-dimensional vectors of the pixel values in neighbourhoods with a certain radius around each
pixel position in each of the modalities. Most traditional approaches to computing the MI as out-
lined in section 5.2.1.1 are no longer feasible in higher dimensions. Consequently, we follow the
work of [100]: if a transformation can be found which projects the high-dimensional vectors into
a space where the values of each dimension are uncorrelated, the further assumption of a normal
distribution of those values implies independence, allowing to compute the entropy separately in
each dimension. Russakoff et al. [100] show that this assumption is justified in practice, which
enables us to directly compute the joint entropy of an arbitrary number of d inputs simultaneously
from their covariance matrix C'ovg using

H(Covg) = log((2me)?det(Covg)'/?). (5.8)
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In order to further increase alignment precision, we introduce another supporting similarity mea-
sure based on edges. We compute precise perspective contours from the available 3D model and
determine the fraction of the model contour which matches the edges derived from the sensor input
image. This edge similarity E' is then multiplied with the MI value using

S = (MIgeo)® - (E)1—) (5.9)

where o € [0, 1] allows to vary the influence of either of the two components. In section 5.4, we
analyze the gain in precision which can thus be obtained.

5.3.3 Image Multimodality

In the following, we describe two sensor input modalities which are used in our multimodal regis-
tration scheme.

5.3.3.1 Optical Intensity Images

Based on a 3D CAD model, a perspective projection camera model with known intrinsic parame-
ters and a set of light sources, intensity images are rendered. For testing purposes, a background
and various noise levels can be added and the resulting intensity images can be used as synthetic
input with known ground truth parameters for systematic testing; figure 5.3 shows an example.
Chapter 2 provides details on the rendering process and rendered example images.

5.3.3.2 Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR) is a remote sensing technique which exploits post-processing of
a sequence of radar signals over time to fusion the echos from points at different distances. As
a consequence, an object remains longer inside the beam of the radar and its resolution can be
increased in the resulting radar image by merging the separate echos, given the sensor movement
is known. In chapter 2, we described how the rendering pipeline can be modified to produce SAR
approximations with sufficient quality for the given task; see figures 2.8, 5.8 for examples.

5.3.4 Optimization

Once the sensor inputs and the model renderings for the given modalities are available, we wish
to determine the parameter p which maximizes the similarity measure S described in 5.3.2.

The lack of a closed-form gradient, the costly function evaluations and the necessary alignment
precision require a careful choice of the optimization method. Another aspect to take into consid-
eration is the potential of the optimization method for an efficient implementation on acceleration
hardware. As a consequence, we propose an evolutionary optimization approach which is experi-
mentally shown to have a suitable convergence behavior (see section 5.4.3.3).
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5.3.4.1 Initialization

The objective of this approach is to improve a given approximate pose estimation for a pre-selected
3D model. As outlined in section 5.1, the detection results of the object class detection methods
outlined in the previous chapters can be considered as suitable initializations. In section 5.4, we
show that our registration scheme is capable of dealing with poor initializations, differences in
coloring of object and model and a relatively large search space.

5.3.4.2 Particle Swarm Optimization

In order to overcome some of the difficulties observed with other optimization methods, an evolu-
tionary optimization strategy is chosen. Particle Swarm Optimization (PSO) has been introduced
by [46] as a concept adopted from nature, where swarms of animals converge towards the richest
feeding grounds by communicating between each other. Classical PSO as implemented in this
work boils down to randomly placing particles as search agents in a parameter space R". Each
particle can be described by

1. its position in R", x = (z1,- - , ), Which corresponds to a pose parameter vector p,
2. its velocity v = (v, -+ ,vp)
3. and the position vector which has yielded the currently best function value, b = (by, - - , by,).

In addition, within randomly chosen subgroups of the swarm, particles are linked with a complete
mesh topology amongst each other. Each subgroup can thus communicate the best position cur-
rently found by its members, g = (g1, , gn). The link topology and the subgroup affiliations
are reassigned at random if no improvement has been made during one time step.

The movement of a particle in each dimension d is governed by

vt = avh + rand(0, ) (b} — =)
+  rand(0, 32) (g}, — %)) (5.10)
=gl 4+ o, (5.11)

where the parameters (3, 2 allow varying the influence of the currently known group-wise and
globally best function values on the particle movement, « is the so-called constriction factor to
prevent swarm divergence and rand(0, 3) adds a random component to the particle behaviour. A
review of the properties of PSO is given in [9].

5.3.5 Implementation

Since we are working with 3D CAD models and require a rendering pipeline for the simulation of
different sensor modalities, we have chosen to implement our approach as a hybrid system on the
CPU and on the graphics processor (GPU). More specifically, the rendering of optical and SAR
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Figure 5.2: Simultaneously rendered model poses of a particle swarm.

modalities on the model side, the contour filtering and the edge distance are computed entirely on
the GPU, and the similarity measure described in 5.3.2 is calculated on the CPU.

Figure 5.2 shows a set of rendered particles of a swarm, each of which is associated with a distinct
model pose. In the original formulation of PSO [9], particles are updated sequentially and take
into account the updates of all previous particles in the batch. In order to allow for a simultaneous
update of the particles, which is better adapted to a parallelization of the approach, we chose to
update the particles simultaneously after each iteration. Since there are no more interdependencies
between the particles in one iteration, their associated model poses can be rendered simultaneously
on the GPU and their respective similarity to the sensor input can be computed in parallel. The
potentially slower convergence is compensated by the gain in computation time; see figure 5.12.
For the experiment shown in figure 5.4, our approach registers a 3D model with 6 degrees of
freedom to a single 2D sensor image of size 256x256 on average in about 0.5 sec on a 3GHz
processor with an Nvidia GeForce 9600 GPU. The convergence criterion and the optimization
parameters used to obtain these results are detailed in section 5.4.3.

5.4 Experimental Evaluation

The proposed model registration scheme has been tested for different object tracking tasks. We
use synthetic scenes with known ground truth trajectories as well as real sensor input using a large
number of different models.

A test run typically consists of choosing an initial parameter search space and a model and then
starting the optimization process. Since we do not use any explicit movement model, it is necessary
to specify the center and the range of the parameter search space; the particles of our optimization
will initially be placed arbitrarily inside this search space. The pose for the first frame is initialized
manually; for each consecutive frame the last estimated pose is used as initialization.
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5.4.1 Synthetic Sequences

In order to test the registration precision exhaustively, synthetic input sequences for each sensor
modality have been generated by defining trajectories for an object visible in the scene as well as
for the camera and the light sources. Gaussian blur and speckle noise with different characteristics
can then be added to the image data. Figure 5.3 shows an example image of a synthetically
generated scene and its noised version.

In the following, we analyze the influence of noise, initial search space size and edge distance
weight on the registration precision. Moreover, we present the results of the model registration to
SAR sensor input. In the result plots, we use the standard errors in position and tangential and
normal orientation of the model. The position error is given in multiples of the model diameter,
while the rotation errors are given in degrees.

5.4.1.1 Noise

A circle is chosen as the ground truth trajectory of the object. The registration process is then
initialized on the first of a sequence of synthetic optical images with added noise. Figure 5.4 shows
the recovered trajectory (red) as opposed to the ground truth (blue). We systematically increase
the noise which is added to the synthetic sequence to analyze the robustness of the registration
process. For each noise level used, we plot the standard errors in figure 5.5. The registration
process remains stable up to a significant noise level, while the recovery of the rotation parameters
appears to be more sensitive towards strong noise than that of the position parameters. Still,
registration begins to fail only for noise levels where even the human eye can no longer reliably
distinguish the model.

