
HAL Id: tel-00553854
https://theses.hal.science/tel-00553854v1

Submitted on 10 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Question-learn-test-feedback pattern to test emerging
software construction paradigms

Benoit Baudry

To cite this version:
Benoit Baudry. Question-learn-test-feedback pattern to test emerging software construction
paradigms. Génie logiciel [cs.SE]. Université Européenne de Bretagne, 2010. �tel-00553854�

https://theses.hal.science/tel-00553854v1
https://hal.archives-ouvertes.fr

ANNÉE 2010

Habilitation à diriger des recherches / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

Mention : Informatique

Présentée par

Benoit Baudry

préparée à l’unité de recherche UMR 6074 IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
Composante Universitaire : IFSIC

Question-learn-test-

feedback pattern to

test emerging

software construction

paradigms

Habilitation soutenue à Rennes
le 10 décembre 2010

devant le jury composé de :

Antonia BERTOLINO
Directrice de Recherhe à CNR, Italie/rapporteur
Yves LEDRU
Professeur à l’Université Joseph Fourier/rapporteur
Jeff OFFUTT
Professeur à Georges Mason University, USA/rapporteur
Bernhard RUMPE
Professeur à Aachen Universität, Allemagne/rapporteur
Pierre COINTE
Professeur à l’École des Mines de Nantes/examinateur
Thomas JENSEN
Directeur de Recherche à l’INRIA/examinateur

Jean-Marc JÉZÉQUEL
Professeur à l’Université de Rennes 1/examinateur

3

Contents

1 Introduction 5
1.1 Following a question-learn-test-feedback pattern 7

1.1.1 A brief discussion about methods 8
1.2 Software construction paradigms under study 9
1.3 Supervising research . 11
1.4 Organization of the thesis . 11

2 Object-oriented Design 13
2.1 What we learned about the OO paradigm 14

2.1.1 Testability anti-patterns in UML class diagrams 14
2.1.2 Understanding the impact of contracts on vigilance and diagnos-

ability . 16
2.2 Testing contributions in the OO paradigm 18

2.2.1 The bacteriologic algorithm for automatic optimization of a test
suite . 18

2.2.2 Reconciling test and diagnosis in OO programs 19
2.2.3 Tools . 22

2.3 Feedback on the OO paradigm . 22
2.3.1 Testability tags for UML class diagrams 23

2.4 Conclusion . 24

3 Aspect-oriented programming 27
3.1 What we learned about aspect-oriented programming 28
3.2 Testing contributions for aspect-oriented programming 30

3.2.1 Static test selection after aspect weaving 30
3.2.2 An oracle for AspectJ pointcut descriptors 31
3.2.3 PCD mutation tool . 33

3.3 Feedback on aspect-oriented programming 34
3.3.1 ABIS: a framework for aspect interaction specification and verifi-

cation . 34
3.3.2 A framework for the definition of AO metrics 36

3.4 Conclusion . 37

4

4 Model transformation 39
4.1 What we learned about model transformation 42

4.1.1 Barriers to Systematic Model Transformation Testing 42
4.1.2 Fault models . 44

4.2 Testing contributions to model transformations 46
4.2.1 Coverage criteria on source metamodel 46
4.2.2 Automatic test data generation . 48
4.2.3 Oracle for model transformation testing 50

4.3 Feedback to model transformation engineering 52
4.3.1 Metamodel pruning . 53
4.3.2 Automatic model completion . 54
4.3.3 Encapsulating model transformations into components 55

4.4 Conclusion . 57

5 Conclusion and Perspectives 59
5.1 Conclusion . 59
5.2 Perspectives . 61

5.2.1 Model composition over heterogeneous domains 63
5.2.2 Bring domain expertise in model manipulation 64
5.2.3 Search-based exploration of variability in modelling spaces 65
5.2.4 Rigorous empirical validation . 66
5.2.5 Validation and verification of software intensive systems 66

5.3 Concluding remarks . 68

Bibliography 69

5

Chapter 1

Introduction

Myers in 1979 presents software testing as: “Testing is the process of executing

a program with the intent of finding errors” [109]

Bertolino introduces a much broader definition at ICSE’07: “Software testing

is a broad term encompassing a wide spectrum of different activities, from the

testing of a small piece of code by the developer (unit testing), to the customer

validation of a large information system (acceptance testing), to the monitoring

at run-time of a network-centric service-oriented application.” [29]

Amman and Offutt in 2008 present “. . . software testing as a practical en-

gineering discipline, essential to producing high-quality software.” They also

mention “the complex and confusing landscape of test coverage criteria”. [5]

These definitions of software testing, given 30 years apart, illustrate how much the
scope and diversity of software testing techniques have expanded. This expansion has
accompanied the increasing variety of software construction languages, methods and
tools that appeared in order to face the growing heterogeneity and complexity of de-
mands regarding software systems. Today everyone expects software systems to deal
with financial networks, accurate medical images, embedded calculators, smart phones
and alarm clocks. This translates in heterogeneous requirements that encompass con-
cerns as varied as performance (more data, more services, more speed and constant
reliability), security, usability and adaptability. In addition, software systems have to
run on heterogeneous hardware platforms, interact through a variety of devices (who
can imagine that there once was a time when it was impossible to plug a smart phone
into a car to listen to music?) and deliver continuous on-demand services.

The metamorphosis in the scope and range of software systems has forced engineers
and researchers to continuously evolve software construction paradigms. In the past
decades the fundamental principles of abstraction, modularity and separation of con-
cerns [68] have been incarnated in a variety of programming languages, architecture
styles and software development methods. For example object-oriented programming
languages and design methods have evolved towards aspect-oriented and model-driven

6

software development. This evolution has to continue as emphasized by Wirsing et al.
in their analysis of challenges for software intensive systems [146] or as proposed by
Carlo Ghezzi in his SMSCom project [67].

Testing techniques have to consider the specificities of the new paradigms and meth-
ods in order to leverage the models they introduce for software systems. For example,
considering that a program can be decomposed into classes that declare a set of op-
erations and that encapsulate a set of data, has an impact on the way test cases can
be organized, on the data they can observe and the operations they can execute. JU-
nit [26] is a nice illustration of a testing technique that has appeared, expanded and
grown extremely popular by taking into account the specificities of the object-oriented
construction paradigm. It clearly leverages the class as the unit for testing. By forcing
test cases to observe a class from the client’s point of view it respects the object-oriented
philosophy of encapsulation. It is also interesting to notice that the JUnit framework’s
implementation is a remarkable application of object-oriented best practices.

When a construction paradigm is mature enough, testing can focus on its initial
error-detection purpose. For example, in the context of embedded programs, there exist
standard methods that impose strict sequences of requirements definition, design and
development. Thus, a tester knows exactly what is available for testing and can leverage
this to develop advanced techniques that target efficient error detection and localization.
However, when paradigms are not completely stable some elements might be missing or
difficult to understand for testing. For example, it is still not clear how the behavior of
an aspect-oriented program should be specified or how system requirements can be the
most appropriately separated into a set of architectural elements. These uncertainties
in evolving paradigms have a major impact on the definition of an oracle, test adequacy
criteria, program analysis and on the testing activity as a whole.

In this habilitation I defend the following thesis

Software testing research for evolving construction paradigms has to
extend beyond error detection and must spend some effort for under-
standing the scope of these paradigms.

This means it is necessary to ask questions about the assumptions the paradigms make
and the elements they introduce for software construction. In some cases, answers to
these questions are straightforward and we develop effective testing techniques to detect
the specific errors introduced by the paradigm. In other cases, it is necessary to perform
more in-depth investigations of the paradigm itself in order to understand how test-
ing techniques should be integrated. These empirical studies that aim at understanding
testability of evolving paradigms is a special case of experiments in software engineer-
ing as defined by Basili et al. [9]. These studies result in two types of output: add
new construction mechanisms to the paradigm; develop testing techniques that specif-
ically target error detection for the paradigm. In summary, software testing research
for evolving construction paradigms has to investigate two levels: testing the paradigm
itself (to understand and develop it); testing the software systems built according to this
paradigm.

7

ack

tester
SUT

test(t,j)

Learn

Test

Feedback

Questions

Software construction
paradigm

Figure 1.1: The QLTF pattern to investigate testing in evolving software construction
paradigms

1.1 Following a question-learn-test-feedback pattern

This habilitation thesis summarizes a series of investigations about software testing in
different software construction paradigms. In particular, we show how these investiga-
tions followed a common pattern in order to understand how software systems could be
analyzed and tested in these paradigms. The QLTF pattern is displayed in figure 1.1 and
captures this common path .

• Questions. When developing testing techniques in a new paradigm, we first have to
understand what this paradigm imposes on the software, the construction process
and the verification phases. The initial step for investigating a paradigm is thus
a series of questions. These questions can be about the models this paradigm
produces in order to analyze the system or what types of errors can occur in this
context. We also had questions about the constraints the paradigm imposes on
software construction and how these constraints can prevent errors or do hamper
the testability of the system. Answers to these questions can lead to develop the
following three points.

• Learn. This part of the pattern captures contributions about the understanding of
the paradigm. When answering the questions about the paradigms, we performed
several types of actions such as literature survey, empirical analyses or testability
analysis. These actions led to different types of results such as the systematic
identification of barriers for testing or a quantitative evaluation of a paradigm
[108]. The ‘Learn’ part of the pattern synthesizes these outputs.

• Test. Our initial intent for investigating software construction paradigms is to
develop testing techniques that can effectively detect error in systems developed
inside these paradigms. This part of the pattern presents the contributions we have
had in terms of software testing, leveraging the specificities of each paradigm.
We present new techniques for test data generation, adequacy criteria or oracle
specification.

8

• Feedback. It happens that when studying the impact a paradigm has on software
development we discover gaps. Sometimes these gaps are limitations to the devel-
opment of testing techniques. If this occurs, we have to address the gaps before
studying the way systems can be tested. Our contributions to the paradigm in
order to address these gaps fall in the ‘feedback’ part of the pattern.

1.1.1 A brief discussion about methods

The organization of this work along a systematic pattern for investigation emphasizes a
methodological contribution rather than a specific technical proposal for testing. This
choice highlights the principle that drives our work: when one aims at defining testing
techniques for a new paradigm, it is necessary to avoid any assumption about the rele-
vance of this paradigm. On the contrary, understanding to what extent a paradigm can
improve the construction of correct software systems and in which cases it is not well
suited should be a part of the investigation for testing techniques. This understanding
allows setting the precise context in which testing is performed. Knowledge about this
context reinforces the utility of the new testing techniques by fitting them into concrete
cases where the paradigm is used. Since this document defends a methodological ap-
proach for software testing research in the context of new construction paradigms, I
briefly discuss our work with respect to processes for scientific investigation.

We can distinguish two levels in the QLTF pattern. Question and Learn operate at the
meta level, in the sense that their subject of study is the paradigm itself. We question,
formulate hypothesis and analyze the construction paradigm. This can be related to
scientific processes as found in natural sciences where the paradigm would be a theory
and Question and Learn aim at understanding, consolidating or refuting the theory. As
a matter of fact, the different incarnations of Learning can be related to the falsifiability
test promoted by Karl Popper in order to establish a theory as scientific [118]. The goal
of the QLTF pattern was to develop testing techniques tightly integrated in new software
construction paradigms. In order to achieve this goal we needed to understand how
testing could be performed in this paradigm and identify what attributes could help or
hinder testability. The identification of these attributes is part of the process proposed by
Popper for a scientific investigation. On the other hand, T and F operate at the concrete
level in the sense that their subject of study is the software system that is constructed
following a given paradigm.

Going a bit further into the epistemic perspective it must also be noted that, even
if a part of the pattern can be related to a well defined scientific approach on software
construction paradigms, the emergence of the pattern itself is closer to Feyerabend’s an-
archist perspective on scientific discovery [56]. Indeed, the pattern provides a synthetic
template in which we can organize our work and promote an idea: software testing
has to be integrated in evolving software construction paradigms. However, this pattern
emerged from our investigations but it did not precede our research on software testing.
We had an intuition about the necessity to go through these steps and investigate in these
different directions in order to propose testing techniques fitted to new paradigms, but

9

we discovered the pattern only later. Put in Feyerabend’s words, action (the ‘irrational’,
loosely related series of work we performed) preceded the idea (the QLTF pattern that
organizes these investigations).

1.2 Software construction paradigms under study

Figures 1.2 present the instantiation of the QLTF pattern in three paradigms, discussed
in more details below.

This work starts with the investigation of the object-oriented paradigm for analyzing,
designing and implementing software systems. The emergence of object-oriented lan-
guages has led to numerous work, concerns, studies, skepticism and new methodologies
from the testing research community. For example, one can look at Binder’s book [32]
to understand the huge impact that this paradigm had on the testing research and prac-
tice. When our work started in the early 2000’s, programming languages were pretty
stable, but numerous development methods, reusable design solutions were emerging
and the paradigm was still under construction. For example, here was still some room
to understand the role of design patterns and Design by Contract for testing.

The growing interest in object-oriented design and modelling with the UML led more
attention to model-driven engineering [123] for software systems and one of its stan-
dardized incarnation, MDA [111]. Approximately at the same time, AspectJ [78] ap-
peared and initiated important explorations towards advanced separation of concerns
and aspect-oriented software development. It is interesting to notice that these two evo-
lutions clearly complement each other. On one hand, model-driven engineering (MDE)
emphasizes the use of models to reason on a software system at different levels of ab-
straction. In this context, models are abstract representation of the system for a specific
purpose. Thus, there are different models to reason on different parts of the system. On
the other hand, aspect-oriented software development (AOSD) emphasizes the need to
separate concerns and investigate advanced mechanisms to improve modularity in large
software systems. These paradigms complement each other in at least two ways. First,
the different purposes for which one would like an abstract model in MDE can often be
related to a concern AOSD would like to identify and separate from the rest of the system
[75]. Second, Ghezzi et al. advocate abstraction, modularity and separation of concerns
as major principles for software engineering [68]. It appears that the association of MDE
and AOSD aims at deploying these principles.

The conceptual and technical foundations of MDE and AOSD are well established
and accepted as solutions to cope with the complexity of software systems. However,
there remain a large number of challenges [65]. In this work we investigate testing
in different two specific areas of MDE and AOSD: aspect-oriented programming, model
transformations.

10

How to generate test cases?
What is an oracle for OO test cases?
How can DbC help for testing?
How can test effort be evaluated from
OO design?

Object-oriented programming
and design

ack

tester
SUT

test(t,j)

Bacteriologic algorithm

Test criteria for fault localization

Test generation prototype for Java

and Eiffel

Mutation tool for C#

testability tags for UML class

diagrams

Quantitative assessment of DbC

Testability anti-patterns

How are aspects used?
What is their impact on testing?
What est cases are impacted by aspect weaving?
How can the pointcut expression be tested?

Aspect-oriented
programming

ack

tester
SUT

test(t,j) Test selection strategy

New oracle for pointcuts

PCD testing and mutation tool

Metrics for AO programs

Framework for interactions spec.

Empirical analysis aboutAOP

How are model transformations built?
What are the specificities of MT wrt testing?
What are relevant test data?
Can we leverage metamodels for test selection?
How can test data generation be automated?
How can the oracle be expressed?
What are transformation requirements?
What are the faults in model transformations?

Model transformation

ack

tester
SUT

test(t,j)

coverage criteria on metamodel

evaluation of oracle expressions

constraint modeling input domain

automatic synthesis of test data

MMCC

metamodel pruning

MDA components

automatic model completion

analyzing the barriers for testing

fault model for transformations

Figure 1.2: Instantiating the QLTF pattern in three construction paradigms

11

1.3 Supervising research

The work presented here and the emergence of the QLTF pattern result from collabora-
tions I have had with researcher colleagues as well as students I supervised during their
Masters and PhD thesis. Table 1.1 gives the list of PhD I co-supervised: it provides the
amount of co-supervision work I took care of, the period, the defense date and the topic.

Name Rate (%) Period Defense Topic

Franck Fleurey 50 2003 – 06 09/10/06 Model transformation
Jean-Marie Mottu 80 2005 – 08 26/11/08 Model transformation
Erwan Brottier 70 2005 – 08 10/12/09 Model composition
Romain Delamare 80 2006 – 09 02/12/09 AOP
Sagar Sen 80 2007 – 10 22/06/10 Model transformation
Tejedinne Mouelhi 30 2007 – 10 22/09/10 Security
Freddy Muñoz 80 2007 – 10 29/09/10 Adaptive systems and AOP
Juan Cadavid 80 2009 – 12 Metamodeling
Nicolas Sannier 50 2010 – 13 Requirements engineering
Aymeric Hervieu 30 2010 – 13 Software product lines
Olivier Bendavid 80 2010 – 13 Security

Table 1.1: PhD co-supervision from 2004 to 2010

1.4 Organization of the thesis

In the remaining of this document I present three incarnations of the QLTF pattern
in object-oriented programming and design (chapter 2), aspect-oriented programming
(chapter 3) and model transformation (chapter 4). In each chapter I summarize the
questions we investigated in the paradigm and the contributions in the Learn, Test and
Feedback facets of the pattern. I conclude each chapter with a brief section that provides
a retrospective interpretation of these work. Chapter 5 concludes and opens a set of
perspectives about V&V and MDE for heterogeneous software-intensive systems.

13

Chapter 2

Object-oriented Design

How to generate test cases?
What is an oracle for OO test cases?
How can DbC help for testing?
How can test effort be evaluated from
OO design?

Object-oriented programming
and design

ack

tester
SUT

test(t,j)

Bacteriologic algorithm

Test criteria for fault localization

Test generation prototype for Java

and Eiffel

Mutation tool for C#

testability tags for UML class

diagrams

Quantitative assessment of DbC

Testability anti-patterns

Figure 2.1: Investigating object-oriented software development

In the late 90’s, Beck claimed that “programmers love writing tests” [24] in the
object-oriented paradigm. One reason for this is that they can incrementally build con-
fidence in their code when it passes their tests. If one can qualify the relevance of test
cases, the level of confidence one has in a program can be linked to the quality of its test
cases. Mutation analysis [47, 79, 95], is a test qualification technique based on the ob-
servation that the quality of the test cases is related to the proportion of faulty programs
(also called mutants) it detects. Faulty programs are generated by systematic fault injec-
tion in the original implementation. By measuring the quality of test cases (the revealing
power of the test cases [144]), we seek to build trust in a component passing those test
cases. The test cases that are generally provided by the tester easily cover 50-70% of
the mutants, but improving this score up to 90-100% is a time-consuming and a very
expensive task. The first question we investigated in the OO paradigm is: how can we
automatically improve the quality of test cases for object-oriented program?

