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Content of the thesis

Two practical problems related to variable selection:

Plasmodium transmission through mosquito: variable selection
using ramdom forests, and zero inflated negative binomial
model.

The two-fold problem of model-based clustering and variable
selection on multilocus data.

My presentation is focused on the second problem.
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Clustering and variable selection on multilocus data
Introduction

We consider a long standing issue in population genetics that
consists of identifying genetically homogeneous populations
from a n-sample without prior information;

It may happen that some loci are just noise or event harmful for
clustering purposes;
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Clustering and variable selection on multilocus data
Introduction
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(b) Rand index

Figure: Summary of the results on 100 datasets : K0 = 5 populations,
L = 10 loci, Al = 10 alleles, |S0| = 5 clustering loci. Comparison of
classification by MAP rule using only loci in S0 versus using all loci.
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Clustering and variable selection on multilocus data
Introduction

Which variables cluster the sample in the ”best” way?

We consider a model selection procedure to solve
simultaneously the variable selection and clustering problem.

An associated stand alone C + + package named MixMoGenD is
available on http://www.math.u-psud.fr/~toussile.
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Competing models
Model selection via penalization principle
Selection procedure in practice

2 Numerical experiments using BIC

3 Consistency

4 Data-driven calibration of the penalty function
New penalty and the associated oracle inequality
Penalty calibration in practice
Comparison
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Model selection
Framework

(a)

Figure:

We deal with multilocus
genotype data from
diploid individuals.

Data are assumed to be
realizations of a random
vector X =

(
X l
)
l=1,...,L≥2

with X l =
{

X l ,1,X l ,2
}

,
where X l ,1, X l ,2 are
nominal variables taking
values in the set
{1, . . . ,Al} of allele states
at locus l

W. Toussile (UPS 11, UY1, UR016-IRD) Thesis presentation Orsay 29/09/2010 7 / 36



Model selection
Framework

Assume that the clusters are characterized by:

(LE) Conditional complete independence of the random variables X l ;
(HWE) Conditional independence of X l,1 and X l,2 at any locus X l ;

[Pritchard et al., 2000, Chen et al., 2006,
Corander et al., 2008].

(LE) and (HWE) have still proved to be useful in describing
many population genetics attributes and serve as a simple
model in the development of more realistic models of
micro-evolution.
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Model selection
Competing models

Assume that the sample is a mixture of K (unknown)
populations each characterized by a set of allelic frequencies.

Under assumptions (LE) and (HWE), X ∼ P0 of the form

P(K ,θ)(x) =
K∑

k=1

[
πk

L∏
l=1

(2− 1x l,1=x l,2)αk,l ,x l,1 × αk,l ,x l,2

]
(1)

I x =

(
x l =

{
x l,1, x l,2

})L

l=1

I πk = probability that an observation comes from population k
I αk,l,j = probability of allele j of locus l in population k

I θ := θK =

(
π = (πk)1≤k≤K , α = (αk,l,j)1≤k≤K ;1≤l≤L;1≤j≤Al

)
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Model selection
Competing models

Now, assume that only some loci gathered in a subset S are
relevant for clustering purposes and the others being identically
distributed across all clusters:

(H) For any l /∈ S and j ∈ {1, . . . ,Al}, α1,l,j = . . . = αK ,l,j =: βl,j .

In addition of (H), X ∼ P0 of the form

P(K ,S ,θ)(x) =

[
K∑

k=1

πk
∏
l∈S

(2− 1x l,1=x l,2)αk,l ,x l,1 × αk,l ,x l,2

]
×
∏
l /∈S

(2− 1x l,1=x l,2)βl ,x l,1βl ,x l,2 (2)

where θ = (π, α, β) ∈ Θ(K ,S).

Model M(K ,S) :=
{

P(K ,S ,θ)| θ ∈ Θ(K ,S)

}
W. Toussile (UPS 11, UY1, UR016-IRD) Thesis presentation Orsay 29/09/2010 10 / 36



Model selection
Competing models

Inferring (K , S) ⇐⇒ model selection among
C =

{
M(K ,S)| (K ,S) ∈M

}
.