Figure 5.3: Example for a synthetic optical image and its version with added noise.



Figure 5.4: Recovered 125-frame trajectory (red) and ground truth trajectory (blue) for a synthetic
optical test sequence with added noise; see figure 5.3 for an example image.

5.4.1.2 Search Space Size

In section 5.3.4.2, we outlined the optimization scheme used. The initial search space size is of
crucial importance for a successful registration since the particles will tend to get dispersed inside
a search space which is chosen too large. As a result, the global optimum might no longer be
found reliably. Figure 5.6 shows that, while keeping the swarm size constant, the search space can
be safely increased to 15° for rotation parameters and +40% of the model size for translational
parameters without sacrificing an inadmissible amount of registration precision. The result shows
that the chosen evolutionary optimization scheme is stable even for less precise initializations.

5.4.1.3 Varying the Contribution of the Edge Distance

In section 5.3.2, we outlined a contour-based extension to the MI similarity measure, allowing to
vary the influence of either of the two components as a function of the parameter o. We have
experimentally found an optimal choice to be a = 0.5, which corresponds to the geometric mean.
For this choice, the three standard errors are minimal in the majority of test settings, while for
a — 0.0 signifying an exclusive use of the edge distance component and likewise for an exclusive
use of the MI measure with o« — 1.0, stability and registration precision deteriorate significantly.
To illustrate the gain in stability, we registered a model to 605 frames of an input sequence using
different o values. In figure 5.7, the frames are shown for which the tracking failed for the first
time. When using only the edge distance (o« — 0.0), registration failed after 24 frames, when
using only the MI measure (o« — 1.0), precision was inadmissible after 117 frames showing a
characteristic underfitting of the model. The combined measure with & = 0.5 completed the
sequence successfully and produced precise results.
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Figure 5.5: Standard errors for a registra- Figure 5.6: Standard errors for a registration
tion sequence of 125 frames (deviation from  sequence of 125 frames while increasing the
ground truth position (blue) and tangential initial search space size.

(green) and normal vectors (red)) for in-

creasing noise; the optical image of one

noise level is shown for visualization.

contour measure MI measure our combined measure

Figure 5.7: Tracking with different a values: using only contour matching, tracking fails after
a few frames (left), the MI measure fails after 117 frames (center), the weighted combination
handles the full sequence successfully (right)).

54.1.4 SAR

Using the simulated SAR response, we performed registration on SAR input data. Figure 5.8
shows two frames of a SAR sequence, with the input images from an industry-grade SAR simula-
tor [66] on the left, the registered SAR signature in the center and the recovered optical 3D model
corresponding to the SAR signature on the right. Despite the simple SAR modality generation
used, the results show a precision comparable to the optical sequences.
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Figure 5.8: 2 Frames from a tracking sequence on SAR input images (left, [66]), the registered
SAR model modality (center) and the recovered optical 3D model (right). Images are scaled for
better visualization.

5.4.2 Video Sequences

In order to verify the suitability of the proposed registration scheme for realistic sensor input, we
registered different models to videos taken with a standard consumer camera. Registration starts
on the first frame with the provided initialization, aligns the provided model to the frame until
convergence, and uses the convergence result as initialization in the subsequent frame. We did not
perform any preprocessing on the input data and did not remove lens distortion, motion blur and
artifacts. The tested sequences displayed fully perspective changes and fast movements. Since
we recover for each input frame the full 6 pose parameters of the object, we can reconstruct the
camera trajectories for the input sequences when supposing that the only movement in the scene
stems from the camera.

Figure 5.10 shows some images taken from a 654-frame video of a set of small toy cars on an
indoor office table with artificial lighting. For each frame, we show the input image with the
reprojected model edges on the left, and the recovered 3D model pose on the right. In figure 5.9,
the spline-interpolated camera trajectory for the same scene is plotted together with the model
position and the camera position and orientation for each of the 4 images shown in figure 5.10.
The average size of the toys in this sequence varies between 60x40 and 120x80 pixels.



5.4. EXPERIMENTAL EVALUATION 97

In figure 5.11, we present more results taken from different input sequences. The topmost frame
is taken from another indoor sequence of a different toy car, while the next two images show real
cars in an outdoor setting. Due to the chosen robust similarity measure, significant occlusions of
the object can be sustained as illustrated in the third image of figure 5.11. The registration is also
suitable for textured objects with shiny surfaces, even in complex settings, as can be seen on the
last image of figure 5.11 for an indoor recording of a soda can. Model sizes in the tested sequences
vary from 80x60 to 160x120 pixels with video resolutions of 256x256 and 512x512 pixels. For
non-matching objects, the value of the similarity measure after convergence ranges an order of a
magnitude below the result for a correct match, thus allowing to determine whether the choice of
the model for registration to a given scene ought to be reconsidered.

12

10

Model
position

-12

Figure 5.9: Recovered camera trajectory of the tracking sequence 5.10 with the camera positions
of the 4 frames shown in the figure.

5.4.3 Optimization Results

In the following, we analyze the behavior of the chosen evolutionary Particle Swarm Optimization
method. All experiments have been performed on a 125 frame synthetic optical input sequence to
provide accurate ground truth data for precision analysis. As in the previous sections, we specify
the registration errors by resorting to three indicators: the position error is given in percent of
the major model axis length and the errors in forward and upward model orientation are given in
degrees.
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Figure 5.10: 4 Frames from a 654-frame se-
quence with toy cars; input image with recovered
object (left), recovered 3D model (right).

Figure 5.11: Selected frames from four differ-
ent registration sequences and the recovered 3D
models.
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As regards the choice of the constriction and weighting parameters for the PSO algorithm, we
follow the suggestions in [9], since they were corroborated by our experiments. The choice of the
remaining parameters, notably the number of synchronously updated particles of the swarm and
the initial search space size, will be outlined in the following sections.

Given the nature of the PSO method as an evolutionary approach with a stochastic component, we
focus on three aspects of the Particle Swarm Optimization in order to justify its use for our problem
setting: first, we will show in section 5.4.3.1 that the average per-particle kinetic energy, assuming
a particle mass of 1, can be used to characterize the swarm’s convergence behavior. In section
5.4.3.2, we analyze the influence of varying the swarm size when supposing that the position
and velocity of all particles are updated simultaneously. Finally, in section 5.4.3.3 our choice of
the decrease in the swarm’s kinetic energy as a suitable convergence criterion is presented and
justified.

5.4.3.1 Kinetic Energy of the Swarm

The behaviour of the swarm is difficult to analyze due to the complex interdependencies of the
individual particles. Local features such as the forming of clusters of particles or the average
distances between particle positions are ill-suited for this optimization method whose principal
advantage is its global and simultaneous sampling of the search space. Moreover, several authors
(e.g. [9, 45]) have noted that outlier particles represent a particular strength of the approach in
escaping local optima. As a consequence, we propose to use the average per-particle kinetic
energy of the swarm in order to describe its current state. We assume a particle mass of 1 and
compute the kinetic energy of the swarm after each synchronized update of the particle positions
and velocities.

When the swarm settles down on an optimum, the average kinetic energy of the particles converges
towards the purely stochastically induced level governed by the parameters 31, 32 in equation 5.11.
Once the kinetic energy has fallen below this level for several consecutive iterations, no significant
further improvement of the optimum can be expected.