We investigated the structure of object-oriented programs and associated test cases,
and realized that genetic algorithms were not well suited for this optimization problem

14

[10, 13]. This observation led to the definition of a variant of the genetic algorithm
called bacteriologic algorithm that proved to be effective at automatically improving the
fault detection power of an initial test set [15]. This algorithm, that will detailed in
section 2.2.1, augments the initial set with additional test sequences and test data, but
there remains one issue to have complete test cases: how can we build an oracle for these
new test sequences? Here again, we analyzed a specific objet-oriented design method
called Design by Contract ©(DbC). This led us to study how DbC can help testing object-
oriented programs. In particular, we wondered how contracts could help in detecting
and locating errors when executing a test suite [17, 86] (section 2.1.2). The ability of
contracts to detect errors makes them excellent candidates for the oracle of test cases
for object-oriented programs. Their ability to locate errors is an added value, which can
greatly help when debugging the program after detecting the presence of an error.

We also study the impact of design patterns as another major mechanism for de-
signing large object-oriented systems. Design patterns solve recurrent design problems
through an extensive use of delegation and inheritance. This results in a code that is
much smaller and simple, but in a design that locally increases the coupling between
some modules. From our tester’s point of view this seems to be counter-productive as
it decreases the testability and thus increases the cost and effort for testing. The third
question we investigate for OO design is: how can the testing effort be estimated on
early design and how can it be mitigated [20]? This is detailed in section section 2.1.1.

Answers to the previous questions have led to original contributions for testing
object-oriented programs. They also generated new knowledge about object-oriented
programming and design methods, which allowed us to propose original contributions
to the object-oriented paradigms. This investigation thus led through the whole spec-
trum of the triptych pattern, as shown in figure 2.1. These contributions results mostly
from my PhD thesis and Franck Fleurey’s Master thesis. They are summarized in the
following sections.

2.1 What we learned about the OO paradigm

In our investigation of the object-oriented paradigm and how it can be leveraged for
testing, we had to learn about the different methods and techniques that emerge when
building software systems following an object-oriented style. In particular, we focused
an important of our investigation on design patterns and Design by Contract ©. As a
result of these studies we were able to quantify the effect of these approaches on the
quality of an object-oriented design. We measure testability as a quality factor for design
patterns [18], and propose metrics of vigilance and diagnosability for Design by Contract
©[17, 86].

2.1.1 Testability anti-patterns in UML class diagrams

Any technique that improves a software design at an early stage can have highly bene-
ficial impact on the final testing cost and efficiency. We have studied the testability of

15

UML class diagrams, looking for parts of the architecture where complex interactions
may appear and lead to difficulties for testing. Testability can be informally defined as
the easiness to test a piece of software, is a strongly desired feature of software.

In this work we identify two main anti-patterns that have a negative impact on class
diagram’s testability: class interactions or self-usage interactions. The global test cost
estimate is related to the number of detected testability anti-patterns. We formally de-
fine the anti-patterns, the test cost and the global testability of a class diagram using a
graph-based formalism [18]. Intuitively the class interaction anti-pattern occurs when
there can be at least two different dependency paths from a class A to another class B.
The self-usage interaction anti-pattern occurs when there exists at least one dependency
path from a class A to itself. Since the interactions occur on the class diagram, but dy-
namic testing is concerned about interactions between running objects, it is necessary to
distinguish between class and object levels for both anti-patterns. It is then possible to
define the following test criterion

Definition 1. Test criterion. For each class interaction, either a test case is produced

that exhibits a corresponding object interaction, either a report is produced that shows this

interaction is not feasible.

All these definitions allowed us to formally define the complexity of testability anti-
patterns, the number of occurrences in a class diagram and thus an upper bound of the
testing cost implied by the model.

A second lesson learnt from this work about object-oriented models was a more
precise understanding of the impact of design patterns on object-oriented models. The
UML standard allowed the development of systematic methodologies [49, 63] for object-
oriented modelling that offer a decomposition approach for the architecture or guide-
lines to deal with evolution. These methodologies help design object-oriented software
as a sequence of refinements, from initial analysis to the implementation. In particular,
design patterns [66] may serve as a basis for such a refinement. Design patterns then
correspond to subsets in the class diagram, and can be considered as intermediate struc-
tures between the overall architecture and the single class. This system decomposition
provides an interesting solution, at a local level, for problems that are too complex at
the global level.

In order to integrate the testability improvement in the design process, we consider
that each refinement of a class diagram (due to the application of one or several design
patterns) must lead to another testable class diagram or to a decision of introducing a
testability weakness. Considering that design patterns are a usual practice for refining
class diagrams, we build a catalogue that establishes the relationship between a chosen
design pattern, the parameters that impact the testability and the corresponding value
of testability as shown 3. More details can be found in a paper published at METRICS’03
[22].

16

Design Pattern Number of participants
paths in a
class interaction

cycles in a
self usage
interaction

Abstract Factory

1 client
1 abstract factory class
n concrete factory
m abstract products
p concrete products

p≤ X ≤n*p no

Decorator

1 interface
1 component class
1 abstract decorator class
n concrete decorator classes

nor 1≤ X ≤n

Visitor

n visited elements
(ConcreteElement)
p visitors (ConcreteVisitor)

no n*p

Table 2.1: Excerpt of a testability catalog for design patterns

2.1.2 Understanding the impact of contracts on vigilance and diagnosabil-
ity

Design by Contract ©is a lightweight technique for embedding elements of formal spec-
ification (such as invariants, pre- and post-conditions) into an object-oriented design.
When contracts are made executable, they can play the role of embedded, on-line ora-
cles. Executable contracts allow components to be responsive to erroneous states, and
thus may help in detecting and locating faults. In this work, we define vigilance as
the degree to which a program is able to detect an erroneous state at runtime. Diag-
nosability represents the effort needed to locate a fault once it has been detected. In
order to estimate the benefit of using Design by Contract ©, we formalize both notions
of Vigilance and Diagnosability as software quality measures. The main steps of mea-
sure elaboration are given, from informal definitions of the factors to be measured to
the mathematical model of the measures [87, 86]. As is the standard in this domain,
the parameters are then fixed through actual measures, based on a mutation analysis in
our case. Several measures are presented that reveal and estimate the contribution of
contracts to the overall quality of a system in terms of vigilance and diagnosability.

The major results from this study are experimental demonstrations of the benefit of
using contracts in order to improve software quality. Figure 2.2 summarizes the impact
of contracts on the vigilance of three programs. The global vigilance corresponds to the
ratio of errors that can be internally detected by the programs, whereas the isolated vig-
ilance corresponds to the quality of the local contracts of each class. This chart indicates
that even the introduction of poor contracts (e.g., that can detect 20% of the errors)
on all classes can greatly improve the global vigilance of the program (if local contracts

17

detect 20% of the errors, the global detection rate can go up to 40%).
Figure 2.3 summarizes the impact of contracts on the fault localization effort. The

chart evaluates the impact of contracts quality (rate of errors locally detected by each
class) and their density (0,2 means that there is contract for 20% of the statements in the
program). The diagnosis effort is computed as the number of statements that have to be
examined before finding the error. The most important conclusion from this experiment
is that the density of contracts has much less impact than their quality on the diagnosis
effort.

Figure 2.2: Evolution of vigilance according to the contracts efficiency

Figure 2.3: Evolution of diagnosability with contracts density

18

2.2 Testing contributions in the OO paradigm

This section summarizes two important contributions of our work for testing OO pro-
grams: a novel evolutionist algorithm for improving the quality of test suites; the defi-
nition of a test adequacy criterion specially designed to improve a test suite in order to
improve the accuracy of trace-based fault localization algorithms.

2.2.1 The bacteriologic algorithm for automatic optimization of a test suite

The issue of automatically improving test cases is a non-linear optimization problem,
and the application of genetic algorithms (GAs) looks like an interesting way to solve it.
Furthermore, a strong analogy exists between natural selection and the process of gen-
erating new test cases based on an initial set of test cases. Initial test cases are of various
efficiency, but each of them can participate to the optimization. The optimization prob-
lem can be modelled as follows: a test case is considered as a predator while a mutant
program is analogous to a prey. The aim of the selection process is to generate test cases
able to kill as many mutants as possible, starting from an initial set of predators, which
is the test cases set provided by the tester.

We performed experiments with genetic algorithms to improve unit test suites for
Eiffel classes and system level test suites for a C# parser in the .Net framework [100,
101]. While it was quite disappointing that these experimentation results were not as
good as expected, biologists colleagues suggested to try a slight variation on this idea,
no longer at the “animal” level (lions killing zebras) but at the bacteriological level. This
also meant thinking about the improvement of test suites more as an adaptation problem
than an evolution problem. This allowed us to propose the bacteriologic algorithm as an
evolution of the genetic algorithm inspired by evolutionary ecology [117].

Our novel algorithm is called a bacteriologic because it is inspired by evolutionary

ecology [117] and more particularly bacteriologic adaptation. Evolutionary ecology is
defined as the study of living organisms within the context of their environment, with
the aim of discovering how they adapt [117]. The fundamental concept of this approach
is that in a heterogeneous environment it is not possible to find a single individual that
fits the whole environment. It is thus necessary to reason at the population level. This
actually matches the intuition for the problem we want to solve: it is not possible to
generate a single “perfect” test case to kill all mutants; on the contrary a global set of
test cases has to be generated and improved to kill all mutants.

The bacteriologic algorithm at a very generic level takes an initial set of bacteria and
incrementally improves it in order for the set to be optimally adapted to a particular
environment. New bacteria are automatically generated from existing ones through
the application of a mutation function and the level of adaptation to the environment
is evaluated by a fitness function. As the execution unfolds there are two test sets,
the solution set that is being built, and the set of potential test cases, that we call a
bacteriologic medium. The incremental optimization consists in applying the following
functions on the current bacteriologic medium at each step. Let’s call B the input domain

19

of the algorithm.

Fitness function. fitness: 2B→ R
+

The fitness function computes a real number that evaluates the quality of the solution
set. In the case of automatic test generation, this function can be based on the coverage
rate of the control graph, mutation score or any other test adequacy criterion.

Memorization function. mem: B → boolean
This function evaluates if a bacterium can provide new knowledge to the solution

set, based on the relative fitness of the bacterium. relFitness: TC × 2B→ R
+ computes

the fitness of a bacterium b (relatively to the fitness of the current solution set) as fol-
lows: relFitness(Solution, b) = fitness(Solution∪{b})-fitness(Solution). A bacterium is
memorized in the current solution if its relative fitness is above a given memorization
threshold.

Mutation function. mutate: B → B
The mutation function generates a bacterium by slightly altering an ancestor bac-

terium. This operator is crucial for the algorithm, since it is the one that actually creates
new information in the process. The mutation rate is a variable of the algorithm that
fixes the rate of bacteria in the current medium that are mutated at each generation.

Filtering function. filter: 2B →2B

This function aims at periodically deleting useless bacteria from the bacteriologic
medium to control the memory space during the execution.

For automatic test suite improvement, test cases are modelled as bacteria and we
experiment with fitness functions based on mutation score and statement coverage. We
have performed experiments to improve test cases for a C# parser with a genetic (figure
2.4) and a bacteriologic algorithm (figure 2.5). The charts show the evolution of the
mutation score along the algorithm’s execution. One can notice the following differences
between the algorithms: the bacteriologic algorithm converges faster than the genetic
towards a good mutation score; the bacteriologic reaches a better final score than the
genetic algorithm; the bacteriologic algorithm is more stable thanks to its memorization
mechanism. More details about the comparison can be found in a paper published in
the Journal of Software Testing Verification and Reliability [13].

2.2.2 Reconciling test and diagnosis in OO programs

In practice, no clear continuity exists between the testing task fault and the task of
locating faults in the program code. This discontinuity is evidenced by different tools
and techniques: while the former aims at generating test data and oracles with a high
fault-revealing power, the latter uses, when possible, all available symptoms (e.g. traces)
coming from testing to locate and correct the detected faults. This discontinuity is also a
usual practice in software industry: if a separate group of people is in charge of detecting
errors through testing, they are usually not in charge of locating and fixing them.

20

Figure 2.4: Optimizing test cases for a C# parser with a genetic algorithm

Figure 2.5: Optimizing test cases for a C# parser with a bacteriologic algorithm

21

However, there is a clear dependency between the two activities: the richer and more
precise the information coming from testing, the more accurate the diagnosis may be.
This need for testing-for-diagnosis strategies is mentioned in the literature [2, 76], but
the explicit link from testing to diagnosis is rarely made. Zeller et al. [149] propose the
Delta Debugging Algorithm which aims at isolating the minimal subset of test sequences
which causes the failure. Delta Debugging automatically determines why a computer
program fails: the failure-inducing input is isolated but fault localization in the program
code is not studied.

Considering the issue of fault localization, the usual assumption states that test cases
satisfying a chosen test adequacy criterion are sufficient to perform diagnosis [2]. This
assumption is verified neither by specific experiments nor by intuitive considerations.
Indeed, reducing the testing effort implies generating a minimal set of test cases (called
a test suite) for reaching the given criterion. By contrast, an accurate diagnosis requires
maximizing information coming from testing for a precise cross-checking and fault local-
ization. For example, the good diagnosis results obtained in [76] are reached thanks to a
large amount of input test data. These objectives thus seem contradictory because there
is no technique to build test cases dedicated to an efficient use of diagnosis algorithms.

We address this gap through the definition of a test criterion to improve diagnosis
[60, 14]. This test-for-diagnosis criterion (TfD) evaluates the ‘fault locating power’ of test
cases, i.e. the capacity of test cases to help the fault localization task. An existing test
suite, which reveals faults, can be improved to satisfy the TfD criterion so that diagnosis
algorithms are used efficiently. The goal is to obtain a better diagnosis using a minimal
number of test cases.

To define the TfD criterion we identify the main concept that reduces the diagnosis
analysis effort. It is called Dynamic Basic Block (DBB) and depends both on the test
data (traces) and on the software control structure. A dynamic basic block is a sequence
of statements that always appear together in the executions traces generated through a
test suite execution.

Definition 2. Test-for-Diagnosis (TfD) criterion. A test suite satisfies the TfD criterion if

it maximizes the number of dynamic basic blocks (DBB) distinguished in the program under

test. A test suite will increase the number of DBBs if the execution traces generated by the

test cases allow to discriminate more precisely statements one from each other in a larger

number of small sequences of statements that appear together.

The relationship between this concept and the fault localization accuracy is exper-
imentally validated. Experimental results also validate the optimization of test suites
that satisfy the TfD criterion, in comparison with coverage-based criteria. Experiments
use the fault localization algorithm proposed by Jones et al. [76] and the bacteriologic
algorithm [15] to automatically optimize test suites. We generate test suites with vari-
ables sizes that cover all statements, as well as test suites that satisfy the TfD criterion.
We use mutation analysis [47, 110] to systematically introduce faults in programs. The
efficiency of a test suite for fault localization is estimated on the seeded faults. Figure
2.6 illustrates a major benefit of the TfD criterion: it allows generating smaller test suites

22

Figure 2.6: Fault localization accuracy using the TfD criterion

for a better accuracy than test suites based on statement coverage. The fault localiza-
tion accuracy is computed as the number of statements that need to be inspected before
finding the error. More details about this contribution to OO testing can be found in a
paper published at ICSE’06 [14].

2.2.3 Tools

Most of the concepts and techniques proposed in this document have been validated
through rigorous experiments. These experiments require the development of tools that
implement our new ideas. In the context of our investigation of the object-oriented
paradigm we have developed tools for mutation analysis in Java, C# and Eiffel and
for the automatic improvement of test suites for programs developed in these three
languages.

All mutation tools share a common architecture that can be used to inject errors at
unit or system levels. Figure 2.7 presents the generic UML model for the two variants
(unit/system) of the mutation tool. For unit testing, the operators that implement the
UnitTesting interface (all) are applied, in the same way, for system testing operators that
implement SystemTesting interface (LOR and NOR) are available.

We develop a Java framework to run genetic and bacteriologic algorithms. The global
processes for each algorithm are developed on the basis of an abstract representation of
a gene or a bacterium. The framework can then be specialized for a particular opti-
mization task through the specialization of gene, bacterium and the fitness function.
We used this framework to generate test cases for functional unit and system testing
[13], for fault localization[14], and, in more recent work, to evaluate the robustness
of adaptive systems [104] and to reorganize architectural components from Orange’s
information system in order to follow a service-oriented architecture [132].

23

Figure 2.7: A generic model for the mutation tool

2.3 Feedback on the OO paradigm

The studies on testability of OO models led to a more precise understanding of the
testing effort that can result from different decisions in an OO design. As a consequence
of this study we also propose a contribution to the OO modelling activity through the
definitions of additional modelling elements that can add precision about interactions in
a class diagram and thus lead to a more accurate prediction of the testing effort.

2.3.1 Testability tags for UML class diagrams

Improving the testability of a UML model, with respect to our testing criterion, means
either avoiding object interactions and especially concurrent accesses to shared objects,
or decreasing the number of potential interactions to have a better idea of the actual
testability of the design. A solution may consist in clarifying the design, so that the
implementation will be as close as possible to what the designer wants. We define several
stereotypes that specify the semantic of links involved in class interactions (association,
dependency, aggregation, composition). These additional elements, should prevent the
developer from implementing an actual object interaction that would lead to high testing
costs. The stereotypes introduced here are analogous in some way to data flow testing
criteria for classical software [120] that identify “definition” and “use” of variables in a
program. This classical testing model aims at determining the data flow, the “life line”
of variables at unit level.