The MLE θ̂(K ,S) can be obtained by EM algorithm
[Dempster et al., 1977]

Classification ẑ = MAP
(
θ̂(K ,S)

)
by MAP rule:

ẑi ,k =

{
1 if τi ,k

(
θ̂(K ,S)

)
> τi ,h

(
θ̂(K ,S)

)
, ∀h 6= k

0 else
(3)

where τi ,k

(
θ̂(K ,S)

)
is the probability that individual i comes

from population k.
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Model selection
Model selection via penalization

Selected model(
K̂n, Ŝn

)
= arg min

(K , S)
crit (K , S) (4)

Where crit is a penalized maximum likelihood criterion

crit (K , S) = γn

(
P̂(K , S)

)
︸ ︷︷ ︸

1

n

n∑
i=1
−lnP

(K ,S,θ̂MLE )
(Xi )

+ pen (K , S) ; (5)

P
(K̂n,Ŝn,θ̂MLE )

is selected for classification by MAP rule.

The most used asymptotic penalized likelihood criteria:

BIC (K ,S) = γn

(
P̂(K , S)

)
+

ln n

2n
D(K ,S)

AIC (K ,S) = γn

(
P̂(K , S)

)
+

1

n
D(K ,S). (6)
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Model selection
Selection procedure in practice

An exhaustive search of the optimum model is very painful in
most situations.

A two nested algorithm based on Backward-Stepwise is
proposed by [Maugis et al., 2009] in a Gaussian framework.
But it could miss the optimum model in some cases, in
particular in cases where the optimum subset of clustering
variables is small.

We propose a modified version named Backward-Stepwise

explorer with which sets S with small cardinalities are always
visited for any value of K .

The optimum model is then chosen between all the visited
models.
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Model selection

Backward-Stepwise Explorer(crit, K )

S ← {1, . . . , L} , cex ← 0, cin ← 0

Repeat
I Exclusion(K ,S)

F cex ← argminl∈S crit (K , S r {l})
F If

(
crit (K , S)− crit (K , S r {cex}) ≥ 0 or cin = 0

)
then S ← S r {cex}

I Inclusion(K ,S)
F cin ← argminl /∈S crit (K , S ∪ {l})
F If

(
crit (K , S ∪ {cin})− crit (K , S) < 0 and S ∪

{cin} has never been the current set in an Exclusion step

)
then S ← S ∪ {cin}
else cin ← 0

Until |S | = 1
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MixMoGenD
Mixture Model for Genotypic Data

MixMoGenD is a stand alone computer package implementing
our proposed procedure.

It is implemented using C + + language with object-oriented
programming with the collaboration of Dominique Bontemps.

The memory is dynamically allocated so that the memory
capacity of the user’s computer is the only limit to the size of
datasets.

Windows and Linux OS versions are available free of charge on
http://www.math.u-psud.fr/~toussile.

We wish to implement a R package.
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Numerical experiments using BIC

K0 = 5, L = 10, Al = 10, |S0| ∈ {2, 4, 6, 8}, n = 1 000

30 datasets for each value of |S0|

FST ∈ [0.0181, 0.0450] a range where clustering is thought to
be difficult by [Latch et al., 2006]

Results:

Table: Thresholds of FST for which MixMoGenD perfectly selects the true
number K0 of populations. F S

ST : with loci selection; FST : without loci
selection.

|S0| 8 6 4 2

F S
ST 0.0342 0.0307 0.0316 0.0248

FST > 0.0425 0.0410 0.0413 0.0350
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Numerical experiments using BIC

Data FST K̂n % WA K̂ s
n % WAs Data FST K̂n % WA K̂ s

n % WAs

1 0.0306 3 - 3 - 16 0.0381 5 10.90 5 10.30
2 0.0318 3 - 3 - 17 0.0382 5 09.30 5 08.80
3 0.0328 3 - 3 - 18 0.0390 4 - 5 09.10
4 0.0331 3 - 3 - 19 0.0400 5 08.80 5 08.00
5 0.0335 3 - 4 - 20 0.0404 4 - 5 09.50
6 0.0337 3 - 3 - 21 0.0425 5 06.30 5 05.40
7 0.0340 4 - 4 - 22 0.0427 5 07.10 5 07.50
8 0.0342 3 - 5 11.80 23 0.0427 5 05.90 5 05.90
9 0.0348 3 - 5 12.40 24 0.0435 5 06.70 5 06.50