In figure 5.12, left, the average per-particle kinetic energy is plotted over 100 iterations for three
different search space sizes; in terms of our model registration scheme, this signifies bigger ad-
missible misregistrations of the model during optimization. The different energy levels shown in
figure 5.12, left, are due to the larger search space. Since the position gaps between the particles
are bigger, the velocities which the particles are assigned after each iteration are higher as well.
Moreover, we can conclude that different problem configurations can result in different energy
levels after the same number of iterations.

In figure 5.12, right, kinetic energy curves are plotted for the same search space size, but different
swarm sizes. We note that the energy levels are lower for higher particle counts. Since the search
space is more densely sampled by higher particle counts, the average inter-particle distances are
smaller; the particles therefore have smaller gaps to bridge when moving towards the current
global optimum position, which results in smaller assigned velocities. Both plots show, however,
that the reduction in the swarm’s kinetic energy indicates a converging of the swarm independently
of a particular swarm configuration or problem setting.
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Figure 5.12: Average per-particle kinetic energy for three different search space sizes (left) and
four different, synchronously updated swarm sizes (right) in a 125-frame synthetic sequence. The
search space sizes are given in percent of the model size.

5.4.3.2 Number of Particles

In section 5.3.5, we have described that only by using a synchronous update of the particles of a
swarm, the full hardware acceleration potential can be exploited. This choice of simultaneously
updating particle positions and velocities has a significant impact on the convergence behaviour
of the method. For asynchronous, sequential updates, every new particle position leads to a new
evaluation of the similarity measure. In this case, the computed value can immediately be taken
into account for the next particle update. This is not the case for synchronous updates, where
all updates rely on the same previous evaluations. As a consequence, one has to expect a slower
convergence of the swarm. In figure 5.13, the average errors achieved by swarms of different sizes
for the synthetic test sequence with known ground truth are given for five different numbers of
similarity function evaluations. It becomes apparent that while increasing the number of particles
of the swarm results in a better final precision (third row), the swarms with smaller particle counts
converge much faster to acceptable errors. As a consequence, the swarm size needs to be adapted
to the specific optimization goal: when a high final precision is essential, higher particle counts
should be chosen, whereas smaller particle counts are better suited when execution time is a critical
aspect and a slightly reduced precision can be sustained. For our system, a swarm size of 36
represents the best trade-off between precision and execution time as can be seen in figure 5.13.
This confirms the findings of [109].

5.4.3.3 Convergence

Although our similarity measure is normalized to values in the interval [0..1], the precise value
depends on the entropy of every single input frame, therefore the maximum value of 1 is hardly
ever reached in practice. As a consequence, we do not know the value of the optimum in advance
and cannot employ an absolute convergence criterion, such as an e neighbourhood.

The results shown in the previous two sections suggest the use of the average per-particle kinetic
energy as a means of determining whether the optimization procedure has converged. From the
previous results, we have also seen that the absolute energy levels vary depending on factors such
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Figure 5.13: Average errors in position (up-scaled by a factor of 10 for better visualization),
forward and upward orientation for swarm sizes of 16, 36, 64 and 100 particles after 640, 960,
1280, 1584 and 3200 similarity measure evaluations.
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as the search space size, the number of particles used or the initial misregistration. However, a
convergence criterion based on the reduction of the kinetic energy relative to the initial energy
level is less dependent on such external factors. In figure 5.14, we plot the three average errors in
position and forward and upward orientation for two different search spaces. In the first row, 100
iterations of the swarm optimization have been performed. It becomes apparent that the achieved
errors differ significantly after the same number of iterations; as a consequence, neither a localized
error measure nor a fixed iteration count can reliably indicate convergence independently of the
specific problem setting. In the second row of figure 5.14, we plot the three error indicators over the
kinetic energy and end the optimization procedure when the initial kinetic energy has been reduced
by more than 90% in five consecutive iterations; the threshold is drawn as the rightmost vertical
line in figure 5.14. It becomes apparent that this criterion allows to end the optimization process
while guaranteeing a certain error level independently of the external problem configuration. For
a different threshold chosen at a reduction of 80%, the error levels for the two different search
spaces remain comparable as well. The same property holds true for different swarm sizes.

In our model registration scheme, this convergence criterion has shown to produce suitable results.
Typically, the registration of a model occurs in several steps which result in larger improvements of
the similarity measure, followed by several steps with produce smaller improvements. The kinetic
energy level is well suited for this characteristic of the similarity measure: large improvements
result in a higher overall kinetic energy of the particles, thus allowing for an extensive sampling of
the area around the newly found optimum. The energy level then slowly settles down and allows
for a fine-grained sampling of the close neighbourhood around the optimum. In a nutshell, the
reduction of the swarm’s kinetic energy can serve as a convergence criterion which can be adapted
to the desired final precision.

5.4.4 Closing the Loop

In the previous chapters, approaches to object class detection have been introduced which are
characterized by their use of 3D geometry during training in order to allow for an approximate
pose estimation during testing in addition to a 2D localization in the image. For tasks where a
pure 2D localization is sufficient, the 3D information can still be useful for pruning the 2D de-
tection results by evaluating their plausibility in terms of a full 3D model, but the actual outcome
of the pose estimation is not used. The registration method outlined in this chapter requires an
initialization consisting of a specific object instance and its approximate 3D pose. Consequently,
it can serve as a suitable use case for the pose estimation results of the previous chapters; further-
more, the classification results can help to narrow down the range of potential object instances on
which a registration is performed. In the following section, we describe an experimental setup to
demonstrate the feasibility of this idea, thereby closing the loop between the object detection and
the registration components of the present work.

5.4.4.1 Dataset

With a standard digital camera (Canon EOS), a sequence of 24 images of a toy car (Skoda Fabia) is
taken under indoor lighting conditions in a calibrated setup at resolution 2352 x 1568. During the
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Figure 5.14: Average errors in position, forward and upward orientation for a small (left column)
and a large search space (right column). The top row plots the errors over the optimization itera-
tions, where one iteration comprises a synchronous update of 36 particles. The bottom row plots
the errors over the kinetic energy. Two possible convergence thresholds are drawn as vertical lines.

sequence, the camera moves on circular trajectories at two different elevations around the object.
The intrinsic camera parameters are derived from a calibration pattern with the approach of [135]
and used for undistortion and configuration of the synthetic camera.

The probabilistic geometric model approach in chapter 4 is trained on 6 3D CAD car models (3
hatchback, 3 notchback models; see figure 5.18 for the model names); both geometry and appear-
ance training are performed exclusively on synthetic images, rendered in the discrete parametriza-
tion from section 4.3.2 using a synthetic camera whose intrinsic parameters match those of the
real calibrated one. Note that the pure synthetic training differs from the combination of syn-
thetic geometry and real appearance training data used in chapter 4 and shows the flexibility of the
approach.

5.4.4.2 Detection

On each image of the sequence, we apply the detection approach from chapter 4 to obtain an ini-
tial detection. The detection and approximate pose estimation results on the first 8§ images of the
sequence are shown in figure 5.15. Since appearance training has been performed on synthetic
images, fewer object parts are detected; the resulting pose estimation still shows an acceptable lo-
calization, but in some cases a notable deviation in elevation and distance. The estimated extrinsic
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camera parameters (relative to the synthetic camera) and the classification information are passed
as (synthetic) initialization to the registration step. In the comparison experiments in section 4.3.2,
we have shown that the approach from chapter 3 achieves a slightly better estimation accuracy
than the probabilistic approach from chapter 4. Since the focus of this section is on improving the
initial detection-based estimation results with the registration method proposed in this chapter, we
rely on the less precise probabilistic approach as initialization in order to clearly demonstrate the
robustness of the registration.