Here are the four stereotypes we propose:

24

• «create»: a «create» stereotype on a link from class A to class B means that
objects of type A calls the creation method on objects of type B.

• «use»: a «use» stereotype on a link from class A to class B means that objects of
type A can call any method excluding the create one on objects of type B. It may
be refined in the following stereotypes:

– «use_consult»: is a specialization of «use» stereotype where the called meth-
ods do never modify attributes of the objects of type B.

– «use_def»: is a specialization of «use» stereotype where at least one of the
called methods may modify attributes of the objects of type B.

The absence of stereotype on a link is equivalent to a combination of «use» and «cre-
ate».

Going one step further for more precise models, we study how testability stereotypes
can be automatically inserted when a design pattern is instantiated in a UML class dia-
gram. Parameterized collaborations in UML offer a promising approach to describe the
structure of a pattern. In this approach, one can represent the role that should be played
by a pattern participant, instead of the participant itself. In figure 2.8, we use a param-
eterized collaboration to represent the Abstract Factory design pattern, where two roles
can be identified (Factory and Product). When this collaboration is used, i.e. each role
is linked to an effective class, a dependency relation is created between these classes.

« create »
/Factory /Product

Figure 2.8: Parameterized Collaboration

However, as stated by Sunyé et al [137], collaborations still present several lacks for
modelling design patterns. In this particular case, for instance, designers are not able
to specify if these are the roles of individual classes or roles of class hierarchies. The
designer cannot either specify that the Factory should own a "creator" method. Moreover,
roles are limited to classes and associations, whereas patterns are also composed by
attributes and methods.

A possible workaround for these lacks is to use collaborations to extend the UML
meta-model. The idea is that pattern constraints may be attached at this meta-level so
that the right stereotypes will be automatically generated each time a designer instanti-
ates a pattern. We illustrate this approach on the Factory design pattern.

Figure 2.9 presents the same pattern, using the notation, proposed in [85], where
patterns are described as meta-model level collaborations, completed by constraints. In
this representation, the pattern is composed of three roles: Factory, Product and Creator.
The first role is a «hierarchy», i.e. a set of classes linked by a generalization relationship.
The second one is a set of hierarchies.

25

« create »

« hierarchy »

/Factory: Classifier

« tribe »

/Create: Feature*

« hierarchy »

/Product: Classifier*

Figure 2.9: The Abstract Factory Design Pattern

2.4 Conclusion

We investigated testing for object-oriented programming in a time where on one hand
the testing community was still skeptic about object-orientation while on the other hand
the OO community was maturing enough to identify design patterns that are now stan-
dards [66], to propose the unified modelling language and to introduce test-driven de-
velopment [25]. Thus, exploring both testing and object-oriented designs was a great
experience because the relationship between both still had to be clarified and numerous
questions emerged to understand how they could fit one with the other. Out of these
work, I identify two major contributions:

• the bacteriologic algorithm was initially developed as an adaptation of genetic
algorithms to improve object-oriented test suites. Since then, it has been used by
other groups to generate test cases [84], but it has also been experimented in fields
as divers as service-oriented architecture [132] or routing optimization in wireless
networks [147].

• the experiments that evaluated the relationship between test and Design by Con-
tract ©[17, 86] offered an original perspective at the intersection of OO design
and test. This work has since then inspired other testing techniques [35, 38]

27

Chapter 3

Aspect-oriented programming

How are aspects used?
What is their impact on testing?
What est cases are impacted by aspect weaving?
How can the pointcut expression be tested?

Aspect-oriented
programming

ack

tester
SUT

test(t,j) Test selection strategy

New oracle for pointcuts

PCD testing and mutation tool

Metrics for AO programs

Framework for interactions spec.

Empirical analysis aboutAOP

Figure 3.1: Investigating aspect-oriented programming

Object-orientation pushes forward ideas such as modularity, abstraction, and encap-
sulation [93]. It promotes the separation of concerns as a cornerstone to improve the
maintainability, evolution, and comprehension of a software system. Since a modular
unit encapsulates the behavior of a single concern, its maintenance and evolution should
require modifying a single module. This results in a major improvement in comparison
to non-modular design, which requires modifying several pieces of code several times
[70, 8].

However, separation of concerns and modularity cannot always be achieved with OO.
Some concerns cannot be neatly separated into objects, and hence, they are scattered
across several modules in the software system. Such concerns are referred as crosscut-

ting concerns because they are realized by fragments of code that bear identical behavior
across several modules. Maintaining a crosscutting concern means modifying each frag-
ment of the scattered code realizing that concern. Therefore, increasing the coding time,
the maintenance cost and error proneness as analyzed by Eaddy et al. [51].

Aspect oriented programming (AOP) appeared in 1997 as a mean to cope with this

28

problem [78]. The idea underlying AOP is to encapsulate the crosscutting behavior into
modular units called aspects. These units are composed of advices that realize the cross-
cutting behavior, and pointcut descriptors, which designate the points in the program
where the advices are inserted. The expressive features provided by aspect-oriented
languages were meant to enable developers to encapsulate tangled code in a very versa-
tile way; therefore improving maintainability of the system by allowing the evolution of
single units instead of scattered code fragments.

From our tester’s point of view several question arise about aspect-oriented program-
ming. Our first interrogations are related to our intuition that the use of declarative
pointcut descriptors (PCD) might be a difficulty when analyzing and understanding the
interactions between the aspects and the base program. Thus we wonder: how is the
PCD used, how can it affect the correctness of the global program or how can it be
tested? Other interrogations come from the fact that the introduction of aspects can
dramatically change the program’s behavior. Thus we wonder: how much of the inva-
siveness abilities of aspect-oriented programming languages is actually used and how
can it be controlled?

In order to answer these questions, in section 3.1, we analyze open-source aspect-
oriented programs [108]. Then, based on our understanding of the usage of aspect-
oriented mechanisms we develop some testing techniques that consider specificities of
AOP: a static test selection process after aspect weaving (section 3.2.1) and an auto-
mated oracle mechanism for pointcut descriptors 3.2.2. We also have two contributions
to the domain of aspect-oriented programming, detailed in section 3.3: a framework for
the specification and the verification of interactions between aspects and base code; a
metrics suite for aspect-oriented programs. As shown in figure 3.1, our investigation of
aspect-oriented programming led to contributions on the whole spectrum of the QLTF
pattern. This work has been developed mainly as part of Romain Delamare’s PhD thesis
[41] and Freddy Munoz’ Master’s thesis.

3.1 What we learned about aspect-oriented programming

Since its introduction in 1997, many technical documents, research papers, books, and
conference venues discussed and commented on AOP and its benefits. In 2001 the
MIT announced AOP as a key technology for the future 10 years [143]. Later, in 2002
a growing scientific community launched the first International Conference on Aspect
Oriented Software Development (AOSD), and about 300 (according to an estimation
using the Google scholar © search engine) documents cited AspectJ and AOP. The same
year less than 10 open-source projects were actually using such technology in the source-
forge repository.

Nowadays, 8 years after the MIT announcement, the number of documents about
AOP and AspectJ has grown to more than 2500. During the same period, the number
of projects using AOP has increased only to about 60 projects (less than 0.5% of source-
forge’s projects developed using Java in the period from 2001 to 2008 integrate aspects).
When facing this apparent paradox, we can wonder what prevents a more extensive use

29

of AOP in what context it has been a good solution.
Previous work has identified two characteristics of aspect-oriented languages that

hinder maintainability and evolvability: (1) the fragility of the pointcut descriptors that
leads to the evolution paradox [141]; (2) the ability of aspects to break the object-
oriented encapsulation [106]. Also, when looking at aspects for analysis or testing,
another paradox seems to occur: aspects allow the extraction of scattered code in a
single unit, thus improving the consistency of modules, but aspects can also increase
coupling between modules when woven at multiple places. This increased coupling has
a negative impact on testability, since it prevents an incremental approach for testing. In
turn, this decreases maintainability because the testing effort is impacted each time the
program evolves.

We perform a two-step empirical analysis of AOP in order to understand more pre-
cisely how aspects are used [108] and what is their impact on program quality. First, we
analyze the current usage of aspects features in open source projects. We study 38 open
source aspect-oriented projects developed with the Java and AspectJ languages and ask
the following questions about usage:

• What is the extent of aspect and invasive aspect usage in AO projects? Does this
usage vary with the size of the project?

• To what extent do aspects and invasive aspects really crosscut AO systems? Does
this depend on the size of the systems?

• Do pointcut descriptors use the full expressivity provided by the AspectJ pointcut
language? Are invasive advices woven with precise pointcuts?

Our observations reveal that developers of open source aspect-oriented programs
use few advices to modularize crosscutting concerns (the mean ratio of advices per base
program method is 0,05%), and that these advices are scarcely crosscutting (70% of the
advices are woven at one joinpoint only). When focusing only on invasive advices, we
observe that developers write very few advices that break object-oriented encapsulation,
and the small number of invasive advices, advise a small number of very specific join-
points. The observations on the coverage of the PCD language confirm this: developers
write specific PCDs using only half of the AspectJ PCD language’s expressiveness.

An explanation for the slow adoption of AspectJ might reside on its inability to hold
its promise of improved maintainability. In order to go further in understanding this slow
adoption of AspectJ, we evaluate its impact on a particular dimension of maintainability:
testability. Our hypothesis for the second part of the empirical analysis is that developers
do not use AspectJ because aspects introduce more difficulties to test than regular Java
classes. We compare the evolution of testability indicators over 3 versions of a system
implemented with both Java and AspectJ technologies. This reveals that in the AspectJ
versions, modules are more cohesive but are also more coupled. The increased coupling
among modules suggests that AspectJ reduces testability by introducing modules that
cannot be tested in isolation. More details about this work can be found in a paper
published at ICSM’09 [108].

30

3.2 Testing contributions for aspect-oriented programming

Vidocq

bid()

add()

select()remove()

Test case 1

Test case 2

AJDT

Test driven SCG
 construction

impacted method
selection

pay()

getCart()

impacted test cases
selection

source

code

test

cases

(c)

SPOON

bid()

add()

getCart()

select()remove()

pay()

Test case 1

Test case 2

impacted test case

(d)

bid()

pay()

getCart()

remove()

(a)

Test case 1 SCG

select()

add()

getCart()

(b)

Test case 2 SCGimpacted methods

Figure 3.2: Global analysis process for test selection

3.2.1 Static test selection after aspect weaving

Weaving aspects in a program impacts its existing behavior. If test cases exist for the
program, we must identify the ones that validate impacted behaviors to check the in-
teractions between the program and the aspects. The test selection problem consists in
identifying which test cases have to be modified and re-executed after aspect weaving
(and which new test cases must be generated). Several approaches exist [148, 150]
which allow selecting only the impacted test cases (e.g. executing at least one joinpoint
in the program). These dynamic techniques require the execution of all test cases and

31

the instrumentation of the program before and after evolution.
We propose a static analysis performed in a two steps process [44]. First, the analysis

leverages the pointcut descriptor that identifies all the points in the program that are
impacted by the aspect weaving. Then, the test cases and the base program are analyzed
in order to determine the points reached by the test cases. If a test case reaches a point
that is impacted by an aspect, it is identified as an impacted test case. From the user
point of view, the advantage of such a static analysis is the fact that the analysis is
instantaneous, compared to an approach for which the execution traces of test cases on
the base program must be exploited using code instrumentation.

Because our analysis is static, it over approximates the set of impacted points in two
cases. First, a pointcut can declare a dynamic expression. In that case, we statically
over approximate the set of joinpoints that can be matched by the aspect. Second,
we have to over approximate the coverage of test cases in case of a method call on a
polymorphic object, since it is not always possible to statically know the type of the
object. This potential threat to the validity of the approach has to be estimated and
qualified. Although the algorithms for the analysis are independent of any technology,
we had to make choices for the tool. We chose to build Vidock for AspectJ aspects and
JUnit test cases [46]. Because of the over approximations discussed earlier, we are able
to completely analyze the AspectJ and Java languages.

Figure 3.2 presents an overview of the analysis process. Inputs are a set of test cases
and AspectJ source code. Vidock calls the AJDT [52] to statically analyze the aspects,
the base code and identify the methods in which at least one aspect will be woven (c).
Spoon [114] is used to analyze the JUnit test cases. Then, it generates a static call graph
(SCG) for each test case (a,b). Crossing both analyses, Vidock selects the impacted test
cases by identifying intersections between the set impacted methods and methods in the
SCG (d).

We have experimented Vidock on 5 systems. In most cases the aspects impact only
a few test cases. We also observe that over-approximations have a minimal effect on
the results. We have also measured the occurences of dynamic pointuts and method
overriding in 46 open-source AspectJ projects. We observe that 65% of the projects
can compile without aspects, and thus the base program can be tested in isolation; 6%
of the methods are overridden and 17% of the pointcuts are dynamic, so the effect of
over-approximations should be reasonable in general.

3.2.2 An oracle for AspectJ pointcut descriptors

The development of testing techniques that are well suited for AOP requires considering
features unique to aspect oriented languages. A number of researchers have studied
the new types of faults that can be introduced by AOP: faults that can occur in the
interactions between the core concerns and the aspects, in the advice, or in the pointcut
descriptor (PCD). The latter category of faults is specific to aspect-oriented languages
that introduce new constructs to define the PCD. As observed by Ferrari et al. [55], the
PCD is the most error-prone part of an aspect.

32

We focus on the definition of an oracle for the PCD, in association with a tool and
method to assist in the definition and validation of pointcut descriptors. An incorrect
PCD can generate numerous faults in the program: it can miss expected joinpoints and /
or match unintended joinpoints. As a consequence, the advice can introduce unexpected
behavior at numerous places. Alternatively, expected behavior can be missing at several
places in the program. This is known as the fragile pointcut problem in AOP [136].
Unforeseen problems can also occur when evolving aspect-oriented programs [107].
There is a well-known risk that the PCD may match unintended joinpoints. This is
known as the evolution paradox issue in AOP [141]. Pointcut descriptors thus represent
an important issue for the correctness of aspect-oriented programs.

A major challenge to detecting faults in the PCD is that it declares very specific
joinpoints and there is no other specification of the set of joinpoints that it should match.
This means there is no simple way to define an oracle for a test case that looks for
errors in a PCD. For example, when developing an aspect-oriented program with AspectJ,
there exists no testing approach that allows a tester to specify the expected locations of
joinpoints. One way to address this problem is to write test cases, such as with JUnit,
that check whether or not the behavior introduced by the advice executes correctly at
the expected place in the program. The drawback of this solution is that these test cases
do not target the correct type of fault: they target faults in the advice’s behavior, and,
only as a side effect, may capture faults in the PCD, such as if the advice does not execute
correctly because it has not been woven at the expected joinpoint.

We propose to monitor the execution of advices and define a set of query operations
to retrieve information about this execution [43, 42]. For example, one operation can
check the presence of an advice at specific place in the execution of the program. Such
operations are meant to build automatic oracles for PCD test cases. We have developed a
tool called AdviceTracer, which handles monitoring and storage of information regarding
what advices defined in a particular aspect are executed and at which place in the base
program. AdviceTracer offers a set of operations to retrieve this information. These
operations can be used to define test cases that specifically target the presence or absence
of an advice. AdviceTracer can be integrated with existing testing frameworks such as
JUnit in order to develop test cases for PCDs. We propose an approach for testing PCDs
based on AdviceTracer to capture faults that miss joinpoints or that match unintended
joinpoints.

We evaluate AdviceTracer in terms of its usability and utility for writing test cases
that target faults in AspectJ PCDs. The study is performed as a comparison between
test cases that use JUnit only and test cases that use AdviceTracer with JUnit. We use
the Healthwatcher system that has 93 classes and 19 PCDs. Healthwatcher is a popular
benchmark and has been used in several research studies on aspect-oriented software
development.

The empirical study considers two questions. First, we evaluate the ability of Advice-
Tracer to decrease the effort for writing the test cases. We evaluate this effort through
the number of test cases, the complexity of the test cases, and the precision of the oracle.
The second question evaluates the ability of AdviceTracer to improve the fault revealing

33

abilities of test cases. Here, we perform a mutation analysis and compare the number
of mutants killed by each approach, the time taken to kill them, and the number of
equivalent mutants detected.

Figure 3.3 synthesizes the results of this study. The tester who used AdviceTracer
took less time than the one who used JUnit to complete the testing of all PCDs in
HealthWatcher. The tester with AdviceTracer was also able to develop test cases that
detect more errors. The sizes of the two test sets are comparable, but the test set that
uses AdviceTracer has much less lines of code. This is because AdviceTracer proposes
an automatic oracle mechanism that is much more precise for PCDs than JUnit: Ad-
viceTracer allows to express assertions directly about the expected behaviour of PCDs,
while JUnit only allows to express assertions about the expected behaviour of the pro-
gram in which aspects have been woven. As a consequence, test cases developed with
AdviceTracer use shorter test scenario and more compact oracles.

5000 50 100 150 200 250 300 350 400 450

100

0

10

20

30

40

50

60

70

80

90

Time (minutes)

M
u
ta

ti
o
n
 S

c
o
re

 (
p
e
rc

e
n
ta

g
e
)

JUnit only

AdviceTracer

Figure 3.3: Comparing AdviceTracer and JUnit for error detection in PCDs

More details about AdviceTracer and associate experiments can be found in [43, 42].

3.2.3 PCD mutation tool

We developed the AjMutator mutation tool [45] as part of our experiments for testing
AspectJ pointcut descriptors. AjMutator can generate mutants by introducing faults in
the PCDs, and execute a set of test cases on the generated mutants. 4 summarizes
the set of mutation operators that AjMutator can apply on AspectJ pointcut descriptors.
AjMutator also automatically classifies the mutants by comparing the sets of joinpoints
matched by the mutant and the initial PCD. We automate this classification at compile
time by leveraging the static analysis performed by the compiler that computes the set

34

Operator Description

PCCC Replaces a cflow PCD with a cflowbelow PCD, or the contrary
PCCE Replaces a call PCD with an execution PCD, or the contrary
PCGS Replaces a get PCD with a set PCD, or the contrary
PCLO Changes the logical operators in a composition of PCDs
PCTT Replaces a this PCD with a target PCD, or the contrary
POEC Adds, removes or changes exception throwing clauses
POPL Changes the parameter list of primary PCDs
PSWR Removes wildcards
PWAR Removes annotation from type, field method and constructor patterns
PWIW Adds wildcards

Table 3.1: AjMutator mutation operators for pointcut descriptors

of joinpoints statically matched by the PCDs. We show that a benefit of this classification
is that, for a class of PCDs, we can conclude that if the mutant matches the same set of
joinpoints as the initial PCD, the mutant is equivalent.