10 0.0362 3 - 5 09.10 25 0.0436 5 07.10 5 06.60
11 0.0373 4 - 5 08.90 26 0.0440 5 05.50 5 05.70
12 0.0373 5 08.50 5 07.60 27 0.0442 5 07.20 5 06.80
13 0.0377 5 11.40 5 10.40 28 0.0449 5 07.20 5 06.70
14 0.0377 5 10.50 5 10.20 29 0.0449 5 06.10 5 06.30
15 0.0377 5 10.30 5 10.20 30 0.0450 5 06.10 5 05.60

Table: 30 samples each with n = 1 000, K0 = 5, L = 10, |S0| = 8 and
FST ∈ [0.0306, 0.0450]. % WA and % WAs = percentage of wrongly assigned

individuals without and with loci selection respectively; K̂n and K̂ s
n = the

estimates of the number of populations without and with loci selection
respectively. Ŝn = S0.
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Consistency

Although there exists a lot of articles concerning the behavior of
the BIC in practice, theoretical results in a mixture framework
are few: the consistency of the BIC estimator is shown

I in [Maugis et al., 2009] for a variable selection problem,

I and in [Keribin, 2000] for the number of components,

in Gaussian mixture models framework.

Our consistency result on the BIC like criteria concerns both
variable selection and selection of the number of components in
multinomial mixture framework.
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Consistency
BIC type criteria

Consider a penalty function pen = pen (D, n) such that:
I (P1): for any positive integer D, limn→∞ pen (D, n) = 0;
I (P2): for any M1 (M2, one has

lim
n→∞

[
n

(
pen (D2, n)− pen (D1, n)

)]
=∞.

Let
(

K̂n, Ŝn

)
be a minimizer of crit over a sub-collection CKmax

for a given maximum number Kmax of clusters.

Theorem ([Toussile and Gassiat, 2009])

If the true density P0 is positive and belongs to one of the
competing models in CKmax , then there exists a uniquely defined
smallest model (K0, S0) such that

lim
n→∞

P0

[(
K̂n, Ŝn

)
= (K0, S0)

]
= 1. (7)
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Consistency
The smallest modelM(K0,S0)

Lemma

For every K1, K2 in {1, . . . ,Kmax} and non-empty subsets S1 and S2

of variables, one has

M(K1, S1) ∩M(K2, S2) =M(K1∧K2, S1∩S2),

where K1 ∧ K2 = min{K1, K2}.

The ”smallest” model is defined by

K0 = min

K | P0 ∈
⋃

∅6=S⊆{1,...,L}

M(K , S)

 , (8)

S0 = min

S | P0 ∈
⋃

K∈{1,...,Kmax}

M(K , S)

 . (9)
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BIC vs AIC
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Figure: Proportion of K0 vs n.

[Nadif and Govaert, 1998]
found that in latent class
model for binary setting,
BIC needs particular large
sample size to reach its
expected asymptotic
behavior in practical
situation.

None of the criteria AIC
and BIC is uniformly
better than the other with
respect to the sample size.

Which criterion for which
sample size?
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Data-driven calibration of the penalty function

Select the model minimizing some risk function R (K , S);

Since the Küllback risk is infinite in our context, an alternative
is the Hellinger risk:

R (K , S) = EP0

[
h2
(

P0, P̂(K , S)

)]
. (10)

The following ideal model is not accessible

(K ∗, S∗) = argmin
(K , S)

R (K , S) . (11)

Here we consider the non asymptotic approach: the purpose is
to design a penalty function providing an oracle inequality that
allows to compare the risk of the selected estimator with the
benchmark R (K ∗, S∗), for a fixed sample size n.

See [Massart, 2007] for an overview.
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Data-driven calibration of the penalty function

In the finite mixture settings, the non asymptotic approach was
first used by [MAUGIS, 2009] in a Gaussian context.

Our result is new in multinomial mixture framework. It is an
application of [Massart, 2007, Theorem 7.11] as in
[MAUGIS, 2009].

The application of the Massart’s result in our specific settings
of multilocus data requires the control of the bracketing
entropy of multinomial mixture model for which the parameters
are given by Hardy-Weinberg model.
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Data-driven calibration of the penalty function
Notations

Amax = max1≤l≤L Al : maximum number of allele states;

P∗ (L): the set of non-empty subsets of {1, . . . , L};
M := {(1, ∅)} ∪ (Nr {0, 1})× P∗ (L);

Dm: number of free parameters of a model m ∈M;

h: Hellinger distance;

KL: Küllback-Leibler divergence.