Figure 5.15: Object class detection result with the approach described in chapter 4 for the first 8
images of the test sequence.

5.4.4.3 Choice of the Object Instance

Given the approximate initial pose of the synthetic camera, the intensity and edge images of the
6 car models used for training are rendered; on each car model and for each test image, the reg-
istration converges to a new pose which locally maximizes the similarity measure outlined in
section 5.3.2. Figure 5.16 shows the initial (left two) and the converged pose (right two) of one
test instance; the left columns contain the test images, overlaid by the object instance rendered in
the current pose, and a visualization of the similarity measure (red bar). The right columns again
show the object instances rendered in the current pose for better visualization. In figure 5.17,
convergence results for the three highest-scoring instances on the first test image are given. The
corresponding instance (Skoda Fabia, left) converges to the highest similarity score (0.22), fol-
lowed by the two other object instances with a hatchback geometry (0.18 and 0.20); the three
notchback geometries (not shown in the figure) score lowest. As intended, similar colors alone
do not influence the score, but similarity in terms of contour and relative color distribution does.
The corresponding object instance (Skoda Fabia) scores best in all 24 images of the sequence (see
figure 5.19 for some examples). Figure 5.18 compares the similarity scores of the 6 3D car models
on the first 8 test images; the score values are listed in table 5.1, along with the average abso-
lute values and relative differences over the entire sequence. The corresponding object instance
(Skoda Fabia) consistently scores highest, hatchback car geometries score higher than notchback
geometries. The comparison shows that a reliable differentiation between the three hatchback car
instances is more difficult for profile and rear views which result in close similarity scores, whereas
the views with several sides of the object visible can be differentiated more easily.
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Figure 5.16: Initial pose (left two images) and result of the registration after convergence (right

two images) using the best-scoring 3D car model for one image of the test sequence. The first
columns show the test images with the 3D model in the current pose overlaid; the red bar indicates
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Figure 5.17: Comparison of the similarity scores of the three 3D car models which score highest
on the first test image among the 6 training models used. The corresponding object instance (left)
scores highest, followed by the other models with hatchback geometry.
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Figure 5.18: Comparison of the similarity scores of the 6 3D car models on the first 8 test images.
The corresponding object instance (Skoda Fabia) consistently scores highest, followed by the other
models with hatchback geometry. A better differentiation based on the similarity score is possible
when several sides of the object are visible.
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Table 5.1: Similarity scores for the first 8 images and average values over the entire test sequence.
The last row gives the average relative differences between the car instances in terms of the simi-
larity score; as intended, similar geometries achieve similar scores.

Image Car instance
A4 Fabia Altima Ibiza Golf Passat
1 0.165641 | 0.215583 | 0.176648 | 0.180102 | 0.206852 | 0.166227
2 0.199323 | 0.232634 | 0.209172 | 0.226992 | 0.22456 | 0.214637
3 0.17581 | 0.227349 | 0.174109 | 0.213399 | 0.204057 | 0.173462
4 0.202893 | 0.229699 | 0.199265 | 0.214792 | 0.215131 | 0.197615
5 0.201015 | 0.257301 | 0.204009 | 0.219266 | 0.229141 | 0.196001
6 0.203445 | 0.227192 | 0.198345 | 0.216436 | 0.218167 | 0.201366
7 0.200721 | 0.295967 | 0.202379 | 0.270651 | 0.27579 | 0.197367
8 0.201118 | 0.30278 | 0.204993 | 0.288804 | 0.274159 | 0.229949

Average absolute score (24 images)
| 01937 | 02486 | 0.1961 | 0.2288 | 0.2310 [ 0.1971
Average relative difference to best (24 images)

| 2205% | 0 | 211% | -7195% | -1.07% [ -20.71%

5.4.4.4 Registration Precision

Figure 5.19 shows the convergence results of the first 8 images in the sequence for the best-
scoring model; figure 5.18 plots the similarity scores for each of the 6 training models on the same
8 images. Despite the crude initial pose estimates generated by the detection step, note that the
correct instance consistently scores highest and converges towards better poses, followed by the
other two models which have a similar hatchback geometry; table 5.1 provides the absolute and
relative score differences between the 6 models. Images with larger visible object surfaces allow
a better discrimination between the model instances, since differences in geometry result in more
significant alignment errors (diagonal views in images 5,7,8), while on profile, frontal and rear
views, the score differences are smaller.

Figure 5.20 visualizes the improvement in camera pose estimation for the first 8 images from a
diagonal and a top-down view; the camera positions and orientations as visualized by pyramidal
cones, where the initial estimate is plotted in red, the improved estimate after registration in blue,
and the groundtruth in green; the car position is indicated by a red point. Apart from the first
test image, the registration procedure significantly reduces alignment error, in particular in terms
of camera distance and elevation. Table 5.2 provides the improvement in orientation and posi-
tion in absolute and relative numbers before and after the registration step; camera orientation is
compared in terms of the angle between the camera directions (note that camera roll is not rep-
resentable in the chosen camera model). On average, the initial position estimate is improved by
more than 66% to within on average 8cm of the groundtruth position; the remaining difference is
mostly due to underestimating the distance to the object which results from the difficulty of the
detection step in correctly estimating camera distance, given a very generic representation of the
3D class geometry. The initial orientation estimation is improved by more than 41% to within on
average 4° of the groundtruth orientation; in most test cases, the initial azimuth estimate is already
close to groundtruth, while initial elevation estimates are less precise. Since the object detector
provided only a pose relative to the virtual camera used during its training, no metric pose can be
determined initially; instead, a virtual unit of one model diameter is assumed. When using the
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calibration information of the test sequence, we can repeat the mapping procedure described in
section 3.4.3.2 of chapter 3 to determine the metric 3D pose in real camera coordinates that corre-
sponds to the detected synthetic 2D pose and compute metric errors in centroid position and box
orientation between measured groundtruth and estimated object pose; instead of per-class bound-
ing boxes, we use the exact boxes that completely contain the object instance and consequently
obtain an exact solution to the mapping from synthetic to real pose.

Table 5.2: Comparison of pose estimation improvements for the first 8 images and average values
over the entire test sequence. We provide the differences w.r.t. groundtruth for the orientation
after initial detection (second column) and after optimization (third column) in rad as well as the
position after initial detection (fourth column) and after optimization (fifth column) in ¢m; average
values over the entire sequence achieved by the registration are given in the last rows.

Image | initial orient. ‘ optim. orient. ‘ initial position ‘ optim. pos.
vs. groundtruth
1 0.2351 rad 0.3192 rad 20.0 cm 10.0 cm
2 0.0978 rad 0.0227 rad 120 ecm 4.1 cm
3 0.0749 rad 0.0523 rad 16.0 cm 5.1cm
4 0.0409 rad 0.0698 rad 7.0 cm 2.1cm
5 0.2282 rad 0.0790 rad 40.0 cm 20.4 cm
6 0.0941 rad 0.0268 rad 30.0cm 15.0 cm
7 0.0404 rad 0.0193 rad 30.0 cm 55¢cm
8 0.0812 rad 0.0193 rad 35.0cm 82 cm
Average absolute estimates (24 images)
| 012rad [ 007rad | 245cm | 82cm
Average relative improvement (24 images)
\ | 41.67% | | 66.54%

5.5 Conclusion

In this chapter, we have proposed a simple but efficient similarity measure derived from joint
entropy estimation and perspective contour matching. In conjunction with a robust evolutionary
Particle Swarm Optimization strategy and a kinetic energy based convergence criterion, we have
been able to register 3D models to 2D sensor inputs of different modalities. The approach offers
a suitable tradeoff as regards precision, speed and universality and completes the object class
detection approaches described in the previous chapters towards a more precise 3D pose estimation
and the identification of specific object instances.