3.3 Feedback on aspect-oriented programming

Looking at aspect-oriented programming and AspectJ in particular, it appears that it is
very difficult to understand the interactions between aspects and base code. This diffi-
culty implies a risk for errors and problems for locating these errors. Our first feedback
to AOP is a framework called ABIS in which it is possible to declare and check expected
interactions between aspects and base program in AspectJ.

Our empirical analysis of usage and testability of aspect-oriented programs relies on
the computation of a set of metrics that can reveal trends about AOP. We developed a
framework to model any aspect-oriented program and defined the metrics on the ba-
sis of this framework. This measurement environment is our second contribution as a
feedback to AOP.

3.3.1 ABIS: a framework for aspect interaction specification and verifica-
tion

Invasive AOP approaches use composition mechanisms that allow developers to manip-
ulate almost any structure of the base program. This ability to manipulate the base
program structures is called invasiveness. Invasive AOP provides several strategies to
manipulate the base program. These strategies range from less invasive such as the aug-
mentation of a procedure execution to more invasive ones such as the replacement of a
procedure execution. An invasiveness pattern is the characterization of invasive behavior,
i.e. the strategy or a combination of them to manipulate the base program.

35

Invasive aspects are useful to introduce functionalities that otherwise must be hard-
coded into the base program. For example, a system transaction concern is implemented
using an invasive aspect because it requires stopping the execution of the intercepted be-
havior each time a transaction fails. However, invasive aspects can also do harm to the
base program. When they introduce the functionalities they are designed for, they can
also introduce side effects, hence, generating unexpected interactions.

We have precisely illustrated the issues that can arise when evolving an aspect-
oriented program that is built using invasive aspects [107]. This is a special case of
the AOSD-Evolution paradox [141], which results to be aggravated in presence of in-
vasive aspects. We consider a distributed chat application as a case study. This study
demonstrates the need to reason about expected interactions, and to control the usage
of invasive aspects.

In the second part of this work we propose a framework for specifying the expected
interactions in the base program as well as the way in which aspects can be invasive.
The specification on aspects is based on a classification proposed in previous work [107].
This classification identifies 11 different patterns according to which AspectJ aspects
can be invasive. Based on this specification, the base program declares which type of
invasiveness it allows or forbids: Augmentation, Replacement, Conditional replacement,
Multiple, Crossing, Write, Read, Argument passing, Hierarchy, Field addition, Operation
addition.

We have developed the ABIS tool that supports this framework. ABIS has several
features to support the analysis of interactions between aspects and base code:

• analyze aspects to automatically infer which invasive pattern they encapsulate

• an annotation-based language to declare the patterns an aspect implements and
the patterns the based code can accept. Figure 3.4 shows an example of the dec-
laration of the FlowConditionReplacement pattern for an aspect and figure 3.5
shows the declaration of a forbidden pattern in the base code (it is not possible to
weave an aspect that implements the FlowConditionReplacement pattern on the
move method)

• a static checker to validate that aspects conform to the specification of the base
program.

Experiments have shown that specifying interactions is useful to early detect when
invasive aspect can perform harmful. ABIS statically computes and gives information,
at compile-time, about the specification violation. This information is a useful and valu-
able:

• Feedback for developers in the process of writing advices a specifying the base
program

• For verifying an aspect-oriented program when aspects and the base program are
developed separately

36

Figure 3.4: Pattern specification on an aspect

Figure 3.5: Example for forbidden pattern declaration in base program

• For verifying an aspect-oriented program when aspects or the base program evolve.

More details about this work have been published at ICSM’08 [107].

3.3.2 A framework for the definition of AO metrics

Briand et al. [34] proposed a formalism for analyzing object-oriented programs. The
goal of Briand’s work was to define a terminology and a formalism to capture the core
concepts of object-oriented programming independently of any language. This formal-
ism then allowed the definition of generic metrics for object-oriented programs.

We extend Briand’s framework to support aspect-oriented concepts. Our goal with
this extension is to provide the support for aspect-oriented metrics independently of a
particular aspect-oriented programming language. The benefit is that the we can reuse
the metrics definition to measure programs implemented with AspectJ, CeasarJ or JBoss
AOP for example, as illustrated in figure 3.6. In order to measure metrics on a specific
implementation it is necessary to extract a model from the program that contains all
the concepts defined in our theoretical framework. Then the metrics definitions can be
reused. We keep everything that was in Briand’s framework, since aspect-orientation is
an extension of object-oriented programming, and we adapt the definitions to aspect-
oriented programming. This also guarantees that, if an object-oriented program that

37

Figure 3.6: A generic metrics framework for aspect-oriented programs

has no aspects is analyzed, we can still gather the OO metrics. We also define additional
concepts that exist only in the aspect-oriented paradigm. Informally, the framework
captures the fact that aspect-oriented programs consist in a set of classes, methods,
attributes. It also defines the notion of invocation of methods and introduces the specific
concept of advice that is a method woven in some classes. It has to be noted that the
notion of pointcut descriptor does not explicitly appear in the framework since it is not
a fundamental structural feature of an AO program and it takes various different forms
depending on the AOP language.

A number of metrics for aspect-oriented programs can then be defined on the basis
of this generic representation of the program, independently from a specific language.
Some metrics simply count elements (e.g., number of methods, number of advices, etc.)
and some metrics perform some computation on the model (e.g., lack of cohesion, cou-
pling, etc.).

In order to extract a model and compute the metrics on AspectJ programs, we have
developed a set of tools. It can measure both generic AO metrics and AspectJ specific
metrics on an AspectJ program. The major components of the tool are illustrated in
figure 3.7. The tool is based on AJDT [52] to statically extract an abstract syntax tree
(AST) from the AspectJ program. Starting from the AST we build an abstract aspect
model (AAM) of the program. This model contains all the elements defined by the
theoretical framework. Then, once the model is built, it is possible to use the generic
metrics definitions to compute all generic AO metrics.

This analysis is performed by two different modules: the ABIS tool [107], which
extracts all information related to interaction patterns in AspectJ programs; the AJEx-
tractor module, which extracts all information about methods, invocations, attributes
and computes the Uses predicate. It is worth mentioning that this module can addition-
ally compute the AspectJ specific metrics directly on the AST.

3.4 Conclusion

This investigation of testing techniques for aspect-oriented programming is character-
ized by a strong emphasis on the Learn facet of the QLTF pattern. We started this work
with very mixed feelings: on one hand there was a huge interest in AOP that generated

38

Figure 3.7: A tool for measuring AspectJ programs

innovative work in language design, code analysis, modularity, but also severe criticism
against this new paradigm [135]; on the other hand, from the testing perspective, it
seemed there was nothing new. But most of all, it seemed that AOP was very difficult
to control and prone to complex errors deriving from the use of the advanced language
features developed in aspect-oriented languages. Thus, we needed to understand how
AOP could work, how it was used and what type of new interactions it could introduce in
programs. This led us to empirically analyze a large set of aspect-oriented program and
propose new insights on AOP and how AspectJ features are in open source project [108].
To my knowledge, this is the most extensive study on aspect-oriented programming.

39

Chapter 4

Model transformation

How are model transformations built?
What are the specificities of MT wrt testing?
What are relevant test data?
Can we leverage metamodels for test selection?
How can test data generation be automated?
How can the oracle be expressed?
What are transformation requirements?
What are the faults in model transformations?

Model transformation

ack

tester
SUT

test(t,j)

coverage criteria on metamodel

evaluation of oracle expressions

constraint modeling input domain

automatic synthesis of test data

MMCC

metamodel pruning

MDA components

automatic model completion

analyzing the barriers for testing

fault model for transformations

Figure 4.1: Investigating model transformation

Model Driven Engineering (MDE) techniques [123] support extensive use of models
in order to manage the increasing complexity of software systems. Appropriate abstrac-
tions of software system elements can ease reasoning and understanding and thus limit
the risk of errors in large systems. Automatic model transformations play a critical role
in MDE since they automate complex, tedious, error-prone, and recurrent software de-
velopment tasks. Airbus uses automatic code synthesis from SCADE models to generate
the code for embedded controllers in the Airbus A380. Commercial tools for model
transformations exist. Together from Borland is a tool that can automatically add de-
sign patterns in a UML class model, Esterel Technologies have a tool for automatic code
synthesis for safety critical systems.

Other examples of transformations are refinement of a design model by adding de-
tails pertaining to a particular target platform, refactoring a model by changing its struc-
ture to enhance design quality, or reverse engineering code to obtain an abstract model.
These software development tasks are critical and thus the model transformations that

40

automate them must be validated.
A simple example of a model transformation consists of flattening a state machine.

Figure 4.2 illustrates a transformation that takes a hierarchical state machine as an in-
put and produces a flattened state machine as an output. The output is semantically
equivalent to the input but all hierarchical states are removed.

Figure 4.2: Model Transformation Example: Flattening a Hierarchical State Machine

The sets of possible input and output models for a transformation are each described
by a metamodel. A metamodel is a set of classes, relationships, and multiplicities that
define the concepts and the structure of a modelling language. Figure 4.3 shows a meta-
model for the structure of hierarchical state machines. A hierarchical state machine con-
tains states that have a number of incoming and outgoing transitions. The metamodel
distinguishes between two types of states, simple states that can be initial or final states,
and composite states that can contain composite or simple states. This metamodel is a
formal description of the structure of statecharts.

Figure 4.3: A Hierarchical State Machine Metamodel

In addition to describing metamodels with classes, attributes, and associations, it is
usually necessary to define constraints that relate the concepts in the metamodel more
precisely. For example, the metamodel shown in figure 4.3 does not constrain a compos-
ite state to contain only one initial state. This constraint must be added to the metamodel
but it cannot be defined using modelling languages such as EMOF. The Object Constraint

41

Language (OCL) is commonly used to define these additional constraints. The constraint
on the composite state could be written as follows:

context : Composite

inv : s e l f . ownedState −>
se l ec t (A b s t r a c t S t a t e as | as . oclIsTypeOf (S ta te)) −>

se l ec t (A b s t r a c t S t a t e s | s . oclAsType (S ta te) . i s I n i t i a l) −>
s ize ()=1

Listing 4.1: A constraint that forbids multiple initial states

A fault in a transformation can introduce a fault in the transformed model, which if
undetected and not removed, can propagate to other models in successive development
steps. As a fault propagates further, it becomes more difficult to detect and isolate. Since
model transformations are meant to be reused, faults present in them may result in many
faulty models.

To test the transformation shown in figure 4.2, we must perform the following activ-
ities:

• Generate test data: We need to generate input models that conform to the input
metamodel of the transformation. The input models that are generated as inputs
for a transformation are called test models. In our example, this requires gener-
ating several state machines that conform to the metamodel of figure 4.3. Test
models are manually or automatically generated in the form of graphs of meta-
model instances.

• Define test adequacy criteria: Since it is clearly not possible to test a transfor-
mation with all possible input models, we must define criteria to efficiently and
effectively select test models. Test adequacy criteria drive the selection of a subset
of test models that will be sufficient for testing. This helps reduce the time and
effort spent on testing. In our example, a test criterion for the flattening transfor-
mation could require that each class of the metamodel is instantiated in at least
one test model. No well-defined criteria exist for model transformation testing.
This challenge must be tackled to make testing practical and systematic.

• Construct an oracle: For software testing, the oracle determines if the result of
a test case is correct. There are several ways to construct an oracle for a model
transformation. If the expected model is available (e.g., from previous regression
tests), the oracle can compare the output model with the expected model. If the
expected model is not available (as is usually the case), a partial oracle that checks
expected properties of the output model should be constructed. For example, such
an oracle can check that the output model contains no composite states and has
the same number of simple states as the input model.

42

Model transformations constitute a class of programs with unique characteristics
that make testing them challenging. The complexity of input and output data, lack
of model management tools, and the heterogeneity of transformation languages pose
special problems to testers of transformations. In section 4.1, we identify current model
transformation characteristics that contribute to the difficulty of systematically testing
transformations [16]. On the basis of this survey of challenges, section 4.2 introduces
specific testing techniques [16, 126] and section 4.3 proposes feedback to MDE with
some techniques that lack for testing [130, 129]. All this work has been developed
as part of Franck Fleurey’s [57], Jean-Marie Mottu’s [96] and Sagar Sen’s [125] Phd
theses.

4.1 What we learned about model transformation

We have focused our understanding of model transformation on two points: learn about
the way transformations are developed in order to understand the difficulties for test-
ing these particular programs [16]; fault models for model transformations in order to
precisely understand what a testing technique should look for [97].

4.1.1 Barriers to Systematic Model Transformation Testing

When surveying the development methods for model transformation, we identify three
major difficulties for testing: the complexity of input and output data, the lack of model
management tools, and the heterogeneity of transformation languages pose special prob-
lems to testers of transformations.

Complex Input and Output Data

Model transformations manipulate data of a complex nature. The input and output
models are graphs of objects that are often large. Sometimes, the input or output models
contain multiple views (e.g., UML class diagram and sequence diagram views), and thus
consistency of views manipulated by transformations becomes a concern.

The structure of the graphs is constrained by a metamodel and the objects in the
graphs are instances of the classes defined in the metamodel. The metamodels can
themselves be large and complex structures. Moreover, additional constraints can be
expressed in the metamodel, usually with the OCL. This increases the complexity of
the metamodels; OCL is a rich language with which it is possible to define complex
constraints relating a large number of elements in the metamodel.

The complexity of the data manipulated by a transformation affects the generation
of test models. Manual test generation is error-prone because of the large number of
metamodel instances that must be created, and the relationships and attribute values
that must be set. Automatic test data generation is a complex constraint solving problem
because it requires synthesizing a graph that satisfies a large set of multiplicity and OCL
constraints, and test adequacy criteria. The main challenge for automatic resolution of

43

complex constraints is handling time and memory when exploring very large solution
spaces.

Since the metamodel completely describes the input domain of a transformation,
it provides a basis for defining test adequacy criteria. It is possible to define a large
number of criteria, such as instantiate all the meta-classes, combine different values
for the properties, and combine instances of different meta-classes. However, lack of
historical data on the types of errors typically found in transformations makes it difficult
to determine the effectiveness of these criteria and the fault models they can target.

The complexity of the output data complicates the oracle problem. It is difficult to
manually or automatically build the expected test result. When the expected output
model is available, the oracle needs to compare two models, i.e., two graphs of objects.
In this case, the oracle problem is as complex as the graph isomorphism problem, which
is NP-complete. If the oracle is specified by listing expected properties of the output
model, the construction of this oracle is complicated by the complexity of the output
metamodel that describes the output model. The tester must consider numerous con-
cepts and relationships to define the expected properties of the output model.

Model Management Environments

MDE development environments lack adequate support for model manipulation [65].
For testing model transformations, support is needed for building, editing, visualizing,
and analyzing models.

The construction of models involves either writing a program that builds the meta-
class instances and sets all the properties, or using model editors generated from a meta-
model (e.g., the default tree editor generated by EMF) to manually build the instances
and set values for all attributes and references. Writing a program is error-prone. Using
a generated editor instead of a tailor-made editor for a language is tedious because they
do not provide language-specific icons, dialog boxes for setting attributes values or assis-
tance for checking the completeness of the model (e.g., all attributes have been assigned
a value). This makes the manual definition of test models difficult and error-prone.

Visualizing output models is difficult because graphical editors (e.g., for UML or
domain-specific languages) often do not provide adequate support for layout of dia-
grams that are produced by a transformation or exported from another tool. A confus-
ing layout complicates manual analysis of the model, and the visual comparison of two
graphical representations. A possible solution is to query the output model and check
some properties using OCL analyzers.

For regression testing, testers need to compare the output models produced by two
versions of the transformation because a test model that was used in testing a previous
version of the transformation should produce the same output model. Thus, we need
sophisticated model comparison tools.

44

Heterogeneity of Transformation Languages and Techniques

The OMG has defined a model transformation standard called QVT. However, there
exist a large number of model transformation languages and techniques. Transforma-
tions can be implemented with general purpose programming languages (e.g., Java)
or languages dedicated to model transformations (e.g., Query/View/Transformation –
QVT)). The MTIP workshop [31] organized at MoDELS’05 was concerned with devel-
oping “an increased understanding of the relative merits of different model transfor-
mation techniques and approaches”. The workshop organizers specified several model
transformations and asked the authors to implement them. Eight papers presented 13
different techniques, which were divided into three categories: graph transformation
related approaches, declarative and rule based approaches, imperative and related ap-
proaches. Moreover, there are several tool-specific model transformation languages,
such as MetaEdit+ [91], and XMF-Mosaic. The approaches presented in the workshop
reflected the diversity of existing transformation languages and techniques.

Since it is impossible to know if any one of the many techniques will fit all the
needs for model transformations, the testing techniques need to take this diversity into
account. The diversity has a strong impact on the definition and the selection of effective
white-box test adequacy criteria. We cannot choose one language as a reference and
develop test criteria that are based on language elements.

4.1.2 Fault models

All faults that can occur in object-oriented or rule-based, declarative programs can also
occur in model transformations programs. However, in order to precisely understand
what a test case should detect in a model transformation, the usual fault models are not
sufficient. First, because usual fault models do not capture the specific faults transforma-
tion programmers may do if they are competent. They may forget some particular cases
(e.g. forget to deal with the case of multiple inheritances in an input model), manip-
ulate the wrong model elements etc. Since erroneous model transformation will differ
from the correct one by complicated modifications in the transformation, fault models
cannot consider a single faulty statement. Second, since a transformation program nav-
igates both the input and the output metamodels, most simple faults will disturb this
navigation in a non-consistent way (e.g. trying to navigate non-existing association due
to a syntactic replacement). Thus, these faults will be detected either during program-
ming, at compilation or at runtime. Third, the fault models should not take advantage
of a transformation language’s syntax. Indeed, today there are lots of model transfor-
mation languages which all have their specificities and which are very heterogeneous
(object oriented, declarative, functional, mixed). That leads us to choose to focus on the
semantic part of the transformation instead of the syntactic one imposed by a language.