Consider a collection of ρ-MLEs (P̂m)m∈M which means that
for every m = (K ,S) ∈M

γn(P̂m) ≤ inf
Q∈Mm

γn(Q) + ρ.
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Theorem (W. Toussile and D. Bontemps)

Let ξ = 4
√
AmaxL

2(1+3
√

2)
L−1

and assume that ξ ≤ 1 or n ≥ ξ2K otherwise.

There exists absolute constants κ and C such that whenever

pen (m) ≥ κ

(
5 +

√
max

(
1

2
ln n +

1

2
ln L,

ln 2

2
+ ln L

))2
Dm

n

(12)

for every m ∈M, then the model defined by m̂ =
(

K̂n, Ŝn

)
minimizing crit(m) over M exists and moreover, whatever the
density P0,

EP0

[
h2
(

P0, P̂m̂

)]
≤ C

(
inf
m∈M

(
KL(P0,Mm)+pen(m)

)
+ρ+

(3/4)L

n

)
,

(13)
where, for every m ∈M, KL(P0,Mm) = infP∈Mm KL(P0,P).
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Data-driven calibration of the penalty function
Remarks

The penalty function takes the model complexity in account via
the dimension;

The criterion based on

pen (m) = κ

(
5 +

√
max

(
1

2
ln n +

1

2
ln L,

ln 2

2
+ ln L

))2
Dm

n

(14)
is consistent to find the smallest model (see Theorem 1).

Although the result is a non-asymptotic result, the inequality
(13) makes sense when n is large with respect to the model
dimension.

The proposed penalty is not directly usable since it is defined
up to an unknown multiplicative constant.
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Penalty calibration in practice

Theorem 3 is mainly used to suggest the shape of the penalty
function

penλ (m) = λDm, (15)

where λ = λ (n, C) is a data-dependent parameter not
depending on the target density P0

For optimizing λ, a practical method called ”slope-heuristics” is
proposed in [Birgé and Massart, 2007].
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Penalty calibration in practice
Slope heuristics

Conjecture: there exists a minimal penalty penλmin
required for

the model selection procedure to work: λmin is such that

I for λ < λmin, Dm̂(λ) is ”huge”;

I for λ > λmin, Dm̂(λ) is ”reasonably small”.

The optimal penalty is then close to twice the minimal penalty:

penopt (m) = pen2λmin
(m) = 2λminDm. (16)

The name “slope heuristics” comes from λmin being the slope

of the linear regression γn
(

P̂m

)
∼ Dm for a certain

sub-collection of the most competitive models m.
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Penalty calibration in practice
Slope heuristics and dimension jump
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Penalty calibration in practice
Slope heuristics and dimension jump
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Penalty calibration in practice
Detecting dimension jump using sliding window

Penalty calibration
(
Mv , (λi)i=1,...,r , h

)
fori ← 1 to r

I m̂i := m̂ (λi )← argmin
m∈Mv

{
γn

(
P̂m

)
+ λiDm

}
ijump ← min argmax

i∈{h+1,...,r}

{
Dm̂i−h

− Dm̂i

}
iinit ← max

{
j ∈ [ijump − h, ijump − 1] ,Dm̂j

− Dm̂ijump
=

Dm̂ijump−h
− Dm̂ijump

}
λ̂min ←

λiinit +λijump

2

return λ̂min
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Numerical experiments
Penalty calibration vs BIC and AIC

K0 = 5, L = 10, Al = 10;

Levels of genetic differentiation ≈ 0.0340;

n ∈ {50, 100, 200, 300, 400, 500, 600, 700, 800, 900};

10 datasets for each value n of the sample size.
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Numerical experiments
Penalty calibration vs BIC and AIC
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Figure: Penalty calibration versus AIC and BIC
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Conclusion and perspectives

Model-based clustering provides an intuitive and rigorous
framework for unsupervised classification on genotype data.

As expected, the variable selection procedure significantly
improves the inference on the number of clusters and the
prediction capacity.

The new criterion performs well both when the number of
individuals is large and when it is small. This gives an answer
to the question “Which criterion for with sample size?”

Robustness of the selection procedure with respect to HWE and
LE assumptions;

Is it the same set S of loci that discriminates all populations?
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