108 5. PRECISE POSE ESTIMATION BY REGISTRATION

Figure 5.19: Convergence results of the best-scoring instance on the first 8 images (overlays and
rendered visualizations).
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Figure 5.20: Visualization of the camera poses for the first 8 images of the sequence from a side
view and a top-down view after mapping into a real metric coordinate system (section 3.4.3.2 of
chapter 3). The camera positions and orientations are visualized by pyramidal cones, where the ini-
tial estimate is plotted in red, the improved estimate after registration in blue, and the groundtruth
in green; the car position is indicated by a red point.



Conclusion

6.1 Summary

In this work, we made use of synthetic 3D CAD models for the computer vision tasks of object
class detection and 3D pose estimation in the following three different ways:

e Textured 3D CAD models of an object class are rendered from different viewpoints. For
each viewpoint, local features are computed and annotated with their 3D position on the
model surface. A sequence of small viewpoint changes and different backgrounds allows to
filter the local features according to their discriminativity and stability. The retained features
after filtering and assignment to a codebook of clusters form a 3D feature map. During de-
tection, local features from a test image are assigned to their nearest neighbors in the feature
map according to a combined distance function which takes into account descriptor similar-
ity and geometric projection error. Three different pose estimation methods are evaluated
for the task of determining the pose which maps the 3D feature map of a given class onto the
test image such that the combined distance is minimized. To initialize the feature map for
the estimation task, a probabilistic voting scheme is introduced to identify the most likely
viewpoint hypotheses. When applying the method on several benchmark image databases,
the detection of 2D bounding boxes after reprojection and the 3D approximate pose estima-
tion achieve precision comparable to state-of-the-art. During evaluation, several limitations
of the approach are identified, notably a lower recall compared to pure 2D approaches due
to local features computed from synthetic appearance instead of real images and a strict
3D pose estimation without 2D fallback which fails for feature constellations not seen in
training examples.

e To further improve detection performance, a second approach to object class detection was
developed which takes into account the shortcomings of the initial method, notably its lim-
ited extensibility and a reduced descriptor similarity due to training on pure synthetic data.
In this approach, appearance and geometry learning are separated to avoid the dependency
on synthetic textures. Appearance is learnt from a set of real 2D images with weak viewpoint
annotations; for each viewpoint, the object area is subdivided into a regular grid of object
part regions. Within each part region, spatial pyramids are computed to densely cover the
respective region. The spatial pyramids are learnt discriminatively using SVM classifiers
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for each part and viewpoint based on a minimum intersection kernel. Synthetic CAD mod-
els are rendered from the same viewpoints and the renderings are subdivided into the same
grid used for the appearance learning step. The 3D surface points which project into the
respective areas of the subdivision grid form the training data for the geometry learning; for
each part and viewpoint, Gaussian Mixture Models are learnt generatively to describe the
corresponding distribution of 3D surface points. The link between appearance and geom-
etry is implicitly established via the use of the same regular grid structure in both learning
steps. During detection, spatial pyramids are computed densely over the entire test image
and classified according to their part and viewpoint membership. Given the 3D geometry
and the most likely viewpoint hypotheses with their associated parts, a probabilistic pose
estimation is performed which allows to evaluate the consistency of the detected 2D parts
relative to a full 3D projective geometry. The method could potentially allow for a 2D fall-
back and it offers a more robust estimation than the closed-form methods. Evaluation on
several benchmark datasets for 2D detection and 3D pose estimation shows superior results
when compared to the initial approach, in particular in terms of recall; albeit at a slightly
reduced precision.

e The object class detection approaches allow to locate an object of a certain category in an
image and provide a 2D bounding box estimate and an approximate 3D pose estimation.
However, in many applications the identification of a specific object instance, such as the
make of a car, and its precise 3D pose are required. To address this task, we suggest a
similarity measure allowing to evaluate the similarity between a specific rendered 3D CAD
model and a 2D image region. The similarity measure combines an entropy-based mea-
sure to robustly compare intensity values without requiring exact color equivalence and a
contour-based distance. Based on the proposed similarity measure, the suitability of an evo-
lutionary optimization scheme is evaluated in order to robustly align a 3D CAD model onto
a 2D image region while maximizing their mutual similarity. The optimization requires ini-
tialization with an object class and an approximate 3D pose, both of which can be provided
by the object detection methods discussed previously. On a calibrated test sequence, the
complete detection and precise pose estimation loop is evaluated successfully.

6.2 Future work

The present work describes an approach which offers efficient and flexible training and achieves
state-of-the-art 2D detection precision/recall in addition to a 3D pose estimation. It is among the
first to resort to synthetic CAD models for the training of object class detection methods. Conse-
quently, many of the opportunities residing in the suggested approach could not yet be investigated.
In the following, we provide a short outline of future lines of work which build on the results of
the present thesis.

6.2.1 3D Scene Geometry

In the present work, individual pose estimations are made for each object detected in an image.
While being flexible and allowing for simplified parameterizations, this does not exploit any ex-
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isting priors on the 3D geometry of the scene in the image. These priors could be computed
from the image by exploiting vanishing lines, regions with certain properties indicative of a coher-
ent alignment, occlusions and boundaries as has been proposed by several authors, notably [41].
Alternatively, scene geometry may be known, as is the case for certain video surveillance applica-
tions. Assuming priors on the 3D scene geometry, the detection process can be adapted to restrict
detections to a set of admissible viewpoints. Furthermore, the present work does not make use
of the context of a detection. While most previous work on the use of context of pure 2D detec-
tions exploits co-occurrence relationships such as in [111], the availability of 3D geometry allows
to make stronger assumptions which go beyond pure co-occurrence; only recently, Bao et al. [3]
have suggested relying on 3D detections as reconstruction clues. Figure 6.1 shows an example of
a set of detections suitable for such geometric co-occurrence priors; the present approach detects
each object instance and its 3D pose individually and independently of other detections in the same
image (6.1, left) with slight imprecisions in their poses which could be resolved when grouping
consistent detections. It detects only one instance in figure 6.1, right, although the knowledge of
the successful detection could be used to identify more instances with similar poses when assum-
ing a common scene geometry. The detection of several car objects in a similar orientation can
for example serve as a detection prior for further car objects in image positions coherent with the
perspective geometry defined by the found 3D poses. The priors are therefore no longer limited
to influencing the occurrence probability of other object categories, but can have an impact on the
probability of viewpoints, scales and appearance of additional objects as well.

Figure 6.1: Example for a suitable testcase for 3D geometric co-occurrence priors: currently, all
detections are independent of each other, but precision could be improved from co-occurrence pri-
ors (left). Only one instance is detected (right) which could contribute to detecting more instances
with similar poses when assuming a common scene geometry.

6.2.2 3D Model-Driven Part Annotation

Both object class detection methods developed in this thesis essentially deploy 2D image-based
techniques to identify suitable clues for appearance learning. In the first approach, local features
are computed in 2D images rendered from different viewpoints and their stability over a sequence
of 3D transformations is evaluated only with respect to their 2D appearance similarity. The sec-
ond approach subdivides images into a regular grid of parts without considering the suitability of



112 6. CONCLUSION

certain object regions for representing a consistent part. Neither of the two approaches exploits
the semantic and geometric information already residing in synthetic CAD models for the part
selection process. This shortcoming could be alleviated in the following two ways.