To address the issues listed above, we define fault models on an abstract view of the
transformation program, by answering the following question: which type of fault could
be done during a model transformation implementation? For example, a transformation
goes all over the input model to find the elements to be transformed, a fault can consist

45

in the navigation of the wrong association in the metamodel, or in selecting the wrong
elements in a collection. During a transformation, output model elements have to be
created; a fault can consist in creating elements with the wrong type or wrong initializa-
tion. The analysis of these possible faults for a model transformation leads to distinguish
4 abstract operations linked to the main treatments composing a model transformation:

• navigation: the model is navigated thanks to the relations defined on its input/out-
put metamodels, and a set of elements is obtained.

• filtering: after a navigation, a set of elements is available, but a treatment may be
applied only on a subset of this set. The selection of this subset is done according
to a filtering property.

• output model creation: output model elements are created from extracted ele-
ment(s).

• input model modification: when the output model is a modification of the input
model, elements are created, deleted or modified.

These operations define a very abstract specification of transformations, which high-
lights the error-prone steps when programming a model transformation. Any model
transformation combines and mixes these 4 operations of navigation/filtering (read
mode) and output/input model modification (write mode). We thus identify possible
faults for model transformations on the basis of these abstract operations [97].

Faults related to the navigation:

• Relation to the same class change: This fault replaces the navigation of one as-
sociation toward a class with the navigation of another association to the same
class.

• Relation to another class change: This fault replaces the navigation of an associa-
tion toward a class with the navigation of another association to another class.

• Relation sequence modification with deletion: During the navigation, the transfor-
mation can successively navigate a sequence of relations, this fault removes the
last step from the composed navigation.

• Relation sequence modification with addition: This fault is the opposite of the
previous fault.

Faults related to the filtering:

• Collection filtering change with perturbation: This fault modifies an existing filter-
ing, by influencing its parameters. One criterion could be a class’ property or the
class’ type; this fault disturbs this criterion.

46

• Collection filtering change with deletion: This fault deletes a filter on a collection;
the mutant returns the collection it was supposed to filter.

• Collection filtering change with addition: This fault is the opposite of the previous
one. It uses a collection and processes a useless filtering on it.

Faults related to the creation:

• Class’ compatible creation replacement: This fault replaces the creation of an ob-
ject by the creation of an object of a compatible type. It could be an instance of a
child class, of a parent class or of a class with a common parent.

• Classes’ association creation deletion: This fault deletes the creation of an associa-
tion between two instances.

• Classes’ association creation addition: This fault adds a useless creation of a rela-
tion between two class instances of the output model, when the metamodel allows
it.

More details about these fault models, including examples and illustrations, can be
found in a paper published at ECMDA [97]

4.2 Testing contributions to model transformations

We start from a global roadmap for model transformation testing issues [61] in order to
develop effective techniques. We detail here the definition of coverage criteria on the
input domain, the automatic synthesis of test models and some experiments to express
the oracle.

4.2.1 Coverage criteria on source metamodel

To test a model transformation, a tester will usually provides a set of test models that
conform to the source metamodel of the transformation, run the transformation with
these models and check the correctness of the result. While it is fairly easy to provide
some input models, qualifying the relevance of these models for testing is an important
challenge in the context of model transformations[16]. As for any testing task, it is im-
portant to have precise adequacy criteria that can qualify a set of test data. For example,
a classical criterion to evaluate the quality of the test data regarding a program is code
coverage: a set of test data is adequate if, when running the program with these data,
all statements in the program are executed at least once. Other criteria are functional
or “black-box” [27] and rely only on a specification of the system (input domain or
behavior) under test.

We propose a framework for selecting and qualifying test models for the valida-
tion of model transformations [59]. We propose “black-box” test adequacy criteria for

47

this selection framework in order to leverage the complete description of the input do-
main provided by the source metamodel of the transformation. It is important that the
proposed approach is generic and compatible with any model transformation language
because there are many languages for transformation and none of them has emerged as
the best or the most popular. The proposed criteria can be used to qualify test data for
model transformations implemented with a general purpose language such as Java, the
specific model transformation language QVT [112] proposed by the OMG, a metamod-
elling language such as Kermeta [102], a rule-based language such as Tefkat [50], or a
graph transformation language such as ATOM3 [40]. The second reason why we choose
black box criteria is to leverage the fact that the input domain for a transformation is
defined by a metamodel. Indeed, the source metamodel of a transformation completely
specifies the set of possible input models for a transformation. In this context, the idea
is to evaluate the adequacy of test models with respect to their coverage of the input
metamodel. For instance, test models should instantiate each class and each relation of
the input metamodel at least once.

Models are complex graphs of objects. To select useful models we first have to de-
termine relevant values for the properties of objects (attributes and multiplicities) and
next to identify useful structures of objects. For the qualification of values of properties
we propose to adapt a classical testing technique called category-partition [113] testing.
The idea is to decompose an input domain into a finite number of sub-domains and to
choose a test datum from each of these sub-domains. For the definition of object struc-
tures, we propose several criteria to assemble properties and form pieces of model that
should be covered by the test models.

An important contribution of this work consists in defining a metamodel that for-
mally captures all the important notions necessary for the evaluation of test models
(partitions and object structures). This metamodel, given figure 4.4, provides a con-
venient formal environment to experiment different strategies for test selection, and a
framework that checks if test models are adequate for testing. It distinguishes two types
of partitions modelled by the classes VALUEPARTITION and MULTIPLICITYPARTITION that
respectively correspond to partitions for the value and the multiplicity of a property. For
a MULTIPLICITYPARTITION, each range is an integer range (class INTEGERRANGE). For a
VALUEPARTITION, the type of ranges depends on the type of the property: STRINGRANGE,
BOOLEANRANGE, INTEGERRANGE).

The metamodel defines the notions of model fragments (MODELFRAGMENT), ob-
ject fragments (OBJECTFRAGMENT) and property constraints (PROPERTYCONSTRAINT)
to represent combinations of partition ranges. A model fragment is composed of a set
of object fragments. An object fragment is composed of a set of property constraints,
which specify the ranges from which the values of the properties of the object should be
taken from. It is important to note that an object fragment does not necessarily define
constraints for all the properties of a class, but can partially constrain the properties (like
a template).

On the basis of this metamodel, we have developed the metamodel coverage checker
(MMCC) that automatically analyses a set of test models and provides the testers with

48

Figure 4.4: Metamodel for the definition of coverage criteria for test models

valuable feedback concerning missing information in their test models. This information
can then be used to iteratively complete a set of test models. It takes two inputs: the
source metamodel of the transformation under test and a set of test models. From the
input metamodel, MMCC generates the default partitions for all features contained in
the metamodel, then combines these partitions to build a set of model fragments. During
both partitioning and combination the tester may enrich the generated models to take
domain specificities of the transformation under test into account.

When the model fragments are generated from the input metamodel, MMCC checks
that there is at least one test model that covers each model fragment. If there are
fragments not covered by the test models, the tester should improve the set of test
models by adding new models to cover the identified remaining fragments. This process
does not only allow for an estimate of the quality of a set of test models but also provides
the testers with valuable information to improve the test set.

4.2.2 Automatic test data generation

We explore greedy [37] and constraint-based approaches [126] for automatic generation
of models that cover all model fragments. The greedy algorithm generates all fragments
for a source metamodel and then assembles them in order to form complete models for
testing a model transformation [37]. It is necessary to fix the number of fragments in the
generated models: between one large model that covers all object fragments and a set
of small models, each one covering one model fragment. After each object fragment is
covered, it is necessary to complete the model. Here we have adapted Tarjan’s algorithm
[138] for avoiding cycle issues when adding objects to complete the model.

This initial experiment provide valuable insights on the difficulties for automatic
generation of test models. However, the greedy approach has a number of limitations,
in particular the identification of fragments that can be combined together. Also, the

49

generated models conform to the metamodel but do not satisfy the additional OCL con-
straints that can be specified on the metamodel. These observations lead us to investi-
gate constraint-based techniques for this automatic generation task [126, 127].

For this second exploration of automatic model synthesis the major issue is due to
the large amount of constraints that these models have to satisfy. There are two kinds
of constraints that must be considered for test models: the constraints that define the
licit input models for the transformation and the constraints that aim at selecting models
with a specific testing goal. In addition to this large set of constraints, another challenge
consists in dealing with the heterogeneous formalisms in which these constraints are
expressed.

The solution studied in this work focuses on four types of constraints expressed in
different formalisms, as illustrated in figure 4.5. Two types of constraints define the
set of licit models for the transformation: the metamodel and the pre condition. The
metamodel is specified in two parts: a structure built with the ECORE language [52], and
constraints on this structure expressed in OCL. The pre-condition for the transformation
is also expressed in OCL. Two types of constraints are used to select test models among
the whole set of licit models: partitions on the input domain and test model objectives
that are derived from the requirements of the transformation. The partitions are derived
from the metamodel and are composed in model fragments according to the test criteria
defined in [59]. Currently, there exists no particular modelling language to specify the
requirements for a transformation or to express test model knowledge. Thus, we model
them directly in ALLOY [73], which is the underlying language for test model synthesis.

Figure 4.5: Combining heterogeneous constraints for automatic model synthesis

This approach allows the automatic generation of models that cover all the model
fragments and that satisfy all constraints that specify the input domain of the transfor-
mation. Even if it has the usual scalability issue of constraint-based approaches, it is
much more effective than the previous approach because all the generated models can
effectively be passed to the transformation as input test data. We develop the Pramana
tool [124] that bridges the gap between the ECORE and ALLOY worlds for automatic

50

model synthesis.

4.2.3 Oracle for model transformation testing

The oracle checks the validity of the output model returned by the transformation of one
test model. It analyzes a model and returns the verdict for the test case.

Few works mention the oracle function for model transformation, and they usually
consider that the expected model for a particular run of the transformation is available
[71, 89]. Thus, they transform the problem of oracle definition into a problem of model
comparison. Although this approach has to be considered and efficient solutions for
model comparison will help the definition of an oracle function, we believe that consid-
ering the oracle only through this perspective is too restrictive. First, the expected model
is not easy to obtain, and the tester might face difficulties to produce expected models
for all the test cases. In practice this can hardly be used beyond regression testing (in
that case the expected model can be produced by the previous version of the transforma-
tion). Second, there are several other ways to analyze the output model and produce a
verdict that should not be neglected because they could fit more easily the tester needs.
Finally, we believe that a model transformation testing oracle should not be reduced to
a data but has to be considered as a full function with its parameters.

In order to analyze the definition of an oracle in a broader way than simple model
comparison, we consider the oracle as a parameterized function [99]. The first param-
eter is the output model returned by the transformation. The second parameter must
be provided by the tester, and we call it the “oracle data”. This data provides details to
verify the output model. It is the main parameter of the oracle. For instance, it can be
the expected model of the test case; it can also be the test model if an oracle needs to
extract information from it to check the output model.

In the following, we analyze the different data that can be provided and the different
functions that can be defined, depending on the oracle data.

Three MDE techniques to implement oracle functions

We introduce three Model Driven Engineering (MDE) techniques that manipulate and
analyze models and that can be used to implement model transformation oracles.

Model comparison Alanen et al. [4] present a theoretical framework for performing
model differencing relying on the use of unique element identifiers for the model ele-
ments. Other algorithms based on the metamodels despite the objects identifiers have
been proposed. In [89], Lin et al. proposed such an algorithm. Model comparison is
implemented in tools like EMFCompare [62].

Contracts Several researchers have studied the use of contracts as a partial oracle func-
tions in object oriented system [33, 86]. We propose a process for specifying and imple-
menting model transformations oracle with contracts expressed in OCL [98]. Kolovos et

51

al. [81] link the output and the input models with rules. Küster et al. [83] have also
noticed that constraints can be used as oracle.

Pattern matching We consider patterns expressed as OCL assertions or as model snip-
pets [119, 99]. For the oracle, the patterns express constraints on the output model.
They can be considered as assertions that should be true when running the transforma-
tion with a particular test data. Each assertion or a conjunction of several ones can be
associated to a test case as the oracle data of an oracle function.

Six oracle functions for model transformation

Six solutions are thus available to obtain the oracle when executing a test data on a
model transformation.

1. Oracle using a reference model transformation:

Compares the output (mtout) of the transformation with a reference model (mt)
generated by a reference model transformation (R). The oracle function O1 is de-
fined as:

O1 (mtout , R , mt) : Boolean i s
do

resu l t := compare (mtout , R(mt))
end

2. Oracle using an inverse transformation

Compares the test model mt and the model generated by two successive: the first
with the transformation under test and the second with the inverse transformation
(I). The oracle function O2 is defined as:

O2 (mtout , I , mt) : Boolean i s
do

resu l t := compare (mt , I (mtout))
end

3. Oracle using an expected output model

Compares the output model (mtout) with an expected model (mtexpected) pro-
vided by the tester. The oracle function O3 is defined as:

O3 (mtout , mtexpected) : Boolean i s
do

resu l t := compare (mtout , mtexpected)
end

52

4. Oracle using a generic contract

A generic contract Cg is a post condition of the transformation which constrains
the outputs depending on the inputs. Cg checks that the output model mtout is
correct with respect to the test model mt. The oracle function O4 is defined as:

O4 (mtout , Cg , mt) : Boolean i s
do

resu l t := (mtout , mt) . s a t i s f i e s (Cg)
end

5. Oracle using an OCL assertion

The oracle checks if the output model satisfies the OCL assertion (Cd). The oracle
function O5 is defined as:

O5 (mtout , Cd) : Boolean i s
do

resu l t := mtout . s a t i s f i e s (Cd))
end

6. Oracle using model snippets

The oracle checks if the output model (mtout) contains n model snippets (ms).
The oracle function O6 is defined as:

O6 (mtout , l i s t \{(ms , n , op) }) : Boolean i s
do

// compares 2 numbers depending on a l o g i c a l ope ra to r op

// r e t u r n s a boolean

resu l t := l i s t . f o r A l l (compare (nb_match (mtout , ms) , n , op))
end

These 6 functions can be instantiated for various model transformation languages.
The choice of or another function depends mostly on what information is available (in-
verse transformation, contracts) and the necessity for evolution.

4.3 Feedback to model transformation engineering

We faced a number of lacks in MDE tools when developing our testing contributions. In
some cases we tackled these gaps with original contributions to MDE, and used them
to develop model transformation solutions. We develop two techniques related to the
automatic generation of test data. The first one is related to the observation that most
transformations declare a source metamodel which is actually much larger than the
actual, effective source metamodel. This is a major issue for automatic generation of
source models since there is a great chance that the generator produces models which do
not make any sense for the transformation under test. Thus, we specify and implement

53

a metamodel pruning algorithm [130] that can ‘extract’ the effective source metamodel
from a large source metamodel. Second, we often feel the need to specify pieces of
models that we would like to have in a test model, but we do not really want to specify
the rest of the model because it should not impact the test case. In order for a tester to
do that we propose a tool for automatic completion of model [129].

The third feedback we provide to MDE wraps up all our proposals for testing in a
general model that encapsulate tests, contracts and transformation in a trustable com-
ponent [98].

4.3.1 Metamodel pruning

We present a metamodel pruning algorithm [130] that takes as input a large metamodel
and a set of required classes and properties, to generate a target effective metamodel [61].
The effective metamodel contains the required set of classes and properties for a model
transformation to proceed correctly. The term pruning refers to removal of unnecessary
classes and properties. From a graph-theoretic point of view, given a large input graph
(large input metamodel) the algorithm removes or prunes unnecessary nodes (classes
and properties) to produce a smaller graph (effective metamodel). The algorithm de-
termines if a class or property is unnecessary based on a set of rules and options. One
such rule is removal of properties with lower bound multiplicity 0 and who’s type is not
a required type.

Given a set of required classes and properties the rationale for designing the algo-
rithm was to remove a maximum number of classes and properties facilitating us to
scale a formal method to solve constraints from a relatively small input metamodel. For
instance, we remove all properties which have a multiplicity 0..* and with a type not
in the set of required class types. However, we also add some flexibility to the pruning
algorithm. We provide options such as those that preserve properties (and their class
type) in a required class even if they have a multiplicity 0..*. Whatever option is chosen,
the resulting metamodel is a supertype of the large input metamodel [133], and identi-
cal meta-concept names are preserved. These properties ensure backward compatibility
of the effective metamodel with respect to the large input metamodel.

Figure 4.6, displays an overview of the pruning algorithm. The inputs to the algo-
rithm are: (1) A source metamodel MMs = MMlarge, (2) A set of required classes Creq

(3) A set of required properties Preq, and (4) parameters to make the algorithm flexible
for different pruning options

The set of required classes Creq and properties Preq can be obtained from various
sources: (a) A static analysis of a model transformation can reveal which classes and
properties are used by a transformation (b) The sets can be directly specified by the user
(c) A model itself uses objects of different classes. These classes and their properties can
be the sources for Creq and Preq.

The output of the algorithm is a pruned effective metamodel MMt=MMeffective

that contains all classes in Creq, all properties in Preq and their associated dependencies.
Some of the dependencies are mandatory such as all super classes of a class and some

54

are optional such as properties with multiplicity 0..* and whose class type is not in Creq.
A set of parameters allows us to control the inclusion of these optional properties or
classes in order to give various effective metamodels for different applications. The
output metamodel MMeffective is a subset and a super-type of MMs.

Large Metamodel Possible Sources

1. Static analysis of model transformation/program

2. User specified

3. Test objective

4. Software process

5. Model(s)

Set of required classes Creq

Set of required properties Preq

Inputs

Parameters Metamodel Pruning Algorithm

Output

super-type and sub-set of

Pruned Metamodel

Figure 4.6: A metamodel pruning process

We use the notion of model typing that to demonstrate that the generated effective
metamodel, a subset of the large metamodel from a set-theoretic point of view, is a super-

type , from a type theoretic point of view, of the large input metamodel. This means that
all programs written using the effective metamodel can also be executed for models of
the original large metamodel. The extracted effective metamodel is very much like a
transient DSML with necessary concepts for a problem domain at a given time.

Original UML No option Option 1 Option 2 Option 3
Number of classes 246 31 31 31 31

Number of properties 583 15 26 30 30

Table 4.1: Pruning the UML for a CNES transformation

As an example, we present an application of our algorithm to generate an effective
metamodel to specify test models for a model transformation. The model transformation
is developed by the French Spatial Agency (CNES) to transform UML models to code
for embedded systems. Table 4.1 shows some metrics on the number of classes and
properties when pruning the UML metamodel for this transformation. Options 1, 2 and
3 are options on properties that are selected or not, depending on their cardinality. For
example, a property that has a lower bound 0 can be selected or not.

4.3.2 Automatic model completion

Generative modelling tools such as AToM3 (A Tool for Multi-formalism Metamodelling)
[40], GME(Generic Modelling Environment) [88], GMF (Eclipse Graphical modelling

55

Framework) [53] can synthesize a domain specific visual model editor from a declara-
tive specification of a domain specific modelling language. A declarative specification
consists of a metamodel and a visual/textual syntax that describes how language el-
ements (objects and relationships) are represented in the model editor. The designer
of a model uses this model editor to construct a model on a drawing canvas. This is
analogous to using an integrated development environment (IDE) to develop a program
or a word processor to enter sentences. However, IDEs such as Eclipse present recom-
mendations for completing a program statement when possible based on its grammar
and existing libraries [80]. Similarly, Microsoft Word presents grammatical correction
recommendations if a sentence does not conform to natural language grammar. Here
we investigate the possibility of proposing recommendations for model completion.

The major difficulty for providing completion capabilities in model editors is to inte-
grate heterogeneous sources of knowledge to synthesize correct recommendations. The
completion algorithm must take into account the concepts defined in the metamodel,
constraints on the concepts in the metamodel and the partial model built by a domain
expert/user. These three sources of knowledge are obviously related (they refer to the
same concepts) but are expressed in different languages, sometimes in different files,
and in most cases by different people and at different moments in the development cy-
cle as they are separable concerns. We propose an automatic transformation from all
these sources of knowledge to an Alloy [73] model. The generated Alloy model is then
used to synthesize a set of Boolean CNF formulae by the KodKod engine [140] available
in the Alloy Java API. Solving this set of Boolean CNF using a satisfiability (SAT) solver
returns one or more possible solutions for completing the model.

Our transformation from the different sources to Alloy is integrated in the software
tool AToM3. The metamodel for a DSML is built directly in AToM3’s model editor us-
ing its class diagram formalism. The constraints on the concepts of this metamodel are
defined using Alloy facts. Using this information and a description of the concrete vi-
sual syntax (specified in an icon editor) for a modelling language, AToM3 synthesizes a
visual model editor for the DSML. The partial model can be built and edited in the gener-
ated model editor and the designer can ask for recommendations for possible automatic
completions [129].

Figure 4.7 displays an example. A modeller or a tester specifies she wants a model,
which has two states, related by a transition, two other states related by another transi-
tion and an additional state. Our tool transforms this piece of a model to a set constraints
and encodes all information in the metamodel in a set of additional constraints. Then, it
solves the whole set of constraints in order to generate a complete model that includes
the initial piece of model as well as elements that make it a complete model correct with
respect to the metamodel.

4.3.3 Encapsulating model transformations into components

Based on the analysis and testing contributions detailed above, we propose a model to
encapsulate model transformations in components called MDA components. The contri-

56

Figure 4.7: Initial and completed models

bution of this work is to propose a model for trustable components as well as a method-
ology to design and implement such components [98]. Trustworthiness is a general
notion, which includes security, testability, maintainability and many other concerns.
Here, we claim that trust is, in first, dependent on the quality of the tests in relation
with the completeness of the specification, captured by executable contracts (as defined
in design-by-contract [92]). While building MDA components, we consider it as an or-
ganic set composed of three facets: test cases, an implementation and contracts defining
its specification. A trustable component is considered as being “vigilant”, in the sense
it embeds contracts efficient enough to detect most of the erroneous states at runtime.
Trust is evaluated using testing-for-trust process and reflects the consistency between
the specification and the implementation of the component.

The model for trustable MDA components is based on an integrated design and test
approach for software components. It is particularly adapted to a design-by-contract
[92] approach, where the specification is systematically translated as executable con-
tracts (invariant properties, pre/postconditions of methods). In this approach, test cases
are defined as being an “organic” part of a component: a component is composed of its
specification (documentation, methods signature, invariant properties, pre/postcondi-
tions), one implementation and the test cases needed for testing it. Figure 4.8 illustrates
this view of a component with a triangle representation.

From a methodological point of view, we argue that the trust we have in a component
depends on the consistency between its three facets. The confrontation between these
three facets leads to the improvement of each one. First, a good set of test cases is
generated. Then it is possible to improve the implementation: running the good test
cases allows to detect faults and to fix them. At last the accuracy of contracts can be
improved to make them effective as an oracle function for test cases.

The trust in the component is thus related to the test data effectiveness and the
contracts “completeness”. We can trust the implementation since we have tested it with
a good test data set, and we trust the specification because it is accurate enough to derive
effective contracts as oracle functions.

57

Figure 4.8: rust based on triangle consistency

4.4 Conclusion

Our work around testing and model transformation has expanded over 6 years (2004
[61] - 2010 [131]) and is the most balanced representation of the QLTF pattern. It
started at a time where we could hardly develop automatic model transformations, and
certainly not test them, while there are currently a large number of model transforma-
tion tools and there are more work on testing. Thinking about the question of testing
at the emergence of model transformation techniques in MDE drove the development of
the Kermeta language that integrated verification concerns right from its initial design
in Franck Fleurey’s PhD [57]. This platform allowed us to experiment innovative ideas
both in the field of testing with the construction of test coverage tool for transformations
[59] and in the field of transformations with the definition of a metamodel pruning algo-
rithm [130] and the introduction of footprints for model operations [74]. All these work
also gave us enough understanding of both fields to precisely characterize the remaining
challenges for model transformation testing and propose future research directions [16].
In section 5.2 I detail some of these directions that I will explore in future work.

59

Chapter 5

Conclusion and Perspectives

5.1 Conclusion

There have been, there are and there always will be new paradigms to build software in-
tensive systems. These paradigms emerge to fit new domains, to manage the complexity
of requirements or to suit different types of developers. They aim at improving quality,
increasing reuse or enhancing communication. However, they usually cannot prevent
the presence of errors in software and, it is necessary to develop verification techniques
along with the definition of new paradigms. One could argue that verification tech-
niques are generic and should not need specialization for each paradigm. Our claim is
that defining specialized verification techniques allows to look for the specific faults in-
troduced by each paradigm; this allows providing tools that developers can understand
and use if they are building software in one particular paradigm; we also believe that
thinking about verification right from the definition of a paradigm allows one to improve
the quality of software developed in this paradigm.

The work presented here focuses on verification through testing. It summarizes
the investigations of testing strategies for object-oriented programming (OOP), aspect-
oriented programming (AOP) and model transformations. To reflect the tight relation-
ship between a particular paradigm for software construction and the associated testing
techniques, we introduce the Question-Learn-Test-Feedback pattern (QLTF). This pattern
captures the idea that, to test within paradigm, it is necessary to understand how it
works, what is it meant for and what are the constraints for testing. For each paradigm,
our work to develop testing techniques starts with a set of questions. These questions
drive our initial experiments within a paradigm and lead to learning the characteristics
of this paradigm that will be useful for testing. What we learn can lead to (1) the pro-
posal of testing techniques that target specific errors in the paradigm; (2) feedback to
the paradigm in the form of new constructs that make it more testable.

The QLTF pattern led to the following contributions in three paradigms

60

Object-oriented programming

• Learn. We learned about testability of object-oriented design models in the pres-
ence of Design Patterns and we analyzed the impact of Design by Contract on the
quality of object-oriented programs [17, 86].

• Test. This understanding of the object-oriented paradigm led to the definition of
the following test techniques: a bacteriologic algorithm for the automatic improve-
ment of unit test suites [19, 12, 11, 13, 15]; a new test criterion to drive the gen-
eration of test cases that can optimize the accuracy of fault localization algorithms
[87, 60, 14]; tools to support experiments with these proposals.

• Feedback. We also provided feedback to object-oriented design through the pro-
posals of a UML profile to improve early testability [21, 20, 22, 18].

Aspect-oriented programming

• Learn. We performed an empirical analysis of open source aspect oriented pro-
grams to learn about the usage of AOP [108].

• Test. This allowed us to better understand how to test these programs and led to
three proposals for testing: a static analysis to understand the impact of aspect
weaving on test suites [46]; a specific oracle for testing pointcut descriptors in
AspectJ; we also built a mutation tool to evaluate the fault detection abilities of
our proposals [42].

• Feedback. We also proposed feedback to the aspect-oriented paradigm in the form
of a framework for the specification of interactions between aspects and base pro-
gram [105, 107]; we specified a measurement environment for aspect-oriented
programs.

Model transformation

• Learn. We learned about the barriers for testing model transformations, which
mainly lie in the complex nature of input / output data, the heterogeneity of trans-
formation languages and the lack of support in model management environment
[16]. In order to drive our investigation of testing techniques we also learned
about the particular fault models in transformations[97].

• Test. We proposed three contributions to testing transformations: black-box cov-
erage criteria over the input domain of a transformation [61, 59]; an imperative
algorithm for the automatic generation of test models [37], and SAT-based tech-
nique [126, 127]; a family of techniques for the oracle [99].

• Feedback. While developing our work on testing, we made proposals for feedback
to the model transformation community: a metamodel pruning algorithm for the

61

identification of a precise input domain [130]; a tool for automatic completion of
models [128, 129]; a component model for transformations [98].

As a concluding remark about all these application of the QLTF pattern, we can
notice that some elements occurred in all cases, which might reveal general knowledge
about the integration of software testing in various design contexts. The first element
that was always present as a key enabler for the integration of design and test is the
presence of contracts. For object-oriented programming, aspect-oriented programming
and model transformations, contracts were always useful to improve the design as well
as to help testing with more information about the input domain and the expected result.
The other element that was useful in all our studies was the systematic investigation of
dedicated fault models. This helped both to understand what is the objective for testing
and to evaluate the quality of the proposed testing solutions.

Two major trends in emerging software construction paradigms consist in (i) devel-
oping effective techniques that facilitate the expression of separate concerns with hetero-
geneous formalisms while (ii) increasing the degree of variability among all concerns.
These two trends address the new challenges imposed by software intensive systems that
are heterogeneous and prone to change due to their adaptive nature.

In future work I will develop a balanced activity between extensions of MDE and
innovative verification techniques to address the construction of software-intensive sys-
tems. Next section provides details about these future work.

5.2 Perspectives

Major foundational works have set Model-Driven Engineering (MDE) as a sound ap-
proach for designing, verifying and building software systems [54, 6, 134, 36]. Current
challenges for MDE emerge from the characteristics of future software-intensive sys-
tems. These systems have tight interactions with their environment, are heterogeneous
by nature (they capture interactions between humans, mobile devices, physical envi-
ronment, etc.) and prone to frequent changes (devices come in and out, actors change
the requirements, the environment conditions change) [146]. In order to address the
construction and the analysis of these systems, MDE has to develop new mechanisms
to improve separation of concerns with heterogeneous formalisms and to allow high
degrees of variability in models.

These new requirements for MDE and software-intensive systems (heterogeneous
models and high degree of variability) will have a major impact on V&V:

• separation of concerns. On one hand, the generalisation of separation of concerns
in models encourages the construction of several views on the model, expressed in
different formalisms. On the other hand, existing V&V techniques such as model
checking or testing assume one complete, homogeneous behavioural model. This
gap is a serious issue for the verification of complex systems. Recent work by Krahn
et al. [82] propose new approaches for the composing of languages. Model-based

62

testing is also an example of language composition for verification: it can compose
a state-based model, structural constraints and a class diagram to generate test
cases [142]. These approaches have to be generalised in order to allow the inte-
gration of new formalisms for V&V and thus adapt V&V to the new requirements
of future systems.

• high degree of variability. The increased degree of variability at different levels
of abstraction introduces a high degree of uncertainty and even inconsistency in
models [28]. This prevents using current solutions for V&V which require the def-
inition of a consistent, stable model. Recent studies investigate the verification of
highly variable systems. For example, in the very dynamic context of web services
Rosario et al. [121] introduce ’soft’ contracts that can specify expected values over
unstable quality of service, or Kattepur et al. [77] propose a systematic sampling
of the QoS variability space to estimate global quality. These efforts must be ex-
tended in order to address verification and variability in an integrated, systematic
way.

In future work I will investigate verification in heterogeneous, highly variable mod-
els, following the QLTF pattern (figure 5.1). The discussions above emphasize the gap
between the current state of V&V and the direction in which MDE is going in order
to address the challenges of emerging software-intensive systems. In other words, we
know in which direction these systems want to go, we are currently starting to build
the abstractions and MDE mechanisms that will assist their development, but we cannot
know today how these systems will be verified. A consequence of this gap is that the
Learn and Feedback facets of the QLTF pattern will be at the core of my research in the
short term. This will aim at setting the techniques on which I will investigate innovative
V&V techniques for heterogenous, variable models in the mid term.

Separation of concerns
High degree of variability

ack

tester
SUT

test(t,j)

Verification and Validation
over large models

Composing heterogeneous models
Searching variability spaces

Rigorous empirical analysis

What models for large software-intensive systems?
What types of defects?
What verification techniques?

Figure 5.1: QLTF for future MDE in software-intensive systems

The next 4 sections provide detailed perspectives for MDE mechanisms that aim at
addressing the challenges of software intensive systems while setting the fundamental

63

infrastructure for V&V. They are synthesized in figure 5.2. Section 5.2.1 proposes future
work for the composition of heterogeneous models, and section 5.2.3 summarizes the
directions I will follow to deal with large variability spaces in models. Sections 5.2.2
and 5.2.4 introduce two orthogonal perspectives: section 5.2.2 emphasizes the need
to introduce human knowledge in order to build large and sustainable models; section
5.2.4 insists on rigorous experimentation as the scientific foundation for this project.
Section 5.2.5 opens broader perspectives for future research on V&V, inspired by a series
of recent work that draw a strong analogy between software engineering and biological
phenomena.

Support for verification in large system models

Model

composition in

heterogeneous

formalisms

Search-based

modelling space

exploration

Human domain

expertise

Empirical

evaluation

Figure 5.2: Investigating foundations for verification and analysis in large models

5.2.1 Model composition over heterogeneous domains

Separation of concerns and domain-specific modelling are necessary to handle the com-
plexity of large-scale models. However, they imply a major consequence: when analyz-
ing a global model that aims at capturing several concerns, it is necessary to understand
how each concern relates to the others, and thus to understand the semantics of the
different domain-specific modelling languages (DSMLs) with respect to the others. This
means understanding the relationships between models and their respective metamodels
with associated semantics.

In future work I will investigate the formalization of abstract composition operators
to understand the relationships between models and metamodels. This will include the
following points for investigation

64

• Understand the foundations of model composition. Currently there exist a large
number of model composition approaches, but all of them are dedicated to one
modelling formalism (e.g., class models or statecharts) and one intention for com-
position (e.g., fusion or weaving). The goal here is to understand what unifies
all these composition mechanisms and to define a generic framework for model
composition.

• Model typing to deal with heterogeneous formalisms. In order to compose a pair of
models that are specified with two different DSMLs, it is necessary to understand
the relationship between the languages. In this context, the composition of meta-
models can be viewed as a model type, that synthesizes some concerns common to
these DSMLs. This type can serve for the definition of model manipulations that
are reusable on the different DSMLs. The goal here would be to extend the work
on model typing to allow the definition of semantic links between types and to
allow the sound composition of DSMLs

• Relationships between metamodels and models. Assuming it is possible to com-
pose types on one hand and to compose models that conform to these types on the
other hand, the first composition operation sets constraints over the second one.
This means that the composition of a pair of models depends on the relationships
that have been established between the pair of DSMLs. The goal here is thus to set
operators that can interpret the relations between types and use them to constrain
or drive the composition of models that conform to these types.

5.2.2 Bring domain expertise in model manipulation

When implementing an operation that automatically manipulates models (refinement,
translation, checking, etc.) one always has to face a complex trade-off between gener-
icity and domain specificity. Genericity offers the advantage of a manipulation that can
run on a variety of models (e.g., in different projects or in different formalisms). On the
other hand, considering domain specific elements for the manipulation can allow the
computation of a more relevant result. In a context where the number of application
domains and modelling contexts keeps growing, it is very difficult to find the best trade-
off. An alternative can consist in building manipulations which precisely identify points
that can be tuned to a particular context. When the manipulation executes, a human
domain expert, provides the information.

This future work will investigate three different ways of bringing domain expertise
in model manipulation: specific modelling concepts, dedicated languages, interactive
modelling. These three approaches are detailed below.

• We have recently investigated the explicit modelling of intention in modelling ac-
tivities [103]. This work focuses on the idea that “the purpose of a model must
be understood before the model can be discussed” [122]. This means that human
modellers always have an intention in mind when they build a model, and this in-
tention can be more important for understanding than the information that is put

65

in the model. Our work introduces a formal model of different intentions that can
exist between models. In the future we would like to experiment how this explicit
knowledge of intention can be used. For example, modellers can add an inten-
tional dimension in models in order to understand what changes are acceptable
according to the initial intention, in case the system has to evolve.

• A practical way to let domain experts bring their knowledge in model manipula-
tions is to offer them languages that are close to their domains and that can be
automatically translated in the terms of the manipulation. These languages can
take the form of a subset of English, with pre-defined template sentences. The set
of authorized sentences is specific to one domain, and each sentence can be associ-
ated to a set of rules to translate the sentence in a formal expression usable by the
manipulation. A specific case of such template sentences is known as boilerplates
[72] that are used to express requirements in a form that can be automatically
simulated and checked for logical inconsistencies.