6.2.2.1 Semantic Model Decomposition

The design procedure of CAD models usually requires the artist to build a model from geometric
primitives in a successive way. Most of the object parts are assigned semantic descriptions in
natural language as part of the assembly procedure. Previous work on combining object detection
and natural language semantics such as [64] have shown promising results. While part annotations
could be done manually in 3D, the procedure is tedious and potentially impossible for significant
intra-class variation. However, one could attempt to analyze the semantic descriptions of the
CAD designer to identify parts which belong to similar semantic groups, thereby allowing to
consistently annotate part regions directly and automatically from the 3D model. Knowledge of
the semantic hierarchy of natural language may be required in this process since no standardization
exists for the design of CAD models. Once part annotations have been identified on the 3D model,
an arbitrary amount of precisely annotated 2D renderings can be generated, thereby significantly
simplifying and extending the training process and permitting to identify individual parts in new
images by their natural descriptions and semantic context. Figure 6.2 shows examples of two
natural candidates for semantic part annotations in a database of synthetic 3D car models.

Figure 6.2: Two semantically chosen object parts (car wheel rim, front light) from synthetically
generated training examples; illustration courtesy J. Schels.



6.2. FUTURE WORK 113

6.2.2.2 Geometric Part Discovery

In the absence of semantic annotations of 3D CAD model parts, the surface geometry can be
exploited to identify parts over a sequence of models of the same object category and even to
group models into categories in an unsupervised manner. Several authors from the computer
graphics domain, such as [31], have come forward with techniques to automatically segment 3D
models into parts according to surface properties, including curvature, connectedness, smoothness
and common texturing. Based on such segmentation maps of a set of 3D models, completely
unsupervised category discovery and part assignment could be possible. Figure 6.3 shows example
segmentations for the object class chairs from the work of [31].

Figure 6.3: Unsupervised 3D model segmentation for future use as part annotations; figure
from [31].

6.2.3 Classes of Nonrigid Objects

All approaches developed as part of the present work require rigid object geometries. While this
requirement is approximatively true for many categories of manmade objects, natural object cate-
gories usually have the capacity of being deformable. The best-suited example is the human body;
no rigid part layout is capable of representing even the most frequent body part configurations. An-
imals or plants may display even more pronounced nonrigid geometries. Still, one of the strengths
of computer graphics is animation and many algorithmic tools exist for building kinematic chains
of model parts and performing surface smoothing in joint areas. Similarly, CAD databases con-
tain deformable models for most object categories, although usually not obeying any standardized
design process. Consequently, the generation of training data for nonrigid object categories is
conceivable and geometric configurations of object parts can be brought to a normalized represen-
tation. Still, the detection of nonrigid objects would require integrating nonrigid deformations in
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a suitable parameterization into the pose estimation process, a problem which has seen significant
progress in recent years in the context of human body motion [97] and facial action recognition,
where the 3D information available during the training process on synthetic CAD models can also
be advantageous [56].

6.2.4 Semantic Separability of Object Classes

In the introduction, section 1.1, we defined the term object class by means of semantic equiv-
alence and limited the evaluation of the present work to three exemplary and rather vast object
classes. The limitation to a few exemplary object classes may be valid for a general assessment
of the algorithmic concepts of the present work; however, it will cease to be applicable in real-
world scenarios where it might be necessary to process large numbers of, potentially ill-defined
or overlapping, object classes. Consequently, a systematic approach to dealing with the defini-
tion of object classes will have to be found and the training process will have to be adapted to
using varying levels of detail for separating the classes. By aligning the training process with a
comprehensive semantic hierarchy such as the one described in [69], training could account for
overlap and semantic similarities in a more principled way. Moreover, through the use of syn-
thetic data, it could become feasible to exhaustively evaluate with how much intra-class variation
a given training method can reasonably deal with before a separation into different subclasses may
be required.

6.2.5 Assessing Training Success with Synthetic Training and Validation Data

In the present work, discriminative learning constitutes an essential building block for feature and
part detection. Certain methods exist to evaluate and improve the training success, notably cross-
validation and bootstrapping as outlined in section 4.2.2.2 of chapter 4. Furthermore, previous
work has been done [89] to assess the impact of training set selection on the performance of dis-
criminative classifiers. Yet, many decisions on which training data characteristics to include in
order to achieve a certain classifier behavior rely on heuristics and interpretation. For example,
it is considered an advantageous property of a classifier to generalize to instances which are not
part of the training set. Such a behavior can be induced by either increasing the number of train-
ing samples to include as many of the possible variations in intra-class appearance, noise, camera
and lighting conditions as technically feasible and counting on the representational power of the
chosen classifier, or one could choose to provide fewer, possibly simplified training instances and
thereby achieve an implicit generalization on only those statistic properties which are common to
the concept to be learnt. Interestingly, this area has not been investigated thoroughly in the do-
main of object class detection, possibly because neither of the two approaches can be realistically
achieved when relying on real training image databases, since no real sample can be considered
either a natural simplification or an exhaustive representation of all variations. We believe that in
the present work, we have been able to provide a proof of concept of the transferability of syn-
thetically generated data to real-world object class detection tasks; subsequently, the reliance on
synthetic data could offer a possible solution. Synthetic training data can be generated and param-
eterized to cover the entire range from overly simplistic comic-like to photorealistic rendering,
and arbitrary amounts of validation data can be created such that particular aspects of a specific
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detection task can be covered and the results can be fed back to dynamically adapt the training set
selection. Such a closed-loop self testing and training in addition to a quantifiable and meaning-
ful assessment of training success would constitute an important step towards the deployment of
learning-based methods in real-world application scenarios.

6.3 Concluding Remarks

We have shown in the present thesis that synthetic CAD models can serve as a readily available
source for integrating 3D geometric information into object class detection approaches. More-
over, we demonstrated that the use of synthetic textures for appearance training is feasible and has
certain advantages over the use of real training image datasets; however, we also conceded that
on current large-scale benchmark datasets [17, 18], state-of-the-art results still cannot be achieved
without including real images into the appearance training process. Consequently, we proposed
a combined approach to flexibly fuse real appearance and synthetic geometry training data. The
results obtained suggest that 3D geometric priors can help to improve precision and to indicate and
discard failed detections which are inconsistent with the assumed geometry. Among the potential
future lines of work, the possibility to create a systematic validation loop for object class detection
approaches on synthetic training and test data seems particularly promising in order to prepare for
the transition of object class detection from scientific benchmark datasets towards industrial ap-
plication scenarios with stricter reliability requirements; we believe that vision applications in the
domain of autonomous robotics may benefit the most from the approximate 3D pose estimations
obtained with our approach.
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3D Model Database

In the following, we visualize all 3D CAD models contained in the database that was used in
the present work. They stem from different free and commercial CAD model databases, notably
turbosquid.com, 3d02.com and doschdesign.com; see section 2.2.1 for details. For visualization,
we rendered the models using the parameterization described in chapter 2.

Figure B.1: All 3D models used to represent the object class motorbike.
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Figure B.2: All 3D models used to represent the object class car (1/2).
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Figure B.3: 3D models used to represent the object class car (2/2).
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Figure B.4: All 3D models used to represent the object class bicycle.