• Domain experts possess valuable information about what they expect as a good
solution for a model manipulation. However, this knowledge is seldom formalized
in a way that manipulations could use it automatically. A possible approach to
still benefit from this knowledge when running the manipulation is to have an
interactive approach in which the tool proposes solutions, asks the expert’s opinion
and take it into account to propose better solutions. This approach is tightly related
to search-based approaches and we have started investigating such interactions in
the context of invariant discovery for the specification of domain models (Juan
Cadavid’s PhD started in November 2009)

5.2.3 Search-based exploration of variability in modelling spaces

The more concerns we will be able to compose in models, the more views we will be
able to integrate, the more complex it will be for modellers to understand all interactions
and all impacts these concerns have on functional or qualitative properties of the global
model. In addition to these concerns, the presence of variability in models increases the
number of interactions and thus the size of the global space for verification. For example,
this growth occurs in models for software product lines, service-oriented architectures
and self-adaptive systems. Human-based reasoning cannot deal with this growing num-
ber of interactions, interferences and system variants. This future work will consist in
investigating constraint programming and meta heuristics to explore modelling spaces
and efficiently search for good solutions in the context of verification tasks.

• One important task for this future work is to understand which distance measures
can exist between models. This will serve, for example, to evaluate the similarity
between models during the automatic exploration of a modelling space. In this
task we will analyze how distances between models can be adapted from existing
similarity measures between graphs. In particular we will investigate how the fact

66

that models are typed attributed graphs (which types relations are specified by a
metamodel) can help in taming the general complexity of graph distance.

• Constraint programming offers powerful theories and tools to specify customized
strategies for the exploration of large modelling spaces. For example, we have re-
cently investigated a SAT-based sampling of the variability space. We have demon-
strated the feasibility of the approach [116] and a possible application for QoS
evaluation in composite web services [77]. We plan to continue investigating
constraint-based techniques to verify highly configurable components in the con-
text of AUTOSAR. These work open a more general investigation about the intro-
duction of constraint programming for model-driven engineering and the defini-
tion of a constraint language for automatically reasoning about models.

• Meta heuristics are useful to address complex optimization problems such as find-
ing a good trade-off between different concerns that should be integrated in a
system model. They also propose an alternative way to explore large modelling
spaces. For example, we experimented with meta-heuristics in Freddy Muñoz’s
PhD thesis: he proposes new criteria to sample the environment of self-adaptive
systems for testing and he defined three strategies based on genetic and bacterio-
logic algorithms to automatically generate the samples [104].

5.2.4 Rigorous empirical validation

This point in future work is more ’meta’ and is here to remind that these research topics
are deeply rooted in Software Engineering. This means in particular that all the foun-
dations we set, the methods we define, the techniques we develop must be validated
through rigorous experimental methods and with respect to their initial goal: provide
support for verification and analysis of large system models. Scientific methods have
been precisely established in the fields of natural sciences. They are based on the as-
sumption that the construction of reliable knowledge in a field has to be supported by
a series of observations, a strict control over independent variables. Similar investiga-
tion methods must be applied to software engineering in order to build a sound body of
knowledge and eventually extract theories for large-scale model-driven engineering.

Experimental investigations can serve two goals:

• A series of precise experiments can help us understand the current state of practice
in MDE. This should allow us to qualify and quantify what can currently be done
with MDE and thus, what are the initial assumptions for our work. This initial
purpose of experiments is directly related to the Question and Learn dimensions of
the QLTF pattern.

• In future work we will propose new contributions to MDE in the form of algo-
rithms, tools or methods. Since all they all aim at improving the adoption of MDE
for the verification and analysis of large system models, they have to be validate

67

with respect to that goal. The second purpose of experiments is thus to provide
evidence that the work we develop can serve its initial goal.

5.2.5 Validation and verification of software intensive systems

As mentioned at the beginning of this section, the major challenge for V&V resides in the
fact that current techniques assume a single, complete, homogeneous model. In previous
sections I have introduced perspectives on model composition in order to extract a global
view from heterogeneous perspectives and in section 5.2.3 I have introduced possible
leads to deal with variability dimension in these models. However, if we can globally
manipulate heterogeneous perspectives on a system, we still do not know what it means
to verify its behaviour and how to perform this verification.

In order to verify software intensive systems I will investigate possible analogies be-
tween the ’correctness’ of biological systems and the verification in software intensive
systems. This proposal comes from the intuition that the dynamic, adaptive, pervasive
nature of software intensive systems can be related to living phenomena. Thus, under-
standing the mechanisms that biological systems develop in order to detect intruders
and adapt for survival can inspire innovative procedures to analyze and fix software in-
tensive systems. This proposal is also motivated by a series of recent investigations for
bio-inspired solutions to address the complexity of software systems. I briefly present
these work in the following.

The analogy of software systems to various forms of biological phenomena has in-
spired computer scientists and software engineers for a long time. It has driven innova-
tive ways of building and verifying programs (e.g. genetic programming [145], chemical
programming [7] or artificial immunology [139]), and has inspired the development of
powerful heuristics (e.g. genetic algorithms) that can address hard combinatorial prob-
lems. Some very recent works dealing with large software-intensive systems look for
inspiration within different natural phenomena.

• The European CONNECT project [39] stresses that the constant emergence of new
mobile devices prevents the emergence of a unique, stable middleware for com-
munication between all devices. They investigate artificial learning techniques to
dynamically and automatically discover communication protocols [30, 1], in order
to tackle this issue.

• The american National Science Foundation has recently launched the BEACON
[23] multi disciplinary research center that aims at developing bio-computation
solutions for the development of complex systems. In particular, Professor Cheng’s
group studies how natural evolution can inspire the design of self-adaptive soft-
ware systems [69, 90].

When recognizing that the scale (in time and space) and heterogeneity of software
systems can be similar to natural phenomena, one can start developing truly innovative
views on software. For example, Misailovic et al. [94] question the discrete nature of
software and propose to think about some software systems as continuous phenomena.

68

Consequently, correctness is not a binary property anymore and it is possible to per-
form minor changes in the functionality that will not prevent the program from running.
Misailovic et al. have experimented loop perforation as a possible way to alter a pro-
gram’s behaviour (by skipping some iterations in loop) to deliver increased performance
in image and video processing software.

Recent work has even leveraged the omnipresence of human effort in software-
intensive systems for solving problems that computers cannot complete. Von Ahn et
al. [3] have been able to channel the effort of millions humans all over the world to as-
sist computers in scanning old printed documents. They use the information provided by
millions of humans who read CAPTCHAs everyday to access web sites. These distorted
pieces of text are meant to distinguish humans from computers in order to prevent abu-
sive accesses to web sites. The idea of Von Ahn et al. is that pieces of old manuscript
documents that cannot be recognized by Optical Character Recognition are good candi-
dates as CAPTCHAs. This constitutes an original case of symbiosis where computers and
humans are closely associated to the benefits of both: humans are able to help comput-
ers perform a task that will in turn be useful to humans (who can store, search, transfer
the scanned documents).

5.3 Concluding remarks

This project will participate in the advancement and adoption of model-driven engi-
neering for large trustable software-intensive systems. However, there are risks in this
project. First, each point in the project presents inherent risks: model composition has
been a research topics for years; interactions between humans and computers is always a
difficult topic; by nature search-based techniques are prone to failure. Second, we might
not be able to identify the correct abstractions to reason about these systems. Third,
the experimental nature of the project is, in my opinion, an essential component to pro-
pose effective solutions for large models, but it is also inherently risky because it aims at
encompassing heterogeneous aspects of modelling (the metamodeller, the modeller, the
users, the changes in requirements).

Despite these risks, I am confident that this project will succeed. First, because we
have started exploring some parts of this project: model composition [58, 64, 115],
extensions of model type [130, 131], and verification in large, variable environments
[104, 48]. Second, I believe that valuable knowledge will come out of this project be-
cause of its intent. Following a QLTF pattern can force scientific rigour in all explorations
and thus drive this work towards new knowledge about the construction of large models,
the integration of heterogeneous concerns and the degree of variability and uncertainty
that can be managed in models. In other words, whatever we do, if done with rigour
and valid methods, will lead to relevant discoveries, fun explorations and valuable con-
tributions to the field of MDE and verification for software intensive systems.

69

Bibliography

[1] Fides Aarts, Johan Blom, Therese Bohlin, Yu-Fang Chen, Falk Howar, Bengt Jon-
sson, Maik Merten, Ralf Nagel, Antonino Sabetta, Siavash Soleimanifard, Bern-
hard Steffen, Johan Uijen, Thomas Wilk, and Stephan Windmuller. Establishing
basis for learning algorithms. Technical Report, 02 2010.

[2] Hira Agrawal, Joseph Horgan, Saul London, and Eric W. Wong. Fault localiza-
tion using execution slices and dataflow tests. In ISSRE’95 (Int. Symposium on

Software Reliability Engineering), pages 143 – 151, Toulouse, France, 1995.

[3] Luis Von Ahn, Benjamin Maurer, Colin Mcmillen, David Abraham, and Manuel
Blum. recaptcha: Human-based character recognition via web security measures.
Science, 321(5895):1465 – 1468, September 2008.

[4] Marcus Alanen and Ivan Porres. Difference and union of models. In UML’03

(Unified Modeling Language), San Francisco, CA, USA, 2003.

[5] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Uni-
versity Press, 2008.

[6] Colin Atkinson and Thomas Kuhne. Model-driven development: a metamodeling
foundation. Software, IEEE, 20(5):36 – 41, sep. 2003.

[7] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Principles of chemical
programming. Electr. Notes Theor. Comput. Sci., 124(1):133–147, 2005.

[8] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse influences
productivity in object-oriented systems. Commun. ACM, 39(10):104–116, 1996.

[9] Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering, 25(4):456–
473, 1999.

[10] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. Automatic
test cases optimization using a bacteriological adaptation model: Application to
.net components. In ASE’02 (Automated Software Engineering), pages 253 – 256,
Edimburgh, Scotland, UK, 2002. IEEE Computer Society Press, Los Alamitos, CA,
USA.

70

[11] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. Compu-
tational intelligence for testing .net components. In Microsoft Summer Research

Workshop, Cambrige, UK, 2002.

[12] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. Genes
and bacteria for automatic test cases optimization in the .net environment. In
ISSRE’02 (Int. Symposium on Software Reliability Engineering), pages 195 – 206,
Annapolis, MD, USA, 2002. IEEE Computer Society Press, Los Alamitos, CA, USA.

[13] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. From
genetic to bacteriological algorithms for mutation-based testing. Software Testing,

Verification and Reliability, 15(1):73–96, 2005.

[14] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites for effi-
cient fault localization. In ICSE’06 (Int. Conference in Software Engineering), pages
82 – 91, Shanghai, China, 2006.

[15] Benoit Baudry, Franck Fleurey, Yves Le Traon, and Jean-Marc Jézéquel. An orig-
inal approach for automatic test cases optimization: a bacteriologic algorithm.
IEEE Software, 22(2):76–82, 2005.

[16] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le Traon, and
Jean-Marie Mottu. Barriers to systematic model transformation testing. Commu-

nications of the ACM, 53(6):139–143, 2010.

[17] Benoit Baudry, Jean-Marc Jézéquel, and Yves Le Traon. Robustness and diag-
nosability of designed by contracts oo systems. In Metrics’01 (Software Metrics

Symposium), pages 272 – 283, London, UK, 2001. IEEE Computer Society Press,
Los Alamitos, CA, USA.

[18] Benoit Baudry and Yves Le Traon. Measuring design testability of a uml class
diagram. Information and Software Technology, 47(13):859–879, 2005.

[19] Benoit Baudry, Yves Le Traon, Vu Le Hanh, and Jean-Marc Jézéquel. Building
trust into oo components using a genetic analogy. In ISSRE’00 (Int. Symposium

on Software Reliability Engineering), pages 4 – 14, San Jose, CA, USA, 2000. IEEE
Computer Society Press, Los Alamitos, CA, USA.

[20] Benoit Baudry, Yves Le Traon, and Gerson Sunyé. Testability analysis of uml class
diagram. In Metrics’02 (Software Metrics Symposium), pages 54 – 63, Ottawa,
Canada, 2002. IEEE Computer Society Press, Los Alamitos, CA, USA.

[21] Benoit Baudry, Yves Le Traon, Gerson Sunyé, and Jean-Marc Jézéquel. Towards a
safe use of design patterns for oo software testability. In ISSRE’01 (Int. Symposium

on Software Reliability Engineering), pages 324 – 329, Hong-Kong, China, 2001.
IEEE Computer Society Press, Los Alamitos, CA, USA.

71

[22] Benoit Baudry, Yves Le Traon, Gerson Sunyé, and Jean-Marc Jézéquel. Measuring
and improving design patterns testability. In Metrics’03 (Software Metrics Sympo-

sium), Sydney, Australia, 2003. IEEE Computer Society Press, Los Alamitos, CA,
USA.

[23] BEACON. Bio/computational evolution in action consortium. http://www.

beacon.msu.edu/, 2010.

[24] K. Beck and E. Gamma. Test-infected: Programmers love writing tests. Java

Report, 3(7):37 – 50, 1998.

[25] Kent Beck. Extreme programming explained. Addison-Wesley, 1999.

[26] Kent Beck and E. Gamma. Junit, 2001.

[27] Boris Beizer. Black-Box Testing. Wiley, john wiley & sons edition, 1995.

[28] Nelly Bencomo, Jon Whittle, Peter Sawyer, Anthony Finkelstein, and Emmanuel
Letier. Requirements reflection: requirements as runtime entities. In ICSE (2),
pages 199–202, 2010.

[29] Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In Lionel Briand and A. Wolf, editors, Future of Software Engineering, pages 85 –
103. IEEE Computer Society, 2007.

[30] Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Auto-
matic Synthesis of Behavior Protocols for Composable Web-Services. In Hans van
Vliet and Valérie Issarny, editors, The 7th joint meeting of the European Software

Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (FSE) – ESEC/FSE09, pages 141–150, Amsterdam
Europe, 08 2009. ACM.

[31] Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt. Mtip workshop,
2005.

[32] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns and Tools. Addison-
Wesley, 1999.

[33] L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis contracts to
improve the testability of object oriented code. Software Practice and Experience,
33(7), 2003.

[34] Lionel Briand, J.W. Daly, and J.K. Wüst. A unified framework for coupling mea-
surement in object-oriented systems. IEEE Transactions on Software Engineering,
25(1):91 – 121, 1999.

[35] Lionel Briand and Yvan Labiche. A uml-based approach to system testing. Soft-

ware and Systems Modeling, 1(1):10 – 42, 2002.

http://www.beacon.msu.edu/
http://www.beacon.msu.edu/

72

[36] Lionel C. Briand and Yvan Labiche. A uml-based approach to system testing.
Software and System Modeling, 1(1):10–42, 2002.

[37] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.
Metamodel-based test generation for model transformations: an algorithm and a
tool. In ISSRE’06 (Int. Symposium on Software Reliability Engineering), pages 85
– 94, Raleigh, NC, USA, 2006.

[38] Ilinca Ciupa, Alexander Pretschner, Manuel Oriol, Andreas Leitner, Verification
Meyer, BertrandSoftware Testing, and n/a. doi: 10.1002/stvr.415 Reliability. On
the number and nature of faults found by random testing. Software Testing, Veri-

fication and Reliability, 2009.

[39] CONNECT. Emergent connectors for eternal software intensive networked sys-
tems, 2009.

[40] Juan de Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and meta-
modelling. In FASE ’02 (International Conference on Fundamental Approaches to

Software Engineering), pages 174–188, 2002.

[41] Romain Delamare. Analyses Automatiques pour le Test de Programmes Orientés

Aspect. Phd, 2009.

[42] Romain Delamare, Benoit Baudry, Sudipto Ghosh, Shashank Gupta, and Yves
Le Traon. An approach for testing pointcut descriptors in aspectj. Journal on

Software Testing Verification and Reliability, 2010.

[43] Romain Delamare, Benoit Baudry, Sudipto Ghosh, and Yves Le Traon. A test-
driven approach to developing pointcut descriptors in aspectj. In ICST (Interna-

tional Conference on Software Testing Verification and Validation), pages 376–385,
Denver, CO, USA, 2009.

[44] Romain Delamare, Benoit Baudry, and Yves Le Traon. Regression test selec-
tion when evolving software with aspects. In LATE workshop in conjunction with

AOSD’08, Brussels, Belgium, 2008.

[45] Romain Delamare, Benoit Baudry, and Yves Le Traon. A tool for the mutation
analysis of aspectj pointcut descriptors. In Mutation’09 workshop in conjunction

with ICST’09, Denver, CO, USA, 2009.

[46] Romain Delamare, Freddy Muñoz, Benoit Baudry, and Yves Le Traon. Vidock: a
tool for impact analysis of aspect weaving on test cases. In International Confer-

ence on Testing Software and Systems, Natal, Brazil, November 2010. IFIP.

[47] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection : Help for the
practicing programmer. IEEE Computer, 11(4):34 – 41, 1978.

73

[48] Philippe Dhaussy, Pierre Yves Pillain, Stephen Creff, Amine Raji, Yves Le Traon,
and Benoit Baudry. Evaluating context descriptions and property definition pat-
terns for software formal validation. In MODELS’09, pages 438–452, Denver, CO,
USA, 2009.

[49] D. F. D’Souza and A.C Wills. Object, Components and Frameworks with UML, The

Catalysis Approach. Object Technology Series. Addison-Wesley, 1998.

[50] Keith Duddy, Anna Gerber, Michael Lawley, Kerry Raymond, and Jim Steel. Model
transformation: A declarative, reusable patterns approach. In EDOC’03 (En-

treprise Distributed Object Computing Conference), pages 174 – 185, Brisbane,
Australia, 2003.

[51] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.
Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns
cause defects? IEEE Transactions on Software Engineering, 34(4):497–515, 2008.

[52] Eclipse. Ajdt: Aspectj development tools, 2010.

[53] Eclipse. Graphical modeling framework, 2010.

[54] Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe. The uml as a
formal modeling notation. In UML, pages 336–348, 1998.