Support Vector Machine Classifiers

In chapters 3 and 4, we rely on Support Vector Machine (SVM) classifiers. A full derivation of
Support Vector Machines is not in the scope of the present work; we provide an overview of the
concept, see [108]. Suppose a classification problem where we are given a training set of N data
vectors x;, each associated with a target value of ¢; with ¢; € {—1, 1} indicating whether a data

vector z; belongs to the relevant class (¢; = 1) or to an unspecified background set (t; = —1). The
objective is to find a decision function ¥ such that at least for all training vectors z;,
>0, t;=1
Y(x;) ! : (C.1)
<0, t;,=-1

In addition, a desirable behavior of ¥ is to generalize this property to unseen test data vectors,
assuming that they are drawn from a reasonably similar distribution as the training vectors them-
selves. Support Vector Machines (SVMs) have been suggested as an approach to this classification
problem [108]. They rely on kernel functions k(z;,x;) = ¢(x;)" ¢(z;), a dot product between the
data vectors mapped into a higher-dimensional vector space by means of a potentially non-linear
mapping function ¢, to compare pairs of data vectors; in the following, kernels are assumed to be
Mercer kernels [108], which notably corresponds to their being positive semidefinite. The deci-
sion function for a test data vector = can then be written as a weighted sum of kernel evaluations
between x and (a subset of) training data vectors x;,

N

N
Y(@) =D aik(ziz)+ 8= aid(@) ¢(z)+ B, (C2)

=1 i=1

where the training data vectors x; with nonzero weights «y; are called support vectors; they define a
plane which separates the higher-dimensional vector space into subspaces according to their class
affiliation. Efficient optimization methods for training large data sets have been proposed [86]
by reformulating the task as a quadratic optimization under constraints such that the separating
margin between the subspaces is maximized; we use the approach of [19]. The flexibility of
the margin can be governed by an additional parameter C' > 0. The classification problem then
reduces to the definition and evaluation of a suitable kernel, the computation of the «; and the
choice of parameters § and C.
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D.1 Introduction

Selon des études récentes, le cerveau humain est 2 méme d’interpréter et de compléter des images
en 2D par des formes en 3D apprises au cours de I’enfance. Cette faculté permet a I’€tre humain
de résoudre des ambiguités et de comprendre des phénomenes liés a la projection perspective en
3D. Cependant, dans le domaine de la vision par ordinateur, la plupart des approches portant sur
la détection de classes d’objets proposent des solutions décrivant I’apparence et la géométrie de
classes d’objets purement dans 1’espace 2D de I’image.

Le domaine de la détection de classes d’objets et de 1’estimation de pose en utilisant des ap-
proches d’apprentissage s’est développé dans les années 1990. Avec la disponibilité croissante
de bases d’images, il est devenu de plus en plus intéressant d’analyser et d’organiser de maniere
automatique ces quantités de données visuelles. Les travaux dans ce domaine visent a I’identi-
fication et a la localisation de classes d’objets dans des images ; la notion d’une classe d’objets
peut étre basée sur la structure sémantique de la langue : une classe d’objets comporte tous les
objets similaires par rapport a un concept sémantique. Dans cette these, nous nous limitons a trois
classes d’objets exemplaires possédant des géométries rigides : les voitures, les motocycles et les
bicyclettes. La détection de telles classes d’objets dans une image revient a sélectionner toutes les
régions de I’image contenant au moins une partie d’un objet appartenant a I’'une de ces classes.
Les méthodes de détection de classes d’objets peuvent étre évaluées et comparées sur des bases
d’images en déterminant leur précision, c.a.d. le nombre de détections correctement attribuées a
une classe, par rapport a leur rappel, c.a.d. le nombre de détections parmi tous les objets de cette
classe contenus dans la base d’images.

D.2 Contexte

Historiquement, des approches ont été proposées qui décrivent une classe d’objets a travers son
apparence globale, par exemple en calculant I’espace propre d’une distribution de couleurs carac-
téristique pour cette classe. D’autres approches globales modélisent les constellations entre des
structures marquantes dans 1’image afin de devenir plus invariantes par rapport a des points de vue
différents et a la variabilité intra-classe. L’ apparition de descripteurs locaux d’apparence a permis
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de résoudre plusieurs limitations des approches globales : I’apparence d’un objet ou d’une classe
d’objets est décrite de maniere locale et I’ensemble de ces descriptions locales est regroupé sous
forme d’histogrammes d’occurrence, sous forme de modeles de constellations ou a I’aide de sacs-
de-caractéristiques, c.a.d. des représentations localement non ordonnées de descripteurs. Quant a
I’estimation de poses, différentes méthodes ont été proposées dans la littérature. Des ensembles
de points en 2D et en 3D peuvent étre utilisés afin de déterminer les parametres permettant de
projeter les points en 3D sur les points en 2D de maniere optimale. D’ autres méthodes se servent
de structures plus complexes comme des lignes ou des objets & géométrie paramétrique.

D.3 Contributions

Dans le cadre de cette theése, nous visons la détection de classes d’objets et I’estimation de leurs
poses a partir d’une seule image en utilisant des modeles 3D. Nous décrivons des étapes d’ap-
prentissage, de détection et d’estimation adaptées a I’utilisation de données synthétiques pour les-
quelles la géométrie est connue. En utilisant des modeles CAO existants et des méthodes de rendu
issues du domaine de la syntheése d’images, nous proposons de créer des représentations en 3D
de classes d’objets permettant de gérer simultanément des points de vue différents et la variabilité
intra-classe.

Pour obtenir ces représentations en 3D, deux méthodes différentes sont proposées. La premiere
utilise des données d’entrainement purement synthétiques alors que la seconde approche est basée
sur un modele de parties combinant des images d’entrainement réelles avec des données géomé-
triques synthétiques. Pour I’entrainement de la méthode purement synthétique, nous proposons
une procédure non-supervisée de filtrage de descripteurs locaux afin de rendre les descripteurs
discriminatifs pour leur pose et leur classe d’objet. Dans le cadre du modele de parties, 1’appa-
rence d’une classe d’objets est apprise de maniere discriminative a partir d’une base de données
annotée et la géométrie en 3D est apprise de maniere générative a partir d’une base de modeles
CAO.

Pendant la détection, nous introduisons tout d’abord une méthode de vote en 3D qui renforce la
cohérence géométrique en se servant d’une estimation robuste de la pose. Ensuite, nous décrivons
une deuxieme méthode d’estimation de pose qui permet d’évaluer la probabilité de constellations
de parties détectées en 2D en utilisant une géométrie 3D entiere. Les deux méthodes génerent
des détections en 2D ainsi que des estimations approximatives de poses en 3D ; ces estimations
approximatives sont ensuite améliorées en se servant d’un alignement de modeles 3D CAO avec
des images en 2D, ce qui permet de résoudre des ambiguités, d’effectuer un filtrage des détections
en 2D et de gérer des occultations.

L’approche est évaluée sur plusieurs bases d’images de référence et nous montrons qu’elle est ca-
pable de fournir des estimations de pose en 3D a partir d’images 2D tout en générant des détections
en 2D comparables a 1’état de I’ art.
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D.4 Résumé par Chapitre

D.4.1 Chapitre 2 : Données Synthétiques d’Entrainement

Dans ce chapitre, nous résumons le rendu de données synthétiques d’entrainement en utilisant des
méthodes issues du domaine de la synthése d’images. Nous justifions le choix de la représentation
des modeles 3D CAO, le paramétrage de la caméra synthétique et le modele d’éclairage. Dans les
chapitres suivants, nous décrivons des approches pour la détection de classes d’objets génériques,
I’estimation approximative de poses en 3D, I’identification d’objets particuliers et I’alignement
précise ; ces approches exploitent les avantages associés avec les données 3D synthétiques afin
d’élargir 1"état de 1’art au-dela des détections purement en 2D.

D.4.2 Chapitre 3 : Feature Maps

Dans ce chapitre, nous présentons une premiere approche pour la détection de classes d’objets
basée sur des données synthétiques d’entrainement et nous décrivons les avantages de ces données
lors de I’entrainement et de la détection. Nous décrivons une approche pour la détection de classes
d’objets a partir de points de vue différents. Cette approche est 2 méme de fournir des informations
portant sur la pose 3D de I’objet détecté. Au lieu d’apprendre un modele 3D a partir d’un nombre
d’images 2D en utilisant des contraintes géométriques, nous nous servons d’une base de modeles
3D CAO texturés afin de construire une représentation robuste en 3D pour chaque catégorie d’ob-
jets, ce qui facilitera la détection a partir de points de vue différents. En utilisant une méthode de
filtrage, les descripteurs locaux calculés a partir d’images synthétiques sont choisis en fonction
de leur caractere approprié pour la mise en correspondance avec des descripteurs calculés a partir
d’images réelles. Lors de la détection, la mise en correspondance permet de voter pour la catégorie
d’objets et la pose la plus probable d’un objet détecté. Les votes les plus prometteurs sont ensuite
évalués et améliorés en fonction de leur cohérence géométrique avec la projection du modele 3D
en se servant d’une estimation robuste de la pose. Nous présentons des résultats obtenus sur plu-
sieurs bases d’évaluation et nous analysons la précision de 1’estimation de la pose dans le cadre
d’une séquence d’images calibrées. Les contributions principales de ce chapitre résident dans la
procédure de sélection de descripteurs locaux contenant des informations géométriques 3D a partir
de modeles 3D CAO et dans I’élargissement de la méthode traditionnelle de vote probabiliste a
I’espace 3D. La méthode génere des hypotheses approximatives de poses en 3D qui sont ensuite
améliorées par une estimation de pose complete. Cependant, le rappel relativement faible de cette
méthode et la lenteur de I’estimation suggerent une autre approche plus souple. Dans le chapitre
suivant, nous proposons une telle approche qui permettra de résoudre plusieurs de ces faiblesses.

D.4.3 Chapitre 4 : Détection avec un Modele Géométrique

Dans ce chapitre, nous décrivons une approche pour la détection de classes d’objets basée sur la
combinaison de deux représentations différentes pour la géométrie et 1’apparence. Nous combi-
nons un modele de parties pour la représentation de 1’apparence construit de maniere discrimina-
tive a partir d’images réelles et une représentation générative de la géométrie 3D apprise a partir
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de modeles CAO. L’apprentissage de détecteurs discriminatifs en 2D pour la localisation de par-
ties d’un objet peut s’effectuer de maniere efficace et fiable a partir d’images réelles annotées, ce
qui permet de réduire le nombre de modeles CAO requis pour I’apprentissage de la géométrie a
quelques modeles non texturés, représentatifs pour la variation géométrique intra-classe. Aucune
annotation manuelle de parties d’objets n’est nécessaire. En outre, une estimation probabiliste de
la pose en 3D d’un objet permet d’obtenir sa pose 3D approximative en méme temps que sa lo-
calisation en 2D. Cette estimation représente une maniere efficace d’évaluer la cohérence de la
détection de parties d’un objet en 2D par rapport a la géométrie 3D entiere de la classe d’objets.
Nous démontrons que deux représentations pour la géométrie et I’apparence peuvent étre apprises
séparément et combinées seulement lors de la détection, ce qui permet d’utiliser des sources de
données d’entrainement séparées et des représentations simplifiées. Les contributions principales
de ce chapitre résident dans une méthode permettant d’intégrer la géométrie 3D de modeles CAO
dans la détection en 2D de parties d’objets, ce qui rend possible de déterminer la pose approxi-
mative en 3D d’un objet en m&€me temps que sa localisation en 2D. Bien que cette approche soit
moins précise que la méthode décrite dans le chapitre précédent, cette approche parvient a un
rappel plus important sur des bases de données difficiles et bénéficie d’une procédure d’apprentis-
sage plus souple. Les deux méthodes de détection de classes d’objets se sont servies de modeles
3D CAO comme source intégrale ou partielle de données d’entrainement afin de parvenir a une
performance comparable a I’état de I’art tout en fournissant des estimations approximatives de
poses en 3D. Dans le chapitre suivant, nous allons décrire une méthode d’alignement de modeles
CAO avec des images réelles afin d’améliorer les estimations approximatives des deux approches
précédentes.

D.4.4 Chapitre 5 : Estimation Précise de Pose par Alignement

Dans les deux chapitres précédents, nous avons proposé des méthodes pour la détection de classes
d’objets dans des images tout en estimant leurs poses approximatives en 3D. Etant donné qu’un
modele générique décrivant la géométrie d’une classe d’objets doit prendre en compte des va-
riations intra-classe importantes, la précision de ces estimations approximatives est limitée. Ce-
pendant, une meilleure précision serait souhaitable pour de nombreuses applications. Dans ce
chapitre, nous introduisons une méthode permettant d’aligner un seul modele 3D avec une image
réelle, supposant qu’une initialisation de la pose a été fournie par I’'une des deux approches précé-
dentes. Nous illustrons une méthode d’alignement basée sur la génération de représentations syn-
thétiques a partir d’un modele CAO fourni et sur une mesure de similarité combinant I’alignement
de contours avec une distance entropique d’apparence. Cette mesure combinée peut ensuite étre
optimisée de maniere efficace afin de déterminer la pose de I’objet dans I’image avec davantage
de précision. Nous proposons d’effectuer cet alignement en utilisant la méthode de "’ optimisation
par essaim de particules”, une méthode d’optimisation génétique. Nous analysons I’aptitude et la
précision de cette méthode d’optimisation sur des exemples synthétiques et des images réelles et
nous introduisons un critere de convergence basé sur 1’énergie cinétique de 1’essaim. Nous dé-
montrons sa robustesse par rapport au bruit d’image et a 1’occultation partielle et nous décrivons
sa parallélisation efficace sur la carte graphique. Ce chapitre présente une mesure de similarité
simple mais efficace, dérivée de 1’alignement de contours et de 1’estimation d’entropie conjointe
qui est optimisée en utilisant une méthode génétique. L’ approche effectue 1’alignement d’un mo-
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dele CAO avec une image réelle et permet d’améliorer les estimations de pose fournies par les
deux précédentes méthodes de détection de classes d’objets.

D.5 Perspectives

Cette these propose 'utilisation de modeles 3D CAO et de méthodes de rendu issues du domaine
de la synthese d’images afin de détecter des classes d’objets dans des images. Nous croyons que le
potentiel de cette idée est loin d’&tre épuisé. Il est envisageable que les détections en 3D obtenues
dans une image peuvent servir a améliorer la détection d’autres classes d’objets en se servant du
contexte géométrique 3D de la scene et de la modélisation d’interactions entre différentes classes
d’objets. En outre, I’information contenue dans les modeles CAO peut apporter d’avantage a 1’ ap-
prentissage, notamment a travers les annotations sémantiques de parties ou la segmentation géo-
métrique non supervisée de ces modeles. Dans le domaine de la synthése d’images, 1’animation
d’objets déformables est facilitée par de nombreux logiciels, ce qui pourrait permettre 1’ apprentis-
sage et la détection d’objets non rigides a partir du rendu synthétique. Enfin, le rendu synthétique
d’images pourrait étre une maniere efficace d’évaluation systématique de 1’aptitude d’une méthode
de détection de classes d’objets pour son utilisation dans le cadre d’applications industrielles qui
exigent une fiabilité supérieure.
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