[55] Fabiano Cutigi Ferrari, José Carlos Maldonado, and Awais Rashid. Mutation test-
ing for aspect-oriented programs. In ICST’08, pages 52 – 61, Lillehamer, Norway,
2008.

[56] Paul Karl Feyerabend. Against Method: Outline of an Anarchistic Theory of Knowl-

edge. Verso, 1975.

[57] Franck Fleurey. Langage et méthode pour une ingénierie des modèles fiable. Phd
thesis, 2006.

[58] Franck Fleurey, Benoit Baudry, Robert France, and Sudipto Ghosh. A generic
approach for automatic model composition. In Aspect Oriented Modeling (AOM)

Workshop associated to MoDELS’07, pages 7–15, Nashville, TN, USA, 2007.

[59] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. Towards
dependable model transformations: Qualifying input test data. Software and Sys-

tems Modeling, 8(2):185–203, 2009.

[60] Franck Fleurey, Yves Le Traon, and Benoit Baudry. From testing to diagnosis: An
automated approach. In ASE’04 (Automated Software Engineering), pages 306–
309, Linz, Austria, 2004.

[61] Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in model-driven engi-
neering: Testing model transformations. In MoDeVa’04 (Model Design and Valida-

tion Workshop associated to ISSRE’04), Rennes, France, 2004.

74

[62] Eclipse Foundation. Emf compare, 2007.

[63] Robert France and J.M. Bieman. Multi-view software evolution: a uml-based
framework for evolving object-oriented software. In ICSM’01 (Int. Conference on

Software Maintenance), pages 386 – 95, Florence, Italy, 2001.

[64] Robert France, Franck Fleurey, Raghu Reddy, Benoit Baudry, and Sudipto Ghosh.
Providing support for model composition in metamodels. In EDOC’07 (Entreprise

Distributed Object Computing Conference), pages 253–266, Annapolis, MD, USA,
2007.

[65] Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In Lionel Briand and A. Wolf, editors, Future of Soft-

ware Engineering 2007. IEEE - CS Press, 2007.

[66] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Professional Computing. Addison-Wesley,
1995.

[67] Carlo Ghezzi. Self managing situated computing, 2008.

[68] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software

Engineering, 2nd edition. 2002.

[69] Heather J. Goldsby and Betty H.C. Cheng. Automatically generating behavioral
models of adaptive systems to address uncertainty. In MODELS’08, Toulouse,
France, 2008.

[70] R. Harrison, S. Counsell, and R. Nithi. Experimental assessment of the effect of
inheritance on the maintainability of object-oriented systems. Journal of Systems

and Software, 52(2-3):173 – 179, 2000.

[71] Reiko Heckel and Marc Lohmann. Towards model-driven testing. Electronic Notes

in Theoretical Computer Science, 82(6), 2003.

[72] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineering.
Springer, 2006.

[73] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

[74] Cédric Jeanneret, Martin Glinz, and Benoit Baudry. Estimating footprints of
model operations. In International Conference on Software Engineering (ICSE’11),
Honolulu, USA, May 2011. IEEE.

[75] Jean-Marc Jézéquel. Model driven design and aspect weaving. Journal of Software

and Systems Modeling (SoSyM), 7(2):209–218, may 2008.

75

[76] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test infor-
mation to assist fault localization. In ICSE’02 (Int. Conference in Software Engi-

neering), pages 467 – 477, Orlando, FL, USA, 2002.

[77] Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and Claude Jard.
Variability modeling and qos analysis of web services orchestrations. In Interna-

tional Conference on Web Services, Miami, FL, USA, July 2010. IEEE.

[78] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In ECOOP’97 (European Conference for Object-Oriented Programming),
1997.

[79] Sun-Woo Kim, J.A. Clark, and J.A. McDermid. Investigating the effectiveness of
object-oriented testing strategies using the mutation method. Software Testing,

Verification and Reliability, 11(4):207 – 225, 2001.

[80] Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. Design requirements for more
flexible structured editors from a study of programmers’ text editing. In CHI ’05,
pages 1557–1560, Portland, OR, USA, 2005.

[81] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model compari-
son: a foundation for model composition and model transformation testing. In
GAMMA workshop at ICSE’06, pages 13 – 20, Shanghai, China, 2006.

[82] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: a framework for
compositional development of domain specific languages. International Journal

on Software Tools for Technology Transfer, 12(5):353–372, September 2010.

[83] Jochen M. Küster and Mohamed Abd-El-Razik. Validation of model transforma-
tions - first experiences using a white box approach. In MoDeVa’06 (Model Design

and Validation Workshop associated to MoDELS’06), Genova, Italy, 2006.

[84] Thomas Lackner. Automate your testing using bacteriolog-
ical algorithms. http://www.straatinvestments.com/blog/

automate-your-testing-using-bacteriological-algorithms-3820.html,
December 2007.

[85] Alain Le Guennec, Gerson Sunyé, and Jean-Marc Jézéquel. Precise modeling of
design patterns. In UML’00 (Unified Modeling Language), volume 1939 of Lecture

Notes in Computer Science, pages 482 – 496. Springer-Verlag, 2000.

[86] Yves Le Traon, Benoit Baudry, and Jean-Marc Jézéquel. Design by contract to im-
prove software vigilance. IEEE Transactions on Software Engineering, 32(8):571–
586, 2006.

http://www.straatinvestments.com/blog/automate-your-testing-using-bacteriological-algorithms-3820.html
http://www.straatinvestments.com/blog/automate-your-testing-using-bacteriological-algorithms-3820.html

76

[87] Yves Le Traon, Farid Ouabdessalam, Chantal Robach, and Benoit Baudry. From di-
agnosis to diagnosability: Axiomatization, measurement and application. Journal

of Systems and Software, 65(1):31 – 50, 2003.

[88] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing domain-specific design envi-
ronments. IEEE Computer, 34(11):44 – 51, 2001.

[89] Y. Lin, J. Gray, and Frédéric Jouault. Dsmdiff: A differentiation tool for domain-
specific models. European Journal of Information Systems, Special Issue on Model-

Driven Systems Development, 2007.

[90] Philip K. McKinley, Betty H. C. Cheng, Charles Ofria, David B. Knoester, Ben-
jamin E. Beckmann, and Heather Goldsby. Harnessing digital evolution. IEEE

Computer, 41(1):54–63, 2008.

[91] MetaCase. Metaedit+ domain-specific modeling environment, 2010.

[92] Bertrand Meyer. Applying design by contract. IEEE Computer, 25(10):40 – 51,
1992.

[93] Bertrand Meyer. Object-oriented software construction. Prentice Hall, 1992.

[94] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin C. Rinard. Qual-
ity of service profiling. In ICSE’10, pages 25 – 34, Cape Town, South Africa, 2010.

[95] Ivan Moore. Jester - a junit test tester. In XP 2001, pages 84 – 87, Villasimius,
Sardinia, 2001.

[96] Jean-Marie Mottu. Oracles et qualification du test de transformations de modèles.
PhD thesis, Université de Rennes 1, November 2008.

[97] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation analysis testing
for model transformations. In ECMDA’06 (European Conference on Model Driven

Architecture), pages 376–390, Bilbao, Spain, 2006.

[98] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Reusable mda components:
A testing-for-trust approach. In MoDELS’06, pages 589–603, Genova, Italy, 2006.

[99] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Model transformation test-
ing: oracle issue. In MODEVVA workshop in association with ICST’08, Lillehamer,
Norway, 2008.

[100] MSDN. C# introduction and overview, 2002.

[101] MSDN. .net homepage, 2002.

[102] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In MoDELS’05, pages 264 – 278, Mon-
tego Bay, Jamaica, 2005. LNCS.

77

[103] Pierre-Alain Muller, Fédéric Fondement, Benoit Baudry, and Benoit Combemale.
Modeling modeling modeling. SOSYM, 2010.

[104] Freddy Muñoz. Validation of reasoning engines and adaptation mechanisms Vali-

dation of reasoning engines and adaptation mechanisms for self -adaptive systems.
PhD thesis, Université de Rennes 1, September 2010.

[105] Freddy Munoz, Olivier Barais, and Benoit Baudry. Vigilant usage of aspects. In
ADI workshop associated to ECOOP’07, Berlin, Germany, 2007.

[106] Freddy Munoz, Benoit Baudry, and Olivier Barais. A classification of invasive
patterns in aop. Research report, INRIA, March 2008.

[107] Freddy Munoz, Benoit Baudry, and Olivier Barais. Improving maintenance in
aop through an interaction specification framework. In ICSM’08, pages 77–86,
Beijing, China, 2008.

[108] Freddy Munoz, Benoit Baudry, Romain Delamare, and Yves Le Traon. Inquiring
the usage of aspect-oriented programming: an empirical study. In ICSM’09 (Int.

Conference on Software Maintenance), pages 137–146, Edmonton, Al, Canada,
2009.

[109] Glenford J. Myers. The art of Software Testing. John Wiley & Sons, Inc., New York,
NY, USA, 1979.

[110] A. J. Offutt, Ammei Lee, G. Rothermel, Roland H. Untch, and Christian Zapf. An
experimental determination of sufficient mutant operators. ACM Transactions on

Software Engineering and Methodology, 5(2):99 – 118, 1996.

[111] OMG. Mda, 2003.

[112] OMG. Mof qvt final adopted specification, 2005.

[113] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and
generating functional tests. Communications of the ACM, 31(6):676 – 686, 1988.

[114] Renaud Pawlak. Spoon, 2010.

[115] Gilles Perrouin, Erwan Brottier, Benoit Baudry, and Yves Le Traon. Composing
models for detecting inconsistencies: A requirements engineering perspective. In
REFSQ’09, pages 89–103, 2009.

[116] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon. Au-
tomated and scalable t-wise test case generation strategies for software product
lines. In ICST’10, Paris, France, 2010.

[117] Eric R. Pianka. Evolutionnary Ecology. Addison-Wesley, 1999.

78

[118] Karl Raimund Popper. Conjectures and refutations: the growth of scientific knowl-

edge. Harper & Row, 1968.

[119] Rodrigo Ramos, Olivier Barais, and Jean-Marc Jézéquel. Matching model-
snippets. In MoDELS’07, Nashville, TN, USA, 2007.

[120] S. Rapps and E. J. Weyuker. Selecting software test data using data flow informa-
tion. IEEE Transactions on Software Engineering, 11(4):367 – 375, 1985.

[121] Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic
qos and soft contracts for transaction-based web services orchestrations. IEEE T.

Services Computing, 1(4):187–200, 2008.

[122] Jeff Rothenberg. The nature of modeling. In Lawrence E. Widman, Kenneth A.
Loparo, and Norman R. Nielsen, editors, AI, Simulation and Modeling, pages 75–
92. John Wiley & Sons, 1989.

[123] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25 – 31,
2006.

[124] Sagar Sen. Cartier, 2009.

[125] Sagar Sen. Découverte automatique de modèles effectifs. PhD thesis, Université
Rennes 1, 06 2010.

[126] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On combining multi-formalism
knowledge to select models for model transformation testing. In ICST’08 (Interna-

tional Conference on Software Testing Verification and Validation), pages 328–337,
Lillehamer, Norway, 2008.

[127] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic model generation
strategies for model transformation testing. In International Conference on Model

Transformation, pages 148–164, Zurich, Switzerland, 2009.

[128] Sagar Sen, Benoit Baudry, and Doina Precup. Partial model completion in model
driven engineering using constraint logic programming. In INAP’07 (International

Conference on Applications of Declarative Programming and Knowledge Manage-

ment), Würzburg, Germany, 2007.

[129] Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Towards domain-specific model
editors with automatic model completion. Simulation, 86(2):109 – 126, 2010.

[130] Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jezequel. Meta-model
pruning. In MODELS’09, pages 32–46, Denver, CO, USA, 2009.

[131] Sagar Sen, Naouel Moha, Vincent Mahé, Olivier Barais, Benoit Baudry, and Jean-
Marc Jezequel. Reusable model transformations. SoSym, 2010.

79

[132] Jacques Simonin. Conception de l’architecture d’un système dirigée par un modèle

d’urbanisme fonctionnel. PhD thesis, Université de Rennes 1, January 2009.

[133] Jim Steel and Jean-Marc Jézéquel. On model typing. Software and Systems Mod-

eling, 6(4):401–413, 2007.

[134] Jim Steel and Jean-Marc Jézéquel. On model typing. Journal of Software and

Systems Modeling (SoSyM), 6(4):401–414, December 2007.

[135] Friedrich Steimann. The paradoxical success of aspect-oriented programming. In
Proceedings of OOPSLA’06, pages 481 – 497, Portland, OR, USA, 2006.

[136] Maximilian Störzer and Jürgen Graf. Using pointcut delta analysis to support
evolution of aspect-oriented software. In ICSM’05, pages 653– 656, Budapest,
Hungary, 2005.

[137] Gerson Sunyé, Alain Le Guennec, and Jean-Marc Jézéquel. Design pattern appli-
cation in uml. In ECOOP’00 (European Conference for Object-Oriented Program-

ming), volume 1850 of Lecture Notes in Computer Science, pages 44 – 62, 2000.

[138] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of

Computer, 1(2):146–160, 1972.

[139] Jonathan Timmis, Andrew Hone, Thomas Stibor, and Edward Clark. Theoretical
advances in artificial immune systems. Theor. Comput. Sci., 403(1):11–32, 2008.

[140] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
TACAS’07, Braga, Portugal, 2007.

[141] Tom Tourwe, Johan Brichau, and Kris Gybels. On the existence of the aosd-
evolution paradox. In SPLAT: Software engineering Properties of Languages for

Aspect Technologies, 2003.

[142] Mark Utting and Bruno Legeard. Practical Model-Based Testing. Morgan Kauf-
mann, 2007.

[143] Terry J. van der Werff. 10 emerging technologies that will change the world.
Technology Review, 2001.

[144] Jeffrey M. Voas and K. Miller. The revealing power of a test case. Software Testing,

Verification and Reliability, 2(1):25 – 42, 1992.

[145] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-
matically finding patches using genetic programming. In International Conference

on Software Engineering, ICSE, pages 364–374, Vancouver, Canada, May 2009.
IEEE.

80

[146] Martin Wirsing, Matthias Hölzl, and Axel Rauschmayer. Road-mapping research
in software-intensive systems and new computing paradigms. Technical report,
Coordination Action InterLink, March 2009.

[147] Rati Wongsathan, Isaravuth Seedadan, and Sutichart Pattarangoon;. Cluster-
based routing using bacteriologic algorithm in wireless sensor network. In Pro-

ceedings of IEEE ICCET’2010, pages 5 – 9, Chengdu, China, April 2010.

[148] Guoqing Xu and Atanas Rountev. Regression test selection for aspectj software. In
ICSE’07 (Int. Conference in Software Engineering), Minneapolis, MN, USA, 2007.

[149] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[150] Sai Zhang, Zhongxian Gu, Yu Lin, and Jianjun Zhao. Change impact analysis tool
for aspect-oriented programs. In ICSM’08, pages 87 – 96, Beijing, China, 2008.

Abstract

This habilitation introduces the question-learn-test-feedback pattern that resulted from
a series of investigations in the domains of software testing and modular software con-
struction. The contributions to these fields are of various natures, but are all fundamen-
tally related through two major assumptions: software construction paradigms have
to constantly evolve in order to deal with the increasingly complex requirements that
software-intensive systems have to meet; a tester’s perspective can support this evolution
through the development of effective testing techniques and new empirical knowledge
about these paradigms.

Abstraction, modularity and separation of concerns have been advocated as key fac-
tors for rigorous software engineering for a long time. These principles have been in-
carnated by various software construction paradigms such as object-oriented program-
ming and design and model-driven development. These paradigms evolve in order to
deal with the increasing number of heterogeneous requirements, the large number of
variations and the need for adaptation that software-intensive systems have to inte-
grate. The work presented here is about the integration of effective testing techniques
in these paradigms and how this led us towards a more precise understanding of these
paradigms.

A major discovery in our work is that we could follow a systematic pattern when
investigating these paradigms to integrate error detection capabilities. First, we have
to question these paradigms about the new assumptions they introduce on software
systems. When answering these questions we can can perform the following actions:
learn through rigorous evaluation of hypotheses about these paradigms; test software
systems developed in these new paradigms; provide feedback to the paradigms in the
form of new construction techniques that improve testability. We capture these four
facets for the investigation of software construction paradigms in the question-learn-
test-feedback pattern (QLTF).

This habilitation reports on investigations in three software construction techniques:
object-oriented programming and design, aspect-oriented programming, model trans-
formations. Each investigation is synthesized around the question-learn-test-feedback
pattern.

	Introduction
	Following a question-learn-test-feedback pattern
	A brief discussion about methods

	Software construction paradigms under study
	Supervising research
	Organization of the thesis

	Object-oriented Design
	What we learned about the OO paradigm
	Testability anti-patterns in UML class diagrams
	Understanding the impact of contracts on vigilance and diagnosability

	Testing contributions in the OO paradigm
	The bacteriologic algorithm for automatic optimization of a test suite
	Reconciling test and diagnosis in OO programs
	Tools

	Feedback on the OO paradigm
	Testability tags for UML class diagrams

	Conclusion

	Aspect-oriented programming
	What we learned about aspect-oriented programming
	Testing contributions for aspect-oriented programming
	Static test selection after aspect weaving
	An oracle for AspectJ pointcut descriptors
	PCD mutation tool

	Feedback on aspect-oriented programming
	ABIS: a framework for aspect interaction specification and verification
	A framework for the definition of AO metrics

	Conclusion

	Model transformation
	What we learned about model transformation
	Barriers to Systematic Model Transformation Testing
	Fault models

	Testing contributions to model transformations
	Coverage criteria on source metamodel
	Automatic test data generation
	Oracle for model transformation testing

	Feedback to model transformation engineering
	Metamodel pruning
	Automatic model completion
	Encapsulating model transformations into components

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Model composition over heterogeneous domains
	Bring domain expertise in model manipulation
	Search-based exploration of variability in modelling spaces
	Rigorous empirical validation
	Validation and verification of software intensive systems

	Concluding remarks

	Bibliography

